Science.gov

Sample records for advanced high strength

  1. Friction Stir Spot Welding of Advanced High Strength Steels

    SciTech Connect

    Hovanski, Yuri; Grant, Glenn J.; Santella, M. L.

    2009-11-13

    Friction stir spot welding techniques were developed to successfully join several advanced high strength steels. Two distinct tool materials were evaluated to determine the effect of tool materials on the process parameters and joint properties. Welds were characterized primarily via lap shear, microhardness, and optical microscopy. Friction stir spot welds were compared to the resistance spot welds in similar strength alloys by using the AWS standard for resistance spot welding high strength steels. As further comparison, a primitive cost comparison between the two joining processes was developed, which included an evaluation of the future cost prospects of friction stir spot welding in advanced high strength steels.

  2. Friction Stir Spot Welding of Advanced High Strength Steels

    SciTech Connect

    Santella, M. L.; Hovanski, Yuri; Grant, Glenn J.; Carpenter, Joseph A.; Warren, C. D.; Smith, Mark T.

    2008-12-28

    Experiments are continuing to evaluate the feasibility of friction stir spot welding advanced high-strength steels including, DP780, martensitic hot-stamp boron steel, and TRIP steels. Spot weld lap-shear strengths can exceed those required by industry standards such as AWS D8.1.

  3. Development of high strength high toughness third generation advanced high strength steels

    NASA Astrophysics Data System (ADS)

    Martis, Codrick John

    Third generation advanced high strength steels (AHSS's) are emerging as very important engineering materials for structural applications. These steels have high specific strength and thus will contribute significantly to weight reduction in automotive and other structural component. In this investigation two such low carbon low alloy steels (LCLA) with high silicon content (1.6-2wt %) has been developed. These two steel alloys were subjected to single step and two step austempering in the temperature range of 260-399°C to obtain desired microstructures and mechanical properties. Austempering heat treatment was carried out for 2 hours in a molten salt bath. The microstructures were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and optical metallography. Quantitative analysis was carried out by image analysis technique. The effect of austempering temperature on the mechanical properties of these two alloys was examined. The influence of microstructures on the mechanical properties of alloys was also studied. Austempering heat treatment resulted in fine carbide free bainitic ferrite and high carbon austenite microstructure in the samples austempered above Ms temperature, whereas tempered martensite and austenite microstructure was obtained in samples austempered below Ms temperature. Yield strength, tensile strength and fracture toughness were found to increase as the austempering temperature decreases, whereas ductility increases as the austempering temperature increases. Tensile strength in the range of 1276MPa -1658 MPa and the fracture toughness in the range of 80-141MPa√m were obtained in these two steels. Volume fractions of different phases present and their lath sizes are related to the mechanical properties. Austempered samples consisting of mixed microstructure of bainitic ferrite and tempered martensite phases resulted in the exceptional combination of strength and toughness.

  4. Advanced Tribological Coatings for High Specific Strength Alloys

    DTIC Science & Technology

    1989-09-29

    Hard Anodised 4 HSSA12 (SHT) Plasma Nitrided 1 HSSA13 (H&G) Plasma Nitrided 2 HSSA14 (SHT) High Temperature Nitrocarburized 1 HSSA15 (H&G) Nitrox 1...HSSA26 ( High Temperature Plasma Nitriding) has recently arrived, and is currently undergoing metallographic examination. The remaining samples are still...Report No 3789/607 Advanced Tribological Coatings For High Specific Strength Alloys, R&D 5876-MS-01 Contract DAJ A45-87-C-0044 5th Interim Report

  5. Friction Stir Spot Welding of Advanced High Strength Steels

    SciTech Connect

    Hovanski, Yuri; Santella, M. L.; Grant, Glenn J.

    2009-12-28

    Friction stir spot welding was used to join two advanced high-strength steels using polycrystalline cubic boron nitride tooling. Numerous tool designs were employed to study the influence of tool geometry on weld joints produced in both DP780 and a hot-stamp boron steel. Tool designs included conventional, concave shouldered pin tools with several pin configurations; a number of shoulderless designs; and a convex, scrolled shoulder tool. Weld quality was assessed based on lap shear strength, microstructure, microhardness, and bonded area. Mechanical properties were functionally related to bonded area and joint microstructure, demonstrating the necessity to characterize processing windows based on tool geometry.

  6. Friction Stir Spot Welding of Advanced High Strength Steels

    SciTech Connect

    Santella, Michael L; Hovanski, Yuri; Grant, Glenn J; Frederick, D Alan; Dahl, Michael E

    2009-02-01

    Friction stir spot welding was used to join two advanced high-strength steels using polycrystalline cubic boron nitride tooling. Numerous tool designs were employed to study the influence of tool geometry on weld joints produced in both DP780 and a hot-stamp boron steel. Tool designs included conventional, concave shouldered pin tools with several pin configurations; a number of shoulderless designs; and a convex, scrolled shoulder tool. Weld quality was assessed based on lap shear strength, microstructure, microhardness, and bonded area. Mechanical properties were functionally related to bonded area and joint microstructure, demonstrating the necessity to characterize processing windows based on tool geometry.

  7. Hydrogen Embrittlement of Automotive Advanced High-Strength Steels

    NASA Astrophysics Data System (ADS)

    Lovicu, Gianfranco; Bottazzi, Mauro; D'Aiuto, Fabio; De Sanctis, Massimo; Dimatteo, Antonella; Santus, Ciro; Valentini, Renzo

    2012-11-01

    Advanced high-strength steels (AHSS) have a better combination between strength and ductility than conventional HSS, and higher crash resistances are obtained in concomitance with weight reduction of car structural components. These steels have been developed in the last few decades, and their use is rapidly increasing. Notwithstanding, some of their important features have to be still understood and studied in order to completely characterize their service behavior. In particular, the high mechanical resistance of AHSS makes hydrogen-related problems a great concern for this steel grade. This article investigates the hydrogen embrittlement (HE) of four AHSS steels. The behavior of one transformation induced plasticity (TRIP), two martensitic with different strength levels, and one hot-stamping steels has been studied using slow strain rate tensile (SSRT) tests on electrochemically hydrogenated notched samples. The embrittlement susceptibility of these AHSS steels has been correlated mainly to their strength level and to their microstructural features. Finally, the hydrogen critical concentrations for HE, established by SSRT tests, have been compared to hydrogen contents absorbed during the painting process of a body in white (BIW) structure, experimentally determined during a real cycle in an industrial plant.

  8. Development of third generation advanced high strength steels

    NASA Astrophysics Data System (ADS)

    McGrath, Meghan Colleen

    Lightweight duplex steels with combinations of either bainite, acicular ferrite, and austenite or martensite and austenite were investigated as third generation advanced high strength steels targeted for automotive applications. Large additions of manganese (> 13 wt%) and carbon (<0.2wt%) were employed to stabilize the austenite phase. Silicon additions between 1 and 2 wt% were added to suppress cementite formation. Strength and ductility were increased while density was decreased with aluminum additions between 2.4 and 5.5 wt% to the steel. This research addressed the dependence of alloying on microstructures and mechanical behavior for high manganese and aluminum duplex steels that were cast and subsequently hot rolled. Duplex steels with different volume fractions of primary delta-ferrite were used to study the crystallography of austenite fanned during the peritectic reaction. Solute profiles across the peritectic interface showed aluminum segregated near the interface which promoted bainitic ferrite formation. Thermal treatments were used to manipulate the concentration and type of oxides and the ferrite plate density was found to correlate with inclusions of low misfit in steels with austenite grain size of 16.5 microm. A steel with bainite and acicular ferrite produced an ultimate tensile strength of 970 MPa and elongation of 40%. The mechanical prope1iies depended on the strengths and size of the microstructural constituents. Work hardening behavior was examined in a steel exhibiting multiple martensitic transformation induced plasticity (gamma-austenite→epsilon-smartensite→alpha-martensite). A strain hardening exponent as high as 1.4 was observed with ultimate tensile strength and elongation as high as 1,165 MPa and 34%.

  9. New heat treatment process for advanced high-strength steels

    NASA Astrophysics Data System (ADS)

    Bublíková, D.; Jeníček, Š.; Vorel, I.; Mašek, B.

    2017-02-01

    Today’s advanced steels are required to possess high strength and ductility. It can be achieved by choosing an appropriate steel chemistry which has a substantial effect on the properties obtained by heat treatment. Mechanical properties influenced the presence of retained austenite in the final structure. Steels of this group typically require complicated heat treatment which places great demands on the equipment used. The present paper introduces new procedures aimed at simplifying the heat treatment of high-strength steels with the use of material-technological modelling. Four experimental steels were made and cast, whose main alloying additions were manganese, silicon, chromium, molybdenum and nickel. The steels were treated using the Q-P process with subsequent interrupted quenching. The resulting structure was a mixture of martensite and retained austenite. Strength levels of more than 2000 MPa combined with 10-15 % elongation were obtained. These properties thus offer potential for the manufacture of intricate closed-die forgings with a reduced weight. Intercritical annealing was obtained structure not only on the basis of martensite, but also with certain proportion of bainitic ferrite and retained austenite.

  10. Guidelines for Stretch Flanging Advanced High Strength Steels

    NASA Astrophysics Data System (ADS)

    Sriram, S.; Chintamani, J.

    2005-08-01

    Advanced High Strength Steels (AHSS) are currently being considered for use in closure and structural panels in the automotive industry because of their high potential for affordable weight reduction and improved performance. AHSS such as dual phase steels are currently being used in some vehicle platforms. From a manufacturing perspective, stretch flanging during stamping is an important deformation mode requiring careful consideration of geometry and the die process. This paper presents some geometric and process guidelines for stretch flanging AHSS. Hole expansion experiments were conducted to determine the failure limit for a sheared edge condition. Effects of punching clearance, prestrain and prior strain path on hole expansion were explored in these experiments. In addition, dynamic explicit FE calculations using LS-DYNA were also conducted for a typical stretch flange by varying some key geometric parameters. The experimental and FEA results were then analyzed to yield process and geometric guidelines to enable successful stretch flanging of AHSS.

  11. Guidelines for Stretch Flanging Advanced High Strength Steels

    SciTech Connect

    Sriram, S.; Chintamani, J.

    2005-08-05

    Advanced High Strength Steels (AHSS) are currently being considered for use in closure and structural panels in the automotive industry because of their high potential for affordable weight reduction and improved performance. AHSS such as dual phase steels are currently being used in some vehicle platforms. From a manufacturing perspective, stretch flanging during stamping is an important deformation mode requiring careful consideration of geometry and the die process. This paper presents some geometric and process guidelines for stretch flanging AHSS. Hole expansion experiments were conducted to determine the failure limit for a sheared edge condition. Effects of punching clearance, prestrain and prior strain path on hole expansion were explored in these experiments. In addition, dynamic explicit FE calculations using LS-DYNA were also conducted for a typical stretch flange by varying some key geometric parameters. The experimental and FEA results were then analyzed to yield process and geometric guidelines to enable successful stretch flanging of AHSS.

  12. Proceedings: 1986 Workshop on Advanced High-Strength Materials

    SciTech Connect

    1989-05-01

    Stress corrosion cracking (SCC) has contributed to many in-service failures of high-strength LWR components. In 25 workshop presentations, this report addresses the effects of metallurgical factors, manufacturing processes, design improvements, and installation practices on the resistance of high-strength alloys to SCC.

  13. Numerical Design of Drawbeads for Advanced High Strength Steel Sheets

    NASA Astrophysics Data System (ADS)

    Keum, Y. T.; Kim, D. J.; Kim, G. S.

    2010-06-01

    The map for designing the drawbeads used in the stamping dies for advanced high strength steel (AHSS) sheets is numerically investigated and its application is introduced. The bending limit of AHSS sheet is determined from the extreme R/t's obtained simulating numerically the plane-strain process formed by the cylindrical punches and dies with various radii. In addition, the forming allowance defined by the difference between FLC0 and the strain after passing the drawbead, which is observed by the numerical simulation of drawbead pulling test, is computed. Based on the bending limit and forming allowance, the design map for determining the height, width, and shoulder radius of the drawbead which are key parameters in the drawbead design and depend on the restraining force is constructed by aid of the equivalent drawbead model. A drawbead of the stamping die for forming a channel-typed panel is designed by using the design map, and the formability and springback of the panel to be formed are numerically evaluated, from which the availability of the design map is demonstrated.

  14. Advanced Gear Alloys for Ultra High Strength Applications

    NASA Technical Reports Server (NTRS)

    Shen, Tony; Krantz, Timothy; Sebastian, Jason

    2011-01-01

    Single tooth bending fatigue (STBF) test data of UHS Ferrium C61 and C64 alloys are presented in comparison with historical test data of conventional gear steels (9310 and Pyrowear 53) with comparable statistical analysis methods. Pitting and scoring tests of C61 and C64 are works in progress. Boeing statistical analysis of STBF test data for the four gear steels (C61, C64, 9310 and Pyrowear 53) indicates that the UHS grades exhibit increases in fatigue strength in the low cycle fatigue (LCF) regime. In the high cycle fatigue (HCF) regime, the UHS steels exhibit better mean fatigue strength endurance limit behavior (particularly as compared to Pyrowear 53). However, due to considerable scatter in the UHS test data, the anticipated overall benefits of the UHS grades in bending fatigue have not been fully demonstrated. Based on all the test data and on Boeing s analysis, C61 has been selected by Boeing as the gear steel for the final ERDS demonstrator test gearboxes. In terms of potential follow-up work, detailed physics-based, micromechanical analysis and modeling of the fatigue data would allow for a better understanding of the causes of the experimental scatter, and of the transition from high-stress LCF (surface-dominated) to low-stress HCF (subsurface-dominated) fatigue failure. Additional STBF test data and failure analysis work, particularly in the HCF regime and around the endurance limit stress, could allow for better statistical confidence and could reduce the observed effects of experimental test scatter. Finally, the need for further optimization of the residual compressive stress profiles of the UHS steels (resulting from carburization and peening) is noted, particularly for the case of the higher hardness C64 material.

  15. Advanced nickel base alloys for high strength, corrosion applications

    DOEpatents

    Flinn, J.E.

    1998-11-03

    Improved nickel-base alloys of enhanced strength and corrosion resistance, produced by atomization of an alloy melt under an inert gas atmosphere and of composition 0--20Fe, 10--30Cr, 2--12Mo, 6 max. Nb, 0.05--3 V, 0.08 max. Mn, 0.5 max. Si, less than 0.01 each of Al and Ti, less than 0.05 each of P and S, 0.01--0.08C, less than 0.2N, 0.1 max. 0, bal. Ni. 3 figs.

  16. Advanced nickel base alloys for high strength, corrosion applications

    DOEpatents

    Flinn, John E.

    1998-01-01

    Improved nickel-base alloys of enhanced strength and corrosion resistance, produced by atomization of an alloy melt under an inert gas atmosphere and of composition 0-20Fe, 10-30Cr, 2-12Mo, 6 max. Nb, 0.05-3 V, 0.08 max. Mn, 0.5 max. Si, less than 0.01 each of Al and Ti, less than 0.05 each of P and S, 0.01-0.08C, less than 0.2N, 0.1 max. 0, bal. Ni.

  17. Application technologies for effective utilization of advanced high strength steel sheets

    SciTech Connect

    Suehiro, Masayoshi

    2013-12-16

    Recently, application of high strength steel sheets for automobiles has increased in order to meet a demand of light weighting of automobiles to reduce a carbon footprint while satisfying collision safety. The formability of steel sheets generally decreases with the increase in strength. Fracture and wrinkles tend to occur easily during forming. The springback phenomenon is also one of the issues which we should cope with, because it makes it difficult to obtain the desired shape after forming. Advanced high strength steel sheets with high formability have been developed in order to overcome these issues, and at the same time application technologies have been developed for their effective utilization. These sheets are normally used for cold forming. As a different type of forming, hot forming technique has been developed in order to produce parts with ultra high strength. In this report, technologies developed at NSSMC in this field will be introduced.

  18. Properties of Galvanized and Galvannealed Advanced High Strength Hot Rolled Steels

    SciTech Connect

    V.Y. Guertsman; E. Essadiqi; S. Dionne; O. Dremmailova; R. Bouchard; B. Voyzelle; J. McDermid; R. Fourmentin

    2008-04-01

    The objectives of the project were (i) to develop the coating process information to achieve good quality coatings on 3 advanced high strength hot rolled steels while retaining target mechanical properties, (ii) to obtain precise knowledge of the behavior of these steels in the various forming operations and (iii) to establish accurate user property data in the coated conditions. Three steel substrates (HSLA, DP, TRIP) with compositions providing yield strengths in the range of 400-620 MPa were selected. Only HSLA steel was found to be suitable for galnaizing and galvannealing in the hot rolled condition.

  19. Microstructural effects on the springback of advanced high-strength steel

    NASA Astrophysics Data System (ADS)

    Gan, Wei; Babu, S. S.; Kapustka, Nick; Wagoner, Robert H.

    2006-11-01

    The application of advanced high-strength steels (AHSS) has been growing rapidly in the automotive industry. Because of their high-strength, thinner sheet metals can be used for body components to achieve both weight savings and increased safety. However, this will lead to greater springback deviation from design after the forming operation. Fundamental understanding and prediction of springback are required for springback compensation and tooling design. While various types of continuum mechanics based models have been proposed to simulate the mechanical behavior of advanced high-strength steels, few of them consider microstructural effects such as material heterogeneity. In this study, through sheet thickness strength variation has been observed in DP 780 and TRIP 780 steels. Finite-element simulation indicates that the through thickness effect (TTE) can have a significant impact on the springback behavior of these sheet metals. This is verified through our experimental work using draw-bend testing. The results suggest that microstructural effects should be considered to accurately simulate springback of AHSS. Based on these results, implications of different microstructural designs will be discussed.

  20. Nanocrystalline Advanced High Strength Steel Produced by Cold Rolling and Annealing

    NASA Astrophysics Data System (ADS)

    Field, Daniel M.; Van Aken, David C.

    2016-05-01

    An advanced high strength steel of composition Fe-0.11C-2.46Si-11.5Mn-0.38Al-0.029N (wt pct) was produced with a yield strength of 790 MPa, an ultimate tensile strength of 1300 MPa, and a total elongation of 28 pct. Conventional processing of hot-band steel by cold rolling and annealing at 873 K (600 °C) was used to produce a nanocrystalline structure with an average grain diameter 112 ± 25 nm (68 pct confidence level). Electron backscatter diffraction (EBSD) and X-ray diffraction (XRD) were utilized to characterize the nanocrystalline steel, which consisted of γ-austenite, ɛ-martensite, and α-ferrite.

  1. Friction Stir Spot Welding (FSSW) of Advanced High Strength Steel (AHSS)

    SciTech Connect

    Santella, M. L.; Hovanski, Yuri; Pan, Tsung-Yu

    2012-04-16

    Friction stir spot welding (FSSW) is applied to join advanced high strength steels (AHSS): galvannealed dual phase 780 MPa steel (DP780GA), transformation induced plasticity 780 MPa steel (TRIP780), and hot-stamped boron steel (HSBS). A low-cost Si3N4 ceramic tool was developed and used for making welds in this study instead of polycrystalline cubic boron nitride (PCBN) material used in earlier studies. FSSW has the advantages of solid-state, low-temperature process, and the ability of joining dissimilar grade of steels and thicknesses. Two different tool shoulder geometries, concave with smooth surface and convex with spiral pattern, were used in the study. Welds were made by a 2-step displacement control process with weld time of 4, 6, and 10 seconds. Static tensile lap-shear strength achieved 16.4 kN for DP780GA-HSBS and 13.2kN for TRIP780-HSBS, above the spot weld strength requirements by AWS. Nugget pull-out was the failure mode of the joint. The joining mechanism was illustrated from the cross-section micrographs. Microhardness measurement showed hardening in the upper sheet steel (DP780GA or TRIP780) in the weld, but softening of HSBS in the heat-affect zone (HAZ). The study demonstrated the feasibility of making high-strength AHSS spot welds with low-cost tools.

  2. On Simulation of Edge Stretchability of an 800MPa Advanced High Strength Steel

    NASA Astrophysics Data System (ADS)

    Pathak, Nikky; Butcher, Cliff; Worswick, Michael

    2016-08-01

    In the present work, the edge stretchability of advanced high strength steel (AHSS) was investigated experimentally and numerically using both a hole expansion test and a tensile specimen with a central hole. The experimental fracture strains obtained using the hole expansion and hole tension test in both reamed and sheared edge conditions were in very good agreement, suggesting the tests are equivalent for fracture characterization. Isotropic finite-element simulations of both tests were performed to compare the stress-state near the hole edge.

  3. Development of advanced high strength tantalum base alloys. Part 2: Scale-up investigation

    NASA Technical Reports Server (NTRS)

    Ammon, R. L.; Buckman, R. W., Jr.

    1970-01-01

    Three experimental tantalum alloy compositions containing 14-16% W, 1% Re, 0.7% Hf, 0.025% C or 0.015% C and 0.015% N were prepared as two inch diameter ingots by consumable electrode vacuum arc melting. The as-cast ingots were processed by extrusion and swaging to one inch and 0.4 inch diameter rod and evaluated. Excellent high temperature forging behavior was exhibited by all three compositions. Creep strength at 2000 F to 2400 F was enhanced by higher tungsten additions as well as substitution of nitrogen for carbon. Weldability of all three compositions was determined to be adequate. Room temperature ductility was retained in the advanced tantalum alloy compositions as well as a notched/unnotched strength ratio of 1.4 for a notched bar having a K sub t = 2.9.

  4. A New Perspective on Fatigue Performance of Advanced High- Strength Steels (AHSS) GMAW Joints

    SciTech Connect

    Feng, Zhili; Chiang, Dr. John; Kuo, Dr. Min; Jiang, Cindy; Sang, Yan

    2008-01-01

    Weld fatigue performance is a critical aspect for application of advanced high-strength steels (AHSS) in automotive body structures. A comparative study has been conducted to evaluate the fatigue life of AHSS welds. The material studied included seven AHSS of various strength levels - DP 600, DP 780, DP 980, M130, M220, solution annealed boron and fully hardened boron steels. Two conventional steels, HSLA 590 and DR 210, were also included for baseline comparison. Lap fillet welds were made on 2-mm nominal thick sheets by the gas metal arc welding process (GMAW). Fatigue test was conducted under a number of stress levels to obtain the S/N curves of the weld joints. It was found that, unlike in the static and impact loading conditions, the fatigue performance of AHSS is not influenced by the HAZ softening in AHSS. There are appreciable differences in the fatigue lives among different AHSS. Changes in weld parameters can influence the fatigue life of the weld joints, particularly of these of higher strength AHSS. A model is developed to predict the fatigue performance of AHSS welds. The validity of the model is benchmarked with the experimental results. This model is capable to capture the effects of weld geometry and weld microstructure and strength on the fatigue performance experimentally observed. The theoretical basis and application of the newly developed fatigue modeling methodology will be discussed.

  5. Influence of Manufacturing Processes and Microstructures on the Performance and Manufacturability of Advanced High Strength Steels

    SciTech Connect

    Choi, Kyoo Sil; Liu, Wenning N.; Sun, Xin; Khaleel, Mohammad A.

    2009-10-01

    Advanced high strength steels (AHSS) are performance-based steel grades and their global material properties can be achieved with various steel chemistries and manufacturing processes, leading to various microstructures. In this paper, we investigate the influence of supplier variation and resulting microstructure difference on the overall mechanical properties as well as local formability behaviors of advanced high strength steels (AHSS). For this purpose, we first examined the basic material properties and the transformation kinetics of TRansformation Induced Plasticity (TRIP) 800 steels from three different suppliers under different testing temperatures. The experimental results show that there is a significant supplier (i.e., manufacturing process) dependency of the TRIP 800 steel mechanical and microstructure properties. Next, we examined the local formability of two commercial Dual Phase (DP) 980 steels during stamping process. The two commercial DP 980 steels also exhibit noticeably different formability during stamping process in the sense that one of them shows severe tendency for shear fracture. Microstructure-based finite element analyses are carried out next to simulate the localized deformation process with the two DP 980 microstructures, and the results suggest that the possible reason for the difference in formability lies in the morphology of the hard martensite phase in the DP microstructure.

  6. Analysis of particle size and interface effects on the strength and ductility of advanced high strength steels

    NASA Astrophysics Data System (ADS)

    Ettehad, Mahmood

    This thesis is devoted to the numerical investigation of mechanical behavior of Dual phase (DP) steels. Such grade of advanced high strength steels (AHSS) is favorable to the automotive industry due the unique properties such as high strength and ductility with low finished cost. Many experimental and numerical studies have been done to achieve the optimized behavior of DP steels by controlling their microstructure. Experiments are costly and time consuming so in recent years numerical tools are utilized to help the metallurgist before doing experiments. Most of the numerical studies are based on classical (local) constitutive models where no material length scale parameters are incorporated in the model. Although these models are proved to be very effective in modeling the material behavior in the large scales but they fail to address some critical phenomena which are important for our goals. First, they fail to address the size effect phenomena which materials show at microstructural scale. This means that materials show stronger behavior at small scales compared to large scales. Another issue with classical models is the mesh size dependency in modeling the softening behavior of materials. This means that in the finite element context (FEM) the results will be mesh size dependent and no converged solution exist upon mesh refinement. Thereby by applying the classical (local) models one my loose the accuracy on measuring the strength and ductility of DP steels. Among the non-classical (nonlocal) models, gradient-enhanced plasticity models which consider the effect of neighboring point on the behavior of one specific point are proved to be numerically effective and versatile tools to accomplish the two concerns mentioned above. So in this thesis a gradient-enhanced plasticity model which incorporates both the energetic and dissipative material length scales is derived based on the laws of thermodynamics. This model also has a consistent yield-like function for the

  7. Correlation of microstructure, tensile properties and hole expansion ratio in cold rolled advanced high strength steels

    NASA Astrophysics Data System (ADS)

    Terrazas, Oscar R.

    The demand for advanced high strength steels (AHSS) with higher strengths is increasing in the automotive industry. While there have been major improvements recently in the trade-off between ductility and strength, sheared-edge formability of AHSS remains a critical issue. AHSS sheets exhibit cracking during stamping and forming operations below the predictions of forming limits. It has become important to understand the correlation between microstructure and sheared edge formability. The present work investigates the effects of shearing conditions, microstructure, and tensile properties on sheared edge formability. Seven commercially produced steels with tensile strengths of 1000 +/- 100 MPa were evaluated: five dual-phase (DP) steels with different compositions and varying microstructural features, one trip aided bainitic ferrite (TBF) steel, and one press-hardened steel tempered to a tensile strength within the desired range. It was found that sheared edge formability is influenced by the martensite in DP steels. Quantitative stereology measurements provided results that showed martensite size and distribution affect hole expansion ratio (HER). The overall trend is that HER increases with more evenly dispersed martensite throughout the microstructure. This microstructure involves a combination of martensite size, contiguity, mean free distance, and number of colonies per unit area. Additionally, shear face characterization showed that the fracture and burr region affect HER. The HER decreases with increasing size of fracture and burr region. With a larger fracture and burr region more defects and/or micro-cracks will be present on the shear surface. This larger fracture region on the shear face facilitates cracking in sheared edge formability. Finally, the sheared edge formability is directly correlated to true fracture strain (TFS). The true fracture strain from tensile samples correlates to the HER values. HER increases with increasing true fracture strain.

  8. Integrated Computational Materials Engineering (ICME) for Third Generation Advanced High-Strength Steel Development

    SciTech Connect

    Savic, Vesna; Hector, Louis G.; Ezzat, Hesham; Sachdev, Anil K.; Quinn, James; Krupitzer, Ronald; Sun, Xin

    2015-06-01

    This paper presents an overview of a four-year project focused on development of an integrated computational materials engineering (ICME) toolset for third generation advanced high-strength steels (3GAHSS). Following a brief look at ICME as an emerging discipline within the Materials Genome Initiative, technical tasks in the ICME project will be discussed. Specific aims of the individual tasks are multi-scale, microstructure-based material model development using state-of-the-art computational and experimental techniques, forming, toolset assembly, design optimization, integration and technical cost modeling. The integrated approach is initially illustrated using a 980 grade transformation induced plasticity (TRIP) steel, subject to a two-step quenching and partitioning (Q&P) heat treatment, as an example.

  9. Experimental and Numerical Determination of Hot Forming Limit Curve of Advanced High-Strength Steel

    NASA Astrophysics Data System (ADS)

    Ma, B. L.; Wan, M.; Liu, Z. G.; Li, X. J.; Wu, X. D.; Diao, K. S.

    2017-07-01

    This paper studied the hot formability of the advanced high-strength steel B1500HS. The hot Nakazima tests were conducted to obtain the forming limit curve (FLC), and the sheet temperatures were recorded to analyze temperature distributions during deformation. Meanwhile, the numerical simulations of hot Nakazima tests were performed to compare with the experimental ones. By utilizing the commercial software, Abaqus, the punch force-displacement curve, sheet temperature distribution at the time of the maximum punch load and temperature path of the necked element were investigated from both of experiments and numerical simulations. The FLCs from experiment and numerical simulation showed a good agreement. The temperature path of the necked element on each FLC specimen was different due to the numerical stretching time and stress state. This study demonstrated the predictive capability of finite element simulation on hot stamping.

  10. Nanoscale surface analysis on second generation advanced high strength steel after hot dip galvanizing.

    PubMed

    Arndt, M; Duchoslav, J; Preis, K; Samek, L; Stifter, D

    2013-09-01

    Second generation advanced high strength steel is one promising material of choice for modern automotive structural parts because of its outstanding maximal elongation and tensile strength. Nonetheless there is still a lack of corrosion protection for this material due to the fact that cost efficient hot dip galvanizing cannot be applied. The reason for the insufficient coatability with zinc is found in the segregation of manganese to the surface during annealing and the formation of manganese oxides prior coating. This work analyses the structure and chemical composition of the surface oxides on so called nano-TWIP (twinning induced plasticity) steel on the nanoscopic scale after hot dip galvanizing in a simulator with employed analytical methods comprising scanning Auger electron spectroscopy (SAES), energy dispersive X-ray spectroscopy (EDX), and focused ion beam (FIB) for cross section preparation. By the combination of these methods, it was possible to obtain detailed chemical images serving a better understanding which processes exactly occur on the surface of this novel kind of steel and how to promote in the future for this material system galvanic protection.

  11. Fatigue Performance of Advanced High-Strength Steels (AHSS) GMAW Joints

    SciTech Connect

    Feng, Zhili; Sang, Yan; Jiang, Cindy; Chiang, Dr. John; Kuo, Dr. Min

    2009-01-01

    The fatigue performance of gas metal arc welding (GMAW) joints of advanced high strength steels (AHSS) are compared and analyzed. The steel studied included a number of different grades of AHSS and baseline mild steels: DP600, DP780, DP980, M130, M220, solution annealed boron steel, fully hardened boron steels, HSLA690 and DR210 (a mild steel). Fatigue testing was conducted under a number of nominal stress ranges to obtain the S/N curves of the weld joints. A two-phase analytical model is developed to predict the fatigue performance of AHSS welds. It was found that there are appreciable differences in the fatigue S/N curves among different AHSS joints made using the same welding practices, suggesting that the local microstructure in the weld toe and root region plays non-negligible role in the fatigue performance of AHSS welds. Changes in weld parameters can influence the joint characteristics which in turn influence fatigue life of the weld joints, particularly of those of higher strength AHSS. The analytical model is capable of reasonably predicting the fatigue performance of welds made with various steel grades in this study.

  12. Optimization of Process Parameters for High Efficiency Laser Forming of Advanced High Strength Steels within Metallurgical Constraints

    NASA Astrophysics Data System (ADS)

    Sheikholeslami, Ghazal; Griffiths, Jonathan; Dearden, Geoff; Edwardson, Stuart P.

    Laser forming (LF) has been shown to be a viable alternative to form automotive grade advanced high strength steels (AHSS). Due to their high strength, heat sensitivity and low conventional formability show early fractures, larger springback, batch-to-batch inconsistency and high tool wear. In this paper, optimisation of the LF process parameters has been conducted to further understand the impact of a surface heat treatment on DP1000. A FE numerical simulation has been developed to analyse the dynamic thermo-mechanical effects. This has been verified against empirical data. The goal of the optimisation has been to develop a usable process window for the LF of AHSS within strict metallurgical constraints. Results indicate it is possible to LF this material, however a complex relationship has been found between the generation and maintenance of hardness values in the heated zone. A laser surface hardening effect has been observed that could be beneficial to the efficiency of the process.

  13. Galvanizability of Advanced High-Strength Steels 1180TRIP and 1180CP

    NASA Astrophysics Data System (ADS)

    Kim, M. S.; Kwak, J. H.; Kim, J. S.; Liu, Y. H.; Gao, N.; Tang, N.-Y.

    2009-08-01

    In general, Si-bearing advanced high-strength steels (AHSS) possess excellent mechanical properties but poor galvanizability. The galvanizability of a transformation-induced plasticity (TRIP) steel 1180TRIP containing 2.2 pct Mn and 1.7 pct Si and a complex phase steel 1180CP containing 2.7 pct Mn and 0.2 pct Si was extensively studied using a galvanizing simulator. The steel coupons were annealed at fixed dew points in the simulator. The surface features of the as-annealed steel coupons, together with galvanized and galvannealed coatings, were carefully examined using a variety of advanced analysis techniques. It was found that various oxides formed on the surface of these steels, depending on the steel composition and on the dew point control. Coating quality was good at 0 °C dew point but deteriorated as the dew point decreased to -35 °C and -65 °C. Based on the findings, guidance was provided for improving galvanizability by adjusting the Mn:Si ratio in steel compositions according to the dew point.

  14. The plane strain shear fracture of the advanced high strength steels

    NASA Astrophysics Data System (ADS)

    Sun, Li

    2013-12-01

    The "shear fracture" which occurs at the high-curvature die radii in the sheet metal forming has been reported to remarkably limit the application of the advanced high strength steels (AHSS) in the automobile industry. However, this unusual fracture behavior generally cannot be predicted by the traditional forming limit diagram (FLD). In this research, a new experimental system was developed in order to simulate the shear fracture, especially at the plane strain state which is the most common state in the auto-industry and difficult to achieve in the lab due to sample size. Furthermore, the system has the capability to operate in a strain rate range from quasi-static state to the industrial forming state. One kinds of AHSS, Quenching-Partitioning (QP) steels have been performed in this test and the results show that the limiting fracture strain is related to the bending ratio and strain rate. The experimental data support that deformation-induced heating is an important cause of "shear fracture" phenomena for AHSS: a deformation-induced quasi-heating caused by smaller bending ratio and high strain rate produce a smaller limiting plane strain and lead a "shear fracture" in the component.

  15. The plane strain shear fracture of the advanced high strength steels

    SciTech Connect

    Sun, Li

    2013-12-16

    The “shear fracture” which occurs at the high-curvature die radii in the sheet metal forming has been reported to remarkably limit the application of the advanced high strength steels (AHSS) in the automobile industry. However, this unusual fracture behavior generally cannot be predicted by the traditional forming limit diagram (FLD). In this research, a new experimental system was developed in order to simulate the shear fracture, especially at the plane strain state which is the most common state in the auto-industry and difficult to achieve in the lab due to sample size. Furthermore, the system has the capability to operate in a strain rate range from quasi-static state to the industrial forming state. One kinds of AHSS, Quenching-Partitioning (QP) steels have been performed in this test and the results show that the limiting fracture strain is related to the bending ratio and strain rate. The experimental data support that deformation-induced heating is an important cause of “shear fracture” phenomena for AHSS: a deformation-induced quasi-heating caused by smaller bending ratio and high strain rate produce a smaller limiting plane strain and lead a “shear fracture” in the component.

  16. Advanced oxidation treatment of high strength bilge and aqueous petroleum waste

    SciTech Connect

    Hulsey, R.A.; Kobylinski, E.A.; Leach, B.; Pearce, L.

    1996-11-01

    The Craney Island Fuel Depot is the largest US Navy fuel terminal in the continental US. Services provided at this facility include fuel storage (current capacity is 1.5 million barrels), fuel reclamation (recovery of oil from oily wastewater), and physical/chemical treatment for the removal of residual oil from bilge water and from aqueous petroleum waste. Current wastewater treatment consists of storage/equalization, oil/water separation, dissolved air flotation, sand filtration, and carbon adsorption. The Navy initiated this study to comply with the State requirement that its existing physical/chemical oily wastewater treatment plant be upgraded to remove soluble organics and produce an effluent which would meet acute toxicity limits. The pilot tests conducted during the study included several variations of chemical and biological wastewater treatment processes. While biological treatment alone was capable of meeting the proposed BOD limit of 26 mg/L, the study showed that the effluent of the biological process contained a high concentration of refractory (nonbiodegradable) organics and could not consistently meet the proposed limits for COD and TOC when treating high-strength wastewater. Additional tests were conducted with advanced oxidation processes (AOPs). AOPs were evaluated for use as independent treatment processes as well as polishing processes following biological treatment. The AOP processes used for this study included combinations of ozone (O{sub 3}) ultraviolet radiation (UV), and hydrogen peroxide (H{sub 2}O{sub 2}).

  17. Quasi-static and dynamic responses of advanced high strength steels: Experiments and modeling

    SciTech Connect

    Khan, Akhtar; Baig, Muneer; Choi, Shi Hoon; Yang, Hoe Seok; Sun, Xin

    2012-03-01

    Measured responses of advanced high strength steels (AHSS) and their tailor welded blanks (TWBs), over a wide range of strain-rates (10*4 to 103 s*1) are presented. The steels investigated include transformation induced plasticity (TRIP), dual phase (DP), and drawing quality (DQ) steels. The TWBs include DQ-DQ and DP-DP laser welds. A tensile split Hopkinson pressure bar (SHPB) was used for the dynamic experiments. AHSS and their TWB's were found to exhibit positive strain-rate sensitivity. The Khan-Huang-Liang (KHL) constitutive model is shown to correlate and predict the observed responses reasonably well. Micro-texture characterization of DQ steels, DQ-DQ and DP-DP laser welds were performed to investigate the effect of strain-rate on texture evolution of these materials. Electron backscatter diffraction (EBSD) technique was used to analyze the micro-texture evolution and kernel average misorientation (KAM) map. Measurement of micro-hardness profile across the cross section of tensile samples was conducted to understand the effect of initial microstructure on ductility of laser weld samples.

  18. Analysis of hot forming of a sheet metal component made of advanced high strength steel

    NASA Astrophysics Data System (ADS)

    Demirkaya, Sinem; Darendeliler, Haluk; Gökler, Mustafa İlhan; Ayhaner, Murat

    2013-05-01

    To provide reduction in weight while maintaining crashworthiness and to decrease the fuel consumption of vehicles, thinner components made of Advanced High Strength Steels (AHSS) are being increasingly used in automotive industry. However, AHSS cannot be formed easily at the room temperature (i.e. cold forming). The alternative process involves heating, hot forming and subsequent quenching. A-pillar upper reinforcement of a vehicle is currently being produced by cold forming of DP600 steel sheet with a thickness of 1.8 mm. In this study, the possible decrease in the thickness of this particular part by using 22MnB5 as appropriate AHSS material and applying this alternative process has been studied. The proposed process involves deep drawing, trimming, heating, sizing, cooling and piercing operations. Both the current production process and the proposed process are analyzed by the finite element method. The die geometry, blank holding forces and the design of the cooling channels for the cooling process are determined numerically. It is shown that the particular part made of 22MnB5 steel sheet with a thickness of 1.2 mm can be successfully produced by applying the proposed process sequence and can be used without sacrificing the crashworthiness. With the use of the 22MnB5 steel with a thickness of 1.2 mm instead of DP600 sheet metal with a thickness of 1.8 mm, the weight is reduced by approximately 33%.

  19. Investigations on fracture curves in strain and stress space for advanced high strength steel forming

    NASA Astrophysics Data System (ADS)

    Panich, S.; Drotleff, K.; Liewald, M.; Uthaisangsuk, V.

    2016-08-01

    Conventional forming limit curves (FLCs) are inappropriate for describing formability for advanced high strength (AHS) steel sheets, since such steel grades experience fracture without localized necking occurrence. The aim of this work was to develop a fracture curve (FC) for the AHS steel grade DP980. The FC was determined by means of the Nakajima stretch forming test and tensile tests of various sample geometries, by which shear fracture governed. An optical strain measurement system was used to capture strain histories of deformed samples up to failure. From these results, fracture strains were gathered and plotted in a strain space. Subsequently, the strain based curve was transformed to space between stress triaxiality and plastic strain. Hereby, effects of anisotropic yield function, namely, the Hill’48 model on obtained stress fracture loci were investigated. In order to verify applicability of the determined limit curves, a Mini-tunnel part was pressed and simulated. It was found that the stress based FC do predict failure of the DP980 steel sheet more accurately than the strain based F C.

  20. Formability Prediction of Advanced High Strength Steel with a New Ductile Fracture Criterion

    NASA Astrophysics Data System (ADS)

    Lou, Yanshan; Lim, Sungjun; Huh, Jeehyang; Huh, Hoon

    2011-08-01

    A ductile fracture criterion is newly proposed to accurately predict forming limit diagrams (FLD) of sheet metals. The new ductile fracture criterion is based on the effect of the non-dimensional stress triaxiality, the stress concentration factor and the effective plastic strain on the nucleation, growth and coalescence of voids. The new ductile fracture criterion has been applied to estimate the formability of four kind advanced high strength steels (AHSS): DP780, DP980, TRIP590, and TWIP980. FLDs predicted are compared with experimental results and those predicted by other ductile fracture criteria. The comparison demonstrates that FLDs predicted by the new ductile fracture criterion are in better agreement with experimental FLDs than those predicted by other ductile fracture criteria. The better agreement of FLDs predicted by the new ductile fracture criterion is because conventional ductile fracture criteria were proposed for fracture prediction in bulk metal forming while the new one is proposed to predict the onset of fracture in sheet metal forming processes.

  1. Effect of microstructure on the fracture response of advanced high strength steels

    NASA Astrophysics Data System (ADS)

    Taylor, Mark D.

    2013-01-01

    The materials selected to observe microstructural effects on formability included four 780 MPa strength, and four 980 MPa strength AHSS grades produced with varying processing conditions. The grades were an uncoated DP780, a high yield DP780, a galvanized DP780, a TRIP780, a galvannealed DP980, a galvanized DP980, an uncoated DP980, and a fine grained DP980. All AHSS grades were tensile tested to obtain values for ultimate tensile strength, yield strength, percent uniform and total elongation. An analysis was performed to quantify the average grain size of the primary and second phase constituents, as well as the second phase volume fraction present in each AHSS grade. Nanoindentation was performed for each AHSS grade to determine the average hardness of the primary and second phase constituents present. Evolution of microstructural damage in response to deformation was analyzed using a plane strain tensile method developed to impose a localized through-thickness shear fracture. Samples of each AHSS grade were strained to progressively higher percentages of their failure displacement, and microstructural damage was observed using a scanning electron microscope on a metallographic section removed from the localized shear deformation region. Micrographs were analyzed using ImageJ®, and the resulting void percent and number of voids were determined for each test performed. A direct correlation was observed between the number of voids and hardness ratio. The strength of the microstructural constituents affected mechanical properties, suggesting that constituent strength values should be considered when predicting formability limits for higher strength AHSS grades. Since all AHSS grades experienced some critical number of voids before fracture, it was concluded that suppression of void formation can extend the formability limits to higher strains. After observing a percent failure displacement value of 95%, it was determined that the final stage of fracture (void

  2. A 3rd Generation Advanced High-Strength Steel (AHSS) Produced by Dual Stabilization Heat Treatment (DSHT)

    NASA Astrophysics Data System (ADS)

    Qu, Hao; Michal, Gary M.; Heuer, Arthur H.

    2013-10-01

    A 3rd generation advanced high-strength steel containing, in wt pct, 0.3 C, 4.0 Mn, 1.5 Al, 2.1 Si, and 0.5 Cr has been produced using a dual stabilization heat treatment—a five stage thermal processing schedule compatible with continuous galvanized steel production. In excess of 30 vol pct retained austenite containing at least 0.80 wt pct C was achieved with this alloy, which had tensile strengths up to 1650 MPa and tensile elongations around 20 pct.

  3. Some properties of an advanced boron fiber. [high strength, splittable fibers

    NASA Technical Reports Server (NTRS)

    Behrendt, D. R.

    1979-01-01

    An advanced coreless boron fiber exhibits tensile strengths which are more than twice that of the normal CVD B/W fibers. The coreless fiber is made by the chemical removal of the tungsten boride core exposed by splitting the as-grown fiber. The easily splittable fiber is made by the chemical vapor deposition of boron on a larger than usual tungsten substrate. It is expected that the ease of splitting is related to residual stresses in these fibers. Measurements of the axial residual stresses in both the normal and the splittable fibers are presented and the results compared. Differences in these stresses are discussed in connection with the ease of splitting in the splittable fibers.

  4. Development of Appropriate Spot Welding Practice for Advanced High Strength Steels (TRP 0114)

    SciTech Connect

    Brian Girvin; Warren Peterson; Jerry Gould

    2004-09-17

    This program evaluated the effects of common manufacturing variables on spike-tempering effectiveness. The investigation used design-of-experiment (DOE) techniques, and examined both dual-phase and martensitic grades of high-strength steels (HSS). The specific grades chosen for this project were: Dual-phase (DP) 600, galvannealed (GA), 1.55 mm (DP) 600; Dual-phase (DP) 980 (uncoated), 1.55 mm (DP) 980; and Martensitic (M) 1300, 1.55 mm (M) 1300. Common manufacturing conditions of interest included tempering practice (quench and temper time), button size, simulated part fitup (sheet angular misalignment and fitup), and electrode wear (increased electrode face diameter). All of these conditions were evaluated against mechanical performance (static and dynamic tensile shear). Weld hardness data was also used to examine correlations between mechanical performance and the degree of tempering. Mechanical performance data was used to develop empirical models. The models were used to examine the robustness of weld strength and toughness to the selected processing conditions. This was done using standard EWI techniques. Graphical representations of robustness were then coupled with metallographic data to relate mechanical properties to the effectiveness of spike tempering. Mechanical properties for all three materials were relatively robust to variation in tempering. Major deviations in mechanical properties were caused by degradation of the weld itself. This was supported by a lack of correlation between hardness data and mechanical results. Small button sizes and large electrode face diameters (worn electrodes) produced large reductions in both static and dynamic strength levels when compared to standard production setups. Dynamic strength was further degraded by edge-located welds.

  5. Advanced high strength steel (AHSS) TWIP: A door to the future in metal forming

    NASA Astrophysics Data System (ADS)

    Pla-Ferrando, R.; Sánchez-Caballero, S.; Reig, M. J.; Pla, R.; Sellés, M. A.; Seguí, V. J.

    2012-04-01

    The last decades have been characterized by a fast evolution of cars. This work shows the evolution of vehicle weight. It shows the response of car manufacturers using new materials and production methods that allow lighter vehicles with lower consumption, cheaper and with lower influence on the greenhouse effect. One of the materials which means a most interesting change is the TWIP steel. This material is characterized by its high strength, his exceptional strain and excellent formability as well as lower energy consumption in their manufacture. TWIP steel are changing towards cheaper compositions and higher performance, and it's going to be great influence in the vehicle weight reduction in the next years.

  6. Dissimilar Arc Welding of Advanced High-Strength Car-Body Steel Sheets

    NASA Astrophysics Data System (ADS)

    Russo Spena, P.; D'Aiuto, F.; Matteis, P.; Scavino, G.

    2014-11-01

    A widespread usage of new advanced TWIP steel grades for the fabrication of car-body parts is conditional on the employment of appropriate welding methods, especially if dissimilar welding must be performed with other automotive steel grades. Therefore, the microstructural features and the mechanical response of dissimilar butt weld seams of TWIP and 22MnB5 steel sheets after metal-active-gas arc welding are examined. The microstructural and mechanical characterization of the welded joints was carried out by optical metallography, microhardness and tensile testing, and fractographic examination. The heat-affected zone on the TWIP side was fully austenitic and the only detectable effect was grain coarsening, while on the 22MnB5 side it exhibited newly formed martensite and tempered martensite. The welded tensile specimens exhibited a much larger deformation on the TWIP steel side than on the 22MnB5. The fracture generally occurred at the interface between the fusion zone and the heat-affected zones, with the fractures surfaces being predominantly ductile. The ultimate tensile strength of the butt joints was about 25% lower than that of the TWIP steel.

  7. Development of Advanced High Strength Steel for Improved Vehicle Safety, Fuel Efficiency and CO2 Emission

    NASA Astrophysics Data System (ADS)

    Kumar, Satendra; Singhai, Mrigandra; Desai, Rahul; Sam, Srimanta; Patra, Pradip Kumar

    2016-10-01

    Global warming and green house gas emissions are the major issues worldwide and their impacts are clearly visible as a record high temperatures, rising sea, and severe `flooding and droughts'. Motor vehicles considered as a major contributor on global warming due to its green house gas emissions. Hence, the automobile industries are under tremendous pressure from government and society to reduce green house gas emission to maximum possible extent. In present work, Dual Phase steel with boron as microalloying is manufactured using thermo-mechanical treatment during hot rolling. Dual phase steel with boron microalloying improved strength by near about 200 MPa than dual phase steel without boron. The boron added dual phase steel can be used for manufacturing stronger and a lighter vehicle which is expected to perform positively on green house gas emissions. The corrosion resistance behavior is also improved with boron addition which would further increase the life cycle of the vehicle even under corrosive atmosphere.

  8. Microstructural Developments Leading to New Advanced High Strength Sheet Steels: A Historical Assessment of Critical Metallographic Observations

    SciTech Connect

    Matlock, David K

    2015-08-03

    In the past 30+ years significant advancements have been made in the development of higher strength sheet steels with improved combinations of strength and ductility that have enabled important product improvements leading to safer, lighter weight, and more fuel efficient automobiles and in other applications. Properties of the primarily low carbon, low alloy steels are derived through careful control of time-temperature processing histories designed to produce multiphase ferritic based microstructures that include martensite and other constituents including retained austenite. The basis for these developments stems from the early work on dual-phase steels which was the subject of much interest. In response to industry needs, dual-phase steels have evolved as a unique class of advanced high strength sheet steels (AHSS) in which the thermal and mechanical processing histories have been specifically designed to produce constituent combinations for the purpose of simultaneously controlling strength and deformation behavior, i.e. stress-strain curve shapes. Improvements continue as enhanced dual-phase steels have recently been produced with finer microstructures, higher strengths, and better overall formability. Today, dual phase steels are the primary AHSS products used in vehicle manufacture, and several companies have indicated that the steels will remain as important design materials well into the future. In this presentation, fundamental results from the early work on dual-phase steels will be reviewed and assessed in light of recent steel developments. Specific contributions from industry/university cooperative research leading to product improvements will be highlighted. The historical perspective provided in the evolution of dual-phase steels represents a case-study that provides important framework and lessons to be incorporated in next generation AHSS products.

  9. Effect of microstructure on the fracture response of advanced high strength steels

    NASA Astrophysics Data System (ADS)

    Taylor, Mark David

    The effect of constituent hardness on formability performance for higher-strength dual phase (DP) steels was evaluated. A commercially-produced DP steel with 1080 MPa ultimate tensile strength (UTS) was processed to create eight additional constituent hardness conditions by tempering and cold-rolling, processes that primarily affected constituent hardness properties. Using nanoindentation, ferrite and martensite hardness values for the nine conditions of the DP steel (as-received, four as-tempered, four temper cold-rolled) provided a range of hardness values to evaluate formability performance. Formability performance for the nine steel conditions was evaluated using tensile and hole expansion testing. A decrease in martensite/ferrite hardness ratio corresponded to an increase in hole expansion ratio (HER), and an increase in yield strength (YS). A lower hardness ratio (increased similarity of ferrite and martensite hardness) was interpreted to increase strain-sharing between ferrite and martensite, which suppressed plastic strain localization to higher stresses for the case of YS, and to higher formability limits for the case of HER. A lower hardness ratio corresponded to a decrease in work-hardening, and was interpreted to be caused by the suppression of strain localization in ferrite. Multiple studies from literature correlated HER to tensile properties, and the nine steel conditions produced consistent trends with the data reported in each study, confirming the experimental HER and tensile properties obtained in the current study are consistent with literature. The microstructural response to plastic deformation was evaluated using two DP steels with equivalent UTS and different hardness ratios. Nanoindentation analyses on tensile specimens deformed to the UTS revealed a greater increase in ferrite hardness for the higher hardness ratio steel, interpreted to be caused by the greater amount of work hardening. EBSD crystallographic orientation maps for the two DP

  10. Evaluation of common tests for fracture characterisation of advanced high-strength sheet steels with the help of the FEA

    NASA Astrophysics Data System (ADS)

    Peshekhodov, I.; Dykiert, M.; Vucetic, M.; Behrens, B.-A.

    2016-11-01

    The paper presents results of evaluation of common tests for fracture characterization of advanced high-strength sheet steels with the help of the FEA. The tests include three in-plane shear tests, two uniaxial tension tests, two plane strain tension tests and two equibiaxial tension tests. Three high-strength steels with different yield loci, strain hardening rates and strengths in three different thicknesses each were used. The evaluation was performed based on the spatial distribution of the equivalent plastic strain and damage variable in the specimen at the moment of crack initiation as well as on the time variation of the stress state at the crack initiation location. For in-plane shear, uniaxial tension and plane strain tension, no test can be unconditionally recommended as disadvantages of all studied tests in these groups cannot be neglected. However, in each of these groups, a test can be chosen, which represents an acceptable compromise between its advantages and disadvantages: the shear test on an IFUM butterfly specimen for in-plane shear, the tensile test on a holed specimen for uniaxial tension and the tensile test on a waisted specimen for plane strain tension. On the contrary, the bulge test on a circular specimen with a punch of Ø 100 mm can be unconditionally recommended for equibiaxial tension. In the future, optimisation of the studied tests for in-plane shear, uniaxial tension and plane strain tension appears to be necessary.

  11. Effects of Fusion Zone Size on Failure Modes and Performance of Advanced High Strength Steel Spot Welds

    SciTech Connect

    Sun, Xin; Stephens, Elizabeth V.; Khaleel, Mohammad A.

    2006-04-28

    This paper examines the effects of fusion zone size on failure modes, static strength and energy absorption of resistance spot welds (RSW) of advanced high strength steels (AHSS). DP800 and TRIP800 spot welds are considered. The main failure modes for spot welds are nugget pullout and interfacial fracture. Partial interfacial fracture is also observed. The critical fusion zone sizes to ensure nugget pull-out failure mode are developed for both DP800 and TRIP800 using the limit load based analytical model and the micro-hardness measurements of the weld cross sections. Static weld strength tests using cross tension samples were performed on the joint populations with controlled fusion zone sizes. The resulted peak load and energy absorption levels associated with each failure mode were studied using statistical data analysis tools. The results in this study show that the conventional weld size of 4 t can not produce nugget pullout mode for both the DP800 and TRIP800 materials. The results also suggest that performance based spot weld acceptance criteria should be developed for different AHSS spot welds.

  12. Issues associated with the use of Yoshida nonlinear isotropic/kinematic hardening material model in Advanced High Strength Steels

    NASA Astrophysics Data System (ADS)

    Shi, Ming F.; Zhang, Li; Zhu, Xinhai

    2016-08-01

    The Yoshida nonlinear isotropic/kinematic hardening material model is often selected in forming simulations where an accurate springback prediction is required. Many successful application cases in the industrial scale automotive components using advanced high strength steels (AHSS) have been reported to give better springback predictions. Several issues have been raised recently in the use of the model for higher strength AHSS including the use of two C vs. one C material parameters in the Armstrong and Frederick model (AF model), the original Yoshida model vs. Original Yoshida model with modified hardening law, and constant Young's Modulus vs. decayed Young's Modulus as a function of plastic strain. In this paper, an industrial scale automotive component using 980 MPa strength materials is selected to study the effect of two C and one C material parameters in the AF model on both forming and springback prediction using the Yoshida model with and without the modified hardening law. The effect of decayed Young's Modulus on the springback prediction for AHSS is also evaluated. In addition, the limitations of the material parameters determined from tension and compression tests without multiple cycle tests are also discussed for components undergoing several bending and unbending deformations.

  13. Cyclic Deformation of Advanced High-Strength Steels: Mechanical Behavior and Microstructural Analysis

    NASA Astrophysics Data System (ADS)

    Hilditch, Timothy B.; Timokhina, Ilana B.; Robertson, Leigh T.; Pereloma, Elena V.; Hodgson, Peter D.

    2009-02-01

    The fatigue properties of multiphase steels are an important consideration in the automotive industry. The different microstructural phases present in these steels can influence the strain life and cyclic stabilized strength of the material due to the way in which these phases accommodate the applied cyclic strain. Fully reversed strain-controlled low-cycle fatigue tests have been used to determine the mechanical fatigue performance of a dual-phase (DP) 590 and transformation-induced plasticity (TRIP) 780 steel, with transmission electron microscopy (TEM) used to examine the deformed microstructures. It is shown that the higher strain life and cyclic stabilized strength of the TRIP steel can be attributed to an increased yield strength. Despite the presence of significant levels of retained austenite in the TRIP steel, both steels exhibited similar cyclic softening behavior at a range of strain amplitudes due to comparable ferrite volume fractions and yielding characteristics. Both steels formed low-energy dislocation structures in the ferrite during cyclic straining.

  14. Numerical and experimental evaluation of the impact performance of advanced high-strength steel sheets based on a damage model

    NASA Astrophysics Data System (ADS)

    Ma, Ning; Park, Taejoon; Kim, Dongun; Kim, Chongmin; Chung, Kwansoo

    2010-06-01

    The impact performance in a Charpy impact test was experimentally and numerically studied for the advanced high-strength steel sheets (AHSS) TWIP940 and TRIP590 as well as the high-strength grade known as 340R. To characterize the mechanical properties, uni-axial simple tension tests were conducted to determine the anisotropic properties and strain rate sensitivities of these materials. In particular, the high-speed strain-rate sensitivity of TRIP590 and 340R (rate sensitive) was also characterized to account for the high strain rates involved in the Charpy impact test. To evaluate fracture behavior in the Charpy impact test, a new damage model including a triaxiality-dependent fracture criterion and hardening behavior with stiffness deterioration was introduced. The model was calibrated via numerical simulations and experiments involving simple tension and V-notch tests. The new damage model along with the anisotropic yield function Hill 1948 was incorporated into the ABAQUS/Explicit FEM code, which performed reasonably well to predict the impact energy absorbed during the Charpy impact test.

  15. Integrated anaerobic ammonium oxidization with partial denitrification process for advanced nitrogen removal from high-strength wastewater.

    PubMed

    Cao, Shenbin; Du, Rui; Niu, Meng; Li, Baikun; Ren, Nanqi; Peng, Yongzhen

    2016-12-01

    In this study, a novel integrated anaerobic ammonium oxidization with partial denitrification process (termed as ANAMMOX-PD) was developed for advanced nitrogen removal from high-strength wastewater, which excess NO3(-)-N produced by ANAMMOX was fed into PD reactor for NO2(-)-N production and then refluxing to ANAMMOX reactor for further removal. Results showed that total nitrogen (TN) removal efficiency as high as 97.8% was achieved and effluent TN-N was below 20mg/L at influent TN-N of 820mg/L. Furthermore, the feasibility of simultaneously treating domestic wastewater was demonstrated in ANAMMOX-PD process, and NH4(+)-N removal efficiency of 96.7% was obtained. The nitrogen removal was mainly carried out through ANAMMOX pathway, and high-throughput sequencing revealed that Candidatus_Brocadia was the major ANAMMOX species. The presented process could effectively solve the problem of excess nitrate residual in ANAMMOX effluent, which hold a great potential in application of currently ANAMMOX treating high-strength wastewater (e.g. sludge digestion supernatant).

  16. Lightweight, High Strength Metals With Enhanced Radiation Shielding - Technology Advancing Partnerships Challenge Project

    NASA Technical Reports Server (NTRS)

    Wright, Maria Clara (Compiler)

    2015-01-01

    The Technology Advancing Partnership (TAP) Challenge will seek to foster innovation throughout the Center by allowing the KSC workforce to identify a specific technology idea that needs improvement and to then work with an external partner to develop that technology. This Challenge will enable competitive partnerships with outside entities that will increase the value by bringing leveraged resources. The selected proposal from the University of Florida will develop new lightweight technologies with radiation mitigation for spacecraft.

  17. A Modified Johnson-Cook Model for Advanced High-Strength Steels Over a Wide Range of Temperatures

    NASA Astrophysics Data System (ADS)

    Qingdong, Zhang; Qiang, Cao; Xiaofeng, Zhang

    2014-12-01

    Advanced high-strength steel (AHSS) is widely used in automotive industry. In order to investigate the mechanical behaviors of AHSS over a wide range of temperatures, quasi-static tensile experiments were conducted at the temperatures from 298 to 1073 K on a Gleeble-3500 thermo-simulation machine. The results show that flow behaviors are affected by testing temperature significantly. In order to describe the flow features of AHSS, the Johnson-Cook (JC) model is employed. By introducing polynomial functions to consider the effects of temperature on hardening behavior, the JC model is modified and used to predict flow behavior of AHSS at different experimental conditions. The accuracy of the modified JC model is verified and the predicted flow stress is in good agreement with experimental results, which confirms that the modified JC model can give an accurate and precise estimate over a wide range of temperatures.

  18. Assessment of the Critical Parameters Influencing the Edge Stretchability of Advanced High-Strength Steel Sheet

    NASA Astrophysics Data System (ADS)

    Pathak, N.; Butcher, C.; Worswick, M.

    2016-11-01

    The edge formability of ferritic-martensitic DP (dual-phase) and ferritic-bainitic CP (complex-phase) steels was evaluated using a hole expansion test for different edge conditions. Hole expansion tests involving the standard conical punch as well as a custom flat punch were performed to investigate formability when the hole is expanded out-of-plane (conical punch) and in-plane using the flat punch. A range of edge conditions were considered, in order to isolate the influence of a range of factors thought to influence edge formability. The results demonstrate that work hardening and void damage at the sheared edge govern formability, while the sheared surface quality plays a minor or secondary role. A comparison of the edge stretching limits of DP and CP steels demonstrates the advantages of a ferritic-bainitic microstructure for forming operations with severe local deformation as in a stretch-flanging operation. A comparison of a traditional DP780 steel with a CP steel of similar strength showed that the edge stretching limit of the CP steel was three times larger than that of the DP780.

  19. Hardening characteristics of CO2 laser welds in advanced high strength steel

    NASA Astrophysics Data System (ADS)

    Han, Tae-Kyo; Park, Bong-Gyu; Kang, Chung-Yun

    2012-06-01

    When the CO2 laser welder with 6 kW output was used to weld 4 TRIP steels, 2 DP steels and a precipitation-hardened steel, which have the tensile strength in the range of 600-1000 MPa, the effect of welding speed on hardening characteristics was investigated. In the weld of TRIP steels and DP steels, the maximum hardness was shown in the fusion zone and the HAZ near the bond line, and the hardness was decreased from the HAZ to the base metal. Only in the PH600 steel, the maximum hardness was shown in the fusion zone and the hardness was decreased from bond line to the base metal. The maximum hardness value was not changed due to the variation of the welding speed within a given range of the welding speed. When the correlation with maximum hardness value using 6 known carbon equivalents was examined, those of CEL (=C+Si/50+Mn/25+P/2+Cr/25) and PL (=C+Mn/22+14B) were 0.96 and 0.95 respectively, and CEL was better because it could reflect the contribution of Si and Cr added to AHSS. The maximum hardness value could be calculated by the equation "Hmax=701CEL+281". The phase transformation analysis indicated that only martensitic transformation was expected in the given range of the welding conditions. Therefore, the maximum hardness of the weld was the same as that of water cooled steel and not changed with the variation of the welding speed

  20. Multiscale Modeling of Inclusions and Precipitation Hardening in Metal Matrix Composites: Application to Advanced High-Strength Steels

    SciTech Connect

    Askari, Hesam; Zbib, Hussein M.; Sun, Xin

    2013-06-01

    In this study, the strengthening effect of inclusions and precipitates in metals is investigated within a multiscale approach that utilizes models at various length scales, namely, Molecular Mechanics (MM), discrete Dislocation Dynamics (DD), and an Eigenstrain Inclusion Method (EIM). Particularly, precipitates are modeled as hardsoft particles whose stress fields interact with dislocations. The stress field resulting from the elastic mismatch between the particles and the matrix is accounted for through the EIM. While the MM method is employed for the purpose of developing rules for DD for short range interaction between a single dislocation and an inclusion, the DD method is used to predict the strength of the composite resulting from the interaction between ensembles of dislocations and particles. As an application to this method, the mechanical behavior of Advanced High Strength Steel (AHSS) is investigated and the results are then compared to the experimental data. The results show that the finely dispersive precipitates can strengthen the material by pinning the dislocations up to a certain shear stress and retarding the recovery, as well as annihilation of dislocations. The DD results show that strengthening due to nano sized particles is a function of the density and size of the precipitates. This size effect is then explained using a mechanistic model developed based on dislocation-particle interaction.

  1. Electro-hydraulic forming of advanced high-strength steels: Deformation and microstructural characterization

    SciTech Connect

    Rohatgi, Aashish; Stephens, Elizabeth V.; Edwards, Danny J.; Smith, Mark T.; Davies, Richard W.

    2012-06-08

    This conference manuscript describes mechanical and microstructural characterization of steel sheets that were deformed via the electro-hydraulic forming technique. The manuscripts shows the importance of the experimental technique developed at PNNL in the sense that the deformation history information enabled by this technique is not obtainable through existing conventional approaches. Additionally, strain-rate effects on texture development during sheet-forming at high-rates are described. Thus, we have demonstrated that it is now possible to correlate deformation history with microstructural development during high-rate forming, a capability that is unique to PNNL.

  2. Ductility of Advanced High-Strength Steel in the Presence of a Sheared Edge

    NASA Astrophysics Data System (ADS)

    Ruggles, Tim; Cluff, Stephen; Miles, Michael; Fullwood, David; Daniels, Craig; Avila, Alex; Chen, Ming

    2016-07-01

    The ductility of dual-phase (DP) 980 and transformation-induced plasticity (TRIP) assisted bainitic ferritic (TBF) 980 steels was studied in the presence of a sheared edge. Specimens were tested in uniaxial tension in a standard test frame as well as in situ in the scanning electron microscope (SEM). Incremental tensile straining was done in the SEM with images taken at each strain increment. Then digital image correlation (DIC) was used to compute the effective strain at the level of the individual phases in the microstructure. Shear banding across multiple phases was seen in strained TBF specimens, while the DP specimens exhibited more of a patchwork strain pattern, with high strains concentrated in ferrite and low strains observed in the martensite. Two-point statistics were applied to the strain data from the DIC work and the corresponding microstructure images to evaluate the effect of phase hardness on localization and fracture. It was observed that the DP 980 material had a greater tendency for localization around hard phases compared to the TBF 980. This at least partially explains the greater ductility of the TBF material, especially in specimens where a sheared edge was present.

  3. Improving the crash behavior of structural components made of advanced high strength steel by local heat treatment

    NASA Astrophysics Data System (ADS)

    Conrads, L.; Daamen, M.; Hirt, G.; Bambach, M.

    2016-11-01

    High manganese TWIP steel belongs to the second generation of advanced high strength steels. During the production of strip material, the microstructure and hence the mechanical properties of TWIP steel can be adapted to the specific needs of crash relevant structures. Whereas typically the whole steel strip is heat-treated after cold rolling, a local heat treatment can be applied to tailor the properties accordingly. In this work, a method is presented to identify a suitable process window for the local laser heat treatment of TWIP steel. The material is strain hardened and afterwards heat-treated at various temperatures for a short time. The influence of the respective heat treatment on microstructure and mechanical properties is evaluated and the most appropriate heat treatment is then reproduced using laser heating. To verify the effect of a local laser heat treatment at a structural component, crash boxes with different heat treatment patterns were produced and tested. The dynamic crash tests show that the local heat treatment can be used to improve the crash behavior of structural components. In addition, their deformation path can be influenced by using adapted heat treatment patterns and the crash behavior can be controlled.

  4. Stamping failure analysis of advanced high strength steel sheet based on non-uniform local deformation through thickness

    NASA Astrophysics Data System (ADS)

    Huang, Sheng; Zhao, Yixi; He, Chunfeng

    2013-12-01

    The phenomenon "Shear fracture" is often observed in the stretch-bending process of stamping over small radius with advanced high strength steels (AHSS). It occurs parallel to and near the die radius in the stretch-bending test. Since traditional Forming Limit Diagram (FLD) is unable to describe this type of failure, experimental and simulation works were constructed in this paper to investigate and predict the shear fracture. Fracture experiments were carried out through a stretch-bending test system, and failure mode was observed. There is no obviously thinning at the shear fracture surface. Further research shows that the initial crack of shear fracture occurs at the outer layer of specimen at die radius position. Finite element (FE) models were built for stretch-bending test with 3D element. The non-uniform local deformation through thickness corresponding to bending position was obtained and analyzed. Cockcroft & Latham fracture criterion is used. The outer layer of specimen at bending position reaches the critical fracture state firstly, which agrees well with experiments. Different fracture criteria are also compared and selected to determine this fracture. Results show that based on the non-uniform local deformation, the initial crack location of shear fracture at small radius can be effectively predicted by fracture criteria related to the maximum principle stress.

  5. Investigation of the Hot-Stamping Process for Advanced High-Strength Steel Sheet by Numerical Simulation

    NASA Astrophysics Data System (ADS)

    Liu, H. S.; Xing, Z. W.; Bao, J.; Song, B. Y.

    2010-04-01

    Hot forming is a new way to manufacture complex-shaped components of advanced high-strength steel (AHSS) sheet with a minimum of spring-back. Numerical simulation is an effective way to examine the hot-forming process, particularly to determine thermal and thermo-mechanical characteristics and their dependencies on temperature, strain and strain rate. The flow behavior of the 22MnB5 AHSS is investigated through hot tensile tests. A 3D finite element (FE) model of hot-stamping process for the [InlineMediaObject not available: see fulltext.] shaped part is built under the ABAQUS/Explicit environment based on the solutions of several key problems, such as treatment of contact between blank and tools, determination of material characteristics and meshing, etc. Numerical simulation is carried out to investigate the influence of blank holder force (BHF) and die gap on the hot-forming process for the [InlineMediaObject not available: see fulltext.] shaped part. Numerical results show the FE model is effective in simulation of hot-forming process. Large BHF reduces the amount of spring-back and improves the contact of flange with tools while avoiding cracking of stamped part. Die gap has a considerable influence on the distribution of temperature on side walls; the larger the die gap, higher is the temperature on the sidewall of [InlineMediaObject not available: see fulltext.] shaped part.

  6. Temperature and Material Flow Prediction in Friction-Stir Spot Welding of Advanced High-Strength Steel

    NASA Astrophysics Data System (ADS)

    Miles, M.; Karki, U.; Hovanski, Y.

    2014-10-01

    Friction-stir spot welding (FSSW) has been shown to be capable of joining advanced high-strength steel, with its flexibility in controlling the heat of welding and the resulting microstructure of the joint. This makes FSSW a potential alternative to resistance spot welding if tool life is sufficiently high, and if machine spindle loads are sufficiently low that the process can be implemented on an industrial robot. Robots for spot welding can typically sustain vertical loads of about 8 kN, but FSSW at tool speeds of less than 3000 rpm cause loads that are too high, in the range of 11-14 kN. Therefore, in the current work, tool speeds of 5000 rpm were employed to generate heat more quickly and to reduce welding loads to acceptable levels. Si3N4 tools were used for the welding experiments on 1.2-mm DP 980 steel. The FSSW process was modeled with a finite element approach using the Forge® software. An updated Lagrangian scheme with explicit time integration was employed to predict the flow of the sheet material, subjected to boundary conditions of a rotating tool and a fixed backing plate. Material flow was calculated from a velocity field that is two-dimensional, but heat generated by friction was computed by a novel approach, where the rotational velocity component imparted to the sheet by the tool surface was included in the thermal boundary conditions. An isotropic, viscoplastic Norton-Hoff law was used to compute the material flow stress as a function of strain, strain rate, and temperature. The model predicted welding temperatures to within 4%, and the position of the joint interface to within 10%, of the experimental results.

  7. Temperature and Material Flow Prediction in Friction-Stir Spot Welding of Advanced High-Strength Steel

    SciTech Connect

    Miles, Michael; Karki, U.; Hovanski, Yuri

    2014-10-01

    Friction-stir spot welding (FSSW) has been shown to be capable of joining advanced high-strength steel, with its flexibility in controlling the heat of welding and the resulting microstructure of the joint. This makes FSSW a potential alternative to resistance spot welding if tool life is sufficiently high, and if machine spindle loads are sufficiently low that the process can be implemented on an industrial robot. Robots for spot welding can typically sustain vertical loads of about 8 kN, but FSSW at tool speeds of less than 3000 rpm cause loads that are too high, in the range of 11–14 kN. Therefore, in the current work, tool speeds of 5000 rpm were employed to generate heat more quickly and to reduce welding loads to acceptable levels. Si3N4 tools were used for the welding experiments on 1.2-mm DP 980 steel. The FSSW process was modeled with a finite element approach using the Forge* software. An updated Lagrangian scheme with explicit time integration was employed to predict the flow of the sheet material, subjected to boundary conditions of a rotating tool and a fixed backing plate. Material flow was calculated from a velocity field that is two-dimensional, but heat generated by friction was computed by a novel approach, where the rotational velocity component imparted to the sheet by the tool surface was included in the thermal boundary conditions. An isotropic, viscoplastic Norton-Hoff law was used to compute the material flow stress as a function of strain, strain rate, and temperature. The model predicted welding temperatures to within percent, and the position of the joint interface to within 10 percent, of the experimental results.

  8. High strength alloys

    DOEpatents

    Maziasz, Phillip James [Oak Ridge, TN; Shingledecker, John Paul [Knoxville, TN; Santella, Michael Leonard [Knoxville, TN; Schneibel, Joachim Hugo [Knoxville, TN; Sikka, Vinod Kumar [Oak Ridge, TN; Vinegar, Harold J [Bellaire, TX; John, Randy Carl [Houston, TX; Kim, Dong Sub [Sugar Land, TX

    2010-08-31

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tubular that is at least partially made from a material containing at least one of the metal alloys.

  9. High strength alloys

    DOEpatents

    Maziasz, Phillip James; Shingledecker, John Paul; Santella, Michael Leonard; Schneibel, Joachim Hugo; Sikka, Vinod Kumar; Vinegar, Harold J.; John, Randy Carl; Kim, Dong Sub

    2012-06-05

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tublar that is at least partially made from a material containing at least one of the metal alloys.

  10. A New Method to Calculate Threshold Values of Ductile Fracture Criteria for Advanced High-Strength Sheet Blanking

    NASA Astrophysics Data System (ADS)

    Wang, Changsheng; Chen, Jun; Xia, Cedric; Ren, Feng; Chen, Jieshi

    2014-04-01

    A new approach is presented in this paper to calculate the critical threshold value of fracture initiation. It is based on the experimental data for forming limit curves and fracture forming limit curves. The deformation path for finally a fractured material point is assumed as two-stage proportional loading: biaxial loading from the beginning to the onset of incipient necking, followed plane strain deformation within the incipient neck until the final fracture. The fracture threshold value is determined by analytical integration and validated by numerical simulation. Four phenomenological models for ductile fracture are selected in this study, i.e., Brozzo, McClintock, Rice-Tracey, and Oyane models. The threshold value for each model is obtained through best-fitting of experimental data. The results are compared with each other and test data. These fracture criteria are implemented in ABAQUS/EXPLICIT through user subroutine VUMAT to simulate the blanking process of advanced high-strength steels. The simulated fracture surfaces are examined to determine the initiation of ductile fracture during the process, and compared with experimental results for DP780 sheet steel blanking. The comparisons between FE simulated results coupled with different fracture models and experimental one show good agreements on punching edge quality. The study demonstrates that the proposed approach to calculate threshold values of fracture models is efficient and reliable. The results also suggest that the McClintock and Oyane fracture models are more accurate than the Rice-Tracey or Brozzo models in predicting load-stroke curves. However, the predicted blanking edge quality does not have appreciable differences.

  11. High strength composites evaluation

    SciTech Connect

    Marten, S.M.

    1992-02-01

    A high-strength, thick-section, graphite/epoxy composite was identified. The purpose of this development effort was to evaluate candidate materials and provide LANL with engineering properties. Eight candidate materials (Samples 1000, 1100, 1200, 1300, 1400, 1500, 1600, and 1700) were chosen for evaluation. The Sample 1700 thermoplastic material was the strongest overall.

  12. Synergic Adsorption-Biodegradation by an Advanced Carrier for Enhanced Removal of High-Strength Nitrogen and Refractory Organics.

    PubMed

    Ahmad, Muhammad; Liu, Sitong; Mahmood, Nasir; Mahmood, Asif; Ali, Muhammad; Zheng, Maosheng; Ni, Jinren

    2017-04-06

    Coking wastewater contains not only high-strength nitrogen but also toxic biorefractory organics. This study presents simultaneous removal of high-strength quinoline, carbon, and ammonium in coking wastewater by immobilized bacterial communities composed of a heterotrophic strain Pseudomonas sp. QG6 (hereafter referred as QG6), ammonia-oxidizing bacteria (AOB), and anaerobic ammonium oxidation bacteria (anammox). The bacterial immobilization was implemented with the help of a self-designed porous cubic carrier that created structured microenvironments including an inner layer adapted for anaerobic bacteria, a middle layer suitable for coaggregation of certain aerobic and anaerobic bacteria, and an outer layer for heterotrophic bacteria. By coating functional polyurethane foam (FPUF) with iron oxide nanoparticles (IONPs), the biocarrier (IONPs-FPUF) could provide a good outer-layer barrier for absorption and selective treatment of aromatic compounds by QG6, offer a conducive environment for anammox in the inner layer, and provide a mutualistic environment for AOB in the middle layer. Consequently, simultaneous nitrification and denitrification were reached with the significant removal of up to 322 mg L(-1) (98%) NH4, 311 mg L(-1) (99%) NO2, and 633 mg L(-1) (97%) total nitrogen (8 mg L(-1) averaged NO3 concentration was recorded in the effluent), accompanied by an efficient removal of chemical oxygen demand by 3286 mg L(-1) (98%) and 350 mg L(-1) (100%) quinoline. This study provides an alternative way to promote synergic adsorption and biodegradation with the help of a modified biocarrier that has great potential for treatment of wastewater containing high-strength carbon, toxic organic pollutants, and nitrogen.

  13. High strength ferritic alloy

    DOEpatents

    Hagel, William C.; Smidt, Frederick A.; Korenko, Michael K.

    1977-01-01

    A high-strength ferritic alloy useful for fast reactor duct and cladding applications where an iron base contains from about 9% to about 13% by weight chromium, from about 4% to about 8% by weight molybdenum, from about 0.2% to about 0.8% by weight niobium, from about 0.1% to about 0.3% by weight vanadium, from about 0.2% to about 0.8% by weight silicon, from about 0.2% to about 0.8% by weight manganese, a maximum of about 0.05% by weight nitrogen, a maximum of about 0.02% by weight sulfur, a maximum of about 0.02% by weight phosphorous, and from about 0.04% to about 0.12% by weight carbon.

  14. Weldability of Advanced High Strength Steels using Ytterbium:Yttrium Aluminium Garnet high power laser for Tailor-Welded Blank applications

    NASA Astrophysics Data System (ADS)

    Sharma, Rajashekhar Shivaram

    Use of a high power Yb:YAG laser is investigated for joining advanced high strength steel materials for use in tailor-welded blank (TWB) applications. TWB's are materials of different chemistry, coating or thicknesses that are joined before metal forming and other operations such as trimming, assembly and painting are carried out. TWB is becoming an important design tool in the automotive industry for reducing weight, improving fuel economy and passenger safety, while reducing the overall costs for the customer. Three advanced high strength steels, TRIP780, DP980 and USIBOR, which have many unique properties that are conducive to achieving these objectives, along with mild steel, are used in this work. The objective of this work is to ensure that high quality welds can be obtained using Yb:YAG lasers which are also becoming popular for metal joining operations, since they produce high quality laser beams that suffer minimal distortion when transported via fiber optic cables. Various power levels and speeds for the laser beam were used during the investigation. Argon gas was consistently used for shielding purposes during the welding process. After the samples were welded, metallographic examination of the fusion and heat-affected zones using optical and scanning electron microscopes were carried out to determine the microstructures as well as weld defects. Optical and scanning electron microscopes were also used to examine the top of welds as well as fracture surfaces. Additionally, cross-weld microhardness evaluations, tensile tests using Instron tester, limited fatigue tests as well as formability evaluations using OSU plane strain evaluation were carried out. The examinations included a 2-factor full factorial design of experiments to determine the impact of coatings on the surface roughness on the top of the welds. Tensile strengths of DP980, TRIP780 and mild steel materials as well as DP980 welded to TRIP780 and mild steel in the rolling direction as well as

  15. Effects of Fusion Zone Size on Failure Modes and Performance of Advanced High Strength Steel Spot Welds (2006-01-0531)

    SciTech Connect

    Sun, Xin; Stephens, Elizabeth V.; Khaleel, Mohammad A.

    2007-03-01

    This paper examines the effects of fusion zone size on failure modes, static strength and energy absorption of resistance spot welds (RSW) of advanced high strength steels (AHSS). DP800 and TRIP800 spot welds are considered. The main failure modes for spot welds are nugget pullout and interfacial fracture. Partial interfacial fracture is also observed. The critical fusion zone sizes to ensure nugget pull-out failure mode are developed for both DP800 and TRIP800 using the limit load based analytical model and the micro-hardness measurements of the weld cross sections. Static weld strength tests using cross tension samples were performed on the joint populations with controlled fusion zone sizes. The resulted peak load and energy absorption levels associated with each failure mode were studied using statistical data analysis tools. The results in this study show that the conventional weld size of 4 t1/2 can not produce nugget pullout mode for both the DP800 and TRIP800 materials. The results also suggest that performance based spot weld acceptance criteria should be developed for different AHSS spot welds.

  16. Effects of Fusion Zone Size and Failure Mode on Peak Load and Energy Absorption of Advanced High Strength Steel Spot Welds

    SciTech Connect

    Sun, Xin; Stephens, Elizabeth V.; Khaleel, Mohammad A.

    2007-01-01

    This paper examines the effects of fusion zone size on failure modes, static strength and energy absorption of resistance spot welds (RSW) of advanced high strength steels (AHSS). DP800 and TRIP800 spot welds are considered. The main failure modes for spot welds are nugget pullout and interfacial fracture. Partial interfacial fracture is also observed. The critical fusion zone sizes to ensure nugget pull-out failure mode are developed for both DP800 and TRIP800 using limit load based analytical model and micro-hardness measurements of the weld cross sections. Static weld strength tests using cross tension samples were performed on the joint populations with controlled fusion zone sizes. The resulted peak load and energy absorption levels associated with each failure mode were studied for all the weld populations using statistical data analysis tools. The results in this study show that AHSS spot welds with fusion zone size of can not produce nugget pullout mode for both the DP800 and TRIP800 materials examined. The critical fusion zone size for nugget pullout shall be derived for individual materials based on different base metal properties as well as different heat affected zone (HAZ) and weld properties resulted from different welding parameters.

  17. Effects of Fusion Zone Size and Failure Mode on Peak Load and Energy Absorption of Advanced High Strength Steel Spot Welds under Lap Shear Loading Conditions

    SciTech Connect

    Sun, Xin; Stephens, Elizabeth V.; Khaleel, Mohammad A.

    2008-06-01

    This paper examines the effects of fusion zone size on failure modes, static strength and energy absorption of resistance spot welds (RSW) of advanced high strength steels (AHSS) under lap shear loading condition. DP800 and TRIP800 spot welds are considered. The main failure modes for spot welds are nugget pullout and interfacial fracture. Partial interfacial fracture is also observed. Static weld strength tests using lap shear samples were performed on the joint populations with various fusion zone sizes. The resulted peak load and energy absorption levels associated with each failure mode were studied for all the weld populations using statistical data analysis tools. The results in this study show that AHSS spot welds with conventionally required fusion zone size of can not produce nugget pullout mode for both the DP800 and TRIP800 welds under lap shear loading. Moreover, failure mode has strong influence on weld peak load and energy absorption for all the DP800 welds and the TRIP800 small welds: welds failed in pullout mode have statistically higher strength and energy absorption than those failed in interfacial fracture mode. For TRIP800 welds above the critical fusion zone level, the influence of weld failure modes on peak load and energy absorption diminishes. Scatter plots of peak load and energy absorption versus weld fusion zone size were then constructed, and the results indicate that fusion zone size is the most critical factor in weld quality in terms of peak load and energy absorption for both DP800 and TRIP800 spot welds.

  18. Advanced characterization techniques in understanding the roles of nickel in enhancing strength and toughness of submerged arc welding high strength low alloy steel multiple pass welds in the as-welded condition

    NASA Astrophysics Data System (ADS)

    Sham, Kin-Ling

    Striving for higher strength along with higher toughness is a constant goal in material properties. Even though nickel is known as an effective alloying element in improving the resistance of a steel to impact fracture, it is not fully understood how nickel enhances toughness. It was the goal of this work to assist and further the understanding of how nickel enhanced toughness and maintained strength in particular for high strength low alloy (HSLA) steel submerged arc welding multiple pass welds in the as-welded condition. Using advanced analytical techniques such as electron backscatter diffraction, x-ray diffraction, electron microprobe, differential scanning calorimetry, and thermodynamic modeling software, the effect of nickel was studied with nickel varying from one to five wt. pct. in increments of one wt. pct. in a specific HSLA steel submerged arc welding multiple pass weldment. The test matrix of five different nickel compositions in the as-welded and stress-relieved condition was to meet the targeted mechanical properties with a yield strength greater than or equal to 85 ksi, a ultimate tensile strength greater than or equal to 105 ksi, and a nil ductility temperature less than or equal to -140 degrees F. Mechanical testing demonstrated that nickel content of three wt. pct and greater in the as-welded condition fulfilled the targeted mechanical properties. Therefore, one, three, and five wt. pct. nickel in the as-welded condition was further studied to determine the effect of nickel on primary solidification mode, nickel solute segregation, dendrite thickness, phase transformation temperatures, effective ferrite grain size, dislocation density and strain, grain misorientation distribution, and precipitates. From one to five wt. pct nickel content in the as-welded condition, the primary solidification was shown to change from primary delta-ferrite to primary austenite. The nickel partitioning coefficient increased and dendrite/cellular thickness was

  19. Micromechanics of plastic deformation and phase transformation in a three-phase TRIP-assisted advanced high strength steel: Experiments and modeling

    NASA Astrophysics Data System (ADS)

    Srivastava, Ankit; Ghassemi-Armaki, Hassan; Sung, Hyokyung; Chen, Peng; Kumar, Sharvan; Bower, Allan F.

    2015-05-01

    The micromechanics of plastic deformation and phase transformation in a three-phase advanced high strength steel are analyzed both experimentally and by microstructure-based simulations. The steel examined is a three-phase (ferrite, martensite and retained austenite) quenched and partitioned sheet steel with a tensile strength of 980 MPa. The macroscopic flow behavior and the volume fraction of martensite resulting from the austenite-martensite transformation during deformation were measured. In addition, micropillar compression specimens were extracted from the individual ferrite grains and the martensite particles, and using a flat-punch nanoindenter, stress-strain curves were obtained. Finite element simulations idealize the microstructure as a composite that contains ferrite, martensite and retained austenite. All three phases are discretely modeled using appropriate crystal plasticity based constitutive relations. Material parameters for ferrite and martensite are determined by fitting numerical predictions to the micropillar data. The constitutive relation for retained austenite takes into account contributions to the strain rate from the austenite-martensite transformation, as well as slip in both the untransformed austenite and product martensite. Parameters for the retained austenite are then determined by fitting the predicted flow stress and transformed austenite volume fraction in a 3D microstructure to experimental measurements. Simulations are used to probe the role of the retained austenite in controlling the strain hardening behavior as well as internal stress and strain distributions in the microstructure.

  20. Strength and flexibility properties of advanced ceramic fabrics

    NASA Technical Reports Server (NTRS)

    Sawko, P. M.; Tran, H. K.

    1985-01-01

    The mechanical properties of four advanced ceramic fabrics are measured at a temperature range of 23 C to 1200 C. The fabrics evaluated are silica, high-and low-boria content aluminoborosilicate, and silicon carbide. Properties studied include fabric break strengths from room temperature to 1200 C, and bending durability after temperature conditioning at 1200 C and 1400 C. The interaction of the fabric and ceramic insulation is also studied for shrinkage, appearance, bend resistance, and fabric-to-insulation bonding. Based on these tests, the low-boria content aluminoborosilicate fabric retains more strength and fabric durability than the other fabrics studied at high temperature.

  1. Strength and flexibility properties of advanced ceramic fabrics

    NASA Technical Reports Server (NTRS)

    Sawko, P. M.; Tran, H. K.

    1985-01-01

    The mechanical properties of four advanced ceramic fabrics were measured at a temperature range of 23C to 1200C. The fabrics evaluated were silica, high and low-boria content aluminoborosilicate, and silicon carbide. Properties studied included fabric break strengths from room temperature to 1200C, and bending durability after temperature conditioning at 1200C and 1400C. The interaction of the fabric and ceramic insulation was also studied for shrinkage, appearance, bend resistance, and fabric-to-insulation bonding. Based on these tests, the low-boria content aluminoborosilicate fabric retained more strength and fabric durability than the other fabrics studied at high temperature.

  2. Development of high strength, high temperature ceramics

    NASA Technical Reports Server (NTRS)

    Hall, W. B.

    1982-01-01

    Improvement in the high-pressure turbopumps, both fuel and oxidizer, in the Space Shuttle main engine were considered. The operation of these pumps is limited by temperature restrictions of the metallic components used in these pumps. Ceramic materials that retain strength at high temperatures and appear to be promising candidates for use as turbine blades and impellers are discussed. These high strength materials are sensitive to many related processing parameters such as impurities, sintering aids, reaction aids, particle size, processing temperature, and post thermal treatment. The specific objectives of the study were to: (1) identify and define the processing parameters that affect the properties of Si3N4 ceramic materials, (2) design and assembly equipment required for processing high strength ceramics, (3) design and assemble test apparatus for evaluating the high temperature properties of Si3N4, and (4) conduct a research program of manufacturing and evaluating Si3N4 materials as applicable to rocket engine applications.

  3. High strength high modulus ceramic fiber

    NASA Technical Reports Server (NTRS)

    Fetterolf, R. N.

    1972-01-01

    Low cost method was developed for producing high strength, high modulus, continuous ceramic oxide fibers. Process transforms inexpensive metallic salts into syrup-like liquids that can be fiberized at room temperatures. Resulting salt fibers are then converted to oxides by calcination at relatively low temperatures.

  4. High strength, tough alloy steel

    DOEpatents

    Thomas, Gareth; Rao, Bangaru V. N.

    1979-01-01

    A high strength, tough alloy steel is formed by heating the steel to a temperature in the austenite range (1000.degree.-1100.degree. C.) to form a homogeneous austenite phase and then cooling the steel to form a microstructure of uniformly dispersed dislocated martensite separated by continuous thin boundary films of stabilized retained austenite. The steel includes 0.2-0.35 weight % carbon, at least 1% and preferably 3-4.5% chromium, and at least one other substitutional alloying element, preferably manganese or nickel. The austenite film is stable to subsequent heat treatment as by tempering (below 300.degree. C.) and reforms to a stable film after austenite grain refinement.

  5. Impact strength and indentation hardness of high-strength ceramics

    SciTech Connect

    Grady, D.E.

    1993-08-01

    Hugoniot elastic limit and indentation hardness data are provided for selected high-strength ceramics AlN, Al{sub 2}O{sub 3}, B{sub 4}C, SiC, TiB, Zr{sub 2}. Degree of correlation of the strength data by the two test methods is examined. Influence of reformation mechanism on strength measurement, including rate sensitivity, size scale and confining pressure, is discussed.

  6. High strength and high toughness steel

    DOEpatents

    Parker, Earl R.; Zackay, Victor F.

    1979-01-01

    A structural steel which possess both high strength and high toughness and has particular application of cryogenic uses. The steel is produced by the utilization of thermally induced phase transformation following heating in a three-phase field in iron-rich alloys of the Fe-Ni-Ti system, with a preferred composition of 12% nickel, 0.5% titanium, the remainder being iron.

  7. High strength, high ductility low carbon steel

    DOEpatents

    Koo, Jayoung; Thomas, Gareth

    1978-01-01

    A high strength, high ductility low carbon steel consisting essentially of iron, 0.05-0.15 wt% carbon, and 1-3 wt% silicon. Minor amounts of other constituents may be present. The steel is characterized by a duplex ferrite-martensite microstructure in a fibrous morphology. The microstructure is developed by heat treatment consisting of initial austenitizing treatment followed by annealing in the (.alpha. + .gamma.) range with intermediate quenching.

  8. Strength deterioration of high strength concrete in sulfate environment

    SciTech Connect

    Park, Y.S.; Suh, J.K.; Lee, J.H.; Shin, Y.S.

    1999-09-01

    Sulfate in soil and groundwater may cause damage to the concrete in underground structures. In this paper, laboratory tests were performed to assess the damage of chemical attack by magnesium sulfate and sodium sulfate on normal and high strength concretes. The selected solutions were pure water and 10% sulfate solutions (sodium and magnesium), which were determined by consideration of the soil environment in Korea. The parameters in experimental programs were water-binder ratio, silica fume content, and the compressive strength of concrete. Observed differences in the characteristics between normal and high strength concretes are discussed, and a scheme for maximizing the resistance of high strength concrete against various kinds of sulfates is suggested.

  9. Development of Advanced Corrosion-Resistant Fe-Cr-Ni Austenitic Stainless Steel Alloy with Improved High-Temperature Strength and Creep-Resistance

    SciTech Connect

    Maziasz, P.J.; Swindeman, R.W.

    2001-06-15

    In February of 1999, a Cooperative Research and Development Agreement (CRADA) was undertaken between Oak Ridge National Laboratory (ORNL) and Special Metals Corporation - Huntington Alloys (formerly INCO Alloys International, Inc.) to develop a modified wrought austenitic stainless alloy with considerably more strength and corrosion resistance than alloy 800H or 800HT, but with otherwise similar engineering and application characteristics. Alloy 800H and related alloys have extensive use in coal flue gas environments, as well as for tubing or structural components in chemical and petrochemical applications. The main concept of the project was make small, deliberate elemental microalloying additions to this Fe-based alloy to produce, with proper processing, fine stable carbide dispersions for enhanced high temperature creep-strength and rupture resistance, with similar or better oxidation/corrosion resistance. The project began with alloy 803, a Fe-25Cr-35NiTi,Nb alloy recently developed by INCO, as the base alloy for modification. Smaller commercial developmental alloy heats were produced by Special Metal. At the end of the project, three rounds of alloy development had produced a modified 803 alloy with significantly better creep resistance above 815 C (1500 C) than standard alloy 803 in the solution-annealed (SA) condition. The new upgraded 803 alloy also had the potential for a processing boost in that creep resistance for certain kinds of manufactured components that was not found in the standard alloy. The upgraded 803 alloy showed similar or slightly better oxidation and corrosion resistance relative to standard 803. Creep strength and oxidation/corrosion resistance of the upgraded 803 alloy were significantly better than found in alloy 800 H, as originally intended. The CRADA was terminated in February 2003. A contributing factor was Special Metals Corporation being in Chapter 11 Bankruptcy. Additional testing, further commercial scale-up, and any potential

  10. High-Strength, Superelastic Compounds

    NASA Technical Reports Server (NTRS)

    Stanford, Malcolm; Noebe, Ronald; Dellacorte, Christopher; Bigelow, Glen; Thomas, Fransua

    2013-01-01

    can be used in the heat treatment process, less energy will be consumed, and there will be less dimensional distortion and quench cracking. This results in fewer scrap parts, less material waste from large amounts of material removal, and fewer machining steps to rework parts that are out of specification. This material has a combination of properties that have been previously unobtainable. The material has a Young s modulus of approximately 95 GPa (about half that of conventional steels), moderate density (10 to 15% lower than conventional steels), excellent corrosion resistance, and high hardness (58 to 62 HRC). These properties make this material uniquely suited for advanced bearings.

  11. Cadmium Alternatives for High-Strength Steel

    DTIC Science & Technology

    2011-09-22

    FINAL REPORT Cadmium Alternatives for High-Strength Steel WP-200022 Steven A. Brown Naval Air Warfare Center Aircraft Division Patuxent...ESTCP WP-0022 Final Report “Cadmium Alternatives for High-Strength Steel ” 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Steven...SUPPLEMENTARY NOTES 14. ABSTRACT Testing was conducted for cadmium alternative coating systems IAW the “High Strength Steel Joint Test Protocol for

  12. Formability Characterization of a New Generation High Strength Steels

    SciTech Connect

    Sriram Sadagopan; Dennis Urban; Chris Wong; Mai Huang; Benda Yan

    2003-05-16

    Advanced high strength steels (AHSS) are being progressively explored by the automotive industry all around the world for cost-effective solutions to accomplish vehicle lightweighting, improve fuel economy, and consequently reduce greenhouse emissions. Because of their inherent high strength, attractive crash energy management properties, and good formability, the effective use of AHSS such as Duel Phase and TRIP (Transformation Induced Plasticity) steels, will significantly contribute to vehicle lightweighting and fuel economy. To further the application of these steels in automotive body and structural parts, a good knowledge and experience base must be developed regarding the press formability of these materials. This project provides data on relevant intrinsic mechanical behavior, splitting limits, and springback behavior of several lots of mild steel, conventional high strength steel (HSS), advanced high strength steel (AHSS) and ultra-high strength steel (UHSS), supplied by the member companies of the Automotive Applications Committee (AAC) of the American Iron and Steel Institute (AISI). Two lots of TRIP600, which were supplied by ThyssenKrupp Stahl, were also included in the study. Since sheet metal forming encompasses a very diverse range of forming processes and deformation modes, a number of simulative tests were used to characterize the forming behavior of these steel grades. In general, it was found that formability, as determined by the different tests, decreased with increased tensile strength. Consistant with previous findings, the formability of TRIP600 was found to be exceptionally good for its tensile strength.

  13. Advanced Main Combustion Chamber structural jacket strength analysis

    NASA Technical Reports Server (NTRS)

    Johnston, L. M.; Perkins, L. A.; Denniston, C. L.; Price, J. M.

    1993-01-01

    The structural analysis of the Advanced Main Combustion Chamber (AMCC) is presented. The AMCC is an advanced fabrication concept of the Space Shuttle Main Engine main combustion chamber (MCC). Reduced cost and fabrication time of up to 75 percent were the goals of the AMCC with cast jacket with vacuum plasma sprayed or platelet liner. Since the cast material for the AMCC is much weaker than the wrought material for the MCC, the AMCC is heavier and strength margins much lower in some areas. Proven hand solutions were used to size the manifolds cutout tee areas for combined pressure and applied loads. Detailed finite element strength analyses were used to size the manifolds, longitudinal ribs, and jacket for combined pressure and applied local loads. The design of the gimbal actuator strut attachment lugs were determined by finite element analyses and hand solutions.

  14. A universal fracture criterion for high-strength materials

    PubMed Central

    Qu, Rui Tao; Zhang, Zhe Feng

    2013-01-01

    Recently developed advanced high-strength materials like metallic glasses, nanocrystalline metallic materials, and advanced ceramics usually fracture in a catastrophic brittle manner, which makes it quite essential to find a reasonable fracture criterion to predict their brittle failure behaviors. Based on the analysis of substantial experimental observations of fracture behaviors of metallic glasses and other high-strength materials, here we developed a new fracture criterion and proved it effective in predicting the critical fracture conditions under complex stress states. The new criterion is not only a unified one which unifies the three classical failure criteria, i.e., the maximum normal stress criterion, the Tresca criterion and the Mohr-Coulomb criterion, but also a universal criterion which has the ability to describe the fracture mechanisms of a variety of different high-strength materials under various external loading conditions.

  15. High-Hot-Strength Ceramic Fibers

    NASA Technical Reports Server (NTRS)

    Sayir, Ali; Matson, Lawrence E.

    1994-01-01

    Continuous fibers consisting of laminae of alumina and yttrium aluminum garnet offer exceptionally high strength, resistance to creep, and chemical stability at high temperatures. These fibers exceed tensile strength of sapphire fibers. Leading candidates for reinforcement of intermetallic-matrix composites in exhaust nozzles of developmental high-speed civil transport aircraft engines. Other applications are in aerospace, automotive, chemical-process, and power-generation industries.

  16. High-Hot-Strength Ceramic Fibers

    NASA Technical Reports Server (NTRS)

    Sayir, Ali; Matson, Lawrence E.

    1994-01-01

    Continuous fibers consisting of laminae of alumina and yttrium aluminum garnet offer exceptionally high strength, resistance to creep, and chemical stability at high temperatures. These fibers exceed tensile strength of sapphire fibers. Leading candidates for reinforcement of intermetallic-matrix composites in exhaust nozzles of developmental high-speed civil transport aircraft engines. Other applications are in aerospace, automotive, chemical-process, and power-generation industries.

  17. Flexure Strength of Advanced Ceramics - A Round Robin Exercise

    DTIC Science & Technology

    1989-07-01

    tests. McMahon showed a very strong effect at room temperature on a high alumina ceramic. 4 Most of the laboratories in the present exer- cise did...Materials, and was concluded in 1987. Flexural strength at room temperature was measured for a sintercd alumina and a reaction-bonded silicon nitride... sintered alumina and reaction-bonded silicon nitride were quite satisfactory for the exercise. Flexure strengths measured by seven laboratories using

  18. High-strength magnetic materials

    NASA Technical Reports Server (NTRS)

    Detert, K.

    1970-01-01

    Two new precipitation-hardened magnetic alloys are suitable for operation in 800 to 1600 deg F range. One is a martensitic alloy and the other a cobalt-based alloy. They possess improved creep resistance and have application in high temperature inductors and alternators.

  19. "Ultra"-Fast Fracture Strength of Advanced Structural Ceramic Materials Studied at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Gyekenyesi, John P.

    1999-01-01

    The accurate determination of inert strength is important in reliable life prediction of structural ceramic components. At ambient temperature, the inert strength of a brittle material is typically regarded as free of the effects of slow crack growth due to stress corrosion. Therefore, the inert strength can be determined either by eliminating active species, especially moisture, with an appropriate inert medium, or by using a very high test rate. However, at elevated temperatures, the concept or definition of the inert strength of brittle ceramic materials is not clear, since temperature itself is a degrading environment, resulting in strength degradation through slow crack growth and/or creep. Since the mechanism to control strength is rate-dependent viscous flow, the only conceivable way to determine the inert strength at elevated temperatures is to utilize a very fast test rate that either minimizes the time for or eliminates slow crack growth. Few experimental studies have measured the elevated-temperature, inert (or "ultra"-fast fracture) strength of advanced ceramics. At the NASA Lewis Research Center, an experimental study was initiated to better understand the "ultra"-fast fracture strength behavior of advanced ceramics at elevated temperatures. Fourteen advanced ceramics - one alumina, eleven silicon nitrides, and two silicon carbides - have been tested using constant stress-rate (dynamic fatigue) testing in flexure with a series of stress rates including the "ultra"-fast stress rate of 33 000 MPa/sec with digitally controlled test frames. The results for these 14 advanced ceramics indicate that, notwithstanding possible changes in flaw populations as well as flaw configurations because of elevated temperatures, the strength at 33 000 MPa/sec approached the room-temperature strength or reached a higher value than that determined at the conventional test rate of 30 MPa/sec. On the basis of the experimental data, it can be stated that the elevated

  20. High toughness-high strength iron alloy

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Witzke, W. R. (Inventor)

    1980-01-01

    An iron alloy is provided which exhibits strength and toughness characteristics at cryogenic temperatures. The alloy consists essentially of about 10 to 16 percent by weight nickel, about 0.1 to 1.0 percent by weight aluminum, and 0 to about 3 percent by weight copper, with the balance being essentially iron. The iron alloy is produced by a process which includes cold rolling at room temperature and subsequent heat treatment.

  1. Development of High Specific Strength Envelope Materials

    NASA Astrophysics Data System (ADS)

    Komatsu, Keiji; Sano, Masa-Aki; Kakuta, Yoshiaki

    Progress in materials technology has produced a much more durable synthetic fabric envelope for the non-rigid airship. Flexible materials are required to form airship envelopes, ballonets, load curtains, gas bags and covering rigid structures. Polybenzoxazole fiber (Zylon) and polyalirate fiber (Vectran) show high specific tensile strength, so that we developed membrane using these high specific tensile strength fibers as a load carrier. The main material developed is a Zylon or Vectran load carrier sealed internally with a polyurethane bonded inner gas retention film (EVOH). The external surface provides weather protecting with, for instance, a titanium oxide integrated polyurethane or Tedlar film. The mechanical test results show that tensile strength 1,000 N/cm is attained with weight less than 230g/m2. In addition to the mechanical properties, temperature dependence of the joint strength and solar absorptivity and emissivity of the surface are measured. 

  2. High strength concrete provides joint protection

    SciTech Connect

    Pool, P. )

    1991-12-01

    This paper reports on a joint fill material applied on the 24-in. pipe used by Iroquois Gas Transmission Project for its 26-mile Long Island Sound crossing which provides effective joint protection. The 3.35-in. joint fill, made of high instant strength concrete, met stringent requirements for both strength and weight coating, and is environmentally clean to protect the sensitive marine ecosystem. The offshore section, from Bridgeport, Conn., to Long Island, was laid by McDermott, Inc. The high instant strength concrete supplied joint strength and protection during the laying operation, and on the barge itself, where pipe joints are most vulnerable to damage. With joint fill density the same as the concrete already on the pipe, the submerged weight was uniform along the entire length of the marine line, for an essentially seamless coating.

  3. Third Generation 0.3C-4.0Mn Advanced High Strength Steels Through a Dual Stabilization Heat Treatment: Austenite Stabilization Through Paraequilibrium Carbon Partitioning

    NASA Astrophysics Data System (ADS)

    Qu, Hao; Michal, Gary M.; Heuer, Arthur H.

    2014-06-01

    In excess of 30 vol. pct austenite can be retained in 0.3C-4.0Mn steels subjected to a dual stabilization heat treatment (DSHT) schedule—a five stage precisely controlled cooling schedule that is a variant of the quench and partition process. The temperature of the second quench (stage III) in the DSHT process plays an essential role in the retained austenite contents produced at carbon-partitioning temperatures of 723 K or 748 K (450° C or 475 °C) (stage IV). A thermodynamic model successfully predicted the retained austenite contents in heat-treated steels, particularly for a completely austenitized material. The microstructure and mechanical behavior of two heat-treated steels with similar levels of retained austenite (~30 vol. pct) were studied. Optimum properties—tensile strengths up to 1650 MPa and ~20 pct total elongation—were observed in a steel containing 0.3C-4.0Mn-2.1Si, 1.5 Al, and 0.5 Cr.

  4. Method for producing high dielectric strength microvalves

    DOEpatents

    Kirby, Brian J.; Reichmuth, David S.; Shepodd, Timothy J.

    2006-04-04

    A microvalve having a cast-in-place and lithographically shaped mobile, polymer monolith for fluid flow control in microfluidic devices and method of manufacture. The microvalve contains a porous fluorinated polymer monolithic element whose pores are filled with an electrically insulating, high dielectric strength fluid, typically a perfluorinated liquid. This combination provides a microvalve that combines high dielectric strength with extremely low electrical conductivity. These microvalves have been shown to have resistivities of at least 100 G.OMEGA. and are compatible with solvents such as water at a pH between 2.7 and 9.0, 1-1 propanol, acetonitrile, and acetone.

  5. Mechanical properties of high-strength concrete

    NASA Astrophysics Data System (ADS)

    Mokhtarzadeh, Alireza

    This report summarizes an experimental program conducted to investigate production techniques and mechanical properties of high strength concrete in general and to provide recommendations for using these concretes in manufacturing precast/prestressed bridge girders. Test variables included total amount and composition of cementitious material (portland cement, fly ash, and silica fume), type and brand of cement, type of silica fume (dry densified and slurry), type and brand of high-range water-reducing admixture, type of aggregate, aggregate gradation, maximum aggregate size, and curing. Tests were conducted to determine the effects of these variables on changes in compressive strength and modulus of elasticity over time, splitting tensile strength, modulus of rupture, creep, shrinkage, and absorption potential (as an indirect indicator of permeability). Also investigated were the effects of test parameters such as mold size, mold material, and end condition. Over 6,300 specimens were cast from approximately 140 mixes over a period of 3 years.

  6. ADVANCED HIGH SPEED PROGRAMMABLE PREFORMING

    SciTech Connect

    Norris Jr, Robert E; Lomax, Ronny D; Xiong, Fue; Dahl, Jeffrey S; Blanchard, Patrick J

    2010-01-01

    Polymer-matrix composites offer greater stiffness and strength per unit weight than conventional materials resulting in new opportunities for lightweighting of automotive and heavy vehicles. Other benefits include design flexibility, less corrosion susceptibility, and the ability to tailor properties to specific load requirements. However, widespread implementation of structural composites requires lower-cost manufacturing processes than those that are currently available. Advanced, directed-fiber preforming processes have demonstrated exceptional value for rapid preforming of large, glass-reinforced, automotive composite structures. This is due to process flexibility and inherently low material scrap rate. Hence directed fiber performing processes offer a low cost manufacturing methodology for producing preforms for a variety of structural automotive components. This paper describes work conducted at the Oak Ridge National Laboratory (ORNL), focused on the development and demonstration of a high speed chopper gun to enhance throughput capabilities. ORNL and the Automotive Composites Consortium (ACC) revised the design of a standard chopper gun to expand the operational envelope, enabling delivery of up to 20kg/min. A prototype unit was fabricated and used to demonstrate continuous chopping of multiple roving at high output over extended periods. In addition fiber handling system modifications were completed to sustain the high output the modified chopper affords. These hardware upgrades are documented along with results of process characterization and capabilities assessment.

  7. Development of advanced high strength tantalum base alloys. Phase 3: Influence of metallurgical condition on the mechanical properties of ASTAR-811C sheet

    NASA Technical Reports Server (NTRS)

    Ammon, R. L.; Buckman, R. W., Jr.; Harrod, D. L.

    1972-01-01

    Metallurgical condition was shown to have a significant effect on the creep properties of ASTAR-811C (Ta-8W-1Re-0.7Hf-0.025C) sheet. Cold worked material exhibited creep rates 30 times higher than solution annealed material and 10 times greater than for recrystallized material. Both grain size and the carbide morphology changes as the final annealing temperature was raised from 3000 F to 3600 F. However, the lowest creep rates were achieved for material which retained the high temperature form of the Ta2C precipitate. Samples with GTA weldments had essentially identical properties as recrystallized base metal. Cooling rates from 3600 F of 5, 50, and 800 F deg/min. had little effect on the 2000 and 2400 F creep behavior of ASTAR-811C.

  8. Welding high-strength aluminum alloys

    NASA Technical Reports Server (NTRS)

    Parks, P. G.; Hoppes, R. V.; Hasemeyer, E. A.; Masubuchi, K.

    1974-01-01

    Handbook has been published which integrates results of 19 research programs involving welding of high-strength aluminum alloys. Book introduces metallurgy and properties of aluminum alloys by discussing commercial alloys and heat treatments. Several current welding processes are reviewed such as gas tungsten-arc welding and gas metal-arc welding.

  9. High strength composites evaluation. Final report

    SciTech Connect

    Marten, S.M.

    1992-02-01

    A high-strength, thick-section, graphite/epoxy composite was identified. The purpose of this development effort was to evaluate candidate materials and provide LANL with engineering properties. Eight candidate materials (Samples 1000, 1100, 1200, 1300, 1400, 1500, 1600, and 1700) were chosen for evaluation. The Sample 1700 thermoplastic material was the strongest overall.

  10. Making High-Tensile-Strength Amalgam Components

    NASA Technical Reports Server (NTRS)

    Grugel, Richard

    2008-01-01

    Structural components made of amalgams can be made to have tensile strengths much greater than previously known to be possible. Amalgams, perhaps best known for their use in dental fillings, have several useful attributes, including room-temperature fabrication, corrosion resistance, dimensional stability, and high compressive strength. However, the range of applications of amalgams has been limited by their very small tensile strengths. Now, it has been discovered that the tensile strength of an amalgam depends critically on the sizes and shapes of the particles from which it is made and, consequently, the tensile strength can be greatly increased through suitable choice of the particles. Heretofore, the powder particles used to make amalgams have been, variously, in the form of micron-sized spheroids or flakes. The tensile reinforcement contributed by the spheroids and flakes is minimal because fracture paths simply go around these particles. However, if spheroids or flakes are replaced by strands having greater lengths, then tensile reinforcement can be increased significantly. The feasibility of this concept was shown in an experiment in which electrical copper wires, serving as demonstration substitutes for copper powder particles, were triturated with gallium by use of a mortar and pestle and the resulting amalgam was compressed into a mold. The tensile strength of the amalgam specimen was then measured and found to be greater than 10(exp 4) psi (greater than about 69 MPa). Much remains to be done to optimize the properties of amalgams for various applications through suitable choice of starting constituents and modification of the trituration and molding processes. The choice of wire size and composition are expected to be especially important. Perusal of phase diagrams of metal mixtures could give insight that would enable choices of solid and liquid metal constituents. Finally, whereas heretofore, only binary alloys have been considered for amalgams

  11. High-strength mineralized collagen artificial bone

    NASA Astrophysics Data System (ADS)

    Qiu, Zhi-Ye; Tao, Chun-Sheng; Cui, Helen; Wang, Chang-Ming; Cui, Fu-Zhai

    2014-03-01

    Mineralized collagen (MC) is a biomimetic material that mimics natural bone matrix in terms of both chemical composition and microstructure. The biomimetic MC possesses good biocompatibility and osteogenic activity, and is capable of guiding bone regeneration as being used for bone defect repair. However, mechanical strength of existing MC artificial bone is too low to provide effective support at human load-bearing sites, so it can only be used for the repair at non-load-bearing sites, such as bone defect filling, bone graft augmentation, and so on. In the present study, a high strength MC artificial bone material was developed by using collagen as the template for the biomimetic mineralization of the calcium phosphate, and then followed by a cold compression molding process with a certain pressure. The appearance and density of the dense MC were similar to those of natural cortical bone, and the phase composition was in conformity with that of animal's cortical bone demonstrated by XRD. Mechanical properties were tested and results showed that the compressive strength was comparable to human cortical bone, while the compressive modulus was as low as human cancellous bone. Such high strength was able to provide effective mechanical support for bone defect repair at human load-bearing sites, and the low compressive modulus can help avoid stress shielding in the application of bone regeneration. Both in vitro cell experiments and in vivo implantation assay demonstrated good biocompatibility of the material, and in vivo stability evaluation indicated that this high-strength MC artificial bone could provide long-term effective mechanical support at human load-bearing sites.

  12. High-Strength Bolt Corrosion Fatigue Life Model and Application

    PubMed Central

    Hui-li, Wang; Si-feng, Qin

    2014-01-01

    The corrosion fatigue performance of high-strength bolt was studied. Based on the fracture mechanics theory and the Gerberich-Chen formula, the high-strength bolt corrosion fracture crack model and the fatigue life model were established. The high-strength bolt crack depth and the fatigue life under corrosion environment were quantitatively analyzed. The factors affecting high-strength bolt corrosion fatigue life were discussed. The result showed that the high-strength bolt corrosion fracture biggest crack depth reduces along with the material yield strength and the applied stress increases. The material yield strength was the major factor. And the high-strength bolt corrosion fatigue life reduced along with the increase of material strength, the applied stress or stress amplitude. The stress amplitude influenced the most, and the material yield strength influenced the least. Low bolt strength and a low stress amplitude level could extend high-strength bolt corrosion fatigue life. PMID:25152916

  13. High-strength bolt corrosion fatigue life model and application.

    PubMed

    Hui-li, Wang; Si-feng, Qin

    2014-01-01

    The corrosion fatigue performance of high-strength bolt was studied. Based on the fracture mechanics theory and the Gerberich-Chen formula, the high-strength bolt corrosion fracture crack model and the fatigue life model were established. The high-strength bolt crack depth and the fatigue life under corrosion environment were quantitatively analyzed. The factors affecting high-strength bolt corrosion fatigue life were discussed. The result showed that the high-strength bolt corrosion fracture biggest crack depth reduces along with the material yield strength and the applied stress increases. The material yield strength was the major factor. And the high-strength bolt corrosion fatigue life reduced along with the increase of material strength, the applied stress or stress amplitude. The stress amplitude influenced the most, and the material yield strength influenced the least. Low bolt strength and a low stress amplitude level could extend high-strength bolt corrosion fatigue life.

  14. The Bendability of Ultra High strength Steels

    NASA Astrophysics Data System (ADS)

    Hazra, S. K.; Efthymiadis, P.; Alamoudi, A.; Kumar, R. L. V.; Shollock, B.; Dashwood, R.

    2016-08-01

    Automotive manufacturers have been reducing the weight of their vehicles to meet increasingly stringent environmental legislation that reflects public demand. A strategy is to use higher strength materials for parts with reduced cross-sections. However, such materials are less formable than traditional grades. The frequent result is increased processing and piece costs. 3D roll forming is a novel and flexible process: it is estimated that a quarter of the structure of a vehicle can be made with a single set of tooling. Unlike stamping, this process requires material with low work hardening rates. In this paper, we present results of ultra high strength steels that have low elongation in a tension but display high formability in bending through the suppression of the necking response.

  15. High-Tensile Strength Tape Versus High-Tensile Strength Suture: A Biomechanical Study.

    PubMed

    Gnandt, Ryan J; Smith, Jennifer L; Nguyen-Ta, Kim; McDonald, Lucas; LeClere, Lance E

    2016-02-01

    To determine which suture design, high-tensile strength tape or high-tensile strength suture, performed better at securing human tissue across 4 selected suture techniques commonly used in tendinous repair, by comparing the total load at failure measured during a fixed-rate longitudinal single load to failure using a biomechanical testing machine. Matched sets of tendon specimens with bony attachments were dissected from 15 human cadaveric lower extremities in a manner allowing for direct comparison testing. With the use of selected techniques (simple Mason-Allen in the patellar tendon specimens, whip stitch in the quadriceps tendon specimens, and Krackow stitch in the Achilles tendon specimens), 1 sample of each set was sutured with a 2-mm braided, nonabsorbable, high-tensile strength tape and the other with a No. 2 braided, nonabsorbable, high-tensile strength suture. A total of 120 specimens were tested. Each model was loaded to failure at a fixed longitudinal traction rate of 100 mm/min. The maximum load and failure method were recorded. In the whip stitch and the Krackow-stitch models, the high-tensile strength tape had a significantly greater mean load at failure with a difference of 181 N (P = .001) and 94 N (P = .015) respectively. No significant difference was found in the Mason-Allen and simple stitch models. Pull-through remained the most common method of failure at an overall rate of 56.7% (suture = 55%; tape = 58.3%). In biomechanical testing during a single load to failure, high-tensile strength tape performs more favorably than high-tensile strength suture, with a greater mean load to failure, in both the whip- and Krackow-stitch models. Although suture pull-through remains the most common method of failure, high-tensile strength tape requires a significantly greater load to pull-through in a whip-stitch and Krakow-stitch model. The biomechanical data obtained in the current study indicates that high-tensile strength tape may provide better repair

  16. Hydrogen trapping in high-strength steels

    SciTech Connect

    Pound, B.G.

    1998-10-09

    Hydrogen trapping in three high-strength steels -- AerMet 100 and AISI 4340 and H11 -- was studied using a potentiostatic pulse technique. Irreversible trapping constants (k) and hydrogen entry fluxes were determined for these alloys in 1 mol/1 acetic acid/1 mol/1 sodium acetate. The order of the k values for the three steels and two 18Ni maraging steels previously studies inversely parallels their threshold stress intensities for stress corrosion cracking (K{sub 1SCC}). Irreversible trapping in AerMet 100 varies with aging temperature and appears to depend on the type of carbide (Fe{sub 3}C or M{sub 2}C) present. For 4340 steel, k can be correlated with K{sub 1SCC} over a range of yield strengths. The change in k is consistent with a change in the principal type of irreversible trap from matrix boundaries to incoherent Fe{sub 3}C. The principal irreversible traps in H11 at high yield strengths are thought to be similar to those in 4340 steel.

  17. High-strength iron aluminide alloys

    SciTech Connect

    McKamey, C.G.; Maziasz, P.J.

    1996-06-01

    Past studies have shown that binary Fe{sub 3}Al possesses low creep-rupture strength compared to many other alloys, with creep-rupture lives of less than 5 h being reported for tests conducted at 593{degrees}C and 207 MPa. The combination of poor creep resistance and low room-temperature tensile ductility due to a susceptibility to environmentally-induced dynamic hydrogen embrittlement has limited use of these alloys for structural applications despite their excellent corrosion properties. With regard to the ductility problem, alloy development efforts have produced significant improvements, with ductilities of 10-20% and tensile yield strengths as high as 500 MPa being reported. Likewise, initial improvements in creep resistance have been realized through small additions of Mo, Nb, and Zr.

  18. HIGH STRENGTH CONTROL RODS FOR NEUTRONIC REACTORS

    DOEpatents

    Lustman, B.; Losco, E.F.; Cohen, I.

    1961-07-11

    Nuclear reactor control rods comprised of highly compressed and sintered finely divided metal alloy panticles and fine metal oxide panticles substantially uniformly distributed theretbrough are described. The metal alloy consists essentially of silver, indium, cadmium, tin, and aluminum, the amount of each being present in centain percentages by weight. The oxide particles are metal oxides of the metal alloy composition, the amount of oxygen being present in certain percentages by weight and all the oxygen present being substantially in the form of metal oxide. This control rod is characterized by its high strength and resistance to creep at elevated temperatures.

  19. High-strength iron aluminide alloys

    SciTech Connect

    McKamey, C.G.; Marrero-Santos, Y.; Maziasz, P.J.

    1995-06-01

    Past studies have shown that binary Fe{sub 3}Al possesses low creep-rupture strength compared to many other alloys, with creep-rupture lives of less than 5 h being reported for tests conducted at 593{degrees}C and 207 MPa. The combination of poor creep resistance and low room-temperature tensile density due to a susceptibility to environmentally-induced dynamic hydrogen embrittlement has limited use of these alloys for structural applications, despite their excellent corrosion properties. Improvements in room temperature tensile ductility have been realized mainly through alloying effects, changes in thermomechanical processing to control microstructure, and by control of the specimen`s surface condition. Ductilities of 10-20% and tensile yield strengths as high as 500 MPa have been reported. In terms of creep-rupture strength, small additions of Mo, Nb, and Zr have produced significant improvements, but at the expense of weldability and room-temperature tensile ductility. Recently an alloy containing these additions, designated FA-180, was shown to exhibit a creep-rupture life of over 2000 h after a heat treatment of 1 h at 1150{degrees}C. This study presents the results of creep-rupture tests at various test temperatures and stresses and discusses the results as part of our effort to understand the strengthening mechanisms involved with heat treatment at 1150{degrees}C.

  20. Springback Simulation and Compensation for High Strength Parts Using JSTAMP

    NASA Astrophysics Data System (ADS)

    Shindo, Terumasa; Sugitomo, Nobuhiko; Ma, Ninshu

    2011-08-01

    The stamping parts made from high strength steel have a large springback which is difficult to control. With the development of simulation technology, the springback can be accurately predicted using advanced kinematic material models and CAE systems. In this paper, a stamping process for a pillar part made from several classes of high strength steel was simulated using a Yoshida-Uemori kinematic material model and the springback was well predicted. To obtain the desired part shape, CAD surfaces of the stamping tools were compensated by a CAE system JSTAMP. After applying the compensation 2 or 3 times, the dimension accuracy of the simulation for the part shape achieved was about 0.5 mm. The compensated CAD surfaces of the stamping tools were directly exported from JSTAMP to CAM for machining. The effectiveness of the compensation was verified by an experiment using the compensated tools.

  1. Protective claddings for high strength chromium alloys

    NASA Technical Reports Server (NTRS)

    Collins, J. F.

    1971-01-01

    The application of a Cr-Y-Hf-Th alloy as a protective cladding for a high strength chromium alloy was investigated for its effectiveness in inhibiting nitrogen embrittlement of a core alloy. Cladding was accomplished by a combination of hot gas pressure bonding and roll cladding techniques. Based on bend DBTT, the cladding alloy was effective in inhibiting nitrogen embrittlement of the chromium core alloy for up to 720 ks (200hours) in air at 1422 K (2100 F). A significant increase in the bend DBTT occurred with longer time exposures at 1422 K or short time exposures at 1589 K (2400 F).

  2. Mechanical Properties of Heat Affected Zone of High Strength Steels

    NASA Astrophysics Data System (ADS)

    Sefcikova, K.; Brtnik, T.; Dolejs, J.; Keltamaki, K.; Topilla, R.

    2015-11-01

    High Strength Steels became more popular as a construction material during last decade because of their increased availability and affordability. On the other hand, even though general use of Advanced High Strength Steels (AHSS) is expanding, the wide utilization is limited because of insufficient information about their behaviour in structures. The most widely used technique for joining steels is fusion welding. The welding process has an influence not only on the welded connection but on the area near this connection, the so-called heat affected zone, as well. For that reason it is very important to be able to determine the properties in the heat affected zone (HAZ). This area of investigation is being continuously developed in dependence on significant progress in material production, especially regarding new types of steels available. There are currently several types of AHSS on the world market. Two most widely used processes for AHSS production are Thermo-Mechanically Controlled Processing (TMCP) and Quenching in connection with Tempering. In the presented study, TMCP and QC steels grade S960 were investigated. The study is focused on the changes of strength, ductility, hardness and impact strength in heat affected zone based on the used amount of heat input.

  3. TRP 9904 - Constitutive Behavior of High Strength Multiphase Sheel Steel Under High Strain Rate Deformation

    SciTech Connect

    David Matlock; John Speer

    2005-03-31

    The focus of the research project was to systematically assess the strain rate dependence of strengthening mechanisms in new advanced high strength sheet steels. Data were obtained on specially designed and produced Duel Phase and TRIP steels and compared to the properties of automotive steels currently in use.

  4. A new high strength alloy for hydrogen fueled propulsion systems

    NASA Technical Reports Server (NTRS)

    Mcpherson, W. B.

    1986-01-01

    This paper describes the development of a high-strength alloy (1241 MPa ultimate and 1103 MPa yield, with little or no degradation in hydrogen) for application in advanced hydrogen-fueled rocket engines. Various compositions of the Fe-Ni-Co-Cr system with elemental additions of Cb, Ti and Al are discussed. After processing, notched tensile specimens were tested in 34.5-MPa hydrogen at room temperature, as the main screening test. The H2/air notch tensile ratio was used as the selection/rejection criterion. The most promising alloys are discussed.

  5. Improving Advanced High School Physics

    NASA Astrophysics Data System (ADS)

    Spital, Robin David

    2003-04-01

    A National Research Council study committee recently commissioned a "Physics Panel" to evaluate and make recommendations for improving advanced physics education in American high schools [1]. The Physics Panel recommends the creation of a nationally standardized Newtonian Mechanics Unit that would form the foundation of all advanced physics programs. In a one-year program, the Panel recommends that advanced physics students study at most one other major area of physics, so that sufficient time is available to develop the deep conceptual understanding that is the primary goal of advanced study. The Panel emphasizes that final assessments must be improved to focus on depth of understanding, rather than technical problem-solving skill. The Physics Panel strongly endorses the inclusion of meaningful real-world experiences in advanced physics programs, but believes that traditional "cook-book" laboratory exercises are not worth the enormous amount of time and effort spent on them. The Physics Panel believes that the talent and preparation of teachers are the most important ingredients in effective physics instruction; it therefore calls for a concerted effort by all parts of the physics community to remedy the desperate shortage of highly qualified teachers. [1] Jerry P. Gollub and Robin Spital, "Advanced Physics in the High Schools", Physics Today, May 2002.

  6. Press hardening of alternative high strength aluminium and ultra-high strength steels

    NASA Astrophysics Data System (ADS)

    Mendiguren, Joseba; Ortubay, Rafael; Agirretxe, Xabier; Galdos, Lander; de Argandoña, Eneko Sáenz

    2016-10-01

    The boron steel press hardening process takes more and more importance on the body in white structure in the last decade. In this work, the advantages of using alternative alloys on the press hardening process is analysed. In particular, the press hardening of AA7075 high strength aluminium and CP800 complex phase ultra-high strength steel is analysed. The objective is to analyse the potential decrease on springback while taking into account the strength change associated with the microstructural modification carried out during the press hardening process. The results show a clear improvement of the final springback in both cases. Regarding the final mechanical properties, an important decrease has been measured in the AA7075 due to the process while an important increase has been found in the CP800 material.

  7. High strength ferritic alloy-D53

    DOEpatents

    Hagel, William C.; Smidt, Frederick A.; Korenko, Michael K.

    1977-01-01

    A high strength ferritic alloy is described having from about 0.2% to about 0.8% by weight nickel, from about 2.5% to about 3.6% by weight chromium, from about 2.5% to about 3.5% by weight molybdenum, from about 0.1% to about 0.5% by weight vanadium, from about 0.1% to about 0.5% by weight silicon, from about 0.1% to about 0.6% by weight manganese, from about 0.12% to about 0.20% by weight carbon, from about 0.02% to about 0.1% by weight boron, a maximum of about 0.05% by weight nitrogen, a maximum of about 0.02% by weight phosphorous, a maximum of about 0.02% by weight sulfur, and the balance iron.

  8. High strength air-dried aerogels

    DOEpatents

    Coronado, Paul R.; Satcher, Jr., Joe H.

    2012-11-06

    A method for the preparation of high strength air-dried organic aerogels. The method involves the sol-gel polymerization of organic gel precursors, such as resorcinol with formaldehyde (RF) in aqueous solvents with R/C ratios greater than about 1000 and R/F ratios less than about 1:2.1. Using a procedure analogous to the preparation of resorcinol-formaldehyde (RF) aerogels, this approach generates wet gels that can be air dried at ambient temperatures and pressures. The method significantly reduces the time and/or energy required to produce a dried aerogel compared to conventional methods using either supercritical solvent extraction. The air dried gel exhibits typically less than 5% shrinkage.

  9. High strength cast aluminum alloy development

    NASA Astrophysics Data System (ADS)

    Druschitz, Edward A.

    The goal of this research was to understand how chemistry and processing affect the resulting microstructure and mechanical properties of high strength cast aluminum alloys. Two alloy systems were investigated including the Al-Cu-Ag and the Al-Zn-Mg-Cu systems. Processing variables included solidification under pressure (SUP) and heat treatment. This research determined the range in properties that can be achieved in BAC 100(TM) (Al-Cu micro-alloyed with Ag, Mn, Zr, and V) and generated sufficient property data for design purposes. Tensile, stress corrosion cracking, and fatigue testing were performed. CuAl2 and Al-Cu-Fe-Mn intermetallics were identified as the ductility limiting flaws. A solution treatment of 75 hours or longer was needed to dissolve most of the intermetallic CuAl 2. The Al-Cu-Fe-Mn intermetallic was unaffected by heat treatment. These results indicate that faster cooling rates, a reduction in copper concentration and a reduction in iron concentration might increase the ductility of the alloy by decreasing the size and amount of the intermetallics that form during solidification. Six experimental Al-Zn-Mg-Cu series alloys were produced. Zinc concentrations of 8 and 12wt% and Zn/Mg ratios of 1.5 to 5.5 were tested. Copper was held constant at 0.9%. Heat treating of the alloys was optimized for maximum hardness. Al-Zn-Mg-Cu samples were solution treated at 441°C (826°F) for 4 hours before ramping to 460°C (860°F) for 75 hours and then aged at 120°C (248°F) for 75 hours. X-ray diffraction showed that the age hardening precipitates in most of these alloys was the T phase (Mg32Zn 31.9Al17.1). Tensile testing of the alloys showed that the best mechanical properties were obtained in the lowest alloy condition. Chilled Al-8.2Zn-1.4Mg-0.9Cu solidified under pressure resulted in an alloy with a yield strength of 468MPa (68ksi), tensile strength of 525MPa (76ksi) and an elongation of 9%.

  10. High-strength and high-ductility nanostructured and amorphous metallic materials.

    PubMed

    Kou, Hongning; Lu, Jian; Li, Ying

    2014-08-20

    The development of materials with dual properties of high strength and high ductility has been a constant challenge since the foundation of the materials science discipline. The rapid progress of nanotechnology in recent decades has further brought this challenge to a new era. This Research News highlights a few newly developed strategies to optimize advanced nanomaterials and metallic glasses with exceptional dual mechanical properties of high strength and high ductility. A general concept of strain non-localization is presented to describe the role of multiscale (i.e., macroscale, microscale, nanoscale, and atomic scale) heterogeneities in the ductility enhancement of materials reputed to be intrinsically brittle, such as nanostructured metallic materials and bulk metallic glasses. These nanomaterials clearly form a new group of materials that display an extraordinary relationship between yield strength and the uniform elongation with the same chemical composition. Several other examples of nanomaterials such as those reinforced by nanoprecipitates will also be described.

  11. Advanced very high resolution radiometer

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The advanced very high resolution radiometer development program is considered. The program covered the design, construction, and test of a breadboard model, engineering model, protoflight model, mechanical structural model, and a life test model. Special bench test and calibration equipment was also developed for use on the program.

  12. Elevated-Temperature "Ultra" Fast Fracture Strength of Advanced Ceramics: An Approach to Elevated-Temperature "Inert" Strength

    NASA Technical Reports Server (NTRS)

    Choi, S. R.; Gyekenyesi, J. P.

    1999-01-01

    The determination of "ultra" fast fracture strengths of five silicon nitride ceramics at elevated temperatures has been made by using constant stress-rate ("dynamic fatigue") testing with a series of "ultra" fast test rates. The test material included four monolithic and one SiC whisker-reinforced composite silicon nitrides. Of the five test materials, four silicon nitrides exhibited the elevated -temperature strengths that approaches their respective room-temperature strengths at an "ultra" fast test rate of 3.3 x 10(exp 4) MPa/s. This implies that slow cracks growth responsible for elevated-temperature failure can be eliminated or minimized by using the "ultra" fast test rate. These ongoing experimental results have shed light on laying a theoretical and practical foundation on the concept and definition of elevated-temperature "inert" strength behavior of advanced ceramics.

  13. High Breakdown Strength, Multilayer Ceramics for Compact Pulsed Power Applications

    SciTech Connect

    Gilmore, B.; Huebner, W.; Krogh, M.L.; Lundstrom, J.M.; Pate, R.C.; Rinehart, L.F.; Schultz, B.C.; Zhang, S.C.

    1999-07-20

    Advanced ceramics are being developed for use in large area, high voltage devices in order to achieve high specific energy densities (>10 6 J/m 3 ) and physical size reduction. Initial materials based on slip cast TiO2 exhibited a high bulk breakdown strength (BDS >300 kV/cm) and high permittivity with low dispersion (e�100). However, strong area and thickness dependencies were noted. To increase the BDS, multilayer dielectric compositions are being developed based on glass/TiO2 composites. The addition of glass increases the density (�99.8% theoretical), forms a continuous grain boundary phase, and also allows the use of high temperature processes to change the physical shape of the dielectric. The permittivity can also be manipulated since the volume fraction and connectivity of the glassy phase can be readily shifted. Results from this study on bulk breakdown of TiO2 multilayer structures with an area of 2cm 2 and 0.1cm thickness have measured 650 kV/cm. Furthermore, a strong dependence of breakdown strength and permittivity has been observed and correlated with microstructure and the glass composition. This paper presents the interactive effects of manipulation of these variables.

  14. Aluminum/steel wire composite plates exhibit high tensile strength

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Composite plate of fine steel wires imbedded in an aluminum alloy matrix results in a lightweight material with high tensile strength. Plates have been prepared having the strength of titanium with only 85 percent of its density.

  15. High Strength, Weldable Precipitation Aged Steels

    NASA Astrophysics Data System (ADS)

    Wilson, Alexander D.

    1987-03-01

    The family of plate steels represented by ASTM Specification A7101 is finding increasing applications. These low carbon, Cu-Ni-Cr-Mo-Cb, copper precipitation hardened steels have been identified by a number of designations over the years. During early development in the late 1960's and first commercial production in 1970, the steels were known as IN-787 (trademark of International Nickel Company).2 ASTM specifications were subsequently developed for structural (A710) and pressure vessel (A736) applications over ten years ago. More recent interest and application of this family of steels by the U.S. Navy has lead to development of a military specification MIL-S-24645 (SH),3 also initially known as "HSLA-80." Significant tonnage is being produced for the U.S. Navy as a replacement for HY80 (MIL-S-16216) in cruiser deck, bulkhead and hull applications.4 In these applications, the enhanced weldability and requirement of no preheat at this high strength and toughness level has been the main motivation for its use. Over the past 15 years, A710 type steels have also been used in a variety of applications, including off-shore platforms, pressure vessels, arctic linepipe valves and off-highway mining truck frames.

  16. Behavior of noncompacted high strength bolted joints

    NASA Astrophysics Data System (ADS)

    Huckelbridge, A. A., Jr.; Miller, C. J.; Burkhart, R. A.; Asante, K.

    1980-03-01

    All tests were continued until failure of the joint; all joints were of a butt type utilizing double lap plates and 3/4 inch A325 high strength bolts. Noncompaction ranged from the fully compacted state up to 1/8 inch difference in thickness of connected plates. Noncompaction was observed to significantly reduce the load level at which joints slip into bearing. Ultimate static loads were not affected by noncompaction, however. Under repeated loads the joints tended to slip into bearing even though nominally designed as friction connections. Fatigue failures were observed to occur through the minimum net section, usually, though not always, in the lap plates. The greatest reduction in slip load was in the shorter non-compacted joints; those with two or three bolts/row only. It is recommended that non-compaction be accounted for in these types of joints if it is necessary to maintain a friction-type connection. Non-compaction would not seem to be significant for bearing type connections.

  17. Microstructure of high-strength foam concrete

    SciTech Connect

    Just, A.; Middendorf, B.

    2009-07-15

    Foam concretes are divided into two groups: on the one hand the physically foamed concrete is mixed in fast rotating pug mill mixers by using foaming agents. This concrete cures under atmospheric conditions. On the other hand the autoclaved aerated concrete is chemically foamed by adding aluminium powder. Afterwards it is cured in a saturated steam atmosphere. New alternatives for the application of foam concretes arise from the combination of chemical foaming and air curing in manufacturing processes. These foam concretes are new and innovative building materials with interesting properties: low mass density and high strength. Responsible for these properties are the macro-, meso- and microporosity. Macropores are created by adding aluminium powder in different volumes and with different particle size distributions. However, the microstructure of the cement matrix is affected by meso- and micropores. In addition, the matrix of the hardened cement paste can be optimized by the specific use of chemical additives for concrete. The influence of aluminium powder and chemical additives on the properties of the microstructure of the hardened cement matrices were investigated by using petrographic microscopy as well as scanning electron microscopy.

  18. High pressure, high strain rate material strength studies

    NASA Astrophysics Data System (ADS)

    Remington, B. A.; Arsenlis, A.; Barton, N.; Belof, J.; Cavallo, R.; Maddox, B.; Park, H.-S.; Prisbrey, S.; Rudd, R.; Comley, A.; Meyers, M.; Wark, J.

    2011-10-01

    Constitutive models for material strength are currently being tested at high pressures by comparing 2D simulations with experiments measuring the Rayleigh-Taylor (RT) instability evolution in solid-state samples of vanadium (V), tantalum (Ta), and iron (Fe). The multiscale strength models being tested combine molecular dynamics, dislocation dynamics, and continuum simulations. Our analysis for the V experiments suggests that the material deformation at these conditions falls into the phonon drag regime, whereas for Ta, the deformation resides mainly in the thermal activation regime. Recent Fe-RT experiments suggest perturbation growth about the alpha-epsilon (bcc-hcp) phase transition threshold has been observed. Using the LLNL multiscale models, we decompose the strength as a function of strain rate into its dominant components of thermal activation, phonon drag, and work hardening. We have also developed a dynamic diffraction diagnostic technique to measure strength directly from shock compressed single crystal samples. Finally, recovery experiments allow a comparison of residual dislocation density with predictions from the multiscale model. This work performed under the auspices of the U.S. DoE by LLNL Security, LLC under Contract DE-AC52-07NA27344.

  19. Structural application of high strength, high temperature ceramics

    NASA Technical Reports Server (NTRS)

    Hall, W. B.

    1982-01-01

    The operation of rocket engine turbine pumps is limited by the temperature restrictions of metallic components used in the systems. Mechanical strength and stability of these metallic components decrease drastically at elevated temperatures. Ceramic materials that retain high strength at high temperatures appear to be a feasible alternate material for use in the hot end of the turbopumps. This project identified and defined the processing parameters that affected the properties of Si3N4, one of candidate ceramic materials. Apparatus was assembled and put into operation to hot press Si3N4 powders into bulk material for in house evaluation. A work statement was completed to seek outside contract services to design, manufacture, and evaluate Si3N4 components in the service environments that exists in SSME turbopumps.

  20. High Strength Steel Weldment Reliability: Weld Metal Hydrogen Trapping.

    DTIC Science & Technology

    1998-02-01

    additions to welding consumables to control weld metal hydrogen and thus reduce susceptibility to cold cracking in high strength steel weldments. 14...applying weld metal hydrogen trapping to improve the resistance to hydrogen cracking in welding of high strength steels . Hydrogen cracking in high...requirements which are necessary to prevent hydrogen cracking in high strength steel welding. Common practices to prevent hydrogen cracking in steel

  1. Gaseous hydrogen embrittlement of high strength steels

    NASA Technical Reports Server (NTRS)

    Gangloff, R. P.; Wei, R. P.

    1977-01-01

    The effects of temperature, hydrogen pressure, stress intensity, and yield strength on the kinetics of gaseous hydrogen assisted crack propagation in 18Ni maraging steels were investigated experimentally. It was found that crack growth rate as a function of stress intensity was characterized by an apparent threshold for crack growth, a stage where the growth rate increased sharply, and a stage where the growth rate was unchanged over a significant range of stress intensity. Cracking proceeded on load application with little or no detectable incubation period. Gaseous hydrogen embrittlement susceptibility increased with increasing yield strength.

  2. Weldability and Strength Recovery of NUCu-140 Advanced Naval Steel

    NASA Astrophysics Data System (ADS)

    Bono, Jason T.

    NUCu-140 is a ferritic copper-precipitation strengthened steel that is a candidate material for use in many naval and structural applications. Previous work has shown that the heat-affected zone (HAZ) and fusion zone (FZ) of NUCu-140 exhibit softening that is due to dissolution of the copper-rich precipitates. This study aims to recover the FZ and HAZ strength by re-precipitation of the copper-rich precipitates through either multiple weld passes or an isothermal post-weld heat treatment (PWHT). The potential use of multiple thermal cycles was investigated with HAZ simulations using a Gleeble thermomechanical simulator. The HAZ simulations represented two weld thermal cycles with different combinations of peak temperatures during the initial and secondary weld passes. To investigate the potential for a PWHT for strength recovery, gas tungsten arc weld (GTAW) samples were isothermally heated for various times and temperatures. Microhardness measurements revealed no strength recovery in the multipass HAZ samples. The time dependent precipitate characteristics were modeled under the HAZ thermal cycle conditions, and the results showed that the lack of strength recovery could be attributed to insufficient time for re-precipitation during the secondary weld pass. Conversely, full strength recovery in the HAZ was observed in the isothermally heat treated samples. Atom-probe tomography (APT) analysis correlated this strength recovery to re-precipitation of the copper-rich precipitates during the isothermal PWHT. The experimental naval steel known as NUCu-140 and an established naval steel HSLA-100 were subjected to stress-relief cracking (SRC) and hot-ductility testing to assess their relative cracking susceptibilities during the welding process and post weld heat treatment. NUCu-140 exhibited a longer time-to-failure (TTF) and a lower temperature of minimum TTF during SRC testing when compared to HSLA-100, indicating better resistance to SRC for the NUCu-140 steel. The

  3. Anisotropy of high temperature strength in precipitation-hardened nickel-base superalloy single crystals

    NASA Technical Reports Server (NTRS)

    Nakagawa, Y. G.; Terashima, H.; Yoshizawa, H.; Ohta, Y.; Murakami, K.

    1986-01-01

    The anisotropy of high temperature strength of nickel-base superalloy, Alloy 454, in service for advanced jet engine turbine blades and vanes, was investigated. Crystallographic orientation dependence of tensile yield strength, creep and creep rupture strength was found to be marked at about 760C. In comparison with other single crystal data, a larger allowance in high strength off-axial orientation from the 001 axis, and relatively poor strength at near the -111 axis were noted. From transmission electron microscopy the anisotropic characteristics of this alloy were explained in terms of available slip systems and stacking geometries of gamma-prime precipitate cuboids which are well hardened by a large tantalum content. 100 cube slip was considered to be primarily responsible for the poor strength of the -111 axis orientation replacing the conventional 111 plane slip systems.

  4. HIGH STRENGTH GLASS FIBERS DEVELOPMENT PROGRAM

    DTIC Science & Technology

    Contents: Status of information relative to commercial fiberglass Intrinsic strength of the glass fiber Degree of surface damage existing in...the fibers after processing into the filament wound structure Failure mechanisms in a filament wound structure Need for understanding in two distinct problem areas

  5. Silicon nitride having a high tensile strength

    DOEpatents

    Pujari, V.K.; Tracey, D.M.; Foley, M.R.; Paille, N.I.; Pelletier, P.J.; Sales, L.C.; Willkens, C.A.; Yeckley, R.L.

    1996-11-05

    A silicon nitride ceramic is disclosed comprising: (a) inclusions no greater than 25 microns in length, (b) agglomerates no greater than 20 microns in diameter, and (c) a surface finish of less than about 8 microinches, said ceramic having a four-point flexural strength of at least about 900 MPa. 4 figs.

  6. Silicon nitride having a high tensile strength

    DOEpatents

    Pujari, Vimal K.; Tracey, Dennis M.; Foley, Michael R.; Paille, Norman I.; Pelletier, Paul J.; Sales, Lenny C.; Willkens, Craig A.; Yeckley, Russell L.

    1996-01-01

    A silicon nitride ceramic comprising: a) inclusions no greater than 25 microns in length, b) agglomerates no greater than 20 microns in diameter, and c) a surface finish of less than about 8 microinches, said ceramic having a four-point flexural strength of at least about 900 MPa.

  7. Development of K-Basin High-Strength Homogeneous Sludge Simulants and Correlations Between Unconfined Compressive Strength and Shear Strength

    SciTech Connect

    Onishi, Yasuo; Baer, Ellen BK; Chun, Jaehun; Yokuda, Satoru T.; Schmidt, Andrew J.; Sande, Susan; Buchmiller, William C.

    2011-02-20

    K-Basin sludge will be stored in the Sludge Transport and Storage Containers (STSCs) at an interim storage location on Central Plateau before being treated and packaged for disposal. During the storage period, sludge in the STSCs may consolidate/agglomerate, potentially resulting in high-shear-strength material. The Sludge Treatment Project (STP) plans to use water jets to retrieve K-Basin sludge after the interim storage. STP has identified shear strength to be a key parameter that should be bounded to verify the operability and performance of sludge retrieval systems. Determining the range of sludge shear strength is important to gain high confidence that a water-jet retrieval system can mobilize stored K-Basin sludge from the STSCs. The shear strength measurements will provide a basis for bounding sludge properties for mobilization and erosion. Thus, it is also important to develop potential simulants to investigate these phenomena. Long-term sludge storage tests conducted by Pacific Northwest National Laboratory (PNNL) show that high-uranium-content K-Basin sludge can self-cement and form a strong sludge with a bulk shear strength of up to 65 kPa. Some of this sludge has 'paste' and 'chunks' with shear strengths of approximately 3-5 kPa and 380-770 kPa, respectively. High-uranium-content sludge samples subjected to hydrothermal testing (e.g., 185 C, 10 hours) have been observed to form agglomerates with a shear strength up to 170 kPa. These high values were estimated by measured unconfined compressive strength (UCS) obtained with a pocket penetrometer. Due to its ease of use, it is anticipated that a pocket penetrometer will be used to acquire additional shear strength data from archived K-Basin sludge samples stored at the PNNL Radiochemical Processing Laboratory (RPL) hot cells. It is uncertain whether the pocket penetrometer provides accurate shear strength measurements of the material. To assess the bounding material strength and potential for erosion, it

  8. Mechanical behavior of high strength ceramic fibers at high temperatures

    NASA Technical Reports Server (NTRS)

    Tressler, R. E.; Pysher, D. J.

    1991-01-01

    The mechanical behavior of commercially available and developmental ceramic fibers, both oxide and nonoxide, has been experimentally studied at expected use temperatures. In addition, these properties have been compared to results from the literature. Tensile strengths were measured for three SiC-based and three oxide ceramic fibers for temperatures from 25 C to 1400 C. The SiC-based fibers were stronger but less stiff than the oxide fibers at room temperature and retained more of both strength and stiffness to high temperatures. Extensive creep and creep-rupture experiments have been performed on those fibers from this group which had the best strengths above 1200 C in both single filament tests and tests of fiber bundles. The creep rates for the oxides are on the order of two orders of magnitude faster than the polymer derived nonoxide fibers. The most creep resistant filaments available are single crystal c-axis sapphire filaments. Large diameter CVD fabricated SiC fibers are the most creep and rupture resistant nonoxide polycrystalline fibers tested to date.

  9. High-strength concrete for Peacekeeper facilities

    NASA Astrophysics Data System (ADS)

    Saucier, K. L.

    1984-03-01

    An investigation is described which was conducted to determine the processes and techniques required to produce portland-cement concrete with a compressive strength of 15,000 psi or greater using conventional concreting methods and equipment, and to develop physical property data on the mixtures. It was permitted that special materials and admixtures be used, but a requirement was set that the aggregates and cements be selected from those available in the Cheyenne, Wyoming, area. Results indicated that it is feasible to achieve the 15,000-psi compressive strengths but that workability may decrease over a 2-hour period, and this latter development should be studied under job conditions. It is recommended that: (1) all materials and procedures to be used on a specific project be tested in the laboratory for basic property information, and (2) selected mixtures be tested in the field under expected environmental conditions prior to actual job use.

  10. High-temperature strength of sapphire

    NASA Astrophysics Data System (ADS)

    Harris, Daniel C.

    2000-10-01

    The Sapphire Statistical Characterization and Risk Reduction Program tested approximately 1500 4-point flexure bars with different crystal orientations at different temperatures to establish a mechanical strength database for engineering design. Sapphire coupons were selected to represent surfaces on two different missile windows and a missile dome. Sapphire was obtained from the same suppliers used for the windows or dome and, as much as possible, coupons were fabricated in the same manner as the corresponding part of the window or dome. Perhaps the most interesting result was that sapphire from one fabricator was 50% stronger than sapphire made to the same specifications from the same blanks by another fabricator. In laser heating tests, sapphire performed better than predicted from flexure tests. When a compliant layer of graphite was used as a pad between the test specimens and the load fixture, sapphire in which the principal axis of tension and compression was parallel to the c-axis increased in apparent strength by a factor of 2 - 3. Strengths of other crystal orientations were not significantly affected by the graphite pads, but the incidence of twinning at 883 K was reduced by graphite.

  11. High Strength, Nano-Structured Mg-Al-Zn Alloy

    DTIC Science & Technology

    2011-01-01

    REPORT High strength, nano-structured Mg– Al – Zn alloy 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: The mechanical behavior and microstructure of...Prescribed by ANSI Std. Z39.18 - High strength, nano-structured Mg– Al – Zn alloy Report Title ABSTRACT The mechanical behavior and microstructure of...strength, nano-structured Mg– Al – Zn alloy Block 13: Supplementary Note © 2011 . Published in Materials Science and Engineering, Vol. 528, (54), Ed. 0 (2011

  12. Evaluation and comparison of transverse and impact strength of different high strength denture base resins.

    PubMed

    Gupta, Abhinav; Tewari, R K

    2016-01-01

    The present study was undertaken to evaluate and compare the impact strength and transverse strength of the high-impact denture base materials. A conventional heat polymerized acrylic resin was used as a control. The entire experiment was divided into four main groups with twenty specimens each according to denture base material selected Trevalon, Trevalon Hi, DPI Tuff and Metrocryl Hi. These groups were further subgrouped into the two parameters selected, impact strength and flexural strength with ten specimens each. These specimens were then subjected to transverse bend tests with the help of Lloyds instrument using a three point bend principle. Impact tests were undertaken using an Izod-Charpy digital impact tester. This study was analyzed with one-way analysis of variance using Fisher f-test and Bonferroni t-test. There was a significant improvement in the impact strength of high-impact denture base resins as compared to control (Trevalon). However, in terms of transverse bend tests, only DPI Tuff showed higher transverse strength in comparison to control. Trevalon Hi and Metrocryl Hi showed a decrease in transverse strength. Within the limits of this in vitro study, (1) There is a definite increase in impact strength due to the incorporation of butadiene styrene rubber in this high strength denture base materials as compared to Trevalon used as a control. (2) Further investigations are required to prevent the unduly decrease of transverse strength. (3) It was the limitation of the study that the exact composition of the high-impact resins was not disclosed by the manufacturer that would have helped in better understanding of their behavior.

  13. Advanced Statistical Analyses to Reduce Inconsistency of Bond Strength Data.

    PubMed

    Minamino, T; Mine, A; Shintani, A; Higashi, M; Kawaguchi-Uemura, A; Kabetani, T; Hagino, R; Imai, D; Tajiri, Y; Matsumoto, M; Yatani, H

    2017-08-01

    This study was designed to clarify the interrelationship of factors that affect the value of microtensile bond strength (µTBS), focusing on nondestructive testing by which information of the specimens can be stored and quantified. µTBS test specimens were prepared from 10 noncarious human molars. Six factors of µTBS test specimens were evaluated: presence of voids at the interface, X-ray absorption coefficient of resin, X-ray absorption coefficient of dentin, length of dentin part, size of adhesion area, and individual differences of teeth. All specimens were observed nondestructively by optical coherence tomography and micro-computed tomography before µTBS testing. After µTBS testing, the effect of these factors on µTBS data was analyzed by the general linear model, linear mixed effects regression model, and nonlinear regression model with 95% confidence intervals. By the general linear model, a significant difference in individual differences of teeth was observed ( P < 0.001). A significantly positive correlation was shown between µTBS and length of dentin part ( P < 0.001); however, there was no significant nonlinearity ( P = 0.157). Moreover, a significantly negative correlation was observed between µTBS and size of adhesion area ( P = 0.001), with significant nonlinearity ( P = 0.014). No correlation was observed between µTBS and X-ray absorption coefficient of resin ( P = 0.147), and there was no significant nonlinearity ( P = 0.089). Additionally, a significantly positive correlation was observed between µTBS and X-ray absorption coefficient of dentin ( P = 0.022), with significant nonlinearity ( P = 0.036). A significant difference was also observed between the presence and absence of voids by linear mixed effects regression analysis. Our results showed correlations between various parameters of tooth specimens and µTBS data. To evaluate the performance of the adhesive more precisely, the effect of tooth variability and a method to reduce

  14. Size effect on flexural, splitting tensile, and torsional strengths of high-strength concrete

    SciTech Connect

    Zhou, F.P.; Balendran, R.V.; Jeary, A.P.

    1998-12-01

    This paper presents the results of an investigation into the size effect on flexural, splitting tensile, and torsional strengths of high-strength concrete (HSC) with normal aggregate (crushed limestone) and lightweight aggregate (sintered fly ash). The Bazant`s size effect law gives a very good fit to the flexural strengths of both normal and lightweight aggregate HSC measured from beams of different sizes. As observed in the size effect curve, the fracture behavior of the lightweight HSC seems more brittle than that of the normal HSC. Linear elastic fracture mechanics may still be less applicable to HSC in the normal size range than nonlinear fracture mechanics. A reverse size effect is observed in the prism splitting tensile strengths of both normal and light-weight HSC and possible mechanisms of the reverse size effect are discussed. The torsional strength of the lightweight HSC appears to have a stronger size dependency than that of the normal HSC.

  15. Correlation between compressive strength and ultrasonic pulse velocity of high strength concrete incorporating chopped basalt fibre

    NASA Astrophysics Data System (ADS)

    Shafiq, Nasir; Fadhilnuruddin, Muhd; Elshekh, Ali Elheber Ahmed; Fathi, Ahmed

    2015-07-01

    Ultrasonic pulse velocity (UPV), is considered as the most important test for non-destructive techniques that are used to evaluate the mechanical characteristics of high strength concrete (HSC). The relationship between the compressive strength of HSC containing chopped basalt fibre stands (CBSF) and UPV was investigated. The concrete specimens were prepared using a different ratio of CBSF as internal strengthening materials. The compressive strength measurements were conducted at the sample ages of 3, 7, 28, 56 and 90 days; whilst, the ultrasonic pulse velocity was measured at 28 days. The result of HSC's compressive strength with the chopped basalt fibre did not show any improvement; instead, it was decreased. The UPV of the chopped basalt fibre reinforced concrete has been found to be less than that of the control mix for each addition ratio of the basalt fibre. A relationship plot is gained between the cube compressive strength for HSC and UPV with various amounts of chopped basalt fibres.

  16. Ultra-Fast Fracture Strength of Advanced Ceramics at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Salem, Jonathan A.

    1998-01-01

    An attempt was made to determine elevated-temperature, 'ultra'-fast fracture strengths of one alumina, two silicon nitrides and one silicon carbide by using constant stress-rate ('dynamic fatigue') testing with a series of 'ultra'-fast test rates. Of the materials tested, the alumina exhibited a convergence of strength at stress rates below 3.3 x 10(exp 4) MPa/s. The strength approached approximately the room-temperature inert strength. By contrast, the silicon nitrides and silicon carbide did not reveal a strength approach, but exhibited elevated-temperature strengths 10 and 20% lower than their respective room-temperature strengths. Although the analytical results imply that the elevated-temperature 'inert' strength of a ceramic material can be obtained by using sufficiently high stress rates, the experimental testing rates were only sufficient to demonstrate convergence for the alumina.

  17. Study on the strength characteristics of High strength concrete with Micro steel fibers

    NASA Astrophysics Data System (ADS)

    Gowdham, K.; Sumathi, A.; Saravana Raja Mohan, K.

    2017-07-01

    The study of High Strength Concrete (HSC) has become interesting as concrete structures grow taller and larger. The usage of HSC in structures has been increased worldwide and has begun to make an impact in India. Ordinary cementitious materials are weak under tensile loads and fiber reinforced cementitious composites (FRCCs) have been developed to improve this weak point. High Strength concrete containing Alccofine as mineral admixture and reinforced with micro steel fibers were cast and tested to study the mechanical properties. The concrete were designed to have compressive strength of 60 MPa. Mixtures containing 0% and 10% replacement of cement by Alccofine and with 1%, 2% and 3% of micro steel fibers by weight of concrete were prepared. Mixtures incorporating Alccofine with fibers developed marginal increase in strength properties at all curing days when compared to control concrete.

  18. Comprehensive analyses of how tubule occlusion and advanced glycation end-products diminish strength of aged dentin

    PubMed Central

    Shinno, Yuko; Ishimoto, Takuya; Saito, Mitsuru; Uemura, Reo; Arino, Masumi; Marumo, Keishi; Nakano, Takayoshi; Hayashi, Mikako

    2016-01-01

    In clinical dentistry, since fracture is a major cause of tooth loss, better understanding of mechanical properties of teeth structures is important. Dentin, the major hard tissue of teeth, has similar composition to bone. In this study, we investigated the mechanical properties of human dentin not only in terms of mineral density but also using structural and quality parameters as recently accepted in evaluating bone strength. Aged crown and root dentin (age ≥ 40) exhibited significantly lower flexural strength and toughness than young dentin (age < 40). Aged dentin, in which the dentinal tubules were occluded with calcified material, recorded the highest mineral density; but showed significantly lower flexural strength than young dentin. Dentin with strong alignment of the c-axis in hydroxyapatite exhibited high fracture strength, possibly because the aligned apatite along the collagen fibrils may reinforce the intertubular dentin. Aged dentin, showing a high advanced glycation end-products (AGEs) level in its collagen, recorded low flexural strength. We first comprehensively identified significant factors, which affected the inferior mechanical properties of aged dentin. The low mechanical strength of aged dentin is caused by the high mineral density resulting from occlusion of dentinal tubules and accumulation of AGEs in dentin collagen. PMID:26797297

  19. Comprehensive analyses of how tubule occlusion and advanced glycation end-products diminish strength of aged dentin

    NASA Astrophysics Data System (ADS)

    Shinno, Yuko; Ishimoto, Takuya; Saito, Mitsuru; Uemura, Reo; Arino, Masumi; Marumo, Keishi; Nakano, Takayoshi; Hayashi, Mikako

    2016-01-01

    In clinical dentistry, since fracture is a major cause of tooth loss, better understanding of mechanical properties of teeth structures is important. Dentin, the major hard tissue of teeth, has similar composition to bone. In this study, we investigated the mechanical properties of human dentin not only in terms of mineral density but also using structural and quality parameters as recently accepted in evaluating bone strength. Aged crown and root dentin (age ≥ 40) exhibited significantly lower flexural strength and toughness than young dentin (age < 40). Aged dentin, in which the dentinal tubules were occluded with calcified material, recorded the highest mineral density; but showed significantly lower flexural strength than young dentin. Dentin with strong alignment of the c-axis in hydroxyapatite exhibited high fracture strength, possibly because the aligned apatite along the collagen fibrils may reinforce the intertubular dentin. Aged dentin, showing a high advanced glycation end-products (AGEs) level in its collagen, recorded low flexural strength. We first comprehensively identified significant factors, which affected the inferior mechanical properties of aged dentin. The low mechanical strength of aged dentin is caused by the high mineral density resulting from occlusion of dentinal tubules and accumulation of AGEs in dentin collagen.

  20. WorldFIP offers high-speed strength

    SciTech Connect

    Beeston, J.W.

    1996-11-01

    WorldFIB has a 10-year track record in fieldbus standardization and a significant lead in installations already incorporating the ISA/IEC physical layer. This article briefly describes WorldFIP, its approach to interoperability, and how it sees its technology advancing in the future. WorldFIP is an industry `club` - a nonprofit association dedicated to an international standard fieldbus. Since it was founded, WorldFIP has made major contributions to the work of the ISA and IEC. As a result, WorldFIP already uses the ISA/IEC physical layer. Reflecting its dedication to open international standards, WorldFIP is a member of Fieldbus Foundation (FF) and has already achieved the status of a European standard. WorldFIP membership reflects many industry sectors, including petrochemical, discrete manufacturing, mass transportation, and utilities. Many sectors have been able to move faster than the petrochemical sector because they have less hazardous processes. They also often have high-speed machinery, leading to WorldFIP having a major strength in high-speed fieldbus. Because of this advanced open approach, WorldFIP members have had high-speed products on the market for several years. They also have in-depth experience designing and installing systems and solving real problems that arise in real installations. WorldFIP recognized from the beginning that a fieldbus had to support not just the needs for both real-time control and instrumentation but also the need to extract information about the plant and its equipment without disturbing the real-time world. It also recognized that those involved in automation, instrumentation, and control could easily specify their requirements in terms of cyclic variables, event variables, and messages. WorldFIP supports these needs by supporting three types of network traffic: (1) Cyclic: always transmitted on time. (2) Events: transmitted when occurring. (3) Messages: transmitted when required. 3 refs.

  1. High Strength Stainless Steel Properties that Affect Resistance Welding

    SciTech Connect

    Kanne, W.R.

    2001-08-01

    This report discusses results of a study on selected high strength stainless steel alloy properties that affect resistance welding. The austenitic alloys A-286, JBK-75 (Modified A-286), 21-6-9, 22-13-5, 316 and 304L were investigated and compared. The former two are age hardenable, and the latter four obtain their strength through work hardening. Properties investigated include corrosion and its relationship to chemical cleaning, the effects of heat treatment on strength and surface condition, and the effect of mechanical properties on strength and weldability.

  2. Increasing Lean Mass and Strength: A Comparison of High Frequency Strength Training to Lower Frequency Strength Training.

    PubMed

    Thomas, Michael H; Burns, Steve P

    The purpose of this study was to determine the effect strength training frequency has on improvements in lean mass and strength. Participants were 7 women and 12 men, age (χ̄= 34.64 years ± 6.91 years), with strength training experience, training age (χ̄= 51.16 months ± 39.02 months). Participants were assigned to one of two groups to equal baseline group demographics. High frequency training group (HFT) trained each muscle group as the agonist, 3 times per week, exercising with 3 sets per muscle group per session (3 total body workouts). Low frequency training group (LFT) trained each muscle group as the agonist one time per week, completing all 9 sets during that one workout. LFT consisted of a routine split over three days: 1) pectoralis, deltoids, and triceps; 2) upper back and biceps; 3) quadriceps, hamstrings, calves, and abdominals. Following eight weeks of training, HFT increased lean mass by 1.06 kg ± 1.78 kg, (1.9%), and LFT increased lean mass by .99 kg ± 1.31 kg, (2.0%). HFT strength improvements on the chest press was 9.07 kg ± 6.33 kg, (11%), and hack squat 20.16 kg ± 11.59 kg, (21%). LFT strength improvements on chest press was 5.80kg ± 4.26 kg, (7.0%), and hack squat 21.83 kg ± 11.17 kg, (24 %). No mean differences between groups were significant. These results suggest that HFT and LFT of equal set totals result in similar improvements in lean mass and strength, following 8 weeks of strength training.

  3. High-strength silicon carbides by hot isostatic pressing

    NASA Technical Reports Server (NTRS)

    Dutta, Sunil

    1988-01-01

    Silicon carbide has strong potential for heat engine hardware and other high-temperature applications because of its low density, good strength, high oxidation resistance, and good high-temperature creep resistance. Hot isostatic pressing (HIP) was used for producing alpha and beta silicon carbide (SiC) bodies with near-theoretical density, ultrafine grain size, and high strength at processing temperatures of 1900 to 2000 C. The HIPed materials exhibited ultrafine grain size. Furthermore, no phase transformation from beta to alpha was observed in HIPed beta-SiC. Both materials exhibited very high average flexural strength. It was also shown that alpha-SiC bodies without any sintering aids, when HIPed to high final density, can exhibit very high strength. Fracture toughness K (sub C) values were determined to be 3.6 to 4.0 MPa m (sup 1/2) for HIPed alpha-SiC and 3.7 to 4.1 MPa m (sup 1/2) for HIPed beta-SiC. In the HIPed specimens strength-controlling flaws were typically surface related. In spite of improvements in material properties such as strength and fracture toughness by elimination of the larger strength-limiting flaws and by grain size refinement, HIPing has no effect on the Weibull modulus.

  4. High-strength silicon carbides by hot isostatic pressing

    NASA Technical Reports Server (NTRS)

    Dutta, Sunil

    1989-01-01

    Silicon carbide has strong potential for heat engine hardware and other high-temperature applications because of its low density, good strength, high oxidation resistance, and good high-temperature creep resistance. Hot isostatic pressing (HIP) was used for producing alpha and beta silicon carbide (SiC) bodies with near-theoretical density, ultrafine grain size, and high strength at processing temperatures of 1900 to 2000 C. The HIPed materials exhibited ultrafine grain size. Furthermore, no phase transformation from beta to alpha was observed in HIPed beta-SiC. Both materials exhibited very high average flexural strength. It was also shown that alpha-SiC bodies without any sintering aids, when HIPed to high final density, can exhibit very high strength. Fracture toughness K (sub C) values were determined to be 3.6 to 4.0 MPa m (sup 1/2) for HIPed alpha-SiC and 3.7 to 4.1 MPa m (sup 1/2) for HIPed beta-SiC. In the HIPed specimens strength-controlling flaws were typically surface related. In spite of improvements in material properties such as strength and fracture toughness by elimination of the larger strength-limiting flaws and by grain size refinement, HIPing has no effect on the Weibull modulus.

  5. High-strength silicon carbides by hot isostatic pressing

    NASA Technical Reports Server (NTRS)

    Dutta, Sunil

    1989-01-01

    Silicon carbide has strong potential for heat engine hardware and other high-temperature applications because of its low density, good strength, high oxidation resistance, and good high-temperature creep resistance. Hot isostatic pressing (HIP) was used for producing alpha and beta silicon carbide (SiC) bodies with near-theoretical density, ultrafine grain size, and high strength at processing temperatures of 1900 to 2000 C. The HIPed materials exhibited ultrafine grain size. Furthermore, no phase transformation from beta to alpha was observed in HIPed beta-SiC. Both materials exhibited very high average flexural strength. It was also shown that alpha-SiC bodies without any sintering aids, when HIPed to high final density, can exhibit very high strength. Fracture toughness K (sub C) values were determined to be 3.6 to 4.0 MPa m (sup 1/2) for HIPed alpha-SiC and 3.7 to 4.1 MPa m (sup 1/2) for HIPed beta-SiC. In the HIPed specimens strength-controlling flaws were typically surface related. In spite of improvements in material properties such as strength and fracture toughness by elimination of the larger strength-limiting flaws and by grain size refinement, HIPing has no effect on the Weibull modulus.

  6. The High School Strength and Conditioning Professional: A Job Description.

    ERIC Educational Resources Information Center

    Best, Randy

    2001-01-01

    Presents a job description for the high school strength and conditioning professional, who is in a unique position to integrate athletics and academics, highlighting: minimum qualifications; school-related benefits derived from employing a strength and conditioning professional; whom the professional reports to and works with; job…

  7. Investigation of fatigue strength of multilayer advanced fiber composites

    NASA Technical Reports Server (NTRS)

    Thornton, H. R.; Kozik, T. J.

    1974-01-01

    The analytical characterization of a multilayer fiber composite plate (without hole) was accomplished for both static and dynamic loading conditions using the finite difference technique. Thornel 300/5208 composites with and without holes were subjected to static and tensile fatigue testing. Five (5) fiber orientations were submitted to test. Tensile fatigue testing also included three (3) loading conditions and two (2) frequencies. The low-cycle test specimens demonstrated a shorter tensile fatigue life than the high-cycle test specimens. Failure surfaces demonstrated effect of testing conditions. Secondary failure mechanisms, such as: delamination, fiber breakage, and edge fiber delamination were present. Longitudinal delamination between plies also occurred in these specimens.

  8. Investigation of the plastic fracture of high strength steels

    NASA Technical Reports Server (NTRS)

    Cox, T. B.; Low, J. R., Jr.

    1972-01-01

    This investigation deals in detail with the three recognized stages of plastic fracture in high strength steels, namely, void initiation, void growth, and void coalescence. The particular steels under investigation include plates from both commercial purity and high purity heats of AISI 4340 and 18 Ni, 200 grade maraging steels. A scanning electron microscope equipped with an X-ray energy dispersive analyzer, together with observations made using light microscopy, revealed methods of improving the resistance of high strength steels to plastic fracture.

  9. Comparison of flexural strength between fiber-reinforced polymer and high-impact strength resin.

    PubMed

    Vojvodic, Denis; Matejicek, Franjo; Loncar, Ante; Zabarovic, Domagoj; Komar, Dragutin; Mehulic, Ketij

    2008-10-01

    Fractures of polymer material are one of the most frequent reasons for the repair of removable dental prostheses. Therefore, there is a constant endeavor to strengthen them, and polymer materials with high resistance to fracture are being developed. The aim of this study was to determine the flexural strength of polymer materials and their reinforcements and thus give preference to their clinical use. Specimens with dimensions 18 x 10 x 3 mm were tested after polymerization, immersion in water at a temperature 37 degrees C for 28 days, and thermocycling by using the "short-beam" method to determine the flexural strength. Microscopic examination was performed to determine the quality of bonding between the glass fibers and matrix. Common polymer materials (control group) demonstrated the lowest flexural strength, although, when reinforced with fibers they showed higher flexural strength, matching that of the tested high-impact strength resin. Thermocycled specimens had the highest flexural strength, whereas there was no difference (p > 0.05) between specimens tested after polymerization and immersion in water.

  10. Survey of Processing Methods for High Strength High Conductivity Wires for High Field Magnet Applications

    SciTech Connect

    Han, K.; Embury, J.D.

    1998-10-01

    This paper will deal with the basic concepts of attaining combination of high strength and high conductivity in pure materials, in-situ composites and macrocomposites. It will survey current attainments, and outline where some future developments may lie in developing wire products that are close to the theoretical strength of future magnet applications.

  11. High strength forgeable tantalum base alloy

    NASA Technical Reports Server (NTRS)

    Buckman, R. W., Jr.

    1975-01-01

    Increasing tungsten content of tantalum base alloy to 12-15% level will improve high temperature creep properties of existing tantalum base alloys while retaining their excellent fabrication and welding characteristics.

  12. Review on permeability of high-strength concrete subjected to high temperature

    NASA Astrophysics Data System (ADS)

    Zhao, Dongfu; Han, Xiao; Liu, Yuchen

    2017-08-01

    In this paper, the research results of permeability of high-strength concrete subjected to high temperature were comprehensively reviewed, the research status of permeability of high-strength concrete at elevated temperature were discussed, and existing problems were analyzed, finally, main research directions of permeability of high-strength concrete subjected to high temperature were forecasted.

  13. Retention of ductility in high-strength steels

    NASA Technical Reports Server (NTRS)

    Parker, E. R.; Zackay, V. F.

    1969-01-01

    To produce high strength alloy steel with retention of ductility, include tempering, cooling and subsequent tempering. Five parameters for optimum results are pretempering temperature, amount of strain, strain rate, temperature during strain, and retempering temperature.

  14. High-strength braze joints between copper and steel

    NASA Technical Reports Server (NTRS)

    Kuhn, R. F.

    1967-01-01

    High-strength braze joints between copper and steel are produced by plating the faying surface of the copper with a layer of gold. This reduces porosity in the braze area and strengthens the resultant joint.

  15. Investigation of the plastic fracture of high strength steels

    NASA Technical Reports Server (NTRS)

    Cox, T. B.; Low, J. R., Jr.

    1972-01-01

    An investigation of the plastic fracture process to improve tensile strength in high strength steels is presented. Two generic types of steels are considered: a quenched and tempered grade and a maraging grade, in order to compare two different matrix microstructures. Each type of steel was studied in commercial grade purity and in special melted high purity form, low in residual and impurity elements. The specific alloys dealt with include AISI 4340 and 18 Ni, 200 grade maraging steel, both heat treated to the same yield strength level of approximately 200 ksi.

  16. Improved Coating System for High Strength Torsion Bars

    DTIC Science & Technology

    1981-04-23

    SwW IMPROVED COATING SYSTEM FOR HIGH S- TYPE Of REPORT & PEROo CovERED STRENGTH TORSION BAR Final Report Plastisol Coating System Provides a Cost...8217 mumber) Torsion Bar Plastisol Coating Inorganic Coating Protective Coating Polyvinyl Chloride Coating Polyurethane Coating Corrosion Protection Tape...Bars E. Endurance Test Results for One-third Length Torsion E-1 Bar F. Specification for Application of Plastisol to High F-1 Strength Torsion Bar

  17. Environmentally Friendly Anticorrosion Coating for High Strength Fasteners

    DTIC Science & Technology

    2011-01-01

    prevent corrosion of the bare steel and subsequent creep . However, this does not necessarily explain why this would affect the notched area where...303 11. SPONSOR/MONITOR’S REPORT Arlington, VA 22203 NUMBER(Sl 12 . DISTRIBUTION/AVAILABILITY STATEMENT 13. SUPPLEMENTARY NOTES 14. ABSTRACT There...alternative replacement coatings would provide high-strength, corrosion resistant fasteners for use in weapon systems. Traditionally, high-strength steels

  18. Ultra-high Strength Nanostructured Mg

    DTIC Science & Technology

    2014-03-31

    27709-2211 Nanostructured Mg and Mg alloys, Mg metallic glass, Cryomilling, Powder consolidation, Spark plasma sintering , Deformation mechanisms REPORT...mechanically milled powder and high pressure on spark plasma sintering of Mg-Cu-Gd metallic glasses; (9) microstructure and mechanical behavior of Mg-10Li-3Al...pressure on spark plasma sintering of Mg– Cu–Gd metallic glasses, Acta Materialia , (07 2013): 4414. doi: Baolong Zheng, Ying Li, Weizong Xu

  19. Investigation of ultra violet (UV) resistance for high strength fibers

    NASA Astrophysics Data System (ADS)

    Said, M. A.; Dingwall, Brenda; Gupta, A.; Seyam, A. M.; Mock, G.; Theyson, T.

    Ultra long duration balloons (ULDB), currently under development by the National Aeronautics and Space Administration (NASA), requires the use of high strength fibers in the selected super-pressure pumpkin design. The pumpkin shape balloon concept allows clear separation of the load transferring functions of the major structural elements of the pneumatic envelope, the tendons and the film. Essentially, the film provides the gas barrier and transfers only local pressure load to the tendons. The tendons, in the mean time, provide the global pressure containing strength. In that manner, the strength requirement for the film only depends on local parameters. The tendon is made of p-phenylene-2,6-benzobisoxazole (PBO) fibers, which is selected due to its high strength to weight ratio when compared to other high performance, commercially available, fibers. High strength fibers, however, are known to degrade upon exposure to light, particularly at short wavelengths. This paper reports the results of an investigation of the resistance of four commercial high strength fibers to ultra violet (UV) exposure. The results indicate that exposing high strength fibers in continuous yarn form to UV led to serious loss in strength of the fibers except for Spectra® fibers. The adverse changes in mechanical behavior occurred over short duration of exposure compared to the 100 day duration targeted for these missions. UV blocking finishes to improve the UV resistance of these fibers are being investigated. The application of these specially formulated coatings is expected to lead to significant improvement of the UV resistance of these high performance fibers. In this publication, we report on the mechanical behavior of the fibers pre- and post-exposure to UV, but without application of the blocking finishes.

  20. Titanium cholla : lightweight, high-strength structures for aerospace applications.

    SciTech Connect

    Atwood, Clinton J.; Voth, Thomas Eugene; Taggart, David G.; Gill, David Dennis; Robbins, Joshua H.; Dewhurst, Peter

    2007-10-01

    Aerospace designers seek lightweight, high-strength structures to lower launch weight while creating structures that are capable of withstanding launch loadings. Most 'light-weighting' is done through an expensive, time-consuming, iterative method requiring experience and a repeated design/test/redesign sequence until an adequate solution is obtained. Little successful work has been done in the application of generalized 3D optimization due to the difficulty of analytical solutions, the large computational requirements of computerized solutions, and the inability to manufacture many optimized structures with conventional machining processes. The Titanium Cholla LDRD team set out to create generalized 3D optimization routines, a set of analytically optimized 3D structures for testing the solutions, and a method of manufacturing these complex optimized structures. The team developed two new computer optimization solutions: Advanced Topological Optimization (ATO) and FlexFEM, an optimization package utilizing the eXtended Finite Element Method (XFEM) software for stress analysis. The team also developed several new analytically defined classes of optimized structures. Finally, the team developed a 3D capability for the Laser Engineered Net Shaping{trademark} (LENS{reg_sign}) additive manufacturing process including process planning for 3D optimized structures. This report gives individual examples as well as one generalized example showing the optimized solutions and an optimized metal part.

  1. Progress in advanced high temperature turbine materials, coatings, and technology

    NASA Technical Reports Server (NTRS)

    Freche, J. C.; Ault, G. M.

    1977-01-01

    Several NASA-sponsored benefit-cost studies have shown that very substantial benefits can be obtained by increasing material capability for aircraft gas turbines. Prealloyed powder processing holds promise for providing superalloys with increased strength for turbine disk applications. The developement of advanced powder metallurgy disk alloys must be based on a design of optimum processing and heat treating procedures. Materials considered for high temperature application include oxide dispersion strengthened (ODS) alloys, directionally solidified superalloys, ceramics, directionally solidified eutectics, materials combining the high strength of a gamma prime strengthened alloy with the elevated temperature strength of an ODS, and composites. Attention is also given to the use of high pressure turbine seals, approaches for promoting environmental protection, and turbine cooling technology.

  2. Spontaneous Radiation Emission from Short, High Field Strength Insertion Devices

    SciTech Connect

    Geoffrey Krafft

    2005-09-15

    Since the earliest papers on undulaters were published, it has been known how to calculate the spontaneous emission spectrum from ''short'' undulaters when the magnetic field strength parameter is small compared to unity, or in ''single'' frequency sinusoidal undulaters where the magnetic field strength parameter is comparable to or larger than unity, but where the magnetic field amplitude is constant throughout the undulater. Fewer general results have been obtained in the case where the insertion device is both short, i.e., the magnetic field strength parameter changes appreciably throughout the insertion device, and the magnetic field strength is high enough that ponderomotive effects, radiation retardation, and harmonic generation are important physical phenomena. In this paper a general method is presented for calculating the radiation spectrum for short, high-field insertion devices. It is used to calculate the emission from some insertion device designs of recent interest.

  3. Microchip electrophoresis at elevated temperatures and high separation field strengths.

    PubMed

    Mitra, Indranil; Marczak, Steven P; Jacobson, Stephen C

    2014-02-01

    We report free-solution microchip electrophoresis performed at elevated temperatures and high separation field strengths. We used microfluidic devices with 11 cm long separation channels to conduct separations at temperatures between 22 (ambient) and 45°C and field strengths from 100 to 1000 V/cm. To evaluate separation performance, N-glycans were used as a model system and labeled with 8-aminopyrene-1,3,6-trisulfonic acid to impart charge for electrophoresis and render them fluorescent. Typically, increased diffusivity at higher temperatures leads to increased axial dispersion and poor separation performance; however, we demonstrate that sufficiently high separation field strengths offset the impact of increased diffusivity in order to maintain separation efficiency. Efficiencies for these free-solution separations are the same at temperatures of 25, 35, and 45°C with separation field strengths ≥ 500 V/cm.

  4. Corrosion fatigue of high strength fastener materials in seawater

    NASA Astrophysics Data System (ADS)

    Tipton, D. G.

    1983-12-01

    Environmental effects which significantly reduce the fatigue life of metals are discussed. Corrosion fatigue is a major concern in the engineering application of high strength fasteners in marine environments. The corrosion fatigue failure of an AISI 41L4O high strength steel blade to hub attachment bolt at the MOD-OA 200 kW wind turbine generator was investigated. The reduction of fatigue strength of AISI 41L4O in marine environments and to obtain similar corrosion fatigue data for candidate replacement materials was studied. The AISI 4140, PH 13-8Mo stainless steel, alloy 718 and alloy MP-35N were tested in axial fatigue at a frequency of 20 Hz in dry air and natural seawater. The fatigue data are fitted by regression equations to allow determination of fatigue strength for a given number of cycles to failure.

  5. High strength nickel-chromium-iron austenitic alloy

    DOEpatents

    Gibson, Robert C.; Korenko, Michael K.

    1980-01-01

    A solid solution strengthened Ni-Cr-Fe alloy capable of retaining its strength at high temperatures and consisting essentially of 42 to 48% nickel, 11 to 13% chromium, 2.6 to 3.4% niobium, 0.2 to 1.2% silicon, 0.5 to 1.5% vanadium, 2.6 to 3.4% molybdenum, 0.1 to 0.3% aluminum, 0.1 to 0.3% titanium, 0.02 to 0.05% carbon, 0.002 to 0.015% boron, up to 0.06 zirconium, and the balance iron. After solution annealing at 1038.degree. C. for one hour, the alloy, when heated to a temperature of 650.degree. C., has a 2% yield strength of 307 MPa, an ultimate tensile strength of 513 MPa and a rupture strength of as high as 400 MPa after 100 hours.

  6. Corrosion fatigue of high strength fastener materials in seawater

    NASA Technical Reports Server (NTRS)

    Tipton, D. G.

    1983-01-01

    Environmental effects which significantly reduce the fatigue life of metals are discussed. Corrosion fatigue is a major concern in the engineering application of high strength fasteners in marine environments. The corrosion fatigue failure of an AISI 41L4O high strength steel blade to hub attachment bolt at the MOD-OA 200 kW wind turbine generator was investigated. The reduction of fatigue strength of AISI 41L4O in marine environments and to obtain similar corrosion fatigue data for candidate replacement materials was studied. The AISI 4140, PH 13-8Mo stainless steel, alloy 718 and alloy MP-35N were tested in axial fatigue at a frequency of 20 Hz in dry air and natural seawater. The fatigue data are fitted by regression equations to allow determination of fatigue strength for a given number of cycles to failure.

  7. Strength coupling in mixed phases under high pressure

    NASA Astrophysics Data System (ADS)

    Yan, Xiaozhi; Dong, Haini; Sun, Guangai; Ren, Xiangting; He, Duanwei; Yang, Wenge

    2016-10-01

    The strength of a material can be altered by temperature, pressure, grain size, and orientation distributions. At the microscale, neighboring grains often play important roles in the elastic and plastic deformation process. By applying high pressure to a mixture of germanium and gold powder in the vicinity of the germanium phase transition pressure, we found that the deformation behavior of gold largely correlates with that of the surrounding germanium. The deviatoric strain and compressibility of Au behaves anomalously when Ge undergoes a diamond to β-tin structure transition, accompanying a large volume and strength drop. The results demonstrate that the intrinsic strength of a mixed phase could be largely controlled by the other surrounding phase, which is fundamentally important in understanding the deformation mechanism of multiphase materials, especially when one phase undergoes dramatic changes in strength under high pressure conditions.

  8. The Axial Compressive Strength of High Performance Polymer Fibers

    DTIC Science & Technology

    1985-03-01

    examined is a high-modulus graphite fiber (Union Carbide P-75) that is spun from mesophase pitch . This fiber is stretched during the graphitization...After approximately 3% axial compressive strain the fibers exhibited surface helical kink bands having a pitch angle of 600. Both left- and right-handed...strength using transmission optical microscopy with the beam bending technique. However, the compressive strengths of similar pitch -based graphite fibers

  9. Improving Strength-Ductility Balance of High Strength Dual-Phase Steels by Addition of Vanadium

    NASA Astrophysics Data System (ADS)

    Gong, Yu; Hua, M.; Uusitalo, J.; DeArdo, A. J.

    For galvanized or galvannealed steels to be commercially successful, they must exhibit several attributes: (i) easy and inexpensive processing in the hot mill, cold mill and on the coating line, (ii) high strength with good formability and spot weldability, and (iii) good corrosion resistance, especially after cold forming. For good corrosion resistance, the coating must have sufficient coverage, be of uniform thickness, and most importantly, the coating must survive the cold stamping or forming operation. The purpose of this paper is to present research aiming at improving the steel substrate, such that high strength can be obtained while maintaining good global formability (tensile ductility), local formability (sheared-edge ductility), and good spot weldability. It is well-known that the strength of DP steels is controlled by several factors, including the amount of martensite found in the final microstructure. Recent research has revealed that the amount of austenite formed during intercritical annealing can be strongly influenced by the annealing temperature and the pre-annealing conditions of the hot band (coiling temperature) and cold band (% cold reduction). Current experiments have explored the combination of pre-annealing conditions and four annealing practices to help define the best practice to optimize the strength-formability balance in these higher strength DP steels. The steels used in these experiments contained (i) low carbon content for good spot weldability, (ii) the hardenability additions Mo and Cr for strength, and (iii) V for grain refinement, precipitation hardening and temper resistance. When processed correctly, these steels exhibited UTS levels up to 1000MPa, total elongation to 25%, reduction in area to 45%, and Hole Expansion Ratios to 50%. The results of this program will be presented and discussed.

  10. Compressive mechanical of high strength concrete (HSC) after different high temperature history

    NASA Astrophysics Data System (ADS)

    Zhao, Dongfu; Liu, Yuchen; Gao, Haijing; Han, Xiao

    2017-08-01

    The compression strength test of high strength concrete under different high-temperature conditions was carried out by universal testing machine. The friction surface of the pressure bearing surface of the specimen was composed of three layers of plastic film and glycerol. The high temperature working conditions were the combination of different heating temperature and different constant temperature time. The characteristics of failure modes and the developments of cracks were observed; the residual compressive strength and stress-strain curves were measured; the effect of different temperature and heating time on the strength and deformation of high strength concrete under uniaxial compression were analyzed; the failure criterion formula of the high strength concrete after high temperature under uniaxial compression was established. The formula of the residual compressive strength of high strength concrete under the influence of heating temperature and constant temperature time was put forward. The relationship between the residual elastic modulus and the peak strain and residual compressive strength of high strength concrete and different high temperature conditions is established. The quantitative relationship that the residual compressive strength decreases the residual elastic modulus decreases and the peak strain increases with the increase of heating temperature and the constant temperature time was given, which provides a reference for the detection and evaluation of high strength concrete structures after fire.

  11. The Achievement Drive and Ego Strength of Highly Creative Adolescents.

    ERIC Educational Resources Information Center

    Lett, W. R.; And Others

    1979-01-01

    Shows that the "highly creative" group did not differ significantly from the control group on measures of ego strength or nonconforming achievement. Indicates that the highly creative group was more conforming than the control group in their need for achievement. (Author/RL)

  12. High-strength rolled sections with structural anisotropy

    NASA Astrophysics Data System (ADS)

    Odesskii, P. D.; Chernenko, V. T.

    1992-08-01

    The article investigates the properties of high-strength sections .for building structures. It examines theinfluence of structural anisotropy on the operational properties of profiles of steel St3ps strengthened fromthe rolling heat on a high-speed mill. It is shown that the use of such rolled sections in industo, is promising.

  13. Microstructural Observations on High Strength Polycrystalline Iron Whiskers.

    DTIC Science & Technology

    1978-08-01

    found that the whiskers consisted of a unique and complex microdispersion of iron oxides, iron carbide, and atomic carbon which bond the very small alpha ... iron crystallites into a non-porous microstructure of high integrity. The mixing of strong covalent bonding with metallic bonding is proposed to explain the exceptionally high tensile strength of the whiskers. (Author)

  14. Faster Fluorescence Microscopy: Advances in High Speed Biological Imaging

    PubMed Central

    Winter, Peter W.; Shroff, Hari

    2014-01-01

    The past decade has seen explosive growth in new high speed imaging methods. These can broadly be classified as either point-scanning (which offer better depth penetration) or parallelized systems (which offer higher speed). We discuss each class generally, and cover specific advances in diffraction-limited microscopes (laser-scanning confocal, spinning-disk, and light-sheet) and super-resolution microscopes (single-molecule imaging, stimulated emission-depletion, and structured illumination). A theme of our review is that there is no free lunch: each technique has strengths and weaknesses, and an advance in speed usually comes at the expense of either spatial resolution or depth penetration. PMID:24815857

  15. Faster fluorescence microscopy: advances in high speed biological imaging.

    PubMed

    Winter, Peter W; Shroff, Hari

    2014-06-01

    The past decade has seen explosive growth in new high speed imaging methods. These can broadly be classified as either point-scanning (which offer better depth penetration) or parallelized systems (which offer higher speed). We discuss each class generally, and cover specific advances in diffraction-limited microscopes (laser-scanning confocal, spinning-disk, and light-sheet) and superresolution microscopes (single-molecule imaging, stimulated emission-depletion, and structured illumination). A theme of our review is that there is no free lunch: each technique has strengths and weaknesses, and an advance in speed usually comes at the expense of either spatial resolution or depth penetration.

  16. Review on fatigue behavior of high-strength concrete after high temperature

    NASA Astrophysics Data System (ADS)

    Zhao, Dongfu; Jia, Penghe; Gao, Haijing

    2017-06-01

    The fatigue of high-strength concrete after high temperature has begun to attract attention. But so far the researches work about the fatigue of high-strength concrete after high temperature have not been reported. This article based on a large number of literature. The research work about the fatigue of high-strength concrete after high temperature are reviewed, analysed and expected, which can provide some reference for the experimental study of fatigue damage analysis.

  17. High Strength and Thermally Stable Nanostructured Magnesium Alloys and Nanocomposites

    NASA Astrophysics Data System (ADS)

    Chang, Yuan-Wei

    Magnesium and its alloys are currently in the spotlight of global research because of the need to limit energy consumption and reduce the environmental impact. In particular, their low densities compared to other structural metals make them a very attractive alternative in the automobile and aerospace industries. However, their low strength compared to other structural materials (e.g. Al and steels) has limited their widespread application. This dissertation presents the results of developing and investigation of a high strength nanostructured magnesium-aluminum alloy and composite. The nanostructured magnesium alloy is prepared by cryomilling and consolidated by spark-plasma-sintering. Focused ion beam is used to prepare micropillars with different diameters ranging from 1.5 to 8 mum and micro-compression test is conducted by nanoindenter in order to evaluate the mechanical properties. The yield strength obtained in the present study is around three times higher than conventional magnesium alloys (120 MPa vs. 370 MPa). The yield strength of the nanostructured magnesium alloy is further improved through hot extrusion, resulting in a yield strength of 550 MPa and an ultimate strength of 580 MPa. The nanostructured magnesium alloy exhibits a strong size-dependence, and a significant improvement in strength is observed when the pillar diameter is reduced to below 3.5 mum. The deformation mechanisms of the compressed pillars were characterized using transmission electron microscopy. The size-induced strengthening is attributed to a less number of dislocation sources along with a higher activity of non-basal deformation mechanisms. We have also developed a high strength and thermally stable nanostructured magnesium composite by adding diamantane. A yield strength of 500 MPa is achieved, moreover, excellent thermal stability is demonstrated in the magnesium alloy containing diamantanes. The strength and grain size are thermally stable after annealing at 400°C for 100

  18. Properties of formable high strength sheet steels for automotive use

    SciTech Connect

    Satoh, S.; Kato, T.; Nishida, M.; Obara, T.; Shinozaki, M.; Tosaka, A.

    1983-11-01

    Metallurgical factors affecting the press formability of the newly developed high strength sheet steels have been discussed. Dual phase steels, CHLY (cold-rolled sheet steel) and HTP-D (as-hotrolled sheet steel), produced by control of cooling conditions after intercritical annealing or hot-rolling exhibit very low yield to tensile strength ratio and high n-value. Rephosphorized extralow carbon steel, CHRX, produced by continuous annealing with rapid cooling is characterized by its extremely high r-value and low yield strength. CHLY, HTP-D and CHRX have large bake hardenability. Precipitation hardened steel, HTP-F (hot-rolled sheel steel), produced by adjusting carbon equivalent and sulfur content is suitable for manufacturing wheel rims owing to its good formability after flash butt welding.

  19. Low-noise, high-strength, spiral-bevel gears for helicopter transmissions

    NASA Astrophysics Data System (ADS)

    Lewicki, David G.; Handschuh, Robert F.; Henry, Zachary S.; Litvin, Faydor L.

    1994-05-01

    Advanced-design spiral-bevel gears were tested in an OH-58D helicopter transmission using the NASA 500-hp Helicopter Transmission Test Stand. Three different gear designs tested included: the current design of the OH-58D transmission; a higher-strength design the same as the current but with a full fillet radius to reduce gear tooth bending stress (and thus, weight); and a lower-noise design the same as the high-strength but with modified tooth geometry to reduce transmission error and noise. Noise, vibration, and tooth strain tests were performed and significant gear stress and noise reductions were achieved.

  20. Cytocompatibility of high strength non-oxide ceramics.

    PubMed

    Cappi, Benjamin; Neuss, Sabine; Salber, Jochen; Telle, Rainer; Knüchel, Ruth; Fischer, Horst

    2010-04-01

    Oxide ceramic materials like alumina (Al(2)O(3)) and zirconia (ZrO(2)) are frequently used for medical applications like implants and prostheses because of their excellent biocompatibility and high wear resistance. Unfortunately, oxide ceramics cannot be used for minimal invasive thin-walled implants like resurfacing hip prostheses because of their limited strength. The hypothesis of this study is that non-oxide ceramics like silicon nitride (Si(3)N(4)) and silicon carbide (SiC)-not previously used in the medical field-are not only high strength and mechanically reliable ceramic materials due to their high amount of covalent bonds, but also exhibit a suitable biocompatibility for use as medical implants and prostheses. Mechanical investigations and cell culture tests with mouse fibroblast cells (L929) and human mesenchymal stem cells (hMSC) were performed on the ceramics. An excellent cytocompatibility was demonstrated by live/dead stainings for both L929 cells and hMSC. HMSC were able to differentiate towards osteoblasts on all tested ceramics. The determined strength of silicon nitride and silicon carbide was shown as significantly higher than that of oxide ceramics. Our results indicate that the high strength non-oxide ceramics are material candidates in the future especially for highly loaded, thin-walled implants like ceramic resurfacing hip prostheses.

  1. Uncertainties in obtaining high reliability from stress-strength models

    NASA Technical Reports Server (NTRS)

    Neal, Donald M.; Matthews, William T.; Vangel, Mark G.

    1992-01-01

    There has been a recent interest in determining high statistical reliability in risk assessment of aircraft components. The potential consequences are identified of incorrectly assuming a particular statistical distribution for stress or strength data used in obtaining the high reliability values. The computation of the reliability is defined as the probability of the strength being greater than the stress over the range of stress values. This method is often referred to as the stress-strength model. A sensitivity analysis was performed involving a comparison of reliability results in order to evaluate the effects of assuming specific statistical distributions. Both known population distributions, and those that differed slightly from the known, were considered. Results showed substantial differences in reliability estimates even for almost nondetectable differences in the assumed distributions. These differences represent a potential problem in using the stress-strength model for high reliability computations, since in practice it is impossible to ever know the exact (population) distribution. An alternative reliability computation procedure is examined involving determination of a lower bound on the reliability values using extreme value distributions. This procedure reduces the possibility of obtaining nonconservative reliability estimates. Results indicated the method can provide conservative bounds when computing high reliability. An alternative reliability computation procedure is examined involving determination of a lower bound on the reliability values using extreme value distributions. This procedure reduces the possibility of obtaining nonconservative reliability estimates. Results indicated the method can provide conservative bounds when computing high reliability.

  2. The Tensile Behavior of High-Strength Carbon Fibers.

    PubMed

    Langston, Tye

    2016-08-01

    Carbon fibers exhibit exceptional properties such as high stiffness and specific strength, making them excellent reinforcements for composite materials. However, it is difficult to directly measure their tensile properties and estimates are often obtained by tensioning fiber bundles or composites. While these macro scale tests are informative for composite design, their results differ from that of direct testing of individual fibers. Furthermore, carbon filament strength also depends on other variables, including the test length, actual fiber diameter, and material flaw distribution. Single fiber tensile testing was performed on high-strength carbon fibers to determine the load and strain at failure. Scanning electron microscopy was also conducted to evaluate the fiber surface morphology and precisely measure each fiber's diameter. Fiber strength was found to depend on the test gage length and in an effort to better understand the overall expected performance of these fibers at various lengths, statistical weak link scaling was performed. In addition, the true Young's modulus was also determined by taking the system compliance into account. It was found that all properties (tensile strength, strain to failure, and Young's modulus) matched very well with the manufacturers' reported values at 20 mm gage lengths, but deviated significantly at other lengths.

  3. Effects of Rock High Pressure Strength on Penetration

    NASA Astrophysics Data System (ADS)

    Huang, Hongfa

    2011-06-01

    Perforating of oil/gas well creates communication tunnel between reservoir and wellbore. Shaped charges are widely used as perforators in oilfield industry. The liners of the charges are mostly made of powder metal to prevent solid slug clogging the entrance hole of well casing or locking the hole in perforating gun. High speed jet from the shaped charge pierces through perforating gun, well fluid, well casing, and then penetrates into reservoir formation. Prediction of jet penetration in reservoir rock is critical in modeling of well production. An analytical penetration model developed for solid rod by Tate and Alekseevskii is applied. However, strength of formation rock at high pressure needs to be measured. Lateral stress gauge measurements in plate impact tests are conducted. Piezoelectric pressure gauges are imbedded in samples to measure the longitudinal and transverse stress. The two stresses provide Hugoniot and material compressive strength. Indiana limestone, a typical rock in perforation testing, is selected as target sample material in the plate impact tests. Since target strength effect on penetration is more significant in late stage of penetration when the strength of material becomes significant compared to the impact pressure, all the impact tests are focused on lower impact pressure up to 9 GPa. The measurements show that the strength increases with impact pressure. The results are applied in the penetration calculations. The final penetration matches testing data very well.

  4. Material Strength at High Pressure LDRD Strategic Initiative Final Report

    SciTech Connect

    Lassila, D H; Bonner, B P; Bulatov, V V; Cazamias, J U; Chandler, E A; Farber, D L; Moriarty, J A; Zaug, J M

    2004-03-02

    Various aspects of the Laboratory's national security mission are now highly dependent on accurate computer code simulations of plastic flow (i.e., non-reversible deformation) of materials under conditions of high hydrostatic pressure. Strength models are typically dependent on pressure, temperature, and strain rate. Current strength models can not be extrapolated to high pressure because they are not based on the underlying mechanisms of plastic deformation. The critical need for predictive models of material strength, which describe flow stress in computer code simulations, has motivated LLNL's multiscale modeling efforts. Over the past three years, the ''Material Strength at High Pressure'' LDRD Strategic Initiative has established a framework for the development of predictive strength models for deformation of metals under conditions of high hydrostatic pressure. Deformation experiments have been developed to measure the effect of high pressure on the yield strength and work hardening behavior of high purity Mo and Ta single crystals. The over arching goal of the SI is to experimentally validate multiscale-modeling capabilities for deformation of metals under conditions of high pressure. The work performed and accomplished is a necessary next step in the development of predictive strength models. Our initial experimental results show that the influence of pressure is to dramatically increase the work hardening rate of Ta. Bridgman also observed this in experiments performed in the 1950's. Currently there is very little modern data on this phenomena, or theoretical understanding. The work started by this SI is a first step in a comprehensive understanding of plasticity under conditions of high pressure and we expect eventually to be able to incorporate the proper physics into dislocation dynamics (DD) simulations to capture the increase in work hardening that we observe experimentally. In the following sections we briefly describe the work that was performed in

  5. Experimental and Theoretical Investigations on Bond Strength of GFRP Rebars in Normal and High Strength Concrete

    NASA Astrophysics Data System (ADS)

    Eswanth, P.; Dhinakaran, G.

    2017-07-01

    Bond behavior between GFRP bars and concrete is the most important parameter for constructing corrosion free structures by implementing the material. Serviceability of reinforced concrete structures are controlled by bond behavior. GFRP materials behave differently from reinforcing steel in terms of bond. They are of non-homogeneous and anisotropic. Due to this outstanding behavior, there is a difference in transfer of loads between GFRP bars and concrete which made it as an idealized choice of a material. In the present work, the bond strength of GFRP bars in normal and high strength concrete was studied. In total, 12 specimens containing 12 mm, 16 mm diameter rebars which were embedded in 150 mm x 150 mm x 150 mm cubes were investigated. The specimens were subjected to direct tension pull out test in accordance with IS 2770 part 1. The comparison of bond properties of GFRP rebar in normal and high strength concrete showed that pull out load of non-metallic rebar fell well within the range.

  6. Strength development of high-strength ductile concrete incorporating Metakaolin and PVA fibers.

    PubMed

    Nuruddin, Muhammad Fadhil; Khan, Sadaqat Ullah; Shafiq, Nasir; Ayub, Tehmina

    2014-01-01

    The mechanical properties of high-strength ductile concrete (HSDC) have been investigated using Metakaolin (MK) as the cement replacing material and PVA fibers. Total twenty-seven (27) mixes of concrete have been examined with varying content of MK and PVA fibers. It has been found that the coarser type PVA fibers provide strengths competitive to control or higher than control. Concrete with coarser type PVA fibers has also refined microstructure, but the microstructure has been undergone with the increase in aspect ratio of fibers. The microstructure of concrete with MK has also more refined and packing of material is much better with MK. PVA fibers not only give higher stiffness but also showed the deflection hardening response. Toughness Index of HSDC reflects the improvement in flexural toughness over the plain concrete and the maximum toughness indices have been observed with 10% MK and 2% volume fraction of PVA fibers.

  7. Strength Development of High-Strength Ductile Concrete Incorporating Metakaolin and PVA Fibers

    PubMed Central

    Nuruddin, Muhammad Fadhil; Shafiq, Nasir

    2014-01-01

    The mechanical properties of high-strength ductile concrete (HSDC) have been investigated using Metakaolin (MK) as the cement replacing material and PVA fibers. Total twenty-seven (27) mixes of concrete have been examined with varying content of MK and PVA fibers. It has been found that the coarser type PVA fibers provide strengths competitive to control or higher than control. Concrete with coarser type PVA fibers has also refined microstructure, but the microstructure has been undergone with the increase in aspect ratio of fibers. The microstructure of concrete with MK has also more refined and packing of material is much better with MK. PVA fibers not only give higher stiffness but also showed the deflection hardening response. Toughness Index of HSDC reflects the improvement in flexural toughness over the plain concrete and the maximum toughness indices have been observed with 10% MK and 2% volume fraction of PVA fibers. PMID:24707202

  8. High-strength porous carbon and its multifunctional applications

    DOEpatents

    Wojtowicz, Marek A; Rubenstein, Eric P; Serio, Michael A; Cosgrove, Joseph E

    2013-12-31

    High-strength porous carbon and a method of its manufacture are described for multifunctional applications, such as ballistic protection, structural components, ultracapacitor electrodes, gas storage, and radiation shielding. The carbon is produced from a polymer precursor via carbonization, and optionally by surface activation and post-treatment.

  9. Translucency and Strength of High Translucency Monolithic Zirconium Oxide Materials

    DTIC Science & Technology

    2016-05-17

    in the dyeing liquid for 2 minutes. Residual dyeing liquid was removed from each specimen using an absorbent paper towel and then allowed to air...MDW/SGVU SUBJECT: Professional Presentation Approval 17 MAY2016 1. Your paper , entitled Translucency and Strength of High-Translucency Monolithic

  10. Low carbon dual phase steels for high strength wire

    SciTech Connect

    Thomas, G.; Ahn, J.H.

    1985-08-01

    This paper shows that dual phase steels can be designed and processed as new, economical low carbon steels for cold drawing into high tensile strength steel wires. Current work indicates wires of tensile strengths up to 400,000 psi can be obtained. Potential applications for dual phase steel wire include bead wire, tire cord, wire rope and prestressed concrete. It should be possible to produce wire rods in existing rod mills by adapting the controlled rolling and quenching procedures outlined in this paper.

  11. High strength graphite and method for preparing same

    DOEpatents

    Overholser, Lyle G.; Masters, David R.; Napier, John M.

    1976-01-01

    High strength graphite is manufactured from a mixture of a particulate filler prepared by treating a particulate carbon precursor at a temperature in the range of about 400.degree. to 1000.degree. C., an organic carbonizable binder, and green carbonizable fibers in a concentration of not more than 2 weight per cent of the filler. The use of the relatively small quantity of green fibers provides a substantial increase in the flexural strength of the graphite with only a relatively negligible increase in the modulus of elasticity.

  12. Advanced high-temperature batteries

    NASA Astrophysics Data System (ADS)

    Nelson, P. A.

    1989-12-01

    Recent results for Li-Al/FeS2 cells and bipolar battery design have shown the possibility of achieving high specific energy (210 Wh/kg) and high specific power (239 W/kg) at the cell level for an electric vehicle application. Outstanding performance is also projected for sodium/metal chloride cells having large electrolyte areas and thin positive electrodes.

  13. Advanced high-temperature batteries

    NASA Astrophysics Data System (ADS)

    Nelson, P. A.

    Recent results for Li-Al/FeS sub 2 cells and bipolar battery design have shown the possibility of achieving high specific energy (210 Wh/kg) and high specific power (239 W/kg) at the cell level for an electric vehicle application. Outstanding performance is also projected for sodium/metal chloride cells having large electrolyte areas and thin positive electrodes.

  14. Pressureless sintered high-strength mullite from commercial powder

    NASA Astrophysics Data System (ADS)

    Lehman, R. L.; Umezu, Y.

    1992-08-01

    High-strength monolithic mullite ceramics were prepared from commercial-grade power by carefully controlled processing of the powder followed by pressureless sintering at 1700 °C. Mullite powder was mechanically and chemically dispersed, ball milled, and screened prior to slip casting. Specimens were sintered to 97% of theoretical density under pressureless conditions. The furnace ramp and soak schedule was an important variable. Four-point flexural strengths of 250 MPa were achieved, exceeding literature values for pressureless sintering of Baikowski mullite powder.[a] Pore sizes were small and were not strength limiting. Griffith calculations suggest a critical flaw size of 20 μm, in good agreement with the maximum observed crystal size in the microstructure.

  15. High-strength silk protein scaffolds for bone repair.

    PubMed

    Mandal, Biman B; Grinberg, Ariela; Gil, Eun Seok; Panilaitis, Bruce; Kaplan, David L

    2012-05-15

    Biomaterials for bone tissue regeneration represent a major focus of orthopedic research. However, only a handful of polymeric biomaterials are utilized today because of their failure to address critical issues like compressive strength for load-bearing bone grafts. In this study development of a high compressive strength (~13 MPa hydrated state) polymeric bone composite materials is reported, based on silk protein-protein interfacial bonding. Micron-sized silk fibers (10-600 µm) obtained utilizing alkali hydrolysis were used as reinforcement in a compact fiber composite with tunable compressive strength, surface roughness, and porosity based on the fiber length included. A combination of surface roughness, porosity, and scaffold stiffness favored human bone marrow-derived mesenchymal stem cell differentiation toward bone-like tissue in vitro based on biochemical and gene expression for bone markers. Further, minimal in vivo immunomodulatory responses suggested compatibility of the fabricated silk-fiber-reinforced composite matrices for bone engineering applications.

  16. Advanced High Temperature Structural Seals

    NASA Technical Reports Server (NTRS)

    Newquist, Charles W.; Verzemnieks, Juris; Keller, Peter C.; Rorabaugh, Michael; Shorey, Mark

    2002-01-01

    This program addresses the development of high temperature structural seals for control surfaces for a new generation of small reusable launch vehicles. Successful development will contribute significantly to the mission goal of reducing launch cost for small, 200 to 300 pound payloads. Development of high temperature seals is mission enabling. For instance, ineffective control surface seals can result in high temperature (3100 F) flows in the elevon area exceeding structural material limits. Longer sealing life will allow use for many missions before replacement, contributing to the reduction of hardware, operation and launch costs.

  17. Advanced High Temperature Structural Seals

    NASA Technical Reports Server (NTRS)

    Newquist, Charles W.; Verzemnieks, Juris; Keller, Peter C.; Shorey, Mark W.; Steinetz, Bruce (Technical Monitor)

    2000-01-01

    This program addresses the development of high temperature structural seals for control surfaces for a new generation of small reusable launch vehicles. Successful development will contribute significantly to the mission goal of reducing launch cost for small, 200 to 300 lb payloads. Development of high temperature seals is mission enabling. For instance, ineffective control surface seals can result in high temperature (3100 F) flows in the elevon area exceeding structural material limits. Longer sealing life will allow use for many missions before replacement, contributing to the reduction of hardware, operation and launch costs. During the first phase of this program the existing launch vehicle control surface sealing concepts were reviewed, the aerothermal environment for a high temperature seal design was analyzed and a mock up of an arc-jet test fixture for evaluating seal concepts was fabricated.

  18. Advanced high-temperature batteries

    NASA Astrophysics Data System (ADS)

    Nelson, P. A.

    1990-02-01

    Recent results for Li-Al/FeS2 cells and a bipolar battery design have shown the possibility of achieving high specific energy (210 W h/kg) and high specific power (239 W/kg) at the cell level for an electric vehicle application. Outstanding performance is also projected for sodium/metal chloride cells having large electrolyte areas and thin positive electrodes.

  19. Ultra-high Burst Strength of CVD Graphene Membranes

    NASA Astrophysics Data System (ADS)

    Wang, Luda; Boutilier, Michael; Kidambi, Piran; Karnik, Rohit; Microfluidics; Nanofluidics Research Lab Team

    2015-11-01

    Porous graphene membranes have significant potential in gas separation, water desalination and nanofiltration. Understanding the mechanical strength of porous graphene is crucial because membrane separations can involve high pressures. We studied the burst strength of CVD graphene membrane placed on porous support at applied pressures up to 100 bar by monitoring the gas flow rate across the membrane as a function of pressure. Increase of gas flow rate with pressure allowed for extraction of the burst fraction of graphene as it failed under increasing pressure. We also studied the effect of sub-nanometer pores on the ability of graphene to withstand pressure. The results showed that porous graphene membranes can withstand pressures comparable to or even higher than the >50 bar pressures encountered in water desalination, with non-porous CVD graphene exhibiting even higher mechanical strength. Our study shows that porous polycrystalline CVD graphene has ultra-high burst strength under applied pressure, suggesting the possibility for its use in high-pressure membrane separations. Principal Investigator

  20. Advanced high-temperature batteries

    NASA Technical Reports Server (NTRS)

    Nelson, Paul A.

    1989-01-01

    The promise of very high specific energy and power was not yet achieved for practical battery systems. Some recent approaches are discussed for new approaches to achieving high performance for lithium/DeS2 cells and sodium/metal chloride cells. The main problems for the development of successful LiAl/FeS2 cells were the instability of the FeS2 electrode, which has resulted in rapidly declining capacity, the lack of an internal mechanism for accommodating overcharge of a cell, thus requiring the use of external charge control on each individual cell, and the lack of a suitable current collector for the positive electrode other than expensive molybdenum sheet material. Much progress was made in solving the first two problems. Reduction of the operating temperatures to 400 C by a change in electrolyte composition has increased the expected life to 1000 cycles. Also, a lithium shuttle mechanism was demonstrated for selected electrode compositions that permits sufficient overcharge tolerance to adjust for the normally expected cell-to-cell deviation in coulombic efficiency. Sodium/sulfur batteries and sodium/metal chloride batteries have demonstrated good reliability and long cycle life. For applications where very high power is desired, new electrolyte coinfigurations would be required. Design work was carried out for the sodium/metal chloride battery that demonstrates the feasibility of achieving high specific energy and high power for large battery cells having thin-walled high-surface area electrolytes.

  1. Overview of the Advanced High Frequency Branch

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.

    2015-01-01

    This presentation provides an overview of the competencies, selected areas of research and technology development activities, and current external collaborative efforts of the NASA Glenn Research Center's Advanced High Frequency Branch.

  2. Conditions to obtain reliable high strength alumina via centrifugal casting

    SciTech Connect

    Huisman, W.; Graule, T.; Gauckler, L.J.

    1995-09-01

    Electrostatically stabilized alumina suspensions with high solids content of up to 58 vol% were consolidated into near-net-shape parts via centrifugal casting. High density green bodies showed excellent sintering kinetics leading to {ge} 99.5% of theoretical density (TD) at lowered temperatures compared to isostatic pressing. Four point bend strengths of 540 MPa with Weibull moduli of up to 24 were achieved using commercial {alpha}-alurnina powders.

  3. NEW HIGH STRENGTH AND FASTER DRILLING TSP DIAMOND CUTTERS

    SciTech Connect

    Robert Radtke

    2006-01-31

    The manufacture of thermally stable diamond (TSP) cutters for drill bits used in petroleum drilling requires the brazing of two dissimilar materials--TSP diamond and tungsten carbide. The ENDURUS{trademark} thermally stable diamond cutter developed by Technology International, Inc. exhibits (1) high attachment (shear) strength, exceeding 345 MPa (50,000 psi), (2) TSP diamond impact strength increased by 36%, (3) prevents TSP fracture when drilling hard rock, and (4) maintains a sharp edge when drilling hard and abrasive rock. A novel microwave brazing (MWB) method for joining dissimilar materials has been developed. A conventional braze filler metal is combined with microwave heating which minimizes thermal residual stress between materials with dissimilar coefficients of thermal expansion. The process results in preferential heating of the lower thermal expansion diamond material, thus providing the ability to match the thermal expansion of the dissimilar material pair. Methods for brazing with both conventional and exothermic braze filler metals have been developed. Finite element modeling (FEM) assisted in the fabrication of TSP cutters controllable thermal residual stress and high shear attachment strength. Further, a unique cutter design for absorbing shock, the densification of otherwise porous TSP diamond for increased mechanical strength, and diamond ion implantation for increased diamond fracture resistance resulted in successful drill bit tests.

  4. Crack propagation modelling for high strength steel welded structural details

    NASA Astrophysics Data System (ADS)

    Mecséri, B. J.; Kövesdi, B.

    2017-05-01

    Nowadays the barrier of applying HSS (High Strength Steel) material in bridge structures is their low fatigue strength related to yield strength. This paper focuses on the fatigue behaviour of a structural details (a gusset plate connection) made from NSS and HSS material, which is frequently used in bridges in Hungary. An experimental research program is carried out at the Budapest University of Technology and Economics to investigate the fatigue lifetime of this structural detail type through the same test specimens made from S235 and S420 steel grades. The main aim of the experimental research program is to study the differences in the crack propagation and the fatigue lifetime between normal and high strength steel structures. Based on the observed fatigue crack pattern the main direction and velocity of the crack propagation is determined. In parallel to the tests finite element model (FEM) are also developed, which model can handle the crack propagation. Using the measured strain data in the tests and the calculated values from the FE model, the approximation of the material parameters of the Paris law are calculated step-by-step, and their calculated values are evaluated. The same material properties are determined for NSS and also for HSS specimens as well, and the differences are discussed. In the current paper, the results of the experiments, the calculation method of the material parameters and the calculated values are introduced.

  5. Effect of Boron Addition on Microstructural Evolution and Room-Temperature Mechanical Properties of Novel Fe66- x CrNiB x Si ( x = 0, 0.25, 0.50 and 0.75 Wt Pct) Advanced High-Strength Steels

    NASA Astrophysics Data System (ADS)

    Askari-Paykani, Mohsen; Shahverdi, Hamid Reza; Miresmaeili, Reza

    2016-11-01

    In this study, the Vickers hardnesses and room-temperature uniaxial tensile behaviors of four Fe66- x CrNiB x Si ( x = 0 (0B), 0.25 (25B), 0.50 (50B), and 0.75 (75B) wt pct) advanced high-strength steels (AHSSs) in the as-hot-rolled and heat-treated (1373 K (1100 °C)/2 h + 973 K (700 °C)/20 min) conditions were investigated. Microstructural evolution after solidification, hot rolling, heat treatment, and uniaxial tensile tests of 0B, 25B, 50B, and 75B AHSSs was also characterized using field emission gun scanning electron microscopy and X-ray diffraction. The tensile behaviors of the 0B, 25B, 50B, and 75B AHSSs were manifested by an excellent combination of strength and ductility over 34.7 and 47.1 GPa pct, 36.9 and 42.3 GPa pct, 45.9 and 46.4 GPa pct, and 11.9 and 47.8 GPa pct, respectively, arising from microband-induced plasticity in the 0B, 50B, and 75B AHSSs and transformation-induced plasticity in the 25B specimens. All specimens in the as-hot-rolled and heat-treated states showed an austenitic matrix grain. Adding boron to the base alloy (0B) resulted in grain refinement, M2B dispersion, precipitation hardening, and solid solution strengthening, which led to an increase in strength. The results of the present work show promise for automotive applications that require excellent properties and reduced specific weight.

  6. Advanced high efficiency concentrator cells

    SciTech Connect

    Gale, R. . Varian Research Center)

    1992-06-01

    This report describes research to develop the technology needed to demonstrate a monolithic, multijunction, two-terminal, concentrator solar cell with a terrestrial power conversion efficiency greater than 35%. Under three previous subcontracts, Varian developed many of the aspects of a technology needed to fabricate very high efficiency concentrator cells. The current project was aimed at exploiting the new understanding of high efficiency solar cells. Key results covered in this report are as follows. (1) A 1.93-eV AlGaAs/1.42-eV GaAs metal-interconnected cascade cell was manufactured with a one-sun efficiency at 27.6% at air mass 1.5 (AM1.5) global. (2) A 1.0eV InGaAs cell was fabricated on the reverse'' side of a low-doped GaAs substrate with a one-sun efficiency of 2.5% AM1.5 diffuse and a short-circuit current of 14.4 mA/cm{sup 2}. (3) Small-scale manufacturing of GaAs p/n concentrator cells was attempted and obtained an excellent yield of high-efficiency cells. (4) Grown-in tunnel junction cell interconnects that are transparent and thermally stable using C and Si dopants were developed. 10 refs.

  7. Effect of Long Term, High Temperature Annealing on the Strength of Beta''-Alumina Ceramics

    NASA Astrophysics Data System (ADS)

    Rasmussen, James R.; Williams, Roger M.; Kisor, Adam K.

    2003-01-01

    It has been recently reported that subjecting beta''-alumina ceramics to a long term, high temperature anneal for the purpose of reducing the residual sodium aluminate content within the ceramic results in an apparent increase in the strength of the ceramic as well. In order to examine this hypothesis, a carefully controlled experiment was conducted. Ten tubes were cut into 100 rings 1.5 mm long. A third of the rings (randomly selected) were broken in diametral ring fracture tests, while the remaining rings were packaged and shipped to Jet Propulsion Laboratory (JPL) where half of them were annealed, and the other half were unpacked and stored under appropriate dry conditions to act a shipping and handling control group. Once the annealing was completed, both groups of rings were repackaged and returned to Advanced Modular Power Systems (AMPS) and broken in diametral ring tests. The annealed group had the lowest strength as indicated by the Weibull characteristic strengths. Weibull characteristic strengths for the unannealed, control, and annealed groups were 376 MPa, 326 MPa, and 294 MPa, respectively. The Weibull moduli of the unannealed and annealed groups were nominally the same at 9.0 and 8.6, respectively. That for the handling control group was lower at 6.8. The lower strength of the annealed ceramics is consistent with earlier work showing a decrease in ceramic strength with increasing grain size.

  8. Oxidation resistant high creep strength austenitic stainless steel

    DOEpatents

    Brady, Michael P.; Pint, Bruce A.; Liu, Chain-Tsuan; Maziasz, Philip J.; Yamamoto, Yukinori; Lu, Zhao P.

    2010-06-29

    An austenitic stainless steel displaying high temperature oxidation and creep resistance has a composition that includes in weight percent 15 to 21 Ni, 10 to 15 Cr, 2 to 3.5 Al, 0.1 to 1 Nb, and 0.05 to 0.15 C, and that is free of or has very low levels of N, Ti and V. The alloy forms an external continuous alumina protective scale to provide a high oxidation resistance at temperatures of 700 to 800.degree. C. and forms NbC nanocarbides and a stable essentially single phase fcc austenitic matrix microstructure to give high strength and high creep resistance at these temperatures.

  9. Creep and Rupture Strength of an Advanced CVD SiC Fiber

    NASA Technical Reports Server (NTRS)

    Goldsby, J. C.; Yun, H. M.; DiCarlo, J. A.

    1997-01-01

    In the as-produced condition the room temperature strength (approx. 6 GPa) of Textron Specialty Materials' 50 microns CVD SiC fiber represents the highest value thus far obtained for commercially produced polycrystalline SiC fibers. To understand whether this strength can be maintained after composite processing conditions, high temperature studies were performed on the effects of time, stress, and environment on 1400 deg. C tensile creep strain and stress rupture on as-produced, chemically vapor deposited SiC fibers. Creep strain results were consistent, allowing an evaluation of time and stress effects. Test environment had no influence on creep strain but I hour annealing at 1600 deg. C in argon gas significantly reduced the total creep strain and increased the stress dependence. This is attributed to changes in the free carbon morphology and its distribution within the CVD SiC fiber. For the as-produced and annealed fibers, strength at 1400 deg. C was found to decrease from a fast fracture value of 2 GPa to a 100-hr rupture strength value of 0. 8 GPa. In addition a loss of fast fracture strength from 6 GPa is attributed to thermally induced changes in the outer carbon coating and microstructure. Scatter in rupture times made a definitive analysis of environmental and annealing effects on creep strength difficult.

  10. High strength submersible electrical cable and connector assembly

    SciTech Connect

    Chelminski, P.

    1981-05-12

    A high strength submersible electrical cable and connector assembly are described which are particularly suitable for use with high pressure valve actuated devices such as air guns which operate in harsh environments such as at sea and which generate large vibrational forces and where the cable and connector are subject to towing stresses as the air gun is towed through the water during a seismic survey operation. The connector has a sleeve body member with a socket retainer in one end adapted to be coupled to a solenoid valve on the air gun. A non-conductive anchor plug is mounted within the sleeve body and mechanically and electrically secures in the sleeve an electrical cable having a plurality of insulated high tensile strength electrical conductors. A plurality of electrical conductors are coupled between the retainer socket and the high tensile strength electrical conductors which are held by electrical connectors seated within the non-conductive anchor plug, and the sleeve body is filled with insulating material to encapsulate the anchor plug and the various connectors and electrical connections within the sleeve body. A tough, protective tapered insulating jacket surrounds the electrical cable and sleeve body in the region where the electrical cable containing the plurality of insulated high tensile strength electrical conductors enters the sleeve body to provide additional strain-relief for the connector assembly. The electrical cable and connector assembly is characterized by being rugged and water tight so as to be able to withstand the large vibrations generated by air guns in such applications as seismic surveying and is further capable of being submersible in water where seismic surveying is performed, and the assembly enables a smaller diameter electrical cable to be used than heretofore while providing a longer operating life under marine seismic surveying conditions.

  11. Durable high strength cement concrete topping for asphalt roads

    NASA Astrophysics Data System (ADS)

    Vyrozhemskyi, Valerii; Krayushkina, Kateryna; Bidnenko, Nataliia

    2017-09-01

    Work on improving riding qualities of pavements by means of placing a thin cement layer with high roughness and strength properties on the existing asphalt pavement were conducted in Ukraine for the first time. Such pavement is called HPCM (High Performance Cementitious Material). This is a high-strength thin cement-layer pavement of 8-9 mm thickness reinforced with metal or polymer fiber of less than 5 mm length. Increased grip properties are caused by placement of stone material of 3-5 mm fraction on the concrete surface. As a result of the research, the preparation and placement technology of high-strength cement thin-layer pavement reinforced with fiber was developed to improve friction properties of existing asphalt pavements which ensures their roughness and durability. It must be emphasized that HPCM is a fundamentally new type of thin-layer pavement in which a rigid layer of 10 mm thickness is placed on a non-rigid base thereby improving riding qualities of asphalt pavement at any season of a year.

  12. NDE detectability of fatigue type cracks in high strength alloys

    NASA Technical Reports Server (NTRS)

    Christner, B. K.; Rummel, W. D.

    1983-01-01

    Specimens suitable for investigating the reliability of production nondestructive evaluation (NDE) to detect tightly closed fatigue cracks in high strength alloys representative of those materials used in spacecraft engine/booster construction were produced. Inconel 718 was selected as representative of nickel base alloys and Haynes 188 was selected as representative of cobalt base alloys used in this application. Cleaning procedures were developed to insure the reusability of the test specimens and a flaw detection reliability assessment of the fluorescent penetrant inspection method was performed using the test specimens produced to characterize their use for future reliability assessments and to provide additional NDE flaw detection reliability data for high strength alloys. The statistical analysis of the fluorescent penetrant inspection data was performed to determine the detection reliabilities for each inspection at a 90% probability/95% confidence level.

  13. Corrosion Behavior of Friction Stir Welded High Strength Aluminum Alloys

    DTIC Science & Technology

    2002-01-18

    Angelo Guinasso, " Stress Corrosion Susceptibility in 7050 -T751 Aluminum Following Friction Stir Welding", Proc. First Friction Stir Welding Symposium...potential of the nugget. Susceptibility to stress corrosion cracking (SCC) was evaluated using the slow strain rate (SSR) method described in ASTM Standards...UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP015941 TITLE: Corrosion Behavior of Friction Stir Welded High Strength

  14. Qualitative and quantitative fracture analyses of high-strength ceramics.

    PubMed

    Øilo, Marit; Tvinnereim, Helene M; Gjerdet, Nils R

    2009-04-01

    The aims of this study were to assess the applicability and repeatability of qualitative and quantitative analyses of the fracture patterns of four different high-strength ceramics. Ten bar-shaped specimens of four high-strength ceramics with different material composition and fabrication methods had been fractured by three-point bending in water (n = 40). Commonly used fractographic patterns for brittle materials, such as mirror and mist, were used to characterize and quantify the fractured surfaces of these specimens. The analyses were performed twice, on separate occasions, by the same operator. Assessment of the association between fractographic patterns and fracture stress was carried out, and repeatability assessments of the measurements were performed. The fracture initiator site and the common fractographic markers surrounding this site were found in all specimens. Statistically significant correlations were found between certain fracture patterns and stress at fracture. The repeatability of the measurements of the different fractographic patterns varied among the materials. Fracture analyses seem applicable as a tool to determine the fracture initiation site and to estimate the force vectors involved in the fracture of dental high-strength ceramics.

  15. Reduced hydrogen embrittlement susceptibility in platinum implanted high strength steel

    NASA Astrophysics Data System (ADS)

    Cowie, J. G.; Lowder, L. J.; Culbertson, R. J.; Kosik, W. E.; Brown, R.

    1991-07-01

    High strength steels suffer from a high susceptibility to hydrogen embrittlement in a corrosive atmosphere, a factor which limits their usefulness. A good catalyst, such as platinum, present on the surface of the steel may lead to a low value of hydrogen overvoltage, thereby reducing the accumulation and subsequent diffusion of atomic hydrogen into the metal. In the present study, platinum was implanted into high strength electroslag remelted (ESR) 4340 steel specimens to a dose of 10 16 atoms/cm 2. Both Pt-implanted and unimplanted specimens were rate charged with hydrogen. The relative concentration of diffusible hydrogen was determined using an electrochemical measurement device known as a Barnacle Electrode. The specimens implanted with platinum exhibited less diffusible hydrogen than the unimplanted steel. Slow strain rate notched-tensile tests, in an aqueous solution of 3.5 wt.% NaCI, were performed in order to evaluate the effect of hydrogen on strength and ductility. The Pt-implanted specimens were able to sustain significantly higher loads before fracture than their unimplanted counterparts. Scanning electron microscopy (SEM) verified the presence of brittle cracking typical of hydrogen embrittlement type failures. Degradation of mechanical properties due to hydrogen embrittlement was thus significantly reduced. This suggested that both the electrochemical and catalytic properties of the Pt-implanted surface were responsible for the improvement in properties.

  16. Development of ductile high-strength chromium alloys, phase 2

    NASA Technical Reports Server (NTRS)

    Filippi, A. M.

    1973-01-01

    Strength and ductility were evaluated for chromium alloys dispersion hardened with the putative TaC, TaB, CbC, and CbB compounds. TaC and TaB proved to be the most potent strengtheners, but when combined, their effect far outweighed that produced individually. Tests at 1422 K (2100 F) on an alloy containing these two compounds at the combined level of 0.5 m/o revealed a 495 MN/sq m (70 ksi) tensile strength for wrought material, and a 100 hour rupture strength of 208 MN/sq m (30 ksi) when solution annealed and aged to maximize creep resistance. These levels of high temperature strength greatly exceed that reported for any other chromium-base alloy. The ductile-to-brittle transition temperature (DBTT) of the two phase strengthened alloy occurred at approximately 588 K (600 F) when heat treated to optimize creep strength and was not improved by fabrication to produce a wrought and recovered microstructure. The lowest DBTT measured on any of the alloys investigated was 422 K (300 F). Strengthening phases actually formed in Cr-Ta-B and Cr-Cb-B compositions are probable M2CrB2 (M=Ta or Cb) compounds of tetragonal crystal structure. The likely habit relationship between these compounds and chromium is postulated. Cube habit coherency was identified for TaC precipitation in chromium by electron microscopy. In another study, the maximum solubility of carbon in chromium was indicated to lie between 3/4 and 1 a/o and that of boron to be 1/2 a/o.

  17. Dynamic Strength of Metals at High Pressure and Strain Rate

    NASA Astrophysics Data System (ADS)

    Lorenz, Thomas

    2006-03-01

    A new approach to materials science at very high pressures and strain rates has been developed on the Omega laser, using a ramped plasma piston drive. A laser drives an ablative shock through a solid plastic reservoir where it unloads at the rear free surface, expands across a vacuum gap, and stagnates on the metal sample under study. This produces a gently increasing ram pressure, compressing the sample nearly isentropically. The peak pressure on the sample, diagnosed with VISAR measurements, can be varied by adjusting the laser energy and pulse length, gap size, and reservoir density, and obeys a simple scaling relation.^1 This has been demonstrated at OMEGA at pressures to 200 GPa in Al foils. In an important application, using in-flight x-ray radiography, the material strength of solid-state samples at high pressure can be inferred by measuring the reductions in the growth rates (stabilization) of Rayleigh-Taylor (RT) unstable interfaces. RT instability measurements of solid of Al-6061-T6 ^2 and vanadium, at pressures of 20-100 GPa, and strain rates of 10^6 to 10^8 s-1, show clear material strength effects. Modelling results for two constitutive strength models -- Steinberg-Guinan and Preston-Tonks-Wallace, show enhanced dynamic strength that may be correlated with a high-strain-rate, phono-drag mechanism. Data, modeling details and future prospects for this project using the National Ignition Facility laser, will be presented. [1] J. Edwards et al., Phys. Rev. Lett., 92, 075002 (2004). [2] K. T. Lorenz et al., Phys. Plasmas 12, 056309 (2005). This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

  18. Grinding damage assessment on four high-strength ceramics.

    PubMed

    Canneto, Jean-Jacques; Cattani-Lorente, Maria; Durual, Stéphane; Wiskott, Anselm H W; Scherrer, Susanne S

    2016-02-01

    The purpose of this study was to assess surface and subsurface damage on 4 CAD-CAM high-strength ceramics after grinding with diamond disks of 75 μm, 54 μm and 18 μm and to estimate strength losses based on damage crack sizes. The materials tested were: 3Y-TZP (Lava), dense Al2O3 (In-Ceram AL), alumina glass-infiltrated (In-Ceram ALUMINA) and alumina-zirconia glass-infiltrated (In-Ceram ZIRCONIA). Rectangular specimens with 2 mirror polished orthogonal sides were bonded pairwise together prior to degrading the top polished surface with diamond disks of either 75 μm, 54 μm or 18 μm. The induced chip damage was evaluated on the bonded interface using SEM for chip depth measurements. Fracture mechanics were used to estimate fracture stresses based on average and maximum chip depths considering these as critical flaws subjected to tension and to calculate possible losses in strength compared to manufacturer's data. 3Y-TZP was hardly affected by grinding chip damage viewed on the bonded interface. Average chip depths were of 12.7±5.2 μm when grinding with 75 μm diamond inducing an estimated loss of 12% in strength compared to manufacturer's reported flexural strength values of 1100 MPa. Dense alumina showed elongated chip cracks and was suffering damage of an average chip depth of 48.2±16.3 μm after 75 μm grinding, representing an estimated loss in strength of 49%. Grinding with 54 μm was creating chips of 32.2±9.1 μm in average, representing a loss in strength of 23%. Alumina glass-infiltrated ceramic was exposed to chipping after 75 μm (mean chip size=62.4±19.3 μm) and 54 μm grinding (mean chip size=42.8±16.6 μm), with respectively 38% and 25% estimated loss in strength. Alumina-zirconia glass-infiltrated ceramic was mainly affected by 75 μm grinding damage with a chip average size of 56.8±15.1 μm, representing an estimated loss in strength of 34%. All four ceramics were not exposed to critical chipping at 18 μm diamond grinding. Reshaping a

  19. Compression strengths of advanced composites from a novel mini-sandwich beam

    SciTech Connect

    Crasto, A.S.; Kim, R.Y. )

    1991-04-01

    The intrinsic compression strength of advanced composites is difficult to measure, as the results often depend on the loading geometry and test conditions. Slight variations in specimen geometry can result in an eccentricity of the applied load with consequent specimen buckling. Complex test fixtures and specimen geometries have therefore been developed to avoid such premature failure under compressive loading. In spite of this, there is a large variation in reported strengths for some composites (notably those of intermediate-modulus carbon fibers), and failure strains are also significantly lower than those of the individual filaments. To better approximate the intrinsic composite compressive strength, a novel symmetric mini-sandwich beam was designed for testing. The beam has a composite skin (of variable thickness) on both sides of a neat resin core (of same material as the composite matrix). Unidirectional mini-sandwich specimens of AS4 and S-glass fibers in an epoxy matrix and AS4 in a PEEK matrix were tested in direct axial compression and four-point flexure. Failure occurred predominantly in the specimen gage section, at composite stresses and strains substantially higher than observed in corresponding tests on all composite-coupons. This paper discusses the fabrication and testing of these beams and analyzes the resulting compressive data and failure modes.

  20. Ultra-porous titanium oxide scaffold with high compressive strength

    PubMed Central

    Tiainen, Hanna; Lyngstadaas, S. Petter; Ellingsen, Jan Eirik

    2010-01-01

    Highly porous and well interconnected titanium dioxide (TiO2) scaffolds with compressive strength above 2.5 MPa were fabricated without compromising the desired pore architectural characteristics, such as high porosity, appropriate pore size, surface-to-volume ratio, and interconnectivity. Processing parameters and pore architectural characteristics were investigated in order to identify the key processing steps and morphological properties that contributed to the enhanced strength of the scaffolds. Cleaning of the TiO2 raw powder removed phosphates but introduced sodium into the powder, which was suggested to decrease the slurry stability. Strong correlation was found between compressive strength and both replication times and solid content in the ceramic slurry. Increase in the solid content resulted in more favourable sponge loading, which was achieved due to the more suitable rheological properties of the ceramic slurry. Repeated replication process induced only negligible changes in the pore architectural parameters indicating a reduced flaw size in the scaffold struts. The fabricated TiO2 scaffolds show great promise as load-bearing bone scaffolds for applications where moderate mechanical support is required. PMID:20711636

  1. High strength E-glass/CNF fibers nanocomposite

    NASA Astrophysics Data System (ADS)

    Abu-Zahra, Esam H.

    Glass fibers are among the most versatile industrial materials known today, where 4 billion pounds of glass are used every year. They are readily produced from raw materials, which are available in virtually unlimited supply. Reinforced glass composites still suffer from different weaknesses; such as: poor dispersion, poor alignment and orientation of reinforcing materials, in addition to the difficulties associated with handling randomly oriented nanofibers and nanotubes in an industrial setting. The aim of this work is to study the feasibility of a manufacturing methodology to align the imbedded CNFs in the glass fibers and to quantify the potential gains in the mechanical strength of the nanocomposite glass fibers. The method makes use of the high aspect ratio of the CNFs along with the glass filament drawing process to imbed, disperse and align the CNFs in glass fibers. E-glass frit was prepared and mixed with 5% vol. CNFs. The mix was fed to the glass fibers drawing machine using a special feeding mechanism. Hybrid glass fibers were drawn on 12 runs and tested for their tensile strength properties. A 300% increase on the tensile strength of the E-glass/CNFs fibers was successfully demonstrated. Structural analysis using SEM testing revealed that the CNFs survived the high temperature in the premelter (2400°F), in addition to that for being well dispersed and aligned.

  2. High Strength Discontinuously Reinforced Aluminum For Rocket Applications

    NASA Technical Reports Server (NTRS)

    Pandey, A. B.; Shah, S. R.; Shadoan, M.

    2003-01-01

    This study presents results on the development of a new aluminum alloy with very high strength and ductility. Five compositions of Al-Mg-Sc-Gd-Zr alloy were selected for this purpose. These alloys were also reinforced with 15 volume percent silicon-carbide and boron-carbide particles to produce Discontinuously Reinforced Aluminum (DRA) materials. Matrix alloys and DRA were processed using a powder metallurgy process. The helium gas atomization produced very fine powder with cellular-dentritic microstructure. The microstructure of matrix alloys showed fine Al3Sc based precipitate which provides significant strengthening in these alloys. DRA showed uniform distribution of reinforcement in aluminum matrix. DRA materials were tested at -320 F, 75 F in air and 7S F in gaseous hydrogen environments and matrix alloys were tested at 75 F in air. DRA showed high strengths in the range of 89-111 ksi (614-697 MPa) depending on alloy compositions and test environments. Matrix alloys had a good combination of strength, 84-89 ksi (579-621 MPa) and ductility, 4.5-6.5%. The properties of these materials can further be improved by proper control of processing parameters.

  3. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off.

    PubMed

    Li, Zhiming; Pradeep, Konda Gokuldoss; Deng, Yun; Raabe, Dierk; Tasan, Cemal Cem

    2016-06-09

    Metals have been mankind's most essential materials for thousands of years; however, their use is affected by ecological and economical concerns. Alloys with higher strength and ductility could alleviate some of these concerns by reducing weight and improving energy efficiency. However, most metallurgical mechanisms for increasing strength lead to ductility loss, an effect referred to as the strength-ductility trade-off. Here we present a metastability-engineering strategy in which we design nanostructured, bulk high-entropy alloys with multiple compositionally equivalent high-entropy phases. High-entropy alloys were originally proposed to benefit from phase stabilization through entropy maximization. Yet here, motivated by recent work that relaxes the strict restrictions on high-entropy alloy compositions by demonstrating the weakness of this connection, the concept is overturned. We decrease phase stability to achieve two key benefits: interface hardening due to a dual-phase microstructure (resulting from reduced thermal stability of the high-temperature phase); and transformation-induced hardening (resulting from the reduced mechanical stability of the room-temperature phase). This combines the best of two worlds: extensive hardening due to the decreased phase stability known from advanced steels and massive solid-solution strengthening of high-entropy alloys. In our transformation-induced plasticity-assisted, dual-phase high-entropy alloy (TRIP-DP-HEA), these two contributions lead respectively to enhanced trans-grain and inter-grain slip resistance, and hence, increased strength. Moreover, the increased strain hardening capacity that is enabled by dislocation hardening of the stable phase and transformation-induced hardening of the metastable phase produces increased ductility. This combined increase in strength and ductility distinguishes the TRIP-DP-HEA alloy from other recently developed structural materials. This metastability-engineering strategy should

  4. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off

    NASA Astrophysics Data System (ADS)

    Li, Zhiming; Pradeep, Konda Gokuldoss; Deng, Yun; Raabe, Dierk; Tasan, Cemal Cem

    2016-06-01

    Metals have been mankind’s most essential materials for thousands of years; however, their use is affected by ecological and economical concerns. Alloys with higher strength and ductility could alleviate some of these concerns by reducing weight and improving energy efficiency. However, most metallurgical mechanisms for increasing strength lead to ductility loss, an effect referred to as the strength-ductility trade-off. Here we present a metastability-engineering strategy in which we design nanostructured, bulk high-entropy alloys with multiple compositionally equivalent high-entropy phases. High-entropy alloys were originally proposed to benefit from phase stabilization through entropy maximization. Yet here, motivated by recent work that relaxes the strict restrictions on high-entropy alloy compositions by demonstrating the weakness of this connection, the concept is overturned. We decrease phase stability to achieve two key benefits: interface hardening due to a dual-phase microstructure (resulting from reduced thermal stability of the high-temperature phase); and transformation-induced hardening (resulting from the reduced mechanical stability of the room-temperature phase). This combines the best of two worlds: extensive hardening due to the decreased phase stability known from advanced steels and massive solid-solution strengthening of high-entropy alloys. In our transformation-induced plasticity-assisted, dual-phase high-entropy alloy (TRIP-DP-HEA), these two contributions lead respectively to enhanced trans-grain and inter-grain slip resistance, and hence, increased strength. Moreover, the increased strain hardening capacity that is enabled by dislocation hardening of the stable phase and transformation-induced hardening of the metastable phase produces increased ductility. This combined increase in strength and ductility distinguishes the TRIP-DP-HEA alloy from other recently developed structural materials. This metastability-engineering strategy should

  5. Fracture analysis of a high-strength concrete and a high-strength steel-fiber-reinforced concrete

    NASA Astrophysics Data System (ADS)

    Ferreira, L. E. T.

    2007-09-01

    This paper addresses the use of R-curves to study the fracture behavior of high-strength concrete and steel-fiber-reinforced concrete subjected to crack ing in a three-point bending configuration. The R-curves are modeled through an effective approach based on the equations of linear-elastic fracture mechanics (LEFM), which relates the applied load to the fundamental displacements of notched-through beams loaded monotonically. It is initially shown that, for quasi-brittle materials, the R-curves responses can be evaluated in a quasi-analytical way, using the load-crack mouth opening, the load-load line displacement, or exclusively the displacement responses obtained experimentally. Afterward, the methodology is used to obtain the fracture responses of high-strength and fiber-reinforced concretes, up to the final stages of rupture.

  6. Engineered Cooling Process for High Strength Ductile Iron Castings

    NASA Astrophysics Data System (ADS)

    Lekakh, Simon N.; Mikhailov, Anthony; Kramer, Joseph

    Professor Stefanescu contributed fundamentally to the science of solidification and microstructural evolutions in ductile irons. In this article, the possibility of development of high strength ductile iron by applying an engineered cooling process after casting early shake out from the sand mold was explored. The structures in industrial ductile iron were experimentally simulated using a computer controlled heating/cooling device. CFD modeling was used for process simulation and an experimental bench scale system was developed. The process concept was experimentally verified by producing cast plates with 25 mm wall thickness. The tensile strength was increased from 550 MPa to 1000 MPa in as-cast condition without the need for alloying and heat treatment. The possible practical applications were discussed.

  7. Phase transformation and stabilization of a high strength austenite

    NASA Technical Reports Server (NTRS)

    Jin, S.; Huang, D.

    1976-01-01

    An investigation of the phase transformation and the austenite stabilization in a high strength austenite has been made. An Fe-29Ni-4.3Ti austenite age-hardened by gamma-prime (Ni3Ti) precipitates showed a further increase of strength after martensitic and reverse martensitic phase transformations. The stability of ausaged austenite as well as ausaged and transformation-strengthened austenite was improved significantly through an isothermal treatment at 500 C. The Ms temperature of the strengthened austenite was restored to nearly that of annealed austenite while the austenite was hardened to R(C) 41 through precipitation and phase transformations. The observed austenite stabilization is attributed to the formation of GP zones or short-range order of less than about 10A in size.

  8. High resolution computed tomography of advanced composite and ceramic materials

    NASA Technical Reports Server (NTRS)

    Yancey, R. N.; Klima, S. J.

    1991-01-01

    Advanced composite and ceramic materials are being developed for use in many new defense and commercial applications. In order to achieve the desired mechanical properties of these materials, the structural elements must be carefully analyzed and engineered. A study was conducted to evaluate the use of high resolution computed tomography (CT) as a macrostructural analysis tool for advanced composite and ceramic materials. Several samples were scanned using a laboratory high resolution CT scanner. Samples were also destructively analyzed at the locations of the scans and the nondestructive and destructive results were compared. The study provides useful information outlining the strengths and limitations of this technique and the prospects for further research in this area.

  9. Noise impact of advanced high lift systems

    NASA Technical Reports Server (NTRS)

    Elmer, Kevin R.; Joshi, Mahendra C.

    1995-01-01

    The impact of advanced high lift systems on aircraft size, performance, direct operating cost and noise were evaluated for short-to-medium and medium-to-long range aircraft with high bypass ratio and very high bypass ratio engines. The benefit of advanced high lift systems in reducing noise was found to be less than 1 effective-perceived-noise decibel level (EPNdB) when the aircraft were sized to minimize takeoff gross weight. These aircraft did, however, have smaller wings and lower engine thrusts for the same mission than aircraft with conventional high lift systems. When the advanced high lift system was implemented without reducing wing size and simultaneously using lower flap angles that provide higher L/D at approach a cumulative noise reduction of as much as 4 EPNdB was obtained. Comparison of aircraft configurations that have similar approach speeds showed cumulative noise reduction of 2.6 EPNdB that is purely the result of incorporating advanced high lift system in the aircraft design.

  10. Noise impact of advanced high lift systems

    NASA Astrophysics Data System (ADS)

    Elmer, Kevin R.; Joshi, Mahendra C.

    1995-03-01

    The impact of advanced high lift systems on aircraft size, performance, direct operating cost and noise were evaluated for short-to-medium and medium-to-long range aircraft with high bypass ratio and very high bypass ratio engines. The benefit of advanced high lift systems in reducing noise was found to be less than 1 effective-perceived-noise decibel level (EPNdB) when the aircraft were sized to minimize takeoff gross weight. These aircraft did, however, have smaller wings and lower engine thrusts for the same mission than aircraft with conventional high lift systems. When the advanced high lift system was implemented without reducing wing size and simultaneously using lower flap angles that provide higher L/D at approach a cumulative noise reduction of as much as 4 EPNdB was obtained. Comparison of aircraft configurations that have similar approach speeds showed cumulative noise reduction of 2.6 EPNdB that is purely the result of incorporating advanced high lift system in the aircraft design.

  11. New high-strength neodymium phosphate laser glass

    SciTech Connect

    Galagan, B I; Glushchenko, I N; Denker, B I; Kalachev, Yu L; Mikhailov, Viktor A; Sverchkov, S E; Shcherbakov, Ivan A; Kuleshov, N V

    2009-12-31

    A high-strength neodymium laser glass (SNLG) based on an alumoborophosphate composition is developed and synthesised; its physicochemical, spectral, luminescent, and lasing characteristics are studied. It is found that the chemical stability and thermal resistance of the new glass are considerably higher than the corresponding characteristics of known neodymium-doped phosphate laser glasses. Investigations of lasing upon longitudinal diode pumping showed that, due to the higher thermal resistance, the new glass allows one to obtain output powers twice as high as those of industrial GLS22 glass. (active media)

  12. Preliminary Strength Measurements of High Temperature Ash Filter Deposits

    SciTech Connect

    Kang, B.S.; Johnson, E.K.; Mallela, R.; Barberio, J.F.

    1996-12-31

    The objective of this study is to develop and evaluate preliminary strength measurement techniques for high temperature candle filter ash deposits. The efficient performance of a high temperature gas filtering system is essential for many of the new thermal cycles being proposed for power plants of the future. These new cycles hold the promise of higher thermal efficiency and lower emissions of pollutants. Many of these cycles involve the combustion or gasification of coal to produce high temperature gases to eventually be used in gas turbines. These high temperature gases must be relatively free of particulates. Today, the candle filter appears to be the leading candidate for high temperature particulate removal. The performance of a candle filter depends on the ash deposits shattering into relatively large particles during the pulse cleaning (back flushing) of the filters. These relatively large particles fall into the ash hopper and are removed from the system. Therefore, these 1247 particles must be sufficiently large so that they will not be re-entrained by the gas flow. The shattering process is dictated by the strength characteristics of the ash deposits. Consequently, the objective of this research is to develop measurements for the desired strength characteristics of the ash deposits. Experimental procedures were developed to measure Young`s modulus of the ash deposit at room temperature and the failure tensile strain of ash deposits from room temperature to elevated temperatures. Preliminary data has been obtained for both soft and hard ash deposits. The qualifier ``preliminary`` is used to indicate that these measurements are a first for this material, and consequently, the measurement techniques are not perfected. In addition, the ash deposits tested are not necessarily uniform and further tests are needed in order to obtain meaningful average data.

  13. Scratch-resistant, highly conductive, and high-strength carbon nanotube-based composite yarns.

    PubMed

    Liu, Kai; Sun, Yinghui; Lin, Xiaoyang; Zhou, Ruifeng; Wang, Jiaping; Fan, Shoushan; Jiang, Kaili

    2010-10-26

    High-strength and conductive carbon nanotube (CNT) yarns are very attractive in many potential applications. However, there is a difficulty when simultaneously enhancing the strength and conductivity of CNT yarns. Adding some polymers into CNT yarns to enhance their strength will decrease their conductivity, while treating them in acid or coating them with metal nanoparticles to enhance their conductivity will reduce their strength. To overcome this difficulty, here we report a method to make high-strength and highly conductive CNT-based composite yarns by using a continuous superaligned CNT (SACNT) yarn as a conductive framework and then inserting polyvinyl alcohol (PVA) into the intertube spaces of the framework through PVA/dimethyl sulphoxide solution to enhance the strength of yarns. The as-produced CNT/PVA composite yarns possess very high tensile strengths up to 2.0 GPa and Young's moduli more than 120 GPa, much higher than those of the CNT/PVA yarns reported. The electric conductivity of as-produced composite yarns is as high as 9.2 × 10(4) S/m, comparable to HNO(3)-treated or Au nanoparticle-coated CNT yarns. These composite yarns are flexible, lightweight, scratch-resistant, very stable in the lab environment, and resistant to extremely humid ambient and as a result can be woven into high-strength and heatable fabrics, showing potential applications in flexible heaters, bullet-proof vests, radiation protection suits, and spacesuits.

  14. Microstructure control for high strength 9Cr ferritic-martensitic steels

    NASA Astrophysics Data System (ADS)

    Tan, L.; Hoelzer, D. T.; Busby, J. T.; Sokolov, M. A.; Klueh, R. L.

    2012-03-01

    Ferritic-martensitic (F-M) steels with 9 wt.%Cr are important structural materials for use in advanced nuclear reactors. Alloying composition adjustment, guided by computational thermodynamics, and thermomechanical treatment (TMT) were employed to develop high strength 9Cr F-M steels. Samples of four heats with controlled compositions were subjected to normalization and tempering (N&T) and TMT, respectively. Their mechanical properties were assessed by Vickers hardness and tensile testing. Ta-alloying showed significant strengthening effect. The TMT samples showed strength superior to the N&T samples with similar ductility. All the samples showed greater strength than NF616, which was either comparable to or greater than the literature data of the PM2000 oxide-dispersion-strengthened (ODS) steel at temperatures up to 650 °C without noticeable reduction in ductility. A variety of microstructural analyses together with computational thermodynamics provided rational interpretations on the strength enhancement. Creep tests are being initiated because the increased yield strength of the TMT samples is not able to deduce their long-term creep behavior.

  15. ADVANCED HIGH PERFORMANCE SOLID WALL BLANKET CONCEPTS

    SciTech Connect

    WONG, CPC; MALANG, S; NISHIO, S; RAFFRAY, R; SAGARA, S

    2002-04-01

    OAK A271 ADVANCED HIGH PERFORMANCE SOLID WALL BLANKET CONCEPTS. First wall and blanket (FW/blanket) design is a crucial element in the performance and acceptance of a fusion power plant. High temperature structural and breeding materials are needed for high thermal performance. A suitable combination of structural design with the selected materials is necessary for D-T fuel sufficiency. Whenever possible, low afterheat, low chemical reactivity and low activation materials are desired to achieve passive safety and minimize the amount of high-level waste. Of course the selected fusion FW/blanket design will have to match the operational scenarios of high performance plasma. The key characteristics of eight advanced high performance FW/blanket concepts are presented in this paper. Design configurations, performance characteristics, unique advantages and issues are summarized. All reviewed designs can satisfy most of the necessary design goals. For further development, in concert with the advancement in plasma control and scrape off layer physics, additional emphasis will be needed in the areas of first wall coating material selection, design of plasma stabilization coils, consideration of reactor startup and transient events. To validate the projected performance of the advanced FW/blanket concepts the critical element is the need for 14 MeV neutron irradiation facilities for the generation of necessary engineering design data and the prediction of FW/blanket components lifetime and availability.

  16. Advanced Processes for High-Strength Titanium Alloys

    DTIC Science & Technology

    2007-11-02

    The following advantages, as compared to Vacuum Arc Remelting (VAR), are expected: - full dissolution of LDl due to higher temperature and longer...times in melt condition; - essential elimination of HDl by means of intermediate bath’ application; - employment of cheaper initial materials, such as

  17. Advances in Low Carbon, High Strength Ferrous Alloys

    DTIC Science & Technology

    1993-04-01

    TMCP, "controlled rolling" (CR) is con- ducted and relies on microalloying ; small amounts (0.001 to 0.5%) of elements such as niobium , vanadium ...28] where the system was enhanced by microalloying with boron and titanium . The addition of a small amount of titanium (0.012 to 0.016%) increased the...sections, while vanadium provided resistance to softening at the temperatures required to achieve optimum toughness. Also, low sulphur and phosphorus

  18. Shielded Metal Arc Welding Consumables for Advanced High Strength Steels

    DTIC Science & Technology

    1992-02-01

    100 ksi) depends on the availability of adequate welding consumables. In the case of shielded metal arc welding, the electrodes must provide...associated with the potassium silicate binder (K2 SiO3 .nH2 0). The fluxes were then crushed and sized to 14# Tyler mesh (1.7 mm screen aperture) to...determined that the hydrated potassium silicate binder (K2 SiO3 .nH20) used in this investi- gation was 50 wt. pct. potassium silicate (K 2SiO 3 ) and

  19. Production of high melt strength polypropylene by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Lugão, A. B.; Artel, B. W. H.; Yoshiga, A.; Lima, L. F. C. P.; Parra, D. F.; Bueno, J. R.; Liberman, S.; Farrah, M.; Terçariol, W. R.; Otaguro, H.

    2007-11-01

    High melt strength polypropylene (HMS-PP) has been recently developed and introduced in the market by the major international producers of polypropylene. Therefore, BRASKEM, the leading Brazilian PP producer, together with EMBRARAD, the leading Brazilian gamma irradiator, and the IPEN (Institute of Nuclear Energy and Research) worked to develop a national technology for the production of HMS-PP. One of the effective approaches to improve melt strength and extensibility is to add chain branches onto polypropylene backbone using gamma radiation. Branching and grafting result from the radical combinations during irradiation process. Crosslinking and main chain scission in the polymer structure are also obtained during this process. In this work, gamma irradiation technique was used to induce chemical changes in commercial polypropylene with two different monomers, Tri-allyl-isocyanurate (TAIC) and Tri-methylolpropane-trimethacrylate (TMPTMA), with concentration ranging from 1.5 to 5.0 mmol/100 g of polypropylene. These samples were irradiated with a 60Co source at dose of 20 kGy. It used two different methods of HMS-PP processing. The crosslinking of modified polymers was studied by measuring gel content melt flow rate and rheological properties like melt strength and drawability. It was observed that the reaction method and the monomer type have influenced the properties. However, the concentration variation of monomer has no effect.

  20. High-strength silk protein scaffolds for bone repair

    PubMed Central

    Mandal, Biman B.; Grinberg, Ariela; Seok Gil, Eun; Panilaitis, Bruce; Kaplan, David L.

    2012-01-01

    Biomaterials for bone tissue regeneration represent a major focus of orthopedic research. However, only a handful of polymeric biomaterials are utilized today because of their failure to address critical issues like compressive strength for load-bearing bone grafts. In this study development of a high compressive strength (~13 MPa hydrated state) polymeric bone composite materials is reported, based on silk protein-protein interfacial bonding. Micron-sized silk fibers (10–600 µm) obtained utilizing alkali hydrolysis were used as reinforcement in a compact fiber composite with tunable compressive strength, surface roughness, and porosity based on the fiber length included. A combination of surface roughness, porosity, and scaffold stiffness favored human bone marrow-derived mesenchymal stem cell differentiation toward bone-like tissue in vitro based on biochemical and gene expression for bone markers. Further, minimal in vivo immunomodulatory responses suggested compatibility of the fabricated silk-fiber-reinforced composite matrices for bone engineering applications. PMID:22552231

  1. Influence of processing on the cryogenic mechanical properties of high strength high manganese stainless steel

    SciTech Connect

    Ogawa, R.; Morris, J.W. Jr.

    1983-08-01

    New high strength structural steels have been required for the large superconducting magnets that will be used for the next step test facility for fusion reactor research. The new materials must have high yield strength accompanied with better toughness and better fatigue resistance compared with the conventional nitrogen-strengthened stainless steels such as AISI 304LN and 316LN that were used for the cases of the toroidal field coils for the Large Coil Project. A number of new high manganese austenitic steels have been proposed for new cryogenic structural alloys since they can offer low cost, stable austenite and high strength.

  2. TOUGHREACT Testing in High Ionic Strength Brine Sandstone Systems

    SciTech Connect

    Xu, Tianfu

    2008-09-01

    Deep saline formations and oil and gas reservoirs often contain concentrated brine solutions of ionic strength greater than 1 (I > 1 M). Geochemical modeling, involving high ionic strength brines, is a challenge. In the original TOUGHREACT code (Xu et al., 2004; Xu et al., 2006), activity coefficients of charged aqueous species are computed using an extended Debye-Huckel (DH) equation and parameters derived by Helgeson et al. (1981). The DH model can deal with ionic strengths from dilute to moderately saline water (up to 6 molal for an NaCl-dominant solution). The equations implemented for the DH model are presented in Appendix A. During the course of the Yucca Mountain project, a Pitzer ion-interaction model was implemented into TOUGHREACT. This allows the application of this simulator to problems involving much more concentrated aqueous solutions, such as those involving geochemical processes in and around high-level nuclear waste repositories where fluid evaporation and/or boiling is expected to occur (Zhang et al., 2007). The Pitzer ion-interaction model, which we refer to as the Pitzer virial approach, and associated ion-interaction parameters have been applied successfully to study non-ideal concentrated aqueous solutions. The formulation of the Pitzer model is presented in Appendix B; detailed information can be founded in Zhang et al. (2007). For CO{sub 2} geological sequestration, the Pitzer ion-interaction model for highly concentrated brines was incorporated into TOUGHREACT/ECO2N, then was tested and compared with a previously implemented extended Debye-Hueckel (DH) ion activity model. The comparison was made through a batch geochemical system using a Gulf Coast sandstone saline formation.

  3. The Strengths of High-Achieving Black High School Students in a Racially Diverse Setting

    ERIC Educational Resources Information Center

    Marsh, Kris; Chaney, Cassandra; Jones, Derrick

    2012-01-01

    Robert Hill (1972) identified strengths of Black families: strong kinship bonds, strong work orientation, adaptability of family roles, high achievement orientation, and religious orientation. Some suggest these strengths sustain the physical, emotional, social, and spiritual needs of Blacks. This study used narratives and survey data from a…

  4. The Strengths of High-Achieving Black High School Students in a Racially Diverse Setting

    ERIC Educational Resources Information Center

    Marsh, Kris; Chaney, Cassandra; Jones, Derrick

    2012-01-01

    Robert Hill (1972) identified strengths of Black families: strong kinship bonds, strong work orientation, adaptability of family roles, high achievement orientation, and religious orientation. Some suggest these strengths sustain the physical, emotional, social, and spiritual needs of Blacks. This study used narratives and survey data from a…

  5. Further observations on high impact strength denture-base materials.

    PubMed

    Rodford, R A; Braden, M

    1992-01-01

    Previous studies have shown that high impact strength can be conferred on denture-base poly(methyl methacrylate) polymers by modification with acrylic-terminated butadiene-styrene block copolymers, and that the acrylic end-group was necessary for effective reinforcement. It is now shown that, by solvent extraction studies, grafting of the copolymer occurs both with acrylic-terminated and non-terminated block copolymers. It is therefore concluded that the mode of grafting is different, and some possible mechanisms are discussed.

  6. Method for providing a low density high strength polyurethane foam

    DOEpatents

    Whinnery, Jr., Leroy L.; Goods, Steven H.; Skala, Dawn M.; Henderson, Craig C.; Keifer, Patrick N.

    2013-06-18

    Disclosed is a method for making a polyurethane closed-cell foam material exhibiting a bulk density below 4 lbs/ft.sup.3 and high strength. The present embodiment uses the reaction product of a modified MDI and a sucrose/glycerine based polyether polyol resin wherein a small measured quantity of the polyol resin is "pre-reacted" with a larger quantity of the isocyanate in a defined ratio such that when the necessary remaining quantity of the polyol resin is added to the "pre-reacted" resin together with a tertiary amine catalyst and water as a blowing agent, the polymerization proceeds slowly enough to provide a stable foam body.

  7. PM alloy 625M for high strength corrosion resistant applications

    SciTech Connect

    Rizzo, F.J.; Floreen, S.

    1997-06-01

    In applications where the combination of high strength and good corrosion resistance are required, there have been only a few alloys of choice. A new powder metallurgy alloy has been developed, PM 625M, a niobium modification of Alloy 625, as a material to fill this need. One area of particular interest is the nuclear power industry, where many problems have been encountered with bolts, springs, and guidepins. Mechanical properties and stress corrosion cracking data of PM 625M are presented in this paper.

  8. High Strength, Large Core Pure Silica Fibers For Laser Surgery

    NASA Astrophysics Data System (ADS)

    Skutnik, B. J.; Hodge, M. H.; Clarkin, J. P.

    1988-06-01

    Recently many researchers, doctors and instrument companies have begun developing fiber optic laser power delivery systems to accomplish less traumatic surgery or localized irradiation treatment(1). With high power levels, particularly in short bursts, large core fibers are needed to keep the power densities from approaching the damage threshold of silica. Among the many advantages of using optical fibers in laser surgery are the following: microsurgery can be employed, trauma is reduced, access to interior through catheter introduction into vascular, gastrointestinal or respiratory tracts, accurate application of laser power through a flexible lightweight medium to provide localized irradiation as well as surgical removal, and the devices are sterilizable and of moderate cost permitting one-time use (disposable) probes. To achieve these wonderful gains in surgical procedures, the optical fibers must satisfy many optical and mechanical requirements. In use the optical fibers are often required to bend around curves or obstructions to reach the desired application area. Large tensile stresses can occur on the outer radius of the bent fiber, especially with large core fibers, thus high strength fibers are needed. Furthermore, since body fluids are primarily water, stress corrosion and fatigue(2-6) will occur. Therefore, the fibers should have excellent fatigue resistance as well as high strength. This paper further describes these requirements and presents details about an optical fiber which meets these requirements and provides additional very useful properties. These fibers with pure silica cores are called Hard Clad Silica, HCS*, fibers because of their hard bonded cladding over silica structure.

  9. Thermophysical property measurements on low alloy high strength carbon steels

    SciTech Connect

    Li, M.; Brooks, J.A.; Atteridge, D.G.; Porter, W.D.

    1997-06-15

    The alloys of interest in this study were AISI Type 4230 and Type 4320 low alloy high strength carbon steels. They are heat-treatable steels and are usually used in the quenched and tempered condition. The Type 4130 has about 0.3% (wt.)C, 0.95%Cr, and 0.2% Mo. The Type 4320 has about 0.2%C, 1.7%Ni, 0.7%Cr, and 0.3% Mo. They are among the most popular alloy steels because of their excellent combination of mechanical properties and are used in both cast and wrought forms for many applications requiring high strength and toughness. However, during the casting operation, carbon segregation to the part surface forms a high carbon content surface layer in the part, which will induce surface cracking in the subsequent quenching process. And, during the welding operation, the critical cooling rate in the heat-affected zone (HAZ) will determine if the weldment is crack-free or not. Thus, the numerical effort to study the thermal history, microstructure evolution and residual stress development during welding and casting is critical to the application of these steels. This modeling effect requires the accurate knowledge of thermophysical properties, such as thermal expansion, solidus and liquidus temperatures, specific heat capacity, and heat of fusion. Unfortunately, these thermophysical properties are unavailable for temperatures over 1,000 C (1,2), thus the need for this study.

  10. Magnetic Implosion for Novel Strength Measurements at High Strain Rates

    SciTech Connect

    Lee, H.; Preston, D.L.; Bartsch, R.R.; Bowers, R.L.; Holtkamp, D.; Wright, B.L.

    1998-10-19

    Recently Lee and Preston have proposed to use magnetic implosions as a new method for measuring material strength in a regime of large strains and high strain rates inaccessible to previously established techniques. By its shockless nature, this method avoids the intrinsic difficulties associated with an earlier approach using high explosives. The authors illustrate how the stress-strain relation for an imploding liner can be obtained by measuring the velocity and temperature history of its inner surface. They discuss the physical requirements that lead us to a composite liner design applicable to different test materials, and also compare the code-simulated prediction with the measured data for the high strain-rate experiments conducted recently at LANL. Finally, they present a novel diagnostic scheme that will enable us to remove the background in the pyrometric measurement through data reduction.

  11. High Pressure Strength Study on NaCl

    NASA Astrophysics Data System (ADS)

    Mi, Z.; Shieh, S. R.; High Pressure Mineral Physics Group

    2010-12-01

    Yield strength is regarded as one important property related to rheological characteristics of minerals in the Earth’s interior. The strength study of NaCl, a popular pressure medium in static high pressure experiments, has been carried out under non-hydrostatic conditions in a diamond anvil cell up to 43 GPa at room temperature using radial energy dispersive X-ray diffraction technique. Phase transformation from B1 (rock salt structure) to B2 (CsCl structure) starts at 29.4 GPa, and is complete at 32.1 GPa. Bulk modulus obtained by third order Birch-Manurgham equation of state is 25.5 GPa with pressure derivative 4.6 for B1 phase, and 30.78 GPa with pressure derivative 4.32 GPa for B2 phase, which are in a good agreement with previous studies. The differential stress of NaCl B1 phase shows very gentle increase with pressure, which indicates that NaCl is a very good pressure-transmitting medium at pressure below 30 GPa. However, the differential stress increases more abruptly for B2 phase and this may imply that NaCl can no longer be regarded as a “soft” pressure medium at very high pressures. For B1 phase, (111) is the strongest plane and (200) is the weakest plane, while (200) becomes the strongest plane in B2 phase. Pure NaCl is weaker than mixture MgO and NaCl, which indicates that soft material become stronger when mixed with hard material. The yield strength of B2 obtained through energy dispersive X-ray diffraction technique increase linearly, while the value derived by pressure gradient method shows jagged trend.

  12. Reliability of Strength Testing using the Advanced Resistive Exercise Device and Free Weights

    NASA Technical Reports Server (NTRS)

    English, Kirk L.; Loehr, James A.; Laughlin, Mitzi A.; Lee, Stuart M. C.; Hagan, R. Donald

    2008-01-01

    The Advanced Resistive Exercise Device (ARED) was developed for use on the International Space Station as a countermeasure against muscle atrophy and decreased strength. This investigation examined the reliability of one-repetition maximum (1RM) strength testing using ARED and traditional free weight (FW) exercise. Methods: Six males (180.8 +/- 4.3 cm, 83.6 +/- 6.4 kg, 36 +/- 8 y, mean +/- SD) who had not engaged in resistive exercise for at least six months volunteered to participate in this project. Subjects completed four 1RM testing sessions each for FW and ARED (eight total sessions) using a balanced, randomized, crossover design. All testing using one device was completed before progressing to the other. During each session, 1RM was measured for the squat, heel raise, and deadlift exercises. Generalizability (G) and intraclass correlation coefficients (ICC) were calculated for each exercise on each device and were used to predict the number of sessions needed to obtain a reliable 1RM measurement (G . 0.90). Interclass reliability coefficients and Pearson's correlation coefficients (R) also were calculated for the highest 1RM value (1RM9sub peak)) obtained for each exercise on each device to quantify 1RM relationships between devices.

  13. High strength fused silica flexures manufactured by femtosecond laser

    NASA Astrophysics Data System (ADS)

    Bellouard, Yves; Said, Ali A.; Dugan, Mark; Bado, Philippe

    2009-02-01

    Flexures are mechanical elements used in micro- and precision-engineering to precisely guide the motion of micro-parts. They consist of slender bodies that deform elastically upon the application of a force. Although counter-intuitive at first, fused silica is an attractive material for flexure. Pending that the machining process does not introduce surface flaws that would lead to catastrophic failure, the material has a theoretically high ultimate tensile strength of several GPa. We report on high-aspect ratio fused silica flexures manufactured by femtosecond laser combined with chemical etching. Notch-hinges with thickness as small as twenty microns and aspect ratios comparable to aspect ratios obtained by Deep- Reactive-Ion-Etching (DRIE) were fabricated and tested under different loading conditions. Multiple fracture tests were performed for various loading conditions and the cracks morphologies were analyzed using Scanning Electron Microscopy. The manufactured elements show outstanding mechanical properties with flexural strengths largely exceeding those obtained with other technologies and materials. Fused silica flexures offer a mean to combine integrated optics with micro-mechanics in a single monolithic substrate. Waveguides and mechanical elements can be combined in a monolithic devices opening new opportunities for integrated opto-mechatronics devices.

  14. High Temperature Membrane & Advanced Cathode Catalyst Development

    SciTech Connect

    Protsailo, Lesia

    2006-04-20

    Current project consisted of three main phases and eighteen milestones. Short description of each phase is given below. Table 1 lists program milestones. Phase 1--High Temperature Membrane and Advanced Catalyst Development. New polymers and advanced cathode catalysts were synthesized. The membranes and the catalysts were characterized and compared against specifications that are based on DOE program requirements. The best-in-class membranes and catalysts were downselected for phase 2. Phase 2--Catalyst Coated Membrane (CCM) Fabrication and Testing. Laboratory scale catalyst coated membranes (CCMs) were fabricated and tested using the down-selected membranes and catalysts. The catalysts and high temperature membrane CCMs were tested and optimized. Phase 3--Multi-cell stack fabrication. Full-size CCMs with the down-selected and optimized high temperature membrane and catalyst were fabricated. The catalyst membrane assemblies were tested in full size cells and multi-cell stack.

  15. Strength study of carbon dioxide under high pressures

    NASA Astrophysics Data System (ADS)

    Kaci, L.; Shieh, S. R.; Kiefer, B.

    2011-12-01

    Carbon dioxide (CO2) is one of the greenhouse gases that can be readily found in the Earth's atmosphere and possibly inside the Earth. The strength and elasticity study of carbon dioxide (CO2) under high pressures is important to understand the rheological behavior of CO2 that may be relevant to the CO2 storage issue within the Earth and also the evolution of other planets. Quantitative measurements of the strength of CO2 were achieved in a diamond anvil cell using x-ray diffraction in a radial geometry. CO2 sample was cryogenically loaded into a beryllium gasket and a thin foil of gold about 20 x 20 um2 was placed at the center of the gasket hole to serve as a pressure standard. The x-ray diffraction data were collected at beamline X17C of National Synchrotron Light Source, Brookhaven National Laboratory. We have determined the strength using three different methods. We analyze the peak broadening measurements in the axial direction, peak shifts in radial direction associated with lattice strains theory and also we measured pressure gradient of the CO2 under stress using ruby florescence method. Our results show that the ratios of differential stress to shear modulus are ranging from 0.006(5) to 0.04(18), exhibiting a positive slope within the applied pressure to 12 GPa. The differential stress was calculated as 0.029(3)-0.224(28) GPa, with the inputs of shear module from theoretical calculations. Our differential stress values are close to those of argon data at low pressures. In addition, our results show no pressure gradient of CO2 below 20 GPa. This fact suggests that up to 20GPa the differential stress supported by CO2 is mainly arising from elastic deformation. This is also supported by the linear positive trend of differential strain demonstrating the elastic regime up to 12 GPa.

  16. Experimental investigation of bond strength under high loading rates

    NASA Astrophysics Data System (ADS)

    Michal, Mathias; Keuser, Manfred; Solomos, George; Peroni, Marco; Larcher, Martin; Esteban, Beatriz

    2015-09-01

    The structural behaviour of reinforced concrete is governed significantly by the transmission of forces between steel and concrete. The bond is of special importance for the overlapping joint and anchoring of the reinforcement, where rigid bond is required. It also plays an important role in the rotational capacity of plastic hinges, where a ductile bond behaviour is preferable. Similar to the mechanical properties of concrete and steel also the characteristics of their interaction changes with the velocity of the applied loading. For smooth steel bars with its main bond mechanisms of adhesion and friction, nearly no influence of loading rate is reported in literature. In contrast, a high rate dependence can be found for the nowadays mainly used deformed bars. For mechanical interlock, where ribs of the reinforcing steel are bracing concrete material surrounding the bar, one reason can be assumed to be in direct connection with the increase of concrete compressive strength. For splitting failure of bond, characterized by the concrete tensile strength, an even higher dynamic increase is observed. For the design of Structures exposed to blast or impact loading the knowledge of a rate dependent bond stress-slip relationship is required to consider safety and economical aspects at the same time. The bond behaviour of reinforced concrete has been investigated with different experimental methods at the University of the Bundeswehr Munich (UniBw) and the Joint Research Centre (JRC) in Ispra. Both static and dynamic tests have been carried out, where innovative experimental apparatuses have been used. The bond stress-slip relationship and maximum pull-out-forces for varying diameter of the bar, concrete compressive strength and loading rates have been obtained. It is expected that these experimental results will contribute to a better understanding of the rate dependent bond behaviour and will serve for calibration of numerical models.

  17. Relationships of body size, segmental dimensions, and ponderal equivalents to muscular strength in high-strength and low-strength subjects.

    PubMed

    Hortobágyi, T; Katch, F I; Katch, V L; LaChance, P F; Behnke, A R

    1990-10-01

    There are conflicting results in prior studies concerning the relationships among body size, muscle size, and muscular strength. The purpose of the present study was to evaluate how body size, body shape, and segmental dimensions related to individual differences in muscular strength. Subjects were tested on four dynamic measures of strength and then classified into one of two groups as high strength (HS; N = 21) and low strength (LS; N = 21). Individual differences in strength were then related to body composition and segmental anthropometry. Strength was assessed during high-resistance, low-velocity standing squat and supine bench press with an isokinetic dynamometer, and during seated bench press and knee extension with a hydraulic resistance dynamometer. Anthropometry and body composition included 11 girths, six fatfolds, predicted fat-free mass (FFM), thigh and upper arm volume, muscle + bone cross-sectional area (CSA), and the Behnke Ponderal Somatogram (PSom) body profiling system. There was a 21.3% difference in strength between HS and LS (p less than 0.05), but no significant differences in age, stature, and fatfolds. MANOVA revealed that seven of 11 girth components of PSom were larger for HS (p less than 0.05). The correlations between strength vs body mass, FFM, thigh and upper arm volume, and CSA and fatfolds in HS and LS ranged from r = -0.52 to 0.56 (r = -0.70 to 0.70 when corrected for restriction of range). We conclude that individual differences in muscular strength are poorly related to various measures of body size and segmental body dimensions.

  18. Strength calculation for fiber concrete slabs under high velocity impact

    NASA Astrophysics Data System (ADS)

    Artem, Ustinov; Kopanica, Dmitry; Belov, Nikolay; Jugov, Nikolay; Jugov, Alexey; Koshko, Bogdan; Kopanitsa, Georgy

    2017-01-01

    The paper presents results of the research on strength of concrete slabs reinforced with steel fiber and tested under a high velocity impact. Mathematical models are proposed to describe the behavior of continua with a complex structure with consideration of porosity, non-elastic effects, phase transformations and dynamic destructions of friable and plastic materials under shock wave impact. The models that describe the behavior of structural materials were designed in the RANET-3 CAD software system. This allowed solving the tasks of hit and explosion in the full three-dimensional statement using finite elements method modified for dynamic problems. The research results demonstrate the validity of the proposed mathematical model to calculate stress-strain state and fracture of layered fiber concrete structures under high velocity impact caused by blast wave.

  19. Prediction of Microstructure in High-Strength Ductile Forging Parts

    SciTech Connect

    Urban, M.; Back, A.; Hirt, G.; Keul, C.; Bleck, W.

    2010-06-15

    Governmental, environmental and economic demands call for lighter, stiffer and at the same time cheaper products in the vehicle industry. Especially safety relevant parts have to be stiff and at the same time ductile. The strategy of this project was to improve the mechanical properties of forging steel alloys by employing a high-strength and ductile bainitic microstructure in the parts while maintaining cost effective process chains to reach these goals for high stressed forged parts. Therefore, a new steel alloy combined with an optimized process chain has been developed. To optimize the process chain with a minimum of expensive experiments, a numerical approach was developed to predict the microstructure of the steel alloy after the process chain based on FEM simulations of the forging and cooling combined with deformation-time-temperature-transformation-diagrams.

  20. Mechanical Properties of High Strength Al-Mg Alloy Sheet

    NASA Astrophysics Data System (ADS)

    Choi, Bong-Jae; Hong, Kyung-Eui; Kim, Young-Jig

    The aim of this research is to develop the high strength Al alloy sheet for the automotive body. For the fabrication Al-Mg alloy sheet, the composition of alloying elements was designed by the properties database and CALPHAD (Calculation Phase Diagram) approach which can predict the phases during solidification using thermodynamic database. Al-Mg alloys were designed using CALPHAD approach according to the high content of Mg with minor alloying elements. After phase predictions by CALPHAD, designed Al-Mg alloys were manufactured. Addition of Mg in Al melts were protected by dry air/Sulphur hexafluoride (SF6) mixture gas which can control the severe Mg ignition and oxidation. After rolling procedure of manufactured Al-Mg alloys, mechanical properties were examined with the variation of the heat treatment conditions.

  1. Design of Reforma 509 with High Strength Steel

    NASA Astrophysics Data System (ADS)

    Smith, Stuart; Whitby, William; Easton, Marc

    Reforma 509 is a high-rise building located in the heart of the Central Business District of Mexico City. The building is comprised of office, hotel, residential and parking and forms part of a cluster of tall buildings in the area. If completed today, Reforma 509 would be the tallest building in Mexico, at 238m. All of the building's gravity and lateral (wind and seismic) loads are carried by an architecturally expressed perimeter frame that is formed from highly efficient Steel Reinforced Concrete (SRC) columns coupled together by steel tube perimeter bracing. This paper investigates the implications of substituting a grade 50 (fy=345 MPa) carbon steel with a higher strength micro-alloyed grade 70 (fy=480 MPa) steel in the design of Reforma 509.

  2. Ultra-high strength, high conductivity Cu-Ag alloy wires

    SciTech Connect

    Sakai, Y.; Schneider-Muntau, H.J.

    1997-03-01

    A new wire-conductor fabrication method has been developed for Cu-Ag alloys containing 6--24 wt% Ag in which ultra-high strength and high conductivity are obtained by cold drawing combined with intermediate heat treatments. At optimized stages of cold drawing, the wires were given five intermediate heat treatments at 330--430 C for 1--2 hr. This new fabrication method has made it possible to get ultra-high strength at low reduction. The optimized Cu-24 wt% Ag alloy wire with a total drawing strain of {eta} = 5.8 shows an ultimate tensile strength of 1.5 GPa and an electrical conductivity of 65% IACS at room temperature. One advantage of this processing from a manufacturing point of view is that a special technique, such as rebundling, is not required to obtain ultra-high strength, only cold drawing combined with intermediate heat treatments. Also, this fabrication method has made it possible to produce ultra-high strength at low reductions making high-strength, large cross-section conductors a possibility. The wires fabricated by this method are promising candidate conductors for high-field pulse magnets.

  3. Modeling of Compressive Strength for Self-Consolidating High-Strength Concrete Incorporating Palm Oil Fuel Ash

    PubMed Central

    Safiuddin, Md.; Raman, Sudharshan N.; Abdus Salam, Md.; Jumaat, Mohd. Zamin

    2016-01-01

    Modeling is a very useful method for the performance prediction of concrete. Most of the models available in literature are related to the compressive strength because it is a major mechanical property used in concrete design. Many attempts were taken to develop suitable mathematical models for the prediction of compressive strength of different concretes, but not for self-consolidating high-strength concrete (SCHSC) containing palm oil fuel ash (POFA). The present study has used artificial neural networks (ANN) to predict the compressive strength of SCHSC incorporating POFA. The ANN model has been developed and validated in this research using the mix proportioning and experimental strength data of 20 different SCHSC mixes. Seventy percent (70%) of the data were used to carry out the training of the ANN model. The remaining 30% of the data were used for testing the model. The training of the ANN model was stopped when the root mean square error (RMSE) and the percentage of good patterns was 0.001 and ≈100%, respectively. The predicted compressive strength values obtained from the trained ANN model were much closer to the experimental values of compressive strength. The coefficient of determination (R2) for the relationship between the predicted and experimental compressive strengths was 0.9486, which shows the higher degree of accuracy of the network pattern. Furthermore, the predicted compressive strength was found very close to the experimental compressive strength during the testing process of the ANN model. The absolute and percentage relative errors in the testing process were significantly low with a mean value of 1.74 MPa and 3.13%, respectively, which indicated that the compressive strength of SCHSC including POFA can be efficiently predicted by the ANN. PMID:28773520

  4. Synaptic strength and postsynaptically silent synapses through advanced aging in rat hippocampal CA1 pyramidal neurons

    PubMed Central

    Sametsky, Evgeny A.; Disterhoft, John F.; Geinisman, Yuri; Nicholson, Daniel A.

    2009-01-01

    Synaptic dysfunction is thought to contribute to age-related learning impairments. Detailed information regarding the presence of silent synapses and the strength of functional ones through advanced aging, however, is lacking. Here we used paired-pulse minimal stimulation techniques in CA1 stratum radiatum to determine whether the amplitude of spontaneous and evoked miniature excitatory postsynaptic currents (sEPSCs and eEPSCs, respectively) changes over the lifespan of rats in hippocampal CA1 pyramidal neurons, and whether silent synapses are present in adult and aged rats. The amplitudes of both sEPSCs and eEPSCs at resting membrane potential (i.e., clamped at −65 mV) initially increased between 2 weeks and 3 months, but then remained constant through 36 months of age. The potency of the eEPSCs at depolarized membrane potentials (i.e., clamped at +40 mV), however, was highest among 36-month old rats. Additionally, presynaptically silent synapses in CA1 stratum radiatum disappeared between 2 weeks and 3 months, but postsynaptically silent synapses were present through advanced aging. The similarity of silent and functional synapses in CA1 hippocampus at resting membrane potentials throughout adulthood in rats may indicate that impairments in the mechanisms of synaptic plasticity and its subsequent stabilization, rather than deficient synaptic transmission, underlie age-related cognitive decline. Such a notion is consistent with the increased amplitude of synaptic currents at depolarized potentials, perhaps suggesting an upregulation in the expression of synaptic NMDA receptors once rats reach advanced age. PMID:18620783

  5. High-strength carbon nanotube fibre-like ribbon with high ductility and high electrical conductivity.

    PubMed

    Wang, J N; Luo, X G; Wu, T; Chen, Y

    2014-06-25

    Macroscopic fibres made up of carbon nanotubes exhibit properties far below theoretical predictions and even much lower than those for conventional carbon fibres. Here we report improvements of mechanical and electrical properties by more than one order of magnitude by pressurized rolling. Our carbon nanotubes self-assemble to a hollow macroscopic cylinder in a tube reactor operated at high temperature and then condense in water or ethanol to form a fibre, which is continually spooled in an open-air environment. This initial fibre is densified by rolling under pressure, leading to a combination of high tensile strength (3.76-5.53 GPa), high tensile ductility (8-13%) and high electrical conductivity ((1.82-2.24) × 10(4) S cm(-1)). Our study therefore demonstrates strategies for future performance maximization and the very considerable potential of carbon nanotube assemblies for high-end uses.

  6. Evaluation of Advanced Bionics high resolution mode.

    PubMed

    Buechner, Andreas; Frohne-Buechner, Carolin; Gaertner, Lutz; Lesinski-Schiedat, Anke; Battmer, Rolf-Dieter; Lenarz, Thomas

    2006-07-01

    The objective of this paper is to evaluate the advantages of the Advanced Bionic high resolution mode for speech perception, through a retrospective analysis. Forty-five adult subjects were selected who had a minimum experience of three months' standard mode (mean of 10 months) before switching to high resolution mode. Speech perception was tested in standard mode immediately before fitting with high resolution mode, and again after a maximum of six months high resolution mode usage (mean of two months). A significant improvement was found, between 11 and 17%, depending on the test material. The standard mode preference does not give any indication about the improvement when switching to high resolution. Users who are converted within any study achieve a higher performance improvement than those converted in the clinical routine. This analysis proves the significant benefits of high resolution mode for users, and also indicates the need for guidelines for individual optimization of parameter settings in a high resolution mode program.

  7. Accelerated Creep Testing of High Strength Aramid Webbing

    NASA Technical Reports Server (NTRS)

    Jones, Thomas C.; Doggett, William R.; Stnfield, Clarence E.; Valverde, Omar

    2012-01-01

    A series of preliminary accelerated creep tests were performed on four variants of 12K and 24K lbf rated Vectran webbing to help develop an accelerated creep test methodology and analysis capability for high strength aramid webbings. The variants included pristine, aged, folded and stitched samples. This class of webbings is used in the restraint layer of habitable, inflatable space structures, for which the lifetime properties are currently not well characterized. The Stepped Isothermal Method was used to accelerate the creep life of the webbings and a novel stereo photogrammetry system was used to measure the full-field strains. A custom MATLAB code is described, and used to reduce the strain data to produce master creep curves for the test samples. Initial results show good correlation between replicates; however, it is clear that a larger number of samples are needed to build confidence in the consistency of the results. It is noted that local fiber breaks affect the creep response in a similar manner to increasing the load, thus raising the creep rate and reducing the time to creep failure. The stitched webbings produced the highest variance between replicates, due to the combination of higher local stresses and thread-on-fiber damage. Large variability in the strength of the webbings is also shown to have an impact on the range of predicted creep life.

  8. Development of Life Prediction Models for High Strength Steel in a Hydrogen Emitting Environment

    DTIC Science & Technology

    2012-05-01

    alternative. Hydrogen embrittlement of high strength steel is the most predominant unforeseen hurdle since high strength materials show sensitivity to...predictive models for each geometry. 15. SUBJECT TERMS hydrogen embrittlement , 4340, corrosion 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...implementation of any potential alternative. Hydrogen embrittlement of high strength steel is the most predominant unforeseen hurdle since high

  9. High Strength Concrete Columns under Axial Compression Load: Hybrid Confinement Efficiency of High Strength Transverse Reinforcement and Steel Fibers.

    PubMed

    Perceka, Wisena; Liao, Wen-Cheng; Wang, Yo-de

    2016-04-01

    Addition of steel fibers to high strength concrete (HSC) improves its post-peak behavior and energy absorbing capability, which can be described well in term of toughness. This paper attempts to obtain both analytically and experimentally the efficiency of steel fibers in HSC columns with hybrid confinement of transverse reinforcement and steel fibers. Toughness ratio (TR) to quantify the confinement efficiency of HSC columns with hybrid confinement is proposed through a regression analysis by involving sixty-nine TRs of HSC without steel fibers and twenty-seven TRs of HSC with hybrid of transverse reinforcement and steel fibers. The proposed TR equation was further verified by compression tests of seventeen HSC columns conducted in this study, where twelve specimens were reinforced by high strength rebars in longitudinal and transverse directions. The results show that the efficiency of steel fibers in concrete depends on transverse reinforcement spacing, where the steel fibers are more effective if the spacing transverse reinforcement becomes larger in the range of 0.25-1 effective depth of the section column. Furthermore, the axial load-strain curves were developed by employing finite element software (OpenSees) for simulating the response of the structural system. Comparisons between numerical and experimental axial load-strain curves were carried out.

  10. High Strength Concrete Columns under Axial Compression Load: Hybrid Confinement Efficiency of High Strength Transverse Reinforcement and Steel Fibers

    PubMed Central

    Perceka, Wisena; Liao, Wen-Cheng; Wang, Yo-de

    2016-01-01

    Addition of steel fibers to high strength concrete (HSC) improves its post-peak behavior and energy absorbing capability, which can be described well in term of toughness. This paper attempts to obtain both analytically and experimentally the efficiency of steel fibers in HSC columns with hybrid confinement of transverse reinforcement and steel fibers. Toughness ratio (TR) to quantify the confinement efficiency of HSC columns with hybrid confinement is proposed through a regression analysis by involving sixty-nine TRs of HSC without steel fibers and twenty-seven TRs of HSC with hybrid of transverse reinforcement and steel fibers. The proposed TR equation was further verified by compression tests of seventeen HSC columns conducted in this study, where twelve specimens were reinforced by high strength rebars in longitudinal and transverse directions. The results show that the efficiency of steel fibers in concrete depends on transverse reinforcement spacing, where the steel fibers are more effective if the spacing transverse reinforcement becomes larger in the range of 0.25–1 effective depth of the section column. Furthermore, the axial load–strain curves were developed by employing finite element software (OpenSees) for simulating the response of the structural system. Comparisons between numerical and experimental axial load–strain curves were carried out. PMID:28773391

  11. Advanced high-performance computer system architectures

    NASA Astrophysics Data System (ADS)

    Vinogradov, V. I.

    2007-02-01

    Convergence of computer systems and communication technologies are moving to switched high-performance modular system architectures on the basis of high-speed switched interconnections. Multi-core processors become more perspective way to high-performance system, and traditional parallel bus system architectures (VME/VXI, cPCI/PXI) are moving to new higher speed serial switched interconnections. Fundamentals in system architecture development are compact modular component strategy, low-power processor, new serial high-speed interface chips on the board, and high-speed switched fabric for SAN architectures. Overview of advanced modular concepts and new international standards for development high-performance embedded and compact modular systems for real-time applications are described.

  12. Method of making high strength, tough alloy steel

    DOEpatents

    Thomas, Gareth; Rao, Bangaru V. N.

    1979-01-01

    A high strength, tough alloy steel, particularly suitable for the mining industry, is formed by heating the steel to a temperature in the austenite range (1000.degree.-1100.degree. C.) to form a homogeneous austenite phase and then cooling the steel to form a microstructure of uniformly dispersed dislocated martensite separated by continuous thin boundary films of stabilized retained austenite. The steel includes 0.2-0.35 weight % carbon, at least 1% and preferably 3-4.5% chromium, and at least one other subsitutional alloying element, preferably manganese or nickel. The austenite film is stable to subsequent heat treatment as by tempering (below 300.degree. C.) and reforms to a stable film after austenite grain refinement.

  13. Thermal Transport in High-Strength Polymethacrylimide (PMI) Foam Insulations

    NASA Astrophysics Data System (ADS)

    Qiu, L.; Zheng, X. H.; Zhu, J.; Tang, D. W.; Yang, S. Y.; Hu, A. J.; Wang, L. L.; Li, S. S.

    2015-11-01

    Thermal transport in high-strength polymethacrylimide (PMI) foam insulations is described, with special emphasis on the density and temperature effects on the thermal transport performance. Measurements of the effective thermal conductivity are performed by a freestanding sensor-based 3ω method. A linear relationship between the density and the effective thermal conductivity is observed. Based on the analysis of the foam insulation morphological structures and the corresponding geometrical cell model, the quantitative contribution of the solid conductivity and the gas conductivity as well as the radiative conductivity to the total effective thermal conductivity as a function of the density and temperature is calculated. The agreement between the curves of the results from the developed model and experimental data indicate the model can be used for PMI foam insulating performance optimization.

  14. Recent Niobium Developments for High Strength Steel Energy Applications

    NASA Astrophysics Data System (ADS)

    Jansto, Steven G.

    Niobium-containing high strength steel materials have been developed for oil and gas pipelines, offshore platforms, nuclear plants, boilers and alternative energy applications. Recent research and the commercialization of alternative energy applications such as windtower structural supports and power transmission gear components provide enhanced performance. Through the application of these Nb-bearing steels in demanding energy-related applications, the designer and end user experience improved toughness at low temperature, excellent fatigue resistance and fracture toughness and excellent weldability. These enhancements provide structural engineers the opportunity to further improve the structural design and performance. For example, through the adoption of these Nb-containing structural materials, several design-manufacturing companies are initiating new windtower designs operating at higher energy efficiency, lower cost, and improved overall material design performance.

  15. Mechanical properties of heat treated high-strength microalloyed steels

    NASA Astrophysics Data System (ADS)

    Bol'shakov, V. I.

    1997-04-01

    An international seminar on problems of modern materials science held in April 1997 in Dnepropetrovsk was dedicated to the memory of Academician K. F. Starodubov. His ideas are now implemented by his students and followers. One of them is V. I. Bol'shakov, Doctor of Engineering, member of the International Engineering Academy, the Building Academy of Ukraine, and the Academy of Higher Education, Honored Scientist and Engineer of Ukraine, rector of the Dnieper State Academy of Building and Architecture, and well-known specialist in the physical metallurgy of structural steels. He celebrated his 50th anniversary in 1996. We present an article by V. I. Bol'shakov devoted to the effect of the final rolling temperature and the cooling conditions on the mechanical properties of heat-treated high-strength low-alloy steels.

  16. Effects of flux modifications on high strength steel weld metal

    SciTech Connect

    Franke, G.L.

    1994-12-31

    The performance of high strength steel welds is sensitive to the weld metal chemistry, and that, in turn, is dependent on the composition of the welding consumables. In the case of submerged arc welding, the flux plays an important role in determining the chemistry of the resulting weld metal. The u.S. Navy is conducting a program to gain a basic understanding of fluxes used for welding high strength steels in an effort to be able to better select the appropriate flux, or design a new flux, for a given application. The objective of the present work is to analyze the effects of a systematic chance in flux composition on weld metal chemistry and properties The dry mix of a commercial flux was modified with additions of MnO to produce a series of four experimental flux mixes with target MnO levels from 1 wt% to 4 wt%. A fifth experimental flux mix was produced with an addition of 1/2 wt% CeO{sub 2} to examine the effect of rare earth additions to the flux. Tensile and impact properties and weld metal chemistry were tested for each weldment, and correlations were made with flux composition. Weld metal Mn levels from 1.37 wt% (0.76 wt% flux MnO) to 1.75 wt% (4.26 wt% flux MnO) were achieved with the MnO-added fluxes.The small CeO{sub 2} addition appeared to improve weld metal impact performance it was concluded that a more basic knowledge of welding fluxes can be used in selecting or designing appropriate fluxes for Navy applications. Further work is required to characterize the specific effects of other flux constituents and their interactions on weld metal performance.

  17. Advanced high efficiency wraparound contact solar cell

    NASA Technical Reports Server (NTRS)

    Scott-Monck, J. A.; Uno, F. M.; Thornhill, J. W.

    1977-01-01

    A significant advancement in the development of thin high efficiency wraparound contact silicon solar cells has been made by coupling space and terrestrial processing procedures. Although this new method for fabricating cells has not been completely reduced to practice, some of the initial cells have delivered over 20 mW/sq cm when tested at 25 C under AMO intensity. This approach not only yields high efficiency devices, but shows promise of allowing complete freedom of choice in both the location and size of the wraparound contact pad area

  18. Advanced high efficiency wraparound contact solar cell

    NASA Technical Reports Server (NTRS)

    Scott-Monck, J. A.; Uno, F. M.; Thornhill, J. W.

    1977-01-01

    A significant advancement in the development of thin high efficiency wraparound contact silicon solar cells has been made by coupling space and terrestrial processing procedures. Although this new method for fabricating cells has not been completely reduced to practice, some of the initial cells have delivered over 20 mW/sq cm when tested at 25 C under AMO intensity. This approach not only yields high efficiency devices, but shows promise of allowing complete freedom of choice in both the location and size of the wraparound contact pad area.

  19. Hybrid Welding of 45 mm High Strength Steel Sections

    NASA Astrophysics Data System (ADS)

    Bunaziv, Ivan; Frostevarg, Jan; Akselsen, Odd M.; Kaplan, Alexander F.

    Thick section welding has significant importance for oil and gas industry in low temperature regions. Arc welding is usually employed providing suitable quality joints with acceptable toughness at low temperatures with very limited productivity compared to modern high power laser systems. Laser-arc hybrid welding (LAHW) can enhance the productivity by several times due to higher penetration depth from laser beam and combined advantages of both heat sources. LAHW was applied to join 45 mm high strength steel with double-sided technique and application of metal cored wire. The process was captured by high speed camera, allowing process observation in order to identify the relation of the process stability on weld imperfections and efficiency. Among the results, it was found that both arc power and presence of a gap increased penetration depth, and that higher welding speeds cause unstable processing and limits penetration depth. Over a wide range of heat inputs, the welds where found to consist of large amounts of fine-grained acicular ferrite in the upper 60-75% part of welds. At the root filler wire mixing was less and cooling faster, and thus found to have bainitic transformation. Toughness of deposited welds provided acceptable toughness at -50 °C with some scattering.

  20. Anomalous softening of yield strength in tantalum at high pressures

    SciTech Connect

    Jing, Qiumin Wu, Qiang; Xu, Ji-an; Bi, Yan; Liu, Lei; Liu, Shenggang; Zhang, Yi; Geng, Huayun

    2015-02-07

    The pressure dependence of the yield strength of tantalum was investigated experimentally up to 101 GPa at room temperature using a diamond anvil cell. A yield strength softening is observed between 52 and 84 GPa, whereas a normal trend is observed below 52 GPa and above 84 GPa. The onset pressure of the softening is in agreement with previous results obtained by the pressure gradient method and shock wave experiments. This unusual strength softening in tantalum is not related with structural transformation, preferred orientation, or material damage. Our measurements indicate that microscopic deviatoric strain is the major reason for the observed strength softening in tantalum.

  1. Thin boron nitride nanotubes with exceptionally high strength and toughness

    NASA Astrophysics Data System (ADS)

    Huang, Yang; Lin, Jing; Zou, Jin; Wang, Ming-Sheng; Faerstein, Konstantin; Tang, Chengchun; Bando, Yoshio; Golberg, Dmitri

    2013-05-01

    Bending manipulation and direct force measurements of ultrathin boron nitride nanotubes (BNNTs) were performed inside a transmission electron microscope. Our results demonstrate an obvious transition in mechanics of BNNTs when the external diameters of nanotubes are in the range of 10 nm or less. During in situ transmission electron microscopy bending tests, characteristic ``hollow'' ripple-like structures formed in the bent ultrathin BNNTs with diameters of sub-10 nm. This peculiar buckling/bending mode makes the ultrathin BNNTs hold very high post-buckling loads which significantly exceed their initial buckling forces. Exceptional compressive/bending strength as high as ~1210 MPa was observed. Moreover, the analysis of reversible bending force curves of such ultrathin nanotubes indicates that they may store/adsorb strain energy at a density of ~400 × 106 J m-3. Such nanotubes are thus very promising for strengthening and toughening of structural ceramics and may find potential applications as effective energy-absorbing materials like armor.Bending manipulation and direct force measurements of ultrathin boron nitride nanotubes (BNNTs) were performed inside a transmission electron microscope. Our results demonstrate an obvious transition in mechanics of BNNTs when the external diameters of nanotubes are in the range of 10 nm or less. During in situ transmission electron microscopy bending tests, characteristic ``hollow'' ripple-like structures formed in the bent ultrathin BNNTs with diameters of sub-10 nm. This peculiar buckling/bending mode makes the ultrathin BNNTs hold very high post-buckling loads which significantly exceed their initial buckling forces. Exceptional compressive/bending strength as high as ~1210 MPa was observed. Moreover, the analysis of reversible bending force curves of such ultrathin nanotubes indicates that they may store/adsorb strain energy at a density of ~400 × 106 J m-3. Such nanotubes are thus very promising for strengthening and

  2. Extracting strength from high pressure ramp-release experiments

    NASA Astrophysics Data System (ADS)

    Brown, J. L.; Alexander, C. S.; Asay, J. R.; Vogler, T. J.; Ding, J. L.

    2013-12-01

    Unloading from a plastically deformed state has long been recognized as a sensitive measure of a material's deviatoric response. In the case of a ramp compression and unload, time resolved particle velocity measurements of a sample/window interface may be used to gain insight into the sample material's strength. Unfortunately, measurements of this type are often highly perturbed by wave interactions associated with impedance mismatches. Additionally, wave attenuation, the finite pressure range over which the material elastically unloads, and rate effects further complicate the analysis. Here, we present a methodology that overcomes these shortcomings to accurately calculate a mean shear stress near peak compression for experiments of this type. A new interpretation of the self-consistent strength analysis is presented and then validated through the analysis of synthetic data sets on tantalum to 250 GPa. The synthetic analyses suggest that the calculated shear stresses are within 3% of the simulated values obtained using both rate-dependent and rate-independent constitutive models. Window effects are addressed by a new technique referred to as the transfer function approach, where numerical simulations are used to define a mapping to transform the experimental measurements to in situ velocities. The transfer function represents a robust methodology to account for complex wave interactions and a dramatic improvement over the incremental impedance matching methods traditionally used. The technique is validated using experiments performed on both lithium fluoride and tantalum ramp compressed to peak stresses of 10 and 15 GPa, respectively. In each case, various windows of different shock impedance are used to ensure consistency within the transfer function analysis. The data are found to be independent of the window used and in good agreement with previous results.

  3. Extracting strength from high pressure ramp-release experiments

    SciTech Connect

    Brown, J. L.; Alexander, C. S.; Asay, J. R.; Vogler, T. J.; Ding, J. L.

    2013-12-14

    Unloading from a plastically deformed state has long been recognized as a sensitive measure of a material's deviatoric response. In the case of a ramp compression and unload, time resolved particle velocity measurements of a sample/window interface may be used to gain insight into the sample material's strength. Unfortunately, measurements of this type are often highly perturbed by wave interactions associated with impedance mismatches. Additionally, wave attenuation, the finite pressure range over which the material elastically unloads, and rate effects further complicate the analysis. Here, we present a methodology that overcomes these shortcomings to accurately calculate a mean shear stress near peak compression for experiments of this type. A new interpretation of the self-consistent strength analysis is presented and then validated through the analysis of synthetic data sets on tantalum to 250 GPa. The synthetic analyses suggest that the calculated shear stresses are within 3% of the simulated values obtained using both rate-dependent and rate-independent constitutive models. Window effects are addressed by a new technique referred to as the transfer function approach, where numerical simulations are used to define a mapping to transform the experimental measurements to in situ velocities. The transfer function represents a robust methodology to account for complex wave interactions and a dramatic improvement over the incremental impedance matching methods traditionally used. The technique is validated using experiments performed on both lithium fluoride and tantalum ramp compressed to peak stresses of 10 and 15 GPa, respectively. In each case, various windows of different shock impedance are used to ensure consistency within the transfer function analysis. The data are found to be independent of the window used and in good agreement with previous results.

  4. Damage characterization of high-strength multiphase steels

    NASA Astrophysics Data System (ADS)

    Heibel, S.; Nester, W.; Clausmeyer, T.; Tekkaya, A. E.

    2016-11-01

    High-strength steels show an entirely different material behavior than conventional deep-drawing steels. This fact is caused among others by the multiphase nature of their structure. The Forming Limit Diagram as the classic failure criterion in forming simulation is only partially suitable for this class of steels. An improvement of the failure prediction can be obtained by using damage mechanics. Therefore, an exact knowledge of the material-specific damage is essential for the application of various damage models. In this paper the results of microstructure analysis of a dual-phase steel and a complex-phase steel with a tensile strength of 1000 MPa are shown comparatively at various stress conditions. The objective is to characterize the basic damage mechanisms and based on this to assess the crack sensitivity of both steels. First a structural analysis with regard to non-metallic inclusions, the microstructural morphology, phase identification and the difference in microhardness between the structural phases is carried out. Subsequently, the development of the microstructure at different stress states between uniaxial and biaxial tension is examined. The damage behavior is characterized and quantified by the increase in void density, void size and the quantity of voids. The dominant damage mechanism of the dual-phase steel is the void initiation at phase boundaries, within harder structural phases and at inclusions. In contrast the complex-phase steel shows a significant growth of a smaller amount of voids which initiate only at inclusions. To quantify the damage tolerance and the susceptibility of cracking the criterion of the fracture forming limit line (FFL) is used. The respective statements are supported by results of investigations regarding the edge-crack sensitivity.

  5. 3D printing of high-strength aluminium alloys.

    PubMed

    Martin, John H; Yahata, Brennan D; Hundley, Jacob M; Mayer, Justin A; Schaedler, Tobias A; Pollock, Tresa M

    2017-09-20

    Metal-based additive manufacturing, or three-dimensional (3D) printing, is a potentially disruptive technology across multiple industries, including the aerospace, biomedical and automotive industries. Building up metal components layer by layer increases design freedom and manufacturing flexibility, thereby enabling complex geometries, increased product customization and shorter time to market, while eliminating traditional economy-of-scale constraints. However, currently only a few alloys, the most relevant being AlSi10Mg, TiAl6V4, CoCr and Inconel 718, can be reliably printed; the vast majority of the more than 5,500 alloys in use today cannot be additively manufactured because the melting and solidification dynamics during the printing process lead to intolerable microstructures with large columnar grains and periodic cracks. Here we demonstrate that these issues can be resolved by introducing nanoparticles of nucleants that control solidification during additive manufacturing. We selected the nucleants on the basis of crystallographic information and assembled them onto 7075 and 6061 series aluminium alloy powders. After functionalization with the nucleants, we found that these high-strength aluminium alloys, which were previously incompatible with additive manufacturing, could be processed successfully using selective laser melting. Crack-free, equiaxed (that is, with grains roughly equal in length, width and height), fine-grained microstructures were achieved, resulting in material strengths comparable to that of wrought material. Our approach to metal-based additive manufacturing is applicable to a wide range of alloys and can be implemented using a range of additive machines. It thus provides a foundation for broad industrial applicability, including where electron-beam melting or directed-energy-deposition techniques are used instead of selective laser melting, and will enable additive manufacturing of other alloy systems, such as non-weldable nickel

  6. Nanocrystalline High-Entropy Alloys: A New Paradigm in High-Temperature Strength and Stability.

    PubMed

    Zou, Yu; Wheeler, Jeffrey M; Ma, Huan; Okle, Philipp; Spolenak, Ralph

    2017-03-08

    Metals with nanometer-scale grains or nanocrystalline metals exhibit high strengths at ambient conditions, yet their strengths substantially decrease with increasing temperature, rendering them unsuitable for usage at high temperatures. Here, we show that a nanocrystalline high-entropy alloy (HEA) retains an extraordinarily high yield strength over 5 GPa up to 600 °C, 1 order of magnitude higher than that of its coarse-grained form and 5 times higher than that of its single-crystalline equivalent. As a result, such nanostructured HEAs reveal strengthening figures of merit-normalized strength by the shear modulus above 1/50 and strength-to-density ratios above 0.4 MJ/kg, which are substantially higher than any previously reported values for nanocrystalline metals in the same homologous temperature range, as well as low strain-rate sensitivity of ∼0.005. Nanocrystalline HEAs with these properties represent a new class of nanomaterials for high-stress and high-temperature applications in aerospace, civilian infrastructure, and energy sectors.

  7. Improvement of Transverse Strength in Graphite-Aluminum Composites by High-Strength Surface Foils.

    DTIC Science & Technology

    1982-02-01

    purchased from Material Concepts Incorporated. The precursor wire had Union Carbide’s VSB-32 or VS0054 pitch mesophase graphite fibers in a matrix of...probably valid. The reason for the low strength of these plates, particularly G4407, is not known. Pitch fiber graphite-aluminum composites usually have

  8. JOINING OF ADVANCED HIGH-TEMPERATURE MATERIALS

    SciTech Connect

    Weil, K. Scott; Darsell, Jens T.

    2009-05-14

    Various compositions in the Ag-CuOx system are being investigated as potential filler metals for use in air brazing high-temperature electrochemical devices such as solid oxide fuel cells and gas concentrators. Prior work has shown that the melting temperature, and therefore the potential operational temperature, of these materials can be increased by alloying with palladium. The current study examines the effects of palladium addition on the joint strength of specimens prepared from yttria stabilized zirconia (YSZ) bars brazed with three different families of filler metals: Ag-CuO, 5Pd-Ag-CuO, and 15Pd-Ag-CuO. In general it was found that palladium leads to a small-to-moderate decrease in joint strength, particularly in low copper oxide compositions filler metals. However the effect is likely acceptable if a higher temperature air braze filler metal is desired. In addition, a composition was found for each filler metal series in which the joint failure mechanism undergoes a transition, typically from ductile to brittle failure. In each case, this composition corresponds approximately to the silver-rich boundary composition of the liquid miscibility gap in each system at the temperature of brazing.

  9. Core-shell structured titanium-nitrogen alloys with high strength, high thermal stability and good plasticity.

    PubMed

    Zhang, Y S; Zhao, Y H; Zhang, W; Lu, J W; Hu, J J; Huo, W T; Zhang, P X

    2017-01-06

    Multifunctional materials with more than two good properties are widely required in modern industries. However, some properties are often trade-off with each other by single microstructural designation. For example, nanostructured materials have high strength, but low ductility and thermal stability. Here by means of spark plasma sintering (SPS) of nitrided Ti particles, we synthesized bulk core-shell structured Ti alloys with isolated soft coarse-grained Ti cores and hard Ti-N solid solution shells. The core-shell Ti alloys exhibit a high yield strength (~1.4 GPa) comparable to that of nanostructured states and high thermal stability (over 1100 °C, 0.71 of melting temperature), contributed by the hard Ti-N shells, as well as a good plasticity (fracture plasticity of 12%) due to the soft Ti cores. Our results demonstrate that this core-shell structure offers a design pathway towards an advanced material with enhancing strength-plasticity-thermal stability synergy.

  10. Core-shell structured titanium-nitrogen alloys with high strength, high thermal stability and good plasticity

    PubMed Central

    Zhang, Y. S.; Zhao, Y. H.; Zhang, W.; Lu, J. W.; Hu, J. J.; Huo, W. T.; Zhang, P. X.

    2017-01-01

    Multifunctional materials with more than two good properties are widely required in modern industries. However, some properties are often trade-off with each other by single microstructural designation. For example, nanostructured materials have high strength, but low ductility and thermal stability. Here by means of spark plasma sintering (SPS) of nitrided Ti particles, we synthesized bulk core-shell structured Ti alloys with isolated soft coarse-grained Ti cores and hard Ti-N solid solution shells. The core-shell Ti alloys exhibit a high yield strength (~1.4 GPa) comparable to that of nanostructured states and high thermal stability (over 1100 °C, 0.71 of melting temperature), contributed by the hard Ti-N shells, as well as a good plasticity (fracture plasticity of 12%) due to the soft Ti cores. Our results demonstrate that this core-shell structure offers a design pathway towards an advanced material with enhancing strength-plasticity-thermal stability synergy. PMID:28059150

  11. Core-shell structured titanium-nitrogen alloys with high strength, high thermal stability and good plasticity

    NASA Astrophysics Data System (ADS)

    Zhang, Y. S.; Zhao, Y. H.; Zhang, W.; Lu, J. W.; Hu, J. J.; Huo, W. T.; Zhang, P. X.

    2017-01-01

    Multifunctional materials with more than two good properties are widely required in modern industries. However, some properties are often trade-off with each other by single microstructural designation. For example, nanostructured materials have high strength, but low ductility and thermal stability. Here by means of spark plasma sintering (SPS) of nitrided Ti particles, we synthesized bulk core-shell structured Ti alloys with isolated soft coarse-grained Ti cores and hard Ti-N solid solution shells. The core-shell Ti alloys exhibit a high yield strength (~1.4 GPa) comparable to that of nanostructured states and high thermal stability (over 1100 °C, 0.71 of melting temperature), contributed by the hard Ti-N shells, as well as a good plasticity (fracture plasticity of 12%) due to the soft Ti cores. Our results demonstrate that this core-shell structure offers a design pathway towards an advanced material with enhancing strength-plasticity-thermal stability synergy.

  12. The effect of high speed strength training with heavy and low workloads on neuromuscular function and maximal concentric quadriceps strength.

    PubMed

    Mazani, Ali A; Hamdinia, Mohamed R; Haghigi, Amir H; Hedayatpour, Nosratollah

    2017-02-14

    Dynamic strength training has been widely used to increase the ability of skeletal muscle to produce muscle force. Manipulating resistance training program variables has been commonly used as a tool to optimize maximum strength. This study examined the effects of 12 weeks of high-speed strength training with low and heavy workloads on muscle strength and neuromuscular function of quadriceps muscle. Thirty male subjects (age, mean ± SD, 20.6 ± 2.6 yr, body mass 70.4 ± 12.9 kg, height 1.76 ± 0.09 m) with no history of knee injury or trauma participated to the study. Subjects were randomly divided into two training groups, low workload training (40% 1RM) and heavy workload training (80% 1RM). One repetition of maximum leg-press measured before and after 12 weeks training. Moreover, surface electromyograpic signals were recorded from vastus medialis and lateralis muscle during one repetition of maximum leg-press before and after 12 weeks training. High speed training with heavy workload-low repetition resulted in a greater increase (41.8% ± 4.3) in maximal concentric quadriceps strength compared with high speed training with low workloads-high repetition (23.3% ± 2.7; F=3.8, P<0.035). Average rectified value of EMG after 12 weeks high speed training with heavy workload- low repetition was significantly larger than those observed after high speed training with low workload- high repetition (F=5.5, P<0.039). The result indicates that, high speed movement combined withheavy workload is an effective stimulus for neural adaptations to training, which in turn result in greater improvement in muscle strength.

  13. Behaviour of advanced materials impacted by high energy particle beams

    NASA Astrophysics Data System (ADS)

    Bertarelli, A.; Carra, F.; Cerutti, F.; Dallocchio, A.; Garlasché, M.; Guinchard, M.; Mariani, N.; Marques dos Santos, S. D.; Peroni, L.; Scapin, M.; Boccone, V.

    2013-07-01

    Beam Intercepting Devices (BID) are designed to operate in a harsh radioactive environment and are highly loaded from a thermo-structural point of view. Moreover, modern particle accelerators, storing unprecedented energy, may be exposed to severe accidental events triggered by direct beam impacts. In this context, impulse has been given to the development of novel materials for advanced thermal management with high thermal shock resistance like metal-diamond and metal-graphite composites on top of refractory metals such as molybdenum, tungsten and copper alloys. This paper presents the results of a first-of-its-kind experiment which exploited 440 GeV proton beams at different intensities to impact samples of the aforementioned materials. Effects of thermally induced shockwaves were acquired via high speed acquisition system including strain gauges, laser Doppler vibrometer and high speed camera. Preliminary information of beam induced damages on materials were also collected. State-of-the-art hydrodynamic codes (like Autodyn®), relying on complex material models including equation of state (EOS), strength and failure models, have been used for the simulation of the experiment. Preliminary results confirm the effectiveness and reliability of these numerical methods when material constitutive models are completely available (W and Cu alloys). For novel composite materials a reverse engineering approach will be used to build appropriate constitutive models, thus allowing a realistic representation of these complex phenomena. These results are of paramount importance for understanding and predicting the response of novel advanced composites to beam impacts in modern particle accelerators.

  14. High bonding temperatures greatly improve soy adhesive wet strength

    Treesearch

    Charles R. Frihart; Thomas Coolidge; Chera Mock; Eder Valle

    2016-01-01

    Soy wood adhesive bond strengths reported in different literature studies are difficult to compare because a variety of temperatures and other conditions have been used for the bonding and testing step. Some reports have indicated bond strengths are sensitive to bonding temperature, but the reason(s) for this has not been intensively investigated. Although these prior...

  15. High strength glass-ceramic to metal seals

    SciTech Connect

    Haws, L D; Kramer, D P; Moddeman, W E; Wooten, G W

    1986-12-01

    In many applications, ceramics are joined to other materials, especially metals. In such cases, interfacial strength is as important as the strength of each constituent material. Examples are presented for tailoring materials and processes to optimize the glass-ceramic-to-metal seal. Means for detecting defects, nondestructively, are also identified.

  16. High Strength Lightweight Nanocomposite from Domestic Solid Waste

    NASA Astrophysics Data System (ADS)

    Masturi, Swardhani, Anggi Puspita; Sustini, Euis; Bukit, Minsyahril; Mora, Khairurrijal, Abdullah, Mikrajuddin

    2010-10-01

    The issue of waste problems needs innovative efforts to solve. One of them is solid waste utilization as nanocomposite using polyurethane (PU) polymer as matrix. Beside using solid waste as filler, nanosilica is also added to improve the material strength of composite-produced. These materials were mixed by simple mixing with variative compositions, and then hot-pressed at 30 MPa and 100° C for 30 minutes. From compressive strength test, it was found that composite with composition 2:8 of PU and solid waste has optimum compressive strength, i.e. 160 MPa. Into this optimum composition, nanosilica then is added to improve the compressive strength and found that at composition 1:40:160 of nanosilica, PU and solid waste, the composite has optimum compressive strength 200 MPa, or increases 25% of that without nanosilica. The composite-produced is also lightweight material with the density is 0.69 g/cm.

  17. Advanced high frequency partial discharge measuring system

    NASA Technical Reports Server (NTRS)

    Karady, George G.

    1994-01-01

    This report explains the Advanced Partial Discharge Measuring System in ASU's High Voltage Laboratory and presents some of the results obtained using the setup. While in operation an insulation is subjected to wide ranging temperature and voltage stresses. Hence, it is necessary to study the effect of temperature on the behavior of partial discharges in an insulation. The setup described in this report can be used to test samples at temperatures ranging from -50 C to 200 C. The aim of conducting the tests described herein is to be able to predict the behavior of an insulation under different operating conditions in addition to being able to predict the possibility of failure.

  18. High power disk lasers: advances and applications

    NASA Astrophysics Data System (ADS)

    Havrilla, David; Holzer, Marco

    2011-02-01

    Though the genesis of the disk laser concept dates to the early 90's, the disk laser continues to demonstrate the flexibility and the certain future of a breakthrough technology. On-going increases in power per disk, and improvements in beam quality and efficiency continue to validate the genius of the disk laser concept. As of today, the disk principle has not reached any fundamental limits regarding output power per disk or beam quality, and offers numerous advantages over other high power resonator concepts, especially over monolithic architectures. With well over 1000 high power disk lasers installations, the disk laser has proven to be a robust and reliable industrial tool. With advancements in running cost, investment cost and footprint, manufacturers continue to implement disk laser technology with more vigor than ever. This paper will explain important details of the TruDisk laser series and process relevant features of the system, like pump diode arrangement, resonator design and integrated beam guidance. In addition, advances in applications in the thick sheet area and very cost efficient high productivity applications like remote welding, remote cutting and cutting of thin sheets will be discussed.

  19. Strength Recovery in a High-Strength Steel During Multiple Weld Thermal Simulations

    NASA Astrophysics Data System (ADS)

    Yu, Xinghua; Caron, Jeremy L.; Babu, S. S.; Lippold, John C.; Isheim, Dieter; Seidman, David N.

    2011-12-01

    BlastAlloy 160 (BA160) is a low-carbon martensitic steel strengthened by copper and M2C precipitates. Heat-affected zone (HAZ) microstructure evaluation of BA160 exhibited softening in samples subjected to the coarse-grained HAZ thermal simulations of this steel. This softening is partially attributed to dissolution of copper precipitates and metal carbides. After subjecting these coarse-grained HAZs to a second weld thermal cycle below the A c1 temperature (at which austenite begins to form on heating), recovery of strength was observed. Atom-probe tomography and microhardness analyses correlated this strength recovery to re-precipitation of copper precipitates and metal carbides. A continuum model is proposed to rationalize strengthening and softening in the HAZ regions of BlastAlloy 160.

  20. Low-noise, high-strength, spiral-bevel gears for helicopter transmissions

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; Handschuh, Robert F.; Henry, Zachary S.; Litvin, Faydor L.

    1993-01-01

    Improvements in spiral-bevel gear design were investigated to support the Army/NASA Advanced Rotorcraft Transmission program. Program objectives were to reduce weight by 25 percent, reduce noise by 10 dB, and increase life to 5000 hr mean-time-between-removal. To help meet these goals, advanced-design spiral-bevel gears were tested in an OH-58D helicopter transmission using the NASA 500-hp Helicopter Transmission Test Stand. Three different gear designs tested included: (1) the current design of the OH-58D transmission except gear material X-53 instead of AISI 9310; (2) a higher-strength design the same as the current but with a full fillet radius to reduce gear tooth bending stress (and thus, weight); and (3) a lower-noise design the same as the high-strength but with modified tooth geometry to reduce transmission error and noise. Noise, vibration, and tooth strain tests were performed and significant gear stress and noise reductions were achieved.

  1. Low-noise, high-strength, spiral-bevel gears for helicopter transmissions

    SciTech Connect

    Lewicki, D.G.; Handschuh, R.F.; Henry, Z.S.; Litvin, F.L.

    1993-06-01

    Improvements in spiral-bevel gear design were investigated to support the Army/NASA Advanced Rotorcraft Transmission program. Program objectives were to reduce weight by 25 percent, reduce noise by 10 dB, and increase life to 5000 hr mean-time-between-removal. To help meet these goals, advanced-design spiral-bevel gears were tested in an OH-58D helicopter transmission using the NASA 500-hp Helicopter Transmission Test Stand. Three different gear designs tested included: (1) the current design of the OH-58D transmission except gear material X-53 instead of AISI 9310; (2) a higher-strength design the same as the current but with a full fillet radius to reduce gear tooth bending stress (and thus, weight); and (3) a lower-noise design the same as the high-strength but with modified tooth geometry to reduce transmission error and noise. Noise, vibration, and tooth strain tests were performed and significant gear stress and noise reductions were achieved.

  2. Low-noise, high-strength, spiral-bevel gears for helicopter transmissions

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; Handschuh, Robert F.; Henry, Zachary S.; Litvin, Faydor L.

    1993-01-01

    Improvements in spiral-bevel gear design were investigated to support the Army/NASA Advanced Rotorcraft Transmission program. Program objectives were to reduce weight by 25 percent, reduce noise by 10 dB, and increase life to 5000 hr mean-time-between-removal. To help meet these goals, advanced-design spiral-bevel gears were tested in an OH-58D helicopter transmission using the NASA 500-hp Helicopter Transmission Test Stand. Three different gear designs tested included: (1) the current design of the OH-58D transmission except gear material X-53 instead of AISI 9310; (2) a higher-strength design the same as the current but with a full fillet radius to reduce gear tooth bending stress (and thus, weight); and (3) a lower-noise design the same as the high-strength but with modified tooth geometry to reduce transmission error and noise. Noise, vibration, and tooth strain tests were performed and significant gear stress and noise reductions were achieved.

  3. Orbital Winch for High-Strength, Space-Survivable Tethers

    NASA Technical Reports Server (NTRS)

    Hoyt, Robert; Barnes, Ian; Slostad, Jeffrey; Frank, Scott

    2010-01-01

    An Orbital Winch mechanism enables high-load, multi-line tethers to be deployed and retracted without rotating the spool on which the tether is wound. To minimize damage to the tether and the wound package during retraction or deployment under load, it can incorporate a Tension Management Module that reduces the infeed tension by a factor of 15 through the use of a powered capstan with guide rollers. This design eliminates the need for rotating high-voltage electrical connections in tether systems that use propellantless electro-dynamic propulsion. It can also eliminate the need for rotating optical connections in applications where the tether contains optical fibers. This winch design was developed to deploy a 15-km-long, 15-kg high-strength Hoytether structure incorporating conductive wires as part of the MXER-1 demonstration mission concept. Two slewing rings that orbit around the tether spool, combined with translation of one of the slewing rings back and forth along the spool axis to traverse the wind point, enables the winch to wind the tether. Variations of the traverse motion of the slewing ring can accomplish level winds and conical pirn winds. By removing the non-traversing slewing ring, and adding an actuated guide arm, the winch can manage rapid, low-drag deployment of a tether off the end of a pirn-wound spool, followed by controlled retraction and rewinding, in a manner very similar to a spin-casting reel. The winch requires at least two motor driver controller units to coordinate the action of two stepper motors to accomplish tether deployment or retraction.

  4. Advanced high temperature thermoelectrics for space power

    NASA Technical Reports Server (NTRS)

    Lockwood, A.; Ewell, R.; Wood, C.

    1981-01-01

    Preliminary results from a spacecraft system study show that an optimum hot junction temperature is in the range of 1500 K for advanced nuclear reactor technology combined with thermoelectric conversion. Advanced silicon germanium thermoelectric conversion is feasible if hot junction temperatures can be raised roughly 100 C or if gallium phosphide can be used to improve the figure of merit, but the performance is marginal. Two new classes of refractory materials, rare earth sulfides and boron-carbon alloys, are being investigated to improve the specific weight of the generator system. Preliminary data on the sulfides have shown very high figures of merit over short temperature ranges. Both n- and p-type doping have been obtained. Pure boron-carbide may extrapolate to high figure of merit at temperatures well above 1500 K but not lower temperature; n-type conduction has been reported by others, but not yet observed in the JPL program. Inadvertant impurity doping may explain the divergence of results reported.

  5. Thermal Desorption Analysis of Hydrogen in High Strength Martensitic Steels

    NASA Astrophysics Data System (ADS)

    Enomoto, M.; Hirakami, D.; Tarui, T.

    2012-02-01

    Thermal desorption analyses (TDA) were conducted in high strength martensitic steels containing carbon from 0.33 to 1.0 mass pct, which were charged with hydrogen at 1223 K (950 °C) under hydrogen of one atmospheric pressure and quenched to room temperature. In 0.33C steel, which had the highest M s temperature, only one desorption peak was observed around 373 K (100 °C), whereas two peaks, one at a similar temperature and the other around and above 573 K (300 °C), were observed in the other steels, the height of the second peak increasing with carbon content. In 0.82C steel, both peaks disappeared during exposure at room temperature in 1 week, whereas the peak heights decreased gradually over 2 weeks in specimens electrolytically charged with hydrogen and aged for varying times at room temperature. From computer simulation, by means of the McNabb-Foster theory coupled with theories of carbon segregation, these peaks are likely to be due to trapping of hydrogen in the strain fields and cores of dislocations, and presumably to a lesser extent in prior austenite grain boundaries. The results also indicate that carbon atoms prevent and even expel hydrogen from trapping sites during quenching and aging in these steels.

  6. Dynamic ductile tearing in high strength pipeline steels

    SciTech Connect

    Rivalin, F.; Iung, T.; Di Fant, M.; Pineau, A.

    1996-12-31

    The study of rapid ductile crack propagation and crack arrest is a central point if one wants to reach a higher safety level in pipelines. Correlations between Charpy tests and full scale burst tests proved to be unsuccessful in predicting pipe burst for recent high strength steels. This paper presents an experiment which allows to test large SENT specimens under dynamic loading, and to characterize steel resistance against rapid ductile crack propagation by a classical energetic parameter, called the crack propagation energy, R, proposed by Turner. The R parameter proved to be characteristic of the rapid crack propagation in the material, for a given specimen and loading configuration. Failure of the specimen under dynamic conditions occurs by shearing fracture which is the same as in a full scale burst test. An example is given for an X65 ferritic-pearlitic steel loaded under static and dynamic conditions. A fracture mode transition is shown following the loading rate. From a metallurgical point of view, shearing fracture occurs by nucleation, growth and coalescence of voids, as for classical ductile fracture.

  7. Anomolous Fatigue Crack Growth Phenomena in High-Strength Steel

    NASA Technical Reports Server (NTRS)

    Forth, Scott C.; James, Mark A.; Johnston, William M., Jr.; Newman, James C., Jr.

    2004-01-01

    The growth of a fatigue crack through a material is the result of a complex interaction between the applied loading, component geometry, three-dimensional constraint, load history, environment, material microstructure and several other factors. Previous studies have developed experimental and computational methods to relate the fatigue crack growth rate to many of the above conditions, with the intent of discovering some fundamental material response, i.e. crack growth rate as a function of something. Currently, the technical community uses the stress intensity factor solution as a simplistic means to relate fatigue crack growth rate to loading, geometry and all other variables. The stress intensity factor solution is a very simple linear-elastic representation of the continuum mechanics portion of crack growth. In this paper, the authors present fatigue crack growth rate data for two different high strength steel alloys generated using standard methods. The steels exhibit behaviour that appears unexplainable, compared to an aluminium alloy presented as a baseline for comparison, using the stress intensity factor solution.

  8. A lightweight, high strength dexterous manipulator for commercial applications

    NASA Technical Reports Server (NTRS)

    Marzwell, Neville I.; Schena, Bruce M.; Cohan, Steve M.

    1991-01-01

    The concept, design, and features are described of a lightweight, high strength, modular robot manipulator being developed for space and commercial applications. The manipulator has seven fully active degrees of freedom and is fully operational in 1 G. Each of the seven joints incorporates a unique drivetrain design which provides zero backlash operation, is insensitive to wear, and is single fault tolerant to motor or servo amplifier failure. Feedback sensors provide position, velocity, torque, and motor winding temperature information at each joint. This sensing system is also designed to be single fault tolerant. The manipulator consists of five modules (not including gripper). These modules join via simple quick-disconnect couplings and self-mating connectors which allow rapid assembly and/or disassembly for reconfiguration, transport, or servicing. The manipulator is a completely enclosed assembly, with no exposed components or wires. Although the initial prototype will not be space qualified, the design is well suited to meeting space requirements. The control system provides dexterous motion by controlling the endpoint location and arm pose simultaneously. Potential applications are discussed.

  9. Cleavage fracture in high strength low alloy weld metal

    SciTech Connect

    Bose, W.W.; Bowen, P.; Strangwood, M.

    1996-12-31

    The present investigation gives an evaluation of the effect of microstructure on the cleavage fracture process of High Strength Low Alloy (HSLA) multipass weld metals. With additions of alloying elements, such as Ti, Ni, Mo and Cr, the microstructure of C-Mn weld metal changes from the classical composition, i.e., allotriomorphic ferrite with acicular ferrite and Widmanstaetten ferrite, to bainite and low carbon martensite. Although the physical metallurgy of some HSLA weld metals has been studied before, more work is necessary to correlate the effect of the microstructure on the fracture behavior of such weld metals. In this work detailed microstructural analysis was carried out using optical and electron (SEM and TEM) microscopy. Single edge notched (SEN) bend testpieces were used to assess the cleavage fracture stress, {sigma}{sub F}. Inclusions beneath the notch surface were identified as the crack initiators of unstable cleavage fracture. From the size of such inclusions and the value of tensile stress predicted at the initiation site, the effective surface energy for cleavage was calculated using a modified Griffth energy balance for a penny shape crack. The results suggest that even though inclusions initiate cleavage fracture, the local microstructure may play an important role in the fracture process of these weld metals. The implications of these observations for a quantitative theory of the cleavage fracture of ferritic steels is discussed.

  10. Polyimide films from vapor deposition: toward high strength, NIF capsules

    SciTech Connect

    Cook, R C; Hsieh, E J; Letts, S A; Roberts, C C; Saculla, M

    1998-10-16

    The focus of recent efforts at LLNL has been to demonstrate that vapor deposition processing is a suitable technique to form polyimide fnms with sufficient strength for current national ignition facility target specifications. Production of polyimide films with controlled stoichiometry was acccomplished by: 1) depositing a novel co-functional monomer and 2) matching the vapor pressure of each monomer in PMDA/ODA co-depositions. The sublimation and deposition rate for the monomers was determined over a range of temperatures. Polyimide films with thicknesses up to 30 p.m were fabricated. Composition, structure and strength were assessed using FTIR, SEM and biaxial burst testing. The best films had a tensile strength of approximately 100 MPa. A qualitative relationship between the stoichiometry and tensile strength of the film was demonstrated. Thin films ({approximately}3.5 {micro}m) were typically smooth with an rms of 1.5 nm.

  11. Silphenylene elastomers have high thermal stability and tensile strength

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Two polymeric silphenylene ethers, when cured by reactions with ethyl silicates and metal salts at room temperature, form elastomers having excellent thermal stability and tensile properties. The highest tensile strength obtained in a reinforced elastomer was 2800 psi.

  12. High-strength cellular ceramic composites with 3D microarchitecture.

    PubMed

    Bauer, Jens; Hengsbach, Stefan; Tesari, Iwiza; Schwaiger, Ruth; Kraft, Oliver

    2014-02-18

    To enhance the strength-to-weight ratio of a material, one may try to either improve the strength or lower the density, or both. The lightest solid materials have a density in the range of 1,000 kg/m(3); only cellular materials, such as technical foams, can reach considerably lower values. However, compared with corresponding bulk materials, their specific strength generally is significantly lower. Cellular topologies may be divided into bending- and stretching-dominated ones. Technical foams are structured randomly and behave in a bending-dominated way, which is less weight efficient, with respect to strength, than stretching-dominated behavior, such as in regular braced frameworks. Cancellous bone and other natural cellular solids have an optimized architecture. Their basic material is structured hierarchically and consists of nanometer-size elements, providing a benefit from size effects in the material strength. Designing cellular materials with a specific microarchitecture would allow one to exploit the structural advantages of stretching-dominated constructions as well as size-dependent strengthening effects. In this paper, we demonstrate that such materials may be fabricated. Applying 3D laser lithography, we produced and characterized micro-truss and -shell structures made from alumina-polymer composite. Size-dependent strengthening of alumina shells has been observed, particularly when applied with a characteristic thickness below 100 nm. The presented artificial cellular materials reach compressive strengths up to 280 MPa with densities well below 1,000 kg/m(3).

  13. High-strength cellular ceramic composites with 3D microarchitecture

    PubMed Central

    Bauer, Jens; Hengsbach, Stefan; Tesari, Iwiza; Schwaiger, Ruth; Kraft, Oliver

    2014-01-01

    To enhance the strength-to-weight ratio of a material, one may try to either improve the strength or lower the density, or both. The lightest solid materials have a density in the range of 1,000 kg/m3; only cellular materials, such as technical foams, can reach considerably lower values. However, compared with corresponding bulk materials, their specific strength generally is significantly lower. Cellular topologies may be divided into bending- and stretching-dominated ones. Technical foams are structured randomly and behave in a bending-dominated way, which is less weight efficient, with respect to strength, than stretching-dominated behavior, such as in regular braced frameworks. Cancellous bone and other natural cellular solids have an optimized architecture. Their basic material is structured hierarchically and consists of nanometer-size elements, providing a benefit from size effects in the material strength. Designing cellular materials with a specific microarchitecture would allow one to exploit the structural advantages of stretching-dominated constructions as well as size-dependent strengthening effects. In this paper, we demonstrate that such materials may be fabricated. Applying 3D laser lithography, we produced and characterized micro-truss and -shell structures made from alumina–polymer composite. Size-dependent strengthening of alumina shells has been observed, particularly when applied with a characteristic thickness below 100 nm. The presented artificial cellular materials reach compressive strengths up to 280 MPa with densities well below 1,000 kg/m3. PMID:24550268

  14. High performance fibers for structurally reliable metal and ceramic composites. [advanced gas turbine engine materials

    NASA Technical Reports Server (NTRS)

    Dicarlo, J. A.

    1984-01-01

    Very few of the commercially available high performance fibers with low densities, high Young's moduli, and high tensile strengths possess all the necessary property requirements for providing either metal matrix composites (MMC) or ceramic matrix composites (CMC) with high structural reliability. These requirements are discussed in general and examples are presented of how these property guidelines are influencing fiber evaluation and improvement studies at NASA aimed at developing structurally reliable MMC and CMC for advanced gas turbine engines.

  15. Advances in high power semiconductor diode lasers

    NASA Astrophysics Data System (ADS)

    Ma, Xiaoyu; Zhong, Li

    2008-03-01

    High power semiconductor lasers have broad applications in the fields of military and industry. Recent advances in high power semiconductor lasers are reviewed mainly in two aspects: improvements of diode lasers performance and optimization of packaging architectures of diode laser bars. Factors which determine the performance of diode lasers, such as power conversion efficiency, temperature of operation, reliability, wavelength stabilization etc., result from a combination of new semiconductor materials, new diode structures, careful material processing of bars. The latest progress of today's high-power diode lasers at home and abroad is briefly discussed and typical data are presented. The packaging process is of decisive importance for the applicability of high-power diode laser bars, not only technically but also economically. The packaging techniques include the material choosing and the structure optimizing of heat-sinks, the bonding between the array and the heat-sink, the cooling and the fiber coupling, etc. The status of packaging techniques is stressed. There are basically three different diode package architectural options according to the integration grade. Since the package design is dominated by the cooling aspect, different effective cooling techniques are promoted by different package architectures and specific demands. The benefit and utility of each package are strongly dependent upon the fundamental optoelectronic properties of the individual diode laser bars. Factors which influence these properties are outlined and comparisons of packaging approaches for these materials are made. Modularity of package for special application requirements is an important developing tendency for high power diode lasers.

  16. High Temperature Wear of Advanced Ceramics

    NASA Technical Reports Server (NTRS)

    DellaCorte, C.

    2005-01-01

    It was initially hypothesized that advanced ceramics would exhibit favorable high te- friction and wear properties because of their high hot hardness and low achievable surface roughness welding observed in metals does not occur in ceramics. More recent tribological studies of many nitride, carbide, oxide and composite ceramics, however, have revealed that ceramics often exhibit high friction and wear in non-lubricated, high temperature sliding contacts. A summary is given to measure friction and wear factor coefficients for a variety of ceramics from self mated ceramic pin-on-disk tests at temperatures from 25 to up to 1200 C. Observed steady state friction coefficients range from about 0.5 to 1.0 or above. Wear factor coefficients are also very high and range from about to 10(exp -5) to 10(exp -2) cubic millimeters per N-m. By comparison, oil lubricated steel sliding results in friction coefficients of 0.1 or less and wear factors less than 10(exp -9) cubic millimeters per N-m.

  17. Highly controllable and green reduction of graphene oxide to flexible graphene film with high strength

    SciTech Connect

    Wan, Wubo; Zhao, Zongbin; Hu, Han; Gogotsi, Yury; Qiu, Jieshan

    2013-11-15

    Graphical abstract: Highly controllable and green reduction of GO to chemical converted graphene (CCG) was achieved with sodium citrate as a facile reductant. Self-assembly of the as-made CCG sheets results in a flexible CCG film, of which the tensile strength strongly depends on the deoxygenation degree of graphene sheets. - Highlights: • Graphene was synthesized by an effective and environmentally friendly approach. • We introduced a facile X-ray diffraction analysis method to investigate the reduction process from graphene oxide to graphene. • Flexible graphene films were prepared by self-assembly of the graphene sheets. • The strength of the graphene films depends on the reduction degree of graphene. - Abstract: Graphene film with high strength was fabricated by the assembly of graphene sheets derived from graphene oxide (GO) in an effective and environmentally friendly approach. Highly controllable reduction of GO to chemical converted graphene (CCG) was achieved with sodium citrate as a facile reductant, in which the reduction process was monitored by XRD analysis and UV–vis absorption spectra. Self-assembly of the as-made CCG sheets results in a flexible CCG film. This method may open an avenue to the easy and scalable preparation of graphene film with high strength which has promising potentials in many fields where strong, flexible and electrically conductive films are highly demanded.

  18. Achieving large linear elasticity and high strength in bulk nanocompsite via synergistic effect

    PubMed Central

    Hao, Shijie; Cui, Lishan; Guo, Fangmin; Liu, Yinong; Shi, Xiaobin; Jiang, Daqiang; Brown, Dennis E.; Ren, Yang

    2015-01-01

    Elastic strain in bulk metallic materials is usually limited to only a fraction of 1%. Developing bulk metallic materials showing large linear elasticity and high strength has proven to be difficult. Here, based on the synergistic effect between nanowires and orientated martensite NiTi shape memory alloy, we developed an in-situ Nb nanowires -orientated martensitic NiTi matrix composite showing an ultra-large linear elastic strain of 4% and an ultrahigh yield strength of 1.8 GPa. This material also has a high mechanical energy storage efficiency of 96% and a high energy storage density of 36 J/cm3 that is almost one order of larger than that of spring steel. It is demonstrated that the synergistic effect allows the exceptional mechanical properties of nanowires to be harvested at macro scale and the mechanical properties of matrix to be greatly improved, resulting in these superior properties. This study provides new avenues for developing advanced composites with superior properties by using effective synergistic effect between components. PMID:25749549

  19. Achieving large linear elasticity and high strength in bulk nanocompsite via synergistic effect

    SciTech Connect

    Hao, Shijie; Cui, Lishan; Guo, Fangmin; Liu, Yinong; Shi, Xiaobin; Jiang, Daqiang; Brown, Dennis E.; Ren, Yang

    2015-03-09

    Elastic strain in bulk metallic materials is usually limited to only a fraction of 1%. Developing bulk metallic materials showing large linear elasticity and high strength has proven to be difficult. Here, based on the synergistic effect between nanowires and orientated martensite NiTi shape memory alloy, we developed an in-situ Nb nanowires -orientated martensitic NiTi matrix composite showing an ultra-large linear elastic strain of 4% and an ultrahigh yield strength of 1.8 GPa. This material also has a high mechanical energy storage efficiency of 96% and a high energy storage density of 36 J/cm³ that is almost one order of larger than that of spring steel. It is demonstrated that the synergistic effect allows the exceptional mechanical properties of nanowires to be harvested at macro scale and the mechanical properties of matrix to be greatly improved, resulting in these superior properties. This study provides new avenues for developing advanced composites with superior properties by using effective synergistic effect between components.

  20. Achieving large linear elasticity and high strength in bulk nanocompsite via synergistic effect

    DOE PAGES

    Hao, Shijie; Cui, Lishan; Guo, Fangmin; ...

    2015-03-09

    Elastic strain in bulk metallic materials is usually limited to only a fraction of 1%. Developing bulk metallic materials showing large linear elasticity and high strength has proven to be difficult. Here, based on the synergistic effect between nanowires and orientated martensite NiTi shape memory alloy, we developed an in-situ Nb nanowires -orientated martensitic NiTi matrix composite showing an ultra-large linear elastic strain of 4% and an ultrahigh yield strength of 1.8 GPa. This material also has a high mechanical energy storage efficiency of 96% and a high energy storage density of 36 J/cm³ that is almost one order ofmore » larger than that of spring steel. It is demonstrated that the synergistic effect allows the exceptional mechanical properties of nanowires to be harvested at macro scale and the mechanical properties of matrix to be greatly improved, resulting in these superior properties. This study provides new avenues for developing advanced composites with superior properties by using effective synergistic effect between components.« less

  1. Latest Development and Application of High Strength and Heavy Gauge Pipeline Steel in China

    NASA Astrophysics Data System (ADS)

    Yongqing, Zhang; Aimin, Guo; Chengjia, Shang; Qingyou, Liu; Gray, J. Malcolm; Barbaro, Frank

    Over the past twenty years, significant advances have been made in the field of microalloying and associated application, among which one of the most successful application cases is HTP practice for heavy gauge, high strength pipeline steels. Combined the strengthening effects of TMCP and retardation effects of austenite recrystallization with increasing Nb in austenite region, HTP conception with low carbon and high niobium alloy design has been successfully applied to develop X80 coil with a thickness of 18.4mm used for China's Second West-East pipeline. During this process, big efforts were made to further develop and enrich the application of microalloying technology, and at the same time the strengthening effects of Nb have been completely unfolded and fully utilized with improved metallurgical quality and quantitative analysis of microstructure. In this paper, the existing status and strengthening effect of Nb during reheating, rolling, cooling and welding have been analyzed and characterized based on mass production samples and laboratory analysis. As confirmed, grain refinement remains the most basic strengthening measure to reduce the microstructure gradient along the thickness, which in turn enlarges the processing window to improve upon low temperature toughness, and finally make it possible to develop heavy gauge, high strength pipeline steels with more challenging fracture toughness requirements.

  2. Achieving large linear elasticity and high strength in bulk nanocompsite via synergistic effect

    NASA Astrophysics Data System (ADS)

    Hao, Shijie; Cui, Lishan; Guo, Fangmin; Liu, Yinong; Shi, Xiaobin; Jiang, Daqiang; Brown, Dennis E.; Ren, Yang

    2015-03-01

    Elastic strain in bulk metallic materials is usually limited to only a fraction of 1%. Developing bulk metallic materials showing large linear elasticity and high strength has proven to be difficult. Here, based on the synergistic effect between nanowires and orientated martensite NiTi shape memory alloy, we developed an in-situ Nb nanowires -orientated martensitic NiTi matrix composite showing an ultra-large linear elastic strain of 4% and an ultrahigh yield strength of 1.8 GPa. This material also has a high mechanical energy storage efficiency of 96% and a high energy storage density of 36 J/cm3 that is almost one order of larger than that of spring steel. It is demonstrated that the synergistic effect allows the exceptional mechanical properties of nanowires to be harvested at macro scale and the mechanical properties of matrix to be greatly improved, resulting in these superior properties. This study provides new avenues for developing advanced composites with superior properties by using effective synergistic effect between components.

  3. Achieving large linear elasticity and high strength in bulk nanocompsite via synergistic effect.

    PubMed

    Hao, Shijie; Cui, Lishan; Guo, Fangmin; Liu, Yinong; Shi, Xiaobin; Jiang, Daqiang; Brown, Dennis E; Ren, Yang

    2015-03-09

    Elastic strain in bulk metallic materials is usually limited to only a fraction of 1%. Developing bulk metallic materials showing large linear elasticity and high strength has proven to be difficult. Here, based on the synergistic effect between nanowires and orientated martensite NiTi shape memory alloy, we developed an in-situ Nb nanowires -orientated martensitic NiTi matrix composite showing an ultra-large linear elastic strain of 4% and an ultrahigh yield strength of 1.8 GPa. This material also has a high mechanical energy storage efficiency of 96% and a high energy storage density of 36 J/cm(3) that is almost one order of larger than that of spring steel. It is demonstrated that the synergistic effect allows the exceptional mechanical properties of nanowires to be harvested at macro scale and the mechanical properties of matrix to be greatly improved, resulting in these superior properties. This study provides new avenues for developing advanced composites with superior properties by using effective synergistic effect between components.

  4. The Advanced Telescope for High Energy Astrophysics

    NASA Astrophysics Data System (ADS)

    Guainazzi, Matteo

    2017-08-01

    Athena (the Advanced Telescope for High Energy Astrophysics) is a next generation X-ray observatory currently under study by ESA for launch in 2028. Athena is designed to address the Hot and Energetic Universe science theme, which addresses two key questions: 1) How did ordinary matter evolve into the large scale structures we see today? 2) How do black holes grow and shape the Universe. To address these topics Athena employs an innovative X-ray telescope based on Silicon Pore Optics technology to deliver extremely light weight and high throughput, while retaining excellent angular resolution. The mirror can be adjusted to focus onto one of two focal place instruments: the X-ray Integral Field Unit (X-IFU) which provides spatially-resolved, high resolution spectroscopy, and the Wide Field Imager (WFI) which provides spectral imaging over a large field of view, as well as high time resolution and count rate tolerance. Athena is currently in Phase A and the study status will be reviewed, along with the scientific motivations behind the mission.

  5. Advanced High-Definition Video Cameras

    NASA Technical Reports Server (NTRS)

    Glenn, William

    2007-01-01

    A product line of high-definition color video cameras, now under development, offers a superior combination of desirable characteristics, including high frame rates, high resolutions, low power consumption, and compactness. Several of the cameras feature a 3,840 2,160-pixel format with progressive scanning at 30 frames per second. The power consumption of one of these cameras is about 25 W. The size of the camera, excluding the lens assembly, is 2 by 5 by 7 in. (about 5.1 by 12.7 by 17.8 cm). The aforementioned desirable characteristics are attained at relatively low cost, largely by utilizing digital processing in advanced field-programmable gate arrays (FPGAs) to perform all of the many functions (for example, color balance and contrast adjustments) of a professional color video camera. The processing is programmed in VHDL so that application-specific integrated circuits (ASICs) can be fabricated directly from the program. ["VHDL" signifies VHSIC Hardware Description Language C, a computing language used by the United States Department of Defense for describing, designing, and simulating very-high-speed integrated circuits (VHSICs).] The image-sensor and FPGA clock frequencies in these cameras have generally been much higher than those used in video cameras designed and manufactured elsewhere. Frequently, the outputs of these cameras are converted to other video-camera formats by use of pre- and post-filters.

  6. Advanced high-bandwidth optical fuzing technology

    NASA Astrophysics Data System (ADS)

    Liu, Jony J.; von der Lippe, Christian M.

    2005-10-01

    A robust and compact photonic proximity sensor is developed for optical fuze in munitions applications. The design of the optical fuze employed advanced optoelectronic technologies including high-power vertical-cavity surface-emitting lasers (VCSELs), the p-i-n or metal-semiconductor-metal (MSM) photodetectors, SiGe ASIC driver, and miniature optics. The development combines pioneering work and unique expertise at ARDEC, ARL, and Sandia National Laboratories and synergizes the key optoelectronic technologies in components and system designs. This compact sensor will replace conventional costly assemblies based on discrete lasers, photodetectors, and bulky optics and provide a new capability for direct fire applications. It will be mass manufacturable in low cost and simplicity. In addition to the specific applications for gun-fired munitions, numerous civilian uses can be realized by this proximity sensor in automotive, robotics, and aerospace applications. This technology is also applicable to robotic ladar and short-range 3-D imaging.

  7. High-strength high-conductivity Cu-Nb microcomposite sheet fabricated via multiple roll bonding

    NASA Astrophysics Data System (ADS)

    Jha, S. C.; Delagi, R. G.; Forster, J. A.; Krotz, P. D.

    1993-01-01

    Copper-niobium microcomposites are a new class of high-strength high-conductivity materials that have attractive properties for room- and elevated-temperature applications. Since Nb has little solid solubility in Cu, addition of Nb to Cu does not affect its conductivity. Copper-niobium microcomposites are melted and cast so that the microstructure of cast Cu-Nb ingots consists of 1-to 10 μm Nb dendrites uniformly distributed within the copper matrix. Extensive wire drawing with a true processing strain ( η > 12) of Cu-Nb alloy leads to refinement and elongation of Nb dendrites into 1-to 10 nm-thick filaments. The presence of such fine Nb filaments causes a significant increase in the strength of Cu-Nb wires. The tensile strength of heavily drawn Cu-Nb wires was determined to be significantly higher than the values predicted by the rule of mixtures. This article reports the fabrication of high-strength Cu-Nb micro-composite sheet by multiple roll bonding. It is difficult and impractical to attain high processing strains ( η > 3) by simple cold rolling. In most practical cold-rolling operation, the thickness reduction does not exceed 90 pct ( η ≅ 2). Therefore, innovative processing is required to generate high strength in Cu-Nb microcomposite sheet. Multiple roll bonding of Cu-Nb has been utilized to store high processing strain ( η > 10) in the material and refine the Nb particle size within the copper matrix. This article describes the microstructure, mechanical properties, and thermal stability of roll-bonded Cu-Nb microcomposite sheet.

  8. High performance anode for advanced Li batteries

    SciTech Connect

    Lake, Carla

    2015-11-02

    The overall objective of this Phase I SBIR effort was to advance the manufacturing technology for ASI’s Si-CNF high-performance anode by creating a framework for large volume production and utilization of low-cost Si-coated carbon nanofibers (Si-CNF) for the battery industry. This project explores the use of nano-structured silicon which is deposited on a nano-scale carbon filament to achieve the benefits of high cycle life and high charge capacity without the consequent fading of, or failure in the capacity resulting from stress-induced fracturing of the Si particles and de-coupling from the electrode. ASI’s patented coating process distinguishes itself from others, in that it is highly reproducible, readily scalable and results in a Si-CNF composite structure containing 25-30% silicon, with a compositionally graded interface at the Si-CNF interface that significantly improve cycling stability and enhances adhesion of silicon to the carbon fiber support. In Phase I, the team demonstrated the production of the Si-CNF anode material can successfully be transitioned from a static bench-scale reactor into a fluidized bed reactor. In addition, ASI made significant progress in the development of low cost, quick testing methods which can be performed on silicon coated CNFs as a means of quality control. To date, weight change, density, and cycling performance were the key metrics used to validate the high performance anode material. Under this effort, ASI made strides to establish a quality control protocol for the large volume production of Si-CNFs and has identified several key technical thrusts for future work. Using the results of this Phase I effort as a foundation, ASI has defined a path forward to commercialize and deliver high volume and low-cost production of SI-CNF material for anodes in Li-ion batteries.

  9. Advanced Materials for High Temperature, High Performance, Wide Bandgap Power Modules

    NASA Astrophysics Data System (ADS)

    O'Neal, Chad B.; McGee, Brad; McPherson, Brice; Stabach, Jennifer; Lollar, Richard; Liederbach, Ross; Passmore, Brandon

    2016-01-01

    Advanced packaging materials must be utilized to take full advantage of the benefits of the superior electrical and thermal properties of wide bandgap power devices in the development of next generation power electronics systems. In this manuscript, the use of advanced materials for key packaging processes and components in multi-chip power modules will be discussed. For example, to date, there has been significant development in silver sintering paste as a high temperature die attach material replacement for conventional solder-based attach due to the improved thermal and mechanical characteristics as well as lower processing temperatures. In order to evaluate the bond quality and performance of this material, shear strength, thermal characteristics, and void quality for a number of silver sintering paste materials were analyzed as a die attach alternative to solder. In addition, as high voltage wide bandgap devices shift from engineering samples to commercial components, passivation materials become key in preventing premature breakdown in power modules. High temperature, high dielectric strength potting materials were investigated to be used to encapsulate and passivate components internal to a power module. The breakdown voltage up to 30 kV and corresponding leakage current for these materials as a function of temperature is also presented. Lastly, high temperature plastic housing materials are important for not only discrete devices but also for power modules. As the operational temperature of the device and/or ambient temperature increases, the mechanical strength and dielectric properties are dramatically reduced. Therefore, the electrical characteristics such as breakdown voltage and leakage current as a function of temperature for housing materials are presented.

  10. Weld Metallurgy and Mechanical Properties of High Manganese Ultra-high Strength Steel Dissimilar Welds

    NASA Astrophysics Data System (ADS)

    Dahmen, Martin; Lindner, Stefan; Monfort, Damien; Petring, Dirk

    The increasing demand for ultra-high strength steels in vehicle manufacturing leads to the application of new alloys. This poses a challenge on joining especially by fusion welding. A stainless high manganese steel sheet with excellent strength and deformation properties stands in the centre of the development. Similar and dissimilar welds with a metastable austenitic steel and a hot formed martensitic stainless steel were performed. An investigation of the mixing effects on the local microstructure and the hardness delivers the metallurgical features of the welds. Despite of carbon contents above 0.4 wt.% none of the welds have shown cracks. Mechanical properties drawn from tensile tests deliver high breaking forces enabling a high stiffness of the joints. The results show the potential for the application of laser beam welding for joining in assembly of structural parts.

  11. Advanced modeling of high intensity accelerators

    SciTech Connect

    Ryne, R.D.; Habib, S.; Wangler, T.P.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The goals of this project were three-fold: (1) to develop a new capability, based on high performance (parallel) computers, to perform large scale simulations of high intensity accelerators; (2) to apply this capability to modeling high intensity accelerators under design at LANL; and (3) to use this new capability to improve the understanding of the physics of intense charge particle beams, especially in regard to the issue of beam halo formation. All of these goals were met. In particular, the authors introduced split-operator methods as a powerful and efficient means to simulate intense beams in the presence of rapidly varying accelerating and focusing fields. They then applied these methods to develop scaleable, parallel beam dynamics codes for modeling intense beams in linacs, and in the process they implemented a new three-dimensional space charge algorithm. They also used the codes to study a number of beam dynamics issues related to the Accelerator Production of Tritium (APT) project, and in the process performed the largest simulations to date for any accelerator design project. Finally, they used the new modeling capability to provide direction and validation to beam physics studies, helping to identify beam mismatch as a major source of halo formation in high intensity accelerators. This LDRD project ultimately benefited not only LANL but also the US accelerator community since, by promoting expertise in high performance computing and advancing the state-of-the-art in accelerator simulation, its accomplishments helped lead to approval of a new DOE Grand Challenge in Computational Accelerator Physics.

  12. Advanced yield strength of interconnector ribbon for photovoltaic module using crystallographic texture control

    NASA Astrophysics Data System (ADS)

    Kang, Byungjun; Park, Nochang; Tark, Sung Ju; Oh, Won Wook; Park, Sungeun; Kim, Young Do; Lee, Hae-Seok; Kim, Donghwan

    2014-03-01

    This paper reports a study on reducing the yield strength of Cu ribbon wire used for Si solar cell interconnections in solar panels. Low yield strength Cu core should be used as the interconnector ribbon to minimize the fracture of Si solar cells during the tabbing process. We lowered the yield strength of Cu ribbon by controlling the crystallographic texture without increasing the annealing time and temperature. The crystallographic texture was controlled by lubrication in a cold rolling process. The crystallographic texture was observed by scanning electron microscopy with electron back scattered diffraction. A tensile test was performed for the comparison of the mechanical properties of Cu with and without lubrication. The average yield strength was 91.2 MPa with lubrication whereas the yield strength was 99.6 MPa without lubrication. The lower value of the lubricated samples seemed to be caused by the higher cube texture intensity than that of the samples without lubrication.

  13. Springback Compensation Process for High Strength Steel Automotive Parts

    NASA Astrophysics Data System (ADS)

    Onhon, M. Fatih

    2016-08-01

    This paper is about an advanced stamping simulation methodology used in automotive industry to shorten total die manufacturing times in a new vehicle project by means of benefiting leading edge virtual try-out technology.

  14. Inferring strength and deformation properties of hot mix asphalt layers from the GPR signal: recent advances

    NASA Astrophysics Data System (ADS)

    Tosti, Fabio; Benedetto, Andrea; Bianchini Ciampoli, Luca; Adabi, Saba; Pajewski, Lara

    2015-04-01

    The great flexibility of ground-penetrating radar has led to consider worldwide this instrument as an effective and efficient geophysical tool in several fields of application. As far as pavement engineering is concerned, ground-penetrating radar is employed in a wide range of applications, including physical and geometrical evaluation of road pavements. Conversely, the mechanical characterization of pavements is generally inferred through traditional (e.g., plate bearing test method) or advanced non-destructive techniques (e.g., falling weight deflectometer). Nevertheless, measurements performed using these methods, inevitably turn out to be both much more time-consuming and low-significant whether compared with ground-penetrating radar's potentials. In such a framework, a mechanical evaluation directly coming from electromagnetic inspections could represent a real breakthrough in the field of road assets management. With this purpose, a ground-penetrating radar system with 600 MHz and 1600 MHz center frequencies of investigation and ground-coupled antennas was employed to survey a 4m×30m flexible pavement test site. The test area was marked by a regular grid mesh of 836 nodes, respectively spaced by a distance of 0.40 m alongside the horizontal and vertical axes. At each node, the elastic modulus was measured using a light falling weight deflectometer. Data processing has provided to reconstruct a 3-D matrix of amplitudes for the surveyed area, considering a depth of around 300 mm, in accord to the influence domain of the light falling weight deflectometer. On the other hand, deflectometric data were employed for both calibration and validation of a semi-empirical model by relating the amplitude of signal reflections through the media along fixed depths within the depth domain considered, and the Young's modulus of the pavement at the evaluated point. This statistically-based model is aimed at continuously taking into account alongside the depth of investigation

  15. New tungsten alloy has high strength at elevated temperatures

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Tungsten-hafnium-carbon alloy has tensile strengths of 88,200 psi at 3000 deg F and 62,500 psi at 3500 deg F. Possible industrial applications for this alloy would include electrical components such as switches and spark plugs, die materials for die casting steels, and heating elements.

  16. High-strength tungsten alloy with improved ductility

    NASA Technical Reports Server (NTRS)

    Klopp, W. D.; Raffo, P. L.; Rubenstein, L. S.; Witzke, W. R.

    1967-01-01

    Alloy combines superior strength at elevated temperatures with improved ductility at lower temperatures relative to unalloyed tungsten. Composed of tungsten, rhenium, hafnium, and carbon, the alloy is prepared by consumable electrode vacuum arc-melting and can be fabricated into rod, plate, and sheet.

  17. Laser Measurements of Transient High-Strength Electric Fields

    DTIC Science & Technology

    1987-07-15

    Measurements of Electric Field Strength," Poster Session of Applied Spectroscopy (Miami Valley Section), University of Dayton, January 11, 1985. 2...Buswell, A. T., "Quantum Perturbation Theory of Stark- Induced Polarizability," Poster Session of Applied Spectroscopy (Miami Valley Section), University...34Theoretical Calculations of Stark- Induced Polarizabilities," Poster Session of Applied Spectroscopy (Miami Valley Section), The Ohio State University

  18. Static Dielectric Breakdown Strength of Condensed Heterogeneous High Explosives

    DTIC Science & Technology

    1987-06-01

    3-1 TRIPLE JUNCTION . . .. . . . . . . . . . . . . . . . * * * .3-2 SURFACE FLASHOVER ...enhancement at dielectric interfaces, surface flashover , humidity, surrounding atmosphere, temperature, pressure, and excitation time), which are...discussed in Chapter 3. To obtain meaningful critical field strengths, it is necessary to suppress surface flashover around the insulator sides and

  19. High strength-high conductivity Cu--Fe composites produced by powder compaction/mechanical reduction

    DOEpatents

    Verhoeven, John D.; Spitzig, William A.; Gibson, Edwin D.; Anderson, Iver E.

    1991-08-27

    A particulate mixture of Cu and Fe is compacted and mechanically reduced to form an "in-situ" Cu-Fe composite having high strength and high conductivity. Compaction and mechanical reduction of the particulate mixture are carried out at a temperature and time at temperature selected to avoid dissolution of Fe into the Cu matrix particulates to a harmful extent that substantially degrades the conductivity of the Cu-Fe composite.

  20. High strength-high conductivity Cu-Fe composites produced by powder compaction/mechanical reduction

    DOEpatents

    Verhoeven, J.D.; Spitzig, W.A.; Gibson, E.D.; Anderson, I.E.

    1991-08-27

    A particulate mixture of Cu and Fe is compacted and mechanically reduced to form an ''in-situ'' Cu-Fe composite having high strength and high conductivity. Compaction and mechanical reduction of the particulate mixture are carried out at a temperature and time at temperature selected to avoid dissolution of Fe into the Cu matrix particulates to a harmful extent that substantially degrades the conductivity of the Cu-Fe composite. 5 figures.

  1. Imploding Liner Material Strength Measurements at High-Strain and High Strain Rate

    SciTech Connect

    Bartsch, R.R.; Lee, H.; Holtkamp, D.; Wright, B.; Stokes, J.; Morgan, D.; Anderson, W.; Broste, W.

    1998-10-18

    Imploding, cylindrical liners provide a unique, shockless means of simultaneously accessing high strain and high-strain-rate for measurement of strength of materials in plastic flow. The radial convergence in the liner geometry results in the liner thickening as the circumference becomes smaller. Strains of up to {approximately}1.25 and strain rates of up to {approximately}10{sup 6} sec{sup -1} can be readily achieved in a material sample placed inside of an aluminum driver liner, using the Pegasus II capacitor bank. This provides yield strength data at conditions where none presently exists. The heating from work done against the yield strength is measured with multichannel pyrometry from infrared radiation emitted by the material sample. The temperature data as a function of liner position are unfolded to give the yield strength along the strain, strain-rate trajectory. Proper design of the liner and sample configuration ensures that the current diffused into the sample adds negligible heating. An important issue, in this type of temperature measurement, is shielding of the pickup optics from other sources of radiation. At strains greater than those achievable on Pegasus, e.g. the LANL Atlas facility, some materials may be heated all the way to melt by this process. Recent data on 6061-T6 Aluminum will be compared with an existing model for strain and strain-rate heating. The liner configuration and pyrometry diagnostic will also be discussed.

  2. Chrome-Free Paint Primer for Zn/Ni Plated High-Strength Steel (Briefing Charts)

    DTIC Science & Technology

    2014-11-19

    Chrome-Free Paint Primer for Zn/Ni Plated High- Strength Steel 11-19-14 Presentation at ASETSDefense 2014 George Zafiris Team: Mark Jaworowski, Mike...AND SUBTITLE Chrome-Free Paint Primer for Zn/Ni Plated High-Strength Steel 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...by ANSI Std Z39-18 Background High-Strength Steel (Substrate) LHE Cd layer Cr(VI) Primer CCC High-Strength Steel (Substrate) LHE Zn/Ni layer

  3. High strength and high ductility behavior of 6061-T6 alloy after laser shock processing

    NASA Astrophysics Data System (ADS)

    Gencalp Irizalp, Simge; Saklakoglu, Nursen

    2016-02-01

    The plastic deformation behavior of 6061-T6 alloy which was subjected to severe plastic deformation (SPD) at high strain rates during laser shock processing (LSP) was researched. In LSP-treated materials, the near surface microstructural change was examined by TEM and fracture surfaces after tensile testing were examined by SEM. An increase in strength of metallic materials brings about the decrease in ductility. In this study, the results showed that LSP-treated 6061-T6 alloy exhibited both high strength and high ductility. TEM observation showed that stacking fault (SF) ribbon enlarged, deformation twins formed and twin boundary increased in LSP-treated 6061-T6 alloy. This observation was an indication of stacking fault energy (SFE) decrease. Work hardening capability was recovered after LSP impacts.

  4. High breakdown-strength composites from liquid silicone rubbers

    NASA Astrophysics Data System (ADS)

    Vudayagiri, Sindhu; Zakaria, Shamsul; Yu, Liyun; Sager Hassouneh, Suzan; Benslimane, Mohamed; Ladegaard Skov, Anne

    2014-10-01

    In this paper we investigate the performance of liquid silicone rubbers (LSRs) as dielectric elastomer transducers. Commonly used silicones in this application include room-temperature vulcanisable (RTV) silicone elastomers and composites thereof. Pure LSRs and their composites with commercially available fillers (an anatase TiO2, a core-shell TiO2-SiO2 and a CaCu3Ti4O12 filler) are evaluated with respect to dielectric permittivity, elasticity (Young’s modulus) and electrical breakdown strength. Film formation properties are also evaluated. The best-performing formulations are those with anatase TiO2 nanoparticles, where the highest relative dielectric permittivity of 5.6 is obtained, and with STX801, a core-shell morphology TiO2-SiO2 filler from Evonik, where the highest breakdown strength of 173 V μm-1 is obtained.

  5. Spark plasma sintering of high-strength lightweight ceramics

    NASA Astrophysics Data System (ADS)

    Chuvil'deev, V. N.; Boldin, M. S.; Popov, A. A.; Nokhrin, A. V.

    2017-07-01

    This research paper provides an illustration of how to use the Spark Plasma Sintering technology (SPS) for powder materials in order to obtain lightweight ceramics Al2O3/ZrO2 with enhanced strength properties. Optimization of SPS modes helps to produce ceramics with grain size of less than 400 nm, microhardness Hv = 24 GPa, and crack resistance KIC = 4.2 MPa·m1/2.

  6. Behavior of a High Strength Concrete Model Subjected to Biaxial Compression.

    DTIC Science & Technology

    1982-12-01

    D-Ai26 442 BEHAIOR OF A HIGH STRENGTH CONCRETE MODEL SUBJECTED-TO i/3j,~BIAXIAL C MPRESSION(U) TEXAS UNIV AT AUSTIN DEPT OF I CIVIL ENGINEERING J C...RESOLUTION TEST CHART +’ NATIONAL BURAU OF STANDARDS-1963 " A" r I r [- . • ° - r. -4- - - AFOSR-TR. 93-0137 ( BEHAVIOR OF A HIGH STRENGTH CONCRETE ...on reveree aide if neceeary and identify by block number) HIGH-STRENGTH CONCRETE DISCONTINUITY BIAXIAL LOADING ULTIMATE STRENGTH STRESS-STRAIN

  7. Integrating advanced facades into high performance buildings

    SciTech Connect

    Selkowitz, Stephen E.

    2001-05-01

    Glass is a remarkable material but its functionality is significantly enhanced when it is processed or altered to provide added intrinsic capabilities. The overall performance of glass elements in a building can be further enhanced when they are designed to be part of a complete facade system. Finally the facade system delivers the greatest performance to the building owner and occupants when it becomes an essential element of a fully integrated building design. This presentation examines the growing interest in incorporating advanced glazing elements into more comprehensive facade and building systems in a manner that increases comfort, productivity and amenity for occupants, reduces operating costs for building owners, and contributes to improving the health of the planet by reducing overall energy use and negative environmental impacts. We explore the role of glazing systems in dynamic and responsive facades that provide the following functionality: Enhanced sun protection and cooling load control while improving thermal comfort and providing most of the light needed with daylighting; Enhanced air quality and reduced cooling loads using natural ventilation schemes employing the facade as an active air control element; Reduced operating costs by minimizing lighting, cooling and heating energy use by optimizing the daylighting-thermal tradeoffs; Net positive contributions to the energy balance of the building using integrated photovoltaic systems; Improved indoor environments leading to enhanced occupant health, comfort and performance. In addressing these issues facade system solutions must, of course, respect the constraints of latitude, location, solar orientation, acoustics, earthquake and fire safety, etc. Since climate and occupant needs are dynamic variables, in a high performance building the facade solution have the capacity to respond and adapt to these variable exterior conditions and to changing occupant needs. This responsive performance capability

  8. Understanding Depth Variation of Deep Seismicity from in situ Measurements of Mineral Strengths at High Pressures

    SciTech Connect

    Chen, J.

    2010-01-01

    Strengths of major minerals of Earth's mantle have been measured using in situ synchrotron X-ray diffraction at high pressures. Analysis of the diffraction peak widths is used to derive the yield strengths. Systematic analysis of the experimental result for olivine, wadsleyite, ringwoodite and perovskite indicates that minerals in the upper mantle, the transition zone and the lower mantle have very distinct strength character. Increasing temperature weakens the upper mantle mineral, olivine, significantly. At high temperature and high pressure, the transition zone minerals, wadsleyite and ringwoodite, have higher strengths than the upper mantle mineral. Among all the minerals studied, the lower mantle mineral, perovskite, has the highest strength. While both the upper mantle and the transition zone minerals show a notable strength drop, the strength of the lower mantle mineral shows just an increase of relaxation rate (no strength drop) when the temperature is increased stepwise by 200 K. The strength characteristics of these major mantle minerals at high pressures and temperatures indicate that yield strength may play a crucial role in defining the profile of deep earthquake occurrence with depth.

  9. Achieving High Strength and High Ductility in Friction Stir-Processed Cast Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Yuan, Wei; Panigrahi, Sushanta K.; Mishra, Rajiv S.

    2013-08-01

    Friction stir processing (FSP) is emerging as an effective tool for microstructural modification and property enhancement. As-cast AZ91 magnesium alloy was friction stir processed with one-pass and two-pass to examine the influence of processing conditions on microstructural evolution and corresponding mechanical properties. Grain refinement accompanied with development of strong basal texture was observed for both processing conditions. Ultrafine-grained (UFG) AZ91 was achieved under two-pass FSP with fine precipitates distributed on the grain boundary. The processed UFG AZ91 exhibited a high tensile strength of ~435 MPa (117 pct improvement) and tensile fracture elongation of ~23 pct. The promising combination of strength and ductility is attributed to the elimination of casting porosity, and high density of fine precipitates in an UFG structure with quite low dislocation density. The effects of grain size, precipitate, and texture on deformation behavior have been discussed.

  10. Commercialization of NASA's High Strength Cast Aluminum Alloy for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    2003-01-01

    In this paper, the commercialization of a new high strength cast aluminum alloy, invented by NASA-Marshall Space Flight Center, for high temperature applications will be presented. Originally developed to meet U.S. automotive legislation requiring low- exhaust emission, the novel NASA aluminum alloy offers dramatic improvement in tensile and fatigue strengths at elevated temperatures (450 F-750 F), which can lead to reducing part weight and cost as well as improving performance for automotive engine applications. It is an ideal low cost material for cast components such as pistons, cylinder heads, cylinder liners, connecting rods, turbo chargers, impellers, actuators, brake calipers and rotors. NASA alloy also offers greater wear resistance, dimensional stability, and lower thermal expansion compared to conventional aluminum alloys, and the new alloy can be produced economically from sand, permanent mold and investment casting. Since 2001, this technology was licensed to several companies for automotive and marine internal combustion engines applications.

  11. High Strength and Wear Resistant Aluminum Alloy for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    In this paper, a new high strength and wear resistant aluminum cast alloy invented by NASA-MSFC for high temperature applications will be presented. Developed to meet U.S. automotive legislation requiring low-exhaust emission, the novel NASA 398 aluminum-silicon alloy offers dramatic improvement in tensile and fatigue strengths at elevated temperatures (500 F-800 F), enabling new pistons to utilize less material, which can lead to reducing part weight and cost as well as improving performance. NASA 398 alloy also offers greater wear resistance, surface hardness, dimensional stability, and lower thermal expansion compared to conventional aluminum alloys for several commercial and automotive applications. The new alloy can be produced economically using permanent steel molds from conventional gravity casting or sand casting. The technology was developed to stimulate the development of commercial aluminum casting products from NASA-developed technology by offering companies the opportunity to license this technology.

  12. High Shear Deformation to Produce High Strength and Energy Absorption in Mg Alloys

    SciTech Connect

    Joshi, Vineet V.; Jana, Saumyadeep; Li, Dongsheng; Garmestani, Hamid; Nyberg, Eric A.; Lavender, Curt A.

    2014-02-01

    Magnesium alloys have the potential to reduce the mass of transportation systems however to fully realize the benefits it must be usable in more applications including those that require higher strength and ductility. It has been known that fine grain size in Mg alloys leads to high strength and ductility. However, the challenge is how to achieve this optimal microstructure in a cost effective way. This work has shown that by using optimized high shear deformation and second phase particles of Mg2Si and MgxZnZry the energy absorption of the extrusions can exceed that of AA6061. The extrusion process under development described in this presentation appears to be scalable and cost effective. In addition to process development a novel modeling approach to understand the roles of strain and state-of-strain on particle fracture and grain size control has been developed

  13. Sarcopenia, Dynapenia, and the Impact of Advancing Age on Human Skeletal Muscle Size and Strength; a Quantitative Review

    PubMed Central

    Mitchell, W. Kyle; Williams, John; Atherton, Philip; Larvin, Mike; Lund, John; Narici, Marco

    2012-01-01

    Changing demographics make it ever more important to understand the modifiable risk factors for disability and loss of independence with advancing age. For more than two decades there has been increasing interest in the role of sarcopenia, the age-related loss of muscle or lean mass, in curtailing active and healthy aging. There is now evidence to suggest that lack of strength, or dynapenia, is a more constant factor in compromised wellbeing in old age and it is apparent that the decline in muscle mass and the decline in strength can take quite different trajectories. This demands recognition of the concept of muscle quality; that is the force generating per capacity per unit cross-sectional area (CSA). An understanding of the impact of aging on skeletal muscle will require attention to both the changes in muscle size and the changes in muscle quality. The aim of this review is to present current knowledge of the decline in human muscle mass and strength with advancing age and the associated risk to health and survival and to review the underlying changes in muscle characteristics and the etiology of sarcopenia. Cross-sectional studies comparing young (18–45 years) and old (>65 years) samples show dramatic variation based on the technique used and population studied. The median of values of rate of loss reported across studies is 0.47% per year in men and 0.37% per year in women. Longitudinal studies show that in people aged 75 years, muscle mass is lost at a rate of 0.64–0.70% per year in women and 0.80–00.98% per year in men. Strength is lost more rapidly. Longitudinal studies show that at age 75 years, strength is lost at a rate of 3–4% per year in men and 2.5–3% per year in women. Studies that assessed changes in mass and strength in the same sample report a loss of strength 2–5 times faster than loss of mass. Loss of strength is a more consistent risk for disability and death than is loss of muscle mass. PMID:22934016

  14. Fluorescence thermometry for advanced high-temperature materials

    SciTech Connect

    Cates, M.R.; Beshears, D.L.; Allison, S.W.

    1996-05-01

    Advanced high-temperature materials, such as ceramics, metals, and composites, are of critical importance to the development of new and improved technologies worldwide. For aircraft, automobiles, or other combustion-engine powered systems, major efficiency improvements depend on the ability to operate at temperatures closer to the adiabatic limit of the chemical processes involved. Materials able to function at higher temperatures must therefore be introduced into improved designs. Jet turbine engines, for example, already require air cooled rotors and stators in order that the nickel alloys used will not deteriorate and fail from overheating. In the case of ceramics, optimum temperature usage will often cause the refractory surfaces to glow red hot and the material itself to become partially translucent. For composites, especially where structural integrity, vibration resistance, and strength are concerned, the temperature behavior of dissimilar components must be well known and well understood before appropriate designs can be effected. As the need for higher temperature materials becomes increasingly more important, so does the requirement to properly measure the temperatures involved. Phosphor thermometry offers measurement solutions at very high temperatures that often cannot be achieved by more conventional methods. In this paper we discuss the phosphor technique and several examples of its application to high-temperature measurement.

  15. High-strength state of ultrafine-grained martensitic steel produced by high pressure torsion

    NASA Astrophysics Data System (ADS)

    Karavaeva, M. V.; Nikitina, M. A.; Ganeev, A. V.; Islamgaliev, R. K.

    2017-02-01

    The paper presents the study results on the effect of severe plastic deformation (SPD) via high pressure torsion (HPT) on the structure and properties of martensitic steel. The contribution of different strengthening mechanisms in the strength of steel has been analyzed. It is shown that independently of the deformation temperature the main contribution in hardening belongs to grain boundaries (about 50 %), whereas the dislocation and solid solution components achieve 15 and 25 %, respectively.

  16. Development of high toughness, high strength aluminide-bonded carbide ceramics

    SciTech Connect

    Becher, P.F.; Plucknett, K.P.; Tiegs, T.N.

    1997-04-01

    Cemented carbides are widely used in applications where resistance to abrasion and wear are important, particularly in combination with high strength and stiffness. In the present case, ductile aluminides have been used as a binder phase to fabricate dense carbide cermets by either sintering of mixed powders or a melt-infiltration sintering process. The choice of an aluminide binder was based on the exceptional high temperature strength and chemical stability exhibited by these alloys. For example, TiC-based composites with a Ni{sub 3}Al binder phase exhibit improved oxidation resistance, Young`s moduli > 375 GPa, high fracture strengths (> 1 GPa) that are retained to {ge} 900{degrees}C, and fracture toughness values of 10 to 15 MPa{radical}m, identical to that measured in commercial cobalt-bonded WC with the same test method. The thermal diffusivity values at 200{degrees}C for these composites are {approximately} 0.070 to 0.075 cm{sup 2}/s while the thermal expansion coefficients rise with Ni3Al content from {approximately} 8 to {approximately}11 x 10{sup {minus}6}/{degrees}C over the range of 8 to 40 vol. % Ni{sub 3}Al. The oxidation and acidic corrosion resistances are quite promising as well. Finally, these materials also exhibit good electrical conductivity allowing them to be sectioned and shaped by electrical discharge machining (EDM) processes.

  17. Longitudinal differences of the PMSE strength at high Arctic latitudes

    NASA Astrophysics Data System (ADS)

    Latteck, Ralph; Singer, Werner; Swarnalingam, Nimalan; Maik Wissing, Jan; Meek, Chris; Manson, Allan H.; Drummond, James; Hocking, Wayne K.

    2010-05-01

    Observations of Polar Mesosphere Summer Echoes (PMSE) obtained by the ALWIN VHF radar, located in Andenes, Norway (69°N, 16°E) and by the Resolute Bay VHF radar, located in Nunavut, Canada (75°N, 95°W), are characterized by differences in occurrence rate and PMSE strengths, with generally lower levels at Resolute Bay. Even though both radars are well calibrated, the effect of the different radar hardware, especially the antenna systems, on the observations still causes concerns if comparisons of results from both sites are presented. Now, PMSE observations with identical radar hardware and identical analysis software are possible using the recently installed SKiYMET meteor radar at Eureka (80°N, 86°W) and the SKiYMET meteor radar at Andenes. Eureka is located in the same longitudinal sector as Resolute Bay, but 5 degrees north of the site, the Andenes SKiYMET radar is co-located with the ALWIN VHF radar. Both SKiYMET radars are calibrated using cosmic sky noise variations. A 4-week measurement campaign was performed during July in 2008, with both the Andenes and Eureka meteor radars running in a special mode designed for PMSE studies. Lower levels of PMSE strength were found at Eureka, confirming the earlier observations at Resolute Bay obtained by VHF radar. The observations are discussed in relation to dynamics, thermal conditions, and ionization. Strong indications exist that the observed differences of PMSE strength are related to the different levels of ionisation due to precipitating particles in the auroral oval and inside the polar cap. Global maps of precipitating energetic electrons (energy band: 6.5 keV-9.46 keV) and energetic protons (energy band 80 keV-240 keV) derived from POES satellites clearly indicate that Eureka and Resolute Bay are always inside the polar cap where, under geomagnetically quiet conditions, ionisation due to particle precipitation is missing.

  18. A Proposed Uniaxial Compression Test for High Strength Ceramics

    DTIC Science & Technology

    1989-09-01

    is lost and catastrophic collapse ensues. The origin of the microcracks may be microplasticity in the form of twinning, 2 or existing flaws such as...Uniaxial compressive strength tElastic modulus sonic method (strain gage method ) sPoisson’s ratio sonic method MIL-STD-1942(MR) size B, mean flexure...SEA-O5MB, LCDR W. M. Elger Commander, U.S. Armament, Munitions and Chemical 1 SEA-05R 25, C. Zanis Command, Dover, NJ 07801 2 ATTN: Technical Library

  19. STRESS CORROSION OF HIGH STRENGTH STEELS AND ALLOYS; ARTIFICIAL ENVIRONMENT

    DTIC Science & Technology

    Ladish D6Ac, 300M, Vascojet 100, AM355 , PH15-7Mo, B120VCA, 4137Co, Rocoly 270, and Ardeform 301. U-bend stress corrosion tests are progressing on 4137...Co, AM355 115-8Mo. B120VCA, and Ardeform 301. Bent specimens of 4137 Co and AM 355 are still under test. No failures were observed on bent beam...specimens of AM355 (secondary direction) cold-rolled to 250, 261, 302 Kpsi strength levels. Little change was noted in the bent beam specimens of 4137 Co

  20. Stress corrosion in high-strength aluminum alloys

    NASA Technical Reports Server (NTRS)

    Dorward, R. C.; Hasse, K. R.

    1980-01-01

    Report describes results of stress-corrosion tests on aluminum alloys 7075, 7475, 7050, and 7049. Tests compare performance of original stress-corrosion-resistant (SCR) aluminum, 7075, with newer, higher-strength SCR alloys. Alloys 7050 and 7049 are found superior in short-transverse cross-corrosion resistance to older 7075 alloy; all alloys are subject to self-loading effect caused by wedging of corrosion products in cracks. Effect causes cracks to continue to grow, even at very-low externally applied loads.

  1. College Credit Earned in High School: Comparing Student Performance in Project Advance and Advanced Placement.

    ERIC Educational Resources Information Center

    Mercurio, Joseph A.; And Others

    1983-01-01

    Syracuse University's Project Advance (one of the first high school college cooperative programs in the United States through which college courses, taught in high schools by high school faculty, are taken for college credit) is described. (MLW)

  2. Microleakage of high-strength glass ionomer: resin composite restorations in minimally invasive treatment.

    PubMed

    Platt, J A; Rhodes, B

    Atraumatic Restorative Treatment (ART) has been investigated as an alternative caries treatment. The technique involves removal of loose tooth structure with a spoon excavator, followed by placement of an adhesive restorative material, often a high-strength glass ionomer. This study compares the microleakage of a high-strength glass ionomer/resin composite and two occlusal resin composite restoration techniques.

  3. ETV Program Report: Big Fish Septage and High Strength Waste Water Treatment System

    EPA Science Inventory

    Verification testing of the Big Fish Environmental Septage and High Strength Wastewater Processing System for treatment of high-strength wastewater was conducted at the Big Fish facility in Charlevoix, Michigan. Testing was conducted over a 13-month period to address different c...

  4. High-strength cast irons used for manufacturing parts of vaz passenger cars

    NASA Astrophysics Data System (ADS)

    Kitaigora, N. I.

    1996-10-01

    Methods for solving problems arising in the production of high-strength cast iron with stable properties and structure are considered. Results of introduction of new grades of high-strength cast iron instead of malleable cast iron and camshaft cast iron in the Volzhskii Automobile Plant are described.

  5. ETV Program Report: Big Fish Septage and High Strength Waste Water Treatment System

    EPA Science Inventory

    Verification testing of the Big Fish Environmental Septage and High Strength Wastewater Processing System for treatment of high-strength wastewater was conducted at the Big Fish facility in Charlevoix, Michigan. Testing was conducted over a 13-month period to address different c...

  6. Leg strength declines with advancing age despite habitual endurance exercise in active older adults.

    PubMed

    Marcell, Taylor J; Hawkins, Steven A; Wiswell, Robert A

    2014-02-01

    Age-associated loss of muscle mass (sarcopenia) and strength (dynapenia) is associated with a loss of independence that contributes to falls, fractures, and nursing home admissions, whereas regular physical activity has been suggested to offset these losses. The purpose of this study was to evaluate the effect of habitual endurance exercise on muscle mass and strength in active older adults. A longitudinal analysis of muscle strength (≈4.8 years apart) was performed on 59 men (age at start of study: 58.6 ± 7.3 years) and 35 women (56.9 ± 8.2 years) who used endurance running as their primary mode of exercise. There were no changes in fat-free mass although body fat increased minimally (1.0-1.5%). Training volume (km·wk, d·wk) decreased in both the men and women. There was a significant loss of both isometric knee extension (≈5% per year) and knee flexion (≈3.6% per year) strength in both the men and women. However, there was no significant change in either isokinetic concentric or eccentric torque of the knee extensors. Our data demonstrated a significant decline in isometric knee extensor and knee flexor strength although there were no changes in body mass in this group of very active older men and women. Our data support newer exercise guidelines for older Americans suggesting resistance training be an integral component of a fitness program and that running alone was not sufficient to prevent the loss in muscle strength (dynapenia) with aging.

  7. Microstructural, mechanical and magnetic properties of high-strength low-alloy steel

    NASA Astrophysics Data System (ADS)

    Narayan, S. Prakash; Rao, V.; Mohanty, O. N.

    1991-06-01

    Studies have been carried out on commercial grade high-strength low-alloy steel, microalloyed with Nb, V and Ti with a view to developing high-strength material with moderate soft magnetic properties. In order to obtain a suitable microstructure necessary for achieving the desired mechanical strength and magnetic properties, spheroidisation annealing (SA) as well as quenching and tempering (QT) treatments have been employed. At longer annealing or tempering time (⩾ 30 h), both the SA and QT samples have shown ample spheroidisation of carbides resulting in considerable improvement in the magnetic properties without much deterioration in mechanical strength.

  8. Development of a high strength hot isostatically pressed /HIP/ disk alloy, MERL 76

    NASA Technical Reports Server (NTRS)

    Evans, D. J.; Eng, R. D.

    1980-01-01

    A nickel-based powder metal disk alloy developed for use in advanced commercial gas turbines is described. Consideration is given to final alloy chemistry modifications made to achieve a desirable balance between tensile strength and stress rupture life and ductility. The effects of post-consolidation heat treatment are discussed, the preliminary mechanical properties obtained from full-scale turbine disks are presented.

  9. Analysis of Tile-Reinforced Composite Armor. Part 1; Advanced Modeling and Strength Analyses

    NASA Technical Reports Server (NTRS)

    Davila, C. G.; Chen, Tzi-Kang; Baker, D. J.

    1998-01-01

    The results of an analytical and experimental study of the structural response and strength of tile-reinforced components of the Composite Armored Vehicle are presented. The analyses are based on specialized finite element techniques that properly account for the effects of the interaction between the armor tiles, the surrounding elastomers, and the glass-epoxy sublaminates. To validate the analytical predictions, tests were conducted with panels subjected to three-point bending loads. The sequence of progressive failure events for the laminates is described. This paper describes the results of Part 1 of a study of the response and strength of tile-reinforced composite armor.

  10. Analysis of Tile-Reinforced Composite Armor. Part 1; Advanced Modeling and Strength Analyses

    NASA Technical Reports Server (NTRS)

    Davila, C. G.; Chen, Tzi-Kang; Baker, D. J.

    1998-01-01

    The results of an analytical and experimental study of the structural response and strength of tile-reinforced components of the Composite Armored Vehicle are presented. The analyses are based on specialized finite element techniques that properly account for the effects of the interaction between the armor tiles, the surrounding elastomers, and the glass-epoxy sublaminates. To validate the analytical predictions, tests were conducted with panels subjected to three-point bending loads. The sequence of progressive failure events for the laminates is described. This paper describes the results of Part 1 of a study of the response and strength of tile-reinforced composite armor.

  11. Study to determine and analyze the strength of high modulus glass in epoxy-matrix composites

    NASA Technical Reports Server (NTRS)

    Bacon, J. F.

    1974-01-01

    Glass composition research was conducted to produce a high modulus, high strength beryllium-free glass fiber. This program was built on the previous research for developing high modulus, high strength glass fibers which had a 5 weight percent beryllia content. The fibers resulting from the composition program were then used to produce fiber reinforced-epoxy resin composites which were compared with composites reinforced by commercial high modulus glass fibers, Thornel S graphite fiber, and hybrids where the external quarters were reinforced with Thornel S graphite fiber and the interior half with glass fiber as well as the reverse hybrid. The composites were given tensile strength, compressive strength, short-beam shear strength, creep and fatigue tests. Comments are included on the significance of the test data.

  12. The research on delayed fracture behavior of high-strength bolts in steel structure

    NASA Astrophysics Data System (ADS)

    Li, Guo dong; Li, Nan

    2017-07-01

    High-strength bolts have been widely used in power plants. However, the high-strength bolts which being employed in pumping station, steel structure and pipeline anti-whip structure have been found delayed fracture for many times in a power plant, this will affect the reliability of steel fracture and bring blow risk caused by falling objects. The high-strength bolt with delayed fracture was carried out fracture analysis, metallurgical analysis, chemical analysis, mechanical analysis, as well as bolts installation analysis, it can be comprehensively confirmed that the direct cause of high-strength bolts delayed fracture is the stress corrosion, and the root cause of high-strength bolts delayed fracture should be the improper installation at the initial and the imperfect routine anti-corrosion maintenance.

  13. High-temperature properties and microstructure of Mo microalloyed ultra-high-strength steel

    NASA Astrophysics Data System (ADS)

    Han, Qi-Hang; Kang, Yong-Lin; Zhao, Xian-Meng; Gao, Lu-Feng; Qiu, Xue-Song

    2011-08-01

    The high-temperature mechanical properties and microstructure of forging billets of C-Si-Mn-Cr and C-Si-Mn-Cr-Mo ultra-high-strength cold-rolled steels (tensile strength≥1000 MPa, elongation≥10%) were studied. Through the comparison of reduction in area and hot deformation resistance at 600-1300°C, the Mo-containing steel was found to possess a higher strength and a better plasticity than the Mo-free one. The equilibrium phase diagram and atom fraction of Mo in different phases at different temperatures were calculated by Thermo-Calc software (TCW). The results analyzed by using transmission electron microscopy and TCW show that precipitates in the Mo-containing steel are primarily M23C6, which promote pearlite formation. The experimental data also show that a lower ductility point existing in the Mo-free steel at 850°C is eliminated in the Mo-containing one. This is mainly due to the segregation of Mo at grain boundaries investigated by electron probe microanalysis (EPMA), which improves the strength of grain boundaries.

  14. Are anthropometric, flexibility, muscular strength, and endurance variables related to clubhead velocity in low- and high-handicap golfers?

    PubMed

    Keogh, Justin W L; Marnewick, Michel C; Maulder, Peter S; Nortje, Jacques P; Hume, Patria A; Bradshaw, Elizabeth J

    2009-09-01

    The present study assessed the anthropometric profile (International Society for the Advancement of Kinanthropometry protocol), flexibility, muscular strength, and endurance of 20 male golfers. These data were collected in order to determine: a) the relationship between these kinanthropometric measures and clubhead velocity; and b) if these measures could distinguish low-handicap (LHG) and high-handicap (HHG) golfers. Ten LHG (handicap of 0.3 +/- 0.5) and 10 HHG (handicap of 20.3 +/- 2.4) performed 10 swings for maximum velocity and accuracy with their own 5-iron golf club at a wall-mounted target. LHG hit the target significantly more (115%) and had a 12% faster clubhead velocity than HHG (p < 0.01). The LHG also had significantly (28%) greater golf swing-specific cable woodchop (GSCWC) strength (p < 0.01) and tendencies for greater (30%) bench press strength and longer (5%) upper am and total arm (4%) length and less (24%) right hip internal rotation than HHG (0.01 < p < 0.05). GSCWC strength was significantly correlated to clubhead velocity (p < 0.01), with bench press and hack squat strength as well as upper arm and total arm length also approaching significance (0.01 < p < 0.05). Golfers with high GSCWC strength and perhaps greater bench press strength and longer arms may therefore be at a competitive advantage, as these characteristics allow the production of greater clubhead velocity and resulting ball displacement. Such results have implications for golf talent identification programs and for the prescription and monitoring of golf conditioning programs. While golf conditioning programs may have many aims, specific trunk rotation exercises need to be included if increased clubhead velocity is the goal. Muscular hypertrophy development may not need to be emphasized as it could reduce golf performance by limiting range of motion and/or increasing moment of inertia.

  15. Advanced Optical Fibers for High power Fiber lasers

    DTIC Science & Technology

    2015-08-24

    0704-0188 3. DATES COVERED (From - To) - UU UU UU UU 24-08-2015 Approved for public release; distribution is unlimited. Advanced Optical Fibers for...0946 ABSTRACT Advanced Optical Fibers for High power Fiber lasers Report Title A review of recent fiber developement for high power fiber lasers...Chapter 7 Advanced Optical Fibers for High Power Fiber Lasers Liang Dong Additional information is available at the end of the chapter http://dx.doi.org

  16. An Experimental Study of High Strength-High Volume Fly Ash Concrete for Sustainable Construction Industry

    NASA Astrophysics Data System (ADS)

    Kate, Gunavant K.; Thakare, Sunil B., Dr.

    2017-08-01

    Concrete is the most widely used building material in the construction of infrastructures such as buildings, bridges, highways, dams, and many other facilities. This paper reports the development, the basic idea, the main properties of high strength-high volume fly ash with application in concrete associated with the development and implementation of Sustainable Properties of High Volume Fly Ash Concrete (HVFAC) Mixtures and Early Age Shrinkage and mechanical properties of concrete for 7,28,56 and 90days. Another alternative to make environment-friendly concrete is the development of high strength-high-volume fly ash concrete which is an synthesized from materials of geological origin or by-product materials such as fly ash which is rich in silicon and aluminum. In this paper 6 concrete mixtures were produced to evaluate the effect of key parameters on the mechanical properties of concrete and its behavior. The study key parameters are; binder material content, cement replacement ratios, and the steel fibers used to High Volume Fly Ash mixtures for increasing performance of concrete.

  17. Method for Assessing Grain Boundary Density in High-Strength, High-Toughness Ferritic Weld Metal

    NASA Astrophysics Data System (ADS)

    Lei, Xuanwei; Huang, Jihua; Chen, Shuhai; Zhao, Xingke

    2017-01-01

    A method for measuring peak values on the maxlength-area fraction curve and the perimeter-area fraction curve with morphological photos using Image Pro Plus 6.0 Soft for assessing grain boundary density in high-strength, high-toughness ferritic weld metals is developed. Results show the sizes of the peak values have a tough relationship with grain boundary densities in that a larger peak value stands for a larger grain boundary density. As ferrite transforms into a certain orientation relationship, this semi-empirical method provides handy references for judging the sizes of effective grain boundary densities.

  18. Welding high-strength aluminum alloys at the Paton Institute

    SciTech Connect

    Kuchuk, Yatsenko, S.I.; Cherednichok, V.T.; Semenov, L.A. )

    1993-07-01

    The choice of the flash method for welding aluminum-alloy sections was governed first of all by the possibility of producing homogeneous-structure joints with the minimum amount of possible discontinuities and an insignificant metal strength loss in the welding zone. The aluminum alloy welding technology under consideration relies on the method of flash welding without using any protective atmospheres. The reason is first of all that a complex cross-sectional shape of workpieces being joined, their configuration and considerable overall dimensions make it difficult to use chambers of any type. Besides, conducted studies ascertained that in flash welding, in contrast to various fusion welding processes, the use of protective atmospheres or a vacuum is of little benefit. Here are the results of studying the specifics of thermal and electric processes in flashing, the physical features of weld joint formation, the basics of the welding technology, and the characteristics of the equipment.

  19. Shock compression and release in high-strength ceramics

    SciTech Connect

    Kipp, M E; Grady, D E

    1989-08-01

    A preliminary investigation of shock compression and release properties has been performed on four ceramics: silicon carbide, titanium diboride, boron carbide and zirconium dioxide. Eight planar impact experiments using thin discs of similar ceramic as impactor and target have been completed. The particle velocity history at the interface between the back of the target ceramic and a lithium fluoride window material was acquired with a laser velocity interferometer (VISAR). These wave profiles indicate that each of these materials responds in a unique way to shock loading. Peak impact stresses in these experiments range between 20 and 50 GPa, leading to pronounced permanent deformation behavior of these materials. Dynamic compression and release stress-strain behavior of the ceramics, formulated with numerical iteration methods, is compared with compressive strength properties determined from the experimental data. The current experiments provide data for these ceramic materials which can be used to evaluate computational material models in wave propagation codes. 23 refs., 25 figs., 4 tabs.

  20. Original Research: Effect of sprint and strength training on glucoregulatory hormones: Effect of advanced age

    PubMed Central

    Ben Abderrahman, Abderraouf; Kebsi, Wiem; De Sousa, Maysa Vieira; Zouhal, Hassane

    2016-01-01

    The aim of this study was to examine the effect of high-intensity sprint and strength training (HISST) on glucoregulatory hormones in young (20 years) and middle-aged (40 years) men. Thirty-six moderately trained men participated as volunteers in this study. After medical examination, eligible subjects were randomly assigned to one of four groups according to their age: a young training group (21.3 ± 1.3 yrs, YT, n = 9), a young control group (21.4 ± 1.7 yrs, YC, n = 9), a middle-aged training group (40.7 ± 1.8 yrs, AT, n = 9), and a middle-aged control group (40.5 ± 1.8 yrs, AC, n = 9). YT and AT participated in HISST for 13 weeks. Before and after HISST, all participants performed the Wingate Anaerobic Test (WAnT). Blood samples were collected at rest, after warm-up (50% VO2max), immediately post-WAnT, and 10 min post-WAnT. Before HISST, we observed significantly higher (P < 0.05) glucose concentrations in AT (5.86 ± 0.32 mmol.L−1) compared to YT (4.24 ± 0.79 mmol.L−1) at rest, and in response to WAnT (6.56 ± 0.63 mmol.L−1 vs. 5.33 ± 0.81 mmol.L−1). Cortisol levels were significantly higher (P < 0.05) in AT than in YT in response to WAnT (468 ± 99.50 ng.mL−1 vs. 382 ± 64.34 ng.mL−1). Catecholamine levels measured at rest and in response to WAnT rose in a similar fashion. After HISST, this “age effect” disappeared at rest and in response to exercise in the trained groups (YT and AT). Changes in hormone concentrations with intense training are due to adaptive changes in various tissues, especially in the skeletal muscle and liver in trained subjects. HISST may, at least in part, counteract the negative “age effect” on glucose metabolism. PMID:27470931

  1. Original Research: Effect of sprint and strength training on glucoregulatory hormones: Effect of advanced age.

    PubMed

    Sellami, Maha; Ben Abderrahman, Abderraouf; Kebsi, Wiem; De Sousa, Maysa Vieira; Zouhal, Hassane

    2017-01-01

    The aim of this study was to examine the effect of high-intensity sprint and strength training (HISST) on glucoregulatory hormones in young (20 years) and middle-aged (40 years) men. Thirty-six moderately trained men participated as volunteers in this study. After medical examination, eligible subjects were randomly assigned to one of four groups according to their age: a young training group (21.3 ± 1.3 yrs, YT, n = 9), a young control group (21.4 ± 1.7 yrs, YC, n = 9), a middle-aged training group (40.7 ± 1.8 yrs, AT, n = 9), and a middle-aged control group (40.5 ± 1.8 yrs, AC, n = 9). YT and AT participated in HISST for 13 weeks. Before and after HISST, all participants performed the Wingate Anaerobic Test (WAnT). Blood samples were collected at rest, after warm-up (50% VO2max), immediately post-WAnT, and 10 min post-WAnT. Before HISST, we observed significantly higher (P < 0.05) glucose concentrations in AT (5.86 ± 0.32 mmol.L(-1)) compared to YT (4.24 ± 0.79 mmol.L(-1)) at rest, and in response to WAnT (6.56 ± 0.63 mmol.L(-1) vs. 5.33 ± 0.81 mmol.L(-1)). Cortisol levels were significantly higher (P < 0.05) in AT than in YT in response to WAnT (468 ± 99.50 ng.mL(-1) vs. 382 ± 64.34 ng.mL(-1)). Catecholamine levels measured at rest and in response to WAnT rose in a similar fashion. After HISST, this "age effect" disappeared at rest and in response to exercise in the trained groups (YT and AT). Changes in hormone concentrations with intense training are due to adaptive changes in various tissues, especially in the skeletal muscle and liver in trained subjects. HISST may, at least in part, counteract the negative "age effect" on glucose metabolism.

  2. Advanced High-Temperature, High-Pressure Transport Reactor Gasification

    SciTech Connect

    Michael Swanson; Daniel Laudal

    2008-03-31

    The U.S. Department of Energy (DOE) National Energy Technology Laboratory Office of Coal and Environmental Systems has as its mission to develop advanced gasification-based technologies for affordable, efficient, zero-emission power generation. These advanced power systems, which are expected to produce near-zero pollutants, are an integral part of DOE's Vision 21 Program. DOE has also been developing advanced gasification systems that lower the capital and operating costs of producing syngas for chemical production. A transport reactor has shown potential to be a low-cost syngas producer compared to other gasification systems since its high-throughput-per-unit cross-sectional area reduces capital costs. This work directly supports the Power Systems Development Facility utilizing the KBR transport reactor located at the Southern Company Services Wilsonville, Alabama, site. Over 2800 hours of operation on 11 different coals ranging from bituminous to lignite along with a petroleum coke has been completed to date in the pilot-scale transport reactor development unit (TRDU) at the Energy & Environmental Research Center (EERC). The EERC has established an extensive database on the operation of these various fuels in both air-blown and oxygen-blown modes utilizing a pilot-scale transport reactor gasifier. This database has been useful in determining the effectiveness of design changes on an advanced transport reactor gasifier and for determining the performance of various feedstocks in a transport reactor. The effects of different fuel types on both gasifier performance and the operation of the hot-gas filter system have been determined. It has been demonstrated that corrected fuel gas heating values ranging from 90 to 130 Btu/scf have been achieved in air-blown mode, while heating values up to 230 Btu/scf on a dry basis have been achieved in oxygen-blown mode. Carbon conversions up to 95% have also been obtained and are highly dependent on the oxygen-coal ratio. Higher

  3. Advanced Multifunctional Materials for High Speed Combatant Hulls

    DTIC Science & Technology

    2015-11-25

    processes for synthesizing the magnetic nanoparticles . We validated those properties experimentally. We developed a scalable and cost effective...high strength polymer fibers, are bolted onto the outer surface. One clear disadvantage of this approach is the large (>100%) increase in both size...and weight. Currently, the use of outer panels constructed from high strength polymer fibers, such as Dyneema or Spectra, has shown the most promise

  4. Hot isostatically pressed manufacture of high strength MERL 76 disk and seal shapes

    NASA Technical Reports Server (NTRS)

    Eng, R. D.; Evans, D. J.

    1982-01-01

    The feasibility of using MERL 76, an advanced high strength direct hot isostatic pressed powder metallurgy superalloy, as a full scale component in a high technology, long life, commercial turbine engine were demonstrated. The component was a JT9D first stage turbine disk. The JT9D disk rim temperature capability was increased by at least 22 C and the weight of JT9D high pressure turbine rotating components was reduced by at least 35 pounds by replacement of forged Superwaspaloy components with hot isostatic pressed (HIP) MERL 76 components. The process control plan and acceptance criteria for manufacture of MERL 76 HIP consolidated components were generated. Disk components were manufactured for spin/burst rig test, experimental engine tests, and design data generation, which established lower design properties including tensile, stress-rupture, 0.2% creep and notched (Kt = 2.5) low cycle fatigue properties, Sonntag, fatigue crack propagation, and low cycle fatigue crack threshold data. Direct HIP MERL 76, when compared to conventionally forged Superwaspaloy, is demonstrated to be superior in mechanical properties, increased rim temperature capability, reduced component weight, and reduced material cost by at least 30% based on 1980 costs.

  5. Fabrication of carbon nanotube high-frequency nanoelectronic biosensor for sensing in high ionic strength solutions.

    PubMed

    Kulkarni, Girish S; Zhong, Zhaohui

    2013-07-22

    The unique electronic properties and high surface-to-volume ratios of single-walled carbon nanotubes (SWNT) and semiconductor nanowires (NW) make them good candidates for high sensitivity biosensors. When a charged molecule binds to such a sensor surface, it alters the carrier density in the sensor, resulting in changes in its DC conductance. However, in an ionic solution a charged surface also attracts counter-ions from the solution, forming an electrical double layer (EDL). This EDL effectively screens off the charge, and in physiologically relevant conditions ~100 millimolar (mM), the characteristic charge screening length (Debye length) is less than a nanometer (nm). Thus, in high ionic strength solutions, charge based (DC) detection is fundamentally impeded. We overcome charge screening effects by detecting molecular dipoles rather than charges at high frequency, by operating carbon nanotube field effect transistors as high frequency mixers. At high frequencies, the AC drive force can no longer overcome the solution drag and the ions in solution do not have sufficient time to form the EDL. Further, frequency mixing technique allows us to operate at frequencies high enough to overcome ionic screening, and yet detect the sensing signals at lower frequencies. Also, the high transconductance of SWNT transistors provides an internal gain for the sensing signal, which obviates the need for external signal amplifier. Here, we describe the protocol to (a) fabricate SWNT transistors, (b) functionalize biomolecules to the nanotube, (c) design and stamp a poly-dimethylsiloxane (PDMS) micro-fluidic chamber onto the device, and (d) carry out high frequency sensing in different ionic strength solutions.

  6. Gradient twinned 304 stainless steels for high strength and high ductility

    DOE PAGES

    Chen, Aiying; Liu, Jiabin; Wang, Hongtao; ...

    2016-04-23

    Gradient materials often have attractive mechanical properties that outperform uniform microstructure counterparts. It remains a difficult task to investigate and compare the performance of various gradient microstructures due to the difficulty of fabrication, the wide range of length scales involved, and their respective volume percentage variations. We have investigated four types of gradient microstructures in 304 stainless steels that utilize submicrotwins, nanotwins, nanocrystalline-, ultrafine- and coarse-grains as building blocks. Tensile tests reveal that the gradient microstructure consisting of submicrotwins and nanotwins has a persistent and stable work hardening rate and yields an impressive combination of high strength and high ductility,more » leading to a toughness that is nearly 50% higher than that of the coarse-grained counterpart. Ex- and in-situ transmission electron microscopy indicates that nanoscale and submicroscale twins help to suppress and limit martensitic phase transformation via the confinement of martensite within the twin lamellar. Twinning and detwinning remain active during tensile deformation and contribute to the work hardening behavior. We discuss the advantageous properties of using submicrotwins as the main load carrier and nanotwins as the strengthening layers over those coarse and nanocrystalline grains. Furthermore, our work uncovers a new gradient design strategy to help metals and alloys achieve high strength and high ductility.« less

  7. Gradient twinned 304 stainless steels for high strength and high ductility

    SciTech Connect

    Chen, Aiying; Liu, Jiabin; Wang, Hongtao; Lu, Jian; Wang, Y. Morris

    2016-04-23

    Gradient materials often have attractive mechanical properties that outperform uniform microstructure counterparts. It remains a difficult task to investigate and compare the performance of various gradient microstructures due to the difficulty of fabrication, the wide range of length scales involved, and their respective volume percentage variations. We have investigated four types of gradient microstructures in 304 stainless steels that utilize submicrotwins, nanotwins, nanocrystalline-, ultrafine- and coarse-grains as building blocks. Tensile tests reveal that the gradient microstructure consisting of submicrotwins and nanotwins has a persistent and stable work hardening rate and yields an impressive combination of high strength and high ductility, leading to a toughness that is nearly 50% higher than that of the coarse-grained counterpart. Ex- and in-situ transmission electron microscopy indicates that nanoscale and submicroscale twins help to suppress and limit martensitic phase transformation via the confinement of martensite within the twin lamellar. Twinning and detwinning remain active during tensile deformation and contribute to the work hardening behavior. We discuss the advantageous properties of using submicrotwins as the main load carrier and nanotwins as the strengthening layers over those coarse and nanocrystalline grains. Furthermore, our work uncovers a new gradient design strategy to help metals and alloys achieve high strength and high ductility.

  8. Gradient twinned 304 stainless steels for high strength and high ductility

    SciTech Connect

    Chen, Aiying; Liu, Jiabin; Wang, Hongtao; Lu, Jian; Wang, Y. Morris

    2016-04-23

    Gradient materials often have attractive mechanical properties that outperform uniform microstructure counterparts. It remains a difficult task to investigate and compare the performance of various gradient microstructures due to the difficulty of fabrication, the wide range of length scales involved, and their respective volume percentage variations. We have investigated four types of gradient microstructures in 304 stainless steels that utilize submicrotwins, nanotwins, nanocrystalline-, ultrafine- and coarse-grains as building blocks. Tensile tests reveal that the gradient microstructure consisting of submicrotwins and nanotwins has a persistent and stable work hardening rate and yields an impressive combination of high strength and high ductility, leading to a toughness that is nearly 50% higher than that of the coarse-grained counterpart. Ex- and in-situ transmission electron microscopy indicates that nanoscale and submicroscale twins help to suppress and limit martensitic phase transformation via the confinement of martensite within the twin lamellar. Twinning and detwinning remain active during tensile deformation and contribute to the work hardening behavior. We discuss the advantageous properties of using submicrotwins as the main load carrier and nanotwins as the strengthening layers over those coarse and nanocrystalline grains. Furthermore, our work uncovers a new gradient design strategy to help metals and alloys achieve high strength and high ductility.

  9. High speed, high strength microwelding of Si/glass using ps-laser pulses.

    PubMed

    Miyamoto, Isamu; Okamoto, Yasuhiro; Hansen, Assi; Vihinen, Joma; Amberla, Tiina; Kangastupa, Jarno

    2015-02-09

    A novel microwelding procedure to join Si-to-glass using ps-laser pulses with high repetition rates is presented. The procedure provides weld joint with mechanical strength as high as 85 MPa and 45 MPa in sample pairs of Si/aluminosilicate (Si/SW-Y) and Si/borosilicate (Si/Borofloat 33), respectively, which are higher than anodic bonding, at high spatial resolution (< 20 µm) and very high throughput without pre- and post-heating. Laser-matter interaction analysis indicates that excellent weld joint of Si/glass is obtained by avoiding violent evaporation of Si substrate using ps-laser pulses. Laser welded Si/glass samples can be singulated along the weld lines by standard blade dicer without defects, demonstrating welding by ps-laser pulses is applicable to wafer-level packaging.

  10. Surrogate Modeling of High-Fidelity Fracture Simulations for Real-Time Residual Strength Predictions

    NASA Technical Reports Server (NTRS)

    Spear, Ashley D.; Priest, Amanda R.; Veilleux, Michael G.; Ingraffea, Anthony R.; Hochhalter, Jacob D.

    2011-01-01

    A surrogate model methodology is described for predicting in real time the residual strength of flight structures with discrete-source damage. Starting with design of experiment, an artificial neural network is developed that takes as input discrete-source damage parameters and outputs a prediction of the structural residual strength. Target residual strength values used to train the artificial neural network are derived from 3D finite element-based fracture simulations. A residual strength test of a metallic, integrally-stiffened panel is simulated to show that crack growth and residual strength are determined more accurately in discrete-source damage cases by using an elastic-plastic fracture framework rather than a linear-elastic fracture mechanics-based method. Improving accuracy of the residual strength training data would, in turn, improve accuracy of the surrogate model. When combined, the surrogate model methodology and high-fidelity fracture simulation framework provide useful tools for adaptive flight technology.

  11. Study on modification of the high-strength slag cement material

    SciTech Connect

    Wang Fusheng . E-mail: fusheng429@163.com; Sun Ruilian; Cui Yingjing

    2005-07-01

    The influence of the slag powder's fineness, the amounts of activator, type and contents of modification addition on the dry-shrinkage and strength of the high-strength slag cement material was investigated. The experimental data showed that adding 9% Na{sub 2}SiO{sub 3} activator and 10% Portland cement (PC) made the ratios of drying-shrinkage of high-strength slag cement material similar to the ratios of Portland cement and the compressive strengths as higher. The main hydration products are calcium alumina-silicate gels and a little CH; the gel ratio of CaO/SiO{sub 2} is close to 1 and includes a little Na{sub 2}O and MgO for high-strength slag cement material, as shown by means of scanning electron microscope (SEM) and energy-dispersive X-ray analyzer (EDXA)

  12. ADX: a high field, high power density, Advanced Divertor test eXperiment

    NASA Astrophysics Data System (ADS)

    Vieira, R.; Labombard, B.; Marmar, E.; Irby, J.; Shiraiwa, S.; Terry, J.; Wallace, G.; Whyte, D. G.; Wolfe, S.; Wukitch, S.; ADX Team

    2014-10-01

    The MIT PSFC and collaborators are proposing an advanced divertor experiment (ADX) - a tokamak specifically designed to address critical gaps in the world fusion research program on the pathway to FNSF/DEMO. This high field (6.5 tesla, 1.5 MA), high power density (P/S ~ 1.5 MW/m2) facility would utilize Alcator magnet technology to test innovative divertor concepts for next-step DT fusion devices (FNSF, DEMO) at reactor-level boundary plasma pressures and parallel heat flux densities while producing high performance core plasma conditions. The experimental platform would also test advanced lower hybrid current drive (LHCD) and ion-cyclotron range of frequency (ICRF) actuators and wave physics at the plasma densities and magnetic field strengths of a DEMO, with the unique ability to deploy launcher structures both on the low-magnetic-field side and the high-field side - a location where energetic plasma-material interactions can be controlled and wave physics is most favorable for efficient current drive, heating and flow drive. This innovative experiment would perform plasma science and technology R&D necessary to inform the conceptual development and accelerate the readiness-for-deployment of FNSF/DEMO - in a timely manner, on a cost-effective research platform. Supported by DE-FC02-99ER54512.

  13. Production of small diameter high-temperature-strength refractory metal wires

    NASA Technical Reports Server (NTRS)

    Petrasek, D. W.; Signorelli, R. A.; King, G. W.

    1973-01-01

    Special thermomechanical techniques (schedules) have been developed to produce small diameter wire from three refractory metal alloys: colombian base alloy, tantalum base alloy, and tungsten base alloy. High strengths of these wires indicate their potential for contributing increased strength to metallic composites.

  14. Conducting High Cycle Fatigue Strength Step Tests on Gamma TiAl

    NASA Technical Reports Server (NTRS)

    Lerch, Brad; Draper, Sue; Pereira, J. Mike

    2002-01-01

    High cycle fatigue strength testing of gamma TiAl by the step test method is investigated. A design of experiments was implemented to determine if the coaxing effect occurred during testing. Since coaxing was not observed, step testing was deemed a suitable method to define the fatigue strength at 106 cycles.

  15. Yearly Changes in the Body Composition and Muscular Strength of High School Wrestlers.

    ERIC Educational Resources Information Center

    Housh, Terry J.; And Others

    1988-01-01

    Changes in body composition as well as absolute and relative isokinetic forearm flexion and extension strength of high school wrestlers were studied. Increase in weight and improved wrestling performance were found to be, in part, a function of yearly changes in body composition and muscular strength. (JD)

  16. AISI/DOE Technology Roadmap Program: Characterization of Fatigue and Crash Performance of New Generation High Strength Steels for Automotive Applications

    SciTech Connect

    Brenda Yan; Dennis Urban

    2003-04-21

    A 2-year project (2001-2002) to generate fatigue and high strain data for a new generation of high strength steels (HSS) has been completed in December 2002. The project tested eleven steel grades, including Dual Phase (DP) steels, Transformation-Induced Plasticity (TRIP) steels, Bake Hardenable (BH) steels, and conventional High Strength Low Alloy (HSLA) steels. All of these steels are of great interest in automotive industry due to the potential benefit in weight reduction, improved fuel economy, enhanced crash energy management and total system cost savings. Fatigue behavior includes strain controlled fatigue data notch sensitivity for high strength steels. High strain rate behavior includes stress-strain data for strain rates from 0.001/s to 1000/s, which are considered the important strain rate ranges for crash event. The steels were tested in two phases, seven were tested in Phase 1 and the remaining steels were tested in Phase. In a addition to the fatigue data and high st rain rate data generated for the steels studied in the project, analyses of the testing results revealed that Advanced High Strength Steels (AHSS) exhibit significantly higher fatigue strength and crash energy absorption capability than conventional HSS. TRIP steels exhibit exceptionally better fatigue strength than steels of similar tensile strength but different microstructure, for conditions both with or without notches present

  17. A feasibility study of high-strength Bi-2223 conductor for high-field solenoids

    NASA Astrophysics Data System (ADS)

    Godeke, A.; Abraimov, D. V.; Arroyo, E.; Barret, N.; Bird, M. D.; Francis, A.; Jaroszynski, J.; Kurteva, D. V.; Markiewicz, W. D.; Marks, E. L.; Marshall, W. S.; McRae, D. M.; Noyes, P. D.; Pereira, R. C. P.; Viouchkov, Y. L.; Walsh, R. P.; White, J. M.

    2017-03-01

    We performed a feasibility study on a high-strength Bi{}2-xPb x Sr2Ca2Cu3O{}10-x(Bi-2223) tape conductor for high-field solenoid applications. The investigated conductor, DI-BSCCO Type HT-XX, is a pre-production version of Type HT-NX, which has recently become available from Sumitomo Electric Industries. It is based on their DI-BSCCO Type H tape, but laminated with a high-strength Ni-alloy. We used stress–strain characterizations, single- and double-bend tests, easy- and hard-way bent coil-turns at various radii, straight and helical samples in up to 31.2 T background field, and small 20-turn coils in up to 17 T background field to systematically determine the electro-mechanical limits in magnet-relevant conditions. In longitudinal tensile tests at 77 K, we found critical stress- and strain-levels of 516 MPa and 0.57%, respectively. In three decidedly different experiments we detected an amplification of the allowable strain with a combination of pure bending and Lorentz loading to ≥slant 0.92 % (calculated elastically at the outer tape edge). This significant strain level, and the fact that it is multi-filamentary conductor and available in the reacted and insulated state, makes DI-BSCCO HT-NX highly suitable for very high-field solenoids, for which high current densities and therefore high loads are required to retain manageable magnet dimensions.

  18. Enhanced long-term strength and durability of shotcrete with high-strength C{sub 12}A{sub 7} mineral-based accelerator

    SciTech Connect

    Won, Jong-Pil Hwang, Un-Jong; Lee, Su-Jin

    2015-10-15

    This study evaluated the performance of shotcrete using high strength C{sub 12}A{sub 7} mineral-based accelerator that has been developed to improve the durability and long-term strength. Rebound, compressive strength and flexural strength were tested in the field. Test result showed that existing C{sub 12}A{sub 7} mineral-based accelerator exhibits better early strength than the high-strength C{sub 12}A{sub 7} mineral-based accelerator until the early age, but high-strength C{sub 12}A{sub 7} mineral-based accelerator shows about 29% higher at the long-term age of 28 days. Microstructural analysis such as scanning electron microscope (SEM), X-ray diffraction (XRD) and nitrogen adsorption method was evaluated to analyze long-term strength development mechanism of high strength C{sub 12}A{sub 7} mineral-based accelerator. As analysis result, it had more dense structure due to the reaction product by adding material that used to enhanced strength. It had better resistance performance in chloride ion penetration, freezing–thawing and carbonation than shotcrete that used existing C{sub 12}A{sub 7} mineral-based accelerator.

  19. Evaluation of high strength, high conductivity CuNiBe alloys for fusion energy applications

    SciTech Connect

    Zinkle, Steven J

    2014-06-01

    The unirradiated tensile properties for several different heats and thermomechanical treatment conditions of precipitation strengthened Hycon 3HPTM CuNiBe (Cu-2%Ni-0.35%Be in wt.%) have been measured over the temperature range of 20-500 C for longitudinal and long transverse orientations. The room temperature electrical conductivity has also been measured for several heats, and the precipitate microstructure was characterized using transmission electron microscopy. The CuNiBe alloys exhibit very good combination of strength and conductivity at room temperature, with yield strengths of 630-725 MPa and electrical conductivities of 65-72% International Annealed Copper Standard (IACS). The strength remained relatively high at all test temperatures, with yield strengths of 420-520 MPa at 500 C. However, low levels of ductility (<5% uniform elongation) were observed at test temperatures above 200-250 C, due to flow localization near grain boundaries (exacerbated by having only 10-20 grains across the gage thickness of the miniaturized sheet tensile specimens). Scanning electron microscopy observation of the fracture surfaces found a transition from ductile transgranular to ductile intergranular fracture with increasing test temperature. Fission neutron irradiation to a dose of ~0.7 displacements per atom (dpa) at temperatures between 100 and 240 C produced a slight increase in strength and a significant decrease in ductility. The measured tensile elongation increased with increasing irradiation temperature, with a uniform elongation of ~3.3% observed at 240 C. The electrical conductivity decreased slightly following irradiation, due to the presence of defect clusters and Ni, Zn, Co transmutation products. Considering also previously published fracture toughness data, this indicates that CuNiBe alloys have irradiated tensile and electrical properties comparable or superior to CuCrZr and oxide dispersion strengthened copper at temperatures <250 C, and may be an attractive

  20. Unravel the key genes potentially related to high strength of cotton fiber by comparative phenotypic and genomic analyses

    USDA-ARS?s Scientific Manuscript database

    The demand of high strength of cotton fibers has been increased dramatically with the advent of modern high speed spinning technology for producing yarn. Bundle fiber strength is affected by fiber-to-fiber interactions in addition to the individual fiber strength. The bundle fiber strength is not al...

  1. Cup-Drawing Behavior of High-Strength Steel Sheets Containing Different Volume Fractions of Martensite

    SciTech Connect

    Choi, Shi-Hoon; Kim, Dae-Wan; Yang, Hoe-Seok; Han, Seong-Ho; Yoon, Jeong Whan

    2010-06-15

    Planar anisotropy and cup-drawing behavior were investigated for high-strength steel sheets containing different volume fractions of martensite. Macrotexture analysis using XRD was conducted to capture the effect of crystallographic orientation on the planar anisotropy of high-strength steel sheets. A phenomenological yield function, Yld96, which accounts for the anisotropy of yield stress and r-values, was implemented into ABAQUS using the user subroutine UMAT. Cup drawing of high-strength steel sheets was simulated using the FEM code. The profiles of earing and thickness strain were compared with the experimentally measured results.

  2. Corrosion Fatigue of High-Strength Titanium Alloys Under Different Stress Gradients

    NASA Astrophysics Data System (ADS)

    Baragetti, Sergio; Villa, Francesco

    2015-05-01

    Ti-6Al-4V is the most widely used high strength-to-mass ratio titanium alloy for advanced engineering components. Its adoption in the aerospace, maritime, automotive, and biomedical sectors is encouraged when highly stressed components with severe fatigue loading are designed. The extents of its applications expose the alloy to several aggressive environments, which can compromise its brilliant mechanical characteristics, leading to potentially catastrophic failures. Ti-6Al-4V stress-corrosion cracking and corrosion-fatigue sensitivity has been known since the material testing for pressurized tanks for Apollo missions, although detailed investigations on the effects of harsh environment in terms of maximum stress reduction have been not carried out until recent times. In the current work, recent experimental results from the authors' research group are presented, quantifying the effects of aggressive environments on Ti-6Al-4V under fatigue loading in terms of maximum stress reduction. R = 0.1 axial fatigue results in laboratory air, 3.5 wt.% NaCl solution, and CH3OH methanol solution at different concentrations are obtained for mild notched specimens ( K t = 1.18) at 2e5 cycles. R = 0.1 tests are also conducted in laboratory air, inert environment, 3.5 wt.% NaCl solution for smooth, mild and sharp notched specimens, with K t ranging from 1 to 18.65, highlighting the environmental effects for the different load conditions induced by the specimen geometry.

  3. The strain-rate sensitivity of high-strength high-toughness steels.

    SciTech Connect

    Dilmore, M.F.; Crenshaw, Thomas B.; Boyce, Brad Lee

    2006-01-01

    The present study examines the strain-rate sensitivity of four high strength, high-toughness alloys at strain rates ranging from 0.0002 s-1 to 200 s-1: Aermet 100, a modified 4340, modified HP9-4-20, and a recently developed Eglin AFB steel alloy, ES-1c. A refined dynamic servohydraulic method was used to perform tensile tests over this entire range. Each of these alloys exhibit only modest strain-rate sensitivity. Specifically, the strain-rate sensitivity exponent m, is found to be in the range of 0.004-0.007 depending on the alloy. This corresponds to a {approx}10% increase in the yield strength over the 7-orders of magnitude change in strain-rate. Interestingly, while three of the alloys showed a concominant {approx}3-10% drop in their ductility with increasing strain-rate, the ES1-c alloy actually exhibited a 25% increase in ductility with increasing strain-rate. Fractography suggests the possibility that at higher strain-rates ES-1c evolves towards a more ductile dimple fracture mode associated with microvoid coalescence.

  4. Compressive and flexural strength of expanded perlite aggregate mortar subjected to high temperatures

    NASA Astrophysics Data System (ADS)

    Zulkifeli, Muhamad Faqrul Hisham bin Mohd; Saman@Hj Mohamed, Hamidah binti Mohd

    2017-08-01

    Work on thermal resistant of outer structures of buildings is one of the solution to reduce death, damages and properties loss in fire cases. Structures protected with thermal resistant materials can delay or avoid failure and collapse during fire. Hence, establishment of skin cladding with advance materials to protect the structure of buildings is a necessary action. Expanded perlite is a good insulation material which can be used as aggregate replacement in mortar. This study is to study on mortar mechanical properties of flexural and compressive strength subjected to elevated temperatures using expanded perlite aggregate (EPA). This study involved experimental work which was developing mortar with sand replacement by volume of 0%, 10%, 20%, 30% and 40% of EPA and cured for 56 days. The mortars then exposed to 200°C, 400 °C, 700 °C and 1000 °C. Flexural and compressive strength of the mortar were tested. The tests showed that there were increased of flexural and compressive strength at 200°C, and constantly decreased when subjected to 400°C, 700°C and 1000 °C. There were also variation of strengths at different percentages of EPA replacement. Highest compressive strength and flexural strength recorded were both at 200 °C with 65.52 MPa and 21.34 MPa respectively. The study conclude that by using EPA as aggregate replacement was ineffective below elevated temperatures but increased the performance of the mortar at elevated temperatures.

  5. Autonomic Reactivity of High and Low Ego-Strength Subjects to Repeated Anxiety Eliciting Scenes

    ERIC Educational Resources Information Center

    Boudewyns, Patrick A.; Levis, Donald J.

    1975-01-01

    The purpose of the present experiment was to answer the question of whether patients labeled high or low in "ego-strength" differentially responded to scenes designed either to elicit anxiety or produce little (neutral) affect. (Editor)

  6. Study on the process control of AH36 high strength ship plate

    NASA Astrophysics Data System (ADS)

    Liu, Yanxia; Wang, Bing; Meng, Yanjun; Chen, Ming; Dong, Zhongqi

    2017-06-01

    There are amounts of surplus in the performance of A 36 high strength ship plate at present. The optimal control of smelting process and method of controlled rolling and controlled cooling parameters was used to in order to higher the efficiency on the basis of statistical analysis of production data of A36 high strength ship plate. The influnece of the content of Nb redued and the content of C and Mn controled on the performance of A36 high strength ship plate was investigated. The result show that the content of Nd can reduced by the optinizatation of the composition A36 using the lower plate finishing rolling temperature ang rolling red temperature limited witch is stability controled at process parameters. The cost of A36 high strength ship plate is reducted and the performance can meet the requirements.

  7. TREATMENT OF VOCS IN HIGH STRENGTH WASTES USING AN ANAEROBIC EXPANDED-BED GAS REACTOR

    EPA Science Inventory

    The potential of the expanded-bed granular activated carbon (GAC) anaerobic reactor in treating a high strength waste containing RCRA volatile organic compounds (VOCs) was studied. A total of six VOCs, methylene chloride, chlorobenzene, carbon tetrachloride, chloroform, toluene ...

  8. Treatment of semivolatile compounds in high strength wastes using an anaerobic expanded-bed GAC reactor

    EPA Science Inventory

    The potential of the anaerobic, expanded bed granular activated carbon (GAC) reactor in treating a high strength waste containing RCRA semivolatile organic compounds (VOCs) was studied. Six semivolatiles, orthochlorophenol, nitrobenzene, naphthalene, para-nitrophenol, lindane, a...

  9. TREATMENT OF VOCS IN HIGH STRENGTH WASTES USING AN ANAEROBIC EXPANDED-BED GAS REACTOR

    EPA Science Inventory

    The potential of the expanded-bed granular activated carbon (GAC) anaerobic reactor in treating a high strength waste containing RCRA volatile organic compounds (VOCs) was studied. A total of six VOCs, methylene chloride, chlorobenzene, carbon tetrachloride, chloroform, toluene ...

  10. Treatment of semivolatile compounds in high strength wastes using an anaerobic expanded-bed GAC reactor

    EPA Science Inventory

    The potential of the anaerobic, expanded bed granular activated carbon (GAC) reactor in treating a high strength waste containing RCRA semivolatile organic compounds (VOCs) was studied. Six semivolatiles, orthochlorophenol, nitrobenzene, naphthalene, para-nitrophenol, lindane, a...

  11. Effect of chemical composition on the hardenability of high-strength rail steel

    NASA Astrophysics Data System (ADS)

    Safonova, K. É.; Velikanov, A. V.

    1981-05-01

    The hardenability nomograms developed for high-strength rail steels make it possible to select the composition of steel with a given hardenability, the minimal permissible value of which depends on the operating conditions.

  12. High Strength and Wear Resistant Aluminum Alloy for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.; Chen, Po Shou

    2003-01-01

    Originally developed by NASA as high performance piston alloys to meet U.S. automotive legislation requiring low exhaust emission, the novel NASA alloys now offer dramatic increase in tensile strength for many other applications at elevated temperatures from 450 F (232 C) to about 750 F (400 C). It is an ideal low cost material for cast automotive components such as pistons, cylinder heads, cylinder liners, connecting rods, turbo chargers, impellers, actuators, brake calipers and rotors. It can be very economically produced from conventional permanent mold, sand casting or investment casting, with silicon content ranging from 6% to 18%. At high silicon levels, the alloy exhibits excellent thermal growth stability, surface hardness and wear resistant properties.

  13. The impact of advanced wastewater treatment technologies and wastewater strength on the energy consumption of large wastewater treatment plants

    NASA Astrophysics Data System (ADS)

    Newell, Timothy

    Wastewater treatment is an energy intensive process often requiring the use of advanced treatment technologies. Stricter effluent standards have resulted in an increase in the number of wastewater treatment plants (WWTPs) with advanced treatment over time. Accordingly, associated energy consumption has also increased. Concerns about lowering operating costs for WWTPs and reducing associated greenhouse gas generation present an incentive to investigate energy use in WWTPs. This research investigated the impact of wastewater strength and the introduction of advanced treatment technologies, to replace traditional technologies on energy use to treat wastewater in WWTPs. Major unit processes were designed for a 100 MGD plant and variables controlling energy were identified and used to compute energy consumption. Except for primary clarification and plate and frame press dewatering, energy consumption computed using fundamental equations are within values in the literature. Results show that energy consumption for dissolved air flotation thickeners, centrifuges, gravity thickeners, and aeration basins are heavily influence by wastewater strength. Secondary treatment and tertiary treatment require a significant amount of energy. Secondary treatment requires 104 times the energy of preliminary treatment, 17 times the energy of solids processing, and 2.5 times the energy of tertiary treatment. Secondary treatment requires 41 times the energy of preliminary treatment, and 7 times the energy of solids processing. The results of this research provide a means of estimating energy consumption in the design and operation phase of a WWTP. By using the fundamental equations and methodology presented, alternative technologies can be compared or targeted for future energy savings implementation. Limitations of the methodology include design assumptions having to be made carefully, as well as assumptions of motor and equipment efficiencies.

  14. Nanostructured Cu-Cr alloy with high strength and electrical conductivity

    SciTech Connect

    Islamgaliev, R. K. Nesterov, K. M.; Bourgon, J.; Champion, Y.; Valiev, R. Z.

    2014-05-21

    The influence of nanostructuring by high pressure torsion (HPT) on strength and electrical conductivity in the Cu-Cr alloy has been investigated. Microstructure of HPT samples was studied by transmission electron microscopy with special attention on precipitation of small chromium particles after various treatments. Effect of dynamic precipitation leading to enhancement of strength and electrical conductivity was observed. It is shown that nanostructuring leads to combination of high ultimate tensile strength of 790–840 MPa, enhanced electrical conductivity of 81%–85% IACS and thermal stability up to 500 °C. The contributions of grain refinement and precipitation to enhanced properties of nanostructured alloy are discussed.

  15. Numerical modelling of the strength of highly porous aerated autoclaved concrete

    SciTech Connect

    Schenider, T.; Greil, P.; Schober, G.

    1998-12-31

    Highly porous building materials like aerated autoclaved concrete are characterized by low thermal conductivity and high mechanical strength, which both strongly depend on porosity. The influence of porosity distribution on the compressive strength of aerated autoclaved concrete was investigated by using finite element analysis and multiaxial Weibull theory. Calculations of failure probability of microstructures with ordered as well as random pore configurations show a dependence of compressive strength on the Weibull modulus of the matrix material and the size and arrangement of pores. The results of the calculations are compared to experimental data of aerated autoclaved concrete.

  16. Hydrogen Environment Assisted Cracking of Ultra-High Strength AetMet(Trademark) 100 Steel

    DTIC Science & Technology

    2006-01-01

    F- A Approved for Public Release Abstract Distribution Unlimited Precipitation hardened martensitic AetMetTM 100 is a high purity ultra-high strength...electron fractography revealed predominantly transgranular cracking at martensite lath and/or packet interfaces for all applied potentials, caused by...resistant steels and coatings. 20060710056 2 I. Introduction Ultrahigh-strength steels (UIISS) with tempered martensitic microstructures are susceptible to

  17. The Effect of Nitrogen and Titanium on the Toughness of High Strength Saw Weld Deposits

    DTIC Science & Technology

    1989-05-12

    for joining high strength steels . In this endeavor, ten butt-welded HY-100 sample plates were produced using the submerged arc welding process. With...was shown to degrade toughness. In this case, the DBTT increased at a rate of +11C for every 0.01 weight percent increase in titanium. Examination of...to degrade toughness through precipitation and dispersion hardening effects. It is concluded that for the welding of high strength steels , nitrogen

  18. Development of Improved High Strength Alumiunum Powder Metallurgy Products

    DTIC Science & Technology

    1978-12-31

    can significantly increase the applied stress required for crack nucleation. The reduced scatter in the P/M product’s response, and therefore a...exhaustion of cyclic ductility and therefore crack initiation at a lower number of cycles, or equivalently, at a lower applied stress for a given number of...nucleate at particle matrix interfaces from a high stress intensity overload, divide the stress intensity over many secondary crack sites and decrease

  19. Biotreatment of high strength nitrate waste using immobilized preadapted sludge.

    PubMed

    Nair, Rashmi R; Dhamole, Pradip B; Lele, S S; D'Souza, Stanislaus F

    2008-12-01

    One of the major wastes generated by fertilizer, explosive, and nuclear industries are nitrate (as high as 1,000 ppm NO(3)N) whose removal before disposal has become a growing concern. In this study, an active denitrifying sludge was immobilized onto support materials like cloth and polyurethane foam and their denitrification efficiency on high nitrate wastes [1,000 ppm NO(3) (225 ppm NO(3)N), 5,000 ppm NO(3) (1,129 ppm NO(3)N), 7,500 ppm NO(3) (1,693 ppm NO(3) N)] was studied. Results showed complete degradation of the nitrate wastes (225 ppm NO(3)N, 1,129 ppm NO(3)N, and 1,693 ppm NO(3)N) without any accumulation of nitrite in a period of only 1, 4, and 10 h, respectively. Based on adhering and entrapment principle, an immobilization unit was developed using a combination of cloth and foam as well as both individually. This system used for treating such high nitrate wastes was found to be quite effective in waste water treatment, particularly in problems associated with solid-liquid separation. The batch column reactor was run in about 45 batches without any loss in activity or reactor stability.

  20. Surface characteristics and mechanical properties of high-strength steel wires in corrosive conditions

    NASA Astrophysics Data System (ADS)

    Xu, Yang; Li, Shunlong; Li, Hui; Yan, Weiming

    2013-04-01

    Cables are always a critical and vulnerable type of structural components in a long-span cable-stayed bridge in normal operation conditions. This paper presents the surface characteristics and mechanical performance of high-strength steel wires in simulated corrosive conditions. Four stress level (0MPa, 300MPa, 400MPa and 500MPa) steel wires were placed under nine different corrosive exposure periods based on the Salt Spray Test Standards ISO 9227:1990. The geometric feathers of the corroded steel wire surface were illustrated by using fractal dimension analysis. The mechanical performance index including yielding strength, ultimate strength and elastic modulus at different periods and stress levels were tested. The uniform and pitting corrosion depth prediction model, strength degradation prediction model as well as the relationship between strength degradation probability distribution and corrosion crack depth would be established in this study.

  1. Surrogate Modeling of High-Fidelity Fracture Simulations for Real-Time Residual Strength Predictions

    NASA Technical Reports Server (NTRS)

    Spear, Ashley D.; Priest, Amanda R.; Veilleux, Michael G.; Ingraffea, Anthony R.; Hochhalter, Jacob D.

    2011-01-01

    A surrogate model methodology is described for predicting, during flight, the residual strength of aircraft structures that sustain discrete-source damage. Starting with design of experiment, an artificial neural network is developed that takes as input discrete-source damage parameters and outputs a prediction of the structural residual strength. Target residual strength values used to train the artificial neural network are derived from 3D finite element-based fracture simulations. Two ductile fracture simulations are presented to show that crack growth and residual strength are determined more accurately in discrete-source damage cases by using an elastic-plastic fracture framework rather than a linear-elastic fracture mechanics-based method. Improving accuracy of the residual strength training data does, in turn, improve accuracy of the surrogate model. When combined, the surrogate model methodology and high fidelity fracture simulation framework provide useful tools for adaptive flight technology.

  2. Effect of alloy composition on high-temperature bending fatigue strength of ferritic stainless steels

    NASA Astrophysics Data System (ADS)

    Ahn, Yong-Sik; Song, Jeon-Young

    2011-12-01

    Exhaust manifolds are subjected to an environment in which heating and cooling cycles occur due to the running pattern of automotive engines. This temperature profile results in the repeated bending stress of exhaust pipes. Therefore, among high-temperature characteristics, the bending fatigue strength is an important factor that affects the lifespan of exhaust manifolds. Here, we report on the effect of the alloy composition, namely the weight fraction of the elements Cr, Mo, Nb, and Ti, on the high-temperature bending fatigue strength of the ferritic stainless steel used in exhaust manifolds. Little difference in the tensile strength and bending fatigue strength of the different composition steels was observed below 600 °C, with the exception of the low-Cr steel. However, steels with high Cr, Mo, or Nb fractions showed considerably larger bending fatigue strength at temperatures of 800 °C. After heating, the precipitates from the specimens were extracted electrolytically and analyzed using scanning electron microscopy energy dispersive spectrometry and transmission electron microscopy. Alloying with Cr and Mo was found to increase the bending fatigue strength due to the substitutional solid solution effect, while alloying with Nb enhanced the strength by forming fine intermetallic compounds, including NbC and Fe2Nb.

  3. Developing high strength and ductility in biomedical Co-Cr cast alloys by simultaneous doping with nitrogen and carbon.

    PubMed

    Yamanaka, Kenta; Mori, Manami; Chiba, Akihiko

    2016-02-01

    There is a strong demand for biomedical Co-Cr-based cast alloys with enhanced mechanical properties for use in dental applications. We present a design strategy for development of Co-Cr-based cast alloys with very high strength, comparable to that of wrought Co-Cr alloys, without loss of ductility. The strategy consists of simultaneous doping of nitrogen and carbon, accompanied by increasing of the Cr content to increase the nitrogen solubility. The strategy was verified by preparing Co-33Cr-9W-0.35N-(0.01-0.31)C (mass%) alloys. We determined the carbon concentration dependence of the microstructures and their mechanical properties. Metal ion release of the alloys in an aqueous solution of 0.6% sodium chloride (NaCl) and 1% lactic acid was also evaluated to ensure their corrosion resistance. As a result of the nitrogen doping, the formation of a brittle σ-phase, a chromium-rich intermetallic compound, was significantly suppressed. Adding carbon to the alloys resulted in finer-grained microstructures and carbide precipitation; accordingly, the strength increased with increasing carbon concentration. The tensile ductility, on the other hand, increased with increasing carbon concentration only up to a point, reaching a maximum at a carbon concentration of ∼0.1mass% and decreasing with further carbon doping. However, the alloy with 0.31mass% of carbon exhibited 14% elongation and also possessed very high strength (725MPa in 0.2% proof stress). The addition of carbon did not significantly degrade the corrosion resistance. The results show that our strategy realizes a novel high-strength Co-Cr-based cast alloy that can be produced for advanced dental applications using a conventional casting procedure. The present study suggested a novel alloy design concept for realizing high-strength Co-Cr-based cast alloys. The proposed strategy is beneficial from the practical point of view because it uses conventional casting approach-a simpler, more cost-effective, industrially

  4. Case studies: low cost, high-strength, large carbon foam tooling

    SciTech Connect

    Lucas, R.; Danford, H.

    2009-01-15

    A new carbon foam tooling system has been developed that results in a low-cost, high-strength material that has been proving attractive for creation of tooling for composite parts. Composites are stronger; lighter and less subject to corrosion and fatigue than materials that are currently used for fabrication of advanced structures. Tools to manufacture these composite parts must be rigid, durable and able to offer a coefficient of thermal expansion (CTE) closely matching that of the composites. Current technology makes it difficult to match the CTE of a composite part in the curing cycle with anything other than a carbon composite or a nickel iron alloy such as Invar. Fabrication of metallic tooling requires many, expensive stages of long duration with a large infrastructure investment. Card ban fiber reinforced polymer resin composite tooling has a shorter lead-time but limited production use because of durability concerns. Coal-based carbon foam material has a compatible CTE and strong durability, that make it an attractive alternative for use in tooling. The use of coal-based carbon foam in tooling for carbon composites is advantageous because of its low cost, light weight, machinability , vacuum integrity and compatibility with a wide range of curing processes. Large-scale tooling case studies will be presented detailing carbon foam's potential for tooling applications.

  5. A hot-cracking mitigation technique for welding high-strength aluminum alloy

    SciTech Connect

    Yang, Y.P.; Dong, P.; Zhang, J.; Tian, X.

    2000-01-01

    A hot-cracking mitigation technique for gas tungsten arc welding (GTAW) of high-strength aluminum alloy 2024 is presented. The proposed welding technique incorporates a trailing heat sink (an intense cooling source) with respect to the welding torch. The development of the mitigation technique was based on both detailed welding process simulation using advanced finite element techniques and systematic laboratory experiments. The finite element methods were used to investigate the detailed thermomechanical behavior of the weld metal that undergoes the brittle temperature range (BTR) during welding. As expected, a tensile deformation zone within the material BTR region was identified behind the weld pool under conventional GTA welding process conventional GTA welding process conditions for the aluminum alloy studied. To mitigate hot cracking, the tensile zone behind the weld pool must be eliminated or reduce to a satisfactory level if the weld metal hot ductility cannot be further improved. With detailed computational modeling, it was found that by the introduction of a trailing heat sink at some distance behind the welding arc, the tensile strain rate with respect to temperature in the zone encompassing the BTR region can be significantly reduced. A series of parametric studies were also conducted to derive optimal process parameters for the trailing heat sink. The experimental results confirmed the effectiveness of the trailing heat sink technique. With a proper implementation of the trailing heat sink method, hot cracking can be completely eliminated in welding aluminum alloy 2024 (AA 2024).

  6. Advanced Biology [Sahuarita High School Career Curriculum Project.

    ERIC Educational Resources Information Center

    Christensen, Larry

    This course in advanced biology is entitled "Advanced Genetics" and is one of a series of instructional guides prepared by teachers for the Sahuarita High School (Arizona) Career Curriculum Project. It consists of seven units of study, and 15 behavioral objectives relating to these units are stated. The topics covered include a review of genetics,…

  7. Optimization of Material Properties of High Strength Multiphase Steels via Microstructure and Phase Transformation Adjustment

    NASA Astrophysics Data System (ADS)

    Bäumer, Annette; Zimmermann, Eva

    For high strength multiphase steels for structural components in automotive applications many different material properties are required. Consequently, a diverse range of tests are performed to characterize the material properties during development as well as optimization of multiphase steels. These tests include classical tensile tests as well as formability tests which characterize bendability, edge crack sensitivity and deep drawability. All these properties are greatly dependent on the microstructure of the material. In the case of high strength multiphase steels, microstructure characterization involves evaluation of the volume fraction, stability, grain size as well as the distribution of the different phases present. Microstructural modifications — with the aim of obtaining the required material properties — may be achieved by variation of annealing parameters. In this paper it is shown how microstructural modification for high strength TRIP and Dual Phase steels resulted in better formability properties and different strength levels.

  8. High-Strength Nanocomposite Aerogels of Ternary Composition: Poly(vinyl alcohol), Clay, and Cellulose Nanofibrils.

    PubMed

    Liu, Andong; Medina, Lilian; Berglund, Lars A

    2017-02-22

    Clay aerogels are foam-like materials with potential to combine high mechanical performance with fire retardancy. However, the compression strength of these aerogels is much lower than theoretically predicted values. High-strength aerogels with more than 95% porosity were prepared from a ternary material system based on poly(vinyl alcohol), montmorillonite clay platelets, and cellulose nanofibrils. A hydrocolloidal suspension of the three components was subjected to freeze-drying so that a low-density aerogel foam was formed. Cell structure was studied by field-emission scanning electron microscopy. Interactions at the molecular scale were observed by X-ray diffraction and Fourier transform infrared spectroscopy. Cross-linking was carried out using glutaraldehyde or borax, and moisture stability was investigated. These biobased ternary aerogels showed compression strength much better than that of previously studied materials and also showed strength higher than that of high-performance sandwich foam cores such as cross-linked polyvinyl chloride foams.

  9. High-temperature strength stability of three forms of chemically vapor deposited tungsten

    NASA Technical Reports Server (NTRS)

    Bryant, W. A.

    1974-01-01

    Three types of CVD tungsten (fluoride-produced, chloride-produced, and a layered composite of the two-termed duplex) were evaluated to determine their high-temperature strength and microstructural stability following 5000-hr exposure to temperatures of 1540 and 1700 C. At the highest temperatures investigated (1540 and 1700 C), the tensile strengths of the two basic materials were essentially equal. At lower temperatures, chloride tungsten possessed lower yield strength but higher ultimate strength than fluoride tungsten while the behavior of the duplex material was generally intermediate. Apparent anomalies in high-temperature elongation behavior are explained on the basis of grain boundary cavity formation and recrystallization. The grain size of fluoride tungsten changed only slightly following 5000-h treatment at 1700 C. In contrast, chloride tungsten possessed both poor resistance to grain growth and an accompanying relatively high ductile-brittle transition temperature.

  10. Exceptional high fatigue strength in Cu-15at.%Al alloy with moderate grain size

    PubMed Central

    Liu, Rui; Tian, Yanzhong; Zhang, Zhenjun; An, Xianghai; Zhang, Peng; Zhang, Zhefeng

    2016-01-01

    It is commonly proposed that the fatigue strength can be enhanced by increasing the tensile strength, but this conclusion needs to be reconsidered according to our study. Here a recrystallized α-Cu-15at.%Al alloy with moderate grain size of 0.62 μm was fabricated by cold rolling and annealing, and this alloy achieved exceptional high fatigue strength of 280 MPa at 107 cycles. This value is much higher than the fatigue strength of 200 MPa for the nano-crystalline counterpart (0.04 μm in grain size) despite its higher tensile strength. The remarkable improvement of fatigue strength should be mainly attributed to the microstructure optimization, which helps achieve the reduction of initial damage and the dispersion of accumulated damage. A new strategy of “damage reduction” was then proposed for fatigue strength improvement, to supplement the former strengthening principle. The methods and strategies summarized in this work offer a general pathway for further improvement of fatigue strength, in order to ensure the long-term safety of structural materials. PMID:27264347

  11. Exceptional high fatigue strength in Cu-15at.%Al alloy with moderate grain size

    NASA Astrophysics Data System (ADS)

    Liu, Rui; Tian, Yanzhong; Zhang, Zhenjun; An, Xianghai; Zhang, Peng; Zhang, Zhefeng

    2016-06-01

    It is commonly proposed that the fatigue strength can be enhanced by increasing the tensile strength, but this conclusion needs to be reconsidered according to our study. Here a recrystallized α-Cu-15at.%Al alloy with moderate grain size of 0.62 μm was fabricated by cold rolling and annealing, and this alloy achieved exceptional high fatigue strength of 280 MPa at 107 cycles. This value is much higher than the fatigue strength of 200 MPa for the nano-crystalline counterpart (0.04 μm in grain size) despite its higher tensile strength. The remarkable improvement of fatigue strength should be mainly attributed to the microstructure optimization, which helps achieve the reduction of initial damage and the dispersion of accumulated damage. A new strategy of “damage reduction” was then proposed for fatigue strength improvement, to supplement the former strengthening principle. The methods and strategies summarized in this work offer a general pathway for further improvement of fatigue strength, in order to ensure the long-term safety of structural materials.

  12. Design and fabrication of a metastable β-type titanium alloy with ultralow elastic modulus and high strength

    NASA Astrophysics Data System (ADS)

    Guo, Shun; Meng, Qingkun; Zhao, Xinqing; Wei, Qiuming; Xu, Huibin

    2015-10-01

    Titanium and its alloys have become the most attractive implant materials due to their high corrosion resistance, excellent biocompatibility and relatively low elastic modulus. However, the current Ti materials used for implant applications exhibit much higher Young’s modulus (50 ~ 120 GPa) than human bone (~30 GPa). This large mismatch in the elastic modulus between implant and human bone can lead to so-called “stress shielding effect” and eventual implant failure. Therefore, the development of β-type Ti alloys with modulus comparable to that of human bone has become an ever more pressing subject in the area of advanced biomedical materials. In this study, an attempt was made to produce a bone-compatible metastable β-type Ti alloy. By alloying and thermo-mechanical treatment, a metastable β-type Ti-33Nb-4Sn (wt. %) alloy with ultralow Young’s modulus (36 GPa, versus ~30 GPa for human bone) and high ultimate strength (853 MPa) was fabricated. We believe that this method can be applied to developing advanced metastable β-type titanium alloys for implant applications. Also, this approach can shed light on design and development of novel β-type titanium alloys with large elastic limit due to their high strength and low elastic modulus.

  13. Design and fabrication of a metastable β-type titanium alloy with ultralow elastic modulus and high strength

    PubMed Central

    Guo, Shun; Meng, Qingkun; Zhao, Xinqing; Wei, Qiuming; Xu, Huibin

    2015-01-01

    Titanium and its alloys have become the most attractive implant materials due to their high corrosion resistance, excellent biocompatibility and relatively low elastic modulus. However, the current Ti materials used for implant applications exhibit much higher Young’s modulus (50 ~ 120 GPa) than human bone (~30 GPa). This large mismatch in the elastic modulus between implant and human bone can lead to so-called “stress shielding effect” and eventual implant failure. Therefore, the development of β-type Ti alloys with modulus comparable to that of human bone has become an ever more pressing subject in the area of advanced biomedical materials. In this study, an attempt was made to produce a bone-compatible metastable β-type Ti alloy. By alloying and thermo-mechanical treatment, a metastable β-type Ti-33Nb-4Sn (wt. %) alloy with ultralow Young’s modulus (36 GPa, versus ~30 GPa for human bone) and high ultimate strength (853 MPa) was fabricated. We believe that this method can be applied to developing advanced metastable β-type titanium alloys for implant applications. Also, this approach can shed light on design and development of novel β-type titanium alloys with large elastic limit due to their high strength and low elastic modulus. PMID:26434766

  14. Grain-refining heat treatments to improve cryogenic toughness of high-strength steels

    NASA Technical Reports Server (NTRS)

    Rush, H. F.

    1984-01-01

    The development of two high Reynolds number wind tunnels at NASA Langley Research Center which operate at cryogenic temperatures with high dynamic pressures has imposed severe requirements on materials for model construction. Existing commercial high strength steels lack sufficient toughness to permit their safe use at temperatures approaching that of liquid nitrogen (-320 F). Therefore, a program to improve the cryogenic toughness of commercial high strength steels was conducted. Significant improvement in the cryogenic toughness of commercial high strength martensitic and maraging steels was demonstrated through the use of grain refining heat treatments. Charpy impact strength at -320 F was increased by 50 to 180 percent for the various alloys without significant loss in tensile strength. The grain sizes of the 9 percent Ni-Co alloys and 200 grade maraging steels were reduced to 1/10 of the original size or smaller, with the added benefit of improved machinability. This grain refining technique should permit these alloys with ultimate strengths of 220 to 270 ksi to receive consideration for cryogenic service.

  15. High-impact strength acrylic denture base material processed by autoclave.

    PubMed

    Abdulwahhab, Salwan Sami

    2013-10-01

    To investigate the effect of two different cycles of autoclave processing on the transverse strength, impact strength, surface hardness and the porosity of high-impact strength acrylic denture base material. High Impact Acryl was the heat-cured acrylic denture base material included in the study. A total of 120 specimens were prepared, the specimens were grouped into: control groups in which high-impact strength acrylic resins processed by conventional water-bath processing technique (74°C for 1.5 h then boil for 30 min) and experimental groups in which high-impact strength acrylic resins processed by autoclave at 121°C, 210 kPa .The experimental groups were divided into (fast) groups for 15 min, and (slow) groups for 30 min. To study the effect of the autoclave processing (Tuttnauer 2540EA), four tests were conducted transverse strength (Instron universal testing machine), impact strength (Charpy tester), surface hardness (shore D), and porosity test. The results were analyzed to ANOVA and LSD test. In ANOVA test, there were highly significant differences between the results of the processing techniques in transverse, impact, hardness, and porosity test. The LSD test showed a significant difference between control and fast groups in transverse and hardness tests and a non-significant difference in impact test and a highly significant difference in porosity test; while, there were a highly significant differences between control and slow groups in all examined tests; finally, there were a non-significant difference between fast and slow groups in transverse and porosity tests and a highly significant difference in impact and hardness tests. In the autoclave processing technique, the slow (long) curing cycle improved the tested physical and mechanical properties as compared with the fast (short) curing cycle. The autoclave processing technique improved the tested physical and mechanical properties of High Impact Acryl. Copyright © 2013 Japan Prosthodontic Society

  16. Achieving high strength and high electrical conductivity in Ag/Cu multilayers

    NASA Astrophysics Data System (ADS)

    Wei, M. Z.; Xu, L. J.; Shi, J.; Pan, G. J.; Cao, Z. H.; Meng, X. K.

    2015-01-01

    In this work, we investigated the microstructure evolution of Ag/Cu multilayers and its influences on the hardness and electric resistivity with individual layer thickness (h) ranging from 3 to 50 nm. The hardness increases with the decreasing h in the range of 5-20 nm. The barrier to dislocation transmission by stacking faults, twin boundaries, and interfaces leads to hardness enhancement. Simultaneously, in order to get high conductivity, the strong textures in-layers were induced to form for reducing the amount of grain boundaries. The resistivity keeps low even when h decreases to 10 nm. Furthermore, we developed a facile model to evaluate the comprehensive property of Ag/Cu multilayers—the results indicate that the best combination of strength and conductivity occurs when h = 10 nm.

  17. Equipment and Protocols for Quasi-Static and Dynamic Tests of Very-High-Strength Concrete (VHSC) and High-Strength High-Ductility Concrete (HSHDC)

    DTIC Science & Technology

    2016-08-01

    Compressive strength tests were conducted on VHSC and HSHDC. VHSC specimens were cast as 102x203 mm (4x8 in.) cylinders due to the size of steel ...compressive stress of HSHDC cubes as 166 MPa (24.1 ksi) (Ranade et al. 2013). Based on the data presented in Table 5.1, average compressive strength is 6.6...thicknesses of aluminum or steel with rupture pressures estimated based on material strengths and thicknesses. Although this provides a uniform pressure

  18. A Model for Determining Strength for Embedded Elliptical Crack in Ultra-high-temperature Ceramics.

    PubMed

    Wang, Ruzhuan; Li, Weiguo

    2015-08-05

    A fracture strength model applied at room temperature for embedded elliptical crack in brittle solid was obtained. With further research on the effects of various physical mechanisms on material strength, a thermo-damage strength model for ultra-high-temperature ceramics was applied to each temperature phase. Fracture strength of TiC and the changing trends with elliptical crack shape variations under different temperatures were studied. The study showed that under low temperature, the strength is sensitive to the crack shape variation; as the temperature increases, the sensitivities become smaller. The size of ellipse's minor axes has great effect on the material strength when the ratio of ellipse's minor and major axes is lower than 0.5, even under relatively high temperatures. The effect of the minor axes of added particle on material properties thus should be considered under this condition. As the crack area is set, the fracture strength decreases firstly and then increases with the increase of ratio of ellipse's minor and major axes, and the turning point is 0.5. It suggests that for the added particles the ratio of ellipse's minor and major axes should not be 0.5. All conclusions significantly coincided with the results obtained by using the finite element software ABAQUS.

  19. Visible attenuated total reflection (ATR): a new technique for high-strength pigment analyses.

    PubMed

    Lee, Kathryn A; Rich, Danny C

    2011-03-01

    A visible-attenuated total reflection (visible-ATR) device was designed to provide a method for directly determining the relative tint strength in high-strength inks. This device showed good reproducibility and the spectra could be correlated to known values of relative tint strength in viscous, highly pigmented inks well within the industry-acceptable error (±5% tint strength). The results of the visible-ATR measurements were compared to those from mid-infrared (mid-IR) and near-infrared (NIR) spectroscopy and the capabilities of those techniques for determining ink strength. Mid-IR analysis was able to directly quantify relative tint strengths, as well as correlating to known values, and to qualify ink products by spectral matching. NIR analysis was able to quantify the tint strength based on the vehicle concentrations in the NIR region. The visible region of the NIR spectrometer was not able to be used for quantification. The vis-ATR and mid-IR spectra showed changes over the time scale of minutes, indicating self-stratification of the pigment and varnish.

  20. A Model for Determining Strength for Embedded Elliptical Crack in Ultra-high-temperature Ceramics

    PubMed Central

    Wang, Ruzhuan; Li, Weiguo

    2015-01-01

    A fracture strength model applied at room temperature for embedded elliptical crack in brittle solid was obtained. With further research on the effects of various physical mechanisms on material strength, a thermo-damage strength model for ultra-high-temperature ceramics was applied to each temperature phase. Fracture strength of TiC and the changing trends with elliptical crack shape variations under different temperatures were studied. The study showed that under low temperature, the strength is sensitive to the crack shape variation; as the temperature increases, the sensitivities become smaller. The size of ellipse’s minor axes has great effect on the material strength when the ratio of ellipse’s minor and major axes is lower than 0.5, even under relatively high temperatures. The effect of the minor axes of added particle on material properties thus should be considered under this condition. As the crack area is set, the fracture strength decreases firstly and then increases with the increase of ratio of ellipse’s minor and major axes, and the turning point is 0.5. It suggests that for the added particles the ratio of ellipse’s minor and major axes should not be 0.5. All conclusions significantly coincided with the results obtained by using the finite element software ABAQUS. PMID:28793488

  1. NiAl-Base Composite Containing High Volume Fraction of AIN Particulate for Advanced Engines

    NASA Technical Reports Server (NTRS)

    Hebsur, Mohan G.; Whittenberger, J. D.; Lowell, C. E.; Garg, A.

    1995-01-01

    Cryomilling of prealloyed NiAl containing 53 at. % AJ was carried out to achieve high nitrogen levels. The consolidation of cryomilled powder by extrusion or hot pressing/ hot isostatic pressing resulted in a fully dense NiAl-base composite containing 30 vol. % of inhomogeneously distributed, nanosized AIN particulate. The NiAl-30AIN composite exhibited the highest compression yield strengths at all temperatures between 300 and 1300 K as compared with other compositions of NiAl-AIN composite. The NiAl-30AIN specimens tested under compressive creep loading between 1300 and 1500 K also exhibited the highest creep resistance with very little surface oxidation indicating also their superior elevated temperature oxidation resistance. In the high stress exponent regime, the strength is proportional to the square root of the AIN content and in the low stress exponent regime, the influence of AIN content on strength appears to be less dramatic. The specific creep strength of this material at 1300 K is superior to a first generation Ni-base single crystal superalloy. The improvements in elevated temperature creep strength and oxidation resistance have been achieved without sacrificing the room temperature fracture toughness of the NiAl-base material. Based on its attractive combination of properties, the NiAl-30AIN composite is a potential candidate for advanced engine applications,

  2. Microstructural Characterization of a High-Strength Aluminum Alloy Subjected to High Strain-Rate Impact

    NASA Astrophysics Data System (ADS)

    Lee, W. M.; Zikry, M. A.

    2011-05-01

    The deformation and damage modes associated with the high strain-rate behavior of a high-strength aluminum alloy Al 2139 were analyzed. The microstructure was characterized at different physical scales to determine how the strengthening and toughening mechanisms of the alloy can inhibit and resist failure modes, such as shear localization and bending tensile failure, which occur due to high strain-rate impact. Grain morphology, precipitates (Ω and θ'), and Mn-bearing dispersed particles and inclusions were characterized by optical microscopy (OM), orientation imaging microscopy (OIM), energy dispersive spectroscopy (EDS), transmission electron microscopy/high-resolution transmission electron microscopy (TEM/HRTEM), selected area diffraction (SAD), and scanning electron microscopy (SEM) investigations of a 38-mm plate impacted by 4340 steel projectiles. Large grain sizes reduce grain boundary (GB) area and allow for more precipitation in the matrix, and these precipitates are shown to play a critical role in the toughening and strengthening of the alloy. Dispersed particles are associated with ductile failure, and inclusions are associated with ductile failure and shear failure. Different deformation modes were observed for the nanoscale precipitates, which affected overall behavior at size scales spanning the nano to the macro.

  3. Structural strength analysis and fatigue life prediction of traction converter box in high-speed EMU

    NASA Astrophysics Data System (ADS)

    Tan, Qin; Li, Qiang

    2017-01-01

    The method of building the FEA model of traction converter box in high-speed EMU and analyzing the static strength and fatigue strength of traction converter box based on IEC 61373-2010 and EN 12663 standards is presented in this paper. The load-stress correlation coefficients of weak points is obtained by FEA model, applied to transfer the load history of traction converter box to stress history of each point. The fatigue damage is calculated based on Miner's rule and the fatigue life of traction converter box is predicted. According to study, the structural strength of traction converter box meets design requirements.

  4. Early-Age Strength of Ultra-High Performance Concrete in Various Curing Conditions.

    PubMed

    Park, Jong-Sup; Kim, Young Jin; Cho, Jeong-Rae; Jeon, Se-Jin

    2015-08-24

    The strength of Ultra-High Performance Concrete (UHPC) can be sensitively affected by the curing method used. However, in contrast to the precast plant production of UHPC where a standard high-temperature steam curing is available, an optimum curing condition is rarely realized with cast-in-place UHPC. Therefore, the trend of the compressive strength development of UHPC was experimentally investigated in this study, with a focus on early-age strength by assuming the various curing conditions anticipated on site. Concrete specimens were cured under different conditions with variables including curing temperature, delay time before the initiation of curing, duration of curing, and moisture condition. Several conditions for curing are proposed that are required when the cast-in-place UHPC should gain a specified strength at an early age. It is expected that the practical use of UHPC on construction sites can be expedited through this study.

  5. Early-Age Strength of Ultra-High Performance Concrete in Various Curing Conditions

    PubMed Central

    Park, Jong-Sup; Kim, Young Jin; Cho, Jeong-Rae; Jeon, Se-Jin

    2015-01-01

    The strength of Ultra-High Performance Concrete (UHPC) can be sensitively affected by the curing method used. However, in contrast to the precast plant production of UHPC where a standard high-temperature steam curing is available, an optimum curing condition is rarely realized with cast-in-place UHPC. Therefore, the trend of the compressive strength development of UHPC was experimentally investigated in this study, with a focus on early-age strength by assuming the various curing conditions anticipated on site. Concrete specimens were cured under different conditions with variables including curing temperature, delay time before the initiation of curing, duration of curing, and moisture condition. Several conditions for curing are proposed that are required when the cast-in-place UHPC should gain a specified strength at an early age. It is expected that the practical use of UHPC on construction sites can be expedited through this study. PMID:28793522

  6. Process study of polycyanate resin for wet-filament wound high-strength composites

    SciTech Connect

    Frame, B.J.

    1997-12-31

    Polycyanate (or cyanate ester) resins offer advantages as composite matrices because of their high thermal stability, low outgassing, low water absorption and radiation resistance. This report describes the results of a processing study to develop high-strength hoop-wound composite by the wet-filament winding method using Toray T1000G carbon fiber and YLA RS-14 polycyanate resin as the constituent materials. T1000G/RS-14 composite cylinders were wet-wound and cured using different process schedules and then evaluated for hoop tensile strength and modulus, transverse flexural strength and short beam shear strength. The results of material characterization tests performed on the T1000G carbon fiber and RS-14 resin constituents used in this study are also presented.

  7. Corrosion fatigue of high strength fastener materials in seawater. Final report

    SciTech Connect

    Tipton, D.G.

    1983-12-01

    Environmental effects can significantly reduce the fatigue life of metals. As such, corrosion fatigue is a major concern in the engineering application of high strength fasteners in marine environments. The corrosion fatigue failure of an AISI 41L40 high strength steel blade-to-hub attachment bolt at the MOD-0A 200 kW wind turbine generator in Oahu, Hawaii prompted the current test program. Tests were undertaken to confirm the dramatic reduction of fatigue strength of AISI 41L40 in marine environments and to obtain similar corrosion fatigue data for candidate replacement materials. AISI 41L40, AISI 4140, PH 13-8Mo stainless steel, alloy 718 and alloy MP-35N were tested in axial fatigue at a frequency of 20 Hz in dry air and natural seawater. The fatigue data were fitted by regression equations to allow determination of fatigue strength for a given number of cycles to failure.

  8. The resistance of selected high strength alloys to embrittlement by a hydrogen environment

    NASA Technical Reports Server (NTRS)

    Benson, R. B., Jr.

    1974-01-01

    Selected high strength iron base and cobalt base alloys with yield strengths in the range from 1233 to 2129 MN per sq m (179 to 309 KSI) were resistant to degradation of mechanical properties in a one atmosphere hydrogen environment at ambient temperature. These alloys were strengthened initially by cold working which produced strain induced epsilon prime-hcp martensite and fcc mechanical twins in an fcc matrix. Heat treatment of the cobalt base alloy after cold working produced carbide precipitates with retention of an hcp epsilon phase which increased the yield strength level to a maximum of 2129 MN per sq m (309 KSI). High-strength alloys can be produced which have some resistance to degradation of mechanical properties by a hydrogen environment under certain conditions.

  9. Advanced Diagnostics for High Pressure Spray Combustion.

    SciTech Connect

    Skeen, Scott A.; Manin, Julien Luc; Pickett, Lyle M.

    2014-06-01

    The development of accurate predictive engine simulations requires experimental data to both inform and validate the models, but very limited information is presently available about the chemical structure of high pressure spray flames under engine- relevant conditions. Probing such flames for chemical information using non- intrusive optical methods or intrusive sampling techniques, however, is challenging because of the physical and optical harshness of the environment. This work details two new diagnostics that have been developed and deployed to obtain quantitative species concentrations and soot volume fractions from a high-pressure combusting spray. A high-speed, high-pressure sampling system was developed to extract gaseous species (including soot precursor species) from within the flame for offline analysis by time-of-flight mass spectrometry. A high-speed multi-wavelength optical extinction diagnostic was also developed to quantify transient and quasi-steady soot processes. High-pressure sampling and offline characterization of gas-phase species formed following the pre-burn event was accomplished as well as characterization of gas-phase species present in the lift-off region of a high-pressure n-dodecane spray flame. For the initial samples discussed in this work several species were identified, including polycyclic aromatic hydrocarbons (PAH); however, quantitative mole fractions were not determined. Nevertheless, the diagnostic developed here does have this capability. Quantitative, time-resolved measurements of soot extinction were also accomplished and the novel use of multiple incident wavelengths proved valuable toward characterizing changes in soot optical properties within different regions of the spray flame.

  10. Characterization of three commercial Y-TZP ceramics produced for their high-translucency, high-strength and high-surface area.

    PubMed

    Tong, Hui; Tanaka, Carina B; Kaizer, Marina R; Zhang, Yu

    2016-01-01

    Developing yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) with high strength and translucency could significantly widen the clinical indications of monolithic zirconia restorations. This study investigates the mechanical and optical properties of three Y-TZP ceramics: High-Translucency, High-Strength and High-Surface Area. The four-point bending strengths (mean ± standard error) for the three Y-TZP ceramics (n = 10) were 990 ± 39, 1416 ± 33 and 1076 ± 32 MPa for High-Translucency, High-Strength and High-Surface Area, respectively. The fracture toughness values (mean ± standard error) for the three zirconias (n = 10) were 3.24 ± 0.10, 3.63 ± 0.12 and 3.21 ± 0.14 MPa m(1/2) for High-Translucency, High-Strength and High-Surface Area, respectively. Both strength and toughness values of High-Strength zirconia were significantly higher than High-Surface Area and High-Translucency zirconias. Translucency parameter values of High-Translucency zirconia were considerably higher than High-Strength and High-Surface Area zirconias. However, all three zirconias became essentially opaque when their thickness reached 1 mm or greater. Our findings suggest that there exists a delicate balance between mechanical and optical properties of the current commercial Y-TZP ceramics.

  11. Characterization of three commercial Y-TZP ceramics produced for their high-translucency, high-strength and high-surface area

    PubMed Central

    Tong, Hui; Tanaka, Carina B.; Kaizer, Marina R.; Zhang, Yu

    2015-01-01

    Developing yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) with high strength and translucency could significantly widen the clinical indications of monolithic zirconia restorations. This study investigates the mechanical and optical properties of three Y-TZP ceramics: High-Translucency, High-Strength and High-Surface Area. The four-point bending strengths (mean ± standard error) for the three Y-TZP ceramics (n = 10) were 990 ± 39, 1416 ± 33 and 1076 ± 32 MPa for High-Translucency, High-Strength and High-Surface Area, respectively. The fracture toughness values (mean ± standard error) for the three zirconias (n = 10) were 3.24 ± 0.10, 3.63 ± 0.12 and 3.21 ± 0.14 MPa m1/2 for High-Translucency, High-Strength and High-Surface Area, respectively. Both strength and toughness values of High-Strength zirconia were significantly higher than High-Surface Area and High-Translucency zirconias. Translucency parameter values of High-Translucency zirconia were considerably higher than High-Strength and High-Surface Area zirconias. However, all three zirconias became essentially opaque when their thickness reached 1 mm or greater. Our findings suggest that there exists a delicate balance between mechanical and optical properties of the current commercial Y-TZP ceramics. PMID:26664123

  12. AVHRR/1-FM Advanced Very High Resolution Radiometer

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The advanced very high resolution radiometer is discussed. The program covers design, construction, and test of a breadboard model, engineering model, protoflight model, mechanical/structural model, and a life test model. Special bench test and calibration equipment was developed for use on the program. The flight model program objectives were to fabricate, assemble and test four of the advanced very high resolution radiometers along with a bench cooler and collimator.

  13. Development of High-Strength Nanostructured Magnesium Alloys for Light-Weight Weapon Systems and Vehicles

    DTIC Science & Technology

    2014-01-13

    strength nanocrystalline Mg-alloys via cryomilling and spark - plasma - sintering , 2) demonstrate the unveil evidence of nanotwins in nanocrystalline...Christopher Melnyk, Wei H. Kao, Jenn-Ming Yang. Cryomilling and spark plasma sintering of nanocrystalline magnesium-based alloy, Journal of Materials...accomplished several important milestones: 1) manufacture of high strength nanocrystalline Mg-alloys via cryomilling and spark plasma sintering (SPS

  14. Evaluation of a Diffusion/Trapping Model for Hydrogen Ingress in High-Strength Alloys.

    DTIC Science & Technology

    1987-05-14

    to apply a diffusion/trapping model for hydrogen ingress in three high-strength alloys, AISI 4340 steel , Monel K500, and MP35N. The model is coupled to...rate of H ingress into the metal is determined by the flux across the metal surface. The 4340 steel was tested at yield strengths of approximately 175...5 AISI 4340 Steel ....................................................... 5 Monel K(500

  15. Progress in advanced high temperature materials technology

    NASA Technical Reports Server (NTRS)

    Freche, J. C.; Ault, G. M.

    1976-01-01

    Significant progress has recently been made in many high temperature material categories pertinent to such applications by the industrial community. These include metal matrix composites, superalloys, directionally solidified eutectics, coatings, and ceramics. Each of these material categories is reviewed and the current state-of-the-art identified, including some assessment, when appropriate, of progress, problems, and future directions.

  16. High Strength and Wear Resistance of Tantalum by Ultrasonic Nanocrystalline Surface Modification Technique at High Temperatures

    NASA Astrophysics Data System (ADS)

    Amanov, A.; Pyun, Y. S.; Vasudevan, V. K.

    2017-05-01

    Enhancing the strength of materials is of great concern in that the failures such as wear, corrosion and fatigue occur on the surface. A tantalum (Ta), which is a refractory metal, was subjected to severe plastic deformation induced by ultrasonic nanocrystalline surface modification (UNSM) technique at room- and high-temperatures of 200°C and 800°C. The mechanical properties and wear resistance of Ta before and after UNSM treatment were characterized by X-ray diffraction (XRD), hardness tester, and ball-on-disk tribometer, respectively. The UNSM treatment at 800°C led to the intensity reduction and broadening, and the diffraction peaks were shifted to lower angles, which means the presence of compressive residual stress and grain size refinement. The hardness of the UNSM-treated sample at room temperature was higher than that of the untreated one, and it was further increased with increasing the UNSM treatment temperature. In addition, the effect of UNSM treatment at high-temperature on wear resistance was significant than that of the UNSM treatment at room-temperature. We demonstrate the possibility of further increasing the mechanical properties and wear resistance of Ta by UNSM treatment at high-temperatures in comparison with the untreated and UNSM-treatment at room temperature, which would be beneficial for applications of Ta.

  17. Microstructure and Mechanical Properties in Hot-Rolled Extra High-Yield-Strength Steel Plates for Offshore Structure and Shipbuilding

    NASA Astrophysics Data System (ADS)

    Liu, Dongsheng; Li, Qingliang; Emi, Toshihiko

    2011-05-01

    Key parameters for a thermomechanically controlled processing and accelerated cooling process (TMCP-AcC) were determined for integrated mass production to produce extra high-yield-strength microalloyed low carbon SiMnCrNiCu steel plates for offshore structure and bulk shipbuilding. Confocal scanning microscopy was used to make in-situ observations on the austenite grain growth during reheating. A Gleeble 3800 thermomechanical simulator was employed to investigate the flow stress behavior, static recrystallization (SRX) of austenite, and decomposition behavior of the TMCP conditioned austenite during continuous cooling. The Kocks-Mecking model was employed to describe the constitutive behavior, while the Johnson-Mehl-Avrami-Kolmogorov (JMAK) approach was used to predict the SRX kinetics. The effects of hot rolling schedule and AcC on microstructure and properties were investigated by test-scale rolling trials. The bridging between the laboratory observations and the process parameter determination to optimize the mass production was made by integrated industrial production trials on a set of a 5-m heavy plate mill equipped with an accelerated cooling system. Successful production of 60- and 50-mm-thick plates with yield strength in excess of 460 MPa and excellent toughness at low temperature (213 K (-60 °C)) in the parent metal and the simulated coarse-grained heat affected zone (CGHAZ) provides a useful integrated database for developing advanced high-strength steel plates via TMCP-AcC.

  18. ADX: a high field, high power density, advanced divertor and RF tokamak

    NASA Astrophysics Data System (ADS)

    LaBombard, B.; Marmar, E.; Irby, J.; Terry, J. L.; Vieira, R.; Wallace, G.; Whyte, D. G.; Wolfe, S.; Wukitch, S.; Baek, S.; Beck, W.; Bonoli, P.; Brunner, D.; Doody, J.; Ellis, R.; Ernst, D.; Fiore, C.; Freidberg, J. P.; Golfinopoulos, T.; Granetz, R.; Greenwald, M.; Hartwig, Z. S.; Hubbard, A.; Hughes, J. W.; Hutchinson, I. H.; Kessel, C.; Kotschenreuther, M.; Leccacorvi, R.; Lin, Y.; Lipschultz, B.; Mahajan, S.; Minervini, J.; Mumgaard, R.; Nygren, R.; Parker, R.; Poli, F.; Porkolab, M.; Reinke, M. L.; Rice, J.; Rognlien, T.; Rowan, W.; Shiraiwa, S.; Terry, D.; Theiler, C.; Titus, P.; Umansky, M.; Valanju, P.; Walk, J.; White, A.; Wilson, J. R.; Wright, G.; Zweben, S. J.

    2015-05-01

    The MIT Plasma Science and Fusion Center and collaborators are proposing a high-performance Advanced Divertor and RF tokamak eXperiment (ADX)—a tokamak specifically designed to address critical gaps in the world fusion research programme on the pathway to next-step devices: fusion nuclear science facility (FNSF), fusion pilot plant (FPP) and/or demonstration power plant (DEMO). This high-field (⩾6.5 T, 1.5 MA), high power density facility (P/S ˜ 1.5 MW m-2) will test innovative divertor ideas, including an ‘X-point target divertor’ concept, at the required performance parameters—reactor-level boundary plasma pressures, magnetic field strengths and parallel heat flux densities entering into the divertor region—while simultaneously producing high-performance core plasma conditions that are prototypical of a reactor: equilibrated and strongly coupled electrons and ions, regimes with low or no torque, and no fuelling from external heating and current drive systems. Equally important, the experimental platform will test innovative concepts for lower hybrid current drive and ion cyclotron range of frequency actuators with the unprecedented ability to deploy launch structures both on the low-magnetic-field side and the high-magnetic-field side—the latter being a location where energetic plasma-material interactions can be controlled and favourable RF wave physics leads to efficient current drive, current profile control, heating and flow drive. This triple combination—advanced divertors, advanced RF actuators, reactor-prototypical core plasma conditions—will enable ADX to explore enhanced core confinement physics, such as made possible by reversed central shear, using only the types of external drive systems that are considered viable for a fusion power plant. Such an integrated demonstration of high-performance core-divertor operation with steady-state sustainment would pave the way towards an attractive pilot plant, as envisioned in the ARC concept

  19. Fatigue strength reduction model: RANDOM3 and RANDOM4 user manual. Appendix 2: Development of advanced methodologies for probabilistic constitutive relationships of material strength models

    NASA Technical Reports Server (NTRS)

    Boyce, Lola; Lovelace, Thomas B.

    1989-01-01

    FORTRAN programs RANDOM3 and RANDOM4 are documented in the form of a user's manual. Both programs are based on fatigue strength reduction, using a probabilistic constitutive model. The programs predict the random lifetime of an engine component to reach a given fatigue strength. The theoretical backgrounds, input data instructions, and sample problems illustrating the use of the programs are included.

  20. New Powder Metallurgical Approach to Achieve High Fatigue Strength in Ti-6Al-4V Alloy

    NASA Astrophysics Data System (ADS)

    Cao, Fei; Ravi Chandran, K. S.; Kumar, Pankaj; Sun, Pei; Zak Fang, Z.; Koopman, Mark

    2016-05-01

    Recently, manufacturing of titanium by sintering and dehydrogenation of hydride powders has generated a great deal of interest. An overarching concern regarding powder metallurgy (PM) titanium is that critical mechanical properties, especially the high-cycle fatigue strength, are lower than those of wrought titanium alloys. It is demonstrated here that PM Ti-6Al-4V alloy with mechanical properties comparable (in fatigue strength) and exceeding (in tensile properties) those of wrought Ti-6Al-4V can be produced from titanium hydride powder, through the hydrogen sintering and phase transformation process. Tensile and fatigue behavior, as well as fatigue fracture mechanisms, have been investigated under three processing conditions. It is shown that a reduction in the size of extreme-sized pores by changing the hydride particle size distribution can lead to improved fatigue strength. Further densification by pneumatic isostatic forging leads to a fatigue strength of ~550 MPa, comparable to the best of PM Ti-6Al-4V alloys prepared by other methods and approaching the fatigue strengths of wrought Ti-6Al-4V alloys. The microstructural factors that limit fatigue strength in PM titanium have been investigated, and pathways to achieve greater fatigue strengths in PM Ti-6Al-4V alloys have been identified.

  1. Evaluation of the stress corrosion cracking resistance of several high strength low alloy steels

    NASA Technical Reports Server (NTRS)

    Humphries, T. S.; Nelson, E. E.

    1980-01-01

    The stress corrosion cracking resistance was studied for high strength alloy steels 4130, 4340, for H-11 at selected strength levels, and for D6AC and HY140 at a single strength. Round tensile and C-ring type specimens were stressed up to 100 percent of their yield strengths and exposed to alternate immersion in salt water, salt spray, the atmosphere at Marshall Space Flight Center, and the seacoast at Kennedy Space Center. Under the test conditions, 4130 and 4340 steels heat treated to a tensile strength of 1240 MPa (180 ksi), H-11 and D6AC heat treated to a tensile strength of 1450 MPa (210 ksi), and HY140 (1020 MPa, 148 ksi) are resistant to stress corrosion cracking because failures were not encountered at stress levels up to 75 percent of their yield strengths. A maximum exposure period of one month for alternate immersion in salt water or salt spray and three months for seacoast is indicated for alloy steel to avoid false indications of stress corrosion cracking because of failure resulting from severe pitting.

  2. Advanced concepts for high-gradient acceleration

    SciTech Connect

    Whittum, D.H.

    1998-08-01

    The promise of high-gradient accelerator research is a future for physics beyond the 5-TeV energy scale. Looking beyond what can be engineered today, the authors examine basic research directions for colliders of the future, from mm-waves to lasers, and from solid-state to plasmas, with attention to material damage, beam-dynamics, a workable collision scheme, and energetics.

  3. Effect of notch location on fatigue crack growth behavior of strength-mismatched high-strength low-alloy steel weldments

    NASA Astrophysics Data System (ADS)

    Ravi, S.; Balasubramanian, V.; Nasser, S. Nemat

    2004-12-01

    Welding of high-strength low-alloy (HSLA) steels involves the use of low-strength, equal-strength, and high-strength filler materials (electrodes) compared with the parent material, depending on the application of the welded structures and the availability of filler material. In the present investigation, the fatigue crack growth behavior of weld metal (WM) and the heat-affected zone (HAZ) of undermatched (UM), equally matched (EM), and overmatched (OM) joints has been studied. The base material used in this investigation is HSLA-80 steel of weldable grade. Shielded metal arc welding (SMAW) has been used to fabricate the butt joints. A center-cracked tension (CCT) specimen has been used to evaluate the fatigue crack growth behavior of welded joints, utilizing a servo-hydraulic-controlled fatigue-testing machine at constant amplitude loading (R=0). The effect of notch location on the fatigue crack growth behavior of strength mismatched HSLA steel weldments also has been analyzed.

  4. Advanced short haul aircraft for high density markets

    NASA Technical Reports Server (NTRS)

    Galloway, T. L.

    1977-01-01

    The short haul (less than 500 miles) passenger enplanements represent about 50% of the total domestic enplanements. These can be distinguished by the annual passenger flow for a given city pair and classified into low, medium and high densiy markets. NASA studies have investigated various advanced short haul aircraft concepts that have potential application in these three market areas. Although advanced operational techniques impact all market densities, advanced vehicle design concepts such as RTOL, STOL and VTOL have the largest impact in the high density markets. This paper summarizes the results of NASA sponsored high density short haul air transportation systems studies and briefly reviews NASA sponsored advanced VTOL conceptual aircraft design studies. Trends in vehicle characteristics and operational requirements will be indicated in addition to economic suitability and impact on the community.

  5. Crystallization of high-strength nano-scale leucite glass-ceramics.

    PubMed

    Theocharopoulos, A; Chen, X; Wilson, R M; Hill, R; Cattell, M J

    2013-11-01

    Fine-grained, high strength, translucent leucite dental glass-ceramics are synthesized via controlled crystallization of finely milled glass powders. The objectives of this study were to utilize high speed planetary milling of an aluminosilicate glass for controlled surface crystallization of nano-scale leucite glass-ceramics and to test the biaxial flexural strength. An aluminosilicate glass was synthesized, attritor or planetary milled and heat-treated. Glasses and glass-ceramics were characterized using particle size analysis, X-ray diffraction and scanning electron microscopy. Experimental (fine and nanoscale) and commercial (Ceramco-3, IPS Empress Esthetic) leucite glass-ceramics were tested using the biaxial flexural strength (BFS) test. Gaussian and Weibull statistics were applied. Experimental planetary milled glass-ceramics showed an increased leucite crystal number and nano-scale median crystal sizes (0.048-0.055 μm(2)) as a result of glass particle size reduction and heat treatments. Experimental materials had significantly (p<0.05) higher mean BFS and characteristic strength values than the commercial materials. Attritor milled and planetary milled (2h) materials showed no significant (p>0.05) strength difference. All other groups' mean BFS and characteristic strengths were found to be significantly different (p<0.05) to each other. The mean (SD) MPa strengths measured were: Attritor milled: 252.4 (38.7), Planetary milled: 225.4 (41.8) [4h milling] 255.0 (35.0) [2h milling], Ceramco-3: 75.7 (6.8) and IPS Empress: 165.5 (30.6). Planetary milling enabled synthesis of nano-scale leucite glass-ceramics with high flexural strength. These materials may help to reduce problems associated with brittle fracture of all-ceramic restorations and give reduced enamel wear. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  6. Variation in Mechanical Properties and Heterogeneity in Microstructure of High-Strength Ferritic Steel During Mill Trial

    NASA Astrophysics Data System (ADS)

    Ghosh, M.; Barat, K.; Das, S. K.; Ravi Kumar, B.; Pramanick, A. K.; Chakraborty, J.; Das, G.; Hadas, S.; Bharathy, S.; Ray, S. K.

    2014-06-01

    HS600 and HS800 are two new generation, high-strength advanced ferritic steels that find widespread application in automobiles. During commercial production of the same grades with different thicknesses, it has been found that mechanical properties like tensile strength and stretchability varied widely and became inconsistent. In the current endeavor, two different thicknesses have been chosen from a mill trial sample of HS600 and HS800. An in-depth structural characterization was carried out for all four alloys to explain the variation in their respective mechanical and shear punch properties. The carbon content was smaller and Ti + Mo quantity was higher in case of HS800 with respect to HS600. The microstructure of both steels consisted of the dispersion of (Ti,Mo)C in a ferrite matrix. The grain size of HS800 was little larger than HS600 due to an increased coiling temperature (CT) of the former in comparison to the latter. It was found that in case of same grade of steel with a different thickness, a variation in microstructure occurred due to change in strain, CT, and cooling rate. The strength and stretch formability of these two alloys were predominantly governed by a microalloyed carbide. In this respect, carbides with a size range above 5 nm were responsible for loosing coherency with ferrite matrix. In case of HS600, both ≤5 and >5-nm size (Ti,Mo)C precipitates shared a nearly equal fraction of microalloyed precipitates. However, for HS800, >5-nm size (Ti,Mo)C carbide was substantially higher than ≤5-nm size alloy carbides. The ultimate tensile strength and yield strength of HS800 was superior to that of HS600 owing to a higher quantity of microalloyed carbide with a decreased column width and interparticle distance. A higher degree of in-coherency of HS800 made the alloy prone to crack formation with low stretchability.

  7. Correlation of metrological surface parameters to the strength of advanced ceramics

    NASA Astrophysics Data System (ADS)

    Burra, Vishal

    Surface topography greatly influences not only the mechanical and physical properties of contacting parts, but also the optical and coating properties of contacting components. The characteristics of surface topography in amplitude, spatial distribution and pattern of surface features dominate the functional applications in the field of wear, friction, lubrication, fatigue, sealing, joining, reflecting, painting, etc. Although surface roughness data from a stylus profilometer continues to be of basic importance, it does suffer from some limitations which cannot be overlooked. Some of the major limitations of using a stylus profilometer are finite tip radius, inability to record detailed information, bouncing of stylus tip and losing contact with surface, the stylus might create scratches as it passes over the surface, and long time when acquiring data. Alternatively, optical interferometry has, for a number of decades, been used to measure surface topography successfully. As a result there are many commercial interferometric instruments based on two or multi-beam interferometerss instruments available today. The goal of this thesis is to continue to work on the development of a novel method that can obtain the topography of surfaces utilizing advanced digital moire. In the version under development a grating printed on a glass plate will be utilized to generate fringes. The HoloStrain software is utilized to process the fringe pattern information. The main objective of the thesis is to apply this methodology to measuring the surface roughness of ceramics that have been modified via laser-assisted machining. This research will enable further development of the laser-assisted machining process by making it feasible to optimize the surface profile of the ceramic through changing processing parameters.

  8. Advanced Packaging Materials and Techniques for High Power TR Module: Standard Flight vs. Advanced Packaging

    NASA Technical Reports Server (NTRS)

    Hoffman, James Patrick; Del Castillo, Linda; Miller, Jennifer; Jenabi, Masud; Hunter, Donald; Birur, Gajanana

    2011-01-01

    The higher output power densities required of modern radar architectures, such as the proposed DESDynI [Deformation, Ecosystem Structure, and Dynamics of Ice] SAR [Synthetic Aperture Radar] Instrument (or DSI) require increasingly dense high power electronics. To enable these higher power densities, while maintaining or even improving hardware reliability, requires advances in integrating advanced thermal packaging technologies into radar transmit/receive (TR) modules. New materials and techniques have been studied and compared to standard technologies.

  9. Advanced Packaging Materials and Techniques for High Power TR Module: Standard Flight vs. Advanced Packaging

    NASA Technical Reports Server (NTRS)

    Hoffman, James Patrick; Del Castillo, Linda; Miller, Jennifer; Jenabi, Masud; Hunter, Donald; Birur, Gajanana

    2011-01-01

    The higher output power densities required of modern radar architectures, such as the proposed DESDynI [Deformation, Ecosystem Structure, and Dynamics of Ice] SAR [Synthetic Aperture Radar] Instrument (or DSI) require increasingly dense high power electronics. To enable these higher power densities, while maintaining or even improving hardware reliability, requires advances in integrating advanced thermal packaging technologies into radar transmit/receive (TR) modules. New materials and techniques have been studied and compared to standard technologies.

  10. Laser beam welding of new ultra-high strength and supra-ductile steels

    NASA Astrophysics Data System (ADS)

    Dahmen, Martin

    2015-03-01

    Ultra-high strength and supra-ductile are entering fields of new applications. Those materials are excellent candidates for modern light-weight construction and functional integration. As ultra-high strength steels the stainless martensitic grade 1.4034 and the bainitic steel UNS 53835 are investigated. For the supra-ductile steels stand two high austenitic steels with 18 and 28 % manganese. As there are no processing windows an approach from the metallurgical base on is required. Adjusting the weld microstructure the Q+P and the QT steels require weld heat treatment. The HSD steel is weldable without. Due to their applications the ultra-high strength steels are welded in as-rolled and strengthened condition. Also the reaction of the weld on hot stamping is reflected for the martensitic grades. The supra-ductile steels are welded as solution annealed and work hardened by 50%. The results show the general suitability for laser beam welding.

  11. EXPERIMENTAL TESTS OF VANADIUM STRENGTH MODELS AT HIGH PRESSURES AND STRAIN RATES

    SciTech Connect

    Park, H; Barton, N R; Becker, R C; Bernier, J V; Cavallo, R M; Lorenz, K T; Pollaine, S M; Remington, B A; Rudd, R E

    2010-03-02

    Experimental results showing significant reductions from classical in the Rayleigh-Taylor (RT) instability growth rate due to high pressure material strength or effective lattice viscosity in metal foils are presented. On the Omega Laser in the Laboratory for Laser Energetics, University of Rochester, target samples of polycrystalline vanadium are compressed and accelerated quasi-isentropically at {approx}1 Mbar pressures, while maintaining the samples in the solid-state. Comparison of the results with constitutive models for solid state strength under these conditions show that the measured RT growth is substantially lower than predictions using existing models that work well at low pressures and long time scales. High pressure, high strain rate data can be explained by the enhanced strength due to a phonon drag mechanism, creating a high effective lattice viscosity.

  12. A low-cost hierarchical nanostructured beta-titanium alloy with high strength.

    PubMed

    Devaraj, Arun; Joshi, Vineet V; Srivastava, Ankit; Manandhar, Sandeep; Moxson, Vladimir; Duz, Volodymyr A; Lavender, Curt

    2016-04-01

    Lightweighting of automobiles by use of novel low-cost, high strength-to-weight ratio structural materials can reduce the consumption of fossil fuels and in turn CO2 emission. Working towards this goal we achieved high strength in a low cost β-titanium alloy, Ti-1Al-8V-5Fe (Ti185), by hierarchical nanostructure consisting of homogenous distribution of micron-scale and nanoscale α-phase precipitates within the β-phase matrix. The sequence of phase transformation leading to this hierarchical nanostructure is explored using electron microscopy and atom probe tomography. Our results suggest that the high number density of nanoscale α-phase precipitates in the β-phase matrix is due to ω assisted nucleation of α resulting in high tensile strength, greater than any current commercial titanium alloy. Thus hierarchical nanostructured Ti185 serves as an excellent candidate for replacing costlier titanium alloys and other structural alloys for cost-effective lightweighting applications.

  13. Effect of high-strength ammonia nitrogen acclimation on sludge activity in sequencing batch reactor.

    PubMed

    Wang, Feifei; Ding, Yuanhong; Ge, Lei; Ren, Hongqiang; Ding, Lili

    2010-01-01

    The effect of high-strength ammonia nitrogen acclimation on sludge activity in sequencing batch reactor (SBR) was investigated. Two batch experiments, RUN1 and RUN2, were conducted with the influent ammonia nitrogen concentrations 60 and 500 mg/L, respectively. The sludges inoculated from RUN1 and RUN2 were used to treat a series of influent with ammonia nitrogen concentrations of 59, 232, 368, 604 and 1152 mg/L. It is found that the activated sludge acclimated to higher ammonia nitrogen concentrations revealed higher COD and NH4(+)-N removal efficiencies, and slower DHA decrease. The results confirmed that the activities of the bacteria in activated sludge in SBR were inhibited by high-strength ammonia nitrogen, whereas the activated sludge acclimated to high-strength ammonia nitrogen showed substantial resistance to inhibition by influents containing high levels of ammonia nitrogen.

  14. High-strength bioresorbable Fe–Ag nanocomposite scaffolds: Processing and properties

    SciTech Connect

    Sharipova, Aliya; Psakhie, Sergey G.; Swain, Sanjaya K.; Gutmanas, Elazar Y. Gotman, Irena

    2015-10-27

    High strength ductile iron-silver nanocomposite scaffolds were fabricated employing high energy attrition milling of micron-submicron powders, followed by cold sintering/high pressure consolidation. Particulate leaching method with soluble Na{sub 2}SO{sub 4} and K{sub 2}CO{sub 3} salts as porogens was used to create scaffolds with 50, 55, 60 and 73% volume fraction of pores. Part of specimens was annealed at 600, 800 and 900°C. Specimens were characterized employing X-ray diffraction, scanning electron microscopy (SEM) with electron probe microanalysis (EDS) and high resolution SEM. Mechanical properties were measured in compression and permeability was measured in permeameter based on Darcy’s law. Scaffolds with 50% and 55% porosity exhibited high compressive strength (18–22 MPa), compressive strength of 8–12 MPa was observed for scaffolds with 73% porosity. Treatments at 800 and 900°C result in increase of strength and ductility with some coarsening of microstructure. Best combination of compressive strength (15 MPa) and permeability (0.6{sup −6} cm{sup 2}) is close to the range of trabecular bone.

  15. High Salt Diets, Bone Strength and Mineral Content of Mature Femur After Skeletal Unloading

    NASA Technical Reports Server (NTRS)

    Liang, Michael T. C.

    1998-01-01

    It is known that high salt diets increase urinary calcium (Ca) loss, but it is not known whether this effect weakens bone during space flight. The Bone Hormone Lab has studied the effect of high salt diets on Ca balance and whole body Ca in a space flight model (2,8). Neither the strength nor mineral content of the femurs from these studies has been evaluated. The purpose of this study was to determine the effect of high salt diets (HiNa) and skeletal unloading on femoral bone strength and bone mineral content (BMC) in mature rats.

  16. High Salt Diets, Bone Strength and Mineral Content of Mature Femur After Skeletal Unloading

    NASA Technical Reports Server (NTRS)

    Liang, Michael T. C.

    1998-01-01

    It is known that high salt diets increase urinary calcium (Ca) loss, but it is not known whether this effect weakens bone during space flight. The Bone Hormone Lab has studied the effect of high salt diets on Ca balance and whole body Ca in a space flight model (2,8). Neither the strength nor mineral content of the femurs from these studies has been evaluated. The purpose of this study was to determine the effect of high salt diets (HiNa) and skeletal unloading on femoral bone strength and bone mineral content (BMC) in mature rats.

  17. Achieving high strength and high ductility in magnesium alloy using hard-plate rolling (HPR) process

    NASA Astrophysics Data System (ADS)

    Wang, Hui–Yuan; Yu, Zhao–Peng; Zhang, Lei; Liu, Chun–Guo; Zha, Min; Wang, Cheng; Jiang, Qi–Chuan

    2015-11-01

    Magnesium alloys are highly desirable for a wide range of lightweight structural components. However, rolling Mg alloys can be difficult due to their poor plasticity, and the strong texture yielded from rolling often results in poor plate forming ability, which limits their further engineering applications. Here we report a new hard-plate rolling (HPR) route which achieves a large reduction during a single rolling pass. The Mg-9Al-1Zn (AZ91) plates processed by HPR consist of coarse grains of 30-60 μm, exhibiting a typical basal texture, fine grains of 1-5 μm and ultrafine (sub) grains of 200-500 nm, both of the latter two having a weakened texture. More importantly, the HPR was efficient in gaining a simultaneous high strength and uniform ductility, i.e., ~371 MPa and ~23%, respectively. The superior properties should be mainly attributed to the cooperation effect of the multimodal grain structure and weakened texture, where the former facilitates a strong work hardening while the latter promotes the basal slip. The HPR methodology is facile and effective, and can avoid plate cracking that is prone to occur during conventional rolling processes. This strategy is applicable to hard-to-deform materials like Mg alloys, and thus has a promising prospect for industrial application.

  18. Novel high T[sub g] high-strength poly(aryl ether)s

    SciTech Connect

    Banerjee, S.; Maier, G. . Lehrstuhl fuer Makromolekulare Stoffe)

    1999-08-01

    A novel 2-perfluoroalkyl-activated bisfluoro monomer has been synthesized successfully using a Pd(0)-catalyzed cross-coupling reaction of 4-fluoro-3-trifluoromethyl phenyl boronic acid with 4,4[prime]-dibromodiphenylbenzene. This monomer was converted to novel poly(aryl ether)s by nucleophilic displacement of the fluorine atoms on the benzene ring with several bisphenols. The products obtained by displacement of the fluorine atoms exhibit weight average molar masses up to 1.06 [times] 10[sup 5] g/mol in GPC. These poly(aryl ether)s showed outstanding thermooxidative stability up to 534 C for 5% weight loss in TGA under synthetic air and high glass transition temperatures (T[sub g]) even up to 300 C in DSC and DMTA. These polymers are soluble in a wide range of organic solvents, e.g., CHCl[sub 3], THF, NMP, DMF, toluene, etc., and are insoluble in DMSO and acetone. Transparent thin films of these polymers cast from DMF exhibited tensile strengths up to 115 MPa, moduli up to 2.59 GPa, and elongations up to 120% depending on their exact repeating unit structures. These values are comparable to those of high performance thermoplastic materials such as PEEK or Ultem PEI.

  19. Novel high T{sub g} high-strength poly(aryl ether)s

    SciTech Connect

    Banerjee, S.; Maier, G.

    1999-08-01

    A novel 2-perfluoroalkyl-activated bisfluoro monomer has been synthesized successfully using a Pd(0)-catalyzed cross-coupling reaction of 4-fluoro-3-trifluoromethyl phenyl boronic acid with 4,4{prime}-dibromodiphenylbenzene. This monomer was converted to novel poly(aryl ether)s by nucleophilic displacement of the fluorine atoms on the benzene ring with several bisphenols. The products obtained by displacement of the fluorine atoms exhibit weight average molar masses up to 1.06 {times} 10{sup 5} g/mol in GPC. These poly(aryl ether)s showed outstanding thermooxidative stability up to 534 C for 5% weight loss in TGA under synthetic air and high glass transition temperatures (T{sub g}) even up to 300 C in DSC and DMTA. These polymers are soluble in a wide range of organic solvents, e.g., CHCl{sub 3}, THF, NMP, DMF, toluene, etc., and are insoluble in DMSO and acetone. Transparent thin films of these polymers cast from DMF exhibited tensile strengths up to 115 MPa, moduli up to 2.59 GPa, and elongations up to 120% depending on their exact repeating unit structures. These values are comparable to those of high performance thermoplastic materials such as PEEK or Ultem PEI.

  20. High-capacity, high-strength trailer designs for the GA-4/GA-9 Casks

    SciTech Connect

    Kissinger, J.A.; Rickard, N.D.; Taylor, C.; Zimmer, A.

    1991-01-01

    General Atomics (GA) is developing final designs for two dedicated legal-weight trailers to transport the GA-4 and GA-9 Spent-Fuel Casks. The basic designs for these high-capacity, high-strength trailers are essentially identical except for small modifications to account for the differences in cask geometry. We are designing both trailers to carry a 55,000 lb (24,900 kg) payload and to withstand a 2.5 g vertical design load. The GA-4 and GA-9 trailers are designed for significantly higher loads than are typical commercial semitrailers, which are designed to loads in the range of 1.7 to 2.0 g. To meet the federal gross vehicle weight limit for legal-weight trucks, GA has set a target design weight for the trailers of 9000 lb (4080 kg). This weight includes the personnel barrier, cask tiedowns, and impact limiter removal and storage system. Based on the preliminary trailer designs, the final design weight is expected to be very close to this target weight. 3 refs., 3 figs.