Science.gov

Sample records for advanced imaging methods

  1. Advances in multifocal methods for imaging human brain activity

    NASA Astrophysics Data System (ADS)

    Carney, Thom; Ales, Justin; Klein, Stanley A.

    2006-02-01

    The typical multifocal stimulus used in visual evoked potential (VEP) studies consists of about 60 checkerboard stimulus patches each independently contrast reversed according to an m-sequence. Cross correlation of the response (EEG, MEG, ERG, or fMRI) with the m-sequence results in a series of response kernels for each response channel and each stimulus patch. In the past the number and complexity of stimulus patches has been constrained by graphics hardware, namely the use of look-up-table (LUT) animation methods. To avoid such limitations we replaced the LUTs with true color graphic sprites to present arbitrary spatial patterns. To demonstrate the utility of the method we have recorded simultaneously from 192 cortically scaled stimulus patches each of which activate about 12mm2 of cortex in area V1. Because of the sparseness of cortical folding, very small stimulus patches and robust estimation of dipole source orientation, the method opens a new window on precise spatio-temporal mapping of early visual areas. The use of sprites also enables multiplexing stimuli such that at each patch location multiple stimuli can be presented. We have presented patterns with different orientations (or spatial frequencies) at the same patch locations but independently temporally modulated, effectively doubling the number of stimulus patches, to explore cell population interactions at the same cortical locus. We have also measured nonlinear responses to adjacent pairs of patches, thereby getting an edge response that doubles the spatial sampling density to about 1.8 mm on cortex.

  2. Advanced radiographic imaging techniques.

    NASA Technical Reports Server (NTRS)

    Beal, J. B.; Brown, R. L.

    1973-01-01

    Examination of the nature and operational constraints of conventional X-radiographic and neutron imaging methods, providing a foundation for a discussion of advanced radiographic imaging systems. Two types of solid-state image amplifiers designed to image X rays are described. Operational theory, panel construction, and performance characteristics are discussed. A closed-circuit television system for imaging neutrons is then described and the system design, operational theory, and performance characteristics are outlined. Emphasis is placed on a description of the advantages of these imaging systems over conventional methods.

  3. ADVANCED MR IMAGING METHODS FOR PLANNING AND MONITORING RADIATION THERAPY IN PATIENTS WITH HIGH GRADE GLIOMA

    PubMed Central

    Lupo, Janine M.; Nelson, Sarah J.

    2016-01-01

    This review explores how the integration of advanced imaging methods with high quality anatomic images significantly improves the characterization, target definition, assessment of response to therapy, and overall management of patients with high-grade glioma. Metrics derived from diffusion, perfusion, and susceptibility weighted MR imaging in conjunction with MR spectroscopic imaging, allows us to characterize regions of edema, hypoxia, increased cellularity, and necrosis within heterogeneous tumor and surrounding brain tissue. Quantification of such measures may provide a more reliable initial representation of tumor delineation and response to therapy than changes in the contrast enhancing or T2 lesion alone and have a significant impact on targeting resection, planning radiation, and assessing treatment effectiveness. In the long-term, implementation of these imaging methodologies can also aid in the identification of recurrent tumor and its differentiation from treatment-related confounds and facilitate the detection of radiation-induced vascular injury in otherwise normal appearing brain tissue. PMID:25219809

  4. Advanced magnetic resonance imaging techniques in the preterm brain: methods and applications.

    PubMed

    Tao, Joshua D; Neil, Jeffrey J

    2014-01-01

    Brain development and brain injury in preterm infants are areas of active research. Magnetic resonance imaging (MRI), a non-invasive tool applicable to both animal models and human infants, provides a wealth of information on this process by bridging the gap between histology (available from animal studies) and developmental outcome (available from clinical studies). Moreover, MRI also offers information regarding diagnosis and prognosis in the clinical setting. Recent advances in MR methods - diffusion tensor imaging, volumetric segmentation, surface based analysis, functional MRI, and quantitative metrics - further increase the sophistication of information available regarding both brain structure and function. In this review, we discuss the basics of these newer methods as well as their application to the study of premature infants. PMID:25055864

  5. Malignant gliomas: current perspectives in diagnosis, treatment, and early response assessment using advanced quantitative imaging methods

    PubMed Central

    Ahmed, Rafay; Oborski, Matthew J; Hwang, Misun; Lieberman, Frank S; Mountz, James M

    2014-01-01

    Malignant gliomas consist of glioblastomas, anaplastic astrocytomas, anaplastic oligodendrogliomas and anaplastic oligoastrocytomas, and some less common tumors such as anaplastic ependymomas and anaplastic gangliogliomas. Malignant gliomas have high morbidity and mortality. Even with optimal treatment, median survival is only 12–15 months for glioblastomas and 2–5 years for anaplastic gliomas. However, recent advances in imaging and quantitative analysis of image data have led to earlier diagnosis of tumors and tumor response to therapy, providing oncologists with a greater time window for therapy management. In addition, improved understanding of tumor biology, genetics, and resistance mechanisms has enhanced surgical techniques, chemotherapy methods, and radiotherapy administration. After proper diagnosis and institution of appropriate therapy, there is now a vital need for quantitative methods that can sensitively detect malignant glioma response to therapy at early follow-up times, when changes in management of nonresponders can have its greatest effect. Currently, response is largely evaluated by measuring magnetic resonance contrast and size change, but this approach does not take into account the key biologic steps that precede tumor size reduction. Molecular imaging is ideally suited to measuring early response by quantifying cellular metabolism, proliferation, and apoptosis, activities altered early in treatment. We expect that successful integration of quantitative imaging biomarker assessment into the early phase of clinical trials could provide a novel approach for testing new therapies, and importantly, for facilitating patient management, sparing patients from weeks or months of toxicity and ineffective treatment. This review will present an overview of epidemiology, molecular pathogenesis and current advances in diagnoses, and management of malignant gliomas. PMID:24711712

  6. A Combined Method for Segmentation and Registration for an Advanced and Progressive Evaluation of Thermal Images

    PubMed Central

    Barcelos, Emilio Z.; Caminhas, Walmir M.; Ribeiro, Eraldo; Pimenta, Eduardo M.; Palhares, Reinaldo M.

    2014-01-01

    In this paper, a method that combines image analysis techniques, such as segmentation and registration, is proposed for an advanced and progressive evaluation of thermograms. The method is applied for the prevention of muscle injury in high-performance athletes, in collaboration with a Brazilian professional soccer club. The goal is to produce information on spatio-temporal variations of thermograms favoring the investigation of the athletes' conditions along the competition. The proposed method improves on current practice by providing a means for automatically detecting adaptive body-shaped regions of interest, instead of the manual selection of simple shapes. Specifically, our approach combines the optimization features in Otsu's method with a correction factor and post-processing techniques, enhancing thermal-image segmentation when compared to other methods. Additional contributions resulting from the combination of the segmentation and registration steps of our approach are the progressive analyses of thermograms in a unique spatial coordinate system and the accurate extraction of measurements and isotherms. PMID:25414972

  7. Developing Advanced Seismic Imaging Methods For Characterizing the Fault Zone Structure

    NASA Astrophysics Data System (ADS)

    Zhang, Haijiang

    2015-04-01

    Here I present a series of recent developments on seismic imaging of fault zone structure. The goals of these advanced methods are to better determine the physical properties (including seismic velocity, attenuation, and anisotropy) around the fault zone and its boundaries. In order to accurately determine the seismic velocity structure of the fault zone, we have recently developed a wavelet-based double-difference seismic tomography method, in which the wavelet coefficients of the velocity model, rather than the model itself, are solved using both the absolute and differential arrival times. This method takes advantage of the multiscale nature of the velocity model and the multiscale wavelet representation property. Because of the velocity model is sparse in the wavelet domain, a sparsity constraint is applied to tomographic inversion. Compared to conventional tomography methods, the new method is both data- and model-adaptive, and thus can better resolve the fault zone structure. In addition to seismic velocity property of the fault zone, seismic anisotropy and attenuation properties are also important to characterize the fault zone structure. For this reason, we developed the seismic anisotropy tomography method to image the three-dimensional anisotropy strength model of the fault zone using shear wave splitting delay times between fast and slow shear waves. The applications to the San Andreas fault around Parkfield, California and north Anatolian fault in Turkey will be shown. To better constrain the seismic attenuation structure, we developed a new seismic attenuation tomography method using measured t* values for first arrival body waves, in which the structures of attenuation and velocity models are similar through the cross-gradient constraint. Seismic tomography can, however, only resolve the smooth variations in elastic properties in Earth's interior. To image structure at length scales smaller than what can be resolved tomographically, including

  8. Exploring Atmospheric Aerosol Chemistry with Advanced High-Resolution Mass Spectrometry and Particle Imaging Methods

    NASA Astrophysics Data System (ADS)

    Nizkorodov, S.

    2014-12-01

    Physical and chemical complexity of atmospheric aerosols presents significant challenges both to experimentalists working on aerosol characterization and to modelers trying to parameterize critical aerosol properties. Multi-modal approaches that combine state-of-the-art experimental, theoretical, and modeling methods are becoming increasingly important in aerosol research. This presentation will discuss recent applications of unique high-resolution mass spectrometry and particle imaging tools developed at two Department of Energy's user facilities, the Environmental Molecular Science Laboratory (EMSL) and Advanced Light Source (ALS), to studies of molecular composition, photochemical aging, and properties of laboratory-generated and field aerosols. Specifically, this presentation will attempt to address the following questions: (a) how do NO2, SO2, and NH3 affect molecular level composition of anthropogenic aerosols?; (b) what factors determine viscosity/surface tension of organic aerosol particles?; (c) how does photolysis affect molecular composition and optical properties of organic aerosols?

  9. [Advance in imaging spectropolarimeter].

    PubMed

    Wang, Xin-quan; Xiangli, Bin; Huang, Min; Hu, Liang; Zhou, Jin-song; Jing, Juan-juan

    2011-07-01

    Imaging spectropolarimeter (ISP) is a type of novel photoelectric sensor which integrated the functions of imaging, spectrometry and polarimetry. In the present paper, the concept of the ISP is introduced, and the advances in ISP at home and abroad in recent years is reviewed. The principles of ISPs based on novel devices, such as acousto-optic tunable filter (AOTF) and liquid crystal tunable filter (LCTF), are illustrated. In addition, the principles of ISPs developed by adding polarized components to the dispersing-type imaging spectrometer, spatially modulated Fourier transform imaging spectrometer, and computer tomography imaging spectrometer are introduced. Moreover, the trends of ISP are discussed too. PMID:21942063

  10. Advanced Geosynchronous Imager

    NASA Technical Reports Server (NTRS)

    Chesters, Dennis

    1999-01-01

    For improved understanding of chaotic processes and the diurnal cycle, an advanced GOES imager must also have the multi-spectral spectral bands used by low earth orbit (LEO) imagers, with on-orbit calibration for all bands. A synergy between GEO and LEO radiometry would enable earth system scientists to fuse the remote sensing data from all the spaceborne platforms. These additional radiometric capabilities are designed to observe important physical processes that vary rapidly and unpredicably: smoke, fires, precipitation, ozone, volcanic ash, cloud phase and height, and surface temperature. We believe the technology now exists to develop an imaging system that can meet future weather reporting and earth system science needs. To meet this need, we propose a design for a comprehensive geosynchronous atmospheric imager. This imager is envisioned to fly on a GOES-N class spacecraft, within the volume, weight and power constraints of a platform similar to GOES-N while delivering 100 times more data and radiometric quality than the GOES-N imager. The higher data rate probably requires its own ground station, which could serve as a systems prototype for NOAA's next generation of operational satellites. For operational compatibility, our proposed advanced GOES imaging system contains the GOES-R requirements as a subset, and the GOES-N imager capabilities (and the sounder's imaging channels) as a further subset.

  11. Advances in ultrasound methods for high-resolution imaging of the cardiovascular system.

    PubMed

    Wickline, S A

    1997-07-01

    Acoustic microscopy entails the use of high-frequency high-resolution ultrasound methods to produce images of sound waves reflected from or propagated through some tissue of interest. The image contrast depends on microscopic differences in the intrinsic material properties of the substance imaged, such as mass density or compressibility. Pathologic changes in cardiovascular tissues at the subcellular level can be observed with high-frequency acoustic imaging techniques, based on alterations in the structure, properties, and organization of cells and their surrounding matrix. Potential applications extend from delineation of cardiovascular development in experimental animals to clinical characterization of the composition of atherosclerotic lesions with intravascular ultrasound and estimation of the potential for plaque rupture and infarction. (Trends Cardiovasc Med 1997;7:168-174). © 1997, Elsevier Science Inc. PMID:21235881

  12. Advanced imaging system

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This document describes the Advanced Imaging System CCD based camera. The AIS1 camera system was developed at Photometric Ltd. in Tucson, Arizona as part of a Phase 2 SBIR contract No. NAS5-30171 from the NASA/Goddard Space Flight Center in Greenbelt, Maryland. The camera project was undertaken as a part of the Space Telescope Imaging Spectrograph (STIS) project. This document is intended to serve as a complete manual for the use and maintenance of the camera system. All the different parts of the camera hardware and software are discussed and complete schematics and source code listings are provided.

  13. Advancing biomedical imaging

    PubMed Central

    Weissleder, Ralph; Nahrendorf, Matthias

    2015-01-01

    Imaging reveals complex structures and dynamic interactive processes, located deep inside the body, that are otherwise difficult to decipher. Numerous imaging modalities harness every last inch of the energy spectrum. Clinical modalities include magnetic resonance imaging (MRI), X-ray computed tomography (CT), ultrasound, and light-based methods [endoscopy and optical coherence tomography (OCT)]. Research modalities include various light microscopy techniques (confocal, multiphoton, total internal reflection, superresolution fluorescence microscopy), electron microscopy, mass spectrometry imaging, fluorescence tomography, bioluminescence, variations of OCT, and optoacoustic imaging, among a few others. Although clinical imaging and research microscopy are often isolated from one another, we argue that their combination and integration is not only informative but also essential to discovering new biology and interpreting clinical datasets in which signals invariably originate from hundreds to thousands of cells per voxel. PMID:26598657

  14. An advanced image processing method to improve the spatial resolution of ion radiographies.

    PubMed

    Krah, N; Testa, M; Brons, S; Jäkel, O; Parodi, K; Voss, B; Rinaldi, I

    2015-11-01

    We present an optimization method to improve the spatial resolution and the water equivalent thickness (WET) accuracy of ion radiographies. The method is designed for imaging systems measuring for each actively scanned beam spot the lateral position of the pencil beam and at the same time the Bragg curve (behind the target) in discrete steps without relying on tracker detectors to determine the ion trajectory before and after the irradiated volume. Specifically, the method was used for an imaging set-up consisting of a stack of 61 parallel-plate ionization chambers (PPIC) interleaved with absorber plates of polymethyl methacrylate (PMMA) working as a range telescope. The method uses not only the Bragg peak position, but approximates the entire measured Bragg curve as a superposition of differently shifted Bragg curves. Their relative weights allow to reconstruct the distribution of thickness around each scan spot of a heterogeneous phantom. The approach also allows merging the ion radiography with the geometric information of a co-registered x-ray radiography in order to increase its spatial resolution. The method was tested using Monte Carlo simulated and experimental proton radiographies of a PMMA step phantom and an anthropomorphic head phantom. For the step phantom, the effective spatial resolution was found to be 6 and 4 times higher than the nominal resolution for the simulated and experimental radiographies, respectively. For the head phantom, a gamma index was calculated to quantify the conformity of the simulated proton radiographies with a digitally reconstructed radiography (DRR) obtained from an x-ray CT and properly converted into WET. For a distance-to-agreement (DTA) of 2.5 mm and a relative WET difference (RWET) of 2.5%, the passing ratio was 100%/85% for the optimized/non-optimized case, respectively. When the optimized proton radiography was merged with the co-registered DRR, the passing ratio was 100% at DTA  =  1.3 mm and RWET

  15. An advanced image processing method to improve the spatial resolution of ion radiographies

    NASA Astrophysics Data System (ADS)

    Krah, N.; Testa, M.; Brons, S.; Jäkel, O.; Parodi, K.; Voss, B.; Rinaldi, I.

    2015-11-01

    We present an optimization method to improve the spatial resolution and the water equivalent thickness (WET) accuracy of ion radiographies. The method is designed for imaging systems measuring for each actively scanned beam spot the lateral position of the pencil beam and at the same time the Bragg curve (behind the target) in discrete steps without relying on tracker detectors to determine the ion trajectory before and after the irradiated volume. Specifically, the method was used for an imaging set-up consisting of a stack of 61 parallel-plate ionization chambers (PPIC) interleaved with absorber plates of polymethyl methacrylate (PMMA) working as a range telescope. The method uses not only the Bragg peak position, but approximates the entire measured Bragg curve as a superposition of differently shifted Bragg curves. Their relative weights allow to reconstruct the distribution of thickness around each scan spot of a heterogeneous phantom. The approach also allows merging the ion radiography with the geometric information of a co-registered x-ray radiography in order to increase its spatial resolution. The method was tested using Monte Carlo simulated and experimental proton radiographies of a PMMA step phantom and an anthropomorphic head phantom. For the step phantom, the effective spatial resolution was found to be 6 and 4 times higher than the nominal resolution for the simulated and experimental radiographies, respectively. For the head phantom, a gamma index was calculated to quantify the conformity of the simulated proton radiographies with a digitally reconstructed radiography (DRR) obtained from an x-ray CT and properly converted into WET. For a distance-to-agreement (DTA) of 2.5 mm and a relative WET difference (RWET) of 2.5%, the passing ratio was 100%/85% for the optimized/non-optimized case, respectively. When the optimized proton radiography was merged with the co-registered DRR, the passing ratio was 100% at DTA  =  1.3 mm and RWET

  16. Advanced Imaging and Diagnostic Methods in the Assessment of Suspected Ischemic Heart Disease in Women.

    PubMed

    Joly, Joanna M; Bittner, Vera

    2016-09-01

    Although differences diminish with age, outcomes are overall worse for women compared to men who present with suspected acute coronary syndrome. The reasons for this discrepancy are multifactorial, including sex-related differences in atherosclerosis biology and fluid dynamics, as well as a premature conclusion by providers that chest pain must be noncardiac in the absence of obstructive coronary artery disease. In this review of existing literature, we explore the diverse differential diagnosis in this unique set of patients. Especially in women with persistent symptoms, absence of occlusive disease should prompt consideration for subangiographic plaque disruption, epicardial or microvascular endothelial dysfunction, transient neurohormonal imbalance predisposing to Takotsubo cardiomyopathy or spontaneous coronary artery dissection, underlying systemic inflammatory conditions, thromboembolic disease, myocarditis, and sequelae of congenital heart disease. As always, a thorough history and attentive physical exam will help guide further work-up, which in many cases may warrant noninvasive imaging, such as contrast-enhanced echocardiography, cardiac magnetic resonance imaging, or positron emission tomography, with their respective means of measuring myocardial perfusion and myocardial tissue pathology. Lastly, intracoronary imaging such as intravascular ultrasound and optical coherence tomography and invasive diagnostic methods such as coronary reactivity testing continue to add to our understanding that what appear to be atypical presentations of ischemic heart disease in women may in fact be typical presentations of pathologic cousin entities that remain incompletely defined. PMID:27443380

  17. Recent advances in imaging technologies in dentistry

    PubMed Central

    Shah, Naseem; Bansal, Nikhil; Logani, Ajay

    2014-01-01

    Dentistry has witnessed tremendous advances in all its branches over the past three decades. With these advances, the need for more precise diagnostic tools, specially imaging methods, have become mandatory. From the simple intra-oral periapical X-rays, advanced imaging techniques like computed tomography, cone beam computed tomography, magnetic resonance imaging and ultrasound have also found place in modern dentistry. Changing from analogue to digital radiography has not only made the process simpler and faster but also made image storage, manipulation (brightness/contrast, image cropping, etc.) and retrieval easier. The three-dimensional imaging has made the complex cranio-facial structures more accessible for examination and early and accurate diagnosis of deep seated lesions. This paper is to review current advances in imaging technology and their uses in different disciplines of dentistry. PMID:25349663

  18. Advanced image memory architecture

    NASA Astrophysics Data System (ADS)

    Vercillo, Richard; McNeill, Kevin M.

    1994-05-01

    A workstation for radiographic images, known as the Arizona Viewing Console (AVC), was developed at the University of Arizona Health Sciences Center in the Department of Radiology. This workstation has been in use as a research tool to aid us in investigating how a radiologist interacts with a workstation, to determine which image processing features are required to aid the radiologist, to develop user interfaces and to support psychophysical and clinical studies. Results from these studies have show a need to increase the current image memory's available storage in order to accommodate high resolution images. The current triple-ported image memory can be allocated to store any number of images up to a combined total of 4 million pixels. Over the past couple of years, higher resolution images have become easier to generate with the advent of laser digitizers and computed radiology systems. As part of our research, a larger 32 million pixel image memory for AVC has been designed to replace the existing image memory.

  19. Interactive 3D imaging technologies: application in advanced methods of jaw bone reconstruction using stem cells/pre-osteoblasts in oral surgery

    PubMed Central

    Wojtowicz, Andrzej; Perek, Jan; Popowski, Wojciech

    2014-01-01

    Cone beam computed tomography has created a specific revolution in maxillofacial imaging, facilitating the transition of diagnosis from 2D to 3D, and expanded the role of imaging from diagnosis to the possibility of actual planning. There are many varieties of cone beam computed tomography-related software available, from basic DICOM viewers to very advanced planning modules, such as InVivo Anatomage, and SimPlant (Materialise Dental). Through the use of these programs scans can be processed into a three-dimensional high-quality simulation which enables planning of the overall treatment. In this article methods of visualization are demonstrated and compared, in the example of 2 cases of reconstruction of advanced jaw bone defects using tissue engineering. Advanced imaging methods allow one to plan a miniinvasive treatment, including assessment of the bone defect's shape and localization, planning a surgical approach and individual graft preparation. PMID:25337171

  20. Modern Imaging Technology: Recent Advances

    SciTech Connect

    Welch, Michael J.; Eckelman, William C.

    2004-06-18

    This 2-day conference is designed to bring scientist working in nuclear medicine, as well as nuclear medicine practitioners together to discuss the advances in four selected areas of imaging: Biochemical Parameters using Small Animal Imaging, Developments in Small Animal PET Imaging, Cell Labeling, and Imaging Angiogenesis Using Multiple Modality. The presentations will be on molecular imaging applications at the forefront of research, up to date on the status of molecular imaging in nuclear medicine as well as in related imaging areas. Experts will discuss the basic science of imaging techniques, and scheduled participants will engage in an exciting program that emphasizes the current status of molecular imaging as well as the role of DOE funded research in this area.

  1. Advanced Land Imager Assessment System

    NASA Technical Reports Server (NTRS)

    Chander, Gyanesh; Choate, Mike; Christopherson, Jon; Hollaren, Doug; Morfitt, Ron; Nelson, Jim; Nelson, Shar; Storey, James; Helder, Dennis; Ruggles, Tim; Kaita, Ed; Levy, Raviv; Ong, Lawrence; Markham, Brian; Schweiss, Robert

    2008-01-01

    The Advanced Land Imager Assessment System (ALIAS) supports radiometric and geometric image processing for the Advanced Land Imager (ALI) instrument onboard NASA s Earth Observing-1 (EO-1) satellite. ALIAS consists of two processing subsystems for radiometric and geometric processing of the ALI s multispectral imagery. The radiometric processing subsystem characterizes and corrects, where possible, radiometric qualities including: coherent, impulse; and random noise; signal-to-noise ratios (SNRs); detector operability; gain; bias; saturation levels; striping and banding; and the stability of detector performance. The geometric processing subsystem and analysis capabilities support sensor alignment calibrations, sensor chip assembly (SCA)-to-SCA alignments and band-to-band alignment; and perform geodetic accuracy assessments, modulation transfer function (MTF) characterizations, and image-to-image characterizations. ALIAS also characterizes and corrects band-toband registration, and performs systematic precision and terrain correction of ALI images. This system can geometrically correct, and automatically mosaic, the SCA image strips into a seamless, map-projected image. This system provides a large database, which enables bulk trending for all ALI image data and significant instrument telemetry. Bulk trending consists of two functions: Housekeeping Processing and Bulk Radiometric Processing. The Housekeeping function pulls telemetry and temperature information from the instrument housekeeping files and writes this information to a database for trending. The Bulk Radiometric Processing function writes statistical information from the dark data acquired before and after the Earth imagery and the lamp data to the database for trending. This allows for multi-scene statistical analyses.

  2. Advances in optical imaging for pharmacological studies

    PubMed Central

    Arranz, Alicia; Ripoll, Jorge

    2015-01-01

    Imaging approaches are an essential tool for following up over time representative parameters of in vivo models, providing useful information in pharmacological studies. Main advantages of optical imaging approaches compared to other imaging methods are their safety, straight-forward use and cost-effectiveness. A main drawback, however, is having to deal with the presence of high scattering and high absorption in living tissues. Depending on how these issues are addressed, three different modalities can be differentiated: planar imaging (including fluorescence and bioluminescence in vivo imaging), optical tomography, and optoacoustic approaches. In this review we describe the latest advances in optical in vivo imaging with pharmacological applications, with special focus on the development of new optical imaging probes in order to overcome the strong absorption introduced by different tissue components, especially hemoglobin, and the development of multimodal imaging systems in order to overcome the resolution limitations imposed by scattering. PMID:26441646

  3. Chemical Approaches for Advanced Optical Imaging

    NASA Astrophysics Data System (ADS)

    Chen, Zhixing

    Advances in optical microscopy have been constantly expanding our knowledge of biological systems. The achievements therein are a result of close collaborations between physicists/engineers who build the imaging instruments and chemists/biochemists who design the corresponding probe molecules. In this work I present a number of chemical approaches for the development of advanced optical imaging methods. Chapter 1 provides an overview of the recent advances of novel imaging approaches taking advantage of chemical tag technologies. Chapter 2 describes the second-generation covalent trimethoprim-tag as a viable tool for live cell protein-specific labeling and imaging. In Chapter 3 we present a fluorescence lifetime imaging approach to map protein-specific micro-environment in live cells using TMP-Cy3 as a chemical probe. In Chapter 4, we present a method harnessing photo-activatable fluorophores to extend the fundamental depth limit in multi-photon microscopy. Chapter 5 describes the development of isotopically edited alkyne palette for multi-color live cell vibrational imaging of cellular small molecules. These studies exemplify the impact of modern chemical approaches in the development of advanced optical microscopies.

  4. Advanced imaging and visualization in gastrointestinal disorders

    PubMed Central

    Gilja, Odd Helge; Hatlebakk, Jan G; Ødegaard, Svein; Berstad, Arnold; Viola, Ivan; Giertsen, Christopher; Hausken, Trygve; Gregersen, Hans

    2007-01-01

    Advanced medical imaging and visualization has a strong impact on research and clinical decision making in gastroenterology. The aim of this paper is to show how imaging and visualization can disclose structural and functional abnormalities of the gastrointestinal (GI) tract. Imaging methods such as ultrasonography, magnetic resonance imaging (MRI), endoscopy, endosonography, and elastography will be outlined and visualization with Virtual Reality and haptic methods. Ultrasonography is a versatile method that can be used to evaluate antral contractility, gastric emptying, transpyloric flow, gastric configuration, intragastric distribution of meals, gastric accommodation and strain measurement of the gastric wall. Advanced methods for endoscopic ultrasound, three-dimensional (3D) ultrasound, and tissue Doppler (Strain Rate Imaging) provide detailed information of the GI tract. Food hypersensitivity reactions including gastrointestinal reactions due to food allergy can be visualized by ultrasonography and MRI. Development of multi-parametric and multi-modal imaging may increase diagnostic benefits and facilitate fusion of diagnostic and therapeutic imaging in the future. PMID:17457973

  5. Recent imaging advances in neurology.

    PubMed

    Rocchi, Lorenzo; Niccolini, Flavia; Politis, Marios

    2015-09-01

    Over the recent years, the application of neuroimaging techniques such as magnetic resonance imaging (MRI) and positron emission tomography (PET) has considerably advanced the understanding of complex neurological disorders. PET is a powerful molecular imaging tool, which investigates the distribution and binding of radiochemicals attached to biologically relevant molecules; as such, this technique is able to give information on biochemistry and metabolism of the brain in health and disease. MRI uses high intensity magnetic fields and radiofrequency pulses to provide structural and functional information on tissues and organs in intact or diseased individuals, including the evaluation of white matter integrity, grey matter thickness and brain perfusion. The aim of this article is to review the most recent advances in neuroimaging research in common neurological disorders such as movement disorders, dementia, epilepsy, traumatic brain injury and multiple sclerosis, and to evaluate their contribution in the diagnosis and management of patients. PMID:25808503

  6. Advances in multimodality molecular imaging

    PubMed Central

    Zaidi, Habib; Prasad, Rameshwar

    2009-01-01

    Multimodality molecular imaging using high resolution positron emission tomography (PET) combined with other modalities is now playing a pivotal role in basic and clinical research. The introduction of combined PET/CT systems in clinical setting has revolutionized the practice of diagnostic imaging. The complementarity between the intrinsically aligned anatomic (CT) and functional or metabolic (PET) information provided in a “one-stop shop” and the possibility to use CT images for attenuation correction of the PET data has been the driving force behind the success of this technology. On the other hand, combining PET with Magnetic Resonance Imaging (MRI) in a single gantry is technically more challenging owing to the strong magnetic fields. Nevertheless, significant progress has been made resulting in the design of few preclinical PET systems and one human prototype dedicated for simultaneous PET/MR brain imaging. This paper discusses recent advances in PET instrumentation and the advantages and challenges of multimodality imaging systems. Future opportunities and the challenges facing the adoption of multimodality imaging instrumentation will also be addressed. PMID:20098557

  7. Foundations of Advanced Magnetic Resonance Imaging

    PubMed Central

    Bammer, Roland; Skare, Stefan; Newbould, Rexford; Liu, Chunlei; Thijs, Vincent; Ropele, Stefan; Clayton, David B.; Krueger, Gunnar; Moseley, Michael E.; Glover, Gary H.

    2005-01-01

    Summary: During the past decade, major breakthroughs in magnetic resonance imaging (MRI) quality were made by means of quantum leaps in scanner hardware and pulse sequences. Some advanced MRI techniques have truly revolutionized the detection of disease states and MRI can now—within a few minutes—acquire important quantitative information noninvasively from an individual in any plane or volume at comparatively high resolution. This article provides an overview of the most common advanced MRI methods including diffusion MRI, perfusion MRI, functional MRI, and the strengths and weaknesses of MRI at high magnetic field strengths. PMID:15897944

  8. Microscopy imaging device with advanced imaging properties

    SciTech Connect

    Ghosh, Kunal; Burns, Laurie; El Gamal, Abbas; Schnitzer, Mark J.; Cocker, Eric; Ho, Tatt Wei

    2015-11-24

    Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm.sup.2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 .mu.m resolution for an image of the field of view.

  9. Joseph F. Keithley Award For Advances in Measurement Science Lecture: Thermophotonic and Photoacoustic Radar Imaging Methods for Biomedical and Dental Imaging

    NASA Astrophysics Data System (ADS)

    Mandelis, Andreas

    2012-02-01

    In the first part of this presentation I will introduce thermophotonic radar imaging principles and techniques using chirped or binary-phase-coded modulation, methods which can break through the maximum detection depth/depth resolution limitations of conventional photothermal waves. Using matched-filter principles, a methodology enabling parabolic diffusion-wave energy fields to exhibit energy localization akin to propagating hyperbolic wave-fields has been developed. It allows for deconvolution of individual responses of superposed axially discrete sources, opening a new field: depth-resolved thermal coherence tomography. Several examples from dental enamel caries diagnostic imaging to metal subsurface defect thermographic imaging will be discussed. The second part will introduce the field of photoacoustic radar (or sonar) biomedical imaging. I will report the development of a novel biomedical imaging system that utilizes a continuous-wave laser source with a custom intensity modulation pattern, ultrasonic phased array for signal detection and processing coupled with a beamforming algorithm for reconstruction of photoacoustic correlation images. Utilization of specific chirped modulation waveforms (``waveform engineering'') achieves dramatic signal-to-noise-ratio increase and improved axial resolution over pulsed laser photoacoustics. The talk will conclude with aspects of instrumental sensitivity of the PA Radar to optical contrast using cancerous breast tissue-mimicking phantoms, super paramagnetic iron oxide nanoparticles as contrast enhancement agents and in-vivo tissue samples.

  10. Advances in fluorescence labeling strategies for dynamic cellular imaging

    PubMed Central

    Dean, Kevin M; Palmer, Amy E

    2014-01-01

    Synergistic advances in optical physics, probe design, molecular biology, labeling techniques and computational analysis have propelled fluorescence imaging into new realms of spatiotemporal resolution and sensitivity. This review aims to discuss advances in fluorescent probes and live-cell labeling strategies, two areas that remain pivotal for future advances in imaging technology. Fluorescent protein– and bio-orthogonal–based methods for protein and RNA imaging are discussed as well as emerging bioengineering techniques that enable their expression at specific genomic loci (for example, CRISPR and TALENs). Important attributes that contribute to the success of each technique are emphasized, providing a guideline for future advances in dynamic live-cell imaging. PMID:24937069

  11. A new and reliable method for live imaging and quantification of reactive oxygen species in Botrytis cinerea: technological advancement.

    PubMed

    Marschall, Robert; Tudzynski, Paul

    2014-10-01

    Reactive oxygen species (ROS) are produced in conserved cellular processes either as by-products of the cellular respiration in mitochondria, or purposefully for defense mechanisms, signaling cascades or cell homeostasis. ROS have two diametrically opposed attributes due to their highly damaging potential for DNA, lipids and other molecules and due to their indispensability for signaling and developmental processes. In filamentous fungi, the role of ROS in growth and development has been studied in detail, but these analyses were often hampered by the lack of reliable and specific techniques to monitor different activities of ROS in living cells. Here, we present a new method for live cell imaging of ROS in filamentous fungi. We demonstrate that by use of a mixture of two fluorescent dyes it is possible to monitor H2O2 and superoxide specifically and simultaneously in distinct cellular structures during various hyphal differentiation processes. In addition, the method allows for reliable fluorometric quantification of ROS. We demonstrate that this can be used to characterize different mutants with respect to their ROS production/scavenging potential. PMID:25220147

  12. Advanced multiphoton methods for in vitro and in vivo functional imaging of mouse retinal neurons (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Cohen, Noam; Schejter, Adi; Farah, Nairouz; Shoham, Shy

    2016-03-01

    Studying the responses of retinal ganglion cell (RGC) populations has major significance in vision research. Multiphoton imaging of optogenetic probes has recently become the leading approach for visualizing neural populations and has specific advantages for imaging retinal activity during visual stimulation, because it leads to reduced direct photoreceptor excitation. However, multiphoton retinal activity imaging is not straightforward: point-by-point scanning leads to repeated neural excitation while optical access through the rodent eye in vivo has proven highly challenging. Here, we present two enabling optical designs for multiphoton imaging of responses to visual stimuli in mouse retinas expressing calcium indicators. First, we present an imaging solution based on Scanning Line Temporal Focusing (SLITE) for rapidly imaging neuronal activity in vitro. In this design, we scan a temporally focused line rather than a point, increasing the scan speed and reducing the impact of repeated excitation, while maintaining high optical sectioning. Second, we present the first in vivo demonstration of two-photon imaging of RGC activity in the mouse retina. To obtain these cellular resolution recordings we integrated an illumination path into a correction-free imaging system designed using an optical model of the mouse eye. This system can image at multiple depths using an electronically tunable lens integrated into its optical path. The new optical designs presented here overcome a number of outstanding obstacles, allowing the study of rapid calcium- and potentially even voltage-indicator signals both in vitro and in vivo, thereby bringing us a step closer toward distributed monitoring of action potentials.

  13. Advanced Bayesian Method for Planetary Surface Navigation

    NASA Technical Reports Server (NTRS)

    Center, Julian

    2015-01-01

    Autonomous Exploration, Inc., has developed an advanced Bayesian statistical inference method that leverages current computing technology to produce a highly accurate surface navigation system. The method combines dense stereo vision and high-speed optical flow to implement visual odometry (VO) to track faster rover movements. The Bayesian VO technique improves performance by using all image information rather than corner features only. The method determines what can be learned from each image pixel and weighs the information accordingly. This capability improves performance in shadowed areas that yield only low-contrast images. The error characteristics of the visual processing are complementary to those of a low-cost inertial measurement unit (IMU), so the combination of the two capabilities provides highly accurate navigation. The method increases NASA mission productivity by enabling faster rover speed and accuracy. On Earth, the technology will permit operation of robots and autonomous vehicles in areas where the Global Positioning System (GPS) is degraded or unavailable.

  14. Heart imaging method

    DOEpatents

    Collins, H. Dale; Gribble, R. Parks; Busse, Lawrence J.

    1991-01-01

    A method for providing an image of the human heart's electrical system derives time-of-flight data from an array of EKG electrodes and this data is transformed into phase information. The phase information, treated as a hologram, is reconstructed to provide an image in one or two dimensions of the electrical system of the functioning heart.

  15. Recent Advances in Imaging Alzheimer’s Disease

    PubMed Central

    Braskie, Meredith N.; Toga, Arthur W.; Thompson, Paul M.

    2014-01-01

    Advances in brain imaging technology in the past five years have contributed greatly to the understanding of Alzheimer’s disease (AD). Here, we review recent research related to amyloid imaging, new methods for magnetic resonance imaging analyses, and statistical methods. We also review research that evaluates AD risk factors and brain imaging, in the context of AD prediction and progression. We selected a variety of illustrative studies, describing how they advanced the field and are leading AD research in promising new directions. PMID:22672880

  16. Advances in toponomics drug discovery: Imaging cycler microscopy correctly predicts a therapy method of amyotrophic lateral sclerosis

    PubMed Central

    Schubert, Walter

    2015-01-01

    An imaging cycler microscope (ICM) is a fully automated (epi)fluorescence microscope which overcomes the spectral resolution limit resulting in parameter- and dimension-unlimited fluorescence imaging. This enables the spatial resolution of large molecular systems with their emergent topological properties (toponome) in morphologically intact cells and tissues displaying thousands of multi protein assemblies at a time. The resulting combinatorial geometry of these systems has been shown to be key for in-vivo/in-situ detection of lead proteins controlling protein network topology and (dys)function: If lead proteins are blocked or downregulated the corresponding disease protein network disassembles. Here, correct therapeutic predictions are exemplified for ALS. ICM drug target studies have discovered an 18-dimensional cell surface molecular system in ALS-PBMC with a lead drug target protein, whose therapeutic downregulation is now reported to show statistically significant effect with stop of disease progression in one third of the ALS patients. Together, this clinical and the earlier experimental validations of the ICM approach indicate that ICM readily discovers in vivo robustness nodes of disease with lead proteins controlling them. Breaking in vivo robustness nodes using drugs against their lead proteins is likely to overcome current high drug attrition rates. © 2015 The Author. Published by Wiley Periodicals, Inc, on behalf of ISAC. PMID:25869332

  17. Advanced image processing methods as a tool to map and quantify different types of biological soil crust

    NASA Astrophysics Data System (ADS)

    Rodríguez-Caballero, Emilio; Escribano, Paula; Cantón, Yolanda

    2014-04-01

    Biological soil crusts (BSCs) modify numerous soil surface properties and affect many key ecosystem processes. As BSCs are considered one of the most important components of semiarid ecosystems, accurate characterisation of their spatial distribution is increasingly in demand. This paper describes a novel methodology for identifying the areas dominated by different types of BSCs and quantifying their relative cover at subpixel scale in a semiarid ecosystem of SE Spain. The approach consists of two consecutive steps: (i) First, Support Vector Machine (SVM) classification to identify the main ground units, dominated by homogenous surface cover (bare soil, cyanobacteria BSC, lichen BSC, green and dry vegetation), which are of strong ecological relevance. (ii) Spectral mixture analysis (SMA) of the ground units to quantify the proportion of each type of surface cover within each pixel, to correctly characterize the complex spatial heterogeneity inherent to semiarid ecosystems. SVM classification showed very good results with a Kappa coefficient of 0.93%, discriminating among areas dominated by bare soil, cyanobacteria BSC, lichen BSC, green and dry vegetation. Subpixel relative abundance images achieved relatively high accuracy for both types of BSCs (about 80%), whereas general overestimation of vegetation was observed. Our results open the possibility of introducing the effect of presence and of relative cover of BSCs in spatially distributed hydrological and ecological models, and assessment and monitoring aimed at reducing degradation in these areas.

  18. Recent Advancements in Microwave Imaging Plasma Diagnostics

    SciTech Connect

    H. Park; C.C. Chang; B.H. Deng; C.W. Domier; A.J.H. Donni; K. Kawahata; C. Liang; X.P. Liang; H.J. Lu; N.C. Luhmann, Jr.; A. Mase; H. Matsuura; E. Mazzucato; A. Miura; K. Mizuno; T. Munsat; K. and Y. Nagayama; M.J. van de Pol; J. Wang; Z.G. Xia; W-K. Zhang

    2002-03-26

    Significant advances in microwave and millimeter wave technology over the past decade have enabled the development of a new generation of imaging diagnostics for current and envisioned magnetic fusion devices. Prominent among these are revolutionary microwave electron cyclotron emission imaging (ECEI), microwave phase imaging interferometers, imaging microwave scattering and microwave imaging reflectometer (MIR) systems for imaging electron temperature and electron density fluctuations (both turbulent and coherent) and profiles (including transport barriers) on toroidal devices such as tokamaks, spherical tori, and stellarators. The diagnostic technology is reviewed, and typical diagnostic systems are analyzed. Representative experimental results obtained with these novel diagnostic systems are also presented.

  19. Recent advances in morphological cell image analysis.

    PubMed

    Chen, Shengyong; Zhao, Mingzhu; Wu, Guang; Yao, Chunyan; Zhang, Jianwei

    2012-01-01

    This paper summarizes the recent advances in image processing methods for morphological cell analysis. The topic of morphological analysis has received much attention with the increasing demands in both bioinformatics and biomedical applications. Among many factors that affect the diagnosis of a disease, morphological cell analysis and statistics have made great contributions to results and effects for a doctor. Morphological cell analysis finds the cellar shape, cellar regularity, classification, statistics, diagnosis, and so forth. In the last 20 years, about 1000 publications have reported the use of morphological cell analysis in biomedical research. Relevant solutions encompass a rather wide application area, such as cell clumps segmentation, morphological characteristics extraction, 3D reconstruction, abnormal cells identification, and statistical analysis. These reports are summarized in this paper to enable easy referral to suitable methods for practical solutions. Representative contributions and future research trends are also addressed. PMID:22272215

  20. Hepatocellular carcinoma: Advances in diagnostic imaging.

    PubMed

    Sun, Haoran; Song, Tianqiang

    2015-10-01

    Thanks to the growing knowledge on biological behaviors of hepatocellular carcinomas (HCC), as well as continuous improvement in imaging techniques and experienced interpretation of imaging features of the nodules in cirrhotic liver, the detection and characterization of HCC has improved in the past decade. A number of practice guidelines for imaging diagnosis have been developed to reduce interpretation variability and standardize management of HCC, and they are constantly updated with advances in imaging techniques and evidence based data from clinical series. In this article, we strive to review the imaging techniques and the characteristic features of hepatocellular carcinoma associated with cirrhotic liver, with emphasis on the diagnostic value of advanced magnetic resonance imaging (MRI) techniques and utilization of hepatocyte-specific MRI contrast agents. We also briefly describe the concept of liver imaging reporting and data systems and discuss the consensus and controversy of major practice guidelines. PMID:26632539

  1. [Advances in musculoskeletal MR imaging].

    PubMed

    Ho, Michael; Andreisek, Gustav

    2015-09-01

    Musculoskeletal imaging is a rapidly developing field offering several new techniques. MR neurography provides an additive value with complementary and precise information about peripheral nerves. Hereby, MR neurography not only enables the radiologist to differentiate between a mononeuropathic or a polyneuropathic process, but also helps to find nerve compression syndromes by visualizing the nerve surrounding structures as well. An additional administration of contrast agent enables detection of tumors and inflammation of peripheral nerves. Whole body MRI opens new possibilities for detection and follow-up in oncological disorders, systemic diseases, in pediatric diagnostics and in preventive medicine. Guidelines are useful for an evidence-based application of this technique. MRI is generally considered to be the gold standard in diagnostic imaging of the spine. Continuous technical developments have led to a better image quality. New guidelines for standardized image interpretation and reporting have been published and should be used to avoid loss of information from high resolution imaging to effective treatment. PMID:26331202

  2. Advanced reliability methods - A review

    NASA Astrophysics Data System (ADS)

    Forsyth, David S.

    2016-02-01

    There are a number of challenges to the current practices for Probability of Detection (POD) assessment. Some Nondestructive Testing (NDT) methods, especially those that are image-based, may not provide a simple relationship between a scalar NDT response and a damage size. Some damage types are not easily characterized by a single scalar metric. Other sensing paradigms, such as structural health monitoring, could theoretically replace NDT but require a POD estimate. And the cost of performing large empirical studies to estimate POD can be prohibitive. The response of the research community has been to develop new methods that can be used to generate the same information, POD, in a form that can be used by engineering designers. This paper will highlight approaches to image-based data and complex defects, Model Assisted POD estimation, and Bayesian methods for combining information. This paper will also review the relationship of the POD estimate, confidence bounds, tolerance bounds, and risk assessment.

  3. Electromagnetic Imaging Methods for Nondestructive Evaluation Applications

    PubMed Central

    Deng, Yiming; Liu, Xin

    2011-01-01

    Electromagnetic nondestructive tests are important and widely used within the field of nondestructive evaluation (NDE). The recent advances in sensing technology, hardware and software development dedicated to imaging and image processing, and material sciences have greatly expanded the application fields, sophisticated the systems design and made the potential of electromagnetic NDE imaging seemingly unlimited. This review provides a comprehensive summary of research works on electromagnetic imaging methods for NDE applications, followed by the summary and discussions on future directions. PMID:22247693

  4. Advanced Atmospheric Sounder and Imaging Radiometer (AASIR)

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Design information for the Advanced Atmospheric Sounder and Imaging Radiometer is reported, which was developed to determine the configuration of a sensor for IR and visible imaging. The areas of technology reported include: systems design, optics, mechanics, electronics, detectors, radiative cooler, and radiometric calibration.

  5. Advanced Imaging Algorithms for Radiation Imaging Systems

    SciTech Connect

    Marleau, Peter

    2015-10-01

    The intent of the proposed work, in collaboration with University of Michigan, is to develop the algorithms that will bring the analysis from qualitative images to quantitative attributes of objects containing SNM. The first step to achieving this is to develop an indepth understanding of the intrinsic errors associated with the deconvolution and MLEM algorithms. A significant new effort will be undertaken to relate the image data to a posited three-dimensional model of geometric primitives that can be adjusted to get the best fit. In this way, parameters of the model such as sizes, shapes, and masses can be extracted for both radioactive and non-radioactive materials. This model-based algorithm will need the integrated response of a hypothesized configuration of material to be calculated many times. As such, both the MLEM and the model-based algorithm require significant increases in calculation speed in order to converge to solutions in practical amounts of time.

  6. Advanced MR Imaging of the Visual Pathway.

    PubMed

    Yu, Fang; Duong, Timothy; Tantiwongkosi, Bundhit

    2015-08-01

    Vision is one of our most vital senses, deriving from the eyes as well as structures deep within the intracranial compartment. MR imaging, through its wide selection of sequences, offers an array of structural and functional imaging tools to interrogate this intricate system. This review describes several advanced MR imaging sequences and explores their potential clinical applications as well as areas for further development. PMID:26208415

  7. Imaging of the pancreas: Recent advances

    PubMed Central

    Chaudhary, Vikas; Bano, Shahina

    2011-01-01

    A wide spectrum of anomalies of pancreas and the pancreatic duct system are commonly encountered at radiological evaluation. Diagnosing pancreatic lesions generally requires a multimodality approach. This review highlights the new advances in pancreatic imaging and their applications in the diagnosis and management of pancreatic pathologies. The mainstay techniques include computed tomography (CT), magnetic resonance imaging (MRI), endoscopic ultrasound (EUS), radionuclide imaging (RNI) and optical coherence tomography (OCT). PMID:21847450

  8. Magnetic imager and method

    DOEpatents

    Powell, J.; Reich, M.; Danby, G.

    1997-07-22

    A magnetic imager includes a generator for practicing a method of applying a background magnetic field over a concealed object, with the object being effective to locally perturb the background field. The imager also includes a sensor for measuring perturbations of the background field to detect the object. In one embodiment, the background field is applied quasi-statically. And, the magnitude or rate of change of the perturbations may be measured for determining location, size, and/or condition of the object. 25 figs.

  9. Magnetic imager and method

    DOEpatents

    Powell, James; Reich, Morris; Danby, Gordon

    1997-07-22

    A magnetic imager 10 includes a generator 18 for practicing a method of applying a background magnetic field over a concealed object, with the object being effective to locally perturb the background field. The imager 10 also includes a sensor 20 for measuring perturbations of the background field to detect the object. In one embodiment, the background field is applied quasi-statically. And, the magnitude or rate of change of the perturbations may be measured for determining location, size, and/or condition of the object.

  10. Advanced noninvasive imaging of spinal vascular malformations

    PubMed Central

    Eddleman, Christopher S.; Jeong, Hyun; Cashen, Ty A.; Walker, Matthew; Bendok, Bernard R.; Batjer, H. Hunt; Carroll, Timothy J.

    2010-01-01

    Spinal vascular malformations (SVMs) are an uncommon, heterogeneous group of vascular anomalies that can render devastating neurological consequences if they are not diagnosed and treated in a timely fashion. Imaging SVMs has always presented a formidable challenge because their clinical and imaging presentations resemble those of neoplasms, demyelination diseases, and infection. Advancements in noninvasive imaging modalities (MR and CT angiography) have increased during the last decade and have improved the ability to accurately diagnose spinal vascular anomalies. In addition, intraoperative imaging techniques have been developed that aid in the intraoperative assessment before, during, and after resection of these lesions with minimal and/or optimal use of spinal digital subtraction angiography. In this report, the authors review recent advancements in the imaging of SVMs that will likely lead to more timely diagnoses and treatment while reducing procedural risk exposure to the patients who harbor these uncommon spinal lesions. PMID:19119895

  11. Recent advances in liver imaging.

    PubMed

    Mutter, D; Soler, L; Marescaux, J

    2010-10-01

    Liver surgery remains a difficult challenge in which preoperative data analysis and strategy definition may play a significant role in the success of the procedure. Medical image processing led to a major improvement of patient care by guiding the surgical gesture. From this initial data, new technologies of virtual reality and augmented reality can increase the potential of such images. The 3D modeling of the liver of patients from their CT scan or MRI thus allows an improved surgical planning. Simulation allows the procedure to be simulated preoperatively and offers the opportunity to train the surgical gesture before carrying it out. These three preoperative steps can be used intraoperatively thanks to the development of augmented reality, which consists of superimposing the preoperative 3D modeling of the patient onto the real intraoperative view of the patient and his/her organs. Augmented reality provides surgeons with a transparent view of the patient. This facilitated the intraoperative identification of the vascular anatomy and the control of the segmental arteries and veins in liver surgery, thus preventing intraoperative bleeding. It can also offer guidance due to the virtual improvement of their real surgical tools, which are tracked in real-time during the procedure. During the surgical procedure, augmented reality, therefore, offers surgeons a transparent view of their patient, which will lead to the automation of the most complex maneuvers. The new ways of processing and analyzing liver images have dramatically changed the approach to liver surgery. PMID:20932146

  12. Advance of Molecular Imaging Technology and Targeted Imaging Agent in Imaging and Therapy

    PubMed Central

    Chen, Zhi-Yi; Wang, Yi-Xiang; Lin, Yan; Zhang, Jin-Shan; Yang, Feng; Zhou, Qiu-Lan; Liao, Yang-Ying

    2014-01-01

    Molecular imaging is an emerging field that integrates advanced imaging technology with cellular and molecular biology. It can realize noninvasive and real time visualization, measurement of physiological or pathological process in the living organism at the cellular and molecular level, providing an effective method of information acquiring for diagnosis, therapy, and drug development and evaluating treatment of efficacy. Molecular imaging requires high resolution and high sensitive instruments and specific imaging agents that link the imaging signal with molecular event. Recently, the application of new emerging chemical technology and nanotechnology has stimulated the development of imaging agents. Nanoparticles modified with small molecule, peptide, antibody, and aptamer have been extensively applied for preclinical studies. Therapeutic drug or gene is incorporated into nanoparticles to construct multifunctional imaging agents which allow for theranostic applications. In this review, we will discuss the characteristics of molecular imaging, the novel imaging agent including targeted imaging agent and multifunctional imaging agent, as well as cite some examples of their application in molecular imaging and therapy. PMID:24689058

  13. Advanced Microwave/Millimeter-Wave Imaging Technology

    NASA Astrophysics Data System (ADS)

    Shen, Zuowei; Yang, Lu; Luhmann, N. C., Jr.; Domier, C. W.; Ito, N.; Kogi, Y.; Liang, Y.; Mase, A.; Park, H.; Sakata, E.; Tsai, W.; Xia, Z. G.; Zhang, P.

    Millimeter wave technology advances have made possible active and passive millimeter wave imaging for a variety of applications including advanced plasma diagnostics, radio astronomy, atmospheric radiometry, concealed weapon detection, all-weather aircraft landing, contraband goods detection, harbor navigation/surveillance in fog, highway traffic monitoring in fog, helicopter and automotive collision avoidance in fog, and environmental remote sensing data associated with weather, pollution, soil moisture, oil spill detection, and monitoring of forest fires, to name but a few. The primary focus of this paper is on technology advances which have made possible advanced imaging and visualization of magnetohydrodynamic (MHD) fluctuations and microturbulence in fusion plasmas. Topics of particular emphasis include frequency selective surfaces, planar Schottky diode mixer arrays, electronically controlled beam shaping/steering arrays, and high power millimeter wave local oscillator and probe sources.

  14. Advanced probabilistic method of development

    NASA Technical Reports Server (NTRS)

    Wirsching, P. H.

    1987-01-01

    Advanced structural reliability methods are utilized on the Probabilistic Structural Analysis Methods (PSAM) project to provide a tool for analysis and design of space propulsion system hardware. The role of the effort at the University of Arizona is to provide reliability technology support to this project. PSAM computer programs will provide a design tool for analyzing uncertainty associated with thermal and mechanical loading, material behavior, geometry, and the analysis methods used. Specifically, reliability methods are employed to perform sensitivity analyses, to establish the distribution of a critical response variable (e.g., stress, deflection), to perform reliability assessment, and ultimately to produce a design which will minimize cost and/or weight. Uncertainties in the design factors of space propulsion hardware are described by probability models constructed using statistical analysis of data. Statistical methods are employed to produce a probability model, i.e., a statistical synthesis or summary of each design variable in a format suitable for reliability analysis and ultimately, design decisions.

  15. Methods in Astronomical Image Processing

    NASA Astrophysics Data System (ADS)

    Jörsäter, S.

    A Brief Introductory Note History of Astronomical Imaging Astronomical Image Data Images in Various Formats Digitized Image Data Digital Image Data Philosophy of Astronomical Image Processing Properties of Digital Astronomical Images Human Image Processing Astronomical vs. Computer Science Image Processing Basic Tools of Astronomical Image Processing Display Applications Calibration of Intensity Scales Calibration of Length Scales Image Re-shaping Feature Enhancement Noise Suppression Noise and Error Analysis Image Processing Packages: Design of AIPS and MIDAS AIPS MIDAS Reduction of CCD Data Bias Subtraction Clipping Preflash Subtraction Dark Subtraction Flat Fielding Sky Subtraction Extinction Correction Deconvolution Methods Rebinning/Combining Summary and Prospects for the Future

  16. Advanced MR Imaging of Gliomas: An Update

    PubMed Central

    Chiang, Shih-Wei; Chung, Hsiao-Wen; Tsai, Fong Y.; Chen, Cheng-Yu

    2013-01-01

    Recent advances in the treatment of cerebral gliomas have increased the demands on noninvasive neuroimaging for the diagnosis, therapeutic planning, tumor monitoring, and patient outcome prediction. In the meantime, improved magnetic resonance (MR) imaging techniques have shown much potentials in evaluating the key pathological features of the gliomas, including cellularity, invasiveness, mitotic activity, angiogenesis, and necrosis, hence, further shedding light on glioma grading before treatment. In this paper, an update of advanced MR imaging techniques is reviewed, and their potential roles as biomarkers of tumor grading are discussed. PMID:23862163

  17. Advanced Imaging of Chiari 1 Malformations.

    PubMed

    Fakhri, Akbar; Shah, Manish N; Goyal, Manu S

    2015-10-01

    Type I Chiari malformations are congenital deformities involving cerebellar tonsillar herniation downward through the foramen magnum. Structurally, greater than 5 mm of tonsillar descent in adults and more than 6 mm in children is consistent with type I Chiari malformations. However, the radiographic severity of the tonsillar descent does not always correlate well with the clinical symptomatology. Advanced imaging can help clinically correlate imaging to symptoms. Specifically, cerebrospinal fluid (CSF) flow abnormalities are seen in patients with type I Chiari malformation. Advanced MRI involving cardiac-gated and phase-contrast MRI affords a view of such CSF flow abnormalities. PMID:26408061

  18. Advances of imaging for hepatocellular carcinoma.

    PubMed

    Choi, Byung Ihn

    2010-07-01

    A variety of imaging modalities, including ultrasound (US), computed tomography (CT), magnetic resonance imaging (MRI), nuclear medicine, and angiography, are currently used in evaluating patients with chronic liver disease and suspected hepatocellular carcinoma (HCC). Further technological advancement will undoubtedly have a major impact on liver tumor imaging. Increased speed of data acquisition and consequently shorter scan times in CT and MRI show further improvement in resolution by further reducing motion artifacts. Development of new contrast materials for liver tumor imaging in US and MRI improve tumor detection and characterization by increasing the contrast resolution. Currently available advanced US techniques in the evaluation of HCC are various harmonic imaging techniques with contrast agents, volume imaging, and recently, US elastography, that has been developing and might play a role in characterizing liver nodules in the future. The latest advance in CT is the multidetector (MD) CT scanner where a 256- or 320-detector CT was introduced. Recent studies describe the high sensitivity of double arterial phase imaging in hepatic tumor detection and the usefulness of CT angiography by using MD CT in a detailed assessment of hepatic arterial anatomy using a three-dimensional dataset. In addition, perfusion CT imaging is also being developed and can be used for the characterization and treatment monitoring of HCC. Dual-energy CT with new technology is also continuously progressing. Advances in MR technology, including hardware and pulse sequence implementation, allow acquisition times to be reduced to the time frame of one breathhold, providing multiphasic dynamic MRI. Functional MRI including diffusion-weighted MRI, MR elastography, and new MR contrast agent with dual function have been investigated for the clinical utility of detection and characterization of HCCs. Functional MRI has a potential to be a promising technique for assessing HCC. PMID:20616584

  19. Advanced imaging research and development at DARPA

    NASA Astrophysics Data System (ADS)

    Dhar, Nibir K.; Dat, Ravi

    2012-06-01

    Advances in imaging technology have huge impact on our daily lives. Innovations in optics, focal plane arrays (FPA), microelectronics and computation have revolutionized camera design. As a result, new approaches to camera design and low cost manufacturing is now possible. These advances are clearly evident in visible wavelength band due to pixel scaling, improvements in silicon material and CMOS technology. CMOS cameras are available in cell phones and many other consumer products. Advances in infrared imaging technology have been slow due to market volume and many technological barriers in detector materials, optics and fundamental limits imposed by the scaling laws of optics. There is of course much room for improvements in both, visible and infrared imaging technology. This paper highlights various technology development projects at DARPA to advance the imaging technology for both, visible and infrared. Challenges and potentials solutions are highlighted in areas related to wide field-of-view camera design, small pitch pixel, broadband and multiband detectors and focal plane arrays.

  20. Uncooled thermal imaging sensor and application advances

    NASA Astrophysics Data System (ADS)

    Norton, Peter W.; Cox, Stephen; Murphy, Bob; Grealish, Kevin; Joswick, Mike; Denley, Brian; Feda, Frank; Elmali, Loriann; Kohin, Margaret

    2006-05-01

    BAE Systems continues to advance the technology and performance of microbolometer-based thermal imaging modules and systems. 640x480 digital uncooled infrared focal plane arrays are in full production, illustrated by recent production line test data for two thousand focal plane arrays. This paper presents a snapshot of microbolometer technology at BAE Systems and an overview of two of the most important thermal imaging sensor programs currently in production: a family of thermal weapons sights for the United States Army and a thermal imager for the remote weapons station on the Stryker vehicle.

  1. Advanced and Conventional Magnetic Resonance Imaging in Neuropsychiatric Lupus.

    PubMed

    Sarbu, Nicolae; Bargalló, Núria; Cervera, Ricard

    2015-01-01

    Neuropsychiatric lupus is a major diagnostic challenge, and a main cause of morbidity and mortality in patients with systemic lupus erythematosus (SLE). Magnetic resonance imaging (MRI) is, by far, the main tool for assessing the brain in this disease. Conventional and advanced MRI techniques are used to help establishing the diagnosis, to rule out alternative diagnoses, and recently, to monitor the evolution of the disease. This review explores the neuroimaging findings in SLE, including the recent advances in new MRI methods. PMID:26236469

  2. Advanced and Conventional Magnetic Resonance Imaging in Neuropsychiatric Lupus

    PubMed Central

    Sarbu, Nicolae; Bargalló, Núria; Cervera, Ricard

    2015-01-01

    Neuropsychiatric lupus is a major diagnostic challenge, and a main cause of morbidity and mortality in patients with systemic lupus erythematosus (SLE). Magnetic resonance imaging (MRI) is, by far, the main tool for assessing the brain in this disease. Conventional and advanced MRI techniques are used to help establishing the diagnosis, to rule out alternative diagnoses, and recently, to monitor the evolution of the disease. This review explores the neuroimaging findings in SLE, including the recent advances in new MRI methods. PMID:26236469

  3. Recent advances in echocardiography: strain and strain rate imaging

    PubMed Central

    Mirea, Oana; Duchenne, Jurgen; Voigt, Jens-Uwe

    2016-01-01

    Deformation imaging by echocardiography is a well-established research tool which has been gaining interest from clinical cardiologists since the introduction of speckle tracking. Post-processing of echo images to analyze deformation has become readily available at the fingertips of the user. New parameters such as global longitudinal strain have been shown to provide added diagnostic value, and ongoing efforts of the imaging societies and industry aimed at harmonizing methods will improve the technique further. This review focuses on recent advances in the field of echocardiographic strain and strain rate imaging, and provides an overview on its current and potential future clinical applications. PMID:27158476

  4. Advanced endoscopic imaging to improve adenoma detection

    PubMed Central

    Neumann, Helmut; Nägel, Andreas; Buda, Andrea

    2015-01-01

    Advanced endoscopic imaging is revolutionizing our way on how to diagnose and treat colorectal lesions. Within recent years a variety of modern endoscopic imaging techniques was introduced to improve adenoma detection rates. Those include high-definition imaging, dye-less chromoendoscopy techniques and novel, highly flexible endoscopes, some of them equipped with balloons or multiple lenses in order to improve adenoma detection rates. In this review we will focus on the newest developments in the field of colonoscopic imaging to improve adenoma detection rates. Described techniques include high-definition imaging, optical chromoendoscopy techniques, virtual chromoendoscopy techniques, the Third Eye Retroscope and other retroviewing devices, the G-EYE endoscope and the Full Spectrum Endoscopy-system. PMID:25789092

  5. Advanced technologies for remote sensing imaging applications

    SciTech Connect

    Wood, L.L.

    1993-06-07

    Generating and returning imagery from great distances has been generally associated with national security activities, with emphasis on reliability of system operation. (While the introduction of such capabilities was usually characterized by high levels of innovation, the evolution of such systems has followed the classical track of proliferation of ``standardized items`` expressing ever more incremental technological advances.) Recent focusing of interest on the use of remote imaging systems for commercial and scientific purposes can be expected to induce comparatively rapid advances along the axes of efficiency and technological sophistication, respectively. This paper reviews the most basic reasons for expecting the next decade of advances to dwarf the impressive accomplishments of the past ten years. The impact of these advances clearly will be felt in all major areas of large-scale human endeavor, commercial, military and scientific.

  6. Advanced laser systems for photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Klosner, Marc; Sampathkumar, Ashwin; Chan, Gary; Wu, Chunbai; Gross, Daniel; Heller, Donald F.

    2015-03-01

    We describe the ongoing development of laser systems for advanced photoacoustic imaging (PAI). We discuss the characteristics of these laser systems and their particular benefits for soft tissue imaging and next-generation breast cancer diagnostics. We provide an overview of laser performance and compare this with other laser systems that have been used for early-stage development of PAI. These advanced systems feature higher pulse energy output at clinically relevant repetition rates, as well as a novel wavelength-cycling output pulse format. Wavelength cycling provides pulse sequences for which the output repeatedly alternates between two wavelengths that provide differential imaging. This capability improves co-registration of captured differential images. We present imaging results of phantoms obtained with a commercial ultrasound detector system and a wavelength-cycling laser source providing ~500 mJ/pulse at 755 and 797 nm, operating at 25 Hz. The results include photoacoustic images and corresponding pulse-echo data from a tissue mimicking phantom containing inclusions, simulating tumors in the breast. We discuss the application of these systems to the contrast-enhanced detection of various tissue types and tumors.

  7. ADVANCES IN MOLECULAR IMAGING OF PANCREATIC BETA CELLS

    PubMed Central

    Lin, Mai; Lubag, Angelo; McGuire, Michael J.; Seliounine, Serguei Y.; Tsyganov, Edward N.; Antich, Peter P.; Sherry, A. Dean; Brown, Kathlynn C.; Sun, Xiankai

    2009-01-01

    The development of non-invasive imaging methods for early diagnosis of the beta cell associated metabolic diseases, including type 1 and type 2 diabetes (T1D and T2D), has recently drawn considerable interest from the molecular imaging community as well as clinical investigators. Due to the challenges imposed by the location of the pancreas, the sparsely dispersed beta cell population within the pancreas, and the poor understanding of the pathogenesis of the diseases, clinical diagnosis of beta cell abnormalities is still limited. Current diagnostic methods are invasive, often inaccurate, and usually performed post-onset of the disease. Advances in imaging techniques for probing beta cell mass and function are needed to address this critical health care problem. A variety of currently available imaging techniques have been tested for the assessment of the pancreatic beta cell islets. Here we discuss the current advances in magnetic resonance imaging (MRI), bioluminescence imaging (BLI), and nuclear imaging for the study of beta cell diseases. Spurred by early successes in nuclear imaging techniques for beta cells, especially positron emission tomography (PET), the need for beta cell specific ligands has expanded. Progress in the field for obtaining such ligands is presented. Additionally, we report our preliminary efforts of developing such a peptidic ligand for PET imaging of the pancreatic beta cells. PMID:18508529

  8. Terahertz Tools Advance Imaging for Security, Industry

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Picometrix, a wholly owned subsidiary of Advanced Photonix Inc. (API), of Ann Arbor, Michigan, invented the world s first commercial terahertz system. The company improved the portability and capabilities of their systems through Small Business Innovation Research (SBIR) agreements with Langley Research Center to provide terahertz imaging capabilities for inspecting the space shuttle external tanks and orbiters. Now API s systems make use of the unique imaging capacity of terahertz radiation on manufacturing floors, for thickness measurements of coatings, pharmaceutical tablet production, and even art conservation.

  9. Advanced Imaging Among Health Maintenance Organization Enrollees With Cancer

    PubMed Central

    Loggers, Elizabeth T.; Fishman, Paul A.; Peterson, Do; O'Keeffe-Rosetti, Maureen; Greenberg, Caprice; Hornbrook, Mark C.; Kushi, Lawrence H.; Lowry, Sarah; Ramaprasan, Arvind; Wagner, Edward H.; Weeks, Jane C.; Ritzwoller, Debra P.

    2014-01-01

    Purpose: Fee-for-service (FFS) Medicare expenditures for advanced imaging studies (defined as computed tomography [CT], magnetic resonance imaging [MRI], positron emission tomography [PET] scans, and nuclear medicine studies [NM]) rapidly increased in the past two decades for patients with cancer. Imaging rates are unknown for patients with cancer, whether under or over age 65 years, in health maintenance organizations (HMOs), where incentives may differ. Materials and Methods: Incident cases of breast, colorectal, lung, prostate, leukemia, and non-Hodgkin lymphoma (NHL) cancers diagnosed in 2003 and 2006 from four HMOs in the Cancer Research Network were used to determine 2-year overall mean imaging counts and average total imaging costs per HMO enrollee by cancer type for those under and over age 65. Results: There were 44,446 incident cancer patient cases, with a median age of 75 (interquartile range, 71-81), and 454,029 imaging procedures were performed. The mean number of images per patient increased from 7.4 in 2003 to 12.9 in 2006. Rates of imaging were similar across age groups, with the exception of greater use of echocardiograms and NM studies in younger patients with breast cancer and greater use of PET among younger patients with lung cancer. Advanced imaging accounted for approximately 41% of all imaging, or approximately 85% of the $8.7 million in imaging expenditures. Costs were nearly $2,000 per HMO enrollee; costs for younger patients with NHL, leukemia, and lung cancer were nearly $1,000 more in 2003. Conclusion: Rates of advanced imaging appear comparable among FFS and HMO participants of any age with these six cancers. PMID:24844241

  10. Hyperspectral image processing methods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hyperspectral image processing refers to the use of computer algorithms to extract, store and manipulate both spatial and spectral information contained in hyperspectral images across the visible and near-infrared portion of the electromagnetic spectrum. A typical hyperspectral image processing work...

  11. Imaging Tumor Hypoxia to Advance Radiation Oncology

    PubMed Central

    Lee, Chen-Ting; Boss, Mary-Keara

    2014-01-01

    Abstract Significance: Most solid tumors contain regions of low oxygenation or hypoxia. Tumor hypoxia has been associated with a poor clinical outcome and plays a critical role in tumor radioresistance. Recent Advances: Two main types of hypoxia exist in the tumor microenvironment: chronic and cycling hypoxia. Chronic hypoxia results from the limited diffusion distance of oxygen, and cycling hypoxia primarily results from the variation in microvessel red blood cell flux and temporary disturbances in perfusion. Chronic hypoxia may cause either tumor progression or regressive effects depending on the tumor model. However, there is a general trend toward the development of a more aggressive phenotype after cycling hypoxia. With advanced hypoxia imaging techniques, spatiotemporal characteristics of tumor hypoxia and the changes to the tumor microenvironment can be analyzed. Critical Issues: In this review, we focus on the biological and clinical consequences of chronic and cycling hypoxia on radiation treatment. We also discuss the advanced non-invasive imaging techniques that have been developed to detect and monitor tumor hypoxia in preclinical and clinical studies. Future Directions: A better understanding of the mechanisms of tumor hypoxia with non-invasive imaging will provide a basis for improved radiation therapeutic practices. Antioxid. Redox Signal. 21, 313–337. PMID:24329000

  12. Image registration method for medical image sequences

    DOEpatents

    Gee, Timothy F.; Goddard, James S.

    2013-03-26

    Image registration of low contrast image sequences is provided. In one aspect, a desired region of an image is automatically segmented and only the desired region is registered. Active contours and adaptive thresholding of intensity or edge information may be used to segment the desired regions. A transform function is defined to register the segmented region, and sub-pixel information may be determined using one or more interpolation methods.

  13. AXIOM: Advanced X-ray imaging of the magnetosheath

    NASA Astrophysics Data System (ADS)

    Sembay, S.; Branduardi-Raymont, G.; Eastwood, J. P.; Sibeck, D. G.; Abbey, A.; Brown, P.; Carter, J. A.; Carr, C. M.; Forsyth, C.; Kataria, D.; Kemble, S.; Milan, S.; Owen, C. J.; Read, A. M.; Peacocke, L.; Arridge, C. S.; Coates, A. J.; Collier, M. R.; Cowley, S. W. H.; Fazakerley, A. N.; Fraser, G.; Jones, G. H.; Lallement, R.; Lester, M.; Porter, F. S.; Yeoman, T.

    2012-04-01

    AXIOM (Advanced X-ray Imaging Of the Magnetosphere) is a concept mission which aims to explain how the Earth's magnetosphere responds to the changing impact of the solar wind using a unique method never attempted before; performing wide-field soft X-ray imaging and spectroscopy of the magnetosheath, magnetopause and bow shock at high spatial and temporal resolution. Global imaging of these regions is possible because of the solar wind charge exchange (SWCX) process which produces elevated soft X-ray emission from the interaction of high charge-state solar wind ions with primarily neutral hydrogen in the Earth's exosphere and near-interplanetary space.

  14. AXIOM: Advanced X-Ray Imaging Of the Magnetosheath

    NASA Technical Reports Server (NTRS)

    Sembay, S.; Branduardi-Rayrnont, G.; Eastwood, J. P.; Sibeck, D. G.; Abbey, A.; Brown, P.; Carter, J. A.; Carr, C. M.; Forsyth, C; Kataria, D.; Kemble, S.; Milan, S.; Owen, C. J.; Read, A. M.; Peacocke, L.; Arridge, C. S.; Coates, A. J.; Collier, M. R.; Cowley, S. W. H.; Fazakerley, A. N.; Fraser, G.; Jones, G. H.; Lallement, R.; Lester, M.; Porter, F. S.

    2012-01-01

    AXIOM (Advanced X-ray Imaging Of the Magnetosphere) is a concept mission which aims to explain how the Earth's magnetosphere responds to the changing impact of the solar wind using a unique method never attempted before; performing wide-field soft X-ray imaging and spectroscopy of the magnetosheath. magnetopause and bow shock at high spatial and temporal resolution. Global imaging of these regions is possible because of the solar wind charge exchange (SWCX) process which produces elevated soft X-ray emission from the interaction of high charge-state solar wind ions with primarily neutral hydrogen in the Earth's exosphere and near-interplanetary space.

  15. Image stabilization for SWIR advanced optoelectronic device

    NASA Astrophysics Data System (ADS)

    Schiopu, Paul; Manea, Adrian; Cristea, Ionica; Grosu, Neculai; Craciun, Anca-Ileana; Craciun, Alexandru; Granciu, Dana

    2015-02-01

    At long ranges and under low visibility conditions, Advanced Optoelectronic Device provides the signal-to-noise ratio and image quality in the Short-wave Infra-red - SWIR (wavelengths between 1,1 ÷2,5 μm), significantly better than in the near wave infrared - NWIR and visible spectral bands [1,2]. The quality of image is nearly independent of the polarization in the incoming light, but it is influenced by the relative movement between the optical system and the observer (the operators' handshake), and the movement towards the support system (land and air vehicles). All these make it difficult to detect objectives observation in real time. This paper presents some systems enhance which the ability of observation and sighting through the optical systems without the use of the stands, tripods or other means. We have to eliminate the effect of "tremors of the hands" and the vibration in order to allow the use of optical devices by operators on the moving vehicles on land, on aircraft, or on boats, and to provide additional comfort for the user to track the moving object through the optical system, without losing the control in the process of detection and tracking. The practical applications of stabilization image process, in SWIR, are the most advanced part of the optical observation systems available worldwide [3,4,5]. This application has a didactic nature, because it ensures understanding by the students about image stabilization and their participation in research.

  16. Labeling of virus components for advanced, quantitative imaging analyses.

    PubMed

    Sakin, Volkan; Paci, Giulia; Lemke, Edward A; Müller, Barbara

    2016-07-01

    In recent years, investigation of virus-cell interactions has moved from ensemble measurements to imaging analyses at the single-particle level. Advanced fluorescence microscopy techniques provide single-molecule sensitivity and subdiffraction spatial resolution, allowing observation of subviral details and individual replication events to obtain detailed quantitative information. To exploit the full potential of these techniques, virologists need to employ novel labeling strategies, taking into account specific constraints imposed by viruses, as well as unique requirements of microscopic methods. Here, we compare strengths and limitations of various labeling methods, exemplify virological questions that were successfully addressed, and discuss challenges and future potential of novel approaches in virus imaging. PMID:26987299

  17. Imaging for understanding speech communication: Advances and challenges

    NASA Astrophysics Data System (ADS)

    Narayanan, Shrikanth

    2005-04-01

    Research in speech communication has relied on a variety of instrumentation methods to illuminate details of speech production and perception. One longstanding challenge has been the ability to examine real-time changes in the shaping of the vocal tract; a goal that has been furthered by imaging techniques such as ultrasound, movement tracking, and magnetic resonance imaging. The spatial and temporal resolution afforded by these techniques, however, has limited the scope of the investigations that could be carried out. In this talk, we focus on some recent advances in magnetic resonance imaging that allow us to perform near real-time investigations on the dynamics of vocal tract shaping during speech. Examples include Demolin et al. (2000) (4-5 images/second, ultra-fast turbo spin echo) and Mady et al. (2001,2002) (8 images/second, T1 fast gradient echo). A recent study by Narayanan et al. (2004) that used a spiral readout scheme to accelerate image acquisition has allowed for image reconstruction rates of 24 images/second. While these developments offer exciting prospects, a number of challenges lie ahead, including: (1) improving image acquisition protocols, hardware for enhancing signal-to-noise ratio, and optimizing spatial sampling; (2) acquiring quality synchronized audio; and (3) analyzing and modeling image data including cross-modality registration. [Work supported by NIH and NSF.

  18. Advances in Imaging for Atrial Fibrillation Ablation

    PubMed Central

    D'Silva, Andrew; Wright, Matthew

    2011-01-01

    Over the last fifteen years, our understanding of the pathophysiology of atrial fibrillation (AF) has paved the way for ablation to be utilized as an effective treatment option. With the aim of gaining more detailed anatomical representation, advances have been made using various imaging modalities, both before and during the ablation procedure, in planning and execution. Options have flourished from procedural fluoroscopy, electroanatomic mapping systems, preprocedural computed tomography (CT), magnetic resonance imaging (MRI), ultrasound, and combinations of these technologies. Exciting work is underway in an effort to allow the electrophysiologist to assess scar formation in real time. One advantage would be to lessen the learning curve for what are very complex procedures. The hope of these developments is to improve the likelihood of a successful ablation procedure and to allow more patients access to this treatment. PMID:22091384

  19. Advanced accelerator methods: The cyclotrino

    SciTech Connect

    Welch, J.J.; Bertsche, K.J.; Friedman, P.G.; Morris, D.E.; Muller, R.A.

    1987-04-01

    Several new and unusual, advanced techniques in the small cyclotron are described. The cyclotron is run at low energy, using negative ions and at high harmonics. Electrostatic focusing is used exclusively. The ion source and injection system is in the center, which unfortunately does not provide enough current, but the new system design should solve this problem. An electrostatic extractor that runs at low voltage, under 5 kV, and a microchannel plate detector which is able to discriminate low energy ions from the /sup 14/C are used. The resolution is sufficient for /sup 14/C dating and a higher intensity source should allow dating of a milligram size sample of 30,000 year old material with less than 10% uncertainty.

  20. Advanced imaging systems programs at DARPA MTO

    NASA Astrophysics Data System (ADS)

    Dhar, Nibir K.; Elizondo, Lee A.; Dat, Ravi; Elizondo, Shelly L.

    2013-09-01

    In this paper, we review a few selected imaging technology development programs at the Defense Advanced Research Projects Agency (DARPA) in the reflective visible to the emissive/thermal long wave infrared (LWIR) spectral bands. For the reflective visible band, results are shown for two different imagers: a gigapixel monocentric multi-scale camera design that solves the scaling issues for a high pixel count, and a wide field of view and a single photon detection camera with a large dynamic range. Also, a camera with broadband capability covering both reflective and thermal bands (0.5 μm to 5.0 μm) with >80% quantum efficiency is discussed. In the emissive/thermal band, data is presented for both uncooled and cryogenically cooled LWIR detectors with pixel pitches approaching the fundamental detection limits. By developing wafer scale manufacturing processes and reducing the pixel size of uncooled thermal imagers, it is shown that an affordable camera on a chip, capable of seeing through obscurants in day or night, is feasible. Also, the fabrication and initial performance of the world's first 5 μm pixel pitch LWIR camera is discussed. Lastly, we use an initial model to evaluate the signal to noise ratio and noise equivalent differential temperature as a function of well capacity to predict the performance for this thermal imager.

  1. Advances in hyperspectral LWIR pushbroom imagers

    NASA Astrophysics Data System (ADS)

    Holma, Hannu; Mattila, Antti-Jussi; Hyvärinen, Timo; Weatherbee, Oliver

    2011-06-01

    Two long-wave infrared (LWIR) hyperspectral imagers have been under extensive development. The first one utilizes a microbolometer focal plane array (FPA) and the second one is based on an Mercury Cadmium Telluride (MCT) FPA. Both imagers employ a pushbroom imaging spectrograph with a transmission grating and on-axis optics. The main target has been to develop high performance instruments with good image quality and compact size for various industrial and remote sensing application requirements. A big challenge in realizing these goals without considerable cooling of the whole instrument is to control the instrument radiation. The challenge is much bigger in a hyperspectral instrument than in a broadband camera, because the optical signal from the target is spread spectrally, but the instrument radiation is not dispersed. Without any suppression, the instrument radiation can overwhelm the radiation from the target even by 1000 times. The means to handle the instrument radiation in the MCT imager include precise instrument temperature stabilization (but not cooling), efficient optical background suppression and the use of background-monitoring-on-chip (BMC) method. This approach has made possible the implementation of a high performance, extremely compact spectral imager in the 7.7 to 12.4 μm spectral range. The imager performance with 84 spectral bands and 384 spatial pixels has been experimentally verified and an excellent NESR of 14 mW/(m2srμm) at 10 μm wavelength with a 300 K target has been achieved. This results in SNR of more than 700. The LWIR imager based on a microbolometer detector array, first time introduced in 2009, has been upgraded. The sensitivity of the imager has improved drastically by a factor of 3 and SNR by about 15 %. It provides a rugged hyperspectral camera for chemical imaging applications in reflection mode in laboratory and industry.

  2. Quantitative characterization of the protein contents of the exocrine pancreatic acinar cell by soft x-ray microscopy and advanced digital imaging methods

    SciTech Connect

    Loo Jr., Billy W.

    2000-06-09

    The study of the exocrine pancreatic acinar cell has been central to the development of models of many cellular processes, especially of protein transport and secretion. Traditional methods used to examine this system have provided a wealth of qualitative information from which mechanistic models have been inferred. However they have lacked the ability to make quantitative measurements, particularly of the distribution of protein in the cell, information critical for grounding of models in terms of magnitude and relative significance. This dissertation describes the development and application of new tools that were used to measure the protein content of the major intracellular compartments in the acinar cell, particularly the zymogen granule. Soft x-ray microscopy permits image formation with high resolution and contrast determined by the underlying protein content of tissue rather than staining avidity. A sample preparation method compatible with x-ray microscopy was developed and its properties evaluated. Automatic computerized methods were developed to acquire, calibrate, and analyze large volumes of x-ray microscopic images of exocrine pancreatic tissue sections. Statistics were compiled on the protein density of several organelles, and on the protein density, size, and spatial distribution of tens of thousands of zymogen granules. The results of these measurements, and how they compare to predictions of different models of protein transport, are discussed.

  3. Establishing advanced practice for medical imaging in New Zealand

    PubMed Central

    Yielder, Jill; Young, Adrienne; Park, Shelley; Coleman, Karen

    2014-01-01

    IntroductionThis article presents the outcome and recommendations following the second stage of a role development project conducted on behalf of the New Zealand Institute of Medical Radiation Technology (NZIMRT). The study sought to support the development of profiles and criteria that may be used to formulate Advanced Scopes of Practice for the profession. It commenced in 2011, following on from initial research that occurred between 2005 and 2008 investigating role development and a possible career structure for medical radiation technologists (MRTs) in New Zealand (NZ). MethodsThe study sought to support the development of profiles and criteria that could be used to develop Advanced Scopes of Practice for the profession through inviting 12 specialist medical imaging groups in NZ to participate in a survey. ResultsFindings showed strong agreement on potential profiles and on generic criteria within them; however, there was less agreement on specific skills criteria within specialist areas. ConclusionsThe authors recommend that one Advanced Scope of Practice be developed for Medical Imaging, with the establishment of generic and specialist criteria. Systems for approval of the overall criteria package for any individual Advanced Practitioner (AP) profile, audit and continuing professional development requirements need to be established by the Medical Radiation Technologists Board (MRTB) to meet the local needs of clinical departments. It is further recommended that the NZIMRT and MRTB promote and support the need for an AP pathway for medical imaging in NZ. PMID:26229631

  4. Establishing advanced practice for medical imaging in New Zealand

    SciTech Connect

    Yielder, Jill; Young, Adrienne; Park, Shelley; Coleman, Karen

    2014-02-15

    Introduction: This article presents the outcome and recommendations following the second stage of a role development project conducted on behalf of the New Zealand Institute of Medical Radiation Technology (NZIMRT). The study sought to support the development of profiles and criteria that may be used to formulate Advanced Scopes of Practice for the profession. It commenced in 2011, following on from initial research that occurred between 2005 and 2008 investigating role development and a possible career structure for medical radiation technologists (MRTs) in New Zealand (NZ). Methods: The study sought to support the development of profiles and criteria that could be used to develop Advanced Scopes of Practice for the profession through inviting 12 specialist medical imaging groups in NZ to participate in a survey. Results: Findings showed strong agreement on potential profiles and on generic criteria within them; however, there was less agreement on specific skills criteria within specialist areas. Conclusions: The authors recommend that one Advanced Scope of Practice be developed for Medical Imaging, with the establishment of generic and specialist criteria. Systems for approval of the overall criteria package for any individual Advanced Practitioner (AP) profile, audit and continuing professional development requirements need to be established by the Medical Radiation Technologists Board (MRTB) to meet the local needs of clinical departments. It is further recommended that the NZIMRT and MRTB promote and support the need for an AP pathway for medical imaging in NZ.

  5. Recent advances in image-guided targeted prostate biopsy.

    PubMed

    Brown, Anna M; Elbuluk, Osama; Mertan, Francesca; Sankineni, Sandeep; Margolis, Daniel J; Wood, Bradford J; Pinto, Peter A; Choyke, Peter L; Turkbey, Baris

    2015-08-01

    Prostate cancer is a common malignancy in the United States that results in over 30,000 deaths per year. The current state of prostate cancer diagnosis, based on PSA screening and sextant biopsy, has been criticized for both overdiagnosis of low-grade tumors and underdiagnosis of clinically significant prostate cancers (Gleason score ≥7). Recently, image guidance has been added to perform targeted biopsies of lesions detected on multi-parametric magnetic resonance imaging (mpMRI) scans. These methods have improved the ability to detect clinically significant cancer, while reducing the diagnosis of low-grade tumors. Several approaches have been explored to improve the accuracy of image-guided targeted prostate biopsy, including in-bore MRI-guided, cognitive fusion, and MRI/transrectal ultrasound fusion-guided biopsy. This review will examine recent advances in these image-guided targeted prostate biopsy techniques. PMID:25596716

  6. Advanced Fine Particulate Characterization Methods

    SciTech Connect

    Steven Benson; Lingbu Kong; Alexander Azenkeng; Jason Laumb; Robert Jensen; Edwin Olson; Jill MacKenzie; A.M. Rokanuzzaman

    2007-01-31

    The characterization and control of emissions from combustion sources are of significant importance in improving local and regional air quality. Such emissions include fine particulate matter, organic carbon compounds, and NO{sub x} and SO{sub 2} gases, along with mercury and other toxic metals. This project involved four activities including Further Development of Analytical Techniques for PM{sub 10} and PM{sub 2.5} Characterization and Source Apportionment and Management, Organic Carbonaceous Particulate and Metal Speciation for Source Apportionment Studies, Quantum Modeling, and High-Potassium Carbon Production with Biomass-Coal Blending. The key accomplishments included the development of improved automated methods to characterize the inorganic and organic components particulate matter. The methods involved the use of scanning electron microscopy and x-ray microanalysis for the inorganic fraction and a combination of extractive methods combined with near-edge x-ray absorption fine structure to characterize the organic fraction. These methods have direction application for source apportionment studies of PM because they provide detailed inorganic analysis along with total organic and elemental carbon (OC/EC) quantification. Quantum modeling using density functional theory (DFT) calculations was used to further elucidate a recently developed mechanistic model for mercury speciation in coal combustion systems and interactions on activated carbon. Reaction energies, enthalpies, free energies and binding energies of Hg species to the prototype molecules were derived from the data obtained in these calculations. Bimolecular rate constants for the various elementary steps in the mechanism have been estimated using the hard-sphere collision theory approximation, and the results seem to indicate that extremely fast kinetics could be involved in these surface reactions. Activated carbon was produced from a blend of lignite coal from the Center Mine in North Dakota and

  7. Recent advances in lattice Boltzmann methods

    SciTech Connect

    Chen, S.; Doolen, G.D.; He, X.; Nie, X.; Zhang, R.

    1998-12-31

    In this paper, the authors briefly present the basic principles of lattice Boltzmann method and summarize recent advances of the method, including the application of the lattice Boltzmann method for fluid flows in MEMS and simulation of the multiphase mixing and turbulence.

  8. Advances in imaging secondary ion mass spectrometry for biological samples

    SciTech Connect

    Boxer, Steven G.; Kraft, Mary L.; Weber, Peter K.

    2008-12-16

    Imaging mass spectrometry combines the power of mass spectrometry to identify complex molecules based on mass with sample imaging. Recent advances in secondary ion mass spectrometry have improved sensitivity and spatial resolution, so that these methods have the potential to bridge between high-resolution structures obtained by X-ray crystallography and cyro-electron microscopy and ultrastructure visualized by conventional light microscopy. Following background information on the method and instrumentation, we address the key issue of sample preparation. Because mass spectrometry is performed in high vacuum, it is essential to preserve the lateral organization of the sample while removing bulk water, and this has been a major barrier for applications to biological systems. Furthermore, recent applications of imaging mass spectrometry to cell biology, microbial communities, and biosynthetic pathways are summarized briefly, and studies of biological membrane organization are described in greater depth.

  9. Advances in imaging secondary ion mass spectrometry for biological samples

    DOE PAGESBeta

    Boxer, Steven G.; Kraft, Mary L.; Weber, Peter K.

    2008-12-16

    Imaging mass spectrometry combines the power of mass spectrometry to identify complex molecules based on mass with sample imaging. Recent advances in secondary ion mass spectrometry have improved sensitivity and spatial resolution, so that these methods have the potential to bridge between high-resolution structures obtained by X-ray crystallography and cyro-electron microscopy and ultrastructure visualized by conventional light microscopy. Following background information on the method and instrumentation, we address the key issue of sample preparation. Because mass spectrometry is performed in high vacuum, it is essential to preserve the lateral organization of the sample while removing bulk water, and this hasmore » been a major barrier for applications to biological systems. Furthermore, recent applications of imaging mass spectrometry to cell biology, microbial communities, and biosynthetic pathways are summarized briefly, and studies of biological membrane organization are described in greater depth.« less

  10. Functional knee assessment with advanced imaging.

    PubMed

    Amano, Keiko; Li, Qi; Ma, C Benjamin

    2016-06-01

    The purpose of anterior cruciate ligament (ACL) reconstruction is to restore the native stability of the knee joint and to prevent further injury to meniscus and cartilage, yet studies have suggested that joint laxity remains prevalent in varying degrees after ACL reconstruction. Imaging can provide measurements of translational and rotational motions of the tibiofemoral joint that may be too small to detect in routine physical examinations. Various imaging modalities, including fluoroscopy, computed tomography (CT), and magnetic resonance imaging (MRI), have emerged as powerful methods in measuring the minute details involved in joint biomechanics. While each technique has its own strengths and limitations, they have all enhanced our understanding of the knee joint under various stresses and movements. Acquiring the knowledge of the complex and dynamic motions of the knee after surgery would help lead to improved surgical techniques and better patient outcomes. PMID:27052009

  11. Recent advances in imaging subcellular processes

    PubMed Central

    Myers, Kenneth A.; Janetopoulos, Christopher

    2016-01-01

    Cell biology came about with the ability to first visualize cells. As microscopy techniques advanced, the early microscopists became the first cell biologists to observe the inner workings and subcellular structures that control life. This ability to see organelles within a cell provided scientists with the first understanding of how cells function. The visualization of the dynamic architecture of subcellular structures now often drives questions as researchers seek to understand the intricacies of the cell. With the advent of fluorescent labeling techniques, better and new optical techniques, and more sensitive and faster cameras, a whole array of questions can now be asked. There has been an explosion of new light microscopic techniques, and the race is on to build better and more powerful imaging systems so that we can further our understanding of the spatial and temporal mechanisms controlling molecular cell biology. PMID:27408708

  12. Recent advances in imaging subcellular processes.

    PubMed

    Myers, Kenneth A; Janetopoulos, Christopher

    2016-01-01

    Cell biology came about with the ability to first visualize cells. As microscopy techniques advanced, the early microscopists became the first cell biologists to observe the inner workings and subcellular structures that control life. This ability to see organelles within a cell provided scientists with the first understanding of how cells function. The visualization of the dynamic architecture of subcellular structures now often drives questions as researchers seek to understand the intricacies of the cell. With the advent of fluorescent labeling techniques, better and new optical techniques, and more sensitive and faster cameras, a whole array of questions can now be asked. There has been an explosion of new light microscopic techniques, and the race is on to build better and more powerful imaging systems so that we can further our understanding of the spatial and temporal mechanisms controlling molecular cell biology. PMID:27408708

  13. Recent advances in human viruses imaging studies.

    PubMed

    Florian, Paula Ecaterina; Rouillé, Yves; Ruta, Simona; Nichita, Norica; Roseanu, Anca

    2016-06-01

    Microscopy techniques are often exploited by virologists to investigate molecular details of critical steps in viruses' life cycles such as host cell recognition and entry, genome replication, intracellular trafficking, and release of mature virions. Fluorescence microscopy is the most attractive tool employed to detect intracellular localizations of various stages of the viral infection and monitor the pathogen-host interactions associated with them. Super-resolution microscopy techniques have overcome the technical limitations of conventional microscopy and offered new exciting insights into the formation and trafficking of human viruses. In addition, the development of state-of-the art electron microscopy techniques has become particularly important in studying virus morphogenesis by revealing ground-braking ultrastructural details of this process. This review provides recent advances in human viruses imaging in both, in vitro cell culture systems and in vivo, in the animal models recently developed. The newly available imaging technologies bring a major contribution to our understanding of virus pathogenesis and will become an important tool in early diagnosis of viral infection and the development of novel therapeutics to combat the disease. PMID:27059598

  14. Twin-Foucault imaging method

    NASA Astrophysics Data System (ADS)

    Harada, Ken

    2012-02-01

    A method of Lorentz electron microscopy, which enables observation two Foucault images simultaneously by using an electron biprism instead of an objective aperture, was developed. The electron biprism is installed between two electron beams deflected by 180° magnetic domains. Potential applied to the biprism deflects the two electron beams further, and two Foucault images with reversed contrast are then obtained in one visual field. The twin Foucault images are able to extract the magnetic domain structures and to reconstruct an ordinary electron micrograph. The developed Foucault method was demonstrated with a 180° domain structure of manganite La0.825Sr0.175MnO3.

  15. Image portion identification methods, image parsing methods, image parsing systems, and articles of manufacture

    DOEpatents

    Lassahn, Gordon D.; Lancaster, Gregory D.; Apel, William A.; Thompson, Vicki S.

    2013-01-08

    Image portion identification methods, image parsing methods, image parsing systems, and articles of manufacture are described. According to one embodiment, an image portion identification method includes accessing data regarding an image depicting a plurality of biological substrates corresponding to at least one biological sample and indicating presence of at least one biological indicator within the biological sample and, using processing circuitry, automatically identifying a portion of the image depicting one of the biological substrates but not others of the biological substrates.

  16. A collaborative enterprise for multi-stakeholder participation in the advancement of quantitative imaging.

    PubMed

    Buckler, Andrew J; Bresolin, Linda; Dunnick, N Reed; Sullivan, Daniel C

    2011-03-01

    Medical imaging has seen substantial and rapid technical advances during the past decade, including advances in image acquisition devices, processing and analysis software, and agents to enhance specificity. Traditionally, medical imaging has defined anatomy, but increasingly newer, more advanced, imaging technologies provide biochemical and physiologic information based on both static and dynamic modalities. These advanced technologies are important not only for detecting disease but for characterizing and assessing change of disease with time or therapy. Because of the rapidity of these advances, research to determine the utility of quantitative imaging in either clinical research or clinical practice has not had time to mature. Methods to appropriately develop, assess, regulate, and reimburse must be established for these advanced technologies. Efficient and methodical processes that meet the needs of stakeholders in the biomedical research community, therapeutics developers, and health care delivery enterprises will ultimately benefit individual patients. To help address this, the authors formed a collaborative program-the Quantitative Imaging Biomarker Alliance. This program draws from the very successful precedent set by the Integrating the Healthcare Enterprise effort but is adapted to the needs of imaging science. Strategic guidance supporting the development, qualification, and deployment of quantitative imaging biomarkers will lead to improved standardization of imaging tests, proof of imaging test performance, and greater use of imaging to predict the biologic behavior of tissue and monitor therapy response. These, in turn, confer value to corporate stakeholders, providing incentives to bring new and innovative products to market. PMID:21339352

  17. Advanced gastrointestinal endoscopic imaging for inflammatory bowel diseases

    PubMed Central

    Tontini, Gian Eugenio; Rath, Timo; Neumann, Helmut

    2016-01-01

    Gastrointestinal luminal endoscopy is of paramount importance for diagnosis, monitoring and dysplasia surveillance in patients with both, Crohn’s disease and ulcerative colitis. Moreover, with the recent recognition that mucosal healing is directly linked to the clinical outcome of patients with inflammatory bowel disorders, a growing demand exists for the precise, timely and detailed endoscopic assessment of superficial mucosal layer. Further, the novel field of molecular imaging has tremendously expanded the clinical utility and applications of modern endoscopy, now encompassing not only diagnosis, surveillance, and treatment but also the prediction of individual therapeutic responses. Within this review, we describe how novel endoscopic approaches and advanced endoscopic imaging methods such as high definition and high magnification endoscopy, dye-based and dye-less chromoendoscopy, confocal laser endomicroscopy, endocytoscopy and molecular imaging now allow for the precise and ultrastructural assessment of mucosal inflammation and describe the potential of these techniques for dysplasia detection. PMID:26811662

  18. Advances in Spectral-Spatial Classification of Hyperspectral Images

    NASA Technical Reports Server (NTRS)

    Fauvel, Mathieu; Tarabalka, Yuliya; Benediktsson, Jon Atli; Chanussot, Jocelyn; Tilton, James C.

    2012-01-01

    Recent advances in spectral-spatial classification of hyperspectral images are presented in this paper. Several techniques are investigated for combining both spatial and spectral information. Spatial information is extracted at the object (set of pixels) level rather than at the conventional pixel level. Mathematical morphology is first used to derive the morphological profile of the image, which includes characteristics about the size, orientation and contrast of the spatial structures present in the image. Then the morphological neighborhood is defined and used to derive additional features for classification. Classification is performed with support vector machines using the available spectral information and the extracted spatial information. Spatial post-processing is next investigated to build more homogeneous and spatially consistent thematic maps. To that end, three presegmentation techniques are applied to define regions that are used to regularize the preliminary pixel-wise thematic map. Finally, a multiple classifier system is defined to produce relevant markers that are exploited to segment the hyperspectral image with the minimum spanning forest algorithm. Experimental results conducted on three real hyperspectral images with different spatial and spectral resolutions and corresponding to various contexts are presented. They highlight the importance of spectral-spatial strategies for the accurate classification of hyperspectral images and validate the proposed methods.

  19. Advanced DTM Generation from Very High Resolution Satellite Stereo Images

    NASA Astrophysics Data System (ADS)

    Perko, R.; Raggam, H.; Gutjahr, K. H.; Schardt, M.

    2015-03-01

    This work proposes a simple filtering approach that can be applied to digital surface models in order to extract digital terrain models. The method focusses on robustness and computational efficiency and is in particular tailored to filter DSMs that are extracted from satellite stereo images. It represents an evolution of an existing DTM generation method and includes distinct advancement through the integration of multi-directional processing as well as slope dependent filtering, thus denoted "MSD filtering". The DTM generation workflow is fully automatic and requires no user interaction. Exemplary results are presented for a DSM generated from a Pléiades tri-stereo image data set. Qualitative and quantitative evaluations with respect to highly accurate reference LiDAR data confirm the effectiveness of the proposed algorithm.

  20. Advanced analysis methods in particle physics

    SciTech Connect

    Bhat, Pushpalatha C.; /Fermilab

    2010-10-01

    Each generation of high energy physics experiments is grander in scale than the previous - more powerful, more complex and more demanding in terms of data handling and analysis. The spectacular performance of the Tevatron and the beginning of operations of the Large Hadron Collider, have placed us at the threshold of a new era in particle physics. The discovery of the Higgs boson or another agent of electroweak symmetry breaking and evidence of new physics may be just around the corner. The greatest challenge in these pursuits is to extract the extremely rare signals, if any, from huge backgrounds arising from known physics processes. The use of advanced analysis techniques is crucial in achieving this goal. In this review, I discuss the concepts of optimal analysis, some important advanced analysis methods and a few examples. The judicious use of these advanced methods should enable new discoveries and produce results with better precision, robustness and clarity.

  1. Advances and challenges in deformable image registration: From image fusion to complex motion modelling.

    PubMed

    Schnabel, Julia A; Heinrich, Mattias P; Papież, Bartłomiej W; Brady, Sir J Michael

    2016-10-01

    Over the past 20 years, the field of medical image registration has significantly advanced from multi-modal image fusion to highly non-linear, deformable image registration for a wide range of medical applications and imaging modalities, involving the compensation and analysis of physiological organ motion or of tissue changes due to growth or disease patterns. While the original focus of image registration has predominantly been on correcting for rigid-body motion of brain image volumes acquired at different scanning sessions, often with different modalities, the advent of dedicated longitudinal and cross-sectional brain studies soon necessitated the development of more sophisticated methods that are able to detect and measure local structural or functional changes, or group differences. Moving outside of the brain, cine imaging and dynamic imaging required the development of deformable image registration to directly measure or compensate for local tissue motion. Since then, deformable image registration has become a general enabling technology. In this work we will present our own contributions to the state-of-the-art in deformable multi-modal fusion and complex motion modelling, and then discuss remaining challenges and provide future perspectives to the field. PMID:27364430

  2. Cost estimating methods for advanced space systems

    NASA Technical Reports Server (NTRS)

    Cyr, Kelley

    1988-01-01

    The development of parametric cost estimating methods for advanced space systems in the conceptual design phase is discussed. The process of identifying variables which drive cost and the relationship between weight and cost are discussed. A theoretical model of cost is developed and tested using a historical data base of research and development projects.

  3. Recent advances in the imaging of hepatocellular carcinoma

    PubMed Central

    You, Myung-Won; Kim, Kyoung Won; Lee, So Jung; Shin, Yong Moon; Kim, Jin Hee; Lee, Moon-Gyu

    2015-01-01

    The role of imaging is crucial for the surveillance, diagnosis, staging and treatment monitoring of hepatocellular carcinoma (HCC). Over the past few years, considerable technical advances were made in imaging of HCCs. New imaging technology, however, has introduced new challenges in our clinical practice. In this article, the current status of clinical imaging techniques for HCC is addressed. The diagnostic performance of imaging techniques in the context of recent clinical guidelines is also presented. PMID:25834808

  4. Advanced x-ray imaging spectrometer

    NASA Technical Reports Server (NTRS)

    Callas, John L. (Inventor); Soli, George A. (Inventor)

    1998-01-01

    An x-ray spectrometer that also provides images of an x-ray source. Coded aperture imaging techniques are used to provide high resolution images. Imaging position-sensitive x-ray sensors with good energy resolution are utilized to provide excellent spectroscopic performance. The system produces high resolution spectral images of the x-ray source which can be viewed in any one of a number of specific energy bands.

  5. Recent Advances in Molecular Magnetic Resonance Imaging of Liver Fibrosis

    PubMed Central

    Li, Zhiming; Sun, Jihong; Yang, Xiaoming

    2015-01-01

    Liver fibrosis is a life-threatening disease with high morbidity and mortality owing to its diverse causes. Liver biopsy, as the current gold standard for diagnosing and staging liver fibrosis, has a number of limitations, including sample variability, relatively high cost, an invasive nature, and the potential of complications. Most importantly, in clinical practice, patients often reject additional liver biopsies after initiating treatment despite their being necessary for long-term follow-up. To resolve these problems, a number of different noninvasive imaging-based methods have been developed for accurate diagnosis of liver fibrosis. However, these techniques only reflect morphological or perfusion-related alterations in the liver, and thus they are generally only useful for the diagnosis of late-stage liver fibrosis (liver cirrhosis), which is already characterized by “irreversible” anatomic and hemodynamic changes. Thus, it is essential that new approaches are developed for accurately diagnosing early-stage liver fibrosis as at this stage the disease may be “reversed” by active treatment. The development of molecular MR imaging technology has potential in this regard, as it facilitates noninvasive, target-specific imaging of liver fibrosis. We provide an overview of recent advances in molecular MR imaging for the diagnosis and staging of liver fibrosis and we compare novel technologies with conventional MR imaging techniques. PMID:25874221

  6. Recent advances in live cell imaging of hepatoma cells

    PubMed Central

    2014-01-01

    Live cell imaging enables the study of dynamic processes of living cells in real time by use of suitable reporter proteins and the staining of specific cellular structures and/or organelles. With the availability of advanced optical devices and improved cell culture protocols it has become a rapidly growing research methodology. The success of this technique relies mainly on the selection of suitable reporter proteins, construction of recombinant plasmids possessing cell type specific promoters as well as reliable methods of gene transfer. This review aims to provide an overview of the recent developments in the field of marker proteins (bioluminescence and fluorescent) and methodologies (fluorescent resonance energy transfer, fluorescent recovery after photobleaching and proximity ligation assay) employed as to achieve an improved imaging of biological processes in hepatoma cells. Moreover, different expression systems of marker proteins and the modes of gene transfer are discussed with emphasis on the study of lipid droplet formation in hepatocytes as an example. PMID:25005127

  7. Imaging sunspots using helioseismic methods.

    PubMed

    Tong, C H

    2005-12-15

    The origin of sunspots is one of the most fundamental and yet poorly understood areas in solar physics. Imaging local anomalous features in the solar interior offers a direct way to unravel the underlying physical processes of sunspots and the mechanisms behind their formation. The advent of local helioseismology in the last few years has, for the first time, made it possible to image local internal solar structures. High-resolution satellite and ground telescope data which reveal the details of the vibrations of the visible solar surface are essential in the development of local helioseismology. We are now in a position to transfer the seismic methods that have traditionally been used to study the Earth's interior to solar investigations. This interdisciplinary approach to developing seismic imaging techniques is opening up new ways of understanding the flow and other structural characteristics beneath sunspots. In this article, I review recent progress in the imaging of sunspots and the surrounding solar active regions. By highlighting the strengths of seismic methods and the challenges facing local helioseismology, I discuss some of the new research directions and possibilities that have arisen from this novel type of seismic imaging. PMID:16286289

  8. Multispectral imaging method and apparatus

    DOEpatents

    Sandison, D.R.; Platzbecker, M.R.; Vargo, T.D.; Lockhart, R.R.; Descour, M.R.; Richards-Kortum, R.

    1999-07-06

    A multispectral imaging method and apparatus are described which are adapted for use in determining material properties, especially properties characteristic of abnormal non-dermal cells. A target is illuminated with a narrow band light beam. The target expresses light in response to the excitation. The expressed light is collected and the target's response at specific response wavelengths to specific excitation wavelengths is measured. From the measured multispectral response the target's properties can be determined. A sealed, remote probe and robust components can be used for cervical imaging. 5 figs.

  9. Multispectral imaging method and apparatus

    DOEpatents

    Sandison, David R.; Platzbecker, Mark R.; Vargo, Timothy D.; Lockhart, Randal R.; Descour, Michael R.; Richards-Kortum, Rebecca

    1999-01-01

    A multispectral imaging method and apparatus adapted for use in determining material properties, especially properties characteristic of abnormal non-dermal cells. A target is illuminated with a narrow band light beam. The target expresses light in response to the excitation. The expressed light is collected and the target's response at specific response wavelengths to specific excitation wavelengths is measured. From the measured multispectral response the target's properties can be determined. A sealed, remote probe and robust components can be used for cervical imaging

  10. Advanced imaging in COPD: insights into pulmonary pathophysiology

    PubMed Central

    Milne, Stephen

    2014-01-01

    Chronic obstructive pulmonary disease (COPD) involves a complex interaction of structural and functional abnormalities. The two have long been studied in isolation. However, advanced imaging techniques allow us to simultaneously assess pathological processes and their physiological consequences. This review gives a comprehensive account of the various advanced imaging modalities used to study COPD, including computed tomography (CT), magnetic resonance imaging (MRI), and the nuclear medicine techniques positron emission tomography (PET) and single-photon emission computed tomography (SPECT). Some more recent developments in imaging technology, including micro-CT, synchrotron imaging, optical coherence tomography (OCT) and electrical impedance tomography (EIT), are also described. The authors identify the pathophysiological insights gained from these techniques, and speculate on the future role of advanced imaging in both clinical and research settings. PMID:25478198

  11. Three-dimensional image signals: processing methods

    NASA Astrophysics Data System (ADS)

    Schiopu, Paul; Manea, Adrian; Craciun, Anca-Ileana; Craciun, Alexandru

    2010-11-01

    Over the years extensive studies have been carried out to apply coherent optics methods in real-time processing, communications and transmission image. This is especially true when a large amount of information needs to be processed, e.g., in high-resolution imaging. The recent progress in data-processing networks and communication systems has considerably increased the capacity of information exchange. We describe the results of literature investigation research of processing methods for the signals of the three-dimensional images. All commercially available 3D technologies today are based on stereoscopic viewing. 3D technology was once the exclusive domain of skilled computer-graphics developers with high-end machines and software. The images capture from the advanced 3D digital camera can be displayed onto screen of the 3D digital viewer with/ without special glasses. For this is needed considerable processing power and memory to create and render the complex mix of colors, textures, and virtual lighting and perspective necessary to make figures appear three-dimensional. Also, using a standard digital camera and a technique called phase-shift interferometry we can capture "digital holograms." These are holograms that can be stored on computer and transmitted over conventional networks. We present some research methods to process "digital holograms" for the Internet transmission and results.

  12. Pixels, Imagers and Related Fabrication Methods

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata (Inventor); Cunningham, Thomas J. (Inventor)

    2014-01-01

    Pixels, imagers and related fabrication methods are described. The described methods result in cross-talk reduction in imagers and related devices by generating depletion regions. The devices can also be used with electronic circuits for imaging applications.

  13. Tuberculosis, advanced - chest x-rays (image)

    MedlinePlus

    ... tissue, and can cause tissue death. These chest x-rays show advanced pulmonary tuberculosis. There are multiple light ... location of cavities within these light areas. The x-ray on the left clearly shows that the opacities ...

  14. Tuberculosis, advanced - chest x-rays (image)

    MedlinePlus

    Tuberculosis is an infectious disease that causes inflammation, the formation of tubercules and other growths within tissue, ... death. These chest x-rays show advanced pulmonary tuberculosis. There are multiple light areas (opacities) of varying ...

  15. Recent advances in ophthalmic molecular imaging.

    PubMed

    Ramos de Carvalho, J Emanuel; Verbraak, Frank D; Aalders, Maurice C; van Noorden, Cornelis J; Schlingemann, Reinier O

    2014-01-01

    The aim of molecular imaging techniques is the visualization of molecular processes and functional changes in living animals and human patients before morphological changes occur at the cellular and tissue level. Ophthalmic molecular imaging is still in its infancy and has mainly been used in small animals for pre-clinical research. The goal of most of these pre-clinical studies is their translation into ophthalmic molecular imaging techniques in clinical care. We discuss various molecular imaging techniques and their applications in ophthalmology. PMID:24529711

  16. Sharpening advanced land imager multispectral data using a sensor model

    USGS Publications Warehouse

    Lemeshewsky, G.P.

    2005-01-01

    The Advanced Land Imager (ALI) instrument on NASA's Earth Observing One (EO-1) satellite provides for nine spectral bands at 30m ground sample distance (GSD) and a 10m GSD panchromatic band. This report describes an image sharpening technique where the higher spatial resolution information of the panchromatic band is used to increase the spatial resolution of ALI multispectral (MS) data. To preserve the spectral characteristics, this technique combines reported deconvolution deblurring methods for the MS data with highpass filter-based fusion methods for the Pan data. The deblurring process uses the point spread function (PSF) model of the ALI sensor. Information includes calculation of the PSF from pre-launch calibration data. Performance was evaluated using simulated ALI MS data generated by degrading the spatial resolution of high resolution IKONOS satellite MS data. A quantitative measure of performance was the error between sharpened MS data and high resolution reference. This report also compares performance with that of a reported method that includes PSF information. Preliminary results indicate improved sharpening with the method reported here.

  17. Advanced Imaging Optics Utilizing Wavefront Coding.

    SciTech Connect

    Scrymgeour, David; Boye, Robert; Adelsberger, Kathleen

    2015-06-01

    Image processing offers a potential to simplify an optical system by shifting some of the imaging burden from lenses to the more cost effective electronics. Wavefront coding using a cubic phase plate combined with image processing can extend the system's depth of focus, reducing many of the focus-related aberrations as well as material related chromatic aberrations. However, the optimal design process and physical limitations of wavefront coding systems with respect to first-order optical parameters and noise are not well documented. We examined image quality of simulated and experimental wavefront coded images before and after reconstruction in the presence of noise. Challenges in the implementation of cubic phase in an optical system are discussed. In particular, we found that limitations must be placed on system noise, aperture, field of view and bandwidth to develop a robust wavefront coded system.

  18. Advanced Motion Compensation Methods for Intravital Optical Microscopy

    PubMed Central

    Vinegoni, Claudio; Lee, Sungon; Feruglio, Paolo Fumene; Weissleder, Ralph

    2013-01-01

    Intravital microscopy has emerged in the recent decade as an indispensible imaging modality for the study of the micro-dynamics of biological processes in live animals. Technical advancements in imaging techniques and hardware components, combined with the development of novel targeted probes and new mice models, have enabled us to address long-standing questions in several biology areas such as oncology, cell biology, immunology and neuroscience. As the instrument resolution has increased, physiological motion activities have become a major obstacle that prevents imaging live animals at resolutions analogue to the ones obtained in vitro. Motion compensation techniques aim at reducing this gap and can effectively increase the in vivo resolution. This paper provides a technical review of some of the latest developments in motion compensation methods, providing organ specific solutions. PMID:24273405

  19. Combining advanced imaging processing and low cost remote imaging capabilities

    NASA Astrophysics Data System (ADS)

    Rohrer, Matthew J.; McQuiddy, Brian

    2008-04-01

    Target images are very important for evaluating the situation when Unattended Ground Sensors (UGS) are deployed. These images add a significant amount of information to determine the difference between hostile and non-hostile activities, the number of targets in an area, the difference between animals and people, the movement dynamics of targets, and when specific activities of interest are taking place. The imaging capabilities of UGS systems need to provide only target activity and not images without targets in the field of view. The current UGS remote imaging systems are not optimized for target processing and are not low cost. McQ describes in this paper an architectural and technologic approach for significantly improving the processing of images to provide target information while reducing the cost of the intelligent remote imaging capability.

  20. Advances in cardiac magnetic resonance imaging of congenital heart disease.

    PubMed

    Driessen, Mieke M P; Breur, Johannes M P J; Budde, Ricardo P J; van Oorschot, Joep W M; van Kimmenade, Roland R J; Sieswerda, Gertjan Tj; Meijboom, Folkert J; Leiner, Tim

    2015-01-01

    Due to advances in cardiac surgery, survival of patients with congenital heart disease has increased considerably during the past decades. Many of these patients require repeated cardiovascular magnetic resonance imaging to assess cardiac anatomy and function. In the past decade, technological advances have enabled faster and more robust cardiovascular magnetic resonance with improved image quality and spatial as well as temporal resolution. This review aims to provide an overview of advances in cardiovascular magnetic resonance hardware and acquisition techniques relevant to both pediatric and adult patients with congenital heart disease and discusses the techniques used to assess function, anatomy, flow and tissue characterization. PMID:25552386

  1. Advances in Small Animal Imaging Systems

    NASA Astrophysics Data System (ADS)

    Loudos, George K.

    2007-11-01

    The rapid growth in genetics and molecular biology combined with the development of techniques for genetically engineering small animals has led to an increased interest in in vivo laboratory animal imaging during the past few years. For this purpose, new instrumentation, data acquisition strategies, and image processing and reconstruction techniques are being developed, researched and evaluated. The aim of this article is to give a short overview of the state of the art technologies for high resolution and high sensitivity molecular imaging techniques, primarily positron emission tomography (PET) and single photon emission computed tomography (SPECT). The basic needs of small animal imaging will be described. The evolution in instrumentation in the past two decades, as well as the commercially available systems will be overviewed. Finally, the new trends in detector technology and preliminary results from challenging applications will be presented. For more details a number of references are provided.

  2. Advances in Small Animal Imaging Systems

    SciTech Connect

    Loudos, George K.

    2007-11-26

    The rapid growth in genetics and molecular biology combined with the development of techniques for genetically engineering small animals has led to an increased interest in in vivo laboratory animal imaging during the past few years. For this purpose, new instrumentation, data acquisition strategies, and image processing and reconstruction techniques are being developed, researched and evaluated. The aim of this article is to give a short overview of the state of the art technologies for high resolution and high sensitivity molecular imaging techniques, primarily positron emission tomography (PET) and single photon emission computed tomography (SPECT). The basic needs of small animal imaging will be described. The evolution in instrumentation in the past two decades, as well as the commercially available systems will be overviewed. Finally, the new trends in detector technology and preliminary results from challenging applications will be presented. For more details a number of references are provided.

  3. Advanced Analysis Methods in High Energy Physics

    SciTech Connect

    Pushpalatha C. Bhat

    2001-10-03

    During the coming decade, high energy physics experiments at the Fermilab Tevatron and around the globe will use very sophisticated equipment to record unprecedented amounts of data in the hope of making major discoveries that may unravel some of Nature's deepest mysteries. The discovery of the Higgs boson and signals of new physics may be around the corner. The use of advanced analysis techniques will be crucial in achieving these goals. The author discusses some of the novel methods of analysis that could prove to be particularly valuable for finding evidence of any new physics, for improving precision measurements and for exploring parameter spaces of theoretical models.

  4. Advanced Image Search: A Strategy for Creating Presentation Boards

    ERIC Educational Resources Information Center

    Frey, Diane K.; Hines, Jean D.; Swinker, Mary E.

    2008-01-01

    Finding relevant digital images to create presentation boards requires advanced search skills. This article describes a course assignment involving a technique designed to develop students' literacy skills with respect to locating images of desired quality and content from Internet databases. The assignment was applied in a collegiate apparel…

  5. Center for Advanced Signal and Imaging Sciences Workshop 2004

    SciTech Connect

    McClellan, J H; Carrano, C; Poyneer, L; Palmer, D; Baker, K; Chen, D; London, R; Weinert, G; Brase, J; Paglieroni, D; Lopez, A; Grant, C W; Wright, W; Burke, M; Miller, W O; DeTeresa, S; White, D; Toeppen, J; Haugen, P; Kamath, C; Nguyen, T; Manay, S; Newsam, S; Cantu-Paz, E; Pao, H; Chang, J; Chambers, D; Leach, R; Paulson, C; Romero, C E; Spiridon, A; Vigars, M; Welsh, P; Zumstein, J; Romero, K; Oppenheim, A; Harris, D B; Dowla, F; Brown, C G; Clark, G A; Ong, M M; Clance, T J; Kegelmeyer, l M; Benzuijen, M; Bliss, E; Burkhart, S; Conder, A; Daveler, S; Ferguson, W; Glenn, S; Liebman, J; Norton, M; Prasad, R; Salmon, T; Kegelmeyer, L M; Hafiz, O; Cheung, S; Fodor, I; Aufderheide, M B; Bary, A; Martz, Jr., H E; Burke, M W; Benson, S; Fisher, K A; Quarry, M J

    2004-11-15

    Welcome to the Eleventh Annual C.A.S.I.S. Workshop, a yearly event at the Lawrence Livermore National Laboratory, presented by the Center for Advanced Signal & Image Sciences, or CASIS, and sponsored by the LLNL Engineering Directorate. Every November for the last 10 years we have convened a diverse set of engineering and scientific talent to share their work in signal processing, imaging, communications, controls, along with associated fields of mathematics, statistics, and computing sciences. This year is no exception, with sessions in Adaptive Optics, Applied Imaging, Scientific Data Mining, Electromagnetic Image and Signal Processing, Applied Signal Processing, National Ignition Facility (NIF) Imaging, and Nondestructive Characterization.

  6. Infrared image quality evaluation method without reference image

    NASA Astrophysics Data System (ADS)

    Yue, Song; Ren, Tingting; Wang, Chengsheng; Lei, Bo; Zhang, Zhijie

    2013-09-01

    Since infrared image quality depends on many factors such as optical performance and electrical noise of thermal imager, image quality evaluation becomes an important issue which can conduce to both image processing afterward and capability improving of thermal imager. There are two ways of infrared image quality evaluation, with or without reference image. For real-time thermal image, the method without reference image is preferred because it is difficult to get a standard image. Although there are various kinds of methods for evaluation, there is no general metric for image quality evaluation. This paper introduces a novel method to evaluate infrared image without reference image from five aspects: noise, clarity, information volume and levels, information in frequency domain and the capability of automatic target recognition. Generally, the basic image quality is obtained from the first four aspects, and the quality of target is acquired from the last aspect. The proposed method is tested on several infrared images captured by different thermal imagers. Calculate the indicators and compare with human vision results. The evaluation shows that this method successfully describes the characteristics of infrared image and the result is consistent with human vision system.

  7. Advances in Optical Spectroscopy and Imaging of Breast Lesions

    SciTech Connect

    Demos, S; Vogel, A J; Gandjbakhche, A H

    2006-01-03

    A review is presented of recent advances in optical imaging and spectroscopy and the use of light for addressing breast cancer issues. Spectroscopic techniques offer the means to characterize tissue components and obtain functional information in real time. Three-dimensional optical imaging of the breast using various illumination and signal collection schemes in combination with image reconstruction algorithms may provide a new tool for cancer detection and monitoring of treatment.

  8. Advances in noninvasive imaging of melanoma.

    PubMed

    Menge, Tyler D; Pellacani, Giovanni

    2016-03-01

    Melanoma is the most dangerous type of skin cancer and its incidence has risen sharply in recent decades. Early detection of disease is critical for improving patient outcomes. Any pigmented lesion that is clinically concerning must be removed by biopsy for morphologic investigation on histology. However, biopsies are invasive and can cause significant morbidity, and their accuracy in detecting melanoma may be limited by sampling error. The advent of noninvasive imaging devices has allowed for assessment of intact skin, thereby minimizing the need for biopsy; and these technologies are increasingly being used in the diagnosis and management of melanoma. Reflectance confocal microscopy, optical coherence tomography, ultrasonography, and multispectral imaging are noninvasive imaging techniques that have emerged as diagnostic aids to physical exam and/or conventional dermoscopy. This review summarizes the current knowledge about these techniques and discusses their practical applications and limitations. PMID:26963113

  9. SHG nanoprobes: advancing harmonic imaging in biology.

    PubMed

    Dempsey, William P; Fraser, Scott E; Pantazis, Periklis

    2012-05-01

    Second harmonic generating (SHG) nanoprobes have recently emerged as versatile and durable labels suitable for in vivo imaging, circumventing many of the inherent drawbacks encountered with classical fluorescent probes. Since their nanocrystalline structure lacks a central point of symmetry, they are capable of generating second harmonic signal under intense illumination - converting two photons into one photon of half the incident wavelength - and can be detected by conventional two-photon microscopy. Because the optical signal of SHG nanoprobes is based on scattering, rather than absorption as in the case of fluorescent probes, they neither bleach nor blink, and the signal does not saturate with increasing illumination intensity. When SHG nanoprobes are used to image live tissue, the SHG signal can be detected with little background signal, and they are physiologically inert, showing excellent long-term photostability. Because of their photophysical properties, SHG nanoprobes provide unique advantages for molecular imaging of living cells and tissues with unmatched sensitivity and temporal resolution. PMID:22392481

  10. Advanced MEMS-based infrared imager

    NASA Astrophysics Data System (ADS)

    Chen, Ming

    2003-04-01

    Infrared radiation imager is of important for a wide range of applications. IR infrared imagers have not been widely available due to cost and complexity issues. A major cost of IR imager is associated with the requirements of cooling and pixel-level integration with electronic amplifier and read-out circuitry that are often incompatible with the detector materials. Recent research activities have lead to a new class of IR imager based on thermally isolated MEMS (micro-electromechanical systems) arrays whose bending can be directly detected by optical means. This approach eliminates the need for cooling and complex electronic multiplexers, holding the potential to drastically reduce IR imager cost. However, MEMS based IR imaging devices demonstrated to date are less sensitive than the commercially available ones. We have established a comprehensive finite element model (FEM) using Ansys tool. An accurate computer model for the proposed MEME IR detector is critical for the device development and fabrication. The model greatly enhanced our capability to cost effectively optimize the design from concept to fabrication layout. Our model predicts the deformation of this pixel structure under a surface stress for both thermal and photo-induced effects under various conditions. This simulation model provided a design base for new generation of optical MEMS IR sensors that has higher sensitivity and the potential of incorporating passive thermal amplification. Our simple MEMS design incorporates optical read-out, which eliminates the drawback of electronic means that inevitably introduce additional signal loss due to thermal contact made to the detector element. When packaged under vacuum environment, significant sensitivity improvement is anticipated. The deflection of a cantilever as a function of a rise in its temperature is determined by the classical thermomechanical governing equation for a bimaterial cantilever beam. Our finite element model is established using

  11. Method of assessing heterogeneity in images

    DOEpatents

    Jacob, Richard E.; Carson, James P.

    2016-08-23

    A method of assessing heterogeneity in images is disclosed. 3D images of an object are acquired. The acquired images may be filtered and masked. Iterative decomposition is performed on the masked images to obtain image subdivisions that are relatively homogeneous. Comparative analysis, such as variogram analysis or correlogram analysis, is performed of the decomposed images to determine spatial relationships between regions of the images that are relatively homogeneous.

  12. Advanced Optical Imaging Techniques for Neurodevelopment

    PubMed Central

    Wu, Yicong; Christensen, Ryan; Colón-Ramos, Daniel; Shroff, Hari

    2013-01-01

    Over the past decade, developmental neuroscience has been transformed by the widespread application of confocal and two-photon fluorescence microscopy. Even greater progress is imminent, as recent innovations in microscopy now enable imaging with increased depth, speed, and spatial resolution; reduced phototoxicity; and in some cases without external fluorescent probes. We discuss these new techniques and emphasize their dramatic impact on neurobiology, including the ability to image neurons at depths exceeding 1 mm, to observe neurodevelopment noninvasively throughout embryogenesis, and to visualize neuronal processes or structures that were previously too small or too difficult to target with conventional microscopy. PMID:23831260

  13. Advances in Lymphatic Imaging and Drug Delivery

    SciTech Connect

    Nune, Satish K.; Gunda, Padmaja; Majeti, Bharat K.; Thallapally, Praveen K.; Laird, Forrest M.

    2011-09-10

    Cancer remains the second leading cause of death after heart disease in the US. While metastasized cancers such as breast, prostate, and colon are incurable, before their distant spread, these diseases will have invaded the lymphatic system as a first step in their progression. Hence, proper evaluation of the disease state of the lymphatics which drain a tumor site is crucial to staging and the formation of a treatment plan. Current lymphatic imaging modalities with visible dyes and radionucleotide tracers offer limited sensitivity and poor resolution; however, newer tools using nanocarriers, quantum dots, and magnetic resonance imaging promise to vastly improve the staging of lymphatic spread without needless biopsies. Concurrent with the improvement of lymphatic imaging agents, has been the development of drug carriers that can localize chemotherapy to the lymphatic system, thus improving the treatment of localized disease while minimizing the exposure of healthy organs to cytotoxic drugs. This review will focus on polymeric systems that have been developed for imaging and drug delivery to the lymph system, how these new devices improve upon current technologies, and where further improvement is needed.

  14. Advances in image registration and fusion

    NASA Astrophysics Data System (ADS)

    Steer, Christopher; Rogers, Jeremy; Smith, Moira; Heather, Jamie; Bernhardt, Mark; Hickman, Duncan

    2008-03-01

    Many image fusion systems involving passive sensors require the accurate registration of the sensor data prior to performing fusion. Since depth information is not readily available in such systems, all registration algorithms are intrinsically approximations based upon various assumption about the depth field. Although often overlooked, many registration algorithms can break down in certain situations and this may adversely affect the image fusion performance. In this paper, we discuss a framework for quantifying the accuracy and robustness of image registration algorithms which allows a more precise understanding of their shortcomings. In addition, some novel algorithms have been investigated that overcome some of these limitations. A second aspect of this work has considered the treatment of images from multiple sensors whose angular and spatial separation is large and where conventional registration algorithms break down (typically greater than a few degrees of separation). A range of novel approaches is reported which exploit the use of parallax to estimate depth information and reconstruct a geometrical model of the scene. The imagery can then be combined with this geometrical model to render a variety of useful representations of the data. These techniques (which we term Volume Registration) show great promise as a means of gathering and presenting 3D and 4D scene information for both military and civilian applications.

  15. Multispectral laser imaging for advanced food analysis

    NASA Astrophysics Data System (ADS)

    Senni, L.; Burrascano, P.; Ricci, M.

    2016-07-01

    A hardware-software apparatus for food inspection capable of realizing multispectral NIR laser imaging at four different wavelengths is herein discussed. The system was designed to operate in a through-transmission configuration to detect the presence of unwanted foreign bodies inside samples, whether packed or unpacked. A modified Lock-In technique was employed to counterbalance the significant signal intensity attenuation due to transmission across the sample and to extract the multispectral information more efficiently. The NIR laser wavelengths used to acquire the multispectral images can be varied to deal with different materials and to focus on specific aspects. In the present work the wavelengths were selected after a preliminary analysis to enhance the image contrast between foreign bodies and food in the sample, thus identifying the location and nature of the defects. Experimental results obtained from several specimens, with and without packaging, are presented and the multispectral image processing as well as the achievable spatial resolution of the system are discussed.

  16. Advanced verification methods for OVI security ink

    NASA Astrophysics Data System (ADS)

    Coombs, Paul G.; McCaffery, Shaun F.; Markantes, Tom

    2006-02-01

    OVI security ink +, incorporating OVP security pigment* microflakes, enjoys a history of effective document protection. This security feature provides not only first-line recognition by the person on the street, but also facilitates machine-readability. This paper explores the evolution of OVI reader technology from proof-of-concept to miniaturization. Three different instruments have been built to advance the technology of OVI machine verification. A bench-top unit has been constructed which allows users to automatically verify a multitude of different banknotes and OVI images. In addition, high speed modules were fabricated and tested in a state of the art banknote sorting machine. Both units demonstrate the ability of modern optical components to illuminate and collect light reflected from the interference platelets within OVI ink. Electronic hardware and software convert and process the optical information in milliseconds to accurately determine the authenticity of the security feature. Most recently, OVI ink verification hardware has been miniaturized and simplified providing yet another platform for counterfeit protection. These latest devices provide a tool for store clerks and bank tellers to unambiguously determine the validity of banknotes in the time period it takes the cash drawer to be opened.

  17. Recent advances in radiology and medical imaging

    SciTech Connect

    Steiner, R.E.; Sherwood, T.

    1986-01-01

    The first chapter, on the radiology of arthritis, is an overview. The second and seventh chapters are on the chest the former, on adult respiratory distress syndrome, is a brief summary, and the latter, on digital radiography of the chest with the prototype slit-scanning technique. The third chapter reviews computed tomography of the lumbar spine. The following two chapters are on MR imaging, one on the central nervous system (covering demyelinating diseases, cardiovascular disease, infections, and tumors), with excellent illustrations; and one on MR imaging of the body. The illustrations are good. The following chapter is on extracardiac digital subtraction angiography (DSA), with an interesting table comparing and contrasting conventional angiography with both intraveneous and intraarterial DSA. The eighth chapter on pediatric imaging fits a world of experience. Chapter 9 is an update on contrast media, while the next chapter is on barium infusion examination of the small intestine. The final three chapters are concerned with the present state of angioplasty, interventional radiology in the urinary tract.

  18. Advanced image analysis for the preservation of cultural heritage

    NASA Astrophysics Data System (ADS)

    France, Fenella G.; Christens-Barry, William; Toth, Michael B.; Boydston, Kenneth

    2010-02-01

    The Library of Congress' Preservation Research and Testing Division has established an advanced preservation studies scientific program for research and analysis of the diverse range of cultural heritage objects in its collection. Using this system, the Library is currently developing specialized integrated research methodologies for extending preservation analytical capacities through non-destructive hyperspectral imaging of cultural objects. The research program has revealed key information to support preservation specialists, scholars and other institutions. The approach requires close and ongoing collaboration between a range of scientific and cultural heritage personnel - imaging and preservation scientists, art historians, curators, conservators and technology analysts. A research project of the Pierre L'Enfant Plan of Washington DC, 1791 had been undertaken to implement and advance the image analysis capabilities of the imaging system. Innovative imaging options and analysis techniques allow greater processing and analysis capacities to establish the imaging technique as the first initial non-invasive analysis and documentation step in all cultural heritage analyses. Mapping spectral responses, organic and inorganic data, topography semi-microscopic imaging, and creating full spectrum images have greatly extended this capacity from a simple image capture technique. Linking hyperspectral data with other non-destructive analyses has further enhanced the research potential of this image analysis technique.

  19. Dyslexia: advances in clinical and imaging studies.

    PubMed

    Koeda, Tatsuya; Seki, Ayumi; Uchiyama, Hitoshi; Sadato, Norihiro

    2011-03-01

    The aim of this report is to describe the characteristics of Japanese dyslexia, and to demonstrate several of our studies about the extraction of these characteristic and their neurophysiological and neuroimaging abnormalities, as well as advanced studies of phonological awareness and the underlying neural substrate. Based on these results, we have proposed a 2-step approach for remedial education (e-learning web site: http://www.dyslexia-koeda.jp/). The first step is decoding, which decreases reading errors, and the second is vocabulary learning, which improves reading fluency. This 2-step approach is designed to serve first grade children. In addition, we propose the RTI (response to intervention) model as a desirable system for remedial education. PMID:21146943

  20. Functional Magnetic Resonance Imaging Methods

    PubMed Central

    Chen, Jingyuan E.; Glover, Gary H.

    2015-01-01

    Since its inception in 1992, Functional Magnetic Resonance Imaging (fMRI) has become an indispensible tool for studying cognition in both the healthy and dysfunctional brain. FMRI monitors changes in the oxygenation of brain tissue resulting from altered metabolism consequent to a task-based evoked neural response or from spontaneous fluctuations in neural activity in the absence of conscious mentation (the “resting state”). Task-based studies have revealed neural correlates of a large number of important cognitive processes, while fMRI studies performed in the resting state have demonstrated brain-wide networks that result from brain regions with synchronized, apparently spontaneous activity. In this article, we review the methods used to acquire and analyze fMRI signals. PMID:26248581

  1. Advances in CT imaging for urolithiasis

    PubMed Central

    Andrabi, Yasir; Patino, Manuel; Das, Chandan J.; Eisner, Brian; Sahani, Dushyant V.; Kambadakone, Avinash

    2015-01-01

    Urolithiasis is a common disease with increasing prevalence worldwide and a lifetime-estimated recurrence risk of over 50%. Imaging plays a critical role in the initial diagnosis, follow-up and urological management of urinary tract stone disease. Unenhanced helical computed tomography (CT) is highly sensitive (>95%) and specific (>96%) in the diagnosis of urolithiasis and is the imaging investigation of choice for the initial assessment of patients with suspected urolithiasis. The emergence of multi-detector CT (MDCT) and technological innovations in CT such as dual-energy CT (DECT) has widened the scope of MDCT in the stone disease management from initial diagnosis to encompass treatment planning and monitoring of treatment success. DECT has been shown to enhance pre-treatment characterization of stone composition in comparison with conventional MDCT and is being increasingly used. Although CT-related radiation dose exposure remains a valid concern, the use of low-dose MDCT protocols and integration of newer iterative reconstruction algorithms into routine CT practice has resulted in a substantial decrease in ionizing radiation exposure. In this review article, our intent is to discuss the role of MDCT in the diagnosis and post-treatment evaluation of urolithiasis and review the impact of emerging CT technologies such as dual energy in clinical practice. PMID:26166961

  2. Satisfaction of search experiments in advanced imaging

    NASA Astrophysics Data System (ADS)

    Berbaum, Kevin S.

    2012-03-01

    The objective of our research is to understand the perception of multiple abnormalities in an imaging examination and to develop strategies for improved diagnostic. We are one of the few laboratories in the world pursuing the goal of reducing detection errors through a better understanding of the underlying perceptual processes involved. Failure to detect an abnormality is the most common class of error in diagnostic imaging and generally is considered the most serious by the medical community. Many of these errors have been attributed to "satisfaction of search," which occurs when a lesion is not reported because discovery of another abnormality has "satisfied" the goal of the search. We have gained some understanding of the mechanisms of satisfaction of search (SOS) traditional radiographic modalities. Currently, there are few interventions to remedy SOS error. For example, patient history that the prompts specific abnormalities, protects the radiologist from missing them even when other abnormalities are present. The knowledge gained from this programmatic research will lead to reduction of observer error.

  3. Advances in CT imaging for urolithiasis.

    PubMed

    Andrabi, Yasir; Patino, Manuel; Das, Chandan J; Eisner, Brian; Sahani, Dushyant V; Kambadakone, Avinash

    2015-01-01

    Urolithiasis is a common disease with increasing prevalence worldwide and a lifetime-estimated recurrence risk of over 50%. Imaging plays a critical role in the initial diagnosis, follow-up and urological management of urinary tract stone disease. Unenhanced helical computed tomography (CT) is highly sensitive (>95%) and specific (>96%) in the diagnosis of urolithiasis and is the imaging investigation of choice for the initial assessment of patients with suspected urolithiasis. The emergence of multi-detector CT (MDCT) and technological innovations in CT such as dual-energy CT (DECT) has widened the scope of MDCT in the stone disease management from initial diagnosis to encompass treatment planning and monitoring of treatment success. DECT has been shown to enhance pre-treatment characterization of stone composition in comparison with conventional MDCT and is being increasingly used. Although CT-related radiation dose exposure remains a valid concern, the use of low-dose MDCT protocols and integration of newer iterative reconstruction algorithms into routine CT practice has resulted in a substantial decrease in ionizing radiation exposure. In this review article, our intent is to discuss the role of MDCT in the diagnosis and post-treatment evaluation of urolithiasis and review the impact of emerging CT technologies such as dual energy in clinical practice. PMID:26166961

  4. Advanced terahertz imaging system performance model for concealed weapon identification

    NASA Astrophysics Data System (ADS)

    Murrill, Steven R.; Redman, Brian; Espinola, Richard L.; Franck, Charmaine C.; Petkie, Douglas T.; De Lucia, Frank C.; Jacobs, Eddie L.; Griffin, Steven T.; Halford, Carl E.; Reynolds, Joe

    2007-04-01

    The U.S. Army Night Vision and Electronic Sensors Directorate (NVESD) and the U.S. Army Research Laboratory (ARL) have developed a terahertz-band imaging system performance model for detection and identification of concealed weaponry. The details of this MATLAB-based model which accounts for the effects of all critical sensor and display components, and for the effects of atmospheric attenuation, concealment material attenuation, and active illumination, were reported on at the 2005 SPIE Europe Security and Defence Symposium. The focus of this paper is to report on recent advances to the base model which have been designed to more realistically account for the dramatic impact that target and background orientation can have on target observability as related to specular and Lambertian reflections captured by an active-illumination-based imaging system. The advanced terahertz-band imaging system performance model now also accounts for target and background thermal emission, and has been recast into a user-friendly, Windows-executable tool. This advanced THz model has been developed in support of the Defense Advanced Research Project Agency's (DARPA) Terahertz Imaging Focal-Plane Technology (TIFT) program. This paper will describe the advanced THz model and its new radiometric sub-model in detail, and provide modeling and experimental results on target observability as a function of target and background orientation.

  5. Earth Observing-1 Advanced Land Imager: Radiometric Response Calibration

    NASA Technical Reports Server (NTRS)

    Mendenhall, J. A.; Lencioni, D. E.; Evans, J. B.

    2000-01-01

    The Advanced Land Imager (ALI) is one of three instruments to be flown on the first Earth Observing mission (EO-1) under NASA's New Millennium Program (NMP). ALI contains a number of innovative features, including a wide field of view optical design, compact multispectral focal plane arrays, non-cryogenic HgCdTe detectors for the short wave infrared bands, and silicon carbide optics. This document outlines the techniques adopted during ground calibration of the radiometric response of the Advanced Land Imager. Results from system level measurements of the instrument response, signal-to-noise ratio, saturation radiance, and dynamic range for all detectors of every spectral band are also presented.

  6. [Interventional MR imaging: state of the art and technological advances].

    PubMed

    Viard, R; Rousseau, J

    2008-01-01

    Due to its excellent soft tissue contrast and lack of ionizing radiation, MR imaging is well suited for interventional procedures. MRI is being increasingly used for guidance during percutaneous procedures or surgery. Technical advances in interventional MR imaging are reviewed in this paper. Ergonomical factors with improved access to patients as well as advances in informatics, electronics and robotics largely explain this increasing role. Different elements are discussed from improved access to patients in the scanners to improved acquisition pulse sequences. Selected clinical applications and recent publications will be presented to illustrate the current status of this technique. PMID:18288022

  7. Advanced Imaging Catheter: Final Project Report

    SciTech Connect

    Krulevitch, P; Colston, B; DaSilva, L; Hilken, D; Kluiwstra, J U; Lee, A P; London, R; Miles, R; Schumann, D; Seward, K; Wang, A

    2001-07-20

    Minimally invasive surgery (MIS) is an approach whereby procedures conventionally performed with large and potentially traumatic incisions are replaced by several tiny incisions through which specialized instruments are inserted. Early MIS, often called laparoscopic surgery, used video cameras and laparoscopes to visualize and control the medical devices, which were typically cutting or stapling tools. More recently, catheter-based procedures have become a fast growing sector of all surgeries. In these procedures, small incisions are made into one of the main arteries (e.g. femoral artery in the thigh), and a long thin hollow tube is inserted and positioned near the target area. The key advantage of this technique is that recovery time can be reduced from months to a matter of days. In the United States, over 700,000 catheter procedures are performed annually representing a market of over $350 million. Further growth in this area will require significant improvements in the current catheter technology. In order to effectively navigate a catheter through the tortuous vessels of the body, two capabilities must exist: imaging and positioning. In most cases, catheter procedures rely on radiography for visualization and manual manipulation for positioning of the device. Radiography provides two-dimensional, global images of the vasculature and cannot be used continuously due to radiation exposure to both the patient and physician. Intravascular ultrasound devices are available for continuous local imaging at the catheter tip, but these devices cannot be used simultaneously with therapeutic devices. Catheters are highly compliant devices, and manipulating the catheter is similar to pushing on a string. Often, a guide wire is used to help position the catheter, but this procedure has its own set of problems. Three characteristics are used to describe catheter maneuverability: (1) pushability -- the amount of linear displacement of the distal end (inside body) relative to

  8. Imaging spectrometer technologies for advanced Earth remote sensing

    NASA Technical Reports Server (NTRS)

    Wellman, J. B.; Breckinridge, J. B.; Kuperfman, P.; Salazar, R. P.; Sigurdson, K. B.

    1982-01-01

    A major requirement of multispectral imaging systems for advanced Earth remote sensing is the provision for greater spectral resolution and more versatile spectral band selection. The imaging spectrometer instrument concept provides this versatility by the combination of pushbroom imaging and spectrally dispersing optics using area array detectors in the focal plane. The shuttle imaging spectrometer concept achieves 10- and 20-meter ground instantaneous fields of view with 20-nanometer spectral resolution from Earth Orbit. Onboard processing allows the selection of spectral bands during flight; this, in turn, permits the sensor parameters to be tailored to the experiment objectives. Advances in optical design, infrared detector arrays, and focal plane cooling indicate the feasibility of the instrument concept and support the practicability of a validation flight experiment for the shuttle in the late 1980s.

  9. Recent Advances in Molecular, Multimodal and Theranostic Ultrasound Imaging

    PubMed Central

    Kiessling, Fabian; Fokong, Stanley; Bzyl, Jessica; Lederle, Wiltrud; Palmowski, Moritz; Lammers, Twan

    2014-01-01

    Ultrasound (US) imaging is an exquisite tool for the non-invasive and real-time diagnosis of many different diseases. In this context, US contrast agents can improve lesion delineation, characterization and therapy response evaluation. US contrast agents are usually micrometer-sized gas bubbles, stabilized with soft or hard shells. By conjugating antibodies to the microbubble (MB) surface, and by incorporating diagnostic agents, drugs or nucleic acids into or onto the MB shell, molecular, multimodal and theranostic MB can be generated. We here summarize recent advances in molecular, multimodal and theranostic US imaging, and introduce concepts how such advanced MB can be generated, applied and imaged. Examples are given for their use to image and treat oncological, cardiovascular and neurological diseases. Furthermore, we discuss for which therapeutic entities incorporation into (or conjugation to) MB is meaningful, and how US-mediated MB destruction can increase their extravasation, penetration, internalization and efficacy. PMID:24316070

  10. Imaging spectrometer technologies for advanced earth remote sensing

    NASA Technical Reports Server (NTRS)

    Wellman, J. B.; Breckinridge, J. B.; Kupferman, P.; Salazar, R. P.; Sigurdson, K. B.

    1982-01-01

    A major requirement of multispectral imaging systems for advanced earth remote sensing is the provision for greater spectral resolution and more versatile spectral band selection. The imaging spectrometer instrument concept provides this versatility by the combination of pushbroom imaging and spectrally dispersing optics using area array detectors in the focal plane. The shuttle imaging spectrometer concept achieves 10- and 20-meter ground instantaneous fields of view with 20-nanometer spectral resolution from earth orbit. Onboard processing allows the selection of spectral bands during flight; this, in turn, permits the sensor parameters to be tailored to the experiment objectives. Advances in optical design, infrared detector arrays, and focal plane cooling indicate the feasibility of the instrument concept and support the practicability of a validation flight experiment for the shuttle in the late 1980s. Previously announced in STAR as N83-28542

  11. Advanced digital detectors for neutron imaging.

    SciTech Connect

    Doty, F. Patrick

    2003-12-01

    Neutron interrogation provides unique information valuable for Nonproliferation & Materials Control and other important applications including medicine, airport security, protein crystallography, and corrosion detection. Neutrons probe deep inside massive objects to detect small defects and chemical composition, even through high atomic number materials such as lead. However, current detectors are bulky gas-filled tubes or scintillator/PM tubes, which severely limit many applications. Therefore this project was undertaken to develop new semiconductor radiation detection materials to develop the first direct digital imaging detectors for neutrons. The approach relied on new discovery and characterization of new solid-state sensor materials which convert neutrons directly to electronic signals via reactions BlO(n,a)Li7 and Li6(n,a)T.

  12. Earth Observing-1 Advanced Land Imager: Imaging Performance On-Orbit

    NASA Technical Reports Server (NTRS)

    Hearn, D. R.

    2002-01-01

    This report analyzes the on-orbit imaging performance of the Advanced Land Imager (ALI) on the Earth Observing-1 satellite. The pre-flight calibrations are first summarized. The methods used to reconstruct and geometrically correct the image data from this push-broom sensor are described. The method used here does not refer to the position and attitude telemetry from the spacecraft. Rather, it is assumed that the image of the scene moves across the focal plane with a constant velocity, which can be ascertained from the image data itself. Next, an assortment of the images so reconstructed is presented. Color images sharpened with the 10-m panchromatic band data are shown, and the algorithm for producing them from the 30-m multispectral data is described. The approach taken for assessing spatial resolution is to compare the sharpness of features in the on-orbit image data with profiles predicted on the basis of the pre-flight calibrations. A large assortment of bridge profiles is analyzed, and very good fits to the predicted shapes are obtained. Lunar calibration scans are analyzed to examine the sharpness of the edge-spread function at the limb of the moon. The darkness of the space beyond the limb is better for this purpose than anything that could be simulated on the ground. From these scans, we find clear evidence of scattering in the optical system, as well as some weak ghost images. Scans of planets and stars are also analyzed. Stars are useful point sources of light at all wavelengths, and delineate the point-spread functions of the system. From a quarter-speed scan over the Pleiades, we find that the ALI can detect 6th magnitude stars. The quality of the reconstructed images verifies the capability of the ALI to produce Landsat-type multi spectral data. The signal-to-noise and panchromatic spatial resolution are considerably superior to those of the existing Landsat sensors. The spatial resolution is confirmed to be as good as it was designed to be.

  13. 7 CFR 27.92 - Method of payment; advance deposit.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Method of payment; advance deposit. 27.92 Section 27... Micronaire § 27.92 Method of payment; advance deposit. Any payment or advance deposit under this subpart...,” and may not be made in cash except in cases where the total payment or deposit does not exceed...

  14. A Novel Method of Line Detection using Image Integration Method

    NASA Astrophysics Data System (ADS)

    Lin, Daniel; Sun, Bo

    2015-03-01

    We developed a novel line detection algorithm based on image integration method. Hough Transformation uses spatial image gradient method to detect lines on an image. This is problematic because if the image has a region of high noise intensity, the gradient would point towards the noisy region . Denoising the noisy image requires an application of sophisticated noise reduction algorithm which increases computation complexity. Our algorithm can remedy this problem by averaging the pixels around the image region of interest. We were able to detect collagen fiber lines on an image produced by confocal microscope.

  15. Advanced endoscopic imaging of indeterminate biliary strictures

    PubMed Central

    Tabibian, James H; Visrodia, Kavel H; Levy, Michael J; Gostout, Christopher J

    2015-01-01

    Endoscopic evaluation of indeterminate biliary strictures (IDBSs) has evolved considerably since the development of flexible fiberoptic endoscopes over 50 years ago. Endoscopic retrograde cholangiography pancreatography (ERCP) was introduced nearly a decade later and has since become the mainstay of therapy for relieving obstruction of the biliary tract. However, longstanding methods of ERCP-guided tissue acquisition (i.e., biliary brushings for cytology and intraductal forceps biopsy for histology) have demonstrated disappointing performance characteristics in distinguishing malignant from benign etiologies of IDBSs. The limitations of these methods have thus helped drive the search for novel techniques to enhance the evaluation of IDBSs and thereby improve diagnosis and clinical care. These modalities include, but are not limited to, endoscopic ultrasound, intraductal ultrasound, cholangioscopy, confocal endomicroscopy, and optical coherence tomography. In this review, we discuss established and emerging options in the evaluation of IDBSs. PMID:26675379

  16. Fast neutron imaging device and method

    DOEpatents

    Popov, Vladimir; Degtiarenko, Pavel; Musatov, Igor V.

    2014-02-11

    A fast neutron imaging apparatus and method of constructing fast neutron radiography images, the apparatus including a neutron source and a detector that provides event-by-event acquisition of position and energy deposition, and optionally timing and pulse shape for each individual neutron event detected by the detector. The method for constructing fast neutron radiography images utilizes the apparatus of the invention.

  17. A Review of Significant Advances in Neutron Imaging from Conception to the Present

    NASA Astrophysics Data System (ADS)

    Brenizer, J. S.

    This review summarizes the history of neutron imaging with a focus on the significant events and technical advancements in neutron imaging methods, from the first radiograph to more recent imaging methods. A timeline is presented to illustrate the key accomplishments that advanced the neutron imaging technique. Only three years after the discovery of the neutron by English physicist James Chadwick in 1932, neutron imaging began with the work of Hartmut Kallmann and Ernst Kuhn in Berlin, Germany, from 1935-1944. Kallmann and Kuhn were awarded a joint US Patent issued in January 1940. Little progress was made until the mid-1950's when Thewlis utilized a neutron beam from the BEPO reactor at Harwell, marking the beginning of the application of neutron imaging to practical applications. As the film method was improved, imaging moved from a qualitative to a quantitative technique, with applications in industry and in nuclear fuels. Standards were developed to aid in the quantification of the neutron images and the facility's capabilities. The introduction of dynamic neutron imaging (initially called real-time neutron radiography and neutron television) in the late 1970's opened the door to new opportunities and new challenges. As the electronic imaging matured, the introduction of the CCD imaging devices and solid-state light intensifiers helped address some of these challenges. Development of improved imaging devices for the medical community has had a major impact on neutron imaging. Additionally, amorphous silicon sensors provided improvements in temporal resolution, while providing a reasonably large imaging area. The development of new neutron imaging sensors and the development of new neutron imaging techniques in the past decade has advanced the technique's ability to provide insight and understanding of problems that other non-destructive techniques could not provide. This rapid increase in capability and application would not have been possible without the

  18. The ADIS advanced data acquisition, imaging, and storage system

    SciTech Connect

    Flaherty, J.W.

    1986-01-01

    The design and development of Automated Ultrasonic Scanning Systems (AUSS) by McDonnell Aircraft Company has provided the background for the development of the ADIS advanced data acquisition, imaging, and storage system. The ADIS provides state-of-the-art ultrasonic data processing and imaging features which can be utilized in both laboratory and production line composite evaluation applications. System features, such as, real-time imaging, instantaneous electronic rescanning, multitasking capability, histograms, and cross-sections, provide the tools necessary to inspect and evaluate composite parts quickly and consistently.

  19. The Advanced Space Plant Culture Device with Live Imaging Technique

    NASA Astrophysics Data System (ADS)

    Zheng, Weibo; Zhang, Tao; Tong, Guanghui

    The live imaging techniques, including the color and fluorescent imags, are very important and useful for space life science. The advanced space plant culture Device (ASPCD) with live imaging Technique, developed for Chinese Spacecraft, would be introduced in this paper. The ASPCD had two plant experimental chambers. Three cameras (two color cameras and one fluorescent camera) were installed in the two chambers. The fluorescent camera could observe flowering genes, which were labeled by GFP. The lighting, nutrient, temperature controling and water recycling were all independent in each chamber. The ASPCD would beed applied to investigate for the growth and development of the high plant under microgravity conditions on board the Chinese Spacecraft.

  20. In-flight performance of the Japanese Advanced Meteorological Imager

    NASA Astrophysics Data System (ADS)

    Puschell, Jeffrey J.; Osgood, Roderic; Auchter, Joseph; Hurt, W. Todd; Hitomi, Miyamoto; Sasaki, Masayuki; Tahara, Yoshihiko; Tadros, Alfred; Faller, Ken; Mclaren, Mark; Sheffield, Jonathan; Gaiser, John; Kamel, Ahmed; Gunshor, Mathew

    2006-08-01

    The Japanese Advanced Meteorological Imager (JAMI) was developed by Raytheon and delivered to Space Systems/Loral as the Imager Subsystem for Japan's MTSAT-1R satellite. MTSAT-1R was launched from the Tanegashima Space Center on 2005 February 26 and became formally operational on 2005 June 28. This paper compares in-flight performance of JAMI with predictions made before launch. The performance areas discussed include radiometric sensitivity (NEDT and SNR) versus spectral channel, calibration accuracy versus spectral channel derived from comparisons of JAMI and AIRS measurements and image navigation and registration.

  1. Advanced electromagnetic methods for aerospace vehicles

    NASA Astrophysics Data System (ADS)

    Balanis, Constantine A.; Sun, Weimin; El-Sharawy, El-Budawy; Aberle, James T.; Birtcher, Craig R.; Peng, Jian; Tirkas, Panayiotis A.; Kokotoff, David; Zavosh, Frank

    1993-06-01

    The Advanced Helicopter Electromagnetics (AHE) Industrial Associates Program has continuously progressed with its research effort focused on subjects identified and recommended by the Advisory Task Force of the program. The research activities in this reporting period have been steered toward practical helicopter electromagnetic problems, such as HF antenna problems and antenna efficiencies, recommended by the AHE members at the annual conference held at Arizona State University on 28-29 Oct. 1992 and the last biannual meeting held at the Boeing Helicopter on 19-20 May 1993. The main topics addressed include the following: Composite Materials and Antenna Technology. The research work on each topic is closely tied with the AHE Consortium members' interests. Significant progress in each subject is reported. Special attention in the area of Composite Materials has been given to the following: modeling of material discontinuity and their effects on towel-bar antenna patterns; guidelines for composite material modeling by using the Green's function approach in the NEC code; measurements of towel-bar antennas grounded with a partially material-coated plate; development of 3-D volume mesh generator for modeling thick and volumetric dielectrics by using FD-TD method; FDTD modeling of horn antennas with composite E-plane walls; and antenna efficiency analysis for a horn antenna loaded with composite dielectric materials.

  2. Advanced continuous cultivation methods for systems microbiology.

    PubMed

    Adamberg, Kaarel; Valgepea, Kaspar; Vilu, Raivo

    2015-09-01

    Increasing the throughput of systems biology-based experimental characterization of in silico-designed strains has great potential for accelerating the development of cell factories. For this, analysis of metabolism in the steady state is essential as only this enables the unequivocal definition of the physiological state of cells, which is needed for the complete description and in silico reconstruction of their phenotypes. In this review, we show that for a systems microbiology approach, high-resolution characterization of metabolism in the steady state--growth space analysis (GSA)--can be achieved by using advanced continuous cultivation methods termed changestats. In changestats, an environmental parameter is continuously changed at a constant rate within one experiment whilst maintaining cells in the physiological steady state similar to chemostats. This increases the resolution and throughput of GSA compared with chemostats, and, moreover, enables following of the dynamics of metabolism and detection of metabolic switch-points and optimal growth conditions. We also describe the concept, challenge and necessary criteria of the systematic analysis of steady-state metabolism. Finally, we propose that such systematic characterization of the steady-state growth space of cells using changestats has value not only for fundamental studies of metabolism, but also for systems biology-based metabolic engineering of cell factories. PMID:26220303

  3. Advanced electromagnetic methods for aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; Sun, Weimin; El-Sharawy, El-Budawy; Aberle, James T.; Birtcher, Craig R.; Peng, Jian; Tirkas, Panayiotis A.; Andrew, William V.; Kokotoff, David; Zavosh, Frank

    1993-01-01

    The Advanced Helicopter Electromagnetics (AHE) Industrial Associates Program has fruitfully completed its fourth year. Under the support of the AHE members and the joint effort of the research team, new and significant progress has been achieved in the year. Following the recommendations by the Advisory Task Force, the research effort is placed on more practical helicopter electromagnetic problems, such as HF antennas, composite materials, and antenna efficiencies. In this annual report, the main topics to be addressed include composite materials and antenna technology. The research work on each topic has been driven by the AHE consortium members' interests and needs. The remarkable achievements and progresses in each subject is reported respectively in individual sections of the report. The work in the area of composite materials includes: modeling of low conductivity composite materials by using Green's function approach; guidelines for composite material modeling by using the Green's function approach in the NEC code; development of 3-D volume mesh generator for modeling thick and volumetric dielectrics by using FD-TD method; modeling antenna elements mounted on a composite Comanche tail stabilizer; and antenna pattern control and efficiency estimate for a horn antenna loaded with composite dielectric materials.

  4. Advanced electromagnetic methods for aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; Sun, Weimin; El-Sharawy, El-Budawy; Aberle, James T.; Birtcher, Craig R.; Peng, Jian; Tirkas, Panayiotis A.; Kokotoff, David; Zavosh, Frank

    1993-01-01

    The Advanced Helicopter Electromagnetics (AHE) Industrial Associates Program has continuously progressed with its research effort focused on subjects identified and recommended by the Advisory Task Force of the program. The research activities in this reporting period have been steered toward practical helicopter electromagnetic problems, such as HF antenna problems and antenna efficiencies, recommended by the AHE members at the annual conference held at Arizona State University on 28-29 Oct. 1992 and the last biannual meeting held at the Boeing Helicopter on 19-20 May 1993. The main topics addressed include the following: Composite Materials and Antenna Technology. The research work on each topic is closely tied with the AHE Consortium members' interests. Significant progress in each subject is reported. Special attention in the area of Composite Materials has been given to the following: modeling of material discontinuity and their effects on towel-bar antenna patterns; guidelines for composite material modeling by using the Green's function approach in the NEC code; measurements of towel-bar antennas grounded with a partially material-coated plate; development of 3-D volume mesh generator for modeling thick and volumetric dielectrics by using FD-TD method; FDTD modeling of horn antennas with composite E-plane walls; and antenna efficiency analysis for a horn antenna loaded with composite dielectric materials.

  5. Method for removing RFI from SAR images

    DOEpatents

    Doerry, Armin W.

    2003-08-19

    A method of removing RFI from a SAR by comparing two SAR images on a pixel by pixel basis and selecting the pixel with the lower magnitude to form a composite image. One SAR image is the conventional image produced by the SAR. The other image is created from phase-history data which has been filtered to have the frequency bands containing the RFI removed.

  6. Advances of Molecular Imaging in Epilepsy.

    PubMed

    Galovic, Marian; Koepp, Matthias

    2016-06-01

    Positron emission tomography (PET) is a neuroimaging method that offers insights into the molecular functioning of a human brain. It has been widely used to study metabolic and neurotransmitter abnormalities in people with epilepsy. This article reviews the development of several PET radioligands and their application in studying the molecular mechanisms of epilepsy. Over the last decade, tracers binding to serotonin and γ-aminobutyric acid (GABA) receptors have been used to delineate the location of the epileptic focus. PET studies have examined the role of opioids, cannabinoids, acetylcholine, and dopamine in modulating neuronal hyperexcitability and seizure termination. In vivo analyses of drug transporters, e.g., P-glycoprotein, have increased our understanding of pharmacoresistance that could inform new therapeutic strategies. Finally, PET experiments targeting neuroinflammation and glutamate receptors might guide the development of novel biomarkers of epileptogenesis. PMID:27113252

  7. Advanced technology development for image gathering, coding, and processing

    NASA Technical Reports Server (NTRS)

    Huck, Friedrich O.

    1990-01-01

    Three overlapping areas of research activities are presented: (1) Information theory and optimal filtering are extended to visual information acquisition and processing. The goal is to provide a comprehensive methodology for quantitatively assessing the end-to-end performance of image gathering, coding, and processing. (2) Focal-plane processing techniques and technology are developed to combine effectively image gathering with coding. The emphasis is on low-level vision processing akin to the retinal processing in human vision. (3) A breadboard adaptive image-coding system is being assembled. This system will be used to develop and evaluate a number of advanced image-coding technologies and techniques as well as research the concept of adaptive image coding.

  8. An advanced image fusion algorithm based on wavelet transform: incorporation with PCA and morphological processing

    NASA Astrophysics Data System (ADS)

    Zheng, Yufeng; Essock, Edward A.; Hansen, Bruce C.

    2004-05-01

    There are numerous applications for image fusion, some of which include medical imaging, remote sensing, nighttime operations and multi-spectral imaging. In general, the discrete wavelet transform (DWT) and various pyramids (such as Laplacian, ratio, contrast, gradient and morphological pyramids) are the most common and effective methods. For quantitative evaluation of the quality of fused imagery, the root mean square error (RMSE) is the most suitable measure of quality if there is a "ground truth" image available; otherwise, the entropy, spatial frequency or image quality index of the input images and the fused images can be calculated and compared. Here, after analyzing the pyramids" performance with the four measures mentioned, an advanced wavelet transform (aDWT) method that incorporates principal component analysis (PCA) and morphological processing into a regular DWT fusion algorithm is presented. Specifically, at each scale of the wavelet transformed images, a principle vector was derived from two input images and then applied to two of the images" approximation coefficients (i.e., they were fused by using the principal eigenvector). For the detail coefficients (i.e., three quarters of the coefficients), the larger absolute values were chosen and subjected to a neighborhood morphological processing procedure which served to verify the selected pixels by using a "filling" and "cleaning" operation (this operation filled or removed isolated pixels in a 3-by-3 local region). The fusion performance of the advanced DWT (aDWT) method proposed here was compared with six other common methods, and, based on the four quantitative measures, was found to perform the best when tested on the four input image types. Since the different image sources used here varied with respect to intensity, contrast, noise, and intrinsic characteristics, the aDWT is a promising image fusion procedure for inhomogeneous imagery.

  9. Approximating tasseled cap values to evaluate brightness, greenness, and wetness for the Advanced Land Imager (ALI)

    USGS Publications Warehouse

    Yamamoto, Kristina H.; Finn, Michael P.

    2012-01-01

    The Tasseled Cap transformation is a method of image band conversion to enhance spectral information. It primarily is used to detect vegetation using the derived brightness, greenness, and wetness bands. An approximation of Tasseled Cap values for the Advanced Land Imager was investigated and compared to the Landsat Thematic Mapper Tasseled Cap values. Despite sharing similar spectral, temporal, and spatial resolution, the two systems are not interchangeable with regard to Tasseled Cap matrices.

  10. Challenges and recent advances in mass spectrometric imaging of neurotransmitters

    PubMed Central

    Gemperline, Erin; Chen, Bingming; Li, Lingjun

    2014-01-01

    Mass spectrometric imaging (MSI) is a powerful tool that grants the ability to investigate a broad mass range of molecules, from small molecules to large proteins, by creating detailed distribution maps of selected compounds. To date, MSI has demonstrated its versatility in the study of neurotransmitters and neuropeptides of different classes toward investigation of neurobiological functions and diseases. These studies have provided significant insight in neurobiology over the years and current technical advances are facilitating further improvements in this field. neurotransmitters, focusing specifically on the challenges and recent Herein, we advances of MSI of neurotransmitters. PMID:24568355

  11. Review methods for image segmentation from computed tomography images

    SciTech Connect

    Mamat, Nurwahidah; Rahman, Wan Eny Zarina Wan Abdul; Soh, Shaharuddin Cik; Mahmud, Rozi

    2014-12-04

    Image segmentation is a challenging process in order to get the accuracy of segmentation, automation and robustness especially in medical images. There exist many segmentation methods that can be implemented to medical images but not all methods are suitable. For the medical purposes, the aims of image segmentation are to study the anatomical structure, identify the region of interest, measure tissue volume to measure growth of tumor and help in treatment planning prior to radiation therapy. In this paper, we present a review method for segmentation purposes using Computed Tomography (CT) images. CT images has their own characteristics that affect the ability to visualize anatomic structures and pathologic features such as blurring of the image and visual noise. The details about the methods, the goodness and the problem incurred in the methods will be defined and explained. It is necessary to know the suitable segmentation method in order to get accurate segmentation. This paper can be a guide to researcher to choose the suitable segmentation method especially in segmenting the images from CT scan.

  12. Recent advances in imaging crustal fault zones: a review

    NASA Astrophysics Data System (ADS)

    Yang, Hongfeng

    2015-04-01

    Crustal faults usually have a fault core and surrounding regions of brittle damage, forming a low-velocity zone (LVZ) in the immediate vicinity of the main slip interface. The LVZ may amplify ground motion, influence rupture propagation, and hold important information of earthquake physics. A number of geophysical and geodetic methods have been developed to derive high-resolution structure of the LVZ. Here, I review a few recent approaches, including ambient noise cross-correlation on dense across-fault arrays and GPS recordings of fault-zone trapped waves. Despite the past efforts, many questions concerning the LVZ structure remain unclear, such as the depth extent of the LVZ. High-quality data from larger and denser arrays and new seismic imaging technique using larger portion of recorded waveforms, which are currently under active development, may be able to better resolve the LVZ structure. In addition, effects of the along-strike segmentation and gradational velocity changes across the boundaries between the LVZ and the host rock on rupture propagation should be investigated by conducting comprehensive numerical experiments. Furthermore, high-quality active sources such as recently developed large-volume air-gun arrays provide a powerful tool to continuously monitor temporal changes of fault-zone properties, and thus can advance our understanding of fault zone evolution.

  13. Composite ultrasound imaging apparatus and method

    DOEpatents

    Morimoto, A.K.; Bow, W.J. Jr.; Strong, D.S.; Dickey, F.M.

    1998-09-15

    An imaging apparatus and method for use in presenting composite two dimensional and three dimensional images from individual ultrasonic frames. A cross-sectional reconstruction is applied by using digital ultrasound frames, transducer orientation and a known center. Motion compensation, rank value filtering, noise suppression and tissue classification are utilized to optimize the composite image. 37 figs.

  14. Composite ultrasound imaging apparatus and method

    DOEpatents

    Morimoto, Alan K.; Bow, Jr., Wallace J.; Strong, David Scott; Dickey, Fred M.

    1998-01-01

    An imaging apparatus and method for use in presenting composite two dimensional and three dimensional images from individual ultrasonic frames. A cross-sectional reconstruction is applied by using digital ultrasound frames, transducer orientation and a known center. Motion compensation, rank value filtering, noise suppression and tissue classification are utilized to optimize the composite image.

  15. Advances in Magnetic Resonance Imaging Contrast Agents for Biomarker Detection

    PubMed Central

    Sinharay, Sanhita; Pagel, Mark D.

    2016-01-01

    Recent advances in magnetic resonance imaging (MRI) contrast agents have provided new capabilities for biomarker detection through molecular imaging. MRI contrast agents based on the T2 exchange mechanism have more recently expanded the armamentarium of agents for molecular imaging. Compared with T1 and T2* agents, T2 exchange agents have a slower chemical exchange rate, which improves the ability to design these MRI contrast agents with greater specificity for detecting the intended biomarker. MRI contrast agents that are detected through chemical exchange saturation transfer (CEST) have even slower chemical exchange rates. Another emerging class of MRI contrast agents uses hyperpolarized 13C to detect the agent with outstanding sensitivity. These hyperpolarized 13C agents can be used to track metabolism and monitor characteristics of the tissue microenvironment. Together, these various MRI contrast agents provide excellent opportunities to develop molecular imaging for biomarker detection. PMID:27049630

  16. Advances in Magnetic Resonance Imaging Contrast Agents for Biomarker Detection.

    PubMed

    Sinharay, Sanhita; Pagel, Mark D

    2016-06-12

    Recent advances in magnetic resonance imaging (MRI) contrast agents have provided new capabilities for biomarker detection through molecular imaging. MRI contrast agents based on the T2 exchange mechanism have more recently expanded the armamentarium of agents for molecular imaging. Compared with T1 and T2* agents, T2 exchange agents have a slower chemical exchange rate, which improves the ability to design these MRI contrast agents with greater specificity for detecting the intended biomarker. MRI contrast agents that are detected through chemical exchange saturation transfer (CEST) have even slower chemical exchange rates. Another emerging class of MRI contrast agents uses hyperpolarized (13)C to detect the agent with outstanding sensitivity. These hyperpolarized (13)C agents can be used to track metabolism and monitor characteristics of the tissue microenvironment. Together, these various MRI contrast agents provide excellent opportunities to develop molecular imaging for biomarker detection. PMID:27049630

  17. Advanced hyperspectral video imaging system using Amici prism.

    PubMed

    Feng, Jiao; Fang, Xiaojing; Cao, Xun; Ma, Chenguang; Dai, Qionghai; Zhu, Hongbo; Wang, Yongjin

    2014-08-11

    In this paper, we propose an advanced hyperspectral video imaging system (AHVIS), which consists of an objective lens, an occlusion mask, a relay lens, an Amici prism and two cameras. An RGB camera is used for spatial reading and a gray scale camera is used for measuring the scene with spectral information. The objective lens collects more light energy from the observed scene and images the scene on an occlusion mask, which subsamples the image of the observed scene. Then, the subsampled image is sent to the gray scale camera through the relay lens and the Amici prism. The Amici prism that is used to realize spectral dispersion along the optical path reduces optical distortions and offers direct view of the scene. The main advantages of the proposed system are improved light throughput and less optical distortion. Furthermore, the presented configuration is more compact, robust and practicable. PMID:25321019

  18. Advances in Magnetic Resonance Imaging Contrast Agents for Biomarker Detection

    NASA Astrophysics Data System (ADS)

    Sinharay, Sanhita; Pagel, Mark D.

    2016-06-01

    Recent advances in magnetic resonance imaging (MRI) contrast agents have provided new capabilities for biomarker detection through molecular imaging. MRI contrast agents based on the T2 exchange mechanism have more recently expanded the armamentarium of agents for molecular imaging. Compared with T1 and T2* agents, T2 exchange agents have a slower chemical exchange rate, which improves the ability to design these MRI contrast agents with greater specificity for detecting the intended biomarker. MRI contrast agents that are detected through chemical exchange saturation transfer (CEST) have even slower chemical exchange rates. Another emerging class of MRI contrast agents uses hyperpolarized 13C to detect the agent with outstanding sensitivity. These hyperpolarized 13C agents can be used to track metabolism and monitor characteristics of the tissue microenvironment. Together, these various MRI contrast agents provide excellent opportunities to develop molecular imaging for biomarker detection.

  19. MO-C-18A-01: Advances in Model-Based 3D Image Reconstruction

    SciTech Connect

    Chen, G; Pan, X; Stayman, J; Samei, E

    2014-06-15

    Recent years have seen the emergence of CT image reconstruction techniques that exploit physical models of the imaging system, photon statistics, and even the patient to achieve improved 3D image quality and/or reduction of radiation dose. With numerous advantages in comparison to conventional 3D filtered backprojection, such techniques bring a variety of challenges as well, including: a demanding computational load associated with sophisticated forward models and iterative optimization methods; nonlinearity and nonstationarity in image quality characteristics; a complex dependency on multiple free parameters; and the need to understand how best to incorporate prior information (including patient-specific prior images) within the reconstruction process. The advantages, however, are even greater – for example: improved image quality; reduced dose; robustness to noise and artifacts; task-specific reconstruction protocols; suitability to novel CT imaging platforms and noncircular orbits; and incorporation of known characteristics of the imager and patient that are conventionally discarded. This symposium features experts in 3D image reconstruction, image quality assessment, and the translation of such methods to emerging clinical applications. Dr. Chen will address novel methods for the incorporation of prior information in 3D and 4D CT reconstruction techniques. Dr. Pan will show recent advances in optimization-based reconstruction that enable potential reduction of dose and sampling requirements. Dr. Stayman will describe a “task-based imaging” approach that leverages models of the imaging system and patient in combination with a specification of the imaging task to optimize both the acquisition and reconstruction process. Dr. Samei will describe the development of methods for image quality assessment in such nonlinear reconstruction techniques and the use of these methods to characterize and optimize image quality and dose in a spectrum of clinical

  20. Method for imaging a concealed object

    DOEpatents

    Davidson, James R [Idaho Falls, ID; Partin, Judy K [Idaho Falls, ID; Sawyers, Robert J [Idaho Falls, ID

    2007-07-03

    A method for imaging a concealed object is described and which includes a step of providing a heat radiating body, and wherein an object to be detected is concealed on the heat radiating body; imaging the heat radiating body to provide a visibly discernible infrared image of the heat radiating body; and determining if the visibly discernible infrared image of the heat radiating body is masked by the presence of the concealed object.

  1. Optical design and characterization of an advanced computational imaging system

    NASA Astrophysics Data System (ADS)

    Shepard, R. Hamilton; Fernandez-Cull, Christy; Raskar, Ramesh; Shi, Boxin; Barsi, Christopher; Zhao, Hang

    2014-09-01

    We describe an advanced computational imaging system with an optical architecture that enables simultaneous and dynamic pupil-plane and image-plane coding accommodating several task-specific applications. We assess the optical requirement trades associated with custom and commercial-off-the-shelf (COTS) optics and converge on the development of two low-cost and robust COTS testbeds. The first is a coded-aperture programmable pixel imager employing a digital micromirror device (DMD) for image plane per-pixel oversampling and spatial super-resolution experiments. The second is a simultaneous pupil-encoded and time-encoded imager employing a DMD for pupil apodization or a deformable mirror for wavefront coding experiments. These two testbeds are built to leverage two MIT Lincoln Laboratory focal plane arrays - an orthogonal transfer CCD with non-uniform pixel sampling and on-chip dithering and a digital readout integrated circuit (DROIC) with advanced on-chip per-pixel processing capabilities. This paper discusses the derivation of optical component requirements, optical design metrics, and performance analyses for the two testbeds built.

  2. Advanced biologically plausible algorithms for low-level image processing

    NASA Astrophysics Data System (ADS)

    Gusakova, Valentina I.; Podladchikova, Lubov N.; Shaposhnikov, Dmitry G.; Markin, Sergey N.; Golovan, Alexander V.; Lee, Seong-Whan

    1999-08-01

    At present, in computer vision, the approach based on modeling the biological vision mechanisms is extensively developed. However, up to now, real world image processing has no effective solution in frameworks of both biologically inspired and conventional approaches. Evidently, new algorithms and system architectures based on advanced biological motivation should be developed for solution of computational problems related to this visual task. Basic problems that should be solved for creation of effective artificial visual system to process real world imags are a search for new algorithms of low-level image processing that, in a great extent, determine system performance. In the present paper, the result of psychophysical experiments and several advanced biologically motivated algorithms for low-level processing are presented. These algorithms are based on local space-variant filter, context encoding visual information presented in the center of input window, and automatic detection of perceptually important image fragments. The core of latter algorithm are using local feature conjunctions such as noncolinear oriented segment and composite feature map formation. Developed algorithms were integrated into foveal active vision model, the MARR. It is supposed that proposed algorithms may significantly improve model performance while real world image processing during memorizing, search, and recognition.

  3. Advanced imaging techniques for the detection of breast cancer.

    PubMed

    Jochelson, Maxine

    2012-01-01

    Mammography is the only breast imaging examination that has been shown to reduce breast cancer mortality. Population-based sensitivity is 75% to 80%, but sensitivity in high-risk women with dense breasts is only in the range of 50%. Breast ultrasound and contrast-enhanced breast magnetic resonance imaging (MRI) have become additional standard modalities used in the diagnosis of breast cancer. In high-risk women, ultrasound is known to detect approximately four additional cancers per 1,000 women. MRI is exquisitely sensitive for the detection of breast cancer. In high-risk women, it finds an additional four to five cancers per 100 women. However, both ultrasound and MRI are also known to lead to a large number of additional benign biopsies and short-term follow-up examinations. Many new breast imaging tools have improved and are being developed to improve on our current ability to diagnose early-stage breast cancer. These can be divided into two groups. The first group is those that are advances in current techniques, which include digital breast tomosynthesis and contrast-enhanced mammography and ultrasound with elastography or microbubbles. The other group includes new breast imaging platforms such as breast computed tomography (CT) scanning and radionuclide breast imaging. These are exciting advances. However, in this era of cost and radiation containment, it is imperative to look at all of them objectively to see which will provide clinically relevant additional information. PMID:24451711

  4. Advanced Imaging Modalities in the Detection of Cerebral Vasospasm

    PubMed Central

    Mills, Jena N.; Mehta, Vivek; Russin, Jonathan; Amar, Arun P.; Rajamohan, Anandh; Mack, William J.

    2013-01-01

    The pathophysiology of cerebral vasospasm following aneurysmal subarachnoid hemorrhage (SAH) is complex and is not entirely understood. Mechanistic insights have been gained through advances in the capabilities of diagnostic imaging. Core techniques have focused on the assessment of vessel caliber, tissue metabolism, and/or regional perfusion parameters. Advances in imaging have provided clinicians with a multifaceted approach to assist in the detection of cerebral vasospasm and the diagnosis of delayed ischemic neurologic deficits (DIND). However, a single test or algorithm with broad efficacy remains elusive. This paper examines both anatomical and physiological imaging modalities applicable to post-SAH vasospasm and offers a historical background. We consider cerebral blood flow velocities measured by Transcranial Doppler Ultrasonography (TCD). Structural imaging techniques, including catheter-based Digital Subtraction Angiography (DSA), CT Angiography (CTA), and MR Angiography (MRA), are reviewed. We examine physiologic assessment by PET, HMPAO SPECT, 133Xe Clearance, Xenon-Enhanced CT (Xe/CT), Perfusion CT (PCT), and Diffusion-Weighted/MR Perfusion Imaging. Comparative advantages and limitations are discussed. PMID:23476766

  5. Methods for Imaging Mercury's Sodium Exosphere.

    NASA Astrophysics Data System (ADS)

    Wilson, J.; Baumgardner, J.; Mendillo, M.

    We have developed observational methods for imaging Mercury's sodium exosphere with an image-slicer and medium-resolution spectrograph. We have tested two methods of recording the image slicer spectra: (1) digitally recording 1/30th second images with an intensified, fast readout CCD, and (2) taking long-exposure integrations with an astronomical grade CCD. 1. High speed intensified video recording is the key to our High Definition Imaging (HDI) method, whereby we select the small subset of spectral images which are recorded during brief instances of perfect seeing. Simultaneous video recording of a white-light image of Mercury provides the measure of the seeing conditions during each 1/30th second interval. Subsequent shifting-and-adding of the best spectral images allows us to construct a relatively high S/N images of the sodium D1 and D2 wavelengths. This method works best for ˜ 1-meter-class telescopes and smaller, since a smaller telescope is more likely to occasionally see a planar wave over its whole aperture. The drawbacks to HDI are that video images have more noise than integrated CCD images, and that available video chips cannot completely resolve each optical fiber in the image slicer of all fibers in the 20x20 array are imaged onto the chip. 2. We have also recorded image slicer spectra with an integrating astronomical CCD to test the advantages of lower noise and better spatial resolution of the optical fibers. Since this method does not allow for subsequent correction of atmospheric seeing, smaller telescopes no longer provide any seeing advantage, and larger telescopes (>1 m) are actually preferable since they result in brighter images for a given spatial scale.

  6. Gamma-ray Imaging Methods

    SciTech Connect

    Vetter, K; Mihailescu, L; Nelson, K; Valentine, J; Wright, D

    2006-10-05

    In this document we discuss specific implementations for gamma-ray imaging instruments including the principle of operation and describe systems which have been built and demonstrated as well as systems currently under development. There are several fundamentally different technologies each with specific operational requirements and performance trade offs. We provide an overview of the different gamma-ray imaging techniques and briefly discuss challenges and limitations associated with each modality (in the appendix we give detailed descriptions of specific implementations for many of these technologies). In Section 3 we summarize the performance and operational aspects in tabular form as an aid for comparing technologies and mapping technologies to potential applications.

  7. Advances in the reconstruction of LBT LINC-NIRVANA images

    NASA Astrophysics Data System (ADS)

    La Camera, A.; Desiderá, G.; Arcidiacono, C.; Boccacci, P.; Bertero, M.

    2007-09-01

    Context: LINC-NIRVANA, the Fizeau interferometer of the Large Binocular Telescope (LBT), will require routine use of image reconstruction methods for data reduction. To this purpose our group has already developed the software package AIRY (Astronomical Image Restoration in interferometrY). Aims: Observations of a target, with different orientations of the baseline of LINC-NIRVANA, will provide images with different orientations with respect to the CCD camera. This rotation effect was not taken into account in our previous work. Therefore in this paper we propose a method able to compensate for the rotation of the field of view. Moreover we investigate acceleration techniques for reducing the computational burden of multiple image deconvolution. Methods: The basic method is a suitable modification of the Richardson-Lucy algorithm, also implementing an approach we proposed for reducing boundary effects. Acceleration techniques, proposed by Biggs & Andrews, are extended and applied to this new algorithm. Finally a method for estimating the unknown point spread function (PSF) by extracting and extrapolating the image of a reference star is developed and implemented. Results: The method introduced for compensating object rotation and reducing boundary effects, as well as its accelerated versions, are tested on simulated LINC-NIRVANA images, using the VLT image of the Crab Nebula as test object. The results are very promising. Moreover the method for PSFs extraction is tested on simulated images, derived from the LBT image of the galaxy NGC 6946 and obtained by convolving this image with PSFs computed by means of the numerical code LOST (Layer Oriented Simulation Tool).

  8. Advances in brain imaging: a new ethical challenge.

    PubMed

    Alfano, B; Brunetti, A

    1997-01-01

    Technical advances in the past 25 years permitted substantial advances in the neuroimaging field, expanding the diagnostic and research potentials and significantly reducing the use of old invasive imaging techniques for research purposes. The safer procedures now available allow acquisition of reference data, morphological assessment and functional characterisation from healthy volunteers. However, enrollment of volunteers is still a sensitive ethical issue. Ethical problems related to informed consent, for both research and diagnostic procedures, in patients with neuropsychiatric disorders represent an additional crucial issue. Furthermore, with both functional and structural neuroimaging studies, there is a theoretical risk of violation of individual privacy. Research in the neuroimaging field should tend to increase the amount of information obtained through appropriate post-processing procedures, including multimodality image fusion, and to limit stress and discomfort. PMID:9616958

  9. Why Video? How Technology Advances Method

    ERIC Educational Resources Information Center

    Downing, Martin J., Jr.

    2008-01-01

    This paper reports on the use of video to enhance qualitative research. Advances in technology have improved our ability to capture lived experiences through visual means. I reflect on my previous work with individuals living with HIV/AIDS, the results of which are described in another paper, to evaluate the effectiveness of video as a medium that…

  10. Advanced Imaging for Biopsy Guidance in Primary Brain Tumors

    PubMed Central

    Tsiouris, Apostolos J; Ramakrishna, Rohan

    2016-01-01

    Accurate glioma sampling is required for diagnosis and establishing eligibility for relevant clinical trials. MR-based perfusion and spectroscopy sequences supplement conventional MR in noninvasively predicting the areas of highest tumor grade for biopsy. We report the case of a patient with gliomatosis cerebri and multifocal patchy enhancement in whom the combination of advanced and conventional imaging attributes successfully guided a diagnostic biopsy. PMID:27014538

  11. Advanced indium antimonide monolithic charge coupled infrared imaging arrays

    NASA Technical Reports Server (NTRS)

    Koch, T. L.; Merilainen, C. A.; Thom, R. D.

    1981-01-01

    The continued process development of SiO2 insulators for use in advanced InSb monolithic charge coupled infrared imaging arrays is described. Specific investigations into the use of plasma enhanced chemical vapor deposited (PECVD) SiO2 as a gate insulator for InSb charge coupled devices is discussed, as are investigations of other chemical vapor deposited SiO2 materials.

  12. Advances in PET Imaging of Degenerative, Cerebrovascular, and Traumatic Causes of Dementia.

    PubMed

    Eisenmenger, Laura B; Huo, Eugene J; Hoffman, John M; Minoshima, Satoshi; Matesan, Manuela C; Lewis, David H; Lopresti, Brian J; Mathis, Chester A; Okonkwo, David O; Mountz, James M

    2016-01-01

    In this review we present the most recent advances in nuclear medicine imaging as a diagnostic and management tool for dementia. The clinical diagnosis of dementia syndromes can be challenging for physicians, particularly in the early stages of disease. Given the growing number of individuals affected by dementia, early and accurate diagnosis can lead to improved clinical management of patients. Although tests are available for exclusion of certain causes of cognitive impairment, the results rarely allow the clinician to make a definitive diagnosis. For this reason, information obtained from imaging ("imaging biomarkers") is playing an increasingly important role in the workup of patients with suspected dementia. Imaging biomarkers also provide indispensable tools for clinical and preclinical studies of dementing illnesses to elucidate their pathophysiology and to develop better therapies. A wide range of imaging has been used to diagnose and investigate neurodegenerative disorders including structural, cerebral perfusion, glucose metabolism, neurochemical, and molecular imaging. In the first section, we discuss the imaging methods used in clinical practice to diagnose dementia as well as explore additional experimental modalities that are currently used as research tools. In the second section, a comprehensive review covering the myriad aspects of vascular disease as a cause of dementia is presented and illustrated with MRI- and PET-focused case examples. In the third section, advances in imaging Alzheimer disease pathology are emphasized by reviewing current approaches for PET imaging with β-amyloid imaging agents. We provide an outline for the appropriate use criteria for β-amyloid imaging agents in dementia. In addition, the recognition of the importance of neocortical neurofibrillary tangles as related to Alzheimer disease progression has led to the development of promising tau imaging agents such as [(18)F]T807. The last section provides a history brain

  13. Image Quality Ranking Method for Microscopy.

    PubMed

    Koho, Sami; Fazeli, Elnaz; Eriksson, John E; Hänninen, Pekka E

    2016-01-01

    Automated analysis of microscope images is necessitated by the increased need for high-resolution follow up of events in time. Manually finding the right images to be analyzed, or eliminated from data analysis are common day-to-day problems in microscopy research today, and the constantly growing size of image datasets does not help the matter. We propose a simple method and a software tool for sorting images within a dataset, according to their relative quality. We demonstrate the applicability of our method in finding good quality images in a STED microscope sample preparation optimization image dataset. The results are validated by comparisons to subjective opinion scores, as well as five state-of-the-art blind image quality assessment methods. We also show how our method can be applied to eliminate useless out-of-focus images in a High-Content-Screening experiment. We further evaluate the ability of our image quality ranking method to detect out-of-focus images, by extensive simulations, and by comparing its performance against previously published, well-established microscopy autofocus metrics. PMID:27364703

  14. Image Quality Ranking Method for Microscopy

    PubMed Central

    Koho, Sami; Fazeli, Elnaz; Eriksson, John E.; Hänninen, Pekka E.

    2016-01-01

    Automated analysis of microscope images is necessitated by the increased need for high-resolution follow up of events in time. Manually finding the right images to be analyzed, or eliminated from data analysis are common day-to-day problems in microscopy research today, and the constantly growing size of image datasets does not help the matter. We propose a simple method and a software tool for sorting images within a dataset, according to their relative quality. We demonstrate the applicability of our method in finding good quality images in a STED microscope sample preparation optimization image dataset. The results are validated by comparisons to subjective opinion scores, as well as five state-of-the-art blind image quality assessment methods. We also show how our method can be applied to eliminate useless out-of-focus images in a High-Content-Screening experiment. We further evaluate the ability of our image quality ranking method to detect out-of-focus images, by extensive simulations, and by comparing its performance against previously published, well-established microscopy autofocus metrics. PMID:27364703

  15. Image Quality Ranking Method for Microscopy

    NASA Astrophysics Data System (ADS)

    Koho, Sami; Fazeli, Elnaz; Eriksson, John E.; Hänninen, Pekka E.

    2016-07-01

    Automated analysis of microscope images is necessitated by the increased need for high-resolution follow up of events in time. Manually finding the right images to be analyzed, or eliminated from data analysis are common day-to-day problems in microscopy research today, and the constantly growing size of image datasets does not help the matter. We propose a simple method and a software tool for sorting images within a dataset, according to their relative quality. We demonstrate the applicability of our method in finding good quality images in a STED microscope sample preparation optimization image dataset. The results are validated by comparisons to subjective opinion scores, as well as five state-of-the-art blind image quality assessment methods. We also show how our method can be applied to eliminate useless out-of-focus images in a High-Content-Screening experiment. We further evaluate the ability of our image quality ranking method to detect out-of-focus images, by extensive simulations, and by comparing its performance against previously published, well-established microscopy autofocus metrics.

  16. Anthropological methods of optical image processing

    NASA Astrophysics Data System (ADS)

    Ginzburg, V. M.

    1981-12-01

    Some applications of the new method for optical image processing, based on a prior separation of informative elements (IE) with the help of a defocusing equal to the average eye defocusing, considered in a previous paper, are described. A diagram of a "drawing" robot with the use of defocusing and other mechanisms of the human visual system (VS) is given. Methods of narrowing the TV channel bandwidth and elimination of noises in computer image processing by prior image defocusing are described.

  17. Advances in Magnetic Resonance Imaging of the Skull Base

    PubMed Central

    Kirsch, Claudia F.E.

    2014-01-01

    Introduction Over the past 20 years, magnetic resonance imaging (MRI) has advanced due to new techniques involving increased magnetic field strength and developments in coils and pulse sequences. These advances allow increased opportunity to delineate the complex skull base anatomy and may guide the diagnosis and treatment of the myriad of pathologies that can affect the skull base. Objectives The objective of this article is to provide a brief background of the development of MRI and illustrate advances in skull base imaging, including techniques that allow improved conspicuity, characterization, and correlative physiologic assessment of skull base pathologies. Data Synthesis Specific radiographic illustrations of increased skull base conspicuity including the lower cranial nerves, vessels, foramina, cerebrospinal fluid (CSF) leaks, and effacement of endolymph are provided. In addition, MRIs demonstrating characterization of skull base lesions, such as recurrent cholesteatoma versus granulation tissue or abscess versus tumor, are also provided as well as correlative clinical findings in CSF flow studies in a patient pre- and post-suboccipital decompression for a Chiari I malformation. Conclusions This article illustrates MRI radiographic advances over the past 20 years, which have improved clinicians' ability to diagnose, define, and hopefully improve the treatment and outcomes of patients with underlying skull base pathologies. PMID:25992137

  18. Method and apparatus for advancing tethers

    DOEpatents

    Zollinger, W. Thor

    1998-01-01

    A tether puller for advancing a tether through a channel may include a bellows assembly having a leading end fixedly attached to the tether at a first position and a trailing end fixedly attached to the tether at a second position so that the leading and trailing ends of the bellows assembly are located a substantially fixed distance apart. The bellows assembly includes a plurality of independently inflatable elements each of which may be separately inflated to an extended position and deflated to a retracted position. Each of the independently inflatable elements expands radially and axially upon inflation. An inflation system connected to the independently inflatable elements inflates and deflates selected ones of the independently inflatable elements to cause the bellows assembly to apply a tractive force to the tether and advance it in the channel.

  19. Method and apparatus for advancing tethers

    DOEpatents

    Zollinger, W.T.

    1998-06-02

    A tether puller for advancing a tether through a channel may include a bellows assembly having a leading end fixedly attached to the tether at a first position and a trailing end fixedly attached to the tether at a second position so that the leading and trailing ends of the bellows assembly are located a substantially fixed distance apart. The bellows assembly includes a plurality of independently inflatable elements each of which may be separately inflated to an extended position and deflated to a retracted position. Each of the independently inflatable elements expands radially and axially upon inflation. An inflation system connected to the independently inflatable elements inflates and deflates selected ones of the independently inflatable elements to cause the bellows assembly to apply a tractive force to the tether and advance it in the channel. 9 figs.

  20. Controlling template erosion with advanced cleaning methods

    NASA Astrophysics Data System (ADS)

    Singh, SherJang; Yu, Zhaoning; Wähler, Tobias; Kurataka, Nobuo; Gauzner, Gene; Wang, Hongying; Yang, Henry; Hsu, Yautzong; Lee, Kim; Kuo, David; Dress, Peter

    2012-03-01

    We studied the erosion and feature stability of fused silica patterns under different template cleaning conditions. The conventional SPM cleaning is compared with an advanced non-acid process. Spectroscopic ellipsometry optical critical dimension (SE-OCD) measurements were used to characterize the changes in pattern profile with good sensitivity. This study confirmed the erosion of the silica patterns in the traditional acid-based SPM cleaning mixture (H2SO4+H2O2) at a rate of ~0.1nm per cleaning cycle. The advanced non-acid clean process however only showed CD shift of ~0.01nm per clean. Contamination removal & pattern integrity of sensitive 20nm features under MegaSonic assisted cleaning is also demonstrated.

  1. Advanced electromagnetic methods for aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; Sun, Weimin; El-Sharawy, El-Budawy; Aberle, James T.; Birtcher, Craig R.; Peng, Jian; Tirkas, Panayiotis A.

    1992-01-01

    The Advanced Helicopter Electromagnetics (AHE) Industrial Associates Program continues its research on variety of main topics identified and recommended by the Advisory Task Force of the program. The research activities center on issues that advance technology related to helicopter electromagnetics. While most of the topics are a continuation of previous works, special effort has been focused on some of the areas due to recommendations from the last annual conference. The main topics addressed in this report are: composite materials, and antenna technology. The area of composite materials continues getting special attention in this period. The research has focused on: (1) measurements of the electrical properties of low-conductivity materials; (2) modeling of material discontinuity and their effects on the scattering patterns; (3) preliminary analysis on interaction of electromagnetic fields with multi-layered graphite fiberglass plates; and (4) finite difference time domain (FDTD) modeling of fields penetration through composite panels of a helicopter.

  2. Methods of imaging the scaphoid.

    PubMed

    Plancher, K D

    2001-11-01

    Rapid diagnosis of a scaphoid fracture is important so that proper treatment may be initiated. The high frequencies of nonunion of proximal pole, AVN, and scaphoid fractures warrant the use of special imaging to identify an occult fracture that may cause a long-term disability if not diagnosed. The modalities discussed allow the reader to treat patients in an expeditious and accurate manner. PMID:11775481

  3. NATO PILOT STUDY ON ADVANCED CANCER RISK ASSESSMENT METHODS

    EPA Science Inventory

    NCEA scientists are participating in a study of advanced cancer risk assessment methods, conducted under the auspices of NATO's Committee on the Challenges of Modern Society. The product will be a book of case studies that illustrate advanced cancer risk assessment methods, avail...

  4. Advanced methods of structural and trajectory analysis for transport aircraft

    NASA Technical Reports Server (NTRS)

    Ardema, Mark D.

    1995-01-01

    This report summarizes the efforts in two areas: (1) development of advanced methods of structural weight estimation, and (2) development of advanced methods of trajectory optimization. The majority of the effort was spent in the structural weight area. A draft of 'Analytical Fuselage and Wing Weight Estimation of Transport Aircraft', resulting from this research, is included as an appendix.

  5. Imaging spectroscopic analysis at the Advanced Light Source

    SciTech Connect

    MacDowell, A. A.; Warwick, T.; Anders, S.; Lamble, G.M.; Martin, M.C.; McKinney, W.R.; Padmore, H.A.

    1999-05-12

    One of the major advances at the high brightness third generation synchrotrons is the dramatic improvement of imaging capability. There is a large multi-disciplinary effort underway at the ALS to develop imaging X-ray, UV and Infra-red spectroscopic analysis on a spatial scale from. a few microns to 10nm. These developments make use of light that varies in energy from 6meV to 15KeV. Imaging and spectroscopy are finding applications in surface science, bulk materials analysis, semiconductor structures, particulate contaminants, magnetic thin films, biology and environmental science. This article is an overview and status report from the developers of some of these techniques at the ALS. The following table lists all the currently available microscopes at the. ALS. This article will describe some of the microscopes and some of the early applications.

  6. Red Fluorescent Proteins: Advanced Imaging Applications and Future Design

    PubMed Central

    Shcherbakova, Daria M.; Subach, Oksana M.; Verkhusha, Vladislav V.

    2015-01-01

    In the past few years a large series of the advanced red-shifted fluorescent proteins (RFPs) has been developed. These enhanced RFPs provide new possibilities to study biological processes at the levels ranging from single molecules to whole organisms. Herein the relationship between the properties of the RFPs of different phenotypes and their applications to various imaging techniques are described. Existing and emerging imaging approaches are discussed for conventional RFPs, far-red FPs, RFPs with a large Stokes shift, fluorescent timers, irreversibly photoactivatable and reversibly photo-switchable RFPs. Advantages and limitations of specific RFPs for each technique are presented. Recent progress in understanding the chemical transformations of red chromophores allows the future RFP phenotypes and their respective novel imaging applications to be foreseen. PMID:22851529

  7. The method of infrared polariametric imaging

    NASA Astrophysics Data System (ADS)

    Zhou, Qiang; Feng, Hua-jun; Xu, Zhi-hai; Li, Qi; Chen, Yue-ting

    2013-09-01

    Due to the low contrast ,lack of details and difficulties to distinguish target from background in traditional infrared(IR) imaging systems, the detection and recognition probability of camouflage infrared target is relatively low. Compared with the traditional IR imaging systems, the method of polarimetric imaging uses polarization information, which can help detect and isolate manmade objects from the natural environment in complex. The method of infrared polarimetric imaging is proposed in this paper. The experiment builds the IR polarimetric imaging system. An IR polarizer made of BaF2 is assembled before the IR camera. By rotating the IR polarizer, twelve polarization images are obtained at every thirty degree. The gray levels of the images are calculated by program. Stokes polarization vector representation is introduced to calculate I of stokes vector and degree of linear polarization (DoLP) with polarization images. According to the character of parameter I of stokes vector and DoLP, we propose an IR polarization fusion method based on Shearlets using regional saliency analysis. This method can highlight the target area and have good performance in the fusion of IR radiation information and IR polarization characteristics. To test the effectiveness of this method, we use mid-wave infrared (MWIR) camera and long-wave infrared(LWIR) camera to get real images. Compared with original image, both the subjective and objective evaluation results indicate that the enhanced images obtained by our method have much more image details and polarization information, which is useful for target detection and recognition.

  8. Diagnostic imaging advances in murine models of colitis

    PubMed Central

    Brückner, Markus; Lenz, Philipp; Mücke, Marcus M; Gohar, Faekah; Willeke, Peter; Domagk, Dirk; Bettenworth, Dominik

    2016-01-01

    Inflammatory bowel diseases (IBD) such as Crohn’s disease and ulcerative colitis are chronic-remittent inflammatory disorders of the gastrointestinal tract still evoking challenging clinical diagnostic and therapeutic situations. Murine models of experimental colitis are a vital component of research into human IBD concerning questions of its complex pathogenesis or the evaluation of potential new drugs. To monitor the course of colitis, to the present day, classical parameters like histological tissue alterations or analysis of mucosal cytokine/chemokine expression often require euthanasia of animals. Recent advances mean revolutionary non-invasive imaging techniques for in vivo murine colitis diagnostics are increasingly available. These novel and emerging imaging techniques not only allow direct visualization of intestinal inflammation, but also enable molecular imaging and targeting of specific alterations of the inflamed murine mucosa. For the first time, in vivo imaging techniques allow for longitudinal examinations and evaluation of intra-individual therapeutic response. This review discusses the latest developments in the different fields of ultrasound, molecularly targeted contrast agent ultrasound, fluorescence endoscopy, confocal laser endomicroscopy as well as tomographic imaging with magnetic resonance imaging, computed tomography and fluorescence-mediated tomography, discussing their individual limitations and potential future diagnostic applications in the management of human patients with IBD. PMID:26811642

  9. Development of advanced acreage estimation methods

    NASA Technical Reports Server (NTRS)

    Guseman, L. F., Jr. (Principal Investigator)

    1980-01-01

    The use of the AMOEBA clustering/classification algorithm was investigated as a basis for both a color display generation technique and maximum likelihood proportion estimation procedure. An approach to analyzing large data reduction systems was formulated and an exploratory empirical study of spatial correlation in LANDSAT data was also carried out. Topics addressed include: (1) development of multiimage color images; (2) spectral spatial classification algorithm development; (3) spatial correlation studies; and (4) evaluation of data systems.

  10. Advanced electromagnetic methods for aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; El-Sharawy, El-Budawy; Hashemi-Yeganeh, Shahrokh; Aberle, James T.; Birtcher, Craig R.

    1991-01-01

    The Advanced Helicopter Electromagnetics is centered on issues that advance technology related to helicopter electromagnetics. Progress was made on three major topics: composite materials; precipitation static corona discharge; and antenna technology. In composite materials, the research has focused on the measurements of their electrical properties, and the modeling of material discontinuities and their effect on the radiation pattern of antennas mounted on or near material surfaces. The electrical properties were used to model antenna performance when mounted on composite materials. Since helicopter platforms include several antenna systems at VHF and UHF bands, measuring techniques are being explored that can be used to measure the properties at these bands. The effort on corona discharge and precipitation static was directed toward the development of a new two dimensional Voltage Finite Difference Time Domain computer program. Results indicate the feasibility of using potentials for simulating electromagnetic problems in the cases where potentials become primary sources. In antenna technology the focus was on Polarization Diverse Conformal Microstrip Antennas, Cavity Backed Slot Antennas, and Varactor Tuned Circular Patch Antennas. Numerical codes were developed for the analysis of two probe fed rectangular and circular microstrip patch antennas fed by resistive and reactive power divider networks.

  11. Advanced high resolution seismic imaging, material properties estimation and full wavefield inversion for the shallow subsurface. 1998 annual progress report

    SciTech Connect

    Levander, A.; Zelt, C.A.; Symes, W.W.

    1998-06-01

    'The authors are developing advanced seismic data processing, imaging, and inversion methods for high resolution seismic reflection/refraction imaging and material property estimation of the shallow subsurface. The imaging methods are being developed to map the structural and material properties of aquifers and aquitards. This report summarizes work completed in the first seven months of a three year project which began in November 1997. The research is proceeding along three lines: data acquisition, data processing, and algorithm development.'

  12. Method for position emission mammography image reconstruction

    DOEpatents

    Smith, Mark Frederick

    2004-10-12

    An image reconstruction method comprising accepting coincidence datat from either a data file or in real time from a pair of detector heads, culling event data that is outside a desired energy range, optionally saving the desired data for each detector position or for each pair of detector pixels on the two detector heads, and then reconstructing the image either by backprojection image reconstruction or by iterative image reconstruction. In the backprojection image reconstruction mode, rays are traced between centers of lines of response (LOR's), counts are then either allocated by nearest pixel interpolation or allocated by an overlap method and then corrected for geometric effects and attenuation and the data file updated. If the iterative image reconstruction option is selected, one implementation is to compute a grid Siddon retracing, and to perform maximum likelihood expectation maiximization (MLEM) computed by either: a) tracing parallel rays between subpixels on opposite detector heads; or b) tracing rays between randomized endpoint locations on opposite detector heads.

  13. Digital image envelope: method and evaluation

    NASA Astrophysics Data System (ADS)

    Huang, H. K.; Cao, Fei; Zhou, Michael Z.; Mogel, Greg T.; Liu, Brent J.; Zhou, Xiaoqiang

    2003-05-01

    Health data security, characterized in terms of data privacy, authenticity, and integrity, is a vital issue when digital images and other patient information are transmitted through public networks in telehealth applications such as teleradiology. Mandates for ensuring health data security have been extensively discussed (for example The Health Insurance Portability and Accountability Act, HIPAA) and health informatics guidelines (such as the DICOM standard) are beginning to focus on issues of data continue to be published by organizing bodies in healthcare; however, there has not been a systematic method developed to ensure data security in medical imaging Because data privacy and authenticity are often managed primarily with firewall and password protection, we have focused our research and development on data integrity. We have developed a systematic method of ensuring medical image data integrity across public networks using the concept of the digital envelope. When a medical image is generated regardless of the modality, three processes are performed: the image signature is obtained, the DICOM image header is encrypted, and a digital envelope is formed by combining the signature and the encrypted header. The envelope is encrypted and embedded in the original image. This assures the security of both the image and the patient ID. The embedded image is encrypted again and transmitted across the network. The reverse process is performed at the receiving site. The result is two digital signatures, one from the original image before transmission, and second from the image after transmission. If the signatures are identical, there has been no alteration of the image. This paper concentrates in the method and evaluation of the digital image envelope.

  14. An advanced image analysis tool for the quantification and characterization of breast cancer in microscopy images.

    PubMed

    Goudas, Theodosios; Maglogiannis, Ilias

    2015-03-01

    The paper presents an advanced image analysis tool for the accurate and fast characterization and quantification of cancer and apoptotic cells in microscopy images. The proposed tool utilizes adaptive thresholding and a Support Vector Machines classifier. The segmentation results are enhanced through a Majority Voting and a Watershed technique, while an object labeling algorithm has been developed for the fast and accurate validation of the recognized cells. Expert pathologists evaluated the tool and the reported results are satisfying and reproducible. PMID:25681102

  15. Quantitative Computed Tomography and Image Analysis for Advanced Muscle Assessment

    PubMed Central

    Edmunds, Kyle Joseph; Gíslason, Magnus K.; Arnadottir, Iris D.; Marcante, Andrea; Piccione, Francesco; Gargiulo, Paolo

    2016-01-01

    Medical imaging is of particular interest in the field of translational myology, as extant literature describes the utilization of a wide variety of techniques to non-invasively recapitulate and quantity various internal and external tissue morphologies. In the clinical context, medical imaging remains a vital tool for diagnostics and investigative assessment. This review outlines the results from several investigations on the use of computed tomography (CT) and image analysis techniques to assess muscle conditions and degenerative process due to aging or pathological conditions. Herein, we detail the acquisition of spiral CT images and the use of advanced image analysis tools to characterize muscles in 2D and 3D. Results from these studies recapitulate changes in tissue composition within muscles, as visualized by the association of tissue types to specified Hounsfield Unit (HU) values for fat, loose connective tissue or atrophic muscle, and normal muscle, including fascia and tendon. We show how results from these analyses can be presented as both average HU values and compositions with respect to total muscle volumes, demonstrating the reliability of these tools to monitor, assess and characterize muscle degeneration. PMID:27478562

  16. Imaging of the heart: historical perspective and recent advances.

    PubMed

    Lam, W C; Pennell, D J

    2016-02-01

    Correct diagnosis must be made before appropriate treatment can be given. The aim of cardiac imaging is to establish cardiac diagnosis as accurate as possible and to avert unnecessary invasive procedures. There are many different modalities of cardiac imaging and each of them has advanced tremendously throughout the past decades. Echocardiography, as the first-line modality in most clinical circumstances, has progressed from two-dimensional, single-planed M-mode in the 1960s to three-dimensional speckle tracking echocardiography nowadays. Cardiac computed tomography angiogram (CCTA) has revolutionised the management of coronary artery disease as it allows clinicians to visualise the coronary arteries without performing an invasive angiogram. Because of the high negative predictive value, CCTA plays an important reassuring role in acute chest pain management. The greatest strength of cardiovascular magnetic resonance (CMR) is that it provides information in tissue characterization. It is the modality of choice in assessing myocardial viability and myocardial infiltration such as haemochromatosis or amyloidosis. Each of these modalities has its own strengths and limitations. In fact, they are complementing each other in different clinical settings. Cardiac imaging will continue to advance and, not long from now, we will not need invasive procedures to make an accurate cardiac diagnosis. PMID:26647305

  17. PET Image Reconstruction Using Kernel Method

    PubMed Central

    Wang, Guobao; Qi, Jinyi

    2014-01-01

    Image reconstruction from low-count PET projection data is challenging because the inverse problem is ill-posed. Prior information can be used to improve image quality. Inspired by the kernel methods in machine learning, this paper proposes a kernel based method that models PET image intensity in each pixel as a function of a set of features obtained from prior information. The kernel-based image model is incorporated into the forward model of PET projection data and the coefficients can be readily estimated by the maximum likelihood (ML) or penalized likelihood image reconstruction. A kernelized expectation-maximization (EM) algorithm is presented to obtain the ML estimate. Computer simulations show that the proposed approach can achieve better bias versus variance trade-off and higher contrast recovery for dynamic PET image reconstruction than the conventional maximum likelihood method with and without post-reconstruction denoising. Compared with other regularization-based methods, the kernel method is easier to implement and provides better image quality for low-count data. Application of the proposed kernel method to a 4D dynamic PET patient dataset showed promising results. PMID:25095249

  18. PET image reconstruction using kernel method.

    PubMed

    Wang, Guobao; Qi, Jinyi

    2015-01-01

    Image reconstruction from low-count positron emission tomography (PET) projection data is challenging because the inverse problem is ill-posed. Prior information can be used to improve image quality. Inspired by the kernel methods in machine learning, this paper proposes a kernel based method that models PET image intensity in each pixel as a function of a set of features obtained from prior information. The kernel-based image model is incorporated into the forward model of PET projection data and the coefficients can be readily estimated by the maximum likelihood (ML) or penalized likelihood image reconstruction. A kernelized expectation-maximization algorithm is presented to obtain the ML estimate. Computer simulations show that the proposed approach can achieve better bias versus variance trade-off and higher contrast recovery for dynamic PET image reconstruction than the conventional maximum likelihood method with and without post-reconstruction denoising. Compared with other regularization-based methods, the kernel method is easier to implement and provides better image quality for low-count data. Application of the proposed kernel method to a 4-D dynamic PET patient dataset showed promising results. PMID:25095249

  19. Advanced fractal approach for unsupervised classification of SAR images

    NASA Astrophysics Data System (ADS)

    Pant, Triloki; Singh, Dharmendra; Srivastava, Tanuja

    2010-06-01

    Unsupervised classification of Synthetic Aperture Radar (SAR) images is the alternative approach when no or minimum apriori information about the image is available. Therefore, an attempt has been made to develop an unsupervised classification scheme for SAR images based on textural information in present paper. For extraction of textural features two properties are used viz. fractal dimension D and Moran's I. Using these indices an algorithm is proposed for contextual classification of SAR images. The novelty of the algorithm is that it implements the textural information available in SAR image with the help of two texture measures viz. D and I. For estimation of D, the Two Dimensional Variation Method (2DVM) has been revised and implemented whose performance is compared with another method, i.e., Triangular Prism Surface Area Method (TPSAM). It is also necessary to check the classification accuracy for various window sizes and optimize the window size for best classification. This exercise has been carried out to know the effect of window size on classification accuracy. The algorithm is applied on four SAR images of Hardwar region, India and classification accuracy has been computed. A comparison of the proposed algorithm using both fractal dimension estimation methods with the K-Means algorithm is discussed. The maximum overall classification accuracy with K-Means comes to be 53.26% whereas overall classification accuracy with proposed algorithm is 66.16% for TPSAM and 61.26% for 2DVM.

  20. Method for nuclear magnetic resonance imaging

    DOEpatents

    Kehayias, J.J.; Joel, D.D.; Adams, W.H.; Stein, H.L.

    1988-05-26

    A method for in vivo NMR imaging of the blood vessels and organs of a patient characterized by using a dark dye-like imaging substance consisting essentially of a stable, high-purity concentration of D/sub 2/O in a solution with water.

  1. Advanced particulate matter control apparatus and methods

    DOEpatents

    Miller, Stanley J.; Zhuang, Ye; Almlie, Jay C.

    2012-01-10

    Apparatus and methods for collection and removal of particulate matter, including fine particulate matter, from a gas stream, comprising a unique combination of high collection efficiency and ultralow pressure drop across the filter. The apparatus and method utilize simultaneous electrostatic precipitation and membrane filtration of a particular pore size, wherein electrostatic collection and filtration occur on the same surface.

  2. Technology in radiology: advances in diagnostic imaging & therapeutics.

    PubMed

    Stern, S M

    1993-01-01

    Nearly 100 years from its birth, radiology continues to grow as though still in adolescence. Although some radiologic technologies have matured more than others, new applications and techniques appear regularly in the literature. Radiology has evolved from purely diagnostic devices to interventional technologies. New contrast agents in MRI, X ray and ultrasound enable physicians to make diagnoses and plan therapies with greater precision than ever before. Techniques are less and less invasive. Advances in computer technology have given supercomputer-like power to high-end nuclear medicine and MRI systems. Imaging systems in most modalities are now designed with upgrades in mind instead of "planned obsolescence." Companies routinely upgrade software and other facets of their products, sometimes at no additional charge to existing customers. Hospitals, radiology groups and imaging centers will face increasing demands to justify what they do according to patient outcomes and management criteria. Did images make the diagnosis or confirm it? Did the images determine optimal treatment strategies or confirm which strategies might be appropriate? Third-party payers, especially the government, will view radiology in those terms. The diagnostic imaging and therapy systems of today require increasingly sophisticated technical support for maintenance and repair. Hospitals, radiology groups and imaging centers will have to determine the most economic and effective ways to guarantee equipment up-time. Borrowing from the automotive industry, some radiology manufacturers have devised transtelephonic software systems to facilitate remote troubleshooting. To ensure their fiscal viability, hospitals continue to acquire new imaging and therapy technologies for competitive and access-to-services reasons.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:10129808

  3. 3D Imaging with Structured Illumination for Advanced Security Applications

    SciTech Connect

    Birch, Gabriel Carisle; Dagel, Amber Lynn; Kast, Brian A.; Smith, Collin S.

    2015-09-01

    Three-dimensional (3D) information in a physical security system is a highly useful dis- criminator. The two-dimensional data from an imaging systems fails to provide target dis- tance and three-dimensional motion vector, which can be used to reduce nuisance alarm rates and increase system effectiveness. However, 3D imaging devices designed primarily for use in physical security systems are uncommon. This report discusses an architecture favorable to physical security systems; an inexpensive snapshot 3D imaging system utilizing a simple illumination system. The method of acquiring 3D data, tests to understand illumination de- sign, and software modifications possible to maximize information gathering capability are discussed.

  4. Millimeter-Wave Imaging Technology Advancements for Plasma Diagnostics Applications

    NASA Astrophysics Data System (ADS)

    Kong, Xiangyu

    To realize fusion plant, the very first step is to understand the fundamental physics of materials under fusion conditions, i.e. to understand fusion plasmas. Our research group, Plasma Diagnostics Group, focuses on developing advanced tools for physicists to extract as much information as possible from fusion plasmas at millions degrees. The Electron Cyclotron Emission Imaging (ECEI) diagnostics is a very useful tool invented in this group to study fusion plasma electron temperature and it fluctuations. This dissertation presents millimeter wave imaging technology advances recently developed in this group to improve the ECEI system. New technologies made it more powerful to image and visualize magneto-hydrodynamics (MHD) activities and micro-turbulence in fusion plasmas. Topics of particular emphasis start from development of miniaturized elliptical substrate lens array. This novel substrate lens array replaces the previous generation substrate lens, hyper-hemispherical substrate lens, in terms of geometry. From the optical performance perspective, this substitution not only significantly simplifies the optical system with improved optical coupling, but also enhances the RF/LO coupling efficiency. By the benefit of the mini lens focusing properties, a wideband dual-dipole antenna array is carefully designed and developed. The new antenna array is optimized simultaneously for receiving both RF and LO, with sharp radiation patterns, low side-lobe levels, and less crosstalk between adjacent antennas. In addition, a high frequency antenna is also developed, which extends the frequency limit from 145 GHz to 220 GHz. This type of antenna will be used on high field operation tokamaks with toroidal fields in excess of 3 Tesla. Another important technology advance is so-called extended bandwidth double down-conversion electronics. This new electronics extends the instantaneous IF coverage from 2 to 9.2 GHz to 2 to 16.4 GHz. From the plasma point of view, it means that the

  5. Gimbaled multispectral imaging system and method

    DOEpatents

    Brown, Kevin H.; Crollett, Seferino; Henson, Tammy D.; Napier, Matthew; Stromberg, Peter G.

    2016-01-26

    A gimbaled multispectral imaging system and method is described herein. In an general embodiment, the gimbaled multispectral imaging system has a cross support that defines a first gimbal axis and a second gimbal axis, wherein the cross support is rotatable about the first gimbal axis. The gimbaled multispectral imaging system comprises a telescope that fixed to an upper end of the cross support, such that rotation of the cross support about the first gimbal axis causes the tilt of the telescope to alter. The gimbaled multispectral imaging system includes optics that facilitate on-gimbal detection of visible light and off-gimbal detection of infrared light.

  6. A New Adaptive Image Denoising Method

    NASA Astrophysics Data System (ADS)

    Biswas, Mantosh; Om, Hari

    2016-03-01

    In this paper, a new adaptive image denoising method is proposed that follows the soft-thresholding technique. In our method, a new threshold function is also proposed, which is determined by taking the various combinations of noise level, noise-free signal variance, subband size, and decomposition level. It is simple and adaptive as it depends on the data-driven parameters estimation in each subband. The state-of-the-art denoising methods viz. VisuShrink, SureShrink, BayesShrink, WIDNTF and IDTVWT are not able to modify the coefficients in an efficient manner to provide the good quality of image. Our method removes the noise from the noisy image significantly and provides better visual quality of an image.

  7. The Advanced Gamma-ray Imaging System (AGIS) - Simulation Studies

    SciTech Connect

    Maier, G.; Buckley, J.; Bugaev, V.; Fegan, S.; Vassiliev, V. V.; Funk, S.; Konopelko, A.

    2008-12-24

    The Advanced Gamma-ray Imaging System (AGIS) is a US-led concept for a next-generation instrument in ground-based very-high-energy gamma-ray astronomy. The most important design requirement for AGIS is a sensitivity of about 10 times greater than current observatories like Veritas, H.E.S.S or MAGIC. We present results of simulation studies of various possible designs for AGIS. The primary characteristics of the array performance, collecting area, angular resolution, background rejection, and sensitivity are discussed.

  8. The Advanced Gamma-ray Imaging System (AGIS): Simulation studies

    SciTech Connect

    Maier, G.; Buckley, J.; Bugaev, V.; Fegan, S.; Funk, S.; Konopelko, A.; Vassiliev, V.V.; /UCLA

    2011-06-14

    The Advanced Gamma-ray Imaging System (AGIS) is a next-generation ground-based gamma-ray observatory being planned in the U.S. The anticipated sensitivity of AGIS is about one order of magnitude better than the sensitivity of current observatories, allowing it to measure gamma-ray emission from a large number of Galactic and extra-galactic sources. We present here results of simulation studies of various possible designs for AGIS. The primary characteristics of the array performance - collecting area, angular resolution, background rejection, and sensitivity - are discussed.

  9. Advanced spectral methods for climatic time series

    USGS Publications Warehouse

    Ghil, M.; Allen, M.R.; Dettinger, M.D.; Ide, K.; Kondrashov, D.; Mann, M.E.; Robertson, A.W.; Saunders, A.; Tian, Y.; Varadi, F.; Yiou, P.

    2002-01-01

    The analysis of univariate or multivariate time series provides crucial information to describe, understand, and predict climatic variability. The discovery and implementation of a number of novel methods for extracting useful information from time series has recently revitalized this classical field of study. Considerable progress has also been made in interpreting the information so obtained in terms of dynamical systems theory. In this review we describe the connections between time series analysis and nonlinear dynamics, discuss signal- to-noise enhancement, and present some of the novel methods for spectral analysis. The various steps, as well as the advantages and disadvantages of these methods, are illustrated by their application to an important climatic time series, the Southern Oscillation Index. This index captures major features of interannual climate variability and is used extensively in its prediction. Regional and global sea surface temperature data sets are used to illustrate multivariate spectral methods. Open questions and further prospects conclude the review.

  10. Indentation Methods in Advanced Materials Research Introduction

    SciTech Connect

    Pharr, George Mathews; Cheng, Yang-Tse; Hutchings, Ian; Sakai, Mototsugu; Moody, Neville; Sundararajan, G.; Swain, Michael V.

    2009-01-01

    Since its commercialization early in the 20th century, indentation testing has played a key role in the development of new materials and understanding their mechanical behavior. Progr3ess in the field has relied on a close marriage between research in the mechanical behavior of materials and contact mechanics. The seminal work of Hertz laid the foundations for bringing these two together, with his contributions still widely utilized today in examining elastic behavior and the physics of fracture. Later, the pioneering work of Tabor, as published in his classic text 'The Hardness of Metals', exapdned this understanding to address the complexities of plasticity. Enormous progress in the field has been achieved in the last decade, made possible both by advances in instrumentation, for example, load and depth-sensing indentation and scanning electron microscopy (SEM) and transmission electron microscopy (TEM) based in situ testing, as well as improved modeling capabilities that use computationally intensive techniques such as finite element analysis and molecular dynamics simulation. The purpose of this special focus issue is to present recent state of the art developments in the field.

  11. Historic Methods for Capturing Magnetic Field Images

    NASA Astrophysics Data System (ADS)

    Kwan, Alistair

    2016-03-01

    I investigated two late 19th-century methods for capturing magnetic field images from iron filings for historical insight into the pedagogy of hands-on physics education methods, and to flesh out teaching and learning practicalities tacit in the historical record. Both methods offer opportunities for close sensory engagement in data-collection processes.

  12. Historic Methods for Capturing Magnetic Field Images

    ERIC Educational Resources Information Center

    Kwan, Alistair

    2016-01-01

    I investigated two late 19th-century methods for capturing magnetic field images from iron filings for historical insight into the pedagogy of hands-on physics education methods, and to flesh out teaching and learning practicalities tacit in the historical record. Both methods offer opportunities for close sensory engagement in data-collection…

  13. Application of numerical methods to elasticity imaging.

    PubMed

    Castaneda, Benjamin; Ormachea, Juvenal; Rodríguez, Paul; Parker, Kevin J

    2013-03-01

    Elasticity imaging can be understood as the intersection of the study of biomechanical properties, imaging sciences, and physics. It was mainly motivated by the fact that pathological tissue presents an increased stiffness when compared to surrounding normal tissue. In the last two decades, research on elasticity imaging has been an international and interdisciplinary pursuit aiming to map the viscoelastic properties of tissue in order to provide clinically useful information. As a result, several modalities of elasticity imaging, mostly based on ultrasound but also on magnetic resonance imaging and optical coherence tomography, have been proposed and applied to a number of clinical applications: cancer diagnosis (prostate, breast, liver), hepatic cirrhosis, renal disease, thyroiditis, arterial plaque evaluation, wall stiffness in arteries, evaluation of thrombosis in veins, and many others. In this context, numerical methods are applied to solve forward and inverse problems implicit in the algorithms in order to estimate viscoelastic linear and nonlinear parameters, especially for quantitative elasticity imaging modalities. In this work, an introduction to elasticity imaging modalities is presented. The working principle of qualitative modalities (sonoelasticity, strain elastography, acoustic radiation force impulse) and quantitative modalities (Crawling Waves Sonoelastography, Spatially Modulated Ultrasound Radiation Force (SMURF), Supersonic Imaging) will be explained. Subsequently, the areas in which numerical methods can be applied to elasticity imaging are highlighted and discussed. Finally, we present a detailed example of applying total variation and AM-FM techniques to the estimation of elasticity. PMID:24010245

  14. Advances in imaging ultrastructure yield new insights into presynaptic biology

    PubMed Central

    Bruckner, Joseph J.; Zhan, Hong; O’Connor-Giles, Kate M.

    2015-01-01

    Synapses are the fundamental functional units of neural circuits, and their dysregulation has been implicated in diverse neurological disorders. At presynaptic terminals, neurotransmitter-filled synaptic vesicles are released in response to calcium influx through voltage-gated calcium channels activated by the arrival of an action potential. Decades of electrophysiological, biochemical, and genetic studies have contributed to a growing understanding of presynaptic biology. Imaging studies are yielding new insights into how synapses are organized to carry out their critical functions. The development of techniques for rapid immobilization and preservation of neuronal tissues for electron microscopy (EM) has led to a new renaissance in ultrastructural imaging that is rapidly advancing our understanding of synapse structure and function. PMID:26052269

  15. Glaucoma Diagnosis and Monitoring Using Advanced Imaging Technologies

    PubMed Central

    Sehi, Mitra; Iverson, Shawn M

    2014-01-01

    Advanced ocular imaging technologies facilitate objective and reproducible quantification of change in glaucoma but at the same time, impose new challenges on scientists and clinicians for separating true structural change from imaging noise. This review examines time-domain and spectral-domain optical coherence tomography, confocal scanning laser ophthalmoscopy and scanning laser polarimetry technologies and discusses the diagnostic accuracy and the ability of each technique for evaluation of glaucomatous progression. A broad review of the current literature reveals that objective assessment of retinal nerve fiber layer, ganglion cell complex and optic nerve head topography may improve glaucoma monitoring when used as a complementary tool in conjunction with the clinical judgment of an expert. PMID:24470807

  16. Recent Advances in the Imaging of Frontotemporal Dementia

    PubMed Central

    Whitwell, Jennifer L.; Josephs, Keith A.

    2012-01-01

    Neuroimaging has played an important role in the characterization of the frontotemporal dementia (FTD) syndromes, demonstrating neurodegenerative signatures that can aid in the differentiation of FTD from other neurodegenerative disorders. Recent advances have been driven largely by the refinement of the clinical syndromes that underlie FTD, and by the discovery of new genetic and pathological features associated with FTD. Many new imaging techniques and modalities are also now available that allow the assessment of other aspects of brain structure and function, such as diffusion tensor imaging and resting state functional MRI. Studies have utilized these recent techniques, as well as traditional volumetric MRI, to provide further insight into disease progression across the many clinical, genetic and pathological variants of FTD. Importantly, neuroimaging signatures have been identified that will improve the clinician’s ability to predict underlying genetic and pathological features, and hence ultimately improve patient diagnosis. PMID:23015371

  17. Advances on image interpolation based on ant colony algorithm.

    PubMed

    Rukundo, Olivier; Cao, Hanqiang

    2016-01-01

    This paper presents an advance on image interpolation based on ant colony algorithm (AACA) for high resolution image scaling. The difference between the proposed algorithm and the previously proposed optimization of bilinear interpolation based on ant colony algorithm (OBACA) is that AACA uses global weighting, whereas OBACA uses local weighting scheme. The strength of the proposed global weighting of AACA algorithm depends on employing solely the pheromone matrix information present on any group of four adjacent pixels to decide which case deserves a maximum global weight value or not. Experimental results are further provided to show the higher performance of the proposed AACA algorithm with reference to the algorithms mentioned in this paper. PMID:27047729

  18. An image mosaic method based on corner

    NASA Astrophysics Data System (ADS)

    Jiang, Zetao; Nie, Heting

    2015-08-01

    In view of the shortcomings of the traditional image mosaic, this paper describes a new algorithm for image mosaic based on the Harris corner. Firstly, Harris operator combining the constructed low-pass smoothing filter based on splines function and circular window search is applied to detect the image corner, which allows us to have better localisation performance and effectively avoid the phenomenon of cluster. Secondly, the correlation feature registration is used to find registration pair, remove the false registration using random sampling consensus. Finally use the method of weighted trigonometric combined with interpolation function for image fusion. The experiments show that this method can effectively remove the splicing ghosting and improve the accuracy of image mosaic.

  19. Advances in methods for deepwater TLP installations

    SciTech Connect

    Wybro, P.G.

    1995-10-01

    This paper describes a method suitable for installing deepwater TLP structures in water depths beyond 3,000 ft. An overview is presented of previous TLP installation, wherein an evaluation is made of the various methods and their suitability to deepwater applications. A novel method for installation of deepwater TLP`s is described. This method of installation is most suitable for deepwater and/or large TLP structures, but can also be used in moderate water depth as well. The tendon installation method utilizes the so-called Platform Arrestor Concept (PAC), wherein tendon sections are transported by barges to site, and assembled vertically using a dynamically position crane vessel. The tendons are transferred to the platform where they are hung off until there are a full complement of tendons. The hull lock off operation is performed on all tendons simultaneously, avoiding dangerous platform resonant behavior. The installation calls for relatively simple installation equipment, and also enables the use of simple tendon tie-off equipment, such as a single piece nut.

  20. Advanced reliability method for fatigue analysis

    NASA Technical Reports Server (NTRS)

    Wu, Y.-T.; Wirsching, P. H.

    1984-01-01

    When design factors are considered as random variables and the failure condition cannot be expressed by a closed form algebraic inequality, computations of risk (or probability of failure) may become extremely difficult or very inefficient. This study suggests using a simple and easily constructed second degree polynomial to approximate the complicated limit state in the neighborhood of the design point; a computer analysis relates the design variables at selected points. Then a fast probability integration technique (i.e., the Rackwitz-Fiessler algorithm) can be used to estimate risk. The capability of the proposed method is demonstrated in an example of a low cycle fatigue problem for which a computer analysis is required to perform local strain analysis to relate the design variables. A comparison of the performance of this method is made with a far more costly Monte Carlo solution. Agreement of the proposed method with Monte Carlo is considered to be good.

  1. Transonic wing analysis using advanced computational methods

    NASA Technical Reports Server (NTRS)

    Henne, P. A.; Hicks, R. M.

    1978-01-01

    This paper discusses the application of three-dimensional computational transonic flow methods to several different types of transport wing designs. The purpose of these applications is to evaluate the basic accuracy and limitations associated with such numerical methods. The use of such computational methods for practical engineering problems can only be justified after favorable evaluations are completed. The paper summarizes a study of both the small-disturbance and the full potential technique for computing three-dimensional transonic flows. Computed three-dimensional results are compared to both experimental measurements and theoretical results. Comparisons are made not only of pressure distributions but also of lift and drag forces. Transonic drag rise characteristics are compared. Three-dimensional pressure distributions and aerodynamic forces, computed from the full potential solution, compare reasonably well with experimental results for a wide range of configurations and flow conditions.

  2. Digital image registration method using boundary maps

    NASA Technical Reports Server (NTRS)

    Andrus, J. F.; Campbell, C. W.; Jayroe, R. R.

    1975-01-01

    A new method of automatic image registration (matching) is presented. It requires that the original single or multichannel images first be converted to binary boundary maps having elements equal to zero or unity. The method corrects for both translational and rotational errors. One feature of the technique is the rapid calculation of a pseudo correlation matrix NCOR using only integer additions. It is argued that the use of boundary maps is advisable when the data from the two images are acquired under different conditions; i.e., weather conditions, lighting conditions, etc.

  3. Advanced 3D imaging lidar concepts for long range sensing

    NASA Astrophysics Data System (ADS)

    Gordon, K. J.; Hiskett, P. A.; Lamb, R. A.

    2014-06-01

    Recent developments in 3D imaging lidar are presented. Long range 3D imaging using photon counting is now a possibility, offering a low-cost approach to integrated remote sensing with step changing advantages in size, weight and power compared to conventional analogue active imaging technology. We report results using a Geiger-mode array for time-of-flight, single photon counting lidar for depth profiling and determination of the shape and size of tree canopies and distributed surface reflections at a range of 9km, with 4μJ pulses with a frame rate of 100kHz using a low-cost fibre laser operating at a wavelength of λ=1.5 μm. The range resolution is less than 4cm providing very high depth resolution for target identification. This specification opens up several additional functionalities for advanced lidar, for example: absolute rangefinding and depth profiling for long range identification, optical communications, turbulence sensing and time-of-flight spectroscopy. Future concepts for 3D time-of-flight polarimetric and multispectral imaging lidar, with optical communications in a single integrated system are also proposed.

  4. Diagnosis by Endoscopy and Advanced Imaging of Barrett's Neoplasia.

    PubMed

    Swager, Anne-Fré; Curvers, Wouter L; Bergman, Jacques J

    2016-01-01

    Evaluation of patients with Barrett's esophagus (BE) using dye-based chromoendoscopy, optical chromoendoscopy, autofluorescence imaging, or confocal laser endomicroscopy does not significantly increase the number of patients with a diagnosis of early neoplasia compared with high-definition white light endoscopy (HD-WLE) with random biopsy analysis. These newer imaging techniques are not more effective in standard surveillance of patients with BE because the prevalence of early neoplasia is low and HD-WLE with random biopsy analysis detects most cases of neoplasia. The evaluation and treatment of patients with BE and early stage neoplasia should be centralized in tertiary referral centers, where procedures are performed under optimal conditions, by expert endoscopists. Lesions that require resection are almost always detected by HD-WLE, although advanced imaging techniques can detect additional flat lesions. However, these are of limited clinical significance because they are effectively eradicated by ablation therapy. No endoscopic imaging technique can reliably assess submucosal or lymphangio invasion. Endoscopic resection of early stage neoplasia in patients with BE is important for staging and management. Optical chromoendoscopy can also be used to evaluate lesions before endoscopic resection and in follow-up after successful ablation therapy. PMID:27573768

  5. Recent Advances in Techniques for Hyperspectral Image Processing

    NASA Technical Reports Server (NTRS)

    Plaza, Antonio; Benediktsson, Jon Atli; Boardman, Joseph W.; Brazile, Jason; Bruzzone, Lorenzo; Camps-Valls, Gustavo; Chanussot, Jocelyn; Fauvel, Mathieu; Gamba, Paolo; Gualtieri, Anthony; Marconcini, Mattia; Tilton, James C.; Trianni, Giovanna

    2009-01-01

    Imaging spectroscopy, also known as hyperspectral imaging, has been transformed in less than 30 years from being a sparse research tool into a commodity product available to a broad user community. Currently, there is a need for standardized data processing techniques able to take into account the special properties of hyperspectral data. In this paper, we provide a seminal view on recent advances in techniques for hyperspectral image processing. Our main focus is on the design of techniques able to deal with the highdimensional nature of the data, and to integrate the spatial and spectral information. Performance of the discussed techniques is evaluated in different analysis scenarios. To satisfy time-critical constraints in specific applications, we also develop efficient parallel implementations of some of the discussed algorithms. Combined, these parts provide an excellent snapshot of the state-of-the-art in those areas, and offer a thoughtful perspective on future potentials and emerging challenges in the design of robust hyperspectral imaging algorithms

  6. Microwave Imaging for Breast Cancer Detection: Advances in Three–Dimensional Image Reconstruction

    PubMed Central

    Golnabi, Amir H.; Meaney, Paul M.; Epstein, Neil R.; Paulsen, Keith D.

    2013-01-01

    Microwave imaging is based on the electrical property (permittivity and conductivity) differences in materials. Microwave imaging for biomedical applications is particularly interesting, mainly due to the fact that available range of dielectric properties for different tissues can provide important functional information about their health. Under the assumption that a 3D scattering problem can be reasonably represented as a simplified 2D model, one can take advantage of the simplicity and lower computational cost of 2D models to characterize such 3D phenomenon. Nonetheless, by eliminating excessive model simplifications, 3D microwave imaging provides potentially more valuable information over 2Dtechniques, and as a result, more accurate dielectric property maps may be obtained. In this paper, we present some advances we have made in three–dimensional image reconstruction, and show the results from a 3D breast phantom experiment using our clinical microwave imaging system at Dartmouth Hitchcock Medical Center (DHMC), NH. PMID:22255641

  7. Advanced method for making vitreous waste forms

    SciTech Connect

    Pope, J.M.; Harrison, D.E.

    1980-01-01

    A process is described for making waste glass that circumvents the problems of dissolving nuclear waste in molten glass at high temperatures. Because the reactive mixing process is independent of the inherent viscosity of the melt, any glass composition can be prepared with equal facility. Separation of the mixing and melting operations permits novel glass fabrication methods to be employed.

  8. Advances in Hyperspectral and Multispectral Image Fusion and Spectral Unmixing

    NASA Astrophysics Data System (ADS)

    Lanaras, C.; Baltsavias, E.; Schindler, K.

    2015-08-01

    In this work, we jointly process high spectral and high geometric resolution images and exploit their synergies to (a) generate a fused image of high spectral and geometric resolution; and (b) improve (linear) spectral unmixing of hyperspectral endmembers at subpixel level w.r.t. the pixel size of the hyperspectral image. We assume that the two images are radiometrically corrected and geometrically co-registered. The scientific contributions of this work are (a) a simultaneous approach to image fusion and hyperspectral unmixing, (b) enforcing several physically plausible constraints during unmixing that are all well-known, but typically not used in combination, and (c) the use of efficient, state-of-the-art mathematical optimization tools to implement the processing. The results of our joint fusion and unmixing has the potential to enable more accurate and detailed semantic interpretation of objects and their properties in hyperspectral and multispectral images, with applications in environmental mapping, monitoring and change detection. In our experiments, the proposed method always improves the fusion compared to competing methods, reducing RMSE between 4% and 53%.

  9. Advances in infrared and imaging fibres for astronomical instrumentation

    NASA Astrophysics Data System (ADS)

    Haynes, Roger; McNamara, Pam; Marcel, Jackie; Jovanovic, Nemanja

    2006-06-01

    Optical fibres have already played a huge part in ground based astronomical instrumentation, however, with the revolution in photonics currently taking place new fibre technologies and integrated optical devices are likely to have a profound impact on the way we manipulate light in the future. The Anglo Australian Observatory, along with partners at the Optical Fibre Technology Centre of the University of Sydney, is investigating some of the developing technologies as part of our Astrophotonics programme2. In this paper we discuss the advances that have been made with infrared transmitting fibre, both conventional and microstructured, in particular those based on fluoride glasses. Fluoride glasses have a particularly wide transparent region from the UV through to around 7μm, whereas silica fibres, commonly used in astronomy, only transmit out to about 2μm. We discuss the impact of advances in fibre manufacture that have greatly improved the optical, chemical resistance and physical properties of the fluoride fibres. We also present some encouraging initial test results for a modern imaging fibre bundle and imaging fibre taper.

  10. Advancing-layers method for generation of unstructured viscous grids

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar

    1993-01-01

    A novel approach for generating highly stretched grids which is based on a modified advancing-front technique and benefits from the generality, flexibility, and grid quality of the conventional advancing-front-based Euler grid generators is presented. The method is self-sufficient for the insertion of grid points in the boundary layer and beyond. Since it is based on a totally unstructured grid strategy, the method alleviates the difficulties stemming from the structural limitations of the prismatic techniques.

  11. Advanced Electromagnetic Methods for Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; Polycarpou, Anastasis; Birtcher, Craig R.; Georgakopoulos, Stavros; Han, Dong-Ho; Ballas, Gerasimos

    1999-01-01

    The imminent destructive threats of Lightning on helicopters and other airborne systems has always been a topic of great interest to this research grant. Previously, the lightning induced currents on the surface of the fuselage and its interior were predicted using the finite-difference time-domain (FDTD) method as well as the NEC code. The limitations of both methods, as applied to lightning, were identified and extensively discussed in the last meeting. After a thorough investigation of the capabilities of the FDTD, it was decided to incorporate into the numerical method a subcell model to accurately represent current diffusion through conducting materials of high conductivity and finite thickness. Because of the complexity of the model, its validity will be first tested for a one-dimensional FDTD problem. Although results are not available yet, the theory and formulation of the subcell model are presented and discussed here to a certain degree. Besides lightning induced currents in the interior of an aircraft, penetration of electromagnetic fields through apertures (e.g., windows and cracks) could also be devastating for the navigation equipment, electronics, and communications systems in general. The main focus of this study is understanding and quantifying field penetration through apertures. The simulation is done using the FDTD method and the predictions are compared with measurements and moment method solutions obtained from the NASA Langley Research Center. Cavity-backed slot (CBS) antennas or slot antennas in general have many applications in aircraft-satellite type of communications. These can be flushmounted on the surface of the fuselage and, therefore, they retain the aerodynamic shape of the aircraft. In the past, input impedance and radiation patterns of CBS antennas were computed using a hybrid FEM/MoM code. The analysis is now extended to coupling between two identical slot antennas mounted on the same structure. The predictions are performed

  12. Method for eliminating artifacts in CCD imagers

    DOEpatents

    Turko, B.T.; Yates, G.J.

    1992-06-09

    An electronic method for eliminating artifacts in a video camera employing a charge coupled device (CCD) as an image sensor is disclosed. The method comprises the step of initializing the camera prior to normal read out and includes a first dump cycle period for transferring radiation generated charge into the horizontal register while the decaying image on the phosphor being imaged is being integrated in the photosites, and a second dump cycle period, occurring after the phosphor image has decayed, for rapidly dumping unwanted smear charge which has been generated in the vertical registers. Image charge is then transferred from the photosites and to the vertical registers and read out in conventional fashion. The inventive method allows the video camera to be used in environments having high ionizing radiation content, and to capture images of events of very short duration and occurring either within or outside the normal visual wavelength spectrum. Resultant images are free from ghost, smear and smear phenomena caused by insufficient opacity of the registers and, and are also free from random damage caused by ionization charges which exceed the charge limit capacity of the photosites. 3 figs.

  13. Method for eliminating artifacts in CCD imagers

    DOEpatents

    Turko, Bojan T.; Yates, George J.

    1992-01-01

    An electronic method for eliminating artifacts in a video camera (10) employing a charge coupled device (CCD) (12) as an image sensor. The method comprises the step of initializing the camera (10) prior to normal read out and includes a first dump cycle period (76) for transferring radiation generated charge into the horizontal register (28) while the decaying image on the phosphor (39) being imaged is being integrated in the photosites, and a second dump cycle period (78), occurring after the phosphor (39) image has decayed, for rapidly dumping unwanted smear charge which has been generated in the vertical registers (32). Image charge is then transferred from the photosites (36) and (38) to the vertical registers (32) and read out in conventional fashion. The inventive method allows the video camera (10) to be used in environments having high ionizing radiation content, and to capture images of events of very short duration and occurring either within or outside the normal visual wavelength spectrum. Resultant images are free from ghost, smear and smear phenomena caused by insufficient opacity of the registers (28) and (32), and are also free from random damage caused by ionization charges which exceed the charge limit capacity of the photosites (36) and (37).

  14. Corona solar blind ultraviolet image detecting method

    NASA Astrophysics Data System (ADS)

    Yin, Li-min; Tang, Wen-qing; Zhang, Yu

    2009-07-01

    Corona is one of important reasons of electrical energy loss in the electric power. According to incomplete statistics, corona loss electrical energy has achieved two thousands and fifty millions kW.h in our nation every year. Sometimes corona also can have some disturbance to radio and communication. Therefore to discover and examine corona promptly has the extremely vital significance for conserving energy and realizing high quality communication. Ultraviolet image detecting technology is a preferred corona detection method in electric power. It may realize all-weather reliable survey to corona. The solar blind ultraviolet signal discharged by corona is quite weak. Moreover the ultraviolet image quality has been affected seriously by the detection system noise. A corona solar blind ultraviolet image processing method is proposed in this paper. Ultraviolet image has so small target, low contrast image, district characteristic and real-time demand that it is processed by multi-scale ultraviolet morphology filter technology based on mathematics morphology in this paper. Results show that the method can stretch image contrast, enhance target and weaken noise. The algorithm is easy to deal in parallel and it can be realized easily by hardware. It will be accurately demarcated when the condition of device need to be absolutely measured. The paper proposes a kind of mathematics morphology algorithm. Solar blind ultraviolet image will be further processed according to temperature and humidity in order to remove the infection of corona discharge demarcation and solve correct demarcation question when equipment condition need to be absolutely measured.

  15. Cost estimating methods for advanced space systems

    NASA Technical Reports Server (NTRS)

    Cyr, Kelley

    1988-01-01

    Parametric cost estimating methods for space systems in the conceptual design phase are developed. The approach is to identify variables that drive cost such as weight, quantity, development culture, design inheritance, and time. The relationship between weight and cost is examined in detail. A theoretical model of cost is developed and tested statistically against a historical data base of major research and development programs. It is concluded that the technique presented is sound, but that it must be refined in order to produce acceptable cost estimates.

  16. A content-based image retrieval method for optical colonoscopy images based on image recognition techniques

    NASA Astrophysics Data System (ADS)

    Nosato, Hirokazu; Sakanashi, Hidenori; Takahashi, Eiichi; Murakawa, Masahiro

    2015-03-01

    This paper proposes a content-based image retrieval method for optical colonoscopy images that can find images similar to ones being diagnosed. Optical colonoscopy is a method of direct observation for colons and rectums to diagnose bowel diseases. It is the most common procedure for screening, surveillance and treatment. However, diagnostic accuracy for intractable inflammatory bowel diseases, such as ulcerative colitis (UC), is highly dependent on the experience and knowledge of the medical doctor, because there is considerable variety in the appearances of colonic mucosa within inflammations with UC. In order to solve this issue, this paper proposes a content-based image retrieval method based on image recognition techniques. The proposed retrieval method can find similar images from a database of images diagnosed as UC, and can potentially furnish the medical records associated with the retrieved images to assist the UC diagnosis. Within the proposed method, color histogram features and higher order local auto-correlation (HLAC) features are adopted to represent the color information and geometrical information of optical colonoscopy images, respectively. Moreover, considering various characteristics of UC colonoscopy images, such as vascular patterns and the roughness of the colonic mucosa, we also propose an image enhancement method to highlight the appearances of colonic mucosa in UC. In an experiment using 161 UC images from 32 patients, we demonstrate that our method improves the accuracy of retrieving similar UC images.

  17. Advances in organometallic synthesis with mechanochemical methods.

    PubMed

    Rightmire, Nicholas R; Hanusa, Timothy P

    2016-02-14

    Solvent-based syntheses have long been normative in all areas of chemistry, although mechanochemical methods (specifically grinding and milling) have been used to good effect for decades in organic, and to a lesser but growing extent, inorganic coordination chemistry. Organometallic synthesis, in contrast, represents a relatively underdeveloped area for mechanochemical research, and the potential benefits are considerable. From access to new classes of unsolvated complexes, to control over stoichiometries that have not been observed in solution routes, mechanochemical (or 'M-chem') approaches have much to offer the synthetic chemist. It has already become clear that removing the solvent from an organometallic reaction can change reaction pathways considerably, so that prediction of the outcome is not always straightforward. This Perspective reviews recent developments in the field, and describes equipment that can be used in organometallic synthesis. Synthetic chemists are encouraged to add mechanochemical methods to their repertoire in the search for new and highly reactive metal complexes and novel types of organometallic transformations. PMID:26763151

  18. Advancements in Research Synthesis Methods: From a Methodologically Inclusive Perspective

    ERIC Educational Resources Information Center

    Suri, Harsh; Clarke, David

    2009-01-01

    The dominant literature on research synthesis methods has positivist and neo-positivist origins. In recent years, the landscape of research synthesis methods has changed rapidly to become inclusive. This article highlights methodologically inclusive advancements in research synthesis methods. Attention is drawn to insights from interpretive,…

  19. The Effectiveness of Advance Organizers on the Signification of Poetic Images

    ERIC Educational Resources Information Center

    Bayat, Nihat

    2007-01-01

    Advance organizers activate the most suitable schema to learn new material. Poetic images are signified in schemata and the elements which are not expressed may be called by advance organizers. The purpose of this investigation is to discern the effectiveness of advance organizers on the signification of poetic images. Pretest-posttest…

  20. Advances in LC: bioanalytical method transfer.

    PubMed

    Wright, Patricia; Wright, Adrian

    2016-09-01

    There are three main reasons for transferring from an existing bioanalytical assay to an alternative chromatographic method: speed, cost and sensitivity. These represent a challenge to the analyst in that there is an interplay between these three considerations and one factor is often improved at the expense of another. These three factors act as drivers to encourage technology development and support its uptake. The more recently introduced chromatographic technologies may show significant improvements against one of more of these factors relative to conventional 4.6-mm id reversed-phase HPLC. In this article, some of these new chromatographic approaches will be considered in terms of what they can offer the bioanalysts. PMID:27491842

  1. Current methods and advances in bone densitometry

    NASA Technical Reports Server (NTRS)

    Guglielmi, G.; Gluer, C. C.; Majumdar, S.; Blunt, B. A.; Genant, H. K.

    1995-01-01

    Bone mass is the primary, although not the only, determinant of fracture. Over the past few years a number of noninvasive techniques have been developed to more sensitively quantitate bone mass. These include single and dual photon absorptiometry (SPA and DPA), single and dual X-ray absorptiometry (SXA and DXA) and quantitative computed tomography (QCT). While differing in anatomic sites measured and in their estimates of precision, accuracy, and fracture discrimination, all of these methods provide clinically useful measurements of skeletal status. It is the intent of this review to discuss the pros and cons of these techniques and to present the new applications of ultrasound (US) and magnetic resonance (MRI) in the detection and management of osteoporosis.

  2. Current methods and advances in bone densitometry.

    PubMed

    Guglielmi, G; Gluer, C C; Majumdar, S; Blunt, B A; Genant, H K

    1995-01-01

    Bone mass is the primary, although not the only, determinant of fracture. Over the past few years a number of noninvasive techniques have been developed to more sensitively quantitate bone mass. These include single and dual photon absorptiometry (SPA and DPA), single and dual X-ray absorptiometry (SXA and DXA) and quantitative computed tomography (QCT). While differing in anatomic sites measured and in their estimates of precision, accuracy, and fracture discrimination, all of these methods provide clinically useful measurements of skeletal status. It is the intent of this review to discuss the pros and cons of these techniques and to present the new applications of ultrasound (US) and magnetic resonance (MRI) in the detection and management of osteoporosis. PMID:11539928

  3. Advanced imaging and arthroscopic management of shoulder contracture after birth palsy.

    PubMed

    Kozin, Scott H; Zlotolow, Dan A

    2012-11-01

    Modern imaging techniques applied to the pediatric glenohumeral joint have advanced understanding of the anatomic changes that occur secondary to muscular imbalance after brachial plexus birth palsy. A better understanding of the progression and timing of glenohumeral dysplasia has also increased awareness and vigilance of this problem. Early detection of glenohumeral joint subluxation is now possible, allowing for prompt treatment with closed, arthroscopic, or open joint reduction with and without tendon transfers. Dynamic ultrasound imaging, Botox, and arthroscopic techniques have expanded treatment options, providing minimally invasive methods to successfully manage glenohumeral joint dysplasia. PMID:23101604

  4. Image change detection systems, methods, and articles of manufacture

    DOEpatents

    Jones, James L.; Lassahn, Gordon D.; Lancaster, Gregory D.

    2010-01-05

    Aspects of the invention relate to image change detection systems, methods, and articles of manufacture. According to one aspect, a method of identifying differences between a plurality of images is described. The method includes loading a source image and a target image into memory of a computer, constructing source and target edge images from the source and target images to enable processing of multiband images, displaying the source and target images on a display device of the computer, aligning the source and target edge images, switching displaying of the source image and the target image on the display device, to enable identification of differences between the source image and the target image.

  5. Thickness-Independent Ultrasonic Imaging Applied to Abrasive Cut-Off Wheels: An Advanced Aerospace Materials Characterization Method for the Abrasives Industry. A NASA Lewis Research Center Technology Transfer Case History

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Farmer, Donald A.

    1998-01-01

    Abrasive cut-off wheels are at times unintentionally manufactured with nonuniformity that is difficult to identify and sufficiently characterize without time-consuming, destructive examination. One particular nonuniformity is a density variation condition occurring around the wheel circumference or along the radius, or both. This density variation, depending on its severity, can cause wheel warpage and wheel vibration resulting in unacceptable performance and perhaps premature failure of the wheel. Conventional nondestructive evaluation methods such as ultrasonic c-scan imaging and film radiography are inaccurate in their attempts at characterizing the density variation because a superimposing thickness variation exists as well in the wheel. In this article, the single transducer thickness-independent ultrasonic imaging method, developed specifically to allow more accurate characterization of aerospace components, is shown to precisely characterize the extent of the density variation in a cut-off wheel having a superimposing thickness variation. The method thereby has potential as an effective quality control tool in the abrasives industry for the wheel manufacturer.

  6. Quantitative statistical methods for image quality assessment.

    PubMed

    Dutta, Joyita; Ahn, Sangtae; Li, Quanzheng

    2013-01-01

    Quantitative measures of image quality and reliability are critical for both qualitative interpretation and quantitative analysis of medical images. While, in theory, it is possible to analyze reconstructed images by means of Monte Carlo simulations using a large number of noise realizations, the associated computational burden makes this approach impractical. Additionally, this approach is less meaningful in clinical scenarios, where multiple noise realizations are generally unavailable. The practical alternative is to compute closed-form analytical expressions for image quality measures. The objective of this paper is to review statistical analysis techniques that enable us to compute two key metrics: resolution (determined from the local impulse response) and covariance. The underlying methods include fixed-point approaches, which compute these metrics at a fixed point (the unique and stable solution) independent of the iterative algorithm employed, and iteration-based approaches, which yield results that are dependent on the algorithm, initialization, and number of iterations. We also explore extensions of some of these methods to a range of special contexts, including dynamic and motion-compensated image reconstruction. While most of the discussed techniques were developed for emission tomography, the general methods are extensible to other imaging modalities as well. In addition to enabling image characterization, these analysis techniques allow us to control and enhance imaging system performance. We review practical applications where performance improvement is achieved by applying these ideas to the contexts of both hardware (optimizing scanner design) and image reconstruction (designing regularization functions that produce uniform resolution or maximize task-specific figures of merit). PMID:24312148

  7. Quantitative Statistical Methods for Image Quality Assessment

    PubMed Central

    Dutta, Joyita; Ahn, Sangtae; Li, Quanzheng

    2013-01-01

    Quantitative measures of image quality and reliability are critical for both qualitative interpretation and quantitative analysis of medical images. While, in theory, it is possible to analyze reconstructed images by means of Monte Carlo simulations using a large number of noise realizations, the associated computational burden makes this approach impractical. Additionally, this approach is less meaningful in clinical scenarios, where multiple noise realizations are generally unavailable. The practical alternative is to compute closed-form analytical expressions for image quality measures. The objective of this paper is to review statistical analysis techniques that enable us to compute two key metrics: resolution (determined from the local impulse response) and covariance. The underlying methods include fixed-point approaches, which compute these metrics at a fixed point (the unique and stable solution) independent of the iterative algorithm employed, and iteration-based approaches, which yield results that are dependent on the algorithm, initialization, and number of iterations. We also explore extensions of some of these methods to a range of special contexts, including dynamic and motion-compensated image reconstruction. While most of the discussed techniques were developed for emission tomography, the general methods are extensible to other imaging modalities as well. In addition to enabling image characterization, these analysis techniques allow us to control and enhance imaging system performance. We review practical applications where performance improvement is achieved by applying these ideas to the contexts of both hardware (optimizing scanner design) and image reconstruction (designing regularization functions that produce uniform resolution or maximize task-specific figures of merit). PMID:24312148

  8. Image Inpainting Methods Evaluation and Improvement

    PubMed Central

    Vreja, Raluca

    2014-01-01

    With the upgrowing of digital processing of images and film archiving, the need for assisted or unsupervised restoration required the development of a series of methods and techniques. Among them, image inpainting is maybe the most impressive and useful. Based on partial derivative equations or texture synthesis, many other hybrid techniques have been proposed recently. The need for an analytical comparison, beside the visual one, urged us to perform the studies shown in the present paper. Starting with an overview of the domain, an evaluation of the five methods was performed using a common benchmark and measuring the PSNR. Conclusions regarding the performance of the investigated algorithms have been presented, categorizing them in function of the restored image structure. Based on these experiments, we have proposed an adaptation of Oliveira's and Hadhoud's algorithms, which are performing well on images with natural defects. PMID:25136700

  9. Image inpainting methods evaluation and improvement.

    PubMed

    Vreja, Raluca; Brad, Remus

    2014-01-01

    With the upgrowing of digital processing of images and film archiving, the need for assisted or unsupervised restoration required the development of a series of methods and techniques. Among them, image inpainting is maybe the most impressive and useful. Based on partial derivative equations or texture synthesis, many other hybrid techniques have been proposed recently. The need for an analytical comparison, beside the visual one, urged us to perform the studies shown in the present paper. Starting with an overview of the domain, an evaluation of the five methods was performed using a common benchmark and measuring the PSNR. Conclusions regarding the performance of the investigated algorithms have been presented, categorizing them in function of the restored image structure. Based on these experiments, we have proposed an adaptation of Oliveira's and Hadhoud's algorithms, which are performing well on images with natural defects. PMID:25136700

  10. MATHEMATICAL METHODS IN MEDICAL IMAGE PROCESSING

    PubMed Central

    ANGENENT, SIGURD; PICHON, ERIC; TANNENBAUM, ALLEN

    2013-01-01

    In this paper, we describe some central mathematical problems in medical imaging. The subject has been undergoing rapid changes driven by better hardware and software. Much of the software is based on novel methods utilizing geometric partial differential equations in conjunction with standard signal/image processing techniques as well as computer graphics facilitating man/machine interactions. As part of this enterprise, researchers have been trying to base biomedical engineering principles on rigorous mathematical foundations for the development of software methods to be integrated into complete therapy delivery systems. These systems support the more effective delivery of many image-guided procedures such as radiation therapy, biopsy, and minimally invasive surgery. We will show how mathematics may impact some of the main problems in this area, including image enhancement, registration, and segmentation. PMID:23645963

  11. Advanced Fuzzy Potential Field Method for Mobile Robot Obstacle Avoidance

    PubMed Central

    Park, Jong-Wook; Kwak, Hwan-Joo; Kang, Young-Chang; Kim, Dong W.

    2016-01-01

    An advanced fuzzy potential field method for mobile robot obstacle avoidance is proposed. The potential field method primarily deals with the repulsive forces surrounding obstacles, while fuzzy control logic focuses on fuzzy rules that handle linguistic variables and describe the knowledge of experts. The design of a fuzzy controller—advanced fuzzy potential field method (AFPFM)—that models and enhances the conventional potential field method is proposed and discussed. This study also examines the rule-explosion problem of conventional fuzzy logic and assesses the performance of our proposed AFPFM through simulations carried out using a mobile robot. PMID:27123001

  12. Advanced Fuzzy Potential Field Method for Mobile Robot Obstacle Avoidance.

    PubMed

    Park, Jong-Wook; Kwak, Hwan-Joo; Kang, Young-Chang; Kim, Dong W

    2016-01-01

    An advanced fuzzy potential field method for mobile robot obstacle avoidance is proposed. The potential field method primarily deals with the repulsive forces surrounding obstacles, while fuzzy control logic focuses on fuzzy rules that handle linguistic variables and describe the knowledge of experts. The design of a fuzzy controller--advanced fuzzy potential field method (AFPFM)--that models and enhances the conventional potential field method is proposed and discussed. This study also examines the rule-explosion problem of conventional fuzzy logic and assesses the performance of our proposed AFPFM through simulations carried out using a mobile robot. PMID:27123001

  13. Advanced electromagnetic methods for aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; Choi, Jachoon; El-Sharawy, El-Budawy; Hashemi-Yeganeh, Shahrokh; Birtcher, Craig R.

    1990-01-01

    High- and low-frequency methods to analyze various radiation elements located on aerospace vehicles with combinations of conducting, nonconducting, and energy absorbing surfaces and interfaces. The focus was on developing fundamental concepts, techniques, and algorithms which would remove some of the present limitations in predicting radiation characteristics of antennas on complex aerospace vehicles. In order to accomplish this, the following subjects were examined: (1) the development of techniques for rigorous analysis of surface discontinuities of metallic and nonmetallic surfaces using the equivalent surface impedance concept and Green's function; (2) the effects of anisotropic material on antenna radiation patterns through the use of an equivalent surface impedance concept which is incorporated into the existing numerical electromagnetics computer codes; and (3) the fundamental concepts of precipitation static (P-Static), such as formulations and analytical models. A computer code was used to model the P-Static process on a simple structure. Measurement techniques were also developed to characterized the electrical properties at microwave frequencies. Samples of typical materials used in airframes were tested and the results are included.

  14. Cost estimating methods for advanced space systems

    NASA Technical Reports Server (NTRS)

    Cyr, Kelley

    1994-01-01

    NASA is responsible for developing much of the nation's future space technology. Cost estimates for new programs are required early in the planning process so that decisions can be made accurately. Because of the long lead times required to develop space hardware, the cost estimates are frequently required 10 to 15 years before the program delivers hardware. The system design in conceptual phases of a program is usually only vaguely defined and the technology used is so often state-of-the-art or beyond. These factors combine to make cost estimating for conceptual programs very challenging. This paper describes an effort to develop parametric cost estimating methods for space systems in the conceptual design phase. The approach is to identify variables that drive cost such as weight, quantity, development culture, design inheritance and time. The nature of the relationships between the driver variables and cost will be discussed. In particular, the relationship between weight and cost will be examined in detail. A theoretical model of cost will be developed and tested statistically against a historical database of major research and development projects.

  15. Advances in ultrasound imaging for congenital malformations during early gestation

    PubMed Central

    Rayburn, William F.; Jolley, Jennifer A.; Simpson, Lynn L.

    2015-01-01

    With refinement in ultrasound technology, detection of fetal structural abnormalities has improved and there have been detailed reports of the natural history and expected outcomes for many anomalies. The ability to either reassure a high-risk woman with normal intrauterine images or offer comprehensive counseling and offer options in cases of strongly suspected lethal or major malformations has shifted prenatal diagnoses to the earliest possible gestational age. When indicated, scans in early gestation are valuable in accurate gestational dating. Stricter sonographic criteria for early nonviability guard against unnecessary intervention. Most birth defects are without known risk factors, and detection of certain malformations is possible in the late first trimester. The best time for a standard complete fetal and placental scan is 18–20 weeks. In addition, certain soft anatomic markers provide clues to chromosomal aneuploidy risk. Maternal obesity and multifetal pregnancies are now more common and further limit early gestation visibility. Other advanced imaging techniques during early gestation in select cases of suspected malformations include fetal echocardiography and magnetic resonance imaging. PMID:25820190

  16. Advanced Imaging in Femoroacetabular Impingement: Current State and Future Prospects

    PubMed Central

    Bittersohl, Bernd; Hosalkar, Harish S.; Hesper, Tobias; Tiderius, Carl Johan; Zilkens, Christoph; Krauspe, Rüdiger

    2015-01-01

    Symptomatic femoroacetabular impingement (FAI) is now a known precursor of early osteoarthritis (OA) of the hip. In terms of clinical intervention, the decision between joint preservation and joint replacement hinges on the severity of articular cartilage degeneration. The exact threshold during the course of disease progression when the cartilage damage is irreparable remains elusive. The intention behind radiographic imaging is to accurately identify the morphology of osseous structural abnormalities and to accurately characterize the chondrolabral damage as much as possible. However, both plain radiographs and computed tomography (CT) are insensitive for articular cartilage anatomy and pathology. Advanced magnetic resonance imaging (MRI) techniques include magnetic resonance arthrography and biochemically sensitive techniques of delayed gadolinium-enhanced MRI of cartilage (dGEMRIC), T1rho (T1ρ), T2/T2* mapping, and several others. The diagnostic performance of these techniques to evaluate cartilage degeneration could improve the ability to predict an individual patient-specific outcome with non-surgical and surgical care. This review discusses the facts and current applications of biochemical MRI for hip joint cartilage assessment covering the roles of dGEMRIC, T2/T2*, and T1ρ mapping. The basics of each technique and their specific role in FAI assessment are outlined. Current limitations and potential pitfalls as well as future directions of biochemical imaging are also outlined. PMID:26258129

  17. Advanced Imaging in Femoroacetabular Impingement: Current State and Future Prospects.

    PubMed

    Bittersohl, Bernd; Hosalkar, Harish S; Hesper, Tobias; Tiderius, Carl Johan; Zilkens, Christoph; Krauspe, Rüdiger

    2015-01-01

    Symptomatic femoroacetabular impingement (FAI) is now a known precursor of early osteoarthritis (OA) of the hip. In terms of clinical intervention, the decision between joint preservation and joint replacement hinges on the severity of articular cartilage degeneration. The exact threshold during the course of disease progression when the cartilage damage is irreparable remains elusive. The intention behind radiographic imaging is to accurately identify the morphology of osseous structural abnormalities and to accurately characterize the chondrolabral damage as much as possible. However, both plain radiographs and computed tomography (CT) are insensitive for articular cartilage anatomy and pathology. Advanced magnetic resonance imaging (MRI) techniques include magnetic resonance arthrography and biochemically sensitive techniques of delayed gadolinium-enhanced MRI of cartilage (dGEMRIC), T1rho (T1ρ), T2/T2* mapping, and several others. The diagnostic performance of these techniques to evaluate cartilage degeneration could improve the ability to predict an individual patient-specific outcome with non-surgical and surgical care. This review discusses the facts and current applications of biochemical MRI for hip joint cartilage assessment covering the roles of dGEMRIC, T2/T2*, and T1ρ mapping. The basics of each technique and their specific role in FAI assessment are outlined. Current limitations and potential pitfalls as well as future directions of biochemical imaging are also outlined. PMID:26258129

  18. Reflective optical imaging method and circuit

    DOEpatents

    Shafer, David R.

    2001-01-01

    An optical system compatible with short wavelength (extreme ultraviolet) radiation comprising four reflective elements for projecting a mask image onto a substrate. The four optical elements are characterized in order from object to image as convex, concave, convex and concave mirrors. The optical system is particularly suited for step and scan lithography methods. The invention increases the slit dimensions associated with ringfield scanning optics, improves wafer throughput and allows higher semiconductor device density.

  19. Method for large and rapid terahertz imaging

    DOEpatents

    Williams, Gwyn P.; Neil, George R.

    2013-01-29

    A method of large-scale active THz imaging using a combination of a compact high power THz source (>1 watt), an optional optical system, and a camera for the detection of reflected or transmitted THz radiation, without the need for the burdensome power source or detector cooling systems required by similar prior art such devices. With such a system, one is able to image, for example, a whole person in seconds or less, whereas at present, using low power sources and scanning techniques, it takes several minutes or even hours to image even a 1 cm.times.1 cm area of skin.

  20. AXIOM: advanced X-ray imaging of the magnetosphere

    NASA Astrophysics Data System (ADS)

    Branduardi-Raymont, Graziella; Sembay, Steve F.; Eastwood, Jonathan P.; Sibeck, David G.; Abbey, Tony A.; Brown, Patrick; Carter, Jenny A.; Carr, Chris M.; Forsyth, Colin; Kataria, Dhiren; Kemble, Steve; Milan, Steve E.; Owen, Chris J.; Peacocke, Lisa; Read, Andy M.; Coates, Andrew J.; Collier, Michael R.; Cowley, Stan W. H.; Fazakerley, Andrew N.; Fraser, George W.; Jones, Geraint H.; Lallement, Rosine; Lester, Mark; Porter, F. Scott; Yeoman, Tim K.

    2012-04-01

    Planetary plasma and magnetic field environments can be studied in two complementary ways—by in situ measurements, or by remote sensing. While the former provide precise information about plasma behaviour, instabilities and dynamics on local scales, the latter offers the global view necessary to understand the overall interaction of the magnetospheric plasma with the solar wind. Some parts of the Earth's magnetosphere have been remotely sensed, but the majority remains unexplored by this type of measurements. Here we propose a novel and more elegant approach employing remote X-ray imaging techniques, which are now possible thanks to the relatively recent discovery of solar wind charge exchange X-ray emissions in the vicinity of the Earth's magnetosphere. In this article we describe how an appropriately designed and located X-ray telescope, supported by simultaneous in situ measurements of the solar wind, can be used to image the dayside magnetosphere, magnetosheath and bow shock, with a temporal and spatial resolution sufficient to address several key outstanding questions concerning how the solar wind interacts with the Earth's magnetosphere on a global level. Global images of the dayside magnetospheric boundaries require vantage points well outside the magnetosphere. Our studies have led us to propose `AXIOM: Advanced X-ray Imaging of the Magnetosphere', a concept mission using a Vega launcher with a LISA Pathfinder-type Propulsion Module to place the spacecraft in a Lissajous orbit around the Earth-Moon L1 point. The model payload consists of an X-ray Wide Field Imager, capable of both imaging and spectroscopy, and an in situ plasma and magnetic field measurement package. This package comprises a Proton-Alpha Sensor, designed to measure the bulk properties of the solar wind, an Ion Composition Analyser, to characterise the minor ion populations in the solar wind that cause charge exchange emission, and a Magnetometer, designed to measure the strength and

  1. AXIOM: Advanced X-ray Imaging of the Magnetosphere

    NASA Technical Reports Server (NTRS)

    Branduardi-Raymont, G.; Sembay, S. F.; Eastwood, J. P.; Sibeck, D. G.; Abbey, A.; Brown, P.; Carter, J. A.; Carr, C. M.; Forsyth, C.; Kataria, D.; Kemble, S.; Milan, S. E.; Owen, C. J.; Peacocke, L.; Read, A. M.; Coates, A. J.; Collier, M. R.; Cowley, S. W. H.; Fazakerley, A. N.; Fraser, G. W.; Jones, G. H.; Lallement, R.; Lester, M.; Porter, F. S.; Yeoman, T. K.

    2012-01-01

    Planetary plasma and magnetic field environments can be studied in two complementary ways - by in situ measurements, or by remote sensing. While the former provide precise information about plasma behaviour, instabilities and dynamics on local scales, the latter offers the global view necessary to understand the overall interaction of the magnetospheric plasma with the solar wind. Some parts of the Earth's magnetosphere have been remotely sensed, but the majority remains unexplored by this type of measurements. Here we propose a novel and more elegant approach employing remote X-ray imaging techniques. which are now possible thanks to the relatively recent discovery of solar wind charge exchange X-ray emissions in the vicinity of the Earth's magnetosphere. In this article we describe how an appropriately designed and located. X-ray telescope, supported by simultaneous in situ measurements of the solar wind, can be used to image the dayside magnetosphere, magnetosheath and bow shock. with a temporal and spatial resolution sufficient to address several key outstanding questions concerning how the solar wind interacts with the Earth's magnetosphere on a global level. Global images of the dayside magnetospheric boundaries require vantage points well outside the magnetosphere. Our studies have led us to propose 'AXIOM: Advanced X-ray Imaging Of the Magnetosphere', a concept mission using a Vega launcher with a LISA Pathfinder-type Propulsion Module to place the spacecraft in a Lissajous orbit around the Earth - Moon Ll point. The model payload consists of an X-ray Wide Field Imager, capable of both imaging and spectroscopy, and an in situ plasma and magnetic field measurement package. This package comprises a Proton-Alpha Sensor, designed to measure the bulk properties of the solar wind, an Ion Composition Analyser, to characterize the minor ion populations in the solar wind that cause charge exchange emission, and a Magnetometer, designed to measure the strength and

  2. AXIOM: Advanced X-Ray Imaging of the Magnetosphere

    NASA Technical Reports Server (NTRS)

    Branduardi-Raymont, G.; Sembay, S. F.; Eastwood, J. P.; Sibeck, D. G.; Abbey, A.; Brown, P.; Carter, J. A.; Carr, C. M.; Forsyth, C.; Kataria, D.; Kemble, S.; Milan, S. E.; Owen, C. J.; Peacocke, L.; Read, A. M.; Coates, A. J.; Collier, M. R.; Cowley, S. W. H.; Fazakerley, A. N.; Fraser, G. W.; Jones, G. H.; Lallement, R.; Lester, M.; Porter, F. S.; Yeoman, T. K.

    2011-01-01

    Planetary plasma and magnetic field environments can be studied in two complementary ways by in situ measurements, or by remote sensing. While the former provide precise information about plasma behaviour, instabilities and dynamics on local scales, the latter offers the global view necessary to understand the overall interaction of the magnetospheric plasma with the solar wind. Some parts of the Earth's magnetosphere have been remotely sensed, but the majority remains unexplored by this type of measurements. Here we propose a novel and more elegant approach employing remote X-ray imaging techniques, which are now possible thanks to the relatively recent discovery of solar wind charge exchange X-ray emissions in the vicinity of the Earth's magnetosphere. In this article we describe how an appropriately designed and located X-ray telescope, supported by simultaneous in situ measurements of the solar wind, can be used to image the dayside magnetosphere, magnetosheath and bow shock, with a temporal and spatial resolution sufficient to address several key outstanding questions concerning how the solar wind interacts with the Earth's magnetosphere on a global level. Global images of the dayside magnetospheric boundaries require vantage points well outside the magnetosphere. Our studies have led us to propose AXIOM: Advanced X-ray Imaging Of the Magnetosphere, a concept mission using a Vega launcher with a LISA Pathfinder-type Propulsion Module to place the spacecraft in a Lissajous orbit around the Earth Moon L1 point. The model payload consists of an X-ray Wide Field Imager, capable of both imaging and spectroscopy, and an in situ plasma and magnetic field measurement package. This package comprises a Proton-Alpha Sensor, designed to measure the bulk properties of the solar wind, an Ion Composition Analyser, to characterize the minor ion populations in the solar wind that cause charge exchange emission, and a Magnetometer, designed to measure the strength and direction

  3. Medical Imaging Image Quality Assessment with Monte Carlo Methods

    NASA Astrophysics Data System (ADS)

    Michail, C. M.; Karpetas, G. E.; Fountos, G. P.; Kalyvas, N. I.; Martini, Niki; Koukou, Vaia; Valais, I. G.; Kandarakis, I. S.

    2015-09-01

    The aim of the present study was to assess image quality of PET scanners through a thin layer chromatography (TLC) plane source. The source was simulated using a previously validated Monte Carlo model. The model was developed by using the GATE MC package and reconstructed images obtained with the STIR software for tomographic image reconstruction, with cluster computing. The PET scanner simulated in this study was the GE DiscoveryST. A plane source consisted of a TLC plate, was simulated by a layer of silica gel on aluminum (Al) foil substrates, immersed in 18F-FDG bath solution (1MBq). Image quality was assessed in terms of the Modulation Transfer Function (MTF). MTF curves were estimated from transverse reconstructed images of the plane source. Images were reconstructed by the maximum likelihood estimation (MLE)-OSMAPOSL algorithm. OSMAPOSL reconstruction was assessed by using various subsets (3 to 21) and iterations (1 to 20), as well as by using various beta (hyper) parameter values. MTF values were found to increase up to the 12th iteration whereas remain almost constant thereafter. MTF improves by using lower beta values. The simulated PET evaluation method based on the TLC plane source can be also useful in research for the further development of PET and SPECT scanners though GATE simulations.

  4. Advancing Patient-centered Outcomes in Emergency Diagnostic Imaging: A Research Agenda.

    PubMed

    Kanzaria, Hemal K; McCabe, Aileen M; Meisel, Zachary M; LeBlanc, Annie; Schaffer, Jason T; Bellolio, M Fernanda; Vaughan, William; Merck, Lisa H; Applegate, Kimberly E; Hollander, Judd E; Grudzen, Corita R; Mills, Angela M; Carpenter, Christopher R; Hess, Erik P

    2015-12-01

    Diagnostic imaging is integral to the evaluation of many emergency department (ED) patients. However, relatively little effort has been devoted to patient-centered outcomes research (PCOR) in emergency diagnostic imaging. This article provides background on this topic and the conclusions of the 2015 Academic Emergency Medicine consensus conference PCOR work group regarding "Diagnostic Imaging in the Emergency Department: A Research Agenda to Optimize Utilization." The goal was to determine a prioritized research agenda to establish which outcomes related to emergency diagnostic imaging are most important to patients, caregivers, and other key stakeholders and which methods will most optimally engage patients in the decision to undergo imaging. Case vignettes are used to emphasize these concepts as they relate to a patient's decision to seek care at an ED and the care received there. The authors discuss applicable research methods and approaches such as shared decision-making that could facilitate better integration of patient-centered outcomes and patient-reported outcomes into decisions regarding emergency diagnostic imaging. Finally, based on a modified Delphi process involving members of the PCOR work group, prioritized research questions are proposed to advance the science of patient-centered outcomes in ED diagnostic imaging. PMID:26574729

  5. VIIRS Nighttime Lights: Advances in Satellite Low-Light Imaging

    NASA Astrophysics Data System (ADS)

    Hsu, F.; Baugh, K.; Elvidge, C.; Zhizhin, M. N.

    2013-12-01

    The Soumi National Polar-orbiting Partnership (SNPP) Visible Infrared Imaging Radiometer Suite (VIIRS) Day-Night Band (DNB) represents a major advance in low-light imaging over previous data sources. Building on 18 years of experience compositing nighttime data from the Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS), NOAA's NGDC Earth Observation Group created the first global VIIRS nighttime lights composite product by adapting their algorithms to process these new data. Compositing nighttime data involves combining only high quality data components over a period of time to improve sensitivity and coverage. Flag image were compiled to describe image quality. The initial flag categories included: daytime, twilight, stray light, non-zero lunar illuminance, noisy edge of scan data, clouds, and no data. High quality data included in the nighttime lights composite is defined as not having any of these attributes present. After the initial adaptation of heritage OLS algorithms, the authors sought to improve the sharpness of lights in the composite by adding additional flag categories. These include a refined VIIRS cloud mask, a mask based on cloud optical thickness, and a ranking of sharpness of light.. The VIIRS cloud mask, which is a JPSS retained intermediate product cloud mask (IICMO) is refined to reject the misclassification of hot sources like gas flares as cloud. Another JPSS retained intermediate product, cloud optical thickness, also provides valuable information about the clarity of atmosphere. The authors also implemented a sharp light detector to further characterize the quality of light for each pixel. Results of compositing multiple months in 2013 using these new flag categories are presented to demonstrate the improvements in nighttime lights composite quality.

  6. Uncovering brain–heart information through advanced signal and image processing

    PubMed Central

    Toschi, Nicola; Barbieri, Riccardo

    2016-01-01

    Through their dynamical interplay, the brain and the heart ensure fundamental homeostasis and mediate a number of physiological functions as well as their disease-related aberrations. Although a vast number of ad hoc analytical and computational tools have been recently applied to the non-invasive characterization of brain and heart dynamic functioning, little attention has been devoted to combining information to unveil the interactions between these two physiological systems. This theme issue collects contributions from leading experts dealing with the development of advanced analytical and computational tools in the field of biomedical signal and image processing. It includes perspectives on recent advances in 7 T magnetic resonance imaging as well as electroencephalogram, electrocardiogram and cerebrovascular flow processing, with the specific aim of elucidating methods to uncover novel biological and physiological correlates of brain–heart physiology and physiopathology. PMID:27044995

  7. Uncovering brain-heart information through advanced signal and image processing.

    PubMed

    Valenza, Gaetano; Toschi, Nicola; Barbieri, Riccardo

    2016-05-13

    Through their dynamical interplay, the brain and the heart ensure fundamental homeostasis and mediate a number of physiological functions as well as their disease-related aberrations. Although a vast number of ad hoc analytical and computational tools have been recently applied to the non-invasive characterization of brain and heart dynamic functioning, little attention has been devoted to combining information to unveil the interactions between these two physiological systems. This theme issue collects contributions from leading experts dealing with the development of advanced analytical and computational tools in the field of biomedical signal and image processing. It includes perspectives on recent advances in 7 T magnetic resonance imaging as well as electroencephalogram, electrocardiogram and cerebrovascular flow processing, with the specific aim of elucidating methods to uncover novel biological and physiological correlates of brain-heart physiology and physiopathology. PMID:27044995

  8. Unstructured viscous grid generation by advancing-front method

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar

    1993-01-01

    A new method of generating unstructured triangular/tetrahedral grids with high-aspect-ratio cells is proposed. The method is based on new grid-marching strategy referred to as 'advancing-layers' for construction of highly stretched cells in the boundary layer and the conventional advancing-front technique for generation of regular, equilateral cells in the inviscid-flow region. Unlike the existing semi-structured viscous grid generation techniques, the new procedure relies on a totally unstructured advancing-front grid strategy resulting in a substantially enhanced grid flexibility and efficiency. The method is conceptually simple but powerful, capable of producing high quality viscous grids for complex configurations with ease. A number of two-dimensional, triangular grids are presented to demonstrate the methodology. The basic elements of the method, however, have been primarily designed with three-dimensional problems in mind, making it extendible for tetrahedral, viscous grid generation.

  9. Advanced Ablative Insulators and Methods of Making Them

    NASA Technical Reports Server (NTRS)

    Congdon, William M.

    2005-01-01

    Advanced ablative (more specifically, charring) materials that provide temporary protection against high temperatures, and advanced methods of designing and manufacturing insulators based on these materials, are undergoing development. These materials and methods were conceived in an effort to replace the traditional thermal-protection systems (TPSs) of re-entry spacecraft with robust, lightweight, better-performing TPSs that can be designed and manufactured more rapidly and at lower cost. These materials and methods could also be used to make improved TPSs for general aerospace, military, and industrial applications.

  10. SU-E-QI-20: A Review of Advanced PET and CT Image Features for the Evaluation of Tumor Response

    SciTech Connect

    Lu, W

    2014-06-15

    Purpose: To review the literature in using quantitative PET and CT image features for the evaluation of tumor response. Methods: We reviewed and summarized more than fifty papers that use advanced, quantitative PET/CT image features for the evaluation of tumor response. We also discussed future works on extracting disease-specific features, combining multiple and complementary features in response modeling, delineating tumor in multimodality images, and exploring biological explanations of these advanced features. Results: Advanced PET image features considering spatial information, such as tumor volume, tumor shape, total glycolytic volume, histogram distance, and texture features (characterizing spatial distribution of FDG uptake) have been found more informative than the traditional SUVmax for the prediction of tumor response. Advanced CT features, including volumetric, attenuation, morphologic, structure, and texture descriptors, have also been found advantage over the traditional RECIST and WHO criteria in certain tumor types. Conclusions: Advanced, quantitative FDG PET/CT image features have been shown promising for the evaluation of tumor response. With the emerging multi-modality imaging performed at multiple time points for each patient, it becomes more important to analyze the serial images quantitatively, select and combine both complementary and contradictory information from various sources, for accurate and personalized evaluation of tumor response to therapy.

  11. A hybrid method for image interpolation

    NASA Astrophysics Data System (ADS)

    Qi, Chun; Huang, Hua; Wang, Wen-Bing; Zhang, Jing; Di, Shuangliang

    2003-09-01

    A hybrid method for image interpolation is proposed. The method consists of three different approaches: Circular arc or B-spline interpolation, linear interpolatino and human visual sensitivity based on interpolation. The image can be divided into three regions: linear smooth region, sharp edge region and human visual insensitive region. The method uses local variance and mean value to find different regions adaptively. The linear interpolation is used for linear smooth region. The human visual sensitivity based interpolation is used for human visual insensitive region and the circular arc or B-spline interpolation is used for sharp edge region. Experiments show that proposed method produces results that are more visually realistic than standard function-fitting methods.

  12. Novel image fusion methods using intuitionistic index

    NASA Astrophysics Data System (ADS)

    Wang, Zirui; Wang, Zhihui

    2015-12-01

    In this paper, we present new methods for image fusion based on intuitionistic index in spatial domain and contourlet transform domain, furthermore we adopt two ways to fuse images in contourlet domain. When constructing an intuitionistic fuzzy set, we use the Gamma function to get the membership degree, and the Sugeno complementation to get the non-membership degree. Based on the information theory, the larger the hesitancy is, the more information it has. So we set up a fusion rule, by which the larger hesitancy will be chosen, to get a fused image from multi-focus images or remote sensing ones. We compare these new algorithms to some classical image fusion algorithms. The results show, for multi-focus image, these new algorithms are better comparing to other algorithms, and they can get a good fusion result, especially the contourlet transformation algorithm using the intuitionistic index. For remote sensing image, these new algorithms are not the best, but they can also get a well fusion result.

  13. Alternating direction method for balanced image restoration.

    PubMed

    Xie, Shoulie; Rahardja, Susanto

    2012-11-01

    This paper presents an efficient algorithm for solving a balanced regularization problem in the frame-based image restoration. The balanced regularization is usually formulated as a minimization problem, involving an l(2) data-fidelity term, an l(1) regularizer on sparsity of frame coefficients, and a penalty on distance of sparse frame coefficients to the range of the frame operator. In image restoration, the balanced regularization approach bridges the synthesis-based and analysis-based approaches, and balances the fidelity, sparsity, and smoothness of the solution. Our proposed algorithm for solving the balanced optimal problem is based on a variable splitting strategy and the classical alternating direction method. This paper shows that the proposed algorithm is fast and efficient in solving the standard image restoration with balanced regularization. More precisely, a regularized version of the Hessian matrix of the l(2) data-fidelity term is involved, and by exploiting the related fast tight Parseval frame and the special structures of the observation matrices, the regularized Hessian matrix can perform quite efficiently for the frame-based standard image restoration applications, such as circular deconvolution in image deblurring and missing samples in image inpainting. Numerical simulations illustrate the efficiency of our proposed algorithm in the frame-based image restoration with balanced regularization. PMID:22752137

  14. Strategy to Promote Active Learning of an Advanced Research Method

    ERIC Educational Resources Information Center

    McDermott, Hilary J.; Dovey, Terence M.

    2013-01-01

    Research methods courses aim to equip students with the knowledge and skills required for research yet seldom include practical aspects of assessment. This reflective practitioner report describes and evaluates an innovative approach to teaching and assessing advanced qualitative research methods to final-year psychology undergraduate students. An…

  15. Feasibility of intensity-modulated and image-guided radiotherapy for locally advanced esophageal cancer

    PubMed Central

    2014-01-01

    Background In this study the feasibility of intensity-modulated radiotherapy (IMRT) and tomotherapy-based image-guided radiotherapy (IGRT) for locally advanced esophageal cancer was assessed. Methods A retrospective study of ten patients with locally advanced esophageal cancer who underwent concurrent chemotherapy with IMRT (1) and IGRT (9) was conducted. The gross tumor volume was treated to a median dose of 70 Gy (62.4-75 Gy). Results At a median follow-up of 14 months (1-39 months), three patients developed local failures, six patients developed distant metastases, and complications occurred in two patients (1 tracheoesophageal fistula, 1 esophageal stricture requiring repeated dilatations). No patients developed grade 3-4 pneumonitis or cardiac complications. Conclusions IMRT and IGRT may be effective for the treatment of locally advanced esophageal cancer with acceptable complications. PMID:24742268

  16. A multicore based parallel image registration method.

    PubMed

    Yang, Lin; Gong, Leiguang; Zhang, Hong; Nosher, John L; Foran, David J

    2009-01-01

    Image registration is a crucial step for many image-assisted clinical applications such as surgery planning and treatment evaluation. In this paper we proposed a landmark based nonlinear image registration algorithm for matching 2D image pairs. The algorithm was shown to be effective and robust under conditions of large deformations. In landmark based registration, the most important step is establishing the correspondence among the selected landmark points. This usually requires an extensive search which is often computationally expensive. We introduced a nonregular data partition algorithm using the K-means clustering algorithm to group the landmarks based on the number of available processing cores. The step optimizes the memory usage and data transfer. We have tested our method using IBM Cell Broadband Engine (Cell/B.E.) platform. PMID:19964921

  17. Aortic Stenosis, a Left Ventricular Disease: Insights from Advanced Imaging.

    PubMed

    Badiani, Sveeta; van Zalen, Jet; Treibel, Thomas A; Bhattacharyya, Sanjeev; Moon, James C; Lloyd, Guy

    2016-08-01

    Aortic stenosis (AS) is the most common primary valve disorder in the elderly with an increasing prevalence. It is increasingly clear that it is also a disease of the left ventricle (LV) rather than purely the aortic valve. The transition from left ventricular hypertrophy to fibrosis results in the eventual adverse effects on systolic and diastolic function. Appropriate selection of patients for aortic valve intervention is crucial, and current guidelines recommend aortic valve replacement in severe AS with symptoms or in asymptomatic patients with left ventricular ejection fraction (LVEF) <50 %. LVEF is not a sensitive marker and there are other parameters used in multimodality imaging techniques, including longitudinal strain, exercise stress echo and cardiac MRI that may assist in detecting subclinical and subtle LV dysfunction. These findings offer potentially better ways to evaluate patients, time surgery, predict recovery and potentially offer targets for specific therapies. This article outlines the pathophysiology behind the LV response to aortic stenosis and the role of advanced multimodality imaging in describing it. PMID:27384950

  18. A Primer In Advanced Fatigue Life Prediction Methods

    NASA Technical Reports Server (NTRS)

    Halford, Gary R.

    2000-01-01

    Metal fatigue has plagued structural components for centuries, and it remains a critical durability issue in today's aerospace hardware. This is true despite vastly improved and advanced materials, increased mechanistic understanding, and development of accurate structural analysis and advanced fatigue life prediction tools. Each advance is quickly taken advantage of to produce safer, more reliable more cost effective, and better performing products. In other words, as the envelop is expanded, components are then designed to operate just as close to the newly expanded envelop as they were to the initial one. The problem is perennial. The economic importance of addressing structural durability issues early in the design process is emphasized. Tradeoffs with performance, cost, and legislated restrictions are pointed out. Several aspects of structural durability of advanced systems, advanced materials and advanced fatigue life prediction methods are presented. Specific items include the basic elements of durability analysis, conventional designs, barriers to be overcome for advanced systems, high-temperature life prediction for both creep-fatigue and thermomechanical fatigue, mean stress effects, multiaxial stress-strain states, and cumulative fatigue damage accumulation assessment.

  19. Fast total focusing method for ultrasonic imaging

    NASA Astrophysics Data System (ADS)

    Carcreff, Ewen; Dao, Gavin; Braconnier, Dominique

    2016-02-01

    Synthetic aperture focusing technique (SAFT) and total focusing method (TFM) have become popular tools in the field of ultrasonic non destructive testing. In particular, they are employed for detection and characterization of flaws. From data acquired with a transducer array, those techniques aim at reconstructing an image of the inspected object from coherent summations. In this paper, we make a comparison between the standard technique and a migration approach. Using experimental data, we show that the developed approach is faster and offers a better signal to noise ratio than the standard total focusing method. Moreover, the migration is particularly effective for near-surface imaging where standard methods used to fail. On the other hand, the migration approach is only adapted to layered objects whereas the standard technique can fit complex geometries. The methods are tested on homogeneous pieces containing artificial flaws such as side drilled holes.

  20. Correction methods for underwater turbulence degraded imaging

    NASA Astrophysics Data System (ADS)

    Kanaev, A. V.; Hou, W.; Restaino, S. R.; Matt, S.; Gładysz, S.

    2014-10-01

    The use of remote sensing techniques such as adaptive optics and image restoration post processing to correct for aberrations in a wavefront of light propagating through turbulent environment has become customary for many areas including astronomy, medical imaging, and industrial applications. EO imaging underwater has been mainly concentrated on overcoming scattering effects rather than dealing with underwater turbulence. However, the effects of turbulence have crucial impact over long image-transmission ranges and under extreme turbulence conditions become important over path length of a few feet. Our group has developed a program that attempts to define under which circumstances application of atmospheric remote sensing techniques could be envisioned. In our experiments we employ the NRL Rayleigh-Bénard convection tank for simulated turbulence environment at Stennis Space Center, MS. A 5m long water tank is equipped with heating and cooling plates that generate a well measured thermal gradient that in turn produces various degrees of turbulence. The image or laser beam spot can be propagated along the tank's length where it is distorted by induced turbulence. In this work we report on the experimental and theoretical findings of the ongoing program. The paper will introduce the experimental setup, the techniques used, and the measurements made as well as describe novel methods for postprocessing and correction of images degraded by underwater turbulence.

  1. Advanced surface paneling method for subsonic and supersonic flow

    NASA Technical Reports Server (NTRS)

    Erickson, L. L.; Johnson, F. T.; Ehlers, F. E.

    1976-01-01

    Numerical results illustrating the capabilities of an advanced aerodynamic surface paneling method are presented. The method is applicable to both subsonic and supersonic flow, as represented by linearized potential flow theory. The method is based on linearly varying sources and quadratically varying doublets which are distributed over flat or curved panels. These panels are applied to the true surface geometry of arbitrarily shaped three dimensional aerodynamic configurations.

  2. Advanced stress analysis methods applicable to turbine engine structures

    NASA Technical Reports Server (NTRS)

    Pian, T. H. H.

    1985-01-01

    Advanced stress analysis methods applicable to turbine engine structures are investigated. Constructions of special elements which containing traction-free circular boundaries are investigated. New versions of mixed variational principle and version of hybrid stress elements are formulated. A method is established for suppression of kinematic deformation modes. semiLoof plate and shell elements are constructed by assumed stress hybrid method. An elastic-plastic analysis is conducted by viscoplasticity theory using the mechanical subelement model.

  3. A Novel Murine Model for Localized Radiation Necrosis and its Characterization Using Advanced Magnetic Resonance Imaging

    SciTech Connect

    Jost, Sarah C.; Hope, Andrew; Kiehl, Erich; Perry, Arie; Travers, Sarah; Garbow, Joel R.

    2009-10-01

    Purpose: To develop a murine model of radiation necrosis using fractionated, subtotal cranial irradiation; and to investigate the imaging signature of radiation-induced tissue damage using advanced magnetic resonance imaging techniques. Methods and Materials: Twenty-four mice each received 60 Gy of hemispheric (left) irradiation in 10 equal fractions. Magnetic resonance images at 4.7 T were subsequently collected using T1-, T2-, and diffusion sequences at selected time points after irradiation. After imaging, animals were killed and their brains fixed for correlative histologic analysis. Results: Contrast-enhanced T1- and T2-weighted magnetic resonance images at months 2, 3, and 4 showed changes consistent with progressive radiation necrosis. Quantitatively, mean diffusivity was significantly higher (mean = 0.86, 1.13, and 1.24 {mu}m{sup 2}/ms at 2, 3, and 4 months, respectively) in radiated brain, compared with contralateral untreated brain tissue (mean = 0.78, 0.82, and 0.83 {mu}m{sup 2}/ms) (p < 0.0001). Histology reflected changes typically seen in radiation necrosis. Conclusions: This murine model of radiation necrosis will facilitate investigation of imaging biomarkers that distinguish between radiation necrosis and tumor recurrence. In addition, this preclinical study supports clinical data suggesting that diffusion-weighted imaging may be helpful in answering this diagnostic question in clinical settings.

  4. Image correlation method for DNA sequence alignment.

    PubMed

    Curilem Saldías, Millaray; Villarroel Sassarini, Felipe; Muñoz Poblete, Carlos; Vargas Vásquez, Asticio; Maureira Butler, Iván

    2012-01-01

    The complexity of searches and the volume of genomic data make sequence alignment one of bioinformatics most active research areas. New alignment approaches have incorporated digital signal processing techniques. Among these, correlation methods are highly sensitive. This paper proposes a novel sequence alignment method based on 2-dimensional images, where each nucleic acid base is represented as a fixed gray intensity pixel. Query and known database sequences are coded to their pixel representation and sequence alignment is handled as object recognition in a scene problem. Query and database become object and scene, respectively. An image correlation process is carried out in order to search for the best match between them. Given that this procedure can be implemented in an optical correlator, the correlation could eventually be accomplished at light speed. This paper shows an initial research stage where results were "digitally" obtained by simulating an optical correlation of DNA sequences represented as images. A total of 303 queries (variable lengths from 50 to 4500 base pairs) and 100 scenes represented by 100 x 100 images each (in total, one million base pair database) were considered for the image correlation analysis. The results showed that correlations reached very high sensitivity (99.01%), specificity (98.99%) and outperformed BLAST when mutation numbers increased. However, digital correlation processes were hundred times slower than BLAST. We are currently starting an initiative to evaluate the correlation speed process of a real experimental optical correlator. By doing this, we expect to fully exploit optical correlation light properties. As the optical correlator works jointly with the computer, digital algorithms should also be optimized. The results presented in this paper are encouraging and support the study of image correlation methods on sequence alignment. PMID:22761742

  5. Important advances in technology and unique applications related to cardiac magnetic resonance imaging.

    PubMed

    Ghosn, Mohamad G; Shah, Dipan J

    2014-01-01

    Cardiac magnetic resonance has become a well-established imaging modality and is considered the gold standard for myocardial tissue viability assessment and ventricular volumes quantification. Recent technological hardware and software advancements in magnetic resonance imaging technology have allowed the development of new methods that can improve clinical cardiovascular diagnosis and prognosis. The advent of a new generation of higher magnetic field scanners can be beneficial to various clinical applications. Also, the development of faster acquisition techniques have allowed mapping of the magnetic relaxation properties T1, T2, and T2* in the myocardium that can be used to quantify myocardial diffuse fibrosis, determine the presence of edema or inflammation, and measure iron within the myocardium, respectively. Another recent major advancement in CMR has been the introduction of three-dimension (3D) phase contrast imaging, also known as 4D flow. The following review discusses key advances in cardiac magnetic resonance technology and their potential to improve clinical cardiovascular diagnosis and outcomes. PMID:25574343

  6. New magnetic resonance imaging methods in nephrology

    PubMed Central

    Zhang, Jeff L.; Morrell, Glen; Rusinek, Henry; Sigmund, Eric; Chandarana, Hersh; Lerman, Lilach O.; Prasad, Pottumarthi Vara; Niles, David; Artz, Nathan; Fain, Sean; Vivier, Pierre H.; Cheung, Alfred K.; Lee, Vivian S.

    2013-01-01

    Established as a method to study anatomic changes, such as renal tumors or atherosclerotic vascular disease, magnetic resonance imaging (MRI) to interrogate renal function has only recently begun to come of age. In this review, we briefly introduce some of the most important MRI techniques for renal functional imaging, and then review current findings on their use for diagnosis and monitoring of major kidney diseases. Specific applications include renovascular disease, diabetic nephropathy, renal transplants, renal masses, acute kidney injury and pediatric anomalies. With this review, we hope to encourage more collaboration between nephrologists and radiologists to accelerate the development and application of modern MRI tools in nephrology clinics. PMID:24067433

  7. Recent advancements in structured-illumination microscopy toward live-cell imaging.

    PubMed

    Hirano, Yasuhiro; Matsuda, Atsushi; Hiraoka, Yasushi

    2015-08-01

    Fluorescence microscopy allows us to observe fluorescently labeled molecules in diverse biological processes and organelle structures within living cells. However, the diffraction limit restricts its spatial resolution to about half of its wavelength, limiting the capability of biological observation at the molecular level. Structured-illumination microscopy (SIM), a type of super-resolution microscopy, doubles the spatial resolution in all three dimensions by illuminating the sample with a patterned excitation light, followed by computer reconstruction. SIM uses a relatively low illumination power compared with other methods of super-resolution microscopy and is easily available for multicolor imaging. SIM has great potential for meeting the requirements of live-cell imaging. Recent developments in diverse types of SIM have achieved higher spatial (∼50 nm lateral) and temporal (∼100 Hz) resolutions. Here, we review recent advancements in SIM and discuss its application in noninvasive live-cell imaging. PMID:26133185

  8. Advanced synchronous luminescence imaging for chemical and medical diagnostics

    DOEpatents

    Vo-Dinh, Tuan

    2006-09-05

    A diagnostic method and associated system includes the steps of exposing at least one sample location with excitation radiation through a single optical waveguide or a single optical waveguide bundle, wherein the sample emits emission radiation in response to the excitation radiation. The same single optical waveguide or the single optical waveguide bundle receives at least a portion of the emission radiation from the sample, thus providing co-registration of the excitation radiation and the emission radiation. The wavelength of the excitation radiation and emission radiation is synchronously scanned to produce a spectrum upon which an image can be formed. An increased emission signal is generated by the enhanced overlap of the excitation and emission focal volumes provided by co-registration of the excitation and emission signals thus increasing the sensitivity as well as decreasing the exposure time necessary to obtain an image.

  9. Stereo Imaging Velocimetry System and Method

    NASA Technical Reports Server (NTRS)

    McDowell, Mark (Inventor)

    2003-01-01

    A system and a method is provided for measuring three dimensional velocities at a plurality of points in a fluid employing at least two cameras positioned approximately perpendicular to one another. Image frames captured by the cameras may be filtered using background subtraction with outlier rejection with spike-removal filtering. The cameras may calibrated to accurately represent image coordinates in a world coordinate system using calibration grids modified using warp transformations. The two-dimensional views of the cameras may be recorded fur image processing and particle track determination. The tracer particles may be tracked on a two-dimensional basis and then stereo matched to obtain three-dimensional locations of the particles as a function of time so that velocities can be measured there from.

  10. Comparison of interpolation methods for ISAR imaging

    NASA Astrophysics Data System (ADS)

    Vargas, Ricardo A.; Flores, Benjamin C.

    1997-09-01

    The purpose of this article is to describe and compare different numerical methods to reconstruct focused ISAR imagery via interpolation in either range-Doppler or frequency domains. Parameters such as amplitude deviation, image entropy, as well as computational efficiency are used to contrast the different approaches presented. It is shown that conventional linear and cubic interpolation techniques are less accurate than other weighted integration techniques, including the unified Fourier reconstruction algorithm which uses an Airy pattern as the interpolating kernel. The appearance of artifacts in linear and cubic interpolation methods is illustrated and discussed. A point target model of a navy drone is used to compare the effectiveness of each method.

  11. Advanced scanning methods with tracking optical coherence tomography

    PubMed Central

    Ferguson, R. Daniel; Iftimia, Nicusor V.; Ustun, Teoman; Wollstein, Gadi; Ishikawa, Hiroshi; Gabriele, Michelle L.; Dilworth, William D.; Kagemann, Larry; Schuman, Joel S.

    2013-01-01

    An upgraded optical coherence tomography system with integrated retinal tracker (TOCT) was developed. The upgraded system uses improved components to extend the tracking bandwidth, fully integrates the tracking hardware into the optical head of the clinical OCT system, and operates from a single software platform. The system was able to achieve transverse scan registration with sub-pixel accuracy (~10 μm). We demonstrate several advanced scan sequences with the TOCT, including composite scans averaged (co-added) from multiple B-scans taken consecutively and several hours apart, en face images collected by summing the A-scans of circular, line, and raster scans, and three-dimensional (3D) retinal maps of the fovea and optic disc. The new system achieves highly accurate OCT scan registration yielding composite images with significantly improved spatial resolution, increased signal-to-noise ratio, and reduced speckle while maintaining well-defined boundaries and sharp fine structure compared to single scans. Precise re-registration of multiple scans over separate imaging sessions demonstrates TOCT utility for longitudinal studies. En face images and 3D data cubes generated from these data reveal high fidelity image registration with tracking, despite scan durations of more than one minute. PMID:19498823

  12. Advanced imaging of the macrostructure and microstructure of bone

    NASA Technical Reports Server (NTRS)

    Genant, H. K.; Gordon, C.; Jiang, Y.; Link, T. M.; Hans, D.; Majumdar, S.; Lang, T. F.

    2000-01-01

    Noninvasive and/or nondestructive techniques are capable of providing more macro- or microstructural information about bone than standard bone densitometry. Although the latter provides important information about osteoporotic fracture risk, numerous studies indicate that bone strength is only partially explained by bone mineral density. Quantitative assessment of macro- and microstructural features may improve our ability to estimate bone strength. The methods available for quantitatively assessing macrostructure include (besides conventional radiographs) quantitative computed tomography (QCT) and volumetric quantitative computed tomography (vQCT). Methods for assessing microstructure of trabecular bone noninvasively and/or nondestructively include high-resolution computed tomography (hrCT), micro-computed tomography (muCT), high-resolution magnetic resonance (hrMR), and micromagnetic resonance (muMR). vQCT, hrCT and hrMR are generally applicable in vivo; muCT and muMR are principally applicable in vitro. Although considerable progress has been made in the noninvasive and/or nondestructive imaging of the macro- and microstructure of bone, considerable challenges and dilemmas remain. From a technical perspective, the balance between spatial resolution versus sampling size, or between signal-to-noise versus radiation dose or acquisition time, needs further consideration, as do the trade-offs between the complexity and expense of equipment and the availability and accessibility of the methods. The relative merits of in vitro imaging and its ultrahigh resolution but invasiveness versus those of in vivo imaging and its modest resolution but noninvasiveness also deserve careful attention. From a clinical perspective, the challenges for bone imaging include balancing the relative advantages of simple bone densitometry against the more complex architectural features of bone or, similarly, the deeper research requirements against the broader clinical needs. The

  13. Method of improving a digital image

    NASA Technical Reports Server (NTRS)

    Rahman, Zia-ur (Inventor); Jobson, Daniel J. (Inventor); Woodell, Glenn A. (Inventor)

    1999-01-01

    A method of improving a digital image is provided. The image is initially represented by digital data indexed to represent positions on a display. The digital data is indicative of an intensity value I.sub.i (x,y) for each position (x,y) in each i-th spectral band. The intensity value for each position in each i-th spectral band is adjusted to generate an adjusted intensity value for each position in each i-th spectral band in accordance with ##EQU1## where S is the number of unique spectral bands included in said digital data, W.sub.n is a weighting factor and * denotes the convolution operator. Each surround function F.sub.n (x,y) is uniquely scaled to improve an aspect of the digital image, e.g., dynamic range compression, color constancy, and lightness rendition. The adjusted intensity value for each position in each i-th spectral band is filtered with a common function and then presented to a display device. For color images, a novel color restoration step is added to give the image true-to-life color that closely matches human observation.

  14. Test images for the maximum entropy image restoration method

    NASA Technical Reports Server (NTRS)

    Mackey, James E.

    1990-01-01

    One of the major activities of any experimentalist is data analysis and reduction. In solar physics, remote observations are made of the sun in a variety of wavelengths and circumstances. In no case is the data collected free from the influence of the design and operation of the data gathering instrument as well as the ever present problem of noise. The presence of significant noise invalidates the simple inversion procedure regardless of the range of known correlation functions. The Maximum Entropy Method (MEM) attempts to perform this inversion by making minimal assumptions about the data. To provide a means of testing the MEM and characterizing its sensitivity to noise, choice of point spread function, type of data, etc., one would like to have test images of known characteristics that can represent the type of data being analyzed. A means of reconstructing these images is presented.

  15. METHODS ADVANCEMENT FOR MILK ANALYSIS: THE MAMA STUDY

    EPA Science Inventory

    The Methods Advancement for Milk Analysis (MAMA) study was designed by US EPA and CDC investigators to provide data to support the technological and study design needs of the proposed National Children=s Study (NCS). The NCS is a multi-Agency-sponsored study, authorized under the...

  16. Advanced boundary layer transition measurement methods for flight applications

    NASA Technical Reports Server (NTRS)

    Holmes, B. J.; Croom, C. C.; Gail, P. D.; Manuel, G. S.; Carraway, D. L.

    1986-01-01

    In modern laminar flow flight research, it is important to understand the specific cause(s) of laminar to turbulent boundary-layer transition. Such information is crucial to the exploration of the limits of practical application of laminar flow for drag reduction on aircraft. The transition modes of interest in current flight investigations include the viscous Tollmien-Schlichting instability, the inflectional instability at laminar separation, and the crossflow inflectional instability, as well as others. This paper presents the results to date of research on advanced devices and methods used for the study of laminar boundary-layer transition phenomena in the flight environment. Recent advancements in the development of arrayed hot-film devices and of a new flow visualization method are discussed. Arrayed hot-film devices have been designed to detect the presence of laminar separation, and of crossflow vorticity. The advanced flow visualization method utilizes color changes in liquid-crystal coatings to detect boundary-layer transition at high altitude flight conditions. Flight and wind tunnel data are presented to illustrate the design and operation of these advanced methods. These new research tools provide information on disturbance growth and transition mode which is essential to furthering our understanding of practical design limits for applications of laminar flow technology.

  17. The Advanced X-ray Spectroscopy and Imaging Observatory (AXSIO)

    NASA Technical Reports Server (NTRS)

    White, Nicholas E.; Bookbinder, Jay; Petre, Robert; Smith, Randall; Ptak, Andrew; Tananbaum, Harvey; Garcia, Michael

    2012-01-01

    Following recommendations from the 2010 "New Worlds, New Horizons" (NWNH) report, the Advanced X-ray Spectroscopy and Imaging Observatory (AXSIO) concept streamlines the International X-ray Observatory (IXO) mission to concentrate on the science objectives that are enabled by high-resolution spectroscopic capabilities. AXSIO will trace orbits close to the event horizon of black holes, measure black hole spin for tens of supermassive black holes (SMBH), use spectroscopy to characterize outflows and the environment of AGN during their peak activity, observe 5MBH out to redshift z=6, map bulk motions and turbulence in galaxy clusters, find the missing baryons in the cosmic web using background quasars, and observe the process of cosmic feedback where black holes and supernovae inject energy on galactic and intergalactic scales. These measurements are enabled by a 0.9 sq m collecting area at 1.25 keV, a micro calorimeter array providing high-resolution spectroscopic imaging and a deployable high efficiency grating spectrometer. AXSIO delivers a 30-fold increase in effective area for high resolution spectroscopy. The key simplifications are guided by recommendations in the NWNH panel report include a reduction in focal length from 20m to 10m, eliminating the extendable optical bench, and a reduction in the instrument complement from six to two, avoiding a movable instrument platform. A focus on spectroscopic science allows the spatial resolution requirement to be relaxed to 10 arc sec (with a 5 arc sec goal). These simplifications decrease the total mission cost to under the $2B cost to NASA recommended by NWNH. AXSIO will be available to the entire astronomical community with observing allocations based on peer-review.

  18. The Advanced X-ray Spectroscopy and Imaging Observatory (AXSIO)

    NASA Astrophysics Data System (ADS)

    White, Nicholas E.; Bookbinder, Jay; Petre, Robert; Smith, Randall; Ptak, Andrew; Tananbaum, Harvey; Bregman, Joel; Garcia, Michael; Zhang, W.; Kelley, R.; Kilbourne, C.; Bandler, S.

    2012-09-01

    Following recommendations from the 2010 "New Worlds, New Horizons" (NWNH) report, the Advanced X-ray Spectroscopy and Imaging Observatory (AXSIO) concept streamlines the International X-ray Observatory (IXO) mission to concentrate on the science objectives that are enabled by high-resolution spectroscopic capabilities. AXSIO will trace orbits close to the event horizon of black holes, measure black hole spin for tens of supermassive black holes (SMBH), use spectroscopy to characterize outflows and the environment of AGN during their peak activity, observe SMBH out to redshift z=6, map bulk motions and turbulence in galaxy clusters, find the missing baryons in the cosmic web using background quasars, and observe the process of cosmic feedback where black holes and supernovae inject energy on galactic and intergalactic scales. These measurements are enabled by a 0.9 sq m collecting area at 1.25 keV, a microcalorimeter array providing high-resolution spectroscopic imaging and a deployable high efficiency grating spectrometer. AXSIO delivers a 30-fold increase in effective area for high-resolution spectroscopy. The key simplifications are guided by recommendations in the NWNH panel report include a reduction in focal length from 20m to 10m, eliminating the extendable optical bench, and a reduction in the instrument complement from six to two, avoiding a movable instrument platform. A focus on spectroscopic science allows the spatial resolution requirement to be relaxed to 10 arcsec (with a 5 arc sec goal). These simplifications decrease the total mission cost to under the $2B cost to NASA recommended by NWNH. AXSIO will be available to the entire astronomical community with observing allocations based on peer- review.

  19. Domain Decomposition By the Advancing-Partition Method

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar Z.

    2008-01-01

    A new method of domain decomposition has been developed for generating unstructured grids in subdomains either sequentially or using multiple computers in parallel. Domain decomposition is a crucial and challenging step for parallel grid generation. Prior methods are generally based on auxiliary, complex, and computationally intensive operations for defining partition interfaces and usually produce grids of lower quality than those generated in single domains. The new technique, referred to as "Advancing Partition," is based on the Advancing-Front method, which partitions a domain as part of the volume mesh generation in a consistent and "natural" way. The benefits of this approach are: 1) the process of domain decomposition is highly automated, 2) partitioning of domain does not compromise the quality of the generated grids, and 3) the computational overhead for domain decomposition is minimal. The new method has been implemented in NASA's unstructured grid generation code VGRID.

  20. Automated angiogenesis quantification through advanced image processing techniques.

    PubMed

    Doukas, Charlampos N; Maglogiannis, Ilias; Chatziioannou, Aristotle; Papapetropoulos, Andreas

    2006-01-01

    Angiogenesis, the formation of blood vessels in tumors, is an interactive process between tumor, endothelial and stromal cells in order to create a network for oxygen and nutrients supply, necessary for tumor growth. According to this, angiogenic activity is considered a suitable method for both tumor growth or inhibition detection. The angiogenic potential is usually estimated by counting the number of blood vessels in particular sections. One of the most popular assay tissues to study the angiogenesis phenomenon is the developing chick embryo and its chorioallantoic membrane (CAM), which is a highly vascular structure lining the inner surface of the egg shell. The aim of this study was to develop and validate an automated image analysis method that would give an unbiased quantification of the micro-vessel density and growth in angiogenic CAM images. The presented method has been validated by comparing automated results to manual counts over a series of digital chick embryo photos. The results indicate the high accuracy of the tool, which has been thus extensively used for tumor growth detection at different stages of embryonic development. PMID:17946107

  1. Advanced propulsion for LEO-Moon transport. 1: A method for evaluating advanced propulsion performance

    NASA Technical Reports Server (NTRS)

    Stern, Martin O.

    1992-01-01

    This report describes a study to evaluate the benefits of advanced propulsion technologies for transporting materials between low Earth orbit and the Moon. A relatively conventional reference transportation system, and several other systems, each of which includes one advanced technology component, are compared in terms of how well they perform a chosen mission objective. The evaluation method is based on a pairwise life-cycle cost comparison of each of the advanced systems with the reference system. Somewhat novel and economically important features of the procedure are the inclusion not only of mass payback ratios based on Earth launch costs, but also of repair and capital acquisition costs, and of adjustments in the latter to reflect the technological maturity of the advanced technologies. The required input information is developed by panels of experts. The overall scope and approach of the study are presented in the introduction. The bulk of the paper describes the evaluation method; the reference system and an advanced transportation system, including a spinning tether in an eccentric Earth orbit, are used to illustrate it.

  2. Advances and future directions of research on spectral methods

    NASA Technical Reports Server (NTRS)

    Patera, A. T.

    1986-01-01

    Recent advances in spectral methods are briefly reviewed and characterized with respect to their convergence and computational complexity. Classical finite element and spectral approaches are then compared, and spectral element (or p-type finite element) approximations are introduced. The method is applied to the full Navier-Stokes equations, and examples are given of the application of the technique to several transitional flows. Future directions of research in the field are outlined.

  3. Devices, systems, and methods for imaging

    DOEpatents

    Appleby, David; Fraser, Iain; Watson, Scott

    2008-04-15

    Certain exemplary embodiments comprise a system, which can comprise an imaging plate. The imaging plate can be exposable by an x-ray source. The imaging plate can be configured to be used in digital radiographic imaging. The imaging plate can comprise a phosphor-based image storage device configured to convert an image stored therein into light.

  4. Advanced imaging techniques for the study of plant growth and development

    PubMed Central

    Sozzani, Rosangela; Busch, Wolfgang; Spalding, Edgar P.; Benfey, Philip N.

    2014-01-01

    A variety of imaging methodologies are being used to collect data for quantitative studies of plant growth and development from living plants. Multi-level data, from macroscopic to molecular, and from weeks to seconds, can be acquired. Furthermore, advances in parallelized and automated image acquisition enable the throughput to capture images from large populations of plants under specific growth conditions. Image-processing capabilities allow for 3D or 4D reconstruction of image data and automated quantification of biological features. These advances facilitate the integration of imaging data with genome-wide molecular data to enable systems-level modeling. PMID:24434036

  5. Study on the Integrated Geophysic Methods and Application of Advanced Geological Detection for Complicated Tunnel

    NASA Astrophysics Data System (ADS)

    Zhou, L.; Xiao, G.

    2014-12-01

    The engineering geological and hydrological conditions of current tunnels are more and more complicated, as the tunnels are elongated with deeper depth. In constructing these complicated tunnels, geological hazards prone to occur as induced by unfavorable geological bodies, such as fault zones, karst or hydrous structures, etc. The working emphasis and difficulty of the advanced geological exploration for complicated tunnels are mainly focused on the structure and water content of these unfavorable geological bodies. The technical aspects of my paper systematically studied the advanced geological exploration theory and application aspects for complicated tunnels, with discussion on the key technical points and useful conclusions. For the all-aroundness and accuracy of advanced geological exploration results, the objective of my paper is targeted on the comprehensive examination on the structure and hydrous characteristic of the unfavorable geological bodies in complicated tunnels. By the multi-component seismic modeling on a more real model containing the air medium, the wave field response characteristics of unfavorable geological bodies can be analyzed, thus providing theoretical foundation for the observation system layout, signal processing and interpretation of seismic methods. Based on the tomographic imaging theory of seismic and electromagnetic method, 2D integrated seismic and electromagnetic tomographic imaging and visualization software was designed and applied in the advanced drilling hole in the tunnel face, after validation of the forward and inverse modeling results on theoretical models. The transmission wave imaging technology introduced in my paper can be served as a new criterion for detection of unfavorable geological bodies. After careful study on the basic theory, data processing and interpretation, practical applications of TSP and ground penetrating radar (GPR) method, as well as serious examination on their application examples, my paper

  6. Advances in Light-based Imaging of Three-Dimensional Cellular Ultrastructure

    PubMed Central

    Kanchanawong, Pakorn; Waterman, Clare M.

    2012-01-01

    Visualization methods are key to gaining insights into cellular structure and function. Since diffraction has long confined optical microscopes to a resolution no better than hundreds of nanometers, the observation of ultrastructural features has traditionally been the domain of electron microscopes (EM). In the past decade, however, advances in super-resolution fluorescence microscopy have considerably expanded the capability of light-based imaging techniques. Advantages of fluorescent labeling such as high sensitivity, specificity, and multichannel capability, can now be exploited to dissect ultrastructural features of cells. With recent methods capable of imaging specific proteins with a resolution on the order of a few tens of nanometers in 3-dimensions, this has made it possible to elucidate the molecular organization of many complex cellular structures. PMID:22209239

  7. Advanced Reservoir Imaging Using Frequency-Dependent Seismic Attributes

    SciTech Connect

    Fred Hilterman; Tad Patzek; Gennady Goloshubin; Dmitriy Silin; Charlotte Sullivan; Valeri Korneev

    2007-12-31

    Our report concerning advanced imaging and interpretation technology includes the development of theory, the implementation of laboratory experiments and the verification of results using field data. We investigated a reflectivity model for porous fluid-saturated reservoirs and demonstrated that the frequency-dependent component of the reflection coefficient is asymptotically proportional to the reservoir fluid mobility. We also analyzed seismic data using different azimuths and offsets over physical models of fractures filled with air and water. By comparing our physical model synthetics to numerical data we have identified several diagnostic indicators for quantifying the fractures. Finally, we developed reflectivity transforms for predicting pore fluid and lithology using rock-property statistics from 500 reservoirs in both the shelf and deep-water Gulf of Mexico. With these transforms and seismic AVO gathers across the prospect and its down-dip water-equivalent reservoir, fluid saturation can be estimated without a calibration well that ties the seismic. Our research provides the important additional mechanisms to recognize, delineate, and validate new hydrocarbon reserves and assist in the development of producing fields.

  8. Recent Advances in Metabolic Profiling And Imaging of Prostate Cancer

    PubMed Central

    Thapar, Roopa; Titus, Mark A

    2015-01-01

    Cancer is a metabolic disease. Cancer cells, being highly proliferative, show significant alterations in metabolic pathways such as glycolysis, respiration, the tricarboxylic acid (TCA) cycle, oxidative phosphorylation, lipid metabolism, and amino acid metabolism. Metabolites like peptides, nucleotides, products of glycolysis, the TCA cycle, fatty acids, and steroids can be an important read out of disease when characterized in biological samples such as tissues and body fluids like urine, serum, etc. The cancer metabolome has been studied since the 1960s by analytical techniques such as mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy. Current research is focused on the identification and validation of biomarkers in the cancer metabolome that can stratify high-risk patients and distinguish between benign and advanced metastatic forms of the disease. In this review, we discuss the current state of prostate cancer metabolomics, the biomarkers that show promise in distinguishing indolent from aggressive forms of the disease, the strengths and limitations of the analytical techniques being employed, and future applications of metabolomics in diagnostic imaging and personalized medicine of prostate cancer. PMID:25632377

  9. Radiometric calibration of the EO-1 Advanced Land Imager

    NASA Astrophysics Data System (ADS)

    Mendenhall, Jeffrey A.; Lencioni, Donald E.; Parker, Alexander C.

    1999-09-01

    The radiometric calibration of the Earth Observation 1 Advanced Land Imager (EO-1 ALI) was completed in the Spring of 1999 at Lincoln Laboratory. This calibration was conducted with the ALI as a fully assembled instrument in a thermal vacuum chamber at operation temperatures. The ALI was calibrated radiometrically at the system level from 0 to > 100 percent Earth-equivalent albedo using a combination of internal and external halogen and Xenon lamps attached to a large integrating sphere. Absolute radiometric calibration was achieved by measuring the output of the integrating sphere at each radiance level prior to ALI illumination using a NIST-traceable spectroradiometer. Additional radiometric characterization of this instrument was obtained from data collected using a collimator designed for the spectral calibration of the ALI. In this paper we review the techniques employed during radiometric calibration and present the measured gain, linearity, offset, signal-to- noise ratio and polarization sensitivity of each pixel. The testing result of a novel, in-flight solar calibration technique are also discussed. Finally, the results from a Lincoln Laboratory/Goddard Space Flight Center Landsat transfer radiometric study are presented.

  10. Enhancing the (MSLDIP) image steganographic method (ESLDIP method)

    NASA Astrophysics Data System (ADS)

    Seddik Saad, Al-hussien

    2011-10-01

    Message transmissions over the Internet still have data security problem. Therefore, secure and secret communication methods are needed for transmitting messages over the Internet. Cryptography scrambles the message so that it cannot be understood. However, it makes the message suspicious enough to attract eavesdropper's attention. Steganography hides the secret message within other innocuous-looking cover files (i.e. images, music and video files) so that it cannot be observed [1].The term steganography originates from the Greek root words "steganos'' and "graphein'' which literally mean "covered writing''. It is defined as the science that involves communicating secret data in an appropriate multimedia carrier, e.g., image, audio text and video files [3].Steganographic techniques allow one party to communicate information to another without a third party even knowing that the communication is occurring. The ways to deliver these "secret messages" vary greatly [3].Our proposed method called Enhanced SLDIP (ESLDIP). In which the maximmum hiding capacity (MHC) of proposed ESLDIP method is higher than the previously proposed MSLDIP methods and the PSNR of the ESLDIP method is higher than the MSLDIP PSNR values', which means that the image quality of the ESLDIP method will be better than MSLDIP method and the maximmum hiding capacity (MHC) also improved. The rest of this paper is organized as follows. In section 2, steganography has been discussed; lingo, carriers and types. In section 3, related works are introduced. In section 4, the proposed method will be discussed in details. In section 5, the simulation results are given and Section 6 concludes the paper.

  11. Scanning fluorescent microthermal imaging apparatus and method

    DOEpatents

    Barton, Daniel L.; Tangyunyong, Paiboon

    1998-01-01

    A scanning fluorescent microthermal imaging (FMI) apparatus and method is disclosed, useful for integrated circuit (IC) failure analysis, that uses a scanned and focused beam from a laser to excite a thin fluorescent film disposed over the surface of the IC. By collecting fluorescent radiation from the film, and performing point-by-point data collection with a single-point photodetector, a thermal map of the IC is formed to measure any localized heating associated with defects in the IC.

  12. Scanning fluorescent microthermal imaging apparatus and method

    DOEpatents

    Barton, D.L.; Tangyunyong, P.

    1998-01-06

    A scanning fluorescent microthermal imaging (FMI) apparatus and method is disclosed, useful for integrated circuit (IC) failure analysis, that uses a scanned and focused beam from a laser to excite a thin fluorescent film disposed over the surface of the IC. By collecting fluorescent radiation from the film, and performing point-by-point data collection with a single-point photodetector, a thermal map of the IC is formed to measure any localized heating associated with defects in the IC. 1 fig.

  13. Advances in subtyping methods of foodborne disease pathogens.

    PubMed

    Boxrud, Dave

    2010-04-01

    Current subtyping methods for the detection of foodborne disease outbreaks have limitations that reduce their use by public health laboratories. Recent advances in subtyping of foodborne disease pathogens utilize techniques that identify nucleic acid polymorphisms. Recent methods of nucleic acid characterization such as microarrays and mass spectrometry (MS) may provide improvements such as increasing speed and data portability while decreasing labor compared to current methods. This article discusses multiple-locus variable-number tandem-repeat analysis, single-nucleotide polymorphisms, nucleic acid sequencing, whole genome sequencing, variable absent or present loci, microarrays and MS as potential subtyping methods to enhance our ability to detect foodborne disease outbreaks. PMID:20299203

  14. Advanced methods of microscope control using μManager software

    PubMed Central

    Edelstein, Arthur D.; Tsuchida, Mark A.; Amodaj, Nenad; Pinkard, Henry; Vale, Ronald D.; Stuurman, Nico

    2014-01-01

    μManager is an open-source, cross-platform desktop application, to control a wide variety of motorized microscopes, scientific cameras, stages, illuminators, and other microscope accessories. Since its inception in 2005, μManager has grown to support a wide range of microscopy hardware and is now used by thousands of researchers around the world. The application provides a mature graphical user interface and offers open programming interfaces to facilitate plugins and scripts. Here, we present a guide to using some of the recently added advanced μManager features, including hardware synchronization, simultaneous use of multiple cameras, projection of patterned light onto a specimen, live slide mapping, imaging with multi-well plates, particle localization and tracking, and high-speed imaging. PMID:25606571

  15. Processing of alnico permanent magnets by advanced directional solidification methods

    DOE PAGESBeta

    Zou, Min; Johnson, Francis; Zhang, Wanming; Zhao, Qi; Rutkowski, Stephen F.; Zhou, Lin; Kramer, Matthew J.

    2016-07-05

    Advanced directional solidification methods have been used to produce large (>15 cm length) castings of Alnico permanent magnets with highly oriented columnar microstructures. In combination with subsequent thermomagnetic and draw thermal treatment, this method was used to enable the high coercivity, high-Titanium Alnico composition of 39% Co, 29.5% Fe, 14% Ni, 7.5% Ti, 7% Al, 3% Cu (wt%) to have an intrinsic coercivity (Hci) of 2.0 kOe, a remanence (Br) of 10.2 kG, and an energy product (BH)max of 10.9 MGOe. These properties compare favorably to typical properties for the commercial Alnico 9. Directional solidification of higher Ti compositions yieldedmore » anisotropic columnar grained microstructures if high heat extraction rates through the mold surface of at least 200 kW/m2 were attained. This was achieved through the use of a thin walled (5 mm thick) high thermal conductivity SiC shell mold extracted from a molten Sn bath at a withdrawal rate of at least 200 mm/h. However, higher Ti compositions did not result in further increases in magnet performance. Images of the microstructures collected by scanning electron microscopy (SEM) reveal a majority α phase with inclusions of secondary αγ phase. Transmission electron microscopy (TEM) reveals that the α phase has a spinodally decomposed microstructure of FeCo-rich needles in a NiAl-rich matrix. In the 7.5% Ti composition the diameter distribution of the FeCo needles was bimodal with the majority having diameters of approximately 50 nm with a small fraction having diameters of approximately 10 nm. The needles formed a mosaic pattern and were elongated along one <001> crystal direction (parallel to the field used during magnetic annealing). Cu precipitates were observed between the needles. Regions of abnormal spinodal morphology appeared to correlate with secondary phase precipitates. The presence of these abnormalities did not prevent the material from displaying superior magnetic properties in the 7.5% Ti

  16. Processing of alnico permanent magnets by advanced directional solidification methods

    NASA Astrophysics Data System (ADS)

    Zou, Min; Johnson, Francis; Zhang, Wanming; Zhao, Qi; Rutkowski, Stephen F.; Zhou, Lin; Kramer, Matthew J.

    2016-12-01

    Advanced directional solidification methods have been used to produce large (>15 cm length) castings of Alnico permanent magnets with highly oriented columnar microstructures. In combination with subsequent thermomagnetic and draw thermal treatment, this method was used to enable the high coercivity, high-Titanium Alnico composition of 39% Co, 29.5% Fe, 14% Ni, 7.5% Ti, 7% Al, 3% Cu (wt%) to have an intrinsic coercivity (Hci) of 2.0 kOe, a remanence (Br) of 10.2 kG, and an energy product (BH)max of 10.9 MGOe. These properties compare favorably to typical properties for the commercial Alnico 9. Directional solidification of higher Ti compositions yielded anisotropic columnar grained microstructures if high heat extraction rates through the mold surface of at least 200 kW/m2 were attained. This was achieved through the use of a thin walled (5 mm thick) high thermal conductivity SiC shell mold extracted from a molten Sn bath at a withdrawal rate of at least 200 mm/h. However, higher Ti compositions did not result in further increases in magnet performance. Images of the microstructures collected by scanning electron microscopy (SEM) reveal a majority α phase with inclusions of secondary αγ phase. Transmission electron microscopy (TEM) reveals that the α phase has a spinodally decomposed microstructure of FeCo-rich needles in a NiAl-rich matrix. In the 7.5% Ti composition the diameter distribution of the FeCo needles was bimodal with the majority having diameters of approximately 50 nm with a small fraction having diameters of approximately 10 nm. The needles formed a mosaic pattern and were elongated along one <001> crystal direction (parallel to the field used during magnetic annealing). Cu precipitates were observed between the needles. Regions of abnormal spinodal morphology appeared to correlate with secondary phase precipitates. The presence of these abnormalities did not prevent the material from displaying superior magnetic properties in the 7.5% Ti

  17. An advanced probabilistic structural analysis method for implicit performance functions

    NASA Technical Reports Server (NTRS)

    Wu, Y.-T.; Millwater, H. R.; Cruse, T. A.

    1989-01-01

    In probabilistic structural analysis, the performance or response functions usually are implicitly defined and must be solved by numerical analysis methods such as finite element methods. In such cases, the most commonly used probabilistic analysis tool is the mean-based, second-moment method which provides only the first two statistical moments. This paper presents a generalized advanced mean value (AMV) method which is capable of establishing the distributions to provide additional information for reliability design. The method requires slightly more computations than the second-moment method but is highly efficient relative to the other alternative methods. In particular, the examples show that the AMV method can be used to solve problems involving non-monotonic functions that result in truncated distributions.

  18. Facing "the Curse of Dimensionality": Image Fusion and Nonlinear Dimensionality Reduction for Advanced Data Mining and Visualization of Astronomical Images

    NASA Astrophysics Data System (ADS)

    Pesenson, Meyer; Pesenson, I. Z.; McCollum, B.

    2009-05-01

    The complexity of multitemporal/multispectral astronomical data sets together with the approaching petascale of such datasets and large astronomical surveys require automated or semi-automated methods for knowledge discovery. Traditional statistical methods of analysis may break down not only because of the amount of data, but mostly because of the increase of the dimensionality of data. Image fusion (combining information from multiple sensors in order to create a composite enhanced image) and dimension reduction (finding lower-dimensional representation of high-dimensional data) are effective approaches to "the curse of dimensionality,” thus facilitating automated feature selection, classification and data segmentation. Dimension reduction methods greatly increase computational efficiency of machine learning algorithms, improve statistical inference and together with image fusion enable effective scientific visualization (as opposed to mere illustrative visualization). The main approach of this work utilizes recent advances in multidimensional image processing, as well as representation of essential structure of a data set in terms of its fundamental eigenfunctions, which are used as an orthonormal basis for the data visualization and analysis. We consider multidimensional data sets and images as manifolds or combinatorial graphs and construct variational splines that minimize certain Sobolev norms. These splines allow us to reconstruct the eigenfunctions of the combinatorial Laplace operator by using only a small portion of the graph. We use the first two or three eigenfunctions for embedding large data sets into two- or three-dimensional Euclidean space. Such reduced data sets allow efficient data organization, retrieval, analysis and visualization. We demonstrate applications of the algorithms to test cases from the Spitzer Space Telescope. This work was carried out with funding from the National Geospatial-Intelligence Agency University Research Initiative

  19. Fracture Toughness in Advanced Monolithic Ceramics - SEPB Versus SEVENB Methods

    NASA Technical Reports Server (NTRS)

    Choi, S. R.; Gyekenyesi, J. P.

    2005-01-01

    Fracture toughness of a total of 13 advanced monolithic ceramics including silicon nitrides, silicon carbide, aluminas, and glass ceramic was determined at ambient temperature by using both single edge precracked beam (SEPB) and single edge v-notched beam (SEVNB) methods. Relatively good agreement in fracture toughness between the two methods was observed for advanced ceramics with flat R-curves; whereas, poor agreement in fracture toughness was seen for materials with rising R-curves. The discrepancy in fracture toughness between the two methods was due to stable crack growth with crack closure forces acting in the wake region of cracks even in SEVNB test specimens. The effect of discrepancy in fracture toughness was analyzed in terms of microstructural feature (grain size and shape), toughening exponent, and stable crack growth determined using back-face strain gaging.

  20. Safety Assessment of Advanced Imaging Sequences I: Measurements.

    PubMed

    Jensen, Jorgen Arendt; Rasmussen, Morten Fischer; Pihl, Michael Johannes; Holbek, Simon; Hoyos, Carlos Armando Villagómez; Bradway, David P; Stuart, Matthias Bo; Tomov, Borislav Gueorguiev

    2016-01-01

    A method for rapid measurement of intensities (I(spta)), mechanical index (MI), and probe surface temperature for any ultrasound scanning sequence is presented. It uses the scanner's sampling capability to give an accurate measurement of the whole imaging sequence for all emissions to yield the true distributions. The method is several orders of magnitude faster than approaches using an oscilloscope, and it also facilitates validating the emitted pressure field and the scanner's emission sequence software. It has been implemented using the experimental synthetic aperture real-time ultrasound system (SARUS) scanner and the Onda AIMS III intensity measurement system (Onda Corporation, Sunnyvale, CA, USA). Four different sequences have been measured: a fixed focus emission, a duplex sequence containing B-mode and flow emissions, a vector flow sequence with B-mode and flow emissions in 17 directions, and finally a SA duplex flow sequence. A BK8820e (BK Medical, Herlev, Denmark) convex array probe is used for the first three sequences and a BK8670 linear array probe for the SA sequence. The method is shown to give the same intensity values within 0.24% of the AIMS III Soniq 5.0 (Onda Corporation, Sunnyvale, CA, USA) commercial intensity measurement program. The approach can measure and store data for a full imaging sequence in 3.8-8.2 s per spatial position. Based on I(spta), MI, and probe surface temperature, the method gives the ability to determine whether a sequence is within U.S. FDA limits, or alternatively indicate how to scale it to be within limits. PMID:26625411

  1. Imaging Multimodalities for Dissecting Alzheimer's Disease: Advanced Technologies of Positron Emission Tomography and Fluorescence Imaging

    PubMed Central

    Shimojo, Masafumi; Higuchi, Makoto; Suhara, Tetsuya; Sahara, Naruhiko

    2015-01-01

    The rapid progress in advanced imaging technologies has expanded our toolbox for monitoring a variety of biological aspects in living subjects including human. In vivo radiological imaging using small chemical tracers, such as with positron emission tomography, represents an especially vital breakthrough in the efforts to improve our understanding of the complicated cascade of neurodegenerative disorders including Alzheimer's disease (AD), and it has provided the most reliable visible biomarkers for enabling clinical diagnosis. At the same time, in combination with genetically modified animal model systems, the most recent innovation of fluorescence imaging is helping establish diverse applications in basic neuroscience research, from single-molecule analysis to animal behavior manipulation, suggesting the potential utility of fluorescence technology for dissecting the detailed molecular-based consequence of AD pathophysiology. In this review, our primary focus is on a current update of PET radiotracers and fluorescence indicators beneficial for understanding the AD cascade, and discussion of the utility and pitfalls of those imaging modalities for future translational research applications. We will also highlight current cutting-edge genetic approaches and discuss how to integrate individual technologies for further potential innovations. PMID:26733795

  2. SEM-contour shape analysis method for advanced semiconductor devices

    NASA Astrophysics Data System (ADS)

    Toyoda, Yasutaka; Shindo, Hiroyuki; Ota, Yoshihiro; Matsuoka, Ryoichi; Hojo, Yutaka; Fuchimoto, Daisuke; Hibino, Daisuke; Sakai, Hideo

    2013-04-01

    The new measuring method that we developed executes a contour shape analysis that is based on the pattern edge information from a SEM image. This analysis helps to create a highly precise quantification of every circuit pattern shape by comparing the contour extracted from the SEM image using a CD measurement algorithm and the ideal circuit pattern. The developed method, in the next phase, can generate four shape indices by using the analysis mass measurement data. When the shape index measured using the developed method is compared the CD, the difference of the shape index and the CD is negligibly small for the quantification of the circuit pattern shape. In addition, when the 2D patterns on a FEM wafer are measured using the developed method, the tendency for shape deformations is precisely caught by the four shape indices. This new method and the evaluation results will be presented in detail in this paper.

  3. Method and apparatus for atomic imaging

    DOEpatents

    Saldin, Dilano K.; de Andres Rodriquez, Pedro L.

    1993-01-01

    A method and apparatus for three dimensional imaging of the atomic environment of disordered adsorbate atoms are disclosed. The method includes detecting and measuring the intensity of a diffuse low energy electron diffraction pattern formed by directing a beam of low energy electrons against the surface of a crystal. Data corresponding to reconstructed amplitudes of a wave form is generated by operating on the intensity data. The data corresponding to the reconstructed amplitudes is capable of being displayed as a three dimensional image of an adsorbate atom. The apparatus includes a source of a beam of low energy electrons and a detector for detecting the intensity distribution of a DLEED pattern formed at the detector when the beam of low energy electrons is directed onto the surface of a crystal. A device responsive to the intensity distribution generates a signal corresponding to the distribution which represents a reconstructed amplitude of a wave form and is capable of being converted into a three dimensional image of the atomic environment of an adsorbate atom on the crystal surface.

  4. Advanced stress analysis methods applicable to turbine engine structures

    NASA Technical Reports Server (NTRS)

    Pian, Theodore H. H.

    1991-01-01

    The following tasks on the study of advanced stress analysis methods applicable to turbine engine structures are described: (1) constructions of special elements which contain traction-free circular boundaries; (2) formulation of new version of mixed variational principles and new version of hybrid stress elements; (3) establishment of methods for suppression of kinematic deformation modes; (4) construction of semiLoof plate and shell elements by assumed stress hybrid method; and (5) elastic-plastic analysis by viscoplasticity theory using the mechanical subelement model.

  5. Synthetic aperture methods for angular scatter imaging

    NASA Astrophysics Data System (ADS)

    Guenther, Drake A.; Ranganathan, Karthik; McAllister, Michael J.; Rigby, K. W.; Walker, William F.

    2004-04-01

    Angular scatter offers a new source of tissue contrast and an opportunity for tissue characterization in ultrasound imaging. We have previously described the application of the translating apertures algorithm (TAA) to coherently acquire angular scatter data over a range of scattering angles. While this approach works well at the focus, it suffers from poor depth of field (DOF) due to a finite aperture size. Furthermore, application of the TAA with large focused apertures entails a tradeoff between spatial resolution and scattering angle resolution. While large multielement apertures improve spatial resolution, they encompass many permutations of transmit/receive element pairs. This results in the simultaneous interrogation of multiple scattering angles, limiting angular resolution. We propose a synthetic aperture imaging scheme that achieves both high spatial resolution and high angular resolution. In backscatter acquisition mode, we transmit successively from single transducer elements, while receiving on the same element. Other scattering angles are interrogated by successively transmitting and receiving on different single elements chosen with the appropriate spatial separation between them. Thus any given image is formed using only transmit/receive element pairs at a single separation. This synthetic aperture approach minimizes averaging across scattering angles, and yields excellent angular resolution. Likewise, synthetic aperture methods allow us to build large effective apertures to maintain a high spatial resolution. Synthetic dynamic focusing and dynamic apodization are applied to further improve spatial resolution and DOF. We present simulation results and experimental results obtained using a GE Logiq 700MR system modified to obtain synthetic aperture TAA data. Images of wire targets exhibit high DOF and spatial resolution. We also present a novel approach for combining angular scatter data to effectively reduce grating lobes. With this approach we have

  6. Imaging, cutting, and collecting instrument and method

    DOEpatents

    Tench, R.J.; Siekhaus, W.J.; Balooch, M.; Balhorn, R.L.; Allen, M.J.

    1995-10-31

    Instrumentation and techniques are described to image small objects, such as but not limited to individual human chromosomes, with nanometer resolution. This instrument and method are also used to cut-off identified parts of objects, to move around and manipulate the cut-off parts on the substrate on which they are being imaged to predetermined locations on the substrate, and to remove the cut-off parts from the substrate. This is accomplished using an atomic force microscope (AFM) and by modification of the conventional cantilever stylus assembly of an AFM. The plural cantilevers are used with either sharp-tips or knife-edges. In addition, the invention can be utilized for measuring the hardness of materials. 10 figs.

  7. A nuclear method to authenticate Buddha images

    NASA Astrophysics Data System (ADS)

    Khaweerat, S.; Ratanatongchai, W.; Channuie, J.; Wonglee, S.; Picha, R.; Promping, J.; Silva, K.; Liamsuwan, T.

    2015-05-01

    The value of Buddha images in Thailand varies dramatically depending on authentication and provenance. In general, people use their individual skills to make the justification which frequently leads to obscurity, deception and illegal activities. Here, we propose two non-destructive techniques of neutron radiography (NR) and neutron activation autoradiography (NAAR) to reveal respectively structural and elemental profiles of small Buddha images. For NR, a thermal neutron flux of 105 n cm-2s-1 was applied. NAAR needed a higher neutron flux of 1012 n cm-2 s-1 to activate the samples. Results from NR and NAAR revealed unique characteristic of the samples. Similarity of the profile played a key role in the classification of the samples. The results provided visual evidence to enhance the reliability of authenticity approval. The method can be further developed for routine practice which impact thousands of customers in Thailand.

  8. The Advanced Gamma-Ray Imaging System (AGIS): Science Highlights

    SciTech Connect

    Buckley, J.; Coppi, P.; Digel, S.; Funk, S.; Krawczynski, H.; Krennrich, F.; Pohl, M.; Romani, R.; Vassiliev, V.; /UCLA

    2011-11-21

    The Advanced Gamma-ray Imaging System (AGIS), a future gamma-ray telescope consisting of an array of {approx}50 atmospheric Cherenkov telescopes distributed over an area of {approx}1 km{sup 2}, will provide a powerful new tool for exploring the high-energy universe. The order-of-magnitude increase in sensitivity and improved angular resolution could provide the first detailed images of {gamma}-ray emission from other nearby galaxies or galaxy clusters. The large effective area will provide unprecedented sensitivity to short transients (such as flares from AGNs and GRBs) probing both intrinsic spectral variability (revealing the details of the acceleration mechanism and geometry) as well as constraining the high-energy dispersion in the velocity of light (probing the structure of spacetime and Lorentz invariance). A wide field of view ({approx}4 times that of current instruments) and excellent angular resolution (several times better than current instruments) will allow for an unprecedented survey of the Galactic plane, providing a deep unobscured survey of SNRs, X-ray binaries, pulsar-wind nebulae, molecular cloud complexes and other sources. The differential flux sensitivity of {approx}10{sup -13} erg cm{sup -2} sec{sup -1} will rival the most sensitive X-ray instruments for these extended Galactic sources. The excellent capabilities of AGIS at energies below 100 GeV will provide sensitivity to AGN and GRBs out to cosmological redshifts, increasing the number of AGNs detected at high energies from about 20 to more than 100, permitting population studies that will provide valuable insights into both a unified model for AGN and a detailed measurement of the effects of intergalactic absorption from the diffuse extragalactic background light. A new instrument with fast-slewing wide-field telescopes could provide detections of a number of long-duration GRBs providing important physical constraints from this new spectral component. The new array will also have excellent

  9. Computational methods for optical molecular imaging

    PubMed Central

    Chen, Duan; Wei, Guo-Wei; Cong, Wen-Xiang; Wang, Ge

    2010-01-01

    Summary A new computational technique, the matched interface and boundary (MIB) method, is presented to model the photon propagation in biological tissue for the optical molecular imaging. Optical properties have significant differences in different organs of small animals, resulting in discontinuous coefficients in the diffusion equation model. Complex organ shape of small animal induces singularities of the geometric model as well. The MIB method is designed as a dimension splitting approach to decompose a multidimensional interface problem into one-dimensional ones. The methodology simplifies the topological relation near an interface and is able to handle discontinuous coefficients and complex interfaces with geometric singularities. In the present MIB method, both the interface jump condition and the photon flux jump conditions are rigorously enforced at the interface location by using only the lowest-order jump conditions. This solution near the interface is smoothly extended across the interface so that central finite difference schemes can be employed without the loss of accuracy. A wide range of numerical experiments are carried out to validate the proposed MIB method. The second-order convergence is maintained in all benchmark problems. The fourth-order convergence is also demonstrated for some three-dimensional problems. The robustness of the proposed method over the variable strength of the linear term of the diffusion equation is also examined. The performance of the present approach is compared with that of the standard finite element method. The numerical study indicates that the proposed method is a potentially efficient and robust approach for the optical molecular imaging. PMID:20485461

  10. Advances in Clinical and Biomedical Applications of Photoacoustic Imaging

    PubMed Central

    Su, Jimmy L.; Wang, Bo; Wilson, Katheryne E.; Bayer, Carolyn L.; Chen, Yun-Sheng; Kim, Seungsoo; Homan, Kimberly A.; Emelianov, Stanislav Y.

    2010-01-01

    Importance of the field Photoacoustic imaging is an imaging modality that derives image contrast from the optical absorption coefficient of the tissue being imaged. The imaging technique is able to differentiate between healthy and diseased tissue with either deeper penetration or higher resolution than other functional imaging modalities currently available. From a clinical standpoint, photoacoustic imaging has demonstrated safety and effectiveness in diagnosing diseased tissue regions using either endogenous tissue contrast or exogenous contrast agents. Furthermore, the potential of photoacoustic imaging has been demonstrated in various therapeutic interventions ranging from drug delivery and release to image-guided therapy and monitoring. Areas covered in this review This article reviews the current state of photoacoustic imaging in biomedicine from a technological perspective, highlights various biomedical and clinical applications of photoacoustic imaging, and gives insights on future directions. What the reader will gain Readers will learn about the various applications of photoacoustic imaging, as well as the various contrast agents that can be used to assist photoacoustic imaging. This review will highlight both pre-clinical and clinical uses for photoacoustic imaging, as well as discuss some of the challenges that must be addressed to move photoacoustic imaging into the clinical realm. Take home message Photoacoustic imaging offers unique advantages over existing imaging modalities. The imaging field is broad with many exciting applications for detecting and diagnosing diseased tissue or processes. Photoacoustics is also used in therapeutic applications to identify and characterize the pathology and then to monitor the treatment. Although the technology is still in its infancy, much work has been done in the pre-clinical arena, and photoacoustic imaging is fast approaching the clinical setting. PMID:21344060

  11. Advanced Nurse Practitioner Educational Needs for Safe and Efficient Radiological Imaging.

    PubMed

    Logsdon, Roberta; Gleason, Robyn

    2015-01-01

    This study evaluated perceived knowledge and educational preparedness of advanced practice nurses (APNs) in the area of radiological imaging, including awareness and utilization of the American College of Radiology Appropriateness Criteria (ACR-AC). Previous studies have found a need for further education in radiological imaging for medical students, residents, and hospitalists; however, little to no research has been done to assess such knowledge and educational preparedness among APNs. An e-mail link to a researcher-developed questionnaire was sent to Florida licensed APNs. Statistical analysis used descriptive, parametric, and nonparametric methods including frequencies, percentages, and Mann-Whitney U statistics. Florida licensed APNs (n = 905) from 175 educational programs and 10 specialty areas responded to the questionnaire; 75.9% (n = 681) had never heard of the ACR-AC. Years of experience and training in acute care specialties increased perceived competency in ordering radiological tests. Results among APNs were similar to those reported from physician studies, and 92.3% of respondents (n = 829) stated that additional APN imaging education would be beneficial. These findings highlight the importance of incorporating more radiological imaging information into APN education, which could lead to a reduction in overall costs and improvement in perceived competence and knowledge of appropriate imaging utilization. PMID:26218489

  12. Advances in functional magnetic resonance imaging of the human brainstem.

    PubMed

    Beissner, Florian; Schumann, Andy; Brunn, Franziska; Eisenträger, Daniela; Bär, Karl-Jürgen

    2014-02-01

    The brainstem is of tremendous importance for our daily survival, and yet the functional relationships between various nuclei, their projection targets, and afferent regulatory areas remain poorly characterized. The main reason for this lies in the sub-optimal performance of standard neuroimaging methods in this area. In particular, fMRI signals are much harder to detect in the brainstem region compared to cortical areas. Here we describe and validate a new approach to measure activation of brainstem nuclei in humans using standard fMRI sequences and widely available tools for statistical image processing. By spatially restricting an independent component analysis to an anatomically defined brainstem mask, we excluded those areas from the analysis that were strongly affected by physiological noise. This allowed us to identify for the first time intrinsic connectivity networks in the human brainstem and to map brainstem-cortical connectivity purely based on functionally defined regions of interest. PMID:23933038

  13. Advanced Image Processing for Defect Visualization in Infrared Thermography

    NASA Technical Reports Server (NTRS)

    Plotnikov, Yuri A.; Winfree, William P.

    1997-01-01

    Results of a defect visualization process based on pulse infrared thermography are presented. Algorithms have been developed to reduce the amount of operator participation required in the process of interpreting thermographic images. The algorithms determine the defect's depth and size from the temporal and spatial thermal distributions that exist on the surface of the investigated object following thermal excitation. A comparison of the results from thermal contrast, time derivative, and phase analysis methods for defect visualization are presented. These comparisons are based on three dimensional simulations of a test case representing a plate with multiple delaminations. Comparisons are also based on experimental data obtained from a specimen with flat bottom holes and a composite panel with delaminations.

  14. Information theoretic methods for image processing algorithm optimization

    NASA Astrophysics Data System (ADS)

    Prokushkin, Sergey F.; Galil, Erez

    2015-01-01

    Modern image processing pipelines (e.g., those used in digital cameras) are full of advanced, highly adaptive filters that often have a large number of tunable parameters (sometimes > 100). This makes the calibration procedure for these filters very complex, and the optimal results barely achievable in the manual calibration; thus an automated approach is a must. We will discuss an information theory based metric for evaluation of algorithm adaptive characteristics ("adaptivity criterion") using noise reduction algorithms as an example. The method allows finding an "orthogonal decomposition" of the filter parameter space into the "filter adaptivity" and "filter strength" directions. This metric can be used as a cost function in automatic filter optimization. Since it is a measure of a physical "information restoration" rather than perceived image quality, it helps to reduce the set of the filter parameters to a smaller subset that is easier for a human operator to tune and achieve a better subjective image quality. With appropriate adjustments, the criterion can be used for assessment of the whole imaging system (sensor plus post-processing).

  15. Advanced preservation methods and nutrient retention in fruits and vegetables.

    PubMed

    Barrett, Diane M; Lloyd, Beate

    2012-01-15

    Despite the recommendations of international health organizations and scientific research carried out around the world, consumers do not take in sufficient quantities of healthy fruit and vegetable products. The use of new, 'advanced' preservation methods creates a unique opportunity for food manufacturers to retain nutrient content similar to that found in fresh fruits and vegetables. This review presents a summary of the published literature regarding the potential of high-pressure and microwave preservation, the most studied of the 'advanced' processes, to retain the natural vitamin A, B, C, phenolic, mineral and fiber content in fruits and vegetables at the time of harvest. Comparisons are made with more traditional preservation methods that utilize thermal processing. Case studies on specific commodities which have received the most attention are highlighted; these include apples, carrots, oranges, tomatoes and spinach. In addition to summarizing the literature, the review includes a discussion of postharvest losses in general and factors affecting nutrient losses in fruits and vegetables. Recommendations are made for future research required to evaluate these advanced process methods. PMID:22102258

  16. Electron Trajectory Reconstruction for Advanced Compton Imaging of Gamma Rays

    NASA Astrophysics Data System (ADS)

    Plimley, Brian Christopher

    track Compton imaging an effective means of reducing image background for photons of energy as low as 500 keV, or even less. The angular sensitivity of the reconstruction algorithm was also evaluated experimentally, by measuring electron tracks in the CCD in coincidence with the scattered photon in a germanium double-sided strip detector. By this method, electron tracks could be measured with the true initial direction known to within 3° FWHM, and the angular response of the algorithm compared to the known direction. The challenge of this experiment lay in the low geometric efficiency for photons scattering into the germanium, the poor time resolution in the current CCD implementation, and the resulting signal-to-background ratio of about 10--4 for photons scattered from the CCD into the germanium detector. Nonetheless, 87 events were measured in the FWHM of the total energy deposited and the angular resolution measure, with electron tracks between 160 keV and 360 keV in energy. The electron tracks from true coincident event sequences showed a FWHM in the pixel plane of 23°, and excellent agreement with the distribution calculated with models, with likelihood p-values of 0.44 and 0.73. Thus, the models used for the more thorough evaluation of angular sensitivities are shown to be consistent with the measured tracks from true coincident event sequences.

  17. Satellite Detection in AdvancedCamera for Surveys/Wide Field Channel Images

    NASA Astrophysics Data System (ADS)

    Borncamp, D.; Lim, Pey-Lian

    2016-01-01

    This document explains the process by which satellite trails can be found within individual chips of an Advanced Camera for Surveys (ACS) Wide Field Channel (WFC) image. Since satellites are transient and sporadic events, we used the Hubble Frontier Fields (HFF) dataset which is manually checked for satellite trails has been used as a truth set to verify that the method in this document does a complete job without a high false positive rate. This document also details the process of producing a mask that will update data quality information to inform users where the trail traverses the image and properly account for the affected pixels. Along with this document, the Python source code used to detect and mask satellite trails will be released to users with as a stand-alone product within the STSDAS acstools package.

  18. [Advances in the research of laser Doppler perfusion imaging in burn wounds].

    PubMed

    Liu, Jing; Xu, Longshun; Hu, Dahai; Qu, Yi; Wang, Guodong; Wang, Hongtao

    2014-04-01

    Laser Doppler perfusion imaging (LDPI) works through the Doppler effect of light wave, and it could depict the blood flow value of the entire wound in two-dimensional image without contacting the detection site directly. In resent years, LDPI has been proved to be effective to evaluate healing potential of a wound, and to predict burn depth and scar formation. The accuracy of LDPI is higher than other traditional methods and technique. However, there are still many influencing factors for the clinical application of LDPI scanning. This paper presents a comprehensive overview of advances in the research of LDPI for clinical application in the care of burn wounds and influencing factors for accurate scanning. PMID:24989665

  19. Advances in endoscopic ultrasound imaging of colorectal diseases

    PubMed Central

    Cârțână, Elena Tatiana; Gheonea, Dan Ionuț; Săftoiu, Adrian

    2016-01-01

    The development of endoscopic ultrasound (EUS) has had a significant impact for patients with digestive diseases, enabling enhanced diagnostic and therapeutic procedures, with most of the available evidence focusing on upper gastrointestinal (GI) and pancreatico-biliary diseases. For the lower GI tract the main application of EUS has been in staging rectal cancer, as a complementary technique to other cross-sectional imaging methods. EUS can provide highly accurate in-depth assessments of tumour infiltration, performing best in the diagnosis of early rectal tumours. In the light of recent developments other EUS applications for colorectal diseases have been also envisaged and are currently under investigation, including beyond-rectum tumour staging by means of the newly developed forward-viewing radial array echoendoscope. Due to its high resolution, EUS might be also regarded as an ideal method for the evaluation of subepithelial lesions. Their differential diagnosis is possible by imaging the originating wall layer and the associated echostructure, and cytological and histological confirmation can be obtained through EUS-guided fine needle aspiration or trucut biopsy. However, reports on the use of EUS in colorectal subepithelial lesions are currently limited. EUS allows detailed examination of perirectal and perianal complications in Crohn’s disease and, as a safe and less expensive investigation, can be used to monitor therapeutic response of fistulae, which seems to improve outcomes and reduce the need for additional surgery. Furthermore, EUS image enhancement techniques, such as the use of contrast agents or elastography, have recently been evaluated for colorectal indications as well. Possible applications of contrast enhancement include the assessment of tumour angiogenesis in colorectal cancer, the monitoring of disease activity in inflammatory bowel disease based on quantification of bowel wall vascularization, and differentiating between benign and

  20. Advances in endoscopic ultrasound imaging of colorectal diseases.

    PubMed

    Cârțână, Elena Tatiana; Gheonea, Dan Ionuț; Săftoiu, Adrian

    2016-02-01

    The development of endoscopic ultrasound (EUS) has had a significant impact for patients with digestive diseases, enabling enhanced diagnostic and therapeutic procedures, with most of the available evidence focusing on upper gastrointestinal (GI) and pancreatico-biliary diseases. For the lower GI tract the main application of EUS has been in staging rectal cancer, as a complementary technique to other cross-sectional imaging methods. EUS can provide highly accurate in-depth assessments of tumour infiltration, performing best in the diagnosis of early rectal tumours. In the light of recent developments other EUS applications for colorectal diseases have been also envisaged and are currently under investigation, including beyond-rectum tumour staging by means of the newly developed forward-viewing radial array echoendoscope. Due to its high resolution, EUS might be also regarded as an ideal method for the evaluation of subepithelial lesions. Their differential diagnosis is possible by imaging the originating wall layer and the associated echostructure, and cytological and histological confirmation can be obtained through EUS-guided fine needle aspiration or trucut biopsy. However, reports on the use of EUS in colorectal subepithelial lesions are currently limited. EUS allows detailed examination of perirectal and perianal complications in Crohn's disease and, as a safe and less expensive investigation, can be used to monitor therapeutic response of fistulae, which seems to improve outcomes and reduce the need for additional surgery. Furthermore, EUS image enhancement techniques, such as the use of contrast agents or elastography, have recently been evaluated for colorectal indications as well. Possible applications of contrast enhancement include the assessment of tumour angiogenesis in colorectal cancer, the monitoring of disease activity in inflammatory bowel disease based on quantification of bowel wall vascularization, and differentiating between benign and

  1. Advanced digital subtraction angiography and MR fusion imaging protocol applied to accurate placement of flow diverter device.

    PubMed

    Faragò, Giuseppe; Caldiera, Valentina; Tempra, Giovanni; Ciceri, Elisa

    2016-02-01

    In recent years there has been a progressive increase in interventional neuroradiology procedures, partially due to improvements in devices, but also to the simultaneous development of technologies and radiological images. Cone beam CT (Dyna-CT; Siemens) is a method recently used to obtain pseudo CT images from digital subtraction angiography (DSA) with a flat panel detector. Using dedicated software, it is then possible to merge Dyna-CT images with images from a different source. We report here the usefulness of advanced DSA techniques (Syngo-Dyna CT, three-dimensional DSA iPilot) for the treatment of an intracranial aneurysm with a flow diverter device. Merging MR and Dyna-CT images at the end of the procedure proved to be a simple and rapid additional method of verifying the success of the intervention. PMID:25589548

  2. The advance of non-invasive detection methods in osteoarthritis

    NASA Astrophysics Data System (ADS)

    Dai, Jiao; Chen, Yanping

    2011-06-01

    Osteoarthritis (OA) is one of the most prevalent chronic diseases which badly affected the patients' living quality and economy. Detection and evaluation technology can provide basic information for early treatment. A variety of imaging methods in OA were reviewed, such as conventional X-ray, computed tomography (CT), ultrasound (US), magnetic resonance imaging (MRI) and near-infrared spectroscopy (NIRS). Among the existing imaging modalities, the spatial resolution of X-ray is extremely high; CT is a three-dimensional method, which has high density resolution; US as an evaluation method of knee OA discriminates lesions sensitively between normal cartilage and degenerative one; as a sensitive and nonionizing method, MRI is suitable for the detection of early OA, but the cost is too expensive for routine use; NIRS is a safe, low cost modality, and is also good at detecting early stage OA. In a word, each method has its own advantages, but NIRS is provided with broader application prospect, and it is likely to be used in clinical daily routine and become the golden standard for diagnostic detection.

  3. Advanced magneto-optical microscopy: Imaging from picoseconds to centimeters - imaging spin waves and temperature distributions (invited)

    NASA Astrophysics Data System (ADS)

    Urs, Necdet Onur; Mozooni, Babak; Mazalski, Piotr; Kustov, Mikhail; Hayes, Patrick; Deldar, Shayan; Quandt, Eckhard; McCord, Jeffrey

    2016-05-01

    Recent developments in the observation of magnetic domains and domain walls by wide-field optical microscopy based on the magneto-optical Kerr, Faraday, Voigt, and Gradient effect are reviewed. Emphasis is given to the existence of higher order magneto-optical effects for advanced magnetic imaging. Fundamental concepts and advances in methodology are discussed that allow for imaging of magnetic domains on various length and time scales. Time-resolved imaging of electric field induced domain wall rotation is shown. Visualization of magnetization dynamics down to picosecond temporal resolution for the imaging of spin-waves and magneto-optical multi-effect domain imaging techniques for obtaining vectorial information are demonstrated. Beyond conventional domain imaging, the use of a magneto-optical indicator technique for local temperature sensing is shown.

  4. Methods for increasing the sensitivity of gamma-ray imagers

    DOEpatents

    Mihailescu, Lucian; Vetter, Kai M.; Chivers, Daniel H.

    2012-02-07

    Methods are presented that increase the position resolution and granularity of double sided segmented semiconductor detectors. These methods increase the imaging resolution capability of such detectors, either used as Compton cameras, or as position sensitive radiation detectors in imagers such as SPECT, PET, coded apertures, multi-pinhole imagers, or other spatial or temporal modulated imagers.

  5. Methods for processing and imaging marsh foraminifera

    USGS Publications Warehouse

    Dreher, Chandra A.; Flocks, James G.

    2011-01-01

    This study is part of a larger U.S. Geological Survey (USGS) project to characterize the physical conditions of wetlands in southwestern Louisiana. Within these wetlands, groups of benthic foraminifera-shelled amoeboid protists living near or on the sea floor-can be used as agents to measure land subsidence, relative sea-level rise, and storm impact. In the Mississippi River Delta region, intertidal-marsh foraminiferal assemblages and biofacies were established in studies that pre-date the 1970s, with a very limited number of more recent studies. This fact sheet outlines this project's improved methods, handling, and modified preparations for the use of Scanning Electron Microscope (SEM) imaging of these foraminifera. The objective is to identify marsh foraminifera to the taxonomic species level by using improved processing methods and SEM imaging for morphological characterization in order to evaluate changes in distribution and frequency relative to other environmental variables. The majority of benthic marsh foraminifera consists of agglutinated forms, which can be more delicate than porcelaneous forms. Agglutinated tests (shells) are made of particles such as sand grains or silt and clay material, whereas porcelaneous tests consist of calcite.

  6. A Novel Murine Model for Localized Radiation Necrosis and its Characterization using Advanced Magnetic Resonance Imaging

    PubMed Central

    Jost, Sarah C.; Hope, Andrew; Kiehl, Erich; Perry, Arie; Travers, Sarah; Garbow, Joel R.

    2013-01-01

    Introduction Magnetic resonance (MR) images following external beam radiotherapy for brain tumors often display signal changes characteristic of either tumor progression and/or radiation injury. No non-invasive diagnostic biomarkers have been identified that clearly distinguish between these two disease processes. This study’s objective was to develop a murine model of radiation necrosis using fractionated, sub-total cranial irradiation and to investigate the imaging signature of radiation-induced tissue damage using advanced MR imaging techniques. Methods Twenty four mice each received 60 Gy of hemispheric (left) irradiation in ten equal fractions. MR images at 4.7 T were subsequently collected using T1-, T2- and diffusion-sequences at selected time points following irradiation or implantation. Following imaging, animals were euthanized and their brains were fixed for correlative histology. Results Contrast-enhanced T1- and T2-weighted MR images at months 2, 3, and 4 showed changes consistent with progressive radiation necrosis. Quantitatively, mean diffusivity was significantly higher (mean = 0.86, 1.13, and 1.24 μm2/ms at 2, 3, and 4 months, respectively) in radiated brain, compared with contralateral untreated brain tissue (mean = 0.78, 0.82, and 0.83 μm2/ms) (p<0.0001). Histology reflected changes typically seen in radiation necrosis. Conclusions This murine model of radiation necrosis will facilitate investigation of imaging biomarkers that distinguish between radiation necrosis and tumor recurrence. In addition, this preclinical study supports clinical data suggesting that DWI may be helpful in answering this diagnostic question in clinical settings. PMID:19735877

  7. Recent Advances in Imaging of Small and Large Bowel.

    PubMed

    Das, Chandan J; Manchanda, Smita; Panda, Ananya; Sharma, Anshul; Gupta, Arun K

    2016-01-01

    The diagnosis of bowel pathology is challenging in view of the nonspecific clinical presentation. Currently, there are various imaging modalities available to reach an accurate diagnosis. These modalities include conventional techniques (radiographs, small bowel follow-through, conventional enteroclysis), ultrasonography, and cross-sectional examinations (computed tomography [CT] and MR imaging) as well as functional imaging modalities, such as PET-CT or PET-MR imaging. Each modality has its own advantages and disadvantages and can be used in isolation or combination. This review discusses the role of CT, MR imaging, and PET-CT in the evaluation of small and large bowel diseases. PMID:26590441

  8. Advances in Imaging of the Pediatric Pituitary Gland.

    PubMed

    Bou-Ayache, Jad M; Delman, Bradley N

    2016-06-01

    High-resolution MRI of the pediatric sella can help identity or confirm clinical abnormalities, assess pituitary gland size and structure, and reveal acquired lesions. This article reviews contemporary techniques for imaging of the sella and associated structures in this population. Strengths and weaknesses of conventional imaging are discussed, as are techniques that can enhance yield. Some new and emerging technologies are discussed, including MR elastography, perfusion imaging, spectroscopy, and diffusion-weighted and diffusion-tensor imaging. It is expected that this overview will provide insight as to where pediatric sella imaging is currently and where it may head in the future. PMID:27241974

  9. Screening for Body Image Dissatisfaction in Patients with Advanced Cancer: A Pilot Study

    PubMed Central

    Rhondali, Wadih; Chisholm, Gary B.; Filbet, Marilene; Kang, Duck-Hee; Hui, David; Cororve Fingeret, Michelle

    2015-01-01

    Abstract Background Cancer and its treatment can significantly affect appearance and body integrity. A number of studies have explored the impact of cancer and its treatment on body image, primarily in head and neck and breast cancer. The aim of this pilot study was to examine the construct of body image dissatisfaction and its measurement using a single question in patients with advanced cancer. Methods Outpatients with advanced cancer were recruited (n=81). Assessments included Body Image Scale (BIS), Appearance Schema Inventory (ASI-R), Edmonton Symptom Assessment System (ESAS) with a total symptom distress score (TSDS) and two subscales scores (physical distress [PHS] and psychological distress [PSS]), Hospital Anxiety Depression Scale (HADS), and one question assessing the overall appearance satisfaction from the Multidimensional Body-Self Relations Questionnaire (MBSRQ). We also asked patients to rate the body image changes importance compared with five symptoms (pain, fatigue, depression, insomnia, lack of appetite). Results Forty-seven (58%) patients had a BIS score >10 (body image dissatisfaction) with a median of 11 (first–third quartiles, Q1–Q3; 5–16) and a median ASI-R of 3.1 (Q1–Q3; 2.8–3.5). Sensitivity and specificity of ≤3 for body image dissatisfaction in the single overall appearance question using the BIS as a standard was 0.70 and 0.71, respectively. BIS score was significantly correlated with ASI-R (r=0.248; p=0.025), age (r=−0.225; p=0.043), HADS-A (r=0.522, p<0.001), HADS-D (r=0.422, p<0.001), PSS score (r=0.371, p=0.001), PHS score (r=0.356, p=0.001), TSDS score (r=0.416, p<0.001), and the overall appearance question (MBSRQ; r=−0.449, p<0.001). Conclusion Body image dissatisfaction was frequent and associated with symptom burden. A single item ≤3 has a sensitivity of 70% for body image satisfaction screening. PMID:25188590

  10. The advancing clinical impact of molecular imaging in CVD.

    PubMed

    Osborn, Eric A; Jaffer, Farouc A

    2013-12-01

    Molecular imaging seeks to unravel critical molecular and cellular events in living subjects by providing complementary biological information to current structural clinical imaging modalities. In recent years, molecular imaging efforts have marched forward into the clinical cardiovascular arena, and are now actively illuminating new biology in a broad range of conditions, including atherosclerosis, myocardial infarction, thrombosis, vasculitis, aneurysm, cardiomyopathy, and valvular disease. Development of novel molecular imaging reporters is occurring for many clinical cardiovascular imaging modalities (positron emission tomography, single-photon emission computed tomography, magnetic resonance imaging), as well as in translational platforms such as intravascular fluorescence imaging. The ability to image, track, and quantify molecular biomarkers in organs not routinely amenable to biopsy (e.g., the heart and vasculature) open new clinical opportunities to tailor therapeutics based on a cardiovascular disease molecular profile. In addition, molecular imaging is playing an increasing role in atherosclerosis drug development in phase II clinical trials. Here, we present state-of-the-art clinical cardiovascular molecular imaging strategies, and explore promising translational approaches positioned for clinical testing in the near term. PMID:24332285

  11. A Fast Edge Preserving Bayesian Reconstruction Method for Parallel Imaging Applications in Cardiac MRI

    PubMed Central

    Singh, Gurmeet; Raj, Ashish; Kressler, Bryan; Nguyen, Thanh D.; Spincemaille, Pascal; Zabih, Ramin; Wang, Yi

    2010-01-01

    Among recent parallel MR imaging reconstruction advances, a Bayesian method called Edge-preserving Parallel Imaging with GRAph cut Minimization (EPIGRAM) has been demonstrated to significantly improve signal to noise ratio (SNR) compared to conventional regularized sensitivity encoding (SENSE) method. However, EPIGRAM requires a large number of iterations in proportion to the number of intensity labels in the image, making it computationally expensive for high dynamic range images. The objective of this study is to develop a Fast EPIGRAM reconstruction based on the efficient binary jump move algorithm that provides a logarithmic reduction in reconstruction time while maintaining image quality. Preliminary in vivo validation of the proposed algorithm is presented for 2D cardiac cine MR imaging and 3D coronary MR angiography at acceleration factors of 2-4. Fast EPIGRAM was found to provide similar image quality to EPIGRAM and maintain the previously reported SNR improvement over regularized SENSE, while reducing EPIGRAM reconstruction time by 25-50 times. PMID:20939095

  12. Recent Advances in Image Assisted Neurosurgical Procedures: Improved Navigational Accuracy and Patient Safety

    ScienceCinema

    Olivi, Alessandro, M.D.

    2010-09-01

    Neurosurgical procedures require precise planning and intraoperative support. Recent advances in image guided technology have provided neurosurgeons with improved navigational support for more effective and safer procedures. A number of exemplary cases will be presented.

  13. Recent Advances in Image Assisted Neurosurgical Procedures: Improved Navigational Accuracy and Patient Safety

    SciTech Connect

    Olivi, Alessandro, M.D.

    2010-08-28

    Neurosurgical procedures require precise planning and intraoperative support. Recent advances in image guided technology have provided neurosurgeons with improved navigational support for more effective and safer procedures. A number of exemplary cases will be presented.

  14. Left Ventricular Flow Analysis: Recent Advances in Numerical Methods and Applications in Cardiac Ultrasound

    PubMed Central

    Borazjani, Iman; Westerdale, John; McMahon, Eileen M.; Rajaraman, Prathish K.; Heys, Jeffrey J.

    2013-01-01

    The left ventricle (LV) pumps oxygenated blood from the lungs to the rest of the body through systemic circulation. The efficiency of such a pumping function is dependent on blood flow within the LV chamber. It is therefore crucial to accurately characterize LV hemodynamics. Improved understanding of LV hemodynamics is expected to provide important clinical diagnostic and prognostic information. We review the recent advances in numerical and experimental methods for characterizing LV flows and focus on analysis of intraventricular flow fields by echocardiographic particle image velocimetry (echo-PIV), due to its potential for broad and practical utility. Future research directions to advance patient-specific LV simulations include development of methods capable of resolving heart valves, higher temporal resolution, automated generation of three-dimensional (3D) geometry, and incorporating actual flow measurements into the numerical solution of the 3D cardiovascular fluid dynamics. PMID:23690874

  15. Carbon nanotubes for biomedical imaging: the recent advances.

    PubMed

    Gong, Hua; Peng, Rui; Liu, Zhuang

    2013-12-01

    This article reviews the latest progresses regarding the applications of carbon nanotubes (CNTs), including single-walled carbon nanotubes (SWNTs) and multi-walled carbon nanotubes (MWNTs), as multifunctional nano-probes for biomedical imaging. Utilizing the intrinsic band-gap fluorescence of semi-conducting single-walled carbon nanotubes (SWNTs), fluorescence imaging in the near infrared II (NIR-II) region with enhanced tissue penetration and spatial resolution has shown great promise in recent years. Raman imaging based on the resonance Raman scattering of SWNTs has also been explored by a number of groups for in vitro and in vivo imaging of biological samples. The strong absorbance of CNTs in the NIR region can be used for photoacoustic imaging, and their photoacoustic signals can be dramatically enhanced by adding organic dyes, or coating with gold shells. Taking advantages of metal nanoparticle impurities attached to nanotubes, CNTs can also serve as a T2-contrast agent in magnetic resonance (MR) imaging. In addition, when labeled with radioactive isotopes, many groups have developed nuclear imaging with functionalized CNTs. Therefore CNTs are unique imaging probes with great potential in biomedical multimodal imaging. PMID:24184130

  16. The Advancing Clinical Impact of Molecular Imaging in Cardiovascular Disease

    PubMed Central

    Osborn, Eric A; Jaffer, Farouc A

    2013-01-01

    Molecular imaging seeks to unravel critical molecular and cellular events in living subjects by providing complementary biological information to current structural clinical imaging modalities. In recent years, molecular imaging efforts have marched forward into the clinical cardiovascular arena, and are now actively illuminating new biology in a broad range of conditions, including atherosclerosis, myocardial infarction, thrombosis, vasculitis, aneurysm, cardiomyopathy, and valvular disease. Development of novel molecular imaging reporters is occurring for many clinical cardiovascular imaging modalities (PET, SPECT, MRI), as well in translational platforms such as intravascular fluorescence imaging. The ability to image, track, and quantify molecular biomarkers in organs not routinely amenable to biopsy (e.g. the heart and vasculature) open new clinical opportunities to tailor therapeutics based on a cardiovascular disease molecular profile. In addition, molecular imaging is playing an increasing role in atherosclerosis drug development in Phase II clinical trials. Here we present state-of-the-art clinical cardiovascular molecular imaging strategies, and explore promising translational approaches positioned for clinical testing in the near term. PMID:24332285

  17. Advances in passive imaging elements with micromirror array

    NASA Astrophysics Data System (ADS)

    Maekawa, Satoshi; Nitta, Kouichi; Matoba, Osamu

    2008-02-01

    We have proposed a new passive imaging optics which consists of a grid array of micro roof mirrors working as dihedral corner reflectors. Although this element forms mirror-like images at opposite side of objects, the images are real. Because the imaging principle of the proposed element is based on accumulation of rays, the design of each light path makes many kinds of devices possible. So, we propose two variations of such a device. One device consists of an array of micro retroreflectors and a half mirror, and it can also form real mirror-like images. The advantage of this device is wide range of view, because the displacement of each retororeflector is not limited on a plane unlike the roof mirror grid array. The other consists of an array of long dihedral corner reflectors. Although this structure has been already known as a roof mirror array, it can be used for imaging. This device forms two heterogeneous images. One is real at the same side of an object, and the other is virtual at the opposite side. This is a conjugate imaging optics of a slit mirror array whose mirror surface is perpendicular to the device surface. The advantage of a roor mirror array is that the real image has horizontal parallax and can be seen in air naturally.

  18. Advanced imaging systems for diagnostic investigations applied to Cultural Heritage

    NASA Astrophysics Data System (ADS)

    Peccenini, E.; Albertin, F.; Bettuzzi, M.; Brancaccio, R.; Casali, F.; Morigi, M. P.; Petrucci, F.

    2014-12-01

    The diagnostic investigations are an important resource in the studies on Cultural Heritage to enhance the knowledge on execution techniques, materials and conservation status of a work of art. In this field, due to the great historical and artistic value of the objects, preservation is the main concern; for this reason, new technological equipment has been designed and developed in the Physics Departments of the Universities of Ferrara and Bologna to enhance the non-invasive approach to the study of pictorial artworks and other objects of cultural interest. Infrared (IR) reflectography, X-ray radiography and computed tomography (CT), applied to works of art, are joined by the same goal: to get hidden information on execution techniques and inner structure pursuing the non-invasiveness of the methods, although using different setup and physical principles. In this work transportable imaging systems to investigate large objects in museums and galleries are presented. In particular, 2D scanning devices for IR reflectography and X-ray radiography, CT systems and some applications to the Cultural Heritage are described.

  19. New Methods for Lossless Image Compression Using Arithmetic Coding.

    ERIC Educational Resources Information Center

    Howard, Paul G.; Vitter, Jeffrey Scott

    1992-01-01

    Identifies four components of a good predictive lossless image compression method: (1) pixel sequence, (2) image modeling and prediction, (3) error modeling, and (4) error coding. Highlights include Laplace distribution and a comparison of the multilevel progressive method for image coding with the prediction by partial precision matching method.…

  20. MO-C-BRE-01: The WMIS-AAPM Joint Symposium: Advances in Molecular Imaging

    SciTech Connect

    Contag, C; Pogue, B; Lewis, J

    2014-06-15

    This joint symposium of the World Molecular Imaging Society (WMIS) and the AAPM includes three luminary speakers discussing work in new paradigms of molecular imaging in cancer (Contag), applications of optical imaging technologies to radiation therapy (Pogue) and an update on PET imaging as a surrogate biomarker for cancer progression and response to therapy. Learning Objectives: Appreciate the current trends in molecular and systems imaging. Understand how optical imaging technologies, and particularly Cerenkov detectors, can be used in advancing radiation oncology. Stay current on new PET tracers - and targets - of interest in cancer treatment.

  1. Advanced reactor physics methods for heterogeneous reactor cores

    NASA Astrophysics Data System (ADS)

    Thompson, Steven A.

    To maintain the economic viability of nuclear power the industry has begun to emphasize maximizing the efficiency and output of existing nuclear power plants by using longer fuel cycles, stretch power uprates, shorter outage lengths, mixed-oxide (MOX) fuel and more aggressive operating strategies. In order to accommodate these changes, while still satisfying the peaking factor and power envelope requirements necessary to maintain safe operation, more complexity in commercial core designs have been implemented, such as an increase in the number of sub-batches and an increase in the use of both discrete and integral burnable poisons. A consequence of the increased complexity of core designs, as well as the use of MOX fuel, is an increase in the neutronic heterogeneity of the core. Such heterogeneous cores introduce challenges for the current methods that are used for reactor analysis. New methods must be developed to address these deficiencies while still maintaining the computational efficiency of existing reactor analysis methods. In this thesis, advanced core design methodologies are developed to be able to adequately analyze the highly heterogeneous core designs which are currently in use in commercial power reactors. These methodological improvements are being pursued with the goal of not sacrificing the computational efficiency which core designers require. More specifically, the PSU nodal code NEM is being updated to include an SP3 solution option, an advanced transverse leakage option, and a semi-analytical NEM solution option.

  2. Spike Inference from Calcium Imaging Using Sequential Monte Carlo Methods

    PubMed Central

    Vogelstein, Joshua T.; Watson, Brendon O.; Packer, Adam M.; Yuste, Rafael; Jedynak, Bruno; Paninski, Liam

    2009-01-01

    Abstract As recent advances in calcium sensing technologies facilitate simultaneously imaging action potentials in neuronal populations, complementary analytical tools must also be developed to maximize the utility of this experimental paradigm. Although the observations here are fluorescence movies, the signals of interest—spike trains and/or time varying intracellular calcium concentrations—are hidden. Inferring these hidden signals is often problematic due to noise, nonlinearities, slow imaging rate, and unknown biophysical parameters. We overcome these difficulties by developing sequential Monte Carlo methods (particle filters) based on biophysical models of spiking, calcium dynamics, and fluorescence. We show that even in simple cases, the particle filters outperform the optimal linear (i.e., Wiener) filter, both by obtaining better estimates and by providing error bars. We then relax a number of our model assumptions to incorporate nonlinear saturation of the fluorescence signal, as well external stimulus and spike history dependence (e.g., refractoriness) of the spike trains. Using both simulations and in vitro fluorescence observations, we demonstrate temporal superresolution by inferring when within a frame each spike occurs. Furthermore, the model parameters may be estimated using expectation maximization with only a very limited amount of data (e.g., ∼5–10 s or 5–40 spikes), without the requirement of any simultaneous electrophysiology or imaging experiments. PMID:19619479

  3. Automatic image acquisition processor and method

    DOEpatents

    Stone, W.J.

    1984-01-16

    A computerized method and point location system apparatus is disclosed for ascertaining the center of a primitive or fundamental object whose shape and approximate location are known. The technique involves obtaining an image of the object, selecting a trial center, and generating a locus of points having a predetermined relationship with the center. Such a locus of points could include a circle. The number of points overlying the object in each quadrant is obtained and the counts of these points per quadrant are compared. From this comparison, error signals are provided to adjust the relative location of the trial center. This is repeated until the trial center overlies the geometric center within the predefined accuracy limits.

  4. Automatic image acquisition processor and method

    DOEpatents

    Stone, William J.

    1986-01-01

    A computerized method and point location system apparatus is disclosed for ascertaining the center of a primitive or fundamental object whose shape and approximate location are known. The technique involves obtaining an image of the object, selecting a trial center, and generating a locus of points having a predetermined relationship with the center. Such a locus of points could include a circle. The number of points overlying the object in each quadrant is obtained and the counts of these points per quadrant are compared. From this comparison, error signals are provided to adjust the relative location of the trial center. This is repeated until the trial center overlies the geometric center within the predefined accuracy limits.

  5. Advanced image processing for optical coherence tomographic angiography of macular diseases

    PubMed Central

    Zhang, Miao; Wang, Jie; Pechauer, Alex D.; Hwang, Thomas S.; Gao, Simon S.; Liu, Liang; Liu, Li; Bailey, Steven T.; Wilson, David J.; Huang, David; Jia, Yali

    2015-01-01

    This article provides an overview of advanced image processing for three dimensional (3D) optical coherence tomographic (OCT) angiography of macular diseases, including age-related macular degeneration (AMD) and diabetic retinopathy (DR). A fast automated retinal layers segmentation algorithm using directional graph search was introduced to separates 3D flow data into different layers in the presence of pathologies. Intelligent manual correction methods are also systematically addressed which can be done rapidly on a single frame and then automatically propagated to full 3D volume with accuracy better than 1 pixel. Methods to visualize and analyze the abnormalities including retinal and choroidal neovascularization, retinal ischemia, and macular edema were presented to facilitate the clinical use of OCT angiography. PMID:26713185

  6. Advanced multi-contrast Jones matrix optical coherence tomography for Doppler and polarization sensitive imaging.

    PubMed

    Ju, Myeong Jin; Hong, Young-Joo; Makita, Shuichi; Lim, Yiheng; Kurokawa, Kazuhiro; Duan, Lian; Miura, Masahiro; Tang, Shuo; Yasuno, Yoshiaki

    2013-08-12

    An advanced version of Jones matrix optical coherence tomography (JMT) is demonstrated for Doppler and polarization sensitive imaging of the posterior eye. JMT is capable of providing localized flow tomography by Doppler detection and investigating the birefringence property of tissue through a three-dimensional (3-D) Jones matrix measurement. Owing to an incident polarization multiplexing scheme based on passive optical components, this system is stable, safe in a clinical environment, and cost effective. Since the properties of this version of JMT provide intrinsic compensation for system imperfection, the system is easy to calibrate. Compared with the previous version of JMT, this advanced JMT achieves a sufficiently long depth measurement range for clinical cases of posterior eye disease. Furthermore, a fine spectral shift compensation method based on the cross-correlation of calibration signals was devised for stabilizing the phase of OCT, which enables a high sensitivity Doppler OCT measurement. In addition, a new theory of JMT which integrates the Jones matrix measurement, Doppler measurement, and scattering measurement is presented. This theory enables a sensitivity-enhanced scattering OCT and high-sensitivity Doppler OCT. These new features enable the application of this system to clinical cases. A healthy subject and a geographic atrophy patient were measured in vivo, and simultaneous imaging of choroidal vasculature and birefringence structures are demonstrated. PMID:23938857

  7. Advances in multimodality molecular imaging of bone structure and function

    PubMed Central

    Lambers, Floor M; Kuhn, Gisela; Müller, Ralph

    2012-01-01

    The skeleton is important to the body as a source of minerals and blood cells and provides a structural framework for strength, mobility and the protection of organs. Bone diseases and disorders can have deteriorating effects on the skeleton, but the biological processes underlying anatomical changes in bone diseases occurring in vivo are not well understood, mostly due to the lack of appropriate analysis techniques. Therefore, there is ongoing research in the development of novel in vivo imaging techniques and molecular markers that might help to gain more knowledge of these pathological pathways in animal models and patients. This perspective provides an overview of the latest developments in molecular imaging applied to bone. It emphasizes that multimodality imaging, the combination of multiple imaging techniques encompassing different image modalities, enhances the interpretability of data, and is imperative for the understanding of the biological processes and the associated changes in bone structure and function relationships in vivo. PMID:27127622

  8. PIFEX: An advanced programmable pipelined-image processor

    NASA Technical Reports Server (NTRS)

    Gennery, D. B.; Wilcox, B.

    1985-01-01

    PIFEX is a pipelined-image processor being built in the JPL Robotics Lab. It will operate on digitized raster-scanned images (at 60 frames per second for images up to about 300 by 400 and at lesser rates for larger images), performing a variety of operations simultaneously under program control. It thus is a powerful, flexible tool for image processing and low-level computer vision. It also has applications in other two-dimensional problems such as route planning for obstacle avoidance and the numerical solution of two-dimensional partial differential equations (although its low numerical precision limits its use in the latter field). The concept and design of PIFEX are described herein, and some examples of its use are given.

  9. An automated and universal method for measuring mean grain size from a digital image of sediment

    USGS Publications Warehouse

    Buscombe, Daniel D.; Rubin, David M.; Warrick, Jonathan A.

    2010-01-01

    Existing methods for estimating mean grain size of sediment in an image require either complicated sequences of image processing (filtering, edge detection, segmentation, etc.) or statistical procedures involving calibration. We present a new approach which uses Fourier methods to calculate grain size directly from the image without requiring calibration. Based on analysis of over 450 images, we found the accuracy to be within approximately 16% across the full range from silt to pebbles. Accuracy is comparable to, or better than, existing digital methods. The new method, in conjunction with recent advances in technology for taking appropriate images of sediment in a range of natural environments, promises to revolutionize the logistics and speed at which grain-size data may be obtained from the field.

  10. An Innovative Method for Obtaining Consistent Images and Quantification of Histochemically Stained Specimens

    PubMed Central

    Sedgewick, Gerald J.; Ericson, Marna

    2015-01-01

    Obtaining digital images of color brightfield microscopy is an important aspect of biomedical research and the clinical practice of diagnostic pathology. Although the field of digital pathology has had tremendous advances in whole-slide imaging systems, little effort has been directed toward standardizing color brightfield digital imaging to maintain image-to-image consistency and tonal linearity. Using a single camera and microscope to obtain digital images of three stains, we show that microscope and camera systems inherently produce image-to-image variation. Moreover, we demonstrate that post-processing with a widely used raster graphics editor software program does not completely correct for session-to-session inconsistency. We introduce a reliable method for creating consistent images with a hardware/software solution (ChromaCal™; Datacolor Inc., NJ) along with its features for creating color standardization, preserving linear tonal levels, providing automated white balancing and setting automated brightness to consistent levels. The resulting image consistency using this method will also streamline mean density and morphometry measurements, as images are easily segmented and single thresholds can be used. We suggest that this is a superior method for color brightfield imaging, which can be used for quantification and can be readily incorporated into workflows. PMID:25575568

  11. Methods and Systems for Advanced Spaceport Information Management

    NASA Technical Reports Server (NTRS)

    Fussell, Ronald M. (Inventor); Ely, Donald W. (Inventor); Meier, Gary M. (Inventor); Halpin, Paul C. (Inventor); Meade, Phillip T. (Inventor); Jacobson, Craig A. (Inventor); Blackwell-Thompson, Charlie (Inventor)

    2007-01-01

    Advanced spaceport information management methods and systems are disclosed. In one embodiment, a method includes coupling a test system to the payload and transmitting one or more test signals that emulate an anticipated condition from the test system to the payload. One or more responsive signals are received from the payload into the test system and are analyzed to determine whether one or more of the responsive signals comprises an anomalous signal. At least one of the steps of transmitting, receiving, analyzing and determining includes transmitting at least one of the test signals and the responsive signals via a communications link from a payload processing facility to a remotely located facility. In one particular embodiment, the communications link is an Internet link from a payload processing facility to a remotely located facility (e.g. a launch facility, university, etc.).

  12. Methods and systems for advanced spaceport information management

    NASA Technical Reports Server (NTRS)

    Fussell, Ronald M. (Inventor); Ely, Donald W. (Inventor); Meier, Gary M. (Inventor); Halpin, Paul C. (Inventor); Meade, Phillip T. (Inventor); Jacobson, Craig A. (Inventor); Blackwell-Thompson, Charlie (Inventor)

    2007-01-01

    Advanced spaceport information management methods and systems are disclosed. In one embodiment, a method includes coupling a test system to the payload and transmitting one or more test signals that emulate an anticipated condition from the test system to the payload. One or more responsive signals are received from the payload into the test system and are analyzed to determine whether one or more of the responsive signals comprises an anomalous signal. At least one of the steps of transmitting, receiving, analyzing and determining includes transmitting at least one of the test signals and the responsive signals via a communications link from a payload processing facility to a remotely located facility. In one particular embodiment, the communications link is an Internet link from a payload processing facility to a remotely located facility (e.g. a launch facility, university, etc.).

  13. Novel genotype-phenotype associations in human cancers enabled by advanced molecular platforms and computational analysis of whole slide images

    PubMed Central

    Cooper, Lee A.D.; Kong, Jun; Gutman, David A.; Dunn, William D.; Nalisnik, Michael; Brat, Daniel J.

    2014-01-01

    Technological advances in computing, imaging and genomics have created new opportunities for exploring relationships between histology, molecular events and clinical outcomes using quantitative methods. Slide scanning devices are now capable of rapidly producing massive digital image archives that capture histological details in high-resolution. Commensurate advances in computing and image analysis algorithms enable mining of archives to extract descriptions of histology, ranging from basic human annotations to automatic and precisely quantitative morphometric characterization of hundreds of millions of cells. These imaging capabilities represent a new dimension in tissue-based studies, and when combined with genomic and clinical endpoints, can be used to explore biologic characteristics of the tumor microenvironment and to discover new morphologic biomarkers of genetic alterations and patient outcomes. In this paper we review developments in quantitative imaging technology and illustrate how image features can be integrated with clinical and genomic data to investigate fundamental problems in cancer. Using motivating examples from the study of glioblastomas (GBMs), we demonstrate how public data from The Cancer Genome Atlas (TCGA) can serve as an open platform to conduct in silico tissue based studies that integrate existing data resources. We show how these approaches can be used to explore the relation of the tumor microenvironment to genomic alterations and gene expression patterns and to define nuclear morphometric features that are predictive of genetic alterations and clinical outcomes. Challenges, limitations and emerging opportunities in the area of quantitative imaging and integrative analyses are also discussed. PMID:25599536

  14. Advanced Tracers in PET Imaging of Cardiovascular Disease

    PubMed Central

    Zhang, Wei; Wu, Hua; Liu, Gang

    2014-01-01

    Cardiovascular disease is the leading cause of death worldwide. Molecular imaging with targeted tracers by positron emission tomography (PET) allows for the noninvasive detection and characterization of biological changes at the molecular level, leading to earlier disease detection, objective monitoring of therapies, and better prognostication of cardiovascular diseases progression. Here we review, the current role of PET in cardiovascular disease, with emphasize on tracers developed for PET imaging of cardiovascular diseases. PMID:25389529

  15. Characterization of a Real-time Neutron Imaging Test Station at China Advanced Research Reactor

    NASA Astrophysics Data System (ADS)

    He, Linfeng; Han, Songbai; Wang, Hongli; Wei, Guohai; Wang, Yu; Wu, Meimei; Liu, Yuntao; Chen, Dongfeng

    A real-time neutron imaging test station was recently installed at the China Advanced Research Reactor. The objective of this work was to determine its operational characteristics, including neutron beam profile, the spatial resolution and time resolution. The performance of the equipment was demonstrated by a real time neutron imaging test of the water dynamics in a fuel cell.

  16. Advanced Diffusion-Weighted Magnetic Resonance Imaging Techniques of the Human Spinal Cord

    PubMed Central

    Andre, Jalal B.; Bammer, Roland

    2012-01-01

    Unlike those of the brain, advances in diffusion-weighted imaging (DWI) of the human spinal cord have been challenged by the more complicated and inhomogeneous anatomy of the spine, the differences in magnetic susceptibility between adjacent air and fluid-filled structures and the surrounding soft tissues, and the inherent limitations of the initially used echo-planar imaging techniques used to image the spine. Interval advances in DWI techniques for imaging the human spinal cord, with the specific aims of improving the diagnostic quality of the images, and the simultaneous reduction in unwanted artifacts have resulted in higher-quality images that are now able to more accurately portray the complicated underlying anatomy and depict pathologic abnormality with improved sensitivity and specificity. Diffusion tensor imaging (DTI) has benefited from the advances in DWI techniques, as DWI images form the foundation for all tractography and DTI. This review provides a synopsis of the many recent advances in DWI of the human spinal cord, as well as some of the more common clinical uses for these techniques, including DTI and tractography. PMID:22158130

  17. Visualizing Chemistry: The Progess and Promise of Advanced Chemical Imaging

    SciTech Connect

    Committee on Revealing Chemistry Through Advanced Chemical Imaging

    2006-09-01

    The field of chemical imaging can provide detailed structural, functional, and applicable information about chemistry and chemical engineering phenomena that have enormous impacts on medicine, materials, and technology. In recognizing the potential for more research development in the field of chemical imaging, the National Academies was asked by the National Science Foundation, Department of Energy, U.S. Army, and National Cancer Institute to complete a study that would review the current state of molecular imaging technology, point to promising future developments and their applications, and suggest a research and educational agenda to enable breakthrough improvements in the ability to image molecular processes simultaneously in multiple physical dimensions as well as time. The study resulted in a consensus report that provides guidance for a focused research and development program in chemical imaging and identifies research needs and possible applications of imaging technologies that can provide the breakthrough knowledge in chemistry, materials science, biology, and engineering for which we should strive. Public release of this report is expected in early October.

  18. White Paper AGA: Advanced Imaging in Barrett's Esophagus.

    PubMed

    Sharma, Prateek; Brill, Joel; Canto, Marcia; DeMarco, Daniel; Fennerty, Brian; Gupta, Neil; Laine, Loren; Lieberman, David; Lightdale, Charles; Montgomery, Elizabeth; Odze, Robert; Tokar, Jeffrey; Kochman, Michael

    2015-12-01

    Enhanced imaging technologies such as narrow band imaging, flexible spectral imaging color enhancement, i-Scan, confocal laser endomicroscopy, and optical coherence tomography are readily available for use by endoscopists in routine clinical practice. In November 2014, the American Gastroenterological Association's Center for GI Innovation and Technology conducted a 2-day workshop to discuss endoscopic image enhancement technologies, focusing on their role in 2 specific clinical conditions (colon polyps and Barrett's esophagus) and on issues relating to training and implementation of these technologies (white papers). Although the majority of the studies that use enhanced imaging technologies have been positive, these techniques ideally need to be validated in larger cohorts and in community centers. As it stands today, detailed endoscopic examination with high-definition white-light endoscopy and random 4-quadrant biopsy remains the standard of care. However, the workshop panelists agreed that in the hands of endoscopists who have met the preservation and incorporation of valuable endoscopic innovation thresholds (diagnostic accuracy) with enhanced imaging techniques (specific technologies), use of the technique in Barrett's esophagus patients is appropriate. PMID:26462567

  19. Advancing Cardiovascular, Neurovascular, and Renal Magnetic Resonance Imaging in Small Rodents Using Cryogenic Radiofrequency Coil Technology

    PubMed Central

    Niendorf, Thoralf; Pohlmann, Andreas; Reimann, Henning M.; Waiczies, Helmar; Peper, Eva; Huelnhagen, Till; Seeliger, Erdmann; Schreiber, Adrian; Kettritz, Ralph; Strobel, Klaus; Ku, Min-Chi; Waiczies, Sonia

    2015-01-01

    Research in pathologies of the brain, heart and kidney have gained immensely from the plethora of studies that have helped shape new methods in magnetic resonance (MR) for characterizing preclinical disease models. Methodical probing into preclinical animal models by MR is invaluable since it allows a careful interpretation and extrapolation of data derived from these models to human disease. In this review we will focus on the applications of cryogenic radiofrequency (RF) coils in small animal MR as a means of boosting image quality (e.g., by supporting MR microscopy) and making data acquisition more efficient (e.g., by reducing measuring time); both being important constituents for thorough investigational studies on animal models of disease. This review attempts to make the (bio)medical imaging, molecular medicine, and pharmaceutical communities aware of this productive ferment and its outstanding significance for anatomical and functional MR in small rodents. The goal is to inspire a more intense interdisciplinary collaboration across the fields to further advance and progress non-invasive MR methods that ultimately support thorough (patho)physiological characterization of animal disease models. In this review, current and potential future applications for the RF coil technology in cardiovascular, neurovascular, and renal disease will be discussed. PMID:26617515

  20. Advances in Bio-Optical Imaging for the Diagnosis of Early Oral Cancer

    PubMed Central

    Olivo, Malini; Bhuvaneswari, Ramaswamy; Keogh, Ivan

    2011-01-01

    Oral cancer is among the most common malignancies worldwide, therefore early detection and treatment is imperative. The 5-year survival rate has remained at a dismal 50% for the past several decades. The main reason for the poor survival rate is the fact that most of the oral cancers, despite the general accessibility of the oral cavity, are not diagnosed until the advanced stage. Early detection of the oral tumors and its precursor lesions may be the most effective means to improve clinical outcome and cure most patients. One of the emerging technologies is the use of non-invasive in vivo tissue imaging to capture the molecular changes at high-resolution to improve the detection capability of early stage disease. This review will discuss the use of optical probes and highlight the role of optical imaging such as autofluorescence, fluorescence diagnosis (FD), laser confocal endomicroscopy (LCE), surface enhanced Raman spectroscopy (SERS), optical coherence tomography (OCT) and confocal reflectance microscopy (CRM) in early oral cancer detection. FD is a promising method to differentiate cancerous lesions from benign, thus helping in the determination of adequate resolution of surgical resection margin. LCE offers in vivo cellular imaging of tissue structures from surface to subsurface layers and has demonstrated the potential to be used as a minimally invasive optical biopsy technique for early diagnosis of oral cancer lesions. SERS was able to differentiate between normal and oral cancer patients based on the spectra acquired from saliva of patients. OCT has been used to visualize the detailed histological features of the oral lesions with an imaging depth down to 2–3 mm. CRM is an optical tool to noninvasively image tissue with near histological resolution. These comprehensive diagnostic modalities can also be used to define surgical margin and to provide a direct assessment of the therapeutic effectiveness. PMID:24310585

  1. Advances in bio-optical imaging for the diagnosis of early oral cancer.

    PubMed

    Olivo, Malini; Bhuvaneswari, Ramaswamy; Keogh, Ivan

    2011-01-01

    Oral cancer is among the most common malignancies worldwide, therefore early detection and treatment is imperative. The 5-year survival rate has remained at a dismal 50% for the past several decades. The main reason for the poor survival rate is the fact that most of the oral cancers, despite the general accessibility of the oral cavity, are not diagnosed until the advanced stage. Early detection of the oral tumors and its precursor lesions may be the most effective means to improve clinical outcome and cure most patients. One of the emerging technologies is the use of non-invasive in vivo tissue imaging to capture the molecular changes at high-resolution to improve the detection capability of early stage disease. This review will discuss the use of optical probes and highlight the role of optical imaging such as autofluorescence, fluorescence diagnosis (FD), laser confocal endomicroscopy (LCE), surface enhanced Raman spectroscopy (SERS), optical coherence tomography (OCT) and confocal reflectance microscopy (CRM) in early oral cancer detection. FD is a promising method to differentiate cancerous lesions from benign, thus helping in the determination of adequate resolution of surgical resection margin. LCE offers in vivo cellular imaging of tissue structures from surface to subsurface layers and has demonstrated the potential to be used as a minimally invasive optical biopsy technique for early diagnosis of oral cancer lesions. SERS was able to differentiate between normal and oral cancer patients based on the spectra acquired from saliva of patients. OCT has been used to visualize the detailed histological features of the oral lesions with an imaging depth down to 2-3 mm. CRM is an optical tool to noninvasively image tissue with near histological resolution. These comprehensive diagnostic modalities can also be used to define surgical margin and to provide a direct assessment of the therapeutic effectiveness. PMID:24310585

  2. Recent advances in rapid and non-destructive assessment of meat quality using hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Tao, Feifei; Ngadi, Michael

    2016-05-01

    Meat is an important food item in human diet. Its production and consumption has greatly increased in the last decades with the development of economies and improvement of peoples' living standards. However, most of the traditional methods for evaluation of meat quality are time-consuming, laborious, inconsistent and destructive to samples, which make them not appropriate for a fast-paced production and processing environment. Development of innovative and non-destructive optical sensing techniques to facilitate simple, fast, and accurate evaluation of quality are attracting increasing attention in the food industry. Hyperspectral imaging is one of the promising techniques. It integrates the combined merits of imaging and spectroscopic techniques. This paper provides a comprehensive review on recent advances in evaluation of the important quality attributes of meat including color, marbling, tenderness, pH, water holding capacity, and also chemical composition attributes such as moisture content, protein content and fat content in pork, beef and lamb. In addition, the future potential applications and trends of hyperspectral imaging are also discussed in this paper.

  3. Wild-Type Transthyretin Cardiac Amyloidosis: Novel Insights From Advanced Imaging.

    PubMed

    Narotsky, David L; Castano, Adam; Weinsaft, Jonathan W; Bokhari, Sabahat; Maurer, Mathew S

    2016-09-01

    Amyloidosis is caused by extracellular deposition of abnormal protein fibrils, resulting in destruction of tissue architecture and impairment of organ function. The most common forms of systemic amyloidosis are light-chain and transthyretin-related (ATTR). ATTR can result from an autosomal dominant hereditary transmission of mutated genes in the transthyretin or from a wild-type form of disease (ATTRwt), previously known as senile cardiac amyloidosis. With the aging of the worldwide population, ATTRwt will emerge as the most common type of cardiac amyloidosis that clinicians encounter. Diagnosis of systemic amyloidosis is often delayed, either because of the false assumption that it is a rare disease, or because of misdiagnosis as a result of mistaking it with other conditions. Clinicians must integrate clinical clues from history, physical examination, and common diagnostic tests to raise suspicion for ATTRwt. The historical gold standard for diagnosis of cardiac amyloid is endomyocardial biopsy analysis with pathological distinction of precursor protein type, but this method often results in delayed diagnosis because of the limited availability of expertise to perform and interpret the endomyocardial biopsy specimen. Emerging noninvasive imaging modalities provide easier, accurate screening for ATTRwt. These modalities include advanced echocardiography, using strain imaging and the myocardial contraction fraction; nuclear scintigraphy, which can differentiate between ATTR and light-chain cardiac amyloid; and cardiac magnetic resonance imaging, using extracellular volume measurement, late gadolinium enhancement, and distinct T1 mapping. These novel approaches reveal insights into the prevalence, clinical course, morphological effects, and prognosis of ATTRwt. PMID:27568874

  4. Body image in Brazil: recent advances in the state of knowledge and methodological issues

    PubMed Central

    Laus, Maria Fernanda; Kakeshita, Idalina Shiraishi; Costa, Telma Maria Braga; Ferreira, Maria Elisa Caputo; Fortes, Leonardo de Sousa; Almeida, Sebastião Sousa

    2014-01-01

    OBJECTIVE To analyze Brazilian literature on body image and the theoretical and methodological advances that have been made. METHODS A detailed review was undertaken of the Brazilian literature on body image, selecting published articles, dissertations and theses from the SciELO, SCOPUS, LILACS and PubMed databases and the CAPES thesis database. Google Scholar was also used. There was no start date for the search, which used the following search terms: “body image” AND “Brazil” AND “scale(s)”; “body image” AND “Brazil” AND “questionnaire(s)”; “body image” AND “Brazil” AND “instrument(s)”; “body image” limited to Brazil and “body image”. RESULTS The majority of measures available were intended to be used in college students, with half of them evaluating satisfaction/dissatisfaction with the body. Females and adolescents of both sexes were the most studied population. There has been a significant increase in the number of available instruments. Nevertheless, numerous published studies have used non-validated instruments, with much confusion in the use of the appropriate terms (e.g., perception, dissatisfaction, distortion). CONCLUSIONS Much more is needed to understand body image within the Brazilian population, especially in terms of evaluating different age groups and diversifying the components/dimensions assessed. However, interest in this theme is increasing, and important steps have been taken in a short space of time. PMID:24897056

  5. Advanced Tie Feature Matching for the Registration of Mobile Mapping Imaging Data and Aerial Imagery

    NASA Astrophysics Data System (ADS)

    Jende, P.; Peter, M.; Gerke, M.; Vosselman, G.

    2016-06-01

    Mobile Mapping's ability to acquire high-resolution ground data is opposing unreliable localisation capabilities of satellite-based positioning systems in urban areas. Buildings shape canyons impeding a direct line-of-sight to navigation satellites resulting in a deficiency to accurately estimate the mobile platform's position. Consequently, acquired data products' positioning quality is considerably diminished. This issue has been widely addressed in the literature and research projects. However, a consistent compliance of sub-decimetre accuracy as well as a correction of errors in height remain unsolved. We propose a novel approach to enhance Mobile Mapping (MM) image orientation based on the utilisation of highly accurate orientation parameters derived from aerial imagery. In addition to that, the diminished exterior orientation parameters of the MM platform will be utilised as they enable the application of accurate matching techniques needed to derive reliable tie information. This tie information will then be used within an adjustment solution to correct affected MM data. This paper presents an advanced feature matching procedure as a prerequisite to the aforementioned orientation update. MM data is ortho-projected to gain a higher resemblance to aerial nadir data simplifying the images' geometry for matching. By utilising MM exterior orientation parameters, search windows may be used in conjunction with a selective keypoint detection and template matching. Originating from different sensor systems, however, difficulties arise with respect to changes in illumination, radiometry and a different original perspective. To respond to these challenges for feature detection, the procedure relies on detecting keypoints in only one image. Initial tests indicate a considerable improvement in comparison to classic detector/descriptor approaches in this particular matching scenario. This method leads to a significant reduction of outliers due to the limited availability

  6. Advances in hyperspectral imaging technologies for multichannel fiber sensing

    NASA Astrophysics Data System (ADS)

    Zakrzewski, Jay; Didona, Kevin

    2009-05-01

    A spectrograph's design, e.g. the opto-mechanical system beginning at the entrance slit, and ending at the back focal plane position, directly impacts system level performance parameters including the height of the useable aperture, spatial and spectral resolving power, optical throughput efficiency, and dynamic range. The efficiency and integrity of both spatial and spectral input image reproduction within the entire back focal plane area is an often overlooked parameter leading to unnecessary acceptance of sacrificed system level performance. Examples of input images include the slit apertured area of a scene captured by a camera lens, a single optical fiber core located within the entrance aperture area, or a linear array of optical fiber cores stacked along the spatial height of the entrance aperture area. This study evaluates the spectral and spatial imaging performance of several aberration corrected high reciprocal dispersion retro-reflective concentric, as well as aberration corrected Offner imaging spectrographs which produce minimal degradation over a large focal plane. Ray trace images and pixilated area maps demonstrating spatial and spectral reproduction accuracy over the entire back focal plane are presented.

  7. Advances in engineering of high contrast CARS imaging endoscopes

    PubMed Central

    Deladurantaye, Pascal; Paquet, Alex; Paré, Claude; Zheng, Huimin; Doucet, Michel; Gay, David; Poirier, Michel; Cormier, Jean-François; Mermut, Ozzy; Wilson, Brian C.; Seibel, Eric J.

    2014-01-01

    The translation of CARS imaging towards real time, high resolution, chemically selective endoscopic tissue imaging applications is limited by a lack of sensitivity in CARS scanning probes sufficiently small for incorporation into endoscopes. We have developed here a custom double clad fiber (DCF)-based CARS probe which is designed to suppress the contaminant Four-Wave-Mixing (FWM) background generated within the fiber and integrated it into a fiber based scanning probe head of a few millimeters in diameter. The DCF includes a large mode area (LMA) core as a first means of reducing FWM generation by ~3 dB compared to commercially available, step-index single mode fibers. A micro-fabricated miniature optical filter (MOF) was grown on the distal end of the DCF to block the remaining FWM background from reaching the sample. The resulting probe was used to demonstrate high contrast images of polystyrene beads in the forward-CARS configuration with > 10 dB suppression of the FWM background. In epi-CARS geometry, images exhibited lower contrast due to the leakage of MOF-reflected FWM from the fiber core. Improvements concepts for the fiber probe are proposed for high contrast epi-CARS imaging to enable endoscopic implementation in clinical tissue assessment contexts, particularly in the early detection of endoluminal cancers and in tumor margin assessment. PMID:25401538

  8. Calibration method for video and radiation imagers

    DOEpatents

    Cunningham, Mark F.; Fabris, Lorenzo; Gee, Timothy F.; Goddard, Jr., James S.; Karnowski, Thomas P.; Ziock, Klaus-peter

    2011-07-05

    The relationship between the high energy radiation imager pixel (HERIP) coordinate and real-world x-coordinate is determined by a least square fit between the HERIP x-coordinate and the measured real-world x-coordinates of calibration markers that emit high energy radiation imager and reflect visible light. Upon calibration, a high energy radiation imager pixel position may be determined based on a real-world coordinate of a moving vehicle. Further, a scale parameter for said high energy radiation imager may be determined based on the real-world coordinate. The scale parameter depends on the y-coordinate of the moving vehicle as provided by a visible light camera. The high energy radiation imager may be employed to detect radiation from moving vehicles in multiple lanes, which correspondingly have different distances to the high energy radiation imager.

  9. The new kid on the block for advanced imaging in Barrett's esophagus: a review of volumetric laser endomicroscopy.

    PubMed

    Trindade, Arvind J; Smith, Michael S; Pleskow, Douglas K

    2016-05-01

    Advanced imaging techniques used in the management of Barrett's esophagus include electronic imaging enhancement (e.g. narrow band imaging, flexible spectral imaging color enhancement, and i-Scan), chromoendoscopy, and confocal laser endomicroscopy. Electronic imaging enhancement is used frequently in daily practice, but use of the other advanced technologies is not routine. High-definition white light endoscopy and random four quadrant biopsy remain the standard of care for evaluation of Barrett's esophagus; this is largely due to the value of advanced imaging technologies not having been validated in large studies or in everyday practice. A new advanced imaging technology called volumetric laser endomicroscopy is commercially available in the United States. Its ease of use and rapid acquisition of high-resolution images make this technology very promising for widespread application. In this article we review the technology and its potential for advanced imaging in Barrett's esophagus. PMID:27134668

  10. The new kid on the block for advanced imaging in Barrett’s esophagus: a review of volumetric laser endomicroscopy

    PubMed Central

    Trindade, Arvind J.; Smith, Michael S.; Pleskow, Douglas K.

    2016-01-01

    Advanced imaging techniques used in the management of Barrett’s esophagus include electronic imaging enhancement (e.g. narrow band imaging, flexible spectral imaging color enhancement, and i-Scan), chromoendoscopy, and confocal laser endomicroscopy. Electronic imaging enhancement is used frequently in daily practice, but use of the other advanced technologies is not routine. High-definition white light endoscopy and random four quadrant biopsy remain the standard of care for evaluation of Barrett’s esophagus; this is largely due to the value of advanced imaging technologies not having been validated in large studies or in everyday practice. A new advanced imaging technology called volumetric laser endomicroscopy is commercially available in the United States. Its ease of use and rapid acquisition of high-resolution images make this technology very promising for widespread application. In this article we review the technology and its potential for advanced imaging in Barrett’s esophagus. PMID:27134668

  11. Recent Advances in Cardiac Computed Tomography: Dual Energy, Spectral and Molecular CT Imaging

    PubMed Central

    Danad, Ibrahim; Fayad, Zahi A.; Willemink, Martin J.; Min, James K.

    2015-01-01

    Computed tomography (CT) evolved into a powerful diagnostic tool and it is impossible to imagine current clinical practice without CT imaging. Due to its widespread availability, ease of clinical application, superb sensitivity for detection of CAD, and non-invasive nature, CT has become a valuable tool within the armamentarium of the cardiologist. In the last few years, numerous technological advances in CT have occurred—including dual energy CT (DECT), spectral CT and CT-based molecular imaging. By harnessing the advances in technology, cardiac CT has advanced beyond the mere evaluation of coronary stenosis to an imaging modality tool that permits accurate plaque characterization, assessment of myocardial perfusion and even probing of molecular processes that are involved in coronary atherosclerosis. Novel innovations in CT contrast agents and pre-clinical spectral CT devices have paved the way for CT-based molecular imaging. PMID:26068288

  12. Recent advances in computational structural reliability analysis methods

    NASA Technical Reports Server (NTRS)

    Thacker, Ben H.; Wu, Y.-T.; Millwater, Harry R.; Torng, Tony Y.; Riha, David S.

    1993-01-01

    The goal of structural reliability analysis is to determine the probability that the structure will adequately perform its intended function when operating under the given environmental conditions. Thus, the notion of reliability admits the possibility of failure. Given the fact that many different modes of failure are usually possible, achievement of this goal is a formidable task, especially for large, complex structural systems. The traditional (deterministic) design methodology attempts to assure reliability by the application of safety factors and conservative assumptions. However, the safety factor approach lacks a quantitative basis in that the level of reliability is never known and usually results in overly conservative designs because of compounding conservatisms. Furthermore, problem parameters that control the reliability are not identified, nor their importance evaluated. A summary of recent advances in computational structural reliability assessment is presented. A significant level of activity in the research and development community was seen recently, much of which was directed towards the prediction of failure probabilities for single mode failures. The focus is to present some early results and demonstrations of advanced reliability methods applied to structural system problems. This includes structures that can fail as a result of multiple component failures (e.g., a redundant truss), or structural components that may fail due to multiple interacting failure modes (e.g., excessive deflection, resonate vibration, or creep rupture). From these results, some observations and recommendations are made with regard to future research needs.

  13. Advanced superposition methods for high speed turbopump vibration analysis

    NASA Technical Reports Server (NTRS)

    Nielson, C. E.; Campany, A. D.

    1981-01-01

    The small, high pressure Mark 48 liquid hydrogen turbopump was analyzed and dynamically tested to determine the cause of high speed vibration at an operating speed of 92,400 rpm. This approaches the design point operating speed of 95,000 rpm. The initial dynamic analysis in the design stage and subsequent further analysis of the rotor only dynamics failed to predict the vibration characteristics found during testing. An advanced procedure for dynamics analysis was used in this investigation. The procedure involves developing accurate dynamic models of the rotor assembly and casing assembly by finite element analysis. The dynamically instrumented assemblies are independently rap tested to verify the analytical models. The verified models are then combined by modal superposition techniques to develop a completed turbopump model where dynamic characteristics are determined. The results of the dynamic testing and analysis obtained are presented and methods of moving the high speed vibration characteristics to speeds above the operating range are recommended. Recommendations for use of these advanced dynamic analysis procedures during initial design phases are given.

  14. Exploration of Advanced Probabilistic and Stochastic Design Methods

    NASA Technical Reports Server (NTRS)

    Mavris, Dimitri N.

    2003-01-01

    The primary objective of the three year research effort was to explore advanced, non-deterministic aerospace system design methods that may have relevance to designers and analysts. The research pursued emerging areas in design methodology and leverage current fundamental research in the area of design decision-making, probabilistic modeling, and optimization. The specific focus of the three year investigation was oriented toward methods to identify and analyze emerging aircraft technologies in a consistent and complete manner, and to explore means to make optimal decisions based on this knowledge in a probabilistic environment. The research efforts were classified into two main areas. First, Task A of the grant has had the objective of conducting research into the relative merits of possible approaches that account for both multiple criteria and uncertainty in design decision-making. In particular, in the final year of research, the focus was on the comparison and contrasting between three methods researched. Specifically, these three are the Joint Probabilistic Decision-Making (JPDM) technique, Physical Programming, and Dempster-Shafer (D-S) theory. The next element of the research, as contained in Task B, was focused upon exploration of the Technology Identification, Evaluation, and Selection (TIES) methodology developed at ASDL, especially with regards to identification of research needs in the baseline method through implementation exercises. The end result of Task B was the documentation of the evolution of the method with time and a technology transfer to the sponsor regarding the method, such that an initial capability for execution could be obtained by the sponsor. Specifically, the results of year 3 efforts were the creation of a detailed tutorial for implementing the TIES method. Within the tutorial package, templates and detailed examples were created for learning and understanding the details of each step. For both research tasks, sample files and

  15. Advanced numerical methods in mesh generation and mesh adaptation

    SciTech Connect

    Lipnikov, Konstantine; Danilov, A; Vassilevski, Y; Agonzal, A

    2010-01-01

    Numerical solution of partial differential equations requires appropriate meshes, efficient solvers and robust and reliable error estimates. Generation of high-quality meshes for complex engineering models is a non-trivial task. This task is made more difficult when the mesh has to be adapted to a problem solution. This article is focused on a synergistic approach to the mesh generation and mesh adaptation, where best properties of various mesh generation methods are combined to build efficiently simplicial meshes. First, the advancing front technique (AFT) is combined with the incremental Delaunay triangulation (DT) to build an initial mesh. Second, the metric-based mesh adaptation (MBA) method is employed to improve quality of the generated mesh and/or to adapt it to a problem solution. We demonstrate with numerical experiments that combination of all three methods is required for robust meshing of complex engineering models. The key to successful mesh generation is the high-quality of the triangles in the initial front. We use a black-box technique to improve surface meshes exported from an unattainable CAD system. The initial surface mesh is refined into a shape-regular triangulation which approximates the boundary with the same accuracy as the CAD mesh. The DT method adds robustness to the AFT. The resulting mesh is topologically correct but may contain a few slivers. The MBA uses seven local operations to modify the mesh topology. It improves significantly the mesh quality. The MBA method is also used to adapt the mesh to a problem solution to minimize computational resources required for solving the problem. The MBA has a solid theoretical background. In the first two experiments, we consider the convection-diffusion and elasticity problems. We demonstrate the optimal reduction rate of the discretization error on a sequence of adaptive strongly anisotropic meshes. The key element of the MBA method is construction of a tensor metric from hierarchical edge

  16. Image preprocessing method for particle image velocimetry (PIV) image interrogation near a fluid-solid surface

    NASA Astrophysics Data System (ADS)

    Zhu, Yiding; Jia, Lichao; Bai, Ye; Yuan, Huijing; Lee, Cunbiao

    2014-11-01

    Accurate particle image velocimetry (PIV) measurements near the moving wall are a great challenge. The problem is compounded by the very large in-plane displacement on PIV images commonly encountered in measurements of the high speed flow. An improved image preprocessing method is presented in this paper. A wall detection technique is used first to qualify the wall position and the movement of the solid body. Virtual particle images are imposed in the solid region, of which the displacements are evaluated by the body movement. The estimation near the wall is then smoothed by data from both sides of the shear layer to reduce the large random uncertainties. Interrogations in the following iterative steps then converge to the correct results to provide accurate predictions for particle tracking velocimetries (PTV). Significant improvement is seen in Monte Carlo simulations and experimental tests such as measurements near a flapping flag or compressor plates. The algorithm also successfully extracted the small flow structures of the 2nd mode wave in the hypersonic boundary layer from PIV images with low signal-noise-ratios(SNR) when the traditional method was not successful.

  17. Advances in MR Imaging for Cervical Spondylotic Myelopathy

    PubMed Central

    Ellingson, Benjamin M.; Salamon, Noriko; Holly, Langston T.

    2016-01-01

    Cervical spondylosis is the most common cause of nontraumatic spinal cord injury and is the most common cause of spinal cord dysfunction in the elderly. Magnetic resonance imaging (MRI) is an invaluable tool for the diagnosis and assessment of cervical spondylosis due to its sensitivity to soft tissues; however, standard MR techniques have some limitations in predicting neurological impairment and response to intervention. Therefore, there is great interest in novel MR techniques including diffusion tensor imaging (DTI) and MR spectroscopy (MRS) as imaging biomarkers for neurological impairment and tools for understanding spinal cord physiology. This review outlines the pathogenesis of cervical spondylotic myelopathy (CSM), the correlative abnormalities observed on standard MRI, the biological implications and current status of DTI and MRS as clinical tools, and future directions of MR technology in the management of CSM patients. PMID:23917647

  18. A new assessment method for image fusion quality

    NASA Astrophysics Data System (ADS)

    Li, Liu; Jiang, Wanying; Li, Jing; Yuchi, Ming; Ding, Mingyue; Zhang, Xuming

    2013-03-01

    Image fusion quality assessment plays a critically important role in the field of medical imaging. To evaluate image fusion quality effectively, a lot of assessment methods have been proposed. Examples include mutual information (MI), root mean square error (RMSE), and universal image quality index (UIQI). These image fusion assessment methods could not reflect the human visual inspection effectively. To address this problem, we have proposed a novel image fusion assessment method which combines the nonsubsampled contourlet transform (NSCT) with the regional mutual information in this paper. In this proposed method, the source medical images are firstly decomposed into different levels by the NSCT. Then the maximum NSCT coefficients of the decomposed directional images at each level are obtained to compute the regional mutual information (RMI). Finally, multi-channel RMI is computed by the weighted sum of the obtained RMI values at the various levels of NSCT. The advantage of the proposed method lies in the fact that the NSCT can represent image information using multidirections and multi-scales and therefore it conforms to the multi-channel characteristic of human visual system, leading to its outstanding image assessment performance. The experimental results using CT and MRI images demonstrate that the proposed assessment method outperforms such assessment methods as MI and UIQI based measure in evaluating image fusion quality and it can provide consistent results with human visual assessment.

  19. An image fusion method based region segmentation and complex wavelets

    NASA Astrophysics Data System (ADS)

    Zhang, Junju; Yuan, Yihui; Chang, Benkang; Han, Yiyong; Liu, Lei; Qiu, Yafeng

    2009-07-01

    A fusion algorithm for infrared and visible light images based on region segmentation and the dual-tree complex wavelet transform. Before image segmentation, morphological top-hat filtering is firstly performed on the IR image and visual images respectively and the details of the luminous area are eliminated. Morphological bottom-hat filtering is then performed on the two kinds of images respectively and the details of the dark area are eliminated. Make the top-hat filtered image subtract the bottom-hat filtered image and obtain the enhanced images. Then the threshold method is used to segment the enhanced images. After image segmentation, the DTCWT coefficients from different regions are merged separately. Finally the fused image is obtained by performing inverse DTCWT. The evaluation results show the validity of the presented algorithm.

  20. Manganese enhanced magnetic resonance imaging (MEMRI): a powerful new imaging method to study tinnitus.

    PubMed

    Cacace, Anthony T; Brozoski, Tom; Berkowitz, Bruce; Bauer, Carol; Odintsov, Boris; Bergkvist, Magnus; Castracane, James; Zhang, Jinsheng; Holt, Avril Genene

    2014-05-01

    Manganese enhanced magnetic resonance imaging (MEMRI) is a method used primarily in basic science experiments to advance the understanding of information processing in central nervous system pathways. With this mechanistic approach, manganese (Mn(2+)) acts as a calcium surrogate, whereby voltage-gated calcium channels allow for activity driven entry of Mn(2+) into neurons. The detection and quantification of neuronal activity via Mn(2+) accumulation is facilitated by "hemodynamic-independent contrast" using high resolution MRI scans. This review emphasizes initial efforts to-date in the development and application of MEMRI for evaluating tinnitus (the perception of sound in the absence of overt acoustic stimulation). Perspectives from leaders in the field highlight MEMRI related studies by comparing and contrasting this technique when tinnitus is induced by high-level noise exposure and salicylate administration. Together, these studies underscore the considerable potential of MEMRI for advancing the field of auditory neuroscience in general and tinnitus research in particular. Because of the technical and functional gaps that are filled by this method and the prospect that human studies are on the near horizon, MEMRI should be of considerable interest to the auditory research community. This article is part of a Special Issue entitled . PMID:24583078

  1. Advanced InSAR imaging for dune mapping

    NASA Astrophysics Data System (ADS)

    Havivi, Shiran; August, Yitzhak; Blumberg, Dan G.; Rotman, Stanley R.

    2015-04-01

    Aeolian morphologies are formed in the presence of sufficient wind energy and available particles. These processes occur naturally or are further enhanced or reduced by human intervention. The dimensions of change are dependent primarily on the wind energy and surface properties. Since the 1970's, remote sensing imagery both optical and radar, are used for documentation and interpretation of the geomorphologic changes of sand dunes. Remote sensing studies of Aeolian morphologies is mostly useful to document major changes, yet, subtle changes, occurring in a period of days or months in scales of centimeters, are very difficult to detect in imagery. Interferometric Synthetic Aperture Radar (InSAR) is an imaging technique for measuring Earth's surface topography and deformation. InSAR images are produced by measuring the radar phase difference between two separated antennas that view the same surface area. Classical InSAR is based on high coherence between two images or more. The output (interferogram) can show subtle changes with an accuracy of several millimeters to centimeters. Very little work has been done on measuring or identifying the changes in dunes using InSAR. The reason is that dunes tend to be less coherent than firm, stable, surfaces. This research aims to demonstrate how interferometric decorrelation, or, coherence change detection, can be used for identifying dune instability. We hypothesize and demonstrate that the loss of radar coherence over time on dunes can be used as an indication of the dune's instability. When SAR images are acquired at sufficiently close intervals one can measure the time it takes to lose coherence and associate this time with geomorphic stability. To achieve our goals, the Nitzanim coastal dunes along the Mediterranean, 40 km south of Tel-Aviv, Israel, were chosen as a case study. The dunes in this area are of varying levels of stability and vegetation cover and have been monitored meteorologically, geomorphologically and

  2. System and method for image mapping and visual attention

    NASA Technical Reports Server (NTRS)

    Peters, II, Richard A. (Inventor)

    2010-01-01

    A method is described for mapping dense sensory data to a Sensory Ego Sphere (SES). Methods are also described for finding and ranking areas of interest in the images that form a complete visual scene on an SES. Further, attentional processing of image data is best done by performing attentional processing on individual full-size images from the image sequence, mapping each attentional location to the nearest node, and then summing attentional locations at each node.

  3. System and method for image mapping and visual attention

    NASA Technical Reports Server (NTRS)

    Peters, II, Richard A. (Inventor)

    2011-01-01

    A method is described for mapping dense sensory data to a Sensory Ego Sphere (SES). Methods are also described for finding and ranking areas of interest in the images that form a complete visual scene on an SES. Further, attentional processing of image data is best done by performing attentional processing on individual full-size images from the image sequence, mapping each attentional location to the nearest node, and then summing all attentional locations at each node.

  4. MR image denoising method for brain surface 3D modeling

    NASA Astrophysics Data System (ADS)

    Zhao, De-xin; Liu, Peng-jie; Zhang, De-gan

    2014-11-01

    Three-dimensional (3D) modeling of medical images is a critical part of surgical simulation. In this paper, we focus on the magnetic resonance (MR) images denoising for brain modeling reconstruction, and exploit a practical solution. We attempt to remove the noise existing in the MR imaging signal and preserve the image characteristics. A wavelet-based adaptive curve shrinkage function is presented in spherical coordinates system. The comparative experiments show that the denoising method can preserve better image details and enhance the coefficients of contours. Using these denoised images, the brain 3D visualization is given through surface triangle mesh model, which demonstrates the effectiveness of the proposed method.

  5. Advancing MODFLOW Applying the Derived Vector Space Method

    NASA Astrophysics Data System (ADS)

    Herrera, G. S.; Herrera, I.; Lemus-García, M.; Hernandez-Garcia, G. D.

    2015-12-01

    The most effective domain decomposition methods (DDM) are non-overlapping DDMs. Recently a new approach, the DVS-framework, based on an innovative discretization method that uses a non-overlapping system of nodes (the derived-nodes), was introduced and developed by I. Herrera et al. [1, 2]. Using the DVS-approach a group of four algorithms, referred to as the 'DVS-algorithms', which fulfill the DDM-paradigm (i.e. the solution of global problems is obtained by resolution of local problems exclusively) has been derived. Such procedures are applicable to any boundary-value problem, or system of such equations, for which a standard discretization method is available and then software with a high degree of parallelization can be constructed. In a parallel talk, in this AGU Fall Meeting, Ismael Herrera will introduce the general DVS methodology. The application of the DVS-algorithms has been demonstrated in the solution of several boundary values problems of interest in Geophysics. Numerical examples for a single-equation, for the cases of symmetric, non-symmetric and indefinite problems were demonstrated before [1,2]. For these problems DVS-algorithms exhibited significantly improved numerical performance with respect to standard versions of DDM algorithms. In view of these results our research group is in the process of applying the DVS method to a widely used simulator for the first time, here we present the advances of the application of this method for the parallelization of MODFLOW. Efficiency results for a group of tests will be presented. References [1] I. Herrera, L.M. de la Cruz and A. Rosas-Medina. Non overlapping discretization methods for partial differential equations, Numer Meth Part D E, (2013). [2] Herrera, I., & Contreras Iván "An Innovative Tool for Effectively Applying Highly Parallelized Software To Problems of Elasticity". Geofísica Internacional, 2015 (In press)

  6. Advancements in MR imaging of the prostate: from diagnosis to interventions.

    PubMed

    Bonekamp, David; Jacobs, Michael A; El-Khouli, Riham; Stoianovici, Dan; Macura, Katarzyna J

    2011-01-01

    Prostate cancer is the most frequently diagnosed cancer in males and the second leading cause of cancer-related death in men. Assessment of prostate cancer can be divided into detection, localization, and staging; accurate assessment is a prerequisite for optimal clinical management and therapy selection. Magnetic resonance (MR) imaging has been shown to be of particular help in localization and staging of prostate cancer. Traditional prostate MR imaging has been based on morphologic imaging with standard T1-weighted and T2-weighted sequences, which has limited accuracy. Recent advances include additional functional and physiologic MR imaging techniques (diffusion-weighted imaging, MR spectroscopy, and perfusion imaging), which allow extension of the obtainable information beyond anatomic assessment. Multiparametric MR imaging provides the highest accuracy in diagnosis and staging of prostate cancer. In addition, improvements in MR imaging hardware and software (3-T vs 1.5-T imaging) continue to improve spatial and temporal resolution and the signal-to-noise ratio of MR imaging examinations. Another recent advancement in the field is MR imaging guidance for targeted prostate biopsy, which is an alternative to the current standard of transrectal ultrasonography-guided systematic biopsy. PMID:21571651

  7. Study on polarization image methods in turbid medium

    NASA Astrophysics Data System (ADS)

    Fu, Qiang; Mo, Chunhe; Liu, Boyu; Duan, Jin; Zhang, Su; Zhu, Yong

    2014-11-01

    Polarization imaging detection technology in addition to the traditional imaging information, also can get polarization multi-dimensional information, thus improve the probability of target detection and recognition.Image fusion in turbid medium target polarization image research, is helpful to obtain high quality images. Based on visible light wavelength of light wavelength of laser polarization imaging, through the rotation Angle of polaroid get corresponding linear polarized light intensity, respectively to obtain the concentration range from 5% to 10% of turbid medium target stocks of polarization parameters, introduces the processing of image fusion technology, main research on access to the polarization of the image by using different polarization image fusion methods for image processing, discusses several kinds of turbid medium has superior performance of polarization image fusion method, and gives the treatment effect and analysis of data tables. Then use pixel level, feature level and decision level fusion algorithm on three levels of information fusion, DOLP polarization image fusion, the results show that: with the increase of the polarization Angle, polarization image will be more and more fuzzy, quality worse and worse. Than a single fused image contrast of the image be improved obviously, the finally analysis on reasons of the increase the image contrast and polarized light.

  8. Surface Imaging Skin Friction Instrument and Method

    NASA Technical Reports Server (NTRS)

    Brown, James L. (Inventor); Naughton, Jonathan W. (Inventor)

    1999-01-01

    A surface imaging skin friction instrument allowing 2D resolution of spatial image by a 2D Hilbert transform and 2D inverse thin-oil film solver, providing an innovation over prior art single point approaches. Incoherent, monochromatic light source can be used. The invention provides accurate, easy to use, economical measurement of larger regions of surface shear stress in a single test.

  9. Method for improving visualization of infrared images

    NASA Astrophysics Data System (ADS)

    Cimbalista, Mario

    2014-05-01

    Thermography has an extremely important difference from the other visual image converting electronic systems, like XRays or ultrasound: the infrared camera operator usually spend hour after hour with his/her eyes looking only at infrared images, sometimes several intermittent hours a day if not six or more continuous hours. This operational characteristic has a very important impact on yield, precision, errors and misinterpretation of the infrared images contents. Despite a great hardware development over the last fifty years, quality infrared thermography still lacks for a solution for these problems. The human eye physiology has not evolved to see infrared radiation neither the mind-brain has the capability to understand and decode infrared information. Chemical processes inside the human eye and functional cells distributions as well as cognitive-perceptual impact of images plays a crucial role in the perception, detection, and other steps of dealing with infrared images. The system presented here, called ThermoScala and patented in USA solves this problem using a coding process applicable to an original infrared image, generated from any value matrix, from any kind of infrared camera to make it much more suitable for human usage, causing a substantial difference in the way the retina and the brain processes the resultant images. The result obtained is a much less exhaustive way to see, identify and interpret infrared images generated by any infrared camera that uses this conversion process.

  10. Advances in photographic X-ray imaging for solar astronomy

    NASA Technical Reports Server (NTRS)

    Moses, J. Daniel; Schueller, R.; Waljeski, K.; Davis, John M.

    1989-01-01

    The technique of obtaining quantitative data from high resolution soft X-ray photographic images produced by grazing incidence optics was successfully developed to a high degree during the Solar Research Sounding Rocket Program and the S-054 X-Ray Spectrographic Telescope Experiment Program on Skylab. Continued use of soft X-ray photographic imaging in sounding rocket flights of the High Resolution Solar Soft X-Ray Imaging Payload has provided opportunities to further develop these techniques. The developments discussed include: (1) The calibration and use of an inexpensive, commercially available microprocessor controlled drum type film processor for photometric film development; (2) The use of Kodak Technical Pan 2415 film and Kodak SO-253 High Speed Holographic film for improved resolution; and (3) The application of a technique described by Cook, Ewing, and Sutton for determining the film characteristics curves from density histograms of the flight film. Although the superior sensitivity, noise level, and linearity of microchannel plate and CCD detectors attracts the development efforts of many groups working in soft X-ray imaging, the high spatial resolution and dynamic range as well as the reliability and ease of application of photographic media assures the continued use of these techniques in solar X-ray astronomy observations.

  11. Advances in photographic X-ray imaging for solar astronomy

    NASA Technical Reports Server (NTRS)

    Moses, D.; Schueller, R.; Waljeski, K.; Davis, J. M.

    1989-01-01

    The technique of obtaining quantitative data from high resolution soft X-ray photographic images produced by grazing incidence optics was successfully developed to a high degree during the AS&E Solar Research Sounding Rocket Program and the S-054 X-Ray Spectrographic Telescope Experiment Program on Skylab. Continued use of soft X-Ray photographic imaging in sounding rocket flights of the AS&E High Resolution Solar Soft X-Ray Imaging Payload has provided opportunities to further develop these techniques. The developments discussed include: (1) the calibration and use of an inexpensive, commercially available microprocessor controlled drum type film processor for photometric film development, (2) the use of Kodak Technical Pan 2415 film and Kodak SO-253 High Speed Holographic film for improved resolution, and (3) the application of a technique described by Cook, Ewing, and Sutton (1988) for determining the film characteristics curves from density histograms of the flight film. Although the superior sensitivity, noise level, and linearity of microchannel plate and CCD detectors attracts the development efforts of many groups working in soft X-ray imaging, the high spatial resolution and dynamic range as well as the reliability and ease of application of photographic media assures the continued use of these techniques in solar X-ray astronomy observations.

  12. Advanced Computer Image Generation Techniques Exploiting Perceptual Characteristics. Final Report.

    ERIC Educational Resources Information Center

    Stenger, Anthony J.; And Others

    This study suggests and identifies computer image generation (CIG) algorithms for visual simulation that improve the training effectiveness of CIG simulators and identifies areas of basic research in visual perception that are significant for improving CIG technology. The first phase of the project entailed observing three existing CIG simulators.…

  13. Advances in Remote Sensing: Imaging the Earth by Moonlight

    NASA Astrophysics Data System (ADS)

    Solbrig, Jeremy E.; Lee, Thomas E.; Miller, Steven D.

    2013-10-01

    Earth's nighttime environment is being revealed in unprecedented detail by the new satellite-mounted Visible/Infrared Imaging Radiometer Suite (VIIRS). VIIRS' Day/Night Band (DNB) is a highly sensitive broadband visible channel capable of detecting light from cities and other terrestrial emission sources.

  14. Advanced scanners and imaging systems for earth observations. [conferences

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Assessments of present and future sensors and sensor related technology are reported along with a description of user needs and applications. Five areas are outlined: (1) electromechanical scanners, (2) self-scanned solid state sensors, (3) electron beam imagers, (4) sensor related technology, and (5) user applications. Recommendations, charts, system designs, technical approaches, and bibliographies are included for each area.

  15. Fabry-Perot MEMS Accelerometers for Advanced Seismic Imaging

    SciTech Connect

    Chisum, Brad

    2015-05-31

    This report summarizes the technical achievements that occurred over the duration of the project. On November 14th, 2014, Lumedyne Technologies Incorporated was acquired. As a result of the acquisition, the work toward seismic imaging applications was suspended indefinitely. This report captures the progress achieved up to that time.

  16. Perspectives on Imaging: Advanced Applications. Introduction and Overview.

    ERIC Educational Resources Information Center

    Lynch, Clifford A.; Lunin, Lois F.

    1991-01-01

    Provides an overview of six articles that address relationships between electronic imaging technology and information science. Articles discuss the areas of technology; applications in the fields of visual arts, medicine, and textile history; conceptual foundations; and future visions, including work in virtual reality and cyberspace. (LRW)

  17. Advances in Focal Plane Wavefront Estimation for Directly Imaging Exoplanets

    NASA Astrophysics Data System (ADS)

    Eldorado Riggs, A. J.; Kasdin, N. Jeremy; Groff, Tyler Dean

    2015-01-01

    To image cold exoplanets directly in visible light, an instrument on a telescope needs to suppress starlight by about 9 orders of magnitude at small separations from the star. A coronagraph changes the point spread function to create regions of high contrast where exoplanets or disks can be seen. Aberrations on the optics degrade the contrast by several orders of magnitude, so all high-contrast imaging systems incorporate one or more deformable mirrors (DMs) to recover regions of high contrast. With a coronagraphic instrument planned for the WFIRST-AFTA space telescope, there is a pressing need for faster, more robust estimation and control schemes for the DMs. Non-common path aberrations limit conventional phase conjugation schemes to medium star-to-planet contrast ratios of about 1e-6. High-contrast imaging requires estimation and control of both phase and amplitude in the same beam path as the science camera. Field estimation is a challenge since only intensity is measured; the most common approach, including that planned for WFIRST-AFTA, is to use DMs to create diversity, via pairs of small probe shapes, thereby allowing disambiguation of the electric field. Most implementations of DM Diversity require at least five images per electric field estimate and require narrowband measurements. This paper describes our new estimation algorithms that improve the speed (by using fewer images) and bandwidth of focal plane wavefront estimation. For narrowband estimation, we are testing nonlinear, recursive algorithms such as an iterative extended Kalman filter (IEKF) to use three images each iteration and build better, more robust estimates. We are also exploring the use of broadband estimation without the need for narrowband sub-filters and measurements. Here we present simulations of these algorithms with realistic noise and small signals to show how they might perform for WFIRST-AFTA. Once validated in simulations, we will test these algorithms experimentally in

  18. X-ray imaging in advanced studies of ophthalmic diseases

    SciTech Connect

    Antunes, Andrea; Safatle, Angelica M. V.; Barros, Paulo S. M.; Morelhao, Sergio L.

    2006-07-15

    Microscopic characterization of pathological tissues has one major intrinsic limitation, the small sampling areas with respect to the extension of the tissues. Mapping possible changes on vast tissues and correlating them with large ensembles of clinical cases is not a feasible procedure for studying most diseases, as for instance vision loss related diseases and, in particular, the cataract. Although intraocular lens implants are successful treatments, cataract still is a leading public-health issue that grows in importance as the population increases and life expectancy is extended worldwide. In this work we have exploited the radiation-tissue interaction properties of hard x-rays--very low absorption and scattering--to map distinct lesions on entire eye lenses. At the used synchrotron x-ray photon energy of 20 keV (wavelength {lambda}=0.062 nm), scattering and refraction are angular resolved effects. It allows the employed x-ray image technique to efficiently characterize two types of lesions in eye lenses under cataractogenesis: distributions of tiny scattering centers and extended areas of fiber cell compaction. The data collection procedure is relatively fast; allowing dozens of samples to be totally imaged (scattering, refraction, and mass absorption images) in a single day of synchrotron beam time. More than 60 cases of canine cataract, not correlated to specific causes, were investigated in this first application of x-rays to image entire lenses. Cortical opacity cases, or partial opacity, could be related to the presence of calcificated tissues at the cortical areas, clearly visible in the images, whose elemental contents were verified by micro x-ray fluorescence as very rich in calcium. Calcificated tissues were also observed at nuclear areas in some cases of hypermature cataract. Total opacity cases without distinguishable amount of scattering centers consist in 70% of the analyzed cases, where remarkable fissure marks owing to extended areas of fiber

  19. Method for Ultrasonic Imaging and Device for Performing the Method

    NASA Technical Reports Server (NTRS)

    Madaras, Eric I. (Inventor)

    1997-01-01

    A method for ultrasonic imaging of interior structures and flaws in a test specimen with a smooth or irregular contact surfaces, in which an ultrasonic transducer is coupled acoustically to the contact surface via a plurality of ultrasonic wave guides with equal delay times. The wave guides are thin and bendable, so they adapt to variations in the distance between the transducer and different parts of the contact surface by bending more or less. All parts of the irregular contact surface accordingly receive sound waves that are in phase, even when the contact surface is irregular, so a coherent sound wave is infused in the test specimen. The wave guides can be arranged in the form of an ultrasonic brush, with a flat head for coupling to a flat transducer, and free bristles that can be pressed against the test specimen. By bevelling the bristle ends at a suitable angle, shear mode waves can be infused into the test specimen from a longitudinal mode transducer.

  20. Nanoscale Characterization of Mock Explosive Materials Using Advanced Atomic Force Microscopy Methods

    NASA Astrophysics Data System (ADS)

    Xu, Xin; Mares, Jesus; Groven, Lori J.; Son, Steven F.; Reifenberger, Ronald G.; Raman, Arvind

    2015-01-01

    Most explosives are micro- and nanoscale composite material systems consisting of energetic crystals, amorphous particles, binders, and additives whose response to mechanical, thermal, or electromagnetic insults is often controlled by submicrometer-scale heterogeneities and interfaces. Several advanced dynamic atomic force microscopy (AFM) techniques, including phase imaging, force volume mode, and Kelvin probe force microscopy with resonance enhancement for dielectric property mapping, have been used to map the local physical properties of mock explosive materials systems, allowing the identification of submicrometer heterogeneities in electrical and mechanical properties that could lead to the formation of hotspots under electromagnetic or mechanical stimuli. The physical interpretation of the property maps and the methods of image formation are presented. Possible interpretations of the results and future applications to energetic material systems are also discussed.

  1. Some selected quantitative methods of thermal image analysis in Matlab.

    PubMed

    Koprowski, Robert

    2016-05-01

    The paper presents a new algorithm based on some selected automatic quantitative methods for analysing thermal images. It shows the practical implementation of these image analysis methods in Matlab. It enables to perform fully automated and reproducible measurements of selected parameters in thermal images. The paper also shows two examples of the use of the proposed image analysis methods for the area of ​​the skin of a human foot and face. The full source code of the developed application is also provided as an attachment. The main window of the program during dynamic analysis of the foot thermal image. PMID:26556680

  2. A novel de-noising method for B ultrasound images

    NASA Astrophysics Data System (ADS)

    Tian, Da-Yong; Mo, Jia-qing; Yu, Yin-Feng; Lv, Xiao-Yi; Yu, Xiao; Jia, Zhen-Hong

    2015-12-01

    B ultrasound as a kind of ultrasonic imaging, which has become the indispensable diagnosis method in clinical medicine. However, the presence of speckle noise in ultrasound image greatly reduces the image quality and interferes with the accuracy of the diagnosis. Therefore, how to construct a method which can eliminate the speckle noise effectively, and at the same time keep the image details effectively is the research target of the current ultrasonic image de-noising. This paper is intended to remove the inherent speckle noise of B ultrasound image. The novel algorithm proposed is based on both wavelet transformation of B ultrasound images and data fusion of B ultrasound images, with a smaller mean squared error (MSE) and greater signal to noise ratio (SNR) compared with other algorithms. The results of this study can effectively remove speckle noise from B ultrasound images, and can well preserved the details and edge information which will produce better visual effects.

  3. A coming of age: advanced imaging technologies for characterising the developing mouse.

    PubMed

    Norris, Francesca C; Wong, Michael D; Greene, Nicholas D E; Scambler, Peter J; Weaver, Tom; Weninger, Wolfgang J; Mohun, Timothy J; Henkelman, R Mark; Lythgoe, Mark F

    2013-12-01

    The immense challenge of annotating the entire mouse genome has stimulated the development of cutting-edge imaging technologies in a drive for novel information. These techniques promise to improve understanding of the genes involved in embryo development, at least one third of which have been shown to be essential. Aligning advanced imaging technologies with biological needs will be fundamental to maximising the number of phenotypes discovered in the coming years. International efforts are underway to meet this challenge through an integrated and sophisticated approach to embryo phenotyping. We review rapid advances made in the imaging field over the past decade and provide a comprehensive examination of the relative merits of current and emerging techniques. The aim of this review is to provide a guide to state-of-the-art embryo imaging that will enable informed decisions as to which technology to use and fuel conversations between expert imaging laboratories, researchers, and core mouse production facilities. PMID:24035368

  4. Multifunctional nanomaterials for advanced molecular imaging and cancer therapy

    NASA Astrophysics Data System (ADS)

    Subramaniam, Prasad

    Nanotechnology offers tremendous potential for use in biomedical applications, including cancer and stem cell imaging, disease diagnosis and drug delivery. The development of nanosystems has aided in understanding the molecular mechanisms of many diseases and permitted the controlled nanoscale manipulation of biological phenomena. In recent years, many studies have focused on the use of several kinds of nanomaterials for cancer and stem cell imaging and also for the delivery of anticancer therapeutics to tumor cells. However, the proper diagnosis and treatment of aggressive tumors such as brain and breast cancer requires highly sensitive diagnostic agents, in addition to the ability to deliver multiple therapeutics using a single platform to the target cells. Addressing these challenges, novel multifunctional nanomaterial-based platforms that incorporate multiple therapeutic and diagnostic agents, with superior molecular imaging and targeting capabilities, has been presented in this work. The initial part of this work presents the development of novel nanomaterials with superior optical properties for efficiently delivering soluble cues such as small interfering RNA (siRNA) into brain cancer cells with minimal toxicity. Specifically, this section details the development of non-toxic quantums dots for the imaging and delivery of siRNA into brain cancer and mesenchymal stem cells, with the hope of using these quantum dots as multiplexed imaging and delivery vehicles. The use of these quantum dots could overcome the toxicity issues associated with the use of conventional quantum dots, enabled the imaging of brain cancer and stem cells with high efficiency and allowed for the delivery of siRNA to knockdown the target oncogene in brain cancer cells. The latter part of this thesis details the development of nanomaterial-based drug delivery platforms for the co-delivery of multiple anticancer drugs to brain tumor cells. In particular, this part of the thesis focuses on

  5. A new method for mobile phone image denoising

    NASA Astrophysics Data System (ADS)

    Jin, Lianghai; Jin, Min; Li, Xiang; Xu, Xiangyang

    2015-12-01

    Images captured by mobile phone cameras via pipeline processing usually contain various kinds of noises, especially granular noise with different shapes and sizes in both luminance and chrominance channels. In chrominance channels, noise is closely related to image brightness. To improve image quality, this paper presents a new method to denoise such mobile phone images. The proposed scheme converts the noisy RGB image to luminance and chrominance images, which are then denoised by a common filtering framework. The common filtering framework processes a noisy pixel by first excluding the neighborhood pixels that significantly deviate from the (vector) median and then utilizing the other neighborhood pixels to restore the current pixel. In the framework, the strength of chrominance image denoising is controlled by image brightness. The experimental results show that the proposed method obviously outperforms some other representative denoising methods in terms of both objective measure and visual evaluation.

  6. Super Spatial Resolution (SSR) method for scintigraphic imaging

    NASA Astrophysics Data System (ADS)

    Trinci, G.; Massari, R.; Scandellari, M.; Scopinaro, F.; Soluri, A.

    2011-01-01

    This work describes an innovative patented Super Spatial Resolution (SSR) method applied to scintigraphic devices. The aim of Super Resolution (SR) techniques is to enhance the resolution of an imaging system, using information from several images. SR reconstruction may be considered as a second generation problem of Image Restoration. It combines several slightly different Low Resolution (LR) images to obtain a High Resolution (HR) image. SR techniques are, widely, described in scientific literature mainly for applications in video communication, object recognition and image compression. In this paper we focus to apply the SR task to the scintigraphic imaging. Specifically, it is described as a patented method that uses a High Resolution Scintigraphic Camera (HRSC) to collect and process a set of scintigraphic images, in view of obtaining a very high resolution image. The HRSC device, which is currently used in Medical Imaging, is based on a parallel square holes collimator and on a Hamamatsu H8500 Position Sensitive Photomultiplier Tubes (PSPMT). The SSR method is applied to the synthetic images of three different phantoms, to verify the effective spatial resolution values. The results confirm that it is possible to achieve optimal spatial resolution values at different depths, useful in small object and small animal imaging. Our study confirms the feasibility of a very high resolution system in scintigraphic imaging and the possibility to have gamma cameras using the SSR method, to perform clinical applications on patients.

  7. The Pixon Method for Data Compression Image Classification, and Image Reconstruction

    NASA Technical Reports Server (NTRS)

    Puetter, Richard; Yahil, Amos

    2002-01-01

    As initially proposed, this program had three goals: (1) continue to develop the highly successful Pixon method for image reconstruction and support other scientist in implementing this technique for their applications; (2) develop image compression techniques based on the Pixon method; and (3) develop artificial intelligence algorithms for image classification based on the Pixon approach for simplifying neural networks. Subsequent to proposal review the scope of the program was greatly reduced and it was decided to investigate the ability of the Pixon method to provide superior restorations of images compressed with standard image compression schemes, specifically JPEG-compressed images.

  8. Advances in imaging technologies for planning breast reconstruction

    PubMed Central

    Mohan, Anita T.

    2016-01-01

    The role and choice of preoperative imaging for planning in breast reconstruction is still a disputed topic in the reconstructive community, with varying opinion on the necessity, the ideal imaging modality, costs and impact on patient outcomes. Since the advent of perforator flaps their use in microsurgical breast reconstruction has grown. Perforator based flaps afford lower donor morbidity by sparing the underlying muscle provide durable results, superior cosmesis to create a natural looking new breast, and are preferred in the context of radiation therapy. However these surgeries are complex; more technically challenging that implant based reconstruction, and leaves little room for error. The role of imaging in breast reconstruction can assist the surgeon in exploring or confirming flap choices based on donor site characteristics and presence of suitable perforators. Vascular anatomical studies in the lab have provided the surgeon a foundation of knowledge on location and vascular territories of individual perforators to improve our understanding for flap design and safe flap harvest. The creation of a presurgical map in patients can highlight any abnormal or individual anatomical variance to optimize flap design, intraoperative decision-making and execution of flap harvest with greater predictability and efficiency. This article highlights the role and techniques for preoperative planning using the newer technologies that have been adopted in reconstructive clinical practice: computed tomographic angiography (CTA), magnetic resonance angiography (MRA), laser-assisted indocyanine green fluorescence angiography (LA-ICGFA) and dynamic infrared thermography (DIRT). The primary focus of this paper is on the application of CTA and MRA imaging modalities. PMID:27047790

  9. Advances in imaging technologies for planning breast reconstruction.

    PubMed

    Mohan, Anita T; Saint-Cyr, Michel

    2016-04-01

    The role and choice of preoperative imaging for planning in breast reconstruction is still a disputed topic in the reconstructive community, with varying opinion on the necessity, the ideal imaging modality, costs and impact on patient outcomes. Since the advent of perforator flaps their use in microsurgical breast reconstruction has grown. Perforator based flaps afford lower donor morbidity by sparing the underlying muscle provide durable results, superior cosmesis to create a natural looking new breast, and are preferred in the context of radiation therapy. However these surgeries are complex; more technically challenging that implant based reconstruction, and leaves little room for error. The role of imaging in breast reconstruction can assist the surgeon in exploring or confirming flap choices based on donor site characteristics and presence of suitable perforators. Vascular anatomical studies in the lab have provided the surgeon a foundation of knowledge on location and vascular territories of individual perforators to improve our understanding for flap design and safe flap harvest. The creation of a presurgical map in patients can highlight any abnormal or individual anatomical variance to optimize flap design, intraoperative decision-making and execution of flap harvest with greater predictability and efficiency. This article highlights the role and techniques for preoperative planning using the newer technologies that have been adopted in reconstructive clinical practice: computed tomographic angiography (CTA), magnetic resonance angiography (MRA), laser-assisted indocyanine green fluorescence angiography (LA-ICGFA) and dynamic infrared thermography (DIRT). The primary focus of this paper is on the application of CTA and MRA imaging modalities. PMID:27047790

  10. Reverse-Contrast Imaging and Targeted Radiation Therapy of Advanced Pancreatic Cancer Models

    SciTech Connect

    Thorek, Daniel L.J.; Kramer, Robin M.; Chen, Qing; Jeong, Jeho; Lupu, Mihaela E.; Lee, Alycia M.; Moynahan, Mary E.; Lowery, Maeve; Ulmert, David; Zanzonico, Pat; Deasy, Joseph O.; Humm, John L.; Russell, James

    2015-10-01

    Purpose: To evaluate the feasibility of delivering experimental radiation therapy to tumors in the mouse pancreas. Imaging and treatment were performed using combined CT (computed tomography)/orthovoltage treatment with a rotating gantry. Methods and Materials: After intraperitoneal administration of radiopaque iodinated contrast, abdominal organ delineation was performed by x-ray CT. With this technique we delineated the pancreas and both orthotopic xenografts and genetically engineered disease. Computed tomographic imaging was validated by comparison with magnetic resonance imaging. Therapeutic radiation was delivered via a 1-cm diameter field. Selective x-ray radiation therapy of the noninvasively defined orthotopic mass was confirmed using γH2AX staining. Mice could tolerate a dose of 15 Gy when the field was centered on the pancreas tail, and treatment was delivered as a continuous 360° arc. This strategy was then used for radiation therapy planning for selective delivery of therapeutic x-ray radiation therapy to orthotopic tumors. Results: Tumor growth delay after 15 Gy was monitored, using CT and ultrasound to determine the tumor volume at various times after treatment. Our strategy enables the use of clinical radiation oncology approaches to treat experimental tumors in the pancreas of small animals for the first time. We demonstrate that delivery of 15 Gy from a rotating gantry minimizes background healthy tissue damage and significantly retards tumor growth. Conclusions: This advance permits evaluation of radiation planning and dosing parameters. Accurate noninvasive longitudinal imaging and monitoring of tumor progression and therapeutic response in preclinical models is now possible and can be expected to more effectively evaluate pancreatic cancer disease and therapeutic response.

  11. Advanced Imaging for Glaucoma Study: Design, Baseline Characteristics, and Inter-Site Comparison

    PubMed Central

    Le, Phuc V.; Zhang, Xinbo; Francis, Brian A.; Varma, Rohit; Greenfield, David S.; Schuman, Joel S.; Loewen, Nils; Huang, David

    2014-01-01

    Purpose To report the baseline characteristics of the participants in the Advanced Imaging for Glaucoma Study. To compare the participating sites for variations among subjects and the performance of imaging instruments. Design Multi-center longitudinal observational cohort study Methods A total of 788 participants (1,329 eyes) were enrolled from three academic referral centers. There were 145 participants (289 eyes) in the normal group, 394 participants (663 eyes) in the glaucoma suspect/preperimetric glaucoma group, and 249 participants (377 eyes) in the perimetric glaucoma group. Participants underwent a full clinical exam, standard automated perimetry, and imaging with time-domain and Fourier-domain optical coherence tomography (OCT), scanning laser polarimetry, and confocal scanning laser ophthalmoscopy. Main Outcome Measures The baseline average, population standard deviation, and repeatability of imaging-derived anatomic variables were reported for each technology and center. Results Compared to the normal participants, glaucoma suspect/preperimetric glaucoma and perimetric glaucoma groups had significantly reduced anatomic measurements. Repeatability of nerve fiber layer thickness was best for Fourier-domain OCT (overall coefficient of variation < 2%), followed by time-domain OCT (coefficient of variation 2-2.9%), scanning laser polarimetry (coefficient of variation 2.6-4.5%), and confocal scanning laser ophthalmoscopy rim area (coefficient of variation 4.2-7.6%). A mixed-effects model showed that the differences between sites was less than 25 percent of the variation within groups and less than the differences between the normal and glaucoma suspect/preperimetric glaucoma group. Conclusions Site-to-site variation was smaller than both the variation within groups and the changes due to glaucoma. Therefore pooling of participants between sites is appropriate. PMID:25447111

  12. Imaging receptor for advanced glycation end product expression in mouse model of hind limb ischemia

    PubMed Central

    2013-01-01

    Background The purpose of this study is to image the effect of diabetes on expression of receptor for advanced glycation endproducts (RAGE) in limb ischemia in live animals. Methods Male wild-type C57BL/6 mice were either made diabetic or left as control. Two months later, diabetic and non-diabetic mice underwent left femoral artery ligation. The right leg served as lesion control. Five days later, mice were injected with 15.1 ± 4.4 MBq 99mTc-anti-RAGE F(ab’)2 and 4 to 5 h later (blood pool clearance) underwent SPECT/CT imaging. At the completion of imaging, mice were euthanized, hind limbs counted and sectioned, and scans reconstructed. Regions of interest were drawn on serial transverse sections comprising the hind limbs and activity in millicuries summed and divided by the injected dose (ID). Quantitative histology was performed for RAGE staining and angiogenesis. Results Uptake of 99mTc-anti-RAGE F(ab')2 as %ID × 10−3 was higher in the left (ischemic) limbs for the diabetic mice (n = 8) compared to non-diabetic mice (n = 8) (1.20 ± 0.44% vs. 0.49 ± 0.40%; P = 0.0007) and corresponded to less angiogenesis in the diabetic mice. Uptake was also higher in the right limbs of diabetic compared to non-diabetic animals (0.82 ± 0.33% vs. 0.40 ± 0.14%; P = 0.0004). Conclusions These data show the feasibility of imaging and quantifying the effect of diabetes on RAGE expression in limb ischemia. PMID:23663412

  13. Portable imaging system method and apparatus

    DOEpatents

    Freifeld, Barry M.; Kneafsley, Timothy J.; Pruess, Jacob; Tomutsa, Liviu; Reiter, Paul A.; deCastro, Ted M.

    2006-07-25

    An operator shielded X-ray imaging system has sufficiently low mass (less than 300 kg) and is compact enough to enable portability by reducing operator shielding requirements to a minimum shielded volume. The resultant shielded volume may require a relatively small mass of shielding in addition to the already integrally shielded X-ray source, intensifier, and detector. The system is suitable for portable imaging of well cores at remotely located well drilling sites. The system accommodates either small samples, or small cross-sectioned objects of unlimited length. By rotating samples relative to the imaging device, the information required for computer aided tomographic reconstruction may be obtained. By further translating the samples relative to the imaging system, fully three dimensional (3D) tomographic reconstructions may be obtained of samples having arbitrary length.

  14. Integration of patient specific modeling and advanced image processing techniques for image-guided neurosurgery

    NASA Astrophysics Data System (ADS)

    Archip, Neculai; Fedorov, Andriy; Lloyd, Bryn; Chrisochoides, Nikos; Golby, Alexandra; Black, Peter M.; Warfield, Simon K.

    2006-03-01

    A major challenge in neurosurgery oncology is to achieve maximal tumor removal while avoiding postoperative neurological deficits. Therefore, estimation of the brain deformation during the image guided tumor resection process is necessary. While anatomic MRI is highly sensitive for intracranial pathology, its specificity is limited. Different pathologies may have a very similar appearance on anatomic MRI. Moreover, since fMRI and diffusion tensor imaging are not currently available during the surgery, non-rigid registration of preoperative MR with intra-operative MR is necessary. This article presents a translational research effort that aims to integrate a number of state-of-the-art technologies for MRI-guided neurosurgery at the Brigham and Women's Hospital (BWH). Our ultimate goal is to routinely provide the neurosurgeons with accurate information about brain deformation during the surgery. The current system is tested during the weekly neurosurgeries in the open magnet at the BWH. The preoperative data is processed, prior to the surgery, while both rigid and non-rigid registration algorithms are run in the vicinity of the operating room. The system is tested on 9 image datasets from 3 neurosurgery cases. A method based on edge detection is used to quantitatively validate the results. 95% Hausdorff distance between points of the edges is used to estimate the accuracy of the registration. Overall, the minimum error is 1.4 mm, the mean error 2.23 mm, and the maximum error 3.1 mm. The mean ratio between brain deformation estimation and rigid alignment is 2.07. It demonstrates that our results can be 2.07 times more precise then the current technology. The major contribution of the presented work is the rigid and non-rigid alignment of the pre-operative fMRI with intra-operative 0.5T MRI achieved during the neurosurgery.

  15. New advanced control methods for doubly salient permanent magnet motor

    SciTech Connect

    Blaabjerg, F.; Christensen, L.; Rasmussen, P.O.; Oestergaard, L.; Pedersen, P.

    1995-12-31

    High performance and high efficiency in adjustable speed drives are needed and new motor constructions are world wide investigated and analyzed. This paper deals with advanced control of a recently developed Doubly Salient Permanent Magnet (DSPM) motor. The construction of the DSPM motor is shown and a dynamical model of the motor is used for simulations. As supply to the DSPM motor, a power converter with a split capacitor is used to reduce the number of devices, and a basic control method for this converter is explained. This control method will cause an unequal voltage distribution across the capacitors because the motor is asymmetrical and a decrease in efficiency and a poorer dynamic performance are the results. To minimize the problems with the unequal load of the capacitors in the converter, a new charge control strategy is developed. The efficiency of the motor can also be improved by using a power minimizing scheme based on changing the turn-on and turn-off angles of the current. The two different strategies are implemented in an adjustable-speed drive, and it is concluded that both control strategies improve the performance of the drive.

  16. MALDI mass spectrometric imaging meets "omics": recent advances in the fruitful marriage.

    PubMed

    Crecelius, A C; Schubert, U S; von Eggeling, F

    2015-09-01

    Matrix-assisted laser desorption/ionization mass spectrometric imaging (MALDI MSI) is a method that allows the investigation of the molecular content of surfaces, in particular, tissues, within its morphological context. The applications of MALDI MSI in the field of large-scale mass spectrometric studies, which are typically denoted by the suffix "omics", are steadily increasing. This is because, on the one hand, technical advances regarding sample collection and preparation, matrix application, instrumentation, and data processing have enhanced the molecular specificity and sensitivity of MALDI MSI; on the other hand, the focus of the "omics" community has moved from establishing an inventory of certain compound classes to exploring their spatial distribution to gain novel insights. Thus, the aim of this mini-review is twofold, to display the state-of-the-art in terms of technical aspects in MALDI MSI and to highlight selected applications in the last two years, which either have significantly advanced a certain "omics" field or have introduced a new one through pioneering efforts. PMID:26161715

  17. Development of Image Selection Method Using Graph Cuts

    NASA Astrophysics Data System (ADS)

    Fuse, T.; Harada, R.

    2016-06-01

    3D models have been widely used by spread of many available free-software. Additionally, enormous images can be easily acquired, and images are utilized for creating the 3D models recently. The creation of 3D models by using huge amount of images, however, takes a lot of time and effort, and then efficiency for 3D measurement are required. In the efficient strategy, the accuracy of the measurement is also required. This paper develops an image selection method based on network design that means surveying network construction. The proposed method uses image connectivity graph. The image connectivity graph consists of nodes and edges. The nodes correspond to images to be used. The edges connected between nodes represent image relationships with costs as accuracies of orientation elements. For the efficiency, the image connectivity graph should be constructed with smaller number of edges. Once the image connectivity graph is built, the image selection problem is regarded as combinatorial optimization problem and the graph cuts technique can be applied. In the process of 3D reconstruction, low quality images and similar images are also extracted and removed. Through the experiments, the significance of the proposed method is confirmed. It implies potential to efficient and accurate 3D measurement.

  18. Emissivity corrected infrared method for imaging anomalous structural heat flows

    DOEpatents

    Del Grande, Nancy K.; Durbin, Philip F.; Dolan, Kenneth W.; Perkins, Dwight E.

    1995-01-01

    A method for detecting flaws in structures using dual band infrared radiation. Heat is applied to the structure being evaluated. The structure is scanned for two different wavelengths and data obtained in the form of images. Images are used to remove clutter to form a corrected image. The existence and nature of a flaw is determined by investigating a variety of features.

  19. An innovative lossless compression method for discrete-color images.

    PubMed

    Alzahir, Saif; Borici, Arber

    2015-01-01

    In this paper, we present an innovative method for lossless compression of discrete-color images, such as map images, graphics, GIS, as well as binary images. This method comprises two main components. The first is a fixed-size codebook encompassing 8×8 bit blocks of two-tone data along with their corresponding Huffman codes and their relative probabilities of occurrence. The probabilities were obtained from a very large set of discrete color images which are also used for arithmetic coding. The second component is the row-column reduction coding, which will encode those blocks that are not in the codebook. The proposed method has been successfully applied on two major image categories: 1) images with a predetermined number of discrete colors, such as digital maps, graphs, and GIS images and 2) binary images. The results show that our method compresses images from both categories (discrete color and binary images) with 90% in most case and higher than the JBIG-2 by 5%-20% for binary images, and by 2%-6.3% for discrete color images on average. PMID:25330487

  20. Apparatus and method for measuring and imaging surface resistance

    DOEpatents

    Martens, Jon S.; Hietala, Vincent M.; Hohenwarter, Gert K. G.

    1993-08-24

    Apparatus and method for determining and imaging superconductor surface resistance. The apparatus comprises modified Gaussian confocal resonator structure with the sample remote from the radiating mirror. Surface resistance is determined by analyzing and imaging reflected microwaves; imaging reveals anomalies due to surface impurities, non-stoichiometry, and the like, in the surface of the superconductor.

  1. Advanced Thermal Emission Imaging Systems Definition and Development

    NASA Technical Reports Server (NTRS)

    Blasius, Karl; Nava, David (Technical Monitor)

    2002-01-01

    Santa Barbara Remote Sensing (SBRS), Raytheon Company, is pleased to submit this quarterly progress report of the work performed in the third quarter of Year 2 of the Advanced THEMIS Project, July through September 2002. We review here progress in the proposed tasks. During July through September 2002 progress was made in two major tasks, Spectral Response Characterization and Flight Instrument Definition. Because of staffing problems and technical problems earlier in the program we have refocused the remaining time and budget on the key technical tasks. Current technical problems with a central piece of test equipment has lead us to request a 1 quarter extension to the period of performance. This request is being made through a separate letter independent of this report.

  2. Advanced imaging microscope tools applied to microgravity research investigations

    NASA Astrophysics Data System (ADS)

    Peterson, L.; Samson, J.; Conrad, D.; Clark, K.

    1998-01-01

    The inability to observe and interact with experiments on orbit has been an impediment for both basic research and commercial ventures using the shuttle. In order to open the frontiers of space, the Center for Microgravity Automation Technology has developed a unique and innovative system for conducting experiments at a distance, the ``Remote Scientist.'' The Remote Scientist extends laboratory automation capability to the microgravity environment. While the Remote Scientist conceptually encompasses a broad spectrum of elements and functionalities, the development approach taken is to: • establish a baseline capability that is both flexible and versatile • incrementally augment the baseline with additional functions over time. Since last year, the application of the Remote Scientist has changed from protein crystal growth to tissue culture, specifically, the development of skeletal muscle under varying levels of tension. This system includes a series of bioreactor chambers that allow for three-dimensional growth of muscle tissue on a membrane suspended between the two ends of a programmable force transducer that can provide automated or investigator-initiated tension on the developing tissue. A microscope objective mounted on a translation carriage allows for high-resolution microscopy along a large area of the tissue. These images will be mosaiced on orbit to detect features and structures that span multiple images. The use of fluorescence and pseudo-confocal microscopy will maximize the observational capabilities of this system. A series of ground-based experiments have been performed to validate the bioreactor, the force transducer, the translation carriage and the image acquisition capabilities of the Remote Scientist. • The bioreactor is capable of sustaining three dimensional tissue culture growth over time. • The force transducer can be programmed to provide static tension on cells or to simulate either slow or fast growth of underlying tissues in

  3. Analysis and coding technique based on computational intelligence methods and image-understanding architecture

    NASA Astrophysics Data System (ADS)

    Kuvychko, Igor

    2000-05-01

    Human vision involves higher-level knowledge and top-bottom processes for resolving ambiguity and uncertainty in the real images. Even very advanced low-level image processing can not give any advantages without a highly effective knowledge-representation and reasoning system that is the solution of image understanding problem. Methods of image analysis and coding are directly based on the methods of knowledge representation and processing. Article suggests such models and mechanisms in form of Spatial Turing Machine that in place of symbols and tapes works with hierarchical networks represented dually as discrete and continuous structures. Such networks are able to perform both graph and diagrammatic operations being the basis of intelligence. Computational intelligence methods provide transformation of continuous image information into the discrete structures, making it available for analysis. Article shows that symbols naturally emerge in such networks, giving opportunity to use symbolic operations. Such framework naturally combines methods of machine learning, classification and analogy with induction, deduction and other methods of higher level reasoning. Based on these principles image understanding system provides more flexible ways of handling with ambiguity and uncertainty in the real images and does not require supercomputers. That opens way to new technologies in the computer vision and image databases.

  4. Dawn of Advanced Molecular Medicine: Nanotechnological Advancements in Cancer Imaging and Therapy

    PubMed Central

    Kaittanis, Charalambos; Shaffer, Travis M.; Thorek, Daniel L. J.; Grimm, Jan

    2014-01-01

    Nanotechnology plays an increasingly important role not only in our everyday life (with all its benefits and dangers) but also in medicine. Nanoparticles are to date the most intriguing option to deliver high concentrations of agents specifically and directly to cancer cells; therefore, a wide variety of these nanomaterials has been developed and explored. These span the range from simple nanoagents to sophisticated smart devices for drug delivery or imaging. Nanomaterials usually provide a large surface area, allowing for decoration with a large amount of moieties on the surface for either additional functionalities or targeting. Besides using particles solely for imaging purposes, they can also carry as a payload a therapeutic agent. If both are combined within the same particle, a theranostic agent is created. The sophistication of highly developed nanotechnology targeting approaches provides a promising means for many clinical implementations and can provide improved applications for otherwise suboptimal formulations. In this review we will explore nanotechnology both for imaging and therapy to provide a general overview of the field and its impact on cancer imaging and therapy. PMID:25271430

  5. [Image processing method based on prime number factor layer].

    PubMed

    Fan, Yifang; Yuan, Zhirun

    2004-10-01

    In sport games, since the human body movement data are mainly drawn from the sports field with the hues or even interruptions of commercial environment, some difficulties must be surmounted in order to analyze the images. It is obviously not enough just to use the method of grey-image treatment. We have applied the characteristics of the prime number function to the human body movement images and thus introduce a new method of image processing in this article. When trying to deal with certain moving images, we can get a better result. PMID:15553856

  6. Advanced electron crystallography through model-based imaging.

    PubMed

    Van Aert, Sandra; De Backer, Annick; Martinez, Gerardo T; den Dekker, Arnold J; Van Dyck, Dirk; Bals, Sara; Van Tendeloo, Gustaaf

    2016-01-01

    The increasing need for precise determination of the atomic arrangement of non-periodic structures in materials design and the control of nanostructures explains the growing interest in quantitative transmission electron microscopy. The aim is to extract precise and accurate numbers for unknown structure parameters including atomic positions, chemical concentrations and atomic numbers. For this purpose, statistical parameter estimation theory has been shown to provide reliable results. In this theory, observations are considered purely as data planes, from which structure parameters have to be determined using a parametric model describing the images. As such, the positions of atom columns can be measured with a precision of the order of a few picometres, even though the resolution of the electron microscope is still one or two orders of magnitude larger. Moreover, small differences in average atomic number, which cannot be distinguished visually, can be quantified using high-angle annular dark-field scanning transmission electron microscopy images. In addition, this theory allows one to measure compositional changes at interfaces, to count atoms with single-atom sensitivity, and to reconstruct atomic structures in three dimensions. This feature article brings the reader up to date, summarizing the underlying theory and highlighting some of the recent applications of quantitative model-based transmisson electron microscopy. PMID:26870383

  7. Recent advances in PET imaging for evaluation of Parkinson's disease.

    PubMed

    Sioka, Chrissa; Fotopoulos, Andreas; Kyritsis, Athanassios P

    2010-08-01

    Parkinson's disease (PD) consists of loss of pigmented dopamine-secreting neurons in the pars compacta of the midbrain substantia nigra. These neurons project to the striatum (putamen and caudate nucleus) and their loss leads to alterations in the activity of the neural circuits that regulate movement. In a simplified model, two dopamine pathways are involved: the direct pathway, which is mediated through facilitation of the D(1) receptors, and the indirect pathway through D(2) receptors (inhibitory). Positron emission tomography (PET) tracers to image the presynaptic sites of the dopaminergic system include 6-[(18)F]FDOPA and 6-[(18)F]FMT, [(11)C]dihydrotetrabenazine, [(11)C]nomifensine and various radiolabelled cocaine derivatives. Postsynaptically, for the dopamine D(1) subtype the most commonly used ligands are [(11)C]SCH 23390 or [(11)C]NNC 112 and for the D(2) subtype [(11)C]raclopride, [(11)C]MNPA and [(18)F]DMFP. PET is a sensitive and specific non-invasive molecular imaging technique that may be helpful for evaluation of PD and its differential diagnosis from other parkinsonian syndromes. PMID:20107789

  8. Technological advances in hybrid imaging and impact on dose.

    PubMed

    Mattsson, Sören; Andersson, Martin; Söderberg, Marcus

    2015-07-01

    New imaging technologies utilising X-rays and radiopharmaceuticals have developed rapidly. Clinical application of computed tomography (CT) has revolutionised medical imaging and plays an enormous role in medical care. Due to technical improvements, spatial, contrast and temporal resolutions have continuously improved. In spite of significant reduction of CT doses during recent years, CT is still a dominating source of radiation exposure to the population. Combinations with single photon emission computed tomography (SPECT) and positron emission tomography (PET) and especially the use of SPECT/CT and PET/CT, provide important additional information about physiology as well as cellular and molecular events. However, significant dose contributions from SPECT and PET occur, making PET/CT and SPECT/CT truly high dose procedures. More research should be done to find optimal activities of radiopharmaceuticals for various patient groups and investigations. The implementation of simple protocol adjustments, including individually based administration, encouraged hydration, forced diuresis and use of optimised voiding intervals, laxatives, etc., can reduce the radiation exposure to the patients. New data about staff doses to fingers, hands and eye lenses indicate that finger doses could be a problem, but not doses to the eye lenses and to the whole body. PMID:25802466

  9. Advanced electron crystallography through model-based imaging

    PubMed Central

    Van Aert, Sandra; De Backer, Annick; Martinez, Gerardo T.; den Dekker, Arnold J.; Van Dyck, Dirk; Bals, Sara; Van Tendeloo, Gustaaf

    2016-01-01

    The increasing need for precise determination of the atomic arrangement of non-periodic structures in materials design and the control of nanostructures explains the growing interest in quantitative transmission electron microscopy. The aim is to extract precise and accurate numbers for unknown structure parameters including atomic positions, chemical concentrations and atomic numbers. For this purpose, statistical parameter estimation theory has been shown to provide reliable results. In this theory, observations are considered purely as data planes, from which structure parameters have to be determined using a parametric model describing the images. As such, the positions of atom columns can be measured with a precision of the order of a few picometres, even though the resolution of the electron microscope is still one or two orders of magnitude larger. Moreover, small differences in average atomic number, which cannot be distinguished visually, can be quantified using high-angle annular dark-field scanning transmission electron microscopy images. In addition, this theory allows one to measure compositional changes at interfaces, to count atoms with single-atom sensitivity, and to reconstruct atomic structures in three dimensions. This feature article brings the reader up to date, summarizing the underlying theory and highlighting some of the recent applications of quantitative model-based transmisson electron microscopy. PMID:26870383

  10. Crosswell Imaging Technology & Advanced DSR Navigation for Horizontal Directional Drilling

    SciTech Connect

    Larry Stolarczyk

    2008-08-08

    The objective of Phase II is to develop and demonstrate real-time measurement-while-drilling (MWD) for guidance and navigation of drill strings during horizontal drilling operations applicable to both short and long holes. The end product of Phase II is a functional drill-string assembly outfitted with a commercial version of Drill String Radar (DSR). Project Objectives Develop and demonstrate a dual-phase methodology of in-seam drilling, imaging, and structure confirmation. This methodology, illustrated in Figure 1, includes: (1) Using RIM to image between drill holes for seam thickness estimates and in-seam structures detection. Completed, February 2005; and (2) Using DSR for real-time MWD guidance and navigation of drillstrings during horizontal drilling operations. Completed, November 2008. As of November 2008, the Phase II portion of Contract DE-FC26-04NT42085 is about 99% complete, including milestones and tasks original outlined as Phase II work. The one percent deficiency results from MSHA-related approvals which have yet to be granted (at the time of reporting). These approvals are pending and are do not negatively impact the scope of work or project objectives.

  11. Adaptation of commercial microscopes for advanced imaging applications

    NASA Astrophysics Data System (ADS)

    Brideau, Craig; Poon, Kelvin; Stys, Peter

    2015-03-01

    Today's commercially available microscopes offer a wide array of options to accommodate common imaging experiments. Occasionally, an experimental goal will require an unusual light source, filter, or even irregular sample that is not compatible with existing equipment. In these situations the ability to modify an existing microscopy platform with custom accessories can greatly extend its utility and allow for experiments not possible with stock equipment. Light source conditioning/manipulation such as polarization, beam diameter or even custom source filtering can easily be added with bulk components. Custom and after-market detectors can be added to external ports using optical construction hardware and adapters. This paper will present various examples of modifications carried out on commercial microscopes to address both atypical imaging modalities and research needs. Violet and near-ultraviolet source adaptation, custom detection filtering, and laser beam conditioning and control modifications will be demonstrated. The availability of basic `building block' parts will be discussed with respect to user safety, construction strategies, and ease of use.

  12. Advanced image manipulation controller for cockpit LCD displays

    NASA Astrophysics Data System (ADS)

    Ramachandran, Gopal

    1998-09-01

    Key features of a family of LSI integrated circuits will be explained. These DSP devices are capable of taking digital inputs of either NTSC/PAL/SECAM video in YCrCb 4:2:2 format, or computer graphics data from a PC in RGB 8:8:8 format, de- interlacing the data (if required), then re-sizing the resolution of the image independently in the horizontal and vertical axes to fit arbitrary display resolutions. The devices use patented digital filter techniques to perform zoom-only or both zoom as well as shrink. The devices also include registers that allow for cropping the active input image, and registers to completely control horizontal and vertical timing parameters for LCD displays. Current members of this family work at clock rates of up to 84 MHz, at resolutions of 1024 X 768, and upcoming members of the family will raise both the target resolution and pixel rates. All these parts generate all timing signals required by the display. Typically, no external memory is required for zooming and shrinking. Cockpit display applications that could benefit from this chip include processing and display of video, FLIR, EFIS/EICAS displays, radar, digital terrain maps, ultrasonic/sonar, computer graphics/symbol generators, etc. The devices are members of the gmZx family of scaling chips, first introduced in April '97.

  13. INVITED REVIEW-IMAGE REGISTRATION IN VETERINARY RADIATION ONCOLOGY: INDICATIONS, IMPLICATIONS, AND FUTURE ADVANCES.

    PubMed

    Feng, Yang; Lawrence, Jessica; Cheng, Kun; Montgomery, Dean; Forrest, Lisa; Mclaren, Duncan B; McLaughlin, Stephen; Argyle, David J; Nailon, William H

    2016-03-01

    The field of veterinary radiation therapy (RT) has gained substantial momentum in recent decades with significant advances in conformal treatment planning, image-guided radiation therapy (IGRT), and intensity-modulated (IMRT) techniques. At the root of these advancements lie improvements in tumor imaging, image alignment (registration), target volume delineation, and identification of critical structures. Image registration has been widely used to combine information from multimodality images such as computerized tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET) to improve the accuracy of radiation delivery and reliably identify tumor-bearing areas. Many different techniques have been applied in image registration. This review provides an overview of medical image registration in RT and its applications in veterinary oncology. A summary of the most commonly used approaches in human and veterinary medicine is presented along with their current use in IGRT and adaptive radiation therapy (ART). It is important to realize that registration does not guarantee that target volumes, such as the gross tumor volume (GTV), are correctly identified on the image being registered, as limitations unique to registration algorithms exist. Research involving novel registration frameworks for automatic segmentation of tumor volumes is ongoing and comparative oncology programs offer a unique opportunity to test the efficacy of proposed algorithms. PMID:26777133

  14. A method for removing arm backscatter from EPID images

    SciTech Connect

    King, Brian W.; Greer, Peter B.

    2013-07-15

    Purpose: To develop a method for removing the support arm backscatter from images acquired using current Varian electronic portal imaging devices (EPIDs).Methods: The effect of arm backscatter on EPID images was modeled using a kernel convolution method. The parameters of the model were optimized by comparing on-arm images to off-arm images. The model was used to develop a method to remove the effect of backscatter from measured EPID images. The performance of the backscatter removal method was tested by comparing backscatter corrected on-arm images to measured off-arm images for 17 rectangular fields of different sizes and locations on the imager. The method was also tested using on- and off-arm images from 42 intensity modulated radiotherapy (IMRT) fields.Results: Images generated by the backscatter removal method gave consistently better agreement with off-arm images than images without backscatter correction. For the 17 rectangular fields studied, the root mean square difference of in-plane profiles compared to off-arm profiles was reduced from 1.19% (standard deviation 0.59%) on average without backscatter removal to 0.38% (standard deviation 0.18%) when using the backscatter removal method. When comparing to the off-arm images from the 42 IMRT fields, the mean {gamma} and percentage of pixels with {gamma} < 1 were improved by the backscatter removal method in all but one of the images studied. The mean {gamma} value (1%, 1 mm) for the IMRT fields studied was reduced from 0.80 to 0.57 by using the backscatter removal method, while the mean {gamma} pass rate was increased from 72.2% to 84.6%.Conclusions: A backscatter removal method has been developed to estimate the image acquired by the EPID without any arm backscatter from an image acquired in the presence of arm backscatter. The method has been shown to produce consistently reliable results for a wide range of field sizes and jaw configurations.

  15. Unconventional methods of imaging: computational microscopy and compact implementations

    NASA Astrophysics Data System (ADS)

    McLeod, Euan; Ozcan, Aydogan

    2016-07-01

    In the past two decades or so, there has been a renaissance of optical microscopy research and development. Much work has been done in an effort to improve the resolution and sensitivity of microscopes, while at the same time to introduce new imaging modalities, and make existing imaging systems more efficient and more accessible. In this review, we look at two particular aspects of this renaissance: computational imaging techniques and compact imaging platforms. In many cases, these aspects go hand-in-hand because the use of computational techniques can simplify the demands placed on optical hardware in obtaining a desired imaging performance. In the first main section, we cover lens-based computational imaging, in particular, light-field microscopy, structured illumination, synthetic aperture, Fourier ptychography, and compressive imaging. In the second main section, we review lensfree holographic on-chip imaging, including how images are reconstructed, phase recovery techniques, and integration with smart substrates for more advanced imaging tasks. In the third main section we describe how these and other microscopy modalities have been implemented in compact and field-portable devices, often based around smartphones. Finally, we conclude with some comments about opportunities and demand for better results, and where we believe the field is heading.

  16. Unconventional methods of imaging: computational microscopy and compact implementations.

    PubMed

    McLeod, Euan; Ozcan, Aydogan

    2016-07-01

    In the past two decades or so, there has been a renaissance of optical microscopy research and development. Much work has been done in an effort to improve the resolution and sensitivity of microscopes, while at the same time to introduce new imaging modalities, and make existing imaging systems more efficient and more accessible. In this review, we look at two particular aspects of this renaissance: computational imaging techniques and compact imaging platforms. In many cases, these aspects go hand-in-hand because the use of computational techniques can simplify the demands placed on optical hardware in obtaining a desired imaging performance. In the first main section, we cover lens-based computational imaging, in particular, light-field microscopy, structured illumination, synthetic aperture, Fourier ptychography, and compressive imaging. In the second main section, we review lensfree holographic on-chip imaging, including how images are reconstructed, phase recovery techniques, and integration with smart substrates for more advanced imaging tasks. In the third main section we describe how these and other microscopy modalities have been implemented in compact and field-portable devices, often based around smartphones. Finally, we conclude with some comments about opportunities and demand for better results, and where we believe the field is heading. PMID:27214407

  17. Image processing methods for visual prostheses based on DSP

    NASA Astrophysics Data System (ADS)

    Liu, Huwei; Zhao, Ying; Tian, Yukun; Ren, Qiushi; Chai, Xinyu

    2008-12-01

    Visual prostheses for extreme vision impairment have come closer to reality during these few years. The task of this research has been to design exoteric devices and study image processing algorithms and methods for different complexity images. We have developed a real-time system capable of image capture and processing to obtain most available and important image features for recognition and simulation experiment based on DSP (Digital Signal Processor). Beyond developing hardware system, we introduce algorithms such as resolution reduction, information extraction, dilation and erosion, square (circular) pixelization and Gaussian pixelization. And we classify images with different stages according to different complexity such as simple images, medium complex images, complex images. As a result, this paper will get the needed signal for transmitting to electrode array and images for simulation experiment.

  18. Computational inspection applied to a mask inspection system with advanced aerial imaging capability

    NASA Astrophysics Data System (ADS)

    Pang, Linyong; Peng, Danping; He, Lin; Chen, Dongxue; Dam, Thuc; Tolani, Vikram; Tam, Aviram; Staud, Wolf

    2010-03-01

    At the most advanced technology nodes, such as 32nm and 22nm, aggressive OPC and Sub-Resolution Assist Features (SRAFs) are required. However, their use results in significantly increased mask complexity, challenging mask defect dispositioning more than ever. To address these challenges in mask inspection and defect dispositioning, new mask inspection technologies have been developed that not only provide high resolution masks imaged at the same wavelength as the scanner, but that also provide aerial images by using both: software simulation and hardware emulation. The original mask patterns stored by the optics of mask inspection systems can be recovered using a patented algorithm based on the Level Set Method. More accurate lithography simulation models can be used to further evaluate defects on simulated resist patterns using the recovered mask pattern in high resolution and aerial mode. An automated defect classification based on lithography significance and local CD changes is also developed to disposition tens of thousands of potential defects in minutes, so that inspection throughput is not impacted.

  19. Terahertz pulsed imaging as an advanced characterisation tool for film coatings--a review.

    PubMed

    Haaser, Miriam; Gordon, Keith C; Strachan, Clare J; Rades, Thomas

    2013-12-01

    Solid dosage forms are the pharmaceutical drug delivery systems of choice for oral drug delivery. These solid dosage forms are often coated to modify the physico-chemical properties of the active pharmaceutical ingredients (APIs), in particular to alter release kinetics. Since the product performance of coated dosage forms is a function of their critical coating attributes, including coating thickness, uniformity, and density, more advanced quality control techniques than weight gain are required. A recently introduced non-destructive method to quantitatively characterise coating quality is terahertz pulsed imaging (TPI). The ability of terahertz radiation to penetrate many pharmaceutical materials enables structural features of coated solid dosage forms to be probed at depth, which is not readily achievable with other established imaging techniques, e.g. near-infrared (NIR) and Raman spectroscopy. In this review TPI is introduced and various applications of the technique in pharmaceutical coating analysis are discussed. These include evaluation of coating thickness, uniformity, surface morphology, density, defects and buried structures as well as correlation between TPI measurements and drug release performance, coating process monitoring and scale up. Furthermore, challenges and limitations of the technique are discussed. PMID:23570960

  20. Fire service and first responder thermal imaging camera (TIC) advances and standards

    NASA Astrophysics Data System (ADS)

    Konsin, Lawrence S.; Nixdorff, Stuart

    2007-04-01

    Fire Service and First Responder Thermal Imaging Camera (TIC) applications are growing, saving lives and preventing injury and property damage. Firefighters face a wide range of serious hazards. TICs help mitigate the risks by protecting Firefighters and preventing injury, while reducing time spent fighting the fire and resources needed to do so. Most fire safety equipment is covered by performance standards. Fire TICs, however, are not covered by such standards and are also subject to inadequate operational performance and insufficient user training. Meanwhile, advancements in Fire TICs and lower costs are driving product demand. The need for a Fire TIC Standard was spurred in late 2004 through a Government sponsored Workshop where experts from the First Responder community, component manufacturers, firefighter training, and those doing research on TICs discussed strategies, technologies, procedures, best practices and R&D that could improve Fire TICs. The workshop identified pressing image quality, performance metrics, and standards issues. Durability and ruggedness metrics and standard testing methods were also seen as important, as was TIC training and certification of end-users. A progress report on several efforts in these areas and their impact on the IR sensor industry will be given. This paper is a follow up to the SPIE Orlando 2004 paper on Fire TIC usage (entitled Emergency Responders' Critical Infrared) which explored the technological development of this IR industry segment from the viewpoint of the end user, in light of the studies and reports that had established TICs as a mission critical tool for firefighters.

  1. Advanced Imaging and Receipt of Guideline Concordant Care in Women with Early Stage Breast Cancer.

    PubMed

    Loggers, Elizabeth Trice; Buist, Diana S M; Gold, Laura S; Zeliadt, Steven; Hunter Merrill, Rachel; Etzioni, Ruth; Ramsey, Scott D; Sullivan, Sean D; Kessler, Larry

    2016-01-01

    Objective. It is unknown whether advanced imaging (AI) is associated with higher quality breast cancer (BC) care. Materials and Methods. Claims and Surveillance Epidemiology and End Results data were linked for women diagnosed with incident stage I-III BC between 2002 and 2008 in western Washington State. We examined receipt of preoperative breast magnetic resonance imaging (MRI) or AI (defined as computed tomography [CT]/positron emission tomography [PET]/PET/CT) versus mammogram and/or ultrasound (M-US) alone and receipt of guideline concordant care (GCC) using multivariable logistic regression. Results. Of 5247 women, 67% received M-US, 23% MRI, 8% CT, and 3% PET/PET-CT. In 2002, 5% received MRI and 5% AI compared to 45% and 12%, respectively, in 2008. 79% received GCC, but GCC declined over time and was associated with younger age, urban residence, less comorbidity, shorter time from diagnosis to surgery, and earlier year of diagnosis. Breast MRI was associated with GCC for lumpectomy plus radiation therapy (RT) (OR 1.55, 95% CI 1.08-2.26, and p = 0.02) and AI was associated with GCC for adjuvant chemotherapy for estrogen-receptor positive (ER+) BC (OR 1.74, 95% CI 1.17-2.59, and p = 0.01). Conclusion. GCC was associated with prior receipt of breast MRI and AI for lumpectomy plus RT and adjuvant chemotherapy for ER+ BC, respectively. PMID:27525122

  2. Advanced Imaging and Receipt of Guideline Concordant Care in Women with Early Stage Breast Cancer

    PubMed Central

    Buist, Diana S. M.; Gold, Laura S.; Zeliadt, Steven; Hunter Merrill, Rachel; Etzioni, Ruth; Ramsey, Scott D.; Sullivan, Sean D.; Kessler, Larry

    2016-01-01

    Objective. It is unknown whether advanced imaging (AI) is associated with higher quality breast cancer (BC) care. Materials and Methods. Claims and Surveillance Epidemiology and End Results data were linked for women diagnosed with incident stage I-III BC between 2002 and 2008 in western Washington State. We examined receipt of preoperative breast magnetic resonance imaging (MRI) or AI (defined as computed tomography [CT]/positron emission tomography [PET]/PET/CT) versus mammogram and/or ultrasound (M-US) alone and receipt of guideline concordant care (GCC) using multivariable logistic regression. Results. Of 5247 women, 67% received M-US, 23% MRI, 8% CT, and 3% PET/PET-CT. In 2002, 5% received MRI and 5% AI compared to 45% and 12%, respectively, in 2008. 79% received GCC, but GCC declined over time and was associated with younger age, urban residence, less comorbidity, shorter time from diagnosis to surgery, and earlier year of diagnosis. Breast MRI was associated with GCC for lumpectomy plus radiation therapy (RT) (OR 1.55, 95% CI 1.08–2.26, and p = 0.02) and AI was associated with GCC for adjuvant chemotherapy for estrogen-receptor positive (ER+) BC (OR 1.74, 95% CI 1.17–2.59, and p = 0.01). Conclusion. GCC was associated with prior receipt of breast MRI and AI for lumpectomy plus RT and adjuvant chemotherapy for ER+ BC, respectively. PMID:27525122

  3. Local coding based matching kernel method for image classification.

    PubMed

    Song, Yan; McLoughlin, Ian Vince; Dai, Li-Rong

    2014-01-01

    This paper mainly focuses on how to effectively and efficiently measure visual similarity for local feature based representation. Among existing methods, metrics based on Bag of Visual Word (BoV) techniques are efficient and conceptually simple, at the expense of effectiveness. By contrast, kernel based metrics are more effective, but at the cost of greater computational complexity and increased storage requirements. We show that a unified visual matching framework can be developed to encompass both BoV and kernel based metrics, in which local kernel plays an important role between feature pairs or between features and their reconstruction. Generally, local kernels are defined using Euclidean distance or its derivatives, based either explicitly or implicitly on an assumption of Gaussian noise. However, local features such as SIFT and HoG often follow a heavy-tailed distribution which tends to undermine the motivation behind Euclidean metrics. Motivated by recent advances in feature coding techniques, a novel efficient local coding based matching kernel (LCMK) method is proposed. This exploits the manifold structures in Hilbert space derived from local kernels. The proposed method combines advantages of both BoV and kernel based metrics, and achieves a linear computational complexity. This enables efficient and scalable visual matching to be performed on large scale image sets. To evaluate the effectiveness of the proposed LCMK method, we conduct extensive experiments with widely used benchmark datasets, including 15-Scenes, Caltech101/256, PASCAL VOC 2007 and 2011 datasets. Experimental results confirm the effectiveness of the relatively efficient LCMK method. PMID:25119982

  4. Imaging, cutting, and collecting instrument and method

    DOEpatents

    Tench, Robert J.; Siekhaus, Wigbert J.; Balooch, Mehdi; Balhorn, Rodney L.; Allen, Michael J.

    1995-01-01

    Instrumentation and techniques to image small objects, such as but not limited to individual human chromosomes, with nanometer resolution, to cut-off identified parts of such objects, to move around and manipulate such cut-off parts on the substrate on which they are being imaged to predetermined locations on the substrate, and to remove the cut-off parts from the substrate. This is accomplished using an atomic force microscope (AFM) and by modification of the conventional cantilever stylus assembly of an AFM, such that plural cantilevers are used with either sharp-tips or knife-edges thereon. In addition, the invention can be utilized for measuring hardness of materials.

  5. Seeing and believing: recent advances in imaging cell-cell interactions

    PubMed Central

    Yap, Alpha S.; Michael, Magdalene; Parton, Robert G.

    2015-01-01

    Advances in cell and developmental biology have often been closely linked to advances in our ability to visualize structure and function at many length and time scales. In this review, we discuss how new imaging technologies and new reagents have provided novel insights into the biology of cadherin-based cell-cell junctions. We focus on three developments: the application of super-resolution optical technologies to characterize the nanoscale organization of cadherins at cell-cell contacts, new approaches to interrogate the mechanical forces that act upon junctions, and advances in electron microscopy which have the potential to transform our understanding of cell-cell junctions. PMID:26543555

  6. Warped document image correction method based on heterogeneous registration strategies

    NASA Astrophysics Data System (ADS)

    Tong, Lijing; Zhan, Guoliang; Peng, Quanyao; Li, Yang; Li, Yifan

    2013-03-01

    With the popularity of digital camera and the application requirement of digitalized document images, using digital cameras to digitalize document images has become an irresistible trend. However, the warping of the document surface impacts on the quality of the Optical Character Recognition (OCR) system seriously. To improve the warped document image's vision quality and the OCR rate, this paper proposed a warped document image correction method based on heterogeneous registration strategies. This method mosaics two warped images of the same document from different viewpoints. Firstly, two feature points are selected from one image. Then the two feature points are registered in the other image base on heterogeneous registration strategies. At last, image mosaics are done for the two images, and the best mosaiced image is selected by OCR recognition results. As a result, for the best mosaiced image, the distortions are mostly removed and the OCR results are improved markedly. Experimental results show that the proposed method can resolve the issue of warped document image correction more effectively.

  7. Advanced astigmatism-corrected Czerny-Turner imaging spectrometer in spectral broadband

    NASA Astrophysics Data System (ADS)

    Cong, Hai-fang

    2014-12-01

    This paper reports an advanced Czerny-Turner optical structure which is used for the application in imaging spectrometers. To obtain the excellent imaging quality, a cylindrical lens with a wedge angle is used between the focusing mirror and the imaging plane to remove astigmatism in broadband. It makes the advanced optical system presents high resolution over the full bandwidth and decreases the cost. An example of the imaging spectrometer in the waveband of 260nm~520nm has been designed to prove our theory. It yields the excellent modulation transfer functions (MTF) of all fields of view which are more than 0.75 over the broadband under the required Nyquist frequency (20lp/mm).

  8. Advancing the Quality of Solar Occultation Retrievals through Solar Imaging

    NASA Astrophysics Data System (ADS)

    Gordley, L. L.; Hervig, M. E.; Marshall, B. T.; Russell, J. E.; Bailey, S. M.; Brown, C. W.; Burton, J. C.; Deaver, L. E.; Magill, B. E.; McHugh, M. J.; Paxton, G. J.; Thompson, R. E.

    2008-12-01

    The quality of retrieved profiles (e.g. mixing ratio, temperature, pressure, and extinction) from solar occultation sensors is strongly dependent on the angular fidelity of the measurements. The SOFIE instrument, launched on-board the AIM (Aeronomy of Ice in the Mesosphere) satellite on April 25, 2007, was designed to provide very high precision broadband measurements for the study of Polar Mesospheric Clouds (PMCs), that appear near 83km, just below the high latitude summer mesopause. The SOFIE instrument achieves an unprecedented angular fidelity by imaging the sun on a 2D detector array and tracking the edges with an uncertainty of <0.1 arc seconds. This makes possible retrieved profiles of vertical high resolution mixing ratios, refraction base temperature and pressure from tropopause to lower mesosphere, and transmission with accuracy sufficient to infer cosmic smoke extinction. Details of the approach and recent results will be presented.

  9. Advances in photo-thermal infrared imaging microspectroscopy

    NASA Astrophysics Data System (ADS)

    Furstenberg, Robert; Kendziora, Chris; Papantonakis, Michael; Nguyen, Viet; McGill, Andrew

    2013-05-01

    There is a growing need for chemical imaging techniques in many fields of science and technology: forensics, materials science, pharmaceutical and chemical industries, just to name a few. While FTIR micro-spectroscopy is commonly used, its practical resolution limit of about 20 microns or more is often insufficient. Raman micro-spectroscopy provides better spatial resolution (~1 micron), but is not always practical because of samples exhibiting fluorescence or low Raman scattering efficiency. We are developing a non-contact and non-destructive technique we call photo-thermal infrared imaging spectroscopy (PT-IRIS). It involves photo-thermal heating of the sample with a tunable quantum cascade laser and measuring the resulting increase in thermal emission with an infrared detector. Photo-thermal emission spectra resemble FTIR absorbance spectra and can be acquired in both stand-off and microscopy configurations. Furthermore, PT-IRIS allows the acquisition of absorbance-like photo-thermal spectra in a reflected geometry, suitable for field applications and for in-situ study of samples on optically IR-opaque substrates (metals, fabrics, paint, glass etc.). Conventional FTIR microscopes in reflection mode measure the reflectance spectra which are different from absorbance spectra and are usually not catalogued in FTIR spectral libraries. In this paper, we continue developing this new technique. We perform a series of numerical simulations of the laser heating of samples during photo-thermal microscopy. We develop parameterized formulas to help the user pick the appropriate laser illumination power. We also examine the influence of sample geometry on spectral signatures. Finally, we measure and compare photo-thermal and reflectance spectra for two test samples.

  10. A New Adaptive Image Denoising Method Based on Neighboring Coefficients

    NASA Astrophysics Data System (ADS)

    Biswas, Mantosh; Om, Hari

    2016-03-01

    Many good techniques have been discussed for image denoising that include NeighShrink, improved adaptive wavelet denoising method based on neighboring coefficients (IAWDMBNC), improved wavelet shrinkage technique for image denoising (IWST), local adaptive wiener filter (LAWF), wavelet packet thresholding using median and wiener filters (WPTMWF), adaptive image denoising method based on thresholding (AIDMT). These techniques are based on local statistical description of the neighboring coefficients in a window. These methods however do not give good quality of the images since they cannot modify and remove too many small wavelet coefficients simultaneously due to the threshold. In this paper, a new image denoising method is proposed that shrinks the noisy coefficients using an adaptive threshold. Our method overcomes these drawbacks and it has better performance than the NeighShrink, IAWDMBNC, IWST, LAWF, WPTMWF, and AIDMT denoising methods.

  11. Advances in the analysis of iminocyclitols: Methods, sources and bioavailability.

    PubMed

    Amézqueta, Susana; Torres, Josep Lluís

    2016-05-01

    Iminocyclitols are chemically and metabolically stable, naturally occurring sugar mimetics. Their biological activities make them interesting and extremely promising as both drug leads and functional food ingredients. The first iminocyclitols were discovered using preparative isolation and purification methods followed by chemical characterization using nuclear magnetic resonance spectroscopy. In addition to this classical approach, gas and liquid chromatography coupled to mass spectrometry are increasingly used; they are highly sensitive techniques capable of detecting minute amounts of analytes in a broad spectrum of sources after only minimal sample preparation. These techniques have been applied to identify new iminocyclitols in plants, microorganisms and synthetic mixtures. The separation of iminocyclitol mixtures by chromatography is particularly difficult however, as the most commonly used matrices have very low selectivity for these highly hydrophilic structurally similar molecules. This review critically summarizes recent advances in the analysis of iminocyclitols from plant sources and findings regarding their quantification in dietary supplements and foodstuffs, as well as in biological fluids and organs, from bioavailability studies. PMID:26946023

  12. Underwater Photosynthesis of Submerged Plants – Recent Advances and Methods

    PubMed Central

    Pedersen, Ole; Colmer, Timothy D.; Sand-Jensen, Kaj

    2013-01-01

    We describe the general background and the recent advances in research on underwater photosynthesis of leaf segments, whole communities, and plant dominated aquatic ecosystems and present contemporary methods tailor made to quantify photosynthesis and carbon fixation under water. The majority of studies of aquatic photosynthesis have been carried out with detached leaves or thalli and this selectiveness influences the perception of the regulation of aquatic photosynthesis. We thus recommend assessing the influence of inorganic carbon and temperature on natural aquatic communities of variable density in addition to studying detached leaves in the scenarios of rising CO2 and temperature. Moreover, a growing number of researchers are interested in tolerance of terrestrial plants during flooding as torrential rains sometimes result in overland floods that inundate terrestrial plants. We propose to undertake studies to elucidate the importance of leaf acclimation of terrestrial plants to facilitate gas exchange and light utilization under water as these acclimations influence underwater photosynthesis as well as internal aeration of plant tissues during submergence. PMID:23734154

  13. Methods for integrating optical fibers with advanced aerospace materials

    NASA Astrophysics Data System (ADS)

    Poland, Stephen H.; May, Russell G.; Murphy, Kent A.; Claus, Richard O.; Tran, Tuan A.; Miller, Mark S.

    1993-07-01

    Optical fibers are attractive candidates for sensing applications in near-term smart materials and structures, due to their inherent immunity to electromagnetic interference and ground loops, their capability for distributed and multiplexed operation, and their high sensitivity and dynamic range. These same attributes also render optical fibers attractive for avionics busses for fly-by-light systems in advanced aircraft. The integration of such optical fibers with metal and composite aircraft and aerospace materials, however, remains a limiting factor in their successful use in such applications. This paper first details methods for the practical integration of optical fiber waveguides and cable assemblies onto and into materials and structures. Physical properties of the optical fiber and coatings which affect the survivability of the fiber are then considered. Mechanisms for the transfer of the strain from matrix to fiber for sensor and data bus fibers integrated with composite structural elements are evaluated for their influence on fiber survivability, in applications where strain or impact is imparted to the assembly.

  14. PRATHAM: Parallel Thermal Hydraulics Simulations using Advanced Mesoscopic Methods

    SciTech Connect

    Joshi, Abhijit S; Jain, Prashant K; Mudrich, Jaime A; Popov, Emilian L

    2012-01-01

    At the Oak Ridge National Laboratory, efforts are under way to develop a 3D, parallel LBM code called PRATHAM (PaRAllel Thermal Hydraulic simulations using Advanced Mesoscopic Methods) to demonstrate the accuracy and scalability of LBM for turbulent flow simulations in nuclear applications. The code has been developed using FORTRAN-90, and parallelized using the message passing interface MPI library. Silo library is used to compact and write the data files, and VisIt visualization software is used to post-process the simulation data in parallel. Both the single relaxation time (SRT) and multi relaxation time (MRT) LBM schemes have been implemented in PRATHAM. To capture turbulence without prohibitively increasing the grid resolution requirements, an LES approach [5] is adopted allowing large scale eddies to be numerically resolved while modeling the smaller (subgrid) eddies. In this work, a Smagorinsky model has been used, which modifies the fluid viscosity by an additional eddy viscosity depending on the magnitude of the rate-of-strain tensor. In LBM, this is achieved by locally varying the relaxation time of the fluid.

  15. Quantifying hydrate solidification front advancing using method of characteristics

    NASA Astrophysics Data System (ADS)

    You, Kehua; DiCarlo, David; Flemings, Peter B.

    2015-10-01

    We develop a one-dimensional analytical solution based on the method of characteristics to explore hydrate formation from gas injection into brine-saturated sediments within the hydrate stability zone. Our solution includes fully coupled multiphase and multicomponent flow and the associated advective transport in a homogeneous system. Our solution shows that hydrate saturation is controlled by the initial thermodynamic state of the system and changed by the gas fractional flow. Hydrate saturation in gas-rich systems can be estimated by 1-cl0/cle when Darcy flow dominates, where cl0 is the initial mass fraction of salt in brine, and cle is the mass fraction of salt in brine at three-phase (gas, liquid, and hydrate) equilibrium. Hydrate saturation is constant, gas saturation and gas flux decrease, and liquid saturation and liquid flux increase with the distance from the gas inlet to the hydrate solidification front. The total gas and liquid flux is constant from the gas inlet to the hydrate solidification front and decreases abruptly at the hydrate solidification front due to gas inclusion into the hydrate phase. The advancing velocity of the hydrate solidification front decreases with hydrate saturation at a fixed gas inflow rate. This analytical solution illuminates how hydrate is formed by gas injection (methane, CO2, ethane, propane) at both the laboratory and field scales.

  16. Imaging systems and methods for obtaining and using biometric information

    DOEpatents

    McMakin, Douglas L [Richland, WA; Kennedy, Mike O [Richland, WA

    2010-11-30

    Disclosed herein are exemplary embodiments of imaging systems and methods of using such systems. In one exemplary embodiment, one or more direct images of the body of a clothed subject are received, and a motion signature is determined from the one or more images. In this embodiment, the one or more images show movement of the body of the subject over time, and the motion signature is associated with the movement of the subject's body. In certain implementations, the subject can be identified based at least in part on the motion signature. Imaging systems for performing any of the disclosed methods are also disclosed herein. Furthermore, the disclosed imaging, rendering, and analysis methods can be implemented, at least in part, as one or more computer-readable media comprising computer-executable instructions for causing a computer to perform the respective methods.

  17. Recent advances in computer camera methods for machine vision

    NASA Astrophysics Data System (ADS)

    Olson, Gaylord G.; Walker, Jo N.

    1998-10-01

    During the past year, several new computer camera methods (hardware and software) have been developed which have applications in machine vision. These are described below, along with some test results. The improvements are generally in the direction of higher speed and greater parallelism. A PCI interface card has been designed which is adaptable to multiple CCD types, both color and monochrome. A newly designed A/D converter allows for a choice of 8 or 10-bit conversion resolution and a choice of two different analog inputs. Thus, by using four of these converters feeding the 32-bit PCI data bus, up to 8 camera heads can be used with a single PCI card, and four camera heads can be operated in parallel. The card has been designed so that any of 8 different CCD types can be used with it (6 monochrome and 2 color CCDs) ranging in resolution from 192 by 165 pixels up to 1134 by 972 pixels. In the area of software, a method has been developed to better utilize the decision-making capability of the computer along with the sub-array scan capabilities of many CCDs. Specifically, it is shown below how to achieve a dual scan mode camera system wherein one scan mode is a low density, high speed scan of a complete image area, and a higher density sub-array scan is used in those areas where changes have been observed. The name given to this technique is adaptive sub-array scanning.

  18. A new image fusion method based on curvelet transform

    NASA Astrophysics Data System (ADS)

    Chu, Binbin; Yang, Xiushun; Qi, Dening; Li, Congli; Lu, Wei

    2010-02-01

    A new image fusion method based on Multiscale Geometric Analysis (MGA), which uses the improved fusion rules, is put forward in this paper. Firstly, the input low-level-light image and infrared image are decomposed by Curvelet transform, which is realized by Unequally-Spaced Fast Fourier Transforms. Secondly, the decomposed coefficients in different scales and directions are fused by corresponding fusion rules. At last, the fusion image is acquired by recomposing the fused coefficients. The simulation results show that this method performs better than the conventional wavelet method both in the subjective vision aspect and the objective estimation indices.

  19. Restoration for blurred star image using RL method

    NASA Astrophysics Data System (ADS)

    Yan, Fei; Ma, Jie; Liu, Shoubao; Shi, Hanlu; Qi, Shengxiang; Tian, Jinwen; Fu, Wenxing

    2013-10-01

    Star image blurred by aircraft vibration decreases location accuracy and probability of the star extraction. In this paper, first, the influence of aircraft vibration on the star image captured by star sensors is analyzed, and the mathematical model is deduced and established. Then, in order to overcome the adverse effects of star extraction and stabilize the accuracy of star sensor in high dynamic environment, a restoration method for blurred star image using Richardson-Lucy (RL) method is introduced. The experimental results indicate that the proposed method can effectively improve the star image signal-to-noise ratio and the extraction accuracy.

  20. Imaging agent and method of use

    DOEpatents

    Wieland, Donald M.; Brown, Lawrence E.; Beierwaltes, William H.; Wu, Jiann-long

    1986-04-22

    A new radiopharmaceutical composition for use in nuclear medicine comprises a radioiodinated meta-iodobenzylguanidine. The composition is used as an imaging agent for the heart, adrenal medulla, and tumors of the adrenal medulla and can be used for treatment of tumors of the adrenal medulla.