Advanced Medical Technology and Network Systems Research.
1999-09-01
for image-guided therapies . Advanced technologies included in this report are impedance imaging and a palpation training system. 14. SUBJECT...Summary 1 Virtual Clinic for Patients with Chronic Illness Project Planning Document • 2 Telemedicine for Hemodialysis 21 A...imaging systems and’ surgical procedures effort is accomplished in part by establishing the technology requirements for image-guided therapies . Advanced
Recent advances in nondestructive evaluation made possible by novel uses of video systems
NASA Technical Reports Server (NTRS)
Generazio, Edward R.; Roth, Don J.
1990-01-01
Complex materials are being developed for use in future advanced aerospace systems. High temperature materials have been targeted as a major area of materials development. The development of composites consisting of ceramic matrix and ceramic fibers or whiskers is currently being aggressively pursued internationally. These new advanced materials are difficult and costly to produce; however, their low density and high operating temperature range are needed for the next generation of advanced aerospace systems. These materials represent a challenge to the nondestructive evaluation community. Video imaging techniques not only enhance the nondestructive evaluation, but they are also required for proper evaluation of these advanced materials. Specific research examples are given, highlighting the impact that video systems have had on the nondestructive evaluation of ceramics. An image processing technique for computerized determination of grain and pore size distribution functions from microstructural images is discussed. The uses of video and computer systems for displaying, evaluating, and interpreting ultrasonic image data are presented.
East, James E; Vleugels, Jasper L; Roelandt, Philip; Bhandari, Pradeep; Bisschops, Raf; Dekker, Evelien; Hassan, Cesare; Horgan, Gareth; Kiesslich, Ralf; Longcroft-Wheaton, Gaius; Wilson, Ana; Dumonceau, Jean-Marc
2016-11-01
Background and aim: This technical review is an official statement of the European Society of Gastrointestinal Endoscopy (ESGE). It addresses the utilization of advanced endoscopic imaging in gastrointestinal (GI) endoscopy. Methods: This technical review is based on a systematic literature search to evaluate the evidence supporting the use of advanced endoscopic imaging throughout the GI tract. Technologies considered include narrowed-spectrum endoscopy (narrow band imaging [NBI]; flexible spectral imaging color enhancement [FICE]; i-Scan digital contrast [I-SCAN]), autofluorescence imaging (AFI), and confocal laser endomicroscopy (CLE). The Grading of Recommendations Assessment, Development and Evaluation (GRADE) system was adopted to define the strength of recommendation and the quality of evidence. Main recommendations: 1. We suggest advanced endoscopic imaging technologies improve mucosal visualization and enhance fine structural and microvascular detail. Expert endoscopic diagnosis may be improved by advanced imaging, but as yet in community-based practice no technology has been shown consistently to be diagnostically superior to current practice with high definition white light. (Low quality evidence.) 2. We recommend the use of validated classification systems to support the use of optical diagnosis with advanced endoscopic imaging in the upper and lower GI tracts (strong recommendation, moderate quality evidence). 3. We suggest that training improves performance in the use of advanced endoscopic imaging techniques and that it is a prerequisite for use in clinical practice. A learning curve exists and training alone does not guarantee sustained high performances in clinical practice. (Weak recommendation, low quality evidence.) Conclusion: Advanced endoscopic imaging can improve mucosal visualization and endoscopic diagnosis; however it requires training and the use of validated classification systems. © Georg Thieme Verlag KG Stuttgart · New York.
Medical image computing for computer-supported diagnostics and therapy. Advances and perspectives.
Handels, H; Ehrhardt, J
2009-01-01
Medical image computing has become one of the most challenging fields in medical informatics. In image-based diagnostics of the future software assistance will become more and more important, and image analysis systems integrating advanced image computing methods are needed to extract quantitative image parameters to characterize the state and changes of image structures of interest (e.g. tumors, organs, vessels, bones etc.) in a reproducible and objective way. Furthermore, in the field of software-assisted and navigated surgery medical image computing methods play a key role and have opened up new perspectives for patient treatment. However, further developments are needed to increase the grade of automation, accuracy, reproducibility and robustness. Moreover, the systems developed have to be integrated into the clinical workflow. For the development of advanced image computing systems methods of different scientific fields have to be adapted and used in combination. The principal methodologies in medical image computing are the following: image segmentation, image registration, image analysis for quantification and computer assisted image interpretation, modeling and simulation as well as visualization and virtual reality. Especially, model-based image computing techniques open up new perspectives for prediction of organ changes and risk analysis of patients and will gain importance in diagnostic and therapy of the future. From a methodical point of view the authors identify the following future trends and perspectives in medical image computing: development of optimized application-specific systems and integration into the clinical workflow, enhanced computational models for image analysis and virtual reality training systems, integration of different image computing methods, further integration of multimodal image data and biosignals and advanced methods for 4D medical image computing. The development of image analysis systems for diagnostic support or operation planning is a complex interdisciplinary process. Image computing methods enable new insights into the patient's image data and have the future potential to improve medical diagnostics and patient treatment.
NASA Astrophysics Data System (ADS)
Murrill, Steven R.; Franck, Charmaine C.; Espinola, Richard L.; Petkie, Douglas T.; De Lucia, Frank C.; Jacobs, Eddie L.
2011-11-01
The U.S. Army Research Laboratory (ARL) and the U.S. Army Night Vision and Electronic Sensors Directorate (NVESD) have developed a terahertz-band imaging system performance model/tool for detection and identification of concealed weaponry. The details of the MATLAB-based model which accounts for the effects of all critical sensor and display components, and for the effects of atmospheric attenuation, concealment material attenuation, and active illumination, were reported on at the 2005 SPIE Europe Security & Defence Symposium (Brugge). An advanced version of the base model that accounts for both the dramatic impact that target and background orientation can have on target observability as related to specular and Lambertian reflections captured by an active-illumination-based imaging system, and for the impact of target and background thermal emission, was reported on at the 2007 SPIE Defense and Security Symposium (Orlando). This paper will provide a comprehensive review of an enhanced, user-friendly, Windows-executable, terahertz-band imaging system performance analysis and design tool that now includes additional features such as a MODTRAN-based atmospheric attenuation calculator and advanced system architecture configuration inputs that allow for straightforward performance analysis of active or passive systems based on scanning (single- or line-array detector element(s)) or staring (focal-plane-array detector elements) imaging architectures. This newly enhanced THz imaging system design tool is an extension of the advanced THz imaging system performance model that was developed under the Defense Advanced Research Project Agency's (DARPA) Terahertz Imaging Focal-Plane Technology (TIFT) program. This paper will also provide example system component (active-illumination source and detector) trade-study analyses using the new features of this user-friendly THz imaging system performance analysis and design tool.
Wentink, M; Jakimowicz, J J; Vos, L M; Meijer, D W; Wieringa, P A
2002-08-01
Compared to open surgery, minimally invasive surgery (MIS) relies heavily on advanced technology, such as endoscopic viewing systems and innovative instruments. The aim of the study was to objectively compare three technologically advanced laparoscopic viewing systems with the standard viewing system currently used in most Dutch hospitals. We evaluated the following advanced laparoscopic viewing systems: a Thin Film Transistor (TFT) display, a stereo endoscope, and an image projection display. The standard viewing system was comprised of a monocular endoscope and a high-resolution monitor. Task completion time served as the measure of performance. Eight surgeons with laparoscopic experience participated in the experiment. The average task time was significantly greater (p <0.05) with the stereo viewing system than with the standard viewing system. The average task times with the TFT display and the image projection display did not differ significantly from the standard viewing system. Although the stereo viewing system promises improved depth perception and the TFT and image projection displays are supposed to improve hand-eye coordination, none of these systems provided better task performance than the standard viewing system in this pelvi-trainer experiment.
2016-01-05
regularly used the Raman imaging system to characterize the doping chemistry of colloidal indium nitride nanoparticles . This material shows an interesting...regularly used the Raman imaging system to characterize the doping chemistry of colloidal indium nitride nanoparticles . This material shows an...analysis of thin film coatings, bulk materials, powders and nanoparticles . The instrument is extensively used to characterize advanced electrochemical and
The history of MR imaging as seen through the pages of radiology.
Edelman, Robert R
2014-11-01
The first reports in Radiology pertaining to magnetic resonance (MR) imaging were published in 1980, 7 years after Paul Lauterbur pioneered the first MR images and 9 years after the first human computed tomographic images were obtained. Historical advances in the research and clinical applications of MR imaging very much parallel the remarkable advances in MR imaging technology. These advances can be roughly classified into hardware (eg, magnets, gradients, radiofrequency [RF] coils, RF transmitter and receiver, MR imaging-compatible biopsy devices) and imaging techniques (eg, pulse sequences, parallel imaging, and so forth). Image quality has been dramatically improved with the introduction of high-field-strength superconducting magnets, digital RF systems, and phased-array coils. Hybrid systems, such as MR/positron emission tomography (PET), combine the superb anatomic and functional imaging capabilities of MR imaging with the unsurpassed capability of PET to demonstrate tissue metabolism. Supported by the improvements in hardware, advances in pulse sequence design and image reconstruction techniques have spurred dramatic improvements in imaging speed and the capability for studying tissue function. In this historical review, the history of MR imaging technology and developing research and clinical applications, as seen through the pages of Radiology, will be considered.
Advanced sensor-simulation capability
NASA Astrophysics Data System (ADS)
Cota, Stephen A.; Kalman, Linda S.; Keller, Robert A.
1990-09-01
This paper provides an overview of an advanced simulation capability currently in use for analyzing visible and infrared sensor systems. The software system, called VISTAS (VISIBLE/INFRARED SENSOR TRADES, ANALYSES, AND SIMULATIONS) combines classical image processing techniques with detailed sensor models to produce static and time dependent simulations of a variety of sensor systems including imaging, tracking, and point target detection systems. Systems modelled to date include space-based scanning line-array sensors as well as staring 2-dimensional array sensors which can be used for either imaging or point source detection.
Integrating research and clinical neuroimaging for the evaluation of traumatic brain injury recovery
NASA Astrophysics Data System (ADS)
Senseney, Justin; Ollinger, John; Graner, John; Lui, Wei; Oakes, Terry; Riedy, Gerard
2015-03-01
Advanced MRI research and other imaging modalities may serve as biomarkers for the evaluation of traumatic brain injury (TBI) recovery. However, these advanced modalities typically require off-line processing which creates images that are incompatible with radiologist viewing software sold commercially. AGFA Impax is an example of such a picture archiving and communication system(PACS) that is used by many radiology departments in the United States Military Health System. By taking advantage of Impax's use of the Digital Imaging and Communications in Medicine (DICOM) standard, we developed a system that allows for advanced medical imaging to be incorporated into clinical PACS. Radiology research can now be conducted using existing clinical imaging display platforms resources in combination with image processingtechniques that are only available outside of the clinical scanning environment. We extracted the spatial and identification elements of theDICOM standard that are necessary to allow research images to be incorporatedinto a clinical radiology system, and developed a tool that annotates research images with the proper tags. This allows for the evaluation of imaging representations of biological markers that may be useful in theevaluation of TBI and TBI recovery.
Advanced digital image archival system using MPEG technologies
NASA Astrophysics Data System (ADS)
Chang, Wo
2009-08-01
Digital information and records are vital to the human race regardless of the nationalities and eras in which they were produced. Digital image contents are produced at a rapid pace from cultural heritages via digitalization, scientific and experimental data via high speed imaging sensors, national defense satellite images from governments, medical and healthcare imaging records from hospitals, personal collection of photos from digital cameras. With these mass amounts of precious and irreplaceable data and knowledge, what standards technologies can be applied to preserve and yet provide an interoperable framework for accessing the data across varieties of systems and devices? This paper presents an advanced digital image archival system by applying the international standard of MPEG technologies to preserve digital image content.
Terahertz Tools Advance Imaging for Security, Industry
NASA Technical Reports Server (NTRS)
2010-01-01
Picometrix, a wholly owned subsidiary of Advanced Photonix Inc. (API), of Ann Arbor, Michigan, invented the world s first commercial terahertz system. The company improved the portability and capabilities of their systems through Small Business Innovation Research (SBIR) agreements with Langley Research Center to provide terahertz imaging capabilities for inspecting the space shuttle external tanks and orbiters. Now API s systems make use of the unique imaging capacity of terahertz radiation on manufacturing floors, for thickness measurements of coatings, pharmaceutical tablet production, and even art conservation.
Farooq, Hamza; Genis, Helen; Alarcon, Joseph; Vuong, Barry; Jivraj, Jamil; Yang, Victor X D; Cohen-Adad, Julien; Fehlings, Michael G; Cadotte, David W
2015-01-01
This narrative review captures a subset of recent advances in imaging of the central nervous system. First, we focus on improvements in the spatial and temporal profile afforded by optical coherence tomography, fluorescence-guided surgery, and Coherent Anti-Stokes Raman Scattering Microscopy. Next, we highlight advances in the generation and uses of imaging-based atlases and discuss how this will be applied to specific clinical situations. To conclude, we discuss how these and other imaging tools will be combined with neuronavigation techniques to guide surgeons in the operating room. Collectively, this work aims to highlight emerging biomedical imaging strategies that hold potential to be a valuable tool for both clinicians and researchers in the years to come. © 2015 Elsevier B.V. All rights reserved.
2017-12-02
Report: Acquisition of an Advanced Thermal Analysis and Imaging System for Integration with Interdisciplinary Research and Education in Low Density...for Integration with Interdisciplinary Research and Education in Low Density Organic-Inorganic Materials Report Term: 0-Other Email: dmisra2
IIPImage: Large-image visualization
NASA Astrophysics Data System (ADS)
Pillay, Ruven
2014-08-01
IIPImage is an advanced high-performance feature-rich image server system that enables online access to full resolution floating point (as well as other bit depth) images at terabyte scales. Paired with the VisiOmatic (ascl:1408.010) celestial image viewer, the system can comfortably handle gigapixel size images as well as advanced image features such as both 8, 16 and 32 bit depths, CIELAB colorimetric images and scientific imagery such as multispectral images. Streaming is tile-based, which enables viewing, navigating and zooming in real-time around gigapixel size images. Source images can be in either TIFF or JPEG2000 format. Whole images or regions within images can also be rapidly and dynamically resized and exported by the server from a single source image without the need to store multiple files in various sizes.
Advanced imaging techniques for the study of plant growth and development.
Sozzani, Rosangela; Busch, Wolfgang; Spalding, Edgar P; Benfey, Philip N
2014-05-01
A variety of imaging methodologies are being used to collect data for quantitative studies of plant growth and development from living plants. Multi-level data, from macroscopic to molecular, and from weeks to seconds, can be acquired. Furthermore, advances in parallelized and automated image acquisition enable the throughput to capture images from large populations of plants under specific growth conditions. Image-processing capabilities allow for 3D or 4D reconstruction of image data and automated quantification of biological features. These advances facilitate the integration of imaging data with genome-wide molecular data to enable systems-level modeling. Copyright © 2013 Elsevier Ltd. All rights reserved.
Diagnostic Imaging of the Hepatobiliary System: An Update.
Marolf, Angela J
2017-05-01
Recent advances in diagnostic imaging of the hepatobiliary system include MRI, computed tomography (CT), contrast-enhanced ultrasound, and ultrasound elastography. With the advent of multislice CT scanners, sedated examinations in veterinary patients are feasible, increasing the utility of this imaging modality. CT and MRI provide additional information for dogs and cats with hepatobiliary diseases due to lack of superimposition of structures, operator dependence, and through intravenous contrast administration. Advanced ultrasound methods can offer complementary information to standard ultrasound imaging. These newer imaging modalities assist clinicians by aiding diagnosis, prognostication, and surgical planning. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
1992-01-01
This document describes the Advanced Imaging System CCD based camera. The AIS1 camera system was developed at Photometric Ltd. in Tucson, Arizona as part of a Phase 2 SBIR contract No. NAS5-30171 from the NASA/Goddard Space Flight Center in Greenbelt, Maryland. The camera project was undertaken as a part of the Space Telescope Imaging Spectrograph (STIS) project. This document is intended to serve as a complete manual for the use and maintenance of the camera system. All the different parts of the camera hardware and software are discussed and complete schematics and source code listings are provided.
Recent Advances in Microwave Imaging for Breast Cancer Detection
Kwon, Sollip
2016-01-01
Breast cancer is a disease that occurs most often in female cancer patients. Early detection can significantly reduce the mortality rate. Microwave breast imaging, which is noninvasive and harmless to human, offers a promising alternative method to mammography. This paper presents a review of recent advances in microwave imaging for breast cancer detection. We conclude by introducing new research on a microwave imaging system with time-domain measurement that achieves short measurement time and low system cost. In the time-domain measurement system, scan time would take less than 1 sec, and it does not require very expensive equipment such as VNA. PMID:28096808
NASA Technical Reports Server (NTRS)
1991-01-01
The MD Image System, a true-color image processing system that serves as a diagnostic aid and tool for storage and distribution of images, was developed by Medical Image Management Systems, Huntsville, AL, as a "spinoff from a spinoff." The original spinoff, Geostar 8800, developed by Crystal Image Technologies, Huntsville, incorporates advanced UNIX versions of ELAS (developed by NASA's Earth Resources Laboratory for analysis of Landsat images) for general purpose image processing. The MD Image System is an application of this technology to a medical system that aids in the diagnosis of cancer, and can accept, store and analyze images from other sources such as Magnetic Resonance Imaging.
Development and testing of the EVS 2000 enhanced vision system
NASA Astrophysics Data System (ADS)
Way, Scott P.; Kerr, Richard; Imamura, Joe J.; Arnoldy, Dan; Zeylmaker, Richard; Zuro, Greg
2003-09-01
An effective enhanced vision system must operate over a broad spectral range in order to offer a pilot an optimized scene that includes runway background as well as airport lighting and aircraft operations. The large dynamic range of intensities of these images is best handled with separate imaging sensors. The EVS 2000 is a patented dual-band Infrared Enhanced Vision System (EVS) utilizing image fusion concepts to provide a single image from uncooled infrared imagers in both the LWIR and SWIR. The system is designed to provide commercial and corporate airline pilots with improved situational awareness at night and in degraded weather conditions. A prototype of this system was recently fabricated and flown on the Boeing Advanced Technology Demonstrator 737-900 aircraft. This paper will discuss the current EVS 2000 concept, show results taken from the Boeing Advanced Technology Demonstrator program, and discuss future plans for EVS systems.
Advanced processing for high-bandwidth sensor systems
NASA Astrophysics Data System (ADS)
Szymanski, John J.; Blain, Phil C.; Bloch, Jeffrey J.; Brislawn, Christopher M.; Brumby, Steven P.; Cafferty, Maureen M.; Dunham, Mark E.; Frigo, Janette R.; Gokhale, Maya; Harvey, Neal R.; Kenyon, Garrett; Kim, Won-Ha; Layne, J.; Lavenier, Dominique D.; McCabe, Kevin P.; Mitchell, Melanie; Moore, Kurt R.; Perkins, Simon J.; Porter, Reid B.; Robinson, S.; Salazar, Alfonso; Theiler, James P.; Young, Aaron C.
2000-11-01
Compute performance and algorithm design are key problems of image processing and scientific computing in general. For example, imaging spectrometers are capable of producing data in hundreds of spectral bands with millions of pixels. These data sets show great promise for remote sensing applications, but require new and computationally intensive processing. The goal of the Deployable Adaptive Processing Systems (DAPS) project at Los Alamos National Laboratory is to develop advanced processing hardware and algorithms for high-bandwidth sensor applications. The project has produced electronics for processing multi- and hyper-spectral sensor data, as well as LIDAR data, while employing processing elements using a variety of technologies. The project team is currently working on reconfigurable computing technology and advanced feature extraction techniques, with an emphasis on their application to image and RF signal processing. This paper presents reconfigurable computing technology and advanced feature extraction algorithm work and their application to multi- and hyperspectral image processing. Related projects on genetic algorithms as applied to image processing will be introduced, as will the collaboration between the DAPS project and the DARPA Adaptive Computing Systems program. Further details are presented in other talks during this conference and in other conferences taking place during this symposium.
NASA Astrophysics Data System (ADS)
Wang, Y.; Tobias, B.; Chang, Y.-T.; Yu, J.-H.; Li, M.; Hu, F.; Chen, M.; Mamidanna, M.; Phan, T.; Pham, A.-V.; Gu, J.; Liu, X.; Zhu, Y.; Domier, C. W.; Shi, L.; Valeo, E.; Kramer, G. J.; Kuwahara, D.; Nagayama, Y.; Mase, A.; Luhmann, N. C., Jr.
2017-07-01
Electron cyclotron emission (ECE) imaging is a passive radiometric technique that measures electron temperature fluctuations; and microwave imaging reflectometry (MIR) is an active radar imaging technique that measures electron density fluctuations. Microwave imaging diagnostic instruments employing these techniques have made important contributions to fusion science and have been adopted at major fusion facilities worldwide including DIII-D, EAST, ASDEX Upgrade, HL-2A, KSTAR, LHD, and J-TEXT. In this paper, we describe the development status of three major technological advancements: custom mm-wave integrated circuits (ICs), digital beamforming (DBF), and synthetic diagnostic modeling (SDM). These have the potential to greatly advance microwave fusion plasma imaging, enabling compact and low-noise transceiver systems with real-time, fast tracking ability to address critical fusion physics issues, including ELM suppression and disruptions in the ITER baseline scenario, naturally ELM-free states such as QH-mode, and energetic particle confinement (i.e. Alfvén eigenmode stability) in high-performance regimes that include steady-state and advanced tokamak scenarios. Furthermore, these systems are fully compatible with today’s most challenging non-inductive heating and current drive systems and capable of operating in harsh environments, making them the ideal approach for diagnosing long-pulse and steady-state tokamaks.
Wang, Y.; Tobias, B.; Chang, Y. -T.; ...
2017-03-14
Electron cyclotron emission (ECE) imaging is a passive radiometric technique that measures electron temperature fluctuations; and microwave imaging reflectometry (MIR) is an active radar imaging technique that measures electron density fluctuations. The microwave imaging diagnostic instruments employing these techniques have made important contributions to fusion science and have been adopted at major fusion facilities worldwide including DIII-D, EAST, ASDEX Upgrade, HL-2A, KSTAR, LHD, and J-TEXT. In this paper, we describe the development status of three major technological advancements: custom mm-wave integrated circuits (ICs), digital beamforming (DBF), and synthetic diagnostic modeling (SDM). These also have the potential to greatly advance microwavemore » fusion plasma imaging, enabling compact and low-noise transceiver systems with real-time, fast tracking ability to address critical fusion physics issues, including ELM suppression and disruptions in the ITER baseline scenario, naturally ELM-free states such as QH-mode, and energetic particle confinement (i.e. Alfven eigenmode stability) in high-performance regimes that include steady-state and advanced tokamak scenarios. Furthermore, these systems are fully compatible with today's most challenging non-inductive heating and current drive systems and capable of operating in harsh environments, making them the ideal approach for diagnosing long-pulse and steady-state tokamaks.« less
NASA Astrophysics Data System (ADS)
The present conference discusses topics in multiwavelength network technology and its applications, advanced digital radio systems in their propagation environment, mobile radio communications, switching programmability, advancements in computer communications, integrated-network management and security, HDTV and image processing in communications, basic exchange communications radio advancements in digital switching, intelligent network evolution, speech coding for telecommunications, and multiple access communications. Also discussed are network designs for quality assurance, recent progress in coherent optical systems, digital radio applications, advanced communications technologies for mobile users, communication software for switching systems, AI and expert systems in network management, intelligent multiplexing nodes, video and image coding, network protocols and performance, system methods in quality and reliability, the design and simulation of lightwave systems, local radio networks, mobile satellite communications systems, fiber networks restoration, packet video networks, human interfaces for future networks, and lightwave networking.
Advanced technology development for image gathering, coding, and processing
NASA Technical Reports Server (NTRS)
Huck, Friedrich O.
1990-01-01
Three overlapping areas of research activities are presented: (1) Information theory and optimal filtering are extended to visual information acquisition and processing. The goal is to provide a comprehensive methodology for quantitatively assessing the end-to-end performance of image gathering, coding, and processing. (2) Focal-plane processing techniques and technology are developed to combine effectively image gathering with coding. The emphasis is on low-level vision processing akin to the retinal processing in human vision. (3) A breadboard adaptive image-coding system is being assembled. This system will be used to develop and evaluate a number of advanced image-coding technologies and techniques as well as research the concept of adaptive image coding.
Advances in Gamma-Ray Imaging with Intensified Quantum-Imaging Detectors
NASA Astrophysics Data System (ADS)
Han, Ling
Nuclear medicine, an important branch of modern medical imaging, is an essential tool for both diagnosis and treatment of disease. As the fundamental element of nuclear medicine imaging, the gamma camera is able to detect gamma-ray photons emitted by radiotracers injected into a patient and form an image of the radiotracer distribution, reflecting biological functions of organs or tissues. Recently, an intensified CCD/CMOS-based quantum detector, called iQID, was developed in the Center for Gamma-Ray Imaging. Originally designed as a novel type of gamma camera, iQID demonstrated ultra-high spatial resolution (< 100 micron) and many other advantages over traditional gamma cameras. This work focuses on advancing this conceptually-proven gamma-ray imaging technology to make it ready for both preclinical and clinical applications. To start with, a Monte Carlo simulation of the key light-intensification device, i.e. the image intensifier, was developed, which revealed the dominating factor(s) that limit energy resolution performance of the iQID cameras. For preclinical imaging applications, a previously-developed iQID-based single-photon-emission computed-tomography (SPECT) system, called FastSPECT III, was fully advanced in terms of data acquisition software, system sensitivity and effective FOV by developing and adopting a new photon-counting algorithm, thicker columnar scintillation detectors, and system calibration method. Originally designed for mouse brain imaging, the system is now able to provide full-body mouse imaging with sub-350-micron spatial resolution. To further advance the iQID technology to include clinical imaging applications, a novel large-area iQID gamma camera, called LA-iQID, was developed from concept to prototype. Sub-mm system resolution in an effective FOV of 188 mm x 188 mm has been achieved. The camera architecture, system components, design and integration, data acquisition, camera calibration, and performance evaluation are presented in this work. Mounted on a castered counter-weighted clinical cart, the camera also features portable and mobile capabilities for easy handling and on-site applications at remote locations where hospital facilities are not available.
Systems Biology-Driven Hypotheses Tested In Vivo: The Need to Advancing Molecular Imaging Tools.
Verma, Garima; Palombo, Alessandro; Grigioni, Mauro; La Monaca, Morena; D'Avenio, Giuseppe
2018-01-01
Processing and interpretation of biological images may provide invaluable insights on complex, living systems because images capture the overall dynamics as a "whole." Therefore, "extraction" of key, quantitative morphological parameters could be, at least in principle, helpful in building a reliable systems biology approach in understanding living objects. Molecular imaging tools for system biology models have attained widespread usage in modern experimental laboratories. Here, we provide an overview on advances in the computational technology and different instrumentations focused on molecular image processing and analysis. Quantitative data analysis through various open source software and algorithmic protocols will provide a novel approach for modeling the experimental research program. Besides this, we also highlight the predictable future trends regarding methods for automatically analyzing biological data. Such tools will be very useful to understand the detailed biological and mathematical expressions under in-silico system biology processes with modeling properties.
NASA Technical Reports Server (NTRS)
Barrett, Eamon B. (Editor); Pearson, James J. (Editor)
1989-01-01
Image understanding concepts and models, image understanding systems and applications, advanced digital processors and software tools, and advanced man-machine interfaces are among the topics discussed. Particular papers are presented on such topics as neural networks for computer vision, object-based segmentation and color recognition in multispectral images, the application of image algebra to image measurement and feature extraction, and the integration of modeling and graphics to create an infrared signal processing test bed.
Vision Based Autonomous Robotic Control for Advanced Inspection and Repair
NASA Technical Reports Server (NTRS)
Wehner, Walter S.
2014-01-01
The advanced inspection system is an autonomous control and analysis system that improves the inspection and remediation operations for ground and surface systems. It uses optical imaging technology with intelligent computer vision algorithms to analyze physical features of the real-world environment to make decisions and learn from experience. The advanced inspection system plans to control a robotic manipulator arm, an unmanned ground vehicle and cameras remotely, automatically and autonomously. There are many computer vision, image processing and machine learning techniques available as open source for using vision as a sensory feedback in decision-making and autonomous robotic movement. My responsibilities for the advanced inspection system are to create a software architecture that integrates and provides a framework for all the different subsystem components; identify open-source algorithms and techniques; and integrate robot hardware.
Advances in indirect detector systems for ultra high-speed hard X-ray imaging with synchrotron light
NASA Astrophysics Data System (ADS)
Olbinado, M. P.; Grenzer, J.; Pradel, P.; De Resseguier, T.; Vagovic, P.; Zdora, M.-C.; Guzenko, V. A.; David, C.; Rack, A.
2018-04-01
We report on indirect X-ray detector systems for various full-field, ultra high-speed X-ray imaging methodologies, such as X-ray phase-contrast radiography, diffraction topography, grating interferometry and speckle-based imaging performed at the hard X-ray imaging beamline ID19 of the European Synchrotron—ESRF. Our work highlights the versatility of indirect X-ray detectors to multiple goals such as single synchrotron pulse isolation, multiple-frame recording up to millions frames per second, high efficiency, and high spatial resolution. Besides the technical advancements, potential applications are briefly introduced and discussed.
vertical. See Flickr for more sizes and details. Advanced wireless sensing systems for wind-turbine blades Advanced wireless sensing systems for wind-turbine blades Researcher explores solar energy solutions at the
Minati, L; Ghielmetti, F; Ciobanu, V; D'Incerti, L; Maccagnano, C; Bizzi, A; Bruzzone, M G
2007-03-01
Advanced neuroimaging techniques, such as functional magnetic resonance imaging (fMRI), chemical shift spectroscopy imaging (CSI), diffusion tensor imaging (DTI), and perfusion-weighted imaging (PWI) create novel challenges in terms of data storage and management: huge amounts of raw data are generated, the results of analysis may depend on the software and settings that have been used, and most often intermediate files are inherently not compliant with the current DICOM (digital imaging and communication in medicine) standard, as they contain multidimensional complex and tensor arrays and various other types of data structures. A software architecture, referred to as Bio-Image Warehouse System (BIWS), which can be used alongside a radiology information system/picture archiving and communication system (RIS/PACS) system to store neuroimaging data for research purposes, is presented. The system architecture is conceived with the purpose of enabling to query by diagnosis according to a predefined two-layered classification taxonomy. The operational impact of the system and the time needed to get acquainted with the web-based interface and with the taxonomy are found to be limited. The development of modules enabling automated creation of statistical templates is proposed.
Latest advances in molecular imaging instrumentation.
Pichler, Bernd J; Wehrl, Hans F; Judenhofer, Martin S
2008-06-01
This review concentrates on the latest advances in molecular imaging technology, including PET, MRI, and optical imaging. In PET, significant improvements in tumor detection and image resolution have been achieved by introducing new scintillation materials, iterative image reconstruction, and correction methods. These advances enabled the first clinical scanners capable of time-of-flight detection and incorporating point-spread-function reconstruction to compensate for depth-of-interaction effects. In the field of MRI, the most important developments in recent years have mainly been MRI systems with higher field strengths and improved radiofrequency coil technology. Hyperpolarized imaging, functional MRI, and MR spectroscopy provide molecular information in vivo. A special focus of this review article is multimodality imaging and, in particular, the emerging field of combined PET/MRI.
Advanced Land Imager Assessment System
NASA Technical Reports Server (NTRS)
Chander, Gyanesh; Choate, Mike; Christopherson, Jon; Hollaren, Doug; Morfitt, Ron; Nelson, Jim; Nelson, Shar; Storey, James; Helder, Dennis; Ruggles, Tim;
2008-01-01
The Advanced Land Imager Assessment System (ALIAS) supports radiometric and geometric image processing for the Advanced Land Imager (ALI) instrument onboard NASA s Earth Observing-1 (EO-1) satellite. ALIAS consists of two processing subsystems for radiometric and geometric processing of the ALI s multispectral imagery. The radiometric processing subsystem characterizes and corrects, where possible, radiometric qualities including: coherent, impulse; and random noise; signal-to-noise ratios (SNRs); detector operability; gain; bias; saturation levels; striping and banding; and the stability of detector performance. The geometric processing subsystem and analysis capabilities support sensor alignment calibrations, sensor chip assembly (SCA)-to-SCA alignments and band-to-band alignment; and perform geodetic accuracy assessments, modulation transfer function (MTF) characterizations, and image-to-image characterizations. ALIAS also characterizes and corrects band-toband registration, and performs systematic precision and terrain correction of ALI images. This system can geometrically correct, and automatically mosaic, the SCA image strips into a seamless, map-projected image. This system provides a large database, which enables bulk trending for all ALI image data and significant instrument telemetry. Bulk trending consists of two functions: Housekeeping Processing and Bulk Radiometric Processing. The Housekeeping function pulls telemetry and temperature information from the instrument housekeeping files and writes this information to a database for trending. The Bulk Radiometric Processing function writes statistical information from the dark data acquired before and after the Earth imagery and the lamp data to the database for trending. This allows for multi-scene statistical analyses.
DOT National Transportation Integrated Search
2010-01-01
The current project, funded by MIOH-UTC for the period 1/1/2009- 4/30/2010, is concerned : with the development of the framework for a transportation facility inspection system using : advanced image processing techniques. The focus of this study is ...
Evaluation of a video image detection system : final report.
DOT National Transportation Integrated Search
1994-05-01
A video image detection system (VIDS) is an advanced wide-area traffic monitoring system : that processes input from a video camera. The Autoscope VIDS coupled with an information : management system was selected as the monitoring device because test...
... CT Imaging System back to top Advances in Technology and Clinical Practice Today most CT systems are ... in relatively less time. Another advancement in the technology is electron beam CT, also known as EBCT. ...
A commercialized photoacoustic microscopy system with switchable optical and acoustic resolutions
NASA Astrophysics Data System (ADS)
Pu, Yang; Bi, Renzhe; Olivo, Malini; Zhao, Xiaojie
2018-02-01
A focused-scanning photoacoustic microscopy (PAM) is available to help advancing life science research in neuroscience, cell biology, and in vivo imaging. At this early stage, the only one manufacturer of PAM systems, MicroPhotoAcoustics (MPA; Ronkonkoma, NY), MPA has developed a commercial PAM system with switchable optical and acoustic resolution (OR- and AR-PAM), using multiple patents licensed from the lab of Lihong Wang, who pioneered photoacoustics. The system includes different excitation sources. Two kilohertz-tunable, Q-switched, Diode Pumped Solid-State (DPSS) lasers offering a up to 30kHz pulse repetition rate and 9 ns pulse duration with 532 and 559 nm to achieve functional photoacoustic tomography for sO2 (oxygen saturation of hemoglobin) imaging in OR-PAM. A Ti:sapphire laser from 700 to 900 nm to achieve deep-tissue imaging. OR-PAM provides up to 1 mm penetration depth and 5 μm lateral resolution. while AR-PAM offers up to 3 mm imaging depth and 45 μm lateral resolution. The scanning step sizes for OR- and AR-PAM are 0.625 and 6.25 μm, respectively. Researchers have used the system for a range of applications, including preclinical neural imaging; imaging of cell nuclei in intestine, ear, and leg; and preclinical human imaging of finger cuticle. With the continuation of new technological advancements and discoveries, MPA plans to further advance PAM to achieve faster imaging speed, higher spatial resolution at deeper tissue layer, and address a broader range of biomedical applications.
Testing and evaluation of tactical electro-optical sensors
NASA Astrophysics Data System (ADS)
Middlebrook, Christopher T.; Smith, John G.
2002-07-01
As integrated electro-optical sensor payloads (multi- sensors) comprised of infrared imagers, visible imagers, and lasers advance in performance, the tests and testing methods must also advance in order to fully evaluate them. Future operational requirements will require integrated sensor payloads to perform missions at further ranges and with increased targeting accuracy. In order to meet these requirements sensors will require advanced imaging algorithms, advanced tracking capability, high-powered lasers, and high-resolution imagers. To meet the U.S. Navy's testing requirements of such multi-sensors, the test and evaluation group in the Night Vision and Chemical Biological Warfare Department at NAVSEA Crane is developing automated testing methods, and improved tests to evaluate imaging algorithms, and procuring advanced testing hardware to measure high resolution imagers and line of sight stabilization of targeting systems. This paper addresses: descriptions of the multi-sensor payloads tested, testing methods used and under development, and the different types of testing hardware and specific payload tests that are being developed and used at NAVSEA Crane.
NASA Astrophysics Data System (ADS)
Aguirre, Aaron D.; Zhou, Chao; Lee, Hsiang-Chieh; Ahsen, Osman O.; Fujimoto, James G.
Cellular imaging of human tissues remains an important advance for many clinical applications of optical coherence tomography (OCT). Imaging cells with traditional OCT systems has not been possible due to the limited transverse resolution of such techniques. Optical coherence microscopy (OCM) refers to OCT methods that achieve high transverse resolution to visualize cells and subcellular features. This chapter provides a comprehensive discussion of the rationale for cellular imaging in human tissues as well as a review of the key technological advances required to achieve it. Time domain and Fourier domain OCM approaches are described with an emphasis on state of the art system designs, including miniaturized endoscopic imaging probes. Clinical applications are discussed and multiple examples of cellular imaging in human tissues are provided.
Wachman, Elliot S; Geyer, Stanley J; Recht, Joel M; Ward, Jon; Zhang, Bill; Reed, Murray; Pannell, Chris
2014-05-01
An acousto-optic tunable filter (AOTF)-based multispectral imaging microscope system allows the combination of cellular morphology and multiple biomarker stainings on a single microscope slide. We describe advances in AOTF technology that have greatly improved spectral purity, field uniformity, and image quality. A multispectral imaging bright field microscope using these advances demonstrates pathology results that have great potential for clinical use.
MO-FG-207-00: Technological Advances in PET/MR Imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2015-06-15
The use of integrated PET/MRI systems in clinical applications can best benefit from understanding their technological advances and limitations. The currently available clinical PET/MRI systems have their own characteristics. Thorough analyses of existing technical data and evaluation of necessary performance metrics for quality assurances could be conducted to optimize application-specific PET/MRI protocols. This Symposium will focus on technical advances and limitations of clinical PET/MRI systems, and how this exciting imaging modality can be utilized in applications that can benefit from both PET and MRI. Learning Objectives: To understand the technological advances of clinical PET/MRI systems To correctly identify clinical applicationsmore » that can benefit from PET/MRI To understand ongoing work to further improve the current PET/MRI technology Floris Jansen is a GE Healthcare employee.« less
A novel design for scintillator-based neutron and gamma imaging in inertial confinement fusion
NASA Astrophysics Data System (ADS)
Geppert-Kleinrath, Verena; Cutler, Theresa; Danly, Chris; Madden, Amanda; Merrill, Frank; Tybo, Josh; Volegov, Petr; Wilde, Carl
2017-10-01
The LANL Advanced Imaging team has been providing reliable 2D neutron imaging of the burning fusion fuel at NIF for years, revealing possible multi-dimensional asymmetries in the fuel shape, and therefore calling for additional views. Adding a passive imaging system using image plate techniques along a new polar line of sight has recently demonstrated the merit of 3D neutron image reconstruction. Now, the team is in the process of designing a new active neutron imaging system for an additional equatorial view. The design will include a gamma imaging system as well, to allow for the imaging of carbon in the ablator of the NIF fuel capsules, constraining the burning fuel shape even further. The selection of ideal scintillator materials for a position-sensitive detector system is the key component for the new design. A comprehensive study of advanced scintillators has been carried out at the Los Alamos Neutron Science Center and the OMEGA Laser Facility in Rochester, NY. Neutron radiography using a fast-gated CCD camera system delivers measurements of resolution, light output and noise characteristics. The measured performance parameters inform the novel design, for which we conclude the feasibility of monolithic scintillators over pixelated counterparts.
Advanced astigmatism-corrected Czerny-Turner imaging spectrometer in spectral broadband
NASA Astrophysics Data System (ADS)
Cong, Hai-fang
2014-12-01
This paper reports an advanced Czerny-Turner optical structure which is used for the application in imaging spectrometers. To obtain the excellent imaging quality, a cylindrical lens with a wedge angle is used between the focusing mirror and the imaging plane to remove astigmatism in broadband. It makes the advanced optical system presents high resolution over the full bandwidth and decreases the cost. An example of the imaging spectrometer in the waveband of 260nm~520nm has been designed to prove our theory. It yields the excellent modulation transfer functions (MTF) of all fields of view which are more than 0.75 over the broadband under the required Nyquist frequency (20lp/mm).
The Advanced Gamma-ray Imaging System (AGIS): Simulation Studies
NASA Astrophysics Data System (ADS)
Fegan, Stephen; Buckley, J. H.; Bugaev, S.; Funk, S.; Konopelko, A.; Maier, G.; Vassiliev, V. V.; Simulation Studies Working Group; AGIS Collaboration
2008-03-01
The Advanced Gamma-ray Imaging System (AGIS) is a concept for the next generation instrument in ground-based very high energy gamma-ray astronomy. It has the goal of achieving significant improvement in sensitivity over current experiments. We present the results of simulation studies of various possible designs for AGIS. The primary characteristics of the array performance, collecting area, angular resolution, background rejection, and sensitivity are discussed.
Advanced biologically plausible algorithms for low-level image processing
NASA Astrophysics Data System (ADS)
Gusakova, Valentina I.; Podladchikova, Lubov N.; Shaposhnikov, Dmitry G.; Markin, Sergey N.; Golovan, Alexander V.; Lee, Seong-Whan
1999-08-01
At present, in computer vision, the approach based on modeling the biological vision mechanisms is extensively developed. However, up to now, real world image processing has no effective solution in frameworks of both biologically inspired and conventional approaches. Evidently, new algorithms and system architectures based on advanced biological motivation should be developed for solution of computational problems related to this visual task. Basic problems that should be solved for creation of effective artificial visual system to process real world imags are a search for new algorithms of low-level image processing that, in a great extent, determine system performance. In the present paper, the result of psychophysical experiments and several advanced biologically motivated algorithms for low-level processing are presented. These algorithms are based on local space-variant filter, context encoding visual information presented in the center of input window, and automatic detection of perceptually important image fragments. The core of latter algorithm are using local feature conjunctions such as noncolinear oriented segment and composite feature map formation. Developed algorithms were integrated into foveal active vision model, the MARR. It is supposed that proposed algorithms may significantly improve model performance while real world image processing during memorizing, search, and recognition.
Advances in low-cost long-wave infrared polymer windows
NASA Astrophysics Data System (ADS)
Weimer, Wayne A.; Klocek, Paul
1999-07-01
Recent improvements in engineered polymeric material compositions and advances in processing methodologies developed and patented at Raytheon Systems Company have produced long wave IR windows at exceptionally low costs. These UV stabilized, high strength windows incorporating subwavelength structured antireflection surfaces are enabling IR imaging systems to penetrate commercial markets and will reduce the cost of systems delivered to the military. The optical and mechanical properties of these windows will be discussed in detail with reference to the short and long-term impact on military IR imaging systems.
Multidimensional Processing and Visual Rendering of Complex 3D Biomedical Images
NASA Technical Reports Server (NTRS)
Sams, Clarence F.
2016-01-01
The proposed technology uses advanced image analysis techniques to maximize the resolution and utility of medical imaging methods being used during spaceflight. We utilize COTS technology for medical imaging, but our applications require higher resolution assessment of the medical images than is routinely applied with nominal system software. By leveraging advanced data reduction and multidimensional imaging techniques utilized in analysis of Planetary Sciences and Cell Biology imaging, it is possible to significantly increase the information extracted from the onboard biomedical imaging systems. Year 1 focused on application of these techniques to the ocular images collected on ground test subjects and ISS crewmembers. Focus was on the choroidal vasculature and the structure of the optic disc. Methods allowed for increased resolution and quantitation of structural changes enabling detailed assessment of progression over time. These techniques enhance the monitoring and evaluation of crew vision issues during space flight.
Directed molecular evolution to design advanced red fluorescent proteins.
Subach, Fedor V; Piatkevich, Kiryl D; Verkhusha, Vladislav V
2011-11-29
Fluorescent proteins have become indispensable imaging tools for biomedical research. Continuing progress in fluorescence imaging, however, requires probes with additional colors and properties optimized for emerging techniques. Here we summarize strategies for development of red-shifted fluorescent proteins. We discuss possibilities for knowledge-based rational design based on the photochemistry of fluorescent proteins and the position of the chromophore in protein structure. We consider advances in library design by mutagenesis, protein expression systems and instrumentation for high-throughput screening that should yield improved fluorescent proteins for advanced imaging applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osin, D.; Schindler, T., E-mail: dosin@trialphaenergy.com
2016-11-15
A dual wavelength imaging system has been developed and installed on C-2U to capture 2D images of a He jet in the Scrape-Off Layer (SOL) of an advanced beam-driven Field-Reversed Configuration (FRC) plasma. The system was designed to optically split two identical images and pass them through 1 nm FWHM filters. Dual wavelength images are focused adjacent on a large format CCD chip and recorded simultaneously with a time resolution down to 10 μs using a gated micro-channel plate. The relatively compact optical system images a 10 cm plasma region with a spatial resolution of 0.2 cm and can bemore » used in a harsh environment with high electro-magnetic noise and high magnetic field. The dual wavelength imaging system provides 2D images of either electron density or temperature by observing spectral line pairs emitted by He jet atoms in the SOL. A large field of view, combined with good space and time resolution of the imaging system, allows visualization of macro-flows in the SOL. First 2D images of the electron density and temperature observed in the SOL of the C-2U FRC are presented.« less
NASA Astrophysics Data System (ADS)
LeGrand, Anne
2017-02-01
The role of medical imaging in global health systems is literally fundamental. Like labs, medical images are used at one point or another in almost every high cost, high value episode of care. CT scans, mammograms, and x-rays, for example, "atlas" the body and help chart a course forward for a patient's care team. Imaging precision has improved as a result of technological advancements and breakthroughs in related medical research. Those advancements also bring with them exponential growth in medical imaging data. As IBM trains Watson to "see" medical images, Ms. Le Grand will discuss recent advances made by Watson Health and explore the potential value of "augmented intelligence" to assist healthcare providers like radiologists and cardiologists, as well as the patients they serve.
NASA Technical Reports Server (NTRS)
2009-01-01
Topics covered include: Image-Capture Devices Extend Medicine's Reach; Medical Devices Assess, Treat Balance Disorders; NASA Bioreactors Advance Disease Treatments; Robotics Algorithms Provide Nutritional Guidelines; "Anti-Gravity" Treadmills Speed Rehabilitation; Crew Management Processes Revitalize Patient Care; Hubble Systems Optimize Hospital Schedules; Web-based Programs Assess Cognitive Fitness; Electrolyte Concentrates Treat Dehydration; Tools Lighten Designs, Maintain Structural Integrity; Insulating Foams Save Money, Increase Safety; Polyimide Resins Resist Extreme Temperatures; Sensors Locate Radio Interference; Surface Operations Systems Improve Airport Efficiency; Nontoxic Resins Advance Aerospace Manufacturing; Sensors Provide Early Warning of Biological Threats; Robot Saves Soldier's Lives Overseas (MarcBot); Apollo-Era Life Raft Saves Hundreds of Sailors; Circuits Enhance Scientific Instruments and Safety Devices; Tough Textiles Protect Payloads and Public Safety Officers; Forecasting Tools Point to Fishing Hotspots; Air Purifiers Eliminate Pathogens, Preserve Food; Fabrics Protect Sensitive Skin from UV Rays; Phase Change Fabrics Control Temperature; Tiny Devices Project Sharp, Colorful Images; Star-Mapping Tools Enable Tracking of Endangered Animals; Nanofiber Filters Eliminate Contaminants; Modeling Innovations Advance Wind Energy Industry; Thermal Insulation Strips Conserve Energy; Satellite Respondent Buoys Identify Ocean Debris; Mobile Instruments Measure Atmospheric Pollutants; Cloud Imagers Offer New Details on Earth's Health; Antennas Lower Cost of Satellite Access; Feature Detection Systems Enhance Satellite Imagery; Chlorophyll Meters Aid Plant Nutrient Management; Telemetry Boards Interpret Rocket, Airplane Engine Data; Programs Automate Complex Operations Monitoring; Software Tools Streamline Project Management; Modeling Languages Refine Vehicle Design; Radio Relays Improve Wireless Products; Advanced Sensors Boost Optical Communication, Imaging; Tensile Fabrics Enhance Architecture Around the World; Robust Light Filters Support Powerful Imaging Devices; Thermoelectric Devices Cool, Power Electronics; Innovative Tools Advance Revolutionary Weld Technique; Methods Reduce Cost, Enhance Quality of Nanotubes; Gauging Systems Monitor Cryogenic Liquids; Voltage Sensors Monitor Harmful Static; and Compact Instruments Measure Heat Potential.
A simultaneous multimodal imaging system for tissue functional parameters
NASA Astrophysics Data System (ADS)
Ren, Wenqi; Zhang, Zhiwu; Wu, Qiang; Zhang, Shiwu; Xu, Ronald
2014-02-01
Simultaneous and quantitative assessment of skin functional characteristics in different modalities will facilitate diagnosis and therapy in many clinical applications such as wound healing. However, many existing clinical practices and multimodal imaging systems are subjective, qualitative, sequential for multimodal data collection, and need co-registration between different modalities. To overcome these limitations, we developed a multimodal imaging system for quantitative, non-invasive, and simultaneous imaging of cutaneous tissue oxygenation and blood perfusion parameters. The imaging system integrated multispectral and laser speckle imaging technologies into one experimental setup. A Labview interface was developed for equipment control, synchronization, and image acquisition. Advanced algorithms based on a wide gap second derivative reflectometry and laser speckle contrast analysis (LASCA) were developed for accurate reconstruction of tissue oxygenation and blood perfusion respectively. Quantitative calibration experiments and a new style of skinsimulating phantom were designed to verify the accuracy and reliability of the imaging system. The experimental results were compared with a Moor tissue oxygenation and perfusion monitor. For In vivo testing, a post-occlusion reactive hyperemia (PORH) procedure in human subject and an ongoing wound healing monitoring experiment using dorsal skinfold chamber models were conducted to validate the usability of our system for dynamic detection of oxygenation and perfusion parameters. In this study, we have not only setup an advanced multimodal imaging system for cutaneous tissue oxygenation and perfusion parameters but also elucidated its potential for wound healing assessment in clinical practice.
Solid state high resolution multi-spectral imager CCD test phase
NASA Technical Reports Server (NTRS)
1973-01-01
The program consisted of measuring the performance characteristics of charge coupled linear imaging devices, and a study defining a multispectral imaging system employing advanced solid state photodetection techniques.
Portable Hyperspectral Imaging Broadens Sensing Horizons
NASA Technical Reports Server (NTRS)
2007-01-01
Broadband multispectral imaging can be very helpful in showing differences in energy being radiated and is often employed by NASA satellites to monitor temperature and climate changes. In addition, hyperspectral imaging is ideal for advanced laboratory uses, biomedical imaging, forensics, counter-terrorism, skin health, food safety, and Earth imaging. Lextel Intelligence Systems, LLC, of Jackson, Mississippi purchased Photon Industries Inc., a spinoff company of NASA's Stennis Space Center and the Institute for Technology Development dedicated to developing new hyperspectral imaging technologies. Lextel has added new features to and expanded the applicability of the hyperspectral imaging systems. It has made advances in the size, usability, and cost of the instruments. The company now offers a suite of turnkey hyperspectral imaging systems based on the original NASA groundwork. It currently has four lines of hyperspectral imaging products: the EagleEye VNIR 100E, the EagleEye SWIR 100E, the EagleEye SWIR 200E, and the EagleEye UV 100E. These Lextel instruments are used worldwide for a wide variety of applications including medical, military, forensics, and food safety.
NASA Technical Reports Server (NTRS)
Rice, R. F.
1978-01-01
Various communication systems were considered which are required to transmit both imaging and a typically error sensitive, class of data called general science/engineering (gse) over a Gaussian channel. The approach jointly treats the imaging and gse transmission problems, allowing comparisons of systems which include various channel coding and data compression alternatives. Actual system comparisons include an Advanced Imaging Communication System (AICS) which exhibits the rather significant potential advantages of sophisticated data compression coupled with powerful yet practical channel coding.
Hepatocellular carcinoma: Advances in diagnostic imaging.
Sun, Haoran; Song, Tianqiang
2015-10-01
Thanks to the growing knowledge on biological behaviors of hepatocellular carcinomas (HCC), as well as continuous improvement in imaging techniques and experienced interpretation of imaging features of the nodules in cirrhotic liver, the detection and characterization of HCC has improved in the past decade. A number of practice guidelines for imaging diagnosis have been developed to reduce interpretation variability and standardize management of HCC, and they are constantly updated with advances in imaging techniques and evidence based data from clinical series. In this article, we strive to review the imaging techniques and the characteristic features of hepatocellular carcinoma associated with cirrhotic liver, with emphasis on the diagnostic value of advanced magnetic resonance imaging (MRI) techniques and utilization of hepatocyte-specific MRI contrast agents. We also briefly describe the concept of liver imaging reporting and data systems and discuss the consensus and controversy of major practice guidelines.
Micro-scale thermal imaging of advanced organic and polymeric materials
NASA Astrophysics Data System (ADS)
Morikawa, Junko
2012-10-01
Recent topics of micro-scale thermal imaging on advanced organic and polymeric materials are presented, the originally developed IR camera systems equipped with a real time direct impose-signal capturing device and a laser drive generating a modulated spot heating with a diode laser, controlled by the x-y positioning actuator, has been applied to measure the micro-scale thermal phenomena. The advanced organic and polymeric materials are now actively developed especially for the purpose of the effective heat dissipation in the new energy system, including, LED, Lithium battery, Solar cell, etc. The micro-scale thermal imaging in the heat dissipation process has become important in view of the effective power saving. In our system, the imposed temperature data are applied to the pixel emissivity corrections and visualizes the anisotropic thermal properties of the composite materials at the same time. The anisotropic thermal diffusion in the ultra-drawn high-thermal conductive metal-filler composite polymer film and the carbon-cloth for the battery systems are visualized.
The new frontiers of multimodality and multi-isotope imaging
NASA Astrophysics Data System (ADS)
Behnam Azad, Babak; Nimmagadda, Sridhar
2014-06-01
Technological advances in imaging systems and the development of target specific imaging tracers has been rapidly growing over the past two decades. Recent progress in "all-in-one" imaging systems that allow for automated image coregistration has significantly added to the growth of this field. These developments include ultra high resolution PET and SPECT scanners that can be integrated with CT or MR resulting in PET/CT, SPECT/CT, SPECT/PET and PET/MRI scanners for simultaneous high resolution high sensitivity anatomical and functional imaging. These technological developments have also resulted in drastic enhancements in image quality and acquisition time while eliminating cross compatibility issues between modalities. Furthermore, the most cutting edge technology, though mostly preclinical, also allows for simultaneous multimodality multi-isotope image acquisition and image reconstruction based on radioisotope decay characteristics. These scientific advances, in conjunction with the explosion in the development of highly specific multimodality molecular imaging agents, may aid in realizing simultaneous imaging of multiple biological processes and pave the way towards more efficient diagnosis and improved patient care.
Angularly-selective transmission imaging in a scanning electron microscope.
Holm, Jason; Keller, Robert R
2016-08-01
This work presents recent advances in transmission scanning electron microscopy (t-SEM) imaging control capabilities. A modular aperture system and a cantilever-style sample holder that enable comprehensive angular selectivity of forward-scattered electrons are described. When combined with a commercially available solid-state transmission detector having only basic bright-field and dark-field imaging capabilities, the advances described here enable numerous transmission imaging modes. Several examples are provided that demonstrate how contrast arising from diffraction to mass-thickness can be obtained. Unanticipated image contrast at some imaging conditions is also observed and addressed. Published by Elsevier B.V.
Image based performance analysis of thermal imagers
NASA Astrophysics Data System (ADS)
Wegner, D.; Repasi, E.
2016-05-01
Due to advances in technology, modern thermal imagers resemble sophisticated image processing systems in functionality. Advanced signal and image processing tools enclosed into the camera body extend the basic image capturing capability of thermal cameras. This happens in order to enhance the display presentation of the captured scene or specific scene details. Usually, the implemented methods are proprietary company expertise, distributed without extensive documentation. This makes the comparison of thermal imagers especially from different companies a difficult task (or at least a very time consuming/expensive task - e.g. requiring the execution of a field trial and/or an observer trial). For example, a thermal camera equipped with turbulence mitigation capability stands for such a closed system. The Fraunhofer IOSB has started to build up a system for testing thermal imagers by image based methods in the lab environment. This will extend our capability of measuring the classical IR-system parameters (e.g. MTF, MTDP, etc.) in the lab. The system is set up around the IR- scene projector, which is necessary for the thermal display (projection) of an image sequence for the IR-camera under test. The same set of thermal test sequences might be presented to every unit under test. For turbulence mitigation tests, this could be e.g. the same turbulence sequence. During system tests, gradual variation of input parameters (e. g. thermal contrast) can be applied. First ideas of test scenes selection and how to assembly an imaging suite (a set of image sequences) for the analysis of imaging thermal systems containing such black boxes in the image forming path is discussed.
Design and testing of a dual-band enhanced vision system
NASA Astrophysics Data System (ADS)
Way, Scott P.; Kerr, Richard; Imamura, Joseph J.; Arnoldy, Dan; Zeylmaker, Dick; Zuro, Greg
2003-09-01
An effective enhanced vision system must operate over a broad spectral range in order to offer a pilot an optimized scene that includes runway background as well as airport lighting and aircraft operations. The large dynamic range of intensities of these images is best handled with separate imaging sensors. The EVS 2000 is a patented dual-band Infrared Enhanced Vision System (EVS) utilizing image fusion concepts. It has the ability to provide a single image from uncooled infrared imagers combined with SWIR, NIR or LLLTV sensors. The system is designed to provide commercial and corporate airline pilots with improved situational awareness at night and in degraded weather conditions but can also be used in a variety of applications where the fusion of dual band or multiband imagery is required. A prototype of this system was recently fabricated and flown on the Boeing Advanced Technology Demonstrator 737-900 aircraft. This paper will discuss the current EVS 2000 concept, show results taken from the Boeing Advanced Technology Demonstrator program, and discuss future plans for the fusion system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Y.; Tobias, B.; Chang, Y. -T.
Electron cyclotron emission (ECE) imaging is a passive radiometric technique that measures electron temperature fluctuations; and microwave imaging reflectometry (MIR) is an active radar imaging technique that measures electron density fluctuations. The microwave imaging diagnostic instruments employing these techniques have made important contributions to fusion science and have been adopted at major fusion facilities worldwide including DIII-D, EAST, ASDEX Upgrade, HL-2A, KSTAR, LHD, and J-TEXT. In this paper, we describe the development status of three major technological advancements: custom mm-wave integrated circuits (ICs), digital beamforming (DBF), and synthetic diagnostic modeling (SDM). These also have the potential to greatly advance microwavemore » fusion plasma imaging, enabling compact and low-noise transceiver systems with real-time, fast tracking ability to address critical fusion physics issues, including ELM suppression and disruptions in the ITER baseline scenario, naturally ELM-free states such as QH-mode, and energetic particle confinement (i.e. Alfven eigenmode stability) in high-performance regimes that include steady-state and advanced tokamak scenarios. Furthermore, these systems are fully compatible with today's most challenging non-inductive heating and current drive systems and capable of operating in harsh environments, making them the ideal approach for diagnosing long-pulse and steady-state tokamaks.« less
NASA Technical Reports Server (NTRS)
Pendergast, Karl J.; Schauwecker, Christopher J.
1998-01-01
Third in the series of NASA great observatories, the Advanced X-Ray Astrophysics Facility (AXAF) is scheduled for launch from the Space Shuttle in November of 1998. Following in the path of the Hubble Space Telescope and the Compton Gamma Ray Observatory, this observatory will image light at X-ray wavelengths, facilitating the detailed study of such phenomena as supernovae and quasars. The AXAF project is sponsored by the Marshall Space Flight Center in Huntsville, Alabama. Because of exacting requirements on the performance of the AXAF optical system, it was necessary to reduce the transmission of reaction wheel jitter disturbances to the observatory. This reduction was accomplished via use of a passive mechanical isolation system to interface the reaction wheels with the spacecraft central structure. In addition to presenting a description of the spacecraft, the isolation system, and the key image quality requirement flowdown, this paper details the analyses performed in support of system-level imaging performance requirement verification. These analyses include the identification of system-level requirement suballocations, quantification of imaging and pointing performance, and formulation of unit-level isolation system transmissibility requirements. Given in comparison to the non-isolated system imaging performance, the results of these analyses clearly illustrate the effectiveness of an innovative reaction wheel passive isolation system.
An earth imaging camera simulation using wide-scale construction of reflectance surfaces
NASA Astrophysics Data System (ADS)
Murthy, Kiran; Chau, Alexandra H.; Amin, Minesh B.; Robinson, M. Dirk
2013-10-01
Developing and testing advanced ground-based image processing systems for earth-observing remote sensing applications presents a unique challenge that requires advanced imagery simulation capabilities. This paper presents an earth-imaging multispectral framing camera simulation system called PayloadSim (PaySim) capable of generating terabytes of photorealistic simulated imagery. PaySim leverages previous work in 3-D scene-based image simulation, adding a novel method for automatically and efficiently constructing 3-D reflectance scenes by draping tiled orthorectified imagery over a geo-registered Digital Elevation Map (DEM). PaySim's modeling chain is presented in detail, with emphasis given to the techniques used to achieve computational efficiency. These techniques as well as cluster deployment of the simulator have enabled tuning and robust testing of image processing algorithms, and production of realistic sample data for customer-driven image product development. Examples of simulated imagery of Skybox's first imaging satellite are shown.
Advances in medical image computing.
Tolxdorff, T; Deserno, T M; Handels, H; Meinzer, H-P
2009-01-01
Medical image computing has become a key technology in high-tech applications in medicine and an ubiquitous part of modern imaging systems and the related processes of clinical diagnosis and intervention. Over the past years significant progress has been made in the field, both on methodological and on application level. Despite this progress there are still big challenges to meet in order to establish image processing routinely in health care. In this issue, selected contributions of the German Conference on Medical Image Processing (BVM) are assembled to present latest advances in the field of medical image computing. The winners of scientific awards of the German Conference on Medical Image Processing (BVM) 2008 were invited to submit a manuscript on their latest developments and results for possible publication in Methods of Information in Medicine. Finally, seven excellent papers were selected to describe important aspects of recent advances in the field of medical image processing. The selected papers give an impression of the breadth and heterogeneity of new developments. New methods for improved image segmentation, non-linear image registration and modeling of organs are presented together with applications of image analysis methods in different medical disciplines. Furthermore, state-of-the-art tools and techniques to support the development and evaluation of medical image processing systems in practice are described. The selected articles describe different aspects of the intense development in medical image computing. The image processing methods presented enable new insights into the patient's image data and have the future potential to improve medical diagnostics and patient treatment.
Li, Feng
2015-07-01
This review paper is based on our research experience in the past 30 years. The importance of radiologists' role is discussed in the development or evaluation of new medical images and of computer-aided detection (CAD) schemes in chest radiology. The four main topics include (1) introducing what diseases can be included in a research database for different imaging techniques or CAD systems and what imaging database can be built by radiologists, (2) understanding how radiologists' subjective judgment can be combined with technical objective features to improve CAD performance, (3) sharing our experience in the design of successful observer performance studies, and (4) finally, discussing whether the new images and CAD systems can improve radiologists' diagnostic ability in chest radiology. In conclusion, advanced imaging techniques and detection/classification of CAD systems have a potential clinical impact on improvement of radiologists' diagnostic ability, for both the detection and the differential diagnosis of various lung diseases, in chest radiology.
Advances in time-of-flight PET
Surti, Suleman; Karp, Joel S.
2016-01-01
This paper provides a review and an update on time-of-flight PET imaging with a focus on PET instrumentation, ranging from hardware design to software algorithms. We first present a short introduction to PET, followed by a description of TOF PET imaging and its history from the early days. Next, we introduce the current state-of-art in TOF PET technology and briefly summarize the benefits of TOF PET imaging. This is followed by a discussion of the various technological advancements in hardware (scintillators, photo-sensors, electronics) and software (image reconstruction) that have led to the current widespread use of TOF PET technology, and future developments that have the potential for further improvements in the TOF imaging performance. We conclude with a discussion of some new research areas that have opened up in PET imaging as a result of having good system timing resolution, ranging from new algorithms for attenuation correction, through efficient system calibration techniques, to potential for new PET system designs. PMID:26778577
Production of Previews and Advanced Data Products for the ESO Science Archive
NASA Astrophysics Data System (ADS)
Rité, C.; Slijkhuis, R.; Rosati, P.; Delmotte, N.; Rino, B.; Chéreau, F.; Malapert, J.-C.
2008-08-01
We present a project being carried out by the Virtual Observatory Systems Department/Advanced Data Products group in order to populate the ESO Science Archive Facility with image previews and advanced data products. The main goal is to provide users of the ESO Science Archive Facility with the possibility of viewing pre-processed images associated with instruments like WFI, ISAAC and SOFI before actually retrieving the data for full processing. The image processing is done by using the ESO/MVM image reduction software developed at ESO, to produce astrometrically calibrated FITS images, ranging from simple previews of single archive images, to fully stacked mosaics. These data products can be accessed via the ESO Science Archive Query Form and also be viewed with the browser VirGO {http://archive.eso.org/cms/virgo}.
Three-dimensional imaging of hold baggage for airport security
NASA Astrophysics Data System (ADS)
Kolokytha, S.; Speller, R.; Robson, S.
2014-06-01
This study describes a cost-effective check-in baggage screening system, based on "on-belt tomosynthesis" (ObT) and close-range photogrammetry, that is designed to address the limitations of the most common system used, conventional projection radiography. The latter's limitations can lead to loss of information and an increase in baggage handling time, as baggage is manually searched or screened with more advanced systems. This project proposes a system that overcomes such limitations creating a cost-effective automated pseudo-3D imaging system, by combining x-ray and optical imaging to form digital tomograms. Tomographic reconstruction requires a knowledge of the change in geometry between multiple x-ray views of a common object. This is uniquely achieved using a close range photogrammetric system based on a small network of web-cameras. This paper presents the recent developments of the ObT system and describes recent findings of the photogrammetric system implementation. Based on these positive results, future work on the advancement of the ObT system as a cost-effective pseudo-3D imaging of hold baggage for airport security is proposed.
Advanced imaging communication system
NASA Technical Reports Server (NTRS)
Hilbert, E. E.; Rice, R. F.
1977-01-01
Key elements of system are imaging and nonimaging sensors, data compressor/decompressor, interleaved Reed-Solomon block coder, convolutional-encoded/Viterbi-decoded telemetry channel, and Reed-Solomon decoding. Data compression provides efficient representation of sensor data, and channel coding improves reliability of data transmission.
Small SWAP 3D imaging flash ladar for small tactical unmanned air systems
NASA Astrophysics Data System (ADS)
Bird, Alan; Anderson, Scott A.; Wojcik, Michael; Budge, Scott E.
2015-05-01
The Space Dynamics Laboratory (SDL), working with Naval Research Laboratory (NRL) and industry leaders Advanced Scientific Concepts (ASC) and Hood Technology Corporation, has developed a small SWAP (size, weight, and power) 3D imaging flash ladar (LAser Detection And Ranging) sensor system concept design for small tactical unmanned air systems (STUAS). The design utilizes an ASC 3D flash ladar camera and laser in a Hood Technology gyro-stabilized gimbal system. The design is an autonomous, intelligent, geo-aware sensor system that supplies real-time 3D terrain and target images. Flash ladar and visible camera data are processed at the sensor using a custom digitizer/frame grabber with compression. Mounted in the aft housing are power, controls, processing computers, and GPS/INS. The onboard processor controls pointing and handles image data, detection algorithms and queuing. The small SWAP 3D imaging flash ladar sensor system generates georeferenced terrain and target images with a low probability of false return and <10 cm range accuracy through foliage in real-time. The 3D imaging flash ladar is designed for a STUAS with a complete system SWAP estimate of <9 kg, <0.2 m3 and <350 W power. The system is modeled using LadarSIM, a MATLAB® and Simulink®- based ladar system simulator designed and developed by the Center for Advanced Imaging Ladar (CAIL) at Utah State University. We will present the concept design and modeled performance predictions.
The Advanced Gamma-ray Imaging System (AGIS)-Simulation Studies
NASA Astrophysics Data System (ADS)
Maier, G.; Buckley, J.; Bugaev, V.; Fegan, S.; Funk, S.; Konopelko, A.; Vassiliev, V. V.
2008-12-01
The Advanced Gamma-ray Imaging System (AGIS) is a US-led concept for a next-generation instrument in ground-based very-high-energy gamma-ray astronomy. The most important design requirement for AGIS is a sensitivity of about 10 times greater than current observatories like Veritas, H.E.S.S or MAGIC. We present results of simulation studies of various possible designs for AGIS. The primary characteristics of the array performance, collecting area, angular resolution, background rejection, and sensitivity are discussed.
Three-Dimensional Optical Coherence Tomography
NASA Technical Reports Server (NTRS)
Gutin, Mikhail; Wang, Xu-Ming; Gutin, Olga
2009-01-01
Three-dimensional (3D) optical coherence tomography (OCT) is an advanced method of noninvasive infrared imaging of tissues in depth. Heretofore, commercial OCT systems for 3D imaging have been designed principally for external ophthalmological examination. As explained below, such systems have been based on a one-dimensional OCT principle, and in the operation of such a system, 3D imaging is accomplished partly by means of a combination of electronic scanning along the optical (Z) axis and mechanical scanning along the two axes (X and Y) orthogonal to the optical axis. In 3D OCT, 3D imaging involves a form of electronic scanning (without mechanical scanning) along all three axes. Consequently, the need for mechanical adjustment is minimal and the mechanism used to position the OCT probe can be correspondingly more compact. A 3D OCT system also includes a probe of improved design and utilizes advanced signal- processing techniques. Improvements in performance over prior OCT systems include finer resolution, greater speed, and greater depth of field.
An advanced scanning method for space-borne hyper-spectral imaging system
NASA Astrophysics Data System (ADS)
Wang, Yue-ming; Lang, Jun-Wei; Wang, Jian-Yu; Jiang, Zi-Qing
2011-08-01
Space-borne hyper-spectral imagery is an important means for the studies and applications of earth science. High cost efficiency could be acquired by optimized system design. In this paper, an advanced scanning method is proposed, which contributes to implement both high temporal and spatial resolution imaging system. Revisit frequency and effective working time of space-borne hyper-spectral imagers could be greatly improved by adopting two-axis scanning system if spatial resolution and radiometric accuracy are not harshly demanded. In order to avoid the quality degradation caused by image rotation, an idea of two-axis rotation has been presented based on the analysis and simulation of two-dimensional scanning motion path and features. Further improvement of the imagers' detection ability under the conditions of small solar altitude angle and low surface reflectance can be realized by the Ground Motion Compensation on pitch axis. The structure and control performance are also described. An intelligent integration technology of two-dimensional scanning and image motion compensation is elaborated in this paper. With this technology, sun-synchronous hyper-spectral imagers are able to pay quick visit to hot spots, acquiring both high spatial and temporal resolution hyper-spectral images, which enables rapid response of emergencies. The result has reference value for developing operational space-borne hyper-spectral imagers.
Fluorescence Microscopy Gets Faster and Clearer: Roles of Photochemistry and Selective Illumination
Wolenski, Joseph S.; Julich, Doerthe
2014-01-01
Significant advances in fluorescence microscopy tend be a balance between two competing qualities wherein improvements in resolution and low light detection are typically accompanied by losses in acquisition rate and signal-to-noise, respectively. These trade-offs are becoming less of a barrier to biomedical research as recent advances in optoelectronic microscopy and developments in fluorophore chemistry have enabled scientists to see beyond the diffraction barrier, image deeper into live specimens, and acquire images at unprecedented speed. Selective plane illumination microscopy has provided significant gains in the spatial and temporal acquisition of fluorescence specimens several mm in thickness. With commercial systems now available, this method promises to expand on recent advances in 2-photon deep-tissue imaging with improved speed and reduced photobleaching compared to laser scanning confocal microscopy. Superresolution microscopes are also available in several modalities and can be coupled with selective plane illumination techniques. The combination of methods to increase resolution, acquisition speed, and depth of collection are now being married to common microscope systems, enabling scientists to make significant advances in live cell and in situ imaging in real time. We show that light sheet microscopy provides significant advantages for imaging live zebrafish embryos compared to laser scanning confocal microscopy. PMID:24600334
Computational and design methods for advanced imaging
NASA Astrophysics Data System (ADS)
Birch, Gabriel C.
This dissertation merges the optical design and computational aspects of imaging systems to create novel devices that solve engineering problems in optical science and attempts to expand the solution space available to the optical designer. This dissertation is divided into two parts: the first discusses a new active illumination depth sensing modality, while the second part discusses a passive illumination system called plenoptic, or lightfield, imaging. The new depth sensing modality introduced in part one is called depth through controlled aberration. This technique illuminates a target with a known, aberrated projected pattern and takes an image using a traditional, unmodified imaging system. Knowing how the added aberration in the projected pattern changes as a function of depth, we are able to quantitatively determine depth of a series of points from the camera. A major advantage this method permits is the ability for illumination and imaging axes to be coincident. Plenoptic cameras capture both spatial and angular data simultaneously. This dissertation present a new set of parameters that permit the design and comparison of plenoptic devices outside the traditionally published plenoptic 1.0 and plenoptic 2.0 configurations. Additionally, a series of engineering advancements are presented, including full system raytraces of raw plenoptic images, Zernike compression techniques of raw image files, and non-uniform lenslet arrays to compensate for plenoptic system aberrations. Finally, a new snapshot imaging spectrometer is proposed based off the plenoptic configuration.
Novel Developments in Instrumentation for PET Imaging
NASA Astrophysics Data System (ADS)
Karp, Joel
2013-04-01
Advances in medical imaging, in particular positron emission tomography (PET), have been based on technical developments in physics and instrumentation that have common foundations with detection systems used in other fields of physics. New detector materials are used in PET systems that maximize efficiency, timing characteristics and robustness, and which lead to improved image quality and quantitative accuracy for clinical imaging. Time of flight (TOF) techniques are now routinely used in commercial PET scanners that combine physiological imaging with anatomical imaging provided by x-ray computed tomography. Using new solid-state photo-sensors instead of traditional photo-multiplier tubes makes it possible to combine PET with magnetic resonance imaging which is a significant technical challenge, but one that is creating new opportunities for both research and clinical applications. An overview of recent advances in instrumentation, such as TOF and PET/MR will be presented, along with examples of imaging studies to demonstrate the impact on patient care and basic research of diseases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Zheng; Ukida, H.; Ramuhalli, Pradeep
2010-06-05
Imaging- and vision-based techniques play an important role in industrial inspection. The sophistication of the techniques assures high- quality performance of the manufacturing process through precise positioning, online monitoring, and real-time classification. Advanced systems incorporating multiple imaging and/or vision modalities provide robust solutions to complex situations and problems in industrial applications. A diverse range of industries, including aerospace, automotive, electronics, pharmaceutical, biomedical, semiconductor, and food/beverage, etc., have benefited from recent advances in multi-modal imaging, data fusion, and computer vision technologies. Many of the open problems in this context are in the general area of image analysis methodologies (preferably in anmore » automated fashion). This editorial article introduces a special issue of this journal highlighting recent advances and demonstrating the successful applications of integrated imaging and vision technologies in industrial inspection.« less
Advanced and Conventional Magnetic Resonance Imaging in Neuropsychiatric Lupus
Sarbu, Nicolae; Bargalló, Núria; Cervera, Ricard
2015-01-01
Neuropsychiatric lupus is a major diagnostic challenge, and a main cause of morbidity and mortality in patients with systemic lupus erythematosus (SLE). Magnetic resonance imaging (MRI) is, by far, the main tool for assessing the brain in this disease. Conventional and advanced MRI techniques are used to help establishing the diagnosis, to rule out alternative diagnoses, and recently, to monitor the evolution of the disease. This review explores the neuroimaging findings in SLE, including the recent advances in new MRI methods. PMID:26236469
Earth Observing-1 Advanced Land Imager: Radiometric Response Calibration
NASA Technical Reports Server (NTRS)
Mendenhall, J. A.; Lencioni, D. E.; Evans, J. B.
2000-01-01
The Advanced Land Imager (ALI) is one of three instruments to be flown on the first Earth Observing mission (EO-1) under NASA's New Millennium Program (NMP). ALI contains a number of innovative features, including a wide field of view optical design, compact multispectral focal plane arrays, non-cryogenic HgCdTe detectors for the short wave infrared bands, and silicon carbide optics. This document outlines the techniques adopted during ground calibration of the radiometric response of the Advanced Land Imager. Results from system level measurements of the instrument response, signal-to-noise ratio, saturation radiance, and dynamic range for all detectors of every spectral band are also presented.
Completion of a Hospital-Wide Comprehensive Image Management and Communication System
NASA Astrophysics Data System (ADS)
Mun, Seong K.; Benson, Harold R.; Horii, Steven C.; Elliott, Larry P.; Lo, Shih-Chung B.; Levine, Betty A.; Braudes, Robert E.; Plumlee, Gabriel S.; Garra, Brian S.; Schellinger, Dieter; Majors, Bruce; Goeringer, Fred; Kerlin, Barbara D.; Cerva, John R.; Ingeholm, Mary-Lou; Gore, Tim
1989-05-01
A comprehensive image management and communication (IMAC) network has been installed at Georgetown University Hospital for an extensive clinical evaluation. The network is based on the AT&T CommView system and it includes interfaces to 12 imaging devices, 15 workstations (inside and outside of the radiology department), a teleradiology link to an imaging center, an optical jukebox and a number of advanced image display and processing systems such as Sun workstations, PIXAR, and PIXEL. Details of network configuration and its role in the evaluation project are discussed.
NASA Technical Reports Server (NTRS)
Irwin, E. L.; Farnsworth, D. L.
1972-01-01
A long term investigation of thin film sensors, monolithic photo-field effect transistors, and epitaxially diffused phototransistors and photodiodes to meet requirements to produce acceptable all solid state, electronically scanned imaging system, led to the production of an advanced engineering model camera which employs a 200,000 element phototransistor array (organized in a matrix of 400 rows by 500 columns) to secure resolution comparable to commercial television. The full investigation is described for the period July 1962 through July 1972, and covers the following broad topics in detail: (1) sensor monoliths; (2) fabrication technology; (3) functional theory; (4) system methodology; and (5) deployment profile. A summary of the work and conclusions are given, along with extensive schematic diagrams of the final solid state imaging system product.
Price, Jeffrey H; Goodacre, Angela; Hahn, Klaus; Hodgson, Louis; Hunter, Edward A; Krajewski, Stanislaw; Murphy, Robert F; Rabinovich, Andrew; Reed, John C; Heynen, Susanne
2002-01-01
Cellular behavior is complex. Successfully understanding systems at ever-increasing complexity is fundamental to advances in modern science and unraveling the functional details of cellular behavior is no exception. We present a collection of prospectives to provide a glimpse of the techniques that will aid in collecting, managing and utilizing information on complex cellular processes via molecular imaging tools. These include: 1) visualizing intracellular protein activity with fluorescent markers, 2) high throughput (and automated) imaging of multilabeled cells in statistically significant numbers, and 3) machine intelligence to analyze subcellular image localization and pattern. Although not addressed here, the importance of combining cell-image-based information with detailed molecular structure and ligand-receptor binding models cannot be overlooked. Advanced molecular imaging techniques have the potential to impact cellular diagnostics for cancer screening, clinical correlations of tissue molecular patterns for cancer biology, and cellular molecular interactions for accelerating drug discovery. The goal of finally understanding all cellular components and behaviors will be achieved by advances in both instrumentation engineering (software and hardware) and molecular biochemistry. Copyright 2002 Wiley-Liss, Inc.
Yamamoto, Kristina H.; Finn, Michael P.
2012-01-01
The Tasseled Cap transformation is a method of image band conversion to enhance spectral information. It primarily is used to detect vegetation using the derived brightness, greenness, and wetness bands. An approximation of Tasseled Cap values for the Advanced Land Imager was investigated and compared to the Landsat Thematic Mapper Tasseled Cap values. Despite sharing similar spectral, temporal, and spatial resolution, the two systems are not interchangeable with regard to Tasseled Cap matrices.
EOS image data processing system definition study
NASA Technical Reports Server (NTRS)
Gilbert, J.; Honikman, T.; Mcmahon, E.; Miller, E.; Pietrzak, L.; Yorsz, W.
1973-01-01
The Image Processing System (IPS) requirements and configuration are defined for NASA-sponsored advanced technology Earth Observatory System (EOS). The scope included investigation and definition of IPS operational, functional, and product requirements considering overall system constraints and interfaces (sensor, etc.) The scope also included investigation of the technical feasibility and definition of a point design reflecting system requirements. The design phase required a survey of present and projected technology related to general and special-purpose processors, high-density digital tape recorders, and image recorders.
Toshiba TDF-500 High Resolution Viewing And Analysis System
NASA Astrophysics Data System (ADS)
Roberts, Barry; Kakegawa, M.; Nishikawa, M.; Oikawa, D.
1988-06-01
A high resolution, operator interactive, medical viewing and analysis system has been developed by Toshiba and Bio-Imaging Research. This system provides many advanced features including high resolution displays, a very large image memory and advanced image processing capability. In particular, the system provides CRT frame buffers capable of update in one frame period, an array processor capable of image processing at operator interactive speeds, and a memory system capable of updating multiple frame buffers at frame rates whilst supporting multiple array processors. The display system provides 1024 x 1536 display resolution at 40Hz frame and 80Hz field rates. In particular, the ability to provide whole or partial update of the screen at the scanning rate is a key feature. This allows multiple viewports or windows in the display buffer with both fixed and cine capability. To support image processing features such as windowing, pan, zoom, minification, filtering, ROI analysis, multiplanar and 3D reconstruction, a high performance CPU is integrated into the system. This CPU is an array processor capable of up to 400 million instructions per second. To support the multiple viewer and array processors' instantaneous high memory bandwidth requirement, an ultra fast memory system is used. This memory system has a bandwidth capability of 400MB/sec and a total capacity of 256MB. This bandwidth is more than adequate to support several high resolution CRT's and also the fast processing unit. This fully integrated approach allows effective real time image processing. The integrated design of viewing system, memory system and array processor are key to the imaging system. It is the intention to describe the architecture of the image system in this paper.
Real-time advanced spinal surgery via visible patient model and augmented reality system.
Wu, Jing-Ren; Wang, Min-Liang; Liu, Kai-Che; Hu, Ming-Hsien; Lee, Pei-Yuan
2014-03-01
This paper presents an advanced augmented reality system for spinal surgery assistance, and develops entry-point guidance prior to vertebroplasty spinal surgery. Based on image-based marker detection and tracking, the proposed camera-projector system superimposes pre-operative 3-D images onto patients. The patients' preoperative 3-D image model is registered by projecting it onto the patient such that the synthetic 3-D model merges with the real patient image, enabling the surgeon to see through the patients' anatomy. The proposed method is much simpler than heavy and computationally challenging navigation systems, and also reduces radiation exposure. The system is experimentally tested on a preoperative 3D model, dummy patient model and animal cadaver model. The feasibility and accuracy of the proposed system is verified on three patients undergoing spinal surgery in the operating theater. The results of these clinical trials are extremely promising, with surgeons reporting favorably on the reduced time of finding a suitable entry point and reduced radiation dose to patients. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Padhani, Anwar R; Lecouvet, Frederic E; Tunariu, Nina; Koh, Dow-Mu; De Keyzer, Frederik; Collins, David J; Sala, Evis; Schlemmer, Heinz Peter; Petralia, Giuseppe; Vargas, H Alberto; Fanti, Stefano; Tombal, H Bertrand; de Bono, Johann
2017-01-01
Comparative reviews of whole-body magnetic resonance imaging (WB-MRI) and positron emission tomography/computed tomography (CT; with different radiotracers) have shown that metastasis detection in advanced cancers is more accurate than with currently used CT and bone scans. However, the ability of WB-MRI and positron emission tomography/CT to assess therapeutic benefits has not been comprehensively evaluated. There is also considerable variability in the availability and quality of WB-MRI, which is an impediment to clinical development. Expert recommendations for standardising WB-MRI scans are needed, in order to assess its performance in advanced prostate cancer (APC) clinical trials. To design recommendations that promote standardisation and diminish variations in the acquisition, interpretation, and reporting of WB-MRI scans for use in APC. An international expert panel of oncologic imagers and oncologists with clinical and research interests in APC management assessed biomarker requirements for clinical care and clinical trials. Key requirements for a workable WB-MRI protocol, achievable quality standards, and interpretation criteria were identified and synthesised in a white paper. The METastasis Reporting and Data System for Prostate Cancer guidelines were formulated for use in all oncologic manifestations of APC. Uniformity in imaging data acquisition, quality, and interpretation of WB-MRI are essential for assessing the test performance of WB-MRI. The METastasis Reporting and Data System for Prostate Cancer standard requires validation in clinical trials of treatment approaches in APC. METastasis Reporting and Data System for Prostate Cancer represents the consensus recommendations on the performance, quality standards, and reporting of whole-body magnetic resonance imaging, for use in all oncologic manifestations of advanced prostate cancer. These new criteria require validation in clinical trials of established and new treatment approaches in advanced prostate cancer. Copyright © 2016 European Association of Urology. Published by Elsevier B.V. All rights reserved.
Flight instruments and helmet-mounted SWIR imaging systems
NASA Astrophysics Data System (ADS)
Robinson, Tim; Green, John; Jacobson, Mickey; Grabski, Greg
2011-06-01
Night vision technology has experienced significant advances in the last two decades. Night vision goggles (NVGs) based on gallium arsenide (GaAs) continues to raise the bar for alternative technologies. Resolution, gain, sensitivity have all improved; the image quality through these devices is nothing less than incredible. Panoramic NVGs and enhanced NVGs are examples of recent advances that increase the warfighter capabilities. Even with these advances, alternative night vision devices such as solid-state indium gallium arsenide (InGaAs) focal plane arrays are under development for helmet-mounted imaging systems. The InGaAs imaging system offers advantages over the existing NVGs. Two key advantages are; (1) the new system produces digital image data, and (2) the new system is sensitive to energy in the shortwave infrared (SWIR) spectrum. While it is tempting to contrast the performance of these digital systems to the existing NVGs, the advantage of different spectral detection bands leads to the conclusion that the technologies are less competitive and more synergistic. It is likely, by the end of the decade, pilots within a cockpit will use multi-band devices. As such, flight decks will need to be compatible with both NVGs and SWIR imaging systems. Insertion of NVGs in aircraft during the late 70's and early 80's resulted in many "lessons learned" concerning instrument compatibility with NVGs. These "lessons learned" ultimately resulted in specifications such as MIL-L-85762A and MIL-STD-3009. These specifications are now used throughout industry to produce NVG-compatible illuminated instruments and displays for both military and civilian applications. Inserting a SWIR imaging device in a cockpit will require similar consideration. A project evaluating flight deck instrument compatibility with SWIR devices is currently ongoing; aspects of this evaluation are described in this paper. This project is sponsored by the Air Force Research Laboratory (AFRL).
The infrared imaging spectrograph (IRIS) for TMT: latest science cases and simulations
NASA Astrophysics Data System (ADS)
Wright, Shelley A.; Walth, Gregory; Do, Tuan; Marshall, Daniel; Larkin, James E.; Moore, Anna M.; Adamkovics, Mate; Andersen, David; Armus, Lee; Barth, Aaron; Cote, Patrick; Cooke, Jeff; Chisholm, Eric M.; Davidge, Timothy; Dunn, Jennifer S.; Dumas, Christophe; Ellerbroek, Brent L.; Ghez, Andrea M.; Hao, Lei; Hayano, Yutaka; Liu, Michael; Lopez-Rodriguez, Enrique; Lu, Jessica R.; Mao, Shude; Marois, Christian; Pandey, Shashi B.; Phillips, Andrew C.; Schoeck, Matthias; Subramaniam, Annapurni; Subramanian, Smitha; Suzuki, Ryuji; Tan, Jonathan C.; Terai, Tsuyoshi; Treu, Tommaso; Simard, Luc; Weiss, Jason L.; Wincentsen, James; Wong, Michael; Zhang, Kai
2016-07-01
The Thirty Meter Telescope (TMT) first light instrument IRIS (Infrared Imaging Spectrograph) will complete its preliminary design phase in 2016. The IRIS instrument design includes a near-infrared (0.85 - 2.4 micron) integral field spectrograph (IFS) and imager that are able to conduct simultaneous diffraction-limited observations behind the advanced adaptive optics system NFIRAOS. The IRIS science cases have continued to be developed and new science studies have been investigated to aid in technical performance and design requirements. In this development phase, the IRIS science team has paid particular attention to the selection of filters, gratings, sensitivities of the entire system, and science cases that will benefit from the parallel mode of the IFS and imaging camera. We present new science cases for IRIS using the latest end-to-end data simulator on the following topics: Solar System bodies, the Galactic center, active galactic nuclei (AGN), and distant gravitationally-lensed galaxies. We then briefly discuss the necessity of an advanced data management system and data reduction pipeline.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, A; Paysan, P; Brehm, M
2016-06-15
Purpose: To improve CBCT image quality for image-guided radiotherapy by applying advanced reconstruction algorithms to overcome scatter, noise, and artifact limitations Methods: CBCT is used extensively for patient setup in radiotherapy. However, image quality generally falls short of diagnostic CT, limiting soft-tissue based positioning and potential applications such as adaptive radiotherapy. The conventional TrueBeam CBCT reconstructor uses a basic scatter correction and FDK reconstruction, resulting in residual scatter artifacts, suboptimal image noise characteristics, and other artifacts like cone-beam artifacts. We have developed an advanced scatter correction that uses a finite-element solver (AcurosCTS) to model the behavior of photons as theymore » pass (and scatter) through the object. Furthermore, iterative reconstruction is applied to the scatter-corrected projections, enforcing data consistency with statistical weighting and applying an edge-preserving image regularizer to reduce image noise. The combined algorithms have been implemented on a GPU. CBCT projections from clinically operating TrueBeam systems have been used to compare image quality between the conventional and improved reconstruction methods. Planning CT images of the same patients have also been compared. Results: The advanced scatter correction removes shading and inhomogeneity artifacts, reducing the scatter artifact from 99.5 HU to 13.7 HU in a typical pelvis case. Iterative reconstruction provides further benefit by reducing image noise and eliminating streak artifacts, thereby improving soft-tissue visualization. In a clinical head and pelvis CBCT, the noise was reduced by 43% and 48%, respectively, with no change in spatial resolution (assessed visually). Additional benefits include reduction of cone-beam artifacts and reduction of metal artifacts due to intrinsic downweighting of corrupted rays. Conclusion: The combination of an advanced scatter correction with iterative reconstruction substantially improves CBCT image quality. It is anticipated that clinically acceptable reconstruction times will result from a multi-GPU implementation (the algorithms are under active development and not yet commercially available). All authors are employees of and (may) own stock of Varian Medical Systems.« less
Advanced endoscopic imaging to improve adenoma detection
Neumann, Helmut; Nägel, Andreas; Buda, Andrea
2015-01-01
Advanced endoscopic imaging is revolutionizing our way on how to diagnose and treat colorectal lesions. Within recent years a variety of modern endoscopic imaging techniques was introduced to improve adenoma detection rates. Those include high-definition imaging, dye-less chromoendoscopy techniques and novel, highly flexible endoscopes, some of them equipped with balloons or multiple lenses in order to improve adenoma detection rates. In this review we will focus on the newest developments in the field of colonoscopic imaging to improve adenoma detection rates. Described techniques include high-definition imaging, optical chromoendoscopy techniques, virtual chromoendoscopy techniques, the Third Eye Retroscope and other retroviewing devices, the G-EYE endoscope and the Full Spectrum Endoscopy-system. PMID:25789092
Development of a system for transferring images via a network: supporting a regional liaison.
Mihara, Naoki; Manabe, Shiro; Takeda, Toshihiro; Shinichirou, Kitamura; Junichi, Murakami; Kouji, Kiso; Matsumura, Yasushi
2013-01-01
We developed a system that transfers images via network and started using them in our hospital's PACS (Picture Archiving and Communication Systems) in 2006. We are pleased to report that the system has been re-developed and has been running so that there will be a regional liaison in the future. It has become possible to automatically transfer images simply by selecting the destination hospital that is registered in advance at the relay server. The gateway of this system can send images to a multi-center, relay management server, which receives the images and resends them. This system has the potential to be useful for image exchange, and to serve as a regional medical liaison.
Paul, Jijo; Jacobi, Volkmar; Farhang, Mohammad; Bazrafshan, Babak; Vogl, Thomas J; Mbalisike, Emmanuel C
2013-06-01
Radiation dose and image quality estimation of three X-ray volume imaging (XVI) systems. A total of 126 patients were examined using three XVI systems (groups 1-3) and their data were retrospectively analysed from 2007 to 2012. Each group consisted of 42 patients and each patient was examined using cone-beam computed tomography (CBCT), digital subtraction angiography (DSA) and digital fluoroscopy (DF). Dose parameters such as dose-area product (DAP), skin entry dose (SED) and image quality parameters such as Hounsfield unit (HU), noise, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were estimated and compared using appropriate statistical tests. Mean DAP and SED were lower in recent XVI than its previous counterparts in CBCT, DSA and DF. HU of all measured locations was non-significant between the groups except the hepatic artery. Noise showed significant difference among groups (P < 0.05). Regarding CNR and SNR, the recent XVI showed a higher and significant difference compared to its previous versions. Qualitatively, CBCT showed significance between versions unlike the DSA and DF which showed non-significance. A reduction of radiation dose was obtained for the recent-generation XVI system in CBCT, DSA and DF. Image noise was significantly lower; SNR and CNR were higher than in previous versions. The technological advancements and the reduction in the number of frames led to a significant dose reduction and improved image quality with the recent-generation XVI system. • X-ray volume imaging (XVI) systems are increasingly used for interventional radiological procedures. • More modern XVI systems use lower radiation doses compared with earlier counterparts. • Furthermore more modern XVI systems provide higher image quality. • Technological advances reduce radiation dose and improve image quality.
Imaging anatomy of the vestibular and visual systems.
Gunny, Roxana; Yousry, Tarek A
2007-02-01
This review will outline the imaging anatomy of the vestibular and visual pathways, using computed tomography and magnetic resonance imaging, with emphasis on the more recent developments in neuroimaging. Technical advances in computed tomography and magnetic resonance imaging, such as the advent of multislice computed tomography and newer magnetic resonance imaging techniques such as T2-weighted magnetic resonance cisternography, have improved the imaging of the vestibular and visual pathways, allowing better visualization of the end organs and peripheral nerves. Higher field strength magnetic resonance imaging is a promising tool, which has been used to evaluate and resolve fine anatomic detail in vitro, as in the labyrinth. Advanced magnetic resonance imaging techniques such as functional magnetic resonance imaging and diffusion tractography have been used to identify cortical areas of activation and associated white matter pathways, and show potential for the future identification of complex neuronal relays involved in integrating these pathways. The assessment of the various components of the vestibular and the visual systems has improved with more detailed research on the imaging anatomy of these systems, the advent of high field magnetic resonance scanners and multislice computerized tomography, and the wider use of specific techniques such as tractography which displays white matter tracts not directly accessible until now.
A geometric performance assessment of the EO-1 advanced land imager
Storey, James C.; Choate, M.J.; Meyer, D.J.
2004-01-01
The Earth Observing 1 (EO-1) Advanced Land Imager (ALI) demonstrates technology applicable to a successor system to the Landsat Thematic Mapper series. A study of the geometric performance characteristics of the ALI was conducted under the auspices of the EO-1 Science Validation Team. This study evaluated ALI performance with respect to absolute pointing knowledge, focal plane sensor chip assembly alignment, and band-to-band registration for purposes of comparing this new technology to the heritage Landsat systems. On-orbit geometric calibration procedures were developed that allowed the generation of ALI geometrically corrected products that compare favorably with their Landsat 7 counterparts with respect to absolute geodetic accuracy, internal image geometry, and band registration.
A Low-Power High-Speed Smart Sensor Design for Space Exploration Missions
NASA Technical Reports Server (NTRS)
Fang, Wai-Chi
1997-01-01
A low-power high-speed smart sensor system based on a large format active pixel sensor (APS) integrated with a programmable neural processor for space exploration missions is presented. The concept of building an advanced smart sensing system is demonstrated by a system-level microchip design that is composed with an APS sensor, a programmable neural processor, and an embedded microprocessor in a SOI CMOS technology. This ultra-fast smart sensor system-on-a-chip design mimics what is inherent in biological vision systems. Moreover, it is programmable and capable of performing ultra-fast machine vision processing in all levels such as image acquisition, image fusion, image analysis, scene interpretation, and control functions. The system provides about one tera-operation-per-second computing power which is a two order-of-magnitude increase over that of state-of-the-art microcomputers. Its high performance is due to massively parallel computing structures, high data throughput rates, fast learning capabilities, and advanced VLSI system-on-a-chip implementation.
Lectures on Advanced Technologies
1987-01-01
we are now building, such real - time information will greatly change strategies, tactics, and weapon systems ; it will drive the development of a family...in real - time (approximately seven seconds), process a satellite image. The system was recently demonstrated at White Sands Missile Range. This system ... time and talents by coming to Annapolis and participating in our Advanced Technologies Seminar program. Arthur E. Bock Professor Emeritus Naval Systems
Li, Qingli; Zhang, Jingfa; Wang, Yiting; Xu, Guoteng
2009-12-01
A molecular spectral imaging system has been developed based on microscopy and spectral imaging technology. The system is capable of acquiring molecular spectral images from 400 nm to 800 nm with 2 nm wavelength increments. The basic principles, instrumental systems, and system calibration method as well as its applications for the calculation of the stain-uptake by tissues are introduced. As a case study, the system is used for determining the pathogenesis of diabetic retinopathy and evaluating the therapeutic effects of erythropoietin. Some molecular spectral images of retinal sections of normal, diabetic, and treated rats were collected and analyzed. The typical transmittance curves of positive spots stained for albumin and advanced glycation end products are retrieved from molecular spectral data with the spectral response calibration algorithm. To explore and evaluate the protective effect of erythropoietin (EPO) on retinal albumin leakage of streptozotocin-induced diabetic rats, an algorithm based on Beer-Lambert's law is presented. The algorithm can assess the uptake by histologic retinal sections of stains used in quantitative pathology to label albumin leakage and advanced glycation end products formation. Experimental results show that the system is helpful for the ophthalmologist to reveal the pathogenesis of diabetic retinopathy and explore the protective effect of erythropoietin on retinal cells of diabetic rats. It also highlights the potential of molecular spectral imaging technology to provide more effective and reliable diagnostic criteria in pathology.
Review of spectral imaging technology in biomedical engineering: achievements and challenges.
Li, Qingli; He, Xiaofu; Wang, Yiting; Liu, Hongying; Xu, Dongrong; Guo, Fangmin
2013-10-01
Spectral imaging is a technology that integrates conventional imaging and spectroscopy to get both spatial and spectral information from an object. Although this technology was originally developed for remote sensing, it has been extended to the biomedical engineering field as a powerful analytical tool for biological and biomedical research. This review introduces the basics of spectral imaging, imaging methods, current equipment, and recent advances in biomedical applications. The performance and analytical capabilities of spectral imaging systems for biological and biomedical imaging are discussed. In particular, the current achievements and limitations of this technology in biomedical engineering are presented. The benefits and development trends of biomedical spectral imaging are highlighted to provide the reader with an insight into the current technological advances and its potential for biomedical research.
Some technical considerations on the evolution of the IBIS system. [Image Based Information System
NASA Technical Reports Server (NTRS)
Bryant, N. A.; Zobrist, A. L.
1982-01-01
In connection with work related to the use of earth-resources images, it became apparent by 1974, that certain system improvements are necessary for the efficient processing of digital data. To resolve this dilemma, Billingsley and Bryant (1975) proposed the use of image processing technology. Bryant and Zobrist (1976) reported the development of the Image Based Information System (IBIS) as a subset of an overall Video Image Communication and Retrieval (VICAR) image processing system. A description of IBIS is presented, and its employment in connection with advanced applications is discussed. It is concluded that several important lessons have been learned from the development of IBIS. The development of a flexible system such as IBIS is found to rest upon the prior development of a general purpose image processing system, such as VICAR.
NASA Technical Reports Server (NTRS)
1994-01-01
An aerial color infrared (CIR) mapping system developed by Kennedy Space Center enables Florida's Charlotte County to accurately appraise its citrus groves while reducing appraisal costs. The technology was further advanced by development of a dual video system making it possible to simultaneously view images of the same area and detect changes. An image analysis system automatically surveys and photo interprets grove images as well as automatically counts trees and reports totals. The system, which saves both time and money, has potential beyond citrus grove valuation.
An airborne thematic thermal infrared and electro-optical imaging system
NASA Astrophysics Data System (ADS)
Sun, Xiuhong; Shu, Peter
2011-08-01
This paper describes an advanced Airborne Thematic Thermal InfraRed and Electro-Optical Imaging System (ATTIREOIS) and its potential applications. ATTIREOIS sensor payload consists of two sets of advanced Focal Plane Arrays (FPAs) - a broadband Thermal InfraRed Sensor (TIRS) and a four (4) band Multispectral Electro-Optical Sensor (MEOS) to approximate Landsat ETM+ bands 1,2,3,4, and 6, and LDCM bands 2,3,4,5, and 10+11. The airborne TIRS is 3-axis stabilized payload capable of providing 3D photogrammetric images with a 1,850 pixel swathwidth via pushbroom operation. MEOS has a total of 116 million simultaneous sensor counts capable of providing 3 cm spatial resolution multispectral orthophotos for continuous airborne mapping. ATTIREOIS is a complete standalone and easy-to-use portable imaging instrument for light aerial vehicle deployment. Its miniaturized backend data system operates all ATTIREOIS imaging sensor components, an INS/GPS, and an e-Gimbal™ Control Electronic Unit (ECU) with a data throughput of 300 Megabytes/sec. The backend provides advanced onboard processing, performing autonomous raw sensor imagery development, TIRS image track-recovery reconstruction, LWIR/VNIR multi-band co-registration, and photogrammetric image processing. With geometric optics and boresight calibrations, the ATTIREOIS data products are directly georeferenced with an accuracy of approximately one meter. A prototype ATTIREOIS has been configured. Its sample LWIR/EO image data will be presented. Potential applications of ATTIREOIS include: 1) Providing timely and cost-effective, precisely and directly georeferenced surface emissive and solar reflective LWIR/VNIR multispectral images via a private Google Earth Globe to enhance NASA's Earth science research capabilities; and 2) Underflight satellites to support satellite measurement calibration and validation observations.
NASA Astrophysics Data System (ADS)
Monroy, Guillermo L.; Won, Jungeun; Spillman, Darold R.; Dsouza, Roshan; Boppart, Stephen A.
2017-12-01
Since the inception of optical coherence tomography (OCT), advancements in imaging system design and handheld probes have allowed for numerous advancements in disease diagnostics and characterization of the structural and optical properties of tissue. OCT system developers continue to reduce form factor and cost, while improving imaging performance (speed, resolution, etc.) and flexibility for applicability in a broad range of fields, and nearly every clinical specialty. An extensive array of components to construct customized systems has also become available, with a range of commercial entities that produce high-quality products, from single components to full systems, for clinical and research use. Many advancements in the development of these miniaturized and portable systems can be linked back to a specific challenge in academic research, or a clinical need in medicine or surgery. Handheld OCT systems are discussed and explored for various applications. Handheld systems are discussed in terms of their relative level of portability and form factor, with mention of the supporting technologies and surrounding ecosystem that bolstered their development. Additional insight from our efforts to implement systems in several clinical environments is provided. The trend toward well-designed, efficient, and compact handheld systems paves the way for more widespread adoption of OCT into point-of-care or point-of-procedure applications in both clinical and commercial settings.
High resolution image processing on low-cost microcomputers
NASA Technical Reports Server (NTRS)
Miller, R. L.
1993-01-01
Recent advances in microcomputer technology have resulted in systems that rival the speed, storage, and display capabilities of traditionally larger machines. Low-cost microcomputers can provide a powerful environment for image processing. A new software program which offers sophisticated image display and analysis on IBM-based systems is presented. Designed specifically for a microcomputer, this program provides a wide-range of functions normally found only on dedicated graphics systems, and therefore can provide most students, universities and research groups with an affordable computer platform for processing digital images. The processing of AVHRR images within this environment is presented as an example.
Image registration: enabling technology for image guided surgery and therapy.
Sauer, Frank
2005-01-01
Imaging looks inside the patient's body, exposing the patient's anatomy beyond what is visible on the surface. Medical imaging has a very successful history for medical diagnosis. It also plays an increasingly important role as enabling technology for minimally invasive procedures. Interventional procedures (e.g. catheter based cardiac interventions) are traditionally supported by intra-procedure imaging (X-ray fluoro, ultrasound). There is realtime feedback, but the images provide limited information. Surgical procedures are traditionally supported with pre-operative images (CT, MR). The image quality can be very good; however, the link between images and patient has been lost. For both cases, image registration can play an essential role -augmenting intra-op images with pre-op images, and mapping pre-op images to the patient's body. We will present examples of both approaches from an application oriented perspective, covering electrophysiology, radiation therapy, and neuro-surgery. Ultimately, as the boundaries between interventional radiology and surgery are becoming blurry, also the different methods for image guidance will merge. Image guidance will draw upon a combination of pre-op and intra-op imaging together with magnetic or optical tracking systems, and enable precise minimally invasive procedures. The information is registered into a common coordinate system, and allows advanced methods for visualization such as augmented reality or advanced methods for therapy delivery such as robotics.
NASA Technical Reports Server (NTRS)
Salomonson, Vincent V.
1999-01-01
In the near term NASA is entering into the peak activity period of the Earth Observing System (EOS). The EOS AM-1 /"Terra" spacecraft is nearing launch and operation to be followed soon by the New Millennium Program (NMP) Earth Observing (EO-1) mission. Other missions related to land imaging and studies include EOS PM-1 mission, the Earth System Sciences Program (ESSP) Vegetation Canopy Lidar (VCL) mission, the EOS/IceSat mission. These missions involve clear advances in technologies and observational capability including improvements in multispectral imaging and other observing strategies, for example, "formation flying". Plans are underway to define the next era of EOS missions, commonly called "EOS Follow-on" or EOS II. The programmatic planning includes concepts that represent advances over the present Landsat-7 mission that concomitantly recognize the advances being made in land imaging within the private sector. The National Polar Orbiting Environmental Satellite Series (NPOESS) Preparatory Project (NPP) is an effort that will help to transition EOS medium resolution (herein meaning spatial resolutions near 500 meters), multispectral measurement capabilities such as represented by the EOS Moderate Resolution Imaging Spectroradiometer (MODIS) into the NPOESS operational series of satellites. Developments in Synthetic Aperture Radar (SAR) and passive microwave land observing capabilities are also proceeding. Beyond these efforts the Earth Science Enterprise Technology Strategy is embarking efforts to advance technologies in several basic areas: instruments, flight systems and operational capability, and information systems. In the case of instruments architectures will be examined that offer significant reductions in mass, volume, power and observational flexibility. For flight systems and operational capability, formation flying including calibration and data fusion, systems operation autonomy, and mechanical and electronic innovations that can reduce spacecraft and subsystem resource requirements. The efforts in information systems will include better approaches for linking multiple data sets, extracting and visualizing information, and improvements in collecting, compressing, transmitting, processing, distributing and archiving data from multiple platforms. Overall concepts such as sensor webs, constellations of observing systems, and rapid and tailored data availability and delivery to multiple users comprise and notions Earth Science Vision for the future.
Ko, Weon Jin; An, Pyeong; Ko, Kwang Hyun; Hahm, Ki Baik; Hong, Sung Pyo
2015-01-01
Arising from human curiosity in terms of the desire to look within the human body, endoscopy has undergone significant advances in modern medicine. Direct visualization of the gastrointestinal (GI) tract by traditional endoscopy was first introduced over 50 years ago, after which fairly rapid advancement from rigid esophagogastric scopes to flexible scopes and high definition videoscopes has occurred. In an effort towards early detection of precancerous lesions in the GI tract, several high-technology imaging scopes have been developed, including narrow band imaging, autofocus imaging, magnified endoscopy, and confocal microendoscopy. However, these modern developments have resulted in fundamental imaging technology being skewed towards red-green-blue and this technology has obscured the advantages of other endoscope techniques. In this review article, we have described the importance of image quality analysis using a survey to consider the diversity of endoscope system selection in order to better achieve diagnostic and therapeutic goals. The ultimate aims can be achieved through the adoption of modern endoscopy systems that obtain high image quality. PMID:26473119
Outer planet Pioneer imaging communications system study. [data compression
NASA Technical Reports Server (NTRS)
1974-01-01
The effects of different types of imaging data compression on the elements of the Pioneer end-to-end data system were studied for three imaging transmission methods. These were: no data compression, moderate data compression, and the advanced imaging communications system. It is concluded that: (1) the value of data compression is inversely related to the downlink telemetry bit rate; (2) the rolling characteristics of the spacecraft limit the selection of data compression ratios; and (3) data compression might be used to perform acceptable outer planet mission at reduced downlink telemetry bit rates.
Two-dimensional vacuum ultraviolet images in different MHD events on the EAST tokamak
NASA Astrophysics Data System (ADS)
Zhijun, WANG; Xiang, GAO; Tingfeng, MING; Yumin, WANG; Fan, ZHOU; Feifei, LONG; Qing, ZHUANG; EAST Team
2018-02-01
A high-speed vacuum ultraviolet (VUV) imaging telescope system has been developed to measure the edge plasma emission (including the pedestal region) in the Experimental Advanced Superconducting Tokamak (EAST). The key optics of the high-speed VUV imaging system consists of three parts: an inverse Schwarzschild-type telescope, a micro-channel plate (MCP) and a visible imaging high-speed camera. The VUV imaging system has been operated routinely in the 2016 EAST experiment campaign. The dynamics of the two-dimensional (2D) images of magnetohydrodynamic (MHD) instabilities, such as edge localized modes (ELMs), tearing-like modes and disruptions, have been observed using this system. The related VUV images are presented in this paper, and it indicates the VUV imaging system is a potential tool which can be applied successfully in various plasma conditions.
NASA Astrophysics Data System (ADS)
Raegen, Adam; Reiter, Kyle; Clarke, Anthony; Lipkowski, Jacek; Dutcher, John
2012-02-01
The Surface Plasmon Resonance (SPR) phenomenon is routinely exploited to qualitatively probe changes to materials on metallic surfaces for use in probes and sensors. Unfortunately, extracting truly quantitative information is usually limited to a select few cases -- uniform absorption/desorption of small biomolecules and films, in which a continuous ``slab'' model is a good approximation. We present advancements in the SPR technique that expand the number of cases for which the technique can provide meaningful results. Use of a custom, angle-scanning SPR imaging system, together with a refined data analysis method, allow for quantitative kinetic measurements of laterally heterogeneous systems. The degradation of cellulose microfibrils and bundles of microfibrils due to the action of cellulolytic enzymes will be presented as an excellent example of the capabilities of the SPR imaging system.
Advanced x-ray imaging spectrometer
NASA Technical Reports Server (NTRS)
Callas, John L. (Inventor); Soli, George A. (Inventor)
1998-01-01
An x-ray spectrometer that also provides images of an x-ray source. Coded aperture imaging techniques are used to provide high resolution images. Imaging position-sensitive x-ray sensors with good energy resolution are utilized to provide excellent spectroscopic performance. The system produces high resolution spectral images of the x-ray source which can be viewed in any one of a number of specific energy bands.
3D Imaging with Structured Illumination for Advanced Security Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Birch, Gabriel Carisle; Dagel, Amber Lynn; Kast, Brian A.
2015-09-01
Three-dimensional (3D) information in a physical security system is a highly useful dis- criminator. The two-dimensional data from an imaging systems fails to provide target dis- tance and three-dimensional motion vector, which can be used to reduce nuisance alarm rates and increase system effectiveness. However, 3D imaging devices designed primarily for use in physical security systems are uncommon. This report discusses an architecture favorable to physical security systems; an inexpensive snapshot 3D imaging system utilizing a simple illumination system. The method of acquiring 3D data, tests to understand illumination de- sign, and software modifications possible to maximize information gathering capabilitymore » are discussed.« less
NASA Astrophysics Data System (ADS)
Rahman, Ahmad Taufek Abdul; Farah Rosli, Nurul; Zain, Shafirah Mohd; Zin, Hafiz M.
2018-01-01
Radiotherapy delivery techniques for cancer treatment are becoming more complex and highly focused, to enable accurate radiation dose delivery to the cancerous tissue and minimum dose to the healthy tissue adjacent to tumour. Instrument to verify the complex dose delivery in radiotherapy such as optical computed tomography (OCT) measures the dose from a three-dimensional (3D) radiochromic dosimeter to ensure the accuracy of the radiotherapy beam delivery to the patient. OCT measures the optical density in radiochromic material that changes predictably upon exposure to radiotherapy beams. OCT systems have been developed using a photodiode and charged coupled device (CCD) as the detector. The existing OCT imaging systems have limitation in terms of the accuracy and the speed of the measurement. Advances in on-pixel intelligence CMOS image sensor (CIS) will be exploited in this work to replace current detector in OCT imaging systems. CIS is capable of on-pixel signal processing at a very fast imaging speed (over several hundred images per second) that will allow improvement in the 3D measurement of the optical density. The paper will review 3D radiochromic dosimeters and OCT systems developed and discuss how CMOS based OCT imaging will provide accurate and fast optical density measurements in 3D. The paper will also discuss the configuration of the CMOS based OCT developed in this work and how it may improve the existing OCT system.
A data base of ASAS digital imagery. [Advanced Solid-state Array Spectroradiometer
NASA Technical Reports Server (NTRS)
Irons, James R.; Meeson, Blanche W.; Dabney, Philip W.; Kovalick, William M.; Graham, David W.; Hahn, Daniel S.
1992-01-01
The Advanced Solid-State Array Spectroradiometer (ASAS) is an airborne, off-nadir tilting, imaging spectroradiometer that acquires digital image data for 29 spectral bands in the visible and near-infrared. The sensor is used principally for studies of the bidirectional distribution of solar radiation scattered by terrestial surfaces. ASAS has acquired data for a number of terrestial ecosystem field experiments and investigators have received over 170 radiometrically corrected, multiangle, digital image data sets. A database of ASAS digital imagery has been established in the Pilot Land Data System (PLDS) at the NASA/Goddard Space Flight Center to provide access to these data by the scientific community. ASAS, its processed data, and the PLDS are described, together with recent improvements to the sensor system.
Focal Plane Detectors for the Advanced Gamma-Ray Imaging System (AGIS)
NASA Astrophysics Data System (ADS)
Wagner, R. G.; Byrum, K.; Drake, G.; Funk, S.; Otte, N.; Smith, A.; Tajima, H.; Williams, D.
2009-05-01
The Advanced Gamma-Ray Imaging System (AGIS) is a concept for the next generation observatory in ground-based very high energy gamma-ray astronomy. It is being designed to achieve a significant improvement in sensitivity compared to current Imaging Air Cherenkov Telescope (IACT) Arrays. One of the main requirements in order that AGIS fulfills this goal will be to achieve higher angular resolution than current IACTs. Simulations show that a substantial improvement in angular resolution may be achieved if the pixel size is reduced to 0.05 deg, i.e. two to three times smaller than for current IACT cameras. Here we present results from testing of alternatives being considered for AGIS, including both silicon photomultipliers (SiPMs) and multi-anode photomultipliers (MAPMTs).
Science with the Advanced Gamma Ray Imaging System (AGIS)
NASA Astrophysics Data System (ADS)
Coppi, Paolo
2009-05-01
We present the scientific drivers for the Advanced Gamma Ray Imaging System (AGIS), a concept for the next-generation ground- based gamma-ray experiment, comprised of an array of ˜100 imaging atmospheric Cherenkov telescopes. Design requirements for AGIS include achieving a sensitivity an order of magnitude better than the current generation of space or ground-based instruments in the energy range of 40 GeV to ˜100 TeV. We present here an overview of the scientific goals of AGIS, including the prospects for understanding VHE phenomena in the vicinity of accreting black holes, particle acceleration in a variety of astrophysical environments, indirect detection of dark matter, study of cosmological background radiation fields, and particle physics beyond the standard model.
NASA Technical Reports Server (NTRS)
Garbeff, Theodore J., II; Baerny, Jennifer K.
2017-01-01
The following details recent efforts undertaken at the NASA Ames Unitary Plan wind tunnels to design and deploy an advanced, production-level infrared (IR) flow visualization data system. Highly sensitive IR cameras, coupled with in-line image processing, have enabled the visualization of wind tunnel model surface flow features as they develop in real-time. Boundary layer transition, shock impingement, junction flow, vortex dynamics, and buffet are routinely observed in both transonic and supersonic flow regimes all without the need of dedicated ramps in test section total temperature. Successful measurements have been performed on wing-body sting mounted test articles, semi-span floor mounted aircraft models, and sting mounted launch vehicle configurations. The unique requirements of imaging in production wind tunnel testing has led to advancements in the deployment of advanced IR cameras in a harsh test environment, robust data acquisition storage and workflow, real-time image processing algorithms, and evaluation of optimal surface treatments. The addition of a multi-camera IR flow visualization data system to the Ames UPWT has demonstrated itself to be a valuable analyses tool in the study of new and old aircraft/launch vehicle aerodynamics and has provided new insight for the evaluation of computational techniques.
Review on the characteristics of radiation detectors for dosimetry and imaging
NASA Astrophysics Data System (ADS)
Seco, Joao; Clasie, Ben; Partridge, Mike
2014-10-01
The enormous advances in the understanding of human anatomy, physiology and pathology in recent decades have led to ever-improving methods of disease prevention, diagnosis and treatment. Many of these achievements have been enabled, at least in part, by advances in ionizing radiation detectors. Radiology has been transformed by the implementation of multi-slice CT and digital x-ray imaging systems, with silver halide films now largely obsolete for many applications. Nuclear medicine has benefited from more sensitive, faster and higher-resolution detectors delivering ever-higher SPECT and PET image quality. PET/MR systems have been enabled by the development of gamma ray detectors that can operate in high magnetic fields. These huge advances in imaging have enabled equally impressive steps forward in radiotherapy delivery accuracy, with 4DCT, PET and MRI routinely used in treatment planning and online image guidance provided by cone-beam CT. The challenge of ensuring safe, accurate and precise delivery of highly complex radiation fields has also both driven and benefited from advances in radiation detectors. Detector systems have been developed for the measurement of electron, intensity-modulated and modulated arc x-ray, proton and ion beams, and around brachytherapy sources based on a very wide range of technologies. The types of measurement performed are equally wide, encompassing commissioning and quality assurance, reference dosimetry, in vivo dosimetry and personal and environmental monitoring. In this article, we briefly introduce the general physical characteristics and properties that are commonly used to describe the behaviour and performance of both discrete and imaging detectors. The physical principles of operation of calorimeters; ionization and charge detectors; semiconductor, luminescent, scintillating and chemical detectors; and radiochromic and radiographic films are then reviewed and their principle applications discussed. Finally, a general discussion of the application of detectors for x-ray nuclear medicine and ion beam imaging and dosimetry is presented.
Cheung, Chris C P; Yu, Alfred C H; Salimi, Nazila; Yiu, Billy Y S; Tsang, Ivan K H; Kerby, Benjamin; Azar, Reza Zahiri; Dickie, Kris
2012-02-01
The lack of open access to the pre-beamformed data of an ultrasound scanner has limited the research of novel imaging methods to a few privileged laboratories. To address this need, we have developed a pre-beamformed data acquisition (DAQ) system that can collect data over 128 array elements in parallel from the Ultrasonix series of research-purpose ultrasound scanners. Our DAQ system comprises three system-level blocks: 1) a connector board that interfaces with the array probe and the scanner through a probe connector port; 2) a main board that triggers DAQ and controls data transfer to a computer; and 3) four receiver boards that are each responsible for acquiring 32 channels of digitized raw data and storing them to the on-board memory. This system can acquire pre-beamformed data with 12-bit resolution when using a 40-MHz sampling rate. It houses a 16 GB RAM buffer that is sufficient to store 128 channels of pre-beamformed data for 8000 to 25 000 transmit firings, depending on imaging depth; corresponding to nearly a 2-s period in typical imaging setups. Following the acquisition, the data can be transferred through a USB 2.0 link to a computer for offline processing and analysis. To evaluate the feasibility of using the DAQ system for advanced imaging research, two proof-of-concept investigations have been conducted on beamforming and plane-wave B-flow imaging. Results show that adaptive beamforming algorithms such as the minimum variance approach can generate sharper images of a wire cross-section whose diameter is equal to the imaging wavelength (150 μm in our example). Also, planewave B-flow imaging can provide more consistent visualization of blood speckle movement given the higher temporal resolution of this imaging approach (2500 fps in our example).
Medical physics: some recollections in diagnostic X-ray imaging and therapeutic radiology.
Gray, J E; Orton, C G
2000-12-01
Medical physics has changed dramatically since 1895. There was a period of slow evolutionary change during the first 70 years after Roentgen's discovery of x rays. With the advent of the computer, however, both diagnostic and therapeutic radiology have undergone rapid growth and changes. Technologic advances such as computed tomography and magnetic resonance imaging in diagnostic imaging and three-dimensional treatment planning systems, stereotactic radiosurgery, and intensity modulated radiation therapy in radiation oncology have resulted in substantial changes in medical physics. These advances have improved diagnostic imaging and radiation therapy while expanding the need for better educated and experienced medical physics staff.
Foodomics imaging by mass spectrometry and magnetic resonance.
Canela, Núria; Rodríguez, Miguel Ángel; Baiges, Isabel; Nadal, Pedro; Arola, Lluís
2016-07-01
This work explores the use of advanced imaging MS (IMS) and magnetic resonance imaging (MRI) techniques in food science and nutrition to evaluate food sensory characteristics, nutritional value and health benefits. Determining the chemical content and applying imaging tools to food metabolomics offer detailed information about food quality, safety, processing, storage and authenticity assessment. IMS and MRI are powerful analytical systems with an excellent capability for mapping the distribution of many molecules, and recent advances in these platforms are reviewed and discussed, showing the great potential of these techniques for small molecule-based food metabolomics research. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mohammed, Ali I; Gritton, Howard J; Tseng, Hua-an; Bucklin, Mark E; Yao, Zhaojie; Han, Xue
2016-02-08
Advances in neurotechnology have been integral to the investigation of neural circuit function in systems neuroscience. Recent improvements in high performance fluorescent sensors and scientific CMOS cameras enables optical imaging of neural networks at a much larger scale. While exciting technical advances demonstrate the potential of this technique, further improvement in data acquisition and analysis, especially those that allow effective processing of increasingly larger datasets, would greatly promote the application of optical imaging in systems neuroscience. Here we demonstrate the ability of wide-field imaging to capture the concurrent dynamic activity from hundreds to thousands of neurons over millimeters of brain tissue in behaving mice. This system allows the visualization of morphological details at a higher spatial resolution than has been previously achieved using similar functional imaging modalities. To analyze the expansive data sets, we developed software to facilitate rapid downstream data processing. Using this system, we show that a large fraction of anatomically distinct hippocampal neurons respond to discrete environmental stimuli associated with classical conditioning, and that the observed temporal dynamics of transient calcium signals are sufficient for exploring certain spatiotemporal features of large neural networks.
UROLOGIC ROBOTS AND FUTURE DIRECTIONS
Mozer, Pierre; Troccaz, Jocelyne; Stoianovici, Dan
2009-01-01
Purpose of review Robot-assisted laparoscopic surgery in urology has gained immense popularity with the Da Vinci system but a lot of research teams are working on new robots. The purpose of this paper is to review current urologic robots and present future developments directions. Recent findings Future systems are expected to advance in two directions: improvements of remote manipulation robots and developments of image-guided robots. Summary The final goal of robots is to allow safer and more homogeneous outcomes with less variability of surgeon performance, as well as new tools to perform tasks based on medical transcutaneous imaging, in a less invasive way, at lower costs. It is expected that improvements for remote system could be augmented reality, haptic feed back, size reduction and development of new tools for NOTES surgery. The paradigm of image-guided robots is close to a clinical availability and the most advanced robots are presented with end-user technical assessments. It is also notable that the potential of robots lies much further ahead than the accomplishments of the daVinci system. The integration of imaging with robotics holds a substantial promise, because this can accomplish tasks otherwise impossible. Image guided robots have the potential to offer a paradigm shift. PMID:19057227
Urologic robots and future directions.
Mozer, Pierre; Troccaz, Jocelyne; Stoianovici, Dan
2009-01-01
Robot-assisted laparoscopic surgery in urology has gained immense popularity with the daVinci system, but a lot of research teams are working on new robots. The purpose of this study is to review current urologic robots and present future development directions. Future systems are expected to advance in two directions: improvements of remote manipulation robots and developments of image-guided robots. The final goal of robots is to allow safer and more homogeneous outcomes with less variability of surgeon performance, as well as new tools to perform tasks on the basis of medical transcutaneous imaging, in a less invasive way, at lower costs. It is expected that improvements for a remote system could be augmented in reality, with haptic feedback, size reduction, and development of new tools for natural orifice translumenal endoscopic surgery. The paradigm of image-guided robots is close to clinical availability and the most advanced robots are presented with end-user technical assessments. It is also notable that the potential of robots lies much further ahead than the accomplishments of the daVinci system. The integration of imaging with robotics holds a substantial promise, because this can accomplish tasks otherwise impossible. Image-guided robots have the potential to offer a paradigm shift.
NASA Technical Reports Server (NTRS)
Caron, R. H.; Rifman, S. S.; Simon, K. W.
1974-01-01
The development of an ERTS/MSS image processing system responsive to the needs of the user community is discussed. An overview of the TRW ERTS/MSS processor is presented, followed by a more detailed discussion of image processing functions satisfied by the system. The particular functions chosen for discussion are evolved from advanced signal processing techniques rooted in the areas of communication and control. These examples show how classical aerospace technology can be transferred to solve the more contemporary problems confronting the users of spaceborne imagery.
Pilot study on the effects of a computer-based medical image system.
Wu, S. C.; Smith, J. W.; Swan, J. E.
1996-01-01
Current medical imaging systems are developed for the purpose of data management. Evaluations of these systems are usually done by assessing users' subjective appreciation rather than objectively gauging performance influence. The present report discusses the evaluation of a medical image presentation system prototype utilizing a cognitive approach. Experimental results showed hypothesized performance improvement attributed to advanced presentation techniques. However, this improvement was almost inadvertently masked by users' previous strategies and interactions with new technology. Overall these data demonstrate the potential benefit of implementing such a system in actual practice as well as provide an example of applying the cognitive approach in evaluating the usability of medical systems. Images Figure 1 PMID:8947750
MEMS scanning micromirror for optical coherence tomography.
Strathman, Matthew; Liu, Yunbo; Keeler, Ethan G; Song, Mingli; Baran, Utku; Xi, Jiefeng; Sun, Ming-Ting; Wang, Ruikang; Li, Xingde; Lin, Lih Y
2015-01-01
This paper describes an endoscopic-inspired imaging system employing a micro-electromechanical system (MEMS) micromirror scanner to achieve beam scanning for optical coherence tomography (OCT) imaging. Miniaturization of a scanning mirror using MEMS technology can allow a fully functional imaging probe to be contained in a package sufficiently small for utilization in a working channel of a standard gastroesophageal endoscope. This work employs advanced image processing techniques to enhance the images acquired using the MEMS scanner to correct non-idealities in mirror performance. The experimental results demonstrate the effectiveness of the proposed technique.
MEMS scanning micromirror for optical coherence tomography
Strathman, Matthew; Liu, Yunbo; Keeler, Ethan G.; Song, Mingli; Baran, Utku; Xi, Jiefeng; Sun, Ming-Ting; Wang, Ruikang; Li, Xingde; Lin, Lih Y.
2014-01-01
This paper describes an endoscopic-inspired imaging system employing a micro-electromechanical system (MEMS) micromirror scanner to achieve beam scanning for optical coherence tomography (OCT) imaging. Miniaturization of a scanning mirror using MEMS technology can allow a fully functional imaging probe to be contained in a package sufficiently small for utilization in a working channel of a standard gastroesophageal endoscope. This work employs advanced image processing techniques to enhance the images acquired using the MEMS scanner to correct non-idealities in mirror performance. The experimental results demonstrate the effectiveness of the proposed technique. PMID:25657887
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, G.
1. Parallels in the evolution of x-ray angiographic systems and devices used for minimally invasive endovascular therapy Charles Strother - DSA, invented by Dr. Charles Mistretta at UW-Madison, was the technology which enabled the development of minimally invasive endovascular procedures. As DSA became widely available and the potential benefits for accessing the cerebral vasculature from an endovascular approach began to be apparent, industry began efforts to develop tools for use in these procedures. Along with development of catheters, embolic materials, pushable coils and the GDC coils there was simultaneous development and improvement of 2D DSA image quality and the introductionmore » of 3D DSA. Together, these advances resulted in an enormous expansion in the scope and numbers of minimally invasive endovascular procedures. The introduction of flat detectors for c-arm angiographic systems in 2002 provided the possibility of the angiographic suite becoming not just a location for vascular imaging where physiological assessments might also be performed. Over the last decade algorithmic and hardware advances have been sufficient to now realize this potential in clinical practice. The selection of patients for endovascular treatments is enhanced by this dual capability. Along with these advances has been a steady reduction in the radiation exposure required so that today, vascular and soft tissue images may be obtained with equal or in many cases less radiation exposure than is the case for comparable images obtained with multi-detector CT. Learning Objectives: To understand the full capabilities of today’s angiographic suite To understand how c-arm cone beam CT soft tissue imaging can be used for assessments of devices, blood flow and perfusion. Advances in real-time x-ray neuro-endovascular image guidance Stephen Rudin - Reacting to the demands on real-time image guidance for ever finer neurovascular interventions, great improvements in imaging chains are being pursued. For the highest spatial and temporal resolution, x-ray guidance with fluoroscopy and angiography although dominant are still being vastly improved. New detectors such as the Micro-Angiographic Fluoroscope (MAF) and x-ray source designs that enable higher outputs while maintaining small focal spots will be highlighted along with new methods for minimizing the radiation dose to patients. Additionally, new platforms for training and device testing that include patient-specific 3D printed vascular phantoms and new metrics such as generalized relative object detectability for objectively inter-comparing systems will be discussed. This will improve the opportunity for better evaluation of these technological advances which should contribute to the safety and efficacy of image guided minimally invasive neuro-endovascular procedures. Learning Objectives: To understand the operation of new x-ray imaging chain components such as detectors and sources To be informed about the latest testing methods, with 3D printed vascular phantoms, and new evaluation metrics for advanced imaging in x-ray image guided neurovascular interventions Advances in cone beam CT anatomical and functional imaging in angio-suite to enable one-stop-shop stroke imaging workflow Guang-Hong Chen - The introduction of flat-panel detector based cone-beam CT in clinical angiographic imaging systems enabled treating physicians to obtain three-dimensional anatomic roadmaps for bony structure, soft brain tissue, and vasculatures for treatment planning and efficacy checking after the procedures. However, much improvement is needed to reduce image artifacts, reduce radiation dose, and add potential functional imaging capability to provide four-dimensional dynamic information of vasculature and brain perfusion. In this presentation, some of the new techniques developed to address radiation dose issues, image artifact reduction and brain perfusion using C-arm cone-beam CT imaging system will be introduced for the audience. Learning Objectives: To understand the clinical need of one-stop-shop stroke imaging workflow To understand to technical challenges in cone beam CT perfusion To understand the potential technical solutions to enable one-stop-shop imaging workflow Recent advances in devices used in neuro--interventions Mattew Gounis - Over the past two decades, there has been explosive development of medical devices that have revolutionized the endovascular treatment of cerebrovascular diseases. There is now Level 1, Class A evidence that intra-arterial, mechanical thrombectomy in acute ischemic stroke is superior to medical management; and similarly that minimally invasive, endovascular repair of ruptured brain aneurysms is superior to surgical treatment. Stent-retrievers are now standard of care for emergent large vessel occlusions causing a stroke, with a number of patients need to treat for good clinical outcomes as low as 4. Recent technologies such as flow diverters and disrupters, intracranial self-expanding stents, flexible large bore catheters that can reach vessels beyond the circle of Willis, stent-retrievers, and super-compliant balloons are the result of successful miniaturization of design features and novel manufacturing technologies capable of building these devices. This is a rapidly evolving field, and the device technology enabling such advancements will be reviewed. Importantly, image-guidance technology has not kept pace in neurointervention and the ability to adequately characterize these devices in vivo remains a significant opportunity. Learning Objectives: A survey of devices used in neurointerventions, their materials and essential design characteristics Funding support received from NIH and DOD; Funding support received from GE Healthcare; Funding support received from Siemens AX; Patent royalties received from GE Healthcare; G. Chen, Funding received from NIH; funding received from DOD; funding received from GE Healthcare; funding received from Siemens AX.; M. Gounis, consultant for Codman Neurovascular and Stryker Neurovascular; Holds stock in InNeuroCo Inc, research grants: NIH, Medtronic Neurovascular, Microvention/Terumo, Cerevasc LLC, Gentuity, Codman Neurovascular, Philips Healthcare, Stryker Neurovascular, Tay Sachs Foundation, and InNeuroCo Inc.; S. Rudin, Supported in part by NIH Grant R01EB002873 and the Toshiba Medical System Corp.« less
Smartphone-Based Endoscope System for Advanced Point-of-Care Diagnostics: Feasibility Study
Bae, Jung Kweon; Vavilin, Andrey; You, Joon S; Kim, Hyeongeun; Ryu, Seon Young; Jang, Jeong Hun
2017-01-01
Background Endoscopic technique is often applied for the diagnosis of diseases affecting internal organs and image-guidance of surgical procedures. Although the endoscope has become an indispensable tool in the clinic, its utility has been limited to medical offices or operating rooms because of the large size of its ancillary devices. In addition, the basic design and imaging capability of the system have remained relatively unchanged for decades. Objective The objective of this study was to develop a smartphone-based endoscope system capable of advanced endoscopic functionalities in a compact size and at an affordable cost and to demonstrate its feasibility of point-of-care through human subject imaging. Methods We developed and designed to set up a smartphone-based endoscope system, incorporating a portable light source, relay-lens, custom adapter, and homebuilt Android app. We attached three different types of existing rigid or flexible endoscopic probes to our system and captured the endoscopic images using the homebuilt app. Both smartphone-based endoscope system and commercialized clinical endoscope system were utilized to compare the imaging quality and performance. Connecting the head-mounted display (HMD) wirelessly, the smartphone-based endoscope system could superimpose an endoscopic image to real-world view. Results A total of 15 volunteers who were accepted into our study were captured using our smartphone-based endoscope system, as well as the commercialized clinical endoscope system. It was found that the imaging performance of our device had acceptable quality compared with that of the conventional endoscope system in the clinical setting. In addition, images captured from the HMD used in the smartphone-based endoscope system improved eye-hand coordination between the manipulating site and the smartphone screen, which in turn reduced spatial disorientation. Conclusions The performance of our endoscope system was evaluated against a commercial system in routine otolaryngology examinations. We also demonstrated and evaluated the feasibility of conducting endoscopic procedures through a custom HMD. PMID:28751302
Note: thermal imaging enhancement algorithm for gas turbine aerothermal characterization.
Beer, S K; Lawson, S A
2013-08-01
An algorithm was developed to convert radiation intensity images acquired using a black and white CCD camera to thermal images without requiring knowledge of incident background radiation. This unique infrared (IR) thermography method was developed to determine aerothermal characteristics of advanced cooling concepts for gas turbine cooling application. Compared to IR imaging systems traditionally used for gas turbine temperature monitoring, the system developed for the current study is relatively inexpensive and does not require calibration with surface mounted thermocouples.
TU-AB-204-03: Advances in CBCT for Orhtopaedics and Bone Health Imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zbijewski, W.
This symposium highlights advanced cone-beam CT (CBCT) technologies in four areas of emerging application in diagnostic imaging and image-guided interventions. Each area includes research that extends the spatial, temporal, and/or contrast resolution characteristics of CBCT beyond conventional limits through advances in scanner technology, acquisition protocols, and 3D image reconstruction techniques. Dr. G. Chen (University of Wisconsin) will present on the topic: Advances in C-arm CBCT for Brain Perfusion Imaging. Stroke is a leading cause of death and disability, and a fraction of people having an acute ischemic stroke are suitable candidates for endovascular therapy. Critical factors that affect both themore » likelihood of successful revascularization and good clinical outcome are: 1) the time between stroke onset and revascularization; and 2) the ability to distinguish patients who have a small volume of irreversibly injured brain (ischemic core) and a large volume of ischemic but salvageable brain (penumbra) from patients with a large ischemic core and little or no penumbra. Therefore, “time is brain” in the care of the stroke patients. C-arm CBCT systems widely available in angiography suites have the potential to generate non-contrast-enhanced CBCT images to exclude the presence of hemorrhage, time-resolved CBCT angiography to evaluate the site of occlusion and collaterals, and CBCT perfusion parametric images to assess the extent of the ischemic core and penumbra, thereby fulfilling the imaging requirements of a “one-stop-shop” in the angiography suite to reduce the time between onset and revascularization therapy. The challenges and opportunities to advance CBCT technology to fully enable the one-stop-shop C-arm CBCT platform for brain imaging will be discussed. Dr. R. Fahrig (Stanford University) will present on the topic: Advances in C-arm CBCT for Cardiac Interventions. With the goal of providing functional information during cardiac interventions, significant effort has been expended to improve the quantitative accuracy of C-arm CBCT reconstructions. The challenge is to improve image quality while providing very short turnaround between data acquisition and volume data visualization. Corrections for x-ray scatter, view aliasing and patient motion that require no more than 2 iterations keep processing time short while reducing artifact. Fast, multi-sweep acquisitions can be used to permit assessment of left ventricular function, and visualization of radiofrequency lesions created to treat arrhythmias. Workflows for each imaging goal have been developed and validated against gold standard clinical CT or histology. The challenges, opportunities, and limitations of the new functional C-arm CBCT imaging techniques will be discussed. Dr. W. Zbijewski (Johns Hopkins University) will present on the topic: Advances in CBCT for Orthopaedics and Bone Health Imaging. Cone-beam CT is particularly well suited for imaging of musculoskeletal extremities. Owing to the high spatial resolution of flat-panel detectors, CBCT can surpass conventional CT in imaging tasks involving bone visualization, quantitative analysis of subchondral trabecular structure, and visualization and monitoring of subtle fractures that are common in orthopedic radiology. A dedicated CBCT platform has been developed that offers flexibility in system design and provides not only a compact configuration with improved logistics for extremities imaging but also enables novel diagnostic capabilities such as imaging of weight-bearing lower extremities in a natural stance. The design, development and clinical performance of dedicated extremities CBCT systems will be presented. Advanced capabilities for quantitative volumetric assessment of joint space morphology, dual-energy image-based quantification of bone composition, and in-vivo analysis of bone microarchitecture will be discussed, along with emerging applications in the diagnosis of arthritis and osteoporosis and assessment of novel therapies. Finally, Dr. J. Boone (UC Davis) will present on the topic: Advances in CBCT for Breast Imaging. Breast CT has been studied as an imaging tool for diagnostic breast evaluation and for potential breast cancer screening. The breast CT application lends itself to CBCT because of the small dimensions of the breast, the tapered shape of the breast towards higher cone angle, and the fact that there are no bones in the breast. The performance of various generations of breast CT scanners developed in recent years will be discussed, focusing on advances in spatial resolution and image noise characteristics. The results will also demonstrate the results of clinical trials using both computer and human observers. Learning Objectives: Understand the challenges, key technological advances, and emerging opportunities of CBCT in: Brain perfusion imaging, including assessment of ischemic stroke Cardiac imaging for functional assessment in cardiac interventions Orthopedics imaging for evaluation of musculoskeletal trauma, arthritis, and osteoporosis Breast imaging for screening and diagnosis of breast cancer. Work presented in this symposium includes research support by: Siemens Healthcare (Dr. Chen); NIH and Siemens Healthcare (Dr. Fahrig); NIH and Carestream Health (Dr. Zbijewski); and NIH (Dr. Boone)« less
TU-AB-204-01: Advances in C-Arm CBCT for Brain Perfusion Imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, G.
This symposium highlights advanced cone-beam CT (CBCT) technologies in four areas of emerging application in diagnostic imaging and image-guided interventions. Each area includes research that extends the spatial, temporal, and/or contrast resolution characteristics of CBCT beyond conventional limits through advances in scanner technology, acquisition protocols, and 3D image reconstruction techniques. Dr. G. Chen (University of Wisconsin) will present on the topic: Advances in C-arm CBCT for Brain Perfusion Imaging. Stroke is a leading cause of death and disability, and a fraction of people having an acute ischemic stroke are suitable candidates for endovascular therapy. Critical factors that affect both themore » likelihood of successful revascularization and good clinical outcome are: 1) the time between stroke onset and revascularization; and 2) the ability to distinguish patients who have a small volume of irreversibly injured brain (ischemic core) and a large volume of ischemic but salvageable brain (penumbra) from patients with a large ischemic core and little or no penumbra. Therefore, “time is brain” in the care of the stroke patients. C-arm CBCT systems widely available in angiography suites have the potential to generate non-contrast-enhanced CBCT images to exclude the presence of hemorrhage, time-resolved CBCT angiography to evaluate the site of occlusion and collaterals, and CBCT perfusion parametric images to assess the extent of the ischemic core and penumbra, thereby fulfilling the imaging requirements of a “one-stop-shop” in the angiography suite to reduce the time between onset and revascularization therapy. The challenges and opportunities to advance CBCT technology to fully enable the one-stop-shop C-arm CBCT platform for brain imaging will be discussed. Dr. R. Fahrig (Stanford University) will present on the topic: Advances in C-arm CBCT for Cardiac Interventions. With the goal of providing functional information during cardiac interventions, significant effort has been expended to improve the quantitative accuracy of C-arm CBCT reconstructions. The challenge is to improve image quality while providing very short turnaround between data acquisition and volume data visualization. Corrections for x-ray scatter, view aliasing and patient motion that require no more than 2 iterations keep processing time short while reducing artifact. Fast, multi-sweep acquisitions can be used to permit assessment of left ventricular function, and visualization of radiofrequency lesions created to treat arrhythmias. Workflows for each imaging goal have been developed and validated against gold standard clinical CT or histology. The challenges, opportunities, and limitations of the new functional C-arm CBCT imaging techniques will be discussed. Dr. W. Zbijewski (Johns Hopkins University) will present on the topic: Advances in CBCT for Orthopaedics and Bone Health Imaging. Cone-beam CT is particularly well suited for imaging of musculoskeletal extremities. Owing to the high spatial resolution of flat-panel detectors, CBCT can surpass conventional CT in imaging tasks involving bone visualization, quantitative analysis of subchondral trabecular structure, and visualization and monitoring of subtle fractures that are common in orthopedic radiology. A dedicated CBCT platform has been developed that offers flexibility in system design and provides not only a compact configuration with improved logistics for extremities imaging but also enables novel diagnostic capabilities such as imaging of weight-bearing lower extremities in a natural stance. The design, development and clinical performance of dedicated extremities CBCT systems will be presented. Advanced capabilities for quantitative volumetric assessment of joint space morphology, dual-energy image-based quantification of bone composition, and in-vivo analysis of bone microarchitecture will be discussed, along with emerging applications in the diagnosis of arthritis and osteoporosis and assessment of novel therapies. Finally, Dr. J. Boone (UC Davis) will present on the topic: Advances in CBCT for Breast Imaging. Breast CT has been studied as an imaging tool for diagnostic breast evaluation and for potential breast cancer screening. The breast CT application lends itself to CBCT because of the small dimensions of the breast, the tapered shape of the breast towards higher cone angle, and the fact that there are no bones in the breast. The performance of various generations of breast CT scanners developed in recent years will be discussed, focusing on advances in spatial resolution and image noise characteristics. The results will also demonstrate the results of clinical trials using both computer and human observers. Learning Objectives: Understand the challenges, key technological advances, and emerging opportunities of CBCT in: Brain perfusion imaging, including assessment of ischemic stroke Cardiac imaging for functional assessment in cardiac interventions Orthopedics imaging for evaluation of musculoskeletal trauma, arthritis, and osteoporosis Breast imaging for screening and diagnosis of breast cancer. Work presented in this symposium includes research support by: Siemens Healthcare (Dr. Chen); NIH and Siemens Healthcare (Dr. Fahrig); NIH and Carestream Health (Dr. Zbijewski); and NIH (Dr. Boone)« less
TU-AB-204-04: Advances in CBCT for Breast Imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boone, J.
This symposium highlights advanced cone-beam CT (CBCT) technologies in four areas of emerging application in diagnostic imaging and image-guided interventions. Each area includes research that extends the spatial, temporal, and/or contrast resolution characteristics of CBCT beyond conventional limits through advances in scanner technology, acquisition protocols, and 3D image reconstruction techniques. Dr. G. Chen (University of Wisconsin) will present on the topic: Advances in C-arm CBCT for Brain Perfusion Imaging. Stroke is a leading cause of death and disability, and a fraction of people having an acute ischemic stroke are suitable candidates for endovascular therapy. Critical factors that affect both themore » likelihood of successful revascularization and good clinical outcome are: 1) the time between stroke onset and revascularization; and 2) the ability to distinguish patients who have a small volume of irreversibly injured brain (ischemic core) and a large volume of ischemic but salvageable brain (penumbra) from patients with a large ischemic core and little or no penumbra. Therefore, “time is brain” in the care of the stroke patients. C-arm CBCT systems widely available in angiography suites have the potential to generate non-contrast-enhanced CBCT images to exclude the presence of hemorrhage, time-resolved CBCT angiography to evaluate the site of occlusion and collaterals, and CBCT perfusion parametric images to assess the extent of the ischemic core and penumbra, thereby fulfilling the imaging requirements of a “one-stop-shop” in the angiography suite to reduce the time between onset and revascularization therapy. The challenges and opportunities to advance CBCT technology to fully enable the one-stop-shop C-arm CBCT platform for brain imaging will be discussed. Dr. R. Fahrig (Stanford University) will present on the topic: Advances in C-arm CBCT for Cardiac Interventions. With the goal of providing functional information during cardiac interventions, significant effort has been expended to improve the quantitative accuracy of C-arm CBCT reconstructions. The challenge is to improve image quality while providing very short turnaround between data acquisition and volume data visualization. Corrections for x-ray scatter, view aliasing and patient motion that require no more than 2 iterations keep processing time short while reducing artifact. Fast, multi-sweep acquisitions can be used to permit assessment of left ventricular function, and visualization of radiofrequency lesions created to treat arrhythmias. Workflows for each imaging goal have been developed and validated against gold standard clinical CT or histology. The challenges, opportunities, and limitations of the new functional C-arm CBCT imaging techniques will be discussed. Dr. W. Zbijewski (Johns Hopkins University) will present on the topic: Advances in CBCT for Orthopaedics and Bone Health Imaging. Cone-beam CT is particularly well suited for imaging of musculoskeletal extremities. Owing to the high spatial resolution of flat-panel detectors, CBCT can surpass conventional CT in imaging tasks involving bone visualization, quantitative analysis of subchondral trabecular structure, and visualization and monitoring of subtle fractures that are common in orthopedic radiology. A dedicated CBCT platform has been developed that offers flexibility in system design and provides not only a compact configuration with improved logistics for extremities imaging but also enables novel diagnostic capabilities such as imaging of weight-bearing lower extremities in a natural stance. The design, development and clinical performance of dedicated extremities CBCT systems will be presented. Advanced capabilities for quantitative volumetric assessment of joint space morphology, dual-energy image-based quantification of bone composition, and in-vivo analysis of bone microarchitecture will be discussed, along with emerging applications in the diagnosis of arthritis and osteoporosis and assessment of novel therapies. Finally, Dr. J. Boone (UC Davis) will present on the topic: Advances in CBCT for Breast Imaging. Breast CT has been studied as an imaging tool for diagnostic breast evaluation and for potential breast cancer screening. The breast CT application lends itself to CBCT because of the small dimensions of the breast, the tapered shape of the breast towards higher cone angle, and the fact that there are no bones in the breast. The performance of various generations of breast CT scanners developed in recent years will be discussed, focusing on advances in spatial resolution and image noise characteristics. The results will also demonstrate the results of clinical trials using both computer and human observers. Learning Objectives: Understand the challenges, key technological advances, and emerging opportunities of CBCT in: Brain perfusion imaging, including assessment of ischemic stroke Cardiac imaging for functional assessment in cardiac interventions Orthopedics imaging for evaluation of musculoskeletal trauma, arthritis, and osteoporosis Breast imaging for screening and diagnosis of breast cancer. Work presented in this symposium includes research support by: Siemens Healthcare (Dr. Chen); NIH and Siemens Healthcare (Dr. Fahrig); NIH and Carestream Health (Dr. Zbijewski); and NIH (Dr. Boone)« less
Postal, M; Lapa, A Tamires; Reis, F; Rittner, L; Appenzeller, S
2017-04-01
Systemic lupus erythematosus is a chronic, inflammatory, immune-mediated disease affecting 0.1% of the general population. Neuropsychiatric manifestations in systemic lupus erythematosus have been more frequently recognized and reported in recent years, occurring in up to 75% of patients during the disease course. Magnetic resonance imaging is known to be a useful tool for the detection of structural brain abnormalities in neuropsychiatric systemic lupus erythematosus patients because of the excellent soft-tissue contrast observed with MRI and the ability to acquire multiplanar images. In addition to conventional magnetic resonance imaging techniques to evaluate the presence of atrophy and white matter lesions, several different magnetic resonance imaging techniques have been used to identify microstructural or functional abnormalities. This review will highlight different magnetic resonance imaging techniques, including the advanced magnetic resonance imaging methods used to determine central nervous system involvement in systemic lupus erythematosus.
Terahertz Imaging of Subjects With Concealed Weapons
2006-05-01
pulsed imaging", Advanced Characterization, Therapeutics, and Systems XIV, Proceedings of SPIE, Vol. 5318: 23-33 6. Anthony E. Siegman , Lasers , p667...imagery. Both methods made use of in-house transceivers, consisting of two ultra-stable far-infrared lasers , terahertz heterodyne detection systems...SYSTEM The 1.56THz transceiver system at STL uses two carbon dioxide lasers paired individually with two far-infrared lasers . All four units are
Advanced Millimeter-Wave Imaging Enhances Security Screening
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheen, David M.; Bernacki, Bruce E.; McMakin, Douglas L.
2012-01-12
Millimeter-wave imaging is rapidly gaining acceptance for passenger screening at airports and other secured facilities. This paper details a number of techniques developed over the last several years including novel image reconstruction and display techniques, polarimetric imaging techniques, array switching schemes, as well as high frequency high bandwidth techniques. Implementation of some of these methods will increase the cost and complexity of the mm-wave security portal imaging systems. RF photonic methods may provide new solutions to the design and development of the sequentially switched linear mm-wave arrays that are the key element in the mm-wave portal imaging systems.
Advanced Millimeter-Wave Security Portal Imaging Techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheen, David M.; Bernacki, Bruce E.; McMakin, Douglas L.
2012-04-01
Millimeter-wave imaging is rapidly gaining acceptance for passenger screening at airports and other secured facilities. This paper details a number of techniques developed over the last several years including novel image reconstruction and display techniques, polarimetric imaging techniques, array switching schemes, as well as high frequency high bandwidth techniques. Implementation of some of these methods will increase the cost and complexity of the mm-wave security portal imaging systems. RF photonic methods may provide new solutions to the design and development of the sequentially switched linear mm-wave arrays that are the key element in the mm-wave portal imaging systems.
Integrating advanced visualization technology into the planetary Geoscience workflow
NASA Astrophysics Data System (ADS)
Huffman, John; Forsberg, Andrew; Loomis, Andrew; Head, James; Dickson, James; Fassett, Caleb
2011-09-01
Recent advances in computer visualization have allowed us to develop new tools for analyzing the data gathered during planetary missions, which is important, since these data sets have grown exponentially in recent years to tens of terabytes in size. As part of the Advanced Visualization in Solar System Exploration and Research (ADVISER) project, we utilize several advanced visualization techniques created specifically with planetary image data in mind. The Geoviewer application allows real-time active stereo display of images, which in aggregate have billions of pixels. The ADVISER desktop application platform allows fast three-dimensional visualization of planetary images overlain on digital terrain models. Both applications include tools for easy data ingest and real-time analysis in a programmatic manner. Incorporation of these tools into our everyday scientific workflow has proved important for scientific analysis, discussion, and publication, and enabled effective and exciting educational activities for students from high school through graduate school.
IMAGING SPECTROSCOPY FOR DETERMINING RANGELAND STRESSORS TO WESTERN WATERSHEDS
The Environmental Protection Agency is developing rangeland ecological indicators in eleven western states using advanced remote sensing systems. Fine spectral resolution (hyperspemal) sensors, or imaging spectrometers, can detect the subtle spectral features that makes vegetatio...
WE-DE-207A-04: Advances in Radiological Neuro-Endovascular Interventional Imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rudin, S.
1. Parallels in the evolution of x-ray angiographic systems and devices used for minimally invasive endovascular therapy Charles Strother - DSA, invented by Dr. Charles Mistretta at UW-Madison, was the technology which enabled the development of minimally invasive endovascular procedures. As DSA became widely available and the potential benefits for accessing the cerebral vasculature from an endovascular approach began to be apparent, industry began efforts to develop tools for use in these procedures. Along with development of catheters, embolic materials, pushable coils and the GDC coils there was simultaneous development and improvement of 2D DSA image quality and the introductionmore » of 3D DSA. Together, these advances resulted in an enormous expansion in the scope and numbers of minimally invasive endovascular procedures. The introduction of flat detectors for c-arm angiographic systems in 2002 provided the possibility of the angiographic suite becoming not just a location for vascular imaging where physiological assessments might also be performed. Over the last decade algorithmic and hardware advances have been sufficient to now realize this potential in clinical practice. The selection of patients for endovascular treatments is enhanced by this dual capability. Along with these advances has been a steady reduction in the radiation exposure required so that today, vascular and soft tissue images may be obtained with equal or in many cases less radiation exposure than is the case for comparable images obtained with multi-detector CT. Learning Objectives: To understand the full capabilities of today’s angiographic suite To understand how c-arm cone beam CT soft tissue imaging can be used for assessments of devices, blood flow and perfusion. Advances in real-time x-ray neuro-endovascular image guidance Stephen Rudin - Reacting to the demands on real-time image guidance for ever finer neurovascular interventions, great improvements in imaging chains are being pursued. For the highest spatial and temporal resolution, x-ray guidance with fluoroscopy and angiography although dominant are still being vastly improved. New detectors such as the Micro-Angiographic Fluoroscope (MAF) and x-ray source designs that enable higher outputs while maintaining small focal spots will be highlighted along with new methods for minimizing the radiation dose to patients. Additionally, new platforms for training and device testing that include patient-specific 3D printed vascular phantoms and new metrics such as generalized relative object detectability for objectively inter-comparing systems will be discussed. This will improve the opportunity for better evaluation of these technological advances which should contribute to the safety and efficacy of image guided minimally invasive neuro-endovascular procedures. Learning Objectives: To understand the operation of new x-ray imaging chain components such as detectors and sources To be informed about the latest testing methods, with 3D printed vascular phantoms, and new evaluation metrics for advanced imaging in x-ray image guided neurovascular interventions Advances in cone beam CT anatomical and functional imaging in angio-suite to enable one-stop-shop stroke imaging workflow Guang-Hong Chen - The introduction of flat-panel detector based cone-beam CT in clinical angiographic imaging systems enabled treating physicians to obtain three-dimensional anatomic roadmaps for bony structure, soft brain tissue, and vasculatures for treatment planning and efficacy checking after the procedures. However, much improvement is needed to reduce image artifacts, reduce radiation dose, and add potential functional imaging capability to provide four-dimensional dynamic information of vasculature and brain perfusion. In this presentation, some of the new techniques developed to address radiation dose issues, image artifact reduction and brain perfusion using C-arm cone-beam CT imaging system will be introduced for the audience. Learning Objectives: To understand the clinical need of one-stop-shop stroke imaging workflow To understand to technical challenges in cone beam CT perfusion To understand the potential technical solutions to enable one-stop-shop imaging workflow Recent advances in devices used in neuro--interventions Mattew Gounis - Over the past two decades, there has been explosive development of medical devices that have revolutionized the endovascular treatment of cerebrovascular diseases. There is now Level 1, Class A evidence that intra-arterial, mechanical thrombectomy in acute ischemic stroke is superior to medical management; and similarly that minimally invasive, endovascular repair of ruptured brain aneurysms is superior to surgical treatment. Stent-retrievers are now standard of care for emergent large vessel occlusions causing a stroke, with a number of patients need to treat for good clinical outcomes as low as 4. Recent technologies such as flow diverters and disrupters, intracranial self-expanding stents, flexible large bore catheters that can reach vessels beyond the circle of Willis, stent-retrievers, and super-compliant balloons are the result of successful miniaturization of design features and novel manufacturing technologies capable of building these devices. This is a rapidly evolving field, and the device technology enabling such advancements will be reviewed. Importantly, image-guidance technology has not kept pace in neurointervention and the ability to adequately characterize these devices in vivo remains a significant opportunity. Learning Objectives: A survey of devices used in neurointerventions, their materials and essential design characteristics Funding support received from NIH and DOD; Funding support received from GE Healthcare; Funding support received from Siemens AX; Patent royalties received from GE Healthcare; G. Chen, Funding received from NIH; funding received from DOD; funding received from GE Healthcare; funding received from Siemens AX.; M. Gounis, consultant for Codman Neurovascular and Stryker Neurovascular; Holds stock in InNeuroCo Inc, research grants: NIH, Medtronic Neurovascular, Microvention/Terumo, Cerevasc LLC, Gentuity, Codman Neurovascular, Philips Healthcare, Stryker Neurovascular, Tay Sachs Foundation, and InNeuroCo Inc.; S. Rudin, Supported in part by NIH Grant R01EB002873 and the Toshiba Medical System Corp.« less
WE-DE-207A-00: Advances in Image-Guided Neurointerventions-Clinical Pull and Technology Push
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1. Parallels in the evolution of x-ray angiographic systems and devices used for minimally invasive endovascular therapy Charles Strother - DSA, invented by Dr. Charles Mistretta at UW-Madison, was the technology which enabled the development of minimally invasive endovascular procedures. As DSA became widely available and the potential benefits for accessing the cerebral vasculature from an endovascular approach began to be apparent, industry began efforts to develop tools for use in these procedures. Along with development of catheters, embolic materials, pushable coils and the GDC coils there was simultaneous development and improvement of 2D DSA image quality and the introductionmore » of 3D DSA. Together, these advances resulted in an enormous expansion in the scope and numbers of minimally invasive endovascular procedures. The introduction of flat detectors for c-arm angiographic systems in 2002 provided the possibility of the angiographic suite becoming not just a location for vascular imaging where physiological assessments might also be performed. Over the last decade algorithmic and hardware advances have been sufficient to now realize this potential in clinical practice. The selection of patients for endovascular treatments is enhanced by this dual capability. Along with these advances has been a steady reduction in the radiation exposure required so that today, vascular and soft tissue images may be obtained with equal or in many cases less radiation exposure than is the case for comparable images obtained with multi-detector CT. Learning Objectives: To understand the full capabilities of today’s angiographic suite To understand how c-arm cone beam CT soft tissue imaging can be used for assessments of devices, blood flow and perfusion. Advances in real-time x-ray neuro-endovascular image guidance Stephen Rudin - Reacting to the demands on real-time image guidance for ever finer neurovascular interventions, great improvements in imaging chains are being pursued. For the highest spatial and temporal resolution, x-ray guidance with fluoroscopy and angiography although dominant are still being vastly improved. New detectors such as the Micro-Angiographic Fluoroscope (MAF) and x-ray source designs that enable higher outputs while maintaining small focal spots will be highlighted along with new methods for minimizing the radiation dose to patients. Additionally, new platforms for training and device testing that include patient-specific 3D printed vascular phantoms and new metrics such as generalized relative object detectability for objectively inter-comparing systems will be discussed. This will improve the opportunity for better evaluation of these technological advances which should contribute to the safety and efficacy of image guided minimally invasive neuro-endovascular procedures. Learning Objectives: To understand the operation of new x-ray imaging chain components such as detectors and sources To be informed about the latest testing methods, with 3D printed vascular phantoms, and new evaluation metrics for advanced imaging in x-ray image guided neurovascular interventions Advances in cone beam CT anatomical and functional imaging in angio-suite to enable one-stop-shop stroke imaging workflow Guang-Hong Chen - The introduction of flat-panel detector based cone-beam CT in clinical angiographic imaging systems enabled treating physicians to obtain three-dimensional anatomic roadmaps for bony structure, soft brain tissue, and vasculatures for treatment planning and efficacy checking after the procedures. However, much improvement is needed to reduce image artifacts, reduce radiation dose, and add potential functional imaging capability to provide four-dimensional dynamic information of vasculature and brain perfusion. In this presentation, some of the new techniques developed to address radiation dose issues, image artifact reduction and brain perfusion using C-arm cone-beam CT imaging system will be introduced for the audience. Learning Objectives: To understand the clinical need of one-stop-shop stroke imaging workflow To understand to technical challenges in cone beam CT perfusion To understand the potential technical solutions to enable one-stop-shop imaging workflow Recent advances in devices used in neuro--interventions Mattew Gounis - Over the past two decades, there has been explosive development of medical devices that have revolutionized the endovascular treatment of cerebrovascular diseases. There is now Level 1, Class A evidence that intra-arterial, mechanical thrombectomy in acute ischemic stroke is superior to medical management; and similarly that minimally invasive, endovascular repair of ruptured brain aneurysms is superior to surgical treatment. Stent-retrievers are now standard of care for emergent large vessel occlusions causing a stroke, with a number of patients need to treat for good clinical outcomes as low as 4. Recent technologies such as flow diverters and disrupters, intracranial self-expanding stents, flexible large bore catheters that can reach vessels beyond the circle of Willis, stent-retrievers, and super-compliant balloons are the result of successful miniaturization of design features and novel manufacturing technologies capable of building these devices. This is a rapidly evolving field, and the device technology enabling such advancements will be reviewed. Importantly, image-guidance technology has not kept pace in neurointervention and the ability to adequately characterize these devices in vivo remains a significant opportunity. Learning Objectives: A survey of devices used in neurointerventions, their materials and essential design characteristics Funding support received from NIH and DOD; Funding support received from GE Healthcare; Funding support received from Siemens AX; Patent royalties received from GE Healthcare; G. Chen, Funding received from NIH; funding received from DOD; funding received from GE Healthcare; funding received from Siemens AX.; M. Gounis, consultant for Codman Neurovascular and Stryker Neurovascular; Holds stock in InNeuroCo Inc, research grants: NIH, Medtronic Neurovascular, Microvention/Terumo, Cerevasc LLC, Gentuity, Codman Neurovascular, Philips Healthcare, Stryker Neurovascular, Tay Sachs Foundation, and InNeuroCo Inc.; S. Rudin, Supported in part by NIH Grant R01EB002873 and the Toshiba Medical System Corp.« less
The evolution of image-guided lumbosacral spine surgery.
Bourgeois, Austin C; Faulkner, Austin R; Pasciak, Alexander S; Bradley, Yong C
2015-04-01
Techniques and approaches of spinal fusion have considerably evolved since their first description in the early 1900s. The incorporation of pedicle screw constructs into lumbosacral spine surgery is among the most significant advances in the field, offering immediate stability and decreased rates of pseudarthrosis compared to previously described methods. However, early studies describing pedicle screw fixation and numerous studies thereafter have demonstrated clinically significant sequelae of inaccurate surgical fusion hardware placement. A number of image guidance systems have been developed to reduce morbidity from hardware malposition in increasingly complex spine surgeries. Advanced image guidance systems such as intraoperative stereotaxis improve the accuracy of pedicle screw placement using a variety of surgical approaches, however their clinical indications and clinical impact remain debated. Beginning with intraoperative fluoroscopy, this article describes the evolution of image guided lumbosacral spinal fusion, emphasizing two-dimensional (2D) and three-dimensional (3D) navigational methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shoaf, S.; APS Engineering Support Division
A real-time image analysis system was developed for beam imaging diagnostics. An Apple Power Mac G5 with an Active Silicon LFG frame grabber was used to capture video images that were processed and analyzed. Software routines were created to utilize vector-processing hardware to reduce the time to process images as compared to conventional methods. These improvements allow for more advanced image processing diagnostics to be performed in real time.
Hyperspectral fluorescence imaging system for biomedical diagnostics
NASA Astrophysics Data System (ADS)
Martin, Matthew E.; Wabuyele, Musundi B.; Panjehpour, Masoud; Phan, Mary N.; Overholt, Bergein F.; Vo-Dinh, Tuan
2006-02-01
An advanced hyper-spectral imaging (HSI) system has been developed for use in medical diagnostics. One such diagnostic, esophageal cancer is diagnosed currently through biopsy and subsequent pathology. The end goal of this research is to develop an optical-based technique to assist or replace biopsy. In this paper, we demonstrate an instrument that has the capability to optically diagnose cancer in laboratory mice. We have developed a real-time HSI system based on state-of-the-art liquid crystal tunable filter (LCTF) technology coupled to an endoscope. This unique HSI technology is being developed to obtain spatially resolved images of the slight differences in luminescent properties of normal versus tumorous tissues. In this report, an in-vivo mouse study is shown. A predictive measure of cancer for the mice studied is developed and shown. It is hoped that the results of this study will lead to advances in the optical diagnosis of esophageal cancer in humans.
Noninvasive imaging systems for gametes and embryo selection in IVF programs: a review.
Omidi, Marjan; Faramarzi, Azita; Agharahimi, Azam; Khalili, Mohammad Ali
2017-09-01
Optimizing the efficiency of the in vitro fertilization procedure by improving pregnancy rates and reducing the risks of multiple pregnancies simultaneously are the primary goals of the current assisted reproductive technology program. With the move to single embryo transfers, the need for more cost-effective and noninvasive methods for embryo selection prior to transfer is paramount. These aims require advancement in a more acquire gametes/embryo testing and selection procedures using high-tech devices. Therefore, the aim of the present review is to evaluate the efficacy of noninvasive imaging systems in the current literatures, focusing on the potential clinical application in infertile patients undergoing assisted reproductive technology treatments. In this regards, three advanced imaging systems of motile sperm organelle morphology examination, polarization microscopy and time-lapse monitoring for the best selection of the gametes and preimplantation embryos are introduced in full. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.
Innovative Video Diagnostic Equipment for Material Science
NASA Technical Reports Server (NTRS)
Capuano, G.; Titomanlio, D.; Soellner, W.; Seidel, A.
2012-01-01
Materials science experiments under microgravity increasingly rely on advanced optical systems to determine the physical properties of the samples under investigation. This includes video systems with high spatial and temporal resolution. The acquisition, handling, storage and transmission to ground of the resulting video data are very challenging. Since the available downlink data rate is limited, the capability to compress the video data significantly without compromising the data quality is essential. We report on the development of a Digital Video System (DVS) for EML (Electro Magnetic Levitator) which provides real-time video acquisition, high compression using advanced Wavelet algorithms, storage and transmission of a continuous flow of video with different characteristics in terms of image dimensions and frame rates. The DVS is able to operate with the latest generation of high-performance cameras acquiring high resolution video images up to 4Mpixels@60 fps or high frame rate video images up to about 1000 fps@512x512pixels.
Advanced NDE research in electromagnetic, thermal, and coherent optics
NASA Technical Reports Server (NTRS)
Skinner, S. Ballou
1992-01-01
A new inspection technology called magneto-optic/eddy current imaging was investigated. The magneto-optic imager makes readily visible irregularities and inconsistencies in airframe components. Other research observed in electromagnetics included (1) disbond detection via resonant modal analysis; (2) AC magnetic field frequency dependence of magnetoacoustic emission; and (3) multi-view magneto-optic imaging. Research observed in the thermal group included (1) thermographic detection and characterization of corrosion in aircraft aluminum; (2) a multipurpose infrared imaging system for thermoelastic stress detection; (3) thermal diffusivity imaging of stress induced damage in composites; and (4) detection and measurement of ice formation on the space shuttle main fuel tank. Research observed in the optics group included advancements in optical nondestructive evaluation (NDE).
TU-AB-204-02: Advances in C-Arm CBCT for Cardiac Interventions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fahrig, R.
This symposium highlights advanced cone-beam CT (CBCT) technologies in four areas of emerging application in diagnostic imaging and image-guided interventions. Each area includes research that extends the spatial, temporal, and/or contrast resolution characteristics of CBCT beyond conventional limits through advances in scanner technology, acquisition protocols, and 3D image reconstruction techniques. Dr. G. Chen (University of Wisconsin) will present on the topic: Advances in C-arm CBCT for Brain Perfusion Imaging. Stroke is a leading cause of death and disability, and a fraction of people having an acute ischemic stroke are suitable candidates for endovascular therapy. Critical factors that affect both themore » likelihood of successful revascularization and good clinical outcome are: 1) the time between stroke onset and revascularization; and 2) the ability to distinguish patients who have a small volume of irreversibly injured brain (ischemic core) and a large volume of ischemic but salvageable brain (penumbra) from patients with a large ischemic core and little or no penumbra. Therefore, “time is brain” in the care of the stroke patients. C-arm CBCT systems widely available in angiography suites have the potential to generate non-contrast-enhanced CBCT images to exclude the presence of hemorrhage, time-resolved CBCT angiography to evaluate the site of occlusion and collaterals, and CBCT perfusion parametric images to assess the extent of the ischemic core and penumbra, thereby fulfilling the imaging requirements of a “one-stop-shop” in the angiography suite to reduce the time between onset and revascularization therapy. The challenges and opportunities to advance CBCT technology to fully enable the one-stop-shop C-arm CBCT platform for brain imaging will be discussed. Dr. R. Fahrig (Stanford University) will present on the topic: Advances in C-arm CBCT for Cardiac Interventions. With the goal of providing functional information during cardiac interventions, significant effort has been expended to improve the quantitative accuracy of C-arm CBCT reconstructions. The challenge is to improve image quality while providing very short turnaround between data acquisition and volume data visualization. Corrections for x-ray scatter, view aliasing and patient motion that require no more than 2 iterations keep processing time short while reducing artifact. Fast, multi-sweep acquisitions can be used to permit assessment of left ventricular function, and visualization of radiofrequency lesions created to treat arrhythmias. Workflows for each imaging goal have been developed and validated against gold standard clinical CT or histology. The challenges, opportunities, and limitations of the new functional C-arm CBCT imaging techniques will be discussed. Dr. W. Zbijewski (Johns Hopkins University) will present on the topic: Advances in CBCT for Orthopaedics and Bone Health Imaging. Cone-beam CT is particularly well suited for imaging of musculoskeletal extremities. Owing to the high spatial resolution of flat-panel detectors, CBCT can surpass conventional CT in imaging tasks involving bone visualization, quantitative analysis of subchondral trabecular structure, and visualization and monitoring of subtle fractures that are common in orthopedic radiology. A dedicated CBCT platform has been developed that offers flexibility in system design and provides not only a compact configuration with improved logistics for extremities imaging but also enables novel diagnostic capabilities such as imaging of weight-bearing lower extremities in a natural stance. The design, development and clinical performance of dedicated extremities CBCT systems will be presented. Advanced capabilities for quantitative volumetric assessment of joint space morphology, dual-energy image-based quantification of bone composition, and in-vivo analysis of bone microarchitecture will be discussed, along with emerging applications in the diagnosis of arthritis and osteoporosis and assessment of novel therapies. Finally, Dr. J. Boone (UC Davis) will present on the topic: Advances in CBCT for Breast Imaging. Breast CT has been studied as an imaging tool for diagnostic breast evaluation and for potential breast cancer screening. The breast CT application lends itself to CBCT because of the small dimensions of the breast, the tapered shape of the breast towards higher cone angle, and the fact that there are no bones in the breast. The performance of various generations of breast CT scanners developed in recent years will be discussed, focusing on advances in spatial resolution and image noise characteristics. The results will also demonstrate the results of clinical trials using both computer and human observers. Learning Objectives: Understand the challenges, key technological advances, and emerging opportunities of CBCT in: Brain perfusion imaging, including assessment of ischemic stroke Cardiac imaging for functional assessment in cardiac interventions Orthopedics imaging for evaluation of musculoskeletal trauma, arthritis, and osteoporosis Breast imaging for screening and diagnosis of breast cancer. Work presented in this symposium includes research support by: Siemens Healthcare (Dr. Chen); NIH and Siemens Healthcare (Dr. Fahrig); NIH and Carestream Health (Dr. Zbijewski); and NIH (Dr. Boone)« less
TU-AB-204-00: Advances in Cone-Beam CT and Emerging Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
This symposium highlights advanced cone-beam CT (CBCT) technologies in four areas of emerging application in diagnostic imaging and image-guided interventions. Each area includes research that extends the spatial, temporal, and/or contrast resolution characteristics of CBCT beyond conventional limits through advances in scanner technology, acquisition protocols, and 3D image reconstruction techniques. Dr. G. Chen (University of Wisconsin) will present on the topic: Advances in C-arm CBCT for Brain Perfusion Imaging. Stroke is a leading cause of death and disability, and a fraction of people having an acute ischemic stroke are suitable candidates for endovascular therapy. Critical factors that affect both themore » likelihood of successful revascularization and good clinical outcome are: 1) the time between stroke onset and revascularization; and 2) the ability to distinguish patients who have a small volume of irreversibly injured brain (ischemic core) and a large volume of ischemic but salvageable brain (penumbra) from patients with a large ischemic core and little or no penumbra. Therefore, “time is brain” in the care of the stroke patients. C-arm CBCT systems widely available in angiography suites have the potential to generate non-contrast-enhanced CBCT images to exclude the presence of hemorrhage, time-resolved CBCT angiography to evaluate the site of occlusion and collaterals, and CBCT perfusion parametric images to assess the extent of the ischemic core and penumbra, thereby fulfilling the imaging requirements of a “one-stop-shop” in the angiography suite to reduce the time between onset and revascularization therapy. The challenges and opportunities to advance CBCT technology to fully enable the one-stop-shop C-arm CBCT platform for brain imaging will be discussed. Dr. R. Fahrig (Stanford University) will present on the topic: Advances in C-arm CBCT for Cardiac Interventions. With the goal of providing functional information during cardiac interventions, significant effort has been expended to improve the quantitative accuracy of C-arm CBCT reconstructions. The challenge is to improve image quality while providing very short turnaround between data acquisition and volume data visualization. Corrections for x-ray scatter, view aliasing and patient motion that require no more than 2 iterations keep processing time short while reducing artifact. Fast, multi-sweep acquisitions can be used to permit assessment of left ventricular function, and visualization of radiofrequency lesions created to treat arrhythmias. Workflows for each imaging goal have been developed and validated against gold standard clinical CT or histology. The challenges, opportunities, and limitations of the new functional C-arm CBCT imaging techniques will be discussed. Dr. W. Zbijewski (Johns Hopkins University) will present on the topic: Advances in CBCT for Orthopaedics and Bone Health Imaging. Cone-beam CT is particularly well suited for imaging of musculoskeletal extremities. Owing to the high spatial resolution of flat-panel detectors, CBCT can surpass conventional CT in imaging tasks involving bone visualization, quantitative analysis of subchondral trabecular structure, and visualization and monitoring of subtle fractures that are common in orthopedic radiology. A dedicated CBCT platform has been developed that offers flexibility in system design and provides not only a compact configuration with improved logistics for extremities imaging but also enables novel diagnostic capabilities such as imaging of weight-bearing lower extremities in a natural stance. The design, development and clinical performance of dedicated extremities CBCT systems will be presented. Advanced capabilities for quantitative volumetric assessment of joint space morphology, dual-energy image-based quantification of bone composition, and in-vivo analysis of bone microarchitecture will be discussed, along with emerging applications in the diagnosis of arthritis and osteoporosis and assessment of novel therapies. Finally, Dr. J. Boone (UC Davis) will present on the topic: Advances in CBCT for Breast Imaging. Breast CT has been studied as an imaging tool for diagnostic breast evaluation and for potential breast cancer screening. The breast CT application lends itself to CBCT because of the small dimensions of the breast, the tapered shape of the breast towards higher cone angle, and the fact that there are no bones in the breast. The performance of various generations of breast CT scanners developed in recent years will be discussed, focusing on advances in spatial resolution and image noise characteristics. The results will also demonstrate the results of clinical trials using both computer and human observers. Learning Objectives: Understand the challenges, key technological advances, and emerging opportunities of CBCT in: Brain perfusion imaging, including assessment of ischemic stroke Cardiac imaging for functional assessment in cardiac interventions Orthopedics imaging for evaluation of musculoskeletal trauma, arthritis, and osteoporosis Breast imaging for screening and diagnosis of breast cancer. Work presented in this symposium includes research support by: Siemens Healthcare (Dr. Chen); NIH and Siemens Healthcare (Dr. Fahrig); NIH and Carestream Health (Dr. Zbijewski); and NIH (Dr. Boone)« less
Danforth, Robert A; Peck, Jerry; Hall, Paul
2003-11-01
Complex impacted third molars present potential treatment complications and possible patient morbidity. Objectives of diagnostic imaging are to facilitate diagnosis, decision making, and enhance treatment outcomes. As cases become more complex, advanced multiplane imaging methods allowing for a 3-D view are more likely to meet these objectives than traditional 2-D radiography. Until recently, advanced imaging options were somewhat limited to standard film tomography or medical CT, but development of cone beam volume tomography (CBVT) multiplane 3-D imaging systems specifically for dental use now provides an alternative imaging option. Two cases were utilized to compare the role of CBVT to these other imaging options and to illustrate how multiplane visualization can assist the pretreatment evaluation and decision-making process for complex impacted mandibular third molar cases.
Embedded image processing engine using ARM cortex-M4 based STM32F407 microcontroller
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samaiya, Devesh, E-mail: samaiya.devesh@gmail.com
2014-10-06
Due to advancement in low cost, easily available, yet powerful hardware and revolution in open source software, urge to make newer, more interactive machines and electronic systems have increased manifold among engineers. To make system more interactive, designers need easy to use sensor systems. Giving the boon of vision to machines was never easy, though it is not impossible these days; it is still not easy and expensive. This work presents a low cost, moderate performance and programmable Image processing engine. This Image processing engine is able to capture real time images, can store the images in the permanent storagemore » and can perform preprogrammed image processing operations on the captured images.« less
Advances in Light Microscopy for Neuroscience
Wilt, Brian A.; Burns, Laurie D.; Ho, Eric Tatt Wei; Ghosh, Kunal K.; Mukamel, Eran A.
2010-01-01
Since the work of Golgi and Cajal, light microscopy has remained a key tool for neuroscientists to observe cellular properties. Ongoing advances have enabled new experimental capabilities using light to inspect the nervous system across multiple spatial scales, including ultrastructural scales finer than the optical diffraction limit. Other progress permits functional imaging at faster speeds, at greater depths in brain tissue, and over larger tissue volumes than previously possible. Portable, miniaturized fluorescence microscopes now allow brain imaging in freely behaving mice. Complementary progress on animal preparations has enabled imaging in head-restrained behaving animals, as well as time-lapse microscopy studies in the brains of live subjects. Mouse genetic approaches permit mosaic and inducible fluorescence-labeling strategies, whereas intrinsic contrast mechanisms allow in vivo imaging of animals and humans without use of exogenous markers. This review surveys such advances and highlights emerging capabilities of particular interest to neuroscientists. PMID:19555292
Smart image sensors: an emerging key technology for advanced optical measurement and microsystems
NASA Astrophysics Data System (ADS)
Seitz, Peter
1996-08-01
Optical microsystems typically include photosensitive devices, analog preprocessing circuitry and digital signal processing electronics. The advances in semiconductor technology have made it possible today to integrate all photosensitive and electronical devices on one 'smart image sensor' or photo-ASIC (application-specific integrated circuits containing photosensitive elements). It is even possible to provide each 'smart pixel' with additional photoelectronic functionality, without compromising the fill factor substantially. This technological capability is the basis for advanced cameras and optical microsystems showing novel on-chip functionality: Single-chip cameras with on- chip analog-to-digital converters for less than $10 are advertised; image sensors have been developed including novel functionality such as real-time selectable pixel size and shape, the capability of performing arbitrary convolutions simultaneously with the exposure, as well as variable, programmable offset and sensitivity of the pixels leading to image sensors with a dynamic range exceeding 150 dB. Smart image sensors have been demonstrated offering synchronous detection and demodulation capabilities in each pixel (lock-in CCD), and conventional image sensors are combined with an on-chip digital processor for complete, single-chip image acquisition and processing systems. Technological problems of the monolithic integration of smart image sensors include offset non-uniformities, temperature variations of electronic properties, imperfect matching of circuit parameters, etc. These problems can often be overcome either by designing additional compensation circuitry or by providing digital correction routines. Where necessary for technological or economic reasons, smart image sensors can also be combined with or realized as hybrids, making use of commercially available electronic components. It is concluded that the possibilities offered by custom smart image sensors will influence the design and the performance of future electronic imaging systems in many disciplines, reaching from optical metrology to machine vision on the factory floor and in robotics applications.
A design of endoscopic imaging system for hyper long pipeline based on wheeled pipe robot
NASA Astrophysics Data System (ADS)
Zheng, Dongtian; Tan, Haishu; Zhou, Fuqiang
2017-03-01
An endoscopic imaging system of hyper long pipeline is designed to acquire the inner surface image in advance for the hyper long pipeline detects measurement. The system consists of structured light sensors, pipe robots and control system. The pipe robot is in the form of wheel structure, with the sensor which is at the front of the vehicle body. The control system is at the tail of the vehicle body in the form of upper and lower computer. The sensor can be translated and scanned in three steps: walking, lifting and scanning, then the inner surface image can be acquired at a plurality of positions and different angles. The results of imaging experiments show that the system's transmission distance is longer, the acquisition angle is more diverse and the result is more comprehensive than the traditional imaging system, which lays an important foundation for later inner surface vision measurement.
Image analysis and modeling in medical image computing. Recent developments and advances.
Handels, H; Deserno, T M; Meinzer, H-P; Tolxdorff, T
2012-01-01
Medical image computing is of growing importance in medical diagnostics and image-guided therapy. Nowadays, image analysis systems integrating advanced image computing methods are used in practice e.g. to extract quantitative image parameters or to support the surgeon during a navigated intervention. However, the grade of automation, accuracy, reproducibility and robustness of medical image computing methods has to be increased to meet the requirements in clinical routine. In the focus theme, recent developments and advances in the field of modeling and model-based image analysis are described. The introduction of models in the image analysis process enables improvements of image analysis algorithms in terms of automation, accuracy, reproducibility and robustness. Furthermore, model-based image computing techniques open up new perspectives for prediction of organ changes and risk analysis of patients. Selected contributions are assembled to present latest advances in the field. The authors were invited to present their recent work and results based on their outstanding contributions to the Conference on Medical Image Computing BVM 2011 held at the University of Lübeck, Germany. All manuscripts had to pass a comprehensive peer review. Modeling approaches and model-based image analysis methods showing new trends and perspectives in model-based medical image computing are described. Complex models are used in different medical applications and medical images like radiographic images, dual-energy CT images, MR images, diffusion tensor images as well as microscopic images are analyzed. The applications emphasize the high potential and the wide application range of these methods. The use of model-based image analysis methods can improve segmentation quality as well as the accuracy and reproducibility of quantitative image analysis. Furthermore, image-based models enable new insights and can lead to a deeper understanding of complex dynamic mechanisms in the human body. Hence, model-based image computing methods are important tools to improve medical diagnostics and patient treatment in future.
NASA Astrophysics Data System (ADS)
Fan, Yang-Tung; Peng, Chiou-Shian; Chu, Cheng-Yu
2000-12-01
New markets are emerging for digital electronic image device, especially in visual communications, PC camera, mobile/cell phone, security system, toys, vehicle image system and computer peripherals for document capture. To enable one-chip image system that image sensor is with a full digital interface, can make image capture devices in our daily lives. Adding a color filter to such image sensor in a pattern of mosaics pixel or wide stripes can make image more real and colorful. We can say 'color filter makes the life more colorful color filter is? Color filter means can filter image light source except the color with specific wavelength and transmittance that is same as color filter itself. Color filter process is coating and patterning green, red and blue (or cyan, magenta and yellow) mosaic resists onto matched pixel in image sensing array pixels. According to the signal caught from each pixel, we can figure out the environment image picture. Widely use of digital electronic camera and multimedia applications today makes the feature of color filter becoming bright. Although it has challenge but it is very worthy to develop the process of color filter. We provide the best service on shorter cycle time, excellent color quality, high and stable yield. The key issues of advanced color process have to be solved and implemented are planarization and micro-lens technology. Lost of key points of color filter process technology have to consider will also be described in this paper.
WE-DE-207A-03: Recent Advances in Devices Used in Neuro--Interventions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gounis, M.
1. Parallels in the evolution of x-ray angiographic systems and devices used for minimally invasive endovascular therapy Charles Strother - DSA, invented by Dr. Charles Mistretta at UW-Madison, was the technology which enabled the development of minimally invasive endovascular procedures. As DSA became widely available and the potential benefits for accessing the cerebral vasculature from an endovascular approach began to be apparent, industry began efforts to develop tools for use in these procedures. Along with development of catheters, embolic materials, pushable coils and the GDC coils there was simultaneous development and improvement of 2D DSA image quality and the introductionmore » of 3D DSA. Together, these advances resulted in an enormous expansion in the scope and numbers of minimally invasive endovascular procedures. The introduction of flat detectors for c-arm angiographic systems in 2002 provided the possibility of the angiographic suite becoming not just a location for vascular imaging where physiological assessments might also be performed. Over the last decade algorithmic and hardware advances have been sufficient to now realize this potential in clinical practice. The selection of patients for endovascular treatments is enhanced by this dual capability. Along with these advances has been a steady reduction in the radiation exposure required so that today, vascular and soft tissue images may be obtained with equal or in many cases less radiation exposure than is the case for comparable images obtained with multi-detector CT. Learning Objectives: To understand the full capabilities of today’s angiographic suite To understand how c-arm cone beam CT soft tissue imaging can be used for assessments of devices, blood flow and perfusion. Advances in real-time x-ray neuro-endovascular image guidance Stephen Rudin - Reacting to the demands on real-time image guidance for ever finer neurovascular interventions, great improvements in imaging chains are being pursued. For the highest spatial and temporal resolution, x-ray guidance with fluoroscopy and angiography although dominant are still being vastly improved. New detectors such as the Micro-Angiographic Fluoroscope (MAF) and x-ray source designs that enable higher outputs while maintaining small focal spots will be highlighted along with new methods for minimizing the radiation dose to patients. Additionally, new platforms for training and device testing that include patient-specific 3D printed vascular phantoms and new metrics such as generalized relative object detectability for objectively inter-comparing systems will be discussed. This will improve the opportunity for better evaluation of these technological advances which should contribute to the safety and efficacy of image guided minimally invasive neuro-endovascular procedures. Learning Objectives: To understand the operation of new x-ray imaging chain components such as detectors and sources To be informed about the latest testing methods, with 3D printed vascular phantoms, and new evaluation metrics for advanced imaging in x-ray image guided neurovascular interventions Advances in cone beam CT anatomical and functional imaging in angio-suite to enable one-stop-shop stroke imaging workflow Guang-Hong Chen - The introduction of flat-panel detector based cone-beam CT in clinical angiographic imaging systems enabled treating physicians to obtain three-dimensional anatomic roadmaps for bony structure, soft brain tissue, and vasculatures for treatment planning and efficacy checking after the procedures. However, much improvement is needed to reduce image artifacts, reduce radiation dose, and add potential functional imaging capability to provide four-dimensional dynamic information of vasculature and brain perfusion. In this presentation, some of the new techniques developed to address radiation dose issues, image artifact reduction and brain perfusion using C-arm cone-beam CT imaging system will be introduced for the audience. Learning Objectives: To understand the clinical need of one-stop-shop stroke imaging workflow To understand to technical challenges in cone beam CT perfusion To understand the potential technical solutions to enable one-stop-shop imaging workflow Recent advances in devices used in neuro--interventions Mattew Gounis - Over the past two decades, there has been explosive development of medical devices that have revolutionized the endovascular treatment of cerebrovascular diseases. There is now Level 1, Class A evidence that intra-arterial, mechanical thrombectomy in acute ischemic stroke is superior to medical management; and similarly that minimally invasive, endovascular repair of ruptured brain aneurysms is superior to surgical treatment. Stent-retrievers are now standard of care for emergent large vessel occlusions causing a stroke, with a number of patients need to treat for good clinical outcomes as low as 4. Recent technologies such as flow diverters and disrupters, intracranial self-expanding stents, flexible large bore catheters that can reach vessels beyond the circle of Willis, stent-retrievers, and super-compliant balloons are the result of successful miniaturization of design features and novel manufacturing technologies capable of building these devices. This is a rapidly evolving field, and the device technology enabling such advancements will be reviewed. Importantly, image-guidance technology has not kept pace in neurointervention and the ability to adequately characterize these devices in vivo remains a significant opportunity. Learning Objectives: A survey of devices used in neurointerventions, their materials and essential design characteristics Funding support received from NIH and DOD; Funding support received from GE Healthcare; Funding support received from Siemens AX; Patent royalties received from GE Healthcare; G. Chen, Funding received from NIH; funding received from DOD; funding received from GE Healthcare; funding received from Siemens AX.; M. Gounis, consultant for Codman Neurovascular and Stryker Neurovascular; Holds stock in InNeuroCo Inc, research grants: NIH, Medtronic Neurovascular, Microvention/Terumo, Cerevasc LLC, Gentuity, Codman Neurovascular, Philips Healthcare, Stryker Neurovascular, Tay Sachs Foundation, and InNeuroCo Inc.; S. Rudin, Supported in part by NIH Grant R01EB002873 and the Toshiba Medical System Corp.« less
2015-04-29
The natural color image below, acquired on April 25 by the Advanced Land Imager on NASA’s Earth Observing-1 satellite, shows Calbuco’s plume rising above the cloud deck over Chile. Read more here: earthobservatory.nasa.gov/IOTD/view.php?id=85791&eocn... Credit: NASA Earth Observatory NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
CMOS Image Sensors: Electronic Camera On A Chip
NASA Technical Reports Server (NTRS)
Fossum, E. R.
1995-01-01
Recent advancements in CMOS image sensor technology are reviewed, including both passive pixel sensors and active pixel sensors. On- chip analog to digital converters and on-chip timing and control circuits permit realization of an electronic camera-on-a-chip. Highly miniaturized imaging systems based on CMOS image sensor technology are emerging as a competitor to charge-coupled devices for low cost uses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strother, C.
1. Parallels in the evolution of x-ray angiographic systems and devices used for minimally invasive endovascular therapy Charles Strother - DSA, invented by Dr. Charles Mistretta at UW-Madison, was the technology which enabled the development of minimally invasive endovascular procedures. As DSA became widely available and the potential benefits for accessing the cerebral vasculature from an endovascular approach began to be apparent, industry began efforts to develop tools for use in these procedures. Along with development of catheters, embolic materials, pushable coils and the GDC coils there was simultaneous development and improvement of 2D DSA image quality and the introductionmore » of 3D DSA. Together, these advances resulted in an enormous expansion in the scope and numbers of minimally invasive endovascular procedures. The introduction of flat detectors for c-arm angiographic systems in 2002 provided the possibility of the angiographic suite becoming not just a location for vascular imaging where physiological assessments might also be performed. Over the last decade algorithmic and hardware advances have been sufficient to now realize this potential in clinical practice. The selection of patients for endovascular treatments is enhanced by this dual capability. Along with these advances has been a steady reduction in the radiation exposure required so that today, vascular and soft tissue images may be obtained with equal or in many cases less radiation exposure than is the case for comparable images obtained with multi-detector CT. Learning Objectives: To understand the full capabilities of today’s angiographic suite To understand how c-arm cone beam CT soft tissue imaging can be used for assessments of devices, blood flow and perfusion. Advances in real-time x-ray neuro-endovascular image guidance Stephen Rudin - Reacting to the demands on real-time image guidance for ever finer neurovascular interventions, great improvements in imaging chains are being pursued. For the highest spatial and temporal resolution, x-ray guidance with fluoroscopy and angiography although dominant are still being vastly improved. New detectors such as the Micro-Angiographic Fluoroscope (MAF) and x-ray source designs that enable higher outputs while maintaining small focal spots will be highlighted along with new methods for minimizing the radiation dose to patients. Additionally, new platforms for training and device testing that include patient-specific 3D printed vascular phantoms and new metrics such as generalized relative object detectability for objectively inter-comparing systems will be discussed. This will improve the opportunity for better evaluation of these technological advances which should contribute to the safety and efficacy of image guided minimally invasive neuro-endovascular procedures. Learning Objectives: To understand the operation of new x-ray imaging chain components such as detectors and sources To be informed about the latest testing methods, with 3D printed vascular phantoms, and new evaluation metrics for advanced imaging in x-ray image guided neurovascular interventions Advances in cone beam CT anatomical and functional imaging in angio-suite to enable one-stop-shop stroke imaging workflow Guang-Hong Chen - The introduction of flat-panel detector based cone-beam CT in clinical angiographic imaging systems enabled treating physicians to obtain three-dimensional anatomic roadmaps for bony structure, soft brain tissue, and vasculatures for treatment planning and efficacy checking after the procedures. However, much improvement is needed to reduce image artifacts, reduce radiation dose, and add potential functional imaging capability to provide four-dimensional dynamic information of vasculature and brain perfusion. In this presentation, some of the new techniques developed to address radiation dose issues, image artifact reduction and brain perfusion using C-arm cone-beam CT imaging system will be introduced for the audience. Learning Objectives: To understand the clinical need of one-stop-shop stroke imaging workflow To understand to technical challenges in cone beam CT perfusion To understand the potential technical solutions to enable one-stop-shop imaging workflow Recent advances in devices used in neuro--interventions Mattew Gounis - Over the past two decades, there has been explosive development of medical devices that have revolutionized the endovascular treatment of cerebrovascular diseases. There is now Level 1, Class A evidence that intra-arterial, mechanical thrombectomy in acute ischemic stroke is superior to medical management; and similarly that minimally invasive, endovascular repair of ruptured brain aneurysms is superior to surgical treatment. Stent-retrievers are now standard of care for emergent large vessel occlusions causing a stroke, with a number of patients need to treat for good clinical outcomes as low as 4. Recent technologies such as flow diverters and disrupters, intracranial self-expanding stents, flexible large bore catheters that can reach vessels beyond the circle of Willis, stent-retrievers, and super-compliant balloons are the result of successful miniaturization of design features and novel manufacturing technologies capable of building these devices. This is a rapidly evolving field, and the device technology enabling such advancements will be reviewed. Importantly, image-guidance technology has not kept pace in neurointervention and the ability to adequately characterize these devices in vivo remains a significant opportunity. Learning Objectives: A survey of devices used in neurointerventions, their materials and essential design characteristics Funding support received from NIH and DOD; Funding support received from GE Healthcare; Funding support received from Siemens AX; Patent royalties received from GE Healthcare; G. Chen, Funding received from NIH; funding received from DOD; funding received from GE Healthcare; funding received from Siemens AX.; M. Gounis, consultant for Codman Neurovascular and Stryker Neurovascular; Holds stock in InNeuroCo Inc, research grants: NIH, Medtronic Neurovascular, Microvention/Terumo, Cerevasc LLC, Gentuity, Codman Neurovascular, Philips Healthcare, Stryker Neurovascular, Tay Sachs Foundation, and InNeuroCo Inc.; S. Rudin, Supported in part by NIH Grant R01EB002873 and the Toshiba Medical System Corp.« less
Depth-resolved incoherent and coherent wide-field high-content imaging (Conference Presentation)
NASA Astrophysics Data System (ADS)
So, Peter T.
2016-03-01
Recent advances in depth-resolved wide-field imaging technique has enabled many high throughput applications in biology and medicine. Depth resolved imaging of incoherent signals can be readily accomplished with structured light illumination or nonlinear temporal focusing. The integration of these high throughput systems with novel spectroscopic resolving elements further enable high-content information extraction. We will introduce a novel near common-path interferometer and demonstrate its uses in toxicology and cancer biology applications. The extension of incoherent depth-resolved wide-field imaging to coherent modality is non-trivial. Here, we will cover recent advances in wide-field 3D resolved mapping of refractive index, absorbance, and vibronic components in biological specimens.
NASA Astrophysics Data System (ADS)
Yamaguchi, Masahiro; Haneishi, Hideaki; Fukuda, Hiroyuki; Kishimoto, Junko; Kanazawa, Hiroshi; Tsuchida, Masaru; Iwama, Ryo; Ohyama, Nagaaki
2006-01-01
In addition to the great advancement of high-resolution and large-screen imaging technology, the issue of color is now receiving considerable attention as another aspect than the image resolution. It is difficult to reproduce the original color of subject in conventional imaging systems, and that obstructs the applications of visual communication systems in telemedicine, electronic commerce, and digital museum. To breakthrough the limitation of conventional RGB 3-primary systems, "Natural Vision" project aims at an innovative video and still-image communication technology with high-fidelity color reproduction capability, based on spectral information. This paper summarizes the results of NV project including the development of multispectral and multiprimary imaging technologies and the experimental investigations on the applications to medicine, digital archives, electronic commerce, and computer graphics.
NASA Technical Reports Server (NTRS)
1990-01-01
Although not available to all patients with narrowed arteries, balloon angioplasty has expanded dramatically since its introduction with an estimated further growth to 562,000 procedures in the U.S. alone by 1992. Growth has fueled demand for higher quality imaging systems that allow the cardiologist to be more accurate and increase the chances of a successful procedure. A major advance is the Digital Cardiac Imaging (DCI) System designed by Philips Medical Systems International, Best, The Netherlands and marketed in the U.S. by Philips Medical Systems North America Company. The key benefit is significantly improved real-time imaging and the ability to employ image enhancement techniques to bring out added details. Using a cordless control unit, the cardiologist can manipulate images to make immediate assessment, compare live x-ray and roadmap images by placing them side-by-side on monitor screens, or compare pre-procedure and post procedure conditions. The Philips DCI improves the cardiologist's precision by expanding the information available to him.
Synergistic advances in diagnostic and therapeutic medical ultrasound
NASA Astrophysics Data System (ADS)
Lizzi, Frederic L.
2003-04-01
Significant advances are more fully exploiting ultrasound's potential for noninvasive diagnosis and treatment. Therapeutic systems employ intense focused beams to thermally kill cancer cells in, e.g., prostate; to stop bleeding; and to treat specific diseases (e.g., glaucoma). Diagnostic ultrasound techniques can quantitatively image an increasingly broad spectrum of physical tissue attributes. An exciting aspect of this progress is the emerging synergy between these modalities. Advanced diagnostic techniques may contribute at several stages in therapy. For example, treatment planning for small ocular tumors uses 50-MHz, 3-D ultrasonic images with 0.05-mm resolution. Thermal simulations employ these images to evaluate desired and undesired effects using exposure stategies with specially designed treatment beams. Therapy beam positioning can use diagnostic elastography to sense tissue motion induced by radiation pressure from high-intensity treatment beams. Therapy monitoring can sense lesion formation using elastography motion sensing (to detect the increased stiffness in lesions); harmonic imaging (to sense altered nonlinear properties); and spectrum analysis images (depicting changes in the sizes, concentration, and configuration of sub-resolution structures.) Experience from these applications will greatly expand the knowledge of acoustic phenomena in living tissues and should lead to further advances in medical ultrasound.
TH-A-17A-01: Innovation in PET Instrumentation and Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casey, M; Miyaoka, R; Shao, Y
Innovation in PET instrumentation has led to the new millennium revolutionary imaging applications for diagnosis, therapeutic guidance, and development of new molecular imaging probes, etc. However, after several decades innovations, will the advances of PET technology and applications continue with the same trend and pace? What will be the next big thing beyond the PET/CT, PET/MRI, and Time-of-flight PET? How will the PET instrumentation and imaging performance be further improved by novel detector research and advanced imaging system development? Or will the development of new algorithms and methodologies extend the limit of current instrumentation and leapfrog the imaging quality andmore » quantification for practical applications? The objective of this session is to present an overview of current status and advances in the PET instrumentation and applications with speakers from leading academic institutes and a major medical imaging company. Presenting with both academic research projects and commercial technology developments, this session will provide a glimpse of some latest advances and challenges in the field, such as using semiconductor photon-sensor based PET detectors to improve performance and enable new applications, as well as the technology trend that may lead to the next breakthrough in PET imaging for clinical and preclinical applications. Both imaging and image-guided therapy subjects will be discussed. Learning Objectives: Describe the latest innovations in PET instrumentation and applications Understand the driven force behind the PET instrumentation innovation and development Learn the trend of PET technology development for applications.« less
Technical advances of interventional fluoroscopy and flat panel image receptor.
Lin, Pei-Jan Paul
2008-11-01
In the past decade, various radiation reducing devices and control circuits have been implemented on fluoroscopic imaging equipment. Because of the potential for lengthy fluoroscopic procedures in interventional cardiovascular angiography, these devices and control circuits have been developed for the cardiac catheterization laboratories and interventional angiography suites. Additionally, fluoroscopic systems equipped with image intensifiers have benefited from technological advances in x-ray tube, x-ray generator, and spectral shaping filter technologies. The high heat capacity x-ray tube, the medium frequency inverter generator with high performance switching capability, and the patient dose reduction spectral shaping filter had already been implemented on the image intensified fluoroscopy systems. These three underlying technologies together with the automatic dose rate and image quality (ADRIQ) control logic allow patients undergoing cardiovascular angiography procedures to benefit from "lower patient dose" with "high image quality." While photoconductor (or phosphor plate) x-ray detectors and signal capture thin film transistor (TFT) and charge coupled device (CCD) arrays are analog in nature, the advent of the flat panel image receptor allowed for fluoroscopy procedures to become more streamlined. With the analog-to-digital converter built into the data lines, the flat panel image receptor appears to become a digital device. While the transition from image intensified fluoroscopy systems to flat panel image receptor fluoroscopy systems is part of the on-going "digitization of imaging," the value of a flat panel image receptor may have to be evaluated with respect to patient dose, image quality, and clinical application capabilities. The advantage of flat panel image receptors has yet to be fully explored. For instance, the flat panel image receptor has its disadvantages as compared to the image intensifiers; the cost of the equipment is probably the most obvious. On the other hand, due to its wide dynamic range and linearity, lowering of patient dose beyond current practice could be achieved through the calibration process of the flat panel input dose rate being set to, for example, one half or less of current values. In this article various radiation saving devices and control circuits are briefly described. This includes various types of fluoroscopic systems designed to strive for reduction of patient exposure with the application of spectral shaping filters. The main thrust is to understand the ADRIQ control logic, through equipment testing, as it relates to clinical applications, and to show how this ADRIQ control logic "ties" those three technological advancements together to provide low radiation dose to the patient with high quality fluoroscopic images. Finally, rotational angiography with computed tomography (CT) and three dimensional (3-D) images utilizing flat panel technology will be reviewed as they pertain to diagnostic imaging in cardiovascular disease.
Advanced Imaging Optics Utilizing Wavefront Coding.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scrymgeour, David; Boye, Robert; Adelsberger, Kathleen
2015-06-01
Image processing offers a potential to simplify an optical system by shifting some of the imaging burden from lenses to the more cost effective electronics. Wavefront coding using a cubic phase plate combined with image processing can extend the system's depth of focus, reducing many of the focus-related aberrations as well as material related chromatic aberrations. However, the optimal design process and physical limitations of wavefront coding systems with respect to first-order optical parameters and noise are not well documented. We examined image quality of simulated and experimental wavefront coded images before and after reconstruction in the presence of noise.more » Challenges in the implementation of cubic phase in an optical system are discussed. In particular, we found that limitations must be placed on system noise, aperture, field of view and bandwidth to develop a robust wavefront coded system.« less
Infrared hyperspectral imaging sensor for gas detection
NASA Astrophysics Data System (ADS)
Hinnrichs, Michele
2000-11-01
A small light weight man portable imaging spectrometer has many applications; gas leak detection, flare analysis, threat warning, chemical agent detection, just to name a few. With support from the US Air Force and Navy, Pacific Advanced Technology has developed a small man portable hyperspectral imaging sensor with an embedded DSP processor for real time processing that is capable of remotely imaging various targets such as gas plums, flames and camouflaged targets. Based upon their spectral signature the species and concentration of gases can be determined. This system has been field tested at numerous places including White Mountain, CA, Edwards AFB, and Vandenberg AFB. Recently evaluation of the system for gas detection has been performed. This paper presents these results. The system uses a conventional infrared camera fitted with a diffractive optic that images as well as disperses the incident radiation to form spectral images that are collected in band sequential mode. Because the diffractive optic performs both imaging and spectral filtering, the lens system consists of only a single element that is small, light weight and robust, thus allowing man portability. The number of spectral bands are programmable such that only those bands of interest need to be collected. The system is entirely passive, therefore, easily used in a covert operation. Currently Pacific Advanced Technology is working on the next generation of this camera system that will have both an embedded processor as well as an embedded digital signal processor in a small hand held camera configuration. This will allow the implementation of signal and image processing algorithms for gas detection and identification in real time. This paper presents field test data on gas detection and identification as well as discuss the signal and image processing used to enhance the gas visibility. Flow rates as low as 0.01 cubic feet per minute have been imaged with this system.
1992-10-01
Manager , Advanced Transport Operating Systems Program Office Langley Research Center Mail Stop 265 Hampton, VA 23665-5225 United States Programme Committee...J.H.Lind, and C.G.Burge Advanced Cockpit - Mission and Image Management 4 by J. Struck Aircrew Acceptance of Automation in the Cockpit 5 by M. Hicks and I...DESIGN CONCEPTS AND TOOLS A Systems Approach to the Advanced Aircraft Man-Machine Interface 23 by F. Armogida Management of Avionics Data in the Cockpit
Detection of Explosive Devices using X-ray Backscatter Radiation
NASA Astrophysics Data System (ADS)
Faust, Anthony A.
2002-09-01
It is our goal to develop a coded aperture based X-ray backscatter imaging detector that will provide sufficient speed, contrast and spatial resolution to detect Antipersonnel Landmines and Improvised Explosive Devices (IED). While our final objective is to field a hand-held detector, we have currently constrained ourselves to a design that can be fielded on a small robotic platform. Coded aperture imaging has been used by the observational gamma astronomy community for a number of years. However, it has been the recent advances in the field of medical nuclear imaging which has allowed for the application of the technique to a backscatter scenario. In addition, driven by requirements in medical applications, advances in X-ray detection are continually being made, and detectors are now being produced that are faster, cheaper and lighter than those only a decade ago. With these advances, a coded aperture hand-held imaging system has only recently become a possibility. This paper will begin with an introduction to the technique, identify recent advances which have made this approach possible, present a simulated example case, and conclude with a discussion on future work.
End-to-end imaging information rate advantages of various alternative communication systems
NASA Technical Reports Server (NTRS)
Rice, R. F.
1982-01-01
The efficiency of various deep space communication systems which are required to transmit both imaging and a typically error sensitive class of data called general science and engineering (gse) are compared. The approach jointly treats the imaging and gse transmission problems, allowing comparisons of systems which include various channel coding and data compression alternatives. Actual system comparisons include an advanced imaging communication system (AICS) which exhibits the rather significant advantages of sophisticated data compression coupled with powerful yet practical channel coding. For example, under certain conditions the improved AICS efficiency could provide as much as two orders of magnitude increase in imaging information rate compared to a single channel uncoded, uncompressed system while maintaining the same gse data rate in both systems. Additional details describing AICS compression and coding concepts as well as efforts to apply them are provided in support of the system analysis.
QWIP technology for both military and civilian applications
NASA Astrophysics Data System (ADS)
Gunapala, Sarath D.; Kukkonen, Carl A.; Sirangelo, Mark N.; McQuiston, Barbara K.; Chehayeb, Riad; Kaufmann, M.
2001-10-01
Advanced thermal imaging infrared cameras have been a cost effective and reliable method to obtain the temperature of objects. Quantum Well Infrared Photodetector (QWIP) based thermal imaging systems have advanced the state-of-the-art and are the most sensitive commercially available thermal systems. QWIP Technologies LLC, under exclusive agreement with Caltech University, is currently manufacturing the QWIP-ChipTM, a 320 X 256 element, bound-to-quasibound QWIP FPA. The camera performance falls within the long-wave IR band, spectrally peaked at 8.5 μm. The camera is equipped with a 32-bit floating-point digital signal processor combined with multi- tasking software, delivering a digital acquisition resolution of 12-bits using nominal power consumption of less than 50 Watts. With a variety of video interface options, remote control capability via an RS-232 connection, and an integrated control driver circuit to support motorized zoom and focus- compatible lenses, this camera design has excellent application in both the military and commercial sector. In the area of remote sensing, high-performance QWIP systems can be used for high-resolution, target recognition as part of a new system of airborne platforms (including UAVs). Such systems also have direct application in law enforcement, surveillance, industrial monitoring and road hazard detection systems. This presentation will cover the current performance of the commercial QWIP cameras, conceptual platform systems and advanced image processing for use in both military remote sensing and civilian applications currently being developed in road hazard monitoring.
How Advances in Imaging Will Affect Precision Radiation Oncology.
Jaffray, David A; Das, Shiva; Jacobs, Paula M; Jeraj, Robert; Lambin, Philippe
2018-06-01
Radiation oncology is 1 of the most structured disciplines in medicine. It is of a highly technical nature with reliance on robotic systems to deliver intervention, engagement of diverse expertise, and early adoption of digital approaches to optimize and execute the application of this highly effective cancer treatment. As a localized intervention, the dependence on sensitive, specific, and accurate imaging to define the extent of disease, its heterogeneity, and adjacency to normal tissues directly affects the therapeutic ratio. Image-based in vivo temporal monitoring of the response to treatment enables adaptation and further affects the therapeutic ratio. Thus, more precise intervention will enable fractionation schedules that better interoperate with advances such as immunotherapy. In the data set-rich era that promises precision and personalized medicine, the radiation oncology field will integrate these new data into highly protocoled pathways of care that begin with multimodality prediction and enable patient-specific adaptation of therapy based on quantitative measures of the individual's dose-volume temporal trajectory and midtherapy predictions of response. In addition to advancements in computed tomography imaging, emerging technologies, such as ultra-high-field magnetic resonance and molecular imaging will bring new information to the design of treatments. Next-generation image guided radiation therapy systems will inject high specificity and sensitivity data and stimulate adaptive replanning. In addition, a myriad of pre- and peritherapeutic markers derived from advances in molecular pathology (eg, tumor genomics), automated and comprehensive imaging analytics (eg, radiomics, tumor microenvironment), and many other emerging biomarkers (eg, circulating tumor cell assays) will need to be integrated to maximize the benefit of radiation therapy for an individual patient. We present a perspective on the promise and challenges of fully exploiting imaging data in the pursuit of personalized radiation therapy, drawing from the presentations and broader discussions at the 2016 American Society of Therapeutic Radiation Oncology-National Cancer Institute workshop on Precision Medicine in Radiation Oncology (Bethesda, MD). Copyright © 2018. Published by Elsevier Inc.
Conceptual design study for an advanced cab and visual system, volume 1
NASA Technical Reports Server (NTRS)
Rue, R. J.; Cyrus, M. L.; Garnett, T. A.; Nachbor, J. W.; Seery, J. A.; Starr, R. L.
1980-01-01
A conceptual design study was conducted to define requirements for an advanced cab and visual system. The rotorcraft system integration simulator is for engineering studies in the area of mission associated vehicle handling qualities. Principally a technology survey and assessment of existing and proposed simulator visual display systems, image generation systems, modular cab designs, and simulator control station designs were performed and are discussed. State of the art survey data were used to synthesize a set of preliminary visual display system concepts of which five candidate display configurations were selected for further evaluation. Basic display concepts incorporated in these configurations included: real image projection, using either periscopes, fiber optic bundles, or scanned laser optics; and virtual imaging with helmet mounted displays. These display concepts were integrated in the study with a simulator cab concept employing a modular base for aircraft controls, crew seating, and instrumentation (or other) displays. A simple concept to induce vibration in the various modules was developed and is described. Results of evaluations and trade offs related to the candidate system concepts are given, along with a suggested weighting scheme for numerically comparing visual system performance characteristics.
Center for Advanced Propulsion Systems
1993-02-01
breakup model for two chamber pressures. 7.5.4 Exciplex images for a single main injection. Images are 126 ensemble averaged for 8 individual images. Times...to obtain data using an electronic fuel injector (UCORS). Exciplex fluorescence and photographic imaging were used to study liquid and vapor...later paper, (Bower and Foster, 1993) in the same combustion bomb, the authors applied Exciplex fluorescence techniques to visualize fuel liquid and fuel
[Image guided and robotic treatment--the advance of cybernetics in clinical medicine].
Fosse, E; Elle, O J; Samset, E; Johansen, M; Røtnes, J S; Tønnessen, T I; Edwin, B
2000-01-10
The introduction of advanced technology in hospitals has changed the treatment practice towards more image guided and minimal invasive procedures. Modern computer and communication technology opens up for robot aided and pre-programmed intervention. Several robotic systems are in clinical use today both in microsurgery and in major cardiac and orthopedic operations. As this trend develops, professions which are new in this context such as physicists, mathematicians and cybernetic engineers will be increasingly important in the treatment of patients.
Liquid lens: advances in adaptive optics
NASA Astrophysics Data System (ADS)
Casey, Shawn Patrick
2010-12-01
'Liquid lens' technologies promise significant advancements in machine vision and optical communications systems. Adaptations for machine vision, human vision correction, and optical communications are used to exemplify the versatile nature of this technology. Utilization of liquid lens elements allows the cost effective implementation of optical velocity measurement. The project consists of a custom image processor, camera, and interface. The images are passed into customized pattern recognition and optical character recognition algorithms. A single camera would be used for both speed detection and object recognition.
Adaptive Optics For Imaging Bright Objects Next To Dim Ones
NASA Technical Reports Server (NTRS)
Shao, Michael; Yu, Jeffrey W.; Malbet, Fabien
1996-01-01
Adaptive optics used in imaging optical systems, according to proposal, to enhance high-dynamic-range images (images of bright objects next to dim objects). Designed to alter wavefronts to correct for effects of scattering of light from small bumps on imaging optics. Original intended application of concept in advanced camera installed on Hubble Space Telescope for imaging of such phenomena as large planets near stars other than Sun. Also applicable to other high-quality telescopes and cameras.
Hybrid imaging: Instrumentation and Data Processing
NASA Astrophysics Data System (ADS)
Cal-Gonzalez, Jacobo; Rausch, Ivo; Shiyam Sundar, Lalith K.; Lassen, Martin L.; Muzik, Otto; Moser, Ewald; Papp, Laszlo; Beyer, Thomas
2018-05-01
State-of-the-art patient management frequently requires the use of non-invasive imaging methods to assess the anatomy, function or molecular-biological conditions of patients or study subjects. Such imaging methods can be singular, providing either anatomical or molecular information, or they can be combined, thus, providing "anato-metabolic" information. Hybrid imaging denotes image acquisitions on systems that physically combine complementary imaging modalities for an improved diagnostic accuracy and confidence as well as for increased patient comfort. The physical combination of formerly independent imaging modalities was driven by leading innovators in the field of clinical research and benefited from technological advances that permitted the operation of PET and MR in close physical proximity, for example. This review covers milestones of the development of various hybrid imaging systems for use in clinical practice and small-animal research. Special attention is given to technological advances that helped the adoption of hybrid imaging, as well as to introducing methodological concepts that benefit from the availability of complementary anatomical and biological information, such as new types of image reconstruction and data correction schemes. The ultimate goal of hybrid imaging is to provide useful, complementary and quantitative information during patient work-up. Hybrid imaging also opens the door to multi-parametric assessment of diseases, which will help us better understand the causes of various diseases that currently contribute to a large fraction of healthcare costs.
Small animal optoacoustic tomography system for molecular imaging of contrast agents
NASA Astrophysics Data System (ADS)
Su, Richard; Liopo, Anton; Ermilov, Sergey A.; Oraevsky, Alexander A.
2016-03-01
We developed a new and improved Laser Optoacoustic Imaging System, LOIS-3D for preclinical research applications in small animal models. The advancements include (i) a new stabilized imaging module with a more homogeneous illumination of the mouse yielding a better spatial resolution (<0.2 mm) and (ii) a new low noise amplifier incorporated into the ultrasonic probe and providing the noise equivalent pressure around 2 Pa resulting in increased signal-to-noise ratio and the optical absorption sensitivity of about 0.15 cm-1. We also improved scan time and the image reconstruction times. This prototype has been commercialized for a number of biomedical research applications, such as imaging vascularization and measuring hemoglobin / oxyhemoglobin distribution in the organs as well as imaging exogenous or endogenous optoacoustic contrast agents. As examples, we present in vivo experiments using phantoms and mice with and without tumor injected with contrast agents with indocyanine green (ICG). LOIS-3D was capable of detecting ~1-2 pmole of the ICG, in tissues with relatively low blood content. With its high sensitivity and excellent spatial resolution LOIS-3D is an advanced alternative to fluorescence and bioluminescence based modalities for molecular imaging in live mice.
Design Criteria For Networked Image Analysis System
NASA Astrophysics Data System (ADS)
Reader, Cliff; Nitteberg, Alan
1982-01-01
Image systems design is currently undergoing a metamorphosis from the conventional computing systems of the past into a new generation of special purpose designs. This change is motivated by several factors, notably among which is the increased opportunity for high performance with low cost offered by advances in semiconductor technology. Another key issue is a maturing in understanding of problems and the applicability of digital processing techniques. These factors allow the design of cost-effective systems that are functionally dedicated to specific applications and used in a utilitarian fashion. Following an overview of the above stated issues, the paper presents a top-down approach to the design of networked image analysis systems. The requirements for such a system are presented, with orientation toward the hospital environment. The three main areas are image data base management, viewing of image data and image data processing. This is followed by a survey of the current state of the art, covering image display systems, data base techniques, communications networks and software systems control. The paper concludes with a description of the functional subystems and architectural framework for networked image analysis in a production environment.
NASA Technical Reports Server (NTRS)
1984-01-01
The Spacelab Payload Development Support System PDSS Image Motion Compensator (IMC) computer interface simulation (CIS) user's manual is given. The software provides a real time interface simulation for the following IMC subsystems: the Dry Rotor Reference Unit, the Advanced Star/Target Reference Optical sensor, the Ultra Violet imaging telescope, the Wisconson Ultraviolet Photopolarimetry Experiment, the Cruciform Power distributor, and the Spacelab Experiment Computer Operating System.
Advanced scanners and imaging systems for earth observations. [conferences
NASA Technical Reports Server (NTRS)
1973-01-01
Assessments of present and future sensors and sensor related technology are reported along with a description of user needs and applications. Five areas are outlined: (1) electromechanical scanners, (2) self-scanned solid state sensors, (3) electron beam imagers, (4) sensor related technology, and (5) user applications. Recommendations, charts, system designs, technical approaches, and bibliographies are included for each area.
Tagged Neutron Source for API Inspection Systems with Greatly Enhanced Spatial Resolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2012-06-04
We recently developed induced fission and transmission imaging methods with time- and directionally-tagged neutrons offer new capabilities for characterization of fissile material configurations and enhanced detection of special nuclear materials (SNM). An Advanced Associated Particle Imaging (API) generator with higher angular resolution and neutron yield than existing systems is needed to fully exploit these methods.
The Advanced Gamma-Ray Imaging System (AGIS)
NASA Astrophysics Data System (ADS)
Otte, Nepomuk
The Advanced Gamma-ray Imaging System (AGIS) is a concept for the next generation of imag-ing atmospheric Cherenkov telescope arrays. It has the goal of providing an order of magnitude increase in sensitivity for Very High Energy Gamma-ray ( 100 GeV to 100 TeV) astronomy compared to currently operating arrays such as CANGAROO, HESS, MAGIC, and VERITAS. After an overview of the science such an array would enable, we discuss the development of the components of the telescope system that are required to achieve the sensitivity goal. AGIS stresses improvements in several areas of IACT technology including component reliability as well as exploring cost reduction possibilities in order to achieve its goal. We discuss alterna-tives for the telescopes and positioners: a novel Schwarzschild-Couder telescope offering a wide field of view with a relatively smaller plate scale, and possibilities for rapid slewing in order to address the search for and/or study of Gamma-ray Bursts in the VHE gamma-ray regime. We also discuss options for a high pixel count camera system providing the necessary finer solid angle per pixel and possibilities for a fast topological trigger that would offer improved realtime background rejection and lower energy thresholds.
The Advanced Gamma-ray Imaging System (AGIS): Focal Plane Detectors
NASA Astrophysics Data System (ADS)
Mukherjee, Reshmi; Byrum, K.; Drake, G.; Falcone, A.; Funk, S.; Horan, D.; Tajima, H.; Wagner, B.; Williams, D.
2008-04-01
Report of the Focal Plane Instrumentation Working Group, AGIS collaboration: The Advanced Gamma-ray Imaging System (AGIS) is a concept for the next generation instrument in ground-based very high energy gamma-ray astronomy. It has the goal of achieving significant improvement in sensitivity over current experiments. One of the main requirements for AGIS will be to achieve higher angular resolution than current imaging atmospheric Cherenkov telescopes (IACTs). Simulations show that a substantial improvement in angular resolution may be achieved if the pixel size is reduced to 0.05 deg, below that of current IACTs. Reducing the cost per channel and improving reliability and modularity are other important considerations. Here we present several alternatives being considered for AGIS, including both silicon photomultipliers (SiPMs) and multi-anode photomultipliers (MAPMTs) and summarize results from feasibility testing by various AGIS photodetector group members.
Preliminary thermal imaging of cotton impurities
USDA-ARS?s Scientific Manuscript database
Discrepancies exist between the Advanced Fiber Information Systems (AFIS) seed coat nep measurements and the seed coat fragment count upon visual inspection. Various studies have indicated that the two techniques may not be sensing the same contaminants as seed coat entities. Thermal imaging is an...
Infrared Imaging Sharpens View in Critical Situations
NASA Technical Reports Server (NTRS)
2007-01-01
Innovative Engineering and Consulting (IEC) Infrared Systems, a leading developer of thermal imaging systems and night vision equipment, received a Glenn Alliance for Technology Exchange (GATE) award, half of which was in the form of additional NASA assistance for new product development. IEC Infrared Systems worked with electrical and optical engineers from Glenn's Diagnostics and Data Systems Branch to develop a commercial infrared imaging system that could differentiate the intensity of heat sources better than other commercial systems. The research resulted in two major thermal imaging solutions: NightStalkIR and IntrudIR Alert. These systems are being used in the United States and abroad to help locate personnel stranded in emergency situations, defend soldiers on the battlefield abroad, and protect high-value facilities and operations. The company is also applying its advanced thermal imaging techniques to medical and pharmaceutical product development with a Cleveland-based pharmaceutical company.
Key Issues in the Analysis of Remote Sensing Data: A report on the workshop
NASA Technical Reports Server (NTRS)
Swain, P. H. (Principal Investigator)
1981-01-01
The procedures of a workshop assessing the state of the art of machine analysis of remotely sensed data are summarized. Areas discussed were: data bases, image registration, image preprocessing operations, map oriented considerations, advanced digital systems, artificial intelligence methods, image classification, and improved classifier training. Recommendations of areas for further research are presented.
NASA Astrophysics Data System (ADS)
Chuang, Cheng-Hung; Chen, Yen-Lin
2013-02-01
This study presents a steganographic optical image encryption system based on reversible data hiding and double random phase encoding (DRPE) techniques. Conventional optical image encryption systems can securely transmit valuable images using an encryption method for possible application in optical transmission systems. The steganographic optical image encryption system based on the DRPE technique has been investigated to hide secret data in encrypted images. However, the DRPE techniques vulnerable to attacks and many of the data hiding methods in the DRPE system can distort the decrypted images. The proposed system, based on reversible data hiding, uses a JBIG2 compression scheme to achieve lossless decrypted image quality and perform a prior encryption process. Thus, the DRPE technique enables a more secured optical encryption process. The proposed method extracts and compresses the bit planes of the original image using the lossless JBIG2 technique. The secret data are embedded in the remaining storage space. The RSA algorithm can cipher the compressed binary bits and secret data for advanced security. Experimental results show that the proposed system achieves a high data embedding capacity and lossless reconstruction of the original images.
Raster Scan Computer Image Generation (CIG) System Based On Refresh Memory
NASA Astrophysics Data System (ADS)
Dichter, W.; Doris, K.; Conkling, C.
1982-06-01
A full color, Computer Image Generation (CIG) raster visual system has been developed which provides a high level of training sophistication by utilizing advanced semiconductor technology and innovative hardware and firmware techniques. Double buffered refresh memory and efficient algorithms eliminate the problem of conventional raster line ordering by allowing the generated image to be stored in a random fashion. Modular design techniques and simplified architecture provide significant advantages in reduced system cost, standardization of parts, and high reliability. The major system components are a general purpose computer to perform interfacing and data base functions; a geometric processor to define the instantaneous scene image; a display generator to convert the image to a video signal; an illumination control unit which provides final image processing; and a CRT monitor for display of the completed image. Additional optional enhancements include texture generators, increased edge and occultation capability, curved surface shading, and data base extensions.
Advanced optical systems for ultra high energy cosmic rays detection
NASA Astrophysics Data System (ADS)
Gambicorti, L.; Pace, E.; Mazzinghi, P.
2017-11-01
A new advanced optical system is proposed and analysed in this work with the purpose to improve the photons collection efficiency of Multi-AnodePhotoMultipliers (MAPMT) detectors, which will be used to cover large focal surface of instruments dedicated to the Ultra High Energy Cosmic Rays (UHECRs, above 1019eV) and Ultra High Energy Neutrino (UHEN) detection. The employment of the advanced optical system allows to focus all photons inside the sensitive area of detectors and to improve the signal-to-noise ratios in the wavelength range of interest (300-400nm), thus coupling imaging and filtering capability. Filter is realised with a multilayer coating to reach high transparency in UV range and with a sharp cut-off outside. In this work the applications on different series of PMTs have been studied and results of simulations are shown. First prototypes have been realised. Finally, this paper proposes another class of adapters to be optically coupled on each pixel of MAPMT detector selected, consisting of non-imaging concentrators as Winston cones.
Diffusion-Weighted Imaging Outside the Brain: Consensus Statement From an ISMRM-Sponsored Workshop
Taouli, Bachir; Beer, Ambros J.; Chenevert, Thomas; Collins, David; Lehman, Constance; Matos, Celso; Padhani, Anwar R.; Rosenkrantz, Andrew B.; Shukla-Dave, Amita; Sigmund, Eric; Tanenbaum, Lawrence; Thoeny, Harriet; Thomassin-Naggara, Isabelle; Barbieri, Sebastiano; Corcuera-Solano, Idoia; Orton, Matthew; Partridge, Savannah C.; Koh, Dow-Mu
2016-01-01
The significant advances in magnetic resonance imaging (MRI) hardware and software, sequence design, and postprocessing methods have made diffusion-weighted imaging (DWI) an important part of body MRI protocols and have fueled extensive research on quantitative diffusion outside the brain, particularly in the oncologic setting. In this review, we summarize the most up-to-date information on DWI acquisition and clinical applications outside the brain, as discussed in an ISMRM-sponsored symposium held in April 2015. We first introduce recent advances in acquisition, processing, and quality control; then review scientific evidence in major organ systems; and finally describe future directions. PMID:26892827
Akassoglou, Katerina; Agalliu, Dritan; Chang, Christopher J.; Davalos, Dimitrios; Grutzendler, Jaime; Hillman, Elizabeth M. C.; Khakh, Baljit S.; Kleinfeld, David; McGavern, Dorian B.; Nelson, Sarah J.; Zlokovic, Berislav V.
2016-01-01
Breakthrough advances in intravital imaging have launched a new era for the study of dynamic interactions at the neurovascular interface in health and disease. The first Neurovascular and Immuno-Imaging Symposium was held at the Gladstone Institutes, University of California, San Francisco in March, 2015. This highly interactive symposium brought together a group of leading researchers who discussed how recent studies have unraveled fundamental biological mechanisms in diverse scientific fields such as neuroscience, immunology, and vascular biology, both under physiological and pathological conditions. These Proceedings highlight how advances in imaging technologies and their applications revolutionized our understanding of the communication between brain, immune, and vascular systems and identified novel targets for therapeutic intervention in neurological diseases. PMID:26941593
A mathematical model of neuro-fuzzy approximation in image classification
NASA Astrophysics Data System (ADS)
Gopalan, Sasi; Pinto, Linu; Sheela, C.; Arun Kumar M., N.
2016-06-01
Image digitization and explosion of World Wide Web has made traditional search for image, an inefficient method for retrieval of required grassland image data from large database. For a given input query image Content-Based Image Retrieval (CBIR) system retrieves the similar images from a large database. Advances in technology has increased the use of grassland image data in diverse areas such has agriculture, art galleries, education, industry etc. In all the above mentioned diverse areas it is necessary to retrieve grassland image data efficiently from a large database to perform an assigned task and to make a suitable decision. A CBIR system based on grassland image properties and it uses the aid of a feed-forward back propagation neural network for an effective image retrieval is proposed in this paper. Fuzzy Memberships plays an important role in the input space of the proposed system which leads to a combined neural fuzzy approximation in image classification. The CBIR system with mathematical model in the proposed work gives more clarity about fuzzy-neuro approximation and the convergence of the image features in a grassland image.
3D morphology reconstruction using linear array CCD binocular stereo vision imaging system
NASA Astrophysics Data System (ADS)
Pan, Yu; Wang, Jinjiang
2018-01-01
Binocular vision imaging system, which has a small field of view, cannot reconstruct the 3-D shape of the dynamic object. We found a linear array CCD binocular vision imaging system, which uses different calibration and reconstruct methods. On the basis of the binocular vision imaging system, the linear array CCD binocular vision imaging systems which has a wider field of view can reconstruct the 3-D morphology of objects in continuous motion, and the results are accurate. This research mainly introduces the composition and principle of linear array CCD binocular vision imaging system, including the calibration, capture, matching and reconstruction of the imaging system. The system consists of two linear array cameras which were placed in special arrangements and a horizontal moving platform that can pick up objects. The internal and external parameters of the camera are obtained by calibrating in advance. And then using the camera to capture images of moving objects, the results are then matched and 3-D reconstructed. The linear array CCD binocular vision imaging systems can accurately measure the 3-D appearance of moving objects, this essay is of great significance to measure the 3-D morphology of moving objects.
Advances in the Use of Thermography to Inspect Composite Tanks for Liquid Fuel Propulsion Systems
NASA Technical Reports Server (NTRS)
Lansing, Matthew D.; Russell, Samuel S.; Walker, James L.; Jones, Clyde S. (Technical Monitor)
2001-01-01
This viewgraph presentation gives an overview of advances in the use of thermography to inspect composite tanks for liquid fuel propulsion systems. Details are given on the thermographic inspection system, thermographic analysis method (includes scan and defect map, method of inspection, and inclusions, ply wrinkle, and delamination defects), graphite composite cryogenic feedline (including method, image map, and deep/shallow inclusions and resin rich area defects), and material degradation nondestructive evaluation.
Advanced Video Data-Acquisition System For Flight Research
NASA Technical Reports Server (NTRS)
Miller, Geoffrey; Richwine, David M.; Hass, Neal E.
1996-01-01
Advanced video data-acquisition system (AVDAS) developed to satisfy variety of requirements for in-flight video documentation. Requirements range from providing images for visualization of airflows around fighter airplanes at high angles of attack to obtaining safety-of-flight documentation. F/A-18 AVDAS takes advantage of very capable systems like NITE Hawk forward-looking infrared (FLIR) pod and recent video developments like miniature charge-couple-device (CCD) color video cameras and other flight-qualified video hardware.
Affordable CZT SPECT with dose-time minimization (Conference Presentation)
NASA Astrophysics Data System (ADS)
Hugg, James W.; Harris, Brian W.; Radley, Ian
2017-03-01
PURPOSE Pixelated CdZnTe (CZT) detector arrays are used in molecular imaging applications that can enable precision medicine, including small-animal SPECT, cardiac SPECT, molecular breast imaging (MBI), and general purpose SPECT. The interplay of gamma camera, collimator, gantry motion, and image reconstruction determines image quality and dose-time-FOV tradeoffs. Both dose and exam time can be minimized without compromising diagnostic content. METHODS Integration of pixelated CZT detectors with advanced ASICs and readout electronics improves system performance. Because historically CZT was expensive, the first clinical applications were limited to small FOV. Radiation doses were initially high and exam times long. Advances have significantly improved efficiency of CZT-based molecular imaging systems and the cost has steadily declined. We have built a general purpose SPECT system using our 40 cm x 53 cm CZT gamma camera with 2 mm pixel pitch and characterized system performance. RESULTS Compared to NaI scintillator gamma cameras: intrinsic spatial resolution improved from 3.8 mm to 2.0 mm; energy resolution improved from 9.8% to <4 % at 140 keV; maximum count rate is <1.5 times higher; non-detection camera edges are reduced 3-fold. Scattered photons are greatly reduced in the photopeak energy window; image contrast is improved; and the optimal FOV is increased to the entire camera area. CONCLUSION Continual improvements in CZT detector arrays for molecular imaging, coupled with optimal collimator and image reconstruction, result in minimized dose and exam time. With CZT cost improving, affordable whole-body CZT general purpose SPECT is expected to enable precision medicine applications.
ARIES: Enabling Visual Exploration and Organization of Art Image Collections.
Crissaff, Lhaylla; Wood Ruby, Louisa; Deutch, Samantha; DuBois, R Luke; Fekete, Jean-Daniel; Freire, Juliana; Silva, Claudio
2018-01-01
Art historians have traditionally used physical light boxes to prepare exhibits or curate collections. On a light box, they can place slides or printed images, move the images around at will, group them as desired, and visual-ly compare them. The transition to digital images has rendered this workflow obsolete. Now, art historians lack well-designed, unified interactive software tools that effectively support the operations they perform with physi-cal light boxes. To address this problem, we designed ARIES (ARt Image Exploration Space), an interactive image manipulation system that enables the exploration and organization of fine digital art. The system allows images to be compared in multiple ways, offering dynamic overlays analogous to a physical light box, and sup-porting advanced image comparisons and feature-matching functions, available through computational image processing. We demonstrate the effectiveness of our system to support art historians tasks through real use cases.
Miniaturized Airborne Imaging Central Server System
NASA Technical Reports Server (NTRS)
Sun, Xiuhong
2011-01-01
In recent years, some remote-sensing applications require advanced airborne multi-sensor systems to provide high performance reflective and emissive spectral imaging measurement rapidly over large areas. The key or unique problem of characteristics is associated with a black box back-end system that operates a suite of cutting-edge imaging sensors to collect simultaneously the high throughput reflective and emissive spectral imaging data with precision georeference. This back-end system needs to be portable, easy-to-use, and reliable with advanced onboard processing. The innovation of the black box backend is a miniaturized airborne imaging central server system (MAICSS). MAICSS integrates a complex embedded system of systems with dedicated power and signal electronic circuits inside to serve a suite of configurable cutting-edge electro- optical (EO), long-wave infrared (LWIR), and medium-wave infrared (MWIR) cameras, a hyperspectral imaging scanner, and a GPS and inertial measurement unit (IMU) for atmospheric and surface remote sensing. Its compatible sensor packages include NASA s 1,024 1,024 pixel LWIR quantum well infrared photodetector (QWIP) imager; a 60.5 megapixel BuckEye EO camera; and a fast (e.g. 200+ scanlines/s) and wide swath-width (e.g., 1,920+ pixels) CCD/InGaAs imager-based visible/near infrared reflectance (VNIR) and shortwave infrared (SWIR) imaging spectrometer. MAICSS records continuous precision georeferenced and time-tagged multisensor throughputs to mass storage devices at a high aggregate rate, typically 60 MB/s for its LWIR/EO payload. MAICSS is a complete stand-alone imaging server instrument with an easy-to-use software package for either autonomous data collection or interactive airborne operation. Advanced multisensor data acquisition and onboard processing software features have been implemented for MAICSS. With the onboard processing for real time image development, correction, histogram-equalization, compression, georeference, and data organization, fast aerial imaging applications, including the real time LWIR image mosaic for Google Earth, have been realized for NASA fs LWIR QWIP instrument. MAICSS is a significant improvement and miniaturization of current multisensor technologies. Structurally, it has a complete modular and solid-state design. Without rotating hard drives and other moving parts, it is operational at high altitudes and survivable in high-vibration environments. It is assembled from a suite of miniaturized, precision-machined, standardized, and stackable interchangeable embedded instrument modules. These stackable modules can be bolted together with the interconnection wires inside for the maximal simplicity and portability. Multiple modules are electronically interconnected as stacked. Alternatively, these dedicated modules can be flexibly distributed to fit the space constraints of a flying vehicle. As a flexibly configurable system, MAICSS can be tailored to interface a variety of multisensor packages. For example, with a 1,024x1,024 pixel LWIR and a 8,984x6,732 pixel EO payload, the complete MAICSS volume is approximately 7x9x11 in. (=18x23x28 cm), with a weight of 25 lb (=11.4 kg).
An Analysis of Fundamental Waffle Mode in Early AEOS Adaptive Optics Images
NASA Astrophysics Data System (ADS)
Makidon, Russell B.; Sivaramakrishnan, Anand; Perrin, Marshall D.; Roberts, Lewis C., Jr.; Oppenheimer, Ben R.; Soummer, Rémi; Graham, James R.
2005-08-01
Adaptive optics (AO) systems have significantly improved astronomical imaging capabilities over the last decade and are revolutionizing the kinds of science possible with 4-5 m class ground-based telescopes. A thorough understanding of AO system performance at the telescope can enable new frontiers of science as observations push AO systems to their performance limits. We look at recent advances with wave-front reconstruction (WFR) on the Advanced Electro-Optical System (AEOS) 3.6 m telescope to show how progress made in improving WFR can be measured directly in improved science images. We describe how a ``waffle mode'' wave-front error (which is not sensed by a Fried geometry Shack-Hartmann wave-front sensor) affects the AO point-spread function. We model details of AEOS AO to simulate a PSF that matches the actual AO PSF in the I band and show that while the older observed AEOS PSF contained several times more waffle error than expected, improved WFR techniques noticeably improve AEOS AO performance. We estimate the impact of these improved WFRs on H-band imaging at AEOS, chosen based on the optimization of the Lyot Project near-infrared coronagraph at this bandpass. Based on observations made at the Maui Space Surveillance System, operated by Detachment 15 of the US Air Force Research Laboratory's Directed Energy Directorate.
Design and development of a very high resolution thermal imager
NASA Astrophysics Data System (ADS)
Kuerbitz, Gunther; Duchateau, Ruediger
1998-10-01
The design goal of this project was to develop a thermal imaging system with ultimate geometrical resolution without sacrificing thermal sensitivity. It was necessary to fulfil the criteria for a future advanced video standard. This video standard is the so-called HDTV standard (HDTV High Definition TeleVision). The thermal imaging system is a parallel scanning system working in the 7...11 micrometer spectral region. The detector for that system has to have 576 X n (n number of TDI stages) detector elements taking into account a twofold interlace. It must be carefully optimized in terms of range performance and size of optics entrance pupil as well as producibility and yield. This was done in strong interaction with the detector manufacturer. The 16:9 aspect ratio of the HDTV standard together with the high number of 1920 pixels/line impose high demands on the scanner design in terms of scan efficiency and linearity. As an advanced second generation thermal imager the system has an internal thermal reference. The electronics is fully digitized and comprises circuits for Non Uniformity Correction (NUC), scan conversion, electronic zoom, auto gain and level, edge enhancement, up/down and left/right reversion etc. It can be completely remote-controlled via a serial interface.
Fink, Kathleen R; Fink, James R
2013-01-01
Imaging plays a key role in the diagnosis of central nervous system (CNS) metastasis. Imaging is used to detect metastases in patients with known malignancies and new neurological signs or symptoms, as well as to screen for CNS involvement in patients with known cancer. Computed tomography (CT) and magnetic resonance imaging (MRI) are the key imaging modalities used in the diagnosis of brain metastases. In difficult cases, such as newly diagnosed solitary enhancing brain lesions in patients without known malignancy, advanced imaging techniques including proton magnetic resonance spectroscopy (MRS), contrast enhanced magnetic resonance perfusion (MRP), diffusion weighted imaging (DWI), and diffusion tensor imaging (DTI) may aid in arriving at the correct diagnosis. This image-rich review discusses the imaging evaluation of patients with suspected intracranial involvement and malignancy, describes typical imaging findings of parenchymal brain metastasis on CT and MRI, and provides clues to specific histological diagnoses such as the presence of hemorrhage. Additionally, the role of advanced imaging techniques is reviewed, specifically in the context of differentiating metastasis from high-grade glioma and other solitary enhancing brain lesions. Extra-axial CNS involvement by metastases, including pachymeningeal and leptomeningeal metastases is also briefly reviewed.
Advanced road scene image segmentation and pavement evaluation using neural networks.
DOT National Transportation Integrated Search
2010-01-01
The current project, funded by MIOH-UTC for the period 9/1/2009-8/31/2010, continues our : efforts in designing an image processing based pavement inspection system for the : assessment of highway surface conditions. One of the most important tasks i...
Systems Biology, Neuroimaging, Neuropsychology, Neuroconnectivity and Traumatic Brain Injury
Bigler, Erin D.
2016-01-01
The patient who sustains a traumatic brain injury (TBI) typically undergoes neuroimaging studies, usually in the form of computed tomography (CT) and magnetic resonance imaging (MRI). In most cases the neuroimaging findings are clinically assessed with descriptive statements that provide qualitative information about the presence/absence of visually identifiable abnormalities; though little if any of the potential information in a scan is analyzed in any quantitative manner, except in research settings. Fortunately, major advances have been made, especially during the last decade, in regards to image quantification techniques, especially those that involve automated image analysis methods. This review argues that a systems biology approach to understanding quantitative neuroimaging findings in TBI provides an appropriate framework for better utilizing the information derived from quantitative neuroimaging and its relation with neuropsychological outcome. Different image analysis methods are reviewed in an attempt to integrate quantitative neuroimaging methods with neuropsychological outcome measures and to illustrate how different neuroimaging techniques tap different aspects of TBI-related neuropathology. Likewise, how different neuropathologies may relate to neuropsychological outcome is explored by examining how damage influences brain connectivity and neural networks. Emphasis is placed on the dynamic changes that occur following TBI and how best to capture those pathologies via different neuroimaging methods. However, traditional clinical neuropsychological techniques are not well suited for interpretation based on contemporary and advanced neuroimaging methods and network analyses. Significant improvements need to be made in the cognitive and behavioral assessment of the brain injured individual to better interface with advances in neuroimaging-based network analyses. By viewing both neuroimaging and neuropsychological processes within a systems biology perspective could represent a significant advancement for the field. PMID:27555810
Document Examination: Applications of Image Processing Systems.
Kopainsky, B
1989-12-01
Dealing with images is a familiar business for an expert in questioned documents: microscopic, photographic, infrared, and other optical techniques generate images containing the information he or she is looking for. A recent method for extracting most of this information is digital image processing, ranging from the simple contrast and contour enhancement to the advanced restoration of blurred texts. When combined with a sophisticated physical imaging system, an image pricessing system has proven to be a powerful and fast tool for routine non-destructive scanning of suspect documents. This article reviews frequent applications, comprising techniques to increase legibility, two-dimensional spectroscopy (ink discrimination, alterations, erased entries, etc.), comparison techniques (stamps, typescript letters, photo substitution), and densitometry. Computerized comparison of handwriting is not included. Copyright © 1989 Central Police University.
IDIMS/GEOPAK: Users manual for a geophysical data display and analysis system
NASA Technical Reports Server (NTRS)
Libert, J. M.
1982-01-01
The application of an existing image analysis system to the display and analysis of geophysical data is described, the potential for expanding the capabilities of such a system toward more advanced computer analytic and modeling functions is investigated. The major features of the IDIMS (Interactive Display and Image Manipulation System) and its applicability for image type analysis of geophysical data are described. Development of a basic geophysical data processing system to permit the image representation, coloring, interdisplay and comparison of geophysical data sets using existing IDIMS functions and to provide for the production of hard copies of processed images was described. An instruction manual and documentation for the GEOPAK subsystem was produced. A training course for personnel in the use of the IDIMS/GEOPAK was conducted. The effectiveness of the current IDIMS/GEOPAK system for geophysical data analysis was evaluated.
The current status of 3D imaging in dental practice.
McNamara, Clare; House, Kate; Davies, Rebecca; Barker, Chris S; Chawla, Ourvinder; Sandy, Jonathan R; Ireland, Anthony J
2011-12-01
This article aims to describe the current status of 3-dimensional (3D) imaging in dental practice. Advances in this field have made 3D imaging far more accessible in all dental fields. This paper describes methods of imaging dental hard and soft tissues and their clinical uses. In addition, the potential advantages and disadvantages of various systems are discussed, as well as expected future developments.
Viruses, Artificial Viruses and Virus-Based Structures for Biomedical Applications.
van Rijn, Patrick; Schirhagl, Romana
2016-06-01
Nanobiomaterials such as virus particles and artificial virus particles offer tremendous opportunities to develop new biomedical applications such as drug- or gene-delivery, imaging and sensing but also improve understanding of biological mechanisms. Recent advances within the field of virus-based systems give insights in how to mimic viral structures and virus assembly processes as well as understanding biodistribution, cell/tissue targeting, controlled and triggered disassembly or release and circulation times. All these factors are of high importance for virus-based functional systems. This review illustrates advances in mimicking and enhancing or controlling these aspects to a high degree toward delivery and imaging applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Computer-assisted detection of epileptiform focuses on SPECT images
NASA Astrophysics Data System (ADS)
Grzegorczyk, Dawid; Dunin-Wąsowicz, Dorota; Mulawka, Jan J.
2010-09-01
Epilepsy is a common nervous system disease often related to consciousness disturbances and muscular spasm which affects about 1% of the human population. Despite major technological advances done in medicine in the last years there was no sufficient progress towards overcoming it. Application of advanced statistical methods and computer image analysis offers the hope for accurate detection and later removal of an epileptiform focuses which are the cause of some types of epilepsy. The aim of this work was to create a computer system that would help to find and diagnose disorders of blood circulation in the brain This may be helpful for the diagnosis of the epileptic seizures onset in the brain.
Single-molecule imaging in live bacteria cells.
Ritchie, Ken; Lill, Yoriko; Sood, Chetan; Lee, Hochan; Zhang, Shunyuan
2013-02-05
Bacteria, such as Escherichia coli and Caulobacter crescentus, are the most studied and perhaps best-understood organisms in biology. The advances in understanding of living systems gained from these organisms are immense. Application of single-molecule techniques in bacteria have presented unique difficulties owing to their small size and highly curved form. The aim of this review is to show advances made in single-molecule imaging in bacteria over the past 10 years, and to look to the future where the combination of implementing such high-precision techniques in well-characterized and controllable model systems such as E. coli could lead to a greater understanding of fundamental biological questions inaccessible through classic ensemble methods.
Earth benefits from space life sciences
NASA Technical Reports Server (NTRS)
Garshnek, V.; Nicogossian, A. E.; Griffiths, L.
1988-01-01
The applications to medicine of various results from space exploration are examined. Improvements have been made in the management of cardiovascular disease, in particular the use of the ultrasonic scanner to image arteries in three dimensions, the use of excimer lasers to disrupt arterial plaques in coronary blood vessels, and the use of advanced electrodes for cardiac monitoring. A bone stiffness analyzer has helped to diagnose osteoporosis and aid in its treatment. An automated light microscope system is used for chromosome analysis, and an X-ray image intensifier called Lixiscope is used in emergency medical care. An advanced portable defibrillator has been developed for the heart, and an insulin delivery system has been derived from space microminiaturization techniques.
Advanced autostereoscopic display for G-7 pilot project
NASA Astrophysics Data System (ADS)
Hattori, Tomohiko; Ishigaki, Takeo; Shimamoto, Kazuhiro; Sawaki, Akiko; Ishiguchi, Tsuneo; Kobayashi, Hiromi
1999-05-01
An advanced auto-stereoscopic display is described that permits the observation of a stereo pair by several persons simultaneously without the use of special glasses and any kind of head tracking devices for the viewers. The system is composed of a right eye system, a left eye system and a sophisticated head tracking system. In the each eye system, a transparent type color liquid crystal imaging plate is used with a special back light unit. The back light unit consists of a monochrome 2D display and a large format convex lens. The unit distributes the light of the viewers' correct each eye only. The right eye perspective system is combined with a left eye perspective system is combined with a left eye perspective system by a half mirror in order to function as a time-parallel stereoscopic system. The viewer's IR image is taken through and focused by the large format convex lens and feed back to the back light as a modulated binary half face image. The auto-stereoscopic display employs the TTL method as the accurate head tracking. The system was worked as a stereoscopic TV phone between Duke University Department Tele-medicine and Nagoya University School of Medicine Department Radiology using a high-speed digital line of GIBN. The applications are also described in this paper.
Cardiac Sarcoidosis: Clinical Manifestations, Imaging Characteristics, and Therapeutic Approach
Houston, Brian A; Mukherjee, Monica
2014-01-01
Sarcoidosis is a multi-system disease pathologically characterized by the accumulation of T-lymphocytes and mononuclear phagocytes into the sine qua non pathologic structure of the noncaseating granuloma. Cardiac involvement remains a key source of morbidity and mortality in sarcoidosis. Definitive diagnosis of cardiac sarcoidosis, particularly early enough in the disease course to provide maximal therapeutic impact, has proven a particularly difficult challenge. However, major advancements in imaging techniques have been made in the last decade. Advancements in imaging modalities including echocardiography, nuclear spectroscopy, positron emission tomography, and magnetic resonance imaging all have improved our ability to diagnose cardiac sarcoidosis, and in many cases to provide a more accurate prognosis and thus targeted therapy. Likewise, therapy for cardiac sarcoidosis is beginning to advance past a “steroids-only” approach, as novel immunosuppressant agents provide effective steroid-sparing options. The following focused review will provide a brief discussion of the epidemiology and clinical presentation of cardiac sarcoidosis followed by a discussion of up-to-date imaging modalities employed in its assessment and therapeutic approaches. PMID:25452702
NASA Astrophysics Data System (ADS)
Green, R. O.; Asner, G. P.; Thompson, D. R.; Mouroulis, P.; Eastwood, M. L.; Chien, S.
2017-12-01
Global coverage imaging spectroscopy in the solar reflected energy portion of the spectrum has been identified by the Earth Decadal Survey as an important measurement that enables a diverse set of new and time critical science objectives/targets for the Earth system. These science objectives include biodiversity; ecosystem function; ecosystem biogeochemistry; initialization and constraint of global ecosystem models; fire fuel, combustion, burn severity, and recovery; surface mineralogy, geochemistry, geologic processes, soils, and hazards; global mineral dust source composition; cryospheric albedo, energy balance, and melting; coastal and inland water habitats; coral reefs; point source gas emission; cloud thermodynamic phase; urban system properties; and more. Traceability of these science objectives to spectroscopic measurement in the visible to short wavelength infrared portion of the spectrum is summarized. New approaches, including satellite constellations, to acquire these global imaging spectroscopy measurements is presented drawing from recent advances in optical design, detector technology, instrument architecture, thermal control, on-board processing, data storage, and downlink.
NASA Astrophysics Data System (ADS)
Mosquera Lopez, Clara; Agaian, Sos
2013-02-01
Prostate cancer detection and staging is an important step towards patient treatment selection. Advancements in digital pathology allow the application of new quantitative image analysis algorithms for computer-assisted diagnosis (CAD) on digitized histopathology images. In this paper, we introduce a new set of features to automatically grade pathological images using the well-known Gleason grading system. The goal of this study is to classify biopsy images belonging to Gleason patterns 3, 4, and 5 by using a combination of wavelet and fractal features. For image classification we use pairwise coupling Support Vector Machine (SVM) classifiers. The accuracy of the system, which is close to 97%, is estimated through three different cross-validation schemes. The proposed system offers the potential for automating classification of histological images and supporting prostate cancer diagnosis.
User Interface for the ESO Advanced Data Products Image Reduction Pipeline
NASA Astrophysics Data System (ADS)
Rité, C.; Delmotte, N.; Retzlaff, J.; Rosati, P.; Slijkhuis, R.; Vandame, B.
2006-07-01
The poster presents a friendly user interface for image reduction, totally written in Python and developed by the Advanced Data Products (ADP) group. The interface is a front-end to the ESO/MVM image reduction package, originally developed in the ESO Imaging Survey (EIS) project and used currently to reduce imaging data from several instruments such as WFI, ISAAC, SOFI and FORS1. As part of its scope, the interface produces high-level, VO-compliant, science images from raw data providing the astronomer with a complete monitoring system during the reduction, computing also statistical image properties for data quality assessment. The interface is meant to be used for VO services and it is free but un-maintained software and the intention of the authors is to share code and experience. The poster describes the interface architecture and current capabilities and give a description of the ESO/MVM engine for image reduction. The ESO/MVM engine should be released by the end of this year.
Ahn, Jungmo; Park, JaeYeon; Park, Donghwan; Paek, Jeongyeup; Ko, JeongGil
2018-01-01
With the introduction of various advanced deep learning algorithms, initiatives for image classification systems have transitioned over from traditional machine learning algorithms (e.g., SVM) to Convolutional Neural Networks (CNNs) using deep learning software tools. A prerequisite in applying CNN to real world applications is a system that collects meaningful and useful data. For such purposes, Wireless Image Sensor Networks (WISNs), that are capable of monitoring natural environment phenomena using tiny and low-power cameras on resource-limited embedded devices, can be considered as an effective means of data collection. However, with limited battery resources, sending high-resolution raw images to the backend server is a burdensome task that has direct impact on network lifetime. To address this problem, we propose an energy-efficient pre- and post- processing mechanism using image resizing and color quantization that can significantly reduce the amount of data transferred while maintaining the classification accuracy in the CNN at the backend server. We show that, if well designed, an image in its highly compressed form can be well-classified with a CNN model trained in advance using adequately compressed data. Our evaluation using a real image dataset shows that an embedded device can reduce the amount of transmitted data by ∼71% while maintaining a classification accuracy of ∼98%. Under the same conditions, this process naturally reduces energy consumption by ∼71% compared to a WISN that sends the original uncompressed images.
NASA Technical Reports Server (NTRS)
2012-01-01
Topics include: Bioreactors Drive Advances in Tissue Engineering; Tooling Techniques Enhance Medical Imaging; Ventilator Technologies Sustain Critically Injured Patients; Protein Innovations Advance Drug Treatments, Skin Care; Mass Analyzers Facilitate Research on Addiction; Frameworks Coordinate Scientific Data Management; Cameras Improve Navigation for Pilots, Drivers; Integrated Design Tools Reduce Risk, Cost; Advisory Systems Save Time, Fuel for Airlines; Modeling Programs Increase Aircraft Design Safety; Fly-by-Wire Systems Enable Safer, More Efficient Flight; Modified Fittings Enhance Industrial Safety; Simulation Tools Model Icing for Aircraft Design; Information Systems Coordinate Emergency Management; Imaging Systems Provide Maps for U.S. Soldiers; High-Pressure Systems Suppress Fires in Seconds; Alloy-Enhanced Fans Maintain Fresh Air in Tunnels; Control Algorithms Charge Batteries Faster; Software Programs Derive Measurements from Photographs; Retrofits Convert Gas Vehicles into Hybrids; NASA Missions Inspire Online Video Games; Monitors Track Vital Signs for Fitness and Safety; Thermal Components Boost Performance of HVAC Systems; World Wind Tools Reveal Environmental Change; Analyzers Measure Greenhouse Gasses, Airborne Pollutants; Remediation Technologies Eliminate Contaminants; Receivers Gather Data for Climate, Weather Prediction; Coating Processes Boost Performance of Solar Cells; Analyzers Provide Water Security in Space and on Earth; Catalyst Substrates Remove Contaminants, Produce Fuel; Rocket Engine Innovations Advance Clean Energy; Technologies Render Views of Earth for Virtual Navigation; Content Platforms Meet Data Storage, Retrieval Needs; Tools Ensure Reliability of Critical Software; Electronic Handbooks Simplify Process Management; Software Innovations Speed Scientific Computing; Controller Chips Preserve Microprocessor Function; Nanotube Production Devices Expand Research Capabilities; Custom Machines Advance Composite Manufacturing; Polyimide Foams Offer Superior Insulation; Beam Steering Devices Reduce Payload Weight; Models Support Energy-Saving Microwave Technologies; Materials Advance Chemical Propulsion Technology; and High-Temperature Coatings Offer Energy Savings.
Improving Echo-Guided Procedures Using an Ultrasound-CT Image Fusion System.
Diana, Michele; Halvax, Peter; Mertz, Damien; Legner, Andras; Brulé, Jean-Marcel; Robinet, Eric; Mutter, Didier; Pessaux, Patrick; Marescaux, Jacques
2015-06-01
Image fusion between ultrasound (US) and computed tomography (CT) scan or magnetic resonance can increase operator accuracy in targeting liver lesions, particularly when those are undetectable with US alone. We have developed a modular gel to simulate hepatic solid lesions for educational purposes in imaging and minimally invasive ablation techniques. We aimed to assess the impact of image fusion in targeting artificial hepatic lesions during the hands-on part of 2 courses (basic and advanced) in hepatobiliary surgery. Under US guidance, 10 fake tumors of various sizes were created in the livers of 2 pigs, by percutaneous injection of a biocompatible gel engineered to be hyperdense on CT scanning and barely detectable on US. A CT scan was obtained and a CT-US image fusion was performed using the ACUSON S3000 US system (Siemens Healthcare, Germany). A total of 12 blinded course attendants, were asked in turn to perform a 10-minute liver scan with US alone followed by a 10-minute scan using image fusion. Using US alone, the expert managed to identify all lesions successfully. The true positive rate for course attendants with US alone was 14/36 and 2/24 in the advanced and basic courses, respectively. The total number of false positives identified was 26. With image fusion, the rate of true positives significantly increased to 31/36 (P < .001) in the advanced group and 16/24 in the basic group (P < .001). The total number of false positives, considering all participants, decreased to 4 (P < .001). Image fusion significantly increases accuracy in targeting hepatic lesions and might improve echo-guided procedures. © The Author(s) 2015.
Liu, Li; Chen, Weiping; Nie, Min; Zhang, Fengjuan; Wang, Yu; He, Ailing; Wang, Xiaonan; Yan, Gen
2016-11-01
To handle the emergence of the regional healthcare ecosystem, physicians and surgeons in various departments and healthcare institutions must process medical images securely, conveniently, and efficiently, and must integrate them with electronic medical records (EMRs). In this manuscript, we propose a software as a service (SaaS) cloud called the iMAGE cloud. A three-layer hybrid cloud was created to provide medical image processing services in the smart city of Wuxi, China, in April 2015. In the first step, medical images and EMR data were received and integrated via the hybrid regional healthcare network. Then, traditional and advanced image processing functions were proposed and computed in a unified manner in the high-performance cloud units. Finally, the image processing results were delivered to regional users using the virtual desktop infrastructure (VDI) technology. Security infrastructure was also taken into consideration. Integrated information query and many advanced medical image processing functions-such as coronary extraction, pulmonary reconstruction, vascular extraction, intelligent detection of pulmonary nodules, image fusion, and 3D printing-were available to local physicians and surgeons in various departments and healthcare institutions. Implementation results indicate that the iMAGE cloud can provide convenient, efficient, compatible, and secure medical image processing services in regional healthcare networks. The iMAGE cloud has been proven to be valuable in applications in the regional healthcare system, and it could have a promising future in the healthcare system worldwide.
NASA Astrophysics Data System (ADS)
Sinha, Vaibhav; Srivastava, Anjali; Koo Lee, Hyoung
2014-06-01
A novel method for non-destructive analysis has been developed using a neutron/X-ray combined computed tomography (NXCT) system at the Missouri University of Science and Technology Reactor (MSTR). This imaging system takes advantage of the fact that neutrons and X-rays have characteristically different interactions with same materials. NXCT fuses the imaging capabilities of both systems at one location and allows instant evaluation for nondestructive testing (NDT) applications. This technique promises viable advances in the field of NDT. In this paper, the complete design criteria and procedures are provided. The described design criteria and procedures can effectively be utilized to design and develop advanced combined computed tomography system. The successful operation of the high resolution X-ray and neutron computed tomography has been demonstrated in this paper. The utility and importance of the NXCT system has been shown by nondestructive evaluation of various phantoms constituting different materials, geometrical, structural and compositional information. The concept of NXCT can be useful for concealed material detection, material characterization, investigation of complex geometries involving different atomic number materials and real time imaging for in-situ studies.
NASA Astrophysics Data System (ADS)
Murrill, Steven R.; Jacobs, Eddie L.; Franck, Charmaine C.; Petkie, Douglas T.; De Lucia, Frank C.
2015-10-01
The U.S. Army Research Laboratory (ARL) has continued to develop and enhance a millimeter-wave (MMW) and submillimeter- wave (SMMW)/terahertz (THz)-band imaging system performance prediction and analysis tool for both the detection and identification of concealed weaponry, and for pilotage obstacle avoidance. The details of the MATLAB-based model which accounts for the effects of all critical sensor and display components, for the effects of atmospheric attenuation, concealment material attenuation, and active illumination, were reported on at the 2005 SPIE Europe Security and Defence Symposium (Brugge). An advanced version of the base model that accounts for both the dramatic impact that target and background orientation can have on target observability as related to specular and Lambertian reflections captured by an active-illumination-based imaging system, and for the impact of target and background thermal emission, was reported on at the 2007 SPIE Defense and Security Symposium (Orlando). Further development of this tool that includes a MODTRAN-based atmospheric attenuation calculator and advanced system architecture configuration inputs that allow for straightforward performance analysis of active or passive systems based on scanning (single- or line-array detector element(s)) or staring (focal-plane-array detector elements) imaging architectures was reported on at the 2011 SPIE Europe Security and Defence Symposium (Prague). This paper provides a comprehensive review of a newly enhanced MMW and SMMW/THz imaging system analysis and design tool that now includes an improved noise sub-model for more accurate and reliable performance predictions, the capability to account for postcapture image contrast enhancement, and the capability to account for concealment material backscatter with active-illumination- based systems. Present plans for additional expansion of the model's predictive capabilities are also outlined.
Nanotechnology: from In Vivo Imaging System to Controlled Drug Delivery
NASA Astrophysics Data System (ADS)
Mir, Maria; Ishtiaq, Saba; Rabia, Samreen; Khatoon, Maryam; Zeb, Ahmad; Khan, Gul Majid; ur Rehman, Asim; ud Din, Fakhar
2017-08-01
Science and technology have always been the vitals of human's struggle, utilized exclusively for the development of novel tools and products, ranging from micro- to nanosize. Nanotechnology has gained significant attention due to its extensive applications in biomedicine, particularly related to bio imaging and drug delivery. Various nanodevices and nanomaterials have been developed for the diagnosis and treatment of different diseases. Herein, we have described two primary aspects of the nanomedicine, i.e., in vivo imaging and drug delivery, highlighting the recent advancements and future explorations. Tremendous advancements in the nanotechnology tools for the imaging, particularly of the cancer cells, have recently been observed. Nanoparticles offer a suitable medium to carryout molecular level modifications including the site-specific imaging and targeting. Invention of radionuclides, quantum dots, magnetic nanoparticles, and carbon nanotubes and use of gold nanoparticles in biosensors have revolutionized the field of imaging, resulting in easy understanding of the pathophysiology of disease, improved ability to diagnose and enhanced therapeutic delivery. This high specificity and selectivity of the nanomedicine is important, and thus, the recent advancements in this field need to be understood for a better today and a more prosperous future.
The role of numerical simulation for the development of an advanced HIFU system
NASA Astrophysics Data System (ADS)
Okita, Kohei; Narumi, Ryuta; Azuma, Takashi; Takagi, Shu; Matumoto, Yoichiro
2014-10-01
High-intensity focused ultrasound (HIFU) has been used clinically and is under clinical trials to treat various diseases. An advanced HIFU system employs ultrasound techniques for guidance during HIFU treatment instead of magnetic resonance imaging in current HIFU systems. A HIFU beam imaging for monitoring the HIFU beam and a localized motion imaging for treatment validation of tissue are introduced briefly as the real-time ultrasound monitoring techniques. Numerical simulations have a great impact on the development of real-time ultrasound monitoring as well as the improvement of the safety and efficacy of treatment in advanced HIFU systems. A HIFU simulator was developed to reproduce ultrasound propagation through the body in consideration of the elasticity of tissue, and was validated by comparison with in vitro experiments in which the ultrasound emitted from the phased-array transducer propagates through the acrylic plate acting as a bone phantom. As the result, the defocus and distortion of the ultrasound propagating through the acrylic plate in the simulation quantitatively agree with that in the experimental results. Therefore, the HIFU simulator accurately reproduces the ultrasound propagation through the medium whose shape and physical properties are well known. In addition, it is experimentally confirmed that simulation-assisted focus control of the phased-array transducer enables efficient assignment of the focus to the target. Simulation-assisted focus control can contribute to design of transducers and treatment planning.
Massively parallel information processing systems for space applications
NASA Technical Reports Server (NTRS)
Schaefer, D. H.
1979-01-01
NASA is developing massively parallel systems for ultra high speed processing of digital image data collected by satellite borne instrumentation. Such systems contain thousands of processing elements. Work is underway on the design and fabrication of the 'Massively Parallel Processor', a ground computer containing 16,384 processing elements arranged in a 128 x 128 array. This computer uses existing technology. Advanced work includes the development of semiconductor chips containing thousands of feedthrough paths. Massively parallel image analog to digital conversion technology is also being developed. The goal is to provide compact computers suitable for real-time onboard processing of images.
Sano, Yuko; Okuyama, Chio; Iehara, Tomoko; Matsushima, Shigenori; Yamada, Kei; Hosoi, Hajime; Nishimura, Tsunehiko
2012-07-01
The purpose of this study is to evaluate a new semi-quantitative estimation method using (123)I-MIBG retention ratio to assess response to chemotherapy for advanced neuroblastoma. Thirteen children with advanced neuroblastoma (International Neuroblastoma Risk Group Staging System: stage M) were examined for a total of 51 studies with (123)I-MIBG scintigraphy (before and during chemotherapy). We proposed a new semi-quantitative method using MIBG retention ratio (count obtained with delayed image/count obtained with early image with decay correction) to estimate MIBG accumulation. We analyzed total (123)I-MIBG retention ratio (TMRR: total body count obtained with delayed image/total body count obtained with early image with decay correction) and compared with a scoring method in terms of correlation with tumor markers. TMRR showed significantly higher correlations with urinary catecholamine metabolites before chemotherapy (VMA: r(2) = 0.45, P < 0.05, HVA: r(2) = 0.627, P < 0.01) than MIBG score (VMA: r(2) = 0.19, P = 0.082, HVA: r(2) = 0.25, P = 0.137). There were relatively good correlations between serial change of TMRR and those of urinary catecholamine metabolites (VMA: r(2) = 0.274, P < 0.001, HVA: r(2) = 0.448, P < 0.0001) compared with serial change of MIBG score and those of tumor markers (VMA: r(2) = 0.01, P = 0.537, HVA: 0.084, P = 0.697) during chemotherapy for advanced neuroblastoma. TMRR could be a useful semi-quantitative method for estimating early response to chemotherapy of advanced neuroblastoma because of its high correlation with urine catecholamine metabolites.
Advances in real-time millimeter-wave imaging radiometers for avionic synthetic vision
NASA Astrophysics Data System (ADS)
Lovberg, John A.; Chou, Ri-Chee; Martin, Christopher A.; Galliano, Joseph A., Jr.
1995-06-01
Millimeter-wave imaging has advantages over conventional visible or infrared imaging for many applications because millimeter-wave signals can travel through fog, snow, dust, and clouds with much less attenuation than infrared or visible light waves. Additionally, passive imaging systems avoid many problems associated with active radar imaging systems, such as radar clutter, glint, and multi-path return. ThermoTrex Corporation previously reported on its development of a passive imaging radiometer that uses an array of frequency-scanned antennas coupled to a multichannel acousto-optic spectrum analyzer (Bragg-cell) to form visible images of a scene through the acquisition of thermal blackbody radiation in the millimeter-wave spectrum. The output from the Bragg cell is imaged by a standard video camera and passed to a computer for normalization and display at real-time frame rates. An application of this system is its incorporation as part of an enhanced vision system to provide pilots with a synthetic view of a runway in fog and during other adverse weather conditions. Ongoing improvements to a 94 GHz imaging system and examples of recent images taken with this system will be presented. Additionally, the development of dielectric antennas and an electro- optic-based processor for improved system performance, and the development of an `ultra- compact' 220 GHz imaging system will be discussed.
High-resolution streaming video integrated with UGS systems
NASA Astrophysics Data System (ADS)
Rohrer, Matthew
2010-04-01
Imagery has proven to be a valuable complement to Unattended Ground Sensor (UGS) systems. It provides ultimate verification of the nature of detected targets. However, due to the power, bandwidth, and technological limitations inherent to UGS, sacrifices have been made to the imagery portion of such systems. The result is that these systems produce lower resolution images in small quantities. Currently, a high resolution, wireless imaging system is being developed to bring megapixel, streaming video to remote locations to operate in concert with UGS. This paper will provide an overview of how using Wifi radios, new image based Digital Signal Processors (DSP) running advanced target detection algorithms, and high resolution cameras gives the user an opportunity to take high-powered video imagers to areas where power conservation is a necessity.
European Union RACE program contributions to digital audiovisual communications and services
NASA Astrophysics Data System (ADS)
de Albuquerque, Augusto; van Noorden, Leon; Badique', Eric
1995-02-01
The European Union RACE (R&D in advanced communications technologies in Europe) and the future ACTS (advanced communications technologies and services) programs have been contributing and continue to contribute to world-wide developments in audio-visual services. The paper focuses on research progress in: (1) Image data compression. Several methods of image analysis leading to the use of encoders based on improved hybrid DCT-DPCM (MPEG or not), object oriented, hybrid region/waveform or knowledge-based coding methods are discussed. (2) Program production in the aspects of 3D imaging, data acquisition, virtual scene construction, pre-processing and sequence generation. (3) Interoperability and multimedia access systems. The diversity of material available and the introduction of interactive or near- interactive audio-visual services led to the development of prestandards for video-on-demand (VoD) and interworking of multimedia services storage systems and customer premises equipment.
The Java Image Science Toolkit (JIST) for rapid prototyping and publishing of neuroimaging software.
Lucas, Blake C; Bogovic, John A; Carass, Aaron; Bazin, Pierre-Louis; Prince, Jerry L; Pham, Dzung L; Landman, Bennett A
2010-03-01
Non-invasive neuroimaging techniques enable extraordinarily sensitive and specific in vivo study of the structure, functional response and connectivity of biological mechanisms. With these advanced methods comes a heavy reliance on computer-based processing, analysis and interpretation. While the neuroimaging community has produced many excellent academic and commercial tool packages, new tools are often required to interpret new modalities and paradigms. Developing custom tools and ensuring interoperability with existing tools is a significant hurdle. To address these limitations, we present a new framework for algorithm development that implicitly ensures tool interoperability, generates graphical user interfaces, provides advanced batch processing tools, and, most importantly, requires minimal additional programming or computational overhead. Java-based rapid prototyping with this system is an efficient and practical approach to evaluate new algorithms since the proposed system ensures that rapidly constructed prototypes are actually fully-functional processing modules with support for multiple GUI's, a broad range of file formats, and distributed computation. Herein, we demonstrate MRI image processing with the proposed system for cortical surface extraction in large cross-sectional cohorts, provide a system for fully automated diffusion tensor image analysis, and illustrate how the system can be used as a simulation framework for the development of a new image analysis method. The system is released as open source under the Lesser GNU Public License (LGPL) through the Neuroimaging Informatics Tools and Resources Clearinghouse (NITRC).
The Java Image Science Toolkit (JIST) for Rapid Prototyping and Publishing of Neuroimaging Software
Lucas, Blake C.; Bogovic, John A.; Carass, Aaron; Bazin, Pierre-Louis; Prince, Jerry L.; Pham, Dzung
2010-01-01
Non-invasive neuroimaging techniques enable extraordinarily sensitive and specific in vivo study of the structure, functional response and connectivity of biological mechanisms. With these advanced methods comes a heavy reliance on computer-based processing, analysis and interpretation. While the neuroimaging community has produced many excellent academic and commercial tool packages, new tools are often required to interpret new modalities and paradigms. Developing custom tools and ensuring interoperability with existing tools is a significant hurdle. To address these limitations, we present a new framework for algorithm development that implicitly ensures tool interoperability, generates graphical user interfaces, provides advanced batch processing tools, and, most importantly, requires minimal additional programming or computational overhead. Java-based rapid prototyping with this system is an efficient and practical approach to evaluate new algorithms since the proposed system ensures that rapidly constructed prototypes are actually fully-functional processing modules with support for multiple GUI's, a broad range of file formats, and distributed computation. Herein, we demonstrate MRI image processing with the proposed system for cortical surface extraction in large cross-sectional cohorts, provide a system for fully automated diffusion tensor image analysis, and illustrate how the system can be used as a simulation framework for the development of a new image analysis method. The system is released as open source under the Lesser GNU Public License (LGPL) through the Neuroimaging Informatics Tools and Resources Clearinghouse (NITRC). PMID:20077162
Ground truth spectrometry and imagery of eruption clouds to maximize utility of satellite imagery
NASA Technical Reports Server (NTRS)
Rose, William I.
1993-01-01
Field experiments with thermal imaging infrared radiometers were performed and a laboratory system was designed for controlled study of simulated ash clouds. Using AVHRR (Advanced Very High Resolution Radiometer) thermal infrared bands 4 and 5, a radiative transfer method was developed to retrieve particle sizes, optical depth and particle mass involcanic clouds. A model was developed for measuring the same parameters using TIMS (Thermal Infrared Multispectral Scanner), MODIS (Moderate Resolution Imaging Spectrometer), and ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer). Related publications are attached.
Paulsen, Keith D.; Samkoe, Kimberley S.; Elliott, Jonathan T.; Hasan, Tayyaba; Strong, Theresa V.; Draney, Daniel R.; Feldwisch, Joachim
2016-01-01
Surgical guidance with fluorescence has been demonstrated in individual clinical trials for decades, but the scientific and commercial conditions exist today for a dramatic increase in clinical value. In the past decade, increased use of indocyanine green based visualization of vascular flow, biliary function, and tissue perfusion has spawned a robust growth in commercial systems that have near-infrared emission imaging and video display capabilities. This recent history combined with major preclinical innovations in fluorescent-labeled molecular probes, has the potential for a shift in surgical practice toward resection guidance based upon molecular information in addition to conventional visual and palpable cues. Most surgical subspecialties already have treatment management decisions partially based upon the immunohistochemical phenotype of the cancer, as assessed from molecular pathology of the biopsy tissue. This phenotyping can inform the surgical resection process by spatial mapping of these features. Further integration of the diagnostic and therapeutic value of tumor metabolism sensing molecules or immune binding agents directly into the surgical process can help this field mature. Maximal value to the patient would come from identifying the spatial patterns of molecular expression in vivo that are well known to exist. However, as each molecular agent is advanced into trials, the performance of the imaging system can have a critical impact on the success. For example, use of pre-existing commercial imaging systems are not well suited to image receptor targeted fluorophores because of the lower concentrations expected, requiring orders of magnitude more sensitivity. Additionally the imaging system needs the appropriate dynamic range and image processing features to view molecular probes or therapeutics that may have nonspecific uptake or pharmacokinetic issues which lead to limitations in contrast. Imaging systems need to be chosen based upon objective performance criteria, and issues around calibration, validation, and interpretation need to be established before a clinical trial starts. Finally, as early phase trials become more established, the costs associated with failures can be crippling to the field, and so judicious use of phase 0 trials with microdose levels of agents is one viable paradigm to help the field advance, but this places high sensitivity requirements on the imaging systems used. Molecular-guided surgery has truly transformative potential, and several key challenges are outlined here with the goal of seeing efficient advancement with ideal choices. The focus of this vision 20/20 paper is on the technological aspects that are needed to be paired with these agents. PMID:27277060
Pogue, Brian W; Paulsen, Keith D; Samkoe, Kimberley S; Elliott, Jonathan T; Hasan, Tayyaba; Strong, Theresa V; Draney, Daniel R; Feldwisch, Joachim
2016-06-01
Surgical guidance with fluorescence has been demonstrated in individual clinical trials for decades, but the scientific and commercial conditions exist today for a dramatic increase in clinical value. In the past decade, increased use of indocyanine green based visualization of vascular flow, biliary function, and tissue perfusion has spawned a robust growth in commercial systems that have near-infrared emission imaging and video display capabilities. This recent history combined with major preclinical innovations in fluorescent-labeled molecular probes, has the potential for a shift in surgical practice toward resection guidance based upon molecular information in addition to conventional visual and palpable cues. Most surgical subspecialties already have treatment management decisions partially based upon the immunohistochemical phenotype of the cancer, as assessed from molecular pathology of the biopsy tissue. This phenotyping can inform the surgical resection process by spatial mapping of these features. Further integration of the diagnostic and therapeutic value of tumor metabolism sensing molecules or immune binding agents directly into the surgical process can help this field mature. Maximal value to the patient would come from identifying the spatial patterns of molecular expression in vivo that are well known to exist. However, as each molecular agent is advanced into trials, the performance of the imaging system can have a critical impact on the success. For example, use of pre-existing commercial imaging systems are not well suited to image receptor targeted fluorophores because of the lower concentrations expected, requiring orders of magnitude more sensitivity. Additionally the imaging system needs the appropriate dynamic range and image processing features to view molecular probes or therapeutics that may have nonspecific uptake or pharmacokinetic issues which lead to limitations in contrast. Imaging systems need to be chosen based upon objective performance criteria, and issues around calibration, validation, and interpretation need to be established before a clinical trial starts. Finally, as early phase trials become more established, the costs associated with failures can be crippling to the field, and so judicious use of phase 0 trials with microdose levels of agents is one viable paradigm to help the field advance, but this places high sensitivity requirements on the imaging systems used. Molecular-guided surgery has truly transformative potential, and several key challenges are outlined here with the goal of seeing efficient advancement with ideal choices. The focus of this vision 20/20 paper is on the technological aspects that are needed to be paired with these agents.
ROS-IGTL-Bridge: an open network interface for image-guided therapy using the ROS environment.
Frank, Tobias; Krieger, Axel; Leonard, Simon; Patel, Niravkumar A; Tokuda, Junichi
2017-08-01
With the growing interest in advanced image-guidance for surgical robot systems, rapid integration and testing of robotic devices and medical image computing software are becoming essential in the research and development. Maximizing the use of existing engineering resources built on widely accepted platforms in different fields, such as robot operating system (ROS) in robotics and 3D Slicer in medical image computing could simplify these tasks. We propose a new open network bridge interface integrated in ROS to ensure seamless cross-platform data sharing. A ROS node named ROS-IGTL-Bridge was implemented. It establishes a TCP/IP network connection between the ROS environment and external medical image computing software using the OpenIGTLink protocol. The node exports ROS messages to the external software over the network and vice versa simultaneously, allowing seamless and transparent data sharing between the ROS-based devices and the medical image computing platforms. Performance tests demonstrated that the bridge could stream transforms, strings, points, and images at 30 fps in both directions successfully. The data transfer latency was <1.2 ms for transforms, strings and points, and 25.2 ms for color VGA images. A separate test also demonstrated that the bridge could achieve 900 fps for transforms. Additionally, the bridge was demonstrated in two representative systems: a mock image-guided surgical robot setup consisting of 3D slicer, and Lego Mindstorms with ROS as a prototyping and educational platform for IGT research; and the smart tissue autonomous robot surgical setup with 3D Slicer. The study demonstrated that the bridge enabled cross-platform data sharing between ROS and medical image computing software. This will allow rapid and seamless integration of advanced image-based planning/navigation offered by the medical image computing software such as 3D Slicer into ROS-based surgical robot systems.
Advanced Topics in Space Situational Awareness
2007-11-07
34super-resolution." Such optical superresolution is characteristic of many model-based image processing algorithms, and reflects the incorporation of...Sampling Theorem," J. Opt. Soc. Am. A, vol. 24, 311-325 (2007). [39] S. Prasad, "Digital and Optical Superresolution of Low-Resolution Image Sequences," Un...wavefront coding for the specific application of extension of image depth well beyond what is possible in a standard imaging system. The problem of optical
Digital Pathology: Data-Intensive Frontier in Medical Imaging
Cooper, Lee A. D.; Carter, Alexis B.; Farris, Alton B.; Wang, Fusheng; Kong, Jun; Gutman, David A.; Widener, Patrick; Pan, Tony C.; Cholleti, Sharath R.; Sharma, Ashish; Kurc, Tahsin M.; Brat, Daniel J.; Saltz, Joel H.
2013-01-01
Pathology is a medical subspecialty that practices the diagnosis of disease. Microscopic examination of tissue reveals information enabling the pathologist to render accurate diagnoses and to guide therapy. The basic process by which anatomic pathologists render diagnoses has remained relatively unchanged over the last century, yet advances in information technology now offer significant opportunities in image-based diagnostic and research applications. Pathology has lagged behind other healthcare practices such as radiology where digital adoption is widespread. As devices that generate whole slide images become more practical and affordable, practices will increasingly adopt this technology and eventually produce an explosion of data that will quickly eclipse the already vast quantities of radiology imaging data. These advances are accompanied by significant challenges for data management and storage, but they also introduce new opportunities to improve patient care by streamlining and standardizing diagnostic approaches and uncovering disease mechanisms. Computer-based image analysis is already available in commercial diagnostic systems, but further advances in image analysis algorithms are warranted in order to fully realize the benefits of digital pathology in medical discovery and patient care. In coming decades, pathology image analysis will extend beyond the streamlining of diagnostic workflows and minimizing interobserver variability and will begin to provide diagnostic assistance, identify therapeutic targets, and predict patient outcomes and therapeutic responses. PMID:25328166
Spacecraft Alignment Determination and Control for Dual Spacecraft Precision Formation Flying
NASA Technical Reports Server (NTRS)
Calhoun, Philip; Novo-Gradac, Anne-Marie; Shah, Neerav
2017-01-01
Many proposed formation flying missions seek to advance the state of the art in spacecraft science imaging by utilizing precision dual spacecraft formation flying to enable a virtual space telescope. Using precision dual spacecraft alignment, very long focal lengths can be achieved by locating the optics on one spacecraft and the detector on the other. Proposed science missions include astrophysics concepts with spacecraft separations from 1000 km to 25,000 km, such as the Milli-Arc-Second Structure Imager (MASSIM) and the New Worlds Observer, and Heliophysics concepts for solar coronagraphs and X-ray imaging with smaller separations (50m-500m). All of these proposed missions require advances in guidance, navigation, and control (GNC) for precision formation flying. In particular, very precise astrometric alignment control and estimation is required for precise inertial pointing of the virtual space telescope to enable science imaging orders of magnitude better than can be achieved with conventional single spacecraft instruments. This work develops design architectures, algorithms, and performance analysis of proposed GNC systems for precision dual spacecraft astrometric alignment. These systems employ a variety of GNC sensors and actuators, including laser-based alignment and ranging systems, optical imaging sensors (e.g. guide star telescope), inertial measurement units (IMU), as well as microthruster and precision stabilized platforms. A comprehensive GNC performance analysis is given for Heliophysics dual spacecraft PFF imaging mission concept.
Spacecraft Alignment Determination and Control for Dual Spacecraft Precision Formation Flying
NASA Technical Reports Server (NTRS)
Calhoun, Philip C.; Novo-Gradac, Anne-Marie; Shah, Neerav
2017-01-01
Many proposed formation flying missions seek to advance the state of the art in spacecraft science imaging by utilizing precision dual spacecraft formation flying to enable a virtual space telescope. Using precision dual spacecraft alignment, very long focal lengths can be achieved by locating the optics on one spacecraft and the detector on the other. Proposed science missions include astrophysics concepts with spacecraft separations from 1000 km to 25,000 km, such as the Milli-Arc-Second Structure Imager (MASSIM) and the New Worlds Observer, and Heliophysics concepts for solar coronagraphs and X-ray imaging with smaller separations (50m 500m). All of these proposed missions require advances in guidance, navigation, and control (GNC) for precision formation flying. In particular, very precise astrometric alignment control and estimation is required for precise inertial pointing of the virtual space telescope to enable science imaging orders of magnitude better than can be achieved with conventional single spacecraft instruments. This work develops design architectures, algorithms, and performance analysis of proposed GNC systems for precision dual spacecraft astrometric alignment. These systems employ a variety of GNC sensors and actuators, including laser-based alignment and ranging systems, optical imaging sensors (e.g. guide star telescope), inertial measurement units (IMU), as well as micro-thruster and precision stabilized platforms. A comprehensive GNC performance analysis is given for Heliophysics dual spacecraft PFF imaging mission concept.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turkington, T.
This education session will cover the physics and operation principles of gamma cameras and PET scanners. The first talk will focus on PET imaging. An overview of the principles of PET imaging will be provided, including positron decay physics, and the transition from 2D to 3D imaging. More recent advances in hardware and software will be discussed, such as time-of-flight imaging, and improvements in reconstruction algorithms that provide for options such as depth-of-interaction corrections. Quantitative applications of PET will be discussed, as well as the requirements for doing accurate quantitation. Relevant performance tests will also be described. Learning Objectives: Bemore » able to describe basic physics principles of PET and operation of PET scanners. Learn about recent advances in PET scanner hardware technology. Be able to describe advances in reconstruction techniques and improvements Be able to list relevant performance tests. The second talk will focus on gamma cameras. The Nuclear Medicine subcommittee has charged a task group (TG177) to develop a report on the current state of physics testing of gamma cameras, SPECT, and SPECT/CT systems. The report makes recommendations for performance tests to be done for routine quality assurance, annual physics testing, and acceptance tests, and identifies those needed satisfy the ACR accreditation program and The Joint Commission imaging standards. The report is also intended to be used as a manual with detailed instructions on how to perform tests under widely varying conditions. Learning Objectives: At the end of the presentation members of the audience will: Be familiar with the tests recommended for routine quality assurance, annual physics testing, and acceptance tests of gamma cameras for planar imaging. Be familiar with the tests recommended for routine quality assurance, annual physics testing, and acceptance tests of SPECT systems. Be familiar with the tests of a SPECT/CT system that include the CT images for SPECT reconstructions. Become knowledgeable of items to be included in annual acceptance testing reports including CT dosimetry and PACS monitor measurements. T. Turkington, GE Healthcare.« less
A CMOS-based large-area high-resolution imaging system for high-energy x-ray applications
NASA Astrophysics Data System (ADS)
Rodricks, Brian; Fowler, Boyd; Liu, Chiao; Lowes, John; Haeffner, Dean; Lienert, Ulrich; Almer, John
2008-08-01
CCDs have been the primary sensor in imaging systems for x-ray diffraction and imaging applications in recent years. CCDs have met the fundamental requirements of low noise, high-sensitivity, high dynamic range and spatial resolution necessary for these scientific applications. State-of-the-art CMOS image sensor (CIS) technology has experienced dramatic improvements recently and their performance is rivaling or surpassing that of most CCDs. The advancement of CIS technology is at an ever-accelerating pace and is driven by the multi-billion dollar consumer market. There are several advantages of CIS over traditional CCDs and other solid-state imaging devices; they include low power, high-speed operation, system-on-chip integration and lower manufacturing costs. The combination of superior imaging performance and system advantages makes CIS a good candidate for high-sensitivity imaging system development. This paper will describe a 1344 x 1212 CIS imaging system with a 19.5μm pitch optimized for x-ray scattering studies at high-energies. Fundamental metrics of linearity, dynamic range, spatial resolution, conversion gain, sensitivity are estimated. The Detective Quantum Efficiency (DQE) is also estimated. Representative x-ray diffraction images are presented. Diffraction images are compared against a CCD-based imaging system.
USDA-ARS?s Scientific Manuscript database
Line-scan-based hyperspectral imaging techniques have often served as a research tool to develop rapid multispectral methods based on only a few spectral bands for rapid online applications. With continuing technological advances and greater accessibility to and availability of optoelectronic imagin...
Advanced Technologies for the Study of Earth Systems.
ERIC Educational Resources Information Center
Sproull, Jim
1991-01-01
Describes the Joint Education Initiative (JEdI) project designed to instruct teachers how to access scientific data and images for classroom instruction. Presents a sample CD-ROM classroom computer activity that illustrates how CD images and databases can be combined for a science investigation comparing topography to gravity anomalies. (MCO)
Electromagnetic Imaging Methods for Nondestructive Evaluation Applications
Deng, Yiming; Liu, Xin
2011-01-01
Electromagnetic nondestructive tests are important and widely used within the field of nondestructive evaluation (NDE). The recent advances in sensing technology, hardware and software development dedicated to imaging and image processing, and material sciences have greatly expanded the application fields, sophisticated the systems design and made the potential of electromagnetic NDE imaging seemingly unlimited. This review provides a comprehensive summary of research works on electromagnetic imaging methods for NDE applications, followed by the summary and discussions on future directions. PMID:22247693
Goscinski, Wojtek J.; McIntosh, Paul; Felzmann, Ulrich; Maksimenko, Anton; Hall, Christopher J.; Gureyev, Timur; Thompson, Darren; Janke, Andrew; Galloway, Graham; Killeen, Neil E. B.; Raniga, Parnesh; Kaluza, Owen; Ng, Amanda; Poudel, Govinda; Barnes, David G.; Nguyen, Toan; Bonnington, Paul; Egan, Gary F.
2014-01-01
The Multi-modal Australian ScienceS Imaging and Visualization Environment (MASSIVE) is a national imaging and visualization facility established by Monash University, the Australian Synchrotron, the Commonwealth Scientific Industrial Research Organization (CSIRO), and the Victorian Partnership for Advanced Computing (VPAC), with funding from the National Computational Infrastructure and the Victorian Government. The MASSIVE facility provides hardware, software, and expertise to drive research in the biomedical sciences, particularly advanced brain imaging research using synchrotron x-ray and infrared imaging, functional and structural magnetic resonance imaging (MRI), x-ray computer tomography (CT), electron microscopy and optical microscopy. The development of MASSIVE has been based on best practice in system integration methodologies, frameworks, and architectures. The facility has: (i) integrated multiple different neuroimaging analysis software components, (ii) enabled cross-platform and cross-modality integration of neuroinformatics tools, and (iii) brought together neuroimaging databases and analysis workflows. MASSIVE is now operational as a nationally distributed and integrated facility for neuroinfomatics and brain imaging research. PMID:24734019
Zarinabad, Niloufar; Meeus, Emma M; Manias, Karen; Foster, Katharine
2018-01-01
Background Advances in magnetic resonance imaging and the introduction of clinical decision support systems has underlined the need for an analysis tool to extract and analyze relevant information from magnetic resonance imaging data to aid decision making, prevent errors, and enhance health care. Objective The aim of this study was to design and develop a modular medical image region of interest analysis tool and repository (MIROR) for automatic processing, classification, evaluation, and representation of advanced magnetic resonance imaging data. Methods The clinical decision support system was developed and evaluated for diffusion-weighted imaging of body tumors in children (cohort of 48 children, with 37 malignant and 11 benign tumors). Mevislab software and Python have been used for the development of MIROR. Regions of interests were drawn around benign and malignant body tumors on different diffusion parametric maps, and extracted information was used to discriminate the malignant tumors from benign tumors. Results Using MIROR, the various histogram parameters derived for each tumor case when compared with the information in the repository provided additional information for tumor characterization and facilitated the discrimination between benign and malignant tumors. Clinical decision support system cross-validation showed high sensitivity and specificity in discriminating between these tumor groups using histogram parameters. Conclusions MIROR, as a diagnostic tool and repository, allowed the interpretation and analysis of magnetic resonance imaging images to be more accessible and comprehensive for clinicians. It aims to increase clinicians’ skillset by introducing newer techniques and up-to-date findings to their repertoire and make information from previous cases available to aid decision making. The modular-based format of the tool allows integration of analyses that are not readily available clinically and streamlines the future developments. PMID:29720361
The Bushbaby Optic Nerve: Fiber Count and Fiber Diameter Spectrum
1986-03-01
laminar organization of rece,)tive field properties in the lateral geniculate nucleus of bushbaby (Norton and Casagrande, 1982), the organization of...field properties in lateral geniculate nucleus of bushbaby (Galago cras- sicaudatus). Journal of Neurophysiology. 47(4):715-741. O’Fiaherty, J.J...employed an advanced digitized image analysis system (Carl Zeiss Inc., Videoplan Image Analysis System)* to more accurately and rapidly collect, analyze, and
Studies of electrode structures and dynamics using coherent X-ray scattering and imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
You, H.; Liu, Y.; Ulvestad, A.
2017-08-01
Electrochemical systems studied in situ with advanced surface X-ray scattering techniques are reviewed. The electrochemical systems covered include interfaces of single-crystals and nanocrystals with respect to surface modification, aqueous dissolution, surface reconstruction, and electrochemical double layers. An emphasis will be given on recent results by coherent X-ray techniques such as X-ray photon correlation spectroscopy, Bragg coherent diffraction imaging, and surface ptychography.
2004-02-04
KENNEDY SPACE CENTER, FLA. - Armando Oliu, Final Inspection Team lead for the Shuttle program, speaks to reporters about the aid the Image Analysis Lab is giving the FBI in a kidnapping case. Oliu oversees the image lab that is using an advanced SGI® TP9500 data management system to review the tape of the kidnapping in progress in Sarasota, Fla. KSC installed the new $3.2 million system in preparation for Return to Flight of the Space Shuttle fleet. The lab is studying the Sarasota kidnapping video to provide any new information possible to law enforcement officers. KSC is joining NASA’s Marshall Space Flight Center in Alabama in reviewing the tape.
Earth Orbiter 1: Wideband Advanced Recorder and Processor (WARP)
NASA Technical Reports Server (NTRS)
Smith, Terry; Kessler, John
1999-01-01
An advanced on-board spacecraft data system component is presented. The component is computer-based and provides science data acquisition, processing, storage, and base-band transmission functions. Specifically, the component is a very high rate solid state recorder, serving as a pathfinder for achieving the data handling requirements of next-generation hyperspectral imaging missions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, X; Lou, K; Rice University, Houston, TX
Purpose: To develop a practical and compact preclinical PET with innovative technologies for substantially improved imaging performance required for the advanced imaging applications. Methods: Several key components of detector, readout electronics and data acquisition have been developed and evaluated for achieving leapfrogged imaging performance over a prototype animal PET we had developed. The new detector module consists of an 8×8 array of 1.5×1.5×30 mm{sup 3} LYSO scintillators with each end coupled to a latest 4×4 array of 3×3 mm{sup 2} Silicon Photomultipliers (with ∼0.2 mm insensitive gap between pixels) through a 2.0 mm thick transparent light spreader. Scintillator surface andmore » reflector/coupling were designed and fabricated to reserve air-gap to achieve higher depth-of-interaction (DOI) resolution and other detector performance. Front-end readout electronics with upgraded 16-ch ASIC was newly developed and tested, so as the compact and high density FPGA based data acquisition and transfer system targeting 10M/s coincidence counting rate with low power consumption. The new detector module performance of energy, timing and DOI resolutions with the data acquisition system were evaluated. Initial Na-22 point source image was acquired with 2 rotating detectors to assess the system imaging capability. Results: No insensitive gaps at the detector edge and thus it is capable for tiling to a large-scale detector panel. All 64 crystals inside the detector were clearly separated from a flood-source image. Measured energy, timing, and DOI resolutions are around 17%, 2.7 ns and 1.96 mm (mean value). Point source image is acquired successfully without detector/electronics calibration and data correction. Conclusion: Newly developed advanced detector and readout electronics will be enable achieving targeted scalable and compact PET system in stationary configuration with >15% sensitivity, ∼1.3 mm uniform imaging resolution, and fast acquisition counting rate capability for substantially improved imaging and quantification performance for small animal imaging and image-guided radiotherapy applications. This work was supported by a research award RP120326 from Cancer Prevention and Research Institute of Texas.« less
Balter, James M; Antonuk, Larry E
2008-01-01
In-room radiography is not a new concept for image-guided radiation therapy. Rapid advances in technology, however, have made this positioning method convenient, and thus radiograph-based positioning has propagated widely. The paradigms for quality assurance of radiograph-based positioning include imager performance, systems integration, infrastructure, procedure documentation and testing, and support for positioning strategy implementation.
Urban, Trinity; Ziegler, Erik; Lewis, Rob; Hafey, Chris; Sadow, Cheryl; Van den Abbeele, Annick D; Harris, Gordon J
2017-11-01
Oncology clinical trials have become increasingly dependent upon image-based surrogate endpoints for determining patient eligibility and treatment efficacy. As therapeutics have evolved and multiplied in number, the tumor metrics criteria used to characterize therapeutic response have become progressively more varied and complex. The growing intricacies of image-based response evaluation, together with rising expectations for rapid and consistent results reporting, make it difficult for site radiologists to adequately address local and multicenter imaging demands. These challenges demonstrate the need for advanced cancer imaging informatics tools that can help ensure protocol-compliant image evaluation while simultaneously promoting reviewer efficiency. LesionTracker is a quantitative imaging package optimized for oncology clinical trial workflows. The goal of the project is to create an open source zero-footprint viewer for image analysis that is designed to be extensible as well as capable of being integrated into third-party systems for advanced imaging tools and clinical trials informatics platforms. Cancer Res; 77(21); e119-22. ©2017 AACR . ©2017 American Association for Cancer Research.
The Advanced Gamma-ray Imaging System (AGIS): Extragalactic Science
NASA Astrophysics Data System (ADS)
Coppi, Paolo S.; Extragalactic Science Working Group; AGIS Collaboration
2010-03-01
The Advanced Gamma-ray Imaging System (AGIS), a proposed next-generation array of Cherenkov telescopes, will provide an unprecedented view of the high energy universe. We discuss how AGIS, with its larger effective area, improved angular resolution, lower threshold, and an order of magnitude increase in sensitivity, impacts the extragalactic science possible in the very high energy domain. Likely source classes detectable by AGIS include AGN, GRBs, clusters, star-forming galaxies, and possibly the cascade radiation surrounding powerful cosmic accelerators. AGIS should see many of the sources discovered by Fermi. With its better sensitivity and angular resolution, AGIS then becomes a key instrument for identifying and characterizing Fermi survey sources, the majority of which will have limited Fermi photon statistics and localizations.
NASA Technical Reports Server (NTRS)
1989-01-01
The Marshall Space Flight Center annual report summarizes their advanced studies, research programs, and technological developments. Areas covered include: transportation systems; space systems such as Gravity Probe-B and Gamma Ray Imaging Telescope; data systems; microgravity science; astronomy and astrophysics; solar, magnetospheric, and atomic physics; aeronomy; propulsion; materials and processes; structures and dynamics; automated systems; space systems; and avionics.
Research of Face Recognition with Fisher Linear Discriminant
NASA Astrophysics Data System (ADS)
Rahim, R.; Afriliansyah, T.; Winata, H.; Nofriansyah, D.; Ratnadewi; Aryza, S.
2018-01-01
Face identification systems are developing rapidly, and these developments drive the advancement of biometric-based identification systems that have high accuracy. However, to develop a good face recognition system and to have high accuracy is something that’s hard to find. Human faces have diverse expressions and attribute changes such as eyeglasses, mustache, beard and others. Fisher Linear Discriminant (FLD) is a class-specific method that distinguishes facial image images into classes and also creates distance between classes and intra classes so as to produce better classification.
Digital video system for on-line portal verification
NASA Astrophysics Data System (ADS)
Leszczynski, Konrad W.; Shalev, Shlomo; Cosby, N. Scott
1990-07-01
A digital system has been developed for on-line acquisition, processing and display of portal images during radiation therapy treatment. A metal/phosphor screen combination is the primary detector, where the conversion from high-energy photons to visible light takes place. A mirror angled at 45 degrees reflects the primary image to a low-light-level camera, which is removed from the direct radiation beam. The image registered by the camera is digitized, processed and displayed on a CRT monitor. Advanced digital techniques for processing of on-line images have been developed and implemented to enhance image contrast and suppress the noise. Some elements of automated radiotherapy treatment verification have been introduced.
Molecular Imaging of Atherothrombotic Diseases: Seeing Is Believing.
Wang, Xiaowei; Peter, Karlheinz
2017-06-01
Molecular imaging, with major advances in the development of both innovative targeted contrast agents/particles and radiotracers, as well as various imaging technologies, is a fascinating, rapidly growing field with many preclinical and clinical applications, particularly for personalized medicine. Thrombosis in either the venous or the arterial system, the latter typically caused by rupture of unstable atherosclerotic plaques, is a major determinant of mortality and morbidity in patients. However, imaging of the various thrombotic complications and the identification of plaques that are prone to rupture are at best indirect, mostly unreliable, or not available at all. The development of molecular imaging toward diagnosis and prevention of thrombotic disease holds promise for major advance in this clinically important field. Here, we review the medical need and clinical importance of direct molecular imaging of thrombi and unstable atherosclerotic plaques that are prone to rupture, thereby causing thrombotic complications such as myocardial infarction and ischemic stroke. We systematically compare the advantages/disadvantages of the various molecular imaging modalities, including X-ray computed tomography, magnetic resonance imaging, positron emission tomography, single-photon emission computed tomography, fluorescence imaging, and ultrasound. We further systematically discuss molecular targets specific for thrombi and those characterizing unstable, potentially thrombogenic atherosclerotic plaques. Finally, we provide examples for first theranostic approaches in thrombosis, combining diagnosis, targeted therapy, and monitoring of therapeutic success or failure. Overall, molecular imaging is a rapidly advancing field that holds promise of major benefits to many patients with atherothrombotic diseases. © 2017 American Heart Association, Inc.
An automated digital imaging system for environmental monitoring applications
Bogle, Rian; Velasco, Miguel; Vogel, John
2013-01-01
Recent improvements in the affordability and availability of high-resolution digital cameras, data loggers, embedded computers, and radio/cellular modems have advanced the development of sophisticated automated systems for remote imaging. Researchers have successfully placed and operated automated digital cameras in remote locations and in extremes of temperature and humidity, ranging from the islands of the South Pacific to the Mojave Desert and the Grand Canyon. With the integration of environmental sensors, these automated systems are able to respond to local conditions and modify their imaging regimes as needed. In this report we describe in detail the design of one type of automated imaging system developed by our group. It is easily replicated, low-cost, highly robust, and is a stand-alone automated camera designed to be placed in remote locations, without wireless connectivity.
Recent advancements in the SQUID magnetospinogram system
NASA Astrophysics Data System (ADS)
Adachi, Yoshiaki; Kawai, Jun; Haruta, Yasuhiro; Miyamoto, Masakazu; Kawabata, Shigenori; Sekihara, Kensuke; Uehara, Gen
2017-06-01
In this study, a new superconducting quantum interference device (SQUID) biomagnetic measurement system known as magnetospinogram (MSG) is developed. The MSG system is used for observation of a weak magnetic field distribution induced by the neural activity of the spinal cord over the body surface. The current source reconstruction for the observed magnetic field distribution provides noninvasive functional imaging of the spinal cord, which enables medical personnel to diagnose spinal cord diseases more accurately. The MSG system is equipped with a uniquely shaped cryostat and a sensor array of vector-type SQUID gradiometers that are designed to detect the magnetic field from deep sources across a narrow observation area over the body surface of supine subjects. The latest prototype of the MSG system is already applied in clinical studies to develop a diagnosis protocol for spinal cord diseases. Advancements in hardware and software for MSG signal processing and cryogenic components aid in effectively suppressing external magnetic field noise and reducing the cost of liquid helium that act as barriers with respect to the introduction of the MSG system to hospitals. The application of the MSG system is extended to various biomagnetic applications in addition to spinal cord functional imaging given the advantages of the MSG system for investigating deep sources. The study also includes a report on the recent advancements of the SQUID MSG system including its peripheral technologies and wide-spread applications.
NASA Technical Reports Server (NTRS)
1984-01-01
Topics discussed at the symposium include hardware, geographic information system (GIS) implementation, processing remotely sensed data, spatial data structures, and NASA programs in remote sensing information systems. Attention is also given GIS applications, advanced techniques, artificial intelligence, graphics, spatial navigation, and classification. Papers are included on the design of computer software for geographic image processing, concepts for a global resource information system, algorithm development for spatial operators, and an application of expert systems technology to remotely sensed image analysis.
Baumer, Timothy G; Giles, Joshua W; Drake, Anne; Zauel, Roger; Bey, Michael J
2016-01-01
Measures of scapulothoracic motion are dependent on accurate imaging of the scapula and thorax. Advanced radiographic techniques can provide accurate measures of scapular motion, but the limited 3D imaging volume of these techniques often precludes measurement of thorax motion. To overcome this, a thorax coordinate system was defined based on the position of rib pairs and then compared to a conventional sternum/spine-based thorax coordinate system. Alignment of the rib-based coordinate system was dependent on the rib pairs used, with the rib3:rib4 pairing aligned to within 4.4 ± 2.1 deg of the conventional thorax coordinate system.
Imaging quality evaluation method of pixel coupled electro-optical imaging system
NASA Astrophysics Data System (ADS)
He, Xu; Yuan, Li; Jin, Chunqi; Zhang, Xiaohui
2017-09-01
With advancements in high-resolution imaging optical fiber bundle fabrication technology, traditional photoelectric imaging system have become ;flexible; with greatly reduced volume and weight. However, traditional image quality evaluation models are limited by the coupling discrete sampling effect of fiber-optic image bundles and charge-coupled device (CCD) pixels. This limitation substantially complicates the design, optimization, assembly, and evaluation image quality of the coupled discrete sampling imaging system. Based on the transfer process of grayscale cosine distribution optical signal in the fiber-optic image bundle and CCD, a mathematical model of coupled modulation transfer function (coupled-MTF) is established. This model can be used as a basis for following studies on the convergence and periodically oscillating characteristics of the function. We also propose the concept of the average coupled-MTF, which is consistent with the definition of traditional MTF. Based on this concept, the relationships among core distance, core layer radius, and average coupled-MTF are investigated.
Driving into the future: how imaging technology is shaping the future of cars
NASA Astrophysics Data System (ADS)
Zhang, Buyue
2015-03-01
Fueled by the development of advanced driver assistance system (ADAS), autonomous vehicles, and the proliferation of cameras and sensors, automotive is becoming a rich new domain for innovations in imaging technology. This paper presents an overview of ADAS, the important imaging and computer vision problems to solve for automotive, and examples of how some of these problems are solved, through which we highlight the challenges and opportunities in the automotive imaging space.
Gold nanoparticle contrast agents in advanced X-ray imaging technologies.
Ahn, Sungsook; Jung, Sung Yong; Lee, Sang Joon
2013-05-17
Recently, there has been significant progress in the field of soft- and hard-X-ray imaging for a wide range of applications, both technically and scientifically, via developments in sources, optics and imaging methodologies. While one community is pursuing extensive applications of available X-ray tools, others are investigating improvements in techniques, including new optics, higher spatial resolutions and brighter compact sources. For increased image quality and more exquisite investigation on characteristic biological phenomena, contrast agents have been employed extensively in imaging technologies. Heavy metal nanoparticles are excellent absorbers of X-rays and can offer excellent improvements in medical diagnosis and X-ray imaging. In this context, the role of gold (Au) is important for advanced X-ray imaging applications. Au has a long-history in a wide range of medical applications and exhibits characteristic interactions with X-rays. Therefore, Au can offer a particular advantage as a tracer and a contrast enhancer in X-ray imaging technologies by sensing the variation in X-ray attenuation in a given sample volume. This review summarizes basic understanding on X-ray imaging from device set-up to technologies. Then this review covers recent studies in the development of X-ray imaging techniques utilizing gold nanoparticles (AuNPs) and their relevant applications, including two- and three-dimensional biological imaging, dynamical processes in a living system, single cell-based imaging and quantitative analysis of circulatory systems and so on. In addition to conventional medical applications, various novel research areas have been developed and are expected to be further developed through AuNP-based X-ray imaging technologies.
Fisheye camera around view monitoring system
NASA Astrophysics Data System (ADS)
Feng, Cong; Ma, Xinjun; Li, Yuanyuan; Wu, Chenchen
2018-04-01
360 degree around view monitoring system is the key technology of the advanced driver assistance system, which is used to assist the driver to clear the blind area, and has high application value. In this paper, we study the transformation relationship between multi coordinate system to generate panoramic image in the unified car coordinate system. Firstly, the panoramic image is divided into four regions. By using the parameters obtained by calibration, four fisheye images pixel corresponding to the four sub regions are mapped to the constructed panoramic image. On the basis of 2D around view monitoring system, 3D version is realized by reconstructing the projection surface. Then, we compare 2D around view scheme and 3D around view scheme in unified coordinate system, 3D around view scheme solves the shortcomings of the traditional 2D scheme, such as small visual field, prominent ground object deformation and so on. Finally, the image collected by a fisheye camera installed around the car body can be spliced into a 360 degree panoramic image. So it has very high application value.
NASA Astrophysics Data System (ADS)
Kittle, David S.; Patil, Chirag G.; Mamelak, Adam; Hansen, Stacey; Perry, Jeff; Ishak, Laura; Black, Keith L.; Butte, Pramod V.
2016-03-01
Current surgical microscopes are limited in sensitivity for NIR fluorescence. Recent developments in tumor markers attached with NIR dyes require newer, more sensitive imaging systems with high resolution to guide surgical resection. We report on a small, single camera solution enabling advanced image processing opportunities previously unavailable for ultra-high sensitivity imaging of these agents. The system captures both visible reflectance and NIR fluorescence at 300 fps while displaying full HD resolution video at 60 fps. The camera head has been designed to easily mount onto the Zeiss Pentero microscope head for seamless integration into surgical procedures.
NASA Astrophysics Data System (ADS)
Krennrich, Frank; Buckley, J.; Byrum, K.; Dawson, J.; Drake, G.; Horan, D.; Krawzcynski, H.; Schroedter, M.
2008-04-01
Imaging atmospheric Cherenkov telescope arrays (VERITAS, HESS) have shown unprecedented background suppression capabilities for reducing cosmic-ray induced air showers, muons and night sky background fluctuations. Next-generation arrays with on the order of 100 telescopes offer larger collection areas, provide the possibility to see the air shower from more view points on the ground, have the potential to improve the sensitivity and give additional background suppression. Here we discuss the design of a fast array trigger system that has the potential to perform a real time image analysis allowing substantially improved background rate suppression at the trigger level.
Cloud Optical Depth Measured with Ground-Based, Uncooled Infrared Imagers
NASA Technical Reports Server (NTRS)
Shaw, Joseph A.; Nugent, Paul W.; Pust, Nathan J.; Redman, Brian J.; Piazzolla, Sabino
2012-01-01
Recent advances in uncooled, low-cost, long-wave infrared imagers provide excellent opportunities for remotely deployed ground-based remote sensing systems. However, the use of these imagers in demanding atmospheric sensing applications requires that careful attention be paid to characterizing and calibrating the system. We have developed and are using several versions of the ground-based "Infrared Cloud Imager (ICI)" instrument to measure spatial and temporal statistics of clouds and cloud optical depth or attenuation for both climate research and Earth-space optical communications path characterization. In this paper we summarize the ICI instruments and calibration methodology, then show ICI-derived cloud optical depths that are validated using a dual-polarization cloud lidar system for thin clouds (optical depth of approximately 4 or less).
NASA Astrophysics Data System (ADS)
Markham, James; Cosgrove, Joseph; Scire, James; Haldeman, Charles; Agoos, Ian
2014-12-01
This paper announces the implementation of a long wavelength infrared camera to obtain high-speed thermal images of an aircraft engine's in-service thermal barrier coated turbine blades. Long wavelength thermal images were captured of first-stage blades. The achieved temporal and spatial resolutions allowed for the identification of cooling-hole locations. The software and synchronization components of the system allowed for the selection of any blade on the turbine wheel, with tuning capability to image from leading edge to trailing edge. Its first application delivered calibrated thermal images as a function of turbine rotational speed at both steady state conditions and during engine transients. In advance of presenting these data for the purpose of understanding engine operation, this paper focuses on the components of the system, verification of high-speed synchronized operation, and the integration of the system with the commercial jet engine test bed.
Intelligent imaging systems for automotive applications
NASA Astrophysics Data System (ADS)
Thompson, Chris; Huang, Yingping; Fu, Shan
2004-03-01
In common with many other application areas, visual signals are becoming an increasingly important information source for many automotive applications. For several years CCD cameras have been used as research tools for a range of automotive applications. Infrared cameras, RADAR and LIDAR are other types of imaging sensors that have also been widely investigated for use in cars. This paper will describe work in this field performed in C2VIP over the last decade - starting with Night Vision Systems and looking at various other Advanced Driver Assistance Systems. Emerging from this experience, we make the following observations which are crucial for "intelligent" imaging systems: 1. Careful arrangement of sensor array. 2. Dynamic-Self-Calibration. 3. Networking and processing. 4. Fusion with other imaging sensors, both at the image level and the feature level, provides much more flexibility and reliability in complex situations. We will discuss how these problems can be addressed and what are the outstanding issues.
Markham, James; Cosgrove, Joseph; Scire, James; Haldeman, Charles; Agoos, Ian
2014-12-01
This paper announces the implementation of a long wavelength infrared camera to obtain high-speed thermal images of an aircraft engine's in-service thermal barrier coated turbine blades. Long wavelength thermal images were captured of first-stage blades. The achieved temporal and spatial resolutions allowed for the identification of cooling-hole locations. The software and synchronization components of the system allowed for the selection of any blade on the turbine wheel, with tuning capability to image from leading edge to trailing edge. Its first application delivered calibrated thermal images as a function of turbine rotational speed at both steady state conditions and during engine transients. In advance of presenting these data for the purpose of understanding engine operation, this paper focuses on the components of the system, verification of high-speed synchronized operation, and the integration of the system with the commercial jet engine test bed.
Direct imaging discovery of a Jovian exoplanet within a triple-star system.
Wagner, Kevin; Apai, Dániel; Kasper, Markus; Kratter, Kaitlin; McClure, Melissa; Robberto, Massimo; Beuzit, Jean-Luc
2016-08-12
Direct imaging allows for the detection and characterization of exoplanets via their thermal emission. We report the discovery via imaging of a young Jovian planet in a triple-star system and characterize its atmospheric properties through near-infrared spectroscopy. The semimajor axis of the planet is closer relative to that of its hierarchical triple-star system than for any known exoplanet within a stellar binary or triple, making HD 131399 dynamically unlike any other known system. The location of HD 131399Ab on a wide orbit in a triple system demonstrates that massive planets may be found on long and possibly unstable orbits in multistar systems. HD 131399Ab is one of the lowest mass (4 ± 1 Jupiter masses) and coldest (850 ± 50 kelvin) exoplanets to have been directly imaged. Copyright © 2016, American Association for the Advancement of Science.
Developmental imaging: the avian embryo hatches to the challenge.
Kulesa, Paul M; McKinney, Mary C; McLennan, Rebecca
2013-06-01
The avian embryo provides a multifaceted model to study developmental mechanisms because of its accessibility to microsurgery, fluorescence cell labeling, in vivo imaging, and molecular manipulation. Early two-dimensional planar growth of the avian embryo mimics human development and provides unique access to complex cell migration patterns using light microscopy. Later developmental events continue to permit access to both light and other imaging modalities, making the avian embryo an excellent model for developmental imaging. For example, significant insights into cell and tissue behaviors within the primitive streak, craniofacial region, and cardiovascular and peripheral nervous systems have come from avian embryo studies. In this review, we provide an update to recent advances in embryo and tissue slice culture and imaging, fluorescence cell labeling, and gene profiling. We focus on how technical advances in the chick and quail provide a clearer understanding of how embryonic cell dynamics are beautifully choreographed in space and time to sculpt cells into functioning structures. We summarize how these technical advances help us to better understand basic developmental mechanisms that may lead to clinical research into human birth defects and tissue repair. Copyright © 2013 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laforest, R.
2015-06-15
The use of integrated PET/MRI systems in clinical applications can best benefit from understanding their technological advances and limitations. The currently available clinical PET/MRI systems have their own characteristics. Thorough analyses of existing technical data and evaluation of necessary performance metrics for quality assurances could be conducted to optimize application-specific PET/MRI protocols. This Symposium will focus on technical advances and limitations of clinical PET/MRI systems, and how this exciting imaging modality can be utilized in applications that can benefit from both PET and MRI. Learning Objectives: To understand the technological advances of clinical PET/MRI systems To correctly identify clinical applicationsmore » that can benefit from PET/MRI To understand ongoing work to further improve the current PET/MRI technology Floris Jansen is a GE Healthcare employee.« less
NASA Astrophysics Data System (ADS)
Min, Min; Wu, Chunqiang; Li, Chuan; Liu, Hui; Xu, Na; Wu, Xiao; Chen, Lin; Wang, Fu; Sun, Fenglin; Qin, Danyu; Wang, Xi; Li, Bo; Zheng, Zhaojun; Cao, Guangzhen; Dong, Lixin
2017-08-01
Fengyun-4A (FY-4A), the first of the Chinese next-generation geostationary meteorological satellites, launched in 2016, offers several advances over the FY-2: more spectral bands, faster imaging, and infrared hyperspectral measurements. To support the major objective of developing the prototypes of FY-4 science algorithms, two science product algorithm testbeds for imagers and sounders have been developed by the scientists in the FY-4 Algorithm Working Group (AWG). Both testbeds, written in FORTRAN and C programming languages for Linux or UNIX systems, have been tested successfully by using Intel/g compilers. Some important FY-4 science products, including cloud mask, cloud properties, and temperature profiles, have been retrieved successfully through using a proxy imager, Himawari-8/Advanced Himawari Imager (AHI), and sounder data, obtained from the Atmospheric InfraRed Sounder, thus demonstrating their robustness. In addition, in early 2016, the FY-4 AWG was developed based on the imager testbed—a near real-time processing system for Himawari-8/AHI data for use by Chinese weather forecasters. Consequently, robust and flexible science product algorithm testbeds have provided essential and productive tools for popularizing FY-4 data and developing substantial improvements in FY-4 products.
Evaluation of NinePoint Medical's Nvision VLE device for gastrointestinal applications.
Mosko, Jeffrey D; Pleskow, Douglas
2017-07-01
The incidence of esophageal adenocarcinoma (EAC) has increased over the last few decades. With a known precursor lesion, Barrett's esophagus, this remains a target for screening and surveillance with the goal of detecting and providing curative treatment for early neoplasia. Areas covered: Current surveillance techniques rely on white light endoscopy and random tissue sampling which is time consuming, costly and prone to sampling error. Volumetric laser endomicroscopy (VLE), a second-generation optical coherence technology, has emerged as an advanced imaging modality with the potential to improve dysplasia detection, surveillance and subsequently prevent esophageal adenocarcinoma. This review will focus on the use of VLE for advanced imaging of Barrett's esophagus and summarize its current and potential uses elsewhere in the GI tract. Expert commentary: NinePoint's VLE imaging device enables imaging of large segments of BE facilitating identification of luminal and subsurface abnormalities that may have otherwise been missed. Its diagnostic accuracy is improving and laser-marking system adds the capacity for accurate VLE-histologic correlation. With the adoption of dysplasia scoring systems that utilize very few VLE imaging features, inexperienced endoscopists will likely be able to pick out areas concerning for dysplasia to target therapy.
Compact microwave imaging system to measure spatial distribution of plasma density
NASA Astrophysics Data System (ADS)
Ito, H.; Oba, R.; Yugami, N.; Nishida, Y.
2004-10-01
We have developed an advanced microwave interferometric system operating in the K band (18-27 GHz) with the use of a fan-shaped microwave based on a heterodyne detection system for measuring the spatial distribution of the plasma density. In order to make a simple, low-cost, and compact microwave interferometer with better spatial resolution, a microwave scattering technique by a microstrip antenna array is employed. Experimental results show that the imaging system with the microstrip antenna array can have finer spatial resolution than one with the diode antenna array and reconstruct a good spatially resolved image of the finite size dielectric phantoms placed between the horn antenna and the micro strip antenna array. The precise two-dimensional electron density distribution of the cylindrical plasma produced by an electron cyclotron resonance has been observed. As a result, the present imaging system is more suitable for a two- or three-dimensional display of the objects or stationary plasmas and it is possible to realize a compact microwave imaging system.
Millimeter wave imaging: a historical review
NASA Astrophysics Data System (ADS)
Appleby, Roger; Robertson, Duncan A.; Wikner, David
2017-05-01
The SPIE Passive and Active Millimeter Wave Imaging conference has provided an annual focus and forum for practitioners in the field of millimeter wave imaging for the past two decades. To celebrate the conference's twentieth anniversary we present a historical review of the evolution of millimeter wave imaging over the past twenty years. Advances in device technology play a fundamental role in imaging capability whilst system architectures have also evolved. Imaging phenomenology continues to be a crucial topic underpinning the deployment of millimeter wave imaging in diverse applications such as security, remote sensing, non-destructive testing and synthetic vision.
NASA Technical Reports Server (NTRS)
2010-01-01
Topics covered include: Burnishing Techniques Strengthen Hip Implants; Signal Processing Methods Monitor Cranial Pressure; Ultraviolet-Blocking Lenses Protect, Enhance Vision; Hyperspectral Systems Increase Imaging Capabilities; Programs Model the Future of Air Traffic Management; Tail Rotor Airfoils Stabilize Helicopters, Reduce Noise; Personal Aircraft Point to the Future of Transportation; Ducted Fan Designs Lead to Potential New Vehicles; Winglets Save Billions of Dollars in Fuel Costs; Sensor Systems Collect Critical Aerodynamics Data; Coatings Extend Life of Engines and Infrastructure; Radiometers Optimize Local Weather Prediction; Energy-Efficient Systems Eliminate Icing Danger for UAVs; Rocket-Powered Parachutes Rescue Entire Planes; Technologies Advance UAVs for Science, Military; Inflatable Antennas Support Emergency Communication; Smart Sensors Assess Structural Health; Hand-Held Devices Detect Explosives and Chemical Agents; Terahertz Tools Advance Imaging for Security, Industry; LED Systems Target Plant Growth; Aerogels Insulate Against Extreme Temperatures; Image Sensors Enhance Camera Technologies; Lightweight Material Patches Allow for Quick Repairs; Nanomaterials Transform Hairstyling Tools; Do-It-Yourself Additives Recharge Auto Air Conditioning; Systems Analyze Water Quality in Real Time; Compact Radiometers Expand Climate Knowledge; Energy Servers Deliver Clean, Affordable Power; Solutions Remediate Contaminated Groundwater; Bacteria Provide Cleanup of Oil Spills, Wastewater; Reflective Coatings Protect People and Animals; Innovative Techniques Simplify Vibration Analysis; Modeling Tools Predict Flow in Fluid Dynamics; Verification Tools Secure Online Shopping, Banking; Toolsets Maintain Health of Complex Systems; Framework Resources Multiply Computing Power; Tools Automate Spacecraft Testing, Operation; GPS Software Packages Deliver Positioning Solutions; Solid-State Recorders Enhance Scientific Data Collection; Computer Models Simulate Fine Particle Dispersion; Composite Sandwich Technologies Lighten Components; Cameras Reveal Elements in the Short Wave Infrared; Deformable Mirrors Correct Optical Distortions; Stitching Techniques Advance Optics Manufacturing; Compact, Robust Chips Integrate Optical Functions; Fuel Cell Stations Automate Processes, Catalyst Testing; Onboard Systems Record Unique Videos of Space Missions; Space Research Results Purify Semiconductor Materials; and Toolkits Control Motion of Complex Robotics.
The Convergence of Information Technology, Data, and Management in a Library Imaging Program
ERIC Educational Resources Information Center
France, Fenella G.; Emery, Doug; Toth, Michael B.
2010-01-01
Integrating advanced imaging and processing capabilities in libraries, archives, and museums requires effective systems and information management to ensure that the large amounts of digital data about cultural artifacts can be readily acquired, stored, archived, accessed, processed, and linked to other data. The Library of Congress is developing…
1985-01-01
The NASA imaging processing technology, an advanced computer technique to enhance images sent to Earth in digital form by distant spacecraft, helped develop a new vision screening process. The Ocular Vision Screening system, an important step in preventing vision impairment, is a portable device designed especially to detect eye problems in children through the analysis of retinal reflexes.
Advanced imaging of transportation infrastructure using unmanned aircraft systems : final report.
DOT National Transportation Integrated Search
2017-01-01
The University of Alaska Fairbanks has been conducting research into unmanned : aircraft systems (UAS) since 2000, with more missions and mission diversity than : any other university. With the creation of the Alaska Center for Unmanned Aircraft : Sy...
Imaging in Central Nervous System Drug Discovery.
Gunn, Roger N; Rabiner, Eugenii A
2017-01-01
The discovery and development of central nervous system (CNS) drugs is an extremely challenging process requiring large resources, timelines, and associated costs. The high risk of failure leads to high levels of risk. Over the past couple of decades PET imaging has become a central component of the CNS drug-development process, enabling decision-making in phase I studies, where early discharge of risk provides increased confidence to progress a candidate to more costly later phase testing at the right dose level or alternatively to kill a compound through failure to meet key criteria. The so called "3 pillars" of drug survival, namely; tissue exposure, target engagement, and pharmacologic activity, are particularly well suited for evaluation by PET imaging. This review introduces the process of CNS drug development before considering how PET imaging of the "3 pillars" has advanced to provide valuable tools for decision-making on the critical path of CNS drug development. Finally, we review the advances in PET science of biomarker development and analysis that enable sophisticated drug-development studies in man. Copyright © 2017 Elsevier Inc. All rights reserved.
NeuroSeek dual-color image processing infrared focal plane array
NASA Astrophysics Data System (ADS)
McCarley, Paul L.; Massie, Mark A.; Baxter, Christopher R.; Huynh, Buu L.
1998-09-01
Several technologies have been developed in recent years to advance the state of the art of IR sensor systems including dual color affordable focal planes, on-focal plane array biologically inspired image and signal processing techniques and spectral sensing techniques. Pacific Advanced Technology (PAT) and the Air Force Research Lab Munitions Directorate have developed a system which incorporates the best of these capabilities into a single device. The 'NeuroSeek' device integrates these technologies into an IR focal plane array (FPA) which combines multicolor Midwave IR/Longwave IR radiometric response with on-focal plane 'smart' neuromorphic analog image processing. The readout and processing integrated circuit very large scale integration chip which was developed under this effort will be hybridized to a dual color detector array to produce the NeuroSeek FPA, which will have the capability to fuse multiple pixel-based sensor inputs directly on the focal plane. Great advantages are afforded by application of massively parallel processing algorithms to image data in the analog domain; the high speed and low power consumption of this device mimic operations performed in the human retina.
Control Software for Advanced Video Guidance Sensor
NASA Technical Reports Server (NTRS)
Howard, Richard T.; Book, Michael L.; Bryan, Thomas C.
2006-01-01
Embedded software has been developed specifically for controlling an Advanced Video Guidance Sensor (AVGS). A Video Guidance Sensor is an optoelectronic system that provides guidance for automated docking of two vehicles. Such a system includes pulsed laser diodes and a video camera, the output of which is digitized. From the positions of digitized target images and known geometric relationships, the relative position and orientation of the vehicles are computed. The present software consists of two subprograms running in two processors that are parts of the AVGS. The subprogram in the first processor receives commands from an external source, checks the commands for correctness, performs commanded non-image-data-processing control functions, and sends image data processing parts of commands to the second processor. The subprogram in the second processor processes image data as commanded. Upon power-up, the software performs basic tests of functionality, then effects a transition to a standby mode. When a command is received, the software goes into one of several operational modes (e.g. acquisition or tracking). The software then returns, to the external source, the data appropriate to the command.
Three-Dimensional Anatomic Evaluation of the Anterior Cruciate Ligament for Planning Reconstruction
Hoshino, Yuichi; Kim, Donghwi; Fu, Freddie H.
2012-01-01
Anatomic study related to the anterior cruciate ligament (ACL) reconstruction surgery has been developed in accordance with the progress of imaging technology. Advances in imaging techniques, especially the move from two-dimensional (2D) to three-dimensional (3D) image analysis, substantially contribute to anatomic understanding and its application to advanced ACL reconstruction surgery. This paper introduces previous research about image analysis of the ACL anatomy and its application to ACL reconstruction surgery. Crucial bony landmarks for the accurate placement of the ACL graft can be identified by 3D imaging technique. Additionally, 3D-CT analysis of the ACL insertion site anatomy provides better and more consistent evaluation than conventional “clock-face” reference and roentgenologic quadrant method. Since the human anatomy has a complex three-dimensional structure, further anatomic research using three-dimensional imaging analysis and its clinical application by navigation system or other technologies is warranted for the improvement of the ACL reconstruction. PMID:22567310
Full-view 3D imaging system for functional and anatomical screening of the breast
NASA Astrophysics Data System (ADS)
Oraevsky, Alexander; Su, Richard; Nguyen, Ha; Moore, James; Lou, Yang; Bhadra, Sayantan; Forte, Luca; Anastasio, Mark; Yang, Wei
2018-04-01
Laser Optoacoustic Ultrasonic Imaging System Assembly (LOUISA-3D) was developed in response to demand of diagnostic radiologists for an advanced screening system for the breast to improve on low sensitivity of x-ray based modalities of mammography and tomosynthesis in the dense and heterogeneous breast and low specificity magnetic resonance imaging. It is our working hypothesis that co-registration of quantitatively accurate functional images of the breast vasculature and microvasculature, and anatomical images of breast morphological structures will provide a clinically viable solution for the breast cancer care. Functional imaging is LOUISA-3D is enabled by the full view 3D optoacoustic images acquired at two rapidly toggling laser wavelengths in the near-infrared spectral range. 3D images of the breast anatomical background is enabled in LOUISA-3D by a sequence of B-mode ultrasound slices acquired with a transducer array rotating around the breast. This creates the possibility to visualize distributions of the total hemoglobin and blood oxygen saturation within specific morphological structures such as tumor angiogenesis microvasculature and larger vasculature in proximity of the tumor. The system has four major components: (i) a pulsed dual wavelength laser with fiberoptic light delivery system, (ii) an imaging module with two arc shaped probes (optoacoustic and ultrasonic) placed in a transparent bowl that rotates around the breast, (iii) a multichannel electronic system with analog preamplifiers and digital data acquisition boards, and (iv) computer for the system control, data processing and image reconstruction. The most important advancement of this latest system design compared with previously reported systems is the full breast illumination accomplished for each rotational step of the optoacoustic transducer array using fiberoptic illuminator rotating around the breast independently from rotation of the detector probe. We report here a pilot case studies on one healthy volunteer and on patient with a suspicious small lesion in the breast. LOUISA3D visualized deoxygenated veins and oxygenated arteries of a healthy volunteer, indicative of its capability to visualize hypoxic microvasculature in cancerous tumors. A small lesion detected on optoacoustic image of a patient was not visible on ultrasound, potentially indicating high system sensitivity of the optoacoustic subsystem to small but aggressively growing cancerous lesions with high density angiogenesis microvasculature. The main breast vasculature (0.5-1 mm) was visible at depth of up to 40-mm with 0.3-mm resolution. The results of LOUISA-3D pilot clinical validation demonstrated the system readiness for statistically significant clinical feasibility study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iverson, Adam; Carlson, Carl; Young, Jason
2013-07-08
The diagnostic needs of any dynamic loading platform present unique technical challenges that must be addressed in order to accurately measure in situ material properties in an extreme environment. The IMPULSE platform (IMPact system for Ultrafast Synchrotron Experiments) at the Advanced Photon Source (APS) is no exception and, in fact, may be more challenging, as the imaging diagnostics must be synchronized to both the experiment and the 60 ps wide x-ray bunches produced at APS. The technical challenges of time-resolved x-ray diffraction imaging and high-resolution multi-frame phase contrast imaging (PCI) are described in this paper. Example data from recent IMPULSEmore » experiments are shown to illustrate the advances and evolution of these diagnostics with a focus on comparing the performance of two intensified CCD cameras and their suitability for multi-frame PCI. The continued development of these diagnostics is fundamentally important to IMPULSE and many other loading platforms and will benefit future facilities such as the Dynamic Compression Sector at APS and MaRIE at Los Alamos National Laboratory.« less
An implementation of wireless medical image transmission system on mobile devices.
Lee, SangBock; Lee, Taesoo; Jin, Gyehwan; Hong, Juhyun
2008-12-01
The advanced technology of computing system was followed by the rapid improvement of medical instrumentation and patient record management system. The typical examples are hospital information system (HIS) and picture archiving and communication system (PACS), which computerized the management procedure of medical records and images in hospital. Because these systems were built and used in hospitals, doctors out of hospital have problems to access them immediately on emergent cases. To solve these problems, this paper addressed the realization of system that could transmit the images acquired by medical imaging systems in hospital to the remote doctors' handheld PDA's using CDMA cellular phone network. The system consists of server and PDA. The server was developed to manage the accounts of doctors and patients and allocate the patient images to each doctor. The PDA was developed to display patient images through remote server connection. To authenticate the personal user, remote data access (RDA) method was used in PDA accessing the server database and file transfer protocol (FTP) was used to download patient images from the remove server. In laboratory experiments, it was calculated to take ninety seconds to transmit thirty images with 832 x 488 resolution and 24 bit depth and 0.37 Mb size. This result showed that the developed system has no problems for remote doctors to receive and review the patient images immediately on emergent cases.
HVS: an image-based approach for constructing virtual environments
NASA Astrophysics Data System (ADS)
Zhang, Maojun; Zhong, Li; Sun, Lifeng; Li, Yunhao
1998-09-01
Virtual Reality Systems can construct virtual environment which provide an interactive walkthrough experience. Traditionally, walkthrough is performed by modeling and rendering 3D computer graphics in real-time. Despite the rapid advance of computer graphics technique, the rendering engine usually places a limit on scene complexity and rendering quality. This paper presents a approach which uses the real-world image or synthesized image to comprise a virtual environment. The real-world image or synthesized image can be recorded by camera, or synthesized by off-line multispectral image processing for Landsat TM (Thematic Mapper) Imagery and SPOT HRV imagery. They are digitally warped on-the-fly to simulate walking forward/backward, to left/right and 360-degree watching around. We have developed a system HVS (Hyper Video System) based on these principles. HVS improves upon QuickTime VR and Surround Video in the walking forward/backward.
WE-H-206-00: Advances in Preclinical Imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Lihong V. Wang: Photoacoustic tomography (PAT), combining non-ionizing optical and ultrasonic waves via the photoacoustic effect, provides in vivo multiscale functional, metabolic, and molecular imaging. Broad applications include imaging of the breast, brain, skin, esophagus, colon, vascular system, and lymphatic system in humans or animals. Light offers rich contrast but does not penetrate biological tissue in straight paths as x-rays do. Consequently, high-resolution pure optical imaging (e.g., confocal microscopy, two-photon microscopy, and optical coherence tomography) is limited to penetration within the optical diffusion limit (∼1 mm in the skin). Ultrasonic imaging, on the contrary, provides fine spatial resolution but suffersmore » from both poor contrast in early-stage tumors and strong speckle artifacts. In PAT, pulsed laser light penetrates tissue and generates a small but rapid temperature rise, which induces emission of ultrasonic waves due to thermoelastic expansion. The ultrasonic waves, orders of magnitude less scattering than optical waves, are then detected to form high-resolution images of optical absorption at depths up to 7 cm, conquering the optical diffusion limit. PAT is the only modality capable of imaging across the length scales of organelles, cells, tissues, and organs (up to whole-body small animals) with consistent contrast. This rapidly growing technology promises to enable multiscale biological research and accelerate translation from microscopic laboratory discoveries to macroscopic clinical practice. PAT may also hold the key to label-free early detection of cancer by in vivo quantification of hypermetabolism, the quintessential hallmark of malignancy. Learning Objectives: To understand the contrast mechanism of PAT To understand the multiscale applications of PAT Benjamin M. W. Tsui: Multi-modality molecular imaging instrumentation and techniques have been major developments in small animal imaging that has contributed significantly to biomedical research during the past decade. The initial development was an extension of clinical PET/CT and SPECT/CT from human to small animals and combine the unique functional information obtained from PET and SPECT with anatomical information provided by the CT in registered multi-modality images. The requirements to image a mouse whose size is an order of magnitude smaller than that of a human have spurred advances in new radiation detector technologies, novel imaging system designs and special image reconstruction and processing techniques. Examples are new detector materials and designs with high intrinsic resolution, multi-pinhole (MPH) collimator design for much improved resolution and detection efficiency compared to the conventional collimator designs in SPECT, 3D high-resolution and artifact-free MPH and sparse-view image reconstruction techniques, and iterative image reconstruction methods with system response modeling for resolution recovery and image noise reduction for much improved image quality. The spatial resolution of PET and SPECT has improved from ∼6–12 mm to ∼1 mm a few years ago to sub-millimeter today. A recent commercial small animal SPECT system has achieved a resolution of ∼0.25 mm which surpasses that of a state-of-art PET system whose resolution is limited by the positron range. More recently, multimodality SA PET/MRI and SPECT/MRI systems have been developed in research laboratories. Also, multi-modality SA imaging systems that include other imaging modalities such as optical and ultrasound are being actively pursued. In this presentation, we will provide a review of the development, recent advances and future outlook of multi-modality molecular imaging of small animals. Learning Objectives: To learn about the two major multi-modality molecular imaging techniques of small animals. To learn about the spatial resolution achievable by the molecular imaging systems for small animal today. To learn about the new multi-modality imaging instrumentation and techniques that are being developed. Sang Hyun Cho; X-ray fluorescence (XRF) imaging, such as x-ray fluorescence computed tomography (XFCT), offers unique capabilities for accurate identification and quantification of metals within the imaging objects. As a result, it has emerged as a promising quantitative imaging modality in recent years, especially in conjunction with metal-based imaging probes. This talk will familiarize the audience with the basic principles of XRF/XFCT imaging. It will also cover the latest development of benchtop XFCT technology. Additionally, the use of metallic nanoparticles such as gold nanoparticles, in conjunction with benchtop XFCT, will be discussed within the context of preclinical multimodal multiplexed molecular imaging. Learning Objectives: To learn the basic principles of XRF/XFCT imaging To learn the latest advances in benchtop XFCT development for preclinical imaging Funding support received from NIH and DOD; Funding support received from GE Healthcare; Funding support received from Siemens AX; Patent royalties received from GE Healthcare; L. Wang, Funding Support: NIH; COI: Microphotoacoustics; S. Cho, Yes: ;NIH/NCI grant R01CA155446 DOD/PCRP grant W81XWH-12-1-0198.« less
WE-H-206-02: Recent Advances in Multi-Modality Molecular Imaging of Small Animals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsui, B.
Lihong V. Wang: Photoacoustic tomography (PAT), combining non-ionizing optical and ultrasonic waves via the photoacoustic effect, provides in vivo multiscale functional, metabolic, and molecular imaging. Broad applications include imaging of the breast, brain, skin, esophagus, colon, vascular system, and lymphatic system in humans or animals. Light offers rich contrast but does not penetrate biological tissue in straight paths as x-rays do. Consequently, high-resolution pure optical imaging (e.g., confocal microscopy, two-photon microscopy, and optical coherence tomography) is limited to penetration within the optical diffusion limit (∼1 mm in the skin). Ultrasonic imaging, on the contrary, provides fine spatial resolution but suffersmore » from both poor contrast in early-stage tumors and strong speckle artifacts. In PAT, pulsed laser light penetrates tissue and generates a small but rapid temperature rise, which induces emission of ultrasonic waves due to thermoelastic expansion. The ultrasonic waves, orders of magnitude less scattering than optical waves, are then detected to form high-resolution images of optical absorption at depths up to 7 cm, conquering the optical diffusion limit. PAT is the only modality capable of imaging across the length scales of organelles, cells, tissues, and organs (up to whole-body small animals) with consistent contrast. This rapidly growing technology promises to enable multiscale biological research and accelerate translation from microscopic laboratory discoveries to macroscopic clinical practice. PAT may also hold the key to label-free early detection of cancer by in vivo quantification of hypermetabolism, the quintessential hallmark of malignancy. Learning Objectives: To understand the contrast mechanism of PAT To understand the multiscale applications of PAT Benjamin M. W. Tsui: Multi-modality molecular imaging instrumentation and techniques have been major developments in small animal imaging that has contributed significantly to biomedical research during the past decade. The initial development was an extension of clinical PET/CT and SPECT/CT from human to small animals and combine the unique functional information obtained from PET and SPECT with anatomical information provided by the CT in registered multi-modality images. The requirements to image a mouse whose size is an order of magnitude smaller than that of a human have spurred advances in new radiation detector technologies, novel imaging system designs and special image reconstruction and processing techniques. Examples are new detector materials and designs with high intrinsic resolution, multi-pinhole (MPH) collimator design for much improved resolution and detection efficiency compared to the conventional collimator designs in SPECT, 3D high-resolution and artifact-free MPH and sparse-view image reconstruction techniques, and iterative image reconstruction methods with system response modeling for resolution recovery and image noise reduction for much improved image quality. The spatial resolution of PET and SPECT has improved from ∼6–12 mm to ∼1 mm a few years ago to sub-millimeter today. A recent commercial small animal SPECT system has achieved a resolution of ∼0.25 mm which surpasses that of a state-of-art PET system whose resolution is limited by the positron range. More recently, multimodality SA PET/MRI and SPECT/MRI systems have been developed in research laboratories. Also, multi-modality SA imaging systems that include other imaging modalities such as optical and ultrasound are being actively pursued. In this presentation, we will provide a review of the development, recent advances and future outlook of multi-modality molecular imaging of small animals. Learning Objectives: To learn about the two major multi-modality molecular imaging techniques of small animals. To learn about the spatial resolution achievable by the molecular imaging systems for small animal today. To learn about the new multi-modality imaging instrumentation and techniques that are being developed. Sang Hyun Cho; X-ray fluorescence (XRF) imaging, such as x-ray fluorescence computed tomography (XFCT), offers unique capabilities for accurate identification and quantification of metals within the imaging objects. As a result, it has emerged as a promising quantitative imaging modality in recent years, especially in conjunction with metal-based imaging probes. This talk will familiarize the audience with the basic principles of XRF/XFCT imaging. It will also cover the latest development of benchtop XFCT technology. Additionally, the use of metallic nanoparticles such as gold nanoparticles, in conjunction with benchtop XFCT, will be discussed within the context of preclinical multimodal multiplexed molecular imaging. Learning Objectives: To learn the basic principles of XRF/XFCT imaging To learn the latest advances in benchtop XFCT development for preclinical imaging Funding support received from NIH and DOD; Funding support received from GE Healthcare; Funding support received from Siemens AX; Patent royalties received from GE Healthcare; L. Wang, Funding Support: NIH; COI: Microphotoacoustics; S. Cho, Yes: ;NIH/NCI grant R01CA155446 DOD/PCRP grant W81XWH-12-1-0198.« less
NASA Astrophysics Data System (ADS)
Megherbi, Dalila B.; Yan, Yin; Tanmay, Parikh; Khoury, Jed; Woods, C. L.
2004-11-01
Recently surveillance and Automatic Target Recognition (ATR) applications are increasing as the cost of computing power needed to process the massive amount of information continues to fall. This computing power has been made possible partly by the latest advances in FPGAs and SOPCs. In particular, to design and implement state-of-the-Art electro-optical imaging systems to provide advanced surveillance capabilities, there is a need to integrate several technologies (e.g. telescope, precise optics, cameras, image/compute vision algorithms, which can be geographically distributed or sharing distributed resources) into a programmable system and DSP systems. Additionally, pattern recognition techniques and fast information retrieval, are often important components of intelligent systems. The aim of this work is using embedded FPGA as a fast, configurable and synthesizable search engine in fast image pattern recognition/retrieval in a distributed hardware/software co-design environment. In particular, we propose and show a low cost Content Addressable Memory (CAM)-based distributed embedded FPGA hardware architecture solution with real time recognition capabilities and computing for pattern look-up, pattern recognition, and image retrieval. We show how the distributed CAM-based architecture offers a performance advantage of an order-of-magnitude over RAM-based architecture (Random Access Memory) search for implementing high speed pattern recognition for image retrieval. The methods of designing, implementing, and analyzing the proposed CAM based embedded architecture are described here. Other SOPC solutions/design issues are covered. Finally, experimental results, hardware verification, and performance evaluations using both the Xilinx Virtex-II and the Altera Apex20k are provided to show the potential and power of the proposed method for low cost reconfigurable fast image pattern recognition/retrieval at the hardware/software co-design level.
NASA Astrophysics Data System (ADS)
Raegen, Adam; Reiter, Kyle; Clarke, Anthony; Lipkowski, Jacek; Dutcher, John
2013-03-01
The Surface Plasmon Resonance (SPR) phenomenon is routinely exploited to qualitatively probe changes to the optical properties of nanoscale coatings on thin metallic surfaces, for use in probes and sensors. Unfortunately, extracting truly quantitative information is usually limited to a select few cases - uniform absorption/desorption of small biomolecules and films, in which a continuous ``slab'' model is a good approximation. We present advancements in the SPR technique that expand the number of cases for which the technique can provide meaningful results. Use of a custom, angle-scanning SPR imaging system, together with a refined data analysis method, allow for quantitative kinetic measurements of laterally heterogeneous systems. We first demonstrate the directionally heterogeneous nature of the SPR phenomenon using a directionally ordered sample, then show how this allows for the calculation of the average coverage of a heterogeneous sample. Finally, the degradation of cellulose microfibrils and bundles of microfibrils due to the action of cellulolytic enzymes will be presented as an excellent example of the capabilities of the SPR imaging system.
Radiation hardness studies of CdTe thin films for clinical high-energy photon beam detectors
NASA Astrophysics Data System (ADS)
Shvydka, Diana; Parsai, E. I.; Kang, J.
2008-02-01
In radiation oncology applications, the need for higher-quality images has been driven by recent advances in radiation delivery systems that require online imaging. The existing electronic imaging devices commonly used to acquire portal images implement amorphous silicon (a-Si) detector, which exhibits poor image quality. Efforts for improvement have mostly been in the areas of noise and scatter reduction through software. This has not been successful due to inherent shortcomings of a-Si material. Cadmium telluride (CdTe) semiconductor has long been recognized as highly suitable for use in X-ray detectors in both spectroscopic and imaging applications. Development of such systems has mostly concentrated on single crystal CdTe. Recent advances in thin-film deposition technology suggest replacement of crystalline material with its polycrystalline counterpart, offering ease of large-area device fabrication and achievement of higher resolution as well as a favorable cost difference. While bulk CdTe material was found to have superior radiation hardness, thin films have not been evaluated from that prospective, in particular under high-energy photon beam typical of radiation treatment applications. We assess the performance of thin-film CdTe devices utilizing 6 MeV photon beam and find no consistent trend for material degradation under doses far exceeding the typical radiation therapy detector lifetime dose.
Ben Daya, Ibrahim; Chen, Albert I. H.; Shafiee, Mohammad Javad; Wong, Alexander; Yeow, John T. W.
2015-01-01
3-D ultrasound imaging offers unique opportunities in the field of non destructive testing that cannot be easily found in A-mode and B-mode images. To acquire a 3-D ultrasound image without a mechanically moving transducer, a 2-D array can be used. The row column technique is preferred over a fully addressed 2-D array as it requires a significantly lower number of interconnections. Recent advances in 3-D row-column ultrasound imaging systems were largely focused on sensor design. However, these imaging systems face three intrinsic challenges that cannot be addressed by improving sensor design alone: speckle noise, sparsity of data in the imaged volume, and the spatially dependent point spread function of the imaging system. In this paper, we propose a compensated row-column ultrasound image reconstruction system using Fisher-Tippett multilayered conditional random field model. Tests carried out on both simulated and real row-column ultrasound images show the effectiveness of our proposed system as opposed to other published systems. Visual assessment of the results show our proposed system’s potential at preserving detail and reducing speckle. Quantitative analysis shows that our proposed system outperforms previously published systems when evaluated with metrics such as Peak Signal to Noise Ratio, Coefficient of Correlation, and Effective Number of Looks. These results show the potential of our proposed system as an effective tool for enhancing 3-D row-column imaging. PMID:26658577
A framework for interactive visualization of digital medical images.
Koehring, Andrew; Foo, Jung Leng; Miyano, Go; Lobe, Thom; Winer, Eliot
2008-10-01
The visualization of medical images obtained from scanning techniques such as computed tomography and magnetic resonance imaging is a well-researched field. However, advanced tools and methods to manipulate these data for surgical planning and other tasks have not seen widespread use among medical professionals. Radiologists have begun using more advanced visualization packages on desktop computer systems, but most physicians continue to work with basic two-dimensional grayscale images or not work directly with the data at all. In addition, new display technologies that are in use in other fields have yet to be fully applied in medicine. It is our estimation that usability is the key aspect in keeping this new technology from being more widely used by the medical community at large. Therefore, we have a software and hardware framework that not only make use of advanced visualization techniques, but also feature powerful, yet simple-to-use, interfaces. A virtual reality system was created to display volume-rendered medical models in three dimensions. It was designed to run in many configurations, from a large cluster of machines powering a multiwalled display down to a single desktop computer. An augmented reality system was also created for, literally, hands-on interaction when viewing models of medical data. Last, a desktop application was designed to provide a simple visualization tool, which can be run on nearly any computer at a user's disposal. This research is directed toward improving the capabilities of medical professionals in the tasks of preoperative planning, surgical training, diagnostic assistance, and patient education.
Advanced magnetic resonance imaging in glioblastoma: a review.
Shukla, Gaurav; Alexander, Gregory S; Bakas, Spyridon; Nikam, Rahul; Talekar, Kiran; Palmer, Joshua D; Shi, Wenyin
2017-08-01
Glioblastoma, the most common and most rapidly progressing primary malignant tumor of the central nervous system, continues to portend a dismal prognosis, despite improvements in diagnostic and therapeutic strategies over the last 20 years. The standard of care radiographic characterization of glioblastoma is magnetic resonance imaging (MRI), which is a widely utilized examination in the diagnosis and post-treatment management of patients with glioblastoma. Basic MRI modalities available from any clinical scanner, including native T1-weighted (T1w) and contrast-enhanced (T1CE), T2-weighted (T2w), and T2-fluid-attenuated inversion recovery (T2-FLAIR) sequences, provide critical clinical information about various processes in the tumor environment. In the last decade, advanced MRI modalities are increasingly utilized to further characterize glioblastomas more comprehensively. These include multi-parametric MRI sequences, such as dynamic susceptibility contrast (DSC), dynamic contrast enhancement (DCE), higher order diffusion techniques such as diffusion tensor imaging (DTI), and MR spectroscopy (MRS). Significant efforts are ongoing to implement these advanced imaging modalities into improved clinical workflows and personalized therapy approaches. Functional MRI (fMRI) and tractography are increasingly being used to identify eloquent cortices and important tracts to minimize postsurgical neuro-deficits. A contemporary review of the application of standard and advanced MRI in clinical neuro-oncologic practice is presented here.
The Advanced Gamma-ray Imaging System (AGIS): Galactic Astrophysics
NASA Astrophysics Data System (ADS)
Digel, Seth William; Funk, S.; Kaaret, P. E.; Tajima, H.; AGIS Collaboration
2010-03-01
The Advanced Gamma-ray Imaging System (AGIS), a concept for a next-generation atmospheric Cherenkov telescope array, would provide unprecedented sensitivity and resolution in the energy range >50 GeV, allowing great advances in the understanding of the populations and physics of sources of high-energy gamma rays in the Milky Way. Extrapolation based on the known source classes and the performance parameters for AGIS indicates that a survey of the Galactic plane with AGIS will reveal hundreds of TeV sources in exquisite detail, for population studies of a variety of source classes, and detailed studies of individual sources. AGIS will be able to study propagation effects on the cosmic rays produced by Galactic sources by detecting the diffuse glow from their interactions in dense interstellar gas. AGIS will complement and extend results now being obtained in the GeV range with the Fermi mission, by providing superior angular resolution and sensitivity to variability on short time scales, and of course by probing energies that Fermi cannot reach.
NASA Astrophysics Data System (ADS)
Furukawa, Tatsuya; Aoki, Noriyuki; Ohchi, Masashi; Nakao, Masaki
The image proccessing has become a useful and important technology in various reserch and development fields. According to such demands for engineering problems, we have designed and implemented the educational support system for that using a Java Applet technology. However in the conventional system, it required the tedious procedure for the end user to code his own programs. Therefore, in this study, we have improved the defect in the previous system by using a Java Servlet technology. The new system will make it possible for novice user to experience a practical digital image proccessing and an advanced programming with ease. We will describe the architecture of the proposed system function, that has been introduced to facilitate the client-side programming.
Nanoscale live cell optical imaging of the dynamics of intracellular microvesicles in neural cells.
Lee, Sohee; Heo, Chaejeong; Suh, Minah; Lee, Young Hee
2013-11-01
Recent advances in biotechnology and imaging technology have provided great opportunities to investigate cellular dynamics. Conventional imaging methods such as transmission electron microscopy, scanning electron microscopy, and atomic force microscopy are powerful techniques for cellular imaging, even at the nanoscale level. However, these techniques have limitations applications in live cell imaging because of the experimental preparation required, namely cell fixation, and the innately small field of view. In this study, we developed a nanoscale optical imaging (NOI) system that combines a conventional optical microscope with a high resolution dark-field condenser (Cytoviva, Inc.) and halogen illuminator. The NOI system's maximum resolution for live cell imaging is around 100 nm. We utilized NOI to investigate the dynamics of intracellular microvesicles of neural cells without immunocytological analysis. In particular, we studied direct, active random, and moderate random dynamic motions of intracellular microvesicles and visualized lysosomal vesicle changes after treatment of cells with a lysosomal inhibitor (NH4Cl). Our results indicate that the NOI system is a feasible, high-resolution optical imaging system for live small organelles that does not require complicated optics or immunocytological staining processes.
ACTIM: an EDA initiated study on spectral active imaging
NASA Astrophysics Data System (ADS)
Steinvall, O.; Renhorn, I.; Ahlberg, J.; Larsson, H.; Letalick, D.; Repasi, E.; Lutzmann, P.; Anstett, G.; Hamoir, D.; Hespel, L.; Boucher, Y.
2010-10-01
This paper will describe ongoing work from an EDA initiated study on Active Imaging with emphasis of using multi or broadband spectral lasers and receivers. Present laser based imaging and mapping systems are mostly based on a fixed frequency lasers. On the other hand great progress has recently occurred in passive multi- and hyperspectral imaging with applications ranging from environmental monitoring and geology to mapping, military surveillance, and reconnaissance. Data bases on spectral signatures allow the possibility to discriminate between different materials in the scene. Present multi- and hyperspectral sensors mainly operate in the visible and short wavelength region (0.4-2.5 μm) and rely on the solar radiation giving shortcoming due to shadows, clouds, illumination angles and lack of night operation. Active spectral imaging however will largely overcome these difficulties by a complete control of the illumination. Active illumination enables spectral night and low-light operation beside a robust way of obtaining polarization and high resolution 2D/3D information. Recent development of broadband lasers and advanced imaging 3D focal plane arrays has led to new opportunities for advanced spectral and polarization imaging with high range resolution. Fusing the knowledge of ladar and passive spectral imaging will result in new capabilities in the field of EO-sensing to be shown in the study. We will present an overview of technology, systems and applications for active spectral imaging and propose future activities in connection with some prioritized applications.
El-Sayed, Ramy; Eita, Mohamed; Barrefelt, Asa; Ye, Fei; Jain, Himanshu; Fares, Mona; Lundin, Arne; Crona, Mikael; Abu-Salah, Khalid; Muhammed, Mamoun; Hassan, Moustapha
2013-04-10
In the present study, we introduce a novel method for in vivo imaging of the biodistribution of single wall carbon nanotubes (SWNTs) labeled with recombinant thermo-stable Luciola cruciata luciferase (LcL). In addition, we highlight a new application for green fluorescent proteins in which they are utilized as imaging moieties for SWNTs. Carbon nanotubes show great positive potential compared to other drug nanocarriers with respect to loading capacity, cell internalization, and biodegradability. We have also studied the effect of binding mode (chemical conjugation and physical adsorption) on the chemiluminescence activity, decay rate, and half-life. We have shown that through proper chemical conjugation of LcL to CNTs, LcL remained biologically active for the catalysis of d-luciferin in the presence of ATP to release detectable amounts of photons for in vivo imaging. Chemiluminescence of LcL allows imaging of CNTs and their cargo in nonsuperficial locations at an organ resolution with no need of an excitation source. Loading LcL-CNTs with the antitumor antibiotic doxorubicin did not alter their biological activity for imaging. In vivo imaging of LcL-CNTs has been carried out using "IVIS spectrum" showing the uptake of LcL-CNTs by different organs in mice. We believe that the LcL-CNT system is an advanced powerful tool for in vivo imaging and therefore a step toward the advancement of the nanomedicine field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perrine, Kenneth A.; Hopkins, Derek F.; Lamarche, Brian L.
2005-09-01
Biologists and computer engineers at Pacific Northwest National Laboratory have specified, designed, and implemented a hardware/software system for performing real-time, multispectral image processing on a confocal microscope. This solution is intended to extend the capabilities of the microscope, enabling scientists to conduct advanced experiments on cell signaling and other kinds of protein interactions. FRET (fluorescence resonance energy transfer) techniques are used to locate and monitor protein activity. In FRET, it is critical that spectral images be precisely aligned with each other despite disturbances in the physical imaging path caused by imperfections in lenses and cameras, and expansion and contraction ofmore » materials due to temperature changes. The central importance of this work is therefore automatic image registration. This runs in a framework that guarantees real-time performance (processing pairs of 1024x1024, 8-bit images at 15 frames per second) and enables the addition of other types of advanced image processing algorithms such as image feature characterization. The supporting system architecture consists of a Visual Basic front-end containing a series of on-screen interfaces for controlling various aspects of the microscope and a script engine for automation. One of the controls is an ActiveX component written in C++ for handling the control and transfer of images. This component interfaces with a pair of LVDS image capture boards and a PCI board containing a 6-million gate Xilinx Virtex-II FPGA. Several types of image processing are performed on the FPGA in a pipelined fashion, including the image registration. The FPGA offloads work that would otherwise need to be performed by the main CPU and has a guaranteed real-time throughput. Image registration is performed in the FPGA by applying a cubic warp on one image to precisely align it with the other image. Before each experiment, an automated calibration procedure is run in order to set up the cubic warp. During image acquisitions, the cubic warp is evaluated by way of forward differencing. Unwanted pixelation artifacts are minimized by bilinear sampling. The resulting system is state-of-the-art for biological imaging. Precisely registered images enable the reliable use of FRET techniques. In addition, real-time image processing performance allows computed images to be fed back and displayed to scientists immediately, and the pipelined nature of the FPGA allows additional image processing algorithms to be incorporated into the system without slowing throughput.« less
EDITORIAL: Imaging Systems and Techniques Imaging Systems and Techniques
NASA Astrophysics Data System (ADS)
Giakos, George; Yang, Wuqiang; Petrou, M.; Nikita, K. S.; Pastorino, M.; Amanatiadis, A.; Zentai, G.
2011-10-01
This special feature on Imaging Systems and Techniques comprises 27 technical papers, covering essential facets in imaging systems and techniques both in theory and applications, from research groups spanning three different continents. It mainly contains peer-reviewed articles from the IEEE International Conference on Imaging Systems and Techniques (IST 2011), held in Thessaloniki, Greece, as well a number of articles relevant to the scope of this issue. The multifaceted field of imaging requires drastic adaptation to the rapid changes in our society, economy, environment, and the technological revolution; there is an urgent need to address and propose dynamic and innovative solutions to problems that tend to be either complex and static or rapidly evolving with a lot of unknowns. For instance, exploration of the engineering and physical principles of new imaging systems and techniques for medical applications, remote sensing, monitoring of space resources and enhanced awareness, exploration and management of natural resources, and environmental monitoring, are some of the areas that need to be addressed with urgency. Similarly, the development of efficient medical imaging techniques capable of providing physiological information at the molecular level is another important area of research. Advanced metabolic and functional imaging techniques, operating on multiple physical principles, using high resolution and high selectivity nanoimaging techniques, can play an important role in the diagnosis and treatment of cancer, as well as provide efficient drug-delivery imaging solutions for disease treatment with increased sensitivity and specificity. On the other hand, technical advances in the development of efficient digital imaging systems and techniques and tomographic devices operating on electric impedance tomography, computed tomography, single-photon emission and positron emission tomography detection principles are anticipated to have a significant impact on a wide spectrum of technological areas, such as medical imaging, pharmaceutical industry, analytical instrumentation, aerospace, remote sensing, lidars and ladars, surveillance, national defense, corrosion imaging and monitoring, sub-terrestrial and marine imaging. The complexity of the involved imaging scenarios, and demanding design parameters such as speed, signal-to-noise ratio, high specificity, high contrast and spatial resolution, high-scatter rejection, complex background and harsh environment, necessitate the development of a multifunctional, scalable and efficient imaging suite of sensors, solutions driven by innovation, operating on diverse detection and imaging principles. Finally, pattern recognition and image processing algorithms can significantly contribute to enhanced detection and imaging, including object classification, clustering, feature selection, texture analysis, segmentation, image compression and color representation under complex imaging scenarios, with applications in medical imaging, remote sensing, aerospace, radars, defense and homeland security. We feel confident that the exciting new contributions of this special feature on Imaging Systems and Techniques will appeal to the technical community. We would like to thank all authors as well as all anonymous reviewers and the MST Editorial Board, Publisher and staff for their tremendous efforts and invaluable support to enhance the quality of this significant endeavor.
NASA Astrophysics Data System (ADS)
Shen, Xia; Bai, Yan-Feng; Qin, Tao; Han, Shen-Sheng
2008-11-01
Factors influencing the quality of lensless ghost imaging are investigated. According to the experimental results, we find that the imaging quality is determined by the number of independent sub light sources on the imaging plane of the reference arm. A qualitative picture based on advanced wave optics is presented to explain the physics behind the experimental phenomena. The present results will be helpful to provide a basis for improving the quality of ghost imaging systems in future works.
NASA Astrophysics Data System (ADS)
Georgiou, Harris
2009-10-01
Medical Informatics and the application of modern signal processing in the assistance of the diagnostic process in medical imaging is one of the more recent and active research areas today. This thesis addresses a variety of issues related to the general problem of medical image analysis, specifically in mammography, and presents a series of algorithms and design approaches for all the intermediate levels of a modern system for computer-aided diagnosis (CAD). The diagnostic problem is analyzed with a systematic approach, first defining the imaging characteristics and features that are relevant to probable pathology in mammo-grams. Next, these features are quantified and fused into new, integrated radio-logical systems that exhibit embedded digital signal processing, in order to improve the final result and minimize the radiological dose for the patient. In a higher level, special algorithms are designed for detecting and encoding these clinically interest-ing imaging features, in order to be used as input to advanced pattern classifiers and machine learning models. Finally, these approaches are extended in multi-classifier models under the scope of Game Theory and optimum collective deci-sion, in order to produce efficient solutions for combining classifiers with minimum computational costs for advanced diagnostic systems. The material covered in this thesis is related to a total of 18 published papers, 6 in scientific journals and 12 in international conferences.
Three-dimensional imaging technology offers promise in medicine.
Karako, Kenji; Wu, Qiong; Gao, Jianjun
2014-04-01
Medical imaging plays an increasingly important role in the diagnosis and treatment of disease. Currently, medical equipment mainly has two-dimensional (2D) imaging systems. Although this conventional imaging largely satisfies clinical requirements, it cannot depict pathologic changes in 3 dimensions. The development of three-dimensional (3D) imaging technology has encouraged advances in medical imaging. Three-dimensional imaging technology offers doctors much more information on a pathology than 2D imaging, thus significantly improving diagnostic capability and the quality of treatment. Moreover, the combination of 3D imaging with augmented reality significantly improves surgical navigation process. The advantages of 3D imaging technology have made it an important component of technological progress in the field of medical imaging.
Satellite Imagery Via Personal Computer
NASA Technical Reports Server (NTRS)
1989-01-01
Automatic Picture Transmission (APT) was incorporated by NASA in the Tiros 8 weather satellite. APT included an advanced satellite camera that immediately transmitted a picture as well as low cost receiving equipment. When an advanced scanning radiometer was later introduced, ground station display equipment would not readily adjust to the new format until GSFC developed an APT Digital Scan Converter that made them compatible. A NASA Technical Note by Goddard's Vermillion and Kamoski described how to build a converter. In 1979, Electro-Services, using this technology, built the first microcomputer weather imaging system in the U.S. The company changed its name to Satellite Data Systems, Inc. and now manufactures the WeatherFax facsimile display graphics system which converts a personal computer into a weather satellite image acquisition and display workstation. Hardware, antennas, receivers, etc. are also offered. Customers include U.S. Weather Service, schools, military, etc.
Mission science value-cost savings from the Advanced Imaging Communication System (AICS)
NASA Technical Reports Server (NTRS)
Rice, R. F.
1984-01-01
An Advanced Imaging Communication System (AICS) was proposed in the mid-1970s as an alternative to the Voyager data/communication system architecture. The AICS achieved virtually error free communication with little loss in the downlink data rate by concatenating a powerful Reed-Solomon block code with the Voyager convolutionally coded, Viterbi decoded downlink channel. The clean channel allowed AICS sophisticated adaptive data compression techniques. Both Voyager and the Galileo mission have implemented AICS components, and the concatenated channel itself is heading for international standardization. An analysis that assigns a dollar value/cost savings to AICS mission performance gains is presented. A conservative value or savings of $3 million for Voyager, $4.5 million for Galileo, and as much as $7 to 9.5 million per mission for future projects such as the proposed Mariner Mar 2 series is shown.
Advanced Spacesuit Informatics Software Design for Power, Avionics and Software Version 2.0
NASA Technical Reports Server (NTRS)
Wright, Theodore W.
2016-01-01
A description of the software design for the 2016 edition of the Informatics computer assembly of the NASAs Advanced Extravehicular Mobility Unit (AEMU), also called the Advanced Spacesuit. The Informatics system is an optional part of the spacesuit assembly. It adds a graphical interface for displaying suit status, timelines, procedures, and warning information. It also provides an interface to the suit mounted camera for recording still images, video, and audio field notes.
Matching rendered and real world images by digital image processing
NASA Astrophysics Data System (ADS)
Mitjà, Carles; Bover, Toni; Bigas, Miquel; Escofet, Jaume
2010-05-01
Recent advances in computer-generated images (CGI) have been used in commercial and industrial photography providing a broad scope in product advertising. Mixing real world images with those rendered from virtual space software shows a more or less visible mismatching between corresponding image quality performance. Rendered images are produced by software which quality performance is only limited by the resolution output. Real world images are taken with cameras with some amount of image degradation factors as lens residual aberrations, diffraction, sensor low pass anti aliasing filters, color pattern demosaicing, etc. The effect of all those image quality degradation factors can be characterized by the system Point Spread Function (PSF). Because the image is the convolution of the object by the system PSF, its characterization shows the amount of image degradation added to any taken picture. This work explores the use of image processing to degrade the rendered images following the parameters indicated by the real system PSF, attempting to match both virtual and real world image qualities. The system MTF is determined by the slanted edge method both in laboratory conditions and in the real picture environment in order to compare the influence of the working conditions on the device performance; an approximation to the system PSF is derived from the two measurements. The rendered images are filtered through a Gaussian filter obtained from the taking system PSF. Results with and without filtering are shown and compared measuring the contrast achieved in different final image regions.
Terrain Commander: a next-generation remote surveillance system
NASA Astrophysics Data System (ADS)
Finneral, Henry J.
2003-09-01
Terrain Commander is a fully automated forward observation post that provides the most advanced capability in surveillance and remote situational awareness. The Terrain Commander system was selected by the Australian Government for its NINOX Phase IIB Unattended Ground Sensor Program with the first systems delivered in August of 2002. Terrain Commander offers next generation target detection using multi-spectral peripheral sensors coupled with autonomous day/night image capture and processing. Subsequent intelligence is sent back through satellite communications with unlimited range to a highly sophisticated central monitoring station. The system can "stakeout" remote locations clandestinely for 24 hours a day for months at a time. With its fully integrated SATCOM system, almost any site in the world can be monitored from virtually any other location in the world. Terrain Commander automatically detects and discriminates intruders by precisely cueing its advanced EO subsystem. The system provides target detection capabilities with minimal nuisance alarms combined with the positive visual identification that authorities demand before committing a response. Terrain Commander uses an advanced beamforming acoustic sensor and a distributed array of seismic, magnetic and passive infrared sensors to detect, capture images and accurately track vehicles and personnel. Terrain Commander has a number of emerging military and non-military applications including border control, physical security, homeland defense, force protection and intelligence gathering. This paper reviews the development, capabilities and mission applications of the Terrain Commander system.
Design of a normal incidence multilayer imaging X-ray microscope
NASA Astrophysics Data System (ADS)
Shealy, David L.; Gabardi, David R.; Hoover, Richard B.; Walker, Arthur B. C., Jr.; Lindblom, Joakim F.
Normal incidence multilayer Cassegrain X-ray telescopes were flown on the Stanford/MSFC Rocket X-ray Spectroheliograph. These instruments produced high spatial resolution images of the sun and conclusively demonstrated that doubly reflecting multilayer X-ray optical systems are feasible. The images indicated that aplanatic imaging soft X-ray/EUV microscopes should be achievable using multilayer optics technology. A doubly reflecting normal incidence multilayer imaging X-ray microscope based on the Schwarzschild configuration has been designed. The design of the microscope and the results of the optical system ray trace analysis are discussed. High resolution aplanatic imaging X-ray microscopes using normal incidence multilayer X-ray mirrors should have many important applications in advanced X-ray astronomical instrumentation, X-ray lithography, biological, biomedical, metallurgical, and laser fusion research.
Smartphone-based multispectral imaging: system development and potential for mobile skin diagnosis.
Kim, Sewoong; Cho, Dongrae; Kim, Jihun; Kim, Manjae; Youn, Sangyeon; Jang, Jae Eun; Je, Minkyu; Lee, Dong Hun; Lee, Boreom; Farkas, Daniel L; Hwang, Jae Youn
2016-12-01
We investigate the potential of mobile smartphone-based multispectral imaging for the quantitative diagnosis and management of skin lesions. Recently, various mobile devices such as a smartphone have emerged as healthcare tools. They have been applied for the early diagnosis of nonmalignant and malignant skin diseases. Particularly, when they are combined with an advanced optical imaging technique such as multispectral imaging and analysis, it would be beneficial for the early diagnosis of such skin diseases and for further quantitative prognosis monitoring after treatment at home. Thus, we demonstrate here the development of a smartphone-based multispectral imaging system with high portability and its potential for mobile skin diagnosis. The results suggest that smartphone-based multispectral imaging and analysis has great potential as a healthcare tool for quantitative mobile skin diagnosis.
MR Imaging of the Triangular Fibrocartilage Complex.
Cody, Michael E; Nakamura, David T; Small, Kirstin M; Yoshioka, Hiroshi
2015-08-01
MR imaging has emerged as the mainstay in imaging internal derangement of the soft tissues of the musculoskeletal system largely because of superior contrast resolution. The complex geometry and diminutive size of the triangular fibrocartilage complex (TFCC) and its constituent structures can make optimal imaging of the TFCC challenging; therefore, production of clinically useful images requires careful optimization of image acquisition parameters. This article provides a foundation for advanced TFCC imaging including factors to optimize magnetic resonance images, arthrography, detailed anatomy, and classification of injury. In addition, clinical presentations and treatments for TFCC injury are briefly considered. Copyright © 2015 Elsevier Inc. All rights reserved.
X-ray imaging with amorphous silicon active matrix flat-panel imagers (AMFPIs)
NASA Astrophysics Data System (ADS)
El-Mohri, Youcef; Antonuk, Larry E.; Jee, Kyung-Wook; Maolinbay, Manat; Rong, Xiujiang; Siewerdsen, Jeffrey H.; Verma, Manav; Zhao, Qihua
1997-07-01
Recent advances in thin-film electronics technology have opened the way for the use of flat-panel imagers in a number of medical imaging applications. These novel imagers offer real time digital readout capabilities (˜30 frames per second), radiation hardness (>106cGy), large area (30×40 cm2) and compactness (˜1 cm). Such qualities make them strong candidates for the replacement of conventional x-ray imaging technologies such as film-screen and image intensifier systems. In this report, qualities and potential of amorphous silicon based active matrix flat-panel imagers are outlined for various applications such as radiation therapy, radiography, fluoroscopy and mammography.
Detection of Fundus Lesions Using Classifier Selection
NASA Astrophysics Data System (ADS)
Nagayoshi, Hiroto; Hiramatsu, Yoshitaka; Sako, Hiroshi; Himaga, Mitsutoshi; Kato, Satoshi
A system for detecting fundus lesions caused by diabetic retinopathy from fundus images is being developed. The system can screen the images in advance in order to reduce the inspection workload on doctors. One of the difficulties that must be addressed in completing this system is how to remove false positives (which tend to arise near blood vessels) without decreasing the detection rate of lesions in other areas. To overcome this difficulty, we developed classifier selection according to the position of a candidate lesion, and we introduced new features that can distinguish true lesions from false positives. A system incorporating classifier selection and these new features was tested in experiments using 55 fundus images with some lesions and 223 images without lesions. The results of the experiments confirm the effectiveness of the proposed system, namely, degrees of sensitivity and specificity of 98% and 81%, respectively.
3-D System-on-System (SoS) Biomedical-Imaging Architecture for Health-Care Applications.
Sang-Jin Lee; Kavehei, O; Yoon-Ki Hong; Tae Won Cho; Younggap You; Kyoungrok Cho; Eshraghian, K
2010-12-01
This paper presents the implementation of a 3-D architecture for a biomedical-imaging system based on a multilayered system-on-system structure. The architecture consists of a complementary metal-oxide semiconductor image sensor layer, memory, 3-D discrete wavelet transform (3D-DWT), 3-D Advanced Encryption Standard (3D-AES), and an RF transmitter as an add-on layer. Multilayer silicon (Si) stacking permits fabrication and optimization of individual layers by different processing technology to achieve optimal performance. Utilization of through silicon via scheme can address required low-power operation as well as high-speed performance. Potential benefits of 3-D vertical integration include an improved form factor as well as a reduction in the total wiring length, multifunctionality, power efficiency, and flexible heterogeneous integration. The proposed imaging architecture was simulated by using Cadence Spectre and Synopsys HSPICE while implementation was carried out by Cadence Virtuoso and Mentor Graphic Calibre.
NASA Astrophysics Data System (ADS)
The present conference on global telecommunications discusses topics in the fields of Integrated Services Digital Network (ISDN) technology field trial planning and results to date, motion video coding, ISDN networking, future network communications security, flexible and intelligent voice/data networks, Asian and Pacific lightwave and radio systems, subscriber radio systems, the performance of distributed systems, signal processing theory, satellite communications modulation and coding, and terminals for the handicapped. Also discussed are knowledge-based technologies for communications systems, future satellite transmissions, high quality image services, novel digital signal processors, broadband network access interface, traffic engineering for ISDN design and planning, telecommunications software, coherent optical communications, multimedia terminal systems, advanced speed coding, portable and mobile radio communications, multi-Gbit/second lightwave transmission systems, enhanced capability digital terminals, communications network reliability, advanced antimultipath fading techniques, undersea lightwave transmission, image coding, modulation and synchronization, adaptive signal processing, integrated optical devices, VLSI technologies for ISDN, field performance of packet switching, CSMA protocols, optical transport system architectures for broadband ISDN, mobile satellite communications, indoor wireless communication, echo cancellation in communications, and distributed network algorithms.
Anthropometric body measurements based on multi-view stereo image reconstruction.
Li, Zhaoxin; Jia, Wenyan; Mao, Zhi-Hong; Li, Jie; Chen, Hsin-Chen; Zuo, Wangmeng; Wang, Kuanquan; Sun, Mingui
2013-01-01
Anthropometric measurements, such as the circumferences of the hip, arm, leg and waist, waist-to-hip ratio, and body mass index, are of high significance in obesity and fitness evaluation. In this paper, we present a home based imaging system capable of conducting anthropometric measurements. Body images are acquired at different angles using a home camera and a simple rotating disk. Advanced image processing algorithms are utilized for 3D body surface reconstruction. A coarse body shape model is first established from segmented body silhouettes. Then, this model is refined through an inter-image consistency maximization process based on an energy function. Our experimental results using both a mannequin surrogate and a real human body validate the feasibility of the proposed system.
Anthropometric Body Measurements Based on Multi-View Stereo Image Reconstruction*
Li, Zhaoxin; Jia, Wenyan; Mao, Zhi-Hong; Li, Jie; Chen, Hsin-Chen; Zuo, Wangmeng; Wang, Kuanquan; Sun, Mingui
2013-01-01
Anthropometric measurements, such as the circumferences of the hip, arm, leg and waist, waist-to-hip ratio, and body mass index, are of high significance in obesity and fitness evaluation. In this paper, we present a home based imaging system capable of conducting automatic anthropometric measurements. Body images are acquired at different angles using a home camera and a simple rotating disk. Advanced image processing algorithms are utilized for 3D body surface reconstruction. A coarse body shape model is first established from segmented body silhouettes. Then, this model is refined through an inter-image consistency maximization process based on an energy function. Our experimental results using both a mannequin surrogate and a real human body validate the feasibility of proposed system. PMID:24109700
Geometric error analysis for shuttle imaging spectrometer experiment
NASA Technical Reports Server (NTRS)
Wang, S. J.; Ih, C. H.
1984-01-01
The demand of more powerful tools for remote sensing and management of earth resources steadily increased over the last decade. With the recent advancement of area array detectors, high resolution multichannel imaging spectrometers can be realistically constructed. The error analysis study for the Shuttle Imaging Spectrometer Experiment system is documented for the purpose of providing information for design, tradeoff, and performance prediction. Error sources including the Shuttle attitude determination and control system, instrument pointing and misalignment, disturbances, ephemeris, Earth rotation, etc., were investigated. Geometric error mapping functions were developed, characterized, and illustrated extensively with tables and charts. Selected ground patterns and the corresponding image distortions were generated for direct visual inspection of how the various error sources affect the appearance of the ground object images.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jansen, F.
The use of integrated PET/MRI systems in clinical applications can best benefit from understanding their technological advances and limitations. The currently available clinical PET/MRI systems have their own characteristics. Thorough analyses of existing technical data and evaluation of necessary performance metrics for quality assurances could be conducted to optimize application-specific PET/MRI protocols. This Symposium will focus on technical advances and limitations of clinical PET/MRI systems, and how this exciting imaging modality can be utilized in applications that can benefit from both PET and MRI. Learning Objectives: To understand the technological advances of clinical PET/MRI systems To correctly identify clinical applicationsmore » that can benefit from PET/MRI To understand ongoing work to further improve the current PET/MRI technology Floris Jansen is a GE Healthcare employee.« less
Common-Path Wavefront Sensing for Advanced Coronagraphs
NASA Technical Reports Server (NTRS)
Wallace, J. Kent; Serabyn, Eugene; Mawet, Dimitri
2012-01-01
Imaging of faint companions around nearby stars is not limited by either intrinsic resolution of a coronagraph/telescope system, nor is it strictly photon limited. Typically, it is both the magnitude and temporal variation of small phase and amplitude errors imparted to the electric field by elements in the optical system which will limit ultimate performance. Adaptive optics systems, particularly those with multiple deformable mirrors, can remove these errors, but they need to be sensed in the final image plane. If the sensing system is before the final image plane, which is typical for most systems, then the non-common path optics between the wavefront sensor and science image plane will lead to un-sensed errors. However, a new generation of high-performance coronagraphs naturally lend themselves to wavefront sensing in the final image plane. These coronagraphs and the wavefront sensing will be discussed, as well as plans for demonstrating this with a high-contrast system on the ground. Such a system will be a key system-level proof for a future space-based coronagraph mission, which will also be discussed.
[Advanced information technologies for financial services industry]. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The project scope is to develop an advanced user interface utilizing speech and/or handwriting recognition technology that will improve the accuracy and speed of recording transactions in the dynamic environment of a foreign exchange (FX) trading floor. The project`s desired result is to improve the base technology for trader`s workstations on FX trading floors. Improved workstation effectiveness will allow vast amounts of complex information and events to be presented and analyzed, thus increasing the volume of money and other assets to be exchanged at an accelerated rate. The project scope is to develop and demonstrate technologies that advance interbank checkmore » imaging and paper check truncation. The following describes the tasks to be completed: (1) Identify the economics value case, the legal and regulatory issues, the business practices that are affected, and the effects upon settlement. (2) Familiarization with existing imaging technology. Develop requirements for image quality, security, and interoperability. Adapt existing technologies to meet requirements. (3) Define requirements for the imaging laboratory and design its architecture. Integrate and test technology from task 2 with equipment in the laboratory. (4) Develop and/or integrate and test remaining components; includes security, storage, and communications. (5) Build a prototype system and test in a laboratory. Install and run in two or more banks. Develop documentation. Conduct training. The project`s desired result is to enable a proof-of-concept trial in which multiple banks will exchange check images, exhibiting operating conditions which a check experiences as it travels through the payments/clearing system. The trial should demonstrate the adequacy of digital check images instead of paper checks.« less
Design and development of C-arm based cone-beam CT for image-guided interventions: initial results
NASA Astrophysics Data System (ADS)
Chen, Guang-Hong; Zambelli, Joseph; Nett, Brian E.; Supanich, Mark; Riddell, Cyril; Belanger, Barry; Mistretta, Charles A.
2006-03-01
X-ray cone-beam computed tomography (CBCT) is of importance in image-guided intervention (IGI) and image-guided radiation therapy (IGRT). In this paper, we present a cone-beam CT data acquisition system using a GE INNOVA 4100 (GE Healthcare Technologies, Waukesha, Wisconsin) clinical system. This new cone-beam data acquisition mode was developed for research purposes without interfering with any clinical function of the system. It provides us a basic imaging pipeline for more advanced cone-beam data acquisition methods. It also provides us a platform to study and overcome the limiting factors such as cone-beam artifacts and limiting low contrast resolution in current C-arm based cone-beam CT systems. A geometrical calibration method was developed to experimentally determine parameters of the scanning geometry to correct the image reconstruction for geometric non-idealities. Extensive phantom studies and some small animal studies have been conducted to evaluate the performance of our cone-beam CT data acquisition system.
Development of a Germanium Small-Animal SPECT System
NASA Astrophysics Data System (ADS)
Johnson, Lindsay C.; Ovchinnikov, Oleg; Shokouhi, Sepideh; Peterson, Todd E.
2015-10-01
Advances in fabrication techniques, electronics, and mechanical cooling systems have given rise to germanium detectors suitable for biomedical imaging. We are developing a small-animal SPECT system that uses a double-sided Ge strip detector. The detector's excellent energy resolution may help to reduce scatter and simplify processing of multi-isotope imaging, while its ability to measure depth of interaction has the potential to mitigate parallax error in pinhole imaging. The detector's energy resolution is <; 1% FWHM at 140 keV and its spatial resolution is approximately 1.5 mm FWHM. The prototype system described has a single-pinhole collimator with a 1-mm diameter and a 70-degree opening angle with a focal length variable between 4.5 and 9 cm. Phantom images from the gantry-mounted system are presented, including the NEMA NU-2008 phantom and a hot-rod phantom. Additionally, the benefit of energy resolution is demonstrated by imaging a dual-isotope phantom with 99mTc and 123I without cross-talk correction.
NASA Astrophysics Data System (ADS)
Poggio, Andrew J.
1988-10-01
This issue of Energy and Technology Review contains: Neutron Penumbral Imaging of Laser-Fusion Targets--using our new penumbral-imaging diagnostic, we have obtained the first images that can be used to measure directly the deuterium-tritium burn region in laser-driven fusion targets; Computed Tomography for Nondestructive Evaluation--various computed tomography systems and computational techniques are used in nondestructive evaluation; Three-Dimensional Image Analysis for Studying Nuclear Chromatin Structure--we have developed an optic-electronic system for acquiring cross-sectional views of cell nuclei, and computer codes to analyze these images and reconstruct the three-dimensional structures they represent; Imaging in the Nuclear Test Program--advanced techniques produce images of unprecedented detail and resolution from Nevada Test Site data; and Computational X-Ray Holography--visible-light experiments and numerically simulated holograms test our ideas about an X-ray microscope for biological research.
Security screening via computational imaging using frequency-diverse metasurface apertures
NASA Astrophysics Data System (ADS)
Smith, David R.; Reynolds, Matthew S.; Gollub, Jonah N.; Marks, Daniel L.; Imani, Mohammadreza F.; Yurduseven, Okan; Arnitz, Daniel; Pedross-Engel, Andreas; Sleasman, Timothy; Trofatter, Parker; Boyarsky, Michael; Rose, Alec; Odabasi, Hayrettin; Lipworth, Guy
2017-05-01
Computational imaging is a proven strategy for obtaining high-quality images with fast acquisition rates and simpler hardware. Metasurfaces provide exquisite control over electromagnetic fields, enabling the radiated field to be molded into unique patterns. The fusion of these two concepts can bring about revolutionary advances in the design of imaging systems for security screening. In the context of computational imaging, each field pattern serves as a single measurement of a scene; imaging a scene can then be interpreted as estimating the reflectivity distribution of a target from a set of measurements. As with any computational imaging system, the key challenge is to arrive at a minimal set of measurements from which a diffraction-limited image can be resolved. Here, we show that the information content of a frequency-diverse metasurface aperture can be maximized by design, and used to construct a complete millimeter-wave imaging system spanning a 2 m by 2 m area, consisting of 96 metasurfaces, capable of producing diffraction-limited images of human-scale targets. The metasurfacebased frequency-diverse system presented in this work represents an inexpensive, but tremendously flexible alternative to traditional hardware paradigms, offering the possibility of low-cost, real-time, and ubiquitous screening platforms.
Engineered Polymers for Advanced Drug Delivery
Kim, Sungwon; Kim, Jong-Ho; Jeon, Oju; Kwon, Ick Chan; Park, Kinam
2009-01-01
Engineered polymers have been utilized for developing advanced drug delivery systems. The development of such polymers has caused advances in polymer chemistry, which, in turn, has resulted in smart polymers that can respond to changes in environmental condition, such as temperature, pH, and biomolecules. The responses vary widely from swelling/deswelling to degradation. Drug-polymer conjugates and drug-containing nano/micro-particles have been used for drug targeting. Engineered polymers and polymeric systems have also been used in new areas, such as molecular imaging as well as in nanotechnology. This review examines the engineered polymers that have been used as traditional drug delivery and as more recent applications in nanotechnology. PMID:18977434
CT imaging, then and now: a 30-year review of the economics of computed tomography.
Stockburger, Wayne T
2004-01-01
The first computed tomography (CT) scanner in the US was installed in June 1973 at the Mayo Clinic in Rochester, MN. By the end of 1974, 44 similar systems had been installed at medical facilities around the country. Less than 4 years after the introduction of CT imaging in the US, at least 400 CT systems had been installed. The practice of pneumoencephalography was eliminated. The use of nuclear medicine brain scans significantly diminished. At the time, CT imaging was limited to head studies, but with the introduction of contrast agents and full body CT systems the changes in the practice of medicine became even more significant. CT imaging was hailed by the US medical community as the greatest advance in radiology since the discovery of x-rays. But the rapid spread of CT systems, their frequency of use, and the associated increase in healthcare costs combined to draw the attention of decision-makers within the federal and state governments, specifically to establish policies regarding the acquisition and use of diagnostic technologies. Initially, CT imaging was limited to neurological applications, but in the 30 years since its inception, capabilities and applications have been expanded as a result of the advancements in technology and software development. While neurological disorders are still a common reason for CT imaging, many other medical disciplines (oncology, emergency medicine, orthopedics, etc.) have found CT imaging to be the definitive tool for diagnostic information. As such, the clinical demand for CT imaging has steadily increased. Economically, the development of CT imaging has been one of success, even in the face of governmental action to restrict its acquisition and utilization by healthcare facilities. CTimaging has increased the cost of healthcare, but in turn has added unquantifiable value to the practice of medicine in the US.
Emergency physician perceptions of medically unnecessary advanced diagnostic imaging.
Kanzaria, Hemal K; Hoffman, Jerome R; Probst, Marc A; Caloyeras, John P; Berry, Sandra H; Brook, Robert H
2015-04-01
The objective was to determine emergency physician (EP) perceptions regarding 1) the extent to which they order medically unnecessary advanced diagnostic imaging, 2) factors that contribute to this behavior, and 3) proposed solutions for curbing this practice. As part of a larger study to engage physicians in the delivery of high-value health care, two multispecialty focus groups were conducted to explore the topic of decision-making around resource utilization, after which qualitative analysis was used to generate survey questions. The survey was extensively pilot-tested and refined for emergency medicine (EM) to focus on advanced diagnostic imaging (i.e., computed tomography [CT] or magnetic resonance imaging [MRI]). The survey was then administered to a national, purposive sample of EPs and EM trainees. Simple descriptive statistics to summarize physician responses are presented. In this study, 478 EPs were approached, of whom 435 (91%) completed the survey; 68% of respondents were board-certified, and roughly half worked in academic emergency departments (EDs). Over 85% of respondents believe too many diagnostic tests are ordered in their own EDs, and 97% said at least some (mean = 22%) of the advanced imaging studies they personally order are medically unnecessary. The main perceived contributors were fear of missing a low-probability diagnosis and fear of litigation. Solutions most commonly felt to be "extremely" or "very" helpful for reducing unnecessary imaging included malpractice reform (79%), increased patient involvement through education (70%) and shared decision-making (56%), feedback to physicians on test-ordering metrics (55%), and improved education of physicians on diagnostic testing (50%). Overordering of advanced imaging may be a systemic problem, as many EPs believe a substantial proportion of such studies, including some they personally order, are medically unnecessary. Respondents cited multiple complex factors with several potential high-yield solutions that must be addressed simultaneously to curb overimaging. © 2015 by the Society for Academic Emergency Medicine.
2004-02-04
KENNEDY SPACE CENTER, FLA. - Armando Oliu, Final Inspection Team lead for the Shuttle program, speaks to reporters about the aid the Image Analysis Lab is giving the FBI in a kidnapping case. Behind him at right is Mike Rein, External Affairs division chief. Oliu oversees the image lab that is using an advanced SGI® TP9500 data management system to review the tape of the kidnapping in progress in Sarasota, Fla. KSC installed the new $3.2 million system in preparation for Return to Flight of the Space Shuttle fleet. The lab is studying the Sarasota kidnapping video to provide any new information possible to law enforcement officers. KSC is joining NASA’s Marshall Space Flight Center in Alabama in reviewing the tape.
Recent advances in imaging technologies in dentistry.
Shah, Naseem; Bansal, Nikhil; Logani, Ajay
2014-10-28
Dentistry has witnessed tremendous advances in all its branches over the past three decades. With these advances, the need for more precise diagnostic tools, specially imaging methods, have become mandatory. From the simple intra-oral periapical X-rays, advanced imaging techniques like computed tomography, cone beam computed tomography, magnetic resonance imaging and ultrasound have also found place in modern dentistry. Changing from analogue to digital radiography has not only made the process simpler and faster but also made image storage, manipulation (brightness/contrast, image cropping, etc.) and retrieval easier. The three-dimensional imaging has made the complex cranio-facial structures more accessible for examination and early and accurate diagnosis of deep seated lesions. This paper is to review current advances in imaging technology and their uses in different disciplines of dentistry.
Recent advances in imaging technologies in dentistry
Shah, Naseem; Bansal, Nikhil; Logani, Ajay
2014-01-01
Dentistry has witnessed tremendous advances in all its branches over the past three decades. With these advances, the need for more precise diagnostic tools, specially imaging methods, have become mandatory. From the simple intra-oral periapical X-rays, advanced imaging techniques like computed tomography, cone beam computed tomography, magnetic resonance imaging and ultrasound have also found place in modern dentistry. Changing from analogue to digital radiography has not only made the process simpler and faster but also made image storage, manipulation (brightness/contrast, image cropping, etc.) and retrieval easier. The three-dimensional imaging has made the complex cranio-facial structures more accessible for examination and early and accurate diagnosis of deep seated lesions. This paper is to review current advances in imaging technology and their uses in different disciplines of dentistry. PMID:25349663
A Topological Array Trigger for AGIS, the Advanced Gamma ray Imaging System
NASA Astrophysics Data System (ADS)
Krennrich, F.; Anderson, J.; Buckley, J.; Byrum, K.; Dawson, J.; Drake, G.; Haberichter, W.; Imran, A.; Krawczynski, H.; Kreps, A.; Schroedter, M.; Smith, A.
2008-12-01
Next generation ground based γ-ray observatories such as AGIS1 and CTA2 are expected to cover a 1 km2 area with 50-100 imaging atmospheric Cherenkov telescopes. The stereoscopic view ol air showers using multiple view points raises the possibility to use a topological array trigger that adds substantial flexibility, new background suppression capabilities and a reduced energy threshold. In this paper we report on the concept and technical implementation of a fast topological trigger system, that makes use of real time image processing of individual camera patterns and their combination in a stereoscopic array analysis. A prototype system is currently under construction and we discuss the design and hardware of this topological array trigger system.
Fluorogenic reaction-based prodrug conjugates as targeted cancer theranostics.
Lee, Min Hee; Sharma, Amit; Chang, Min Jung; Lee, Jinju; Son, Subin; Sessler, Jonathan L; Kang, Chulhun; Kim, Jong Seung
2018-01-02
Theranostic systems are receiving ever-increasing attention due to their potential therapeutic utility, imaging enhancement capability, and promise for advancing the field of personalized medicine, particularly as it relates to the diagnosis, staging, and treatment of cancer. In this Tutorial Review, we provide an introduction to the concepts of theranostic drug delivery effected via use of conjugates that are able to target cancer cells selectively, provide cytotoxic chemotherapeutics, and produce readily monitored imaging signals in vitro and in vivo. The underlying design concepts, requiring the synthesis of conjugates composed of imaging reporters, masked chemotherapeutic drugs, cleavable linkers, and cancer targeting ligands, are discussed. Particular emphasis is placed on highlighting the potential benefits of fluorogenic reaction-based targeted systems that are activated for both imaging and therapy by cellular entities, e.g., thiols, reactive oxygen species and enzymes, which are present at relatively elevated levels in tumour environments, physiological characteristics of cancer, e.g., hypoxia and acidic pH. Also discussed are systems activated by an external stimulus, such as light. The work summarized in this Tutorial Review will help define the role fluorogenic reaction-based, cancer-targeting theranostics may have in advancing drug discovery efforts, as well as improving our understanding of cellular uptake and drug release mechanisms.
Advances in detection of diffuse seafloor venting using structured light imaging.
NASA Astrophysics Data System (ADS)
Smart, C.; Roman, C.; Carey, S.
2016-12-01
Systematic, remote detection and high resolution mapping of low temperature diffuse hydrothermal venting is inefficient and not currently tractable using traditional remotely operated vehicle (ROV) mounted sensors. Preliminary results for hydrothermal vent detection using a structured light laser sensor were presented in 2011 and published in 2013 (Smart) with continual advancements occurring in the interim. As the structured light laser passes over active venting, the projected laser line effectively blurs due to the associated turbulence and density anomalies in the vent fluid. The degree laser disturbance is captured by a camera collecting images of the laser line at 20 Hz. Advancements in the detection of the laser and fluid interaction have included extensive normalization of the collected laser data and the implementation of a support vector machine algorithm to develop a classification routine. The image data collected over a hydrothermal vent field is then labeled as seafloor, bacteria or a location of venting. The results can then be correlated with stereo images, bathymetry and backscatter data. This sensor is a component of an ROV mounted imaging suite which also includes stereo cameras and a multibeam sonar system. Originally developed for bathymetric mapping, the structured light laser sensor, and other imaging suite components, are capable of creating visual and bathymetric maps with centimeter level resolution. Surveys are completed in a standard mowing the lawn pattern completing a 30m x 30m survey with centimeter level resolution in under an hour. Resulting co-registered data includes, multibeam and structured light laser bathymetry and backscatter, stereo images and vent detection. This system allows for efficient exploration of areas with diffuse and small point source hydrothermal venting increasing the effectiveness of scientific sampling and observation. Recent vent detection results collected during the 2013-2015 E/V Nautilus seasons will be presented. Smart, C. J. and Roman, C. and Carey, S. N. (2013) Detection of diffuse seafloor venting using structured light imaging, Geochemistry, Geophysics, Geosystems, 14, 4743-4757
Effects of Optical Artifacts in a Laser-Based Spacecraft Navigation Sensor
NASA Technical Reports Server (NTRS)
LeCroy, Jerry E.; Howard, Richard T.; Hallmark, Dean S.
2007-01-01
Testing of the Advanced Video Guidance Sensor (AVGS) used for proximity operations navigation on the Orbital Express ASTRO spacecraft exposed several unanticipated imaging system artifacts and aberrations that required correction to meet critical navigation performance requirements. Mitigation actions are described for a number of system error sources, including lens aberration, optical train misalignment, laser speckle, target image defects, and detector nonlinearity/noise characteristics. Sensor test requirements and protocols are described, along with a summary of test results from sensor confidence tests and system performance testing.
Effects of Optical Artifacts in a Laser-Based Spacecraft Navigation Sensor
NASA Technical Reports Server (NTRS)
LeCroy, Jerry E.; Hallmark, Dean S.; Howard, Richard T.
2007-01-01
Testing Of the Advanced Video Guidance Sensor (AVGS) used for proximity operations navigation on the Orbital Express ASTRO spacecraft exposed several unanticipated imaging system artifacts and aberrations that required correction, to meet critical navigation performance requirements. Mitigation actions are described for a number of system error sources, including lens aberration, optical train misalignment, laser speckle, target image defects, and detector nonlinearity/noise characteristics. Sensor test requirements and protocols are described, along with a summary ,of test results from sensor confidence tests and system performance testing.
Panwar, Nishtha; Huang, Philemon; Lee, Jiaying; Keane, Pearse A; Chuan, Tjin Swee; Richhariya, Ashutosh; Teoh, Stephen; Lim, Tock Han; Agrawal, Rupesh
2016-03-01
The introduction of fundus photography has impacted retinal imaging and retinal screening programs significantly. Fundus cameras play a vital role in addressing the cause of preventive blindness. More attention is being turned to developing countries, where infrastructure and access to healthcare are limited. One of the major limitations for tele-ophthalmology is restricted access to the office-based fundus camera. Recent advances in access to telecommunications coupled with introduction of portable cameras and smartphone-based fundus imaging systems have resulted in an exponential surge in available technologies for portable fundus photography. Retinal cameras in the near future would have to cater to these needs by featuring a low-cost, portable design with automated controls and digitalized images with Web-based transfer. In this review, we aim to highlight the advances of fundus photography for retinal screening as well as discuss the advantages, disadvantages, and implications of the various technologies that are currently available.
Panwar, Nishtha; Huang, Philemon; Lee, Jiaying; Keane, Pearse A.; Chuan, Tjin Swee; Richhariya, Ashutosh; Teoh, Stephen; Lim, Tock Han
2016-01-01
Abstract Background: The introduction of fundus photography has impacted retinal imaging and retinal screening programs significantly. Literature Review: Fundus cameras play a vital role in addressing the cause of preventive blindness. More attention is being turned to developing countries, where infrastructure and access to healthcare are limited. One of the major limitations for tele-ophthalmology is restricted access to the office-based fundus camera. Results: Recent advances in access to telecommunications coupled with introduction of portable cameras and smartphone-based fundus imaging systems have resulted in an exponential surge in available technologies for portable fundus photography. Retinal cameras in the near future would have to cater to these needs by featuring a low-cost, portable design with automated controls and digitalized images with Web-based transfer. Conclusions: In this review, we aim to highlight the advances of fundus photography for retinal screening as well as discuss the advantages, disadvantages, and implications of the various technologies that are currently available. PMID:26308281
A robotic C-arm cone beam CT system for image-guided proton therapy: design and performance.
Hua, Chiaho; Yao, Weiguang; Kidani, Takao; Tomida, Kazuo; Ozawa, Saori; Nishimura, Takenori; Fujisawa, Tatsuya; Shinagawa, Ryousuke; Merchant, Thomas E
2017-11-01
A ceiling-mounted robotic C-arm cone beam CT (CBCT) system was developed for use with a 190° proton gantry system and a 6-degree-of-freedom robotic patient positioner. We report on the mechanical design, system accuracy, image quality, image guidance accuracy, imaging dose, workflow, safety and collision-avoidance. The robotic CBCT system couples a rotating C-ring to the C-arm concentrically with a kV X-ray tube and a flat-panel imager mounted to the C-ring. CBCT images are acquired with flex correction and maximally 360° rotation for a 53 cm field of view. The system was designed for clinical use with three imaging locations. Anthropomorphic phantoms were imaged to evaluate the image guidance accuracy. The position accuracy and repeatability of the robotic C-arm was high (<0.5 mm), as measured with a high-accuracy laser tracker. The isocentric accuracy of the C-ring rotation was within 0.7 mm. The coincidence of CBCT imaging and radiation isocentre was better than 1 mm. The average image guidance accuracy was within 1 mm and 1° for the anthropomorphic phantoms tested. Daily volumetric imaging for proton patient positioning was specified for routine clinical practice. Our novel gantry-independent robotic CBCT system provides high-accuracy volumetric image guidance for proton therapy. Advances in knowledge: Ceiling-mounted robotic CBCT provides a viable option than CT on-rails for partial gantry and fixed-beam proton systems with the added advantage of acquiring images at the treatment isocentre.
Establishing advanced practice for medical imaging in New Zealand
Yielder, Jill; Young, Adrienne; Park, Shelley; Coleman, Karen
2014-01-01
IntroductionThis article presents the outcome and recommendations following the second stage of a role development project conducted on behalf of the New Zealand Institute of Medical Radiation Technology (NZIMRT). The study sought to support the development of profiles and criteria that may be used to formulate Advanced Scopes of Practice for the profession. It commenced in 2011, following on from initial research that occurred between 2005 and 2008 investigating role development and a possible career structure for medical radiation technologists (MRTs) in New Zealand (NZ). MethodsThe study sought to support the development of profiles and criteria that could be used to develop Advanced Scopes of Practice for the profession through inviting 12 specialist medical imaging groups in NZ to participate in a survey. ResultsFindings showed strong agreement on potential profiles and on generic criteria within them; however, there was less agreement on specific skills criteria within specialist areas. ConclusionsThe authors recommend that one Advanced Scope of Practice be developed for Medical Imaging, with the establishment of generic and specialist criteria. Systems for approval of the overall criteria package for any individual Advanced Practitioner (AP) profile, audit and continuing professional development requirements need to be established by the Medical Radiation Technologists Board (MRTB) to meet the local needs of clinical departments. It is further recommended that the NZIMRT and MRTB promote and support the need for an AP pathway for medical imaging in NZ. PMID:26229631
Establishing advanced practice for medical imaging in New Zealand
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yielder, Jill, E-mail: j.yielder@auckland.ac.nz; Young, Adrienne; Park, Shelley
Introduction: This article presents the outcome and recommendations following the second stage of a role development project conducted on behalf of the New Zealand Institute of Medical Radiation Technology (NZIMRT). The study sought to support the development of profiles and criteria that may be used to formulate Advanced Scopes of Practice for the profession. It commenced in 2011, following on from initial research that occurred between 2005 and 2008 investigating role development and a possible career structure for medical radiation technologists (MRTs) in New Zealand (NZ). Methods: The study sought to support the development of profiles and criteria that couldmore » be used to develop Advanced Scopes of Practice for the profession through inviting 12 specialist medical imaging groups in NZ to participate in a survey. Results: Findings showed strong agreement on potential profiles and on generic criteria within them; however, there was less agreement on specific skills criteria within specialist areas. Conclusions: The authors recommend that one Advanced Scope of Practice be developed for Medical Imaging, with the establishment of generic and specialist criteria. Systems for approval of the overall criteria package for any individual Advanced Practitioner (AP) profile, audit and continuing professional development requirements need to be established by the Medical Radiation Technologists Board (MRTB) to meet the local needs of clinical departments. It is further recommended that the NZIMRT and MRTB promote and support the need for an AP pathway for medical imaging in NZ.« less
Nuclear cardiograph and scintigraphy
NASA Technical Reports Server (NTRS)
Mclaughlin, P.
1975-01-01
Extensive advances in the technology of detectors, data analysis systems, and tracers used have resulted in greatly expanded applications of radioisotopes to the assessment of cardiac function and disease. The development of nuclear cardiology has proceeded along four lines: (1) radionuclide angiography, (2) myocardial perfusion imaging, (3) intracoronary microsphere imaging, and (4) regional myocardial blood flow determination using inert gases.
Advanced millimeter wave imaging systems
NASA Technical Reports Server (NTRS)
Schuchardt, J. M.; Gagliano, J. A.; Stratigos, J. A.; Webb, L. L.; Newton, J. M.
1980-01-01
Unique techniques are being utilized to develop self-contained imaging radiometers operating at single and multiple frequencies near 35, 95 and 183 GHz. These techniques include medium to large antennas for high spatial resolution, lowloss open structures for RF confinemnt and calibration, wide bandwidths for good sensitivity plus total automation of the unit operation and data collection. Applications include: detection of severe storms, imaging of motor vehicles, and the remote sensing of changes in material properties.
2017-12-08
Center pivot irrigation systems create red circles of healthy vegetation in this image of croplands near Garden City, Kansas. This image was acquired by Landsat 7’s Enhanced Thematic Mapper plus (ETM+) sensor on September 25, 2000. This is a false-color composite image made using near infrared, red, and green wavelengths. The image has also been sharpened using the sensor’s panchromatic band. Credit: NASA/GSFC/Landsat NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook
Expanding the spectrum: 20 years of advances in MMW imagery
NASA Astrophysics Data System (ADS)
Martin, Christopher A.; Lovberg, John A.; Kolinko, Valdimir G.
2017-05-01
Millimeter-wave imaging has expanded from the single-pixel swept imagers developed in the 1960s to large field-ofview real-time systems in use today. Trex Enterprises has been developing millimeter-wave imagers since 1991 for aviation and security applications, as well as millimeter-wave communications devices. As MMIC device development was stretching into the MMW band in the 1990s, Trex developed novel imaging architectures to create 2-D staring systems with large pixel counts and no moving parts while using a minimal number of devices. Trex also contributed to the device development in amplifiers, switches, and detectors to enable the next generation of passive MMW imaging systems. The architectures and devices developed continue to be employed in security imagers, radar, and radios produced by Trex. This paper reviews the development of the initial real-time MMW imagers and associated devices by Trex Enterprises from the 1990s through the 2000s. The devices include W-band MMIC amplifiers, switches, and detector didoes, and MMW circuit boards and optical processors. The imaging systems discussed include two different real-time passive MMW imagers flown on helicopters and a MMW radar system, as well as implementation of the devices and architectures in simpler stand-off and gateway security imagers.
High data volume and transfer rate techniques used at NASA's image processing facility
NASA Technical Reports Server (NTRS)
Heffner, P.; Connell, E.; Mccaleb, F.
1978-01-01
Data storage and transfer operations at a new image processing facility are described. The equipment includes high density digital magnetic tape drives and specially designed controllers to provide an interface between the tape drives and computerized image processing systems. The controller performs the functions necessary to convert the continuous serial data stream from the tape drive to a word-parallel blocked data stream which then goes to the computer-based system. With regard to the tape packing density, 1.8 times 10 to the tenth data bits are stored on a reel of one-inch tape. System components and their operation are surveyed, and studies on advanced storage techniques are summarized.
From Mars to man - Biomedical research at the Jet Propulsion Laboratory
NASA Technical Reports Server (NTRS)
Beckenbach, E. S.
1984-01-01
In the course of the unmanned exploration of the solar system, which the California Institute of Technology's Jet Propulsion Laboratory has managed for NASA, major advances in computerized image processing, materials research, and miniature electronics design have been accomplished. This presentation shows some of the imaging results from space exploration missions, as well as biomedical research tasks based in these technologies. Among other topics, the use of polymeric microspheres in cancer therapy is discussed. Also included are ceramic applications to prosthesis development, laser applications in the treatment of coronary artery disease, multispectral imaging as used in the diagnosis of thermal burn injury, and some examples of telemetry systems as they can be involved in biological systems.
Prolonged in vivo imaging of Xenopus laevis.
Hamilton, Paul W; Henry, Jonathan J
2014-08-01
While live imaging of embryonic development over long periods of time is a well established method for embryos of the frog Xenopus laevis, once development has progressed to the swimming stages, continuous live imaging becomes more challenging because the tadpoles must be immobilized. Current imaging techniques for these advanced stages generally require bringing the tadpoles in and out of anesthesia for short imaging sessions at selected time points, severely limiting the resolution of the data. Here we demonstrate that creating a constant flow of diluted tricaine methanesulfonate (MS-222) over a tadpole greatly improves their survival under anesthesia. Based on this result, we describe a new method for imaging stage 48 to 65 X. laevis, by circulating the anesthetic using a peristaltic pump. This supports the animal during continuous live imaging sessions for at least 48 hr. The addition of a stable optical window allows for high quality imaging through the anesthetic solution. This automated imaging system provides for the first time a method for continuous observations of developmental and regenerative processes in advanced stages of Xenopus over 2 days. Developmental Dynamics 243:1011-1019, 2014. © 2014 Wiley Periodicals, Inc. © 2014 Wiley Periodicals, Inc.
Positron emission tomography (PET) advances in neurological applications
NASA Astrophysics Data System (ADS)
Sossi, V.
2003-09-01
Positron Emission Tomography (PET) is a functional imaging modality used in brain research to map in vivo neurotransmitter and receptor activity and to investigate glucose utilization or blood flow patterns both in healthy and disease states. Such research is made possible by the wealth of radiotracers available for PET, by the fact that metabolic and kinetic parameters of particular processes can be extracted from PET data and by the continuous development of imaging techniques. In recent years great advancements have been made in the areas of PET instrumentation, data quantification and image reconstruction that allow for more detailed and accurate biological information to be extracted from PET data. It is now possible to quantitatively compare data obtained either with different tracers or with the same tracer under different scanning conditions. These sophisticated imaging approaches enable detailed investigation of disease mechanisms and system response to disease and/or therapy.
NASA Astrophysics Data System (ADS)
Aspden, Reuben S.; Tasca, Daniel S.; Forbes, Andrew; Boyd, Robert W.; Padgett, Miles J.
2014-04-01
The Klyshko advanced-wave picture is a well-known tool useful in the conceptualisation of parametric down-conversion (SPDC) experiments. Despite being well-known and understood, there have been few experimental demonstrations illustrating its validity. Here, we present an experimental demonstration of this picture using a time-gated camera in an image-based coincidence measurement. We show an excellent agreement between the spatial distributions as predicted by the Klyshko picture and those obtained using the SPDC photon pairs. An interesting speckle feature is present in the Klyshko predictive images due to the spatial coherence of the back-propagated beam in the multi-mode fibre. This effect can be removed by mechanically twisting the fibre, thus degrading the spatial coherence of the beam and time-averaging the speckle pattern, giving an accurate correspondence between the predictive and SPDC images.
Advances in imaging secondary ion mass spectrometry for biological samples
Boxer, Steven G.; Kraft, Mary L.; Weber, Peter K.
2008-12-16
Imaging mass spectrometry combines the power of mass spectrometry to identify complex molecules based on mass with sample imaging. Recent advances in secondary ion mass spectrometry have improved sensitivity and spatial resolution, so that these methods have the potential to bridge between high-resolution structures obtained by X-ray crystallography and cyro-electron microscopy and ultrastructure visualized by conventional light microscopy. Following background information on the method and instrumentation, we address the key issue of sample preparation. Because mass spectrometry is performed in high vacuum, it is essential to preserve the lateral organization of the sample while removing bulk water, and this hasmore » been a major barrier for applications to biological systems. Furthermore, recent applications of imaging mass spectrometry to cell biology, microbial communities, and biosynthetic pathways are summarized briefly, and studies of biological membrane organization are described in greater depth.« less
Visual Communications And Image Processing
NASA Astrophysics Data System (ADS)
Hsing, T. Russell; Tzou, Kou-Hu
1989-07-01
This special issue on Visual Communications and Image Processing contains 14 papers that cover a wide spectrum in this fast growing area. For the past few decades, researchers and scientists have devoted their efforts to these fields. Through this long-lasting devotion, we witness today the growing popularity of low-bit-rate video as a convenient tool for visual communication. We also see the integration of high-quality video into broadband digital networks. Today, with more sophisticated processing, clearer and sharper pictures are being restored from blurring and noise. Also, thanks to the advances in digital image processing, even a PC-based system can be built to recognize highly complicated Chinese characters at the speed of 300 characters per minute. This special issue can be viewed as a milestone of visual communications and image processing on its journey to eternity. It presents some overviews on advanced topics as well as some new development in specific subjects.
Current Advances in Polymer-Based Nanotheranostics for Cancer Treatment and Diagnosis
2015-01-01
Nanotheranostics is a relatively new, fast-growing field that combines the advantages of treatment and diagnosis via a single nanoscale carrier. The ability to bundle both therapeutic and diagnostic capabilities into one package offers exciting prospects for the development of novel nanomedicine. Nanotheranostics can deliver treatment while simultaneously monitoring therapy response in real-time, thereby decreasing the potential of over- or under-dosing patients. Polymer-based nanomaterials, in particular, have been used extensively as carriers for both therapeutic and bioimaging agents and thus hold great promise for the construction of multifunctional theranostic formulations. Herein, we review recent advances in polymer-based systems for nanotheranostics, with a particular focus on their applications in cancer research. We summarize the use of polymer nanomaterials for drug delivery, gene delivery, and photodynamic therapy, combined with imaging agents for magnetic resonance imaging, radionuclide imaging, and fluorescence imaging. PMID:25014486
Hubble Team Unveils Most Colorful View of Universe Captured by Space Telescope
2014-06-04
Astronomers using NASA's Hubble Space Telescope have assembled a comprehensive picture of the evolving universe – among the most colorful deep space images ever captured by the 24-year-old telescope. Researchers say the image, in new study called the Ultraviolet Coverage of the Hubble Ultra Deep Field, provides the missing link in star formation. The Hubble Ultra Deep Field 2014 image is a composite of separate exposures taken in 2003 to 2012 with Hubble's Advanced Camera for Surveys and Wide Field Camera 3. Credit: NASA/ESA Read more: 1.usa.gov/1neD0se NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Programmable lithography engine (ProLE) grid-type supercomputer and its applications
NASA Astrophysics Data System (ADS)
Petersen, John S.; Maslow, Mark J.; Gerold, David J.; Greenway, Robert T.
2003-06-01
There are many variables that can affect lithographic dependent device yield. Because of this, it is not enough to make optical proximity corrections (OPC) based on the mask type, wavelength, lens, illumination-type and coherence. Resist chemistry and physics along with substrate, exposure, and all post-exposure processing must be considered too. Only a holistic approach to finding imaging solutions will accelerate yield and maximize performance. Since experiments are too costly in both time and money, accomplishing this takes massive amounts of accurate simulation capability. Our solution is to create a workbench that has a set of advanced user applications that utilize best-in-class simulator engines for solving litho-related DFM problems using distributive computing. Our product, ProLE (Programmable Lithography Engine), is an integrated system that combines Petersen Advanced Lithography Inc."s (PAL"s) proprietary applications and cluster management software wrapped around commercial software engines, along with optional commercial hardware and software. It uses the most rigorous lithography simulation engines to solve deep sub-wavelength imaging problems accurately and at speeds that are several orders of magnitude faster than current methods. Specifically, ProLE uses full vector thin-mask aerial image models or when needed, full across source 3D electromagnetic field simulation to make accurate aerial image predictions along with calibrated resist models;. The ProLE workstation from Petersen Advanced Lithography, Inc., is the first commercial product that makes it possible to do these intensive calculations at a fraction of a time previously available thus significantly reducing time to market for advance technology devices. In this work, ProLE is introduced, through model comparison to show why vector imaging and rigorous resist models work better than other less rigorous models, then some applications of that use our distributive computing solution are shown. Topics covered describe why ProLE solutions are needed from an economic and technical aspect, a high level discussion of how the distributive system works, speed benchmarking, and finally, a brief survey of applications including advanced aberrations for lens sensitivity and flare studies, optical-proximity-correction for a bitcell and an application that will allow evaluation of the potential of a design to have systematic failures during fabrication.
A new high-speed IR camera system
NASA Technical Reports Server (NTRS)
Travis, Jeffrey W.; Shu, Peter K.; Jhabvala, Murzy D.; Kasten, Michael S.; Moseley, Samuel H.; Casey, Sean C.; Mcgovern, Lawrence K.; Luers, Philip J.; Dabney, Philip W.; Kaipa, Ravi C.
1994-01-01
A multi-organizational team at the Goddard Space Flight Center is developing a new far infrared (FIR) camera system which furthers the state of the art for this type of instrument by the incorporating recent advances in several technological disciplines. All aspects of the camera system are optimized for operation at the high data rates required for astronomical observations in the far infrared. The instrument is built around a Blocked Impurity Band (BIB) detector array which exhibits responsivity over a broad wavelength band and which is capable of operating at 1000 frames/sec, and consists of a focal plane dewar, a compact camera head electronics package, and a Digital Signal Processor (DSP)-based data system residing in a standard 486 personal computer. In this paper we discuss the overall system architecture, the focal plane dewar, and advanced features and design considerations for the electronics. This system, or one derived from it, may prove useful for many commercial and/or industrial infrared imaging or spectroscopic applications, including thermal machine vision for robotic manufacturing, photographic observation of short-duration thermal events such as combustion or chemical reactions, and high-resolution surveillance imaging.
Development of ultrasound bioprobe for biological imaging
Shekhawat, Gajendra S.; Dudek, Steven M.; Dravid, Vinayak P.
2017-01-01
We report the development of an ultrasound bioprobe for in vitro molecular imaging. In this method, the phase of the scattered ultrasound wave is mapped to provide in vitro and intracellular imaging with nanometer-scale resolution under physiological conditions. We demonstrated the technique by successfully imaging a magnetic core in silica core shells and the stiffness image of intracellular fibers in endothelial cells that were stimulated with thrombin. The findings demonstrate a significant advancement in high-resolution ultrasound imaging of biological systems with acoustics under physiological conditions. These will open up various applications in biomedical and molecular imaging with subsurface resolution down to the nanometer scale. PMID:29075667
Developing students’ ideas about lens imaging: teaching experiments with an image-based approach
NASA Astrophysics Data System (ADS)
Grusche, Sascha
2017-07-01
Lens imaging is a classic topic in physics education. To guide students from their holistic viewpoint to the scientists’ analytic viewpoint, an image-based approach to lens imaging has recently been proposed. To study the effect of the image-based approach on undergraduate students’ ideas, teaching experiments are performed and evaluated using qualitative content analysis. Some of the students’ ideas have not been reported before, namely those related to blurry lens images, and those developed by the proposed teaching approach. To describe learning pathways systematically, a conception-versus-time coordinate system is introduced, specifying how teaching actions help students advance toward a scientific understanding.
Multiple-etalon systems for the Advanced Technology Solar Telescope
NASA Technical Reports Server (NTRS)
Gary, G. Allen; Balasubramaniam, K. S.; Sigwarth, Michael
2003-01-01
Multiple etalon systems are discussed that meet the science requirements for a narrow-passband imaging system for the 4-meter National Solar Observatory (NSO)/Advance Technology Solar Telescope (ATST). A multiple etalon system can provide an imaging interferometer that works in four distinct modes: as a spectro-polarimeter, a filter-vector magnetograph, an intermediate-band imager, and broadband high-resolution imager. Specific dual and triple etalon configurations are described that provide a spectrographic passband of 2.0-3.5 micron and reduce parasitic light levels to 10(exp -4) as required for precise polarization measurement, e.g., Zeeman measurements of magnetic sensitive lines. A TESOS-like (Telecentric Etalon SOlar Spectrometer) triple etalon system provides a spectral purity of 10(exp -5). The triple designs have the advantage of reducing the finesse requirement on each etalon; allow the use of more stable blocking filters, and have very high spectral purity. A dual-etalon double-pass (Cavallini-like) system can provide a competing configuration. Such a dual-etalon design can provide high contrast. The selection of the final focal plane instrument will depend on a trade-off between an ideal instrument and practical reality. The trade study will include the number of etalons, their aperture sizes, complexities of the optical train, number of blocking filters, configuration of the electronic control system, computer interfaces, temperature controllers, etalon controllers, and their associated feedback electronics. The heritage of single and multiple etalon systems comes from their use in several observatories, including the Marshall Space Flight Center (MSFC) Solar Observatory, Sacramento Peak Observatory (NSO), and Kiepenheuer-Institut fur Sonnenphysik (KIS, Germany), Mees Solar Observatory (University of Hawaii), and Arcetri Astrophysical Observatory (Italy). The design of the ATST multiple etalon system will benefit from the experience gained at these observatories.
NeuroImaging Radiological Interpretation System (NIRIS) for Acute Traumatic Brain Injury (TBI).
Wintermark, Max; Li, Ying; Ding, Victoria Y; Xu, Yingding; Jiang, Bin; Ball, Robyn L; Zeineh, Michael; Gean, Alisa; Sanelli, Pina
2018-04-18
To develop an outcome-based NeuroImaging Radiological Interpretation System (NIRIS) for acute traumatic brain injury (TBI) patients that would standardize the interpretation of non-contrast head CTs and consolidate imaging findings into ordinal severity categories that would inform specific patient management actions and that could be used as a clinical decision support tool. We retrospectively identified all patients transported to our emergency department by ambulance or helicopter, for whom a trauma alert was triggered per established criteria and who underwent a non-contrast head CT due to suspicion of TBI, between November 2015 and April 2016. Two neuroradiologists reviewed the non-contrast head CTs and assessed the TBI imaging common data elements (CDEs), as defined by the National Institutes of Health (NIH). Using descriptive statistics and receiver operating characteristic curve analyses to identify imaging characteristics and associated thresholds that best distinguished among outcomes, we classified patients into five mutually exclusive categories: 0-discharge from the emergency department; 1-follow-up brain imaging and/or admission; 2-admission to an advanced care unit; 3-neurosurgical procedure; 4-death up to 6 months after TBI. Sensitivity of NIRIS with respect to each patient's true outcome was then evaluated and compared to that of the Marshall and Rotterdam scoring systems for TBI. In our cohort of 542 TBI patients, NIRIS was developed to predict discharge (182 patients), follow-up brain imaging/admission (187 patients), need for advanced care unit (151 patients). neurosurgical procedures (10 patients) and death (12 patients). NIRIS performed similarly to the Marshall and Rotterdam scoring systems in terms of predicting mortality. We developed an interpretation system for neuroimaging using the CDEs that informs specific patient management actions and could be used as a clinical decision support tool for patients with TBI. Our NIRIS classification, with evidence-based grouping of the CDEs into actionable categories, will need to be validated in different TBI populations.
Lava Flow on Mawson Peak, Heard Island
2017-12-08
In October 2012, satellites measured subtle signals that suggested volcanic activity on remote Heard Island. These images, captured several months later, show proof of an eruption on Mawson Peak. By April 7, 2013, Mawson's steep-walled summit crater had filled, and a trickle of lava had spilled down the volcano’s southwestern flank. On April 20, the lava flow remained visible and had even widened slightly just below the summit. These natural-color images were collected by the Advanced Land Imager (ALI) on the Earth Observing-1 (EO-1) satellite. Image Credit: NASA Earth Observatory Read more: earthobservatory.nasa.gov/NaturalHazards/view.php?id=81024 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Real-time 3D adaptive filtering for portable imaging systems
NASA Astrophysics Data System (ADS)
Bockenbach, Olivier; Ali, Murtaza; Wainwright, Ian; Nadeski, Mark
2015-03-01
Portable imaging devices have proven valuable for emergency medical services both in the field and hospital environments and are becoming more prevalent in clinical settings where the use of larger imaging machines is impractical. 3D adaptive filtering is one of the most advanced techniques aimed at noise reduction and feature enhancement, but is computationally very demanding and hence often not able to run with sufficient performance on a portable platform. In recent years, advanced multicore DSPs have been introduced that attain high processing performance while maintaining low levels of power dissipation. These processors enable the implementation of complex algorithms like 3D adaptive filtering, improving the image quality of portable medical imaging devices. In this study, the performance of a 3D adaptive filtering algorithm on a digital signal processor (DSP) is investigated. The performance is assessed by filtering a volume of size 512x256x128 voxels sampled at a pace of 10 MVoxels/sec.
Boppart, Stephen A; Richards-Kortum, Rebecca
2014-09-10
Leveraging advances in consumer electronics and wireless telecommunications, low-cost, portable optical imaging devices have the potential to improve screening and detection of disease at the point of care in primary health care settings in both low- and high-resource countries. Similarly, real-time optical imaging technologies can improve diagnosis and treatment at the point of procedure by circumventing the need for biopsy and analysis by expert pathologists, who are scarce in developing countries. Although many optical imaging technologies have been translated from bench to bedside, industry support is needed to commercialize and broadly disseminate these from the patient level to the population level to transform the standard of care. This review provides an overview of promising optical imaging technologies, the infrastructure needed to integrate them into widespread clinical use, and the challenges that must be addressed to harness the potential of these technologies to improve health care systems around the world. Copyright © 2014, American Association for the Advancement of Science.
NASA Astrophysics Data System (ADS)
Wu, Li; Zhang, Bin; Wu, Ping; Liu, Qian; Gong, Hui
2007-05-01
A high-resolution optical imaging system was designed and developed to obtain the serial transverse section images of the biologic tissue, such as the mouse brain, in which new knife-edge imaging technology, high-speed and high-sensitive line-scan CCD and linear air bearing stages were adopted and incorporated with an OLYMPUS microscope. The section images on the tip of the knife-edge were synchronously captured by the reflection imaging in the microscope while cutting the biologic tissue. The biologic tissue can be sectioned at interval of 250 nm with the same resolution of the transverse section images obtained in x and y plane. And the cutting job can be automatically finished based on the control program wrote specially in advance, so we save the mass labor of the registration of the vast images data. In addition, by using this system a larger sample can be cut than conventional ultramicrotome so as to avoid the loss of the tissue structure information because of splitting the tissue sample to meet the size request of the ultramicrotome.
Segmentation of the macular choroid in OCT images acquired at 830nm and 1060nm
NASA Astrophysics Data System (ADS)
Lee, Sieun; Beg, Mirza F.; Sarunic, Marinko V.
2013-06-01
Retinal imaging with optical coherence tomography (OCT) has rapidly advanced in ophthalmic applications with the broad availability of Fourier domain (FD) technology in commercial systems. The high sensitivity afforded by FD-OCT has enabled imaging of the choroid, a layer of blood vessels serving the outer retina. Improved visualization of the choroid and the choroid-sclera boundary has been investigated using techniques such as enhanced depth imaging (EDI), and also with OCT systems operating in the 1060-nm wavelength range. We report on a comparison of imaging the macular choroid with commercial and prototype OCT systems, and present automated 3D segmentation of the choroid-scleral layer using a graph cut algorithm. The thickness of the choroid is an important measurement to investigate for possible correlation with severity, or possibly early diagnosis, of diseases such as age-related macular degeneration.
Analysis and Implementation of Methodologies for the Monitoring of Changes in Eye Fundus Images
NASA Astrophysics Data System (ADS)
Gelroth, A.; Rodríguez, D.; Salvatelli, A.; Drozdowicz, B.; Bizai, G.
2011-12-01
We present a support system for changes detection in fundus images of the same patient taken at different time intervals. This process is useful for monitoring pathologies lasting for long periods of time, as are usually the ophthalmologic. We propose a flow of preprocessing, processing and postprocessing applied to a set of images selected from a public database, presenting pathological advances. A test interface was developed designed to select the images to be compared in order to apply the different methods developed and to display the results. We measure the system performance in terms of sensitivity, specificity and computation times. We have obtained good results, higher than 84% for the first two parameters and processing times lower than 3 seconds for 512x512 pixel images. For the specific case of detection of changes associated with bleeding, the system responds with sensitivity and specificity over 98%.
MO-AB-206-02: Testing Gamma Cameras Based On TG177 WG Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halama, J.
2016-06-15
This education session will cover the physics and operation principles of gamma cameras and PET scanners. The first talk will focus on PET imaging. An overview of the principles of PET imaging will be provided, including positron decay physics, and the transition from 2D to 3D imaging. More recent advances in hardware and software will be discussed, such as time-of-flight imaging, and improvements in reconstruction algorithms that provide for options such as depth-of-interaction corrections. Quantitative applications of PET will be discussed, as well as the requirements for doing accurate quantitation. Relevant performance tests will also be described. Learning Objectives: Bemore » able to describe basic physics principles of PET and operation of PET scanners. Learn about recent advances in PET scanner hardware technology. Be able to describe advances in reconstruction techniques and improvements Be able to list relevant performance tests. The second talk will focus on gamma cameras. The Nuclear Medicine subcommittee has charged a task group (TG177) to develop a report on the current state of physics testing of gamma cameras, SPECT, and SPECT/CT systems. The report makes recommendations for performance tests to be done for routine quality assurance, annual physics testing, and acceptance tests, and identifies those needed satisfy the ACR accreditation program and The Joint Commission imaging standards. The report is also intended to be used as a manual with detailed instructions on how to perform tests under widely varying conditions. Learning Objectives: At the end of the presentation members of the audience will: Be familiar with the tests recommended for routine quality assurance, annual physics testing, and acceptance tests of gamma cameras for planar imaging. Be familiar with the tests recommended for routine quality assurance, annual physics testing, and acceptance tests of SPECT systems. Be familiar with the tests of a SPECT/CT system that include the CT images for SPECT reconstructions. Become knowledgeable of items to be included in annual acceptance testing reports including CT dosimetry and PACS monitor measurements. T. Turkington, GE Healthcare.« less
MO-AB-206-00: Nuclear Medicine Physics and Testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
This education session will cover the physics and operation principles of gamma cameras and PET scanners. The first talk will focus on PET imaging. An overview of the principles of PET imaging will be provided, including positron decay physics, and the transition from 2D to 3D imaging. More recent advances in hardware and software will be discussed, such as time-of-flight imaging, and improvements in reconstruction algorithms that provide for options such as depth-of-interaction corrections. Quantitative applications of PET will be discussed, as well as the requirements for doing accurate quantitation. Relevant performance tests will also be described. Learning Objectives: Bemore » able to describe basic physics principles of PET and operation of PET scanners. Learn about recent advances in PET scanner hardware technology. Be able to describe advances in reconstruction techniques and improvements Be able to list relevant performance tests. The second talk will focus on gamma cameras. The Nuclear Medicine subcommittee has charged a task group (TG177) to develop a report on the current state of physics testing of gamma cameras, SPECT, and SPECT/CT systems. The report makes recommendations for performance tests to be done for routine quality assurance, annual physics testing, and acceptance tests, and identifies those needed satisfy the ACR accreditation program and The Joint Commission imaging standards. The report is also intended to be used as a manual with detailed instructions on how to perform tests under widely varying conditions. Learning Objectives: At the end of the presentation members of the audience will: Be familiar with the tests recommended for routine quality assurance, annual physics testing, and acceptance tests of gamma cameras for planar imaging. Be familiar with the tests recommended for routine quality assurance, annual physics testing, and acceptance tests of SPECT systems. Be familiar with the tests of a SPECT/CT system that include the CT images for SPECT reconstructions. Become knowledgeable of items to be included in annual acceptance testing reports including CT dosimetry and PACS monitor measurements. T. Turkington, GE Healthcare.« less
AIRS Subpixel Cloud Characterization Using MODIS Cloud Products.
NASA Astrophysics Data System (ADS)
Li, Jun; Menzel, W. Paul; Sun, Fengying; Schmit, Timothy J.; Gurka, James
2004-08-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) and the Atmospheric Infrared Sounder (AIRS) measurements from the Earth Observing System's (EOS's) Aqua satellite enable improved global monitoring of the distribution of clouds. MODIS is able to provide, at high spatial resolution (1 5 km), a cloud mask, surface and cloud types, cloud phase, cloud-top pressure (CTP), effective cloud amount (ECA), cloud particle size (CPS), and cloud optical thickness (COT). AIRS is able to provide CTP, ECA, CPS, and COT at coarser spatial resolution (13.5 km at nadir) but with much better accuracy using its high-spectral-resolution measurements. The combined MODIS AIRS system offers the opportunity for improved cloud products over those possible from either system alone. The key steps for synergistic use of imager and sounder radiance measurements are 1) collocation in space and time and 2) imager cloud amount, type, and phase determination within the sounder pixel. The MODIS and AIRS measurements from the EOS Aqua satellite provide the opportunity to study the synergistic use of advanced imager and sounder measurements. As the first step, the MODIS classification procedure is applied to identify various surface and cloud types within an AIRS footprint. Cloud-layer information (lower, midlevel, or high clouds) and phase information (water, ice, or mixed-phase clouds) within the AIRS footprint are sorted and characterized using MODIS 1-km-spatial-resolution data. The combined MODIS and AIRS data for various scenes are analyzed to study the utility of the synergistic use of high-spatial-resolution imager products and high-spectral-resolution sounder radiance measurements. There is relevance to the optimal use of data from the Advanced Baseline Imager (ABI) and Hyperspectral Environmental Suite (HES) systems, which are to fly on the Geostationary Operational Environmental Satellite (GOES)-R.
A Graphical Operator Interface for a Telerobotic Inspection System
NASA Technical Reports Server (NTRS)
Kim, W. S.; Tso, K. S.; Hayati, S.
1993-01-01
Operator interface has recently emerged as an important element for efficient and safe operatorinteractions with the telerobotic system. Recent advances in graphical user interface (GUI) andgraphics/video merging technologies enable development of more efficient, flexible operatorinterfaces. This paper describes an advanced graphical operator interface newly developed for aremote surface inspection system at Jet Propulsion Laboratory. The interface has been designed sothat remote surface inspection can be performed by a single operator with an integrated robot controland image inspection capability. It supports three inspection strategies of teleoperated human visual inspection, human visual inspection with automated scanning, and machine-vision-based automated inspection.
Advances in miniature spectrometer and sensor development
NASA Astrophysics Data System (ADS)
Malinen, Jouko; Rissanen, Anna; Saari, Heikki; Karioja, Pentti; Karppinen, Mikko; Aalto, Timo; Tukkiniemi, Kari
2014-05-01
Miniaturization and cost reduction of spectrometer and sensor technologies has great potential to open up new applications areas and business opportunities for analytical technology in hand held, mobile and on-line applications. Advances in microfabrication have resulted in high-performance MEMS and MOEMS devices for spectrometer applications. Many other enabling technologies are useful for miniature analytical solutions, such as silicon photonics, nanoimprint lithography (NIL), system-on-chip, system-on-package techniques for integration of electronics and photonics, 3D printing, powerful embedded computing platforms, networked solutions as well as advances in chemometrics modeling. This paper will summarize recent work on spectrometer and sensor miniaturization at VTT Technical Research Centre of Finland. Fabry-Perot interferometer (FPI) tunable filter technology has been developed in two technical versions: Piezoactuated FPIs have been applied in miniature hyperspectral imaging needs in light weight UAV and nanosatellite applications, chemical imaging as well as medical applications. Microfabricated MOEMS FPIs have been developed as cost-effective sensor platforms for visible, NIR and IR applications. Further examples of sensor miniaturization will be discussed, including system-on-package sensor head for mid-IR gas analyzer, roll-to-roll printed Surface Enhanced Raman Scattering (SERS) technology as well as UV imprinted waveguide sensor for formaldehyde detection.
Advanced Forensic Format: an Open Extensible Format for Disk Imaging
NASA Astrophysics Data System (ADS)
Garfinkel, Simson; Malan, David; Dubec, Karl-Alexander; Stevens, Christopher; Pham, Cecile
This paper describes the Advanced Forensic Format (AFF), which is designed as an alternative to current proprietary disk image formats. AFF offers two significant benefits. First, it is more flexible because it allows extensive metadata to be stored with images. Second, AFF images consume less disk space than images in other formats (e.g., EnCase images). This paper also describes the Advanced Disk Imager, a new program for acquiring disk images that compares favorably with existing alternatives.
Biological Imaging Capability in the ABRS Facility on ISS
NASA Technical Reports Server (NTRS)
Cox, David R.; Murdoch, T.; Regan, M. F.; Meshlberger, R. J.; Mortenson, T. E.; Albino, S. A.; Paul, A. L.; Ferl, R. J.
2010-01-01
This slide presentation reviews the Advanced Biological Research System (ABRS) on the International Space Station (ISS) and its biological imaging capability. The ABRS is an environmental control chamber. It has two indpendently controlled Experiment Research Chambers (ERCs) with temperature, relative humidity and carbon dioxide controls. ABRS is a third generation plant growth system. Several experiments are reviewed, with particular interest in the use of Green Fluorescent Protein (GFP) a non-destructive plant stress reporting mechanism, naturally found in jellyfish.
Advanced IR System For Supersonic Boundary Layer Transition Flight Experiment
NASA Technical Reports Server (NTRS)
Banks, Daniel W.
2008-01-01
Infrared thermography is a preferred method investigating transition in flight: a) Global and non-intrusive; b) Can also be used to visualize and characterize other fluid mechanic phenomena such as shock impingement, separation etc. F-15 based system was updated with new camera and digital video recorder to support high Reynolds number transition tests. Digital Recording improves image quality and analysis capability and allows for accurate quantitative (temperature) measurements and greater enhancement through image processing allows analysis of smaller scale phenomena.
High-resolution imaging and target designation through clouds or smoke
Perry, Michael D.
2003-01-01
A method and system of combining gated intensifiers and advances in solid-state, short-pulse laser technology, compact systems capable of producing high resolution (i.e., approximately less than 20 centimeters) optical images through a scattering medium such as dense clouds, fog, smoke, etc. may be achieved from air or ground based platforms. Laser target designation through a scattering medium is also enabled by utilizing a short pulse illumination laser and a relatively minor change to the detectors on laser guided munitions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, S. G., E-mail: sglee@nfri.re.kr; Kim, Y. S.; Yoo, J. W.
2016-11-15
The inconsistency of the first experimental results from the X-ray imaging crystal spectrometer for the Korea Superconducting Tokamak Advanced Research device utilizing a multi-wire proportional counter (MWPC) is clarified after improving the photon-count rate of the data acquisition system for the MWPC and ground loop isolator for the whole spectrometer system. The improved MWPC is successfully applied to pure Ohmic plasmas as well as plasmas with high confinement modes.
USDA-ARS?s Scientific Manuscript database
Advances in technologies associated with unmanned aerial vehicles (UAVs) has allowed for researchers, farmers and agribusinesses to incorporate UAVs coupled with various imaging systems into data collection activities and aid expert systems for making decisions. Multispectral imageries allow for a q...
Design considerations for imaging charge-coupled device
NASA Astrophysics Data System (ADS)
1981-04-01
The image dissector tube, which was formerly used as detector in star trackers, will be replaced by solid state imaging devices. The technology advances of charge transfer devices, like the charge-coupled device (CCD) and the charge-injection device (CID) have made their application to star trackers an immediate reality. The Air Force in 1979 funded an American Aerospace company to develop an imaging CCD (ICCD) star sensor for the Multimission Attitude Determination and Autonomous Navigation (MADAN) system. The MADAN system is a technology development for a strapdown attitude and navigation system which can be used on all Air Force 3-axis stabilized satellites. The system will be autonomous and will provide real-time satellite attitude and position information. The star sensor accuracy provides an overall MADAN attitude accuracy of 2 arcsec for star rates up to 300 arcsec/sec. The ICCD is basically an integrating device. Its pixel resolution in not yet satisfactory for precision applications.
Tosi, Umberto; Marnell, Christopher S.; Chang, Raymond; Cho, William C.; Ting, Richard; Maachani, Uday B.; Souweidane, Mark M.
2017-01-01
Thanks to the recent advances in the development of chemotherapeutics, the morbidity and mortality of many cancers has decreased significantly. However, compared to oncology in general, the field of neuro-oncology has lagged behind. While new molecularly targeted chemotherapeutics have emerged, the impermeability of the blood–brain barrier (BBB) renders systemic delivery of these clinical agents suboptimal. To circumvent the BBB, novel routes of administration are being applied in the clinic, ranging from intra-arterial infusion and direct infusion into the target tissue (convection enhanced delivery (CED)) to the use of focused ultrasound to temporarily disrupt the BBB. However, the current system depends on a “wait-and-see” approach, whereby drug delivery is deemed successful only when a specific clinical outcome is observed. The shortcomings of this approach are evident, as a failed delivery that needs immediate refinement cannot be observed and corrected. In response to this problem, new theranostic agents, compounds with both imaging and therapeutic potential, are being developed, paving the way for improved and monitored delivery to central nervous system (CNS) malignancies. In this review, we focus on the advances and the challenges to improve early cancer detection, selection of targeted therapy, and evaluation of therapeutic efficacy, brought forth by the development of these new agents. PMID:28208698
Tosi, Umberto; Marnell, Christopher S; Chang, Raymond; Cho, William C; Ting, Richard; Maachani, Uday B; Souweidane, Mark M
2017-02-08
Thanks to the recent advances in the development of chemotherapeutics, the morbidity and mortality of many cancers has decreased significantly. However, compared to oncology in general, the field of neuro-oncology has lagged behind. While new molecularly targeted chemotherapeutics have emerged, the impermeability of the blood-brain barrier (BBB) renders systemic delivery of these clinical agents suboptimal. To circumvent the BBB, novel routes of administration are being applied in the clinic, ranging from intra-arterial infusion and direct infusion into the target tissue (convection enhanced delivery (CED)) to the use of focused ultrasound to temporarily disrupt the BBB. However, the current system depends on a "wait-and-see" approach, whereby drug delivery is deemed successful only when a specific clinical outcome is observed. The shortcomings of this approach are evident, as a failed delivery that needs immediate refinement cannot be observed and corrected. In response to this problem, new theranostic agents, compounds with both imaging and therapeutic potential, are being developed, paving the way for improved and monitored delivery to central nervous system (CNS) malignancies. In this review, we focus on the advances and the challenges to improve early cancer detection, selection of targeted therapy, and evaluation of therapeutic efficacy, brought forth by the development of these new agents.
Smartphone-based multispectral imaging: system development and potential for mobile skin diagnosis
Kim, Sewoong; Cho, Dongrae; Kim, Jihun; Kim, Manjae; Youn, Sangyeon; Jang, Jae Eun; Je, Minkyu; Lee, Dong Hun; Lee, Boreom; Farkas, Daniel L.; Hwang, Jae Youn
2016-01-01
We investigate the potential of mobile smartphone-based multispectral imaging for the quantitative diagnosis and management of skin lesions. Recently, various mobile devices such as a smartphone have emerged as healthcare tools. They have been applied for the early diagnosis of nonmalignant and malignant skin diseases. Particularly, when they are combined with an advanced optical imaging technique such as multispectral imaging and analysis, it would be beneficial for the early diagnosis of such skin diseases and for further quantitative prognosis monitoring after treatment at home. Thus, we demonstrate here the development of a smartphone-based multispectral imaging system with high portability and its potential for mobile skin diagnosis. The results suggest that smartphone-based multispectral imaging and analysis has great potential as a healthcare tool for quantitative mobile skin diagnosis. PMID:28018743
In vivo imaging of human labial glands using advanced optical coherence tomography.
Ozawa, Nobuyoshi; Sumi, Yasunori; Shimozato, Kazuo; Chong, Changho; Kurabayashi, Tohru
2009-09-01
Optical coherence tomography (OCT) has emerged as a high-resolution noninvasive clinical imaging application. The purpose of this study was to show OCT images of human labial glands obtained using a swept-source (SS) OCT system. Labial gland OCT imaging was carried out using our new SS-OCT system for 5 healthy volunteers using a hand-held in vivo OCT scanning probe. The labial tissue was scanned in a superior to inferior direction in 2 and 3 dimensions. The resulting 2- and 3-dimensional ultrahigh-resolution images of in vivo OCT human labial minor salivary glands revealed the epithelium, connective tissue, lobes, and duct. OCT was capable of providing simultaneous and noninvasive structural information with high resolution. This clinical imaging modality promises to have clinical impact in the diagnosis of such conditions as Sjögren syndrome and xerostomia.
Optical coherence tomography – current and future applications
Adhi, Mehreen; Duker, Jay S.
2013-01-01
Purpose of review Optical coherence tomography (OCT) has revolutionized the clinical practice of ophthalmology. It is a noninvasive imaging technique that provides high-resolution, cross-sectional images of the retina, retinal nerve fiber layer and the optic nerve head. This review discusses the present applications of the commercially available spectral-domain OCT (SD-OCT) systems in the diagnosis and management of retinal diseases, with particular emphasis on choroidal imaging. Future directions of OCT technology and their potential clinical uses are discussed. Recent findings Analysis of the choroidal thickness in healthy eyes and disease states such as age-related macular degeneration, central serous chorioretinopathy, diabetic retinopathy and inherited retinal dystrophies has been successfully achieved using SD-OCT devices with software improvements. Future OCT innovations such as longer-wavelength OCT systems including the swept-source technology, along with Doppler OCT and en-face imaging, may improve the detection of subtle microstructural changes in chorioretinal diseases by improving imaging of the choroid. Summary Advances in OCT technology provide for better understanding of pathogenesis, improved monitoring of progression and assistance in quantifying response to treatment modalities in diseases of the posterior segment of the eye. Further improvements in both hardware and software technologies should further advance the clinician’s ability to assess and manage chorioretinal diseases. PMID:23429598
Zarinabad, Niloufar; Meeus, Emma M; Manias, Karen; Foster, Katharine; Peet, Andrew
2018-05-02
Advances in magnetic resonance imaging and the introduction of clinical decision support systems has underlined the need for an analysis tool to extract and analyze relevant information from magnetic resonance imaging data to aid decision making, prevent errors, and enhance health care. The aim of this study was to design and develop a modular medical image region of interest analysis tool and repository (MIROR) for automatic processing, classification, evaluation, and representation of advanced magnetic resonance imaging data. The clinical decision support system was developed and evaluated for diffusion-weighted imaging of body tumors in children (cohort of 48 children, with 37 malignant and 11 benign tumors). Mevislab software and Python have been used for the development of MIROR. Regions of interests were drawn around benign and malignant body tumors on different diffusion parametric maps, and extracted information was used to discriminate the malignant tumors from benign tumors. Using MIROR, the various histogram parameters derived for each tumor case when compared with the information in the repository provided additional information for tumor characterization and facilitated the discrimination between benign and malignant tumors. Clinical decision support system cross-validation showed high sensitivity and specificity in discriminating between these tumor groups using histogram parameters. MIROR, as a diagnostic tool and repository, allowed the interpretation and analysis of magnetic resonance imaging images to be more accessible and comprehensive for clinicians. It aims to increase clinicians' skillset by introducing newer techniques and up-to-date findings to their repertoire and make information from previous cases available to aid decision making. The modular-based format of the tool allows integration of analyses that are not readily available clinically and streamlines the future developments. ©Niloufar Zarinabad, Emma M Meeus, Karen Manias, Katharine Foster, Andrew Peet. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 02.05.2018.
NASA Astrophysics Data System (ADS)
Orenstein, E. C.; Morgado, P. M.; Peacock, E.; Sosik, H. M.; Jaffe, J. S.
2016-02-01
Technological advances in instrumentation and computing have allowed oceanographers to develop imaging systems capable of collecting extremely large data sets. With the advent of in situ plankton imaging systems, scientists must now commonly deal with "big data" sets containing tens of millions of samples spanning hundreds of classes, making manual classification untenable. Automated annotation methods are now considered to be the bottleneck between collection and interpretation. Typically, such classifiers learn to approximate a function that predicts a predefined set of classes for which a considerable amount of labeled training data is available. The requirement that the training data span all the classes of concern is problematic for plankton imaging systems since they sample such diverse, rapidly changing populations. These data sets may contain relatively rare, sparsely distributed, taxa that will not have associated training data; a classifier trained on a limited set of classes will miss these samples. The computer vision community, leveraging advances in Convolutional Neural Networks (CNNs), has recently attempted to tackle such problems using "zero-shot" object categorization methods. Under a zero-shot framework, a classifier is trained to map samples onto a set of attributes rather than a class label. These attributes can include visual and non-visual information such as what an organism is made out of, where it is distributed globally, or how it reproduces. A second stage classifier is then used to extrapolate a class. In this work, we demonstrate a zero-shot classifier, implemented with a CNN, to retrieve out-of-training-set labels from images. This method is applied to data from two continuously imaging, moored instruments: the Scripps Plankton Camera System (SPCS) and the Imaging FlowCytobot (IFCB). Results from simulated deployment scenarios indicate zero-shot classifiers could be successful at recovering samples of rare taxa in image sets. This capability will allow ecologists to identify trends in the distribution of difficult to sample organisms in their data.
Wafer plane inspection for advanced reticle defects
NASA Astrophysics Data System (ADS)
Nagpal, Rajesh; Ghadiali, Firoz; Kim, Jun; Huang, Tracy; Pang, Song
2008-05-01
Readiness of new mask defect inspection technology is one of the key enablers for insertion & transition of the next generation technology from development into production. High volume production in mask shops and wafer fabs demands a reticle inspection system with superior sensitivity complemented by a low false defect rate to ensure fast turnaround of reticle repair and defect disposition (W. Chou et al 2007). Wafer Plane Inspection (WPI) is a novel approach to mask defect inspection, complementing the high resolution inspection capabilities of the TeraScanHR defect inspection system. WPI is accomplished by using the high resolution mask images to construct a physical mask model (D. Pettibone et al 1999). This mask model is then used to create the mask image in the wafer aerial plane. A threshold model is applied to enhance the inspectability of printing defects. WPI can eliminate the mask restrictions imposed on OPC solutions by inspection tool limitations in the past. Historically, minimum image restrictions were required to avoid nuisance inspection stops and/or subsequent loss of sensitivity to defects. WPI has the potential to eliminate these limitations by moving the mask defect inspections to the wafer plane. This paper outlines Wafer Plane Inspection technology, and explores the application of this technology to advanced reticle inspection. A total of twelve representative critical layers were inspected using WPI die-to-die mode. The results from scanning these advanced reticles have shown that applying WPI with a pixel size of 90nm (WPI P90) captures all the defects of interest (DOI) with low false defect detection rates. In validating CD predictions, the delta CDs from WPI are compared against Aerial Imaging Measurement System (AIMS), where a good correlation is established between WPI and AIMSTM.
Precision targeting with a tracking adaptive optics scanning laser ophthalmoscope
NASA Astrophysics Data System (ADS)
Hammer, Daniel X.; Ferguson, R. Daniel; Bigelow, Chad E.; Iftimia, Nicusor V.; Ustun, Teoman E.; Noojin, Gary D.; Stolarski, David J.; Hodnett, Harvey M.; Imholte, Michelle L.; Kumru, Semih S.; McCall, Michelle N.; Toth, Cynthia A.; Rockwell, Benjamin A.
2006-02-01
Precise targeting of retinal structures including retinal pigment epithelial cells, feeder vessels, ganglion cells, photoreceptors, and other cells important for light transduction may enable earlier disease intervention with laser therapies and advanced methods for vision studies. A novel imaging system based upon scanning laser ophthalmoscopy (SLO) with adaptive optics (AO) and active image stabilization was designed, developed, and tested in humans and animals. An additional port allows delivery of aberration-corrected therapeutic/stimulus laser sources. The system design includes simultaneous presentation of non-AO, wide-field (~40 deg) and AO, high-magnification (1-2 deg) retinal scans easily positioned anywhere on the retina in a drag-and-drop manner. The AO optical design achieves an error of <0.45 waves (at 800 nm) over +/-6 deg on the retina. A MEMS-based deformable mirror (Boston Micromachines Inc.) is used for wave-front correction. The third generation retinal tracking system achieves a bandwidth of greater than 1 kHz allowing acquisition of stabilized AO images with an accuracy of ~10 μm. Normal adult human volunteers and animals with previously-placed lesions (cynomolgus monkeys) were tested to optimize the tracking instrumentation and to characterize AO imaging performance. Ultrafast laser pulses were delivered to monkeys to characterize the ability to precisely place lesions and stimulus beams. Other advanced features such as real-time image averaging, automatic highresolution mosaic generation, and automatic blink detection and tracking re-lock were also tested. The system has the potential to become an important tool to clinicians and researchers for early detection and treatment of retinal diseases.
Zhang, Xintong; Bi, Anyao; Gao, Quansheng; Zhang, Shuai; Huang, Kunzhu; Liu, Zhiguo; Gao, Tang; Zeng, Wenbin
2016-01-20
The olfactory system of organisms serves as a genetically and anatomically model for studying how sensory input can be translated into behavior output. Some neurologic diseases are considered to be related to olfactory disturbance, especially Alzheimer's disease, Parkinson's disease, multiple sclerosis, and so forth. However, it is still unclear how the olfactory system affects disease generation processes and olfaction delivery processes. Molecular imaging, a modern multidisciplinary technology, can provide valid tools for the early detection and characterization of diseases, evaluation of treatment, and study of biological processes in living subjects, since molecular imaging applies specific molecular probes as a novel approach to produce special data to study biological processes in cellular and subcellular levels. Recently, molecular imaging plays a key role in studying the activation of olfactory system, thus it could help to prevent or delay some diseases. Herein, we present a comprehensive review on the research progress of the imaging probes for visualizing olfactory system, which is classified on different imaging modalities, including PET, MRI, and optical imaging. Additionally, the probes' design, sensing mechanism, and biological application are discussed. Finally, we provide an outlook for future studies in this field.
Performance characterization of image and video analysis systems at Siemens Corporate Research
NASA Astrophysics Data System (ADS)
Ramesh, Visvanathan; Jolly, Marie-Pierre; Greiffenhagen, Michael
2000-06-01
There has been a significant increase in commercial products using imaging analysis techniques to solve real-world problems in diverse fields such as manufacturing, medical imaging, document analysis, transportation and public security, etc. This has been accelerated by various factors: more advanced algorithms, the availability of cheaper sensors, and faster processors. While algorithms continue to improve in performance, a major stumbling block in translating improvements in algorithms to faster deployment of image analysis systems is the lack of characterization of limits of algorithms and how they affect total system performance. The research community has realized the need for performance analysis and there have been significant efforts in the last few years to remedy the situation. Our efforts at SCR have been on statistical modeling and characterization of modules and systems. The emphasis is on both white-box and black box methodologies to evaluate and optimize vision systems. In the first part of this paper we review the literature on performance characterization and then provide an overview of the status of research in performance characterization of image and video understanding systems. The second part of the paper is on performance evaluation of medical image segmentation algorithms. Finally, we highlight some research issues in performance analysis in medical imaging systems.
[The Role of Imaging in Central Nervous System Infections].
Yokota, Hajime; Tazoe, Jun; Yamada, Kei
2015-07-01
Many infections invade the central nervous system. Magnetic resonance imaging (MRI) is the main tool that is used to evaluate infectious lesions of the central nervous system. The useful sequences on MRI are dependent on the locations, such as intra-axial, extra-axial, and spinal cord. For intra-axial lesions, besides the fundamental sequences, including T1-weighted images, T2-weighted images, and fluid-attenuated inversion recovery (FLAIR) images, advanced sequences, such as diffusion-weighted imaging, diffusion tensor imaging, susceptibility-weighted imaging, and MR spectroscopy, can be applied. They are occasionally used as determinants for quick and correct diagnosis. For extra-axial lesions, understanding the differences among 2D-conventional T1-weighted images, 2D-fat-saturated T1-weighted images, 3D-Spin echo sequences, and 3D-Gradient echo sequence after the administration of gadolinium is required to avoid wrong interpretations. FLAIR plus gadolinium is a useful tool for revealing abnormal enhancement on the brain surface. For the spinal cord, the sequences are limited. Evaluating the distribution and time course of the spinal cord are essential for correct diagnoses. We summarize the role of imaging in central nervous system infections and show the pitfalls, key points, and latest information in them on clinical practices.
Vertically integrated photonic multichip module architecture for vision applications
NASA Astrophysics Data System (ADS)
Tanguay, Armand R., Jr.; Jenkins, B. Keith; von der Malsburg, Christoph; Mel, Bartlett; Holt, Gary; O'Brien, John D.; Biederman, Irving; Madhukar, Anupam; Nasiatka, Patrick; Huang, Yunsong
2000-05-01
The development of a truly smart camera, with inherent capability for low latency semi-autonomous object recognition, tracking, and optimal image capture, has remained an elusive goal notwithstanding tremendous advances in the processing power afforded by VLSI technologies. These features are essential for a number of emerging multimedia- based applications, including enhanced augmented reality systems. Recent advances in understanding of the mechanisms of biological vision systems, together with similar advances in hybrid electronic/photonic packaging technology, offer the possibility of artificial biologically-inspired vision systems with significantly different, yet complementary, strengths and weaknesses. We describe herein several system implementation architectures based on spatial and temporal integration techniques within a multilayered structure, as well as the corresponding hardware implementation of these architectures based on the hybrid vertical integration of multiple silicon VLSI vision chips by means of dense 3D photonic interconnections.
MO-FG-207-03: Maximizing the Utility of Integrated PET/MRI in Clinical Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Behr, S.
2015-06-15
The use of integrated PET/MRI systems in clinical applications can best benefit from understanding their technological advances and limitations. The currently available clinical PET/MRI systems have their own characteristics. Thorough analyses of existing technical data and evaluation of necessary performance metrics for quality assurances could be conducted to optimize application-specific PET/MRI protocols. This Symposium will focus on technical advances and limitations of clinical PET/MRI systems, and how this exciting imaging modality can be utilized in applications that can benefit from both PET and MRI. Learning Objectives: To understand the technological advances of clinical PET/MRI systems To correctly identify clinical applicationsmore » that can benefit from PET/MRI To understand ongoing work to further improve the current PET/MRI technology Floris Jansen is a GE Healthcare employee.« less
Vaquero, Juan José; Kinahan, Paul
2015-01-01
Positron emission tomography (PET) imaging is based on detecting two time-coincident high-energy photons from the emission of a positron-emitting radioisotope. The physics of the emission, and the detection of the coincident photons, give PET imaging unique capabilities for both very high sensitivity and accurate estimation of the in vivo concentration of the radiotracer. PET imaging has been widely adopted as an important clinical modality for oncological, cardiovascular, and neurological applications. PET imaging has also become an important tool in preclinical studies, particularly for investigating murine models of disease and other small-animal models. However, there are several challenges to using PET imaging systems. These include the fundamental trade-offs between resolution and noise, the quantitative accuracy of the measurements, and integration with X-ray computed tomography and magnetic resonance imaging. In this article, we review how researchers and industry are addressing these challenges.
Vaquero, Juan José; Kinahan, Paul
2017-01-01
Positron emission tomography (PET) imaging is based on detecting two time-coincident high-energy photons from the emission of a positron-emitting radioisotope. The physics of the emission, and the detection of the coincident photons, give PET imaging unique capabilities for both very high sensitivity and accurate estimation of the in vivo concentration of the radiotracer. PET imaging has been widely adopted as an important clinical modality for oncological, cardiovascular, and neurological applications. PET imaging has also become an important tool in preclinical studies, particularly for investigating murine models of disease and other small-animal models. However, there are several challenges to using PET imaging systems. These include the fundamental trade-offs between resolution and noise, the quantitative accuracy of the measurements, and integration with X-ray computed tomography and magnetic resonance imaging. In this article, we review how researchers and industry are addressing these challenges. PMID:26643024
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edelen, A. L.; Biedron, S. G.; Milton, S. V.
At present, a variety of image-based diagnostics are used in particle accelerator systems. Often times, these are viewed by a human operator who then makes appropriate adjustments to the machine. Given recent advances in using convolutional neural networks (CNNs) for image processing, it should be possible to use image diagnostics directly in control routines (NN-based or otherwise). This is especially appealing for non-intercepting diagnostics that could run continuously during beam operation. Here, we show results of a first step toward implementing such a controller: our trained CNN can predict multiple simulated downstream beam parameters at the Fermilab Accelerator Science andmore » Technology (FAST) facility's low energy beamline using simulated virtual cathode laser images, gun phases, and solenoid strengths.« less
Magnetic Nanoparticles for Multi-Imaging and Drug Delivery
Lee, Jae-Hyun; Kim, Ji-wook; Cheon, Jinwoo
2013-01-01
Various bio-medical applications of magnetic nanoparticles have been explored during the past few decades. As tools that hold great potential for advancing biological sciences, magnetic nanoparticles have been used as platform materials for enhanced magnetic resonance imaging (MRI) agents, biological separation and magnetic drug delivery systems, and magnetic hyperthermia treatment. Furthermore, approaches that integrate various imaging and bioactive moieties have been used in the design of multi-modality systems, which possess synergistically enhanced properties such as better imaging resolution and sensitivity, molecular recognition capabilities, stimulus responsive drug delivery with on-demand control, and spatio-temporally controlled cell signal activation. Below, recent studies that focus on the design and synthesis of multi-mode magnetic nanoparticles will be briefly reviewed and their potential applications in the imaging and therapy areas will be also discussed. PMID:23579479
Systemic and Local Vaccination against Breast Cancer with Minimum Autoimmune Sequelae
2013-12-01
2012;61:899-904. 29. Matsushima H, Ogawa Y, Miyazaki T, Tanaka H, Nishibu A, Takashima A. Intravital imaging of IL-1beta production in skin. The Journal...their activities to enhance treatment outcome. In parallel with this progress is the advancement in image guided percutaneous cryoablation that...caudual and rostral mammary tissue relative to tumor (10 μL/injection site). Imaging and histology of cryoablated tumors: Tumors were removed from WT or
NASA Astrophysics Data System (ADS)
Roggemann, M.; Soehnel, G.; Archer, G.
Atmospheric turbulence degrades the resolution of images of space objects far beyond that predicted by diffraction alone. Adaptive optics telescopes have been widely used for compensating these effects, but as users seek to extend the envelopes of operation of adaptive optics telescopes to more demanding conditions, such as daylight operation, and operation at low elevation angles, the level of compensation provided will degrade. We have been investigating the use of advanced wave front reconstructors and post detection image reconstruction to overcome the effects of turbulence on imaging systems in these more demanding scenarios. In this paper we show results comparing the optical performance of the exponential reconstructor, the least squares reconstructor, and two versions of a reconstructor based on the stochastic parallel gradient descent algorithm in a closed loop adaptive optics system using a conventional continuous facesheet deformable mirror and a Hartmann sensor. The performance of these reconstructors has been evaluated under a range of source visual magnitudes and zenith angles ranging up to 70 degrees. We have also simulated satellite images, and applied speckle imaging, multi-frame blind deconvolution algorithms, and deconvolution algorithms that presume the average point spread function is known to compute object estimates. Our work thus far indicates that the combination of adaptive optics and post detection image processing will extend the useful envelope of the current generation of adaptive optics telescopes.
NASA Astrophysics Data System (ADS)
Peter, Jörg; Semmler, Wolfhard
2007-10-01
Alongside and in part motivated by recent advances in molecular diagnostics, the development of dual-modality instruments for patient and dedicated small animal imaging has gained attention by diverse research groups. The desire for such systems is high not only to link molecular or functional information with the anatomical structures, but also for detecting multiple molecular events simultaneously at shorter total acquisition times. While PET and SPECT have been integrated successfully with X-ray CT, the advance of optical imaging approaches (OT) and the integration thereof into existing modalities carry a high application potential, particularly for imaging small animals. A multi-modality Monte Carlo (MC) simulation approach at present has been developed that is able to trace high-energy (keV) as well as optical (eV) photons concurrently within identical phantom representation models. We show that the involved two approaches for ray-tracing keV and eV photons can be integrated into a unique simulation framework which enables both photon classes to be propagated through various geometry models representing both phantoms and scanners. The main advantage of such integrated framework for our specific application is the investigation of novel tomographic multi-modality instrumentation intended for in vivo small animal imaging through time-resolved MC simulation upon identical phantom geometries. Design examples are provided for recently proposed SPECT-OT and PET-OT imaging systems.
Munro, Peter R.T.; Ignatyev, Konstantin; Speller, Robert D.; Olivo, Alessandro
2013-01-01
X-ray phase contrast imaging is a very promising technique which may lead to significant advancements in medical imaging. One of the impediments to the clinical implementation of the technique is the general requirement to have an x-ray source of high coherence. The radiation physics group at UCL is currently developing an x-ray phase contrast imaging technique which works with laboratory x-ray sources. Validation of the system requires extensive modelling of relatively large samples of tissue. To aid this, we have undertaken a study of when geometrical optics may be employed to model the system in order to avoid the need to perform a computationally expensive wave optics calculation. In this paper, we derive the relationship between the geometrical and wave optics model for our system imaging an infinite cylinder. From this model we are able to draw conclusions regarding the general applicability of the geometrical optics approximation. PMID:20389424
Munro, Peter R T; Ignatyev, Konstantin; Speller, Robert D; Olivo, Alessandro
2010-03-01
X-ray phase contrast imaging is a very promising technique which may lead to significant advancements in medical imaging. One of the impediments to the clinical implementation of the technique is the general requirement to have an x-ray source of high coherence. The radiation physics group at UCL is currently developing an x-ray phase contrast imaging technique which works with laboratory x-ray sources. Validation of the system requires extensive modelling of relatively large samples of tissue. To aid this, we have undertaken a study of when geometrical optics may be employed to model the system in order to avoid the need to perform a computationally expensive wave optics calculation. In this paper, we derive the relationship between the geometrical and wave optics model for our system imaging an infinite cylinder. From this model we are able to draw conclusions regarding the general applicability of the geometrical optics approximation.
Image Fusion Algorithms Using Human Visual System in Transform Domain
NASA Astrophysics Data System (ADS)
Vadhi, Radhika; Swamy Kilari, Veera; Samayamantula, Srinivas Kumar
2017-08-01
The endeavor of digital image fusion is to combine the important visual parts from various sources to advance the visibility eminence of the image. The fused image has a more visual quality than any source images. In this paper, the Human Visual System (HVS) weights are used in the transform domain to select appropriate information from various source images and then to attain a fused image. In this process, mainly two steps are involved. First, apply the DWT to the registered source images. Later, identify qualitative sub-bands using HVS weights. Hence, qualitative sub-bands are selected from different sources to form high quality HVS based fused image. The quality of the HVS based fused image is evaluated with general fusion metrics. The results show the superiority among the state-of-the art resolution Transforms (MRT) such as Discrete Wavelet Transform (DWT), Stationary Wavelet Transform (SWT), Contourlet Transform (CT), and Non Sub Sampled Contourlet Transform (NSCT) using maximum selection fusion rule.
NASA Astrophysics Data System (ADS)
Lynam, Jeff R.
2001-09-01
A more highly integrated, electro-optical sensor suite using Laser Illuminated Viewing and Ranging (LIVAR) techniques is being developed under the Army Advanced Concept Technology- II (ACT-II) program for enhanced manportable target surveillance and identification. The ManPortable LIVAR system currently in development employs a wide-array of sensor technologies that provides the foot-bound soldier and UGV significant advantages and capabilities in lightweight, fieldable, target location, ranging and imaging systems. The unit incorporates a wide field-of-view, 5DEG x 3DEG, uncooled LWIR passive sensor for primary target location. Laser range finding and active illumination is done with a triggered, flash-lamp pumped, eyesafe micro-laser operating in the 1.5 micron region, and is used in conjunction with a range-gated, electron-bombarded CCD digital camera to then image the target objective in a more- narrow, 0.3$DEG, field-of-view. Target range determination is acquired using the integrated LRF and a target position is calculated using data from other onboard devices providing GPS coordinates, tilt, bank and corrected magnetic azimuth. Range gate timing and coordinated receiver optics focus control allow for target imaging operations to be optimized. The onboard control electronics provide power efficient, system operations for extended field use periods from the internal, rechargeable battery packs. Image data storage, transmission, and processing performance capabilities are also being incorporated to provide the best all-around support, for the electronic battlefield, in this type of system. The paper will describe flash laser illumination technology, EBCCD camera technology with flash laser detection system, and image resolution improvement through frame averaging.
NASA Astrophysics Data System (ADS)
De Luccia, Frank J.; Houchin, Scott; Porter, Brian C.; Graybill, Justin; Haas, Evan; Johnson, Patrick D.; Isaacson, Peter J.; Reth, Alan D.
2016-05-01
The GOES-R Flight Project has developed an Image Navigation and Registration (INR) Performance Assessment Tool Set (IPATS) for measuring Advanced Baseline Imager (ABI) and Geostationary Lightning Mapper (GLM) INR performance metrics in the post-launch period for performance evaluation and long term monitoring. For ABI, these metrics are the 3-sigma errors in navigation (NAV), channel-to-channel registration (CCR), frame-to-frame registration (FFR), swath-to-swath registration (SSR), and within frame registration (WIFR) for the Level 1B image products. For GLM, the single metric of interest is the 3-sigma error in the navigation of background images (GLM NAV) used by the system to navigate lightning strikes. 3-sigma errors are estimates of the 99. 73rd percentile of the errors accumulated over a 24 hour data collection period. IPATS utilizes a modular algorithmic design to allow user selection of data processing sequences optimized for generation of each INR metric. This novel modular approach minimizes duplication of common processing elements, thereby maximizing code efficiency and speed. Fast processing is essential given the large number of sub-image registrations required to generate INR metrics for the many images produced over a 24 hour evaluation period. Another aspect of the IPATS design that vastly reduces execution time is the off-line propagation of Landsat based truth images to the fixed grid coordinates system for each of the three GOES-R satellite locations, operational East and West and initial checkout locations. This paper describes the algorithmic design and implementation of IPATS and provides preliminary test results.
NASA Technical Reports Server (NTRS)
DeLuccia, Frank J.; Houchin, Scott; Porter, Brian C.; Graybill, Justin; Haas, Evan; Johnson, Patrick D.; Isaacson, Peter J.; Reth, Alan D.
2016-01-01
The GOES-R Flight Project has developed an Image Navigation and Registration (INR) Performance Assessment Tool Set (IPATS) for measuring Advanced Baseline Imager (ABI) and Geostationary Lightning Mapper (GLM) INR performance metrics in the post-launch period for performance evaluation and long term monitoring. For ABI, these metrics are the 3-sigma errors in navigation (NAV), channel-to-channel registration (CCR), frame-to-frame registration (FFR), swath-to-swath registration (SSR), and within frame registration (WIFR) for the Level 1B image products. For GLM, the single metric of interest is the 3-sigma error in the navigation of background images (GLM NAV) used by the system to navigate lightning strikes. 3-sigma errors are estimates of the 99.73rd percentile of the errors accumulated over a 24 hour data collection period. IPATS utilizes a modular algorithmic design to allow user selection of data processing sequences optimized for generation of each INR metric. This novel modular approach minimizes duplication of common processing elements, thereby maximizing code efficiency and speed. Fast processing is essential given the large number of sub-image registrations required to generate INR metrics for the many images produced over a 24 hour evaluation period. Another aspect of the IPATS design that vastly reduces execution time is the off-line propagation of Landsat based truth images to the fixed grid coordinates system for each of the three GOES-R satellite locations, operational East and West and initial checkout locations. This paper describes the algorithmic design and implementation of IPATS and provides preliminary test results.
NASA Technical Reports Server (NTRS)
De Luccia, Frank J.; Houchin, Scott; Porter, Brian C.; Graybill, Justin; Haas, Evan; Johnson, Patrick D.; Isaacson, Peter J.; Reth, Alan D.
2016-01-01
The GOES-R Flight Project has developed an Image Navigation and Registration (INR) Performance Assessment Tool Set (IPATS) for measuring Advanced Baseline Imager (ABI) and Geostationary Lightning Mapper (GLM) INR performance metrics in the post-launch period for performance evaluation and long term monitoring. For ABI, these metrics are the 3-sigma errors in navigation (NAV), channel-to-channel registration (CCR), frame-to-frame registration (FFR), swath-to-swath registration (SSR), and within frame registration (WIFR) for the Level 1B image products. For GLM, the single metric of interest is the 3-sigma error in the navigation of background images (GLM NAV) used by the system to navigate lightning strikes. 3-sigma errors are estimates of the 99.73rd percentile of the errors accumulated over a 24-hour data collection period. IPATS utilizes a modular algorithmic design to allow user selection of data processing sequences optimized for generation of each INR metric. This novel modular approach minimizes duplication of common processing elements, thereby maximizing code efficiency and speed. Fast processing is essential given the large number of sub-image registrations required to generate INR metrics for the many images produced over a 24-hour evaluation period. Another aspect of the IPATS design that vastly reduces execution time is the off-line propagation of Landsat based truth images to the fixed grid coordinates system for each of the three GOES-R satellite locations, operational East and West and initial checkout locations. This paper describes the algorithmic design and implementation of IPATS and provides preliminary test results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hall, G. N.; Izumi, N.; Landen, O. L.
2016-08-03
Compton radiography provides a means to measure the integrity, ρR and symmetry of the DT fuel in an inertial confinement fusion implosion near peak compression. Upcoming experiments at the National Ignition Facility will use the ARC (Advanced Radiography Capability) laser to drive backlighter sources for Compton radiography experiments, and will use the newly commissioned AXIS (ARC X-ray Imaging System) instrument as the detector. AXIS uses a dual-MCP (micro channel plate) to provide gating and high DQE at the 40–200keV x-ray range required for Compton radiography, but introduces many effects that contribute to the spatial resolution. Here, experiments were performed atmore » energies relevant to Compton radiography to begin characterization of the spatial resolution of the AXIS diagnostic.« less
Yin, X-X; Zhang, Y; Cao, J; Wu, J-L; Hadjiloucas, S
2016-12-01
We provide a comprehensive account of recent advances in biomedical image analysis and classification from two complementary imaging modalities: terahertz (THz) pulse imaging and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). The work aims to highlight underlining commonalities in both data structures so that a common multi-channel data fusion framework can be developed. Signal pre-processing in both datasets is discussed briefly taking into consideration advances in multi-resolution analysis and model based fractional order calculus system identification. Developments in statistical signal processing using principal component and independent component analysis are also considered. These algorithms have been developed independently by the THz-pulse imaging and DCE-MRI communities, and there is scope to place them in a common multi-channel framework to provide better software standardization at the pre-processing de-noising stage. A comprehensive discussion of feature selection strategies is also provided and the importance of preserving textural information is highlighted. Feature extraction and classification methods taking into consideration recent advances in support vector machine (SVM) and extreme learning machine (ELM) classifiers and their complex extensions are presented. An outlook on Clifford algebra classifiers and deep learning techniques suitable to both types of datasets is also provided. The work points toward the direction of developing a new unified multi-channel signal processing framework for biomedical image analysis that will explore synergies from both sensing modalities for inferring disease proliferation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
The application of a unique flow modeling technique to complex combustion systems
NASA Astrophysics Data System (ADS)
Waslo, J.; Hasegawa, T.; Hilt, M. B.
1986-06-01
This paper describes the application of a unique three-dimensional water flow modeling technique to the study of complex fluid flow patterns within an advanced gas turbine combustor. The visualization technique uses light scattering, coupled with real-time image processing, to determine flow fields. Additional image processing is used to make concentration measurements within the combustor.
Multimodality Imaging in Cardiac Sarcoidosis: Is There a Winner?
Perez, Irving E.; Garcia, Mario J.; Taub, Cynthia C.
2016-01-01
Sarcoidosis is a multisystem granulomatous disease of unknown cause that can affect the heart. Cardiac sarcoidosis may be present in as many as 25% of patients with systemic sarcoidosis, and it is frequently underdiagnosed. The early and accurate diagnosis of myocardial involvement is challenging. Advanced imaging techniques play important roles in the diagnosis and management of patients with cardiac sarcoidosis. PMID:25784137
How to design a horizontal patient-focused hospital.
Murphy, E C; Ruflin, P
1993-05-01
Work Imaging is an executive information system for analyzing the cost effectiveness and efficiency of work processes and structures in health care. Advanced Work Imaging relational database technology allows managers and employees to take a sample work activities profile organization-wide. This is married to financial and organizational data to produce images of work within and across all functions, departments, and levels. The images are benchmarked against best practice data to provide insight on the quality and cost efficiency of work practice patterns, from individual roles to departmental skill mix to organization-wide service processes.
Big–deep–smart data in imaging for guiding materials design
Kalinin, Sergei V.; Sumpter, Bobby G.; Archibald, Richard K.
2015-09-23
Harnessing big data, deep data, and smart data from state-of-the-art imaging might accelerate the design and realization of advanced functional materials. Here we discuss new opportunities in materials design enabled by the availability of big data in imaging and data analytics approaches, including their limitations, in material systems of practical interest. We specifically focus on how these tools might help realize new discoveries in a timely manner. Such methodologies are particularly appropriate to explore in light of continued improvements in atomistic imaging, modelling and data analytics methods.
Big-deep-smart data in imaging for guiding materials design.
Kalinin, Sergei V; Sumpter, Bobby G; Archibald, Richard K
2015-10-01
Harnessing big data, deep data, and smart data from state-of-the-art imaging might accelerate the design and realization of advanced functional materials. Here we discuss new opportunities in materials design enabled by the availability of big data in imaging and data analytics approaches, including their limitations, in material systems of practical interest. We specifically focus on how these tools might help realize new discoveries in a timely manner. Such methodologies are particularly appropriate to explore in light of continued improvements in atomistic imaging, modelling and data analytics methods.
Big-deep-smart data in imaging for guiding materials design
NASA Astrophysics Data System (ADS)
Kalinin, Sergei V.; Sumpter, Bobby G.; Archibald, Richard K.
2015-10-01
Harnessing big data, deep data, and smart data from state-of-the-art imaging might accelerate the design and realization of advanced functional materials. Here we discuss new opportunities in materials design enabled by the availability of big data in imaging and data analytics approaches, including their limitations, in material systems of practical interest. We specifically focus on how these tools might help realize new discoveries in a timely manner. Such methodologies are particularly appropriate to explore in light of continued improvements in atomistic imaging, modelling and data analytics methods.
Real-time Magnetic Resonance Imaging Guidance for Cardiovascular Procedures
Horvath, Keith A.; Li, Ming; Mazilu, Dumitru; Guttman, Michael A.; McVeigh, Elliot R.
2008-01-01
Magnetic resonance imaging (MRI) of the cardiovascular system has proven to be an invaluable diagnostic tool. Given the ability to allow for real-time imaging, MRI guidance of intraoperative procedures can provide superb visualization which can facilitate a variety of interventions and minimize the trauma of the operations as well. In addition to the anatomic detail, MRI can provide intraoperative assessment of organ and device function. Instruments and devices can be marked to enhance visualization and tracking. All of which is an advance over standard x-ray or ultrasonic imaging. PMID:18395633
Big–deep–smart data in imaging for guiding materials design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalinin, Sergei V.; Sumpter, Bobby G.; Archibald, Richard K.
Harnessing big data, deep data, and smart data from state-of-the-art imaging might accelerate the design and realization of advanced functional materials. Here we discuss new opportunities in materials design enabled by the availability of big data in imaging and data analytics approaches, including their limitations, in material systems of practical interest. We specifically focus on how these tools might help realize new discoveries in a timely manner. Such methodologies are particularly appropriate to explore in light of continued improvements in atomistic imaging, modelling and data analytics methods.
Miller, Brian W.; Moore, Jared W.; Barrett, Harrison H.; Fryé, Teresa; Adler, Steven; Sery, Joe; Furenlid, Lars R.
2011-01-01
Advances in 3D rapid-prototyping printers, 3D modeling software, and casting techniques allow for cost-effective fabrication of custom components in gamma-ray and X-ray imaging systems. Applications extend to new fabrication methods for custom collimators, pinholes, calibration and resolution phantoms, mounting and shielding components, and imaging apertures. Details of the fabrication process for these components, specifically the 3D printing process, cold casting with a tungsten epoxy, and lost-wax casting in platinum are presented. PMID:22199414
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petrie, G.M.; Perry, E.M.; Kirkham, R.R.
1997-09-01
This report describes the work performed at the Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy`s Office of Nonproliferation and National Security, Office of Research and Development (NN-20). The work supports the NN-20 Broad Area Search and Analysis, a program initiated by NN-20 to improve the detection and classification of undeclared weapons facilities. Ongoing PNNL research activities are described in three main components: image collection, information processing, and change analysis. The Multispectral Airborne Imaging System, which was developed to collect georeferenced imagery in the visible through infrared regions of the spectrum, and flown on a light aircraftmore » platform, will supply current land use conditions. The image information extraction software (dynamic clustering and end-member extraction) uses imagery, like the multispectral data collected by the PNNL multispectral system, to efficiently generate landcover information. The advanced change detection uses a priori (benchmark) information, current landcover conditions, and user-supplied rules to rank suspect areas by probable risk of undeclared facilities or proliferation activities. These components, both separately and combined, provide important tools for improving the detection of undeclared facilities.« less
Focal Plane Detectors for the Advanced Gamma-Ray Imaging System (AGIS)
NASA Astrophysics Data System (ADS)
Wagner, Robert G.; AGIS Photodetector Group; Byrum, K.; Drake, G.; Falcone, A.; Funk, S.; Horan, D.; Mukherjee, R.; Tajima, H.; Williams, D.
2008-03-01
The Advanced Gamma-Ray Imaging System (AGIS) is a concept for the next generation observatory in ground-based very high energy gamma-ray astronomy. It is being designed to achieve a significant improvement in sensitivity compared to current Imaging Air Cherenkov Telescope (IACT) Arrays. One of the main requirements in order that AGIS fulfill this goal will be to achieve higher angular resolution than current IACTs. Simulations show that a substantial improvement in angular resolution may be achieved if the pixel size is reduced to less than 0.05 deg, i.e. two to three times smaller than the pixel size of current IACT cameras. With finer pixelation and the plan to deploy on the order of 100 telescopes in the AGIS array, the channel count will exceed 1,000,000 imaging pixels. High uniformity and long mean time-to-failure will be important aspects of a successful photodetector technology choice. Here we present alternatives being considered for AGIS, including both silicon photomultipliers (SiPMs) and multi-anode photomultipliers (MAPMTs). Results from laboratory testing of MAPMTs and SiPMs are presented along with results from the first incorporation of these devices in cameras on test bed Cherenkov telescopes.
Active confocal imaging for visual prostheses
Jung, Jae-Hyun; Aloni, Doron; Yitzhaky, Yitzhak; Peli, Eli
2014-01-01
There are encouraging advances in prosthetic vision for the blind, including retinal and cortical implants, and other “sensory substitution devices” that use tactile or electrical stimulation. However, they all have low resolution, limited visual field, and can display only few gray levels (limited dynamic range), severely restricting their utility. To overcome these limitations, image processing or the imaging system could emphasize objects of interest and suppress the background clutter. We propose an active confocal imaging system based on light-field technology that will enable a blind user of any visual prosthesis to efficiently scan, focus on, and “see” only an object of interest while suppressing interference from background clutter. The system captures three-dimensional scene information using a light-field sensor and displays only an in-focused plane with objects in it. After capturing a confocal image, a de-cluttering process removes the clutter based on blur difference. In preliminary experiments we verified the positive impact of confocal-based background clutter removal on recognition of objects in low resolution and limited dynamic range simulated phosphene images. Using a custom-made multiple-camera system, we confirmed that the concept of a confocal de-cluttered image can be realized effectively using light field imaging. PMID:25448710
Spectral-domain optical coherence tomography for endoscopic imaging
NASA Astrophysics Data System (ADS)
Chen, Xiaodong; Li, Qiao; Li, Wanhui; Wang, Yi; Yu, Daoyin
2007-02-01
Optical coherence tomography (OCT) is an emerging cross-sectional imaging technology. It uses broadband light sources to achieve axial image resolutions on the few micron scale. OCT is widely applied to medical imaging, it can get cross-sectional image of bio-tissue (transparent and turbid) with non-invasion and non-touch. In this paper, the principle of OCT is presented and the crucial parameters of the system are discussed in theory. With analysis of different methods and medical endoscopic system's feature, a design which combines the spectral domain OCT (SDOCT) technique and endoscopy is put forward. SDOCT provides direct access to the spectrum of the optical signal. It is shown to provide higher imaging speed when compared to time domain OCT. At the meantime, a novel OCT probe which uses advanced micromotor to drive reflecting prism is designed according to alimentary tract endoscopic feature. A simple optical coherence tomography system has been developed based on a fiber-based Michelson interferometer and spectrometer. An experiment which uses motor to drive prism to realize rotating imaging is done. Images obtained with this spectral interferometer are presented. The results verify the feasibility of endoscopic optical coherence tomography system with rotating scan.
Geographic variation in cancer-related imaging: Veterans Affairs health care system versus Medicare.
McWilliams, J Michael; Dalton, Jesse B; Landrum, Mary Beth; Frakt, Austin B; Pizer, Steven D; Keating, Nancy L
2014-12-02
Geographic variations in use of medical services have been interpreted as indirect evidence of wasteful care. Less overuse of services, however, may not be reliably associated with less geographic variation. To compare average use and geographic variation in use of cancer-related imaging between fee-for-service Medicare and the Department of Veterans Affairs (VA) health care system. Observational analysis of cancer-related imaging from 2003 to 2005 using Medicare and VA utilization data linked to cancer registry data. Multilevel models, adjusted for sociodemographic and tumor characteristics, were used to estimate mean differences in annual imaging use between cohorts of Medicare and VA patients within geographic areas and variation in use across areas for each cohort. 40 hospital referral regions. Older men with lung, colorectal, or prostate cancer, including 34,475 traditional Medicare beneficiaries (Medicare cohort) and 6835 VA patients (VA cohort). Per-patient count of imaging studies for which lung, colorectal, or prostate cancer was the primary diagnosis (each study weighted by a standardized price), and a direct measure of overuse-advanced imaging for prostate cancer at low risk for metastasis. Adjusted annual use of cancer-related imaging was lower in the VA cohort than in the Medicare cohort (price-weighted count, $197 vs. $379 per patient; P < 0.001), as was annual use of advanced imaging for prostate cancer at low risk for metastasis ($41 vs. $117 per patient; P < 0.001). Geographic variation in cancer-related imaging use was similar in magnitude in the VA and Medicare cohorts. Observational study design. Use of cancer-related imaging was lower in the VA health care system than in fee-for-service Medicare, but lower use was not associated with less geographic variation. Geographic variation in service use may not be a reliable indicator of the extent of overuse. Doris Duke Charitable Foundation and Department of Veterans Affairs Office of Policy and Planning.
Plant phenomics: an overview of image acquisition technologies and image data analysis algorithms
Perez-Sanz, Fernando; Navarro, Pedro J
2017-01-01
Abstract The study of phenomes or phenomics has been a central part of biology. The field of automatic phenotype acquisition technologies based on images has seen an important advance in the last years. As with other high-throughput technologies, it addresses a common set of problems, including data acquisition and analysis. In this review, we give an overview of the main systems developed to acquire images. We give an in-depth analysis of image processing with its major issues and the algorithms that are being used or emerging as useful to obtain data out of images in an automatic fashion. PMID:29048559
NASA Astrophysics Data System (ADS)
Tian, Biao; Liu, Yang; Xu, Shiyou; Chen, Zengping
2014-01-01
Interferometric inverse synthetic aperture radar (InISAR) imaging provides complementary information to monostatic inverse synthetic aperture radar (ISAR) imaging. This paper proposes a new InISAR imaging system for space targets based on wideband direct sampling using two antennas. The system is easy to realize in engineering since the motion trajectory of space targets can be known in advance, which is simpler than that of three receivers. In the preprocessing step, high speed movement compensation is carried out by designing an adaptive matched filter containing speed that is obtained from the narrow band information. Then, the coherent processing and keystone transform for ISAR imaging are adopted to reserve the phase history of each antenna. Through appropriate collocation of the system, image registration and phase unwrapping can be avoided. Considering the situation not to be satisfied, the influence of baseline variance is analyzed and compensation method is adopted. The corresponding size can be achieved by interferometric processing of the two complex ISAR images. Experimental results prove the validity of the analysis and the three-dimensional imaging algorithm.
Blur spot limitations in distal endoscope sensors
NASA Astrophysics Data System (ADS)
Yaron, Avi; Shechterman, Mark; Horesh, Nadav
2006-02-01
In years past, the picture quality of electronic video systems was limited by the image sensor. In the present, the resolution of miniature image sensors, as in medical endoscopy, is typically superior to the resolution of the optical system. This "excess resolution" is utilized by Visionsense to create stereoscopic vision. Visionsense has developed a single chip stereoscopic camera that multiplexes the horizontal dimension of the image sensor into two (left and right) images, compensates the blur phenomena, and provides additional depth resolution without sacrificing planar resolution. The camera is based on a dual-pupil imaging objective and an image sensor coated by an array of microlenses (a plenoptic camera). The camera has the advantage of being compact, providing simultaneous acquisition of left and right images, and offering resolution comparable to a dual chip stereoscopic camera with low to medium resolution imaging lenses. A stereoscopic vision system provides an improved 3-dimensional perspective of intra-operative sites that is crucial for advanced minimally invasive surgery and contributes to surgeon performance. An additional advantage of single chip stereo sensors is improvement of tolerance to electronic signal noise.
Image acquisition system using on sensor compressed sampling technique
NASA Astrophysics Data System (ADS)
Gupta, Pravir Singh; Choi, Gwan Seong
2018-01-01
Advances in CMOS technology have made high-resolution image sensors possible. These image sensors pose significant challenges in terms of the amount of raw data generated, energy efficiency, and frame rate. This paper presents a design methodology for an imaging system and a simplified image sensor pixel design to be used in the system so that the compressed sensing (CS) technique can be implemented easily at the sensor level. This results in significant energy savings as it not only cuts the raw data rate but also reduces transistor count per pixel; decreases pixel size; increases fill factor; simplifies analog-to-digital converter, JPEG encoder, and JPEG decoder design; decreases wiring; and reduces the decoder size by half. Thus, CS has the potential to increase the resolution of image sensors for a given technology and die size while significantly decreasing the power consumption and design complexity. We show that it has potential to reduce power consumption by about 23% to 65%.
Ten-year experience of remote medical education in Asia.
Shimizu, Shuji; Kudo, Kuriko; Antoku, Yasuaki; Hu, Min; Okamura, Koji; Nakashima, Naoki
2014-11-01
Moving images are often essential in medical education, to learn new procedures and advanced skills, but, in the past, high-quality movie transmission was technically much more challenging than transmitting still pictures because of technological limitations and cost. We established a new system, taking advantage of two advanced technologies, the digital video transport system (DVTS) and the research and education network (REN), which enabled satisfactory telemedicine on a routine basis. Between 2003 and 2013, we organized 360 programs connecting 221 hospitals or facilities in 34 countries in Asia and beyond. The two main areas were endoscopy and surgery, with 113 (31%) and 106 (29%) events, respectively. Teleconferences made up 76% of the total events, with the remaining 24% being live demonstrations. Multiple connections were more popular (63%) than one-to-one connections (37%). With continuous technological development, new high-definition H.323 and Vidyo(®) (Hackensack, NJ) systems were used in 47% and 39% of events in 2011 and 2012, respectively. The evaluation by questionnaires was favorable on image and sound quality as well as programs. Remote medical education with moving images was well accepted in Asia with changing needs and developing technologies.
Ten-Year Experience of Remote Medical Education in Asia
Kudo, Kuriko; Antoku, Yasuaki; Hu, Min; Okamura, Koji; Nakashima, Naoki
2014-01-01
Abstract Background: Moving images are often essential in medical education, to learn new procedures and advanced skills, but, in the past, high-quality movie transmission was technically much more challenging than transmitting still pictures because of technological limitations and cost. Materials and Methods: We established a new system, taking advantage of two advanced technologies, the digital video transport system (DVTS) and the research and education network (REN), which enabled satisfactory telemedicine on a routine basis. Results: Between 2003 and 2013, we organized 360 programs connecting 221 hospitals or facilities in 34 countries in Asia and beyond. The two main areas were endoscopy and surgery, with 113 (31%) and 106 (29%) events, respectively. Teleconferences made up 76% of the total events, with the remaining 24% being live demonstrations. Multiple connections were more popular (63%) than one-to-one connections (37%). With continuous technological development, new high-definition H.323 and Vidyo® (Hackensack, NJ) systems were used in 47% and 39% of events in 2011 and 2012, respectively. The evaluation by questionnaires was favorable on image and sound quality as well as programs. Conclusions: Remote medical education with moving images was well accepted in Asia with changing needs and developing technologies. PMID:25272006
Intelligent Image Analysis for Image-Guided Laser Hair Removal and Skin Therapy
NASA Technical Reports Server (NTRS)
Walker, Brian; Lu, Thomas; Chao, Tien-Hsin
2012-01-01
We present the development of advanced automatic target recognition (ATR) algorithms for the hair follicles identification in digital skin images to accurately direct the laser beam to remove the hair. The ATR system first performs a wavelet filtering to enhance the contrast of the hair features in the image. The system then extracts the unique features of the targets and sends the features to an Adaboost based classifier for training and recognition operations. The ATR system automatically classifies the hair, moles, or other skin lesion and provides the accurate coordinates of the intended hair follicle locations. The coordinates can be used to guide a scanning laser to focus energy only on the hair follicles. The intended benefit would be to protect the skin from unwanted laser exposure and to provide more effective skin therapy.
Advanced Image Processing for NASA Applications
NASA Technical Reports Server (NTRS)
LeMoign, Jacqueline
2007-01-01
The future of space exploration will involve cooperating fleets of spacecraft or sensor webs geared towards coordinated and optimal observation of Earth Science phenomena. The main advantage of such systems is to utilize multiple viewing angles as well as multiple spatial and spectral resolutions of sensors carried on multiple spacecraft but acting collaboratively as a single system. Within this framework, our research focuses on all areas related to sensing in collaborative environments, which means systems utilizing intracommunicating spatially distributed sensor pods or crafts being deployed to monitor or explore different environments. This talk will describe the general concept of sensing in collaborative environments, will give a brief overview of several technologies developed at NASA Goddard Space Flight Center in this area, and then will concentrate on specific image processing research related to that domain, specifically image registration and image fusion.
Data Services - Naval Oceanography Portal
section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You the Earth's surface for any date and time. Apparent Disk of Solar System Object Creates a synthetic image of the telescopic appearance of the Moon or other solar system object for specified date and time
NASA Oceanic Processes Program, fiscal year 1983
NASA Technical Reports Server (NTRS)
Nelson, R. M. (Editor); Pieri, D. C. (Editor)
1984-01-01
Accomplishments, activities, and plans are highlighted for studies of ocean circulation, air sea interaction, ocean productivity, and sea ice. Flight projects discussed include TOPEX, the ocean color imager, the advanced RF tracking system, the NASA scatterometer, and the pilot ocean data system. Over 200 papers generated by the program are listed.
A Checklist for Successful Quantitative Live Cell Imaging in Systems Biology
Sung, Myong-Hee
2013-01-01
Mathematical modeling of signaling and gene regulatory networks has provided unique insights about systems behaviors for many cell biological problems of medical importance. Quantitative single cell monitoring has a crucial role in advancing systems modeling of molecular networks. However, due to the multidisciplinary techniques that are necessary for adaptation of such systems biology approaches, dissemination to a wide research community has been relatively slow. In this essay, I focus on some technical aspects that are often under-appreciated, yet critical in harnessing live cell imaging methods to achieve single-cell-level understanding and quantitative modeling of molecular networks. The importance of these technical considerations will be elaborated with examples of successes and shortcomings. Future efforts will benefit by avoiding some pitfalls and by utilizing the lessons collectively learned from recent applications of imaging in systems biology. PMID:24709701
Combined use of backscattered and transmitted images in x-ray personnel screening systems
NASA Astrophysics Data System (ADS)
Tracey, B.; Schiefele, Markus; Alvino, Christopher; Miller, Eric; Al-Kofani, Omar
2012-06-01
Current aviation security relies heavily on personnel screening using X-ray backscatter systems or other advanced imaging technologies. Passenger privacy concerns and screening times can be reduced through the use of low-dose twosided X-ray backscatter (Bx) systems, which also have the ability to collect transmission (Tx) X-ray. Bx images reveal objects placed on the body, such as contraband and security threats, as well as anatomical features at or close to the surface, such as lungs cavities and bones. While the quality of the transmission images is lower than medical imagery due to the low X-ray dose, Tx images can be of significant value in interpreting features in the Bx images, such as lung cavities, which can cause false alarms in automated threat detection (ATD) algorithms. Here we demonstrate an ATD processing chain fusing both Tx and BX images. The approach employs automatically extracted fiducial points on the body and localized active contour methods to segments lungs in acquired Tx and Bx images. Additionally, we derive metrics from the Tx image can be related to the probability of observing internal body structure in the Bx image. The combined use of Tx and Bx data can enable improved overall system performance.
Downie, H F; Adu, M O; Schmidt, S; Otten, W; Dupuy, L X; White, P J; Valentine, T A
2015-07-01
The morphology of roots and root systems influences the efficiency by which plants acquire nutrients and water, anchor themselves and provide stability to the surrounding soil. Plant genotype and the biotic and abiotic environment significantly influence root morphology, growth and ultimately crop yield. The challenge for researchers interested in phenotyping root systems is, therefore, not just to measure roots and link their phenotype to the plant genotype, but also to understand how the growth of roots is influenced by their environment. This review discusses progress in quantifying root system parameters (e.g. in terms of size, shape and dynamics) using imaging and image analysis technologies and also discusses their potential for providing a better understanding of root:soil interactions. Significant progress has been made in image acquisition techniques, however trade-offs exist between sample throughput, sample size, image resolution and information gained. All of these factors impact on downstream image analysis processes. While there have been significant advances in computation power, limitations still exist in statistical processes involved in image analysis. Utilizing and combining different imaging systems, integrating measurements and image analysis where possible, and amalgamating data will allow researchers to gain a better understanding of root:soil interactions. © 2014 John Wiley & Sons Ltd.
Digital micromirror devices: principles and applications in imaging.
Bansal, Vivek; Saggau, Peter
2013-05-01
A digital micromirror device (DMD) is an array of individually switchable mirrors that can be used in many advanced optical systems as a rapid spatial light modulator. With a DMD, several implementations of confocal microscopy, hyperspectral imaging, and fluorescence lifetime imaging can be realized. The DMD can also be used as a real-time optical processor for applications such as the programmable array microscope and compressive sensing. Advantages and disadvantages of the DMD for these applications as well as methods to overcome some of the limitations will be discussed in this article. Practical considerations when designing with the DMD and sample optical layouts of a completely DMD-based imaging system and one in which acousto-optic deflectors (AODs) are used in the illumination pathway are also provided.
NASA Technical Reports Server (NTRS)
Knasel, T. Michael
1996-01-01
The primary goal of the Adaptive Vision Laboratory Research project was to develop advanced computer vision systems for automatic target recognition. The approach used in this effort combined several machine learning paradigms including evolutionary learning algorithms, neural networks, and adaptive clustering techniques to develop the E-MOR.PH system. This system is capable of generating pattern recognition systems to solve a wide variety of complex recognition tasks. A series of simulation experiments were conducted using E-MORPH to solve problems in OCR, military target recognition, industrial inspection, and medical image analysis. The bulk of the funds provided through this grant were used to purchase computer hardware and software to support these computationally intensive simulations. The payoff from this effort is the reduced need for human involvement in the design and implementation of recognition systems. We have shown that the techniques used in E-MORPH are generic and readily transition to other problem domains. Specifically, E-MORPH is multi-phase evolutionary leaming system that evolves cooperative sets of features detectors and combines their response using an adaptive classifier to form a complete pattern recognition system. The system can operate on binary or grayscale images. In our most recent experiments, we used multi-resolution images that are formed by applying a Gabor wavelet transform to a set of grayscale input images. To begin the leaming process, candidate chips are extracted from the multi-resolution images to form a training set and a test set. A population of detector sets is randomly initialized to start the evolutionary process. Using a combination of evolutionary programming and genetic algorithms, the feature detectors are enhanced to solve a recognition problem. The design of E-MORPH and recognition results for a complex problem in medical image analysis are described at the end of this report. The specific task involves the identification of vertebrae in x-ray images of human spinal columns. This problem is extremely challenging because the individual vertebra exhibit variation in shape, scale, orientation, and contrast. E-MORPH generated several accurate recognition systems to solve this task. This dual use of this ATR technology clearly demonstrates the flexibility and power of our approach.
Spacecraft design project: High temperature superconducting infrared imaging satellite
NASA Technical Reports Server (NTRS)
1991-01-01
The High Temperature Superconductor Infrared Imaging Satellite (HTSCIRIS) is designed to perform the space based infrared imaging and surveillance mission. The design of the satellite follows the black box approach. The payload is a stand alone unit, with the spacecraft bus designed to meet the requirements of the payload as listed in the statement of work. Specifications influencing the design of the spacecraft bus were originated by the Naval Research Lab. A description of the following systems is included: spacecraft configuration, orbital dynamics, radio frequency communication subsystem, electrical power system, propulsion, attitude control system, thermal control, and structural design. The issues of testing and cost analysis are also addressed. This design project was part of the course Advanced Spacecraft Design taught at the Naval Postgraduate School.
McWilliams, J. Michael; Dalton, Jesse B.; Landrum, Mary Beth; Frakt, Austin B.; Pizer, Steven D.; Keating, Nancy L.
2014-01-01
Background Geographic variations in use of medical services have been interpreted as indirect evidence of wasteful care. Less overuse of services, however, may not be reliably associated with less geographic variation. Objective To compare average use and geographic variation in use of cancer-related imaging between fee-for-service Medicare and the Department of Veterans Affairs (VA) health care system. Design Observational analysis of cancer-related imaging from 2003–2005, using Medicare and VA utilization data linked to cancer registry data. We used multilevel models to estimate mean differences in annual imaging use between cohorts of Medicare and VA patients within geographic areas and variation in use across areas for each cohort, adjusting for sociodemographic and tumor characteristics. Setting 40 hospital referral regions. Patients Older men with lung, colorectal, or prostate cancer, including 34,475 traditional Medicare beneficiaries (Medicare cohort) and 6,835 VA patients (VA cohort). Measurements 1)Per-patient count of imaging studies for which lung, colorectal, or prostate cancer was the primary diagnosis (each study weighted by a standardized price); 2)a direct measure of overuse—advanced imaging for prostate cancer at low risk of metastasis. Results Adjusted annual use of cancer-related imaging was lower in the VA cohort than the Medicare cohort (price-weighted count, $197 vs. $379/patient; P<0.001), as was annual use of advanced imaging for prostate cancer at low risk of metastasis ($41 vs. $117/patient; P<0.001). Geographic variation in cancer-related imaging use was similar in magnitude in the VA and Medicare cohorts. Limitations Observational study design. Conclusions Use of cancer-related imaging was lower in the VA health care system than in fee-for-service Medicare, but lower use was not associated with less geographic variation. Geographic variation in service use may not be a reliable indicator of the extent of overuse. Primary Funding Source Doris Duke Charitable Foundation and Department of Veterans Affairs Office of Policy and Planning. PMID:25437407
Modulated Excitation Imaging System for Intravascular Ultrasound.
Qiu, Weibao; Wang, Xingying; Chen, Yan; Fu, Qiang; Su, Min; Zhang, Lining; Xia, Jingjing; Dai, Jiyan; Zhang, Yaonan; Zheng, Hairong
2017-08-01
Advances in methodologies and tools often lead to new insights into cardiovascular diseases. Intravascular ultrasound (IVUS) is a well-established diagnostic method that provides high-resolution images of the vessel wall and atherosclerotic plaques. High-frequency (>50 MHz) ultrasound enables the spatial resolution of IVUS to approach that of optical imaging methods. However, the penetration depth decreases when using higher imaging frequencies due to the greater acoustic attenuation. An imaging method that improves the penetration depth of high-resolution IVUS would, therefore, be of major clinical importance. Modulated excitation imaging is known to allow ultrasound waves to penetrate further. This paper presents an ultrasound system specifically for modulated-excitation-based IVUS imaging. The system incorporates a high-voltage waveform generator and an image processing board that are optimized for IVUS applications. In addition, a miniaturized ultrasound transducer has been constructed using a Pb(Mg 1/3 Nb 2/3 )O 3 -PbTiO 3 single crystal to improve the ultrasound characteristics. The results show that the proposed system was able to provide increases of 86.7% in penetration depth and 9.6 dB in the signal-to-noise ratio for 60 MHz IVUS. In vitro tissue samples were also investigated to demonstrate the performance of the system.
Troussier, Idriss; Klausner, Guillaume; Morinière, Sylvain; Blais, Eivind; Jean-Christophe Faivre; Champion, Ambroise; Geoffrois, Lionnel; Pflumio, Carole; Babin, Emmanuel; Maingon, Philippe; Thariat, Juliette
2018-02-01
Cervical lymphadenopathies of unknown primary represent 3 % of head and neck cancers. Their diagnostic work up has largely changed in recent years. This review provides an update on diagnostic developments and their potential therapeutic impact. This is a systematic review of the literature. In recent years, changes in epidemiology-based prognostic factors such as human papilloma virus (HPV) cancers, advances in imaging and minimally invasive surgery have been integrated in the management of cervical lymphadenopathies of unknown primary. In particular, systematic use of PET scanner and increasing practice of robotic or laser surgery have contributed to increasing detection rate of primary cancers. These allow more adapted and personalized treatments. The impact of changes in the eighth TNM staging system is discussed. The management of cervical lymphadenopathies of unknown primary cancer has changed significantly in the last 10 years. On the other hand, practice changes will have to be assessed. Copyright © 2017 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.
Simulating deep surveys of the Galactic Plane with the Advanced Gamma-ray Imaging System (AGIS)
NASA Astrophysics Data System (ADS)
Funk, Stefan; Digel, Seth
2009-05-01
The pioneering survey of the Galactic plane by H.E.S.S., together with the northern complement now underway with VERITAS, has shown the inner Milky Way to be rich in TeV-emitting sources; new source classes have been found among the H.E.S.S. detections and unidentified sources remain. In order to explore optimizations of the design of an Advanced Gamma-ray Imaging System (AGIS)-like instrument for survey science, we constructed a model of the flux and size distributions of Galactic TeV sources, normalized to the H.E.S.S. sources but extrapolated to lower flux levels. We investigated potential outcomes from a survey with the order of magnitude improvement in sensitivity and attendant improvement in angular resolution planned for AGIS. Studies of individual sources and populations found with such a sensitivity survey will advance understanding of astrophysical particle acceleration, source populations, and even high-energy cosmic rays via detection of the low-level TeV diffuse emission in regions of high cosmic-ray densitiy.
Temporal Coding of Volumetric Imagery
NASA Astrophysics Data System (ADS)
Llull, Patrick Ryan
'Image volumes' refer to realizations of images in other dimensions such as time, spectrum, and focus. Recent advances in scientific, medical, and consumer applications demand improvements in image volume capture. Though image volume acquisition continues to advance, it maintains the same sampling mechanisms that have been used for decades; every voxel must be scanned and is presumed independent of its neighbors. Under these conditions, improving performance comes at the cost of increased system complexity, data rates, and power consumption. This dissertation explores systems and methods capable of efficiently improving sensitivity and performance for image volume cameras, and specifically proposes several sampling strategies that utilize temporal coding to improve imaging system performance and enhance our awareness for a variety of dynamic applications. Video cameras and camcorders sample the video volume (x,y,t) at fixed intervals to gain understanding of the volume's temporal evolution. Conventionally, one must reduce the spatial resolution to increase the framerate of such cameras. Using temporal coding via physical translation of an optical element known as a coded aperture, the compressive temporal imaging (CACTI) camera emonstrates a method which which to embed the temporal dimension of the video volume into spatial (x,y) measurements, thereby greatly improving temporal resolution with minimal loss of spatial resolution. This technique, which is among a family of compressive sampling strategies developed at Duke University, temporally codes the exposure readout functions at the pixel level. Since video cameras nominally integrate the remaining image volume dimensions (e.g. spectrum and focus) at capture time, spectral (x,y,t,lambda) and focal (x,y,t,z) image volumes are traditionally captured via sequential changes to the spectral and focal state of the system, respectively. The CACTI camera's ability to embed video volumes into images leads to exploration of other information within that video; namely, focal and spectral information. The next part of the thesis demonstrates derivative works of CACTI: compressive extended depth of field and compressive spectral-temporal imaging. These works successfully show the technique's extension of temporal coding to improve sensing performance in these other dimensions. Geometrical optics-related tradeoffs, such as the classic challenges of wide-field-of-view and high resolution photography, have motivated the development of mulitscale camera arrays. The advent of such designs less than a decade ago heralds a new era of research- and engineering-related challenges. One significant challenge is that of managing the focal volume (x,y,z ) over wide fields of view and resolutions. The fourth chapter shows advances on focus and image quality assessment for a class of multiscale gigapixel cameras developed at Duke. Along the same line of work, we have explored methods for dynamic and adaptive addressing of focus via point spread function engineering. We demonstrate another form of temporal coding in the form of physical translation of the image plane from its nominal focal position. We demonstrate this technique's capability to generate arbitrary point spread functions.
Kikuta, Junichi; Ishii, Masaru
Bone is continually remodeled by bone-resorbing osteoclasts and bone-forming osteoblasts. Although it has long been believed that bone homeostasis is tightly regulated by communication between osteoclasts and osteoblasts, the fundamental process and dynamics have remained elusive. We originally established an advanced imaging system to visualize living bone tissues using intravital two-photon microscopy. By means of this system, we revealed the in vivo behavior of bone-resorbing osteoclasts and bone-forming osteoblasts in bone tissues. This approach facilitates investigation of cellular dynamics in the pathogenesis of musculoskeletal disorders, and would thus be useful for evaluating the efficacy of novel therapeutic agents.
Information and image integration: project spectrum
NASA Astrophysics Data System (ADS)
Blaine, G. James; Jost, R. Gilbert; Martin, Lori; Weiss, David A.; Lehmann, Ron; Fritz, Kevin
1998-07-01
The BJC Health System (BJC) and the Washington University School of Medicine (WUSM) formed a technology alliance with industry collaborators to develop and implement an integrated, advanced clinical information system. The industry collaborators include IBM, Kodak, SBC and Motorola. The activity, called Project Spectrum, provides an integrated clinical repository for the multiple hospital facilities of the BJC. The BJC System consists of 12 acute care hospitals serving over one million patients in Missouri and Illinois. An interface engine manages transactions from each of the hospital information systems, lab systems and radiology information systems. Data is normalized to provide a consistent view for the primary care physician. Access to the clinical repository is supported by web-based server/browser technology which delivers patient data to the physician's desktop. An HL7 based messaging system coordinates the acquisition and management of radiological image data and sends image keys to the clinical data repository. Access to the clinical chart browser currently provides radiology reports, laboratory data, vital signs and transcribed medical reports. A chart metaphor provides tabs for the selection of the clinical record for review. Activation of the radiology tab facilitates a standardized view of radiology reports and provides an icon used to initiate retrieval of available radiology images. The selection of the image icon spawns an image browser plug-in and utilizes the image key from the clinical repository to access the image server for the requested image data. The Spectrum system is collecting clinical data from five hospital systems and imaging data from two hospitals. Domain specific radiology imaging systems support the acquisition and primary interpretation of radiology exams. The spectrum clinical workstations are deployed to over 200 sites utilizing local area networks and ISDN connectivity.
New and existing roadway inventory data acquisition methods
DOT National Transportation Integrated Search
2000-12-01
A number of agencies collect roadway inventory data using the traditional manual method. Representing an advancement in roadway inventory data collection, mobile mapping systems use state-of-the-art imaging, georeference, and software technologies to...
2006-03-23
CEV TPS Advanced Develpment Project IHF-171 testing TSF photos (Crew Escape Vehicle Thermal Protection System) cleared for release by NASA Ames Thermo-Physics Facilities Branch - Image used for cover of Aerospace America magazine April 2007 issue
2008-02-15
Testing of the Ascent Thrust Vector Control System in support of the Ares 1-X program at the Marshall Space Flight Center in Huntsville, Alabama. This image is extracted from a high definition video file and is the highest resolution available
Enhanced technologies for unattended ground sensor systems
NASA Astrophysics Data System (ADS)
Hartup, David C.
2010-04-01
Progress in several technical areas is being leveraged to advantage in Unattended Ground Sensor (UGS) systems. This paper discusses advanced technologies that are appropriate for use in UGS systems. While some technologies provide evolutionary improvements, other technologies result in revolutionary performance advancements for UGS systems. Some specific technologies discussed include wireless cameras and viewers, commercial PDA-based system programmers and monitors, new materials and techniques for packaging improvements, low power cueing sensor radios, advanced long-haul terrestrial and SATCOM radios, and networked communications. Other technologies covered include advanced target detection algorithms, high pixel count cameras for license plate and facial recognition, small cameras that provide large stand-off distances, video transmissions of target activity instead of still images, sensor fusion algorithms, and control center hardware. The impact of each technology on the overall UGS system architecture is discussed, along with the advantages provided to UGS system users. Areas of analysis include required camera parameters as a function of stand-off distance for license plate and facial recognition applications, power consumption for wireless cameras and viewers, sensor fusion communication requirements, and requirements to practically implement video transmission through UGS systems. Examples of devices that have already been fielded using technology from several of these areas are given.
PointCom: semi-autonomous UGV control with intuitive interface
NASA Astrophysics Data System (ADS)
Rohde, Mitchell M.; Perlin, Victor E.; Iagnemma, Karl D.; Lupa, Robert M.; Rohde, Steven M.; Overholt, James; Fiorani, Graham
2008-04-01
Unmanned ground vehicles (UGVs) will play an important role in the nation's next-generation ground force. Advances in sensing, control, and computing have enabled a new generation of technologies that bridge the gap between manual UGV teleoperation and full autonomy. In this paper, we present current research on a unique command and control system for UGVs named PointCom (Point-and-Go Command). PointCom is a semi-autonomous command system for one or multiple UGVs. The system, when complete, will be easy to operate and will enable significant reduction in operator workload by utilizing an intuitive image-based control framework for UGV navigation and allowing a single operator to command multiple UGVs. The project leverages new image processing algorithms for monocular visual servoing and odometry to yield a unique, high-performance fused navigation system. Human Computer Interface (HCI) techniques from the entertainment software industry are being used to develop video-game style interfaces that require little training and build upon the navigation capabilities. By combining an advanced navigation system with an intuitive interface, a semi-autonomous control and navigation system is being created that is robust, user friendly, and less burdensome than many current generation systems. mand).
Advancing High Contrast Adaptive Optics
NASA Astrophysics Data System (ADS)
Ammons, M.; Poyneer, L.; GPI Team
2014-09-01
A long-standing challenge has been to directly image faint extrasolar planets adjacent to their host suns, which may be ~1-10 million times brighter than the planet. Several extreme AO systems designed for high-contrast observations have been tested at this point, including SPHERE, Magellan AO, PALM-3000, Project 1640, NICI, and the Gemini Planet Imager (GPI, Macintosh et al. 2014). The GPI is the world's most advanced high-contrast adaptive optics system on an 8-meter telescope for detecting and characterizing planets outside of our solar system. GPI will detect a previously unstudied population of young analogs to the giant planets of our solar system and help determine how planetary systems form. GPI employs a 44x44 woofer-tweeter adaptive optics system with a Shack-Hartmann wavefront sensor operating at 1 kHz. The controller uses Fourier-based reconstruction and modal gains optimized from system telemetry (Poyneer et al. 2005, 2007). GPI has an apodized Lyot coronal graph to suppress diffraction and a near-infrared integral field spectrograph for obtaining planetary spectra. This paper discusses current performance limitations and presents the necessary instrumental modifications and sensitivity calculations for scenarios related to high-contrast observations of non-sidereal targets.
Microfluidic Imaging Flow Cytometry by Asymmetric-detection Time-stretch Optical Microscopy (ATOM).
Tang, Anson H L; Lai, Queenie T K; Chung, Bob M F; Lee, Kelvin C M; Mok, Aaron T Y; Yip, G K; Shum, Anderson H C; Wong, Kenneth K Y; Tsia, Kevin K
2017-06-28
Scaling the number of measurable parameters, which allows for multidimensional data analysis and thus higher-confidence statistical results, has been the main trend in the advanced development of flow cytometry. Notably, adding high-resolution imaging capabilities allows for the complex morphological analysis of cellular/sub-cellular structures. This is not possible with standard flow cytometers. However, it is valuable for advancing our knowledge of cellular functions and can benefit life science research, clinical diagnostics, and environmental monitoring. Incorporating imaging capabilities into flow cytometry compromises the assay throughput, primarily due to the limitations on speed and sensitivity in the camera technologies. To overcome this speed or throughput challenge facing imaging flow cytometry while preserving the image quality, asymmetric-detection time-stretch optical microscopy (ATOM) has been demonstrated to enable high-contrast, single-cell imaging with sub-cellular resolution, at an imaging throughput as high as 100,000 cells/s. Based on the imaging concept of conventional time-stretch imaging, which relies on all-optical image encoding and retrieval through the use of ultrafast broadband laser pulses, ATOM further advances imaging performance by enhancing the image contrast of unlabeled/unstained cells. This is achieved by accessing the phase-gradient information of the cells, which is spectrally encoded into single-shot broadband pulses. Hence, ATOM is particularly advantageous in high-throughput measurements of single-cell morphology and texture - information indicative of cell types, states, and even functions. Ultimately, this could become a powerful imaging flow cytometry platform for the biophysical phenotyping of cells, complementing the current state-of-the-art biochemical-marker-based cellular assay. This work describes a protocol to establish the key modules of an ATOM system (from optical frontend to data processing and visualization backend), as well as the workflow of imaging flow cytometry based on ATOM, using human cells and micro-algae as the examples.
Advances in Pancreatic CT Imaging.
Almeida, Renata R; Lo, Grace C; Patino, Manuel; Bizzo, Bernardo; Canellas, Rodrigo; Sahani, Dushyant V
2018-07-01
The purpose of this article is to discuss the advances in CT acquisition and image postprocessing as they apply to imaging the pancreas and to conceptualize the role of radiogenomics and machine learning in pancreatic imaging. CT is the preferred imaging modality for assessment of pancreatic diseases. Recent advances in CT (dual-energy CT, CT perfusion, CT volumetry, and radiogenomics) and emerging computational algorithms (machine learning) have the potential to further increase the value of CT in pancreatic imaging.
Multichannel imager for littoral zone characterization
NASA Astrophysics Data System (ADS)
Podobna, Yuliya; Schoonmaker, Jon; Dirbas, Joe; Sofianos, James; Boucher, Cynthia; Gilbert, Gary
2010-04-01
This paper describes an approach to utilize a multi-channel, multi-spectral electro-optic (EO) system for littoral zone characterization. Advanced Coherent Technologies, LLC (ACT) presents their EO sensor systems for the surf zone environmental assessment and potential surf zone target detection. Specifically, an approach is presented to determine a Surf Zone Index (SZI) from the multi-spectral EO sensor system. SZI provides a single quantitative value of the surf zone conditions delivering an immediate understanding of the area and an assessment as to how well an airborne optical system might perform in a mine countermeasures (MCM) operation. Utilizing consecutive frames of SZI images, ACT is able to measure variability over time. A surf zone nomograph, which incorporates targets, sensor, and environmental data, including the SZI to determine the environmental impact on system performance, is reviewed in this work. ACT's electro-optical multi-channel, multi-spectral imaging system and test results are presented and discussed.
NASA Astrophysics Data System (ADS)
Zhou, L.; Xiao, G.
2014-12-01
The engineering geological and hydrological conditions of current tunnels are more and more complicated, as the tunnels are elongated with deeper depth. In constructing these complicated tunnels, geological hazards prone to occur as induced by unfavorable geological bodies, such as fault zones, karst or hydrous structures, etc. The working emphasis and difficulty of the advanced geological exploration for complicated tunnels are mainly focused on the structure and water content of these unfavorable geological bodies. The technical aspects of my paper systematically studied the advanced geological exploration theory and application aspects for complicated tunnels, with discussion on the key technical points and useful conclusions. For the all-aroundness and accuracy of advanced geological exploration results, the objective of my paper is targeted on the comprehensive examination on the structure and hydrous characteristic of the unfavorable geological bodies in complicated tunnels. By the multi-component seismic modeling on a more real model containing the air medium, the wave field response characteristics of unfavorable geological bodies can be analyzed, thus providing theoretical foundation for the observation system layout, signal processing and interpretation of seismic methods. Based on the tomographic imaging theory of seismic and electromagnetic method, 2D integrated seismic and electromagnetic tomographic imaging and visualization software was designed and applied in the advanced drilling hole in the tunnel face, after validation of the forward and inverse modeling results on theoretical models. The transmission wave imaging technology introduced in my paper can be served as a new criterion for detection of unfavorable geological bodies. After careful study on the basic theory, data processing and interpretation, practical applications of TSP and ground penetrating radar (GPR) method, as well as serious examination on their application examples, my paper formulated a suite of comprehensive application system of seismic and electromagnetic methods for the advanced geological exploration of complicated tunnels. This research is funded by National Natural Science Foundation of China (Grant No. 41202223) .
Design and development of an airborne multispectral imaging system
NASA Astrophysics Data System (ADS)
Kulkarni, Rahul R.; Bachnak, Rafic; Lyle, Stacey; Steidley, Carl W.
2002-08-01
Advances in imaging technology and sensors have made airborne remote sensing systems viable for many applications that require reasonably good resolution at low cost. Digital cameras are making their mark on the market by providing high resolution at very high rates. This paper describes an aircraft-mounted imaging system (AMIS) that is being designed and developed at Texas A&M University-Corpus Christi (A&M-CC) with the support of a grant from NASA. The approach is to first develop and test a one-camera system that will be upgraded into a five-camera system that offers multi-spectral capabilities. AMIS will be low cost, rugged, portable and has its own battery power source. Its immediate use will be to acquire images of the Coastal area in the Gulf of Mexico for a variety of studies covering vast spectra from near ultraviolet region to near infrared region. This paper describes AMIS and its characteristics, discusses the process for selecting the major components, and presents the progress.
Effective Fingerprint Quality Estimation for Diverse Capture Sensors
Xie, Shan Juan; Yoon, Sook; Shin, Jinwook; Park, Dong Sun
2010-01-01
Recognizing the quality of fingerprints in advance can be beneficial for improving the performance of fingerprint recognition systems. The representative features to assess the quality of fingerprint images from different types of capture sensors are known to vary. In this paper, an effective quality estimation system that can be adapted for different types of capture sensors is designed by modifying and combining a set of features including orientation certainty, local orientation quality and consistency. The proposed system extracts basic features, and generates next level features which are applicable for various types of capture sensors. The system then uses the Support Vector Machine (SVM) classifier to determine whether or not an image should be accepted as input to the recognition system. The experimental results show that the proposed method can perform better than previous methods in terms of accuracy. In the meanwhile, the proposed method has an ability to eliminate residue images from the optical and capacitive sensors, and the coarse images from thermal sensors. PMID:22163632
New Methods of Low-Field Magnetic Resonance Imaging for Application to Traumatic Brain Injury
2013-02-01
magnet based ), the development of novel high-speed parallel imaging detection systems, and work on advanced adaptive reconstruction methods ...signal many times within the acquisition time . We present here a new method for 3D OMRI based on b-SSFP at a constant field of 6.5 mT that provides up...developing injury-sensitive MRI based on the detection of free radicals associat- ed with injury using the Overhauser effect and subsequently imaging that
Image and Video Compression with VLSI Neural Networks
NASA Technical Reports Server (NTRS)
Fang, W.; Sheu, B.
1993-01-01
An advanced motion-compensated predictive video compression system based on artificial neural networks has been developed to effectively eliminate the temporal and spatial redundancy of video image sequences and thus reduce the bandwidth and storage required for the transmission and recording of the video signal. The VLSI neuroprocessor for high-speed high-ratio image compression based upon a self-organization network and the conventional algorithm for vector quantization are compared. The proposed method is quite efficient and can achieve near-optimal results.
Novel Applications of Rapid Prototyping in Gamma-ray and X-ray Imaging
Miller, Brian W.; Moore, Jared W.; Gehm, Michael E.; Furenlid, Lars R.; Barrett, Harrison H.
2010-01-01
Advances in 3D rapid-prototyping printers, 3D modeling software, and casting techniques allow for the fabrication of cost-effective, custom components in gamma-ray and x-ray imaging systems. Applications extend to new fabrication methods for custom collimators, pinholes, calibration and resolution phantoms, mounting and shielding components, and imaging apertures. Details of the fabrication process for these components are presented, specifically the 3D printing process, cold casting with a tungsten epoxy, and lost-wax casting in platinum. PMID:22984341
Advanced information society(2)
NASA Astrophysics Data System (ADS)
Masuyama, Keiichi
Our modern life is full of information and information infiltrates into our daily life. Networking of the telecommunication is extended to society, company, and individual level. Although we have just entered the advanced information society, business world and our daily life have been steadily transformed by the advancement of information network. This advancement of information brings a big influence on economy, and will play they the main role in the expansion of domestic demands. This paper tries to view the image of coming advanced information society, focusing on the transforming businessman's life and the situation of our daily life, which became wealthy by the spread of daily life information and the visual information by satellite system, in the development of the intelligent city.
Advances in Spectral-Spatial Classification of Hyperspectral Images
NASA Technical Reports Server (NTRS)
Fauvel, Mathieu; Tarabalka, Yuliya; Benediktsson, Jon Atli; Chanussot, Jocelyn; Tilton, James C.
2012-01-01
Recent advances in spectral-spatial classification of hyperspectral images are presented in this paper. Several techniques are investigated for combining both spatial and spectral information. Spatial information is extracted at the object (set of pixels) level rather than at the conventional pixel level. Mathematical morphology is first used to derive the morphological profile of the image, which includes characteristics about the size, orientation and contrast of the spatial structures present in the image. Then the morphological neighborhood is defined and used to derive additional features for classification. Classification is performed with support vector machines using the available spectral information and the extracted spatial information. Spatial post-processing is next investigated to build more homogeneous and spatially consistent thematic maps. To that end, three presegmentation techniques are applied to define regions that are used to regularize the preliminary pixel-wise thematic map. Finally, a multiple classifier system is defined to produce relevant markers that are exploited to segment the hyperspectral image with the minimum spanning forest algorithm. Experimental results conducted on three real hyperspectral images with different spatial and spectral resolutions and corresponding to various contexts are presented. They highlight the importance of spectral-spatial strategies for the accurate classification of hyperspectral images and validate the proposed methods.
Ehlers, Justis P; Srivastava, Sunil K; Feiler, Daniel; Noonan, Amanda I; Rollins, Andrew M; Tao, Yuankai K
2014-01-01
To demonstrate key integrative advances in microscope-integrated intraoperative optical coherence tomography (iOCT) technology that will facilitate adoption and utilization during ophthalmic surgery. We developed a second-generation prototype microscope-integrated iOCT system that interfaces directly with a standard ophthalmic surgical microscope. Novel features for improved design and functionality included improved profile and ergonomics, as well as a tunable lens system for optimized image quality and heads-up display (HUD) system for surgeon feedback. Novel material testing was performed for potential suitability for OCT-compatible instrumentation based on light scattering and transmission characteristics. Prototype surgical instruments were developed based on material testing and tested using the microscope-integrated iOCT system. Several surgical maneuvers were performed and imaged, and surgical motion visualization was evaluated with a unique scanning and image processing protocol. High-resolution images were successfully obtained with the microscope-integrated iOCT system with HUD feedback. Six semi-transparent materials were characterized to determine their attenuation coefficients and scatter density with an 830 nm OCT light source. Based on these optical properties, polycarbonate was selected as a material substrate for prototype instrument construction. A surgical pick, retinal forceps, and corneal needle were constructed with semi-transparent materials. Excellent visualization of both the underlying tissues and surgical instrument were achieved on OCT cross-section. Using model eyes, various surgical maneuvers were visualized, including membrane peeling, vessel manipulation, cannulation of the subretinal space, subretinal intraocular foreign body removal, and corneal penetration. Significant iterative improvements in integrative technology related to iOCT and ophthalmic surgery are demonstrated.
Medverd, Jonathan R; Cross, Nathan M; Font, Frank; Casertano, Andrew
2013-08-01
Radiologists routinely make decisions with only limited information when assigning protocol instructions for the performance of advanced medical imaging examinations. Opportunity exists to simultaneously improve the safety, quality and efficiency of this workflow through the application of an electronic solution leveraging health system resources to provide concise, tailored information and decision support in real-time. Such a system has been developed using an open source, open standards design for use within the Veterans Health Administration. The Radiology Protocol Tool Recorder (RAPTOR) project identified key process attributes as well as inherent weaknesses of paper processes and electronic emulators of paper processes to guide the development of its optimized electronic solution. The design provides a kernel that can be expanded to create an integrated radiology environment. RAPTOR has implications relevant to the greater health care community, and serves as a case model for modernization of legacy government health information systems.
Recent technological advancements in cardiac ultrasound imaging.
Dave, Jaydev K; Mc Donald, Maureen E; Mehrotra, Praveen; Kohut, Andrew R; Eisenbrey, John R; Forsberg, Flemming
2018-03-01
About 92.1 million Americans suffer from at least one type of cardiovascular disease. Worldwide, cardiovascular diseases are the number one cause of death (about 31% of all global deaths). Recent technological advancements in cardiac ultrasound imaging are expected to aid in the clinical diagnosis of many cardiovascular diseases. This article provides an overview of such recent technological advancements, specifically focusing on tissue Doppler imaging, strain imaging, contrast echocardiography, 3D echocardiography, point-of-care echocardiography, 3D volumetric flow assessments, and elastography. With these advancements ultrasound imaging is rapidly changing the domain of cardiac imaging. The advantages offered by ultrasound imaging include real-time imaging, imaging at patient bed-side, cost-effectiveness and ionizing-radiation-free imaging. Along with these advantages, the steps taken towards standardization of ultrasound based quantitative markers, reviewed here, will play a major role in addressing the healthcare burden associated with cardiovascular diseases. Copyright © 2017 Elsevier B.V. All rights reserved.
Applied high-speed imaging for the icing research program at NASA Lewis Research Center
NASA Technical Reports Server (NTRS)
Slater, Howard; Owens, Jay; Shin, Jaiwon
1992-01-01
The Icing Research Tunnel at NASA Lewis Research Center provides scientists a scaled, controlled environment to simulate natural icing events. The closed-loop, low speed, refrigerated wind tunnel offers the experimental capability to test for icing certification requirements, analytical model validation and calibration techniques, cloud physics instrumentation refinement, advanced ice protection systems, and rotorcraft icing methodology development. The test procedures for these objectives all require a high degree of visual documentation, both in real-time data acquisition and post-test image processing. Information is provided to scientific, technical, and industrial imaging specialists as well as to research personnel about the high-speed and conventional imaging systems will be on the recent ice protection technology program. Various imaging examples for some of the tests are presented. Additional imaging examples are available from the NASA Lewis Research Center's Photographic and Printing Branch.
Improved automatic adjustment of density and contrast in FCR system using neural network
NASA Astrophysics Data System (ADS)
Takeo, Hideya; Nakajima, Nobuyoshi; Ishida, Masamitsu; Kato, Hisatoyo
1994-05-01
FCR system has an automatic adjustment of image density and contrast by analyzing the histogram of image data in the radiation field. Advanced image recognition methods proposed in this paper can improve the automatic adjustment performance, in which neural network technology is used. There are two methods. Both methods are basically used 3-layer neural network with back propagation. The image data are directly input to the input-layer in one method and the histogram data is input in the other method. The former is effective to the imaging menu such as shoulder joint in which the position of interest region occupied on the histogram changes by difference of positioning and the latter is effective to the imaging menu such as chest-pediatrics in which the histogram shape changes by difference of positioning. We experimentally confirm the validity of these methods (about the automatic adjustment performance) as compared with the conventional histogram analysis methods.
Applied high-speed imaging for the icing research program at NASA Lewis Research Center
NASA Technical Reports Server (NTRS)
Slater, Howard; Owens, Jay; Shin, Jaiwon
1991-01-01
The Icing Research Tunnel at NASA Lewis Research Center provides scientists a scaled, controlled environment to simulate natural icing events. The closed-loop, low speed, refrigerated wind tunnel offers the experimental capability to test for icing certification requirements, analytical model validation and calibration techniques, cloud physics instrumentation refinement, advanced ice protection systems, and rotorcraft icing methodology development. The test procedures for these objectives all require a high degree of visual documentation, both in real-time data acquisition and post-test image processing. Information is provided to scientific, technical, and industrial imaging specialists as well as to research personnel about the high-speed and conventional imaging systems will be on the recent ice protection technology program. Various imaging examples for some of the tests are presented. Additional imaging examples are available from the NASA Lewis Research Center's Photographic and Printing Branch.
Ryder, R E; Kong, N; Bates, A S; Sim, J; Welch, J; Kritzinger, E E
1998-03-01
Polaroid photography in diabetic retinopathy screening allows instant image availability to enhance the results of ophthalmoscopy. Retinal cameras are now being developed which use video/digital imaging techniques to produce an instant enlarged retinal image on a computer monitor screen. We aimed to compare one such electronic imaging system, attached to a Canon CR5 45NM, with standard Polaroid retinal photography. Two hundred and thirteen eyes from 107 diabetic patients were photographed through dilated pupils by both systems in random order and the images were analysed blind. Diabetic retinopathy was present in 58 eyes of which 55/58 (95%) were detected on the electronic image and only 49/58 (84%) on the Polaroid. Of 34 eyes requiring ophthalmologist referral according to standard European criteria, 34/34 (100%) were detected on the electronic image and only 24/34 (71%) on the Polaroid. Side by side comparisons showed electronic imaging to be superior to Polaroid at lesion detection. Using linear analogue scales, the patients assessed the electronic imaging photographic flash as less uncomfortable than the Polaroid equivalent (p < 0.0001). Other advantages of electronic imaging include: ready storage of the images with other patient clinical data on the diabetes computerized register/database; potential for image enhancement and analysis using image analysis software and electronic transfer of images to ophthalmologist or general practitioner. Electronic imaging systems represent a potential major advance for the improvement of diabetic retinopathy screening.
Functional mesoporous silica nanoparticles for bio-imaging applications.
Cha, Bong Geun; Kim, Jaeyun
2018-03-22
Biomedical investigations using mesoporous silica nanoparticles (MSNs) have received significant attention because of their unique properties including controllable mesoporous structure, high specific surface area, large pore volume, and tunable particle size. These unique features make MSNs suitable for simultaneous diagnosis and therapy with unique advantages to encapsulate and load a variety of therapeutic agents, deliver these agents to the desired location, and release the drugs in a controlled manner. Among various clinical areas, nanomaterials-based bio-imaging techniques have advanced rapidly with the development of diverse functional nanoparticles. Due to the unique features of MSNs, an imaging agent supported by MSNs can be a promising system for developing targeted bio-imaging contrast agents with high structural stability and enhanced functionality that enable imaging of various modalities. Here, we review the recent achievements on the development of functional MSNs for bio-imaging applications, including optical imaging, magnetic resonance imaging (MRI), positron emission tomography (PET), computed tomography (CT), ultrasound imaging, and multimodal imaging for early diagnosis. With further improvement in noninvasive bio-imaging techniques, the MSN-supported imaging agent systems are expected to contribute to clinical applications in the future. This article is categorized under: Diagnostic Tools > In vivo Nanodiagnostics and Imaging Nanotechnology Approaches to Biology > Nanoscale Systems in Biology. © 2018 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Antani, Sameer K.; Natarajan, Mukil; Long, Jonathan L.; Long, L. Rodney; Thoma, George R.
2005-04-01
The article describes the status of our ongoing R&D at the U.S. National Library of Medicine (NLM) towards the development of an advanced multimedia database biomedical information system that supports content-based image retrieval (CBIR). NLM maintains a collection of 17,000 digitized spinal X-rays along with text survey data from the Second National Health and Nutritional Examination Survey (NHANES II). These data serve as a rich data source for epidemiologists and researchers of osteoarthritis and musculoskeletal diseases. It is currently possible to access these through text keyword queries using our Web-based Medical Information Retrieval System (WebMIRS). CBIR methods developed specifically for biomedical images could offer direct visual searching of these images by means of example image or user sketch. We are building a system which supports hybrid queries that have text and image-content components. R&D goals include developing algorithms for robust image segmentation for localizing and identifying relevant anatomy, labeling the segmented anatomy based on its pathology, developing suitable indexing and similarity matching methods for images and image features, and associating the survey text information for query and retrieval along with the image data. Some highlights of the system developed in MATLAB and Java are: use of a networked or local centralized database for text and image data; flexibility to incorporate new research work; provides a means to control access to system components under development; and use of XML for structured reporting. The article details the design, features, and algorithms in this third revision of this prototype system, CBIR3.
PLUS: open-source toolkit for ultrasound-guided intervention systems.
Lasso, Andras; Heffter, Tamas; Rankin, Adam; Pinter, Csaba; Ungi, Tamas; Fichtinger, Gabor
2014-10-01
A variety of advanced image analysis methods have been under the development for ultrasound-guided interventions. Unfortunately, the transition from an image analysis algorithm to clinical feasibility trials as part of an intervention system requires integration of many components, such as imaging and tracking devices, data processing algorithms, and visualization software. The objective of our paper is to provide a freely available open-source software platform-PLUS: Public software Library for Ultrasound-to facilitate rapid prototyping of ultrasound-guided intervention systems for translational clinical research. PLUS provides a variety of methods for interventional tool pose and ultrasound image acquisition from a wide range of tracking and imaging devices, spatial and temporal calibration, volume reconstruction, simulated image generation, and recording and live streaming of the acquired data. This paper introduces PLUS, explains its functionality and architecture, and presents typical uses and performance in ultrasound-guided intervention systems. PLUS fulfills the essential requirements for the development of ultrasound-guided intervention systems and it aspires to become a widely used translational research prototyping platform. PLUS is freely available as open source software under BSD license and can be downloaded from http://www.plustoolkit.org.
Fabrication of Advanced Thermoelectric Materials by Hierarchical Nanovoid Generation
NASA Technical Reports Server (NTRS)
Park, Yeonjoon (Inventor); Elliott, James R. (Inventor); Stoakley, Diane M. (Inventor); Chu, Sang-Hyon (Inventor); King, Glen C. (Inventor); Kim, Jae-Woo (Inventor); Choi, Sang Hyouk (Inventor); Lillehei, Peter T. (Inventor)
2011-01-01
A novel method to prepare an advanced thermoelectric material has hierarchical structures embedded with nanometer-sized voids which are key to enhancement of the thermoelectric performance. Solution-based thin film deposition technique enables preparation of stable film of thermoelectric material and void generator (voigen). A subsequent thermal process creates hierarchical nanovoid structure inside the thermoelectric material. Potential application areas of this advanced thermoelectric material with nanovoid structure are commercial applications (electronics cooling), medical and scientific applications (biological analysis device, medical imaging systems), telecommunications, and defense and military applications (night vision equipments).
ERIC Educational Resources Information Center
Rondeau, Kent V.
2017-01-01
This essay explores and examines how rankings and league tables have played (and continue to play) a major and consequential role in how contemporary business schools manage their affairs. It introduces and advances the proposition that rankings promote the short-term manipulation of public reputation (image) projected by business schools at the…
Recce NG: from Recce sensor to image intelligence (IMINT)
NASA Astrophysics Data System (ADS)
Larroque, Serge
2001-12-01
Recce NG (Reconnaissance New Generation) is presented as a complete and optimized Tactical Reconnaissance System. Based on a new generation Pod integrating high resolution Dual Band sensors, the system has been designed with the operational lessons learnt from the last Peace Keeping Operations in Bosnia and Kosovo. The technical solutions retained as component modules of a full IMINT acquisition system, take benefit of the state of art in the following key technologies: Advanced Mission Planning System for long range stand-off Manned Recce, Aircraft and/or Pod tasking, operating sophisticated back-up software tools, high resolution 3D geo data and improved/combat proven MMI to reduce planning delays, Mature Dual Band sensors technology to achieve the Day and Night Recce Mission, including advanced automatic operational functions, as azimuth and roll tracking capabilities, low risk in Pod integration and in carrier avionics, controls and displays upgrades, to save time in operational turn over and maintenance, High rate Imagery Down Link, for Real Time or Near Real Time transmission, fully compatible with STANAG 7085 requirements, Advanced IMINT Exploitation Ground Segment, combat proven, NATO interoperable (STANAG 7023), integrating high value software tools for accurate location, improved radiometric image processing and open link to the C4ISR systems. The choice of an industrial Prime contractor mastering across the full system, all the prior listed key products and technologies, is mandatory to a successful delivery in terms of low Cost, Risk and Time Schedule.
Ramírez De La Pinta, Javier; Maestre Torreblanca, José María; Jurado, Isabel; Reyes De Cozar, Sergio
2017-03-06
In this paper, we explore the possibilities offered by the integration of home automation systems and service robots. In particular, we examine how advanced computationally expensive services can be provided by using a cloud computing approach to overcome the limitations of the hardware available at the user's home. To this end, we integrate two wireless low-cost, off-the-shelf systems in this work, namely, the service robot Rovio and the home automation system Z-wave. Cloud computing is used to enhance the capabilities of these systems so that advanced sensing and interaction services based on image processing and voice recognition can be offered.
Off the Shelf Cloud Robotics for the Smart Home: Empowering a Wireless Robot through Cloud Computing
Ramírez De La Pinta, Javier; Maestre Torreblanca, José María; Jurado, Isabel; Reyes De Cozar, Sergio
2017-01-01
In this paper, we explore the possibilities offered by the integration of home automation systems and service robots. In particular, we examine how advanced computationally expensive services can be provided by using a cloud computing approach to overcome the limitations of the hardware available at the user’s home. To this end, we integrate two wireless low-cost, off-the-shelf systems in this work, namely, the service robot Rovio and the home automation system Z-wave. Cloud computing is used to enhance the capabilities of these systems so that advanced sensing and interaction services based on image processing and voice recognition can be offered. PMID:28272305
Design of illumination system in ring field capsule endoscope
NASA Astrophysics Data System (ADS)
Jeng, Wei-De; Mang, Ou-Yang; Chen, Yu-Ta; Wu, Ying-Yi
2011-03-01
This paper is researching about the illumination system in ring field capsule endoscope. It is difficult to obtain the uniform illumination on the observed object because the light intensity of LED will be changed along its angular displacement and same as luminous intensity distribution curve. So we use the optical design software which is Advanced Systems Analysis Program (ASAP) to build a photometric model for the optimal design of LED illumination system in ring field capsule endoscope. In this paper, the optimal design of illumination uniformity in the ring field capsule endoscope is from origin 0.128 up to optimum 0.603 and it would advance the image quality of ring field capsule endoscope greatly.
A new compact, cost-efficient concept for underwater range-gated imaging: the UTOFIA project
NASA Astrophysics Data System (ADS)
Mariani, Patrizio; Quincoces, Iñaki; Galparsoro, Ibon; Bald, Juan; Gabiña, Gorka; Visser, Andy; Jónasdóttir, Sigrun; Haugholt, Karl Henrik; Thorstensen, Jostein; Risholm, Petter; Thielemann, Jens
2017-04-01
Underwater Time Of Flight Image Acquisition system (UTOFIA) is a recently launched H2020 project (H2020 - 633098) to develop a compact and cost-effective underwater imaging system especially suited for observations in turbid environments. The UTOFIA project targets technology that can overcome the limitations created by scattering, by introducing cost-efficient range-gated imaging for underwater applications. This technology relies on a image acquisition principle that can extends the imaging range of the cameras 2-3 times respect to other cameras. Moreover, the system will simultaneously capture 3D information of the observed objects. Today range-gated imaging is not widely used, as it relies on specialised optical components making systems large and costly. Recent technology developments have made it possible a significant (2-3 times) reduction in size, complexity and cost of underwater imaging systems, whilst addressing the scattering issues at the same time. By acquiring simultaneous 3D data, the system allows to accurately measure the absolute size of marine life and their spatial relationship to their habitat, enhancing the precision of fish stock monitoring and ecology assessment, hence supporting proper management of marine resources. Additionally, the larger observed volume and the improved image quality make the system suitable for cost-effective underwater surveillance operations in e.g. fish farms, underwater infrastructures. The system can be integrated into existing ocean observatories for real time acquisition and can greatly advance present efforts in developing species recognition algorithms, given the additional features provided, the improved image quality and the independent illumination source based on laser. First applications of the most recent prototype of the imaging system will be provided including inspection of underwater infrastructures and observations of marine life under different environmental conditions.
Advanced Extravehicular Mobility Unit Informatics Software Design
NASA Technical Reports Server (NTRS)
Wright, Theodore
2014-01-01
This is a description of the software design for the 2013 edition of the Advanced Extravehicular Mobility Unit (AEMU) Informatics computer assembly. The Informatics system is an optional part of the space suit assembly. It adds a graphical interface for displaying suit status, timelines, procedures, and caution and warning information. In the future it will display maps with GPS position data, and video and still images captured by the astronaut.
Advanced millimeter-wave security portal imaging techniques
NASA Astrophysics Data System (ADS)
Sheen, David M.; Bernacki, Bruce E.; McMakin, Douglas L.
2012-03-01
Millimeter-wave (mm-wave) imaging is rapidly gaining acceptance as a security tool to augment conventional metal detectors and baggage x-ray systems for passenger screening at airports and other secured facilities. This acceptance indicates that the technology has matured; however, many potential improvements can yet be realized. The authors have developed a number of techniques over the last several years including novel image reconstruction and display techniques, polarimetric imaging techniques, array switching schemes, and high-frequency high-bandwidth techniques. All of these may improve the performance of new systems; however, some of these techniques will increase the cost and complexity of the mm-wave security portal imaging systems. Reducing this cost may require the development of novel array designs. In particular, RF photonic methods may provide new solutions to the design and development of the sequentially switched linear mm-wave arrays that are the key element in the mm-wave portal imaging systems. Highfrequency, high-bandwidth designs are difficult to achieve with conventional mm-wave electronic devices, and RF photonic devices may be a practical alternative. In this paper, the mm-wave imaging techniques developed at PNNL are reviewed and the potential for implementing RF photonic mm-wave array designs is explored.
SPECT detectors: the Anger Camera and beyond
Peterson, Todd E.; Furenlid, Lars R.
2011-01-01
The development of radiation detectors capable of delivering spatial information about gamma-ray interactions was one of the key enabling technologies for nuclear medicine imaging and, eventually, single-photon emission computed tomography (SPECT). The continuous NaI(Tl) scintillator crystal coupled to an array of photomultiplier tubes, almost universally referred to as the Anger Camera after its inventor, has long been the dominant SPECT detector system. Nevertheless, many alternative materials and configurations have been investigated over the years. Technological advances as well as the emerging importance of specialized applications, such as cardiac and preclinical imaging, have spurred innovation such that alternatives to the Anger Camera are now part of commercial imaging systems. Increased computing power has made it practical to apply advanced signal processing and estimation schemes to make better use of the information contained in the detector signals. In this review we discuss the key performance properties of SPECT detectors and survey developments in both scintillator and semiconductor detectors and their readouts with an eye toward some of the practical issues at least in part responsible for the continuing prevalence of the Anger Camera in the clinic. PMID:21828904
NASA Astrophysics Data System (ADS)
Zhang, Pengfei; Zam, Azhar; Pugh, Edward N.; Zawadzki, Robert J.
2014-02-01
Animal models of human diseases play an important role in studying and advancing our understanding of these conditions, allowing molecular level studies of pathogenesis as well as testing of new therapies. Recently several non-invasive imaging modalities including Fundus Camera, Scanning Laser Ophthalmoscopy (SLO) and Optical Coherence Tomography (OCT) have been successfully applied to monitor changes in the retinas of the living animals in experiments in which a single animal is followed over a portion of its lifespan. Here we evaluate the capabilities and limitations of these three imaging modalities for visualization of specific structures in the mouse eye. Example images acquired from different types of mice are presented. Future directions of development for these instruments and potential advantages of multi-modal imaging systems are discussed as well.
Applications of imaging technology in radiation research.
Lin, MingDe; Jackson, Edward F
2012-04-01
Imaging research and advances in systems engineering have enabled the transition of medical imaging from a means for accomplishing traditional anatomic visualization (i.e., orthopedic planar film X ray) to a means for noninvasively assessing a variety of functional measures. Perfusion imaging is one of the major highlights in functional imaging. In this work, various methods for measuring perfusion using widely-available commercial imaging modalities and contrast agents, specifically X ray and MR (magnetic resonance), will be described. The first section reviews general methods used for perfusion imaging, and the second section provides modality-specific information, focusing on the contrast mechanisms used to calculate perfusion-related parameters. The goal of these descriptions is to illustrate how perfusion imaging can be applied to radiation biology research.
Advanced microscopy of star-shaped gold nanoparticles and their adsorption-uptake by macrophages
Plascencia-Villa, Germán; Bahena, Daniel; Rodríguez, Annette R.; Ponce, Arturo; José-Yacamán, Miguel
2013-01-01
Metallic nanoparticles have diverse applications in biomedicine, as diagnostics, image contrast agents, nanosensors and drug delivery systems. Anisotropic metallic nanoparticles possess potential applications in cell imaging and therapy+diagnostics (theranostics), but controlled synthesis and growth of these anisotropic or branched nanostructures has been challenging and usually require use of high concentrations of surfactants. Star-shaped gold nanoparticles were synthesized in high yield through a seed mediated route using HEPES as a precise shape-directing capping agent. Characterization was performed using advanced electron microscopy techniques including atomic resolution TEM, obtaining a detailed characterization of nanostructure and atomic arrangement. Spectroscopy techniques showed that particles have narrow size distribution, monodispersity and high colloidal stability, with absorbance into NIR region and high efficiency for SERS applications. Gold nanostars showed to be biocompatible and efficiently adsorbed and internalized by macrophages, as revealed by advanced FE-SEM and backscattered electron imaging techniques of complete unstained uncoated cells. Additionally, low voltage STEM and X-ray microanalysis revealed the ultra-structural location and confirmed stability of nanoparticles after endocytosis with high spatial resolution. PMID:23443314
Choy, Garry; Choyke, Peter; Libutti, Steven K
2003-10-01
Recently, there has been tremendous interest in developing techniques such as MRI, micro-CT, micro-PET, and SPECT to image function and processes in small animals. These technologies offer deep tissue penetration and high spatial resolution, but compared with noninvasive small animal optical imaging, these techniques are very costly and time consuming to implement. Optical imaging is cost-effective, rapid, easy to use, and can be readily applied to studying disease processes and biology in vivo. In vivo optical imaging is the result of a coalescence of technologies from chemistry, physics, and biology. The development of highly sensitive light detection systems has allowed biologists to use imaging in studying physiological processes. Over the last few decades, biochemists have also worked to isolate and further develop optical reporters such as GFP, luciferase, and cyanine dyes. This article reviews the common types of fluorescent and bioluminescent optical imaging, the typical system platforms and configurations, and the applications in the investigation of cancer biology.
Integrating medical imaging analyses through a high-throughput bundled resource imaging system
NASA Astrophysics Data System (ADS)
Covington, Kelsie; Welch, E. Brian; Jeong, Ha-Kyu; Landman, Bennett A.
2011-03-01
Exploitation of advanced, PACS-centric image analysis and interpretation pipelines provides well-developed storage, retrieval, and archival capabilities along with state-of-the-art data providence, visualization, and clinical collaboration technologies. However, pursuit of integrated medical imaging analysis through a PACS environment can be limiting in terms of the overhead required to validate, evaluate and integrate emerging research technologies. Herein, we address this challenge through presentation of a high-throughput bundled resource imaging system (HUBRIS) as an extension to the Philips Research Imaging Development Environment (PRIDE). HUBRIS enables PACS-connected medical imaging equipment to invoke tools provided by the Java Imaging Science Toolkit (JIST) so that a medical imaging platform (e.g., a magnetic resonance imaging scanner) can pass images and parameters to a server, which communicates with a grid computing facility to invoke the selected algorithms. Generated images are passed back to the server and subsequently to the imaging platform from which the images can be sent to a PACS. JIST makes use of an open application program interface layer so that research technologies can be implemented in any language capable of communicating through a system shell environment (e.g., Matlab, Java, C/C++, Perl, LISP, etc.). As demonstrated in this proof-of-concept approach, HUBRIS enables evaluation and analysis of emerging technologies within well-developed PACS systems with minimal adaptation of research software, which simplifies evaluation of new technologies in clinical research and provides a more convenient use of PACS technology by imaging scientists.
Cone-beam x-ray luminescence computed tomography based on x-ray absorption dosage
NASA Astrophysics Data System (ADS)
Liu, Tianshuai; Rong, Junyan; Gao, Peng; Zhang, Wenli; Liu, Wenlei; Zhang, Yuanke; Lu, Hongbing
2018-02-01
With the advances of x-ray excitable nanophosphors, x-ray luminescence computed tomography (XLCT) has become a promising hybrid imaging modality. In particular, a cone-beam XLCT (CB-XLCT) system has demonstrated its potential in in vivo imaging with the advantage of fast imaging speed over other XLCT systems. Currently, the imaging models of most XLCT systems assume that nanophosphors emit light based on the intensity distribution of x-ray within the object, not completely reflecting the nature of the x-ray excitation process. To improve the imaging quality of CB-XLCT, an imaging model that adopts an excitation model of nanophosphors based on x-ray absorption dosage is proposed in this study. To solve the ill-posed inverse problem, a reconstruction algorithm that combines the adaptive Tikhonov regularization method with the imaging model is implemented for CB-XLCT reconstruction. Numerical simulations and phantom experiments indicate that compared with the traditional forward model based on x-ray intensity, the proposed dose-based model could improve the image quality of CB-XLCT significantly in terms of target shape, localization accuracy, and image contrast. In addition, the proposed model behaves better in distinguishing closer targets, demonstrating its advantage in improving spatial resolution.