Science.gov

Sample records for advanced infrared sounder

  1. Geophysical Information from Advanced Sounder Infrared Spectral Radiance

    NASA Technical Reports Server (NTRS)

    Larar, Allen M.; Zhou, Daniel K.; Liu, Xu; Smith, William L.

    2012-01-01

    Advanced satellite sensors are tasked with improving global observations of the Earth's atmosphere, clouds, and surface to enable enhancements in weather prediction, climate monitoring capability, and environmental change detection. Satisfying this type of improvement for inferred geophysical information from these observations requires optimal usage of data from current systems as well as enhancements to future sensors. This presentation addresses the information content present in infrared spectral radiance from advanced atmospheric sounders with an emphasis on knowledge of thermodynamic state and trace species. Results of trade-off studies conducted to evaluate the impact of spectral resolution, spectral coverage, instrument noise, and a priori knowledge on remote sensing system information content will be discussed. A focus is placed on information achievable from the Atmospheric InfraRed Sounder (AIRS) on the NASA EOS Aqua satellite in orbit since 2002, the Infrared Atmospheric Sounding Interferometer (IASI) aboard MetOp-A since 2006, and the Cross-track Infrared Sounder (CrIS) instrument aboard the NPP and JPSS series of satellites which began 28 October 2011.

  2. Assimilation of thermodynamic information from advanced infrared sounders under partially cloudy skies for regional NWP

    NASA Astrophysics Data System (ADS)

    Wang, Pei; Li, Jun; Goldberg, Mitchell D.; Schmit, Timothy J.; Lim, Agnes H. N.; Li, Zhenglong; Han, Hyojin; Li, Jinlong; Ackerman, Steve A.

    2015-06-01

    Generally, only clear-infrared spectral radiances (not affected by clouds) are assimilated in weather analysis systems. This is due to difficulties in modeling cloudy radiances as well as in observing their vertical structure from space. To take full advantage of the thermodynamic information in advanced infrared (IR) sounder observations requires assimilating radiances from cloud-contaminated regions. An optimal imager/sounder cloud-clearing technique has been developed by the Cooperative Institute for Meteorological Satellite Studies at the University of Wisconsin-Madison. This technique can be used to retrieve clear column radiances through combining collocated multiband imager IR clear radiances and the sounder cloudy radiances; no background information is needed in this method. The imager/sounder cloud-clearing technique is similar to that of the microwave/IR cloud clearing in the derivation of the clear-sky equivalent radiances. However, it retains the original IR sounder resolution, which is critical for regional numerical weather prediction applications. In this study, we have investigated the assimilation of cloud-cleared IR sounder radiances using Atmospheric Infrared Sounder (AIRS)/Moderate Resolution Imaging Spectroradiometer for three hurricanes, Sandy (2012), Irene (2011), and Ike (2008). Results show that assimilating additional cloud-cleared AIRS radiances reduces the 48 and 72 h temperature forecast root-mean-square error by 0.1-0.3 K between 300 and 850 hPa. Substantial improvement in reducing track forecasts errors in the range of 10 km to 50 km was achieved.

  3. Spaceborne Infrared Atmospheric Sounder

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas; Macenka, Steven; Kampe, Thomas

    2004-01-01

    A report describes the development of the spaceborne infrared atmospheric sounder (SIRAS) - a spectral imaging instrument, suitable for observing the atmosphere of the Earth from a spacecraft, that utilizes four spectrometers to cover the wavelength range of 12 to 15.4 m with a spectral resolution that ranges between 1 part per 900 and 1 part per 1,200 in wavelength. The spectrometers are operated in low orders to minimize filtering requirements. Focal planes receive the dispersed energy and provide a spectrum of the scene. The design of the SIRAS combines advanced, wide-field refractive optics with high-dispersion gratings in a solid-state (no moving parts), diffraction-limited optical system that is the smallest such system that can be constructed for the specified wavelength range and resolution. The primary structure of the SIRAS has dimensions of 10 by 10 by 14 cm and has a mass of only 2.03 kg

  4. HIRS-AMTS satellite sounding system test - Theoretical and empirical vertical resolving power. [High resolution Infrared Radiation Sounder - Advanced Moisture and Temperature Sounder

    NASA Technical Reports Server (NTRS)

    Thompson, O. E.

    1982-01-01

    The present investigation is concerned with the vertical resolving power of satellite-borne temperature sounding instruments. Information is presented on the capabilities of the High Resolution Infrared Radiation Sounder (HIRS) and a proposed sounding instrument called the Advanced Moisture and Temperature Sounder (AMTS). Two quite different methods for assessing the vertical resolving power of satellite sounders are discussed. The first is the theoretical method of Conrath (1972) which was patterned after the work of Backus and Gilbert (1968) The Backus-Gilbert-Conrath (BGC) approach includes a formalism for deriving a retrieval algorithm for optimizing the vertical resolving power. However, a retrieval algorithm constructed in the BGC optimal fashion is not necessarily optimal as far as actual temperature retrievals are concerned. Thus, an independent criterion for vertical resolving power is discussed. The criterion is based on actual retrievals of signal structure in the temperature field.

  5. Biases in Total Precipitable Water Vapor Climatologies from Atmospheric Infrared Sounder and Advanced Microwave Scanning Radiometer

    NASA Technical Reports Server (NTRS)

    Fetzer, Eric J.; Lambrigtsen, Bjorn H.; Eldering, Annmarie; Aumann, Hartmut H.; Chahine, Moustafa T.

    2006-01-01

    We examine differences in total precipitable water vapor (PWV) from the Atmospheric Infrared Sounder (AIRS) and the Advanced Microwave Scanning Radiometer (AMSR-E) experiments sharing the Aqua spacecraft platform. Both systems provide estimates of PWV over water surfaces. We compare AIRS and AMSR-E PWV to constrain AIRS retrieval uncertainties as functions of AIRS retrieved infrared cloud fraction. PWV differences between the two instruments vary only weakly with infrared cloud fraction up to about 70%. Maps of AIRS-AMSR-E PWV differences vary with location and season. Observational biases, when both instruments observe identical scenes, are generally less than 5%. Exceptions are in cold air outbreaks where AIRS is biased moist by 10-20% or 10-60% (depending on retrieval processing) and at high latitudes in winter where AIRS is dry by 5-10%. Sampling biases, from different sampling characteristics of AIRS and AMSR-E, vary in sign and magnitude. AIRS sampling is dry by up to 30% in most high-latitude regions but moist by 5-15% in subtropical stratus cloud belts. Over the northwest Pacific, AIRS samples conditions more moist than AMSR-E by a much as 60%. We hypothesize that both wet and dry sampling biases are due to the effects of clouds on the AIRS retrieval methodology. The sign and magnitude of these biases depend upon the types of cloud present and on the relationship between clouds and PWV. These results for PWV imply that climatologies of height-resolved water vapor from AIRS must take into consideration local meteorological processes affecting AIRS sampling.

  6. AIRS - the Atmospheric Infrared Sounder

    NASA Technical Reports Server (NTRS)

    Lambrigsten, Bjorn H.; Fetzer, Eric; Fishbein, Evan; Lee, Sung-Yung; Paganao, Thomas

    2004-01-01

    The Atmospheric Infrared Sounder (AIRS) was launched in 2002, along with two companion microwave sounders. This AIRS sounding suite is the most advanced atmospheric sounding system to date, with measurement accuracies far surpassing those of current weather satellites. From its sun synchronous polar orbit, the AIRS system provides more than 90% of the globe every 24 hours. Much of the post-launch period has been devoted to optimizing the 'retrieval' system used to derive atmospheric and other parameters from the observations and to validate those parameters. The geophysical parameters have been produced since the beginning of 2003 - the first data were released to the public in mid-2003, and future improved versions will be released periodically. The ongoing calibration/validation effort has confirmed that the system is very accurate and stable. There are a number of applications for the AIRS products, ranging from numerical weather prediction - where positive impact on forecast accuracy has already been demonstrated, to atmospheric research - where the AIRS water vapor products near the surface and in the mid and upper troposphere as well as in the stratosphere promise to make it possible to characterize and model phenomena that are key for short-term atmospheric processes, from weather patterns to long-term processes, such as interannual variability and climate change.

  7. Atmospheric Infrared Sounder on the Earth Observing System

    SciTech Connect

    Aumann, H.H.; Pagano, R.J. . Jet Propulsion Lab.)

    1994-03-01

    Recent breakthroughs in IR detector array and cryocooler technology have made it possible to convert the concepts of optimum, passive, IR sounding to a practical satellite-borne instrument: the Atmospheric infrared Sounder (AIRS), a grating array IR spectrometer temperature sounder. AIRS, together with the Advanced Microwave Sounding Unit and the Microwave Humidity Sounder, will form a complementary sounding system for the Earth Observing System to be launched in the year 2000. The three instruments are expected to become the new operational sounding system for the National Oceanic and Atmospheric Administration.

  8. Atmospheric Infrared Sounder (AIRS) Project Status

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.

    2006-01-01

    This viewgraph presentation reviews the status of the Atmospheric Infrared Sounder (AIRS) and the Advanced Microwave Sounding Unit (AMSU). These instruments are on board the EOS Aqua Spacecraft that was launched May 4, 2002. The instruments are working normally. The objectives of the mission were to improve weather forecasting, assist in climate studies, and provide information as to the composition of Earth's atmosphere. The Aqua spacecraft is operating normally, the the primary life-limiting resource is fuel for maneuvers. The presentation also contains charts indicating who are using the data. There is information on the type of data available, and the propsal process. Also there is a few views of some of the planned instruments that were made possible in part due to the success of AIRS.

  9. Atmospheric Infrared Sounder on the Earth Observing System

    NASA Technical Reports Server (NTRS)

    Aumann, H. H.

    1995-01-01

    The Atmospheric Infrared Sounder (AIRS) is a high spectral resolution IR spectrometer. AIRS, together with the Advanced Microwave Sounding Unit (AMSU) and the Microwave Humidity Sounder (MHS), is designed to meet the operational weather prediction requirements of the National Oceanic and Atmospheric Administration (NOAA) and the global change research objectives of the National Aeronautics and Space Administration (NASA). The three instruments will be launched in the year 2000 on the EOS-PM spacecraft. Testing of the AIRS engineering model will start in 1996.

  10. Spectral Resolution and Coverage Impact on Advanced Sounder Information Content

    NASA Technical Reports Server (NTRS)

    Larar, Allen M.; Liu, Xu; Zhou, Daniel K.; Smith, William L.

    2010-01-01

    Advanced satellite sensors are tasked with improving global measurements of the Earth s atmosphere, clouds, and surface to enable enhancements in weather prediction, climate monitoring capability, and environmental change detection. Achieving such measurement improvements requires instrument system advancements. This presentation focuses on the impact of spectral resolution and coverage changes on remote sensing system information content, with a specific emphasis on thermodynamic state and trace species variables obtainable from advanced atmospheric sounders such as the Infrared Atmospheric Sounding Interferometer (IASI) and Cross-track Infrared Sounder (CrIS) systems on the MetOp and NPP/NPOESS series of satellites. Key words: remote sensing, advanced sounders, information content, IASI, CrIS

  11. Radiometric consistency assessment of hyperspectral infrared sounders

    NASA Astrophysics Data System (ADS)

    Wang, L.; Han, Y.; Jin, X.; Chen, Y.; Tremblay, D. A.

    2015-07-01

    The radiometric and spectral consistency among the Atmospheric Infrared Sounder (AIRS), the Infrared Atmospheric Sounding Interferometer (IASI), and the Cross-track Infrared Sounder (CrIS) is fundamental for the creation of long-term infrared (IR) hyperspectral radiance benchmark datasets for both inter-calibration and climate-related studies. In this study, the CrIS radiance measurements on Suomi National Polar-orbiting Partnership (SNPP) satellite are directly compared with IASI on MetOp-A and -B at the finest spectral scale and with AIRS on Aqua in 25 selected spectral regions through one year of simultaneous nadir overpass (SNO) observations to evaluate radiometric consistency of these four hyperspectral IR sounders. The spectra from different sounders are paired together through strict spatial and temporal collocation. The uniform scenes are selected by examining the collocated Visible Infrared Imaging Radiometer Suite (VIIRS) pixels. Their brightness temperature (BT) differences are then calculated by converting the spectra onto common spectral grids. The results indicate that CrIS agrees well with IASI on MetOp-A and IASI on MetOp-B at the longwave IR (LWIR) and middle-wave IR (MWIR) bands with 0.1-0.2 K differences. There are no apparent scene-dependent patterns for BT differences between CrIS and IASI for individual spectral channels. CrIS and AIRS are compared at the 25 spectral regions for both Polar and Tropical SNOs. The combined global SNO datasets indicate that, the CrIS-AIRS BT differences are less than or around 0.1 K among 21 of 25 comparison spectral regions and they range from 0.15 to 0.21 K in the remaining 4 spectral regions. CrIS-AIRS BT differences in some comparison spectral regions show weak scene-dependent features.

  12. Radiometric consistency assessment of hyperspectral infrared sounders

    NASA Astrophysics Data System (ADS)

    Wang, L.; Han, Y.; Jin, X.; Chen, Y.; Tremblay, D. A.

    2015-11-01

    The radiometric and spectral consistency among the Atmospheric Infrared Sounder (AIRS), the Infrared Atmospheric Sounding Interferometer (IASI), and the Cross-track Infrared Sounder (CrIS) is fundamental for the creation of long-term infrared (IR) hyperspectral radiance benchmark data sets for both intercalibration and climate-related studies. In this study, the CrIS radiance measurements on Suomi National Polar-orbiting Partnership (SNPP) satellite are directly compared with IASI on MetOp-A and MetOp-B at the finest spectral scale and with AIRS on Aqua in 25 selected spectral regions through simultaneous nadir overpass (SNO) observations in 2013, to evaluate radiometric consistency of these four hyperspectral IR sounders. The spectra from different sounders are paired together through strict spatial and temporal collocation. The uniform scenes are selected by examining the collocated Visible Infrared Imaging Radiometer Suite (VIIRS) pixels. Their brightness temperature (BT) differences are then calculated by converting the spectra onto common spectral grids. The results indicate that CrIS agrees well with IASI on MetOp-A and IASI on MetOp-B at the long-wave IR (LWIR) and middle-wave IR (MWIR) bands with 0.1-0.2 K differences. There are no apparent scene-dependent patterns for BT differences between CrIS and IASI for individual spectral channels. CrIS and AIRS are compared at the 25 spectral regions for both polar and tropical SNOs. The combined global SNO data sets indicate that the CrIS-AIRS BT differences are less than or around 0.1 K among 21 of 25 spectral regions and they range from 0.15 to 0.21 K in the remaining four spectral regions. CrIS-AIRS BT differences in some comparison spectral regions show weak scene-dependent features.

  13. The Atmospheric Infrared Sounder- An Overview

    NASA Technical Reports Server (NTRS)

    Larnbrigtsen, Bjorn; Fetzer, Eric; Lee, Sung-Yung; Irion, Fredrick; Hearty, Thomas; Gaiser, Steve; Pagano, Thomas; Aumann, Hartmut; Chahine, Moustafa

    2004-01-01

    The Atmospheric Infrared Sounder (AIRS) was launched in May 2002. Along with two companion microwave sensors, it forms the AIRS Sounding Suite. This system is the most advanced atmospheric sounding system to date, with measurement accuracies far surpassing those available on current weather satellites. The data products are calibrated radiances from all three sensors and a number of derived geophysical parameters, including vertical temperature and humidity profiles, surface temperature, cloud fraction, cIoud top pressure, and profiles of ozone. These products are generated under cloudy as well as clear conditions. An ongoing calibration validation effort has confirmed that the system is very accurate and stable, and many of the geophysical parameters have been validated. AIRS is in some cases more accurate than any other source and can therefore be difficult to validate, but this offers interesting new research opportunities. The applications for the AIRS products range from numerical weather prediction to atmospheric research - where the AIRS water vapor products near the surface and in the mid to upper troposphere will make it possible to characterize and model phenomena that are key for short-term atmospheric processes, such as weather patterns, to long-term processes, such as interannual cycles (e.g., El Nino) and climate change.

  14. Global Daily Atmospheric State Profiles from the Atmospheric Infrared Sounder

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Aumann, Hartmut H.; Fetzer, Eric J.; Lambrigtsen, Bjorn H.; Chahine, Moustafa T.

    2008-01-01

    The Atmospheric Infrared Sounder (AIRS) is a hyperspectral infrared instrument on the EOS Aqua Spacecraft, launched on May 4, 2002. AIRS has 2378 infrared channels ranging from 3.7 (micro)m to 15.4 (micro)m and a 13.5 km footprint. AIRS, in conjunction with the Advanced Microwave Sounding Unit (AMSU), produces temperature profiles with 1K/km accuracy on a global scale, as well as water vapor profiles, clouds, dust and trace gas amounts for CO2, CO, SO2, O3 and CH4.[1] AIRS data are used for weather forecasting and studies of global climate change. The AIRS is a 'facility' instrument developed by NASA as an experimental demonstration of advanced technology for remote sensing and the benefits of high resolution infrared spectra to science investigations.

  15. Atmospheric infrared sounder on AIRS with emphasis on level 2 products

    NASA Technical Reports Server (NTRS)

    Lee, Sung-Yung; Fetzer, Eric; Granger, Stephanie; Hearty, Thomas; Lambrigtsen, Bjorn; Manning, Evan M.; Olsen, Edward; Pagano, Thomas

    2004-01-01

    The Atmospheric Infrared Sounder (AIRS) was launched aboard EOS Aqua in May of 2002. AIRS is a grating spectrometer with almost 2400 channels covering the 3.74 to 15.40 micron spectral region with a nominal spectral resolution ((nu)/(delta)(nu)) of 1200, with some gaps. In addition, AIRS has 4 channels in the NIR/VIS region. The AIRS operates in conjunction with the microwave sounders Advanced Microwave Sounding Unit (AMSU-A) and Humidity Sounder of Brazil (HSB). The microwave sounders are mainly used for cloud clearing of IR radiances, or to remove the effect of cloud on the IR radiances.

  16. Advanced Atmospheric Sounder and Imaging Radiometer (AASIR)

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Design information for the Advanced Atmospheric Sounder and Imaging Radiometer is reported, which was developed to determine the configuration of a sensor for IR and visible imaging. The areas of technology reported include: systems design, optics, mechanics, electronics, detectors, radiative cooler, and radiometric calibration.

  17. Broadband infrared beam splitter for spaceborne interferometric infrared sounder.

    PubMed

    Yu, Tianyan; Liu, Dingquan; Qin, Yang

    2014-10-01

    A broadband infrared beam splitter (BS) on ZnSe substrate used for the spaceborne interferometric infrared sounder (SIIRS) is studied in the spectral range of 4.44-15 μm. Both broadband antireflection coating and broadband beam-splitter coating in this BS are designed and tested. To optimize the optical properties and the stability of the BS, suitable infrared materials were selected, and improved deposition techniques were applied. The designed structures matched experimental data well, and the properties of the BS met the application specification of SIIRS. PMID:25322240

  18. Ultraspectral Infrared Measurements from the Atmospheric Infrared Sounder (AIRS) on the EOS Aqua Spacecraft

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas

    2003-01-01

    Aqua measures the Earth's water cycle, energy fluxes, vegetation and temperatures. The Atmospheric Infrared Sounder (AIRS), Advanced Microwave Sounding Unit (AMSU) and Humidity Sounder for Brazil (HSB) were launched on the EOS Aqua spacecraft in May 2002. AIRS has had good radiometric and spectral sensitivity, stability, and accuracy and is suitable for climate studies. Temperature products compare well with radiosondes and models over the limited test range (|LAT| less than 40 degrees). Early trace gas products demonstrate the potential of AIRS. NASA is developing the next generation of hyperspectral IR imagers. JPL is ready to participate with US government agencies and US industry to transfer AIRS technology and science experience.

  19. Cross-track infrared sounder FPAA performance

    NASA Astrophysics Data System (ADS)

    Masterjohn, Stacy A.; D'Souza, Arvind I.; Dawson, Larry C.; Dolan, Peter N.; Wijewarnasuriya, Priyalal S.; Ehlert, John C.

    2003-01-01

    ABSTRACT The Cross-track Infrared Sounder (CrIS) is one of many instruments that comprise the National Polar-orbiting Operational Environmental Satellite System (NPOESS). The CrIS instrument is a Michelson interferometer-based sensor that is sensitive to wavelengths between 3.5 and 16 microns. Three separate Focal Plane Array Assemblies (FPAAs) referred to as the Short Wave Infrared Assembly, the Mid Wave Infrared assembly, and the Long Wave Infrared assembly are used to span the spectral range. The CrIS instrument measures the earth radiance at high spectral resolution using the data to provide pressure, temperature and moisture profiles of the atmosphere. The CrIS instrument will help improve both global and regional predictions of weather patterns, storm tracks, and precipitation. The CrIS program selected photovoltaic (PV) detectors for use in all three spectral bands. PV technology outperforms photoconductive detectors in terms of high sensitivity and linearity. Each FPAA consists of a 3×3 detector-matrix that are used to form 9 fields of view (FOV). Each detector has a 1,000 mm active area diameter and has its own cold preamplifier, warm post amplifier and independent high pass filter. This paper describes the performance for all three assemblies that together form the basis of the CrIS Engineering Development Unit 2 (EDU2) Detector Preamp Module (DPM). Molecular Beam Epitaxy (MBE) is used to grow the appropriate bandgap n-type Hg1-xCdxTe on lattice matched CdZnTe. SWIR, MWIR and LWIR 1000 mm diameter detectors have been manufactured using the Lateral Collection Diode (LCD) architecture. Custom pre-amplifiers have been designed to interface with the large SWIR, MWIR and LWIR detectors. The operating temperature is above 78 K, permitting the use of passive radiators in spacecraft to cool the detectors. Recently, all three FPAAs were completed and tested. The tests performed on each assembly are listed.

  20. GRIPS - The Geostationary Remote Infrared Pollution Sounder

    NASA Astrophysics Data System (ADS)

    Spackman, Ryan; Dickerson, Russell; Schoeberl, Mark; Bloom, Hal; Gordley, Larry; McHugh, Martin; Thompson, Anne; Burrows, John; Zeng, Ning; Marshall, Tom; Fish, Chad; Kim, Jhoon; Park, Rokjin; Warner, Juying; Bhartia, Pawan; Kollonige, Debra

    2013-04-01

    Climate change and air quality are the most pressing environmental issues of the 21st century for America and for the world as a whole. Despite decades of research, the sources and sinks of key greenhouse gases and other pollutants remain highly uncertain making atmospheric composition predictions difficult. The Geostationary Remote Infrared Pollution Sounder (GRIPS) will measure carbon dioxide (CO2), carbon monoxide (CO), and methane (CH4). By using measurements of nitrous oxide (N2O) and the O2 A-band to help correct for clouds and aerosols, GRIPS will achieve unprecedented precision. Together these gases account for about 85% of all climate forcing and they impact atmospheric ozone (O3). GRIPS, employing gas-filter correlation radiometry, uses the target gases themselves in place of dispersive elements to achieve outstanding throughput, sensitivity, and specificity. Because it uses a combination of reflected and thermal IR, GRIPS will detect trace gas concentrations right down to the Earth's surface. When flown in parallel to a UV/VIS sensor such as GEMS on GEO-KOMPSAT-2B over East Asia or the Sentinel 4 on MTG over Europe/Africa, the combination offers powerful finger-printing capabilities to distinguish and quantify diverse pollution sources such as electricity generation, biomass burning, and motor vehicles. From geostationary orbit, GRIPS will be able to focus on important targets to quantify sources, net flux, diurnal cycles, and long-range transport of these key components in the Earth's radiative balance and air quality.

  1. GRIPS - The Geostationary Remote Infrared Pollution Sounder

    NASA Astrophysics Data System (ADS)

    Dickerson, R. R.; Schoeberl, M. R.; Gordley, L. L.; McHugh, M. J.; Thompson, A. M.; Burrows, J. P.; Zeng, N.; Marshall, B. T.; Fish, C. S.; Spackman, J. R.; Kim, J.; Park, R.; Warner, J. X.; Bhartia, P. K.; Kollonige, D. E.

    2012-12-01

    Climate change and air quality are the most pressing environmental issues of the 21st century - for America and for the world as a whole. Despite decades of research, the sources and sinks of key greenhouse gases and other pollutants remain highly uncertain making atmospheric composition predictions difficult. The Geostationary Remote Infrared Pollution Sounder (GRIPS) will measure carbon dioxide (CO2), carbon monoxide (CO), and methane (CH4). By using measurements of nitrous oxide (N2O) and the O2 A-band to help correct for clouds and aerosols, GRIPS will achieve unprecedented precision. Together these gases account for about 85% of all climate forcing and they impact atmospheric ozone (O3). GRIPS, employing gas-filter correlation radiometry, uses the target gases themselves in place of dispersive elements to achieve outstanding throughput, sensitivity, and specificity. Because it uses a combination of reflected and thermal IR, GRIPS will detect trace gas concentrations right down to the Earth's surface. When flown in parallel to a UV/VIS sensor such as GEMS on GEO-KOMPSAT-2B over East Asia or the Sentinel 4 on MTG over Europe/Africa, the combination offers powerful finger-printing capabilities to distinguish and quantify diverse pollution sources such as electricity generation, biomass burning, and motor vehicles. From geostationary orbit, GRIPS will be able to focus on important targets to quantify sources, net flux, diurnal cycles, and long-range transport of these key components in the Earth's radiative balance and air quality.

  2. Cross-track infrared sounder FPAA performance

    NASA Astrophysics Data System (ADS)

    Masterjohn, Stacy A.; D'Souza, Arvind I.; Dawson, Larry C.; Dolan, Peter N.; Jefferson, Genae; Stapelbroek, Maryn G.; Willis, Richard W.; Wijewarnasuriya, Priyalal S.; Boehmer, Ellen; Ehlert, John C.; Andrews, James E.

    2005-01-01

    The Cross-track Infrared Sounder (CrIS), an interferometric sounder, is one of the instruments within the National Polar-orbiting Operational Environmental Satellite System (NPOESS) suite. CrIS measures earth radiances at high spectral resolution providing accurate and high-resolution pressure, temperature and moisture profiles of the atmosphere. These profiles are used in weather prediction models to track storms, predict levels of precipitation etc. Each CrIS instrument contains three Focal Plane Array Assemblies (FPAAs): SWIR [λc(98 K) ~ 5 mm], MWIR [λc(98 K) ~ 9 mm], and LWIR [λc(81 K) ~ 16 mm]. Each FPAA consists of nine large (850-mm-diameter) photovoltaic detectors arranged in a 3 x 3 pattern, with each detector having an accompanying cold preamplifier. This paper describes the selection methodology of the detectors that constitute the FPAAs and the performance of the CrIS SWIR, MWIR and LWIR proto-flight FPAAs. The appropriate bandgap n-type Hg1-xCdxTe was grown on lattice-matched CdZnTe. 850-mm-diameter photodiodes were manufactured using a Lateral Collection Diode (LCD) architecture. Custom pre-amplifiers were designed and built to interface with these large photodiodes. The LWIR, MWIR and SWIR detectors are operated at 81 K, 98 K and 98 K respectively. These relatively high operating temperatures permit the use of passive radiators on the instrument to cool the detectors. Performance goals are D* = 5.0 x 1010 cm-Hz1/2/W at 14.0 mm, 9.3 x 1010 cm-Hz1/2/W at 8.0 mm and 3.0 x 1011 cm-Hz1/2/W at 4.64 mm. Measured mean values for the nine photodiodes in each of the LWIR, MWIR and SWIR FPAAs are D* = 5.3 x 1010 cm-Hz1/2/W at 14.0 mm, 1.0 x 1011 cm-Hz1/2/W at 8.0 mm and 3.1 x 1011 cm-Hz1/2/W at 4.64 mm. These compare favorably with the following BLIP D* values calculated at the nominal flux condition: D* = 8.36 x 1010 cm Hz1/2/W at 14.0 mm, 1.4 x 1011 cm-Hz1/2/W at 8.0 mm and 4.1 x 1011 cm-Hz1/2/W at 4.64 mm.

  3. Role of the advanced IR sounder in land surface remote sensing

    NASA Astrophysics Data System (ADS)

    Knuteson, Robert O.

    2005-09-01

    A new era of Earth remote sensing began with the launch of the NASA EOS Aqua platform with the Atmospheric InfraRed Sounder (AIRS) in May 2002. The EOS AIRS instrument is the first in a series of high spectral resolution infrared spectrometers that will allow improved characterization of the global atmospheric temperature and water vapor structure. Follow-on operational sensors with similar sounding capability include the Cross-track InfraRed Sounder (CrIS) on the NPP/NPOESS satellites and the Infrared Advanced Sounding Interferometer (IASI) on the European METOP series. These so-called advanced infrared sounders will have a vital role to play in the remote sensing of land ecosystems. This paper describes how the use of Advanced IR Sounder data can be used to improve the accuracy of atmospheric corrections in the thermal IR and provide detailed information on the spectral dependence of the infrared land surface emissivity. Radiance observations from AIRS have been obtained over a large, uniform sandy desert region in the Libyan Desert suitable for evaluation of the 15-km footprints of the NASA AIRS advanced sounder. Analysis of this data indicates a spectral contrast of more than 30% between 12 mm and 9 mm in the surface infrared emissivity due to the presence of the mineral quartz with somewhat smaller contrast at 4 mm. Results of a method for separation of infrared surface emissivity and effective surface skin temperature are presented also.

  4. Impact of Measurement System Characteristics on Advanced Sounder Information Content

    NASA Technical Reports Server (NTRS)

    Larar, Allen M.; Liu, Xu; Zhou, Daniel K.

    2011-01-01

    Advanced satellite sensors are tasked with improving global observations of the Earth's atmosphere, clouds, and surface to enable enhancements in weather prediction, climate monitoring capability, and environmental change detection. Achieving such an improvement in geophysical information inferred from these observations requires optimal usage of data from current systems as well as instrument system enhancements for future sensors. This presentation addresses results of tradeoff studies evaluating the impact of spectral resolution, spectral coverage, instrument noise, and a priori knowledge on remote sensing system information content, with a specific emphasis on thermodynamic state and trace species information obtainable from advanced atmospheric sounders. Particular attention will be devoted toward information achievable from the Atmospheric InfraRed Sounder (AIRS) on the NASA EOS Aqua satellite in orbit since 2002, the Infrared Atmospheric Sounding Interferometer (IASI) aboard MetOp-A since 2006, and the Cross-track Infrared Sounder (CrIS) instrument to fly aboard the NPP and JPSS series of satellites expected to begin in late 2011. While all of these systems cover nearly the same infrared spectral extent, they have very different number of channels, instrument line shapes, coverage continuity, and instrument noise. AIRS is a grating spectrometer having 2378 discrete spectral channels ranging from about 0.4 to 2.2/cm resolution; IASI is a Michelson interferometer with 8461 uniformly-spaced spectral channels of 0.5/cm (apodized) resolution; and CrIS is a Michelson interferometer having 1305 spectral channels of 0.625, 1.250, and 2.50/cm (unapodized) spectral resolution, respectively, over its three continuous but non-overlapping bands. Results of tradeoff studies showing information content sensitivity to assumed measurement system characteristics will be presented.

  5. The Atmospheric Infrared Sounder Version 6 Cloud Products

    NASA Technical Reports Server (NTRS)

    Kahn, B. H.; Irion, F. W.; Dang, V. T.; Manning, E. M.; Nasiri, S. L.; Naud, C. M.; Blaisdell, J. M.; Schreier, M. M..; Yue, Q.; Bowman, K. W.; Fetzer, E. J.; Hulley, G. C.; Liou, K. N.; Lubin, D.; Ou, S. C.; Susskind, J.; Takano, Y.; Tian, B.; Worden, J. R.

    2014-01-01

    The version 6 cloud products of the Atmospheric Infrared Sounder (AIRS) and Advanced Microwave Sounding Unit (AMSU) instrument suite are described. The cloud top temperature, pressure, and height and effective cloud fraction are now reported at the AIRS field-of-view (FOV) resolution. Significant improvements in cloud height assignment over version 5 are shown with FOV-scale comparisons to cloud vertical structure observed by the CloudSat 94 GHz radar and the Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP). Cloud thermodynamic phase (ice, liquid, and unknown phase), ice cloud effective diameter D(sub e), and ice cloud optical thickness (t) are derived using an optimal estimation methodology for AIRS FOVs, and global distributions for 2007 are presented. The largest values of tau are found in the storm tracks and near convection in the tropics, while D(sub e) is largest on the equatorial side of the midlatitude storm tracks in both hemispheres, and lowest in tropical thin cirrus and the winter polar atmosphere. Over the Maritime Continent the diurnal variability of tau is significantly larger than for the total cloud fraction, ice cloud frequency, and D(sub e), and is anchored to the island archipelago morphology. Important differences are described between northern and southern hemispheric midlatitude cyclones using storm center composites. The infrared-based cloud retrievals of AIRS provide unique, decadal-scale and global observations of clouds over portions of the diurnal and annual cycles, and capture variability within the mesoscale and synoptic scales at all latitudes.

  6. The Atmospheric Infrared Sounder on EOS

    NASA Technical Reports Server (NTRS)

    R., Aumann; Pagano, H. H.

    1993-01-01

    Recent breakthroughs in infrared detector array and cryocooler technology have made it possible to convert the concepts of optimum, passive, infrared sounding to a practical satellite-borne instrument.

  7. Regional Assimilation of NASA Atmospheric Infrared Sounder (AIRS) Data

    NASA Technical Reports Server (NTRS)

    Chou, Shih-Hung; Lapenta, William; Jediovec, Gary J.; McCarty, William; Mecikalski, John R.

    2004-01-01

    The NASA Short-term Prediction Research and Transition (SPORT) Center seeks to accelerate the infusion of NASA Earth Science Enterprise (ESE) observations, data assimilation and modeling research into NW S forecast operations and decision-making. The Atmospheric Infrared Sounder (AIRS), is expected to advance climate research and weather prediction into the 21 st century. It is one of six instruments onboard Aqua, a satellite that is part of NASA s Earth Observing System. AIRS, along with two partner microwave sounding instruments, represents the most advanced atmospheric sounding system ever deployed in space. The system is capable of measuring the atmospheric temperature in the troposphere with radiosonde accuracies of 1 K over 1 km-thick layers under both clear and cloudy conditions, while the accuracy of the derived moisture profiles will exceed that obtained by radiosondes. It is imperative that the scientific community is prepared to take full advantage of next-generation satellite data that will become available within the next decade. The purpose of this paper is to describe a procedure designed to optimally assimilate AIRS data at high spatial resolution over both land and ocean. The assimilation system used in this study is the Local Analysis and Prediction System (LAPS) developed at the Forecast System Laboratory used extensively around the globe. Results will focus on quality control issues associated with AIRS, optimal assimilation strategies, and the impact of the AIRS data on subsequent numerical forecasts at 12 km produced by the next generation Weather Research and Forecast (WRF) model.

  8. Retrieval of atmospheric temperature and moisture vertical profiles from satellite Advanced Infrared Sounder radiances with a new regularization parameter selecting method

    NASA Astrophysics Data System (ADS)

    Zhang, Kun; Wu, Chunqiang; Li, Jun

    2016-06-01

    Considering the characteristics of nonlinear problems, a new method based on the L-curve method and including the concept of entropy was designed to select the regularization parameter in the one-dimensional variational analysis-based sounding retrieval method. In the first iteration, this method uses an empirical regularization parameter derived by minimizing the entropy of variables. During subsequent iterations, it uses the L-curve method to select the regularization parameter in the vicinity of the regularization parameter selected in the last iteration. The new method was employed to select the regularization parameter in retrieving atmospheric temperature and moisture profiles from Atmospheric Infrared Sounder radiance measurements selected from the first day of each month in 2008. The results show that compared with the original L-curve method, the new method yields 5.5% and 2.5% improvements on temperature and relative humidity profiles, respectively. Compared with the discrepancy principle method, the improvements on temperature and relative humidity profiles are 1.6% and 2.0%, respectively.

  9. Development and test of the Atmospheric Infrared Sounder (AIRS)

    NASA Astrophysics Data System (ADS)

    Morse, Paul G.; Bates, Jerry C.; Miller, Christopher R.; Chahine, Moustafa T.; O'Callaghan, Fred; Aumann, Hartmut H.; Karnik, Avinash R.

    1999-12-01

    The Atmospheric Infrared Sounder (AIRS) has been developed for the NASA Earth Observing System (EOS) program for a scheduled launch on the EOS PM-1 spacecraft in December 2000. AIRS, working in concert with complementary microwave instrumentation on EOS PM-1 is designed to provide both new and more accurate data about the atmosphere, land and oceans for application to NASA climate studies and NOAA and DOD weather prediction. Among the important parameters to be derived from AIRS observations are atmospheric temperature profiles with an average accuracy of 1 K in 1 kilometer (km) layers in the troposphere, humidity profiles to 10% accuracy and surface temperatures with an average accuracy of 0.5 K. The AIRS measurement technique is based on passive IR remote sensing using a precisely calibrated, high spectral resolution grating spectrometer operating in the 3.7 - 15.4 micrometer region. The instrument concept uses a passively cooled multi- aperture echelle array spectrometer approach in combination with advanced state of the art focal plane and cryogenic refrigerator technology to achieve unparalleled performance capability in a practical long life configuration. The AIRS instrument, which has been under development since 1991, has been fully integrated and has completed successfully a comprehensive performance verification program. Performance verification included thermal vacuum testing, environmental qualification and a full range of spatial, spectral and radiometric calibrations, which have demonstrated outstanding spectrometric performance. This paper provides a brief overview of the AIRS mission and instrument design along with key results from the test program.

  10. On Cirrus Cloud Fields Measured by the Atmospheric Infrared Sounder

    NASA Technical Reports Server (NTRS)

    Kahn, Brian H.; Eldering, Annmarie; Liou, Kuo Nan

    2006-01-01

    A viewgraph presentation showing trends in clouds measured by the Atmospheric Infrared Sounder (AIRS) is given. The topics include: 1) Trends in clouds measured by AIRS: Are they reasonable? 2) Single and multilayered cloud trends; 3) Retrievals of thin cirrus D(sub e) and tau: Single-layered cloud only; 4) Relationships between ECF, D(sub e), tau, and T(sub CLD); and 5) MODIS vs. AIRS retrievals.

  11. Application of Atmospheric Infrared Sounder (AIRS) Data to Climate Research

    NASA Technical Reports Server (NTRS)

    Aumann, Hartmut H.; Gregorich, David; Gaiser, Steve; Chahine, Moustafa T.

    2004-01-01

    The application of hyper spectral radiometric data to climate research requires very high absolute radiometric accuracy and stability. We use cloud-free tropical ocean data from the Atmospheric InfraRed Sounder (AIR) Calibration Data Subset (ADCS) to show that the radiometric precision and stability required climate applications has been achieved. The sea surface skin temperatures derived from the AIRS 2616cm-1 super window channel are stable relative to the RTG.SST at the better than 8 mK/year level, and the spectral calibration is stable at the 1 ppm/year level. The excellent stability and accuracy are the result of the implementation of AIRS as a grating array spectrometer, which is cooled and stabilized within 10 mK at 155 K. Analysis of daily measurements of the temperature gradient between the surface and 7 km altitude show that the AIRS Calibration Data Subset has applications which extend its original intent for calibration support to climate research. The Atmospheric Infrared Sounder (AIRS) on the EOS Aqua satellite was launched into polar orbit in May 2002. AIRS covers the spectral region from 640 to 2700 cm-1 with 2378 independent channels and represents the first of a new generation of hyper spectral resolution sounders in support of global sounding data for weather forecasting and climate research.

  12. Estimation of volcanic ash refractive index from satellite infrared sounder data

    NASA Astrophysics Data System (ADS)

    Ishimoto, H.; Masuda, K.

    2014-12-01

    The properties of volcanic ash clouds (cloud height, optical depth, and effective radius of the particles) are planned to estimate from the data of the next Japanese geostationary meteorological satellite, Himawari 8/9. The volcanic ash algorithms, such as those proposed by NOAA/NESDIS and by EUMETSAT, are based on the infrared absorption properties of the ash particles, and the refractive index of a typical volcanic rock (i.e. andesite) has been used in the forward radiative transfer calculations. Because of a variety of the absorption properties for real volcanic ash particles at infrared wavelengths (9-13 micron), a large retrieval error may occur if the refractive index of the observed ash particles was different from that assumed in the retrieval algorithm. Satellite infrared sounder provides spectral information for the volcanic ash clouds. If we can estimate the refractive index of the ash particles from the infrared sounder data, a dataset of the optical properties for similar rock type of the volcanic ash can be prepared for the ash retrieval algorithms of geostationary/polar-orbiting satellites in advance. Furthermore, the estimated refractive index can be used for a diagnostic and a correction of the ash particle model in the retrieval algorithm within a period of the volcanic activities. In this work, optimal estimation of the volcanic ash parameters was conducted through the radiative transfer calculations for the window channels of the atmospheric infrared sounder (AIRS). The estimated refractive indices are proposed for the volcanic ash particles of some eruption events.

  13. Maiden flight of the infrared sounder GLORIA

    NASA Astrophysics Data System (ADS)

    Friedl-Vallon, Felix; Gloria-Team

    2013-05-01

    The Gimballed Limb Radiance Imager of the Atmosphere (GLORIA) instrument is an imaging Fourier transform spectrometer that is capable to operate on various high altitude research aircraft and on stratospheric balloons. The instrument is a joint development of the Helmholtz Centers Jülich and Karlsruhe Institute of Technology. GLORIA has flown for the first time in December 2011 on board the Russian Geophysica M55 research aircraft. Atmospheric measurements with GLORIA are possible in limb and nadir geometry. The scientific focus in limb sounding mode is on dynamics, tropopause region, TTL and polar UTLS. The nadir mode is tailored to processes in the troposphere such as biomass burning events and high precision methane measurements. The combination of limb and nadir will combine good spatial resolution in both the troposphere and lower stratosphere. In addition, GLORIA serves as a proof of concept instrument for the candidate ESA Earth explorer mission PREMIER. The GLORIA spectrometer consists of a classical Michelson interferometer combined with an infrared camera. The spectral range of the first instrument version extends from 780 cm-1 to 1400 cm-1 with a spectral resolution of up to 0.075 cm-1. The high speed HgCdTe focal plane array with 256×256 elements allows in the limb mode an extremely high spatial sampling of up to 100 m in the vertical domain. The spectrometer is mounted in a gimballed frame that permits agility in elevational and azimuthal direction, as well as image rotation. Scene acquisition and scene stabilisation are accomplished by a control system based on an inertial measurement unit. Limb scenes can be chosen within 45° and 132° to the flight direction of the aircraft allowing tomographic analysis of sampled air volumes.

  14. Requirements for a Moderate-Resolution Infrared Imaging Sounder (MIRIS)

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Aumann, Hartmut H.; Gerber, Andrew J.; Kuai, Le; Gontijo, I.; DeLeon, Berta; Susskind, Joel; Iredell, Lena; Bajpai, Shyam

    2013-01-01

    The high cost of imaging and sounding from space warrants exploration of new methods for obtaining the required information, including changing the spectral band sets, employing new technologies and merging instruments. In some cases we must consider relaxation of the current capability. In others, we expect higher performance. In general our goal is to meet the VIIRS and CrIS requirements while providing the enhanced next generation capabilities: 1) Hyperspectral Imaging in the Vis/NIR bands, 2) High Spatial Resolution Sounding in the Infrared bands. The former will improve the accuracy of ocean color products, aerosols and water vapor, surface vegetation and geology. The latter will enable the high-impact achieved by the current suite of hyperspectral infrared sounders to be achieved by the next generation high resolution forecast models. We examine the spectral, spatial and radiometric requirements for a next generation system and technologies that can be applied from the available inventory within government and industry. A two-band grating spectrometer instrument called the Moderate-resolution Infrared Imaging Sounder (MIRIS) is conceived that, when used with the planned NASA PACE Ocean Color Instrument (OCI) will meet the vast majority of CrIS and VIIRS requirements in the all bands and provide the next generation capabilities desired. MIRIS resource requirements are modest and the Technology Readiness Level is high leading to the expectation that the cost and risk of MIRIS will be reasonable.

  15. Requirements for a Moderate-resolution Infrared Imaging Sounder (MIRIS)

    NASA Astrophysics Data System (ADS)

    Pagano, Thomas S.; Aumann, Hartmut H.; Gerber, Andrew J.; Kuai, Le; Gontijo, I.; DeLeon, Berta; Susskind, Joel; Iredell, Lena; Bajpai, Shyam

    2013-09-01

    The high cost of imaging and sounding from space warrants exploration of new methods for obtaining the required information, including changing the spectral band sets, employing new technologies and merging instruments. In some cases we must consider relaxation of the current capability. In others, we expect higher performance. In general our goal is to meet the VIIRS and CrIS requirements while providing the enhanced next generation capabilities: 1) Hyperspectral Imaging in the Vis/NIR bands, 2) High Spatial Resolution Sounding in the Infrared bands. The former will improve the accuracy of ocean color products, aerosols and water vapor, surface vegetation and geology. The latter will enable the high-impact achieved by the current suite of hyperspectral infrared sounders to be achieved by the next generation high resolution forecast models. We examine the spectral, spatial and radiometric requirements for a next generation system and technologies that can be applied from the available inventory within government and industry. A two-band grating spectrometer instrument called the Moderate-resolution Infrared Imaging Sounder (MIRIS) is conceived that, when used with the planned NASA PACE Ocean Color Instrument (OCI) will meet the vast majority of CrIS and VIIRS requirements in the all bands and provide the next generation capabilities desired. MIRIS resource requirements are modest and the Technology Readiness Level is high leading to the expectation that the cost and risk of MIRIS will be reasonable.

  16. Channel alignment and radiometry in hyperspectral atmospheric infrared sounders

    NASA Technical Reports Server (NTRS)

    Elliott, Denis A.; Aumanna, H. H.; Pagano, Thomas S.; Overoye, Kenneth R.; Schindler, Rudolf A.

    2005-01-01

    The Atmospheric Infrared Sounder (AIRS) is a hyper-spectral infrared sounder which covers the 3.7 to 15,4 micron region with 2378 spectral channels. The AIRS instrument specification called for spatial co-registration of all channels to better than 2% of the field of view. Pre-launch testing confirmed that this requirement was met, since the standard deviations in the centroids was about 1% of the 13.5 km IFOV in scan and 3% in track. Detailed analysis of global AIRS data show that the typical scene gradient in 10 micron window channels is about I .3K/km rms. The way these gradients, which are predominantly caused by clouds, manifest themselves in the data depends on the details of the instrument design and the way the spectral channels are used in the data analysis, AIRS temperature and moisture retrievals use 328 of the 2378 channels from 17 independent arrays. As a result, the effect of the boresight misalignment averages to zero mean. Any increase in the effective noise is less than 0.2K. Also, there is no discernable performance degradation of products at the 45 km spatial resolution in the presence of partially cloudy scenes with up to 80% cloudiness. Single pixel radiometric differences between channels with boresight alignment differences can be appreciable and can affect scientific investigations on a single 15km footprint scale, particularly near coastlines, thunderstorms and surface emissivity inhomogeneities.

  17. Determination of cloud parameters from infrared sounder data

    NASA Technical Reports Server (NTRS)

    Yeh, H.-Y. M.

    1984-01-01

    The World Climate Research Programme (WCRP) plan is concerned with the need to develop a uniform global cloud climatology as part of a broad research program on climate processes. The International Satellite Cloud Climatology Project (ISCCP) has been approved as the first project of the WCRP. The ISCCP has the basic objective to collect and analyze satellite radiance data to infer the global distribution of cloud radiative properties in order to improve the modeling of cloud effects on climate. Research is conducted to explore an algorithm for retrieving cloud properties by utilizing the available infrared sounder data from polar-orbiting satellites. A numerical method is developed for computing cloud top heights, amount, and emissivity on the basis of a parameterized infrared radiative transfer equation for cloudy atmospheres. Theoretical studies were carried out by considering a synthetic atmosphere.

  18. The Atmospheric Infrared Sounder (AIRS) on the Earth Observing System

    NASA Technical Reports Server (NTRS)

    Aumann, Hartmut H.; Pagano, Thomas S.; Strow, Larrabee

    2001-01-01

    AIRS, the Atmospheric Infrared Sounder on the EOS-Aqua, produces global high precision spectra from 3.7 - 15.4 micron with spectral resolving power mu/delta mu = 1200 twice each day from 708 km orbital altitude. AIRS is the first hyperspectral infrared spectrometer designed to support NOAA/NCEP's operational requirements for medium range weather forecasting during its nominal 7 year lifetime. AIRS, together with the AMSU and HSB microwave radiometers, will achieve global retrieval accuracy of better then 1K rms in the lower troposphere under clear and partly cloudy condition. Based on the excellent radiometric and spectral performance demonstrated during the pre-launch testing, the assimilation of AIRS data into the forecast model is expected to result in major forecast improvements. Launch of AIRS on the EOS AQUA is scheduled for May 2001.

  19. Science Highlights and Lessons Learned from the Atmospheric Infrared Sounder (AIRS)

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Fetzer, Eric J.; Suda, Jarrod; Licata, Steve

    2011-01-01

    The Atmospheric Infrared Sounder (AIRS) and companion instrument, the Advanced Microwave Sounding Unit (AMSU) on the NASA Earth Observing System Aqua spacecraft are facility instruments designed to support measurements of atmospheric temperature, water vapor and a wide range of atmospheric constituents in support of weather forecasting and scientific research in climate and atmospheric chemistry. This paper is an update to the science highlights from a paper by the authors released last year and also looks back at the lessons learned and future needs of the scientific community. These lessons not only include requirements on the measurements, but scientific shortfalls as well. Results from the NASA Science Community Workshop in IR and MW Sounders relating to AIRS and AMSU requirements and concerns are covered and reflect much of what has been learned and what is needed for future atmospheric sounding from Low Earth Orbit.

  20. Advanced atmospheric sounder and imaging radiometer /AASIR/ for STORMSAT

    NASA Technical Reports Server (NTRS)

    Chase, S. C.

    1976-01-01

    The principal mission of the three-axis stabilized STORMSAT spacecraft is to provide the necessary meteorological data for tracking, studying the detailed structure, and modeling mesoscale weather phenomena. In the area of mesoscale events, the following meteorological objectives are indicated: high-quality imagery, visible and infrared; wind velocity from cloud tracers (1 m/sec), atmospheric temperature profiles (1 K), and atmospheric humidity sounding. These objectives are reflected in the functional characteristics of the AASIR, which is a second generation meteorological sensor based on the Visible Infrared Spin-Scan Radiometer (VISSR) and the Atmospheric Sounder (VAS). The AASIR design and interface constraints with the STORMSAT spacecraft is discussed.

  1. The TIROS-N high resolution infrared radiation sounder

    NASA Technical Reports Server (NTRS)

    Koenig, E. W.

    1979-01-01

    The high-resolution infrared radiation sounder (HIRS/2) was developed and flown on the Television and Infrared Observation Satellite, N Series (TIROS-N) as one means of obtaining atmospheric vertical profile information. The HIRS/2 receives visible and infrared spectrum radiation through a single telescope and selects 20 narrow spectral channels by means of a rotating filter wheel. A passive radiant cooler provides an operating temperature of 106.7K for the HgCdTe and InSb detectors while the visible detector operates at instrument frame temperature. Low noise amplifiers and digital processing provide 13 bit data for spacecraft data multiplexing and transmission. The qualities of system performance that determine sounding capability are the dynamic range of data collection, the noise equivalent radiance of the system, the registration of the air columns sampled in each channel, and the ability to upgrade the calibration of the instrument to maintain the performance standard throughout life. The basic performance of the instrument in test is described. Early orbital information from the TIROS-N launched on October 13, 1978 are given and some observations on system quality are made.

  2. Sensitivity Analysis for Atmospheric Infrared Sounder (AIRS) CO2 Retrieval

    NASA Technical Reports Server (NTRS)

    Gat, Ilana

    2012-01-01

    The Atmospheric Infrared Sounder (AIRS) is a thermal infrared sensor able to retrieve the daily atmospheric state globally for clear as well as partially cloudy field-of-views. The AIRS spectrometer has 2378 channels sensing from 15.4 micrometers to 3.7 micrometers, of which a small subset in the 15 micrometers region has been selected, to date, for CO2 retrieval. To improve upon the current retrieval method, we extended the retrieval calculations to include a prior estimate component and developed a channel ranking system to optimize the channels and number of channels used. The channel ranking system uses a mathematical formalism to rapidly process and assess the retrieval potential of large numbers of channels. Implementing this system, we identifed a larger optimized subset of AIRS channels that can decrease retrieval errors and minimize the overall sensitivity to other iridescent contributors, such as water vapor, ozone, and atmospheric temperature. This methodology selects channels globally by accounting for the latitudinal, longitudinal, and seasonal dependencies of the subset. The new methodology increases accuracy in AIRS CO2 as well as other retrievals and enables the extension of retrieved CO2 vertical profiles to altitudes ranging from the lower troposphere to upper stratosphere. The extended retrieval method for CO2 vertical profile estimation using a maximum-likelihood estimation method. We use model data to demonstrate the beneficial impact of the extended retrieval method using the new channel ranking system on CO2 retrieval.

  3. Validation of the Radiometric Stability of the Atmospheric Infrared Sounder

    NASA Technical Reports Server (NTRS)

    Aumann, H. H.; Elliott, D.; Strow, L. L.

    2012-01-01

    It has been widely accepted that an infrared sounder in low polar orbit is capable of producing climate quality data, if the spectral brightness temperatures have instrumental trends of less than 10 mK/yr. Achieving measurement stability at this level is not only very demanding of the design of the instrument, it is also pushes the state of art of measuring on orbit what stability is actually achieved. We discuss this using Atmospheric Infrared Sounder (AIRS) L1B data collected between 2002 and 2011. We compare the L1B brightness temperature observed in cloud filtered night tropical ocean spectra (obs) to the brightness temperature calculated based on the known surface emissivity, temperature and water vapor profiles from the ECMWF ReAnalysis (ERA) and the growth rates of CO2, N2O and Ozone. The trend in (obs-calc) is a powerful tool for the evaluation of the stability of the 2378 AIRS channels. We divided the channels into seven classes: All channels which sound in the stratosphere (at pressure levels below 150 hPa), 14 micron CO2 sounding, 4 micron CO2 P-branch sounding, 4 micron CO2 R-branch sounding, water vapor sounding, shortwave surface sounding and longwave surface sounding. The peak in the weighting function at 1050 hPa separates sounding and surface channels. The boundary between shortwave and longwave is 5 microns. Except for the stratosphere sounding channels, the remaining six groups have (obs-calc) trends of less than 20 mK/yr. The longwave surface channels have trends of 2 mK/yr, significantly less than the 8 mK/yr trend seem in the shortwave window channels. Based on the design of the instrument, trends within a group of channels should be the same. While the longwave and shortwave trends are less than the canonical 10 mK/yr, the larger trend in the shortwave channels could be an artifact of using the pre-launch determined calibration coefficients. This is currently under evaluation. The trend in (obs-calc) for the non-surface sounding channels, in

  4. Validation of the radiometric stability of the Atmospheric Infrared Sounder

    NASA Astrophysics Data System (ADS)

    Aumann, H. H.; Elliott, D.; Strow, L. L.

    2012-09-01

    It has been widely accepted that an infrared sounder in low polar orbit is capable of producing climate quality data, if the spectral brightness temperatures have instrumental trends of less than 10 mK/yr. Achieving measurement stability at this level is not only very demanding of the design of the instrument, it is also pushes the state of art of measuring on orbit what stability is actually achieved. We discuss this using Atmospheric Infrared Sounder (AIRS) L1B data collected between 2002 and 2011. We compare the L1B brightness temperature observed in cloud filtered night tropical ocean spectra (obs) to the brightness temperature calculated based on the known surface emissivity, temperature and water vapor profiles from the ECMWF ReAnalysis (ERA) and the growth rates of CO2 , N2O and Ozone. The trend in (obscalc) is a powerful tool for the evaluation of the stability of the 2378 AIRS channels. We divided the channels into seven classes: All channels which sound in the stratosphere (at pressure levels below 150 hPa), 14 um CO2 sounding, 4 um CO2 P-branch sounding, 4um CO2 R-branch sounding, water vapor sounding, shortwave surface sounding and longwave surface sounding. The peak in the weighting function at 1050 hPa separates sounding and surface channels. The boundary between shortwave and longwave is 5 μm. Except for the stratosphere sounding channels, the remaining six groups have (obs-calc) trends of less than 20 mK/yr. The longwave surface channels have trends of 2 mK/yr, significantly less than the 8 mK/yr trend seem in the shortwave window channels. Based on the design of the instrument, trends within a group of channels should be the same. While the longwave and shortwave trends are less than the canonical 10 mK/yr, the larger trend in the shortwave channels could be an artifact of using the pre-launch determined calibration coefficients. This is currently under evaluation. The trend in (obs-calc) for the non-surface sounding channels, in particular for

  5. Small particle cirrus observed by the Atmospheric Infrared Sounder

    NASA Astrophysics Data System (ADS)

    Kahn, B. H.; Eldering, A.; Fishbein, E. F.

    2003-04-01

    The high-resolution spectra of the Atmospheric Infrared Sounder (AIRS) have provided an opportunity to globally observe small particle-dominated cirrus clouds. The shape of the radiance spectra in the atmospheric windows is uniquely influenced by small ice crystals with an effective radius (reff) of a few 10s of microns and smaller. In some rare instances, minima in the AIRS brightness temperature (BT) spectra between 800 to 850 cm-1 are seen, consistent with the existence of ice particles with an reff smaller than 3 microns. Much more frequent occurences of small ice particle clouds with reff larger than 3 microns are observed through the large 998 to 811 cm-1 BT differences without minima. The small particle events are occasionally found in orographic cirrus clouds, in and around cumulonimbus towers, and in cirrus bands far removed from convection and orography. Several cases spanning the variety of small particle-dominated cirrus events will be presented. AIRS, located on the EOS-Aqua platform, is a high-resolution grating spectrometer that scans at angles 49.5 degrees on either side of nadir view, at both visible and infrared wavelengths. The surface footprint is 13.5 km at the nadir view, and coverage in the infrared is in three bandpasses (649-1136, 1265-1629, and 2169-2674 cm-1). Comparisons of observed spectra are made with simulated spectra generated by a plane-parallel scattering radiative transfer model using ice particle shapes and sizes calculated by the T-matrix method. These comparisons yield information on small particle cirrus cloud reff and optical depth. Aumann, H.H., and R.J. Pagano, Atmospheric Infrared Sounder on the Earth Observing System. Opt. Eng. 33, 776-784, 1994. Mishchenko, M.I., and L.D. Travis, Capabilities and limitations of a current Fortran implementation of the T-matrix method for randomly oriented, rotationally symmetric scatterers. J. Quant. Spectrosc. Radiat. Transfer, 60, 309-324, 1998. Moncet, J.L., and S.A. Clough

  6. Remote Sensing of Atmospheric Climate Parameters from the Atmospheric Infrared Sounder

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Chahine, Moustafa T.; Aumann, Hartmut H.; Tian, Baijun; Lee, Sung-Yung; Olsen, Ed; Lambrigtsen, Bjorn; Fetzer, Eric; Irion, F. W.; McMillan, Wallace; Strow, Larrabee; Fu, Xiouhua; Barnet, Chris; Goldberg, Mitch; Susskind, Joel; Blaisdell, John

    2006-01-01

    This paper presents the standard and research products from Atmospheric Infrared Sounder (AIRS) and their current accuracies as demonstrated through validation efforts. It also summarizes ongoing research using AIRS data for weather prediction and improving climate models.

  7. Cloud retrieval using infrared sounder data - Error analysis

    NASA Technical Reports Server (NTRS)

    Wielicki, B. A.; Coakley, J. A., Jr.

    1981-01-01

    An error analysis is presented for cloud-top pressure and cloud-amount retrieval using infrared sounder data. Rms and bias errors are determined for instrument noise (typical of the HIRS-2 instrument on Tiros-N) and for uncertainties in the temperature profiles and water vapor profiles used to estimate clear-sky radiances. Errors are determined for a range of test cloud amounts (0.1-1.0) and cloud-top pressures (920-100 mb). Rms errors vary by an order of magnitude depending on the cloud height and cloud amount within the satellite's field of view. Large bias errors are found for low-altitude clouds. These bias errors are shown to result from physical constraints placed on retrieved cloud properties, i.e., cloud amounts between 0.0 and 1.0 and cloud-top pressures between the ground and tropopause levels. Middle-level and high-level clouds (above 3-4 km) are retrieved with low bias and rms errors.

  8. Development of the Advanced Technology Microwave Sounder (ATMS) for NPOESS C1

    NASA Astrophysics Data System (ADS)

    Brann, C.; Kunkee, D.

    2008-12-01

    The National Polar-orbiting Operational Environmental Satellite System's Advanced Technology Microwave Sounder (ATMS) is planned for flight on the first NPOESS mission (C1) in 2013. The C1 ATMS will be the second instrument of the ATMS series and will provide along with the companion Cross-track Infrared Sounder (CrIS), atmospheric temperature and moisture profiles for NPOESS. The first flight of the ATMS is scheduled in 2010 on the NPOESS Preparatory Project (NPP) satellite, which is an early instrument risk reduction component of the NPOESS mission. This poster will focus on the development of the ATMS for C1 including aspects of the sensor calibration, antenna beam and RF characteristics and scanning. New design aspects of the C1 ATMS, required primarily by parts obsolescence, will also be addressed in this poster.

  9. Note on the Effect of Horizontal Gradients for Nadir-Viewing Microwave and Infrared Sounders

    NASA Technical Reports Server (NTRS)

    Joiner, J.; Poli, P.

    2004-01-01

    Passive microwave and infrared nadir sounders such as the Advanced Microwave Sounding Unit A (AMSU-A) and the Atmospheric InfraRed Sounder (AIRS), both flying on NASA s EOS Aqua satellite, provide information about vertical temperature and humidity structure that is used in data assimilation systems for numerical weather prediction and climate applications. These instruments scan cross track so that at the satellite swath edges, the satellite zenith angles can reach approx. 60 deg. The emission path through the atmosphere as observed by the satellite is therefore slanted with respect to the satellite footprint s zenith. Although radiative transfer codes currently in use at operational centers use the appropriate satellite zenith angle to compute brightness temperature, the input atmospheric fields are those from the vertical profile above the center of the satellite footprint. If horizontal gradients are present in the atmospheric fields, the use of a vertical atmospheric profile may produce an error. This note attempts to quantify the effects of horizontal gradients on AIRS and AMSU-A channels by computing brightness temperatures with accurate slanted atmospheric profiles. We use slanted temperature, water vapor, and ozone fields from data assimilation systems. We compare the calculated slanted and vertical brightness temperatures with AIRS and AMSU-A observations. We show that the effects of horizontal gradients on these sounders are generally small and below instrument noise. However, there are cases where the effects are greater than the instrument noise and may produce erroneous increments in an assimilation system. The majority of the affected channels have weighting functions that peak in the upper troposphere (water vapor sensitive channels) and above (temperature sensitive channels) and are unlikely t o significantly impact tropospheric numerical weather prediction. However, the errors could be significant for other applications such as stratospheric

  10. Global dust infrared aerosol properties retrieved using hyperspectral sounders

    NASA Astrophysics Data System (ADS)

    Capelle, Virginie; Chédin, alain; Pondrom, Marc; Pierangelo, Clémence; Armante, Raymond; Crevoisier, Cyril; Crépeau, Laurent; Scott, Noëlle

    2015-04-01

    Observations from infrared hyperspectral sounders, here IASI and AIRS, are interpreted in terms of dust aerosol properties (AOD and mean altitude). The method is based on a "Look-Up-Table" (LUT) approach, where all radiative transfer computation is performed once for all and "off-line", for a large selection of atmospheric situations, of observing conditions, of surface characteristics (in particular the surface emissivity and temperature), and different aerosol refractive index models. The inversion scheme follows two main steps: first, determination of the observed atmospheric thermodynamic situation, second, simultaneous retrieval of the 10µm coarse-mode AOD and of the mean altitude. The method is here applied over sea and over land, at daily scale daytime and nighttime, and at the satellite pixel resolution (12 km at nadir). The geographical study area studied includes the northern tropics from west Atlantic to the Arabian peninsula and Indian ocean, and the Mediterranean basin, all of them characterized by strong, regular dust events. A special focus is given to the hourly variation of aerosol properties within a day. In this context, both IASI overpasses are processed, providing two measurements at 9:30AM and 9:30PM (equator local time) each day. First results obtained from AIRS observations, made at 1:30 AM and PM, open the way to the analysis of the aerosol diurnal cycle. For the AOD, comparisons are made with AERONET ground-based data , when available, in order to 1) evaluate our results, and 2) show the importance of a better knowledge of the aerosol diurnal cycle, especially close to the sources. Mean aerosol layer altitude obtained from IASI is compared at local scale with the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP/CALIPSO) aerosol altitude.

  11. Performance status of the Atmospheric Infrared Sounder ten years after launch

    NASA Astrophysics Data System (ADS)

    Pagano, Thomas S.; Broberg, Steve; Aumann, Hartmut H.; Elliott, Denis; Manning, Evan; Strow, Larrabee

    2012-11-01

    The Atmospheric Infrared Sounder (AIRS) is a hyperspectral infrared instrument on the EOS Aqua Spacecraft, launched on May 4, 2002. AIRS has 2378 infrared channels ranging from 3.7 μm to 15.4 μm and a 13.5 km footprint at nadir. The AIRS is a "facility" instrument developed by NASA as an experimental demonstration of advanced technology for remote sensing and the benefits of high resolution infrared spectra to science investigations. AIRS, in conjunction with the Advanced Microwave Sounding Unit (AMSU), produces temperature profiles with 1K/km accuracy on a global scale, as well as water vapor profiles and trace gas amounts for CO2, CO, SO2, O3 and CH4. AIRS data are used for weather forecasting, climate process studies and validating climate models. The AIRS instrument has far exceeded its required design life of 5 years, with over 10 years of operations as of September 2012. While the instrument has performed exceptionally well, with little signs of wear, the AIRS Project continues to monitor and maintain the health of AIRS, characterize its behavior and improve performance where possible. Radiometric stability has been monitored and trending shows better than 16 mK/year stability. Spectral calibration stability is better than 1 ppm/year, and a new gain table was recently uploaded to recover 100 significantly degraded or dead channels by switching to their redundant counterpart. At this time we expect the AIRS to continue to perform well for the next decade.

  12. How Well Can Infrared Sounders Observe the Atmosphere and Surface Through Clouds?

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Larar, Allen M.; Liu, Xu; Smith, William L.; Strow, L. Larrabee; Yang, Ping

    2010-01-01

    Infrared sounders, such as the Atmospheric Infrared Sounder (AIRS), the Infrared Atmospheric Sounding Interferometer (IASI), and the Cross-track Infrared sounder (CrIS), have a cloud-impenetrable disadvantage in observing the atmosphere and surface under opaque cloudy conditions. However, recent studies indicate that hyperspectral, infrared sounders have the ability to detect cloud effective-optical and microphysical properties and to penetrate optically thin clouds in observing the atmosphere and surface to a certain degree. We have developed a retrieval scheme dealing with atmospheric conditions with cloud presence. This scheme can be used to analyze the retrieval accuracy of atmospheric and surface parameters under clear and cloudy conditions. In this paper, we present the surface emissivity results derived from IASI global measurements under both clear and cloudy conditions. The accuracy of surface emissivity derived under cloudy conditions is statistically estimated in comparison with those derived under clear sky conditions. The retrieval error caused by the clouds is shown as a function of cloud optical depth, which helps us to understand how well infrared sounders can observe the atmosphere and surface through clouds.

  13. NPOESS Preparatory Project Validation Program for the Cross-track Infrared Sounder

    NASA Astrophysics Data System (ADS)

    Barnet, C.; Gu, D.; Nalli, N. R.

    2009-12-01

    The National Polar-orbiting Operational Environmental Satellite System (NPOESS) Program, in partnership with National Aeronautical Space Administration (NASA), will launch the NPOESS Preparatory Project (NPP), a risk reduction and data continuity mission, prior to the first operational NPOESS launch. The NPOESS Program, in partnership with Northrop Grumman Aerospace Systems, will execute the NPP Calibration and Validation (Cal/Val) program to ensure the data products comply with the requirements of the sponsoring agencies. The Cross-track Infrared Sounder (CrIS) and the Advanced Technology Microwave Sounder (ATMS) are two of the instruments that make up the suite of sensors on NPP. Together, CrIS and ATMS will produce three Environmental Data Records (EDRs) including the Atmospheric Vertical Temperature Profile (AVTP), Atmospheric Vertical Moisture Profile (AVMP), and the Atmospheric Vertical Pressure Profile (AVPP). The AVTP and the AVMP are both NPOESS Key Performance Parameters (KPPs). The validation plans establish science and user community leadership and participation, and demonstrated, cost-effective Cal/Val approaches. This presentation will provide an overview of the collaborative data, techniques, and schedule for the validation of the NPP CrIS and ATMS environmental data products.

  14. Daily global maps of carbon monoxide from NASA's Atmospheric Infrared Sounder

    NASA Astrophysics Data System (ADS)

    McMillan, W. W.; Barnet, C.; Strow, L.; Chahine, M. T.; McCourt, M. L.; Warner, J. X.; Novelli, P. C.; Korontzi, S.; Maddy, E. S.; Datta, S.

    2005-06-01

    We present the first observations of tropospheric carbon monoxide (CO) by the Atmospheric Infrared Sounder (AIRS) onboard NASA's Aqua satellite. AIRS daily coverage of ~70% of the planet represents a significant evolutionary advance in satellite trace gas remote sensing. Tropospheric CO abundances are retrieved from AIRS 4.55 μm spectral region using the full AIRS retrieval algorithm run in a research mode. The presented AIRS daily global CO maps from 22-29 September 2002 show large-scale, long-range transport of CO from anthropogenic and natural sources, most notably from biomass burning. The sequence of daily maps reveal CO advection from Brazil to the South Atlantic in qualitative agreement with previous observations. Forward trajectory analysis confirms this scenario and indicates much longer range transport into the southern Indian Ocean. Preliminary comparisons to in situ aircraft profiles indicate AIRS CO retrievals are approaching the 15% accuracy target set by pre-launch simulations.

  15. Carbon Monoxide Distribution over Peninsular Malaysia from the Atmospheric Infrared Sounder (AIRS)

    NASA Astrophysics Data System (ADS)

    Rajab, Jaso M.; MatJafri, M. Z.; Lim, H. S.; Abdullah, K.

    2009-07-01

    The Atmospheric Infrared Sounder (AIRS) onboard NASA's Aqua satellite. It daily coverage of ˜70% of the planet represents a significant evolutionary advance in satellite traces gas remote sensing. AIRS, the part of a large international investment to upgrade the operational meteorological satellite systems, is first of the new generation of meteorological advanced sounders for operational and research use, Providing New Insights into Weather and Climate for the 21st Century. Carbon monoxide (CO) is a ubiquitous, an indoor and outdoor air pollutant, is not a significant greenhouse gas as it absorbs little infrared radiation from the Earth. However, it does have an influence on oxidization in the atmosphere through interaction with hydroxyl radicals (OH), which also react with methane, halocarbons and tropospheric ozone. It produced by the incomplete combustion of fossil fuels and biomass burning, and that it has a role as a smog. The aim of this investigation is to study the (CO) carbon monoxide distribution over Peninsular Malaysia. The land use map of the Peninsular Malaysia was conducted by using CO total column amount, obtained from AIRS data, the map & data was processed and analyzed by using Photoshop & SigmaPlot 11.0 programs and compared for timing of various (day time) (28 August 2005 & 29 August 2007) for both direct comparison and the comparison using the same a priori profile, the CO concentrations in 28/8/2005 higher. The CO maps were generated using Kriging Interpolation technique. This interpolation technique produced high correlation coefficient, R2 and low root mean square error, RMS for CO. This study provided useful information for influence change of CO concentration on varies temperature.

  16. The Advanced Technology Microwave Sounder (ATMS): First Year On-Orbit

    NASA Astrophysics Data System (ADS)

    Kim, E. J.; Lyu, C.; Blackwell, W. J.; Leslie, V.; Baker, N.; Mo, T.; Sun, N.; Bi, L.; Anderson, K.; Landrum, M.; De Amici, G.; Gu, D.; Foo, A.; Ibrahim, W.; Robinson, K.

    2012-12-01

    The Advanced Technology Microwave Sounder (ATMS) is a new satellite microwave sounding sensor designed to provide operational weather agencies with atmospheric temperature and moisture profile information for global weather forecasting and climate applications. ATMS will continue the microwave sounding capabilities first provided by its predecessors, the Microwave Sounding Unit (MSU) and Advanced Microwave Sounding Unit (AMSU). The first ATMS was launched October 28, 2011 on board the Suomi-NPOESS Preparatory Project (S-NPP) satellite and has just finished its first year on orbit. Microwave soundings by themselves are the highest-impact input data used by Numerical Weather Prediction (NWP) models; and ATMS, when combined with the Cross-track Infrared Sounder (CrIS), forms the Cross-track Infrared and Microwave Sounding Suite (CrIMSS). The microwave soundings help meet NWP sounding requirements under cloudy sky conditions and provide key profile information near the surface. Designed & built by Aerojet Corporation in Azusa, California, (now Northrop Grumman Electronic Systems), ATMS has 22 channels spanning 23—183 GHz, closely following the channel set of the MSU, AMSU-A1 and A2, AMSU-B, Microwave Humidity Sounder (MHS), and Humidity Sounder for Brazil (HSB). It continues their cross-track scanning geometry, but for the first time, provides Nyquist sample spacing. All this is accomplished with approximately one quarter the volume, one half the mass, and one half the power of the three AMSUs. A summary description of the ATMS design will be presented. Post-launch calibration/validation activities include geolocation determination, radiometric calibration using the on-board warm targets and cold space views, simultaneous observations by microwave sounders on other satellites, comparison vs. pre-launch thermovacuum test performance; observations vs. atmospheric model predicted radiances, and comparisons of soundings vs. radiosondes. Brief descriptions of these

  17. The Advanced Technology Microwave Sounder (ATMS): A New Operational Sensor Series

    NASA Technical Reports Server (NTRS)

    Kim, Edward; Lyu, Cheng-H Joseph; Leslie, R. Vince; Baker, Neal; Mo, Tsan; Sun, Ninghai; Bi, Li; Anderson, Mike; Landrum, Mike; DeAmici, Giovanni; Gu, Degui; Foo, Alex; Ibrahim, Wael; Robinson, Kris; Chidester, Lynn; Shiue, James

    2012-01-01

    ATMS is a new satellite microwave sounding sensor designed to provide operational weather agencies with atmospheric temperature and moisture profile information for global weather forecasting and climate applications. ATMS will continue the microwave sounding capabilities first provided by its predecessors, the Microwave Sounding Unit (MSU) and Advanced Microwave Sounding Unit (AMSU). The first ATMS was launched October 28, 2011 on board the Suomi National Polar-orbiting Partnership (S-NPP) satellite. Microwave soundings by themselves are the highest-impact input data used by Numerical Weather Prediction (NWP) models; and ATMS, when combined with the Cross-track Infrared Sounder (CrIS), forms the Cross-track Infrared and Microwave Sounding Suite (CrIMSS). The microwave soundings help meet NWP sounding requirements under cloudy sky conditions and provide key profile information near the surface

  18. The Advanced Technology Microwave Sounder (ATMS): First Year On-Orbit

    NASA Technical Reports Server (NTRS)

    Kim, Edward J.

    2012-01-01

    The Advanced Technology Microwave Sounder (ATMS) is a new satellite microwave sounding sensor designed to provide operational weather agencies with atmospheric temperature and moisture profile information for global weather forecasting and climate applications. A TMS will continue the microwave sounding capabilities first provided by its predecessors, the Microwave Sounding Unit (MSU) and Advanced Microwave Sounding Unit (AMSU). The first flight unit was launched a year ago in October, 2011 aboard the Suomi-National Polar-Orbiting Partnership (S-NPP) satellite, part of the new Joint Polar-Orbiting Satellite System (JPSS). Microwave soundings by themselves are the highest-impact input data used by Numerical Weather Prediction models; and A TMS, when combined with the Cross-track Infrared Sounder (CrIS), forms the Cross-track Infrared and Microwave Sounding Suite (CrIMSS). The microwave soundings help meet sounding requirements under cloudy sky conditions and provide key profile information near the surface. ATMS was designed & built by Aerojet Corporation in Azusa, California, (now Northrop Grumman Electronic Systems). It has 22 channels spanning 23-183 GHz, closely following the channel set of the MSU, AMSU-AI/2, AMSU-B, Microwave Humidity Sounder (MHS), and Humidity Sounder for Brazil (HSB). It continues their cross-track scanning geometry, but for the first time, provides Nyquist sample spacing. All this is accomplished with approximately V. the volume, Y, the mass, and Y, the power of the three AMSUs. A description will be given of its performance from its first year of operation as determined by post-launch calibration activities. These activities include radiometric calibration using the on-board warm targets and cold space views, and geolocation determination. Example imagery and zooms of specific weather events will be shown. The second ATMS flight model is currently under construction and planned for launch on the "Jl" satellite of the JPSS program in

  19. High Resolution Infrared Radiation Sounder (HIRS) for the Nimbus F Spacecraft

    NASA Technical Reports Server (NTRS)

    Koenig, E. W.

    1975-01-01

    Flown on Nimbus F in June 1975, the high resolution infrared radiation sounder (HIRS) scans with a geographical resolution of 23KM and samples radiance in seventeen selected spectral channels from visible (.7 micron) to far IR (15 micron). Vertical temperature profiles and atmospheric moisture content can be inferred from the output. System operation and test results are described.

  20. Improving Regional Forecast by Assimilating Atmospheric InfraRed Sounder (AIRS) Profiles into WRF Model

    NASA Technical Reports Server (NTRS)

    Chou, Shih-Hung; Zavodsky, Brad; Jedlovec, Gary J.

    2009-01-01

    In data sparse regions, remotely-sensed observations can be used to improve analyses and produce improved forecasts. One such source comes from the Atmospheric InfraRed Sounder (AIRS), which together with the Advanced Microwave Sounding Unit (AMSU), represents one of the most advanced space-based atmospheric sounding systems. The purpose of this paper is to describe a procedure to optimally assimilate high resolution AIRS profile data into a regional configuration of the Advanced Research WRF (ARW) version 2.2 using WRF-Var. The paper focuses on development of background error covariances for the regional domain and background type, and an optimal methodology for ingesting AIRS temperature and moisture profiles as separate overland and overwater retrievals with different error characteristics. The AIRS thermodynamic profiles are derived from the version 5.0 Earth Observing System (EOS) science team retrieval algorithm and contain information about the quality of each temperature layer. The quality indicators were used to select the highest quality temperature and moisture data for each profile location and pressure level. The analyses were then used to conduct a month-long series of regional forecasts over the continental U.S. The long-term impacts of AIRS profiles on forecast were assessed against verifying NAM analyses and stage IV precipitation data.

  1. Suomi NPP/JPSS Cross-track Infrared Sounder (CrIS): Calibration Validation With The Aircraft Based Scanning High-resolution Interferometer Sounder (S-HIS)

    NASA Astrophysics Data System (ADS)

    Taylor, J. K.; Revercomb, H. E.; Tobin, D.; Knuteson, R. O.; Best, F. A.; Adler, D. A.; Pettersen, C.; Garcia, R. K.; Gero, P.

    2013-12-01

    To better accommodate climate change monitoring and improved weather forecasting, there is an established need for higher accuracy and more refined error characterization of radiance measurements from space and the corresponding geophysical products. This need has led to emphasizing direct tests of on-orbit performance, referred to as validation. Currently, validation typically involves (1) collecting high quality reference data from airborne and/or ground-based instruments during the satellite overpass, and (2) a detailed comparison between the satellite-based radiance measurements and the corresponding high quality reference data. Additionally, for future missions technology advancements at the University of Wisconsin Space Science and Engineering Center (UW-SSEC) have led to the development of an on-orbit absolute radiance reference utilizing miniature phase change cells to provide direct on-orbit traceability to International Standards (SI). The detailed comparison between the satellite-based radiance measurements and the corresponding measurements made from a high-altitude aircraft must account for instrument noise and scene variations, as well as differences in instrument observation altitudes, view angles, spatial footprints, and spectral response. Most importantly, for the calibration validation process to be both accurate and repeatable the reference data instrument must be extremely well characterized and understood, carefully maintained, and accurately calibrated, with traceability to absolute standards. The Scanning High-resolution Interferometer Sounder (S-HIS) meets and exceeds these requirements and has proven to do so on multiple airborne platforms, each with significantly different instrument operating environments. The Cross-track Infrared Sounder (CrIS) on Suomi NPP, launched 28 October 2011, is designed to give scientists more refined information about Earth's atmosphere and improve weather forecasts and our understanding of climate. CrIS is an

  2. Value-added Impact from Future Geostationary Hyperspectral Infrared Sounder Observations on Hurricane Forecasts

    NASA Astrophysics Data System (ADS)

    Li, J.; Schmit, T. J.; Li, Z.; Zhu, F.; Lim, A.; Atlas, R. M.; John, P.

    2015-12-01

    Future geostationary (Geo) advanced InfraRed (IR) sounders have finer spatial, spectral, and temporal resolutions compared with the existing GOES sounders, providing much improved resolving power of atmospheric thermodynamic information. When quantitatively assessing the value-added impact from such instruments over the current sounding systems onboard the Low Earth Orbit (Leo) satellites, the real question is what is the optimal impact using the current assimilation/forecast systems. More specifically, will assimilation of more observations from Geo IR sounders with the current assimilation/forecast systems yield improved forecast as expected? And if so, how to assimilate the high temporal resolution Geo sounding information and what is the impact on forecasts? Taken tropical cyclone (TC) forecasting as an example, this study tries to address these questions through a quick regional Observing System Simulation Experiments (r-OSSE) study. The synthetic observations are simulated from the sample ECMWF T1279 nature run (NR) for Hurricane Sandy (2012), including RAOB, the Leo AIRS, and Geo AIRS. Various experiments were carried out using WRF 3.6.1 and GSI 3.3 to study the impact on Sandy track forecast. And the study shows that a) it is critical to assign an appropriate observational error (observation error covariance matrix - O matrix) in order to show improved positive impacts from Geo AIRS over Leo AIRS; b) cycling of 3/6-hourly shows improved positive impacts over none cycling, but hourly cycling does not show further improvement on forecasts among all experiments, and c) with thinning (120 ~ 240 km), the impacts have the following order: hourly > 3-hourly > 6-hourly > none cycling. These experiments indicate that while more observations may improve forecasts, much more observations are difficult to show further improvement with the current assimilation/forecast system configurations. There exists a tradeoff between the number of observations to be assimilated

  3. Trade-off studies of a hyperspectral infrared sounder on a geostationary satellite.

    PubMed

    Wang, Fang; Li, Jun; Schmit, Timothy J; Ackerman, Steven A

    2007-01-10

    Trade-off studies on spectral coverage, signal-to-noise ratio (SNR), and spectral resolution for a hyperspectral infrared (IR) sounder on a geostationary satellite are summarized. The data density method is applied for the vertical resolution analysis, and the rms error between true and retrieved profiles is used to represent the retrieval accuracy. The effects of spectral coverage, SNR, and spectral resolution on vertical resolution and retrieval accuracy are investigated. The advantages of IR and microwave sounder synergy are also demonstrated. When focusing on instrument performance and data processing, the results from this study show that the preferred spectral coverage combines long-wave infrared (LWIR) with the shorter middle-wave IR (SMidW). Using the appropriate spectral coverage, a hyperspectral IR sounder with appropriate SNR can achieve the required science performance (1 km vertical resolution, 1 K temperature, and 10% relative humidity retrieval accuracy). The synergy of microwave and IR sounders can improve the vertical resolution and retrieval accuracy compared to either instrument alone. PMID:17268565

  4. Validation of the Atmospheric Infrared Sounder (AIRS) version 5 land surface emissivity product over the Namib and Kalahari deserts

    NASA Astrophysics Data System (ADS)

    Hulley, Glynn C.; Hook, Simon J.; Manning, Evan; Lee, Sung-Yung; Fetzer, Eric

    2009-10-01

    Hyperspectral infrared sounders require accurate knowledge of the land surface emissivity (LSE) to retrieve important climate variables such as surface temperature, air temperature, and total water vapor from space. This study provides a method for validating and assessing the Atmospheric Infrared Sounder (AIRS) version 5 LSE product using high-spatial resolution data (90 m) from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) which has five bands in the thermal infrared region (8-12 μm, 1250-833 cm-1) and high-spectral resolution laboratory measurements of sand samples collected over the Namib and Kalahari deserts in southern Africa. Results indicate that the mean, absolute daytime LSE difference between AIRS and the laboratory results for six wavelengths in window regions between 3.9 and 11.4 μm (2564-877 cm-1) was 2.3% over the Namib and 0.70% over the Kalahari, while the mean difference with ASTER was 2.3% over the Namib and 2.26% over the Kalahari for four bands between 8 and 12 μm. Systematic modeling and surface dependent AIRS LSE retrieval errors such as large discrepancies between day and nighttime shortwave LSE (up to 15%), unphysical values (LSE >1), and large daytime temporal variations in the shortwave region (up to 30%) are further discussed.

  5. Data Assimilation and Regional Forecasts Using Atmospheric InfraRed Sounder (AIRS) Profiles

    NASA Technical Reports Server (NTRS)

    Chou, Shih-Hung; Zavodsky, Bradley; Jedlovec, Gary

    2009-01-01

    In data sparse regions, remotely-sensed observations can be used to improve analyses, which in turn should lead to better forecasts. One such source comes from the Atmospheric Infrared Sounder (AIRS), which together with the Advanced Microwave Sounding Unit (AMSU), provides temperature and moisture profiles with an accuracy comparable to that of radiosondes. The purpose of this paper is to describe a procedure to optimally assimilate AIRS thermodynamic profiles--obtained from the version 5.0 Earth Observing System (EOS) science team retrieval algorithm-into a regional configuration of the Weather Research and Forecasting (WRF) model using WRF-Var. The paper focuses on development of background error covariances for the regional domain and background field type, a methodology for ingesting AIRS profiles as separate over-land and over-water retrievals with different error characteristics, and utilization of level-by-level quality indicators to select only the highest quality data. The assessment of the impact of the AIRS profiles on WRF-Var analyses will focus on intelligent use of the quality indicators, optimized tuning of the WRF-Var, and comparison of analysis soundings to radiosondes. The analyses will be used to conduct a month-long series of regional forecasts over the continental U.S. The long-tern1 impact of AIRS profiles on forecast will be assessed against verifying radiosonde and stage IV precipitation data.

  6. Data Assimilation and Regional Forecasts using Atmospheric InfraRed Sounder (AIRS) Profiles

    NASA Technical Reports Server (NTRS)

    Zabodsky, Brad; Chou, Shih-Hung; Jedlovec, Gary J.

    2009-01-01

    In data sparse regions, remotely-sensed observations can be used to improve analyses, which in turn should lead to better forecasts. One such source comes from the Atmospheric Infrared Sounder (AIRS), which, together with the Advanced Microwave Sounding Unit (AMSU), provides temperature and moisture profiles with an accuracy comparable to that of radionsondes. The purpose of this poster is to describe a procedure to optimally assimilate AIRS thermodynamic profiles, obtained from the version 5.0 Earth Observing System (EOS) science team retrieval algorithm, into a regional configuration of the Weather Research and Forecasting (WRF) model using WRF-Var. The poster focuses on development of background error covariances for the regional domain and background field type, a methodology for ingesting AIRS profiles as separate over-land and over-water retrievals with different error characteristics, and utilization of level-by-level quality indicators to select only the highest quality data. The assessment of the impact of the AIRS profiles on WRF-Var analyses will focus on intelligent use of the quality indicators, optimized tuning of the WRF-Var, and comparison of analysis soundings to radiosondes. The analyses are used to conduct a month-long series of regional forecasts over the continental U.S. The long-term impact of AIRS profiles on forecast will be assessed against NAM analyses and stage IV precipitation data.

  7. Level 1B products from the Atmospheric Infrared Sounder (AIRS) on the EOS Aqua Spacecraft

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Aumann, H. H.; Overoye, Ken

    2003-01-01

    The Atmospheric Infrared Sounder (AIRS) was launched May 4, 2002 on the EOS Aqua Spacecraft. A discussion is given of the objectives of the AIRS experiment, including requirements on the data products. We summarize the instrument characteristics, including sensitivity, noise, and spectral response, and preflight calibration results leading to the estimate of the calibration accuracy. The Level 1B calibration algorithm is presented as well as the results of in-flight stability and sensitivity measurements.

  8. Demonstrating the Operational Value of Atmospheric Infrared Sounder (AIRS) Profiles in the Pre-Convective Environment

    NASA Technical Reports Server (NTRS)

    Kozlowski, Danielle; Zavodsky, Bradley; Stano, Geoffrey; Jedlovec, Gary

    2011-01-01

    The Short-term Prediction Research and Transition (SPoRT) is a project to transition those NASA observations and research capabilities to the weather forecasting community to improve the short-term regional forecasts. This poster reviews the work to demonstrate the value to these forecasts of profiles from the Atmospheric Infrared Sounder (AIRS) instrument on board the Aqua satellite with particular assistance in predicting thunderstorm forecasts by the profiles of the pre-convective environment.

  9. Calibration status of the Atmospheric Infrared Sounder after eleven years in operation

    NASA Astrophysics Data System (ADS)

    Elliott, Denis A.; Weiler, Margie; Manning, Evan M.; Pagano, Thomas S.; Broberg, Steven E.; Aumann, Hartmut H.

    2013-09-01

    The Atmospheric Infrared Sounder (AIRS) is a grating array infrared hyperspectral sounder with 2378 channels from 3.75 to 15.4 microns with spectral resolution 1200 to 1400 depending on the channel. AIRS was designed as an aid to weather prediction and for atmospheric process studies. It produces profiles of atmospheric temperature and water vapor. Because of its spectral coverage and spectral resolution it is sensitive to a number of trace atmospheric constituents including CO2, CO, SO2, O3, and CH4. The AIRS sensitivity, stability, and long life have led to its use in climate process studies and climate model validation, both of which place far more stringent requirements on calibration than weather forecasting does. This paper describes results from several special calibration sequences, originally developed for prelaunch testing, that have been used to monitor the AIRS calibration accuracy and instrument health on-orbit, including the scan mirror, space view response, and channel health. It also describes reanalyses of pre-launch calibration data used to determine calibration parameters. Finally, it shows comparisons of AIRS radiometry with two other hyperspectral infrared sounders presently in space—IASI and CrIS.

  10. The impact of atmospheric infrared sounder (AIRS) profiles on short-term weather forecasts

    NASA Astrophysics Data System (ADS)

    Zavodsky, Bradley T.; Chou, Shih-Hung; Jedlovec, Gary; Lapenta, William

    2007-04-01

    The Atmospheric Infrared Sounder (AIRS), together with the Advanced Microwave Sounding Unit (AMSU), represents one of the most advanced space-based atmospheric sounding systems. Aside from monitoring changes in Earth's climate, one of the objectives of AIRS is to provide sounding information with sufficient accuracy such that the assimilation of the new observations, especially in data sparse regions, will lead to an improvement in weather forecasts. The combined AIRS/AMSU system provides radiance measurements used as input to a sophisticated retrieval scheme which has been shown to produce temperature profiles with an accuracy of 1 K over 1 km layers and humidity profiles with accuracy of 10-15% in 2 km layers in both clear and partly cloudy conditions. The retrieval algorithm also provides estimates of the accuracy of the retrieved values at each pressure level, allowing the user to select profiles based on the required error tolerances of the application. The purpose of this paper is to describe a procedure to optimally assimilate high-resolution AIRS profile data in a regional analysis/forecast model. The paper focuses on a U.S. East-Coast cyclone from November 2005. Temperature and moisture profiles-containing information about the quality of each temperature layer-from the prototype version 5.0 Earth Observing System (EOS) science team retrieval algorithm are used in this study. The quality indicators are used to select the highest quality temperature and moisture data for each profile location and pressure level. AIRS data are assimilated into the Weather Research and Forecasting (WRF) numerical weather prediction model using the Advanced Regional Prediction System (ARPS) Data Analysis System (ADAS), to produce near-real-time regional weather forecasts over the continental U.S. The preliminary assessment of the impact of the AIRS profiles will focus on intelligent use of the quality indicators, analysis impact, and forecast verification against rawinsondes

  11. Field Tests of a Gas-Filter Imaging Radiometer for Methane, CH4,: A Prototype for Geostationary Remote Infrared Pollution Sounder, GRIPS

    NASA Astrophysics Data System (ADS)

    Dickerson, R. R.; Fish, C. S.; Brent, L. C.; Burrows, J. P.; Fuentes, J. D.; Gordley, L. L.; Jacob, D. J.; Schoeberl, M. R.; Salawitch, R. J.; Ren, X.; Thompson, A. M.

    2013-12-01

    Gas filter radiometry is a powerful tool for measuring infrared active trace gases. Methane (CH4) is the second most important greenhouse gas and is more potent molecule for molecule than carbon dioxide (CO2). Unconventional natural gas recovery has the potential to show great environmental benefits relative to coal, but only if fugitive leakage is held below 3% and leak rates remain highly uncertain. We present design specifications and initial field/aircraft test results for an imaging remote sensing device to measure column content of methane. The instrument is compared to in situ altitude profiles measured with cavity ring-down. This device is an airborne prototype for the Geostationary Remote Infrared Pollution Sounder, GRIPS, a satellite instrument designed to monitor CH4, CO2, CO, N2O and AOD from geostationary orbit, with capabilities for great advances in air quality and climate research. GRIPS: The Geostationary Remote Infrared Pollution Sounder

  12. Development of Level 3 (gridded) products for the Atmospheric Infrared Sounder (AIRS)

    NASA Technical Reports Server (NTRS)

    Granger, Stephanie L.; Leroy, Stephen S.; Manning, Evan M.; Fetzer, Eric J.; Oliphant, Robert B.; Braverman, Amy; Lee, Sung-Yung; Lambrigtsen, Bjom H.

    2004-01-01

    The Atmospheric Infrared Sounder (AIRS) sounding system is a suite of infrared and microwave instruments flown as part of NASA's Earth Observing System (EOS) onboard the Aqua platform. The AIRS dataset provides a daily, global view of Earth processes at a finer vertical resolution than ever before. However, analysis of the AIRS data is a daunting task given the sheer volume and complexity of the data. The volume of data produced by the EOS project is unprecedented; the AIRS project alone will produce many terabytes of data over the lifetime of the mission. This paper describes development of AIRS Level 3 data products that will help to alleviate problems of access and usability.

  13. Impact of Atmospheric Infrared Sounder (AIRS) Thermodynamic Profiles on Regional Weather Forecasting

    NASA Technical Reports Server (NTRS)

    Chou, Shih-Hung; Zavodsky, Bradley T.; Jedlovee, Gary J.

    2010-01-01

    In data sparse regions, remotely-sensed observations can be used to improve analyses and lead to better forecasts. One such source comes from the Atmospheric Infrared Sounder (AIRS), which together with the Advanced Microwave Sounding Unit (AMSU), provides temperature and moisture profiles with accuracy comparable to that of radiosondes. The purpose of this paper is to describe a procedure to assimilate AIRS thermodynamic profile data into a regional configuration of the Advanced Research Weather Research and Forecasting (WRF-ARW) model using its three-dimension variational (3DVAR) analysis component (WRF-Var). Quality indicators are used to select only the highest quality temperature and moisture profiles for assimilation in both clear and partly cloudy regions. Separate error characteristics for land and water profiles are also used in the assimilation process. Assimilation results indicate that AIRS profiles produce an analysis closer to in situ observations than the background field. Forecasts from a 37-day case study period in the winter of 2007 show that AIRS profile data can lead to improvements in 6-h cumulative precipitation forecasts due to instability added in the forecast soundings by the AIRS profiles. Additionally, in a convective heavy rainfall event from February 2007, assimilation of AIRS profiles produces a more unstable boundary layer resulting in enhanced updrafts in the model. These updrafts produce a squall line and precipitation totals that more closely reflect ground-based observations than a no AIRS control forecast. The location of available high-quality AIRS profiles ahead of approaching storm systems is found to be of paramount importance to the amount of impact the observations will have on the resulting forecasts.

  14. The Impact of Atmospheric InfraRed Sounder (AIRS) Profiles on Short-term Weather Forecasts

    NASA Technical Reports Server (NTRS)

    Chou, Shih-Hung; Zavodsky, Brad; Jedlovec, Gary J.; Lapenta, William

    2007-01-01

    The Atmospheric Infrared Sounder (AIRS), together with the Advanced Microwave Sounding Unit (AMSU), represents one of the most advanced spacebased atmospheric sounding systems. The combined AlRS/AMSU system provides radiance measurements used to retrieve temperature profiles with an accuracy of 1 K over 1 km layers under both clear and partly cloudy conditions, while the accuracy of the derived humidity profiles is 15% in 2 km layers. Critical to the successful use of AIRS profiles for weather and climate studies is the use of profile quality indicators and error estimates provided with each profile Aside form monitoring changes in Earth's climate, one of the objectives of AIRS is to provide sounding information of sufficient accuracy such that the assimilation of the new observations, especially in data sparse region, will lead to an improvement in weather forecasts. The purpose of this paper is to describe a procedure to optimally assimilate highresolution AIRS profile data in a regional analysis/forecast model. The paper will focus on the impact of AIRS profiles on a rapidly developing east coast storm and will also discuss preliminary results for a 30-day forecast period, simulating a quasi-operation environment. Temperature and moisture profiles were obtained from the prototype version 5.0 EOS science team retrieval algorithm which includes explicit error information for each profile. The error profile information was used to select the highest quality temperature and moisture data for every profile location and pressure level for assimilation into the ARPS Data Analysis System (ADAS). The AIRS-enhanced analyses were used as initial fields for the Weather Research and Forecast (WRF) system used by the SPORT project for regional weather forecast studies. The ADASWRF system will be run on CONUS domain with an emphasis on the east coast. The preliminary assessment of the impact of the AIRS profiles will focus on quality control issues associated with AIRS

  15. Impact of Atmospheric Infrared Sounder (AIRS) Thermodynamic Profiles on Regional Precipitation Forecasting

    NASA Technical Reports Server (NTRS)

    Chou, S.-H.; Zavodsky, B. T.; Jedloved, G. J.

    2010-01-01

    In data sparse regions, remotely-sensed observations can be used to improve analyses and lead to better forecasts. One such source comes from the Atmospheric Infrared Sounder (AIRS), which together with the Advanced Microwave Sounding Unit (AMSU), provides temperature and moisture profiles in clear and cloudy regions with accuracy which approaches that of radiosondes. The purpose of this paper is to describe an approach to assimilate AIRS thermodynamic profile data into a regional configuration of the Advanced Research WRF (ARW) model using WRF-Var. Quality indicators are used to select only the highest quality temperature and moisture profiles for assimilation in clear and partly cloudy regions, and uncontaminated portions of retrievals above clouds in overcast regions. Separate error characteristics for land and water profiles are also used in the assimilation process. Assimilation results indicate that AIRS profiles produce an analysis closer to in situ observations than the background field. Forecasts from a 37-day case study period in the winter of 2007 show that AIRS profile data can lead to improvements in 6-h cumulative precipitation forecasts resulting from improved thermodynamic fields. Additionally, in a convective heavy rainfall event from February 2007, assimilation of AIRS profiles produces a more unstable boundary layer resulting in enhanced updrafts in the model. These updrafts produce a squall line and precipitation totals that more closely reflect ground-based observations than a no AIRS control forecast. The location of available high-quality AIRS profiles ahead of approaching storm systems is found to be of paramount importance to the amount of impact the observations will have on the resulting forecasts.

  16. Atmospheric Infrared Sounder (AIRS) High Spectral Resolution Radiance Climate-Quality Dataset for Validating Climate Analyses

    NASA Astrophysics Data System (ADS)

    Goldberg, M.; Zhou, L.; Liu, X.; Cheng, Z.

    2009-12-01

    There is growing consensus that persistent and increasing anthropogenic emissions, since the beginning of the industrial revolution in the 19th century, are increasing atmospheric temperatures, increasing sea levels, melting ice caps and glaciers, increasing the occurrence of severe weather, and causing regional shifts in precipitation patterns. Changes in these parameters or occurrences are responses to changes in climate forcing terms, notably greenhouse gases. The NASA Atmospheric InfraRed Sounder (AIRS), launched in May of 2002, is the first high spectral resolution infrared sounder with nearly complete global coverage on a daily basis. High spectral resolution in the infrared provides sensitivity to nearly all climate forcings, responses and feedbacks. The AIRS radiances are sensitive to changes in carbon dioxide, methane, carbon monoxide, ozone, water vapor, temperature, clouds, aerosols, and surface characteristics, and also have been demonstrated through intercomparisons with airborne interferometers and with the EUMETSAT Infrared Atmospheric Sounding Interferometer(IASI) to have excellent accuracy, stability and precision. Such "benchmark" attributes are important for validating climate models and analyses. The AIRS data are applied to generate the first ever spectrally resolved infrared radiance (SRIR) dataset (2002- 2006) for monitoring changes in atmospheric temperature and constituents and for assessing the accuracy of climate and weather model analyses and forecasts. The SRIR dataset is a very powerful climate application. Spectral signatures derived from the dataset confirmed the largest depletion of ozone over the Arctic in 2005, and also verified that the European Center for Medium Range Weather (ECMWF) model analysis water vapor fields are significantly more accurate than the analyses of the National Centers for Environmental Prediction (NCEP). The NCEP moisture fields are generally 20% more moist than those from ECMWF. Applications included

  17. Preface to Special Section: Validation of Atmospheric Infrared Sounder Observations

    NASA Technical Reports Server (NTRS)

    Fetzer, Eric J.

    2006-01-01

    The papers described below demonstrate that the AIRS calibrated radiances and retrieved geophysical products generally meet or exceed the prelaunch specifications. The retrieved quantities show little variation in uncertainty as a function of cloud amount. However, AIRS retrieval yield is a rapidly decreasing function of cloud amount; at about 80% cloudiness essentially no infrared radiances are used in the retrieval processes. Also, AIRS performance has not been demonstrated for all conditions and products. Calibrated and forward calculated radiances meet performance specifications for conditions varying from the cold poles to warm tropics. The retrieval system performs well over extrapolar land in the free troposphere (2-15 km above the surface) and over extrapolar oceans at all tropospheric altitudes. The AIRS retrieval algorithms have not been optimized for polar winter conditions, so no such results are presented in these papers.

  18. The Radiative Consistency of Atmospheric Infrared Sounder and Moderate Resolution Imaging Spectroradiometer Cloud Retrievals

    NASA Technical Reports Server (NTRS)

    Kahn, Brian H.; Fishbein, Evan; Nasiri, Shaima L.; Eldering, Annmarie; Fetzer, Eric J.; Garay, Michael J.; Lee, Sung-Yung

    2007-01-01

    The consistency of cloud top temperature (Tc) and effective cloud fraction (f) retrieved by the Atmospheric Infrared Sounder (AIRS)/Advanced Microwave Sounding Unit (AMSU) observation suite and the Moderate Resolution Imaging Spectroradiometer (MODIS) on the EOS-Aqua platform are investigated. Collocated AIRS and MODIS TC and f are compared via an 'effective scene brightness temperature' (Tb,e). Tb,e is calculated with partial field of view (FOV) contributions from TC and surface temperature (TS), weighted by f and 1-f, respectively. AIRS reports up to two cloud layers while MODIS reports up to one. However, MODIS reports TC, TS, and f at a higher spatial resolution than AIRS. As a result, pixel-scale comparisons of TC and f are difficult to interpret, demonstrating the need for alternatives such as Tb,e. AIRS-MODIS Tb,e differences ((Delta)Tb,e) for identical observing scenes are useful as a diagnostic for cloud quantity comparisons. The smallest values of DTb,e are for high and opaque clouds, with increasing scatter in (Delta)Tb,e for clouds of smaller opacity and lower altitude. A persistent positive bias in DTb,e is observed in warmer and low-latitude scenes, characterized by a mixture of MODIS CO2 slicing and 11-mm window retrievals. These scenes contain heterogeneous cloud cover, including mixtures of multilayered cloudiness and misplaced MODIS cloud top pressure. The spatial patterns of (Delta)Tb,e are systematic and do not correlate well with collocated AIRS-MODIS radiance differences, which are more random in nature and smaller in magnitude than (Delta)Tb,e. This suggests that the observed inconsistencies in AIRS and MODIS cloud fields are dominated by retrieval algorithm differences, instead of differences in the observed radiances. The results presented here have implications for the validation of cloudy satellite retrieval algorithms, and use of cloud products in quantitative analyses.

  19. Hurricane Katrina as Observed by NASA's Spaceborne Atmospheric Infrared Sounder (AIRS)

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Figure 1: click on image for larger AIRS microwave image

    At 1:30 a.m. local time this morning, the remnants of (now Tropical Depression) Katrina were centered on the Mississippi-Tennessee border. This microwave image from the Atmospheric Infrared Sounder instrument on NASA's Aqua spacecrat shows that the area of most intense precipitation was concentrated to the north of the center of activity.

    The infrared image shows how the storms look through an AIRS Infrared window channel. Window channels measure the temperature of the cloud tops or the surface of the Earth in cloud-free regions. The lowest temperatures are associated with high, cold cloud tops that make up the top of the hurricane. The infrared signal does not penetrate through clouds, so the purple color indicates the cool cloud tops of the storm. In cloud-free areas, the infrared signal is retrieved at the Earth's surface, revealing warmer temperatures. Cooler areas are pushing to purple and warmer areas are pushing to red.

    The microwave image (figure 1) reveals where the heaviest precipitation in the hurricane is taking place. The blue areas within the storm show the location of this heavy precipitation. Blue areas outside of the storm where there are moderate or no clouds are where the cold (in the microwave sense) sea surface shines through.

    The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard

  20. Cross-Track Infrared Sounder Science Data Record Pre-launch Calibration and On-Orbit Validation Plans

    NASA Astrophysics Data System (ADS)

    Hagan, D. E.; Bingham, G. E.; Predina, J.; Gu, D.; Sabet-Peyman, F.; Wang, C.; de Amici, G.; Plonski, M.; Farrow, S. V.; Hohn, J.; Esplin, M.; Zavyalov, V.; Fish, C. S.; Glumb, R.; Wells, S.; Suwinski, L.; Strong, J.; Behrens, C.; Kilcoyne, H.; Feeley, J.; Kratz, G.; Tremblay, D. A.

    2009-12-01

    The Cross-Track Infrared Sounder (CrIS) together with the Advanced Technology Microwave Sounder will provide retrievals of atmospheric moisture and temperature profiles for the National Polar-orbiting Operational Environmental Satellite System (NPOESS). The NPOESS is the next generation of low Earth orbiting weather and climate satellites managed by the tri-agency Integrated Program Office, which includes the Department of Commerce, Department of Defense and the National Aeronautics and Space Administration. The CrIS is a Fourier-transform Michelson interferometer covering the spectral range of 3.9 to 15.4 microns (650 to 2550 wavenumbers) developed by ITT under contract to Northrop Grumman Aerospace Systems. The first deployment of the CrIS (Flight Model 1) is scheduled for 2010 on the NPOESS Preparatory Project (NPP) satellite, an early instrument risk reduction component of the NPOESS mission. The analysis and data results from comprehensive TVAC testing of the CrIS FM1 sensor demonstrate a very accurate radiometric and spectral calibration system. We describe instrument performance parameters, and the end-to-end plans and analysis tools for on-orbit verification of sensor characteristics and validation of the SDR radiance products.

  1. The Atmospheric Infrared Sounder on the Earth Observing System - In-orbit spectral calibration

    NASA Technical Reports Server (NTRS)

    Aumann, H. H.

    1991-01-01

    The Atmospheric Infrared Sounder (AIRS) is a facility instrument on the Earth Observing System (EOS). The ability of AIRS to provide accurate temperature and moisture soundings with high vertical resolution depends critically on a very accurate spectral calibration. The routine in-orbit spectral calibration is accomplished with a Fabry-Perot plate with a fixed spacing of 360 microns. This paper discusses design, Signal-to-Noise, and temperature and alignment stability constraints which have to be met to achieve the required spectral calibration accuracy.

  2. Assimilation of Atmospheric InfraRed Sounder (AIRS) Profiles using WRF-Var

    NASA Technical Reports Server (NTRS)

    Zavodsky, Brad; Jedlovec, Gary J.; Lapenta, William

    2008-01-01

    The Weather Research and Forecasting (WRF) model contains a three-dimensional variational (3DVAR) assimilation system (WRF-Var), which allows a user to join data from multiple sources into one coherent analysis. WRF-Var combines observations with a background field traditionally generated using a previous model forecast through minimization of a cost function. In data sparse regions, remotely-sensed observations may be able to improve analyses and produce improved forecasts. One such source comes from the Atmospheric Infrared Sounder (AIRS), which together with the Advanced Microwave Sounding Unit (AMSU), represents one of the most advanced space-based atmospheric sounding systems. The combined AIRS/AMSU system provides radiance measurements used as input to a sophisticated retrieval scheme which has been shown to produce temperature profiles with an accuracy of 1 K over 1 km layers and humidity profiles with accuracy of 15% in 2 km layers in both clear and partly cloudy conditions. The retrieval algorithm also provides estimates of the accuracy of the retrieved values at each pressure level, allowing the user to select profiles based on the required error tolerances of the application. The purpose of this paper is to describe a procedure to optimally assimilate high-resolution AIRS profile data into a regional configuration of the Advanced Research WRF (ARW) version 2.2 using WRF-Var. The paper focuses on development of background error covariances for the regional domain and background field type using gen_be and an optimal methodology for ingesting AIRS temperature and moisture profiles as separate overland and overwater retrievals with different error characteristics in the WRF-Var. The AIRS thermodynamic profiles are obtained from the version 5.0 Earth Observing System (EOS) science team retrieval algorithm and contain information about the quality of each temperature layer. The quality indicators are used to select the highest quality temperature and moisture

  3. Requirements for an Advanced Low Earth Orbit (LEO) Sounder (ALS) for improved regional weather prediction and monitoring of greenhouse gases

    NASA Astrophysics Data System (ADS)

    Pagano, Thomas S.; Chahine, Moustafa T.; Susskind, Joel

    2008-12-01

    Hyperspectral infrared atmospheric sounders (e.g. the Atmospheric Infrared Sounder (AIRS) on Aqua and the Infrared Atmospheric Sounding Interferometer (IASI) on MetOp) provide highly accurate temperature and water vapor profiles in the lower to upper troposphere. These systems are vital operational components of our National Weather Prediction system and the AIRS has demonstrated over 6 hrs of forecast improvement on the 5 day operational forecast1. Despite the success in the mid troposphere to lower stratosphere, a reduction in sensitivity and accuracy has been seen in these systems in the boundary layer over land. In this paper we demonstrate the potential improvement associated with higher spatial resolution (1km vs currently 13.5 km) on the accuracy of boundary layer products with an added consequence of higher yield of cloud free scenes. This latter feature is related to the number of samples that can be assimilated and has also shown to have a significant impact on improving forecast accuracy. We also present a set of frequencies and resolutions that will improve vertical resolution of temperature and water vapor and trace gas species throughout the atmosphere. Development of an Advanced Low Earth Orbit (LEO) Sounder (ALS) with these improvements will improve weather forecast at the regional scale and of tropical storms and hurricanes. Improvements are also expected in the accuracy of the water vapor and cloud properties products, enhancing process studies and providing a better match to the resolution of future climate models. The improvements of technology required for the ALS are consistent with the current state of technology as demonstrated in NASA Instrument Incubator Program and NOAA's Hyperspectral Environmental Suite (HES) formulation phase development programs.

  4. Requirements for an Advanced Low Earth Orbit (LEO) Sounder (ALS) for Improved Regional Weather Prediction and Monitoring of Greenhouse Gases

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Chahine, Moustafa T.; Susskind, Joel

    2008-01-01

    Hyperspectral infrared atmospheric sounders (e.g., the Atmospheric Infrared Sounder (AIRS) on Aqua and the Infrared Atmospheric Sounding Interferometer (IASI) on Met Op) provide highly accurate temperature and water vapor profiles in the lower to upper troposphere. These systems are vital operational components of our National Weather Prediction system and the AIRS has demonstrated over 6 hrs of forecast improvement on the 5 day operational forecast. Despite the success in the mid troposphere to lower stratosphere, a reduction in sensitivity and accuracy has been seen in these systems in the boundary layer over land. In this paper we demonstrate the potential improvement associated with higher spatial resolution (1 km vs currently 13.5 km) on the accuracy of boundary layer products with an added consequence of higher yield of cloud free scenes. This latter feature is related to the number of samples that can be assimilated and has also shown to have a significant impact on improving forecast accuracy. We also present a set of frequencies and resolutions that will improve vertical resolution of temperature and water vapor and trace gas species throughout the atmosphere. Development of an Advanced Low Earth Orbit (LEO) Sounder (ALS) with these improvements will improve weather forecast at the regional scale and of tropical storms and hurricanes. Improvements are also expected in the accuracy of the water vapor and cloud properties products, enhancing process studies and providing a better match to the resolution of future climate models. The improvements of technology required for the ALS are consistent with the current state of technology as demonstrated in NASA Instrument Incubator Program and NOAA's Hyperspectral Environmental Suite (HES) formulation phase development programs.

  5. Nighttime Cirrus Detection using Atmospheric Infrared Sounder Window Channels and Total Column Water Vapor

    NASA Technical Reports Server (NTRS)

    Kahn, Brian H.; Liou, Kuo Nan; Lee, Sung-Yung; Fishbein, Evan F.; DeSouza-Machado, Sergio; Eldering, Annmarie; Fetzer, Eric J.; Hannon, Scott E.; Strow, L. Larrabee

    2005-01-01

    A method of cirrus detection at nighttime is presented that utilizes 3.8 and 10.4 (micro)m infrared (IR) window brightness temperature differences (dBT) and total column precipitable water (PW) measurements. This technique is applied to the Atmospheric Infrared Sounder (AIRS) and Advanced Microwave Sounding Unit A (AMSU-A) instrument suite on board EOS-Aqua, where dBT is determined from sets of carefully selected AIRS window channels, while PW is derived from the synergistic AIRS and AMSU-A water vapor retrievals. Simulated and observed dBT for a particular value of PW are not constant; several physical factors impact dBT, including the variability in temperature and relative humidity profiles, surface emissivity, instrument noise, and skin/ near-surface air temperature differences. We simulate clear-sky dBT over a realistic range of PWs using 8350 radiosondes that have varying temperature and relative humidity profiles. Thresholds between cloudy and uncertain sky conditions are derived once the scatter in the clear-sky dBT is determined. Simulations of optically thin cirrus indicate that this technique is most sensitive to cirrus optical depth in the 10 (micro)m window of 0.1-0.15 or greater over the tropical and subtropical oceans, where surface emissivity and skin/near-surface air temperature impacts on the IR radiances are minimal. The method at present is generally valid over oceanic regions only, specifically, the tropics and subtropics. The detection of thin cirrus, and other cloud types, is validated using observations at the Atmospheric Radiation Measurement (ARM) program site located at Manus Island in the tropical western Pacific for 89 coincident EOS-Aqua overpasses. Even though the emphasis of this work is on the detection of thin cirrus at nighttime, this technique is sensitive to a broad cloud morphology. The cloud detection technique agrees with ARM-detected clouds 82-84% of the time, which include thin cirrus, as well as other cloud types. Most of

  6. Assimilation of hyperspectral infrared sounder radiances under cloudy skies in a regional NWP model

    NASA Astrophysics Data System (ADS)

    Wang, Pei

    Satellite measurements are an important source of global observations in support of numerical weather prediction (NWP). The assimilation of satellite radiances under clear skies has greatly improved NWP forecast scores. Since most of the data assimilation models are used for the clear radiances assimilation, an important step for satellite radiances assimilation is the clear location detection. Good clear detection could effectively remove the cloud contamination and keep the clear observations for assimilation. In this dissertation, a new detection method uses collocated high spatial resolution imager data onboard the same platform as the satellite sounders to help IR sounders subpixel cloud detection, such as the Atmospheric Infrared Sounder (AIRS) and Moderate Resolution Imaging Spectroradiometer (MODIS), the Crosstrack Infrared Sounder (CrIS) and Visible Infrared Imaging Radiometer Suite (VIIRS). The MODIS cloud mask provides a level of confidence for the observed skies to help AIRS Field-of-View (FOVs) cloud detection. By reducing the cloud contamination, a cold bias in the temperature field and a wet bias in the moisture field are corrected for the atmospheric analysis fields. These less cloud affected analysis fields further improve hurricane track and intensity forecast. The availability of satellite observations that can be assimilated in the model is limited if only the clear radiances are assimilation. An effective way to use the thermodynamic information under partially cloudy regions is to assimilate the "cloud-cleared" radiances (CCRs); CCRs are also called clear equivalent radiances. Because the CCRs are the equivalent clear radiances from the partially cloudy FOVs, they can be directly assimilated into the current data assimilation models without modifications. The AIRS CCRs are assimilated and compared with the AIRS using stand-alone cloud detection and collocated cloud detection. The assimilation of AIRS cloud-cleared radiances directly affects

  7. Regional Precipitation Forecast with Atmospheric InfraRed Sounder (AIRS) Profile Assimilation

    NASA Technical Reports Server (NTRS)

    Chou, S.-H.; Zavodsky, B. T.; Jedloved, G. J.

    2010-01-01

    Advanced technology in hyperspectral sensors such as the Atmospheric InfraRed Sounder (AIRS; Aumann et al. 2003) on NASA's polar orbiting Aqua satellite retrieve higher vertical resolution thermodynamic profiles than their predecessors due to increased spectral resolution. Although these capabilities do not replace the robust vertical resolution provided by radiosondes, they can serve as a complement to radiosondes in both space and time. These retrieved soundings can have a significant impact on weather forecasts if properly assimilated into prediction models. Several recent studies have evaluated the performance of specific operational weather forecast models when AIRS data are included in the assimilation process. LeMarshall et al. (2006) concluded that AIRS radiances significantly improved 500 hPa anomaly correlations in medium-range forecasts of the Global Forecast System (GFS) model. McCarty et al. (2009) demonstrated similar forecast improvement in 0-48 hour forecasts in an offline version of the operational North American Mesoscale (NAM) model when AIRS radiances were assimilated at the regional scale. Reale et al. (2008) showed improvements to Northern Hemisphere 500 hPa height anomaly correlations in NASA's Goddard Earth Observing System Model, Version 5 (GEOS-5) global system with the inclusion of partly cloudy AIRS temperature profiles. Singh et al. (2008) assimilated AIRS temperature and moisture profiles into a regional modeling system for a study of a heavy rainfall event during the summer monsoon season in Mumbai, India. This paper describes an approach to assimilate AIRS temperature and moisture profiles into a regional configuration of the Advanced Research Weather Research and Forecasting (WRF-ARW) model using its three-dimensional variational (3DVAR) assimilation system (WRF-Var; Barker et al. 2004). Section 2 describes the AIRS instrument and how the quality indicators are used to intelligently select the highest-quality data for assimilation

  8. Improved Products for Assimilation and Model Validation from the Atmospheric Infrared Sounder (AIRS) on Aqua

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.

    2008-01-01

    The Atmospheric Infrared Sounder (AIRS) on the EOS Aqua Spacecraft was launched on May 4, 2002. AIRS acquires hyperspectral infrared radiances in the 3.7-15.4 micrometer spectral region with spectral resolution of better than 1200. Key channels from the AIRS Level 1B calibrated radiance product are currently assimilated into operational weather forecasts at NCEP and other international agencies. Additional Level 2 products for assimilation include the AIRS cloud cleared radiances and the geophysical retrieved temperature and water vapor profiles. The AIRS products are also used to validate climate model vertical and horizontal biases and transport of water vapor and key trace gases including Carbon Dioxide and Ozone. The wide variety of products available from the AIRS make it well suited to study processes affecting the interaction of these products.

  9. Application of Infrared Hyperspectral Sounder Data to Climate Research: Interannual Variability and climate trend evaluation.

    NASA Astrophysics Data System (ADS)

    Aumann, H. H.; Gregorich, D. T.

    2007-12-01

    Satellite measurements of the spectrally resolved upwelling infrared radiances have a unique role in the observation of climate and climate change: They give direct insight into the way the Earth Climate System responds to periodic and long term changes in forcing with changes in surface and atmospheric temperatures and changes in large scale atmospheric circulation patterns. The Atmospheric Infrared Sounder (AIRS), the first in a series of hyper-spectral polar orbiting sounders, was launch on the EOS Aqua into a 1:30 pm polar orbit at 705 km altitude in May 2002, with an anticipated lifetime of 12 years. The Infrared Atmospheric Sounding Interferometer (IASI) was launched in October 2006 into a 9:30 AM orbit, to be followed by the Crosstrack InfraRed Sounder (CRIS) in a 2 PM orbit in 2010. The AIRS radiometric stability since 2002 has been verified at the better than 0.01 K/year level. We report on observations of the oceans between 30S and 30N. The 0.05 K/year trend in co2 sensitive channels due to the 2 ppmv/year increase in the co2 column abundance is readily detectable and statistically reliable. The AIRS data show very consistent seasonal modulations of key surface, cloud, water vapor and atmospheric temperatures. After removing the seasonal variation, the anomaly shows interannual rms variability in the monthly means larger than 0.1 K. The rms variability in the monthly means in the mid- tropospheric temperature with peak excursions as large as 0.6 K are observed by the AIRS 2388 cm-1 channel and AMSU channel 5 at 57 GHz. The interannual variability is not obviously correlated with the Multivariate Enso Index (MEI). This variability places limits on the length of time required to measure global warming trends at the 0.1 K/decade level. These limits exceed the expected 12 year lifetime of AIRS and need to be taken into account in the design of space missions and instruments to measure climate change.

  10. Global and Regional Seasonal Variability of Mid-Tropospheric CO2 as Measured by the Atmospheric Infrared Sounder (AIRS)

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Olsen, Edward T.; Nguyen, Hai

    2012-01-01

    The Atmospheric Infrared Sounder (AIRS) is a hyperspectral infrared instrument on the Earth Observing System (EOS) Aqua Spacecraft, launched on May 4, 2002 into a near polar sun-synchronous orbit. AIRS has 2378 infrared channels ranging from 3.7 ?m to 15.4 ?m and a 13.5 km footprint at nadir. AIRS, in conjunction with the Advanced Microwave Sounding Unit (AMSU), produces temperature profiles with 1K/km accuracy on a global scale, as well as water vapor profiles and trace gas amounts for CO2, CO, SO2, O3 and CH4. AIRS CO2 climatologies have been shown to be useful for identifying anomalies associated with geophysical events such as El Nino-Southern Oscillation or Madden-Julian oscillation. In this study, monthly representations of mid-tropospheric CO2 are constructed from 10 years of AIRS Version 5 monthly Level 3 data. We compare the AIRS mid-tropospheric CO2 representations to ground-based measurements from the Scripps and National Oceanic and Atmospheric Administration Climate Modeling and Diagnostics Laboratory (NOAA CMDL) ground networks to better understand the phase lag of the CO2 seasonal cycle between the surface and middle troposphere. Results show only a small phase lag in the tropics that grows to approximately two months in the northern latitudes.

  11. Characterization and validation of methane products from the Atmospheric Infrared Sounder (AIRS)

    NASA Astrophysics Data System (ADS)

    Xiong, Xiaozhen; Barnet, Chris; Maddy, Eric; Sweeney, Colm; Liu, Xingpin; Zhou, Lihang; Goldberg, Mitch

    2008-09-01

    This paper presents the characterization and validation of retrievals of atmospheric methane (CH4) vertical profiles by the Atmospheric Infrared Sounder (AIRS) on the EOS/Aqua platform. AIRS channels near 7.6 μm are used for CH4 retrieval, and they are most sensitive to the middle to upper troposphere, i.e., about 200-300 hPa in the tropics and 400-500 hPa in the polar region. The atmospheric temperature-humidity profiles, surface skin temperature, and emissivity required to derive CH4 are obtained from retrievals using separate AIRS channels and the Advanced Microwave Sounding Unit (AMSU). Comparison of AIRS retrieved profiles with some in situ aircraft CH4 profiles implied that the forward model used in the AIRS retrieval system V4.0 required a 2% increase in methane absorption coefficients for strong absorption channels, and this bias adjustment was implemented in the AIRS retrieval system V5.0. As a new operational product in V5.0, AIRS CH4 were validated using in situ aircraft observations at 22 sites of the NOAA Earth System Research Laboratory, Global Monitoring Division (NOAA/ESRL/GMD), ranging from the Arctic to the tropical South Pacific Ocean, but their altitudes are usually above 300 hPa. The results show the bias of the retrieved CH4 profiles for this version is -1.4˜0.1% and its RMS difference is about 0.5-1.6%, depending on altitude. These validation comparisons provide critical assessment of the retrieval algorithm and will continue using more in situ observations together with future improvement to the retrieval algorithm. AIRS CH4 products include not only the CH4 profile but also the information content. As examples, the products of AIRS CH4 in August 2004 and the difference of CH4 in May and September 2004 are shown. From these results a few features are evident: (1) a large AIRS CH4 plume southwest of the Tibetan plateau that may be associated with deep convection during the Asian summer monsoon; (2) high mixing ratios of AIRS CH4 in

  12. Validation of the Atmospheric Infrared Sounder (AIRS) over the Antarctic Plateau: Low Radiance, Low Humidity, and Thin Clouds

    NASA Technical Reports Server (NTRS)

    Tobin, David C.

    2005-01-01

    The main goal of the project has been to use specialized measurements collected at the Antarctic Plateau to provide validation of the Atmospheric InfraRed Sounder (AIRS) spectral radiances and some AIRS Level 2 products. As proposed, efforts conducted at the University of Wisconsin are focused on providing technical information, data, and software in support of the validation studies.

  13. A global climatology of stratospheric gravity waves from Atmospheric Infrared Sounder observations

    NASA Astrophysics Data System (ADS)

    Hoffmann, Lars; Xue, Xianghui; Alexander, M. Joan

    2014-05-01

    We present the results of a new study that aims on the detection and classification of `hotspots' of stratospheric gravity waves on a global scale. The analysis is based on a nine-year record (2003 to 2011) of radiance measurements by the Atmospheric Infrared Sounder (AIRS) aboard NASA's Aqua satellite. We detect the presence of stratospheric gravity waves based on 4.3 micron brightness temperature variances. Our method is optimized for peak events, i.e., strong gravity wave events for which the local variance considerably exceeds background levels. We estimated the occurrence frequencies of these peak events for different seasons and time of day and used the results to find local maxima of gravity wave activity. In addition, we use AIRS radiances at 8.1 micron to simultaneously detect convective events, including deep convection in the tropics and mesoscale convective systems at mid latitudes. We classified the gravity waves according to their sources, based on seasonal occurrence frequencies for convection and by means of topographic data. Our study reproduces well-known hotspots of gravity waves, e.g., the mountain wave hotspots at the Andes and the Antarctic Peninsula or the convective hotspot during the thunderstorm season over the North American Great Plains. However, the high horizontal resolution of the AIRS observations also helped us to locate several smaller hotspots, which were partly unknown or poorly studied so far. Most of these smaller hotspots are found near orographic features like small mountain ranges, in coastal regions, in desert areas, or near isolated islands. This new study will help to select the most promising regions and seasons for future observational studies of gravity waves. Reference: Hoffmann, L., X. Xue, and M. J. Alexander, A global view of stratospheric gravity wave hotspots located with Atmospheric Infrared Sounder observations, J. Geophys. Res., 118, 416-434, doi:10.1029/2012JD018658, 2013.

  14. Three Years of Atmospheric Infrared Sounder Radiometric Calibration Validation using Sea Surface Temperatures

    NASA Technical Reports Server (NTRS)

    Aumann, H. H.; Broberg, Steve; Elliott, Denis; Gaiser, Steve; Gregorich, Dave

    2006-01-01

    This paper evaluates the absolute accuracy and stability of the radiometric calibration of the Atmospheric Infrared Sounder (AIRS) by analyzing the difference between the brightness temperatures measured at 2616 cm(exp -1) and those calculated at the top of the atmosphere (TOA), using the Real-Time Global Sea Surface Temperature (RTGSST) for cloud-free night tropical oceans between +/- 30 degrees latitude. The TOA correction is based on radiative transfer. The analysis of the first 3 years of AIRS radiances verifies the absolute calibration at 2616 cm(exp -1) to better than 200 mK, with better than 16 mK/yr stability. The AIRS radiometric calibration uses an internal full aperture wedge blackbody with the National Institute of Standards and Technology (NIST) traceable prelaunch calibration coefficients. The calibration coefficients have been unchanged since launch. The analysis uses very tight cloud filtering, which selects about 7000 cloud-free tropical ocean spectra per day, about 0.5% of the data. The absolute accuracy and stability of the radiometry demonstrated at 2616 cm(sup -1) are direct consequences of the implementation of AIRS as a thermally controlled, cooled grating-array spectrometer and meticulous attention to details. Comparable radiometric performance is inferred from the AIRS design for all 2378 channels. AIRS performance sets the benchmark for what can be achieved with a state-of-the-art hyperspectral radiometer from polar orbit and what is expected from future hyperspectral sounders. AIRS was launched into a 705 km altitude polar orbit on NASA's Earth Observation System (EOS) Aqua spacecraft on 4 May 2002. AIRS covers the 3.7-15.4 micron region of the thermal infrared spectrum with a spectral resolution of nu/Delta nu = 1200 and has returned 3.7 million spectra of the upwelling radiance each day since the start of routine data gathering in September 2002.

  15. The spaceborne infrared atmospheric sounder for geosynchronous earth orbit (SIRAS-G): pathfinder to space

    NASA Astrophysics Data System (ADS)

    Kampe, Thomas U.; Chase, Holden

    2007-09-01

    The Spaceborne Infrared Sounder for Geosynchronous Earth Orbit (SIRAS-G) was developed by Ball Aerospace and Technologies Corp (BATC) under NASA's 2002 Instrument Incubator Program. SIRAS-G is a technology development program focused on next-generation IR imaging spectrometers for sounding of the atmosphere. SIRAS-G is ideally suited for measuring atmospheric temperature and water vapor profiles, trace gases concentrations, land and ocean surface temperatures and the IR mineral dust aerosol signature from satellite, providing high-spectral resolution imaging spectroscopy over a broad IR spectral range and extended field of view. Instrument concepts for future mission in LEO and GEO are discussed, including an instrument concept to be flown in low earth orbit having the potential to provide high spatial resolution, comparable to that of MODIS, along with the high spectral resolution currently being demonstrated by the Atmospheric Infrared Sounder (AIRS). This capability would dramatically improve the yield of cloud-free pixels scenes that can be assimilated into Numerical Weather Prediction (NWP) models. The SIRAS-G dispersive spectrometer module is readily adaptable for missions in LEO, GEO and MEO orbits and can be optimized for spectral resolution over subsets of the total spectral range. We have completed the 3-year SIRAS-G IIP development effort, including successful testing of the SIRAS-G laboratory demonstration spectrometer that utilized the Hawaii 1RG MWIR FPA. Performance testing was conducted at cryogenic temperatures and the performance of the demo instrument has been quantified including measurement of keystone distortion, spectral smile, MTF, and the spectral response function (SRF) to high accuracy. We present the results of the laboratory instrument development including characterization of the demonstration instrument performance. We discuss instrument concepts utilizing SIRAS-G technology for potential future missions including an anticipated

  16. Application of Spaceborne Infrared Atmospheric Sounder for Geosynchronous Earth Orbit (SIRAS-G) technology to future Earth science missions

    NASA Astrophysics Data System (ADS)

    Kampe, Thomas U.

    2008-04-01

    The Spaceborne Infrared Sounder for Geosynchronous Earth Orbit (SIRAS-G) was developed by Ball Aerospace & Technologies Corp (BATC) under NASA's 2002 Instrument Incubator Program. SIRAS-G was a technology development program focused on next-generation IR imaging spectrometers for sounding of the atmosphere. SIRAS-G demonstrated that the dispersive grating spectrometer is a suitable instrument architecture for this application. In addition to providing atmospheric temperature and water vapor profiles, SIRAS-G can provide trace gases concentrations, land and ocean surface temperatures and the IR mineral dust aerosol signature from satellite. The 3-year SIRAS-G IIP development effort included the successful cryogenic testing of the SIRAS-G laboratory demonstration spectrometer operating in the 2083 to 2994 cm -1 frequency range. The performance of the demonstration instrument has been quantified including measurement of keystone distortion, spectral smile, MTF, and the spectral response function (SRF). Development efforts associated with this advanced infrared spectrometer technology provides the basis for instrumentation to support future Earth science missions.

  17. The Advanced Technology Microwave Sounder (ATMS): The First 10 Months On-Orbit

    NASA Technical Reports Server (NTRS)

    Kim, Edward; Lyu, C-H Joseph; Blackwell, Willaim; Leslie, R. Vince; Baker, Neal; Mo, Tsan; Sun, Ninghai; Bi, Li; Anderson, Kent; Landrum, Mike; DeAmici, Giovanni; Gu, Degui; Foo, Alex; Ibrahim, Wael; Robinson, Kris; Chidester, Lynn; Shiue, James

    2012-01-01

    The Advanced Technology Microwave Sounder (ATMS) is a new satellite microwave sounding sensor designed to provide operational weather agencies with atmospheric temperature and moisture profile information for global weather forecasting and climate applications. A TMS will continue the microwave sounding capabilities first provided by its predecessors, the Microwave Sounding Unit (MSU) and Advanced Microwave Sounding Unit (AMSU). The first ATMS was launched October 28, 2011 on board the NPOESS Preparatory Project (NPP) satellite. Microwave soundings by themselves are the highest-impact input data used by Numerical Weather Prediction (NWP) models, especially under cloudy sky conditions. ATMS has 22 channels spanning 23-183 GHz, closely following the channel set of the MSU, AMSU-A1/2, AMSU-B, Microwave Humidity Sounder (MHS), and Humidity Sounder for Brazil (HSB). All this is accomplished with approximately 1/4 the volume, 1/2 the mass, and 1/2 the power of the three AMSUs. A description of ATMS cal/val activities will be presented followed by examples of its performance after its first 10 months on orbit.

  18. A Network of Direct Broadcast Antenna Systems to Provide Real-Time Infrared and Microwave Sounder Data for Numerical Weather Prediction

    NASA Astrophysics Data System (ADS)

    Gumley, L.

    2013-12-01

    The Space Science and Engineering Center at the University of Wisconsin-Madison is creating a network of direct broadcast satellite data reception stations to acquire and process infrared and microwave sounder data in real-time from polar orbiting meteorological satellites and deliver the resulting products to NOAA with low latency for assimilation in NCEP numerical weather prediction models. The network will include 4 antenna sites that will be operated directly by SSEC, including Madison WI, Honolulu HI, Miami FL, and Mayaguez PR. The network will also include partner antenna sites not directly controlled by SSEC, including Corvallis OR, Monterey CA, Suitland MD, Fairbanks AK, and Guam. All of the antenna sites will have a combined X/L-band reception system capable of receiving data via direct broadcast from polar orbiting satellites including Suomi NPP and JPSS-1, Metop-A/B, POES,Terra, and Aqua. Each site will collect raw data from these satellites locally, process it to Level 1 (SDR) and Level 2 (EDR) products, and transmit the products back to SSEC for delivery to NOAA/NCEP. The primary purpose of the antenna systems is to provide real-time infrared and microwave sounder data from Metop and Suomi-NPP to NOAA to support data assimilation for NOAA/NCEP operational numerical weather prediction models. At present, NOAA/NCEP use of advanced infrared (CrIS, IASI, AIRS) and microwave (ATMS, AMSU) sounder data over North America in NWP data assimilation is limited because of the latency of the products in relation to the cutoff times for assimilation runs. This network will deliver infrared and microwave sounder data to NCEP with the lowest latency possible, via the reception and processing of data received via direct broadcast. CIMSS/SSEC is managing the procurement and installation of the antenna systems at the two new sites, and will operate the stations remotely. NOAA will establish the reception priorities (Metop and SNPP will be at the highest priority) and

  19. Improved Impact of Atmospheric Infrared Sounder (AIRS) Radiance Assimilation in Numerical Weather Prediction

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley; Chou, Shih-Hung; Jedlovec, Gary

    2012-01-01

    Improvements to global and regional numerical weather prediction (NWP) have been demonstrated through assimilation of data from NASA s Atmospheric Infrared Sounder (AIRS). Current operational data assimilation systems use AIRS radiances, but impact on regional forecasts has been much smaller than for global forecasts. Retrieved profiles from AIRS contain much of the information that is contained in the radiances and may be able to reveal reasons for this reduced impact. Assimilating AIRS retrieved profiles in an identical analysis configuration to the radiances, tracking the quantity and quality of the assimilated data in each technique, and examining analysis increments and forecast impact from each data type can yield clues as to the reasons for the reduced impact. By doing this with regional scale models individual synoptic features (and the impact of AIRS on these features) can be more easily tracked. This project examines the assimilation of hyperspectral sounder data used in operational numerical weather prediction by comparing operational techniques used for AIRS radiances and research techniques used for AIRS retrieved profiles. Parallel versions of a configuration of the Weather Research and Forecasting (WRF) model with Gridpoint Statistical Interpolation (GSI) that mimics the analysis methodology, domain, and observational datasets for the regional North American Mesoscale (NAM) model run at the National Centers for Environmental Prediction (NCEP)/Environmental Modeling Center (EMC) are run to examine the impact of each type of AIRS data set. The first configuration will assimilate the AIRS radiance data along with other conventional and satellite data using techniques implemented within the operational system; the second configuration will assimilate AIRS retrieved profiles instead of AIRS radiances in the same manner. Preliminary results of this study will be presented and focus on the analysis impact of the radiances and profiles for selected cases.

  20. Hurricane Frances as Observed by NASA's Spaceborne Atmospheric Infrared Sounder (AIRS) - Total Water

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Born in the Atlantic, Hurricane Frances became a category 4 hurricane on August 31, 2004. Expectations are the hurricane will hit the Space Coast of Florida in Brevard County early Sunday morning.

    This movie is a time-series of maps that show AIRS observations of the total amount of water vapor present in the atmospheric column above each point of the Earth's surface. If all the water vapor in the column were forced to fall as rain, the depth of the resulting puddle on the surface at that point is equal to the value shown on the map. Fifty millimeters (mm) is about 2 inches. The large band of maximum water vapor in the neighborhood of the equator is the Intertropical Convergence Zone (ITCZ), a region of strong convection and powerful thunderstorms.

    This movie shows the total precipitable water vapor from August 23 through September 2, 2004. You can see Hurricane Frances as it moves through the Caribbean toward Florida, and the changes in intensity are visible. The eye has been marked with a red spot. The water vapor encompassed by the hurricane is also the result of the very strong convection which is an integral part of the formation and intensification of tropical storms. If you look at the last frame of the movie in the lower right corner, you can see the emergence of a new tropical storm. Ivan makes its debut in the Atlantic.

    The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard NASA's Aqua spacecraft

  1. Hurricane Frances as Observed by NASA's Spaceborne Atmospheric Infrared Sounder (AIRS) and SeaWinds

    NASA Technical Reports Server (NTRS)

    2004-01-01

    this combination image, the AIRS infrared data reveals the temperature of the atmosphere around the storm, but doesn't tell us about the wind direction or relative intensity. The directional vectors of the SeaWinds data set show how the air is circulating around the storm.

    Scatterometers measure surface wind speed and direction by bouncing microwave pulses off the ocean's surface. The SeaWinds instruments measure the backscattered radar energy from wind-generated ocean waves. By making multiple measurements from different looks at the same location, we can infer the vector wind averaged over each 25 km resolution cell. The primary mission objective of the SeaWinds and QuikSCAT scatterometers is to obtain long-term, global coverage of the ocean vector winds for oceanographic and climate research. While not specifically designed for detailed mapping and tracking of hurricanes, both instruments have been found to be useful resources for operational forecasters.

    The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard NASA's Aqua spacecraft and is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., under contract to NASA. JPL is a division of the California Institute of Technology in Pasadena.

  2. Monthly Representations of Mid-Tropospheric Carbon Dioxide from the Atmospheric Infrared Sounder

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Olsen, Edward T.; Chahine, Moustafa T.; Ruzmaikin, Alexander; Nguyen, Hai; Jiang, Xun

    2011-01-01

    The Atmospheric Infrared Sounder (AIRS) on NASA's Earth Observing System Aqua spacecraft was launched in May of 2002 and acquires hyperspectral infrared spectra used to generate a wide range of atmospheric products including temperature, water vapor, and trace gas species including carbon dioxide. Here we present monthly representations of global concentrations of mid-tropospheric carbon dioxide produced from 8 years of data obtained by AIRS between the years of 2003 and 2010. We define them as "representations" rather than "climatologies" to reflect that the files are produced over a relatively short time period and represent summaries of the Level 3 data. Finally, they have not yet been independently validated. The representations have a horizontal resolution of 2.0 deg x 2.5 deg (Latitude x Longitude) and faithfully reproduce the original 8 years of monthly L3 CO2 concentrations with a standard deviation of 1.48 ppm and less than 2% outliers. The representations are intended for use in studies of the global general circulation of CO2 and identification of anomalies in CO2 typically associated with atmospheric transport. The seasonal variability and trend found in the AIRS CO2 data are discussed.

  3. Performance of the HIRS/2 instrument on TIROS-N. [High Resolution Infrared Radiation Sounder

    NASA Technical Reports Server (NTRS)

    Koenig, E. W.

    1980-01-01

    The High Resolution Infrared Radiation Sounder (HIRS/2) was developed and flown on the TIROS-N satellite as one means of obtaining atmospheric vertical profile information. The HIRS/2 receives visible and infrared spectrum radiation through a single telescope and selects 20 narrow radiation channels by means of a rotating filter wheel. A passive radiant cooler provides an operating temperature of 106.7 K for the HgCdTe and InSb detectors while the visible detector operates at instrument frame temperature. Low noise amplifiers and digital processing provide 13 bit data for spacecraft data multiplexing and transmission. The qualities of system performance that determine sounding capability are the dynamic range of data collection, the noise equivalent radiance of the system, the registration of the air columns sampled in each channel and the ability to upgrade the calibration of the instrument to maintain the performance standard throughout life. The basic features, operating characteristics and performance of the instrument in test are described. Early orbital information from the TIROS-N launched on October 13, 1978 is given and some observations on system quality are made.

  4. Validation of the Atmospheric Infrared Sounder Water Vapor Retrievals Using Global Positioning System: Case Study in South Korea

    NASA Astrophysics Data System (ADS)

    Won, Jihye; Park, Kwan-Dong; Kim, Dusik; Ha, Jihyun

    2011-12-01

    The atmospheric infrared sounder (AIRS) sensor loaded on the Aqua satellite observes the global vertical structure of atmosphere and enables verification of the water vapor distribution over the entire area of South Korea. In this study, we performed a comparative analysis of the accuracy of the total precipitable water (TPW) provided as the AIRS level 2 standard retrieval product by Jet Propulsion Laboratory (JPL) over the South Korean area using the global positioning system (GPS) TPW data. The analysis TPW for the period of one year in 2008 showed that the accuracy of the data produced by the combination of the Advanced Microwave Sounding Unit sensor with the AIRS sensor to correct the effect of clouds (AIRS-X) was higher than that of the AIRS IR-only data (AIRS-I). The annual means of the root mean square error with reference to the GPS data were 5.2 kg/m2 and 4.3 kg/m2 for AIRS-I and AIRS-X, respectively. The accuracy of AIRS-X was higher in summer than in winter while measurement values of AIRS-I and AIRS-X were lower than those of GPS TPW to some extent.

  5. SI traceable algorithm for characterizing hyperspectral infrared sounder CrIS noise.

    PubMed

    Chen, Yong; Weng, Fuzhong; Han, Yong

    2015-09-10

    The Cross-track Infrared Sounder (CrIS) on the Suomi National Polar-orbiting Partnership Satellite (S-NPP) is a Fourier transform spectrometer and provides the sensor data record (SDR) that can be used to retrieve atmospheric temperature and water vapor profiles and can also be directly assimilated in numerical weather prediction models. The noise equivalent differential radiance (NEdN) is part of CrIS SDR products and represents the amount of random noise in the interferometer data. It is a crucial parameter that affects the accuracy of retrieval and satellite radiance assimilation. In this study, we used the international system of units (SI) traceable method Allan deviation to estimate the CrIS NEdN because the internal calibration target (ICT) radiance was slowly varying with time. Compared to the current standard deviation method, this study shows that the NEdN calculated from Allan deviation is converged to a stable value when a number of samples or the average window size is set to 510. Thus, Allan deviation can result in CrIS NEdN SI traceable noise. An optimal averaging window size is 30 if the NEdN is calculated from the standard deviation. PMID:26368960

  6. Atmospheric Infrared Sounder (AIRS) sounding evaluation and analysis of the pre-convective environment

    NASA Astrophysics Data System (ADS)

    Botes, Danelle; Mecikalski, John R.; Jedlovec, Gary J.

    2012-05-01

    The Atmospheric Infrared Sounder (AIRS) is a hyperspectral instrument onboard the National Aeronautics and Space Administration's (NASA) Earth Observing System (EOS) Aqua satellite. This study investigates the performance of AIRS soundings in characterizing the stability in the pre-convective environment of the southeastern United States. AIRS soundings are collocated with radiosonde observations within ±1 degree and 2 h of the Aqua overpass. For each case, the AIRS sounding with maximum PBest quality indicator (signifying the pressure level above which the sounding is of best quality) is chosen for analysis. Rapid Update Cycle soundings from 1800 UTC analyses are used to evaluate the results from AIRS. Precipitable water and stability indices including convective available potential energy, convective inhibition, Lifted Index, K-Index, and Total Totals are derived from all soundings. Results indicate that AIRS underestimates instability due to a dry bias at the surface and roughly 900 hPa. A simple method is presented for reconstructing a RAOB-like inversion (in terms of magnitude and altitude) within AIRS soundings, hence developing more representative RAOB-like soundings that can benefit the operational forecaster.

  7. Local, regional, and global views of tropospheric carbon monoxide from the Atmospheric Infrared Sounder (AIRS)

    NASA Astrophysics Data System (ADS)

    McMillan, W. Wallace; Yurganov, Leonid

    2008-04-01

    More than five years of CO retrievals from the Atmospheric InfraRed Sounder (AIRS) onboard NASA's Aqua satellite reveal variations in tropospheric CO on timescales from twelve hours to five years and on spatial scales from local to global. The shorter timescales are invaluable to monitor daily variations in CO emissions, to enable three-dimensional tracking of atmospheric motions, and to enhance insights into atmospheric mixing. Previous studies have utilized AIRS CO retrievals over the course of days to weeks to track plumes from large forest fires. On the local scale, we will present AIRS observations of pollution from several northern hemisphere Megacities. On the regional scale, we will present AIRS observations of the Mexico City pollution plume. We will illustrate global scale AIRS CO observations of interannual variations linked to the influence of large-scale atmospheric perturbations from the El Nino Southern Oscillation (ENSO). In particular, we observe a quasi-biennial variation in CO emissions from Indonesia with varying magnitudes in peak emission occurring in 2002, 2004, and 2006. Examining satellite rainfall measurements over Indonesia, we find the enhanced CO emission correlates with occasions of less rainfall during the month of October. Continuing this satellite record of tropospheric CO with measurements from the European IASI instrument will permit construction of a long time-series useful for further investigations of climatological variations in CO emissions and their impact on the health of the atmosphere.

  8. The Transition of Atmospheric Infrared Sounder Total Ozone Products to Operations

    NASA Technical Reports Server (NTRS)

    Berndt, E. B.; Zavodsky, B. T.; Jedlovec, G. J.

    2014-01-01

    The National Aeronautics and Space Administration Short-term Prediction Research and Transition Center (NASA SPoRT) has transitioned a total column ozone product from the Atmospheric Infrared Sounder (AIRS) retrievals to the Weather Prediction Center and Ocean Prediction Center. The total column ozone product is used to diagnose regions of warm, dry, ozone-rich, stratospheric air capable of descending to the surface to create high-impact non-convective winds. Over the past year, forecasters have analyzed the Red, Green, Blue (RGB) Air Mass imagery in conjunction with the AIRS total column ozone to aid high wind forecasts. One of the limitations of the total ozone product is that it is difficult for forecasters to determine whether elevated ozone concentrations are related to stratospheric air or climatologically high values of ozone in certain regions. During the summer of 2013, SPoRT created an AIRS ozone anomaly product which calculates the percent of normal ozone based on a global stratospheric ozone mean climatology. With the knowledge that ozone values 125 percent of normal and greater typically represent stratospheric air; the anomaly product can be used with the total column ozone product to confirm regions of stratospheric air. This paper describes the generation of these products along with forecaster feedback concerning the use of the AIRS ozone products in conjunction with the RGB Air Mass product to access the utility and transition of the products.

  9. Estimation of Greenland's Ice Cover Melting Area Using the Atmospheric Infrared Sounder (AIRS)

    NASA Astrophysics Data System (ADS)

    Imbiriba, B.; Desouza-Machado, S. G.; Hannon, S.; Strow, L. L.

    2012-12-01

    Using the Atmospheric Infrared Sounder (AIRS), we are able to detect the melting of Greenland's ice cover for the July 12, 2012 warming event and estimate the corresponding fractional melted area. We collect all of AIRS' overpasses above Greenland, using the reflected solar radiation to avoid cloudy scenes. We perform a retrieval of the skin surface temperature in order to classify a scene as likely frozen (skin temperature well below the freezing point), likely melted (skin temperature well above freezing point), or thawing. Using empirical snow and water emissivity data we retrieve an effective scene snow/water fraction. For this day we estimate that 90% of the ice cover exhibits some thawing and that 53% of the ice cover area was effectivelly covered with liquid water. For contrast we also look at July 8, 2012, and verify that most of the island, 68%, was frozen at that date. We also see a correlation of the thawing area with the solar angle as the day progresses.

  10. Seven Years of Observations of Mid-Tropospheric CO2 from the Atmospheric Infrared Sounder

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Chahine, Moustafa T.; Olsen, Edward T.

    2010-01-01

    The Atmospheric Infrared Sounder (AIRS) on the EOS Aqua Spacecraft was launched on May 4, 2002. AIRS acquires hyperspectral infrared radiances in the 3.7-15.4 um spectral region with spectral resolution of better than 1200. The AIRS was designed to measure temperature and water vapor profiles and cloud properties for improvement in weather forecast and improved parameterization of climate processes. Currently the AIRS Level 1B Radiance Products are assimilated by NWP centers and have shown considerable forecast improvement. Scientists have also demonstrated accurate retrievals of minor gases from AIRS including Carbon Monoxide, Methane, and Ozone. The excellent sensitivity and stability of the AIRS instrument has recently allowed the AIRS team to successfully retrieve Carbon Dioxide (CO2) concentrations in the mid-troposphere (8-10 km) with a horizontal resolution of 100 km and accuracy of 1-2 ppm. The AIRS retrieves over 15,000 measurements per day and can achieve full global coverage in 30 days. The AIRS CO2 accuracy has been validated against a variety of aircraft measurements in the mid-troposphere and upward looking interferometers. Findings from the AIRS data include higher than expected variability in the mid-troposphere, the presence of a belt of CO2 in the southern hemisphere, and numerous observations of atmospheric circulation including the effects of El Nino/La Nina on the CO2 concentrations in the mid-troposphere. The full mid-tropospheric AIRS CO2 data set is now available at the NASA GES/DISC for almost eight years since AIRS has been operational.

  11. Analysis of SO II point source emissions using NASA atmospheric infrared sounder data

    NASA Astrophysics Data System (ADS)

    Shen, Sylvia S.; Miller, David P.; Lewis, Paul E.

    2007-04-01

    Determining the extent to which large power plant emission sources interacting with atmospheric constituents affect the environment could play a significant role in future U.S. energy production policy. The effects on the environment caused by the interaction between power plant emissions and atmospheric constituents has not been investigated in depth due to the lack of calibrated spectral data on a suitable temporal and spatial scale. The availability of NASA's space-based Atmospheric Infrared Sounder (AIRS) data makes it possible to explore, and begin the first steps toward establishing, a correlation between known emission sources and environmental indicators. An exploratory study was conducted in which a time series of 26 cloud-free AIRS data containing two coal-fired power plants in northern New Mexico were selected, acquired, and analyzed for SO II emissions. A generic forward modeling process was also developed to derive an estimate of the expected AIRS pixel radiance containing the SO II emissions from the two power plants based on published combustion analysis data for coal and available power plant documentation. Analysis of the AIRS NEΔR calculated in this study and subsequent comparison with the radiance values for SO II calculated from the forward model provided essential information regarding the suitability and risk in the use of a modified AIRS configuration for monitoring anthropogenic point source emissions. The results of this study along with its conclusions and recommendations in conjunction with additional research collaboration in several specific topics will provide guidance for the development of the next generation infrared spectrometer system that NASA is considering building for environmental monitoring.

  12. Hurricane Ivan as Observed by NASA's Spaceborne Atmospheric Infrared Sounder (AIRS)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    ] September 8, Wednesday, 1:30 am. - microwave, 89GHz

    [figure removed for brevity, see original site] September 10, Friday, 1:30 pm. - infrared, 12micron Ivan closes in on Jamaica. With only 85 miles between the storm and the island, Ivan's winds at category 4 are sustained at 145 mph (230 km/hr). Hurricane-strength winds extend up to 60 miles from the center of Ivan, and tropical-storm force winds are up to 175 miles from the center. Ivan is now better organized and has a well-defined eye. After Ivan leaves Jamaica, it is expected to hit western Cuba, probably making landfall later Sunday as a CAT 4 hurricane.

    [figure removed for brevity, see original site] September 10, Friday, 1:30 pm. - microwave, 89GHz

    [figure removed for brevity, see original site] September 10, Friday, 1:30 pm. - visible/near-infrared

    [figure removed for brevity, see original site] September 13, Friday, 1:30 pm. - infrared, 12micron Ivan's winds at category 5 strength are sustained at 160 mph (260 km/hr) and extend out to 105 miles from the center. Tropical-storm force winds are up to 205 miles from the center. The infrared image shows that the eye has grown quite large - perhaps 40 km (25 miles) across - which is sometimes an indication of weakening but may not be in this case. The surface pressure at the time of this image was estimated by the National Hurricane Center at 915 mb and falling - consistent with a very intense and strengthening hurricane.

    [figure removed for brevity, see original site] September 13, Friday, 1:30 pm. - microwave, 89GHz The microwave image shows that Ivan has again developed two distinct convective centers, separated by about 250 km. That pattern developed on September 5 and persisted for 4 days. It disappeared while the storm was passing over Jamaica, but it has now re-formed.

    [figure removed for brevity, see original site] September 13, Friday, 1:30 pm. - visible/near-infrared

    The Atmospheric Infrared Sounder Experiment, with its

  13. Advances in infrared fibers

    NASA Astrophysics Data System (ADS)

    Tao, Guangming; Abouraddy, Ayman F.

    2015-05-01

    Infrared (IR) fibers that transmit radiation at wavelengths from ~ 2 μm up to ~ 25 μm, a spectrum that extends across both the mid-IR (MIR) and far-IR (FIR), has gained extensive attention concomitant with the recent availability of MIR semiconductors sources and detectors. Chalcogenide glasses (ChGs) are a leading candidate for IR fibers by virtue of their wide optical transmission windows and high nonlinearity in the IR region. After extensive studies since the 1960s, the development and applications of ChG IR fibers are primarily hindered by their unfavorable mechanical properties. Here, we summarize our recent advances in low-cost, robust multimaterial ChG IR fibers with broad transmission windows and low optical losses, based on our multimaterial fiber preforms produced by several fabrication methodologies. Hundreds of meters of fibers are thermally drawn in an ambient atmosphere with desired step-index structure from a macroscopic multimaterial preform that contains few grams of ChG. These simple and efficient processes overcome many of the traditional obstacles, and therefore enable rapid production in an industrial setting.

  14. Detection of Ice Polar Stratospheric Clouds from Assimilation of Atmospheric Infrared Sounder Data

    NASA Technical Reports Server (NTRS)

    Stajner, Ivanka; Benson, Craig; Liu, Hui-Chun; Pawson, Steven; Chang, Ping; Riishojgaard, Lars Peter

    2006-01-01

    A novel technique is presented for detection of ice polar stratospheric clouds (PSCs) that form at extremely low temperatures in the lower polar stratosphere during winter. Temperature is a major factor in determining abundance of PSCs, which in turn provide surfaces for heterogeneous chemical reactions leading to ozone loss and radiative cooling. The technique infers the presence of ice PSCs using radiances from the Atmospheric Infrared Sounder (AIRS) in the Goddard Earth Observing System version 5 (GEOS-5) data assimilation system. Brightness temperatures are computed from short-term GEOS-5 forecasts for several hundred AIRS channels, using a radiation transfer module. The differences between collocated AIRS observations and these computed values are the observed-minus-forecast (O-F) residuals in the assimilation system. Because the radiation model assumes clear-sky conditions, we hypothesize that these O-F residuals contain quantitative information about PSCs. This is confirmed using sparse data from the Polar Ozone and Aerosol Measurement (POAM) III occultation instrument. The analysis focuses on 0-F residuals for the 6.79pm AIRS moisture channel. At coincident locations, when POAM III detects ice clouds, the AIRS O-F residuals for this channel are lower than -2K. When no ice PSCs are evident in POAM III data, the AIRS 0-F residuals are larger. Given this relationship, the high spatial density of AIRS data is used to construct maps of regions where 0-F residuals are lower than -2K, as a proxy for ice PSCs. The spatial scales and spatio-temporal variations of these PSCs in the Antarctic and Arctic are discussed on the basis of these maps.

  15. Comparison of Methane Data Products from the TES and AIRS Infrared Sounders

    NASA Astrophysics Data System (ADS)

    Pagano, T. J.; Pagano, T. S.; Worden, J. R.

    2015-12-01

    Methane is the second most powerful greenhouse gas with a highly positive radiative forcing of 0.48 W/m2 (IPCC 2013). Global concentrations of methane have been steadily increasing since 2007 (Bruhwiler 2014), raising concerns about methane's impact on the future global climate. For about the last decade, the Tropospheric Emission Spectrometer (TES) on the Earth Observing System (EOS) Aura spacecraft has been detecting several trace gas species in the troposphere including methane. The goal of this study is to compare TES methane retrievals to that of the Atmospheric Infrared Sounder (AIRS) on the EOS Aqua spacecraft so that scientific investigations may be transferred from TES to AIRS. The two instruments fly in the afternoon constellation (A-Train), providing numerous coincident measurements for comparison. In addition, they also have a similar spectral range, (3.3 to 15.4 µm) for TES (Beer, 2006) and (3.7 to 15.4 µm) for AIRS (Chahine, 2006), making both instruments sensitive to the mid and upper troposphere. This makes them ideal candidates to compare methane data products. However, because AIRS spectral resolution is lower than that of the TES, there may be a difference in vertical sensitivity. In addition, the retrieval techniques and error characteristics are different for the two data sets. The current state of validation for these data products will be presented. To identify conditions in which the data sets agree and dis agree, we present global maps of methane concentrations from monthly level 3 (L3) data products. We also investigate the temporal stability between the two datasets by comparing global zonal averages derived from L3 over the last decade. Finally, we compare L2 retrieval profiles from representative granules in the tropical, mid-latitude and northern latitudes.

  16. Evaluating the Impact of Atmospheric Infrared Sounder (AIRS) Data On Convective Forecasts

    NASA Technical Reports Server (NTRS)

    Kozlowski, Danielle; Zavodsky, Bradley

    2011-01-01

    The Short-term Prediction Research and Transition Center (SPoRT) is a collaborative partnership between NASA and operational forecasting partners, including a number of National Weather Service (NWS) offices. SPoRT provides real-time NASA products and capabilities to its partners to address specific operational forecast challenges. The mission of SPoRT is to transition observations and research capabilities into operations to help improve short-term weather forecasts on a regional scale. Two areas of focus are data assimilation and modeling, which can to help accomplish SPoRT's programmatic goals of transitioning NASA data to operational users. Forecasting convective weather is one challenge that faces operational forecasters. Current numerical weather prediction (NWP) models that operational forecasters use struggle to properly forecast location, timing, intensity and/or mode of convection. Given the proper atmospheric conditions, convection can lead to severe weather. SPoRT's partners in the National Oceanic and Atmospheric Administration (NOAA) have a mission to protect the life and property of American citizens. This mission has been tested as recently as this 2011 severe weather season, which has seen more than 300 fatalities and injuries and total damages exceeding $10 billion. In fact, during the three day period from 25-27 April, 1,265 storms reports (362 tornado reports) were collected making this three day period one of most active in American history. To address the forecast challenge of convective weather, SPoRT produces a real-time NWP model called the SPoRT Weather Research and Forecasting (SPoRT-WRF), which incorporates unique NASA data sets. One of the NASA assets used in this unique model configuration is retrieved profiles from the Atmospheric Infrared Sounder (AIRS).The goal of this project is to determine the impact that these AIRS profiles have on the SPoRT-WRF forecasts by comparing to a current operational model and a control SPoRT-WRF model

  17. Large Scale Variability of Mid-Tropospheric Carbon Dioxide as Observed by the Atmospheric Infrared Sounder (AIRS) on the NASA EOS Aqua Platform

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Olsen, Edward T.

    2012-01-01

    The Atmospheric Infrared Sounder (AIRS) is a hyperspectral infrared instrument on the EOS Aqua Spacecraft, launched on May 4, 2002. AIRS has 2378 infrared channels ranging from 3.7 microns to 15.4 microns and a 13.5 km footprint. AIRS, in conjunction with the Advanced Microwave Sounding Unit (AMSU), produces temperature profiles with 1K/km accuracy, water vapor profiles (20%/2km), infrared cloud height and fraction, and trace gas amounts for CO2, CO, SO2, O3 and CH4 in the mid to upper troposphere. AIRS wide swath(cedilla) +/-49.5 deg , enables daily global daily coverage for over 95% of the Earth's surface. AIRS data are used for weather forecasting, validating climate model distribution and processes, and observing long-range transport of greenhouse gases. In this study, we examine the large scale and regional horizontal variability in the AIRS Mid-tropospheric Carbon Dioxide product as a function of season and associate the observed variability with known atmospheric transport processes, and sources and sinks of CO2.

  18. Advanced infrared astronomy

    NASA Technical Reports Server (NTRS)

    Kostiuk, Theodor

    1991-01-01

    This task supports the application of infrared heterodyne spectroscopy and other high resolution techniques, as well as infrared arrays to ultra-high resolution studies of molecular constituents of planetary atmospheres. High spectral and spatial resolution measurement and analysis of individual spectral lines permits the retrieval of distributions of atmospheric molecular abundances and temperatures and thus, information on local photochemical processes. Determination of absolute line positions to better than 10(exp -8) permits direct measurement of gas velocities to a few m/sec and thus, the study of dynamics. Observations are made from ground based observatories.

  19. Advanced infrared astronomy

    NASA Technical Reports Server (NTRS)

    Kostiuk, T.; Deming, Drake; Mumma, M.

    1988-01-01

    This task supports the application of infrared heterodyne and Fourier transform spectroscopy to ultra-high resolution studies of molecular constituents of planetary astomspheres and cometary comae. High spectral and spatial resolutions are especially useful for detection and study of localized, non-thermal phenomena in low temperature and low density regions, for detection of trace constituents and for measurement of winds and dynamical phenomena such as thermal tides. Measurement and analysis of individual spectial lines permits retrieval of atmospheric molecular abundances and temperatures and thus, information on local photochemical processes. Determination of absolute line positions to better than 10 to the minus eighth power permits direct measurements of gas velocity to a few meters/sec. Observations are made from ground based heterodyne spectrometers at the Kitt Peak McMath solar telescope and from the NASA infrared Telescope Facility on Mauna Kea, Hawaii. Wind velocities at 110km altitude on Venus were extracted approximately 1 m/sec from measurements of non-thermal emission cores of 10.3 micron CO2 lines. Results indicate a subsolar to antisolar circulationwith a small zonal retrograde component.

  20. Advanced far infrared detectors

    SciTech Connect

    Haller, E.E.

    1993-05-01

    Recent advances in photoconductive and bolometric semiconductor detectors for wavelength 1 mm > {lambda} > 50 {mu}m are reviewed. Progress in detector performance in this photon energy range has been stimulated by new and stringent requirements for ground based, high altitude and space-borne telescopes for astronomical and astrophysical observations. The paper consists of chapters dealing with the various types of detectors: Be and Ga doped Ge photoconductors, stressed Ge:Ga devices and neutron transmutation doped Ge thermistors. Advances in the understanding of basic detector physics and the introduction of modern semiconductor device technology have led to predictable and reliable fabrication techniques. Integration of detectors into functional arrays has become feasible and is vigorously pursued by groups worldwide.

  1. Information-based mid-upper tropospheric methane derived from Atmospheric Infrared Sounder (AIRS) and its validation

    NASA Astrophysics Data System (ADS)

    Xiong, X.; Barnet, C.; Wei, J.; Maddy, E.

    2009-07-01

    Atmospheric Infrared Sounder (AIRS) measurements of methane (CH4) generally contain about 1.0 degree of freedom and are therefore dependent on a priori assumptions about the vertical methane distribution as well as the temperature lapse rate and the amount of moisture. Thus it requires that interpretation and/or analysis of the CH4 spatial and temporal variation based on the AIRS retrievals need to use the averaging kernels (AK). To simplify the use of satellite retrieved products for scientific analysis, a method based on the information content of the retrievals is developed, in which the AIRS retrieved CH4 in the layer from 50 to 250 hPa below the tropopause is used to characterize the mid-upper tropospheric CH4 in the mid-high latitude regions. The basis of this method is that in the mid-high latitude regions the maximum sensitive layers of AIRS to CH4 have a good correlation with the tropopause heights, and these layers are usually between 50 and 250 hPa below the tropopause. Validation using the aircraft measurements from NOAA/ESRL/GMD and the campaigns INTEX-A and -B indicated that the correlation of AIRS mid-upper tropospheric CH4 with aircraft measurements is ~0.6-0.7, and its the bias and rms difference are less than ±1% and 1.2%, respectively. Further comparison of the CH4 seasonal cycle indicated that the cycle from AIRS mid-upper tropospheric CH4 is in a reasonable agreement with NOAA aircraft measurements. This method provides a simple way to use the thermal infrared sounders data to approximately analyze the spatial and temporal variation CH4 in the upper free tropospere without referring the AK. This method is applicable to derive tropospheric CH4 as well as other trace gases for any thermal infrared sensors.

  2. Evaluation of the Impact of Atmospheric Infrared Sounder (AIRS) Radiance and Profile Data Assimilation in Partly Cloudy Regions

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley; Srikishen, Jayanthi; Jedlovec, Gary

    2013-01-01

    Improvements to global and regional numerical weather prediction have been demonstrated through assimilation of data from NASA s Atmospheric Infrared Sounder (AIRS). Current operational data assimilation systems use AIRS radiances, but impact on regional forecasts has been much smaller than for global forecasts. Retrieved profiles from AIRS contain much of the information that is contained in the radiances and may be able to reveal reasons for this reduced impact. Assimilating AIRS retrieved profiles in an identical analysis configuration to the radiances, tracking the quantity and quality of the assimilated data in each technique, and examining analysis increments and forecast impact from each data type can yield clues as to the reasons for the reduced impact. By doing this with regional scale models individual synoptic features (and the impact of AIRS on these features) can be more easily tracked. This project examines the assimilation of hyperspectral sounder data used in operational numerical weather prediction by comparing operational techniques used for AIRS radiances and research techniques used for AIRS retrieved profiles. Parallel versions of a configuration of the Weather Research and Forecasting (WRF) model with Gridpoint Statistical Interpolation (GSI) are run to examine the impact AIRS radiances and retrieved profiles. Statistical evaluation of 6 weeks of forecast runs will be compared along with preliminary results of in-depth investigations for select case comparing the analysis increments in partly cloudy regions and short-term forecast impacts.

  3. Case study of the March 24, 1976 Elton, Louisiana tornado using satellite infrared imagery, Doppler sounder, rawinsonde, and radar observations

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Smith, R. E.

    1983-01-01

    The Elton, Louisiana tornado on March 24, 1976 has been studied using GOES digital infrared data for the growth and collapse of the cloud top, the temperature-height relationship and air mass instability from rawinsonde data, gravity waves from Doppler sounder records, and radar summaries from storm activity during the three-hour time period immediately preceding the touchdown of the tornado. In this case, the overshooting turret collapsed 30 minutes before the tornado touchdown as the eastward moving cloud reached Elton, Louisiana. Results show that the gravity waves were excited by the enhanced convection of the storm penetrating through the tropopause in the 2.5 hour time period before the tornado touched down.

  4. A multi-aperture spectrometer design for the Atmospheric Infrared Sounder (AIRS)

    NASA Technical Reports Server (NTRS)

    Pagano, Robert; Hatch, Marcus

    1990-01-01

    The baseline multiaperture echelle spectrometer for the Atmospheric IR Sounder (AIRS) is described in terms of design and applications. The functional requirements for the optical design are set forth including the 1-K measurement goal, the 3.4-15.4 spectral bandpass, and the full global coverage twice daily. The multiaperture spectrometer is compared to the cross-dispersed spectrometer, and the multiaperture model is found to permit specific adjustments to the signal-to-noise ratio. The optical design of the spectrometer is described in terms of the focal-plane constraints, the multiaperture pupil-imaging relay, the spectrometer collimator, and the grating format and efficiency. The multiaperture design is found to have a good spectral-response function, and a 1.2 percent signal change is noted for a 95-percent unpolarized scene. The AIRS instrument is illustrated in its deployment configuration and is concluded to be capable of fulfilling the performance requirements.

  5. Retrieving dust aerosols properties (optical depth and altitude) from very high resolution infrared sounders : from AIRS to IASI.

    NASA Astrophysics Data System (ADS)

    Peyridieu, S.; Chédin, A.; Capelle, V.; Pierangelo, C.; Lamquin, N.; Armante, R.

    2009-04-01

    Observation from space, being global and quasi-continuous, is a first importance tool for aerosol studies. Remote sensing in the visible domain has been widely used to obtain better characterization of these particles and their effect on solar radiation. On the opposite, remote sensing of aerosols in the thermal infrared domain still remains marginal. However, knowledge of the effect of aerosols on terrestrial radiation is needed for the evaluation of their total radiative forcing. Infrared remote sensing provides a way to retrieve other aerosol characteristics, including their mean altitude. Moreover, observations are possible at night and day, over ocean and over land. In this context, six years (2003-2008) of the 2nd generation vertical sounder AIRS observations have been processed over the tropical belt (30°N-30°S). Aerosol properties (10 µm infrared optical depth and mean layer altitude) are retrieved using a Look-Up Table (LUT) approach. The forward radiative transfer model 4A (Automatized Atmospheric Absorption Atlas) coupled with the DISORT algorithm accounting for atmospheric diffusion is used to feed the LUTs with simulations of the brightness temperatures of AIRS channels selected for their sensitivity to dust aerosols. LUTs degrees of freedom are : instrument viewing angle, surface pressure and surface emissivity, a parameter particularly important for dust retrieval over bright surfaces, such as deserts. AODs (resp. altitude) are sampled over the range 0.0-0.8 (resp. 0-5800 m). The retrieval algorithm follows two main steps : (i) retrieval of the atmospheric situation observed (temperature and water vapour profiles) ; (ii) retrieval of aerosol properties. Results have been compared to instruments commonly used in aerosol studies and also part of the Aqua Train : MODIS/Aqua and CALIOP/CALIPSO. The agreement obtained from these comparisons is quite satisfactory, demonstrating that our algorithm effectively allows the simultaneous retrieval of dust AOD

  6. Calibration of Suomi national polar-orbiting partnership advanced technology microwave sounder

    NASA Astrophysics Data System (ADS)

    Weng, Fuzhong; Zou, Xiaolei; Sun, Ninghai; Yang, Hu; Tian, Miao; Blackwell, William J.; Wang, Xiang; Lin, Lin; Anderson, Kent

    2013-10-01

    The Suomi National Polar-Orbiting Partnership (NPP) satellite was launched on 28 October 2011 and carries the Advanced Technology Microwave Sounder (ATMS) on board. ATMS is a cross-track scanning instrument observing in 22 channels at frequencies ranging from 23 to 183 GHz, permitting the measurements of the atmospheric temperature and moisture under most weather conditions. In this study, the ATMS radiometric calibration algorithm used in the operational system is first evaluated through independent analyses of prelaunch thermal vacuum data. It is found that the ATMS peak nonlinearity for all the channels is less than 0.5 K, which is well within the specification. For the characterization of the ATMS instrument sensitivity or noise equivalent differential temperatures (NEDT), both standard deviation and Allan variance of warm counts are computed and compared. It is shown that NEDT derived from the standard deviation is about three to five times larger than that from the Allan variance. The difference results from a nonstationary component in the standard deviation of warm counts. The Allan variance is better suited than the standard deviation for describing NEDT. In the ATMS sensor brightness temperature data record (SDR) processing algorithm, the antenna gain efficiencies of main beam, cross-polarization beam, and side lobes must be derived accurately from the antenna gain distribution function. However, uncertainties remain in computing the efficiencies at ATMS high frequencies. Thus, ATMS antenna brightness temperature data records (TDR) at channels 1 to 15 are converted to SDR with the actual beam efficiencies whereas those for channels 16 to 22 are only corrected for the near-field sidelobe contributions. The biases of ATMS SDR measurements to the simulations are consistent between GPS RO and NWP data and are generally less than 0.5 K for those temperature-sounding channels where both the forward model and input atmospheric profiles are reliable.

  7. Characterization of geolocation accuracy of Suomi NPP Advanced Technology Microwave Sounder measurements

    NASA Astrophysics Data System (ADS)

    Han, Yang; Weng, Fuzhong; Zou, Xiaolei; Yang, Hu; Scott, Deron

    2016-05-01

    The Advanced Technology Microwave Sounder (ATMS) onboard Suomi National Polar-orbiting Partnership satellite has 22 channels at frequencies ranging from 23 to 183 GHz for probing the atmospheric temperature and moisture under all weather conditions. As part of the ATMS calibration and validation activities, the geolocation accuracy of ATMS data must be well characterized and documented. In this study, the coastline crossing method (CCM) and the land-sea fraction method (LFM) are utilized to characterize and quantify the ATMS geolocation accuracy. The CCM is based on the inflection points of the ATMS window channel measurements across the coastlines, whereas the LFM collocates the ATMS window channel data with high-resolution land-sea mask data sets. Since the ATMS measurements provide five pairs of latitude and longitude data for K, Ka, V, W, and G bands, respectively, the window channels 1, 2, 3, 16, and 17 from each of these five bands are chosen for assessing the overall geolocation accuracy. ATMS geolocation errors estimated from both methods are generally consistent from 40 cases in June 2014. The ATMS along-track (cross-track) errors at nadir are within ±4.2 km (±1.2 km) for K/Ka, ±2.6 km (±2.7 km) for V bands, and ±1.2 km (±0.6 km) at W and G bands, respectively. At the W band, the geolocation errors derived from both algorithms are probably less reliable due to a reduced contrast of brightness temperatures in coastal areas. These estimated ATMS along-track and cross-track geolocation errors are well within the uncertainty requirements for all bands.

  8. Thermal Band Atmospheric Correction Using Atmospheric Profiles Derived from Global Positioning System Radio Occultation and the Atmospheric Infrared Sounder

    NASA Technical Reports Server (NTRS)

    Pagnutti, Mary; Holekamp, Kara; Stewart, Randy; Vaughan, Ronald D.

    2006-01-01

    This Rapid Prototyping Capability study explores the potential to use atmospheric profiles derived from GPS (Global Positioning System) radio occultation measurements and by AIRS (Atmospheric Infrared Sounder) onboard the Aqua satellite to improve surface temperature retrieval from remotely sensed thermal imagery. This study demonstrates an example of a cross-cutting decision support technology whereby NASA data or models are shown to improve a wide number of observation systems or models. The ability to use one data source to improve others will be critical to the GEOSS (Global Earth Observation System of Systems) where a large number of potentially useful systems will require auxiliary datasets as input for decision support. Atmospheric correction of thermal imagery decouples TOA radiance and separates surface emission from atmospheric emission and absorption. Surface temperature can then be estimated from the surface emission with knowledge of its emissivity. Traditionally, radiosonde sounders or atmospheric models based on radiosonde sounders, such as the NOAA (National Oceanic & Atmospheric Administration) ARL (Air Resources Laboratory) READY (Real-time Environmental Application and Display sYstem), provide the atmospheric profiles required to perform atmospheric correction. Unfortunately, these types of data are too spatially sparse and too infrequently taken. The advent of high accuracy, global coverage, atmospheric data using GPS radio occultation and AIRS may provide a new avenue for filling data input gaps. In this study, AIRS and GPS radio occultation derived atmospheric profiles from the German Aerospace Center CHAMP (CHAllenging Minisatellite Payload), the Argentinean Commission on Space Activities SAC-C (Satellite de Aplicaciones Cientificas-C), and the pair of NASA GRACE (Gravity Recovery and Climate Experiment) satellites are used as input data in atmospheric radiative transport modeling based on the MODTRAN (MODerate resolution atmospheric

  9. Simultaneous physical retrieval of surface emissivity spectrum and atmospheric parameters from infrared atmospheric sounder interferometer spectral radiances.

    PubMed

    Masiello, Guido; Serio, Carmine

    2013-04-10

    The problem of simultaneous physical retrieval of surface emissivity, skin temperature, and temperature, water-vapor, and ozone atmospheric profiles from high-spectral-resolution observations in the infrared is formulated according to an inverse problem with multiple regularization parameters. A methodology has been set up, which seeks an effective solution to the inverse problem in a generalized L-curve criterion framework. The a priori information for the surface emissivity is obtained on the basis of laboratory data alone, and that for the atmospheric parameters by climatology or weather forecasts. To ensure that we deal with a problem of fewer unknowns than observations, the dimensionality of the emissivity is reduced through expansion in Fourier series. The main objective of this study is to demonstrate the simultaneous retrieval of emissivity, skin temperature, and atmospheric parameters with a two-dimensional L-curve criterion. The procedure has been demonstrated with spectra observed from the infrared atmospheric sounder interferometer, flying onboard the European Meteorological Operational satellite. To check the quality and reliability of the methodology, we have used spectra recorded over regions characterized by known or stable emissivity. These include sea surface, for which effective emissivity models are known, and arid lands (Sahara and Namib Deserts) that are known to exhibit the characteristic spectral signature of quartz-rich sand. PMID:23670773

  10. Demonstrating the Operational Value of Atmospheric Infrared Sounder (AIRS) Retrieved Profiles in the Pre-Convective Environment

    NASA Technical Reports Server (NTRS)

    Kozlowski, Danielle M.; Zavodsky, T.; Jedloved, Gary J.

    2011-01-01

    The Short-term Prediction Research and Transition Center (SPoRT) is a collaborative partnership between NASA and operational forecasting partners, including a number of National Weather Service offices. SPoRT provides real-time NASA products and capabilities to its partners to address specific operational forecast challenges. One operational forecast challenge is forecasting convective weather in data-void regions such as large bodies of water (e.g. Gulf of Mexico). To address this forecast challenge, SPoRT produces a twice-daily three-dimensional analysis that blends a model first-guess from the Advanced Research Weather Research and Forecasting (WRF-ARW) model with retrieved profiles from the Atmospheric Infrared Sounder (AIRS) -- a hyperspectral sounding instrument aboard NASA's Aqua satellite that provides temperature and moisture profiles of the atmosphere. AIRS profiles are unique in that they give a three dimensional view of the atmosphere that is not available through the current rawinsonde network. AIRS has two overpass swaths across North America each day, one valid in the 0700-0900 UTC timeframe and the other in the 1900-2100 UTC timeframe. This is helpful because the rawinsonde network only has data from 0000 UTC and 1200 UTC at specific land-based locations. Comparing the AIRS analysis product with control analyses that include no AIRS data demonstrates the value of the retrieved profiles to situational awareness for the pre-convective (and convective) environment. In an attempt to verify that the AIRS analysis was a good representation of the vertical structure of the atmosphere, both the AIRS and control analyses are compared to a Rapid Update Cycle (RUC) analysis used by operational forecasters. Using guidance from operational forecasters, convective available potential energy (CAPE) was determined to be a vital variable in making convective forecasts and is used herein to demonstrate the utility of the AIRS profiles in changing the vertical

  11. Improved methodology for surface and atmospheric soundings, error estimates, and quality control procedures: the atmospheric infrared sounder science team version-6 retrieval algorithm

    NASA Astrophysics Data System (ADS)

    Susskind, Joel; Blaisdell, John M.; Iredell, Lena

    2014-01-01

    The atmospheric infrared sounder (AIRS) science team version-6 AIRS/advanced microwave sounding unit (AMSU) retrieval algorithm is now operational at the Goddard Data and Information Services Center (DISC). AIRS version-6 level-2 products are generated near real time at the Goddard DISC and all level-2 and level-3 products are available starting from September 2002. Some of the significant improvements in retrieval methodology contained in the version-6 retrieval algorithm compared to that previously used in version-5 are described. In particular, the AIRS science team made major improvements with regard to the algorithms used to (1) derive surface skin temperature and surface spectral emissivity; (2) generate the initial state used to start the cloud clearing and retrieval procedures; and (3) derive error estimates and use them for quality control. Significant improvements have also been made in the generation of cloud parameters. In addition to the basic AIRS/AMSU mode, version-6 also operates in an AIRS only (AO) mode, which produces results almost as good as those of the full AIRS/AMSU mode. The improvements of some AIRS version-6 and version-6 AO products compared to those obtained using version-5 are also demonstrated.

  12. Impacts of field of view configuration of Cross-track Infrared Sounder on clear-sky observations.

    PubMed

    Wang, Likun; Chen, Yong; Han, Yong

    2016-09-01

    Hyperspectral infrared radiance measurements from satellite sensors contain valuable information on atmospheric temperature and humidity profiles and greenhouse gases, and therefore are directly assimilated into numerical weather prediction (NWP) models as inputs for weather forecasting. However, data assimilations in current operational NWP models still mainly rely on cloud-free observations due to the challenge of simulating cloud-contaminated radiances when using hyperspectral radiances. The limited spatial coverage of the 3×3 field of views (FOVs) in one field of regard (FOR) (i.e., spatial gap among FOVs) as well as relatively large footprint size (14 km) in current Cross-track Infrared Sounder (CrIS) instruments limits the amount of clear-sky observations. This study explores the potential impacts of future CrIS FOV configuration (including FOV size and spatial coverage) on the amount of clear-sky observations by simulation experiments. The radiance measurements and cloud mask products (VCM) from the Visible Infrared Imager Radiometer Suite (VIIRS) are used to simulate CrIS clear-sky observation under different FOV configurations. The results indicate that, given the same FOV coverage (e.g., 3×3), the percentage of clear-sky FOVs and the percentage of clear-sky FORs (that contain at least one clear-sky FOV) both increase as the FOV size decreases. In particular, if the CrIS FOV size were reduced from 14 km to 7 km, the percentage of clear-sky FOVs increases from 9.02% to 13.51% and the percentage of clear-sky FORs increases from 18.24% to 27.51%. Given the same FOV size but with increasing FOV coverage in each FOR, the clear-sky FOV observations increases proportionally with the increasing sampling FOVs. Both reducing FOV size and increasing FOV coverage can result in more clear-sky FORs, which benefit data utilization of NWP data assimilation. PMID:27607289

  13. Atmospheric measurements of volcanic eruptions with the infrared sounder IASI (Arne Richter Award for Outstanding Young Scientists Lecture)

    NASA Astrophysics Data System (ADS)

    Clarisse, L.

    2012-04-01

    Due to their spatial coverage, satellite sounders are ideal for measuring volcanic emissions. They are able to monitor (dormant) volcanoes in remote parts of the world and measure large plumes from explosive eruptions. Currently over a dozen instruments (operating in the IR and UV spectral ranges) are capable of detecting volcanic ash and/or sulphur dioxide. Satellite measurements are highly relevant for hazard mitigation, locally but also on large scales for air traffic avoidance of volcanic clouds. Their coverage enables to establish an accurate time-record of global volcanic emissions. This is useful from a volcanology perspective, but also for assessing the global climate impact of volcanic emissions. In this talk we give an overview of four years of measurements of large eruptive plumes from the high resolution infrared atmospheric sounding interferometer (IASI). The focus is on the detection and measurement of volcanic aerosol (volcanic ash, ice and sulphuric acid). In the second part of this talk, we discuss sulphur dioxide measurements and the recent first observations of hydrogen sulphide. We conclude with a discussion of open problems and challenges which lie ahead for the remote sensing of volcanic products.

  14. Impact of advanced technology microwave sounder data in the NCMRWF 4D-VAR data assimilation system

    NASA Astrophysics Data System (ADS)

    Rani, S. Indira; Srinivas, D.; Mallick, Swapan; George, John P.

    2016-05-01

    This study demonstrates the added benefits of assimilating the Advanced Technology Microwave Sounder (ATMS) radiances from the Suomi-NPP satellite in the NCMRWF Unified Model (NCUM). ATMS is a cross-track scanning microwave radiometer inherited the legacy of two very successful instrument namely, Advanced Microwave Sounding Unit-A (AMSU-A) and Microwave Humidity Sounder (MHS). ATMS has 22 channels: 11 temperature sounding channels around 50-60 GHz oxygen band and 6 moisture sounding channels around the 183GHz water vapour band in addition to 5 channels sensitive to the surface in clear conditions, or to water vapour, rain, and cloud when conditions are not clear (at 23, 31, 50, 51 and 89 GHz). Before operational assimilation of any new observation by NWP centres it is standard practice to assess data quality with respect to NWP model background (short-forecast) fields. Quality of all channels is estimated against the model background and the biases are computed and compared against that from the similar observations. The impact of the ATMS data on global analyses and forecasts is tested by adding the ATMS data in the NCUM Observation Processing system (OPS) and 4D-Var variational assimilation (VAR) system. This paper also discusses the pre-operational numerical experiments conducted to assess the impact of ATMS radiances in the NCUM assimilation system. It is noted that the performance of ATMS is stable and it contributes to the performance of the model, complimenting observations from other instruments.

  15. Hurricane Ivan as Observed by NASA's Spaceborne Atmospheric Infrared Sounder (AIRS)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1: Microwave 89Ghz imageFigure 2: Visible/near infrared sensor

    Hurricane Ivan is the most powerful hurricane to hit the Caribbean in 10 years. On September 7 and 8 it damaged 90 percent of the homes in Grenada and killed at least 16 people as it swept over Grenada, Barbados and the other islands in the area. By Thursday morning on September 9, Ivan's sustained winds reached 160 mph making it a rare category 5 hurricane on the Saffir-Simpson scale. By Monday September 13, Ivan is blamed for 67 deaths and skirts western Cuba with winds clocked at 156 mph. The National Hurricane Center predicted the eye of Ivan will make landfall across Mobile Bay in Alabama late Wednesday or early Thursday.

    These images of Hurricane Ivan were acquired by the AIRS infrared, microwave, and visible sensors on September 15 at 1:30 pm local time as the storm moves in to Alabama. Ivan at category 4 strength is about 150 miles south of Mobile, Alabama and is moving north at 14 mph. Maximum sustained winds are reported to be at 135 mph and extend 105 miles from the center, while tropical storm-force winds extend 290 miles from the center. Ivan pounded the Gulf coast all day Wednesday, and is expected to make landfall between midnight and 3am in Mobile Bay, Alabama.

    This image shows how the storm looks through an AIRS Infrared window channel, and reveals a very large eye - about 75 km (50 miles) across. Window channels measure the temperature of the cloud tops or the surface of the Earth in cloud-free regions. The lowest temperatures are associated with high, cold cloud tops that make up the top of the hurricane. The infrared signal does not penetrate through clouds, so the purple color indicates the cool cloud tops of the storm. In cloud-free areas, the infrared signal is retrieved at the Earth's surface, revealing warmer temperatures. Cooler areas are pushing to purple

  16. A Simple Drought Product and Indicator Derived from Temperature and Relative Humidity Observed by the Atmospheric InfraRed Sounder (AIRS)

    NASA Astrophysics Data System (ADS)

    Granger, S. L.; Behrangi, A.

    2015-12-01

    In the United States, drought results in agricultural losses, impacts to industry, power and energy production, natural resources, municipal water supplies and human health making it one of the costliest natural hazards in the nation. Monitoring drought is therefore critical to help local governments, resource managers, and other groups make effective decisions, yet there is no single definition of drought, and because of the complex nature of drought there is no universal best drought indicator. Remote sensing applications in drought monitoring are advantageous due to the large spatial and temporal frequency of observations, leading to a better understanding of the spatial extent of drought and its duration, and in detecting the onset of drought and its intensity. NASA Earth Observing System (EOS)-era data have potential for monitoring and assessing drought and many are already used either directly or indirectly for drought monitoring. Land Surface Temperature (LST) and Normalized Difference Vegetation Index (NDVI) observations from the Moderate Resolution Imaging Spectro-radiometer (MODIS) sensor are widely used for agricultural and environmental plant-stress monitoring via the USDM, the VegDRI project and FEWSNet. However there remain underutilized sources of information from NASA satellite observations that may have promise for characterizing and understanding meteorological drought. Once such sensor is NASA's Advanced Infra-Red Sounder (AIRS) aboard the Aqua satellite. AIRS and it's sister sensor the Advanced Microwave Sounding Unit (AMSU) that together provide meteorological information of high relevance to meteorological drought, e.g., profiles of water vapor, surface air temperature, and precipitation. Recent work undertaken to develop simple indicators of drought based on temperature and relative humidity from the AIRS suite of instruments is promising. Although there are more sophisticated indicators developed through the application of a variety of

  17. SAFIRE-A: An airborne far infra-red limb sounder

    SciTech Connect

    Dickinson, P.; Carli, B.; Ade, P.; Nolt, I.; Leotin, J.; Carlotti, M.

    1995-12-31

    The design and scientific objectives of the SAFIRE-A (Spectroscopy of the Atmosphere using Far Infra-Red Emissions-Airborne) instrument will be described. The instrument exploits technical developments achieved during the development of the SAFIRE concept for space. These include an interferometer of compact design with spectral resolution 0.004 cm{sup {minus}1}, and narrow-band filters (2 cm{sup {minus}1} wide) to reduce photon noise. The instrument is capable of detecting ozone and trace gases that affect ozone depletion, for example OH, HO{sub 2}, H{sub 2}O{sub 2}, HOCl, HCl, ClO, HF, HBr and also H{sub 2}O. The measurements will include column content above the aircraft (above 20 km) and height resolved abundances at lower altitudes.

  18. Space-borne observation of methane from atmospheric infrared sounder version 6: validation and implications for data analysis

    NASA Astrophysics Data System (ADS)

    Xiong, X.; Weng, F.; Liu, Q.; Olsen, E.

    2015-08-01

    Atmospheric Methane (CH4) is generated as a standard product in recent version of the hyperspectral Atmospheric Infrared Sounder (AIRS-V6) aboard NASA's Aqua satellite at the NASA Goddard Earth Sciences Data and Information Services Center (NASA/GES/DISC). Significant improvements in AIRS-V6 was expected but without a thorough validation. This paper first introduced the improvements of CH4 retrieval in AIRS-V6 and some characterizations, then presented the results of validation using ~ 1000 aircraft profiles from several campaigns spread over a couple of years and in different regions. It was found the mean biases of AIRS CH4 at layers 343-441 and 441-575 hPa are -0.76 and -0.05 % and the RMS errors are 1.56 and 1.16 %, respectively. Further analysis demonstrates that the errors in the spring and in the high northern latitudes are larger than in other seasons or regions. The error is correlated with Degree of Freedoms (DOFs), particularly in the tropics or in the summer, and cloud amount, suggesting that the "observed" spatiotemporal variation of CH4 by AIRS is imbedded with some artificial impact from the retrieval sensitivity in addition to its variation in reality, so the variation of information content in the retrievals needs to be taken into account in data analysis of the retrieval products. Some additional filtering (i.e. rejection of profiles with obvious oscillation as well as those deviating greatly from the norm) for quality control is recommended for the users to better utilize AIRS-V6 CH4, and their implementation in the future versions of the AIRS retrieval algorithm is under consideration.

  19. Temporal and zonal variability and of mid-tropospheric carbon dioxide from the Atmospheric Infrared Sounder compared to surface measurements

    NASA Astrophysics Data System (ADS)

    Pagano, T. S.; Olsen, E. T.; Nguyen, H. M.; Jiang, X.

    2012-12-01

    The Atmospheric Infrared Sounder (AIRS) on the EOS Aqua Spacecraft was launched on May 4, 2002. AIRS acquires hyperspectral infrared radiances in the 3.7-15.4 um spectral region with spectral resolution of better than 1200, and spatial resolution of 13.5 km with global daily coverage. The AIRS was designed to measure temperature and water vapor profiles for improvement in weather forecast and improved parameterization of climate processes. Currently the AIRS Level 1B Radiance Products are assimilated by NWP centers worldwide and have shown considerable forecast improvement. AIRS L1 and L2 products are widely used for studying critical climate processes related to water vapor feedback, atmospheric transport and cloud properties. AIRS trace gas products include ozone profiles, carbon monoxide, and the first global maps of mid-tropospheric carbon dioxide. The global daily coverage of AIRS allows scientists to follow the transport of these gases to aid in validation of chemical/weather transport models. AIRS mid-tropospheric carbon dioxide has a peak sensitivity of about 450 mb and a width of about 500 mb. This broad mid-tropospheric sensitivity is useful for identifying global circulation patterns including ENSO (Jiang et al., 2010) and MJO (Li et al., 2010). Climatologies were developed that represent averages of AIRS Monthly L3 CO2 data detrended and averaged over the individual months for 12 maps on 2.0 x 2.5 degree grid scale (Pagano, 2011). The climatologies show a persistent low in the CO2 in the South Atlantic due to a constant downward flux from the Walker Circulation. The significantly reduced noise level in the climatologies also reveal that the horizontal variability in the AIRS CO2 measurements is not entirely driven by global circulation, but also the underlying global vegetation cycle. Further investigation into the seasonal behavior of the zonal averages of AIRS CO2, AIRS mid-troposphere and surface temperature data, MODIS derived GPP, and other ground

  20. Visible infrared spin-scan radiometer atmospheric sounder radiometric calibration - An inflight evaluation from intercomparisons with HIRS and radiosonde measurements

    NASA Technical Reports Server (NTRS)

    Menzel, W. P.; Smith, W. L.; Herman, L. D.

    1981-01-01

    The ability to conduct soundings from a geostationary platform has been demonstrated with the Visible IR spin-scan radiometer Atmospheric Sounder (VAS) aboard GOES-4. While a negative offset reaching 2.0-3.0 C for the upper atmospheric CO2 bands of VAS was observed in comparisons with High Resolution IR Radiation Sounder (HIRS) measurements and analyses of radiosonde data, VAS radiances are consistent with that material. After removing the offset, the temperature profiles derived from VAS radiances agree very well with those observed by radiosondes. Time variations in the atmospheric state are discernible from VAS soundings at three-hour intervals, and were confirmed by radiosonde observations.

  1. Advanced infrared laser modulator development

    NASA Technical Reports Server (NTRS)

    Cheo, P. K.; Wagner, R.; Gilden, M.

    1984-01-01

    A parametric study was conducted to develop an electrooptic waveguide modulator for generating continuous tunable sideband power from an infrared CO2 laser. Parameters included were the waveguide configurations, microstrip dimensions device impedance, and effective dielectric constants. An optimum infrared laser modulator was established and was fabricated. This modulator represents the state-of-the-art integrated optical device, which has a three-dimensional topology to accommodate three lambda/4 step transformers for microwave impedance matching at both the input and output terminals. A flat frequency response of the device over 20 HGz or = 3 dB) was achieved. Maximum single sideband to carrier power greater than 1.2% for 20 W microwave input power at optical carrier wavelength of 10.6 microns was obtained.

  2. Ammonia Measurements by the NASA Tropospheric Emission Spectrometer (TES) and the NPP Suomi Cross-Track Infrared Sounder (CrIS)

    NASA Astrophysics Data System (ADS)

    Cady-Pereira, K. E.; Shephard, M. W.; Henze, D. K.; Zhu, J.; Pinder, R. W.; Bash, J. O.; Walker, J. T.; Luo, M.

    2013-12-01

    models of the ammonia bi-directional exchange at the surface and we will show some preliminary ammonia retrievals from the Cross-track Infrared Sounder (CrIS) currently flying on the NASA NPP Suomi satellite.

  3. Cloud characteristics over central Amazonia during GTE/ABLE 2B derived from multispectral visible and infrared spin scan radiometer atmospheric sounder observations

    SciTech Connect

    Menzel, W.P. ); Schmit, T.J.; Wylie, D.P. )

    1990-09-20

    Multispectral GOES/Visible and Infrared Spin Scan Radiometer Atmospheric Sounder (VAS) observations in the carbon dioxide absorption band at 15 {mu}m have been used to calculate diurnal cloud statistics over central Amazonia region for 4 days during the Global Tropospheric Experiment/Amazon Boundary Layer Experiment (GTE/ABLE IIB). The CO{sub 2} technique calculates both cloud top pressure and effective emissivity from radiative transfer principles. Transmissive clouds that are partially transparent to terrestrial radiation have been reliably separated from opaque clouds in the statistics of cloud cover. A high incidence of transmissive clouds (about 47%) was found on the average. Diurnal characteristics of cloud cover over Amazonia have been linked to convective activity over this region. On days with afternoon convection, an increase in low-altitude opaque clouds was followed by a subsequent increase in high-altitude transmissive clouds.

  4. The Atmospheric Infrared Sounder (AIRS) on the NASA Aqua Spacecraft: A General Remote Sensing Tool for Understanding Atmospheric Structure, Dynamics and Composition

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Chahine, Moustafa T.; Fetzer, Eric J.

    2010-01-01

    The Atmospheric Infrared Sounder (AIRS) on the EOS Aqua Spacecraft was launched on May 4, 2002. Early in the mission, the AIRS instrument demonstrated its value to the weather forecasting community with better than 6 hours of improvement on the 5 day forecast. Now with over eight years of consistent and stable data from AIRS, scientists are able to examine processes governing weather and climate and look at seasonal and interannual trends from the AIRSdata with high statistical confidence. Naturally, long-term climate trends require a longer data set, but indications are that the Aqua spacecraft and the AIRS instrument should last beyond 2018. This paper briefly describes the AIRS data products and presents some of the most significant findings involving the use of AIRS data in the areas of weather forecast improvement, climate processes and model validation, cloud and polar processes, and atmospheric composition (chemistry and dust).

  5. Raytheon advanced forward looking infrared (ATFLIR) pod

    NASA Astrophysics Data System (ADS)

    Uyeno, Gerald

    2006-05-01

    Raytheon's AN/ASQ-228 Advanced Targeting Forward-Looking Infrared (ATFLIR) Pod features state-of-the-art mid-wave infrared targeting and navigation FLIRs, an electro-optical sensor, a laser rangefinder and target designator, and a laser spot tracker. ATFLIR is fully integrated and flight tested on all F/A-18 Hornet/Super Hornet models, approved for full-rate production and is forward deployed, supporting US. fleet operations worldwide. This paper will present ATFLIR status and a summary of future plans.

  6. Trends in South American biomass burning detected with the GOES visible infrared spin scan radiometer atmospheric sounder from 1983 to 1991

    SciTech Connect

    Prins, E.M.; Menzel, W.P. |

    1994-08-01

    Previous work demonstrated the ability to manually detect subpixel fire activity in selected areas of the selva and cerrado regions in South America with shortwave and longwave infrared data available from the Geostationary Operational Environmental Satellite (GOES) visible infrared spin scan radiometer atmospheric sounder (VAS). This paper presents the GOES VAS automated biomass-burning algorithm (ABBA) which was developed to determine basin-wide trends in fire activity in South America utilizing the GOES VAS archive. Comparisons between the manual and automated techniques revealed that overall, the ABBA proved to be more consistent in identifying fires and better suited for trend analysis. The automated algorithm was applied daily to a study area extending from 5 deg S to 15 deg S and from 45 deg W to 70 deg W for 2 weeks at the peak of the burning seasons in South America in 1983, 1988, 1989, and 1991 in an effort to measure the areal extent of burning in South American during the past decade and to provide additional insight into the diurnal signature in satellite detection of biomass-burning activities. The expansion of the regions of burning are readily detected in a comparison of these 4 years. From 1983 to 1991 the amount of burning detected by the GOES VAS ABBA during these 2-week periods nearly doubled in the selva and mixed regions and tripled in the cerrado. Diurnal analyses confirmed earlier results indicating that the optimum time to monitor biomass burning is around 1530 UTC.

  7. Trends in South American biomass burning detected with the GOES visible infrared spin scan radiometer atmospheric sounder from 1983 to 1991

    NASA Technical Reports Server (NTRS)

    Prins, Elain M.; Menzel, W. Paul

    1994-01-01

    Previous work demonstrated the ability to manually detect subpixel fire activity in selected areas of the selva and cerrado regions in South America with shortwave and longwave infrared data available from the Geostationary Operational Environmental Satellite (GOES) visible infrared spin scan radiometer atmospheric sounder (VAS). This paper presents the GOES VAS automated biomass-burning algorithm (ABBA) which was developed to determine basin-wide trends in fire activity in South America utilizing the GOES VAS archive. Comparisons between the manual and automated techniques revealed that overall, the ABBA proved to be more consistent in identifying fires and better suited for trend analysis. The automated algorithm was applied daily to a study area extending from 5 deg S to 15 deg S and from 45 deg W to 70 deg W for 2 weeks at the peak of the burning seasons in South America in 1983, 1988, 1989, and 1991 in an effort to measure the areal extent of burning in South American during the past decade and to provide additional insight into the diurnal signature in satellite detection of biomass-burning activities. The expansion of the regions of burning are readily detected in a comparison of these 4 years. From 1983 to 1991 the amount of burning detected by the GOES VAS ABBA during these 2-week periods nearly doubled in the selva and mixed regions and tripled in the cerrado. Diurnal analyses confirmed earlier results indicating that the optimum time to monitor biomass burning is around 1530 UTC.

  8. Community Radiative Transfer Model Applications - A Study of the Retrieval of Trace Gases in the Atmosphere from Cross-track Infrared Sounder (CrIS) Data of a Full-spectral Resolution

    NASA Astrophysics Data System (ADS)

    Liu, Q.; Nalli, N. R.; Tan, C.; Zhang, K.; Iturbide, F.; Wilson, M.; Zhou, L.

    2015-12-01

    The Community Radiative Transfer Model (CRTM) [3] operationally supports satellite radiance assimilation for weather forecasting, sensor data verification, and the retrievals of satellite products. The CRTM has been applied to UV and visible sensors, infrared and microwave sensors. The paper will demonstrate the applications of the CRTM, in particular radiative transfer in the retrieva algorithm. The NOAA Unique CrIS/ATMS Processing System (NUCAPS) operationally generates vertical profiles of atmospheric temperature (AVTP) and moisture (AVMP) from Suomi NPP Cross-track Infrared Sounder (CrIS) and Advanced Technology Microwave Sounder (ATMS) measurements. Current operational CrIS data have reduced spectral resolution: 1.25 cm-1 for a middle wave band and 2.5 cm-1 for a short-wave wave band [1]. The reduced spectral data largely degraded the retrieval accuracy of trace gases. CrIS full spectral data are also available now which have single spectral resolution of 0.625 cm-1 for all of the three bands: long-wave band, middle wave band, and short-wave band. The CrIS full-spectral resolution data is critical to the retrieval of trace gases such as O3, CO [2], CO2, and CH4. In this paper, we use the Community Radiative Transfer Model (CRTM) to study the impact of the CrIS spectral resolution on the retrieval accuracy of trace gases. The newly released CRTM version 2.2.1 can simulates Hamming-apodized CrIS radiance of a full-spectral resolution. We developed a small utility that can convert the CRTM simulated radiance to un-apodized radiance. The latter has better spectral information which can be helpful to the retrievals of the trace gases. The retrievals will be validated using both NWP model data as well as the data collected during AEROSE expeditions [4]. We will also discuss the sensitivity on trace gases between apodized and un-apodized radiances. References[1] Gambacorta, A., et al.(2013), IEEE Lett., 11(9), doi:10.1109/LGRS.2014.230364, 1639-1643. [2] Han, Y., et

  9. Potential Enhancements to the Cross-track Infrared Sounder (CrIS) Ground Test, Data Downlink and Processing for Climate Monitoring including Trace Gas Retrievals

    NASA Astrophysics Data System (ADS)

    Farrow, S. V.; Christensen, T.; Hagan, D. E.

    2009-12-01

    Together with ATMS, the Cross-track Infrared Sounder (CrIS) sensor is a critical payload for National Polar-orbiting Operational Environmental Satellite System (NPOESS) and will first fly on the NPOESS Preparatory Project (NPP) mission, the risk reduction flight for NPOESS. NPOESS is the next generation weather and climate monitoring system for the Department of Defense and National Oceanic and Atmospheric Administration (NOAA), being developed under contract by Northrop Grumman Aerospace Systems. The paper describes potential changes to the program baseline to make CrIS data useful for climate monitoring, including trace gas retrievals such as CO2. Specifically, these are changes to ground calibration tests, changes to the Sensor Data Record (SDR) algorithm, and changes in the spacecraft interface to downlink all of the spectral channels the sensor produces. These changes are presented to promote discussion in the science community of an alternative to achieving some of the key requirements of NASA's OCO mission, which was to monitor CO2, but was destroyed during launch.

  10. Trends in South American biomass burning detected with the GOES visible infrared spin scan radiometer atmospheric sounder from 1983 to 1991

    NASA Astrophysics Data System (ADS)

    Prins, Elaine M.; Menzel, W. Paul

    1994-08-01

    In an effort to get a better understanding of the extent and patterns of burning in South America, geostationary satellite data have been used to monitor active fires. Previous work demonstrated the ability to manually detect subpixel fire activity in selected areas of the selva and cerrado regions in South America with shortwave and longwave infrared data available from the Geostationary Operational Environmental Satellite (GOES) visible infrared spin scan radiometer atmospheric sounder (VAS) This paper presents the GOES VAS automated biomass-burning algorithm (ABBA) which was developed to determine basin-wide trends in fire activity in South America utilizing the GOES VAS archive. Comparisons between the manual and the automated techniques revealed that overall, the ABBA proved to be more consistent in identifying fires and better suited for trend analysis. The automated algorithm was applied daily to a study area extending from 5°S to 15°S and from 45°W to 70°W for 2 weeks at the peak of the burning seasons in South America in 1983, 1988, 1989, and 1991 in an effort to measure the areal extent of burning in South America during the past decade and to provide additional insight into the diurnal signature in satellite detection of biomass-burning activities. The expansion of the regions of burning are readily detected in a comparison of these 4 years. From 1983 to 1991 the amount of burning detected by the GOES VAS ABBA during these 2-week periods nearly doubled in the selva and mixed regions and tripled in the cerrado. Diurnal analyses confirmed earlier results indicating that the optimum time to monitor biomass burning is around 1530 UTC.

  11. Dust aerosol optical depth and altitude retrieved from 7 years of infrared sounders observations (AIRS, IASI) and comparison with other aerosol datasets (MODIS, CALIOP, PARASOL)

    NASA Astrophysics Data System (ADS)

    Peyridieu, Sophie; Chédin, Alain; Tanré, Didier; Capelle, Virginie; Pierangelo, Clémence; Lamquin, Nicolas; Armante, Raymond

    2010-05-01

    Remote sensing of aerosol properties in the visible domain has been widely used for a better characterization of these particles and of their effect on solar radiation. On the opposite, remote sensing of aerosols in the thermal infrared domain still remains marginal. However, knowledge of the effect of aerosols on terrestrial radiation is needed for the evaluation of their total radiative forcing. A key point of infrared remote sensing is its ability to retrieve aerosol optical depth as well as mean dust layer altitude, a variable required for measuring their impact on climate. Moreover, observations are possible night and day, over ocean and over land. Our algorithm is specifically designed to retrieve simultaneously coarse mode dust aerosol 10 µm optical depth (AOD) and mean layer altitude from high spectral resolution infrared sounders observations. Thanks to IASI higher spectral resolution, the selection of finer channels for aerosol detection allows an even more accurate determination of aerosol properties. In this context, results obtained from 7 years (2003-2010) of AIRS/Aqua and more than 2 years (2007-2010) of IASI/Metop observations have been compared to other aerosol sensors. Compared to MODIS/Aqua optical depth product, 10 µm dust optical depth shows a very good agreement, particularly for tropical Atlantic regions downwind of the Sahara during the dust season. Comparisons with PARASOL non-spherical coarse mode product allows explaining small differences observed far from the sources. Time series of the mean aerosol layer altitude are compared to the CALIOP Level-2 products starting June 2006. For regions located downwind of the Sahara, the comparison again shows a good agreement with a mean standard deviation between the two products of about 400 m over the period processed, demonstrating that our algorithm effectively allows retrieving accurate mean dust layer altitude. A 7-year global climatology of the aerosol 10 µm dust optical depth and of the

  12. Assessment of error propagation in ultraspectral sounder data via JPEG2000 compression and turbo coding

    NASA Astrophysics Data System (ADS)

    Olsen, Donald P.; Wang, Charles C.; Sklar, Dean; Huang, Bormin; Ahuja, Alok

    2005-08-01

    Research has been undertaken to examine the robustness of JPEG2000 when corrupted by transmission bit errors in a satellite data stream. Contemporary and future ultraspectral sounders such as Atmospheric Infrared Sounder (AIRS), Cross-track Infrared Sounder (CrIS), Infrared Atmospheric Sounding Interferometer (IASI), Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS), and Hyperspectral Environmental Suite (HES) generate a large volume of three-dimensional data. Hence, compression of ultraspectral sounder data will facilitate data transmission and archiving. There is a need for lossless or near-lossless compression of ultraspectral sounder data to avoid potential retrieval degradation of geophysical parameters due to lossy compression. This paper investigates the simulated error propagation in AIRS ultraspectral sounder data with advanced source and channel coding in a satellite data stream. The source coding is done via JPEG2000, the latest International Organization for Standardization (ISO)/International Telecommunication Union (ITU) standard for image compression. After JPEG2000 compression the AIRS ultraspectral sounder data is then error correction encoded using a rate 0.954 turbo product code (TPC) for channel error control. Experimental results of error patterns on both channel and source decoding are presented. The error propagation effects are curbed via the block-based protection mechanism in the JPEG2000 codec as well as memory characteristics of the forward error correction (FEC) scheme to contain decoding errors within received blocks. A single nonheader bit error in a source code block tends to contaminate the bits until the end of the source code block before the inverse discrete wavelet transform (IDWT), and those erroneous bits propagate even further after the IDWT. Furthermore, a single header bit error may result in the corruption of almost the entire decompressed granule. JPEG2000 appears vulnerable to bit errors in a noisy channel of

  13. Pre-Launch Characterization of the Advanced Technology Microwave Sounder (ATMS) on the Joint Polar Satellite System-1 Satellite (JPSS-1)

    NASA Astrophysics Data System (ADS)

    Kim, Edward; Leslie, Vince; Lyu, Joseph; Smith, Craig; McCormick, Lisa; Anderson, Kent

    2016-04-01

    The Advanced Technology Microwave Sounder (ATMS) is the newest generation of microwave sounder in the international fleet of polar-orbiting weather satellites, replacing the Advanced Microwave Sounding Unit (AMSU) which first entered service in 1998. The first ATMS was launched aboard the Suomi NPP (S-NPP) satellite in late 2011. The second ATMS is manifested on the Joint Polar Satellite System-1 Satellite (JPSS-1). ATMS provides 22 channels of temperature and humidity sounding observations over a frequency range from 23 to 183 GHz. These microwave soundings provide the highest impact data ingested by operational Numerical Weather Prediction (NWP) models, and are the most critical of the polar-orbiting satellite observations, particularly because microwave sensing can penetrate clouds. This paper will present performance characterizations from pre-launch calibration measurements of the JPSS-1 ATMS just completed in December, 2015. The measurements were conducted in a thermal vacuum chamber with blackbody targets simulating cold space, ambient, and a variable Earth scene. They represent the best opportunity for calibration characterization of the instrument since the environment can be carefully controlled. We will present characterizations of the sensitivity (NEDT), accuracy, nonlinearity, noise spectral characteristics, gain stability, repeatability, and inter-channel correlation. An estimate of expected "striping" will be presented, and a discussion of reflector emissivity effects will also be provided. Comparisons will be made with the S-NPP flight unit. Finally, we will describe planned on-orbit characterizations - such as pitch and roll maneuvers - that will further improve both the measurement quality and the understanding of various error contributions.

  14. Verification of mesoscale objective analyses of VAS and rawinsode data using the March 1982 AVE/VAS special network data. [Atmospheric Variability Experiment/Visible-infrared spin-scan radiometer Atmospheric Sounder

    NASA Technical Reports Server (NTRS)

    Doyle, James D.; Warner, Thomas T.

    1988-01-01

    Various combinations of VAS (Visible and Infrared Spin Scan Radiometer Atmospheric Sounder) data, conventional rawinsonde data, and gridded data from the National Weather Service's (NWS) global analysis, were used in successive-correction and variational objective-analysis procedures. Analyses are produced for 0000 GMT 7 March 1982, when the VAS sounding distribution was not greatly limited by the existence of cloud cover. The successive-correction (SC) Procedure was used with VAS data alone, rawinsonde data alone, and both VAS and rawinsonde data. Variational techniques were applied in three ways. Each of these techniques was discussed.

  15. Investigations of the spatial and temporal resolution of retrievals of atmospheric carbon dioxide from the Atmospheric InfraRed Sounder (AIRS).

    NASA Astrophysics Data System (ADS)

    Maddy, Eric Sean

    As the dominant anthropogenic greenhouse gas, carbon dioxide (CO 2), represents an important component of climate change (IPCC 2007). Owing to burning of fossil fuels and deforestation, atmospheric CO2 concentrations have increased over 110 parts-per-million by volume (ppmv) from 270 ppmv to 380 ppmv since the dawn of the Industrial Revolution. Understanding of the spatial distribution of the sources and sinks of atmospheric CO 2 is necessary not only to predict the future atmospheric abundances but also their effect on future climate. Although designed for deriving high precision temperature and moisture profiles, NASA's Atmospheric InfraRed Sounder (AIRS) IR measurements include broad vertical sensitivity (between 3 and 10 km) to atmospheric CO2 variations. Coupled with AIRS' broad swath pattern and a technique referred to as "cloud-clearing" these measurements enable daily global spatial coverage. Nevertheless, AIRS' ability to determine the spatial distribution of carbon dioxide (CO2) is strongly dependent on its ability to separate the radiative effects of CO2 from temperature not to mention measurement uncertainties due to clouds and other geophysical variables such as moisture and ozone. This research presents a thorough investigation into the temporal and spatial scales that the AIRS can separate temperature (and other geophysical variables) from CO2. Through our detailed understanding of the way satellites view the Earth's atmosphere, we have developed an algorithm capable of retrieving global middle-to-upper tropospheric CO2 concentrations in all-weather conditions with total uncertainties ranging between 1 to 2 ppmv. From a radiative perspective, roughly equivalent to 30 mK to 60 mK, 1 to 2 ppmv, is an awesome feat for a space-borne sensor. Necessary for the remarkable performance of this algorithm, we developed methodologies capable of separating the radiative effect of CO2 variability from temperature, improved the fast rapid transmittance algorithm

  16. [Analysis of the Influence of Temperature on the Retrieval of Ozone Vertical Profiles Using the Thermal Infrared CrIS Sounder].

    PubMed

    Ma, Peng-fei; Chen, Liang-fu; Zou, Ming-min; Zhang, Ying; Tao, Ming-hui; Wang, Zi-leng; Su, Lin

    2015-12-01

    Ozone is a particularly critical trace gas in the Earth's atmosphere, since this molecule plays a key role in the photochemical reactions and climate change. The TIR measurements can capture the variability of ozone and are weakly sensitive to the lowermost tropospheric ozone content but can provide accurate measurements of tropospheric ozone and higher vertical resolution ozone profiles, with the additional advantage that measurements are also possible during the night. Because of the influence of atmospheric temperature, the ozone profile retrieval accuracy is severely limited. This paper analyze and discuss the ozone absorption spectra and weighting function sensitivity of temperature and its influence on ozone profile retrieval in detail. First, we simulate the change of atmospheric transmittance and radiance by importing 1 K temperature uncertainty, using line-by-line radiative transfer mode under 6 different atmosphere modes. The results show that the transmittance change ratio for 1 K temperature variation was consistent with the transmittance change ratio for 5%-6% change of ozone density variation in all layers of the profile. Then, we calculate the change of weighting function by a temperature error of 1 K, using the Community Radiative Transfer Model (CRTM) for the Cross-track Infrared Sounder (CrIS) on the Suomi National Polar-orbiting Partnership (Suomi NPP) satellite and calculate the corresponding change of retrieval result. The results demonstrate that CrIS is sensitive to Ozone in the middle to upper stratosphere, with the peak vertical sensitivity between 10-100 hPa and the change of weighting function for 1 K temperature variation was consistent with 6% change in the ozone profile. Finally, the paper retrieves ozone profiles from the CrIS radiances with a nonlinear Newton iteration method and use the eigenvector regression algorithm to construct the a priori state. In order to resolve the problem of temperature uncertainty and get high accuracy

  17. Phenomenological Modeling of Infrared Sources: Recent Advances

    NASA Technical Reports Server (NTRS)

    Leung, Chun Ming; Kwok, Sun (Editor)

    1993-01-01

    Infrared observations from planned space facilities (e.g., ISO (Infrared Space Observatory), SIRTF (Space Infrared Telescope Facility)) will yield a large and uniform sample of high-quality data from both photometric and spectroscopic measurements. To maximize the scientific returns of these space missions, complementary theoretical studies must be undertaken to interpret these observations. A crucial step in such studies is the construction of phenomenological models in which we parameterize the observed radiation characteristics in terms of the physical source properties. In the last decade, models with increasing degree of physical realism (in terms of grain properties, physical processes, and source geometry) have been constructed for infrared sources. Here we review current capabilities available in the phenomenological modeling of infrared sources and discuss briefly directions for future research in this area.

  18. Infrared detectors: Advances, challenges and new technologies

    NASA Astrophysics Data System (ADS)

    Karim, Amir; Andersson, Jan Y.

    2013-12-01

    Human knowledge of infrared (IR) radiation is about 200 years old. However it was in the late 20th century that we developed a wide range of smart technologies for detection and started to take advantage for our benefit. Today IR detector technology is in its 3rd generation and comes with challenging demands. Based on the propagation of IR radiation through free space it is divided into different transmission windows. The most interesting for thermal imaging are the mid-wave IR (MWIR) and the long-wave IR (LW IR). Infrared detectors for thermal imaging have a number of applications in industry, security, search & rescue, surveillance, medicine, research, meteorology, climatology and astronomy. Currently high-performance IR imaging technology is mainly based on epitaxially grown structures of the small-bandgap bulk alloy mercury-cadmium-telluride (MCT), indium antimonide (InSb) and GaAs based quantum-well infrared photodetectors (QWIPs), depending on the application and wavelength range. However, they operate at low temperatures requiring costly and bulky cryogenic systems. In addition there is always a need for better performance, which generates possibilities for developing new technologies. Some emerging technologies are quantum dot infrared photodetectors (QDIPs), type-II strained layer super-lattice, and QDIPs with type-II band alignment. In this report a brief review of the current and new technologies for high performance IR detectors, will be presented.

  19. Commercialization of Australian advanced infrared technology

    NASA Astrophysics Data System (ADS)

    Redpath, John; Brown, Allen; Woods, William F.

    1995-09-01

    For several decades, the main thrust in infrared technology developments in Australia has been in two main sensor technologies: uncooled silicon chip printed bolometric sensors pioneered by DSTO's Kevin Liddiard, and precision engineered high quality Cadmium Mercury Telluride developed at DSTO under the guidance of Dr. Richard Hartley. In late 1993 a low cost infrared imaging device was developed at DSTO as a sensor for guided missiles. The combination of these three innovations made up a unique package that enabled Australian industry to break through the barriers of commercializing infrared technology. The privately owned company, R.J. Optronics Pty Ltd undertook the process of re-engineering a selection of these DSTO developments to be applicable to a wide range of infrared products. The first project was a novel infrared imager based on a Palmer scan (translated circle) mechanism. This device applies a spinning wedge and a single detector, it uses a video processor to convert the image into a standard rectangular format. Originally developed as an imaging seeker for a stand-off weapon, it is producing such high quality images at such a low cost that it is now also being adapted for a wide variety of other military and commercial applications. A technique for electronically stabilizing it has been developed which uses the inertial signals from co-mounted sensors to compensate for platform motions. This enables it to meet the requirements of aircraft, marine vessels and masthead sight applications without the use of gimbals. After tests on a three-axis motion table, several system configurations have now been successfully operated on a number of lightweight platforms, including a Cessna 172 and the Australian made Seabird Seeker aircraft.

  20. Advanced components for spaceborne infrared astronomy

    NASA Technical Reports Server (NTRS)

    Davidson, A. W.

    1984-01-01

    The need for improved cryogenic components to be used in future spaceborne infrared astronomy missions was identified. Improved low noise cryogenic amplifiers operated with infrared detectors, and better cryogenic actuators and motors with extremely low power dissipation are needed. The feasibility of achieving technological breakthroughs in both of these areas was studied. An improved silicon junction field effect transistor (JFET) could be developed if: (1) high purity silicon; (2) optimum dopants; and (3) very high doping levels are used. The feasibility of a simple stepper motor equipped with superconducting coils is demonstrated by construction of such a device based on a standard commercial motor. It is found that useful levels of torque at immeasurably low power levels were achieved. It is concluded that with modest development and optimization efforts, significant performance gains is possible for both cryogenic preamplifiers and superconducting motors and actuators.

  1. High power infrared QCLs: advances and applications

    NASA Astrophysics Data System (ADS)

    Patel, C. Kumar N.

    2012-01-01

    QCLs are becoming the most important sources of laser radiation in the midwave infrared (MWIR) and longwave infrared (LWIR) regions because of their size, weight, power and reliability advantages over other laser sources in the same spectral regions. The availability of multiwatt RT operation QCLs from 3.5 μm to >16 μm with wall plug efficiency of 10% or higher is hastening the replacement of traditional sources such as OPOs and OPSELs in many applications. QCLs can replace CO2 lasers in many low power applications. Of the two leading groups in improvements in QCL performance, Pranalytica is the commercial organization that has been supplying the highest performance QCLs to various customers for over four year. Using a new QCL design concept, the non-resonant extraction [1], we have achieved CW/RT power of >4.7 W and WPE of >17% in the 4.4 μm - 5.0 μm region. In the LWIR region, we have recently demonstrated QCLs with CW/RT power exceeding 1 W with WPE of nearly 10 % in the 7.0 μm-10.0 μm region. In general, the high power CW/RT operation requires use of TECs to maintain QCLs at appropriate operating temperatures. However, TECs consume additional electrical power, which is not desirable for handheld, battery-operated applications, where system power conversion efficiency is more important than just the QCL chip level power conversion efficiency. In high duty cycle pulsed (quasi-CW) mode, the QCLs can be operated without TECs and have produced nearly the same average power as that available in CW mode with TECs. Multiwatt average powers are obtained even in ambient T>70°C, with true efficiency of electrical power-to-optical power conversion being above 10%. Because of the availability of QCLs with multiwatt power outputs and wavelength range covering a spectral region from ~3.5 μm to >16 μm, the QCLs have found instantaneous acceptance for insertion into multitude of defense and homeland security applications, including laser sources for infrared

  2. Advances in Detector Technology for Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    McCreight, Craig; Cheng, P. L. (Technical Monitor)

    1995-01-01

    Progress in semiconductor materials and processing technology has allowed the development of infrared detector arrays with unprecedented sensitivity, for imaging and spectroscopic applications in astronomy. The earlier discrete-detector approach has been replaced by large-element (up to 1024 x 1024 pixel), multiplexed devices. Progress has been made against a number of key limiting factors, such as quantum efficiency, noise, spectral response, linearity, and dark current. Future developments will focus on the need for even larger arrays, which operate at higher temperatures.

  3. Advanced MEMS-based infrared imager

    NASA Astrophysics Data System (ADS)

    Chen, Ming

    2003-04-01

    Infrared radiation imager is of important for a wide range of applications. IR infrared imagers have not been widely available due to cost and complexity issues. A major cost of IR imager is associated with the requirements of cooling and pixel-level integration with electronic amplifier and read-out circuitry that are often incompatible with the detector materials. Recent research activities have lead to a new class of IR imager based on thermally isolated MEMS (micro-electromechanical systems) arrays whose bending can be directly detected by optical means. This approach eliminates the need for cooling and complex electronic multiplexers, holding the potential to drastically reduce IR imager cost. However, MEMS based IR imaging devices demonstrated to date are less sensitive than the commercially available ones. We have established a comprehensive finite element model (FEM) using Ansys tool. An accurate computer model for the proposed MEME IR detector is critical for the device development and fabrication. The model greatly enhanced our capability to cost effectively optimize the design from concept to fabrication layout. Our model predicts the deformation of this pixel structure under a surface stress for both thermal and photo-induced effects under various conditions. This simulation model provided a design base for new generation of optical MEMS IR sensors that has higher sensitivity and the potential of incorporating passive thermal amplification. Our simple MEMS design incorporates optical read-out, which eliminates the drawback of electronic means that inevitably introduce additional signal loss due to thermal contact made to the detector element. When packaged under vacuum environment, significant sensitivity improvement is anticipated. The deflection of a cantilever as a function of a rise in its temperature is determined by the classical thermomechanical governing equation for a bimaterial cantilever beam. Our finite element model is established using

  4. Variational assimilation of VAS data into a mesoscale model Assimilation method and sensitivity experiments. [Visible Infrared Spin-Scan Radiometer Atmospheric Sounder

    NASA Technical Reports Server (NTRS)

    Cram, J. M.; Kaplan, M. L.

    1985-01-01

    The assimilation of temperature and moisture gradient information from the Visible IR Spin-Scan Radiometer's Atmospheric Sounder (VAS) into a mesoscale model is presently undertaken by means of a variational method and followed by tests of the sensitivity of both diabatic and adiabatic versions of the model to VAS data assimilations for the case of July 20-21, 1981. The synoptic scale effects of the assimilation of VAS data are noted to be negligible; the greatest impact was instead on mesoscale forecasts of convective instability patterns. The additional assimilation of relative humidity gradients did not significantly change the patterns of the forecast instabilities. The greatest improvements from assimilation resulted from the resolution of the strong mesoscale temperature gradients by the asynoptic VAS data.

  5. Hurricane Debby - An illustration of the complementary nature of VAS soundings and cloud and water vapor motion winds. [Visible Infrared Spin Scan Radiometer Atmospheric Sounder

    NASA Technical Reports Server (NTRS)

    Le Marshall, J. F.; Smith, W. L.; Callan, G. M.

    1985-01-01

    The utility of VISSR Atmospheric Sounder (VAS) temperature and moisture soundings and cloud and water vapor motion winds in defining a storm and its surroundings at subsynoptic scales has been examined using a numerical analysis and prognosis system. It is shown that the VAS temperature and moisture data, which specify temperature and moisture well in cloud-free areas, are complemented by cloud and water vapor motion data generated in the cloudy areas. The cloud and water vapor 'winds' provide thermal gradient information for interpolating the soundings across cloudy regions. The loss of analysis integrity due to the reduction of VAS sounding density in the cloudy regions associated with synoptic activity is ameliorated by using cloud and water vapor motion winds. The improvement in numerical forecasts resulting from the addition of these data to the numerical analysis is recorded.

  6. Low-level water vapor fields from the VISSR atmospheric sounder (VAS) split window channels at 11 and 12 microns. [visible infrared spin scan radiometer

    NASA Technical Reports Server (NTRS)

    Chesters, D.; Uccellini, L.; Robinson, W.

    1982-01-01

    A series of high-resolution water vapor fields were derived from the 11 and 12 micron channels of the VISSR Atmospheric Sounder (VAS) on GOES-5. The low-level tropospheric moisture content was separated from the surface and atmospheric radiances by using the differential adsorption across the 'split window' along with the average air temperature from imbedded radiosondes. Fields of precipitable water are presented in a time sequence of five false color images taken over the United States at 3-hour intervals. Vivid subsynoptic and mesoscale patterns evolve at 15 km horizontal resolution over the 12-hour observing period. Convective cloud formations develop from several areas of enhanced low-level water vapor, especially where the vertical water vapor gradient relatively strong. Independent verification at radiosonde sites indicates fairly good absolute accuracy, and the spatial and temporal continuity of the water vapor features indicates very good relative accuracy. Residual errors are dominated by radiometer noise and unresolved clouds.

  7. Full Spectral Resolution Data Generation from the Cross-track Infrared Sounder on S-NPP at NOAA and its Use to Investigate Uncertainty in Methane Absorption Band Near 7.66 µm

    NASA Astrophysics Data System (ADS)

    Xiong, X.; Peischl, J.; Ryerson, T. B.; Sasakawa, M.; Han, Y.; Chen, Y.; Wang, L.; Tremblay, D.; Jin, X.; Zhou, L.; Liu, Q.; Weng, F.; Machida, T.

    2015-12-01

    The Cross-track Infrared Sounder (CrIS) on Suomi National Polar-orbiting Partnership Satellite (S-NPP) is a Fourier transform spectrometer for atmospheric sounding. CrIS on S-NPP started to provide measurements in 1305 channels in its normal mode since its launch on November 2011 to December 4, 2014, and after that it was switched to the full spectral resolution (FSR) mode, in which the spectral resolutions are 0.625 cm-1 in all the MWIR (1210-1750 cm-1), SWIR (2155-2550 cm-1) and the LWIR bands (650-1095 cm-1) with a total of 2211 channels. While the NOAA operational Sensor Data Record (SDR) processing (IDPS) continues to produce the normal resolution SDRs by truncating full spectrum RDR data, NOAA STAR started to process the FSR SDRs data since December 4, 2014 to present, and the data is being delivered through NOAA STAR website (ftp://ftp2.star.nesdis.noaa.gov/smcd/xxiong/). The current FSR processing algorithm was developed on basis of the CrIS Algorithm Development Library (ADL), and is the baseline of J-1 CrIS SDR algorithm. One major benefit to use the FSR data is to improve the retrieval of atmospheric trace gases, such as CH4, CO and CO2 . From our previous studies to retrieve CH4 using Atmospheric Infrared Sounder (AIRS) and Infrared Atmospheric Sounding Interferometer (IASI), it was found the uncertainty in the CH4 absorption band is up to 1-2%. So, in this study we computed the radiance using the community radiative transfer model (CRTM) and line-by-line model, with the inputs of "truth" of atmospheric temperature and moisture profiles from ECMWF model (and/or RAOB sounding) and CH4 profiles from in-situ aircraft measurements, then convoluted with the response function of CrIS. The difference between the simultaed radiance and the collocated CrIS FSR data is used to exam the uncertainty in these strong absorption channels.Through the improved fitting to the transmittance in these channels, it is expected to improve the retrieval of CH4 using CrIS on S

  8. Sensor System Performance Evaluation and Benefits from the NPOESS Airborne Sounder Testbed-Interferometer (NAST-I)

    NASA Technical Reports Server (NTRS)

    Larar, A.; Zhou, D.; Smith, W.

    2009-01-01

    Advanced satellite sensors are tasked with improving global-scale measurements of the Earth's atmosphere, clouds, and surface to enable enhancements in weather prediction, climate monitoring, and environmental change detection. Validation of the entire measurement system is crucial to achieving this goal and thus maximizing research and operational utility of resultant data. Field campaigns employing satellite under-flights with well-calibrated FTS sensors aboard high-altitude aircraft are an essential part of this validation task. The National Polar-orbiting Operational Environmental Satellite System (NPOESS) Airborne Sounder Testbed-Interferometer (NAST-I) has been a fundamental contributor in this area by providing coincident high spectral/spatial resolution observations of infrared spectral radiances along with independently-retrieved geophysical products for comparison with like products from satellite sensors being validated. This paper focuses on some of the challenges associated with validating advanced atmospheric sounders and the benefits obtained from employing airborne interferometers such as the NAST-I. Select results from underflights of the Aqua Atmospheric InfraRed Sounder (AIRS) and the Infrared Atmospheric Sounding Interferometer (IASI) obtained during recent field campaigns will be presented.

  9. Space View Issues for Hyperspectral Sounders

    NASA Technical Reports Server (NTRS)

    Manning, Evan M.; Aumann, Hartmut H.; Broberg, Steven E.

    2013-01-01

    The expectation for climate quality measurements from hyperspectral sounders is absolute calibration accuracy at the 100 mK level and stability at the < 40 mK/decade level. The Atmospheric InfraRed Sounder (AIRS)1, Cross-track Infrared Sounder (CrIS), and Infrared Atmospheric Sounding Interferometer (IASI) hyperspectral sounders currently in orbit have been shown to agree well over most of their brightness temperature range. Some larger discrepancies are seen, however, at the coldest scene temperatures, such as those seen in Antarctic winter and deep convective clouds. A key limiting factor for the calibrated scene radiance accuracy for cold scenes is how well the effective radiance of the cold space view pertains to the scene views. The space view signal is composed of external sources and instrument thermal emission at about 270 K from the scan mirror, external baffles, etc. Any difference in any of these contributions between space views and scene views will impact the absolute calibration accuracy, and the impact can be critical for cold scenes. Any change over time in these will show up as an apparent trend in calibrated radiances. We use AIRS data to investigate the validity of the space view assumption in view of the 100 mK accuracy and 40 mK/decade trend expectations. We show that the space views used for the cold calibration point for AIRS v5 Level-1B products meet these standards except under special circumstances and that AIRS v6 Level-1B products will meet them under all circumstances. This analysis also shows the value of having multiple distinct space views to give operational redundancy and analytic data, and that reaching climate quality requires continuing monitoring of aging instruments and adjustment of calibration.

  10. Advances in Mid-Infrared Spectroscopy for Chemical Analysis.

    PubMed

    Haas, Julian; Mizaikoff, Boris

    2016-06-12

    Infrared spectroscopy in the 3-20 μm spectral window has evolved from a routine laboratory technique into a state-of-the-art spectroscopy and sensing tool by benefitting from recent progress in increasingly sophisticated spectra acquisition techniques and advanced materials for generating, guiding, and detecting mid-infrared (MIR) radiation. Today, MIR spectroscopy provides molecular information with trace to ultratrace sensitivity, fast data acquisition rates, and high spectral resolution catering to demanding applications in bioanalytics, for example, and to improved routine analysis. In addition to advances in miniaturized device technology without sacrificing analytical performance, selected innovative applications for MIR spectroscopy ranging from process analysis to biotechnology and medical diagnostics are highlighted in this review. PMID:27070183

  11. Advances in Mid-Infrared Spectroscopy for Chemical Analysis

    NASA Astrophysics Data System (ADS)

    Haas, Julian; Mizaikoff, Boris

    2016-06-01

    Infrared spectroscopy in the 3–20 μm spectral window has evolved from a routine laboratory technique into a state-of-the-art spectroscopy and sensing tool by benefitting from recent progress in increasingly sophisticated spectra acquisition techniques and advanced materials for generating, guiding, and detecting mid-infrared (MIR) radiation. Today, MIR spectroscopy provides molecular information with trace to ultratrace sensitivity, fast data acquisition rates, and high spectral resolution catering to demanding applications in bioanalytics, for example, and to improved routine analysis. In addition to advances in miniaturized device technology without sacrificing analytical performance, selected innovative applications for MIR spectroscopy ranging from process analysis to biotechnology and medical diagnostics are highlighted in this review.

  12. Apollo lunar sounder experiment

    USGS Publications Warehouse

    Phillips, R.J.; Adams, G.F.; Brown, W.E., Jr.; Eggleton, R.E.; Jackson, P.; Jordan, R.; Linlor, W.I.; Peeples, W.J.; Porcello, L.J.; Ryu, J.; Schaber, G.; Sill, W.R.; Thompson, T.W.; Ward, S.H.; Zelenka, J.S.

    1973-01-01

    The scientific objectives of the Apollo lunar sounder experiment (ALSE) are (1) mapping of subsurface electrical conductivity structure to infer geological structure, (2) surface profiling to determine lunar topographic variations, (3) surface imaging, and (4) measuring galactic electromagnetic radiation in the lunar environment. The ALSE was a three-frequency, wide-band, coherent radar system operated from lunar orbit during the Apollo 17 mission.

  13. Advanced indium antimonide monolithic charge coupled infrared imaging arrays

    NASA Technical Reports Server (NTRS)

    Koch, T. L.; Merilainen, C. A.; Thom, R. D.

    1981-01-01

    The continued process development of SiO2 insulators for use in advanced InSb monolithic charge coupled infrared imaging arrays is described. Specific investigations into the use of plasma enhanced chemical vapor deposited (PECVD) SiO2 as a gate insulator for InSb charge coupled devices is discussed, as are investigations of other chemical vapor deposited SiO2 materials.

  14. PREMIER's imaging IR limb sounder

    NASA Astrophysics Data System (ADS)

    Kraft, Stefan; Caron, Jerome; Bézy, Jean-Loup; Meynart, Roland; Langen, Jörg; Carnicero Dominguez, Bernardo; Bensi, Paolo; Silvestrin, Pierluigi

    2011-11-01

    The Imaging IR Limb Sounder (IRLS) is one of the two instruments planned on board of the candidate Earth Explorer Core Mission PREMIER. PREMIER stands for PRocess Exploration through Measurements of Infrared and Millimetrewave Emitted Radiation and is presently under feasibility study by ESA. Emerging from recent enhanced detector and processing technologies IRLS shall, next to a millimetre-wave limb sounder, explore the benefits of three-dimensional limb sounding with embedded cloud imaging capability. Such 3d imaging technology is expected to open a new era of limb sounding that will allow detailed studies of the link between atmospheric composition and climate, since it will map simultaneously fields of temperature and many trace gases in the mid/upper troposphere and stratosphere across a large vertical and horizontal field of view and with relatively high vertical and horizontal resolution. PREMIER shall fly in tandem formation looking backwards to METOP's swath and thereby explore the benefit of 3-dimensional information for meteorological/environmental analyses and climate forcing investigations. As currently planned and if implemented, IRLS will cover a total horizontal field of about 360 km and observe the limb at altitudes between 4 and 52 km. The vertical spatial sampling distance (SSD) will be well below 1 km. It will be run in two different exclusive modes to address scientific questions about atmospheric dynamics and chemistry at spectral samplings of ~1.2 cm-1 and ~0.2 cm-1, respectively. In such configuration IRLS will be composed of an imaging array with about 1800 macro pixels or sub-samples, thereby allowing cloud imaging and rejection at sufficient spatial resolution. We will present an overview of the instrument requirements as derived from the scientific requirements, the present status of the mission, and we will give an overview of the currently identified technology needs and instrument predevelopments.

  15. Impact of the Assimilation of Hyperspectral Infrared Retrieved Profiles on Advanced Weather and Research Model Simulations of a Non-Convective Wind Event

    NASA Technical Reports Server (NTRS)

    Berndt, E. B.; Zavodsky, B. T.; Folmer, M. J.; Jedlovec, G. J.

    2014-01-01

    Non-convective wind events commonly occur with passing extratropical cyclones and have significant societal and economic impacts. Since non-convective winds often occur in the absence of specific phenomena such as a thunderstorm, tornado, or hurricane, the public are less likely to heed high wind warnings and continue daily activities. Thus non-convective wind events result in as many fatalities as straight line thunderstorm winds. One physical explanation for non-convective winds includes tropopause folds. Improved model representation of stratospheric air and associated non-convective wind events could improve non-convective wind forecasts and associated warnings. In recent years, satellite data assimilation has improved skill in forecasting extratropical cyclones; however errors still remain in forecasting the position and strength of extratropical cyclones as well as the tropopause folding process. The goal of this study is to determine the impact of assimilating satellite temperature and moisture retrieved profiles from hyperspectral infrared (IR) sounders (i.e. Atmospheric Infrared Sounder (AIRS), Cross-track Infrared and Microwave Sounding Suite (CrIMSS), and Infrared Atmospheric Sounding Interferometer (IASI)) on the model representation of the tropopause fold and an associated high wind event that impacted the Northeast United States on 09 February 2013. Model simulations using the Advanced Research Weather Research and Forecasting Model (ARW) were conducted on a 12-km grid with cycled data assimilation mimicking the operational North American Model (NAM). The results from the satellite assimilation run are compared to a control experiment (without hyperspectral IR retrievals), 32-km North American Regional Reanalysis (NARR) interpolated to a 12-km grid, and 13-km Rapid Refresh analyses.

  16. Impact of the Assimilation of Hyperspectral Infrared Retrieved Profiles on Advanced Weather and Research Model Simulations of a Non-Convective Wind Event

    NASA Technical Reports Server (NTRS)

    Berndt, E. B.; Zavodsky, B. T.; Jedlovec, G. J.

    2014-01-01

    Non-convective wind events commonly occur with passing extratropical cyclones and have significant societal and economic impacts. Since non-convective winds often occur in the absence of specific phenomena such as a thunderstorm, tornado, or hurricane, the public are less likely to heed high wind warnings and continue daily activities. Thus non-convective wind events result in as many fatalities as straight line thunderstorm winds. One physical explanation for non-convective winds includes tropopause folds. Improved model representation of stratospheric air and associated non-convective wind events could improve non-convective wind forecasts and associated warnings. In recent years, satellite data assimilation has improved skill in forecasting extratropical cyclones; however errors still remain in forecasting the position and strength of extratropical cyclones as well as the tropopause folding process. The goal of this study is to determine the impact of assimilating satellite temperature and moisture retrieved profiles from hyperspectral infrared (IR) sounders (i.e. Atmospheric Infrared Sounder (AIRS), Cross-track Infrared and Microwave Sounding Suite (CrIMSS), and Infrared Atmospheric Sounding Interferometer (IASI)) on the model representation of the tropopause fold and an associated high wind event that impacted the Northeast United States on 09 February 2013. Model simulations using the Advanced Research Weather Research and Forecasting Model (ARW) were conducted on a 12-km grid with cycled data assimilation mimicking the operational North American Model (NAM). The results from the satellite assimilation run are compared to a control experiment (without hyperspectral IR retrievals), Modern Era-Retrospective Analysis for Research and Applications (MERRA) reanalysis, and Rapid Refresh analyses.

  17. Impact of the Assimilation of Hyperspectral Infrared Profiles on Advanced Weather and Research Model Simulations of a Non-Convective Wind Event

    NASA Technical Reports Server (NTRS)

    Berndt, Emily B.; Zavodsky, Bradley T; Jedlovec, Gary J.; Elmer, Nicholas J.

    2013-01-01

    Non-convective wind events commonly occur with passing extratropical cyclones and have significant societal and economic impacts. Since non-convective winds often occur in the absence of specific phenomena such as a thunderstorm, tornado, or hurricane, the public are less likely to heed high wind warnings and continue daily activities. Thus non-convective wind events result in as many fatalities as straight line thunderstorm winds. One physical explanation for non-convective winds includes tropopause folds. Improved model representation of stratospheric air and associated non-convective wind events could improve non-convective wind forecasts and associated warnings. In recent years, satellite data assimilation has improved skill in forecasting extratropical cyclones; however errors still remain in forecasting the position and strength of extratropical cyclones as well as the tropopause folding process. The goal of this study is to determine the impact of assimilating satellite temperature and moisture retrieved profiles from hyperspectral infrared (IR) sounders (i.e. Atmospheric Infrared Sounder (AIRS), Cross-track Infrared and Microwave Sounding Suite (CrIMSS), and Infrared Atmospheric Sounding Interferometer (IASI)) on the model representation of the tropopause fold and an associated high wind event that impacted the Northeast United States on 09 February 2013. Model simulations using the Advanced Research Weather Research and Forecasting Model (ARW) were conducted on a 12-km grid with cycled data assimilation mimicking the operational North American Model (NAM). The results from the satellite assimilation run are compared to a control experiment (without hyperspectral IR retrievals), North American Regional Reanalysis (NARR) reanalysis, and Rapid Refresh analyses.

  18. The Impact of the Assimilation of Hyperspectral Infrared Retrieved Profiles on Advanced Weather and Research Model Simulations of a Non-Convective Wind Event

    NASA Technical Reports Server (NTRS)

    Berndt, Emily; Zavodsky, Bradley; Jedlovec, Gary; Elmer, Nicholas

    2013-01-01

    Non-convective wind events commonly occur with passing extratropical cyclones and have significant societal and economic impacts. Since non-convective winds often occur in the absence of specific phenomena such as a thunderstorm, tornado, or hurricane, the public are less likely to heed high wind warnings and continue daily activities. Thus non-convective wind events result in as many fatalities as straight line thunderstorm winds. One physical explanation for non-convective winds includes tropopause folds. Improved model representation of stratospheric air and associated non-convective wind events could improve non-convective wind forecasts and associated warnings. In recent years, satellite data assimilation has improved skill in forecasting extratropical cyclones; however errors still remain in forecasting the position and strength of extratropical cyclones as well as the tropopause folding process. The goal of this study is to determine the impact of assimilating satellite temperature and moisture retrieved profiles from hyperspectral infrared (IR) sounders (i.e. Atmospheric Infrared Sounder (AIRS), Cross-track Infrared and Microwave Sounding Suite (CrIMSS), and Infrared Atmospheric Sounding Interferometer (IASI)) on the model representation of the tropopause fold and an associated high wind event that impacted the Northeast United States on 09 February 2013. Model simulations using the Advanced Research Weather Research and Forecasting Model (ARW) were conducted on a 12-km grid with cycled data assimilation mimicking the operational North American Model (NAM). The results from the satellite assimilation run are compared to a control experiment (without hyperspectral IR retrievals), Modern Era-Retrospective Analysis for Research and Applications (MERRA) reanalysis, and Rapid Refresh analyses.

  19. Validation of the GOSAT Thermal Infrared (TIR) Band using the University of Wisconsin airborne Scanning High-resolution Interferometer Sounder (S-HIS) and ground-based Atmospheric Emitted Radiance Interferometer (AERI) at Railroad Valley, Nevada

    NASA Astrophysics Data System (ADS)

    Knuteson, R.; kuze, A.; Shiomi, K.; Taylor, J. K.; Garms, E.; Roman, J.; Revercomb, H. E.; Tobin, D. C.; Gero, P.; Best, F. A.

    2011-12-01

    We provide a quantitative assessment of the calibration accuracy of the thermal infrared measurements from the Greenhouse Gases Observing SATellite (GOSAT), which was launched on January 23, 2009. Results will be presented comparing the observed emission spectra from the TANSO-FTS sensor onboard GOSAT to coincident observations from high altitude aircraft and ground-based spectrometers during the June 2011 Railroad Valley Vicarious Calibration and Validation campaign. The 2011 campaign was the third in a series of joint Japan/U.S. field measurements to assess the calibration of the GOSAT sensors and validate derived products of carbon dioxide and methane. As part of the 2011 campaign, the University of Wisconsin Scanning High-resolution Interferometer Sounder (S-HIS) successfully overflew Railroad Valley, Nevada onboard the high-altitude NASA ER-2 along with the Airborne Visible/InfraRed Imaging Spectrometer (AVIRIS) and the MODIS/ASTER Airborne Simulator (MASTER). The ER-2 overpass of Railroad Valley on June 20, 2011 was timed to coincide with an overpass of the GOSAT satellite at 21:19 UTC. A joint JPL/UWisc team provided coincident upper air observations of pressure, temperature, and water vapor using Vaisala radiosondes released from the center of the Railroad Valley dry lakebed (playa) for six GOSAT daytime overpasses and three nighttime overpasses between 19-26 June 2011. The University of Wisconsin also made ground-based measurements from the center of the playa during each GOSAT overpass with an Atmospheric Emitted Radiance Interferometer. The AERI was operated from a research vehicle with the capability to measure the upwelling surface radiance at three view angles and the downwelling atmospheric emission at two angles. The ground-based AERI provided accurate surface emissivity and surface temperature for use in forward model calculations of the satellite observed infrared emission between 6 and 17 microns.

  20. New generation topside sounder

    NASA Astrophysics Data System (ADS)

    Ganguly, Suman; Wickwar, Vincent; Goodman, John M.

    2001-09-01

    Having ionospheric electron density distributions as a function of height, latitude, longitude, and time under different conditions is essential for scientific, technical, and operational purposes. A satellite-based, swept-frequency, HF sounder can obtain electron density profiles on a global scale. We are developing a new generation HF sounder that employs recent developments in technology, electronics, and processing capabilities. It will provide global-scale electron density distributions, contours of fixed densities, maps of ƒoF2, hmax, etc. It will allow us to map irregularities, estimate anomalous propagation and conditions for ducting, determine angles of arrival, etc. It will also be able to perform various plasma diagnostics and, because of new flexibility, will be programmable from the ground to perform a variety of experiments in space. Need for such a system exists through the Department of Defense and several civilian agencies. Some of the novel features of the system include software-based design, direction of arrival estimation and synthetic aperture radar-type operation, onboard processing, and reconfigurable and flexible architecture with multimission capabilities.

  1. Flight evaluation of advanced third-generation midwave infrared sensor

    NASA Astrophysics Data System (ADS)

    Shen, Chyau N.; Donn, Matthew

    1998-08-01

    In FY-97 the Counter Drug Optical Upgrade (CDOU) demonstration program was initiated by the Program Executive Office for Counter Drug to increase the detection and classification ranges of P-3 counter drug aircraft by using advanced staring infrared sensors. The demonstration hardware is a `pin-for-pin' replacement of the AAS-36 Infrared Detection Set (IRDS) located under the nose radome of a P-3 aircraft. The hardware consists of a 3rd generation mid-wave infrared (MWIR) sensor integrated into a three axis-stabilized turret. The sensor, when installed on the P- 3, has a hemispheric field of regard and analysis has shown it will be capable of detecting and classifying Suspected Drug Trafficking Aircraft and Vessels at ranges several factors over the current IRDS. This paper will discuss the CDOU system and it's lab, ground, and flight evaluation results. Test targets included target templates, range targets, dedicated target boats, and targets of opportunity at the Naval Air Warfare Center Aircraft Division and at operational test sites. The objectives of these tests were to: (1) Validate the integration concept of the CDOU package into the P-3 aircraft. (2) Validate the end-to-end functionality of the system, including sensor/turret controls and recording of imagery during flight. (3) Evaluate the system sensitivity and resolution on a set of verified resolution targets templates. (4) Validate the ability of the 3rd generation MWIR sensor to detect and classify targets at a significantly increased range.

  2. A Microwave Pressure Sounder

    NASA Technical Reports Server (NTRS)

    Flower, D. A.; Peckham, G. E.

    1978-01-01

    An instrument to measure atmospheric pressure at the earth's surface from an orbiting satellite would be a valuable addition to the expanding inventory of remote sensors. The subject of this report is such an instrument - the Microwave Pressure Sounder (MPS). It is shown that global-ocean coverage is attainable with sufficient accuracy, resolution and observational frequency for meteorological, oceanographic and climate research applications. Surface pressure can be deduced from a measurement of the absorption by an atmospheric column at a frequency in the wing of the oxygen band centered on 60 GHz. An active multifrequency instrument is needed to make this measurement with sufficient accuracy. The selection of optimum operating frequencies is based upon accepted models of surface reflection, oxygen, water vapor and cloud absorption. Numerical simulation using a range of real atmospheres defined by radiosonde observations were used to validate the frequency selection procedure. Analyses are presented of alternative system configurations that define the balance between accuracy and achievable resolution.

  3. Middle Atmosphere Sounder and Thermal Emission Radiometer - Master

    NASA Astrophysics Data System (ADS)

    Mlynczak, M. G.; Scott, D. K.; Esplin, R. W.; Bailey, S. M.; Randall, C. E.

    2014-12-01

    The Middle Atmosphere Sounder and Thermal Emission Radiometer (MASTER) instrument is an advanced infrared limb-scanning instrument designed to measure the thermal structure, chemical composition, and energy balance from the stratosphere to the lower thermosphere. MASTER builds on NASA's long and successful heritage of infrared limb scanners including the LIMS, HIRDLS, and SABER instruments. MASTER has exceptional radiometric sensitivity with a more efficient, compact, and lightweight design. An updated focal plane enables critical new science in the areas of the carbon budget closure, geomagnetically-driven ozone destruction, and auroral energy deposition, while virtually eliminating out of band contributions via dual filtering. MASTER will continue the SABER-TIMED and EOS-Aura records of temperature, lower stratospheric water vapor, ozone, methane, and thermospheric cooling by nitric oxide and carbon dioxide. MASTER's size and mass are specifically designed to allow flexibility in the choice of small satellite buses and low cost launch vehicles. The expanded focal plane enables a choice of channels applicable to science objectives in NASA's Earth Science and Heliophysics enterprises. Due to the long and successful heritage the MASTER instrument is at an exceptionally high technology readiness level. No new technologies are required to build the MASTER flight instrument.

  4. Advances in infrared and imaging fibres for astronomical instrumentation

    NASA Astrophysics Data System (ADS)

    Haynes, Roger; McNamara, Pam; Marcel, Jackie; Jovanovic, Nemanja

    2006-06-01

    Optical fibres have already played a huge part in ground based astronomical instrumentation, however, with the revolution in photonics currently taking place new fibre technologies and integrated optical devices are likely to have a profound impact on the way we manipulate light in the future. The Anglo Australian Observatory, along with partners at the Optical Fibre Technology Centre of the University of Sydney, is investigating some of the developing technologies as part of our Astrophotonics programme2. In this paper we discuss the advances that have been made with infrared transmitting fibre, both conventional and microstructured, in particular those based on fluoride glasses. Fluoride glasses have a particularly wide transparent region from the UV through to around 7μm, whereas silica fibres, commonly used in astronomy, only transmit out to about 2μm. We discuss the impact of advances in fibre manufacture that have greatly improved the optical, chemical resistance and physical properties of the fluoride fibres. We also present some encouraging initial test results for a modern imaging fibre bundle and imaging fibre taper.

  5. The Evolution of Spaceborne Microwave Sounders for the U.S. Polar-Orbiting Weather Satellites

    NASA Technical Reports Server (NTRS)

    Shiue, James C.; Krimschansky, Sergey; Patel, Probodh; Hildebrand, Peter (Technical Monitor)

    2002-01-01

    The Advanced Technology Microwave Sounder (ATMS) is the next generation space-borne microwave sounder. It is the latest and most advanced version of a series of satellite-based microwave sounders, currently under development by NASA for the future U.S. operational polar-orbiting weather satellite system, called the NPOESS (National Polar-orbiting Operational Environment Satellite System), slated to begin orbiting around the end of this decade. This paper will present a brief history of the evolution of the space-borne microwave sounders, from its early-day scientific experiments, through the operational sounder aboard today's polar orbiting weather satellites, and ending in the ATMS development. It will also describe the evolution of microwave radiometer technology that enabled the space-borne microwave radiometry, from its early versions with simple, nadir-viewing, fixed-horn antennas to the present-day scanning reflector antennas with broad-band MMIC Low Noise Amplifiers, plus on-board calibrations.

  6. First Data from Mars Climate Sounder

    NASA Technical Reports Server (NTRS)

    2006-01-01

    The Mars Climate Sounder, an instrument on NASA's Mars Reconnaissance Orbiter designed to monitor daily changes in the global atmosphere of Mars, made its first observations of Mars on March 24, 2006.

    These tests were conducted to demonstrate that the instrument could, if needed, support the mission's aerobraking maneuvers (dips into the atmosphere to change the shape of the orbit) by providing hemisphere-scale coverage of atmospheric activity. The instrument scanned nine arrays of detectors four times across the entire disc of the planet, including the north pole, from an altitude of about 45,000 kilometers (28,000 miles). This is about 150 times farther away than the spacecraft will be during its main science phase. At this great range, the planet appears only 40 pixels wide, as suggested by the pixilation of the images. However, this is sufficient to identify regional dust storms in the lower atmosphere. Regional dust storms could perturb atmospheric densities at the higher altitudes (about 100 kilometers or 60 miles) where the orbiter will conduct more than 500 aerobraking passes during the next six months. Such storms are rare in the current season on Mars, early northern spring, and no large storms are present as the orbiter prepares for the start of aerobraking.

    Each of the Mars Climate Sounder's arrays looks in a different wavelength band, and three of the resulting images are shown here. The view on the left is from data collected in a broad spectral band (wavelengths of 0.3 microns to 3 microns) for reflected sunlight. The view in the center is from data collected in the 12-micron thermal-infrared band. This band was chosen to sense infrared radiation from the surface when the atmosphere is clear and from dust clouds when it is not. The view on the right is from data collected at 15 microns, a longer-wavelength band still in the thermal-infrared part of the spectrum. At this wavelength, carbon dioxide, the main ingredient in Mars

  7. Climate Change and Sounder Radiometric Stability

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Aumann, Hartmut H.; Manning, Evan

    2009-01-01

    Satellite instrument radiometric stability is critical for climate studies. The Atmospheric Infrared Sounder (AIRS) radiances are of sufficient stability and accuracy to serve as a climate data record as evidenced by comparisons with the global network of buoys. In this paper we examine the sensitivity of derived geophysical products to potential instrument radiometric stability issues due to diurnal, orbital and seasonal variations. Our method is to perturb the AIRS radiances and examine the impact to retrieved parameters. Results show that instability in retrieved temperature products will be on the same order of the brightness temperature error in the radiances and follow the same time dependences. AIRS excellent stability makes it ideal for examining impacts of instabilities of future systems on geophysical parameter performance.

  8. A study of a 63 K radiative cooler for the advanced moisture and temperature sounder. [earth-orbiting IR spectrometer for atmospheric measurements

    NASA Technical Reports Server (NTRS)

    Salazar, R.; Evans, N.

    1981-01-01

    A study was performed of cooling methods for a space-borne, earth observing infrared optical instrument, AMTS. Major requirements on the thermal design are an optics temperature below 200 K, a detector array temperature below 75 K, orbital lifetime of 3 to 5 years, a near polar, sun synchronous orbit with altitude near 800 km. Power dissipation of the detectors is 38 mW, in the optics compartment 1.4 W. Large radiative coolers positioned so as to be shielded from sun, spacecraft and earth result in predicted optics temperature of 156 K and detector temperature of 63 K.

  9. Advances in detector technologies for visible and infrared wavefront sensing

    NASA Astrophysics Data System (ADS)

    Feautrier, Philippe; Gach, Jean-Luc; Downing, Mark; Jorden, Paul; Kolb, Johann; Rothman, Johan; Fusco, Thierry; Balard, Philippe; Stadler, Eric; Guillaume, Christian; Boutolleau, David; Destefanis, Gérard; Lhermet, Nicolas; Pacaud, Olivier; Vuillermet, Michel; Kerlain, Alexandre; Hubin, Norbert; Reyes, Javier; Kasper, Markus; Ivert, Olaf; Suske, Wolfgang; Walker, Andrew; Skegg, Michael; Derelle, Sophie; Deschamps, Joel; Robert, Clélia; Vedrenne, Nicolas; Chazalet, Frédéric; Tanchon, Julien; Trollier, Thierry; Ravex, Alain; Zins, Gérard; Kern, Pierre; Moulin, Thibaut; Preis, Olivier

    2012-07-01

    detector with a readout noise of 3 e (goal 1e) at 700 Hz frame rate. The LGSD is a scaling of the NGSD with 1760x1680 pixels and 3 e readout noise (goal 1e) at 700 Hz (goal 1000 Hz) frame rate. New technologies will be developed for that purpose: advanced CMOS pixel architecture, CMOS back thinned and back illuminated device for very high QE, full digital outputs with signal digital conversion on chip. In addition, the CMOS technology is extremely robust in a telescope environment. Both detectors will be used on the European ELT but also interest potentially all giant telescopes under development. Additional developments also started for wavefront sensing in the infrared based on a new technological breakthrough using ultra low noise Avalanche Photodiode (APD) arrays within the RAPID project. Developed by the SOFRADIR and CEA/LETI manufacturers, the latter will offer a 320x240 8 outputs 30 microns IR array, sensitive from 0.4 to 3.2 microns, with 2 e readout noise at 1500 Hz frame rate. The high QE response is almost flat over this wavelength range. Advanced packaging with miniature cryostat using liquid nitrogen free pulse tube cryocoolers is currently developed for this programme in order to allow use on this detector in any type of environment. First results of this project are detailed here. These programs are held with several partners, among them are the French astronomical laboratories (LAM, OHP, IPAG), the detector manufacturers (e2v technologies, Sofradir, CEA/LETI) and other partners (ESO, ONERA, IAC, GTC). Funding is: Opticon FP6 and FP7 from European Commission, ESO, CNRS and Université de Provence, Sofradir, ONERA, CEA/LETI and the French FUI (DGCIS).

  10. The Impact of the Assimilation of Hyperspectral Infrared Retrieved Profiles on Advanced Weather and Research Model Simulations of a Non-Convective Wind Event

    NASA Technical Reports Server (NTRS)

    Brendt. Emily; Zavodsky, Bradley; Jedlovec, Gary; Elmer, Nicholas

    2014-01-01

    Tropopause folds are identified by warm, dry, high-potential vorticity, ozone-rich air and are one explanation for damaging non-convective wind events. Could improved model representation of stratospheric air and associated tropopause folding improve non-convective wind forecasts and high wind warnings? The goal of this study is to assess the impact of assimilating Hyperspectral Infrared (IR) profiles on forecasting stratospheric air, tropopause folds, and associated non-convective winds: (1) AIRS: Atmospheric Infrared Sounder (2) IASI: Infrared Atmospheric Sounding Interferometer (3) CrIMSS: Cross-track Infrared and Microwave Sounding Suite

  11. Assimilation of the Microwave Limb Sounder Radiances

    NASA Technical Reports Server (NTRS)

    Wargan, K.; Read, W.; Livesey, N.; Wagner, P.; Nguyen. H.; Pawson, S.

    2012-01-01

    It has been shown that the assimilation of limb-sounder data can significantly improve the representation of ozone in NASA's GEOS Data Assimilation Systems (GEOS-DAS), particularly in the stratosphere. The studies conducted so far utilized retrieved data from the MIPAS, POAM, ILAS and EOS Microwave Limb Sounder (EOS MLS) instruments. Direct assimilation of the radiance data can be seen as the natural next step to those studies. The motivation behind working with radiances is twofold. First, retrieval algorithms use a priori data which are either climatological or are obtained from previous analyses. This introduces additional uncertainty and, in some cases, may lead to "self-contamination"- when the a priori is taken from the same assimilation system in which subsequently ingests the retrieved observations. Second, radiances can be available in near real time thus providing an opportunity for operational assimilation, which could help improve the use of infrared radiance instruments from operational satellite instruments. In this presentation we summarize our ongoing work on an implementation of the assimilation of EOS MLS radiances into the GEOS-5 DAS. This work focuses on assimilation of band 7 brightness temperatures which are sensitive to ozone. Our implementation uses the MLS Callable Forward Model developed by the MLS team at NASA JPL as the observation operator. We will describe our approach and recent results which are not yet final. In particular, we will demonstrate that this approach has a potential to improve the vertical structure of ozone in the lower tropical stratosphere as compared with the retrieved MLS product. We will discuss the computational efficiency of this implementation.

  12. Satellite-based Hyperspectral Sounder Retrievals in Real-time Weather Applications

    NASA Astrophysics Data System (ADS)

    Weisz, E.; Smith, N.; Smith, W. L.

    2015-12-01

    Real-time weather monitoring and forecasting abilities have significantly improved by the new generation of weather satellites, which provide routine access to observations and atmospheric data. In addition of providing visual images, satellite-based instrumentation also provide spectral radiance data that allow the computation of atmospheric temperature, moisture and trace gas profiles and other geophysical variables including cloud parameters. Hyperspectral sounders, AIRS (Atmospheric Infrared Sounder), IASI (Infrared Atmospheric Sounding Interferometer) and CrIS (Cross-track Infrared Sounder) on low-Earth orbiting satellites, provide atmospheric profiles on a global scale with the spatial and temporal resolution needed to complement traditional profile data sources such as that obtained by radiosondes. The goal of this paper is to describe the information that hyperspectral sounders are capable of adding to weather monitoring and short-term forecasting systems. Retrievals derived from all four operational sounders are used in time-series to describe the pre-convective environment (including moisture advection and stability tendencies) antecedent to the initiation of severe weather. Temporal and spatial consistency and continuity is achieved among different instruments on different platforms through the use of a single atmospheric profile retrieval algorithm. Our results demonstrate the utility of using hyperspectral sounding products from multiple satellites for the real-time weather monitoring/prediction operation.

  13. GEO/SAMS - The Geostationary Synthetic Aperture Microwave Sounder

    NASA Technical Reports Server (NTRS)

    Lambrigtsen, Bjorn H.

    2008-01-01

    The National Oceanic and Atmospheric Administration (NOAA) has for many years operated two weather satellite systems, the Polar-orbiting Operational Environmental Satellite system (POES), using low-earth orbiting (LEO) satellites, and the Geostationary Operational Environmental Satellite system (GOES), using geostationary earth orbiting (GEO) satellites. (Similar systems are also operated by other nations.) The POES satellites have been equipped with both infrared (IR) and microwave (MW) atmospheric sounders, which makes it possible to determine the vertical distribution of temperature and humidity in the troposphere even under cloudy conditions. Such satellite observations have had a significant impact on weather forecasting accuracy, especially in regions where in situ observations are sparse. In contrast, the GOES satellites have only been equipped with IR sounders, since it has not been feasible to build a large enough antenna to achieve sufficient spatial resolution for a MW sounder in GEO. As a result, GOES soundings can only be obtained in cloud free areas and in the less important upper atmosphere, above the cloud tops. This has hindered the effective use of GOES data in numerical weather prediction. Full sounding capabilities with the GOES system is highly desirable because of the advantageous spatial and temporal coverage that is possible from GEO. While POES satellites provide coverage in relatively narrow swaths, and with a revisit time of 12-24 hours or more, GOES satellites can provide continuous hemispheric coverage, making it possible to monitor highly dynamic phenomena such as hurricanes.

  14. Advanced Image Processing for Defect Visualization in Infrared Thermography

    NASA Technical Reports Server (NTRS)

    Plotnikov, Yuri A.; Winfree, William P.

    1997-01-01

    Results of a defect visualization process based on pulse infrared thermography are presented. Algorithms have been developed to reduce the amount of operator participation required in the process of interpreting thermographic images. The algorithms determine the defect's depth and size from the temporal and spatial thermal distributions that exist on the surface of the investigated object following thermal excitation. A comparison of the results from thermal contrast, time derivative, and phase analysis methods for defect visualization are presented. These comparisons are based on three dimensional simulations of a test case representing a plate with multiple delaminations. Comparisons are also based on experimental data obtained from a specimen with flat bottom holes and a composite panel with delaminations.

  15. Recent advances in fetal near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    D'Antona, Donato; Aldrich, Clive J.; O'Brien, Patrick; Lawrence, Sally; Delpy, David T.; Wyatt, John S.

    1997-01-01

    Fetal brain injury resulting from hypoxia and ischemia during labor remains an important cause of death and long- term disability. However, little is known about fetal brain oxygenation and hemodynamics. There are currently no satisfactory clinical techniques for fetal monitoring and there remains a need for a new method to assess brain oxygenation. Fetal near infrared spectroscopy (NIRS) is a new technique that allows noninvasive observation of changes in the cerebral concentrations of oxyhemoglobin and deoxyhemoglobin to be made during labor. A specially designed optical probe is inserted through the dilated cervix and placed against the fetal head. It is then possible to compare changes in NIRS data with other observations of fetal conditions, such as fetal heart rate and acid-base status.

  16. Advances in photo-thermal infrared imaging microspectroscopy

    NASA Astrophysics Data System (ADS)

    Furstenberg, Robert; Kendziora, Chris; Papantonakis, Michael; Nguyen, Viet; McGill, Andrew

    2013-05-01

    There is a growing need for chemical imaging techniques in many fields of science and technology: forensics, materials science, pharmaceutical and chemical industries, just to name a few. While FTIR micro-spectroscopy is commonly used, its practical resolution limit of about 20 microns or more is often insufficient. Raman micro-spectroscopy provides better spatial resolution (~1 micron), but is not always practical because of samples exhibiting fluorescence or low Raman scattering efficiency. We are developing a non-contact and non-destructive technique we call photo-thermal infrared imaging spectroscopy (PT-IRIS). It involves photo-thermal heating of the sample with a tunable quantum cascade laser and measuring the resulting increase in thermal emission with an infrared detector. Photo-thermal emission spectra resemble FTIR absorbance spectra and can be acquired in both stand-off and microscopy configurations. Furthermore, PT-IRIS allows the acquisition of absorbance-like photo-thermal spectra in a reflected geometry, suitable for field applications and for in-situ study of samples on optically IR-opaque substrates (metals, fabrics, paint, glass etc.). Conventional FTIR microscopes in reflection mode measure the reflectance spectra which are different from absorbance spectra and are usually not catalogued in FTIR spectral libraries. In this paper, we continue developing this new technique. We perform a series of numerical simulations of the laser heating of samples during photo-thermal microscopy. We develop parameterized formulas to help the user pick the appropriate laser illumination power. We also examine the influence of sample geometry on spectral signatures. Finally, we measure and compare photo-thermal and reflectance spectra for two test samples.

  17. Infrared

    NASA Astrophysics Data System (ADS)

    Vollmer, M.

    2013-11-01

    'Infrared' is a very wide field in physics and the natural sciences which has evolved enormously in recent decades. It all started in 1800 with Friedrich Wilhelm Herschel's discovery of infrared (IR) radiation within the spectrum of the Sun. Thereafter a few important milestones towards widespread use of IR were the quantitative description of the laws of blackbody radiation by Max Planck in 1900; the application of quantum mechanics to understand the rotational-vibrational spectra of molecules starting in the first half of the 20th century; and the revolution in source and detector technologies due to micro-technological breakthroughs towards the end of the 20th century. This has led to much high-quality and sophisticated equipment in terms of detectors, sources and instruments in the IR spectral range, with a multitude of different applications in science and technology. This special issue tries to focus on a few aspects of the astonishing variety of different disciplines, techniques and applications concerning the general topic of infrared radiation. Part of the content is based upon an interdisciplinary international conference on the topic held in 2012 in Bad Honnef, Germany. It is hoped that the information provided here may be useful for teaching the general topic of electromagnetic radiation in the IR spectral range in advanced university courses for postgraduate students. In the most general terms, the infrared spectral range is defined to extend from wavelengths of 780 nm (upper range of the VIS spectral range) up to wavelengths of 1 mm (lower end of the microwave range). Various definitions of near, middle and far infrared or thermal infrared, and lately terahertz frequencies, are used, which all fall in this range. These special definitions often depend on the scientific field of research. Unfortunately, many of these fields seem to have developed independently from neighbouring disciplines, although they deal with very similar topics in respect of the

  18. GEOSTAR - a microwave sounder for GOES-R

    NASA Technical Reports Server (NTRS)

    Lambrigtsen, Bjorn; Wilson, William; Tanner, Alan

    2005-01-01

    The National Oceanic and Atmospheric Administration (NOAA) has for many years operated two weather satellite systems, the Polar-orbiting Operational Environmental Satellite system (POES), using low-earth orbiting (LEO) satellites, and the Geostationary Operational Environmental Satellite system (GOES), using geostationary earth orbiting (GEO) satellites. Similar systems are also operated by other nations. The POES satellites have been equipped with both infrared (IR) and microwave (MW) atmospheric sounders, which together make it possible to determine the vertical distribution of temperature and humidity in the troposphere even under cloudy conditions.

  19. Infrared Spectral Radiance Intercomparisons With Satellite and Aircraft Sensors

    NASA Technical Reports Server (NTRS)

    Larar, Allen M.; Zhou, Daniel K.; Liu, Xu; Smith, William L.

    2014-01-01

    Measurement system validation is critical for advanced satellite sounders to reach their full potential of improving observations of the Earth's atmosphere, clouds, and surface for enabling enhancements in weather prediction, climate monitoring capability, and environmental change detection. Experimental field campaigns, focusing on satellite under-flights with well-calibrated FTS sensors aboard high-altitude aircraft, are an essential part of the validation task. Airborne FTS systems can enable an independent, SI-traceable measurement system validation by directly measuring the same level-1 parameters spatially and temporally coincident with the satellite sensor of interest. Continuation of aircraft under-flights for multiple satellites during multiple field campaigns enables long-term monitoring of system performance and inter-satellite cross-validation. The NASA / NPOESS Airborne Sounder Testbed - Interferometer (NAST-I) has been a significant contributor in this area by providing coincident high spectral/spatial resolution observations of infrared spectral radiances along with independently-retrieved geophysical products for comparison with like products from satellite sensors being validated. This presentation gives an overview of benefits achieved using airborne sensors such as NAST-I utilizing examples from recent field campaigns. The methodology implemented is not only beneficial to new sensors such as the Cross-track Infrared Sounder (CrIS) flying aboard the Suomi NPP and future JPSS satellites but also of significant benefit to sensors of longer flight heritage such as the Atmospheric InfraRed Sounder (AIRS) and the Infrared Atmospheric Sounding Interferometer (IASI) on the AQUA and METOP-A platforms, respectively, to ensure data quality continuity important for climate and other applications. Infrared spectral radiance inter-comparisons are discussed with a particular focus on usage of NAST-I data for enabling inter-platform cross-validation.

  20. Temporally resolved infrared spectra from the detonation of advanced munitions

    NASA Astrophysics Data System (ADS)

    Gordon, Joe Motos; Gross, Kevin C.; Perram, Glen P.

    2009-05-01

    A suite of instruments including a 100 kHz 4-channel radiometer, a rapid scanning Fourier-transform infrared spectrometer, and two high-speed visible imagers was used to observe the detonation of several novel insensitive munitions being developed by the Air Force Research Laboratory. The spectral signatures exhibited from several different explosive compositions are discernable and may be exploited for event classification. The spectra are initially optically thick, resembling a Planckian distribution. In time, selective emission in the wings of atmospheric absorption bands becomes apparent, and the timescale and degree to which this occurs is correlated with aluminum content in the explosive formulation. By analyzing the high-speed imagery in conjunction with the time-resolved spectral measurements, it may be possible to interpret these results in terms of soot production and oxidation rates. These variables allow for an investigation into the chemical kinetics of explosions and perhaps reveal other phenomenology not yet readily apparent. With an increased phenomenological understanding, a model could be created to explain the kinetic behavior of the temperature and by-product concentration profiles and thus improve the ability of military sensing platforms to identify explosive types and sources.

  1. Submillimeter Planetary Atmospheric Chemistry Exploration Sounder

    NASA Technical Reports Server (NTRS)

    Schlecht, Erich T.; Allen, Mark A.; Gill, John J.; Choonsup, Lee; Lin, Robert H.; Sin, Seth; Mehdi, Imran; Siegel, Peter H.; Maestrini, Alain

    2013-01-01

    Planetary Atmospheric Chemistry Exploration Sounder (SPACES), a high-sensitivity laboratory breadboard for a spectrometer targeted at orbital planetary atmospheric analysis. The frequency range is 520 to 590 GHz, with a target noise temperature sensitivity of 2,500 K for detecting water, sulfur compounds, carbon compounds, and other atmospheric constituents. SPACES is a prototype for a powerful tool for the exploration of the chemistry and dynamics of any planetary atmosphere. It is fundamentally a single-pixel receiver for spectral signals emitted by the relevant constituents, intended to be fed by a fixed or movable telescope/antenna. Its front-end sensor translates the received signal down to the 100-MHz range where it can be digitized and the data transferred to a spectrum analyzer for processing, spectrum generation, and accumulation. The individual microwave and submillimeter wave components (mixers, LO high-powered amplifiers, and multipliers) of SPACES were developed in cooperation with other programs, although with this type of instrument in mind. Compared to previous planetary and Earth science instruments, its broad bandwidth (approx. =.13%) and rapid tunability (approx. =.10 ms) are new developments only made possible recently by the advancement in submillimeter circuit design and processing at JPL.

  2. DUst Sounder and Temperature Imager Experiment (DUSTIE)

    NASA Astrophysics Data System (ADS)

    McHugh, M. J.; Fish, C. S.; Taylor, M. J.; Gordley, L. L.; Hervig, M. E.; Summers, M. E.; Siskind, D. E.

    2009-12-01

    The Dust Sounder and Temperature Imager Experiment (DUSTIE) is a proposed CubeSat mission to determine the global distribution of cosmic smoke in the atmosphere. The Earth is under continual bombardment by comets and meteoroids. Over the last 5 billion years they have brought water and the basics of life to our planet. Today they are vaporized during atmospheric entry and deposited as microscopic smoke particles in the upper atmosphere. These cosmic particles are known to be important in a host of atmospheric processes, including nucleation of ice particles, ion chemistry in the thermosphere and heterogeneous chemistry in the mesosphere. Despite this, our current understanding is based on scant observations and theory. The successful deployment of DUSTIE will offer a major advance in this important emerging area of research. DUSTIE will use a digital camera to image the Sun at 0.420 µm during spacecraft sunrise and sunset. This will provide measurements to characterize the smoke distribution over the altitude range of ~40 to 90 km. A high-inclination orbit will provide near-global coverage monthly. Simultaneous refraction measurements will yield atmospheric density profiles up to 75 km. Measured smoke extinctions will be used to derive smoke particle volume and surface area densities. DUSTIE will utilize a 3U form factor CubeSat and rely heavily upon commercial-off-the-shelf (COTS) components and proven technologies.

  3. Full Spatial Resolution Infrared Sounding Application in the Preconvection Environment

    NASA Astrophysics Data System (ADS)

    Liu, C.; Liu, G.; Lin, T.

    2013-12-01

    Advanced infrared (IR) sounders such as the Atmospheric Infrared Sounder (AIRS) and Infrared Atmospheric Sounding Interferometer (IASI) provide atmospheric temperature and moisture profiles with high vertical resolution and high accuracy in preconvection environments. The derived atmospheric stability indices such as convective available potential energy (CAPE) and lifted index (LI) from advanced IR soundings can provide critical information 1 ; 6 h before the development of severe convective storms. Three convective storms are selected for the evaluation of applying AIRS full spatial resolution soundings and the derived products on providing warning information in the preconvection environments. In the first case, the AIRS full spatial resolution soundings revealed local extremely high atmospheric instability 3 h ahead of the convection on the leading edge of a frontal system, while the second case demonstrates that the extremely high atmospheric instability is associated with the local development of severe thunderstorm in the following hours. The third case is a local severe storm that occurred on 7-8 August 2010 in Zhou Qu, China, which caused more than 1400 deaths and left another 300 or more people missing. The AIRS full spatial resolution LI product shows the atmospheric instability 3.5 h before the storm genesis. The CAPE and LI from AIRS full spatial resolution and operational AIRS/AMSU soundings along with Geostationary Operational Environmental Satellite (GOES) Sounder derived product image (DPI) products were analyzed and compared. Case studies show that full spatial resolution AIRS retrievals provide more useful warning information in the preconvection environments for determining favorable locations for convective initiation (CI) than do the coarser spatial resolution operational soundings and lower spectral resolution GOES Sounder retrievals. The retrieved soundings are also tested in a regional data assimilation WRF 3D-var system to evaluate the

  4. Recent Advances in Laboratory Infrared Spectroscopy of Polycyclic Aromatic Hydrocarbons: PAHs in the Far Infrared

    NASA Technical Reports Server (NTRS)

    Mattioda, Andrew L.; Ricca, Alessandra; Tucker, Jonathan; Boersma, Christiaan; Bauschlicher, Charles, Jr.; Allamandola, Louis J.

    2010-01-01

    Over 25 years of observations and laboratory work have shown that the mid-IR spectra of a majority of astronomical sources are dominated by emission features near 3.3, 6.2, 7.7, and 11.2 microns, which originate in free polycyclic aromatic hydrocarbon (PAH) molecules. PAHs dominate the mid-IR emission from many galactic and extragalactic objects. As such, this material tracks a wide variety of astronomical processes, making this spectrum a powerful probe of the cosmos Apart from bands in the mid-IR, PAHs have bands spanning the Far-IR (FIR) and emission from these FIR features should be present in astronomical sources showing the Mid-IR PAH bands. However, with one exception, the FIR spectral characteristics are known only for a few neutral small PAHs trapped in salt pellets or oils at room temperature, data which is not relevant to astrophysics. Furthermore, since most emitting PAHs responsible for the mid-IR astronomical features are ionized, the absence of any experimental or theoretical PAH ion FIR spectra will make it impossible to correctly interpret the FIR data from these objects. In view of the upcoming Herschel space telescope mission and SOFIA's FIR airborne instrumentation, which will pioneer the FIR region, it is now urgent to obtain PAH FIR spectra. This talk will present an overview recent advances in the laboratory spectroscopy of PAHs, Highlighting the FIR spectroscopy along with some quantum calculations.

  5. Multiorder etalon sounder (MOES) development and test for balloon experiment

    NASA Technical Reports Server (NTRS)

    Hays, Paul B.; Wnag, Jinxue; Wu, Jian

    1993-01-01

    The Fabry-Perot interferometer (FPI), with its high throughput and high spectral resolution has been used in the remote-sensing measurements of the earth's atmospheric composition, winds, and temperatures. The most recent satellite instruments include the Fabry-Perot interferometer flown on the Dynamics Explorer-2 (DE-2), the High Resolution Doppler Imager (HRDI), and the Cryogenic Limb Array Etalon Spectrometer (CLAES) flown on the Upper Atmosphere Research Satellite (UARS). These instruments measure the Doppler line profiles of the emission and absorption of certain atmospheric species (such as atomic oxygen) in the visible and infrared spectral region. The successful space flight of DE-FPI, HRDI, and CLAES on UARS demonstrated the extremely high spectral resolution and ruggedness of the etalon system for the remote sensing of earth and planetary atmospheres. Recently, an innovative FPI focal plane detection technique called the Circle-to-Line Interferometer Optical (CLIO) system was invented at the Space Physics Research Laboratory. The CLIO simplifies the FPI focal plane detection process by converting the circular rings or fringes into a linear pattern similar to that produced by a conventional spectrometer, while retaining the throughput advantage of the etalon interferometer. The combination of FPI and CLIO allows the development of more sensitive Fabry-Perot interferometers in the infrared for the remote sensing of the lower atmospheres of Earth and possibly other planets. The Multiorder Etalon Sounder (MOES), a combination of the rugged etalon and the CLIO, compares very favorably to other space-borne optical instruments in terms of performance versus complexity. The new instrument is expected to be rugged, compact, and very suitable for an operational temperature and moisture sounder. With this technique, the contamination of radiance measurements by emissions of other gases is also minimized. At the Space Physics Research Laboratory (SPRL), the MOES

  6. Topside sounders as mobile ionospheric heaters

    NASA Technical Reports Server (NTRS)

    Benson, R. F.

    2006-01-01

    There is evidence that satellite-borne RF sounders can act as mobile ionospheric heaters in addition to performing topside sounding. The main objective of topside sounding is to use sounder-generated electromagnetic (em) waves to obtain ionospheric topside vertical electron-density (N(sub e) profiles. These profiles are obtained from mathematical inversions of the frequency vs. delay-time ionospheric reflection traces. In addition to these em reflection traces, a number of narrowband intense signals are observed starting at zero delay times after the transmitted pulses. Some of these signals, termed plasma resonances, appear at characteristic frequencies of the ambient medium such as at the electron cyclotron frequency f(sub ce), the harmonics nf(sub ce), the electron plasma frequency f(sub pe) and the upper-hybrid frequency f(sub uh), where (f(sub uh))(exp 2) = (f(sub ce))(exp 2) + (f(sub pe))(exp 2) . These signals have been attributed to the oblique echoes of sounder-generated electrostatic (es) waves. These resonances provide accurate in situ f(sub pe) and f(sub ce) values which, in turn, lead to accurate N(sub e) and [B] values where B is the ambient magnetic field. Resonances are also observed between the nf(sub ce) harmonics both above and below f(sub uh). The former, known as the Qn plasma resonances, are mainly attributed to the matching of the wave group velocity of sounder-generated (Bernstein-mode) es waves to the satellite velocity. The frequency spectrum of these waves in the magnetosphere can be used to detect non-Maxwellian electron velocity-distributions. In addition, these resonances also exhibit components that appear to be the result of plasma emissions stimulated by the sounder pulses. The plasma resonances observed between the nf(sub ce) harmonics and below f(sub uh), known as the Dn plasma resonances, are entirely attributed to such sounder-stimulated plasma emissions. There are other sounder-stimulated plasma phenomena that also fall into

  7. Current Sounding Capability From Satellite Meteorological Observation With Ultraspectral Infrared Instruments

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Liu, Xu; Larar, Allen M.

    2008-01-01

    Ultraspectral resolution infrared spectral radiance obtained from near nadir observations provide atmospheric, surface, and cloud property information. The intent of the measurement of tropospheric thermodynamic state and trace abundances is the initialization of climate models and the monitoring of air quality. The NPOESS Airborne Sounder Testbed-Interferometer (NAST-I), designed to support the development of future satellite temperature and moisture sounders, aboard high altitude aircraft has been collecting data throughout many field campaigns. An advanced retrieval algorithm developed with NAST-I is now applied to satellite data collected with the Atmospheric InfraRed Sounder (AIRS) on the Aqua satellite launched on 4 May 2002 and the Infrared Atmospheric Sounding Interferometer (IASI) on the MetOp satellite launched on October 19, 2006. These instruments possess an ultra-spectral resolution, for example, both IASI and NAST-I have 0.25 cm-1 and a spectral coverage from 645 to 2760 cm-1. The retrieval algorithm with a fast radiative transfer model, including cloud effects, is used for atmospheric profile and cloud parameter retrieval. The physical inversion scheme has been developed, dealing with cloudy as well as cloud-free radiance observed with ultraspectral infrared sounders, to simultaneously retrieve surface, atmospheric thermodynamic, and cloud microphysical parameters. A fast radiative transfer model, which applies to the clouded atmosphere, is used for atmospheric profile and cloud parameter retrieval. A one-dimensional (1-d) variational multi-variable inversion solution is used to improve an iterative background state defined by an eigenvector-regression-retrieval. The solution is iterated in order to account for non-linearity in the 1-d variational solution. It is shown that relatively accurate temperature and moisture retrievals can be achieved below optically thin clouds. For optically thick clouds, accurate temperature and moisture profiles down to

  8. How Strong is the Case for Geostationary Hyperspectral Sounders?

    NASA Astrophysics Data System (ADS)

    Kirk-Davidoff, D. B.; Liu, Z.; Jensen, S.; Housley, E.

    2014-12-01

    The NASA GIFTS program designed and constructed a flight-ready hyperspectral infrared sounder for geostationary orbit. Efforts are now underway to launch a constellation of similar instruments. Salient characteristics included 4 km spatial resolution at nadir and 0.6 cm-1 spectral resolution in two infrared bands. Observing system experiments have demonstrated the success of assimilated hyperspectral infrared radiances from IASI and AIRS in improving weather forecast skill. These results provide circumstantial evidence that additional observations at higher spatial and temporal resolution would likely improve forecast skill further. However, there is only limited work investigating the magnitude of this skill improvement in the literature. Here we present a systematic program to quantify the additional skill of a constellation of geostationary hyperspectral sounders through observing system simulation experiments (OSSEs) using the WRF model and the WRFDA data assimilation system. The OSSEs will focus first on high-impact events, such as the forecast for Typhoon Haiyun, but will also address quotidian synoptic forecast skill. The focus will be on short-term forecast skill (<24 hours lead time), in accord with WRF's mesoscale design, and with the view that high time frequency observations are likely to make the biggest impact on the skill of short-range forecasts. The experiments will use as their starting point the full existing observational suite, so that additionality can be addressed, but will also consider contingencies, such as the loss of particular elements of the existing system, as well as the degree to which a stand-alone system of hyperspectral sounds would be able to successfully initialize a regional forecast model. A variety of settings, tropical and extratropical, marine and continental will be considered.

  9. Advances in three-dimensional integration technologies in support of infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Temple, D. S.; Vick, E. P.; Malta, D.; Lueck, M. R.; Skokan, M. R.; Masterjohn, C. M.; Muzilla, M. S.

    2015-01-01

    Staring infrared focal plane arrays (FPAs) require pixel-level, three-dimensional (3D) integration with silicon readout integrated circuits (ROICs) that provide detector bias, integrate detector current, and may further process the signals. There is an increased interest in ROIC technology as a result of two trends in the evolution of infrared FPAs. The first trend involves decreasing the FPA pixel size, which leads to the increased information content within the same FPA die size. The second trend involves the desire to enhance signal processing capability at the FPA level, which opens the door to the detector behaving like a smart peripheral rather than a passive component—with complex signal processing functions being executed on, rather than off, the FPA chip. In this paper, we review recent advances in 3D integration process technologies that support these key trends in the development of infrared FPAs. Specifically, we discuss approaches in which the infrared sensor is integrated with 3D ROIC stacks composed of multiple layers of silicon circuitry interconnected using metal-filled through-silicon vias. We describe the continued development of the 3D integration technology and summarize key demonstrations that show its viability for pixels as small as 5 microns.

  10. Development of an ultrahigh-performance infrared detector platform for advanced spectroscopic sensing systems

    NASA Astrophysics Data System (ADS)

    Jain, Manish; Wicks, Gary; Marshall, Andrew; Craig, Adam; Golding, Terry; Hossain, Khalid; McEwan, Ken; Howle, Chris

    2014-05-01

    Laser-based stand-off sensing of threat agents (e.g. explosives, toxic industrial chemicals or chemical warfare agents), by detection of distinct infrared spectral absorption signature of these materials, has made significant advances recently. This is due in part to the availability of infrared and terahertz laser sources with significantly improved power and tunability. However, there is a pressing need for a versatile, high performance infrared sensor that can complement and enhance the recent advances achieved in laser technology. This work presents new, high performance infrared detectors based on III-V barrier diodes. Unipolar barrier diodes, such as the nBn, have been very successful in the MWIR using InAs(Sb)-based materials, and in the MWIR and LWIR using type-II InAsSb/InAs superlattice-based materials. This work addresses the extension of the barrier diode architecture into the SWIR region, using GaSb-based and InAs-based materials. The program has resulted in detectors with unmatched performance in the 2-3 μm spectral range. Temperature dependent characterization has shown dark currents to be diffusion limited and equal to, or within a factor of 5, of the Rule 07 expression for Auger-limited HgCdTe detectors. Furthermore, D* values are superior to those of existing detectors in the 2-3 μm band. Of particular significance to spectroscopic sensing systems is the ability to have near-background limited performance at operation temperatures compatible with robust and reliable solid state thermoelectric coolers.

  11. Mechanical Description of the Mars Climate Sounder Instrument

    NASA Technical Reports Server (NTRS)

    Jau, Bruno M.

    2008-01-01

    This paper introduces the Mars Climate Sounder (MCS) Instrument of the Mars Reconnaissance Orbiter (MRO) spacecraft. The instrument scans the Martian atmosphere almost continuously to systematically acquire weather and climate observations over time. Its primary components are an optical bench that houses dual telescopes with a total of nine channels for visible and infrared sensing, and a two axis gimbal that provides pointing capabilities. Both rotating joints consist of an integrated actuator with a hybrid planetary/harmonic transmission and a twist cap section that enables the electrical wiring to pass through the rotating joint. Micro stepping is used to reduce spacecraft disturbance torques to acceptable levels while driving the stepper motors. To ensure survivability over its four year life span, suitable mechanical components, lubrication, and an active temperature control system were incorporated. Some life test results and lessons learned are provided to serve as design guidelines for actuator parts and flex cables.

  12. The AEDC aerospace chamber 7V: An advanced test capability for infrared surveillance and seeker sensors

    NASA Technical Reports Server (NTRS)

    Simpson, W. R.

    1994-01-01

    An advanced sensor test capability is now operational at the Air Force Arnold Engineering Development Center (AEDC) for calibration and performance characterization of infrared sensors. This facility, known as the 7V, is part of a broad range of test capabilities under development at AEDC to provide complete ground test support to the sensor community for large-aperture surveillance sensors and kinetic kill interceptors. The 7V is a state-of-the-art cryo/vacuum facility providing calibration and mission simulation against space backgrounds. Key features of the facility include high-fidelity scene simulation with precision track accuracy and in-situ target monitoring, diffraction limited optical system, NIST traceable broadband and spectral radiometric calibration, outstanding jitter control, environmental systems for 20 K, high-vacuum, low-background simulation, and an advanced data acquisition system.

  13. Advances in iterative non-uniformity correction techniques for infrared scene projection

    NASA Astrophysics Data System (ADS)

    Danielson, Tom; Franks, Greg; LaVeigne, Joe; Prewarski, Marcus; Nehring, Brian

    2015-05-01

    Santa Barbara Infrared (SBIR) is continually developing improved methods for non-uniformity correction (NUC) of its Infrared Scene Projectors (IRSPs) as part of its comprehensive efforts to achieve the best possible projector performance. The most recent step forward, Advanced Iterative NUC (AI-NUC), improves upon previous NUC approaches in several ways. The key to NUC performance is achieving the most accurate possible input drive-to-radiance output mapping for each emitter pixel. This requires many highly-accurate radiance measurements of emitter output, as well as sophisticated manipulation of the resulting data set. AI-NUC expands the available radiance data set to include all measurements made of emitter output at any point. In addition, it allows the user to efficiently manage that data for use in the construction of a new NUC table that is generated from an improved fit of the emitter response curve. Not only does this improve the overall NUC by offering more statistics for interpolation than previous approaches, it also simplifies the removal of erroneous data from the set so that it does not propagate into the correction tables. AI-NUC is implemented by SBIR's IRWindows4 automated test software as part its advanced turnkey IRSP product (the Calibration Radiometry System or CRS), which incorporates all necessary measurement, calibration and NUC table generation capabilities. By employing AI-NUC on the CRS, SBIR has demonstrated the best uniformity results on resistive emitter arrays to date.

  14. Study of advanced InSb arrays for SIRTF (Space Infrared Telescope Facility)

    NASA Technical Reports Server (NTRS)

    Hoffman, Alan; Feitt, Robert

    1989-01-01

    The Santa Barbara Research Center has completed a study leading to the development of advanced Indium Antimonide detector arrays for the Space Infrared Telescope Facility (SIRTF) Focal Plane Array Detector (FPAD) Subsystem of the Infrared Array Camera (IRAC) Band 1. The overall goal of the study was to perform design tradeoff studies, analysis and research to develop a Direct Readout Integrated Circuit to be hybridized to an advanced, high performance InSb detector array that would satisfy the technical requirements for Band 1 as specified in the IRAC Instrument Requirements Document (IRD), IRAC-202. The overall goal of the study was divided into both a near-term goal and a far-term goal. The near-term goal identifies current technology available that approaches, and in some cases meets the program technological goals as specified in IRAC-202. The far-term goal identifies technology development required to completely achieve SIRTF program goals. Analyses of potential detector materials indicates that InSb presently meets all Band 1 requirements and is considered to be the baseline approach due to technical maturity. The major issue with regard to photovoltaic detectors such as InSb and HgCdTe is to achieve a reduction in detector capacitance.

  15. Experimental characterization, evaluation, and diagnosis of advanced hybrid infrared focal plane array electro-optical performance

    NASA Astrophysics Data System (ADS)

    Lomheim, Terrence S.; Schumann, Lee W.; Kohn, Stanley E.

    1998-07-01

    High performance scanning time-delay-and-integration and staring hybrid focal plane devices with very large formats, small pixel sizes, formidable frame and line rates, on-chip digital programmability, and high dynamic ranges, are being developed for a myriad of defense, civil, and commercial applications that span the spectral range from shortwave infrared (SWIR) to longwave infrared (LWIR). An essential part in the development of such new advanced hybrid infrared focal planes is empirical validation of their electro-optical (EO) performance. Many high-reliability, high-performance applications demand stringent and near flawless EO performance over a wide variety of operating conditions and environments. Verification of focal plane performance compliance over this wide range of parametric conditions requires the development and use of accurate, flexible, and statistically complete test methods and associated equipment. In this paper we review typical focal plane requirements, the ensuing measurement requirements (quantity, accuracy, repeatability, etc.), test methodologies, test equipment requirements, electronics and computer-based data acquisition requirements, statistical data analysis and display requirements, and associated issues. We also discuss special test requirements for verifying the performance of panchromatic thermal and multispectral imaging focal planes where characterization of dynamic modulation transfer function (MTF), and point-image response and optical overload is generally required. We briefly overview focal plane radiation testing. We conclude with a discussion of the technical challenges of characterizing future advanced hybrid focal plane testing where it is anticipated that analog-to- digital conversion will be included directly on focal plane devices, thus creating the scenario of 'photons-in-to-bits- out' within the focal plane itself.

  16. LAWS (Laser Atmospheric Wind Sounder) earth observing system

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Wind profiles can be measured from space using current technology. These wind profiles are essential for answering many of the interdisciplinary scientific questions to be addressed by EOS, the Earth Observing System. This report provides guidance for the development of a spaceborne wind sounder, the Laser Atmospheric Wind Sounder (LAWS), discussing the current state of the technology and reviewing the scientific rationale for the instrument. Whether obtained globally from the EOS polar platform or in the tropics and subtropics from the Space Station, wind profiles from space will provide essential information for advancing the skill of numerical weather prediction, furthering knowledge of large-scale atmospheric circulation and climate dynamics, and improving understanding of the global biogeochemical and hydrologic cycles. The LAWS Instrument Panel recommends that it be given high priority for new instrument development because of the pressing scientific need and the availability of the necessary technology. LAWS is to measure wind profiles with an accuracy of a few meters per second and to sample at intervals of 100 km horizontally for layers km thick.

  17. Lessons Learned from Previous Space-Borne Sounders as a Guide to Future Sounder Development

    NASA Technical Reports Server (NTRS)

    Benson, Robert F.; Deshpande, Manohar D.; Farrell,William M.; Fung, Shing F.; Osherovich, Vladimir A.; Pfaff, Rovert E.; Rowland, Douglas E.; Adrian, Mark L.

    2008-01-01

    Space-borne radio sounding is considered to be the gold standard for electron-density (N(sub e)) measurements compared to other techniques even under low-density conditions, such as N(sub e) < 1/cu cm, when other techniques are known to experience difficulties. These reliable measurements are not restricted to in-situ N(sub e) determinations since a spaceborne sounder can provide vertical N(sub e) profiles (N(sub e)(h)) from the spacecraft altitude to the altitude of maximum N(sub e). Near-conjunction studies involving the International Satellites for Ionospheric Studies (ISIS) satellites in the topside ionosphere and Dynamics Explorer 2 (DE 2) near the altitude of the F-region peak density have verified that, even at the greatest distance from the sounder, the ISIS-derived N(sub e)(h) profiles agree with the DE-2 Langmuir-probe measurements to within about 30% over a density range of more than two decades. Space-borne sounders can also provide N(sub e) profiles along the magnetic-field B, by inverting echoes that are ducted along field-aligned irregularities (FAI), and can provide information about the terrain beneath the satellite by examining surface reflections in the frequency range above the ionospheric penetration frequency. Many nations have launched rocket and satellite radio sounders in geospace over more than 4 decades and there have been sounders on space-probes and in orbit around other planets. Here we will summarize some of the lessons learned from these accomplishments by analyzing data from radio sounders on the Alouette and ISIS satellites and the OEDIPUS and other rockets in the terrestrial ionosphere, the IMAGE satellite in the terrestrial magnetosphere, the Ulysses space probe in Jupiter's 10 plasma torus and the MARSIS satellite in orbit around Mars. The emphasis will be on information deduced concerning (1) fundamental plasma processes and gradients in N, and B in the vicinity of the sounders from sounder-stimulated plasma resonances and

  18. Earth Observing System (EOS)/Advanced Microwave Sounding Unit-A (AMSU-A): Calibration management plan

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is the Calibration Management Plan for the Earth Observing System/Advanced Microwave Sounding Unit-A (AMSU-A). The plan defines calibration requirements, calibration equipment, and calibration methods for the AMSU-A, a 15 channel passive microwave radiometer that will be used for measuring global atmospheric temperature profiles from the EOS polar orbiting observatory. The AMSU-A system will also provide data to verify and augment that of the Atmospheric Infrared Sounder.

  19. Retrievals with the Infrared Atmospheric Sounding Interferometer

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Liu, Xu; Larar, Allen M.; Smith, William L.; Taylor, Jonathan P.; Schlussel, Peter; Strow, L. Larrabee; Calbet, Xavier; Mango, Stephen A.

    2007-01-01

    The Infrared Atmospheric Sounding Interferometer (IASI) on the MetOp satellite was launched on October 19, 2006. The Joint Airborne IASI Validation Experiment (JAIVEx) was conducted during April 2007 mainly for validation of the IASI on the MetOp satellite. IASI possesses an ultra-spectral resolution of 0.25/cm and a spectral coverage from 645 to 2760/cm. Ultraspectral resolution infrared spectral radiance obtained from near nadir observations provide atmospheric, surface, and cloud property information. An advanced retrieval algorithm with a fast radiative transfer model, including cloud effects, is used for atmospheric profile and cloud parameter retrieval. Preliminary retrievals of atmospheric soundings, surface properties, and cloud optical/microphysical properties with the IASI observations during the JAIVEx are obtained and presented. These retrievals are further inter-compared with those obtained from airborne FTS system, such as the NPOESS Airborne Sounder Testbed Interferometer (NAST-I), dedicated dropsondes, radiosondes, and ground based Raman Lidar. The capabilities of satellite ultra-spectral sounder such as the IASI are investigated.

  20. InAs/GaSb superlattices for advanced infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Rehm, Robert; Walther, Martin; Schmitz, Johannes; Rutz, Frank; Fleißner, Joachim; Scheibner, Ralf; Ziegler, Johann

    2009-11-01

    We report on the development of high performance focal plane arrays for the mid-wavelength infrared spectral range from 3-5 μm (MWIR) on the basis of InAs/GaSb superlattice photodiodes. An investigation on the minority electron diffusion length with a set of six sample ranging from 190 to 1000 superlattice periods confirms that InAs/GaSb superlattice focal plane arrays achieve very high external quantum efficiency. This enabled the fabrication of a range of monospectral MWIR imagers with high spatial and excellent thermal resolution at short integration times. Furthermore, novel dual-color imagers have been developed, which offer advanced functionality due to a simultaneous, pixel-registered detection of two separate spectral channels in the MWIR.

  1. Real-time infrared target processor for advanced land fire control applications

    NASA Astrophysics Data System (ADS)

    Lithopoulos, Erik; Sevigny, Leandre; Laurent, John

    1994-10-01

    The infrared target processor (IRTP) is a real-time processor capable of automatic and operator-aided detection, lock-on and tracking of multiple targets in infrared imagery. The IRTP has been developed under a feeder project to the advanced land fire control system (ALFCS) program, a project to develop accurate fire on the move capability for Canadian tanks. The IRTP is built around the datacube pipelined architecture using commercially available image processing and general purpose components. Presently, the IRTP is capable of real-time detection and tracking of up to five targets at video rates (30 frames/sec), and its operation is controlled via a single monitor that contains graphical control panels and a real- time video display. To augment the operation of the target detection/tracking and the gun fire control operations of the ALFCS a position orientation system (POS) can be used to provide accurate vertical reference measurements of the turret. The POS is built around an inertial measurement unit (IMU) and specialized real-time software implemented on a general purpose CPU card. Although the IRTP is currently being developed for ALFCS applications, the testbed architecture and algorithms are flexible and the system has been used to test and develop algorithms for general target processing applications.

  2. Application of advanced millimeter/far-infrared sources to collective Thomson scattering plasma diagnostics

    SciTech Connect

    Woskoboinikow, P.; Cohn, D.R.; Temkin, R.J.

    1983-01-01

    The application of advanced millimeter/far infrared sources to substantially improve the effectiveness of collective Thomson scattering plasma diagnostics is discussed. Gyrotrons, CO/sub 2/ lasers and far infrared lasers which are optically pumped with CO/sub 2/ laser radiation can now provide important new capabilities in terms of combined high peak power and high average power, fine frequency tunability and a wide range of operating frequencies. Their capabilities can improve the signal to noise ratio and make possible time dependent scattering measurements. Both thermal level scattering used for determination of ion temperature and low level non-thermal measurements used for the investigation of plasma turbulence and wave phenomena are considered. Rapidly pulsed gyrotrons, CO/sub 2/, and optically pumped lasers can provide a range of combinations of high peak power and high energy during a given time interval. The use of this high peak power - high energy trade off capability to maximize signal to noise ratios is discussed. Dramatic reduction in stray light, using fine frequency source tunability and gas absorption cell technology, is also discussed.

  3. VAS demonstration: (VISSR Atmospheric Sounder) description

    NASA Technical Reports Server (NTRS)

    Montgomery, H. E.; Uccellini, L. W.

    1985-01-01

    The VAS Demonstration (VISSR Atmospheric Sounder) is a project designed to evaluate the VAS instrument as a remote sensor of the Earth's atmosphere and surface. This report describes the instrument and ground processing system, the instrument performance, the valiation as a temperature and moisture profiler compared with ground truth and other satellites, and assesses its performance as a valuable meteorological tool. The report also addresses the availability of data for scientific research.

  4. Topside Ionospheric Sounder for CubeSats

    NASA Astrophysics Data System (ADS)

    Swenson, C.; Pratt, J.; Fish, C. S.; Winkler, C.; Pilinski, M.; Azeem, I.; Crowley, G.; Jeppesen, M.; Martineau, R.

    2014-12-01

    This presentation will outline the design of a Topside Ionospheric Sounder (TIS) for CubeSats. In the same way that an ionosonde measures the ionospheric profile from the ground, a Topside Sounder measures the ionospheric profile from a location above the F-region peak. The TIS will address the need for increased space situational awareness and environmental monitoring by estimating electron density profiles in the topside of the ionosphere. The TIS will measure topside electron density profiles for plasma frequencies ranging from 0.89 MHz to 28.4 MHz below the satellite altitude. The precision of the measurement will be 5% or 10,000 p/cm^3. The TIS average power consumption will be below 10 W and a mass of less than 10 kg, so it is appropriate for a 6U Cubesat (or multiple of that size). The sounder will operate via a transmitted frequency sweep across the desired plasma frequencies which, upon reception, can be differenced to determine range and density information of the topside ionosphere. The velocity of the spacecraft necessitates careful balancing of range resolution and frequency knowledge requirements as well as novel processing techniques to correctly associate the return signal with the correct plasma frequency. TIS is being designed to provide a low cost, low mass spacecraft that can provide accurate topside profiles of the ionospheric electron density in order to further understanding of ionospheric structure and dynamic processes in the ionosphere.

  5. Technology Development for a Hyperspectral Microwave Atmospheric Sounder (HyMAS)

    NASA Technical Reports Server (NTRS)

    Blackwell, W.; Galbraith, C.; Hilliard, L.; Racette, P.; Thompson, E.

    2014-01-01

    The Hyperspectral Microwave Atmospheric Sounder (HyMAS) is being developed at Lincoln Laboratories and accommodated by the Goddard Space Flight Center for a flight opportunity on a NASA research aircraft. The term hyperspectral microwave is used to indicate an all-weather sounding instrument that performs equivalent to hyperspectral infrared sounders in clear air with vertical resolution of approximately 1 km. Deploying the HyMAS equipped scanhead with the existing Conical Scanning Microwave Imaging Radiometer (CoSMIR) shortens the path to a flight demonstration. Hyperspectral microwave is achieved through the use of independent RF antennas that sample the volume of the Earths atmosphere through various levels of frequencies, thereby producing a set of dense, spaced vertical weighting functions.

  6. The Stratospheric Wind Ingrared Limb Sounder: Investigation of atmospheric dynamics and transport from Eos

    NASA Technical Reports Server (NTRS)

    Mccleese, D. J.

    1992-01-01

    The Stratospheric Wind Infrared Limb Sounder (SWIRLS) is one of the instruments in the atmospheric sounder package to be flown by NASA on the Earth Observing System (EOS) B platform in the late 1990's. SWIRLS is designed to measure the horizontal vector wind field, atmospheric temperature, and the abundances and distributions of ozone and nitrous oxide in the middle atmosphere. These measurements will constitute a dynamical climatology of the stratosphere covering time scales ranging from diurnal to interannual. In addition, the SWIRLS investigation will quantify the physical mechanisms responsible for the structure and variations of stratospheric circulation and temperature fields, including the transport of species, particularly ozone, heat and momentum. Existing data sets lack the combination of accuracy, global and temporal coverage, spatial resoultion and simultaneity required to distinguish unambiguosly between the roles of dynamical and chemical processes in determining the current distribution of ozone and its evolution in the future. The measurement objectives, measurement approach, and instrumentation of SWIRLS is described.

  7. Hyperspectral Microwave Atmospheric Sounder (HyMAS) Architecture and Design Accommodations

    NASA Technical Reports Server (NTRS)

    Hilliard, Lawrence; Racette, Paul; Blackwell, William; Galbraith, Christopher; Thompson, Erik

    2013-01-01

    The Hyperspectral Microwave Atmospheric Sounder (HyMAS) is being developed at Lincoln Laboratories and accommodated by the Goddard Space Flight Center for a flight opportunity on a NASA research aircraft. The term "hyperspectral microwave" is used to indicate an all-weather sounding that performs equivalent to hyperspectral infrared sounders in clear air with vertical resolution of approximately 1 km. Deploying the HyMAS equipped scanhead with the existing Conical Scanning Microwave Imaging Radiometer (CoSMIR) shortens the path to a flight demonstration. Hyperspectral microwave is achieved through the use of independent RF antennas that sample the volume of the Earth s atmosphere through various levels of frequencies, thereby producing a set of dense, spaced vertical weighting functions. The simulations proposed for HyMAS 118/183-GHz system should yield surface precipitation rate and water path retrievals for small hail, soft hail, or snow pellets, snow, rainwater, etc. with accuracies comparable to those of the Advanced Technology Microwave Sounder. Further improvements in retrieval methodology (for example, polarization exploitation) are expected. The CoSMIR instrument is a packaging concept re-used on HyMAS to ease the integration features of the scanhead. The HyMAS scanhead will include an ultra-compact Intermediate Frequency Processor (IFP) module that is mounted inside the door to improve thermal management. The IFP is fabricated with materials made of Low-Temperature Co-fired Ceramic (LTCC) technology integrated with detectors, amplifiers, A/D conversion and data aggregation. The IFP will put out 52 channels of 16 bit data comprised of 4-9 channel data streams for temperature profiles and 2-8 channel streams for water vapor. With the limited volume of the existing CoSMIR scanhead and new HyMAS front end components, the HyMAS team at Goddard began preliminary layout work inside the new drum. Importing and re-using models of the shell, the scan head computer

  8. Hyperspectral Microwave Atmospheric Sounder (HyMAS) architecture and design accommodations

    NASA Astrophysics Data System (ADS)

    Hilliard, L.; Racette, P.; Blackwell, W.; Galbraith, C.; Thompson, E.

    The Hyperspectral Microwave Atmospheric Sounder (HyMAS) is being developed at Lincoln Laboratories and accommodated by the Goddard Space Flight Center for a flight opportunity on a NASA research aircraft. The term “ hyperspectral microwave” is used to indicate an all-weather sounding that performs equivalent to hyperspectral infrared sounders in clear air with vertical resolution of approximately 1 km. Deploying the HyMAS equipped scanhead with the existing Conical Scanning Microwave Imaging Radiometer (CoSMIR) shortens the path to a flight demonstration. Hyperspectral microwave is achieved through the use of independent RF antennas that sample the volume of the Earth's atmosphere through various levels of frequencies, thereby producing a set of dense, spaced vertical weighting functions. The simulations proposed for HyMAS 118/183-GHz system should yield surface precipitation rate and water path retrievals for small hail, soft hail, or snow pellets, snow, rainwater, etc. with accuracies comparable to those of the Advanced Technology Microwave Sounder. Further improvements in retrieval methodology (for example, polarization exploitation) are expected. The CoSMIR instrument is a packaging concept re-used on HyMAS to ease the integration features of the scanhead. The HyMAS scanhead will include an ultra-compact Intermediate Frequency Processor (IFP) module that is mounted inside the door to improve thermal management. The IFP is fabricated with materials made of Low-Temperature Co-fired Ceramic (LTCC) technology integrated with detectors, amplifiers, A/D conversion and data aggregation. The IFP will put out 52 channels of 16 bit data comprised of 4 - 9 channel data streams for temperature profiles and 2-8 channel streams for water vapor. With the limited volume of the existing CoSMIR scanhead and new HyMAS front end components, the HyMAS team at Goddard began preliminary layout work inside the new drum. Importing and re-using models of the shell, the s- an head

  9. Lessons from 18 Years of Hyperspectral Infrared Sounder Data

    NASA Technical Reports Server (NTRS)

    Aumann, H. H.; Manning, E. M.; Strow, L. L.

    2013-01-01

    By the end of 2013 NASA and EUMETSAT will have accumulated more than 11 years of AIRS, 6 years of IASI and one year of CrIS data. All three instruments were nominally specified to support the NWC for short term weather forecasting with a five year lifetime, but continue to exceed the accuracy requirement needed for weather forecasting alone. This allows use of their data for a much broader range of applications, including the calibration of broad-band instruments in space and climate research. We illustrate calibration aspects with examples from AIRS, IASI and CrIS using spatially uniform clear conditions, simultaneous nadir overpasses and random nadir samples. The differences between AIRS, IASI and CrIS for the purpose of weather forecasting are small and we expect that the excellent forecast impact demonstrated by the combination of AIRS and IASI will be continued by the combination of CrIS and IASI. Clear data are useful for calibration, but contain no climate signal. The analysis of random nadir samples from AIRS and CrIS identifies larger biases for observation of extreme conditions, represented by 1% and 99%tile data than for non-extreme observations. This is relevant for climate analysis. Resolution of these differences require further work, since they can complicate the continuation of trends established by AIRS with CrIS data, at least for extrema. The unequaled stability of the AIRS data allows us to evaluate trends using random nadir sampled data. We see an increasing frequency in severe storms over land, a decreasing frequency over ocean. The 11 years of AIRS data are too short to tell if these trends are significant from a climate change viewpoint, or if they are parts of multi-decadal oscillations.

  10. High Resolution Infrared Radiation Sounder/mod 2 (HIRS/2)

    NASA Technical Reports Server (NTRS)

    Koenig, E. W.

    1979-01-01

    The HIRS/2 is provided for the TIROS-N series of operational meteorological satellites. The instrument features 20 spectral channels, including visible (.7 micron), shortwave (3.7 to 4.6 micron), and longwave (6.7 to 15 micron). Radiance data aids determination of vertical temperature profiles, water vapor, and ozone distribution. System performance and test results are described.

  11. Laser Atmospheric Wind Sounder (LAWS) performance analysis

    NASA Technical Reports Server (NTRS)

    Kenyon, D.; Petheram, J.

    1991-01-01

    The science objectives of the NASA's Laser Atmospheric Sounder (LAWS) are discussed, and results of the performance analysis of the LAWS system are presented together with the instrument configuration used for these performance analyses. The results of analyses show that the science requirements for the wind-velocity accuracies of m/sec in the lower troposphere and 5 m/sec in the upper troposphere will be met by the present design of the LAWS system. The paper presents the performance estimates of the LAWS in terms of the global coverage, spatial resolution, signal-to-noise ratio, line-of-sight velocity error, and horizontal inversion accuracy.

  12. Advances in passive-remote and extractive Fourier transform infrared spectroscopic systems

    SciTech Connect

    Demirgian, J.C.; Hammer, C.; Hwang, E.; Mao, Zhuoxiong

    1993-10-01

    The Clean Air Act of 1990 requires the monitoring of air toxics including those from incinerator emissions. Continuous emission monitors (CEM) would demonstrate the safety of incinerators and address public concern about emissions of hazardous organic compounds. Fourier transform infrared (FTIR) spectroscopy can provide the technology for continuous emission monitoring of stacks. Stack effluent can be extracted and analyzed in less than one minute with conventional FTIR spectrometers. Passive-remote FTIR spectrometers can detect certain emission gases over 1 km away from a stack. The authors discuss advances in both extractive and passive-remote FTIR technology. Extractive systems are being tested with EPA protocols, which will soon replace periodic testing methods. Standard operating procedures for extractive systems are being developed and tested. Passive-remote FTIR spectrometers have the advantage of not requiring an extracted sample; however, they have less sensitivity. We have evaluated the ability of commercially available systems to detect fugitive plumes and to monitor carbon monoxide at a coal-fired power plant.

  13. Advances in passive-remote and extractive Fourier transform infrared systems

    SciTech Connect

    Demirgian, J.C.; Hammer, C.; Hwang, E.; Zhuoxiong Mao

    1993-07-01

    The Clean Air Act of 1990 requires the monitoring of air toxics including those from incinerator emissions. Continuous emission monitors (CEM) would demonstrate the safety of incinerators and address public concern about emissions of hazardous organic compounds. Fourier transform infrared (FTIR) spectroscopy can provide the technology for continuous emission monitoring of stacks. Stack effluent can be extracted and analyzed in under one minute with conventional FTIR spectrometers. Passive-remote FTIR spectrometers can detect certain emission gases over 1 km away from a stack. The authors will discuss advances in both extractive and passive-remote FTIR technology. Extractive systems are being tested with EPA protocols, which will soon replace periodic testing methods. Standard operating procedures for extractive systems are being developed and tested. Passive-remote FTIR spectrometers have the advantage of not requiring an extracted sample; however, they have less sensitivity. The authors have evaluated the ability of commercially available systems to detect fugitive plumes and to monitor carbon monoxide at a coal-fired power plant.

  14. Advancement of an Infra-Red Technique for Whole-Field Concentration Measurements in Fluidized Beds

    PubMed Central

    Medrano, Jose A.; de Nooijer, Niek C. A.; Gallucci, Fausto; van Sint Annaland, Martin

    2016-01-01

    For a better understanding and description of the mass transport phenomena in dense multiphase gas-solids systems such as fluidized bed reactors, detailed and quantitative experimental data on the concentration profiles is required, which demands advanced non-invasive concentration monitoring techniques with a high spatial and temporal resolution. A novel technique based on the selective detection of a gas component in a gas mixture using infra-red properties has been further developed. The first stage development was carried out using a very small sapphire reactor and CO2 as tracer gas. Although the measuring principle was demonstrated, the real application was hindered by the small reactor dimensions related to the high costs and difficult handling of large sapphire plates. In this study, a new system has been developed, that allows working at much larger scales and yet with higher resolution. In the new system, propane is used as tracer gas and quartz as reactor material. In this study, a thorough optimization and calibration of the technique is presented which is subsequently applied for whole-field measurements with high temporal resolution. The developed technique allows the use of a relatively inexpensive configuration for the measurement of detailed concentration fields and can be applied to a large variety of important chemical engineering topics. PMID:26927127

  15. Advances in Fourier transform infrared spectroscopy of natural glasses: From sample preparation to data analysis

    NASA Astrophysics Data System (ADS)

    von Aulock, F. W.; Kennedy, B. M.; Schipper, C. I.; Castro, J. M.; Martin, D. E.; Oze, C.; Watkins, J. M.; Wallace, P. J.; Puskar, L.; Bégué, F.; Nichols, A. R. L.; Tuffen, H.

    2014-10-01

    Fourier transform infrared spectroscopy (FTIR) is an analytical technique utilized to measure the concentrations of H and C species in volcanic glasses. Water and CO2 are the most abundant volatile species in volcanic systems. Water is present in magmas in higher concentrations than CO2 and is also more soluble at lower pressures, and, therefore it is the dominant volatile forming bubbles during volcanic eruptions. Dissolved water affects both phase equilibria and melt physical properties such as density and viscosity, therefore, water is important for understanding magmatic processes. Additionally, quantitative measurements of different volatile species using FTIR can be achieved at high spatial resolution. Recent developments in analytical equipment such as synchrotron light sources and the development of focal plane array (FPA) detectors allow higher resolution measurements and the acquisition of concentration maps. These new capabilities are being used to characterize spatial gradients (or lack thereof) around bubbles and other textural features, which in turn lead to new insights into the behavior of volcanic feeder systems. Here, practical insights about sample preparation and analysis of the distribution and speciation of volatiles in volcanic glasses using FTIR spectroscopy are discussed. New advances in the field of FTIR analysis produce reliable data at high spatial resolution that can be used to produce datasets on the distribution, dissolution and diffusion of volatiles in volcanic materials.

  16. Advancement of an Infra-Red Technique for Whole-Field Concentration Measurements in Fluidized Beds.

    PubMed

    Medrano, Jose A; de Nooijer, Niek C A; Gallucci, Fausto; van Sint Annaland, Martin

    2016-01-01

    For a better understanding and description of the mass transport phenomena in dense multiphase gas-solids systems such as fluidized bed reactors, detailed and quantitative experimental data on the concentration profiles is required, which demands advanced non-invasive concentration monitoring techniques with a high spatial and temporal resolution. A novel technique based on the selective detection of a gas component in a gas mixture using infra-red properties has been further developed. The first stage development was carried out using a very small sapphire reactor and CO₂ as tracer gas. Although the measuring principle was demonstrated, the real application was hindered by the small reactor dimensions related to the high costs and difficult handling of large sapphire plates. In this study, a new system has been developed, that allows working at much larger scales and yet with higher resolution. In the new system, propane is used as tracer gas and quartz as reactor material. In this study, a thorough optimization and calibration of the technique is presented which is subsequently applied for whole-field measurements with high temporal resolution. The developed technique allows the use of a relatively inexpensive configuration for the measurement of detailed concentration fields and can be applied to a large variety of important chemical engineering topics. PMID:26927127

  17. Far-infrared pedestrian detection for advanced driver assistance systems using scene context

    NASA Astrophysics Data System (ADS)

    Wang, Guohua; Liu, Qiong; Wu, Qingyao

    2016-04-01

    Pedestrian detection is one of the most critical but challenging components in advanced driver assistance systems. Far-infrared (FIR) images are well-suited for pedestrian detection even in a dark environment. However, most current detection approaches just focus on pedestrian patterns themselves, where robust and real-time detection cannot be well achieved. We propose a fast FIR pedestrian detection approach, called MAP-HOGLBP-T, to explicitly exploit the scene context for the driver assistance system. In MAP-HOGLBP-T, three algorithms are developed to exploit the scene contextual information from roads, vehicles, and background objects of high homogeneity, and we employ the Bayesian approach to build a classifier learner which respects the scene contextual information. We also develop a multiframe approval scheme to enhance the detection performance based on spatiotemporal continuity of pedestrians. Our empirical study on real-world datasets has demonstrated the efficiency and effectiveness of the proposed method. The performance is shown to be better than that of state-of-the-art low-level feature-based approaches.

  18. Quantum Well and Quantum Dot Modeling for Advanced Infrared Detectors and Focal Plane Arrays

    NASA Technical Reports Server (NTRS)

    Ting, David; Gunapala, S. D.; Bandara, S. V.; Hill, C. J.

    2006-01-01

    This viewgraph presentation reviews the modeling of Quantum Well Infrared Detectors (QWIP) and Quantum Dot Infrared Detectors (QDIP) in the development of Focal Plane Arrays (FPA). The QWIP Detector being developed is a dual band detector. It is capable of running on two bands Long-Wave Infrared (LWIR) and Medium Wavelength Infrared (MWIR). The same large-format dual-band FPA technology can be applied to Quantum Dot Infrared Photodetector (QDIP) with no modification, once QDIP exceeds QWIP in single device performance. Details of the devices are reviewed.

  19. View to the south with the Two Sounder Antennas on ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View to the south with the Two Sounder Antennas on the left - Over-the-Horizon Backscatter Radar Network, Christmas Valley Radar Site Transmit Sector Four Sounder Antennas, On unnamed road west of Lost Forest Road, Christmas Valley, Lake County, OR

  20. Inter-Comparison of GOES-8 Imager and Sounder Skin Temperature Retrievals

    NASA Technical Reports Server (NTRS)

    Haines, Stephanie L.; Suggs, Ronnie J.; Jedlovec, Gary J.; Arnold, James E. (Technical Monitor)

    2001-01-01

    Skin temperature (ST) retrievals derived from geostationary satellite observations have both high temporal and spatial resolutions and are therefore useful for applications such as assimilation into mesoscale forecast models, nowcasting, and diagnostic studies. Our retrieval method uses a Physical Split Window technique requiring at least two channels within the longwave infrared window. On current GOES satellites, including GOES-11, there are two Imager channels within the required spectral interval. However, beginning with the GOES-M satellite the 12-um channel will be removed, leaving only one longwave channel. The Sounder instrument will continue to have three channels within the longwave window, and therefore ST retrievals will be derived from Sounder measurements. This research compares retrievals from the two instruments and evaluates the effects of the spatial resolution and sensor calibration differences on the retrievals. Both Imager and Sounder retrievals are compared to ground-truth data to evaluate the overall accuracy of the technique. An analysis of GOES-8 and GOES-11 intercomparisons is also presented.

  1. Topside sounder observations of equatorial bubbles

    NASA Technical Reports Server (NTRS)

    Dyson, P. L.; Benson, R. F.

    1978-01-01

    Large scale regions of depleted equatorial ionospheric plasma, called equatorial bubbles, are investigated using topside sounder data. The sounder's unique remote measuring capability enables the magnetic field-aligned nature of the bubbles to be investigated. A search of all available Alouette 2 and ISIS 1 ionograms during nighttime perigee passes near the magnetic equator has revealed a variety of echo signatures associated with bubbles. In addition to a sudden drop in electron density, these signatures usually include in situ spread F and ducted traces. The ducted traces have been used to determine the electron density distribution and to infer changes in ion composition along the magnetic field line within the duct associated with the bubble. In some cases it can be determined that the bubble is asymmetric with respect to the magnetic equator. Even though such features require 3 dimensional models for their explanation, the great field-aligned extent of the bubbles (relative to their cross section) suggests that current theories, which ignore variations along the magnetic field, are still applicable.

  2. RAWS: The spaceborne radar wind sounder

    NASA Astrophysics Data System (ADS)

    Moore, Richard K.

    1991-09-01

    The concept of the Radar Wind Sounder (RAWS) is discussed. The goals of the RAWS is to estimate the following three qualities: the echo power, to determine rain rate and surface wind velocity; the mean Doppler frequency, to determine the wind velocity in hydrometers; and the spread of the Doppler frequency, to determine the turbulent spread of the wind velocity. Researchers made significant progress during the first year. The feasibility of the concept seems certain. Studies indicate that a reasonably sized system can measure in the presence of ice clouds and dense water clouds. No sensitivity problems exist in rainy environments. More research is needed on the application of the radar to the measurement of rain rates and winds at the sea surface.

  3. Microwave limb sounder for stratospheric measurements

    NASA Astrophysics Data System (ADS)

    Waters, J. W.; Hardy, J. C.; Jarnot, R. F.; Pickett, H. M.; Zimmerman, P.

    1985-06-01

    The balloon-borne Microwave Limb Sounder (BMLS) measures atmospheric thermal emission from millimeter wavelength spectral lines to determine vertical profiles of stratospheric species. The instrument flown to data operates at 205 BHz to measure ClO, O3, and H2O2. A 63 GHz radiometer is added to test the technique for determining tangent point pressure from the MLS experiment on the Upper Atmosphere Research Satellite (UARS). Many additional species is also measured by the BLMS. A radiometer at 270 GHz would provide measurements of HO2, NO2, HNO3, N2O, 16O18O16O, and HCN. With this addition the BMLS can test the current theory of O3 heavy ozone photochemical balance in the upper stratosphere.

  4. EOS Laser Atmosphere Wind Sounder (LAWS) investigation

    NASA Technical Reports Server (NTRS)

    1996-01-01

    In this final report, the set of tasks that evolved from the Laser Atmosphere Wind Sounder (LAWS) Science Team are reviewed, the major accomplishments are summarized, and a complete set of resulting references provided. The tasks included preparation of a plan for the LAWS Algorithm Development and Evolution Laboratory (LADEL); participation in the preparation of a joint CNES/NASA proposal to build a space-based DWL; involvement in the Global Backscatter Experiments (GLOBE); evaluation of several DWL concepts including 'Quick-LAWS', SPNDL and several direct detection technologies; and an extensive series of system trade studies and Observing System Simulation Experiments (OSSE's). In this report, some of the key accomplishments are briefly summarized with reference to interim reports, special reports, conference/workshop presentations, and publications.

  5. RAWS: The spaceborne radar wind sounder

    NASA Technical Reports Server (NTRS)

    Moore, Richard K.

    1991-01-01

    The concept of the Radar Wind Sounder (RAWS) is discussed. The goals of the RAWS is to estimate the following three qualities: the echo power, to determine rain rate and surface wind velocity; the mean Doppler frequency, to determine the wind velocity in hydrometers; and the spread of the Doppler frequency, to determine the turbulent spread of the wind velocity. Researchers made significant progress during the first year. The feasibility of the concept seems certain. Studies indicate that a reasonably sized system can measure in the presence of ice clouds and dense water clouds. No sensitivity problems exist in rainy environments. More research is needed on the application of the radar to the measurement of rain rates and winds at the sea surface.

  6. Nde of Advanced Automotive Composite Materials that Apply Ultrasound Infrared Thermography Technique

    NASA Astrophysics Data System (ADS)

    Choi, Seung-Hyun; Park, Soo-Keun; Kim, Jae-Yeol

    The infrared thermographic nondestructive inspection technique is a quality inspection and stability assessment method used to diagnose the physical characteristics and defects by detecting the infrared ray radiated from the object without destructing it. Recently, the nondestructive inspection and assessment that use the ultrasound-infrared thermography technique are widely adopted in diverse areas. The ultrasound-infrared thermography technique uses the phenomenon that the ultrasound wave incidence to an object with cracks or defects on its mating surface generates local heat on the surface. The car industry increasingly uses composite materials for their lightweight, strength, and environmental resistance. In this study, the car piston passed through the ultrasound-infrared thermography technique for nondestructive testing, among the composite material car parts. This study also examined the effects of the frequency and power to optimize the nondestructive inspection.

  7. Lithography with infrared illumination alignment for advanced BiCMOS backside processing

    NASA Astrophysics Data System (ADS)

    Kulse, P.; Schulz, K.; Behrendt, U.; Wietstruck, M.; Kaynak, M.; Marschmeyer, S.; Tillack, B.

    2014-10-01

    Driven by new applications such as BiCMOS embedded RF-MEMS, high-Q passives, Si-based microfluidics for bio sensing and InP-Si BiCMOS heterointegration [1-4], accurate alignment between back and front side is highly desired. In this paper, we present an advanced back to front side alignment technique and implementation of it into the back side processing module of IHP's 0.25/0.13 μm high performance SiGe:C BiCMOS technology. Using the Nikon i-line Stepper NSR-SF150, a new infrared alignment system has been introduced. The developed technique enables a high resolution and accurate lithography on the back side of the BiCMOS-processed Si wafers for additional backside processing, such as backside routing metallization. In comparison to previous work [5] with overlay values of 500 nm and the requirement of two-step lithography, the new approach provides significant improvement in the overlay accuracy with overlay values of 200 nm and a significant increase of the fabrication throughput by eliminating the need of the two-step lithography. The new non-contact alignment procedure allows a direct back to front side alignment using any front side alignment mark (Fig. 2), which generated a signal by reflecting the IR light beam. Followed by a measurement of the misalignment between both front to back side overlay marks (Fig. 3) using EVG®NT40 automated measurement system, a final lithography process with wafer interfield corrections is applied to obtain a minimum overlay of 200 nm. For the specific application of deep Si etching using Bosch process, the etch profile angle deviation across the wafer (tilting) has to be considered as well. From experimental data, an etch profile angle deviation of 8 μm across the wafer has been measured (Fig. 7). The overlay error caused by tilting was corrected by optimization and adjustment of the stepper offset parameters. All measurements of back to front side misalignment were performed with the EVG®40NT automated measurement system

  8. Characteristics of Monsoon inversions over Arabian Sea observed by satellite sounder and reanalysis data sets

    NASA Astrophysics Data System (ADS)

    Dwivedi, Sanjeev; Narayanan, M. S.; Venkat Ratnam, M.; Narayana Rao, D.

    2015-12-01

    Monsoon inversions (MIs) over Arabian Sea (AS) are an important characteristic associated with the monsoon activity over Indian region during summer monsoon season. In the present study, we have used five years (2009-2013) data of temperature and water vapor profiles obtained from satellite sounder instrument, Infrared Atmospheric Sounding Interferometer (IASI) onboard MetOp satellite, besides ERA-Interim data, to study their characteristics. The lower atmospheric data over the AS have been examined first to identify the areas where monsoon inversions are predominant and occur with higher strength. Based on this information, a detailed study has been made to investigate their characteristics separately in eastern AS (EAS) and western AS (WAS) to examine their contrasting features. The initiation and dissipation times of MI, their percentage occurrence, strength etc., has been examined using the huge data base. The relation with monsoon activity (rainfall) over Indian region during normal and poor monsoon years is also studied. WAS ΔT values are ~ 2 K less than those over the EAS, ΔT being temperature difference between 950 and 850 hPa. A much larger contrast between WAS and EAS in ΔT is noticed in ERA-Interim dataset Vis a Vis those observed by satellites. The possibility of detecting MI from another parameter, Refractivity N, obtained directly from another satellite constellation of GPS RO (COSMIC), has also been examined. MI detected from IASI and Atmospheric InfraRed Sounder (AIRS) sounder onboard NOAA satellite have been compared to see how far the two data sets can be combined to study the MI characteristics. We suggest MI could also be included as one of the semi-permanent features of southwest monsoon along with the presently accepted six parameters.

  9. Determination of cloud ice water content and geometrical thickness using microwave and infrared radiometric measurements

    NASA Technical Reports Server (NTRS)

    Wu, Man-Li C.

    1987-01-01

    Cloud ice water content and cloud geometrical thickness have been determined using a combination of near-infrared, thermal infrared and thermal microwave radiometric measurements. The radiometric measurements are from a Multispectral Cloud Radiometer, which has seven channels ranging from visible to thermal infrared, and an Advanced Microwave Moisture Sounder, which has four channels ranging from 90 to 183 GHz. Studies indicate that the microwave brightness temperatures depend not only on the amount of ice water content but also on the vertical distribution of ice water content. Studies also show that the low brightness temperature at 92 GHz for large ice water content is due to cloud reflection which reflects most of the irradiance incident at the cloud base downward. Therefore the 92 GHz channel detects a low brightness temperature at the cloud top.

  10. Advanced atmospheric measurements demonstrated by the 2.33 µm IIP Tropospheric Infrared Mapping Spectrometers (TIMS)

    NASA Astrophysics Data System (ADS)

    Kumer, J. B.; Rairden, R. L.; Roche, A. E.; Chatfield, R. B.

    2010-12-01

    Introduction: With support of NASA ESTO Instrument Incubator Program (IIP) Tropospheric Infrared Mapping Spectrometers (TIMS) have been demonstrated for multi-layer retrieval of Atmospheric CO. Two TIMS units operating near 2.33 µm and 4.68 µm were developed for this demonstration. The project was completed in Dec. 2008. It was possible to scale ground based measurements to show that the design would support a measurement from geostationary orbit of CO that would satisfy all the CO measurements requirements as listed for the Decadal Survey National Research Council Report for the Geostationary Coastal and Air Pollution Events (GEO-CAPE) Mission. This includes better than 10% total column precision, vertical retrieval in 3 or more independent layers, on contiguous coverage from 45S to 50N on the American Continents and coasts, with footprints < 7 km on a side, and with one hour revisit time. The measurements also indicated this design would collaterally provide measurement of total CH4 column of about 1% precision, O3 with vertical resolution of the troposphere and H2O profile with unprecedented vertical resolution in the lower troposphere. Advanced 2.33 µm TIMS measurements: The shortfall at the end of the project was that the demonstrated data were obtained from the ground, and in the community there was perceived a need to acquire air borne nadir looking measurements in order to reinforce the predictions for the GEO-CAPE application. Since the end of the project we have had some internal support towards this goal for at least one of the TIMS, the 2.33 µm unit. As a first small step we have recently obtained ground based data looking at the moon that illustrate not only the retrieval of earth atmospheric CO, CH4 and H2O, but also the spatial variation of lunar albedo. This latter measurement improves on the original IIP ground based demonstrations. The next nearly ultimate step is to acquire data in the nadir viewing mode from an air craft. Significant effort

  11. Revolutionary visible and infrared sensor detectors for the most advanced astronomical AO systems

    NASA Astrophysics Data System (ADS)

    Feautrier, Philippe; Gach, Jean-Luc; Guieu, Sylvain; Downing, Mark; Jorden, Paul; Rothman, Johan; de Borniol, Eric D.; Balard, Philippe; Stadler, Eric; Guillaume, Christian; Boutolleau, David; Coussement, Jérome; Kolb, Johann; Hubin, Norbert; Derelle, Sophie; Robert, Clélia; Tanchon, Julien; Trollier, Thierry; Ravex, Alain; Zins, Gérard; Kern, Pierre; Moulin, Thibaut; Rochat, Sylvain; Delpoulbé, Alain; Lebouqun, Jean-Baptiste

    2014-07-01

    We report in this paper decisive advance on the detector development for the astronomical applications that require very fast operation. Since the CCD220 and OCAM2 major success, new detector developments started in Europe either for visible and IR wavelengths. Funded by ESO and the FP7 Opticon European network, the NGSD CMOS device is fully dedicated to Natural and Laser Guide Star AO for the E-ELT with strong ESO involvement. The NGSD will be a 880x840 pixels CMOS detector with a readout noise of 3 e (goal 1e) at 700 Hz frame rate and providing digital outputs. A camera development, based on this CMOS device and also funded by the Opticon European network, is ongoing. Another major AO wavefront sensing detector development concerns IR detectors based on Avalanche Photodiode (e- APD) arrays within the RAPID project. Developed by the SOFRADIR and CEA/LETI manufacturers, the latter offers a 320x255 8 outputs 30 microns IR array, sensitive from 0.4 to 3 microns, with less than 2 e readout noise at 1600 fps. A rectangular window can also be programmed to speed up even more the frame rate when the full frame readout is not required. The high QE response, in the range of 70%, is almost flat over this wavelength range. Advanced packaging with miniature cryostat using pulse tube cryocoolers was developed in the frame of this programme in order to allow use on this detector in any type of environment. The characterization results of this device are presented here. Readout noise as low as 1.7 e at 1600 fps has been measured with a 3 microns wavelength cut-off chip and a multiplication gain of 14 obtained with a limited photodiode polarization of 8V. This device also exhibits excellent linearity, lower than 1%. The pulse tube cooling allows smart and easy cooling down to 55 K. Vibrations investigations using centroiding and FFT measurements were performed proving that the miniature pulse tube does not induce measurable vibrations to the optical bench, allowing use of this

  12. Work of PZT ceramics sounder for sound source artificial larynx

    NASA Astrophysics Data System (ADS)

    Sugio, Yuuichi; Kanetake, Ryota; Tanaka, Akimitsu; Ooe, Katsutoshi

    2007-04-01

    We aim to develop the easy-to-use artificial larynx with high tone quality. We focus on using a PZT ceramics sounder as its sound source, because it is small size, low power consumption, and harmless to humans. But conventional PZT ceramics sounder have the problem that it cannot generate an enough sound in the low frequency range, thus they cannot be used for artificial larynx. Then, we aim to develop the PZT ceramics sounder which can generate enough volume in the low frequency range. If we can lower the resonance frequency of the sounder, it can generate low pitch sound easily. Therefore I created the new diaphragm with low resonance frequency. In addition, we could obtain the high amplitude by changing method of driving. This time, we report on the characteristic comparison of this new PZT ceramics sounder and conventional one. Furthermore, for this new one, we analyzed the best alignment of PZT ceramics and the shape of the diaphragm to obtain low resonance frequency and big amplitude. In fact we analyzed the optimization of the structure. The analysis is done by computer simulation of ANSYS and Laser Doppler Vibrometer. In the future, we will add intonation to the generated sound by input wave form which is developed concurrently, and implant the sounder inside of the body by the method of fixing metal to biomolecule which is done too. And so high tone quality and convenient artificial larynx will be completed.

  13. Advancements in quantum cascade laser-based infrared microscopy of aqueous media.

    PubMed

    Haase, K; Kröger-Lui, N; Pucci, A; Schönhals, A; Petrich, W

    2016-06-23

    The large mid-infrared absorption coefficient of water frequently hampers the rapid, label-free infrared microscopy of biological objects in their natural aqueous environment. However, the high spectral power density of quantum cascade lasers is shifting this limitation such that mid-infrared absorbance images can be acquired in situ within signal-to-noise ratios of up to 100. Even at sample thicknesses well above 50 μm, signal-to-noise ratios above 10 are readily achieved. The quantum cascade laser-based microspectroscopy of aqueous media is exemplified by imaging an aqueous yeast solution and quantifying glucose consumption, ethanol generation as well as the production of carbon dioxide gas during fermentation. PMID:27032367

  14. Planetary protection for Europa radar sounder antenna

    NASA Astrophysics Data System (ADS)

    Aaron, Kim M.; Moussessian, Alina; Newlin, Laura E.; Willis, Paul B.; Chen, Fei; Harcke, Leif J.; Chapin, Elaine; Jun, Insoo; Gim, Yonggyu; McEachen, Michael; Allen, Scotty; Kirchner, Donald; Blankenship, Donald

    2016-05-01

    The potential for habitability puts stringent requirements on planetary protection for a mission to Europa. A long-wavelength radar sounder with a large antenna is one of the proposed instruments for a future Europa mission. The size and construction of radar sounding antennas make the usual methods of meeting planetary protection requirements challenging. This paper discusses a viable planetary protection scheme for an antenna optimized for Europa radar sounding. The preferred methodology for this antenna is exposure to 100 kGy (10 Mrad) in water of gamma radiation using a Cobalt-60 source for both bulk and surface sterilization and exposure to vapor hydrogen peroxide for surface treatment for possible recontamination due to subsequent handling. For the boom-supported antenna design, selected tests were performed to confirm the suitability of these treatment methods. A portion of a coilable boom residual from an earlier mission was irradiated and its deployment repeatability confirmed with no degradation. Elasticity was measured of several fiberglass samples using a four-point bending test to confirm that there was no degradation due to radiation exposure. Vapor hydrogen peroxide treatment was applied to the silver-coated braid used as the antenna radiating element as it was the material most likely to be susceptible to oxidative attack under the treatment conditions. There was no discernable effect. These tests confirm that the radar sounding antenna for a Europa mission should be able tolerate the proposed sterilization methods.

  15. Pioneer Venus Sounder Probe Solar Flux Radiometer

    NASA Technical Reports Server (NTRS)

    Tomasko, M. G.; Doose, L. R.; Palmer, J. M.; Holmes, A.; Wolfe, W. L.; Debell, A. G.; Brod, L. G.; Sholes, R. R.

    1980-01-01

    The Solar Flux Radiometer aboard the Pioneer Venus Sounder Probe operated successfully during its descent through the atmosphere of Venus. The instrument measured atmospheric radiance over the spectral range from 400 to 1800 nm as a function of altitude. Elevation and azimuthal measurements on the radiation field were made with five optical channels. Twelve filtered Si and Ge photovoltaic detectors were maintained near 30 C with a phase-change material. The detector output currents were processed with logarithmic transimpedance converters and digitized with an 11-bit A/D converter. Atmospheric sampling in both elevation and azimuth was done according to a Gaussian integration scheme. The serial output data averaged 20 bits/sec, including housekeeping (sync, spin period, sample timing and mode). The data were used to determine the deposition of solar energy in the atmosphere of Venus between 67 km and the surface along with upward and downward fluxes and radiances with an altitude resolution of several hundred meters. The results allow for more accurate modeling of the radiation balance of the atmosphere than previously possible.

  16. Advances in Target Detection and Tracking in Forward-Looking InfraRed (FLIR) Imagery

    PubMed Central

    Sanna, Andrea; Lamberti, Fabrizio

    2014-01-01

    Here we give context to the Special Issue on “Detection and Tracking of Targets in Forward-Looking InfraRed (FLIR) Imagery” in Sensors. We start with an introduction to the role of infrared images in today's vision-based applications, by outlining the specific challenges that characterize detection and tracking in FLIR images. We then illustrate why selected papers have been chosen to represent the domain of interest, by summarizing their main contributions to the state-of-the-art. Lastly, we sum up the main evidence found, and we underline some of the aspects that are worthy of further investigation in future research activities. PMID:25353980

  17. Advances in target detection and tracking in Forward-Looking InfraRed (FLIR) imagery.

    PubMed

    Sanna, Andrea; Lamberti, Fabrizio

    2014-01-01

    Here we give context to the Special Issue on "Detection and Tracking of Targets in Forward-Looking InfraRed (FLIR) Imagery" in Sensors. We start with an introduction to the role of infrared images in today's vision-based applications, by outlining the specific challenges that characterize detection and tracking in FLIR images. We then illustrate why selected papers have been chosen to represent the domain of interest, by summarizing their main contributions to the state-of-the-art. Lastly, we sum up the main evidence found, and we underline some of the aspects that are worthy of further investigation in future research activities. PMID:25353980

  18. Advanced III/V quantum-structure devices for high performance infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Rehm, Robert; Walther, Martin; Schmitz, Johannes; Rutz, Frank; Fleissner, Joachim; Scheibner, Ralf; Ziegler, Johann

    2009-09-01

    A mature production technology for Quantum Well Infrared Photodetector (QWIP) focal plane arrays (FPAs) and InAs/GaSb superlattice (SL) FPAs has been developed. Dual-band and dual-color QWIP- and SL-imagers are demonstrated for the 3-5 μm and 8-12 μm atmospheric windows in the infrared. The simultaneous, co-located detection of both spectral channels resolves the temporal and spatial registration problems common to existing bispectral IRimagers. The ability for a reliable remote detection of hot CO2 signatures makes tailored dual-color superlattice imagers ideally suited for missile warning systems for airborne platforms.

  19. Advances in Data Processing for Open-path Fourier Transform Infrared Spectrometry of Greenhouse Gases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The automated quantification of three greenhouse gases, ammonia, methane and nitrous oxide, in the vicinity of a large dairy farm by open-path Fourier transform infrared (OP/FT-IR) spectrometry at intervals of 5 minutes is demonstrated. Spectral pretreatment, including the detection and correction ...

  20. Recent advances in the use of non-destructive near infrared spectroscopy on intact olive fruits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this review is to illustrate the state of the art in the use of non-destructive near infrared (NIR) spectroscopy for quality evaluation of intact fruit in the olive industry. First, the most recent studies regarding the application of non-destructive NIR spectroscopy methods to asse...

  1. IRLooK: an advanced mobile infrared signature measurement, data reduction, and analysis system

    NASA Astrophysics Data System (ADS)

    Cukur, Tamer; Altug, Yelda; Uzunoglu, Cihan; Kilic, Kayhan; Emir, Erdem

    2007-04-01

    Infrared signature measurement capability has a key role in the electronic warfare (EW) self protection systems' development activities. In this article, the IRLooK System and its capabilities will be introduced. IRLooK is a truly innovative mobile infrared signature measurement system with all its design, manufacturing and integration accomplished by an engineering philosophy peculiar to ASELSAN. IRLooK measures the infrared signatures of military and civil platforms such as fixed/rotary wing aircrafts, tracked/wheeled vehicles and navy vessels. IRLooK has the capabilities of data acquisition, pre-processing, post-processing, analysis, storing and archiving over shortwave, mid-wave and long wave infrared spectrum by means of its high resolution radiometric sensors and highly sophisticated software analysis tools. The sensor suite of IRLooK System includes imaging and non-imaging radiometers and a spectroradiometer. Single or simultaneous multiple in-band measurements as well as high radiant intensity measurements can be performed. The system provides detailed information on the spectral, spatial and temporal infrared signature characteristics of the targets. It also determines IR Decoy characteristics. The system is equipped with a high quality field proven two-axes tracking mount to facilitate target tracking. Manual or automatic tracking is achieved by using a passive imaging tracker. The system also includes a high quality weather station and field-calibration equipment including cavity and extended area blackbodies. The units composing the system are mounted on flat-bed trailers and the complete system is designed to be transportable by large body aircraft.

  2. The Exomars Climate Sounder (EMCS) Investigation

    NASA Astrophysics Data System (ADS)

    Forget, F.; Schofield, J. T.; Kass, D. M.; Kleinböhl, A.; McCleese, D. J.; Allen, M. A.; Foote, M. C.; Millour, E.; Spiga, A.; Talagrand, O.; Calcutt, S. B.; Irwin, P. G. J.; Read, P. L.; Lewis, S. R.; Fouchet, T.; Lefèvre, F.; Määttänen, A.; Barnes, J. R.; Bougher, S. W.; Haberle, R. M.; Jeganathan, M.; Bowles, N.

    2011-10-01

    The ExoMars Climate Sounder (EMCS) investigation is developed at the Jet Propulsion Laboratory (Principal Investigator J. T. Schofield) in collaboration with an international scientific team from France, the United Kingdom and the USA. EMCS plans to map daily, global, pole-to-pole profiles of temperature, dust, water and CO2 ices, and water vapor from the proposed 2016 ExoMars Trace Gas Orbiter (EMTGO). These profiles are to be assimilated into Mars General Circulation Models (MGCMs) to generate global, interpolated fields of measured and derived parameters such as wind. Sciences objectives of EMCS are to: Enhance understanding of Mars photochemistry by providing daily, global, high vertical resolution fields of atmospheric state, aerosol distribution, and water vapor concentration. EMCS atmospheric state measurements, combined with data assimilation, characterize the transport, sources and sinks of trace gases measured by the proposed EMTGO. The aerosol measurements reveal the heterogeneous photochemical pathways of trace gases. EMCS plans to map water vapor, the key source gas for odd hydrogen, known to be important in Martian photochemistry. Extend the MRO/MCS climatology of high vertical resolution measurements of the lower and middle atmosphere of Mars, with the improved coverage of local time provided by the proposed EMTGO. EMCS will determine the diurnal, seasonal & long-term variability of temperature and aerosol, and its impact on photochemistry. EMCS climatology, combined with earlier data, would relate EMTGO observations to earlier trace gas measurements. Support future Mars missions with measured climatology and near real-time density profile retrievals for landing and aerocapture, in the same way that MRO/MCS supported the Phoenix landing and is supporting the Mars Science Laboratory (MSL) landing. EMCS could be the only instrument in orbit able to support Entry, Descent and Landing (EDL) for the proposed ExoMars 2018 Rover Mission.

  3. Latest developments of geostationary microwave sounder technologies for NOAA's mission

    NASA Astrophysics Data System (ADS)

    Bajpai, Shyam; Madden, Michael; Chu, Donald; Yapur, Martin

    2006-12-01

    The National Oceanic and Atmospheric Administration (NOAA) have been flying microwave sounders since 1975 on Polar Operational Environmental Satellites (POES). Microwave observations have made significant contributions to the understanding of the atmosphere and earth surface. This has helped in improving weather and storm tracking forecasts. However, NOAA's Geostationary Operational Environmental Satellites (GOES) have microwave requirements that can not be met due to the unavailability of proven technologies. Several studies of a Geostationary Microwave Sounder (GMS) have been conducted. Among those, are the Geostationary Microwave Sounder (GEM) that uses a mechanically steered solid dish antenna and the Geostationary Synthetic Thinned Aperture Radiometer (GeoSTAR) that utilizes a sparse aperture array. Both designs take advantage of the latest developments in sensor technology. NASA/Jet Propulsion Lab (JPL) has recently successfully built and tested a prototype ground-based GeoSTAR at 50 GHz frequency with promising test results. Current GOES IR Sounders are limited to cloud top observations. Therefore, a sounding suite of IR and Microwave should be able to provide observations under clear as well as cloudy conditions all the time. This paper presents the results of the Geostationary Microwave Sounder studies, user requirements, frequencies, technologies, limitations, and implementation strategies.

  4. Advanced Remote-Sensing Imaging Emission Spectrometer (ARIES): AIRS Spectral Resolution with MODIS Spatial Resolution

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Chahine, Moustafa T.; Aumann, Hartmut H.; OCallaghan, Fred

    2006-01-01

    The Advanced Remote-sensing Imaging Emission Spectrometer (ARIES) will measure a wide range of earth quantities fundamental to the study of global climate change. It will build upon the success of the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Atmospheric Infrared Sounder (AIRS) instruments currently flying on the EOS Aqua Spacecraft. Both instruments are facility instruments for NASA providing data to thousands of scientists investigating land, ocean and atmospheric Earth System processes. ARIES will meet all the requirements of AIRS and MODIS in a single compact instrument, while providing the next-generation capability of improved spatial resolution for AIRS and improved spectral resolution for MODIS.

  5. Stratospheric and mesospheric HO2 observations from the Aura Microwave Limb Sounder

    NASA Astrophysics Data System (ADS)

    Millán, L.; Wang, S.; Livesey, N.; Kinnison, D.; Sagawa, H.; Kasai, Y.

    2014-09-01

    This study introduces stratospheric and mesospheric hydroperoxyl radical (HO2) estimates from the Aura Microwave Limb Sounder (MLS) using an offline retrieval (i.e. run separately from the standard MLS algorithm). This new dataset provides two daily zonal averages, one during daytime and one during nighttime, with a varying vertical resolution from about 4 km at 10 hPa to around 14 km at 0.0032 hPa. A description of the methodology and an error analysis are presented. Comparisons against the Whole Atmosphere Community Climate Model (WACCM), the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) and the Far Infrared Spectrometer (FIRS-2) measurements, as well as, photochemical simulations demonstrate the robustness of the retrieval and indicate that the retrieval is sensitive enough to detect mesospheric HO2 layers during both day and night. This new dataset is the first long-term HO2 stratospheric and mesospheric satellite record and it provides needed constraints to help resolve the O3 deficit problem and the "HOx dilemma".

  6. Stratospheric and mesospheric HO2 observations from the Aura Microwave Limb Sounder

    NASA Astrophysics Data System (ADS)

    Millán, L.; Wang, S.; Livesey, N.; Kinnison, D.; Sagawa, H.; Kasai, Y.

    2015-03-01

    This study introduces stratospheric and mesospheric hydroperoxyl radical (HO2) estimates from the Aura Microwave Limb Sounder (MLS) using an offline retrieval (i.e. run separately from the standard MLS algorithm). This new data set provides two daily zonal averages, one during daytime from 10 to 0.0032 hPa (using day-minus-night differences between 10 and 1 hPa to ameliorate systematic biases) and one during nighttime from 1 to 0.0032 hPa. The vertical resolution of this new data set varies from about 4 km at 10 hPa to around 14 km at 0.0032 hPa. A description of the methodology and an error analysis are presented. Comparisons against the Whole Atmosphere Community Climate Model (WACCM), the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) and the Far Infrared Spectrometer (FIRS-2) measurements, as well as photochemical simulations, demonstrate the robustness of the retrieval and indicate that the retrieval is sensitive enough to detect mesospheric HO2 layers during both day and night. This new data set is the first long-term HO2 stratospheric and mesospheric satellite record and it provides needed constraints to help resolve the O3 deficit problem and the "HOx dilemma".

  7. View to the eastnortheast of the Sounder Antenna OvertheHorizon ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View to the east-northeast of the Sounder Antenna - Over-the-Horizon Backscatter Radar Network, Christmas Valley Radar Site Transmit Sector Five Sounder Antennas, On unnamed road west of Lost Forest Road, Christmas Valley, Lake County, OR

  8. View to the northeast of the Sounder Antenna OvertheHorizon ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View to the northeast of the Sounder Antenna - Over-the-Horizon Backscatter Radar Network, Christmas Valley Radar Site Transmit Sector Five Sounder Antennas, On unnamed road west of Lost Forest Road, Christmas Valley, Lake County, OR

  9. Advanced electro-mechanical micro-shutters for thermal infrared night vision imaging and targeting systems

    NASA Astrophysics Data System (ADS)

    Durfee, David; Johnson, Walter; McLeod, Scott

    2007-04-01

    Un-cooled microbolometer sensors used in modern infrared night vision systems such as driver vehicle enhancement (DVE) or thermal weapons sights (TWS) require a mechanical shutter. Although much consideration is given to the performance requirements of the sensor, supporting electronic components and imaging optics, the shutter technology required to survive in combat is typically the last consideration in the system design. Electro-mechanical shutters used in military IR applications must be reliable in temperature extremes from a low temperature of -40°C to a high temperature of +70°C. They must be extremely light weight while having the ability to withstand the high vibration and shock forces associated with systems mounted in military combat vehicles, weapon telescopic sights, or downed unmanned aerial vehicles (UAV). Electro-mechanical shutters must have minimal power consumption and contain circuitry integrated into the shutter to manage battery power while simultaneously adapting to changes in electrical component operating parameters caused by extreme temperature variations. The technology required to produce a miniature electro-mechanical shutter capable of fitting into a rifle scope with these capabilities requires innovations in mechanical design, material science, and electronics. This paper describes a new, miniature electro-mechanical shutter technology with integrated power management electronics designed for extreme service infra-red night vision systems.

  10. Advances in Front-end Enabling Technologies for Thermal Infrared `THz Torch' Wireless Communications

    NASA Astrophysics Data System (ADS)

    Hu, Fangjing; Lucyszyn, Stepan

    2016-05-01

    The thermal (emitted) infrared frequency bands (typically 20-40 and 60-100 THz) are best known for remote sensing applications that include temperature measurement (e.g. non-contacting thermometers and thermography), night vision and surveillance (e.g. ubiquitous motion sensing and target acquisition). This unregulated part of the electromagnetic spectrum also offers commercial opportunities for the development of short-range secure communications. The `THz Torch' concept, which fundamentally exploits engineered blackbody radiation by partitioning thermally generated spectral radiance into pre-defined frequency channels, was recently demonstrated by the authors. The thermal radiation within each channel can be independently pulse-modulated, transmitted and detected, to create a robust form of short-range secure communications within the thermal infrared. In this paper, recent progress in the front-end enabling technologies associated with the THz Torch concept is reported. Fundamental limitations of this technology are discussed; possible engineering solutions for further improving the performance of such thermal-based wireless links are proposed and verified either experimentally or through numerical simulations. By exploring a raft of enabling technologies, significant enhancements to both data rate and transmission range can be expected. With good engineering solutions, the THz Torch concept can exploit nineteenth century physics with twentieth century multiplexing schemes for low-cost twenty-first century ubiquitous applications in security and defence.

  11. Advances in data processing for open-path Fourier transform infrared spectrometry of greenhouse gases.

    PubMed

    Shao, Limin; Griffiths, Peter R; Leytem, April B

    2010-10-01

    The automated quantification of three greenhouse gases, ammonia, methane, and nitrous oxide, in the vicinity of a large dairy farm by open-path Fourier transform infrared (OP/FT-IR) spectrometry at intervals of 5 min is demonstrated. Spectral pretreatment, including the automated detection and correction of the effect of interrupting the infrared beam, is by a moving object, and the automated correction for the nonlinear detector response is applied to the measured interferograms. Two ways of obtaining quantitative data from OP/FT-IR data are described. The first, which is installed in a recently acquired commercial OP/FT-IR spectrometer, is based on classical least-squares (CLS) regression, and the second is based on partial least-squares (PLS) regression. It is shown that CLS regression only gives accurate results if the absorption features of the analytes are located in very short spectral intervals where lines due to atmospheric water vapor are absent or very weak; of the three analytes examined, only ammonia fell into this category. On the other hand, PLS regression works allowed what appeared to be accurate results to be obtained for all three analytes. PMID:20879801

  12. Advances in Front-end Enabling Technologies for Thermal Infrared ` THz Torch' Wireless Communications

    NASA Astrophysics Data System (ADS)

    Hu, Fangjing; Lucyszyn, Stepan

    2016-09-01

    The thermal (emitted) infrared frequency bands (typically 20-40 and 60-100 THz) are best known for remote sensing applications that include temperature measurement (e.g. non-contacting thermometers and thermography), night vision and surveillance (e.g. ubiquitous motion sensing and target acquisition). This unregulated part of the electromagnetic spectrum also offers commercial opportunities for the development of short-range secure communications. The ` THz Torch' concept, which fundamentally exploits engineered blackbody radiation by partitioning thermally generated spectral radiance into pre-defined frequency channels, was recently demonstrated by the authors. The thermal radiation within each channel can be independently pulse-modulated, transmitted and detected, to create a robust form of short-range secure communications within the thermal infrared. In this paper, recent progress in the front-end enabling technologies associated with the THz Torch concept is reported. Fundamental limitations of this technology are discussed; possible engineering solutions for further improving the performance of such thermal-based wireless links are proposed and verified either experimentally or through numerical simulations. By exploring a raft of enabling technologies, significant enhancements to both data rate and transmission range can be expected. With good engineering solutions, the THz Torch concept can exploit nineteenth century physics with twentieth century multiplexing schemes for low-cost twenty-first century ubiquitous applications in security and defence.

  13. Identification of fungal phytopathogens using Fourier transform infrared-attenuated total reflection spectroscopy and advanced statistical methods

    NASA Astrophysics Data System (ADS)

    Salman, Ahmad; Lapidot, Itshak; Pomerantz, Ami; Tsror, Leah; Shufan, Elad; Moreh, Raymond; Mordechai, Shaul; Huleihel, Mahmoud

    2012-01-01

    The early diagnosis of phytopathogens is of a great importance; it could save large economical losses due to crops damaged by fungal diseases, and prevent unnecessary soil fumigation or the use of fungicides and bactericides and thus prevent considerable environmental pollution. In this study, 18 isolates of three different fungi genera were investigated; six isolates of Colletotrichum coccodes, six isolates of Verticillium dahliae and six isolates of Fusarium oxysporum. Our main goal was to differentiate these fungi samples on the level of isolates, based on their infrared absorption spectra obtained using the Fourier transform infrared-attenuated total reflection (FTIR-ATR) sampling technique. Advanced statistical and mathematical methods: principal component analysis (PCA), linear discriminant analysis (LDA), and k-means were applied to the spectra after manipulation. Our results showed significant spectral differences between the various fungi genera examined. The use of k-means enabled classification between the genera with a 94.5% accuracy, whereas the use of PCA [3 principal components (PCs)] and LDA has achieved a 99.7% success rate. However, on the level of isolates, the best differentiation results were obtained using PCA (9 PCs) and LDA for the lower wavenumber region (800-1775 cm-1), with identification success rates of 87%, 85.5%, and 94.5% for Colletotrichum, Fusarium, and Verticillium strains, respectively.

  14. FeCo/graphitic-shell nanocrystals as advanced magnetic-resonance-imaging and near-infrared agents

    NASA Astrophysics Data System (ADS)

    Seo, Won Seok; Lee, Jin Hyung; Sun, Xiaoming; Suzuki, Yoriyasu; Mann, David; Liu, Zhuang; Terashima, Masahiro; Yang, Philip C.; McConnell, Michael V.; Nishimura, Dwight G.; Dai, Hongjie

    2006-12-01

    Nanocrystals with advanced magnetic or optical properties have been actively pursued for potential biological applications, including integrated imaging, diagnosis and therapy. Among various magnetic nanocrystals, FeCo has superior magnetic properties, but it has yet to be explored owing to the problems of easy oxidation and potential toxicity. Previously, FeCo nanocrystals with multilayered graphitic carbon, pyrolytic carbon or inert metals have been obtained, but not in the single-shelled, discrete, chemically functionalized and water-soluble forms desired for biological applications. Here, we present a scalable chemical vapour deposition method to synthesize FeCo/single-graphitic-shell nanocrystals that are soluble and stable in water solutions. We explore the multiple functionalities of these core-shell materials by characterizing the magnetic properties of the FeCo core and near-infrared optical absorbance of the single-layered graphitic shell. The nanocrystals exhibit ultra-high saturation magnetization, r1 and r2 relaxivities and high optical absorbance in the near-infrared region. Mesenchymal stem cells are able to internalize these nanoparticles, showing high negative-contrast enhancement in magnetic-resonance imaging (MRI). Preliminary in vivo experiments achieve long-lasting positive-contrast enhancement for vascular MRI in rabbits. These results point to the potential of using these nanocrystals for integrated diagnosis and therapeutic (photothermal-ablation) applications.

  15. Advances in shutter drive technology to enhance man-portable infrared cameras

    NASA Astrophysics Data System (ADS)

    Durfee, David

    2012-06-01

    With an emphasis on highest reliability, infrared (IR) imagers have traditionally used simplest-possible shutters and field-proven technology. Most commonly, single-step rotary or linear magnetic actuators have been used with good success. However, several newer shutter drive technologies offer benefits in size and power reduction, enabling man-portable imagers that are more compact, lighter, and more durable. This paper will discuss improvements in shutter and shutter drive technology, which enable smaller and more power-efficient imagers. Topics will transition from single-step magnetic actuators to multi-stepping magnetic drives, latching vs. balanced systems for blade position shock-resistance, motor and geared motor drives, and associated stepper driver electronics. It will highlight performance tradeoffs pertinent to man-portable military systems.

  16. Recent advances of mid-infrared compact, field deployable sensors: principles and applications

    NASA Astrophysics Data System (ADS)

    Tittel, Frank; Gluszek, Aleksander; Hudzikowski, Arkadiusz; Dong, Lei; Li, Chunguang; Patimisco, Pietro; Sampaolo, Angelo; Spagnolo, Vincenzo; Wojtas, Jacek

    2016-04-01

    The recent development of compact interband cascade lasers(ICLs) and quantum cascade lasers (QCLs) based trace gas sensors will permit the targeting of strong fundamental rotational-vibrational transitions in the mid-infrared which are one to two orders of magnitude more intense than transitions in the overtone and combination bands in the near-infrared. This has led to the design and fabrication of mid-infrared compact, field deployable sensors for use in the petrochemical industry, environmental monitoring and atmospheric chemistry. Specifically, the spectroscopic detection and monitoring of four molecular species, methane (CH4) [1], ethane (C2H6), formaldehyde (H2CO) [2] and hydrogen sulphide (H2S) [3] will be described. CH4, C2H6 and H2CO can be detected using two detection techniques: mid-infrared tunable laser absorption spectroscopy (TDLAS) using a compact multi-pass gas cell and quartz enhanced photoacoustic spectroscopy (QEPAS). Both techniques utilize state-of-the-art mid-IR, continuous wave (CW), distributed feedback (DFB) ICLs and QCLs. TDLAS was performed with an ultra-compact 54.6m effective optical path length innovative spherical multipass gas cell capable of 435 passes between two concave mirrors separated by 12.5 cm. QEPAS used a small robust absorption detection module (ADM) which consists of a quartz tuning fork (QTF), two optical windows, gas inlet/outlet ports and a low noise frequency pre-amplifier. Wavelength modulation and second harmonic detection were employed for spectral data processing. TDLAS and QEPAS can achieve minimum detectable absorption losses in the range from 10-8 to 10-11cm-1/Hz1/2. Several recent examples of real world applications of field deployable gas sensors will be described. For example, an ICL based TDLAS sensor system is capable of detecting CH4 and C2H6 concentration levels of 1 ppb in a 1 sec. sampling time, using an ultra-compact, robust sensor architecture. H2S detection was realized with a THz QEPAS sensor

  17. Advanced InSb monolithic Charge Coupled Infrared Imaging Devices (CCIRID)

    NASA Technical Reports Server (NTRS)

    Koch, T. L.; Thom, R. D.; Parrish, W. D.

    1981-01-01

    The continued development of monolithic InSb charge coupled infrared imaging devices (CCIRIDs) is discussed. The processing sequence and structural design of 20-element linear arrays are discussed. Also, results obtained from radiometric testing of the 20-element arrays using a clamped sample-and-hold output circuit are reported. The design and layout of a next-generation CCIRID chip are discussed. The major devices on this chip are a 20 by 16 time-delay-and-integration (TDI) area array and a 100-element linear imaging array. The development of a process for incorporating an ion implanted S(+) planar channel stop into the CCIRID structure and the development of a thin film transparent photogate are also addressed. The transparent photogates will increase quantum efficiency to greater than 70% across the 2.5 to 5.4 micrometer spectral region in future front-side illuminated CCIRIDs.

  18. Advanced fire observation by the Intelligent Infrared Sensor prototype FOCUS on the International Space Station

    NASA Astrophysics Data System (ADS)

    Oertel, D.; Haschberger, P.; Tank, V.; Lanzl, F.; Zhukov, B.; Jahn, H.; Briess, K.; Lorenz, E.; Roeser, H.-P.; Ginati, A.; Tobehn, C.; Schulte in den Bäumen, J.; Christmann, U.

    1999-01-01

    Current and planned operational space-borne Earth observation systems provide spatially, radiometrically or temporally crude data for the detection and monitoring of high temperature phenomena on the surface of our planet. High Temperature Events (HTE) very often cause environmental disasters. Such HTE are forest and savannah fires, fires of open coal mines, volcanic activities and others (e.g. fires of oil wells, pipelines etc.). A simultaneous co-registration of a combination of infrared (IR) and visible (VIS) channels is the key for a reliable autonomous on-board detection of High Temperature Events (HTE) on Earth surface, such as vegetation fires and volcano eruptions. This is the main feature of the FOCUS experiment. Furthermore there are ecology-oriented objectives of the FOCUS experiment mainly related to spectrometric/imaging remote inspection and parameter extraction of selected HTEs, and to the assessment of some ecological consequences of HTEs, such as aerosol and gas emission. Based on own experimental work and supported by Co-Investigators from Italy, Greece, France, Spain, Russia and Germany, DLR proposed in 1997 to use the International Space Station (ISS) in its early utilization phase as a platform and test-bed for an Intelligent Infrared Sensor prototype FOCUS of a future Environmental Disaster Recognition Satellite System. FOCUS is considered by ESA as an important mission combining a number of proven technologies and observation techniques to provide the scientific and operational user community with key data for the classification and monitoring of forest fires. FOCUS was selected as one of five European ``Groupings'' to be flown as an externally mounted payload during the early utilisation phase of the ISS. The FOCUS Phase A Study will be performed by OHB-System, DLR and Zeiss from September 1998 until May 1999.

  19. Electrochemically induced far-infrared difference spectroscopy on metalloproteins using advanced synchrotron technology.

    PubMed

    Vita, Nicolas; Brubach, Jean-Blaise; Hienerwadel, Rainer; Bremond, Nicolas; Berthomieu, Dorothée; Roy, Pascale; Berthomieu, Catherine

    2013-03-01

    New information on a protein's structure, intra- and intermolecular hydrogen bonds, or metal-ligand bond properties can be unraveled in the far-infrared (far-IR)-terahertz-domain (600-3 cm(-1) or 18-0.1 THz). In this study, we compare the performances of thermal sources with synchrotron far-IR to record reaction-induced Fourier transform infrared (FT-IR) difference signals with proteins in solution. Using the model protein Cu-azurin placed in a short path length electrochemical cell adapted for transmission spectroscopy in vacuum-purged optics, we show that minute spectral shifts induced by metal isotope labeling or temperature changes are detected using the far-IR beamline AILES of the synchrotron SOLEIL. On one hand, these data allow us to identify modes involving Cu-ligand vibrations and pave the way for the analysis of metal sites or metal redox states of proteins not amenable to resonance Raman spectroscopy. On another hand, small band shifts or changes in band intensity upon temperature modifications show that far-IR difference spectroscopy allows one to extract from a complex background hydrogen-bonding signatures directly relevant to the protein function. For Cu-azurin, a temperature-sensitive IR mode involving Cu(II)-His vibrations points to the role of a hydrogen bond between a Cu histidine ligand and the water solvent in tuning the Cu(II)-histidine bond properties. Furthermore, these experimental data support the possible role of a His117-water interaction in electron-transfer activity of Cu-azurin proposed by theoretical studies. PMID:23360365

  20. The high resoultion dynamics limb sounder (HIRDLS): An instrument for the study of global change

    NASA Technical Reports Server (NTRS)

    Gille, J. C.; Barnett, J. J.

    1992-01-01

    Two groups, in the Unites States and the United Kingdom, proposed to further develop and use infrared limb scanning instruments in atmospheric studies from Earth Observing System (EOS). Subsequent review showed that the scientific objectives and basic measurement approaches were very similar, although there were differences in the proposed instrumentation. Their teams agreed to merge the two investigations into the High Resolution Dynamics Limb Sounder (HIRDLS). Under the resulting understanding, the two teams have combined, and will produce a single design to satisfy the scientific requirements of their investigations. The characteristics of limb scanning and earlier experiments are reviewed. The HIRDLS scientific objectives and requirements on the derived geophysical quantities are presented, and the way in which they drive the design of HIRDLS is indicated. A brief description of the HIRDLS instrument and a summary of HIRDLS capabilities follow.

  1. Tropical stratospheric water vapor measured by the microwave limb sounder (MLS)

    NASA Technical Reports Server (NTRS)

    Carr, E. S.; Harwood, R. S.; Mote, P. W.; Peckham, G. E.; Suttie, R. A.; Lahoz, W. A.; O'Neill, A.; Froidevaux, L.; Jarnot, R. F.; Read, W. G.

    1995-01-01

    The lower stratospheric variability of equatorial water vapor, measured by the Microwave Limb Sounder (MLS), follows an annual cycle modulated by the quasi-biennial oscillation. At levels higher in the stratosphere, water vapor measurements exhibit a semi-annual oscillatory signal with the largest amplitudes at 2.2 and 1hPa. Zonal-mean cross sections of MLS water vapor are consistent with previous satellite measurements from the limb infrared monitor of the stratosphere (LIMS) and the stratospheric Aerosol and Gas Experiment 2 (SAGE 2) instruments in that they show water vapor increasing upwards and the polewards from a well defined minimum in the tropics. The minimum values vary in height between the retrieved 46 and 22hPa pressure levels.

  2. High Vertically Resolved Atmospheric and Surface/Cloud Parameters Retrieved with Infrared Atmospheric Sounding Interferometer (IASI)

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Liu, Xu; Larar, Allen M.; Smith, WIlliam L.; Taylor, Jonathan P.; Schluessel, Peter; Strow, L. Larrabee; Mango, Stephen A.

    2008-01-01

    The Joint Airborne IASI Validation Experiment (JAIVEx) was conducted during April 2007 mainly for validation of the IASI on the MetOp satellite. IASI possesses an ultra-spectral resolution of 0.25/cm and a spectral coverage from 645 to 2760/cm. Ultra-spectral resolution infrared spectral radiance obtained from near nadir observations provide atmospheric, surface, and cloud property information. An advanced retrieval algorithm with a fast radiative transfer model, including cloud effects, is used for atmospheric profile and cloud parameter retrieval. This physical inversion scheme has been developed, dealing with cloudy as well as cloud-free radiance observed with ultraspectral infrared sounders, to simultaneously retrieve surface, atmospheric thermodynamic, and cloud microphysical parameters. A fast radiative transfer model, which applies to the cloud-free and/or clouded atmosphere, is used for atmospheric profile and cloud parameter retrieval. A one-dimensional (1-d) variational multi-variable inversion solution is used to improve an iterative background state defined by an eigenvector-regression-retrieval. The solution is iterated in order to account for non-linearity in the 1-d variational solution. It is shown that relatively accurate temperature and moisture retrievals are achieved below optically thin clouds. For optically thick clouds, accurate temperature and moisture profiles down to cloud top level are obtained. For both optically thin and thick cloud situations, the cloud top height can be retrieved with relatively high accuracy (i.e., error < 1 km). Preliminary retrievals of atmospheric soundings, surface properties, and cloud optical/microphysical properties with the IASI observations are obtained and presented. These retrievals will be further inter-compared with those obtained from airborne FTS system, such as the NPOESS Airborne Sounder Testbed - Interferometer (NAST-I), dedicated dropsondes, radiosondes, and ground based Raman Lidar. The

  3. Characteristics of monsoon inversions over the Arabian Sea observed by satellite sounder and reanalysis data sets

    NASA Astrophysics Data System (ADS)

    Dwivedi, Sanjeev; Narayanan, M. S.; Venkat Ratnam, M.; Narayana Rao, D.

    2016-04-01

    Monsoon inversion (MI) over the Arabian Sea (AS) is one of the important characteristics associated with the monsoon activity over Indian region during summer monsoon season. In the present study, we have used 5 years (2009-2013) of temperature and water vapour measurement data obtained from satellite sounder instrument, an Infrared Atmospheric Sounding Interferometer (IASI) onboard MetOp satellite, in addition to ERA-Interim data, to study their characteristics. The lower atmospheric data over the AS have been examined first to identify the areas where MIs are predominant and occur with higher strength. Based on this information, a detailed study has been made to investigate their characteristics separately in the eastern AS (EAS) and western AS (WAS) to examine their contrasting features. The initiation and dissipation times of MIs, their percentage occurrence, strength, etc., has been examined using the huge database. The relation with monsoon activity (rainfall) over Indian region during normal and poor monsoon years is also studied. WAS ΔT values are ˜ 2 K less than those over the EAS, ΔT being the temperature difference between 950 and 850 hPa. A much larger contrast between the WAS and EAS in ΔT is noticed in ERA-Interim data set vis-à-vis those observed by satellites. The possibility of detecting MI from another parameter, refractivity N, obtained directly from another satellite constellation of GPS Radio Occultation (RO) (COSMIC), has also been examined. MI detected from IASI and Atmospheric Infrared Sounder (AIRS) onboard the NOAA satellite have been compared to see how far the two data sets can be combined to study the MI characteristics. We suggest MI could also be included as one of the semipermanent features of southwest monsoon along with the presently accepted six parameters.

  4. Film handling procedures for Apollo 17 lunar sounder

    NASA Technical Reports Server (NTRS)

    Weinstein, M. S.

    1972-01-01

    Film handling procedures for the Apollo 17 Lunar Sounder are itemized, including purchase of flight film, establishment of processing standards, transportation of flight films, flight film certification, application of pre- and post-sensitometry, film loading and downloading, film processing, titling, and duplication.

  5. Results of the international ionospheric Doppler sounder network

    NASA Astrophysics Data System (ADS)

    Lastovicka, Jan; Chum, Jaroslav

    2016-07-01

    This paper summarizes main recent results reached by the Czech-lead international network of ionospheric Doppler sounders. The network consists of Doppler sounders in the western half of Czechia (5 measuring paths, 3 frequencies with central receivers in Prague), northern Taiwan (3 transmitters, two separated receivers, 1 frequency), and three similar systems (3 measuring paths with 1 receiver and 1 frequency) in Tucuman (north-western Argentina), Hermanus (the southernmost South Africa) and Luisville (northern South Africa). Three main areas of research have been (1) statistical properties of gravity waves, (2) ionospheric effects of earthquakes, and (3) low latitude/equatorial phenomena. Some results: (1) the theoretically expected dominance of gravity wave propagation against wind has been confirmed; (2) impact of the Tohoku 2001 M9.0 earthquake was registered in the ionosphere over the Czech Republic as long-period infrasound on the distance of about 9000 km from epicenter; analysis of ionospheric infrasound excited by the Nepal 2015 M7.8 earthquake observed by the Czech and Taiwan Doppler sounders showed that the intensity of ionospheric signal is significantly height dependent and that the Doppler shift depends not only on the advection (up and down motion) of the reflecting layer but also on the compression/rarefaction of the electron gas; (3) spread F structures observed by Doppler sounders in Tucuman and Taiwan (both under the crest of equatorial ionization anomaly) provide results consistent with S4 scintillation data and with previous optical, GPS and satellite measurements.

  6. Laser Atmospheric Wind Sounder (LAWS) phase 1. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The laser atmospheric wind sounder (LAWS) will provide a new space based capability for the direct measurement of atmospheric winds in the troposphere. LAWS will make a major contribution toward advancing the understanding and prediction of the total Earth system and NASA's Earth Observing System (EOS) Program. LAWS is designed to measure a fundamental atmospheric parameter required to advance weather forecasting accuracies and investigate global climatic change. LAWS has a potential added benefit of providing (global) concentration profiles of large aerosols including visible and subvisible cirrus clouds, volcanic dust, smoke, and other pollutants. The objective of this Phase One study was to develop a LAWS concept and configuration. The instrument design is outlined in this first volume of three.

  7. Online analysis of H2S and SO2 via advanced mid-infrared gas sensors.

    PubMed

    Petruci, João Flavio da Silveira; Wilk, Andreas; Cardoso, Arnaldo Alves; Mizaikoff, Boris

    2015-10-01

    Volatile sulfur compounds (VSCs) are among the most prevalent emitted pollutants in urban and rural atmospheres. Mainly because of the versatility of sulfur regarding its oxidation state (2- to 6+), VSCs are present in a wide variety of redox-environments, concentration levels, and molar ratios. Among the VSCs, hydrogen sulfide and sulfur dioxide are considered most relevant and have simultaneously been detected within naturally and anthropogenically caused emission events (e.g., volcano emissions, food production and industries, coal pyrolysis, and various biological activities). Next to their presence as pollutants, changes within their molar ratio may also indicate natural anomalies. Prior to analysis, H2S- and SO2-containing samples are usually preconcentrated via solid sorbents and are then detected by gas chromatographic techniques. However, such analytical strategies may be of limited selectivity, and the dimensions and operation modalities of the involved instruments prevent routine field usage. In this contribution, we therefore describe an innovative portable mid-infrared chemical sensor for simultaneously determining and quantifying gaseous H2S and SO2 via coupling a substrate-integrated hollow waveguides (iHWG) serving as a highly miniaturized mid-infrared photon conduit and gas cell with a custom-made preconcentration tube and an in-line UV-converter device. Both species were collected onto a solid sorbent within the preconcentrator and then released by thermal desorption into the UV-device. Hydrogen sulfide is detected by UV-assisted quantitative conversion of the rather weak IR-absorber H2S into SO2, which provides a significantly more pronounced and distinctively detectable rovibrational signature. Modulation of the UV-device system (i.e., UV-lamp on/off) enables discriminating between SO2 generated from H2S conversion and abundant SO2 signals. After optimization of the operational parameters, calibrations in the range of 0.75-10 ppmv with a limit

  8. Advancing toward far-infrared interferometry in space through coordinated international efforts

    NASA Astrophysics Data System (ADS)

    Leisawitz, D.; Baryshev, A.; Griffin, M. J.; Helmich, F. P.; Ivison, R. J.; Rinehart, S. A.; Savini, G.; Shibai, H.

    2013-09-01

    The international far-infrared astrophysics community is eager to follow up Spitzer and Herschel observations with sensitive, high-resolution imaging and spectroscopy, for such measurements are needed to understand merger-driven star formation, Active Galactic Nuclei, chemical enrichment in galaxies, star and planetary system formation, and the development and prevalence of water-bearing planets. Through concerted efforts worldwide, the key enabling technologies are maturing. NASA sponsored the SPIRIT Probe and SPECS flagship-class mission concept studies during the past decade. Experiments involving interferometry testbeds are underway in the UK and the US. With new EU Seventh Framework Programme support, the European community is undertaking science definition studies and investing in enabling technology for a future space far-IR interferometry mission. The Japanese balloon-borne far-IR interferometer FITE is being prepared for its maiden flight, and NASA's BETTII balloon interferometer is under development, with contributions from the UK. This paper reviews recent technical progress, summarizes mission design tradeoffs, and offers a vision for space-based far-IR interferometry involving international collaboration.

  9. Recent advances in measurement of the water vapour continuum in the far-infrared spectral region.

    PubMed

    Green, Paul D; Newman, Stuart M; Beeby, Ralph J; Murray, Jonathan E; Pickering, Juliet C; Harries, John E

    2012-06-13

    We present a new derivation of the foreign-broadened water vapour continuum in the far-infrared (far-IR) pure rotation band between 24 μm and 120 μm (85-420 cm(-1)) from field data collected in flight campaigns of the Continuum Absorption by Visible and IR radiation and Atmospheric Relevance (CAVIAR) project with Imperial College's Tropospheric Airborne Fourier Transform Spectrometer (TAFTS) far-IR spectro-radiometer instrument onboard the Facility for Airborne Atmospheric Measurement (FAAM) BAe-146 research aircraft; and compare this new derivation with those recently published in the literature in this spectral band. This new dataset validates the current Mlawer-Tobin-Clough-Kneizys-Davies (MT-CKD) 2.5 model parametrization above 300 cm(-1), but indicates the need to strengthen the parametrization below 300 cm(-1), by up to 50 per cent at 100 cm(-1). Data recorded at a number of flight altitudes have allowed measurements within a wide range of column water vapour environments, greatly increasing the sensitivity of this analysis to the continuum strength. PMID:22547236

  10. Recent advances in near-infrared fluorescence-guided imaging surgery using indocyanine green.

    PubMed

    Namikawa, Tsutomu; Sato, Takayuki; Hanazaki, Kazuhiro

    2015-12-01

    Near-infrared (NIR) fluorescence imaging has better tissue penetration, allowing for the effective rejection of excitation light and detection deep inside organs. Indocyanine green (ICG) generates NIR fluorescence after illumination by an NIR ray, enabling real-time intraoperative visualization of superficial lymphatic channels and vessels transcutaneously. The HyperEye Medical System (HEMS) can simultaneously detect NIR rays under room light to provide color imaging, which enables visualization under bright light. Thus, NIR fluorescence imaging using ICG can provide for excellent diagnostic accuracy in detecting sentinel lymph nodes in cancer and microvascular circulation in various ischemic diseases, to assist us with intraoperative decision making. Including HEMS in this system could further improve the sentinel lymph node mapping and intraoperative identification of blood supply in reconstructive organs and ischemic diseases, making it more attractive than conventional imaging. Moreover, the development of new laparoscopic imaging systems equipped with NIR will allow fluorescence-guided surgery in a minimally invasive setting. Future directions, including the conjugation of NIR fluorophores to target specific cancer markers might be realistic technology with diagnostic and therapeutic benefits. PMID:25820596

  11. Recent advances in mid-infrared (3--6 micron) emitters

    SciTech Connect

    Biefeld, R.M.; Allerman, A.A.; Kurtz, S.R.

    1997-06-01

    The authors describe the metal-organic chemical vapor deposition (MOCVD) of InAsSb/InAs multiple quantum well (MQW) and InAsSb/InAsP strained-layer superlattice (SLS) active regions for use in mid-infrared emitters. They have made gain-guided, injection lasers using undoped, p-type AlAs{sub 0.16}Sb{sub 0.84} for optical confinement and both strained InAsSb/InAs MQW and InAsSb/InAsP SLS active regions. The lasers and LEDs utilize the semi-metal properties of a p-GaAsSb/n-InAs heterojunction as a source for electrons injected into active regions. A multiple-stage LED utilizing this semi-metal injection scheme is reported. Gain-guided, injected lasers with a strained InAsSb/InAs MQW active region operated up to 210 K in pulsed mode with an emission wavelength of 3.8--3.9 {micro}m and a characteristic temperature of 29--40 K. They also present results for both optically pumped and injection lasers with InAsSb/InAsP SLS active regions. The maximum operating temperature of an optically pumped 3.7 {micro}m SLS laser was 240 K. An SLS LED emitted at 4.0 {micro}m with 80 {micro}W of power at 300 K.

  12. Cortical Signal Analysis and Advances in Functional Near-Infrared Spectroscopy Signal: A Review

    PubMed Central

    Kamran, Muhammad A.; Mannan, Malik M. Naeem; Jeong, Myung Yung

    2016-01-01

    Functional near-infrared spectroscopy (fNIRS) is a non-invasive neuroimaging modality that measures the concentration changes of oxy-hemoglobin (HbO) and de-oxy hemoglobin (HbR) at the same time. It is an emerging cortical imaging modality with a good temporal resolution that is acceptable for brain-computer interface applications. Researchers have developed several methods in last two decades to extract the neuronal activation related waveform from the observed fNIRS time series. But still there is no standard method for analysis of fNIRS data. This article presents a brief review of existing methodologies to model and analyze the activation signal. The purpose of this review article is to give a general overview of variety of existing methodologies to extract useful information from measured fNIRS data including pre-processing steps, effects of differential path length factor (DPF), variations and attributes of hemodynamic response function (HRF), extraction of evoked response, removal of physiological noises, instrumentation, and environmental noises and resting/activation state functional connectivity. Finally, the challenges in the analysis of fNIRS signal are summarized. PMID:27375458

  13. Cortical Signal Analysis and Advances in Functional Near-Infrared Spectroscopy Signal: A Review.

    PubMed

    Kamran, Muhammad A; Mannan, Malik M Naeem; Jeong, Myung Yung

    2016-01-01

    Functional near-infrared spectroscopy (fNIRS) is a non-invasive neuroimaging modality that measures the concentration changes of oxy-hemoglobin (HbO) and de-oxy hemoglobin (HbR) at the same time. It is an emerging cortical imaging modality with a good temporal resolution that is acceptable for brain-computer interface applications. Researchers have developed several methods in last two decades to extract the neuronal activation related waveform from the observed fNIRS time series. But still there is no standard method for analysis of fNIRS data. This article presents a brief review of existing methodologies to model and analyze the activation signal. The purpose of this review article is to give a general overview of variety of existing methodologies to extract useful information from measured fNIRS data including pre-processing steps, effects of differential path length factor (DPF), variations and attributes of hemodynamic response function (HRF), extraction of evoked response, removal of physiological noises, instrumentation, and environmental noises and resting/activation state functional connectivity. Finally, the challenges in the analysis of fNIRS signal are summarized. PMID:27375458

  14. Estimation of planetary surface roughness by HF sounder observation

    NASA Astrophysics Data System (ADS)

    Kobayashi, T.; Ono, T.

    Japanese Martian exploration project "Nozomi" was to carry out several science missions. Plasma Wave Sounder, one of those onboard missions, was an HF sounder to study Martian plasma environment, and Martian surface with the altimetry mode (Oya and Ono, 1998) as well. The altimetry mode observation was studied by means of computer simulations utilizing the KiSS code which had been originally designed to simulate the SELENE Lunar Radar Sounder, a spaceborne HF GPR, based on Kirchhoff approximation theory (Kobayashi, Oya and Ono, 2002). We found an empirical power law for the standard deviation of observed altitudes over Gaussian random rough surfaces: it varies in proportion to the square of the RMS gradient of the surface √{2} hRMS{λ_0, where hRMS and λ_0 are the RMS height of the surface and the correlation distance of the surface, respectively. We applied Geometrical optics to understand this empirical power law, and derived a square power law for the standard deviation of the observed altitude. Our Geometrical optics model assumed the followings: 1) the observed surface is a Gaussian random rough surface, 2) the mean surface is a flat horizontal plane, 3) the observed surface echo is the back scattering echoes, 4) the observed altitude is the mean value of the apparent range of those back scattering echoes. These results imply that HF sounder may be utilized to measure the surface roughness of planetary bodies in terms of the RMS gradient of the surface. Refrence: H. Oya and T. Ono, A new altimeter for Mars land shape observations utilizing the ionospheric sounder system onboard the Planet-B spacecraft, Earth Planets Space, Vol. 50, pp.229-234, 1998 T. Kobayashi, H. Oya, and T. Ono, A-scope analysis of subsurface radar sounding of lunar mare region, Earth Planets Space, Vol. 54, pp.973-982, 2002

  15. Cloud and Thermodynamic Parameters Retrieved from Satellite Ultraspectral Infrared Measurements

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Smith, William L.; Larar, Allen M.; Liu, Xu; Taylor, Jonathan P.; Schluessel, Peter; Strow, L. Larrabee; Mango, Stephen A.

    2008-01-01

    Atmospheric-thermodynamic parameters and surface properties are basic meteorological parameters for weather forecasting. A physical geophysical parameter retrieval scheme dealing with cloudy and cloud-free radiance observed with satellite ultraspectral infrared sounders has been developed and applied to the Infrared Atmospheric Sounding Interferometer (IASI) and the Atmospheric InfraRed Sounder (AIRS). The retrieved parameters presented herein are from radiance data gathered during the Joint Airborne IASI Validation Experiment (JAIVEx). JAIVEx provided intensive aircraft observations obtained from airborne Fourier Transform Spectrometer (FTS) systems, in-situ measurements, and dedicated dropsonde and radiosonde measurements for the validation of the IASI products. Here, IASI atmospheric profile retrievals are compared with those obtained from dedicated dropsondes, radiosondes, and the airborne FTS system. The IASI examples presented here demonstrate the ability to retrieve fine-scale horizontal features with high vertical resolution from satellite ultraspectral sounder radiance spectra.

  16. System Design and Technology Development for an Azimuth Scanning Microwave Limb Sounder

    NASA Astrophysics Data System (ADS)

    Stek, P. C.; Chattopadhyay, G.; Cofield, R.; Jarnot, R.; Kawamura, J.; Lee, K.; Livesey, N.; Ward, J.

    2007-12-01

    The NRC's Earth Science and Applications from Space decadal survey calls for a mission (GACM) to study global atmospheric composition, "with sufficient vertical resolution to detect the presence, transport, and chemical transformation of atmospheric layers from the surface to the lower stratosphere." Microwave limb sounding is particularly well suited for providing this information for the upper troposphere and above. The Microwave Limb Sounders on Aura and UARS have provided global measurements that have: quantified the evolution of the ozone layer; characterized the water vapor and cloud ice feedback mechanisms affecting climate change; documented the long range transport of pollution through tracers like CO; and improved the accuracy of global circulation models used for weather and climate forecasts. The Scanning Microwave Limb Sounder (SMLS) concept builds on the success of these instruments by adding an azimuth scan and increasing the antenna height to greatly improve horizontal and vertical resolution. The measurement swath is wide enough to provide, depending on orbit inclination, six or more daily measurements over midlatitudes. SMLS will incorporate a novel antenna design that enables rapid horizontal scanning, 4 Kelvin receiver front ends, advanced digital receiver back ends, and several lessons learned from previous missions. We will discuss the instrument design, technology development and readiness, and our approach to on-orbit calibration. We will also discuss plans and goals for a demonstration instrument that takes advantage of technologies developed through ESTO and other NASA and non-NASA programs. cameo.php

  17. Advances in R&D in near-infrared spectroscopy in Japan

    NASA Astrophysics Data System (ADS)

    Kawano, Sumio; Iwamoto, Mutsuo

    1991-02-01

    More than 20 years ago when Mr. K. H. Norris firstly introduced the near infrared spectroscopy (NIRS) as a powerful technology in the field of composition analysis of cereals those who were interested in the area of classical spectroscopy would not like to recognize its potential. This tendency still remains at present however it leaves no room for doubt that from viewpoints of applied spectroscopy the NIRS has consolidated its position. From a viewpoint of NIRS application in the field of nondestructive or non invasive measuring techniques history of this technology is only the last decade in Japan. However since the technology was firstly introduced to composition analysis of agricultural commodities in the same manner as in other countries R and D have been growing more actively in diversified fields such as agriculture and industry as well as medical science. In addition the NIRS technology are becoming of general interest by combining other techniques to create various hyphenated instrumentations such as FTNIR MCFTNIR NIRCT and NIR-NMR. In this paper new trends of R D on NIR spectroscopy which are being conducted in Japan will be reviewed. 2. S1JMMARY OF PRESENT R D ON NIRS IN JAPAN NIRS applications reported in the last 3 years are summarized in Table 1. Table 1 Applications of NIRS in Japan Application for Agriculture Taste evaluation of rice and coffee Determination of chemical compositions rice for breeding Determination of chemical compositions in tea Determination of sugar contents in intact peaches Japanese pears Satsuma oranges and apples Determination of sugars and acids in intact tomatoes Determination of forage composition Application for Industry Analysis of state of water in foods Application of analyzing Maillard Reaction''s Process Pattern recognition of NIR spectra as related to process control of roasting coffee beans Quality control of tea processing Determination of moisture content of Surimi products 2 / SPIE Vol. 1379 Optics in Agriculture

  18. Near-infrared-excited confocal Raman spectroscopy advances in vivo diagnosis of cervical precancer

    NASA Astrophysics Data System (ADS)

    Duraipandian, Shiyamala; Zheng, Wei; Ng, Joseph; Low, Jeffrey J. H.; Ilancheran, Arunachalam; Huang, Zhiwei

    2013-06-01

    Raman spectroscopy is a unique optical technique that can probe the changes of vibrational modes of biomolecules associated with tissue premalignant transformation. This study evaluates the clinical utility of confocal Raman spectroscopy over near-infrared (NIR) autofluorescence (AF) spectroscopy and composite NIR AF/Raman spectroscopy for improving early diagnosis of cervical precancer in vivo at colposcopy. A rapid NIR Raman system coupled with a ball-lens fiber-optic confocal Raman probe was utilized for in vivo NIR AF/Raman spectral measurements of the cervix. A total of 1240 in vivo Raman spectra [normal (n=993), dysplasia (n=247)] were acquired from 84 cervical patients. Principal components analysis (PCA) and linear discriminant analysis (LDA) together with a leave-one-patient-out, cross-validation method were used to extract the diagnostic information associated with distinctive spectroscopic modalities. The diagnostic ability of confocal Raman spectroscopy was evaluated using the PCA-LDA model developed from the significant principal components (PCs) [i.e., PC4, 0.0023% PC5, 0.00095% PC8, 0.00022%, (p<0.05)], representing the primary tissue Raman features (e.g., 854, 937, 1095, 1253, 1311, 1445, and 1654 cm-1). Confocal Raman spectroscopy coupled with PCA-LDA modeling yielded the diagnostic accuracy of 84.1% (a sensitivity of 81.0% and a specificity of 87.1%) for in vivo discrimination of dysplastic cervix. The receiver operating characteristic curves further confirmed that the best classification was achieved using confocal Raman spectroscopy compared to the composite NIR AF/Raman spectroscopy or NIR AF spectroscopy alone. This study illustrates that confocal Raman spectroscopy has great potential to improve early diagnosis of cervical precancer in vivo during clinical colposcopy.

  19. Maximizing the Use of Satellite Thermal Infrared Data for Advancing Land Surface Temperature Analysis

    NASA Astrophysics Data System (ADS)

    Weng, Q.; Fu, P.; Gao, F.

    2014-12-01

    Land surface temperature (LST) is a crucial parameter in investigating environmental, ecological processes and climate change at various scales, and is also valuable in the studies of evapotranspiration, soil moisture conditions, surface energy balance, and urban heat islands. These studies require thermal infrared (TIR) images at both high temporal and spatial resolution to retrieve LST. However, currently, no single satellite sensors can deliver TIR data at both high temporal and spatial resolution. Thus, various algorithms/models have been developed to enhance the spatial or the temporal resolution of TIR data, but rare of those can enhance both spatial and temporal details. This paper presents a new data fusion algorithm for producing Landsat-like LST data by blending daily MODIS and periodic Landsat TM datasets. The original Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) was improved and modified for predicting thermal radiance and LST data by considering annual temperature cycle (ATC) and urban thermal landscape heterogeneity. The technique of linear spectral mixture analysis was employed to relate the Landsat radiance with the MODIS one, so that the temporal changes in radiance can be incorporated in the fusion model. This paper details the theoretical basis and the implementation procedures of the proposed data fusion algorithm, Spatio-temporal Adaptive Data Fusion Algorithm for Temperature mapping (SADFAT). A case study was conducted that predicted LSTs of five dates in 2005 from July to October in Los Angeles County, California. The results indicate that the prediction accuracy for the whole study area ranged from 1.3 K to 2 K. Like existing spatio-temporal data fusion models, the SADFAT method has a limitation in predicting LST changes that were not recorded in the MODIS and/or Landsat pixels due to the model assumption.

  20. Advanced shortwave infrared and Raman hyperspectral sensors for homeland security and law enforcement operations

    NASA Astrophysics Data System (ADS)

    Klueva, Oksana; Nelson, Matthew P.; Gardner, Charles W.; Gomer, Nathaniel R.

    2015-05-01

    Proliferation of chemical and explosive threats as well as illicit drugs continues to be an escalating danger to civilian and military personnel. Conventional means of detecting and identifying hazardous materials often require the use of reagents and/or physical sampling, which is a time-consuming, costly and often dangerous process. Stand-off detection allows the operator to detect threat residues from a safer distance minimizing danger to people and equipment. Current fielded technologies for standoff detection of chemical and explosive threats are challenged by low area search rates, poor targeting efficiency, lack of sensitivity and specificity or use of costly and potentially unsafe equipment such as lasers. A demand exists for stand-off systems that are fast, safe, reliable and user-friendly. To address this need, ChemImage Sensor Systems™ (CISS) has developed reagent-less, non-contact, non-destructive sensors for the real-time detection of hazardous materials based on widefield shortwave infrared (SWIR) and Raman hyperspectral imaging (HSI). Hyperspectral imaging enables automated target detection displayed in the form of image making result analysis intuitive and user-friendly. Application of the CISS' SWIR-HSI and Raman sensing technologies to Homeland Security and Law Enforcement for standoff detection of homemade explosives and illicit drugs and their precursors in vehicle and personnel checkpoints is discussed. Sensing technologies include a portable, robot-mounted and standalone variants of the technology. Test data is shown that supports the use of SWIR and Raman HSI for explosive and drug screening at checkpoints as well as screening for explosives and drugs at suspected clandestine manufacturing facilities.

  1. Recent advances in airborne terrestrial remote sensing with the NASA airborne visible/infrared imaging spectrometer (AVIRIS), airborne synthetic aperture radar (SAR), and thermal infrared multispectral scanner (TIMS)

    NASA Technical Reports Server (NTRS)

    Vane, Gregg; Evans, Diane L.; Kahle, Anne B.

    1989-01-01

    Significant progress in terrestrial remote sensing from the air has been made with three NASA-developed sensors that collectively cover the solar-reflected, thermal infrared, and microwave regions of the electromagnetic spectrum. These sensors are the airborne visible/infrared imaging spectrometer (AVIRIS), the thermal infrared mapping spectrometer (TIMS) and the airborne synthetic aperture radar (SAR), respectively. AVIRIS and SAR underwent extensive in-flight engineering testing in 1987 and 1988 and are scheduled to become operational in 1989. TIMS has been in operation for several years. These sensors are described.

  2. Advanced numerical modeling and hybridization techniques for third-generation infrared detector pixel arrays

    NASA Astrophysics Data System (ADS)

    Schuster, Jonathan

    Infrared (IR) detectors are well established as a vital sensor technology for military, defense and commercial applications. Due to the expense and effort required to fabricate pixel arrays, it is imperative to develop numerical simulation models to perform predictive device simulations which assess device characteristics and design considerations. Towards this end, we have developed a robust three-dimensional (3D) numerical simulation model for IR detector pixel arrays. We used the finite-difference time-domain technique to compute the optical characteristics including the reflectance and the carrier generation rate in the device. Subsequently, we employ the finite element method to solve the drift-diffusion equations to compute the electrical characteristics including the I(V) characteristics, quantum efficiency, crosstalk and modulation transfer function. We use our 3D numerical model to study a new class of detector based on the nBn-architecture. This detector is a unipolar unity-gain barrier device consisting of a narrow-gap absorber layer, a wide-gap barrier layer, and a narrow-gap collector layer. We use our model to study the underlying physics of these devices and to explain the anomalously long lateral collection lengths for photocarriers measured experimentally. Next, we investigate the crosstalk in HgCdTe photovoltaic pixel arrays employing a photon-trapping (PT) structure realized with a periodic array of pillars intended to provide broadband operation. The PT region drastically reduces the crosstalk; making the use of the PT structures not only useful to obtain broadband operation, but also desirable for reducing crosstalk, especially in small pitch detector arrays. Then, the power and flexibility of the nBn architecture is coupled with a PT structure to engineer spectrally filtering detectors. Last, we developed a technique to reduce the cost of large-format, high performance HgCdTe detectors by nondestructively screen-testing detector arrays prior

  3. The DST group ionospheric sounder replacement for JORN

    NASA Astrophysics Data System (ADS)

    Harris, T. J.; Quinn, A. D.; Pederick, L. H.

    2016-06-01

    The Jindalee Over-the-horizon Radar Network (JORN) is an integral part of Australia's national defense capability. JORN uses a real-time ionospheric model as part of its operations. The primary source of data for this model is a set of 13 vertical-incidence sounders (VIS) scattered around the Australian coast and inland locations. These sounders are a mix of Lowell digisonde portable sounder (DPS)-1 and DPS-4. Both of these sounders, the DPS-1 in particular, are near the end of their maintainable life. A replacement for these aging sounders was required as part of the ongoing sustainment program for JORN. Over the last few years the High-Frequency Radar Branch (HFRB) of the Defence Science and Technology (DST) Group, Australian Department of Defence, has been developing its own sounders based on its successful radar hardware technology. The DST Group VIS solution known as PRIME (Portable Remote Ionospheric Monitoring Equipment) is a 100% duty cycle, continuous wave system that receives the returned ionospheric signal while it is still transmitting and operates the receiver in the near field of the transmitter. Of considerable importance to a successful VIS is the autoscaling software, which takes the ionogram data and produces an ionogram trace (group delay as a function of frequency), and from that produces a set of ionospheric parameters that represent the (bottomside) overhead electron density profile. HFRB has developed its own robust autoscaling software. The performance of DST Group's PRIME under a multitude of challenging ionospheric conditions has been studied. In December 2014, PRIME was trialed at a JORN VIS site collocated with the existing Lowell Digisonde DPS-1. This side-by-side testing determined that PRIME was fit for purpose. A summary of the results of this comparison and example PRIME output will be discussed. Note that this paper compares PRIME with the 25 year old Lowell Digisonde DPS-1, which is planned to be replaced. Our future plans include

  4. Applications of near-infrared spectroscopy in food safety evaluation and control: a review of recent research advances.

    PubMed

    Qu, Jia-Huan; Liu, Dan; Cheng, Jun-Hu; Sun, Da-Wen; Ma, Ji; Pu, Hongbin; Zeng, Xin-An

    2015-01-01

    Food safety is a critical public concern, and has drawn great attention in society. Consequently, developments of rapid, robust, and accurate methods and techniques for food safety evaluation and control are required. As a nondestructive and convenient tool, near-infrared spectroscopy (NIRS) has been widely shown to be a promising technique for food safety inspection and control due to its huge advantages of speed, noninvasive measurement, ease of use, and minimal sample preparation requirement. This review presents the fundamentals of NIRS and focuses on recent advances in its applications, during the last 10 years of food safety control, in meat, fish and fishery products, edible oils, milk and dairy products, grains and grain products, fruits and vegetables, and others. Based upon these applications, it can be demonstrated that NIRS, combined with chemometric methods, is a powerful tool for food safety surveillance and for the elimination of the occurrence of food safety problems. Some disadvantages that need to be solved or investigated with regard to the further development of NIRS are also discussed. PMID:24689758

  5. Calibration of the Visible and Near-Infrared Channels of the Advanced Very High Resolution Radiometer (AVHRR) After Launch

    NASA Technical Reports Server (NTRS)

    Rao, C. R. Nagaraja; Chen, Jianhua

    1993-01-01

    The relative degradation in time of the visible(channel 1: approx.0.58-0.6 microns) and near-infrared(channel 2: approx. O.72-1.1 microns) channels of the Advanced Very High Resolution Radiometer(AVHRR), onboard the NOAA Polar-orbiting Operational Environmental Satellites(POES), has been determined, using the southeastern Libyan desert(21-23 deg N latitude; 28- 29 deg E longitude) as a time-invariant calibration target. A statistical procedure was used on the reflectance data for the two channels from the B3 data of the International Satellite Cloud Climatology Project(ISCCP) to obtain the degradation rates for the AVERRs on NOAA-7, -9, and -11 spacecraft. The degradation rates per year for channels 1 and 2 are respectively: 3.6% and 4.3%(NOAA-7); 5.9% and 3.5%(NOAA-9); and 1.2% and 2.0%(NOAA-11). The use of the degradation rates thus determined, in conjunction with 'absolute' calibrations obtained from congruent aircraft and satellite measurements, in the development of correction algorithms is illustrated with the AVHRR on the NOAA-9 spacecraft.

  6. Next Generation Grating Spectrometer Sounders for LEO and GEO

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.

    2011-01-01

    AIRS and MODIS are widely used for weather, climate, composition, carbon cycle, cross-calibration, and applications. The community asking for new capability in the 2020 timeframe, capabilities desired: (1) Hyperspectral UV to LWIR, High Spatial ?1km IFOV (2) Maximize Synergies of Solar Reflected and IR. Synergies with OCO-2. We expect more users and applications of next gen LEO IR Sounder than GEO. These include: weather, climate, GHG monitoring, aviation, disaster response. There is a new direction for imagers and sounders: (1) Separate Vis/NIR/SWIR from MWIR/LWIR instruments reduces technology risk and complexity. (2) Expect Costs to be lower than CrIS & VIIRS Some additional ideas to reduce costs include: (1) minimum set of requirements (2) mini-grating spectrometers. supports constellation for higher revisit (3) new technology to reduce instrument size (large format fpa's) (4) hosted payloads

  7. Ultraspectral sounder data compression using the Tunstall coding

    NASA Astrophysics Data System (ADS)

    Wei, Shih-Chieh; Huang, Bormin; Gu, Lingjia

    2007-09-01

    In an error-prone environment the compression of ultraspectral sounder data is vulnerable to error propagation. The Tungstall coding is a variable-to-fixed length code which compresses data by mapping a variable number of source symbols to a fixed number of codewords. It avoids the resynchronization difficulty encountered in fixed-to-variable length codes such as Huffman coding and arithmetic coding. This paper explores the use of the Tungstall coding in reducing the error propagation for ultraspectral sounder data compression. The results show that our Tunstall approach has a favorable compression ratio compared with JPEG-2000, 3D SPIHT, JPEG-LS, CALIC and CCSDS IDC 5/3. It also has less error propagation compared with JPEG-2000.

  8. SAR/InSAR observation by an HF sounder

    NASA Astrophysics Data System (ADS)

    Kobayashi, T.; Ono, T.

    2007-03-01

    Application of SAR imaging algorithm to spaceborne HF sounder observation was studied. Two types of image ambiguity problems were addressed in the application. One is surface/subsurface image ambiguity arising from deep penetration of HF wave, and another is mirror image ambiguity that is inherent to dipole antenna SAR. A numerical model demonstrated that the surface/subsurface ambiguity can be mitigated by taking a synthetic aperture large enough to defocus subsurface objects. In order to resolve the mirror image ambiguity problem, an image superposition technique was proposed. The performance of the technique was demonstrated by using simulation data of the HF sounder observation to confirm the feasibility of HF SAR and HF InSAR observation.

  9. The topside sounder database - Data screening and systematic biases

    NASA Astrophysics Data System (ADS)

    Verhulst, Tobias; Stankov, Stanimir M.

    2013-06-01

    The ionospheric topside sounder measurement database developed at the US National Space Science Data Center (NSSDC) is a valuable source of information when investigating the composition and complex dynamics of the upper ionosphere. The database is increasingly used by many scientists around the world for both research and development of empirical models. However, there is always a danger of indiscriminately using the data without properly assessing the data quality and applicability for a given purpose. This paper is concerned with the issue of data screening and pre-processing of the Alouette/ISIS topside sounder database. An overview of the original database availability and formatting is given and the use of solar and geomagnetic indices is discussed. Data screening procedures, concerning detection and handling of erroneous profiles, are also presented. Special attention is drawn to the systematic biases observed in the database and the possibilities for their removal.

  10. HIS analyses of mesoscale phenomena. [High resolution Interferometer Sounder

    NASA Technical Reports Server (NTRS)

    Bradshaw, John T.; Fuelberg, Henry E.

    1990-01-01

    Results are presented from two sets of measurements made by the High-resolution Interferometer Sounder (HIS) during two aircraft flights over the Cooperative-Huntsville-Meteorological-Experiment region on June 15 and 19, 1986. It is shown that the temperature and the dew-point field retrieved from HIS spectra contain distinct mesoscale structures. The features in the HIS dew-point fields agreed well with the cloud and moisture structures observed in visible and 6.7 micron GOES imagery.

  11. High resolution microwave spectrometer sounder (HIMSS), volume 1, book 1

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The following topics are presented with respect to the high resolution microwave spectrometer sounder (HIMSS) that is to be used as an instrument for NASA's Earth Observing System (EOS): (1) an instrument overview; (2) an instrument description; (3) the instrument's conceptual design; (4) technical risks and offsets; (5) instrument reliability; (6) commands and telemetry; (7) mass and power budgets; (8) integration and test program; (9) program implementation; and (10) phase CD schedule.

  12. The Apollo 17 Lunar Sounder. [lunar orbit coherent radar experiment

    NASA Technical Reports Server (NTRS)

    Phillips, R. J.; Brown, W. E., Jr.; Jordan, R.; Adams, G. F.; Jackson, P.; Peeples, W. J.; Porcello, L. J.; Ryu, J.; Eggleton, R. E.; Schaber, G.

    1973-01-01

    The Apollo Lunar Sounder Experiment, a coherent radar operated from lunar orbit during the Apollo 17 mission, has scientific objectives of mapping lunar subsurface structure, surface profiling, surface imaging, and galactic noise measurement. Representative results from each of the four disciplines are presented. Subsurface reflections have been interpreted in both optically and digitally processed data. Images and profiles yield detailed selenomorphological information. The preliminary galactic noise results are consistent with earlier measurements by other workers.

  13. High resolution microwave spectrometer sounder (HIMSS), volume 1, book 2

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The following topics are presented with respect to the high resolution microwave spectrometer sounder (HIMSS) that is to be used as an instrument for NASA's Earth Observing System (EOS): (1) preliminary program plans; (2) contract end item (CEI) specification; and (3) the instrument interface description document. Under the preliminary program plans section, plans dealing with the following subject areas are discussed: spares, performance assurance, configuration management, software implementation, contamination, calibration management, and verification.

  14. Satellite Sounder Data Assimilation for Improving Alaska Region Weather Forecast

    NASA Technical Reports Server (NTRS)

    Zhu, Jiang; Stevens, E.; Zhang, X.; Zavodsky, B. T.; Heinrichs, T.; Broderson, D.

    2014-01-01

    A case study and monthly statistical analysis using sounder data assimilation to improve the Alaska regional weather forecast model are presented. Weather forecast in Alaska faces challenges as well as opportunities. Alaska has a large land with multiple types of topography and coastal area. Weather forecast models must be finely tuned in order to accurately predict weather in Alaska. Being in the high-latitudes provides Alaska greater coverage of polar orbiting satellites for integration into forecasting models than the lower 48. Forecasting marine low stratus clouds is critical to the Alaska aviation and oil industry and is the current focus of the case study. NASA AIRS/CrIS sounder profiles data are used to do data assimilation for the Alaska regional weather forecast model to improve Arctic marine stratus clouds forecast. Choosing physical options for the WRF model is discussed. Preprocess of AIRS/CrIS sounder data for data assimilation is described. Local observation data, satellite data, and global data assimilation data are used to verify and/or evaluate the forecast results by the MET tools Model Evaluation Tools (MET).

  15. Subminiature infrared detector translation stage

    NASA Technical Reports Server (NTRS)

    Bell, Alan D.

    1989-01-01

    This paper describes a precision subminiature three-axis translation stage used in the GOES Sounder to provide positional adjustment of 12 cooled infrared detectors. Four separate translation stages and detectors are packaged into a detector mechanism which has an overall size of 0.850 x 1.230 x 0.600 inches. Each translation stage is capable of + or - 0.015 inch motion in the X and Y axes and +0.050/-0.025 inch motion in the Z axis with a sensitivity of 0.0002 inches. The function of the detector translation stage allows real time detector signal peaking during Sounder alignment. The translation stage operates in a cryogenic environment under a 10 to the -6th torr vacuum.

  16. Sounder updates for statistical model predictions of maximum usable frequencies on HF sky wave paths

    NASA Astrophysics Data System (ADS)

    Reilly, Michael H.; Daehler, Mark

    1986-12-01

    A method is presented for the short-term prediction of maximum usable frequencies (MUFs) in a large communications region. It is shown how ionospheric measurements from a network of ionospheric sounders can be used to update sunspot number or solar 10.7 cm flux inputs to a climatological MUF prediction model. MINIMUF in this case, which is then used to predict MUFs on paths throughout the region. Analysis of mid-latitude oblique-incidence sounder data sets indicates the advantage gained from single-path sounder updates of flux for MUF predictions on adjacent paths. Under specified conditions a further dramatic improvement in MUF prediction accuracy is found from spatial interpolation of sounder-updated flux values. MUF prediction accuracies within 0.5 MHz are obtained for fairly modest sounder network deployments, in which the sounder midpath point distributions and updating frequency satisfy particular requirements.

  17. Analysis of test data film generated by the lunar sounder (S-209)

    NASA Technical Reports Server (NTRS)

    Massey, N.

    1973-01-01

    The analysis of test films pertaining to the readiness of the Apollo 17 radar equipment is discussed. Emphasis is placed on the evaluation of the lunar sounder equipment. The lunar sounder experiment was to examine the lunar surface at three different radar frequencies of 2 meters, 60 meters, and 20 meters. Test films were made on the lunar sounder system to describe the purpose of the test, to describe the experiments used for analysis, and to provide conclusions reached after analysis.

  18. Performance demonstration of hydrogen advanced loop heat pipe for 20-30K cryocooling of far infrared sensors

    NASA Astrophysics Data System (ADS)

    Hoang, Triem T.; O'Connell, Tamara A.; Ku, Jentung; Butler, C. D.; Swanson, Theodore D.

    2005-08-01

    The James Webb Space Telescope (JWST) program have identified the need for cryogenic cooling transport devices that (i) provide robust/reliable thermal management for Infrared (IR) sensors/detectors in the temperature range of 20-30K, (ii) minimize vibration effects of mechanical cryocoolers on the instruments, (iii) reduce spatial temperature gradients in cryogenic components, and (iv) afford long continuous service life of the telescope. Passive two-phase capillary cooling technologies such as heat pipes, Loop Heat Pipes (LHPs), and Capillary pumped Loops (CPLs) have proven themselves capable of performing necessary thermal control functions for room temperature applications. They have no mechanical moving part to wear out or to introduce unwanted vibration to the instruments and, hence, are reliable and maintenancefree. However, utilizing these capillary devices for cryogenic cooling still remains a challenge because of difficulties involving the system start-up and operation in a warm environment. An advanced concept of LHP using Hydrogen as the working fluid was recently developed to demonstrate the cryocooling transport capabilities in the temperature range of 20-30K. A full-size demonstration test loop - appropriately called H2-ALHP_2 - was constructed and performance tested extensively in a thermal vacuum chamber. It was designed specifically to manage "heat parasitics" from a warm surrounding, enabling it to start up from an initially supercritical state and operate without requiring a rigid heat shield. Like room temperature LHPs, the H2-ALHP transport lines were made of small-diameter stainless steel tubing that are flexible enough to isolate the cryocooler-induced vibration from the IR instruments. In addition, focus of the H2-ALHP research and development effort was also placed on the system weight saving for space-based applications.

  19. Advanced infrared astronomy

    NASA Technical Reports Server (NTRS)

    Mumma, M. J.; Deming, D.; Espenak, F.; Kostiuk, T.

    1986-01-01

    The CO2 laser heterodyne spectrometer was used at the 3-m IRTF on Mauna Kea to make measurements of Mars during the 1984 opposition. Analysis of the observations of the mesospheric non-thermal emission demonstrated the existence of a warming of the Mars polar mesosphere, similar to the seasonal effects which are well known to occur at the Earth's mesopause. A search for CO2 and NH3 on Comet Halley was done with the new Kitt Peak system as well as with the IRTF heterodyne system. A Lamb-dip absorption cell was designed and constructed. Its use will allow extreme frequency stabilization of the laser local oscillator, which will greatly facilitate measurements of winds and dynamical phenomena. The Lamb-dip cell was used at Kitt Peak to study zonal and meridional winds in the atmosphere of Venus. Water vapor was detected in Comet Halley using Fourier transform spectrometer. The 2.65 micrometer upsilon sub 3 band was seen in emission, confirming non-thermal-equilibrium excitation models for comets. A study was made of the variability of Jovian ethane emission. The average volume mixing ratio of ethane in the Jovian stratosphere was found to be 3x10 to the -6 power, with the greatest variability seen in the auroral regions.

  20. Observations and trends of clouds based on GOES sounder data

    NASA Astrophysics Data System (ADS)

    Schreiner, Anthony J.; Schmit, Timothy J.; Menzel, W. Paul

    2001-01-01

    A 26 month (November 1997 through December 1999) data set of Geostationary Operational Environmental Satellite (GOES) sounder-derived cloud parameters has been analyzed to discern annual and monthly trends. An important outcome of this study is the identification of diurnal trends made possible by the geostationary satellite frequent observations over specific locations. The area of coverage is 20°N to 50°N and 60°W to 160°W, which corresponds to the continental United States and the surrounding waters. The satellite cloud observations were compared to manually observed Pilot Reports (PIREPs) and were found to be, on average, 35 hPa lower. Comparing the frequency of GOES sounder observations of high cloudiness with observations from the National Oceanic and Atmospheric Administration (NOAA) series of polar orbiting weather satellites reveals a correlation coefficient of 0.79 and a bias of 3.4% for the frequency of occurrence (GOES with a mean higher height). The frequency of occurrence and distribution of clouds, cloud top pressure (CTOP), and effective cloud amount are based on a spatial resolution of ˜40 km (3×3 field of view box) and are shown for eight regions. High clouds (CTOP ≤300 hPa) are found to be more prevalent during the Northern Hemisphere summer than winter for all regions. High clouds for 1998 comprise 8.5% of all observations. Also, in 1998 clear conditions are observed ˜34% of the time. Focusing on the strength of the hourly GOES sounder data, it is found that thin high clouds are most prevalent during the summer and fall seasons, occurring most frequently in the late morning and early afternoon.

  1. A Comparison of the Red Green Blue Air Mass Imagery and Hyperspectral Infrared Retrieved Profiles

    NASA Technical Reports Server (NTRS)

    Berndt, E. B.; Folmer, Michael; Dunion, Jason

    2014-01-01

    The Red Green Blue (RGB) Air Mass imagery is derived from multiple channels or paired channel differences. Multiple channel products typically provide additional information than a single channel can provide alone. The RGB Air Mass imagery simplifies the interpretation of temperature and moisture characteristics of air masses surrounding synoptic and mesoscale features. Despite the ease of interpretation of multiple channel products, the combination of channels and channel differences means the resulting product does not represent a quantity or physical parameter such as brightness temperature in conventional single channel satellite imagery. Without a specific quantity to reference, forecasters are often confused as to what RGB products represent. Hyperspectral infrared retrieved profiles of temperature, moisture, and ozone can provide insight about the air mass represented on the RGB Air Mass product and provide confidence in the product and representation of air masses despite the lack of a quantity to reference for interpretation. This study focuses on RGB Air Mass analysis of Hurricane Sandy as it moved north along the U.S. East Coast, while transitioning to a hybrid extratropical storm. Soundings and total column ozone retrievals were analyzed using data from the Cross-track Infrared and Advanced Technology Microwave Sounder Suite (CrIMSS) on the Suomi National Polar Orbiting Partnership satellite and the Atmospheric Infrared Sounder (AIRS) on the National Aeronautics and Space Administration Aqua satellite along with dropsondes that were collected from National Oceanic and Atmospheric Administration and Air Force research aircraft. By comparing these datasets to the RGB Air Mass, it is possible to capture quantitative information that could help in analyzing the synoptic environment enough to diagnose the onset of extratropical transition. This was done by identifying any stratospheric air intrusions (SAIs) that existed in the vicinity of Sandy as the wind

  2. The use of multibeam and split-beam echo sounders for assessing biomass and distribution of spring-spawning Atlantic cod in the Gulf of Maine

    NASA Astrophysics Data System (ADS)

    Gurshin, Christopher William Damon

    This research focused on advancing the application of split-beam and multibeam echo sounding to remotely locate and describe spatial distribution, and to provide a relative measure of abundance of the spring-spawning Atlantic cod (Gadus morhua) in the western Gulf of Maine. Specifically, the main objectives of this research were 1) to test the feasibility of a multibeam echo sounder to detect changes in volume backscatter proportional to incrementally decreasing quantities of cod held in a submerged cage, and to compare results to a split-beam echo sounder; 2) to describe the spatio-temporal distribution and estimate biomass of spring-spawning cod in the Gulf of Maine cod spawning protection area (GOMCSPA) by repeated acoustic and trawl surveys; and 3) to determine a predictive relation between target strength and length for 38-kHz and 120-kHz split-beam echo sounders and a 300-kHz multibeam echo sounder, and characterize other factors affecting backscattering of sound. The multibeam echo sounder detected a small and large reduction in volume backscatter proportional to reductions in stocking density of caged cod, while the split-beam echo sounder only detected a large reduction in stocking density. The spatial information from the multibeam echo sounder helped interpret and explain results from the split-beam echo sounder. Repeated acoustic and trawl surveys showed cod were relatively widespread in the survey area in May, but congregated at higher densities in areas adjacent to two elevated bathymetric features. Most cod converged to a single location in June, and were at a higher concentration than observations in May. This congregation decreased in size and density in July. Survey estimates of cod biomass ranged 184-494 mt in May, 138-617 mt in June, and 39-135 mt in July, depending on the estimation method. Based on echo classification and extrapolation, cod biomass to the GOMCSPA ranged 260-466 mt in May, 196-513 mt in June, and 91-198 mt in July. The biomass

  3. An AC modulated near infrared gain calibration system for a "Violin-Mode" transimpedance amplifier, intended for advanced LIGO suspensions.

    PubMed

    Lockerbie, N A; Tokmakov, K V

    2016-07-01

    The background to this work was a prototype shadow sensor, which was designed for retro-fitting to an advanced LIGO (Laser Interferometer Gravitational wave Observatory) test-mass/mirror suspension, in which a 40 kg test-mass/mirror is suspended by four approximately 600 mm long by 0.4 mm diameter fused-silica suspension fibres. The shadow sensor comprised a LED source of Near InfraRed (NIR) radiation, and a "tall-thin" rectangular silicon photodiode detector, which together were to bracket the fibre under test. The photodiode was positioned so as to be sensitive (primarily) to transverse "Violin-Mode" vibrations of such a fibre, via the oscillatory movement of the shadow cast by the fibre, as this moved across the face of the detector. In this prototype shadow sensing system the photodiode was interfaced to a purpose-built transimpedance amplifier, this having both AC and DC outputs. A quasi-static calibration was made of the sensor's DC responsivity, i.e., incremental rate of change of output voltage versus fibre position, by slowly scanning a fused-silica fibre sample transversely through the illuminating beam. The work reported here concerns the determination of the sensor's more important AC (Violin-Mode) responsivity. Recognition of the correspondence between direct AC modulation of the source, and actual Violin-Mode signals, and of the transformative role of the AC/DC gain ratio for the amplifier, at any modulation frequency, f, resulted in the construction of the AC/DC calibration source described here. A method for determining in practice the transimpedance AC/DC gain ratio of the photodiode and amplifier, using this source, is illustrated by a specific numerical example, and the gain ratio for the prototype sensing system is reported over the frequency range 1 Hz-300 kHz. In fact, a maximum DC responsivity of 1.26 kV.m(-1) was measured using the prototype photodiode sensor and amplifier discussed here. Therefore, the measured AC/DC transimpedance gain

  4. An AC modulated near infrared gain calibration system for a "Violin-Mode" transimpedance amplifier, intended for advanced LIGO suspensions

    NASA Astrophysics Data System (ADS)

    Lockerbie, N. A.; Tokmakov, K. V.

    2016-07-01

    The background to this work was a prototype shadow sensor, which was designed for retro-fitting to an advanced LIGO (Laser Interferometer Gravitational wave Observatory) test-mass/mirror suspension, in which a 40 kg test-mass/mirror is suspended by four approximately 600 mm long by 0.4 mm diameter fused-silica suspension fibres. The shadow sensor comprised a LED source of Near InfraRed (NIR) radiation, and a "tall-thin" rectangular silicon photodiode detector, which together were to bracket the fibre under test. The photodiode was positioned so as to be sensitive (primarily) to transverse "Violin-Mode" vibrations of such a fibre, via the oscillatory movement of the shadow cast by the fibre, as this moved across the face of the detector. In this prototype shadow sensing system the photodiode was interfaced to a purpose-built transimpedance amplifier, this having both AC and DC outputs. A quasi-static calibration was made of the sensor's DC responsivity, i.e., incremental rate of change of output voltage versus fibre position, by slowly scanning a fused-silica fibre sample transversely through the illuminating beam. The work reported here concerns the determination of the sensor's more important AC (Violin-Mode) responsivity. Recognition of the correspondence between direct AC modulation of the source, and actual Violin-Mode signals, and of the transformative role of the AC/DC gain ratio for the amplifier, at any modulation frequency, f, resulted in the construction of the AC/DC calibration source described here. A method for determining in practice the transimpedance AC/DC gain ratio of the photodiode and amplifier, using this source, is illustrated by a specific numerical example, and the gain ratio for the prototype sensing system is reported over the frequency range 1 Hz-300 kHz. In fact, a maximum DC responsivity of 1.26 kV.m-1 was measured using the prototype photodiode sensor and amplifier discussed here. Therefore, the measured AC/DC transimpedance gain ratio

  5. The Behm Acoustic Sounder for Airplanes with Reference to Its Accuracy

    NASA Technical Reports Server (NTRS)

    Schreiber, Ernest

    1930-01-01

    Relative altimetry is of great importance for increasing the safety in aerial transportation, because it makes possible safe flying at night, by poor visibility, and when landing. Among the instruments of this type is the Behm sounder, which operates on an acoustic principle. Acoustic altimetry in general and the Behn sounder, in particular, are covered in this report.

  6. Cloud mask via cumulative discriminant analysis applied to satellite infrared observations: scientific basis and initial evaluation

    NASA Astrophysics Data System (ADS)

    Amato, U.; Lavanant, L.; Liuzzi, G.; Masiello, G.; Serio, C.; Stuhlmann, R.; Tjemkes, S. A.

    2014-06-01

    We introduce a classification method (Cumulative Discriminant Analysis) of the Discriminant Analysis type to discriminate between cloudy and clear sky satellite observations in the thermal infrared. The tool is intended for the high spectral resolution infrared sounder (IRS) planned for the geostationary METEOSAT (Meteorological Satellite) Third Generation platform and uses IASI (Infrared Atmospheric Sounding Interferometer) data as a proxy. The Cumulative Discriminant Analysis does not introduce biases intrinsic with the approximation of the probability density functions and is flexible enough to adapt to different strategies to optimize the cloud mask. The methodology is based on nine statistics computed from IASI spectral radiances, which exploit the high spectral resolution of the instrument and which effectively summarize information contained within the IASI spectrum. A Principal Component Analysis prior step is also introduced which makes the problem more consistent with the statistical assumptions of the methodology. An initial assessment of the scheme is performed based on global and regional IASI real data sets and cloud masks obtained from AVHRR (Advanced Very High Resolution Radiometer) and SEVIRI (Spinning Enhanced Visible and Infrared Imager) imagers. The agreement with these independent cloud masks is generally well above 80%, except at high latitudes in their winter seasons.

  7. Cloud mask via cumulative discriminant analysis applied to satellite infrared observations: scientific basis and initial evaluation

    NASA Astrophysics Data System (ADS)

    Amato, U.; Lavanant, L.; Liuzzi, G.; Masiello, G.; Serio, C.; Stuhlmann, R.; Tjemkes, S. A.

    2014-10-01

    We introduce a classification method (cumulative discriminant analysis) of the discriminant analysis type to discriminate between cloudy and clear-sky satellite observations in the thermal infrared. The tool is intended for the high-spectral-resolution infrared sounder (IRS) planned for the geostationary METEOSAT (Meteorological Satellite) Third Generation platform and uses IASI (Infrared Atmospheric Sounding Interferometer) data as a proxy. The cumulative discriminant analysis does not introduce biases intrinsic with the approximation of the probability density functions and is flexible enough to adapt to different strategies to optimize the cloud mask. The methodology is based on nine statistics computed from IASI spectral radiances, which exploit the high spectral resolution of the instrument and which effectively summarize information contained within the IASI spectrum. A principal component analysis prior step is also introduced, which makes the problem more consistent with the statistical assumptions of the methodology. An initial assessment of the scheme is performed based on global and regional IASI real data sets and cloud masks obtained from AVHRR (Advanced Very High Resolution Radiometer) and SEVIRI (Spinning Enhanced Visible and Infrared Imager) imagers. The agreement with these independent cloud masks is generally well above 80 %, except at high latitudes in the winter seasons.

  8. Effects of atmosphere and view and illumination geometry on visible and near infrared radiance data from the advanced very high resolution radiometer (AVHR)

    NASA Technical Reports Server (NTRS)

    Holben, B. N.; Fraser, R. S.

    1984-01-01

    The use of Dave's models to evaluate satellite off-nadir remote sensing of green vegetation cover types by simulating the visible and near-infrared advanced very high resolution radiometer (AVHRR) NOAA-6 and NOAA-7 radiances for three green-leaf biomass levels and bare soil. Ground measurements of surface reflectances were used. The simulations were done along a scan line at 30 deg latitude during the summer solstice, equinox, and winter solstice. The simulation models are described and the effect of atmosphere over moderately vegetated surfaces is discussed. The results show that sensor response to atmospheric path length can be substantial for the AVHRR visible and near-infrared channels and normalized difference values, but they can be minimized by high sun and clear atmospheric viewing. The results indicate that AVHRR data would be most useful for monitoring low green leaf biomas canopies.

  9. Accurate, practical simulation of satellite infrared radiometer spectral data

    SciTech Connect

    Sullivan, T.J.

    1982-09-01

    This study's purpose is to determine whether a relatively simple random band model formulation of atmospheric radiation transfer in the infrared region can provide valid simulations of narrow interval satellite-borne infrared sounder system data. Detailed ozonesondes provide the pertinent atmospheric information and sets of calibrated satellite measurements provide the validation. High resolution line-by-line model calculations are included to complete the evaluation.

  10. Nimbus-7 Stratospheric and Mesospheric Sounder (SAMS) experiment data user's guide

    NASA Technical Reports Server (NTRS)

    Taylor, F. W.; Rodgers, C. D.; Nutter, S. T.; Oslik, N.

    1989-01-01

    The Stratospheric and Mesospheric Sounder (SAMS) aboard Nimbus-7 observes infrared radiation from the atmospheric limb. Global upper atmosphere temperature profiles and vertical concentrations of H2O, NO, N2O, CH4 and CO2 are derived from these measurements. The status of all channels was carefully monitored. Temperature and composition were retrieved from the measurements by linearizing the direct equation about an a priori profile and using an optimum statistical estimator to find the most likely solution. The derived temperature and composition profiles are archived on two tape products whose file structure and record formats are described in detail. The gridded retrieved temperature tape (GRID-T) contains daily day and night average temperatures at 62 pressure levels in a 2.5 degree latitude by 10 degree longitude grid extending from 67.5 degrees N to 50 degrees S. The zonal mean methane and nitrous oxide composition tape (ZMT-G) contains zonal mean day and night average CH4 and N2O mixing ratios at 31 pressure levels for 2.5 degrees latitude zones extending from 67.5 degrees N to 50 degrees S.

  11. Evidence of Convective Redistribution of Carbon Monoxide in Aura Tropospheric Emission Sounder (TES) and Microwave Limb Sounder (MLS) Observations

    NASA Technical Reports Server (NTRS)

    Manyin, Michael; Douglass, Anne; Schoeberl, Mark

    2010-01-01

    Vertical convective transport is a key element of the tropospheric circulation. Convection lofts air from the boundary layer into the free troposphere, allowing surface emissions to travel much further, and altering the rate of chemical processes such as ozone production. This study uses satellite observations to focus on the convective transport of CO from the boundary layer to the mid and upper troposphere. Our hypothesis is that strong convection associated with high rain rate regions leads to a correlation between mid level and upper level CO amounts. We first test this hypothesis using the Global Modeling Initiative (GMI) chemistry and transport model. We find the correlation is robust and increases as the precipitation rate (the strength of convection) increases. We next examine three years of CO profiles from the Tropospheric Emission Sounder (TES) and Microwave Limb Sounder (MLS) instruments aboard EOS Aura. Rain rates are taken from the Tropical Rainfall Measuring Mission (TRMM) 3B-42 multi-satellite product. Again we find a correlation between mid-level and upper tropospheric CO, which increases with rain rate. Our result shows the critical importance of tropical convection in coupling vertical levels of the troposphere in the transport of trace gases. The effect is seen most clearly in strong convective regions such as the Inter-tropical Convergence Zone.

  12. Infrared astronomy

    NASA Technical Reports Server (NTRS)

    Gillett, Frederick; Houck, James; Bally, John; Becklin, Eric; Brown, Robert Hamilton; Draine, Bruce; Frogel, Jay; Gatley, Ian; Gehrz, Robert; Hildebrand, Roger

    1991-01-01

    The decade of 1990's presents an opportunity to address fundamental astrophysical issues through observations at IR wavelengths made possible by technological and scientific advances during the last decade. The major elements of recommended program are: the Space Infrared Telescope Facility (SIRTF), the Stratospheric Observatory For Infrared Astronomy (SOFIA) and the IR Optimized 8-m Telescope (IRO), a detector and instrumentation program, the SubMilliMeter Mission (SMMM), the 2 Microns All Sky Survey (2MASS), a sound infrastructure, and technology development programs. Also presented are: perspective, science opportunities, technical overview, project recommendations, future directions, and infrastructure.

  13. Fiber Optic Fourier Transform Infrared Spectroscopic Techniques for Advanced On-Line Chemical Analysis in Semiconductor Fabrication Tools

    NASA Astrophysics Data System (ADS)

    Kester, Michael; Trygstad, Marc; Chabot, Paul

    2003-09-01

    A unique analytical methodology has recently been developed to perform real-time, on-line chemical analysis of bath solutions in semiconductor fabrication tools. A novel, patented fiber optic sensor is used to transmit infrared light directly through the tube walls of the circulating bath solutions within the fabrication tool in a completely non-invasive, non-extractive way. The sensor simply "clips" onto the tubing, thus permitting immediate analysis of the bath composition by Fourier Transform infrared (FTIR) spectroscopy. The infrared spectrometer is capable of multiplexing up to eight "Clippir™" sensor heads to a single interferometer using fiber optic cables. The instrument can analyze almost any bath solution utilized today. The analysis is performed using the near-infrared (NIR) portion of the electromagnetic spectrum, where absorption bands related to molecular vibrations can be found. The Fourier Transform infrared spectrometer gives access to absorption bands over a wide range of frequencies (or wavelengths), and the absorptions are correlated to concentrations using a chemometric approach employing a partial least-squares algorithm. Models are generated from this approach for each chemistry to be analyzed. This paper will review the analytical technology necessary to make such measurements, and discuss the instrument performance criteria required to achieve accurate and precise measurements of bath chemistries. The ability to measure non-infrared absorbing compounds will be discussed, as will the nature of the influence of sample temperature on measurement. Issues critical to the development of robust models and their direct implementation on multiple channels and even different instruments will be considered.

  14. Thermal infrared nadir observations of 24 atmospheric gases

    NASA Astrophysics Data System (ADS)

    Clarisse, Lieven; R'Honi, Yasmina; Coheur, Pierre-François; Hurtmans, Daniel; Clerbaux, Cathy

    2011-05-01

    Thermal infrared nadir sounders are ideal for observing total columns or vertical profiles of atmospheric gases such as water, carbon dioxide and ozone. High resolution sounders with a spectral resolution below 5 cm-1 can distinguish fine spectral features of trace gases. Forty years after the launch of the first hyperspectral sounder IRIS, we have now several state of the art instruments in orbit, with improved instrumental specifications. In this letter we give an overview of the trace gases which have been observed by infrared nadir sounders, focusing on new observations of the Infrared Atmospheric Sounding Interferometer (IASI). We present typical observations of 14 rare reactive trace gas species. Several species are reported here for the first time in nadir view, including nitrous acid, furan, acetylene, propylene, acetic acid, formaldehyde and hydrogen cyanide, observations which were made in a pyrocumulus cloud from the Australian bush fires of February 2009. Being able to observe this large number of reactive trace gases will likely improve our knowledge of source emissions and their impact on the environment and climate.

  15. GeoSTAR: a geostationary microwave sounder for the future

    NASA Astrophysics Data System (ADS)

    Lambrigtsen, B. H.; Brown, S. T.; Dinardo, S. J.; Gaier, T. C.; Kangaslahti, P. P.; Tanner, A. B.

    2007-09-01

    The Geostationary Synthetic Thinned Aperture Radiometer (GeoSTAR) is a new Earth remote sensing instrument concept that has been under development at the Jet Propulsion Laboratory. First conceived in 1998 as a NASA New Millennium Program mission and subsequently developed in 2003-2006 as a proof-of-concept prototype under the NASA Instrument Incubator Program, it is intended to fill a serious gap in our Earth remote sensing capabilities - namely the lack of a microwave atmospheric sounder in geostationary orbit. The importance of such observations have been recognized by the National Academy of Sciences National Research Council, which recently released its report on a "Decadal Survey" of NASA Earth Science activities. One of the recommended missions for the next decade is a geostationary microwave sounder. GeoSTAR is well positioned to meet the requirements of such a mission, and because of the substantial investment NASA has already made in GeoSTAR technology development, this concept is fast approaching the necessary maturity for implementation in the next decade. NOAA is also keenly interested in GeoSTAR as a potential payload on its next series of geostationary weather satellites, the GOES-R series. GeoSTAR, with its ability to map out the three-dimensional structure of temperature, water vapor, clouds, precipitation and convective parameters on a continual basis, will significantly enhance our ability to observe hurricanes and other severe storms. In addition, with performance matching that of current and next generation of low-earth-orbiting microwave sounders, GeoSTAR will also provide observations important to the study of the hydrologic cycle, atmospheric processes and climate variability and trends. In particular, with GeoSTAR it will be possible to fully resolve the diurnal cycle. We discuss the GeoSTAR concept and basic design, the performance of the prototype, and a number of science applications that will be possible with GeoSTAR. The work reported

  16. Geo-STAR: A Geostationary Microwave Sounder for the Future

    NASA Technical Reports Server (NTRS)

    Lambrigtsen, Bjorn H.; Brown, S. T.; Dinardo, S. J.; Gaier, T. C.; Kangaslahti, P. P.; Tanner, A. B.

    2007-01-01

    The Geostationary Synthetic Thinned Aperture Radiometer (GeoSTAR) is a new Earth remote sensing instrument concept that has been under development at the Jet Propulsion Laboratory. First conceived in 1998 as a NASA New Millennium Program mission and subsequently developed in 2003-2006 as a proof-of-concept prototype under the NASA Instrument Incubator Program, it is intended to fill a serious gap in our Earth remote sensing capabilities - namely the lack of a microwave atmospheric sounder in geostationary orbit. The importance of such observations have been recognized by the National Academy of Sciences National Research Council, which recently released its report on a 'Decadal Survey' of NASA Earth Science activities1. One of the recommended missions for the next decade is a geostationary microwave sounder. GeoSTAR is well positioned to meet the requirements of such a mission, and because of the substantial investment NASA has already made in GeoSTAR technology development, this concept is fast approaching the necessary maturity for implementation in the next decade. NOAA is also keenly interested in GeoSTAR as a potential payload on its next series of geostationary weather satellites, the GOES-R series. GeoSTAR, with its ability to map out the three-dimensional structure of temperature, water vapor, clouds, precipitation and convective parameters on a continual basis, will significantly enhance our ability to observe hurricanes and other severe storms. In addition, with performance matching that of current and next generation of low-earth-orbiting microwave sounders, GeoSTAR will also provide observations important to the study of the hydrologic cycle, atmospheric processes and climate variability and trends. In particular, with GeoSTAR it will be possible to fully resolve the diurnal cycle. We discuss the GeoSTAR concept and basic design, the performance of the prototype, and a number of science applications that will be possible with GeoSTAR. The work reported

  17. No widespread dust in the upper atmosphere of Mars from Mars Climate Sounder observations

    NASA Astrophysics Data System (ADS)

    Kleinboehl, Armin; Schofield, John T.; Kass, David M.; Abdou, Wedad A.; McCleese, Daniel J.

    2015-04-01

    The vertical distribution of dust in the Martian atmosphere has been a topic of discussion in the recent years. Measurements by limb sounding instruments like the Mars Climate Sounder (MCS) and the Thermal Emission Spectrometer (TES) indicate that atmospheric dust is not homogeneously distributed in the vertical but exhibits layering in the lower atmosphere. Recent retrievals from TES measurements also suggest a dust maximum higher in the atmosphere that predominantly occurs at 50-60 km altitude on the daytime hemisphere. We use new retrievals from MCS measurements to investigate this deduction. MCS is a mid- and far-infrared thermal emission radiometer on board the Mars Reconnaissance Orbiter. It measures radiances in limb and on-planet viewing geometries. From these radiance measurements, profiles of atmospheric temperature, dust and water ice are retrieved from the surface to ~80 km with a vertical resolution of ~5 km. Updates to the retrieval algorithm yield improved representations of aerosols above ~40 km altitude. With a few notable exceptions, retrieved dust extinctions in the upper atmosphere do not exceed 1e-5 km-1 at mid-infrared wavelengths, which is close to the limit of the MCS sensitivity. The sensitivity of an MCS limb measurement to aerosols at these altitudes is typically not limited by signal-to-noise but rather by the uncertainties in the representation of the instrument's vertical field-of-view, the far wings of which can provide radiance contributions from the lower atmosphere and the surface. Sensitivity studies suggest that low radiances measured at high altitudes are not caused by widespread dust but can be explained by these radiance contributions. Thus MCS measurements do not support the existence of widespread dust in the upper atmosphere of Mars.

  18. Validation of nitrogen dioxide measurements from the Improved Stratospheric and Mesospheric Sounder

    NASA Astrophysics Data System (ADS)

    Reburn, W. J.; Remedios, J. J.; Morris, P. E.; Rodgers, C. D.; Taylor, F. W.; Kerridge, B. J.; Knight, R. J.; Ballard, J.; Kumer, J. B.; Massie, S. T.

    1996-04-01

    Measurements of nitrogen dioxide (NO2) from the Improved Stratospheric and Mesospheric Sounder (ISAMS) on the Upper Atmosphere Research Satellite (UARS) are assessed. Channel 5 of the instrument was dedicated to observations of nitrogen dioxide and employed pressure-modulation and wideband radiometry to make measurements at 6.2 μm. This dual technique allows simultaneous determination of nitrogen dioxide mixing ratio and the aerosol extinction coefficient at this wavelength and therefore provides nitrogen dioxide data even in the presence of heavy aerosol loading. Approximately 180 days of data, in the period from September 1991 to July 1992, were obtained with, typically, over 2600 profiles per day for each retrieved species, covering an altitude range of 100-0.01 mbar. In this paper the version 10 data are assessed and a full error analysis is described. Comparisons with the Cryogenic Limb Array Etalon Spectrometer (CLAES) on UARS and the Limb Infrared Monitor of the Stratosphere (LIMS) on Nimbus 7 are also presented. It is concluded that the morphology of the retrieved ISAMS fields is robust and consistent with concurrent as well as previous infrared satellite measurements. Random errors are estimated to be of the order of 10% for nighttime and 15% for daytime NO2 near the maxima of the distributions, and systematic errors are estimated to be of a similar size. However, there remains an unresolved systematic difference of about a factor of 2 between ISAMS and CLAES. Both random and systematic errors are likely to be reduced in future versions of the processing.

  19. Development of an interatmospheric window wavelength (5-9 μm) infrared thermography with an advanced image processing technique

    NASA Astrophysics Data System (ADS)

    Sato, Daisuke; Komiyama, Tatsuhito; Sakagami, Takahide; Kubo, Shiro

    2006-04-01

    Recently, deterioration of concrete structures before their design life has become a serious social problem in Japan. Nondestructive inspection techniques are required, for detecting defects and damages in concrete structures, such as subsurface void or delamination. As one of these techniques, the thermographic NDT can be applied as an effective NDT technique to inspect large area of the objective structure from distant place. In addition, it does not require any chemicals and application of physical excitation for inspection. However, the thermographic NDT has a shortcoming that the measurement results are affected by the reflection of atmospheric radiation due to the sunlight, sky or surrounding materials. Since most of the buildings in Japan are covered with luster materials with low emissivity, such as tile or mortal, infrared reflection on the surface is difficult to be neglected. To reduce the influence of these reflection noises, the infrared thermography with detectable wavelength from 5 to 8 μm, which coincides with absorption range of moisture, is utilized. In this research, a new infrared thermography with 5 to 8 μm wavelength range by applying a band pass filter and an uncooled microbolometer infrared array detector. Further, a new signal to noise (S/N) ratio improvement technique has been developed in order to compensate a deterioration of sensitivity due to the band pass filter.

  20. Satellite Sounder Data Assimilation for Improving Alaska Region Weather Forecast

    NASA Technical Reports Server (NTRS)

    Zhu, Jiang; Stevens, E.; Zavodsky, B. T.; Zhang, X.; Heinrichs, T.; Broderson, D.

    2014-01-01

    Data assimilation has been demonstrated very useful in improving both global and regional numerical weather prediction. Alaska has very coarser surface observation sites. On the other hand, it gets much more satellite overpass than lower 48 states. How to utilize satellite data to improve numerical prediction is one of hot topics among weather forecast community in Alaska. The Geographic Information Network of Alaska (GINA) at University of Alaska is conducting study on satellite data assimilation for WRF model. AIRS/CRIS sounder profile data are used to assimilate the initial condition for the customized regional WRF model (GINA-WRF model). Normalized standard deviation, RMSE, and correlation statistic analysis methods are applied to analyze one case of 48 hours forecasts and one month of 24-hour forecasts in order to evaluate the improvement of regional numerical model from Data assimilation. The final goal of the research is to provide improved real-time short-time forecast for Alaska regions.

  1. A submillimeter sounder for the Titan Saturn System Mission (TSSM)

    NASA Astrophysics Data System (ADS)

    Lellouch, E.; Vinatier, S.; Moreno, R.; Allen, M.; Gulkis, S.; Hartogh, P.; Mehdi, I.; Maestrini, A.; Krieg, J.-M.

    2008-09-01

    A submillimeter sounder (SMS) onboard the TSSM mission and operating mostly in limb viewing is a powerful instrument to study Titan's atmosphere from ~50 to 1200 km, and especially the largely unexplored "agnostophere" from 500 to 1000 km. Unique capabilities of such an instrument include (i) measurement of temperature field up to 1200 km, using rotational lines of CH4, CO, and HCN (ii) direct, absolute and accurate wind measurements from Doppler shifts (iii) high sensitivity to trace minor compounds, particularly nitriles and rare isotope species. Altogether, SMS can provide a new characterization of the couplings between stratospheric/mesospheric chemistry and dynamics, and of their relationships with the complex thermospheric chemistry observed by Cassini. At Enceladus, SMS can provide detailed measurements of temperature, composition and gas plume dynamics.

  2. Stratospheric CH3CN from the UARS Microwave Limb Sounder

    NASA Astrophysics Data System (ADS)

    Livesey, Nathaniel J.; Waters, Joe W.; Khosravi, Rashid; Brasseur, Guy P.; Tyndall, Geoffrey S.; Read, William G.

    CH3CN in the stratosphere has been measured by the Microwave Limb Sounder (MLS) on the Upper Atmosphere Research Satellite (UARS), providing the first global CH3CN dataset. The MLS observations are in broad agreement with past high and midlatitude observations of CH3CN, although concentrations are a little larger than previously observed. In the tropics, where CH3CN has not up to now been measured, a persistent ‘peak’ in the profiles is seen around 22 hPa, which may be evidence of a tropical stratospheric CH3CN source. Comparisons are made with the NCAR SOCRATES model, including runs having an artificial tropical stratospheric CH3CN source.

  3. GOES-R Advanced Baseline Imager: spectral response functions and radiometric biases with the NPP Visible Infrared Imaging Radiometer Suite evaluated for desert calibration sites.

    PubMed

    Pearlman, Aaron; Pogorzala, David; Cao, Changyong

    2013-11-01

    The Advanced Baseline Imager (ABI), which will be launched in late 2015 on the National Oceanic and Atmospheric Administration's Geostationary Operational Environmental Satellite R-series satellite, will be evaluated in terms of its data quality postlaunch through comparisons with other satellite sensors such as the recently launched Visible Infrared Imaging Radiometer Suite (VIIRS) aboard the Suomi National Polar-orbiting Partnership satellite. The ABI has completed much of its prelaunch characterization and its developers have generated and released its channel spectral response functions (response versus wavelength). Using these responses and constraining a radiative transfer model with ground reflectance, aerosol, and water vapor measurements, we simulate observed top of atmosphere (TOA) reflectances for analogous visible and near infrared channels of the VIIRS and ABI sensors at the Sonoran Desert and White Sands National Monument sites and calculate the radiometric biases and their uncertainties. We also calculate sensor TOA reflectances using aircraft hyperspectral data from the Airborne Visible/Infrared Imaging Spectrometer to validate the uncertainties in several of the ABI and VIIRS channels and discuss the potential for validating the others. Once on-orbit, calibration scientists can use these biases to ensure ABI data quality and consistency to support the numerical weather prediction community and other data users. They can also use the results for ABI or VIIRS anomaly detection and resolution. PMID:24216671

  4. Space Electron Density Gradient Studies using a 3D Embedded Reconfigurable Sounder and ESA/NASA CLUSTER Mission

    NASA Astrophysics Data System (ADS)

    Dekoulis, George

    2016-07-01

    This paper provides a direct comparison between data captured by a new embedded reconfigurable digital sounder, different ground-based ionospheric sounders spread around Europe and the ESA/NASA CLUSTER mission. The CLUSTER mission consists of four identical space probes flying in a formation that allows measurements of the electron density gradient in the local magnetic field. Both the ground-based and the spacecraft instrumentations assist in studying the motion, geometry and boundaries of the plasmasphere. The comparison results are in accordance to each other. Some slight deviations among the captured data were expected from the beginning of this investigation. These small discrepancies are reasonable and seriatim analyzed. The results of this research are significant, since the level of the plasma's ionization, which is related to the solar activity, dominates the propagation of electromagnetic waves through it. Similarly, unusually high solar activity presents serious hazards to orbiting satellites, spaceborne instrumentation, satellite communications and infrastructure located on the Earth's surface. Long-term collaborative study of the data is required to continue, in order to identify and determine the enhanced risk in advance. This would allow scientists to propose an immediate cure.

  5. Intercomparison of three microwave/infrared high resolution line-by-line radiative transfer codes

    NASA Astrophysics Data System (ADS)

    Schreier, F.; Garcia, S. Gimeno; Milz, M.; Kottayil, A.; Höpfner, M.; von Clarmann, T.; Stiller, G.

    2013-05-01

    An intercomparison of three line-by-line (lbl) codes developed independently for atmospheric sounding - ARTS, GARLIC, and KOPRA - has been performed for a thermal infrared nadir sounding application assuming a HIRS-like (High resolution Infrared Radiation Sounder) setup. Radiances for the HIRS infrared channels and a set of 42 atmospheric profiles from the "Garand dataset" have been computed. Results of this intercomparison and a discussion of reasons of the observed differences are presented.

  6. Detecting Climate Signatures with High Spectral Resolution Infrared Satellite Measurements

    NASA Astrophysics Data System (ADS)

    Deslover, D. H.; Tobin, D.; Knuteson, R. O.; Revercomb, H. E.

    2013-12-01

    Upwelling atmospheric infrared radiances can be accurately monitored from high spectral resolution satellite observations. The high spectral resolution nature of these measurements affords the ability to track various climate relevant parameters such as window channels sensitive to surface temperature and clouds, channels with higher sensitivity to trace gases including CO2, CH4, SO2, HNO3, as well as channels sensitive only to upper tropospheric or lower stratospheric temperature. NASA's Atmospheric Infrared Sounder (AIRS) provides a data record that extends from its 2002 launch to the present. The Infrared Atmospheric Sounding Interferometer (IASI) onboard Metop- (A launched in 2006, B in 2012), as well as the Joint Polar Satellite System (JPSS) Cross-track Infrared Sounder (CrIS) launched in 2011, complement this data record. Future infrared sounders with similar capabilities will augment these measurements into the distant future. We have created a global data set from the aforementioned satellite observations. Our analysis yields a channel dependent approach that can be further constrained in terms of diurnal, seasonal and geographic limits, with measurement accuracies of better than a few tenths of degree Kelvin. In this study, we have applied this concept to obtain a better understanding of long-term stratospheric temperature trends. We will present a survey of temperature trends for spectral channels that were chosen to be sensitive to stratospheric emission. Results will be shown for tropical, mid-latitude and polar stratospheric observations.

  7. Development and initial assessment of a new land index for microwave humidity sounder cloud detection

    NASA Astrophysics Data System (ADS)

    Qin, Zhengkun; Zou, Xiaolei

    2016-02-01

    This paper describes a new quality control (QC) scheme for microwave humidity sounder (MHS) data assimilation. It consists of a cloud detection step and an O-B (i.e., differences of brightness temperatures between observations and model simulations) check. Over ocean, cloud detection can be carried out based on two MHS window channels and two Advanced Microwave Sounding Unit-A (AMSU-A) window channels, which can be used for obtaining cloud ice water path (IWP) and liquid water path (LWP), respectively. Over land, cloud detection of microwave data becomes much more challenging due to a much larger emission contribution from land surface than that from cloud. The current MHS cloud detection over land employs an O-B based method, which could fail to identify cloudy radiances when there is mismatch between actual clouds and model clouds. In this study, a new MHS observation based index is developed for identifying MHS cloudy radiances over land. The new land index for cloud detection exploits the large variability of brightness temperature observations among MHS channels over different clouds. It is shown that those MHS cloudy radiances that were otherwise missed by the current O-B based QC method can be successfully identified by the new land index. An O-B check can then be employed to the remaining data after cloud detection to remove additional outliers with model simulations deviated greatly from observations. It is shown that MHS channel correlations are significantly reduced by the newly proposed QC scheme.

  8. Atmosphere and climate studies of Mars using the Mars Observer pressure modulator infrared radiometer

    NASA Technical Reports Server (NTRS)

    Mccleese, D. J.; Haskins, R. D.; Schofield, J. T.; Zurek, R. W.; Leovy, C. B.; Paige, D. A.; Taylor, F. W.

    1992-01-01

    Studies of the climate and atmosphere of Mars are limited at present by a lack of meteorological data having systematic global coverage with good horizontal and vertical resolution. The Mars Observer spacecraft in a low, nearly circular, polar orbit will provide an excellent platform for acquiring the data needed to advance significantly our understanding of the Martian atmosphere and its remarkable variability. The Mars Observer pressure modulator infrared radiometer (PMIRR) is a nine-channel limb and nadir scanning atmospheric sounder which will observe the atmosphere of Mars globally from 0 to 80 km for a full Martian year. PMIRR employs narrow-band radiometric channels and two pressure modulation cells to measure atmospheric and surface emission in the thermal infrared. PMIRR infrared and visible measurements will be combined to determine the radiative balance of the polar regions, where a sizeable fraction of the global atmospheric mass annually condenses onto and sublimes from the surface. Derived meteorological fields, including diabatic heating and cooling and the vertical variation of horizontal winds, are computed from the globally mapped fields retrieved from PMIRR data.

  9. Airborne Deployment and Calibration of Microwave Atmospheric Sounder on 6U CubeSat

    NASA Astrophysics Data System (ADS)

    Padmanabhan, S.; Brown, S. T.; Lim, B.; Kangaslahti, P.; Russell, D.; Stachnik, R. A.

    2015-12-01

    To accurately predict how the distribution of extreme events may change in the future we need to understand the mechanisms that influence such events in our current climate. Our current observing system is not well-suited for observing extreme events globally due to the sparse sampling and in-homogeneity of ground-based in-situ observations and the infrequent revisit time of satellite observations. Observations of weather extremes, such as extreme precipitation events, temperature extremes, tropical and extra-tropical cyclones among others, with temporal resolution on the order of minutes and spatial resolution on the order of few kms (<10 kms), are required for improved forecasting of extreme weather events. We envision a suite of low-cost passive microwave sounding and imaging sensors on CubeSats that would work in concert with traditional flagship observational systems, such as those manifested on large environmental satellites (i.e. JPSS,WSF,GCOM-W), to monitor weather extremes. A 118/183 GHz sensor would enable observations of temperature and precipitation extremes over land and ocean as well as tropical and extra-tropical cyclones. This proposed project would enable low cost, compact radiometer instrumentation at 118 and 183 GHz that would fit in a 6U Cubesat with the objective of mass-producing this design to enable a suite of small satellites to image the key geophysical parameters needed to improve prediction of extreme weather events. We take advantage of past and current technology developments at JPL viz. HAMSR (High Altitude Microwave Scanning Radiometer), Advanced Component Technology (ACT'08) to enable low-mass, low-power high frequency airborne radiometers. In this paper, we will describe the design and implementation of the 118 GHz temperature sounder and 183 GHz humidity sounder on the 6U CubeSat. In addition, we will discuss the maiden airborne deployment of the instrument during the Plain Elevated Convection at Night (PECAN) experiment. The

  10. Progress in developing GeoSTAR - Microwave Sounder for GOES-R

    NASA Technical Reports Server (NTRS)

    Lambrigtsen, Bjorn H.; Brown, S. T.; Dinardo, S. J.; Kangaslahti, P. P.; Tanner, A. B.; Wilson, W. J.

    2005-01-01

    The Geostationary Synthetic Thinned Aperture Radiometer (GeoSTAR)is a new concept for a microwave sounder, intended to be deployed at the Jet Propulsion Laboratory under NASA Instrument Incubator Program sponsorship, and is currently undergoing tests and performance characterization.

  11. IBuoy: Expendable Echo Sounder Buoy with Satellite Data Telemetry

    NASA Astrophysics Data System (ADS)

    Greenspan, D. G.; Porter, D. L.; Chayes, D. N.

    2012-12-01

    The IBuoy is a small expendable buoy platform with satellite data telemetry that can be deployed for different measurements, such as a wave spectrum (Porter and Keller, 2012). The IBuoy in its wave measuring version allows a user to deploy a small float, (25 cm high, 30 cm in diameter, 2.8 kg), which measures the instrument's motion for 20 minutes, processes the data for 5 minutes, and telemeters the processed data via Iridium modem to the user. In the spring of 2012 this system was modified by replacing the internal motion sensor with a connection to the Lamont-Doherty Earth Observatory's (LDEO) prototype Seafloor Sounding in Polar and Remote (SSPARR) echo sounder (Anderson et. al, 2005). From May 3 through May 19, 2012, this prototype was deployed nine times during the NSF-funded Switchyard field program at thin hole rosette sites (Smethie et. al, 2011). At three sites it was deployed in the beacon-mode, and at six other sites in the SSPARR mode with one of the sites being within ~400 km of the North Pole. In beacon-mode the IBuoy reports positions over time allowing accurate estimates of true ice motion. When it is in the beacon- and depth-mode, an acoustic transducer is deployed through a 12 inch hole in the ice and connected to the SSPARR sounder with the IBuoy on the ice surface. In this configuration it measures the water depth from the submerged transducer to the ocean floor below. Now that the concept has successfully been tested, the goal is to deploy similar IBuoy/SSPARRs at a number of sites for a season and collect positional data and depth soundings as the ice moves. The IBuoy concept provides a highly capable inexpensive platform that can be configured for a variety of measurements. References: Porter, D. L. and K. H. Keller, "IBuoy: Expendable Short Time Duration Wave Buoy with Satellite Data Telemetry," OCEANS '12, Hampton Roads, VA, 14-19 October, 2012. Smethie, W.M. Jr., D. Chayes, R. Perry, and P. Schlosser. 2011. A lightweight vertical rosette

  12. Global measurements of wind fields using the Laser Atmospheric Wind Sounder (LAWS) on the Earth Observing System (EOS)

    NASA Technical Reports Server (NTRS)

    Fitzjarrald, Daniel E.

    1988-01-01

    The technology for measuring global wind fields in space by the Laser Atmospheric Wind Sounder (LAWS) to be flown on the Earth Observing System (EOS) is discussed. Studies initiated by NASA to determine the feasibility of using Doppler lidar from a platform in space to measure the wind globally have shown the general feasibility of the technique and have identified the technological problems that need to be resolved. Among the lidar systems being evaluated, CO2 coherent detection lidar is given special consideration. A comprehensive research program, the Global Backscatter Experiment, has been established to study global distribution of naturally occurring atmospheric aerosols that provide signal return at the wavelengths used by the techniques under consideration. Wind profiles from space will provide essential information for advancing the skill of numerical weather prediction, furthering the present knowledge of the large-scale atmospheric circulation and climate dynamics, and of global biogeochemical and hydrologic cycles.

  13. Real-time Data Processing and Visualization for the Airborne Scanning High-resolution Interferometer Sounder (S-HIS)

    NASA Astrophysics Data System (ADS)

    Taylor, J. K.; Revercomb, H. E.; Hoese, D.; Garcia, R. K.; Smith, W. L.; Weisz, E.; Tobin, D. C.; Best, F. A.; Knuteson, R. O.; Sullivan, D. V.; Barnes, C. M.; Van Gilst, D. P.

    2015-12-01

    The Hurricane and Severe Storm Sentinel (HS3) is a five-year NASA mission targeted to enhance the understanding of the formation and evolution of hurricanes in the Atlantic basin. Measurements were made from two NASA Global Hawk Unmanned Aircraft Systems (UAS) during the 2012 through 2014 hurricane seasons, with flights conducted from the NASA Wallops Flight Facility. The Global Hawk aircraft are capable of high altitude flights with durations of up to 30 hours, which allow extensive observations over distant storms, not typically possible with manned aircraft. The two NASA Global Hawks were equipped with instrument suites to study the storm environment, and inner core structure and processes, respectively. The Scanning High-resolution Interferometer Sounder (S-HIS), designed and built by the University of Wisconsin (UW) Space Science and Engineering Center (SSEC), measures emitted thermal radiation at high spectral resolution between 3.3 and 18 microns. The radiance measurements are used to obtain temperature and water vapor profiles of the Earth's atmosphere. The S-HIS spatial resolution is 2 km at nadir, across a 40 km ground swath from a nominal altitude of 20 kilometers. Since 1998, the S-HIS has participated in 33 field campaigns and has proven to be extremely dependable, effective, and highly accurate. It has flown on the NASA ER-2, DC-8, Proteus, WB-57, and Global Hawk airborne platforms. The UW S-HIS infrared sounder instrument is equipped with a real-time ground data processing system capable of delivering atmospheric profiles, radiance data, and engineering status to mission support scientists - all within less than one minute from the time of observation. This ground data processing system was assembled by a small team using existing software and proven practical techniques similar to a satellite ground system architecture. This summary outlines the design overview for the system and illustrates the data path, content, and outcomes.

  14. Temperature and dust profiles in Martian dust storm conditions retrieved from Mars Climate Sounder measurements

    NASA Astrophysics Data System (ADS)

    Kleinboehl, A.; Kass, D. M.; Schofield, J. T.; McCleese, D. J.

    2013-12-01

    Mars Climate Sounder (MCS) is a mid- and far-infrared thermal emission radiometer on board the Mars Reconnaissance Orbiter. It measures radiances in limb and nadir/on-planet geometry from which vertical profiles of atmospheric temperature, water vapor, dust and condensates can be retrieved in an altitude range from 0 to 80 km and with a vertical resolution of ~5 km. Due to the limb geometry used as the MCS primary observation mode, retrievals in conditions with high aerosol loading are challenging. We have developed several modifications to the MCS retrieval algorithm that will facilitate profile retrievals in high-dust conditions. Key modifications include a retrieval option that uses a surface pressure climatology if a pressure retrieval is not possible in high dust conditions, an extension of aerosol retrievals to higher altitudes, and a correction to the surface temperature climatology. In conditions of a global dust storm, surface temperatures tend to be lower compared to standard conditions. Taking this into account using an adaptive value based on atmospheric opacity leads to improved fits to the radiances measured by MCS and improves the retrieval success rate. We present first results of these improved retrievals during the global dust storm in 2007. Based on the limb opacities observed during the storm, retrievals are typically possible above ~30 km altitude. Temperatures around 240 K are observed in the middle atmosphere at mid- and high southern latitudes after the onset of the storm. Dust appears to be nearly homogeneously mixed at lower altitudes. Significant dust opacities are detected at least up to 70 km altitude. During much of the storm, in particular at higher altitudes, the retrieved dust profiles closely resemble a Conrath-profile.

  15. Thermal Inertia Mapping Using Mars Climate Sounder Measurements.

    NASA Astrophysics Data System (ADS)

    Piqueux, S.; Kleinboehl, A.; Golombek, M. P.

    2014-12-01

    Previous work has shown inter-seasonal variations of the apparent thermal inertia at virtually all Martian latitudes. Because thermal inertia is mainly controlled by low variability parameters (e.g., grain sizes, degree of induration, rock abundance), these variations are usually interpreted in terms of subsurface layering and atmospheric contributions. Using atmospherically corrected surface temperatures at 32 μm wavelength (channel B1) from the Mars Climate Sounder (MCS) onboard Mars Reconnaissance Orbiter, we analyze the inter-seasonal variations of the apparent thermal inertia. We show that most of the previously observed inertia variations are eliminated, indicating that a simple homogeneous regolith structure is sufficient to explain most of the measurements. Also, as expected, a fraction of the observed variations remain, especially at high latitudes. This is consistent with subsurface layering involving water ice below dry regolith inferred from other measurement techniques and modeling. This work strengthens our ability to identify and characterize surface/subsurface material thermal inertias, layering and physical heterogeneities in the Martian surface layer, and will help eliminate seasonal striping on high-resolution inertia maps. In addition to a global scale analysis, we will discuss observations in western Elysium Planitia where the Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight) lander is planned to land in September 2016. We will provide predictions of the surface layer thermophysical properties, which are required for safe landing and successful scientific operations on the ground.

  16. Microwave Limb Sounder/El Nino Watch - December, 1997

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This image shows differences in atmospheric water vapor relative to a normal (average) year in the Earth's upper troposphere about 10 kilometers (6 miles) above the surface. The measurements were taken by the Microwave Limb Sounder (MLS) instrument aboard NASA's Upper Atmosphere Research Satellite (UARS). These data, collected in late December 1997, show higher than normal levels of water vapor (red) over the central and eastern Pacific which indicates the presence of an El Nino condition. At the same time, the western Pacific (blue) is much drier than normal. The unusually moist air above the central and eastern Pacific is a consequence of the much warmer-than-normal ocean waters which occur during El Nino. Warmer water evaporates at a higher rate and the resulting warm moist air rises and forms tall cloud towers. In the tropics, the warm water and the resulting tall cloud towers typically produce large amounts of rain. These data show significant increases in the amount of atmospheric moisture off the coast of Peru and Ecuador since measurements were made in November 1997. The maximum water temperature in the eastern tropical Pacific, as measured by the National Oceanic and Atmospheric Administration (NOAA), is still higher than normal and these high ocean temperatures are likely responsible for an increase in evaporation and the subsequent rise in humidity.

  17. Coherent launch-site atmospheric wind sounder: theory and experiment.

    PubMed

    Hawley, J G; Targ, R; Henderson, S W; Hale, C P; Kavaya, M J; Moerder, D

    1993-08-20

    The coherent launch-site atmospheric wind sounder (CLAWS) is a lidar atmospheric wind sensor designed to measure the winds above space launch facilities to an altitude of 20 km. In our development studies, lidar sensor requirements are defined, a system to meet those requirements is defined and built, and the concept is evaluated, with recommendations for the most feasible and cost-effective lidar system for use as an input to a guidance and control system for missile or spacecraft launches. The ability of CLAWS to meet NASA goals for increased safety and launch/mission flexibility is evaluated in a field test program at Kennedy Space Center (KSC) in which we investigate maximum detection range, refractive turbulence, and aerosol backscattering efficiency. The Nd:YAG coherent lidar operating at 1.06 µm with 1-J energy per pulse is able to make real-time measurements of the three-dimensional wind field at KSC to an altitude of 26 km, in good agreement with our performance simulations. It also shows the height and thickness of the volcanic layer caused by the volcanic eruption of Mount Pinatubo in the Philippines. PMID:20830118

  18. Validation of UARS Microwave Limb Sounder ClO Measurements

    NASA Technical Reports Server (NTRS)

    Waters, J. W.; Read, W. G.; Froidevaux, L.; Lungu, T. A.; Perun, V. S.; Stachnik, R. A.; Jarnot, R. F.; Cofield, R. E.; Fishbein, E. F.; Flower, D. A.; Burke, J. R.; Hardy, J. C.; Nakamura, L. L.; Ridenoure, B. P.; Shippony, Z.; Thurstans, R. P.; Thurstans, R. P.; Avallone, L. M.; Toohey, D. W.; deZafra, R. L.; Shindell, D. T.

    1996-01-01

    Validation of stratospheric ClO measurements by the Microwave Limb Sounder (MLS) on the Upper Atmosphere Research Satellite (UARS) is described. Credibility of the measurements is established by (1) the consistency of the measured ClO spectral emission line with the retrieved ClO profiles and (2) comparisons of ClO from MLS with that from correlative measurements by balloon-based, ground-based, and aircraft-based instruments. Values of "noise" (random), "scaling" (multiplicative), and "bias" (additive) uncertainties are determined for the Version 3 data, in the first version public release of the known artifacts in these data are identified. Comparisons with correlative measurements indicate agreement to within the combined uncertainties expected for MLS and the other measurements being compared. It is concluded that MLS Version 3 ClO data, with proper consideration of the uncertainties and "quality" parameters produced with these data, can be used for scientific analyses at retrieval surfaces between 46 and 1 hPa (approximately 20-50 km in height). Future work is planned to correct known problems in the data and improve their quality.

  19. The Upper Atmosphere Research Satellite microwave limb sounder instrument

    NASA Technical Reports Server (NTRS)

    Barath, F. T.; Chavez, M. C.; Cofield, R. E.; Flower, D. A.; Frerking, M. A.; Gram, M. B.; Harris, W. M.; Holden, J. R.; Jarnot, R. F.; Kloezeman, W. G.

    1993-01-01

    The microwave limb sounder (MLS) on the Upper Atmosphere Research Satellite (UARS) is the first satellite experiment using limb sounding techniques at microwave frequencies. Primary measurement objectives are stratospheric ClO, O3, H2O, temperature, and pressure. Measurements are of thermal emission: all are performed simultaneously and continuously and are not degraded by ice clouds or volcanic aerosols. The instrument has a 1.6-m mechanically scanning antenna system and contains heterodyne radiometers in spectral bands centred near 63, 183, and 205 GHz. The radiometers operate at ambient temperature and use Schottky-diode mixers with local oscillators derived from phase-locked Gunn oscillators. Frequency tripling by varactor multipliers generates the 183- and 205-GHz local oscillators, and quasi-optical techniques inject these into the mixers. Six 15-channel filter banks spectrally resolve stratospheric thermal emission lines and produce an output spectrum every 2 s. Thermal stability is sufficient for 'total power' measurements which do not require fast chopping. Radiometric calibration, consisting of measurements of cold space and an internal target, is performed every 65-s limb scan. Instrument in-orbit performance has been excellent, and all objectives are being met.

  20. Scanning Mechanism of the FY-3 Microwave Humidity Sounder

    NASA Technical Reports Server (NTRS)

    Schmid, Manfred; Jing, Li; Hehr, Christian

    2010-01-01

    Astrium GmbH Germany, developed the scanning equipment for the instrument package of the MicroWave Humidity Sounder (MWHS) flying on the FY-3 meteorological satellite (FY means Feng Yun, Wind and Cloud) in a sun-synchronized orbit of 850-km altitude and at an inclination of 98.8 . The scanning mechanism rotates at variable velocity comprising several acceleration / deceleration phases during each revolution. The Scanning Mechanism contains two output shafts, each rotating a parabolic offset Antenna Reflector. The mechanism is operated in closed loop by means of redundant control electronics. MWHS is a sounding radiometer for measurement of global atmospheric water vapour profiles. An Engineering Qualification Model was developed and qualified and a first Flight Model was launched early 2008. The system is now working for more than two years successful in orbit. A second Flight Model of the Antenna Scanning Mechanism and of its associated control electronics was built and delivered to the customer for application on the follow-on spacecraft that will be launched by the end of 2010.

  1. The Mars Climate Sounder In-Flight Positioning Anomaly

    NASA Technical Reports Server (NTRS)

    Jau, Bruno M.; Kass, David

    2008-01-01

    The paper discusses the Mars Climate Sounder (MCS) instrument s in-flight positioning errors and presents background material about it. A short overview of the instrument s science objectives and data acquisition techniques is provided. The brief mechanical description familiarizes the reader with the MCS instrument. Several key items of the flight qualification program, which had a rigorous joint drive test program but some limitations in overall system testing, are discussed. Implications this might have had for the flight anomaly, which began after several months of flawless space operation, are mentioned. The detection, interpretation, and instrument response to the errors is discussed. The anomaly prompted engineering reviews, renewed ground, and some in-flight testing. A summary of these events, including a timeline, is included. Several items of concern were uncovered during the anomaly investigation, the root cause, however, was never found. The instrument is now used with two operational constraints that work around the anomaly. It continues science gathering at an only slightly diminished pace that will yield approximately 90% of the originally intended science.

  2. Visible and infrared spin scan radiometer atmospheric sounder water vapor and wind fields over Amazonia

    SciTech Connect

    Schmit, T.J.; Brueske, K.F.; Smith, W.L. ); Menzel, W.P. )

    1990-09-20

    Both the mass and motion fields for Amazonia have been depicted using almost exclusively geostationary satellite data. Derived parameters include satellite retrievals of atmospheric temperature and dewpoint temperature, total precipitable water vapor, and cloud and water vapor winds. The capabilities of geostationary satellite data have been demonstrated at least four times a day for the period of May 5-8, 1987, during the Global Tropospheric Experiment/Amazon Boundary Layer Experiment. The satellite-derived information is able to resolve synoptic-scale atmospheric trends in space and time.

  3. Ethane pollution in the UTLS observed with the imaging infrared limb sounder GLORIA

    NASA Astrophysics Data System (ADS)

    Sumińska-Ebersoldt, Olga

    2015-04-01

    Ethane (C2H6) in the atmosphere results from the production and transmission of fossil fuels, biofuel use and biomass burning. Due to its lifetime of 2 - 3 months, ethane is a significant indicator and tracer of industrial pollution and enables investigation of transport and mixing in the UTLS region. During the TACTS/ESMVal flight over Arabian Sea and Arabian Peninsula in summer 2012, GLORIA (Gimballed Limb Observer for Radiance Imaging of the Atmosphere) detected two layers (at 10-12 km and 12-14 km altitude) and two vertical plums of enhanced ethane with mixing ratios of about 1000 ppt. The spatial distribution cross sections of ethane retrieved from GLORIA chemistry mode measurements show good correlation with numerous trace gases sampled with in-situ instruments during the flight. Based on the data and the climatology, we evaluate here the sources of the ethane mixing ratio enhancements with backward trajectory calculations and investigate an impact of outflow of pollutants from the Asian summer monsoon on the composition of the UTLS in the flight region.

  4. The Atmospheric Infrared Sounder (AIRS) on Aqua: instrument stability and data products for climate observations

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Chahine, M.; Aumann, H.; Strow, L.; Broberg, S.; Gaiser, S.

    2003-01-01

    30th International Symposium on Remote Sensing of the Environment (ISRSE) NASA Honolulu, Hawaii, USAThis paper discusses the stability of the AIRS instrument as measured pre-flight and in-orbit. In order differentiate instrument related changes with true changes in climate observations, the instrument stability must be demonstrated.

  5. Operational readiness for the Atmospheric Infrared Sounder (AIRS) on the earth observing system aqua spacecraft

    NASA Technical Reports Server (NTRS)

    Pagano, T.; Aumann, H.; Chahine, M.; Karnik, A.; Goodson, G.; Schindler, R.; Elliot, D. A.; Hofstadter, M.

    2001-01-01

    This paper describes the AIRS science objectives, the instrument design and operation, the in-flight operational scenario, and the calibration plan. All aspects of the program are addressed here to demonstrate that the AIRS program is ready to transition to the flight segment of the program.

  6. An Anomaly Correlation Skill Score for the Evaluation of the Performance of Hyperspectral Infrared Sounders

    NASA Technical Reports Server (NTRS)

    Aumann, Hartmut H.; Manning, Evan; Barnet, Chris; Maddy, Eric; Blackwell, William

    2009-01-01

    With the availability of very accurate forecasts, the metric of accuracy alone for the evaluation of the performance of a retrieval system can produce misleading results. A useful characterization of the quality of a retrieval system and its potential to contribute to an improved weather forecast is its skill, which we define as the ability to make retrievals of geophysical parameters which are closer to the truth than the six hour forecast, when the truth differs significantly from the forecast. We illustrate retrieval skill using one day of AMSU and AIRS data with three different retrieval algorithms, which result in retrievals for more than 90% of the potential retrievals under clear and cloudy conditions. Two of the three algorithms have better than 1 K rms "RAOB quality" accuracy on the troposphere, but only one has skill between 900 and 100 mb. AIRS was launched on the EOS Aqua spacecraft in May 2002 into a 705 km polar sun-synchronous orbit with accurately maintained 1:30 PM ascending node. Essentially uninterrupted data are freely available since September 2002.

  7. High resolution infrared radiation sounder for the Nimbus F spacecraft. [design and fabrication of protoflight unit

    NASA Technical Reports Server (NTRS)

    Koenig, E. W.

    1973-01-01

    The activities on the HIRS program are described for the period of July through September, 1973. Completion of design activity and early fabrication effort on the protoflight unit were the major efforts. Operation of the engineering model in spacecraft integration tests was completed during July and August, after which the unit was returned for added test and evaluation.

  8. Studies based on global subsurface radar sounding of the Moon by SELENE (Kaguya) Lunar Radar Sounder (LRS): A summary

    NASA Astrophysics Data System (ADS)

    Kumamoto, A.; Yamaguchi, Y.; Yamaji, A.; Kobayashi, T.; Oshigami, S.; Ishiyama, K.; Nakamura, N.; Goto, Y.

    2015-12-01

    The Lunar Radar Sounder (LRS) onboard the SELENE (Kaguya) spacecraft has successfully performed radar sounder observations of the lunar subsurface structures and passive observations of natural radio and plasma waves from the lunar orbit. After the transfer of the spacecraft into the final lunar orbit and antenna deployment, the operation of LRS started on October 29, 2007. Through the operation until June 10, 2009, 130 million pulses worth of radar sounder data have been obtained [Ono et al., 2010]. Based on the datasets of the first lunar global subsurface radar sounding, Ono et al. [2009] revealed that there are distinct reflectors at a depth of several hundred meters in the nearside maria, which are inferred to be buried regolith layers covered by a basalt layer with a thickness of several hundred meters. Based on the further survey, Pommerol et al. [2010] pointed out the negative correlation of clear subsurface echoes with the maps of ilmenite, and suggested that dense ilmenite attenuates the radar pulse in the basaltic mare lava, and cause the absence of the clear subsurface echoes. That also suggests there are undetected subsurface reflectors especially below the young lava flow units with high ilmenite abundance. Kobayashi et al. [2012] applied synthetic aperture radar (SAR) processing to SELENE LRS data in order to obtain distinct radargram. Taking advantage of analyzing waveform data sent via high data rate telemetry from the Moon, we can perform advanced data analyses on the ground. We started providing the both SAR processed and waveform datasets via SELENE Data Archive (http://l2db.selene.darts.isas.jaxa.jp/index.html.en) since 2015. Oshigami et al. [2014] estimated volumes of basalt units in the ages of 2.7 Ga to 3.8 Ga in the nearside maria. The volume was derived from the depth of subsurface reflectors measured by LRS. The volumes of the geologic units were 103 to 104 km3. The average eruption rates were 10-5 to 10-3 km3 yr-1. The estimated volumes

  9. Validation of Aura Microwave Limb Sounder HCl Measurements

    NASA Technical Reports Server (NTRS)

    Froidevaux, L.; Jiang, Y. B.; Lambert, A.; Livesey, N. J.; Read, W. G.; Waters, J. W.; Fuller, R. A.; Marcy, T. P.; Popp, P. J.; Gao, R. S.; Fahey, D. W.; Jucks, K. W.; Stachnik, R. A.; Toon, G. C.; Christensen, L. E.; Webster, C. R.; Bernath, P. F.; Boone, C. D.; Walker, K. A.; Pumphrey, H. C.; Harwood, R. S.; Manney, G. L.; Schwartz, M. J.; Daffer, W. H.; Drouin, B. J.

    2008-01-01

    The Earth Observing System (EOS) Microwave Limb Sounder (MLS) aboard the Aura satellite has provided daily global HCl profiles since August 2004. We provide a characterization of the resolution, random and systematic uncertainties, and known issues for the version 2.2 MLS HCl data. The MLS sampling allows for comparisons with many (1500 to more than 3000) closely matched profiles from the Halogen Occultation Experiment (HALOE) and Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS). These data sets provide HCl latitudinal distributions that are, overall, very similar to those from (coincident) MLS profiles, although there are some discrepancies in the upper stratosphere between the MLS and HALOE gradients. As found in previous work, MLS and ACE HCl profiles agree very well (within approximately 5%, on average), but the MLS HCl abundances are generally larger (by 10-20%) than HALOE HCl. The bias versus HALOE is unlikely to arise mostly from MLS, as a similar systematic bias (of order 15%) is not observed between average MLS and balloon-borne measurements of HCl, obtained over Fort Sumner, New Mexico, in 2004 and 2005. At the largest pressure (147 hPa) for MLS HCl, a high bias (approximately 0.2 ppbv) is apparent in analyses of low to midlatitude data versus in situ aircraft chemical ionization mass spectrometry (CIMS) HCl measurements from the Aura Validation Experiment (AVE) campaigns in 2004, 2005, and 2006; this bias is also observed in comparisons of MLS and aircraftHCl/O3 correlations. Good agreement between MLS and CIMS HCl is obtained at 100 to 68 hPa. The recommended pressure range for MLS HCl is from 100 to 0.15 hPa.

  10. The UARS and EOS Microwave Limb Sounder (MLS) Experiments.

    NASA Astrophysics Data System (ADS)

    Waters, J. W.; Read, W. G.; Froidevaux, L.; Jarnot, R. F.; Cofield, R. E.; Flower, D. A.; Lau, G. K.; Pickett, H. M.; Santee, M. L.; Wu, D. L.; Boyles, M. A.; Burke, J. R.; Lay, R. R.; Loo, M. S.; Livesey, N. J.; Lungu, T. A.; Manney, G. L.; Nakamura, L. L.;  Perun, V. S.;  Ridenoure, B. P.;  Shippony, Z.;  Siegel, P. H.;  Thurstans, R. P.;  Harwood, R. S.;  Pumphrey, H. C.;  Filipiak, M. J.

    1999-01-01

    The Microwave Limb Sounder (MLS) experiments obtain measurements of atmospheric composition, temperature, and pressure by observations of millimeter- and submillimeter-wavelength thermal emission as the instrument field of view is scanned through the atmospheric limb. Features of the measurement technique include the ability to measure many atmospheric gases as well as temperature and pressure, to obtain measurements even in the presence of dense aerosol and cirrus, and to provide near-global coverage on a daily basis at all times of day and night from an orbiting platform. The composition measurements are relatively insensitive to uncertainties in atmospheric temperature. An accurate spectroscopic database is available, and the instrument calibration is also very accurate and stable. The first MLS experiment in space, launched on the (NASA) Upper Atmosphere Research Satellite (UARS) in September 1991, was designed primarily to measure stratospheric profiles of ClO, O3, H2O, and atmospheric pressure as a vertical reference. Global measurement of ClO, the predominant radical in chlorine destruction of ozone, was an especially important objective of UARS MLS. All objectives of UARS MLS have been accomplished and additional geophysical products beyond those for which the experiment was designed have been obtained, including measurement of upper-tropospheric water vapor, which is important for climate change studies. A follow-on MLS experiment is being developed for NASA's Earth Observing System (EOS) and is scheduled to be launched on the EOS CHEMISTRY platform in late 2002. EOS MLS is designed for many stratospheric measurements, including HOx radicals, which could not be measured by UARS because adequate technology was not available, and better and more extensive upper-tropospheric and lower-stratospheric measurements.

  11. Laser Atmospheric Wind Sounder (LAWS) phase 1. Volume 2

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This report summarizes and documents the results of the 12-month phase 1 work effort. The objective of phase 1 was to establish the conceptional definition of the laser atmospheric wind sounder (LAWS) sensor system, including accommodations analyses to ensure compatibility with the Space Station Freedom (SSF) and the Earth Observing System (EOS) Polar Orbiting Platform (POP). Various concepts were investigated with trade studies performed to select the configuration to be carried forward to the phase 2 Preliminary Design Definition. A summary of the LAWS system and subsystem trade studies that were performed leading to the baseline design configuration is presented in the appendix. The overall objective of the LAWS Project is to define, design, and implement an operational space based facility, LAWS, for accurate measurement of Earth wind profiles. Phase 1 addressed three major areas: (1) requirements definition; (2) instrument concepts and configurations; and (3) performance analysis. For the LAWS instrument concepts and configurations, the issues which press the technological state of the art are reliable detector lifetime and laser performance and lifetime. Lag angle compensation, pointing accuracy, satellite navigation, and telescope design are significant technical issues, but they are considered to be currently state of the art. The primary issues for performance analysis concern interaction with the atmosphere in terms of backscatter and attenuation, wind variance, and cloud blockage. The phase 1 tasks were formulated to address these significant technical issues and demonstrate the technical feasibility of the LAWS concept. Primary emphasis was placed on analysis/trade and identification of candidate concepts. Promising configurations were evaluated for performance, sensitivities, risks, and budgetary costs. Lockheed's baseline LAWS configuration is presented.

  12. Laser Atmospheric Wind Sounder (LAWS) phase 1. Volume 2

    NASA Astrophysics Data System (ADS)

    1990-04-01

    This report summarizes and documents the results of the 12-month phase 1 work effort. The objective of phase 1 was to establish the conceptional definition of the laser atmospheric wind sounder (LAWS) sensor system, including accommodations analyses to ensure compatibility with the Space Station Freedom (SSF) and the Earth Observing System (EOS) Polar Orbiting Platform (POP). Various concepts were investigated with trade studies performed to select the configuration to be carried forward to the phase 2 Preliminary Design Definition. A summary of the LAWS system and subsystem trade studies that were performed leading to the baseline design configuration is presented in the appendix. The overall objective of the LAWS Project is to define, design, and implement an operational space based facility, LAWS, for accurate measurement of Earth wind profiles. Phase 1 addressed three major areas: (1) requirements definition; (2) instrument concepts and configurations; and (3) performance analysis. For the LAWS instrument concepts and configurations, the issues which press the technological state of the art are reliable detector lifetime and laser performance and lifetime. Lag angle compensation, pointing accuracy, satellite navigation, and telescope design are significant technical issues, but they are considered to be currently state of the art. The primary issues for performance analysis concern interaction with the atmosphere in terms of backscatter and attenuation, wind variance, and cloud blockage. The phase 1 tasks were formulated to address these significant technical issues and demonstrate the technical feasibility of the LAWS concept. Primary emphasis was placed on analysis/trade and identification of candidate concepts. Promising configurations were evaluated for performance, sensitivities, risks, and budgetary costs. Lockheed's baseline LAWS configuration is presented.

  13. Validation of UARS Microwave Limb Sounder Ozone Measurements

    NASA Technical Reports Server (NTRS)

    Froidevaux, L.; Read, W. G.; Lungu, T. A.; Cofield, R. E.; Fishbein, E. F.; Flower, D. A.; Jarnot, R. F.; Ridenoure, B. P.; Shippony, Z.; Waters, J. W.; Margitan, J. J.; McDermid, I. S.; Stachnik, R. A.; Peckham, G. E.; Braathen, G.; Deshler, T.; Fishman, J.; Hofmann, D. J.; Oltmans, S. J.

    1996-01-01

    This paper describes the validation of ozone data from the Upper Atmosphere Research Satellite (UARS) Microwave Limb Sounder (MLS). The MLS ozone retrievals are obtained from the calibrated microwave radiances (emission spectra) in two separate bands, at frequencies near 205 and 183 GHz. Analyses described here focus on the MLS Version 3 data (the first set of files made publicly available). We describe results of simulations performed to assess the quality of the retrieval algorithms, in terms of both mixing ratio and radiance closure. From actual MLS observations, the 205-GHz ozone retrievals give better closure (smaller radiance residuals) than that from the 183-GHz measurements and should be considered more accurate from the calibration aspects. However, the 183-GHz data are less noise limited in the mesosphere and can provide the most useful scientific results in that region. We compare the retrieved 205-GHz ozone profiles in the middle-to lower stratosphere to ozonesonde measurements at a wide range of latitudes and seasons. Ground-based lidar data from Table Mountain, California, provide a good reference for comparisons at higher altitudes. Based on these analyses, comparisons with balloon-borne measurements and others, as well as a detailed budget of estimated uncertainties, MLS results appear to be generally of high quality, with some biases worth mentioning. Results for the lowermost stratosphere (approx. 50 to 100 bPa) are still in need of improvement. A set of estimated precision and accuracy values is derived for the MLS ozone data sets. We also comment on recent updates in the retrieval algorithms and their impact on ozone values.

  14. Mare volcanism: Reinterpretation based on Kaguya Lunar Radar Sounder data

    NASA Astrophysics Data System (ADS)

    Oshigami, Shoko; Watanabe, Shiho; Yamaguchi, Yasushi; Yamaji, Atsushi; Kobayashi, Takao; Kumamoto, Atsushi; Ishiyama, Ken; Ono, Takayuki

    2014-05-01

    The Lunar Radar Sounder (LRS) onboard Kaguya (SELENE) detected widespread horizontal reflectors under some nearside maria. Previous studies estimated that the depths of the subsurface reflectors were up to several hundreds of meters and suggested that the reflectors were interfaces between mare basalt units. The comparison between the reflectors detected in the LRS data and surface age maps indicating the formation age of each basalt unit allows us to discuss the lower limit volume of each basalt unit and its space and time variation. We estimated volumes of basalt units in the ages of 2.7 Ga to 3.8 Ga in the nearside maria including Mare Crisium, Mare Humorum, Mare Imbrium, Mare Nectaris, Mare Serenitatis, Mare Smythii, and Oceanus Procellarum. The lower limit volumes of the geologic units estimated in this study were on the order of 103 to 104 km3. This volume range is consistent with the total amount of erupted lava flows derived from numerical simulations of thermal erosion models of lunar sinuous rille formation and is also comparable to the average flow volumes of continental flood basalt units formed after the Paleozoic and calculated flow volumes of Archean komatiite flows on the Earth. The lower limits of average eruption rates estimated from the unit volumes were on the order of 10-5 to 10-3 km3/yr. The estimated volumes of the geologic mare units and average eruption rate showed clear positive correlations with their ages within the same mare basin, while they vary among different maria compared within the same age range.

  15. Field-aligned electron density irregularities near 500 km Equator to polar cap topside sounder observations

    NASA Technical Reports Server (NTRS)

    Benson, R. F.

    1985-01-01

    In addition to spread F, evidence for field-aligned electron density irregularities is commonly observed on Alouette 2 topside sounder ionograms recorded near perigee (500 km). This evidence is provided by distinctive signal returns from sounder-generated Z mode waves. At low latitudes these waves become guided in wave ducts caused by field-aligned electron density irregularities and give rise to strong long-duration echoes. At high latitudes, extending well into the polar cap, these Z mode waves (and stimulated electrostatic waves at the plasma frequency) produce a series of vertical bars on the ionogram display as the satellite traverses discrete field-aligned density structures. The radio frequency (RF) noise environment to be expected in the 400 to 500 km altitude region from low to high latitudes was examined by analyzing perigee Alouette 2 topside sounder data. All observed noise bands were scaled on nearly 200 topside sounder ionograms recorded near perigee at low, mid, and high latitude telemetry stations. The minimum and maximum frequencies of each noise band were entered into a data base or computer analysis. The signals of primary interest in the perigee study were found to be sounder-generated.

  16. Sounder-updated statistical model predictions of maximum usable frequency for HF sky wave predictions

    NASA Astrophysics Data System (ADS)

    Reilly, M. H.; Daehler, M.

    1985-10-01

    Measured solar parameters, such as sunspot number or 10.7 cm flux, have traditionally been used as inputs to drive statistical model predictions of maximum usable frequencies (MUFs) on HF radio sky wave paths of interest. Much greater accuracy can be obtained by using ionospheric sounder inputs to drive or update statistical model predictions, and this is demonstrated here using oblique-incidence sounder data from the DoD Solid Shield exercises on May 12-14, 1981. From analysis of ionograms collected for several paths every fifteen minutes, it is found that deployment of a reasonable number of sounders in a large area, in order to update the simple statistical model, MINIMUF, yields MUF prediction capability on unsounded communication paths in the area within 0.4 MHz rms error. This value is obtained from real-time updating and a spatial interpolation process developed here, whereby data at sounder control points is interpolated to ionospheric reflection points for communication paths of interest. The results from the interpolation are found to be at least 20-30% more accurate than updating at any one of the nearby sounder control points. The updating procedure applies under day and night conditions, and also works well in a forecasting mode (not real-time), where it is found to work better in this case than a statistical trend line approach for daytime forecasting.

  17. TIDDBIT HF Doppler Sounder Measurements of TIDs During the Wallops Island Rocket Launch of October 2007

    NASA Astrophysics Data System (ADS)

    Reynolds, A.; Crowley, G.; Rodrigues, F.; Earle, G.; Bullett, T.; Bishop, R.

    2008-12-01

    The TID Detector Built In Texas (TIDDBIT) sounder was deployed on the East Coast near Wallops Island to support a rocket launch in October 2007. The purpose of the rocket experiment was to study mid-latitude spread-F (MSF), and TIDDBIT provided information on the TID characteristics during the launch and for several days surrounding the launch. The sounder data confirm that waves were present during the rocket launch. This presentation reviews the TIDDBIT results from the experiment, contrasting data collected on different days, and from the same dates a year earlier. HF Doppler sounders represent a low-cost and low- maintenance solution for monitoring acoustic and gravity wave activity in the F-region ionosphere. HF Doppler sounders together with modern data analysis techniques provide both horizontal and vertical phase trace velocities across the entire TID spectrum from periods of 30-s to several hours. ASTRA has extensive experience with HF systems, and is currently building TIDDBIT sounders in New Mexico, and Peru.

  18. Infrared transmission measurements of highly curved optical components

    NASA Astrophysics Data System (ADS)

    Tiszauer, Detlev H.; Morrow, Howard E.

    Fourier Transform Infrared Spectrometer (FTIR) measurements on flat witness samples are combined with ray trace results of transmission through a 1/8 inch, 12 mill focal length lens to estimate the net transmission of that lens as it is used in the Geostationary Operational Environmental Satellite (GOES I) Sounder optical train. The ray trace code uses a 'double random' ray method allowing radiometry to be done with a standard ray propagation algorithm.

  19. High resolution infrared measurements

    NASA Technical Reports Server (NTRS)

    Kessler, B.; Cawley, Robert

    1990-01-01

    Sample ground based cloud radiance data from a high resolution infrared sensor are shown and the sensor characteristics are presented in detail. The purpose of the Infrared Analysis Measurement and Modeling Program (IRAMMP) is to establish a deterministic radiometric data base of cloud, sea, and littoral terrain clutter to be used to advance the design and development of Infrared Search and Track (IRST) systems as well as other infrared devices. The sensor is a dual band radiometric sensor and its description, together with that of the Data Acquisition System (DAS), are given. A schematic diagram of the sensor optics is shown.

  20. NIMBUS-5 sounder data processing system. Part 2: Results

    NASA Technical Reports Server (NTRS)

    Smith, W. L.; Woolf, H. M.; Hayden, C. M.; Shen, W. C.

    1975-01-01

    The Nimbus-5 spacecraft carries infrared and microwave radiometers for sensing the temperature distribution of the atmosphere. Methods developed for obtaining temperature profiles from the combined set of infrared and microwave radiation measurements are described. Algorithms used to determine (a) vertical temperature and water vapor profiles, (b) cloud height, fractional coverage, and liquid water content, (c) surface temperature, and (d) total outgoing longwave radiation flux are described. Various meteorological results obtained from the application of the Nimbus-5 sounding data processing system during 1973 and 1974 are presented.

  1. Study of Functional Infrared Imaging for Early Detection of Mucositis in Locally Advanced Head and Neck Cancer Treated With Chemoradiotherapy

    PubMed Central

    Cohen, Ezra E.W.; Ahmed, Omar; Kocherginsky, Masha; Shustakova, Galyna; Kistner-Griffin, Emily; Salama, Joseph K.; Yefremenko, Volodymyr; Novosad, Valentyn

    2013-01-01

    Background and Purpose Chemoradiotherapy (CRT) has led to improved efficacy in treating locally advanced squamous cell carcinoma of the head and neck (LA-SCCHN) but has led to almost universal in-field mucositis. Patients treated with the same regimen often have differences in mucositis occurrence and severity. Mucositis induced via radiation is known to represent an intense inflammatory response histologically. We hypothesized that patients destined to display severe mucocutaneous toxicity would demonstrate greater alterations in thermal intensity early in therapy than identically treated counterparts. This will allow identification of patients that will require more intensive supportive care using thermal imaging technology. Materials and Methods Subjects with LA-SCCHN (oral cavity or oropharynx) being treated with the identical chemoradiotherapy regimen underwent baseline and weekly thermal imaging. Changes in skin temperature caused by mucositis and dermatitis compared with a reference area (T were calculated and correlated to grade of mucositis based on NCI-CTCAE 3.0. Results Thirty-four subjects were enrolled. Grade 3 mucositis and dermatitis was observed in 53% and 21%, respectively. We observed a statistically significant positive association between an early rise in T and mucositis grade (p value=0.03). Conclusions Thermal imaging is able to detect small and early changes in skin surface temperature that may be associated with development of mucositis in patients being treated with chemoradiotherapy. PMID:23988569

  2. Advanced short-wavelength infrared range-gated imaging for ground applications in monostatic and bistatic configurations.

    PubMed

    Repasi, Endre; Lutzmann, Peter; Steinvall, Ove; Elmqvist, Magnus; Göhler, Benjamin; Anstett, Gregor

    2009-11-01

    Some advanced concepts for gated viewing are presented, including spectral diversity illumination techniques, non-line-of-sight imaging, indirect scene illumination, and in particular setups in bistatic configurations. By using a multiple-wavelength illumination source target speckles could be substantially reduced, leading to an improved image quality and enhanced range accuracy. In non-line-of-sight imaging experiments we observed the scenery through the reflections in a window plane. The scene was illuminated indirectly as well by a diffuse reflection of the laser beam at different nearby objects. In this setup several targets could be spotted, which, e.g., offers the capability to look around the corner in urban situations. In the presented measuring campaigns the advantages of bistatic setups in comparison with common monostatic configurations are discussed. The appearance of shadows or local contrast enhancements as well as the mitigation of retroreflections supports the human observer in interpreting the scene. Furthermore a bistatic configuration contributes to a reduced dazzling risk and to observer convertness. PMID:19881663

  3. FMCW channel sounder with digital processing for measuring the coherence of wideband HF radio links

    NASA Astrophysics Data System (ADS)

    Salous, S.

    1986-08-01

    Multipath propagation, and in particular, the interference between the ordinary and the extraordinary waves, places a fundamental constraint on the performance of wideband HF skywave radio links. Furthermore, the dispersive nature of ionospheric propagation causes phase nonlinearity and hence distortion of narrow pulses. In this paper, an FMCW wideband sounder built for the purposes of characterizing the channel is described. Spectral analysis of the audio output of the sounder via the FFT algorithm is shown to permit measurement of thef amplitude/frequency function, the polarization bandwidth, the fade rate, the fade depth and the distortion of a narrow pulse, all for a desired isolated ionospheric propagation mode. The sounder was used to collect data over an oblique path in the UK. The results of applying the FFT processing technique to the experimental data are presented.

  4. Accuracy Advances in Measuring Earth Emission Spectra for Weather and Climate

    NASA Astrophysics Data System (ADS)

    Revercomb, H. E.; Best, F. A.; Tobin, D. C.; Knuteson, R. O.; Taylor, J. K.; Gero, P.; Adler, D. P.; Pettersen, C.; Mulligan, M.

    2011-12-01

    Launch of the first component of the Joint Polar Satellite System (JPSS) in late October is expected to initiate a new series of US afternoon satellites to complement the EUMETSAT MetOp EPS morning observations. A key component is the Cross-track Infrared Sounder (CrIS) designed for advanced temperature and water vapor profiling for weather and climate applications. We have worked on getting this operational capability in space ever since conducting a Phase A instrument design in 1990, and will report on what is expected to be its highly accurate radiometric and spectral performance post launch. The expectation from thermal/vacuum testing is that the accuracy will exceed 0.2 K (k=3) brightness temperature at scene temperature for all three bands in the region from 3.5 to 15 microns. CrIS is expected to offer further confirmation of techniques that have proven to offer significant accuracy improvements for the new family of advanced sounding instruments including AIRS on NASA Aqua platform and IASI on MetOp A and that are needed in the new IR Decadal Survey measurements. CrIS and these other advanced sounders help set the stage for a new era in establishing spectrally resolved IR climate benchmark measurements from space. Here we report on being able to achieve even higher accuracy with instruments designed specifically for climate missions similar to the Decadal Survey Climate Absolute Radiance and Refractivity Observatory (CLARREO). Results will be presented from our NASA Instrument Incubator Program (IIP) effort for which a new concept for on-orbit verification and test has been developed. This system is capable of performing fundamental radiometric calibration, spectral characterization and calibration, and other key performance tests that are normally only performed prior to launch in thermal/vacuum testing. By verifying accuracy directly on-orbit, this capability should provide the ultra-high confidence in data sets needed for societal decision making.

  5. Technology development for the Advanced Technology Large Aperture Space Telescope (ATLAST) as a candidate large UV-Optical-Infrared (LUVOIR) surveyor

    NASA Astrophysics Data System (ADS)

    Bolcar, Matthew R.; Balasubramanian, Kunjithapatham; Clampin, Mark; Crooke, Julie; Feinberg, Lee; Postman, Marc; Quijada, Manuel; Rauscher, Bernard; Redding, David; Rioux, Norman; Shaklan, Stuart; Stahl, H. Philip; Stahle, Carl; Thronson, Harley

    2015-09-01

    The Advanced Technology Large Aperture Space Telescope (ATLAST) team has identified five key technologies to enable candidate architectures for the future large-aperture ultraviolet/optical/infrared (LUVOIR) space observatory envisioned by the NASA Astrophysics 30-year roadmap, Enduring Quests, Daring Visions. The science goals of ATLAST address a broad range of astrophysical questions from early galaxy and star formation to the processes that contributed to the formation of life on Earth, combining general astrophysics with direct-imaging and spectroscopy of habitable exoplanets. The key technologies are: internal coronagraphs, starshades (or external occulters), ultra-stable large-aperture telescopes, detectors, and mirror coatings. Selected technology performance goals include: 1x10-10 raw contrast at an inner working angle of 35 milli-arcseconds, wavefront error stability on the order of 10 pm RMS per wavefront control step, autonomous on-board sensing and control, and zero-read-noise single-photon detectors spanning the exoplanet science bandpass between 400 nm and 1.8 μm. Development of these technologies will provide significant advances over current and planned observatories in terms of sensitivity, angular resolution, stability, and high-contrast imaging. The science goals of ATLAST are presented and flowed down to top-level telescope and instrument performance requirements in the context of a reference architecture: a 10-meter-class, segmented aperture telescope operating at room temperature (~290 K) at the sun-Earth Lagrange-2 point. For each technology area, we define best estimates of required capabilities, current state-of-the-art performance, and current Technology Readiness Level (TRL) - thus identifying the current technology gap. We report on current, planned, or recommended efforts to develop each technology to TRL 5.

  6. Technology Development for the Advanced Technology Large Aperture Space Telescope (ATLAST) as a Candidate Large UV-Optical-Infrared (LUVOIR) Surveyor

    NASA Technical Reports Server (NTRS)

    Bolcar, Matthew R.; Balasubramanian, Kunjithapatha; Clampin, Mark; Crooke, Julie; Feinberg, Lee; Postman, Marc; Quijada, Manuel; Rauscher, Bernard; Redding, David; Rioux, Norman; Shaklan, Stuart; Stahl, H. Philip; Stahle, Carl; Thronson, Harley

    2015-01-01

    The Advanced Technology Large Aperture Space Telescope (ATLAST) team has identified five key technologies to enable candidate architectures for the future large-aperture ultraviolet/optical/infrared (LUVOIR) space observatory envisioned by the NASA Astrophysics 30-year roadmap, Enduring Quests, Daring Visions. The science goals of ATLAST address a broad range of astrophysical questions from early galaxy and star formation to the processes that contributed to the formation of life on Earth, combining general astrophysics with direct-imaging and spectroscopy of habitable exoplanets. The key technologies are: internal coronagraphs, starshades (or external occulters), ultra-stable large-aperture telescopes, detectors, and mirror coatings. Selected technology performance goals include: 1x10?10 raw contrast at an inner working angle of 35 milli-arcseconds, wavefront error stability on the order of 10 pm RMS per wavefront control step, autonomous on-board sensing & control, and zero-read-noise single-photon detectors spanning the exoplanet science bandpass between 400 nm and 1.8 µm. Development of these technologies will provide significant advances over current and planned observatories in terms of sensitivity, angular resolution, stability, and high-contrast imaging. The science goals of ATLAST are presented and flowed down to top-level telescope and instrument performance requirements in the context of a reference architecture: a 10-meter-class, segmented aperture telescope operating at room temperature (290 K) at the sun-Earth Lagrange-2 point. For each technology area, we define best estimates of required capabilities, current state-of-the-art performance, and current Technology Readiness Level (TRL) - thus identifying the current technology gap. We report on current, planned, or recommended efforts to develop each technology to TRL 5.

  7. Micro- and macro-attenuated total reflection Fourier transform infrared spectroscopic imaging. Plenary Lecture at the 5th International Conference on Advanced Vibrational Spectroscopy, 2009, Melbourne, Australia.

    PubMed

    Kazarian, Sergei G; Chan, K L Andrew

    2010-05-01

    Fourier transform infrared (FT-IR) spectroscopic imaging has become a very powerful method in chemical analysis. In this review paper we describe a variety of opportunities for obtaining FT-IR images using the attenuated total reflection (ATR) approach and provide an overview of fundamental aspects, accessories, and applications in both micro- and macro-ATR imaging modes. The advantages and versatility of both ATR imaging modes are discussed and the spatial resolution of micro-ATR imaging is demonstrated. Micro-ATR imaging has opened up many new areas of study that were previously precluded by inadequate spatial resolution (polymer blends, pharmaceutical tablets, cross-sections of blood vessels or hair, surface of skin, single live cells, cancerous tissues). Recent applications of ATR imaging in polymer research, biomedical and forensic sciences, objects of cultural heritage, and other complex materials are outlined. The latest advances include obtaining spatially resolved chemical images from different depths within a sample, and surface-enhanced images for macro-ATR imaging have also been presented. Macro-ATR imaging is a valuable approach for high-throughput analysis of materials under controlled environments. Opportunities exist for chemical imaging of dynamic aqueous systems, such as dissolution, diffusion, microfluidics, or imaging of dynamic processes in live cells. PMID:20482963

  8. Time series analysis of discolored seawater reflectance observed by Advanced Visible and Near Infrared Radiometer type 2 (AVNIR-2) at Fukutoku-Okonaba submarine volcano, Japan

    NASA Astrophysics Data System (ADS)

    Urai, Minoru

    2014-01-01

    Monitoring submarine volcanoes is not an easy task compared to land volcanoes because they are covered by seawater and located in remote areas. Satellite remote sensing is a powerful tool for monitoring underwater volcanic activities such as discolored seawater, floating material and volcanic plumes. Discolored seawater is a good indicator of submarine volcanic activities. Advanced Visible and Near Infrared Radiometer type 2 (AVNIR-2) made extensive observations from 2006 to 2011 of the Fukutoku-Okanoba submarine volcano, which is located 1300 km south of Tokyo, and is one of the most active submarine volcanoes in Japan. The high discolored seawater brightness coincides with relatively high activity of Fukutoku-Okanoba. No discolored seawater was observed for 6 months before the 2010 Fukutoku-Okanoba submarine eruption, meaning that Fukutoku-Okanoba was quiescent before the eruption. Both high brightness and apparent color change of discolored seawater derived from AVNIR-2 mean emergence of large amount of hot spring water, implying that the submarine volcano is highly active. This study demonstrates that satellite remote sensing is an effective tool for monitoring activities of inaccessible submarine volcanoes.

  9. Proceedings of the Second Infrared Detector Technology Workshop

    NASA Technical Reports Server (NTRS)

    Mccreight, C. R. (Compiler)

    1986-01-01

    The workshop focused on infrared detector, detector array, and cryogenic electronic technologies relevant to low-background space astronomy. Papers are organized into the following categories: discrete infrared detectors and readout electronics; advanced bolometers; intrinsic integrated infrared arrays; and extrinsic integrated infrared arrays. Status reports on the Space Infrared Telescope Facility (SIRTF) and Infrared Space Observatory (ISO) programs are also included.

  10. Vertical profiling of the Martian atmosphere with the Mars Climate Sounder

    NASA Astrophysics Data System (ADS)

    McCleese, Daniel

    The Mars Climate Sounder (MCS) onboard the Mars Reconnaissance Orbiter (MRO) began observing the Martian atmosphere and surface on October 11, 2006. This paper describes investigations we are pursuing that build upon the nearly decade-long climatology of the planet acquired by TES and MOC on MGS and THEMIS on Odyssey. The MCS instrument is unique in that it is designed to acquire high vertical resolution (one-half scale height) profiles of temperature, dust, condensates and water vapor. MCS measurements are made in nine spectral intervals in the visible and infrared between 0.3 and 50 µm. The observing geometry places nine 21-element linear detector-arrays on the limb extending from just below the surface to above 80 km altitude at the tangent point. MCS observations by began on Ls=110° , southern winter, and much of our early work has focused on the South Polar Region. This location at this season is particularly attractive as a starting point for interpreting MCS data because the small amount of dust in the atmosphere makes for successful retrievals of geophysical quantities from limb radiances. MCS observations reveal new details of the intense warming of the winter middle atmosphere over CO2 ice cap. The polar warming is understood, from published numerical modeling experiments, to be a consequence of the descending branch of the Hadley cell; the intensity of which is sensitive to the amount and distribution of dust in the atmosphere at low latitudes. However, the observed intensity of the warming is underestimated in models and the location of the descending branch is poleward of that predicted. Another observed feature of the region is circumpolar very clear middle and upper atmosphere surrounding a vertically extended cloud which MCS data suggests is composed of water ice. The appearance of water ice in the cold dry air associated with the CO2 ice cap has yet to be explained. This paper describes these and other atmospheric phenomena, as well as aspects of

  11. Radiometric calibration of IR Fourier transform spectrometers - Solution to a problem with the High-Resolution Interferometer Sounder

    NASA Technical Reports Server (NTRS)

    Revercomb, Henry E.; Smith, William L.; Buijs, H.; Howell, Hugh B.; Laporte, D. D.

    1988-01-01

    A calibrated Fourier transform spectrometer, known as the High-Resolution Interferometer Sounder (HIS), has been flown on the NASA U-2 research aircraft to measure the infrared emission spectrum of the earth. The primary use - atmospheric temperature and humidity sounding - requires high radiometric precision and accuracy (of the order of 0.1 and 1 C, respectively). To meet these requirements, the HIS instruments, the HIS instrument performs inflight radiometric calibration, using observations of hot and cold blackbody reference sources as the basis for two-point calibrations at each wavenumber. Initially, laboratory tests revealed a calibration problem with brightness temperature errors as large as 15 C between 600 and 900/cm. The symptom of the problem, which occurred in one of the three spectral bands of HIS, was a source-dependent phase response. Minor changes to the calibration equations completely eliminated the anomalous errors. The new analysis properly accounts for the situation in which the phase response for radiance from the instrument itself differs from that for radiance from an external source. The mechanism responsible for the dual phase response of the HIS instrument is identified as emission from the interferometer beam splitter.

  12. Evolution of Satellite Imagers and Sounders for Low Earth Orbit and Technology Directions at NASA

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; McClain, Charles R.

    2010-01-01

    Imagers and Sounders for Low Earth Orbit (LEO) provide fundamental global daily observations of the Earth System for scientists, researchers, and operational weather agencies. The imager provides the nominal 1-2 km spatial resolution images with global coverage in multiple spectral bands for a wide range of uses including ocean color, vegetation indices, aerosol, snow and cloud properties, and sea surface temperature. The sounder provides vertical profiles of atmospheric temperature, water vapor cloud properties, and trace gases including ozone, carbon monoxide, methane and carbon dioxide. Performance capabilities of these systems has evolved with the optical and sensing technologies of the decade. Individual detectors were incorporated on some of the first imagers and sounders that evolved to linear array technology in the '80's. Signal-to-noise constraints limited these systems to either broad spectral resolution as in the case of the imager, or low spatial resolution as in the case of the sounder. Today's area 2-dimensional large format array technology enables high spatial and high spectral resolution to be incorporated into a single instrument. This places new constraints on the design of these systems and enables new capabilities for scientists to examine the complex processes governing the Earth System.

  13. Determination of film processing specifications for the Apollo 17 S-209 lunar sounder experiment

    NASA Technical Reports Server (NTRS)

    Weinstein, M. S.

    1972-01-01

    The lunar sounder is described as a radar system operating at carrier frequencies of 5, 15, and 150 MHz. The radar echoes are recorded onto Kodak type S0-394 film through the use of an optical recorder utilizing a cathode ray tube as the exposing device. A processing configuration is determined with regard to linearity, dynamic range, and noise.

  14. High-powered Radar Sounders for the Investigation of Jupiter's Icy Moons

    NASA Technical Reports Server (NTRS)

    Safaeinili, A.; Rodriguez, E.; Edelstein, Wendy

    2003-01-01

    This talk will address the main drivers in the design of a radar sounder for the JIMO mission and provide a potential solution that will optimize the chances of success in the detection of ice/water interface and sub-surface stratigraphy.

  15. Shallow scattering layer in the subarctic pacific ocean: detection by high-frequency echo sounder.

    PubMed

    Barraclough, W E; Lebrasseur, R J; Kennedy, O D

    1969-10-31

    Shallow scattering layers consisting mainly of Calanus cristatus were detected on a trans-Pacific crossing to depths of 60 meters with a high-frequency echo sounder. Biomass estimates of these layers indicate concentrations of zoo-plankton that are greater and more extensive than previously reported in the open ocean. PMID:17778203

  16. A technique for recording HF (High Frequency) oblique-incidence-sounder data

    NASA Astrophysics Data System (ADS)

    Daehler, Mark

    1988-08-01

    This report details the equipment, formats, and procedures developed for recording and displaying HF propagation data produced by the AN/TRQ-35 RCS-4B oblique-incidence sounder receiver. The information is being published in this form because of numerous requests regarding a means for using the large volume of sounder data accumulated by NRL in the course of its ionospheric effects studies. These techniques may ultimately be incorporated in a proposed worldwide database of ionospheric data. The AN/TRQ-35 sounder equipment is available to all branches of the DOD and is widely used for near-real-time HF frequency management. The data it produces, if properly recorded and stored, can also be used for numerous other purposes related to studies of ionospheric structure and HF skywave communications. These include studies of the electron density versus height profile of the ionosphere; of forecasts of propagation conditions relevant to HF communications; of the geographical and temporal limitations of sounder data application; and of the effectiveness of frequency management techniques. Permanent records of ionospheric propagation have also proved valuable in evaluating tests of HF devices which are dependent on ionospheric propagation, such as communications transmitters and receivers, or direction finding equipment.

  17. Estimation of dielectric constant of lunar material by HF sounder observation

    NASA Astrophysics Data System (ADS)

    Kobayashi, T.; Ono, T.

    Space borne radio sounding observation has been one of indispensable items in planetary missions An HF sounder Lunar Radar Sounder LRS will be onboard SELENE a lunar exploration program of Japan in 2007 Its primary objective is subsurface geologic structure of the Moon Especially mare regions are of strong interest of investigators because of its relatively smooth surface it is thought that smooth surface allows us to see subsurface feature with less difficulty However even if a clear subsurface image is obtained the data does not provide us with quantitative information unless the dielectric constant of the lunar subsurface material We propose a technique to estimate the dielectric constant of lunar material that utilizes HF sounder data of closely located multiple orbits The technique is applied to SAR images that are produced from HF sounder data and stands on the fact that the apparent position of subsurface object varies as a function of the dielectric constant of subsurface material Assuming a uniform subsurface material the displacement of images of a subsurface target should be consistent with that of observation orbits if the correct dielectric constant of the subsurface material is assumed A numerical model on geometrical optics estimates that the proposed technique requires a synthetic aperture larger than about 50km provided that the orbit altitude is 100km subsurface target depth is a few km and that the observation frequency is 5MHz with 2MHz bandwidth Some laboratory experiments were conducted to demonstrate validity of the

  18. Instrument technology for magnetosphere plasma imaging from high Earth orbit. Design of a radio plasma sounder

    NASA Technical Reports Server (NTRS)

    Haines, D. Mark; Reinisch, Bodo W.

    1995-01-01

    The use of radio sounding techniques for the study of the ionospheric plasma dates back to G. Briet and M. A. Tuve in 1926. Ground based swept frequency sounders can monitor the electron number density (N(sub e)) as a function of height (the N(sub e) profile). These early instruments evolved into a global network that produced high-resolution displays of echo time delay vs frequency on 35-mm film. These instruments provided the foundation for the success of the International Geophysical Year (1958). The Alouette and International Satellites for Ionospheric Studies (ISIS) programs pioneered the used of spaceborne, swept frequency sounders to obtain N(sub e) profiles of the topside of the ionosphere, from a position above the electron density maximum. Repeated measurements during the orbit produced an orbital plane contour which routinely provided density measurements to within 10%. The Alouette/ISIS experience also showed that even with a high powered transmitter (compared to the low power sounder possible today) a radio sounder can be compatible with other imaging instruments on the same satellite. Digital technology was used on later spacecraft developed by the Japanese (the EXOS C and D) and the Soviets (Intercosmos 19 and Cosmos 1809). However, a full coherent pulse compression and spectral integrating capability, such as exist today for ground-based sounders (Reinisch et al., 1992), has never been put into space. NASA's 1990 Space Physics Strategy Implementation Study "The NASA Space Physics Program from 1995 to 2010" suggested using radio sounders to study the plasmasphere and the magnetopause and its boundary layers (Green and Fung, 1993). Both the magnetopause and plasmasphere, as well as the cusp and boundary layers, can be observed by a radio sounder in a high-inclination polar orbit with an apogee greater than 6 R(sub e) (Reiff et al., 1994; Calvert et al., 1995). Magnetospheric radio sounding from space will provide remote density measurements of

  19. Direct assimilation of Chinese FY-3C Microwave Temperature Sounder-2 radiances in the global GRAPES system

    NASA Astrophysics Data System (ADS)

    Li, Juan; Liu, Guiqing

    2016-07-01

    FengYun-3C (FY-3C) is an operational polar-orbiting satellite carrying the new-generation microwave sounding instruments in China. This paper describes the assimilation of the FY-3C Microwave Temperature Sounder-2 (MWTS-2) radiances in the Global and Regional Assimilation and PrEdiction System (GRAPES) of China Meteorological Administration. A quality control (QC) procedure for the assimilation of MWTS-2 radiance is proposed. Extensive monitoring before assimilation shows that MWTS-2 observations exhibit a clear striping pattern. A technique combining principal component analysis (PCA) and ensemble empirical mode decomposition (EEMD) is applied to the observations to remove the striping noise. Cloudy field-of-views (FOVs) are identified by applying the Visible and InfrarRed Radiometer (VIRR) cloud fraction threshold of 76 %. Other QC steps are conducted in the follow order: (i) coastal FOVs are removed, (ii) eight outmost FOVs are not used, (iii) channel 5 data over sea ice and land are not used, (iv) channel 6 observations are not used if the terrain altitudes are higher than 500 m, and (v) outliers with large differences between observations and model simulations are removed. Approximately 83, 75, 40, and 40 % of the observations are removed by the proposed QC for channels 5-8, respectively. After QC, the global biases and standard deviations are reduced significantly. The assimilation of the MWTS-2 radiances shows a positive impact when the control experiment assimilates only conventional observations. The experiments also show that the analysis and forecast errors are slightly reduced when the striping noise is removed from the observations. The quality control scheme of extracting the striping noise may contribute to the analysis and forecast accuracy. The impact of MWTS-2 is neutral when the conventional data and other satellite data are all assimilated.

  20. A system definition study for the Advanced Meteorological Temperature Sounder (AMTS)

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The functional requirements of Exhibit A (11) were used as the baseline for the conceptual design of a fixed grating out of plane multidetector spectrometer for the Space Shuttle application. Because the grating instrument would be large and the 28 element detector array would be difficult to cool radiatively from a free flying spacecraft and because increasing the spectral resolution of the grating instrument would be difficult in an instrument of reasonable size, a parallel study of a Nichelson interferometer spectrometer was undertaken. This type of instrument offers compact size, fewer detectors to cool, and the possibility of increased spectral resolution. The design and performance parameters of both the grating and interferometer approaches are described. The tradeoffs involved in comparing the two systems for sounding applications are discussed.

  1. Infrared Investigations.

    ERIC Educational Resources Information Center

    Lascours, Jean; Albe, Virginie

    2001-01-01

    Describes a series of simple and nontraditional experiments that enable students to discover the properties of infrared radiation by studying the propagation, reflection, diffusion, and refraction of infrared. The experiments rely on two modules, an infrared transmitter and an infrared receiver. (SAH)

  2. Temperature and Dust Profiles During the Martian Global Dust Storm in 2007 from Mars Climate Sounder Measurements

    NASA Astrophysics Data System (ADS)

    Kleinboehl, A.; Kass, D. M.; Schofield, J. T.; McCleese, D. J.

    2014-07-01

    In 2007 the Mars Climate Sounder observed a global dust storm on Mars. We will present results that show the development of the dust storm over time and the vertical structure of atmospheric temperature and dust.

  3. Underwater Acoustic Transponders Tracking While Mapping With A Multibeam Echo-Sounder

    NASA Astrophysics Data System (ADS)

    de Moustier, C. P.; Franzheim, A.; Testa, W.; Burns, J. M.; Foy, R.

    2010-12-01

    A 160 kHz multibeam echo-sounder was used to interrogate and receive the replies from custom-built miniature underwater acoustic transponders attached to the carapace of king crabs in Womens Bay, Alaska. This new application of multibeam echo-sounders combines acoustic tracking and mapping, thus providing environmental context to the tracking information. Each transponder replies with its own coded sequence that stands out from other echoes received by the sonar. Range and bearing of the replies from multiple transponders can be obtained in a single sonar ping. The king crab experiment was done in 25-35 m of water depth, and the system was successfully tested without animals at 190 m depth. Work supported by NOAA's Undersea Research Program Grant G4768, with field work support from NOAA-NMFS/AFSC/RACE and Electronic Navigation Ltd.

  4. GeoSTAR - A Synthetic Aperture Microwave Sounder for Geostationary Missions

    NASA Technical Reports Server (NTRS)

    Lambrigtsen, Bjorn; Wilson, William; Tanner, Alan; Kangaslahti, Pekka

    2004-01-01

    The Geostationary Synthetic Thinned Aperture Radiometer (GeoSTAR) is a new microwave atmospheric sounder under development. It will bring capabilities similar to those now available on low-earth orbiting environmental satellites to geostationary orbit - where such capabilities have not been available. GeoSTAR will synthesize the multimeter aperture needed to achieve the required spatial resolution, which will overcome the obstacle that has prevented a GEO microwave sounder from being implemented until now. The synthetic aperture approach has until recently not been feasible, due to the high power needed to operate the on-board high-speed massively parallel processing system required for 2D-synthesis, as well as a number of system and calibration obstacles. The development effort under way at JPL, with important contributions from the Goddard Space Flight Center and the University of Michigan, is intended to demonstrate the measurement concept and retire much of the technology risk.

  5. Space Plasma Slab Studies using a new 3D Embedded Reconfigurable MPSoC Sounder

    NASA Astrophysics Data System (ADS)

    Dekoulis, George

    2016-07-01

    This paper presents recent ionospheric slab thickness measurements using a new mobile digital sounder system. The datasets obtained have been compared to the results of existing sounders in operation. The data validity has been verified. The slab thickness data allow constant monitoring of the lower ionosphere revealing the dynamic trends of the physical processes being involved. The prototype offers a tremendous amount of hardware processing power and a previously unseen response time in servicing the input and output data interfaces. This has been enabled by incorporating the latest three-dimensional Ultrascale+ technologies available commercially from the reconfigurable Field Programmable Gate Array (FPGA) computing industry. Furthermore, a previously developed Network-on-Chip (NoC) design methodology has been incorporated for connecting and controlling the application driven multiprocessor network. The system determines electron distributions, aggregate electromagnetic field gradients and plasma current density.

  6. ULF wave occurrence statistics in a high-latitude HF Doppler sounder

    NASA Astrophysics Data System (ADS)

    Wright, D. M.; Yeoman, T. K.; Jones, T. B.

    1999-06-01

    Ultra low frequency (ULF) wave activity in the high-latitude ionosphere has been observed by a high frequency (HF) Doppler sounder located at Tromsø, Norway (69.7°N, 19.2°E geographic coordinates). A statistical study of the occurrence of these waves has been undertaken from data collected between 1979 and 1984. The diurnal, seasonal, solar cycle and geomagnetic activity variations in occurrence have been investigated. The findings demonstrate that the ability of the sounder to detect ULF wave signatures maximises at the equinoxes and that there is a peak in occurrence in the morning sector. The occurrence rate is fairly insensitive to changes associated with the solar cycle but increases with the level of geomagnetic activity. As a result, it has been possible to characterise the way in which prevailing ionospheric and magnetospheric conditions affect such observations of ULF waves.

  7. Determination of the horizontal and vertical distribution of clouds from infrared satellite sounding data

    NASA Technical Reports Server (NTRS)

    Chahine, M. T.; Susskind, J.

    1982-01-01

    A numerical algorithm, based on a physical inversion of the radiative transfer equation, is developed to retrieve the global distribution of the horizontal cloud cover, the cloud-top pressure levels and their temperature. The algorithm makes use of infrared and microwave temperature sounding data to derive the clear-column vertical temperature profiles and then uses the same infrared sounding data to obtain the corresponding cloud parameters. Experimental verification of this method is carried out using data from the High resolution Infrared Sounder (HIRS) and the Microwave Sounding Unit (MSU) operating on the NOAA weather satellite system.

  8. Ultraspectral sounder data compression using error-detecting reversible variable-length coding

    NASA Astrophysics Data System (ADS)

    Huang, Bormin; Ahuja, Alok; Huang, Hung-Lung; Schmit, Timothy J.; Heymann, Roger W.

    2005-08-01

    Nonreversible variable-length codes (e.g. Huffman coding, Golomb-Rice coding, and arithmetic coding) have been used in source coding to achieve efficient compression. However, a single bit error during noisy transmission can cause many codewords to be misinterpreted by the decoder. In recent years, increasing attention has been given to the design of reversible variable-length codes (RVLCs) for better data transmission in error-prone environments. RVLCs allow instantaneous decoding in both directions, which affords better detection of bit errors due to synchronization losses over a noisy channel. RVLCs have been adopted in emerging video coding standards--H.263+ and MPEG-4--to enhance their error-resilience capabilities. Given the large volume of three-dimensional data that will be generated by future space-borne ultraspectral sounders (e.g. IASI, CrIS, and HES), the use of error-robust data compression techniques will be beneficial to satellite data transmission. In this paper, we investigate a reversible variable-length code for ultraspectral sounder data compression, and present its numerical experiments on error propagation for the ultraspectral sounder data. The results show that the RVLC performs significantly better error containment than JPEG2000 Part 2.

  9. Wide Field Collimator 2 (WFC2) for GOES Imager and Sounder

    NASA Technical Reports Server (NTRS)

    Etemad, Shahriar; Bremer, James C.; Zukowski, Barbara J.; Pasquale, Bert A.; zukowski, Tmitri J.; Prince, Robert E.; O'Neill, Patrick A.; Ross, Robert W.

    2004-01-01

    Two of the GOES instruments, the Imager and the Sounder, perform scans of the Earth to provide a full disc picture of the Earth. To verify the entire scan process, an image of a target that covers an 18 deg. circular field-of-view is collimated and projected into the field of regard of each instrument. The Wide Field Collimator 2 (WFC2) has many advantages over its predecessor, WFC1, including lower thermal dissipation higher fir field MTF, smaller package, and a more intuitive (faster) focusing process. The illumination source is an LED array that emits in a narrow spectral band centered at 689 nm, within the visible spectral bands of the Imager and Sounder. The illumination level can be continuously adjusted electronically. Lower thermal dissipation eliminates the need for forced convection cooling and minimizes time to reach thermal stability. The lens system has been optimized for the illumination source spectral output and athernalized to remain in focus during bulk temperature changes within the laboratory environment. The MTF of the lens is higher than that of the WFC1 at the edge of FOV. The target is focused in three orthogonal motions, controlled by an ergonomic system that saves substantial time and produces a sharper focus. Key words: Collimator, GOES, Imager, Sounder, Projector

  10. A new multibeam echo sounder/sonar for fishery research applications

    NASA Astrophysics Data System (ADS)

    Andersen, Lars Nonboe; Berg, Sverre; Stenersen, Erik; Gammelsaeter, Ole Bernt; Lunde, Even Borte

    2003-10-01

    Fisheries scientists have for many years been requesting a calibrated multibeam echo sounder/sonar specially designed for fishery research applications. Simrad AS has, in cooperation with IFREMER, France, agreed on specifications for a multibeam echo sounder and with IMR, Norway for a multibeam sonar, and contracts were signed for development of such systems in January 2003. The systems have 800 transmitting and receiving channels with similar hardware, but different software, and are characterized by narrow beams, low-sidelobe levels, and operate in the frequency range 70-120 kHz. The echo sounder is designed for high operating flexibility, with 1 to 47 beams of approximately 2°, covering a maximum sector of 60°. In addition, normal split beam mode on 70 and 120 kHz with 7° beams for comparison with standard system is available. The sonar will be mounted on a drop keel, looking horizontally, covering a horizontal sector of +/-30°, and a vertical sector of 45°. Total number of beams is 500, 25 beams horizontally with a resolution of ~3°, and 20 beams vertically with a resolution of ~4°. Both systems are designed for accurate fish-stock assessment and fish-behavior studies.

  11. Atmospheric River Observations with the HAMSR Aircraft Microwave Sounder

    NASA Astrophysics Data System (ADS)

    Lambrigtsen, B.; Brown, S. T.; Schreier, M. M.; Dang, H. V. T.; Behrangi, A.

    2015-12-01

    The High Altitude MMIC Sounding Radiometer (HAMSR) was developed at the Jet Propulsion Laboratory in 2001 to serve as an aircraft based hurricane observatory. It initially flew on the high altitude ER-2 and later on the DC-8. More recently it was modified to fly on the Global Hawk UAV. It uses the most advanced technology and is among the most sensitive instruments of its kind. In addition to a number of NASA hurricane field campaigns - mostly in the North Atlantic, HAMSR has participated in two atmospheric river campaigns off the California coast, one in 2011 (WISPAR) and one in 2015 (CalWater2). We will discuss observations from the 2015 campaign, with particular focus on a flight over an atmsospheric river making landfall in central California in early February, as well as compare with highlights from the 2011 flights. Copyright 2015 California Institute of Technology. Government sponsorship acknowledged.

  12. Mars Climate Sounder Retrievals with Two-dimensional Radiative Transfer: Implications for the Temperature Structure in the Winter Polar Region

    NASA Astrophysics Data System (ADS)

    Kleinboehl, A.; Friedson, A. J.; Schofield, J. T.

    2014-12-01

    The Mars Climate Sounder (MCS) is a mid- and far-infrared thermal emission radiometer on board the Mars Reconnaissance Orbiter (MRO). It measures radiances in limb and on-planet viewing geometries. From these radiance measurements, profiles of atmospheric temperature, dust and water ice are operationally retrieved from the surface to ~80 km altitude with a vertical resolution of ~5 km. While limb geometry provides superior vertical resolution over sounding in nadir geometry, it leads to significant horizontal averaging along the line-of-sight. This can lead to misrepresentations in the retrieved quantities in the presence of significant horizontal gradients of these quantities, if the retrieval assumes spherical symmetry. In MCS retrievals, this effect is particularly important in the polar winter regions due to the strong latitudinal gradients in atmospheric temperature. It leads to an apparent shift of the cold pole of the polar vortex away from the viewing direction of the instrument. The assumption of spherical symmetry can lead to misrepresentations of several K in temperature at a given latitude. Here we present an approach to consider these horizontal gradients by applying a two-dimensional radiative transfer scheme to the MCS retrieval. In a first pass a retrieval with the assumption of spherical symmetry is performed. From these retrieval results, horizontal gradients in temperature, pressure, dust and water ice are determined for all measurements along an MRO orbit. These gradient fields are then imposed on a second pass of the retrieval using a two-dimensional radiative transfer scheme. We show that the approach reduces misrepresentations in the retrieved temperature to typically less than 1-2 K in the wall of the polar vortex. Application of this approach to the operational MCS retrieval will lead to a significant improvement in the quality of the retrieved parameters, in particular of temperature in the winter polar regions, which have emerged as a

  13. Recent advances in mid- and near-infrared spectroscopy with applications for research and teaching, focusing on petrochemistry and biotechnology relevant products

    NASA Astrophysics Data System (ADS)

    Heise, H. M.; Fritzsche, J.; Tkatsch, H.; Waag, F.; Karch, K.; Henze, K.; Delbeck, S.; Budde, J.

    2013-11-01

    Mid- and near-infrared spectroscopy is introduced as a versatile analytical method for characterizing liquid and solid chemicals as obtained from petrochemistry and biotechnology processes. Besides normal transmission measurements, special equipment with silver halide fiber-optic probes allowing efficient analysis based on mid-infrared attenuated total reflection, and an accessory for near-infrared diffuse reflection measurements, are presented. The latter technique can be used advantageously for powdered samples such as microalgae biomass and polysaccharides, as well as for different tissues such as meat samples. The advantages and disadvantages of both methods, which can be used for industrial process monitoring and chemical quality control applications, are discussed, and have been used in several research projects of BSc students within their degree course of bio- and nano-technologies of our University of Applied Sciences.

  14. Infrared thermography

    SciTech Connect

    Roberts, C.C. Jr.

    1982-12-01

    Infrared thermography is a useful tool for the diagnosis of problems in building systems. In instances where a building owner has several large buildings, an investment in a typical $30,000 infrared system may be cost effective. In most instances, however, the rental of an infrared system or the hiring of an infrared consulting service is a cost effective alternative. As can be seen from the several applications presented here, any mechanical problem manifesting itself in an atypical temperature pattern can usually be detected. The two primary savings generated from infrared analysis of building systems are maintenance and energy.

  15. Instrument technology for magnetosphere plasma imaging from high Earth orbit. Design of a radio plasma sounder. Final report

    SciTech Connect

    Haines, D.M.; Reinisch, B.W.

    1995-01-01

    The use of radio sounding techniques for the study of the ionospheric plasma dates back to G. Briet and M. A. Tuve in 1926. Ground based swept frequency sounders can monitor the electron number density (N{sub e}) as a function of height (the N{sub e} profile). These early instruments evolved into a global network that produced high-resolution displays of echo time delay vs frequency on 35-mm film. These instruments provided the foundation for the success of the International Geophysical Year. The Alouette and International Satellites for Ionospheric Studies (ISIS) programs pioneered the used of spaceborne, swept frequency sounders to obtain N{sub e} profiles of the topside of the ionosphere, from a position above the electron density maximum. Repeated measurements during the orbit produced an orbital plane contour which routinely provided density measurements to within 10%. The Alouette/ISIS experience also showed that even with a high powered transmitter (compared to the low power sounder possible today) a radio sounder can be compatible with other imaging instruments on the same satellite. Digital technology was used on later spacecraft developed by the Japanese (the EXOS C and D) and the Soviets (Intercosmos 19 and Cosmos 1809). However, a full coherent pulse compression and spectral integrating capability, such as exist today for ground-based sounders (Reinisch et al.), has never been put into space. NASA`s 1990 Space Physics Strategy Implementation Study `The NASA Space Physics Program from 1995 to 2010` suggested using radio sounders to study the plasmasphere and the magnetopause and its boundary layers (Green and Fung). Both the magnetopause and plasmasphere, as well as the cusp and boundary layers, can be observed by a radio sounder in a high-inclination polar orbit with an apogee greater than 6 R{sub e} (Reiff et al.; Calvert et al.).

  16. Hyperspectral sounding: a revolutionary advance in atmospheric remote sensing

    NASA Astrophysics Data System (ADS)

    Smith, W. L., Sr.; Revercomb, Henry E.; Zhou, Daniel K.; Huang, Hung-Lung A.

    2005-01-01

    Hyperspectral remote sounding was introduced with the High spectral resolution Interferometer Sounder (HIS) that flew on the NASA ER-2 aircraft in the mid-1980s. The results from the HIS demonstrated that high vertical resolution sounding information could be achieved using quasi-continuous spectra of the atmosphere"s radiance to space. This has led to a series of research and operational satellite instruments designed to exploit the hyperspectral resolution sounding approach. The experimental versions, the ADEOS IMG (Interferometer for the Measurement of trace Gases) and the Aqua AIRS (Atmospheric InfraRed Sounder) have already been orbited. The IASI (Infrared Atmospheric Sounding Interferometer) and the CrIS (Cross-track Infrared Sounder) instruments are soon to be orbited on the METOP and the NPP/NPOESS operational series of polar orbiting satellites, respectively. Geostationary satellite hyperspectral resolution sounding instrumentation was initiated with the experimental GIFTS (Geostationary Imaging Fourier Transform Spectrometer) instrument whose development is providing risk reduction for the next generation of operational geostationary satellite instruments (e.g., the GOES-R Hyperspectral Environmental Suite, HES). This presentation traces the evolution of the hyperspectral resolution sounding program. Intercomparisons of the different satellite instrument approaches are discussed. Experimental results from the current aircraft and experimental satellite systems are presented to demonstrate the power of the hyperspectral resolution sounding technique.

  17. Field-aligned electron density irregularities near 500 km. Equator to polar cap topside sounder Z mode observations

    NASA Technical Reports Server (NTRS)

    Benson, R. F.

    1984-01-01

    In addition to spread F, evidence for field-aligned electron density irregularities is commonly observed on Alouette 2 topside sounder ionograms recorded near perigee (500 km). This evidence is provided by distinctive signal returns from sounder-generated Z mode waves. At low latitudes these waves become guided in wave ducts caused by field-aligned electron density irregularities and give rise to strong long-duration echoes. At high latitudes, extending well into the polar cap, these Z mode waves (and stimulated electrostatic waves at the plasma frequency) produce a series of vertical bars on the ionogram display as the satellite traverses discrete field-aligned density structures. The radio frequency (RF) noise environment to be expected in the 400 to 500 km altitude region from low to high latitudes was examined by analyzing perigee Alouette 2 topside sounder data. All observed noise bands were scaled on nearly 200 topside sounder ionograms recorded near perigee at low, mid, and high latitude telemetry stations. The minimum and maximum frequencies of each noise band were entered into a data base or compuer analysis. The signals of primary interest in the perigee study were found to be sounder-generated.

  18. Infrared Fiber Optic Sensors

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Successive years of Small Business Innovation Research (SBIR) contracts from Langley Research Center to Sensiv Inc., a joint venture between Foster-Miller Inc. and Isorad, Ltd., assisted in the creation of remote fiber optic sensing systems. NASA's SBIR interest in infrared, fiber optic sensor technology was geared to monitoring the curing cycles of advanced composite materials. These funds helped in the fabrication of an infrared, fiber optic sensor to track the molecular vibrational characteristics of a composite part while it is being cured. Foster-Miller ingenuity allowed infrared transmitting optical fibers to combine with Fourier Transform Infrared spectroscopy to enable remote sensing. Sensiv probes operate in the mid-infrared range of the spectrum, although modifications to the instrument also permits its use in the near-infrared region. The Sensiv needle-probe is built to be placed in a liquid or powder and analyze the chemicals in the mixture. Other applications of the probe system include food processing control; combustion control in furnaces; and maintenance problem solving.

  19. AIRS Infrared Polarization Sensitivity and In-Flight Observations

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Aumann, Hartmut H.; Elliott, Denis; Broberg, Steven E.

    2005-01-01

    The Atmospheric Infrared Sounder (AIRS) is a space-based instrument that measures the upwelling atmospheric spectrum in the infrared. AIRS is one of several instruments on the EOS-Aqua spacecraft launched on May 4, 2002: Typically, instrument polarization is not a concern in the infrared because the scene is usually not significantly polarized. A small amount of polarization is expected over ocean, which can be seen in the AIRS 3.7 (micro)m window channels. The polarization is seen as a signal difference between two channels with the same center frequency but different polarizations. The observations are compared to a model that relies on measurements of instrument polarization made pre-flight. A first look at a comparison of the observations of sea surface polarization to expectations is presented.

  20. IMAGE Observations of Sounder Stimulated and Naturally Occurring Fast Z mode Cavity Noise

    NASA Astrophysics Data System (ADS)

    Sonwalkar, V. S.; Taylor, C.; Reddy, A.

    2015-12-01

    We report first observations of sounder stimulated and naturally occurring fast Z mode (ZM) cavity noise detected by the Radio Plasma Imager (RPI) on the IMAGE satellite. The fast Z mode cavity noise is a banded, structure-less radio emission trapped inside fast Z mode cavities, which are characterized by a minimum (fz,min) in fast Z mode cut-off frequency (fz) along a geomagnetic field line [Gurnett et al., JGR, 1983]. Fast Z mode waves reflect at fz ~ f, where f is the wave frequency. Waves in the frequency range fz,min < f < fz,max, where fz,max is the maximum fz above fz,min altitude, are trapped within the cavity as they bounce back and forth between reflection altitudes (fz ~ f) above and below the fz,min altitude. These trapped waves will be observed by a satellite passing through the cavity. The observed cavity noise lower cutoff is at the local Z mode cut-off frequency (fz,Sat) and the upper cut-off is presumably close to fz,max. The cavity noise is observed typically inside the plasmasphere. Comparison of cavity noise as observed on the plasmagram obtained during active sounding with that observed on the dynamic spectra obtained from the interspersed passive wave measurements indicate that the cavity noise is either stimulated by transmissions from the sounder (RPI) or is of natural origin. The sounder stimulated noise is often accompanied by fast Z mode echoes. The naturally occurring cavity noise is observed on both the plasmagram and the dynamic spectra. We believe the stimulated cavity noise is generated due to scattering from small-scale irregularities of waves transmitted by RPI. One potential candidate for the source of naturally occurring Z mode cavity noise is the ring current electrons that can generate fast ZM waves via higher order cyclotron resonance [Nishimura et al., Earth Planets Space, 2007].

  1. GeoSTAR: Developing a Microwave Sounder for Geostationary Weather Satellites

    NASA Astrophysics Data System (ADS)

    Lambrigtsen, B.; Wilson, W.; Tanner, A.; Kangaslahti, P.; Gaier, T.; Dinardo, S.; Brown, S.; Piepmeier, J.; Ruf, C.

    2005-12-01

    The Geostationary Synthetic Thinned Aperture Radiometer (GeoSTAR) is a new concept for a microwave sounder, intended to be deployed on NOAA's next generation of geostationary weather satellites, the GOES-R series. A ground based prototype has been developed at the Jet Propulsion Laboratory, under NASA Instrument Incubator Program (IIP) sponsorship, and is now undergoing tests and performance characterization. With the aperture synthesis approach used by GeoSTAR it is possible to achieve very high spatial resolutions even in the crucial 50-GHz temperature sounding band without having to deploy the impractically large parabolic reflector antenna that is required with the conventional approach. GeoSTAR will finally, after many years of searching for a solution, make it possible to add a microwave sounder to the GOES instrument suite - a capability that is crucial for monitoring cloudy regions and severe storms. The technology and system design required for GeoSTAR are rapidly maturing, and it is expected that a space demonstration mission can be developed before the first GOES-R launch. GeoSTAR will be ready for operational deployment 2-3 years after that. The prototype developed under IIP implements a small version of the temperature sounding component of GeoSTAR, is fully functional as a sounder and has all of the features and capabilities of an operational system with the exception of spatial resolution. It therefore represents a complete proof of concept as well as significant risk reduction for a space implementation. Further technology risk reduction, with particular focus on the 183-GHz water vapor sounding band, is also under way.

  2. Preliminary validation of the refractivity from the new radio occultation sounder GNOS/FY-3C

    NASA Astrophysics Data System (ADS)

    Liao, Mi; Zhang, Peng; Yang, Guang-Lin; Bi, Yan-Meng; Liu, Yan; Bai, Wei-Hua; Meng, Xiang-Guang; Du, Qi-Fei; Sun, Yue-Qiang

    2016-03-01

    As a new member of the space-based radio occultation sounders, the GNOS (Global Navigation Satellite System Occultation Sounder) mounted on Fengyun-3C (FY-3C) has been carrying out atmospheric sounding since 23 September 2013. GNOS takes approximately 800 daily measurements using GPS (Global Positioning System) and Chinese BDS (BeiDou navigation satellite) signals. In this work, the atmospheric refractivity profiles from GNOS were compared with the ones obtained from the co-located ECMWF (European Centre for Medium-Range Weather Forecasts) reanalysis. The mean bias of the refractivity obtained through GNOS GPS (BDS) was found to be approximately -0.09 % (-0.04 %) from the near surface to up to 46 km. While the average standard deviation was approximately 1.81 % (1.26 %), it was as low as 0.75 % (0.53 %) in the range of 5-25 km, where best sounding results are usually achieved. Further, COSMIC (Constellation Observing System for Meteorology, Ionosphere and Climate) and MetOp/ GRAS (GNSS Receiver for Atmospheric Sounding) radio occultation data were compared with the ECMWF reanalysis; the results thus obtained could be used as reference data for GNOS. Our results showed that GNOS/FY-3C meets the design requirements in terms of accuracy and precision of the sounder. It possesses a sounding capability similar to COSMIC and MetOp/GRAS in the vertical range of 0-30 km, though it needs further improvement above 30 km. Overall, it provides a new data source for the global numerical weather prediction (NWP) community.

  3. Thermal Tides in the Martian Middle Atmosphere as Seen by the Mars Climate Sounder

    PubMed Central

    Lee, C.; Lawson, W. G.; Richardson, M. I.; Heavens, N. G.; Kleinböhl, A.; Banfield, D.; McCleese, D. J.; Zurek, R.; Kass, D.; Schofield, J. T.; Leovy, C. B.; Taylor, F. W.; Toigo, A. D.

    2016-01-01

    The first systematic observations of the middle atmosphere of Mars (35km–80km) with the Mars Climate Sounder (MCS) show dramatic patterns of diurnal thermal variation, evident in retrievals of temperature and water ice opacity. At the time of writing, the dataset of MCS limb retrievals is sufficient for spectral analysis within a limited range of latitudes and seasons. This analysis shows that these thermal variations are almost exclusively associated with a diurnal thermal tide. Using a Martian General Circulation Model to extend our analysis we show that the diurnal thermal tide dominates these patterns for all latitudes and all seasons.

  4. The processing of electron density profiles from the Mars Express MARSIS topside sounder

    NASA Astrophysics Data System (ADS)

    Morgan, D. D.; Witasse, O.; Nielsen, E.; Gurnett, D. A.; Duru, F.; Kirchner, D. L.

    2013-05-01

    here present a manual for the reduction of data from ionograms obtained from the Mars Express MARSIS Active Ionospheric Sounding topside radar sounder. Sample data are presented with the procedure for processing them explained as simply as possible. We discuss the uncertainties inherent in the measurements as well as systematic problems with the data. A sample code is included to facilitate the inversion process. We also include a comparison with an electron density profile taken from the Mars Express Radio Science occultation experiment, showing agreement between the two methods, although the data are not simultaneous.

  5. Comparison of airborne lidar measurements with 420 kHz echo-sounder measurements of zooplankton.

    PubMed

    Churnside, James H; Thorne, Richard E

    2005-09-10

    Airborne lidar has the potential to survey large areas quickly and at a low cost per kilometer along a survey line. For this reason, we investigated the performance of an airborne lidar for surveys of zooplankton. In particular, we compared the lidar returns with echo-sounder measurements of zooplankton in Prince William Sound, Alaska. Data from eight regions of the Sound were compared, and the correlation between the two methods was 0.78. To obtain this level of agreement, a threshold was applied to the lidar return to remove the effects of scattering from phytoplankton. PMID:16161666

  6. LASA (Lidar Atmospheric Sounder and Altimeter) Earth Observing System. Volume 2D: Instrument Panel Report

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The Earth Observing System (Eos) will provide an ideal forum in which the stronly synergistic characteristics of the lidar systems can be used in concert with the characteristics of a number of other sensors to better understand the Earth as a system. Progress in the development of more efficient and long-lasting laser systems will insure their availability in the Eos time frame. The necessary remote-sensing techniques are being developed to convert the Lidar Atmospheric Sounder and Altimeter (LASA) observations into the proper scientific parameters. Each of these activities reinforces the promise that LASA and GLRS will be a reality in the Eos era.

  7. Phase Change Material for Temperature Control of Imager or Sounder on GOES Type Satellites in GEO

    NASA Technical Reports Server (NTRS)

    Choi, Michael K.

    2014-01-01

    This paper uses phase change material (PCM) in the scan cavity of an imager or sounder on satellites in geostationary orbit (GEO) to maintain the telescope temperature stable. When sunlight enters the scan aperture, solar heating causes the PCM to melt. When sunlight stops entering the scan aperture, the PCM releases the thermal energy stored to keep the components in the telescope warm. It has no moving parts or bimetallic springs. It reduces heater power required to make up the heat lost by radiation to space through the aperture. It is an attractive thermal control option to a radiator with a louver and a sunshade.

  8. Tropical stratospheric water vapor measured by the microwave limb sounder (MLS)

    SciTech Connect

    Carr, E.S.; Harwood, R.S.; Mote, P.W.

    1995-03-15

    The lower stratospheric variability of equatorial water vapor, measured by the Microwave Limb Sounder (MLS), follows an annual cycle modulated by the quasi-biennial oscillation. At levels higher in the stratosphere, water vapor measurements exhibit a semiannual oscillatory signal with the largest amplitudes at 2.2 and 1hPa. Zonal-mean cross sections of MLS water vapour are consistent with previous satellite measurements from the LIMS and SAGE II instruments in that they show water vapor increasing upwards and pole-wards from a well defined minimum in the tropics. The minimum values vary in height between the retreived 46 and 22hPa pressure levels.

  9. A study of travelling ionospheric disturbances over Macquarie Island using an oblique CW sounder

    NASA Astrophysics Data System (ADS)

    Beggs, H. M.; Butcher, E. C.

    1989-08-01

    From April to October 1987 an oblique ionospheric sounder was deployed on Macquarie Island in order to study F-region traveling ionospheric disturbances in the southern auroral region. The signal strength and change in phase path of the received 3.399 MHz continuous signal were recorded digitally, and dynamic power spectra produced using the maximum entropy method. Interesting results for daytime traveling ionospheric disturbances for May-August 1987 have been obtained. Many data records illustrated a strong correlation between oscillations in the phase path and the received amplitude of the sounding signal, as predicted for a sinusoidal ionospheric reflector model.

  10. History of infrared detectors

    NASA Astrophysics Data System (ADS)

    Rogalski, A.

    2012-09-01

    This paper overviews the history of infrared detector materials starting with Herschel's experiment with thermometer on February 11th, 1800. Infrared detectors are in general used to detect, image, and measure patterns of the thermal heat radiation which all objects emit. At the beginning, their development was connected with thermal detectors, such as thermocouples and bolometers, which are still used today and which are generally sensitive to all infrared wavelengths and operate at room temperature. The second kind of detectors, called the photon detectors, was mainly developed during the 20th Century to improve sensitivity and response time. These detectors have been extensively developed since the 1940's. Lead sulphide (PbS) was the first practical IR detector with sensitivity to infrared wavelengths up to ˜3 μm. After World War II infrared detector technology development was and continues to be primarily driven by military applications. Discovery of variable band gap HgCdTe ternary alloy by Lawson and co-workers in 1959 opened a new area in IR detector technology and has provided an unprecedented degree of freedom in infrared detector design. Many of these advances were transferred to IR astronomy from Departments of Defence research. Later on civilian applications of infrared technology are frequently called "dual-use technology applications." One should point out the growing utilisation of IR technologies in the civilian sphere based on the use of new materials and technologies, as well as the noticeable price decrease in these high cost technologies. In the last four decades different types of detectors are combined with electronic readouts to make detector focal plane arrays (FPAs). Development in FPA technology has revolutionized infrared imaging. Progress in integrated circuit design and fabrication techniques has resulted in continued rapid growth in the size and performance of these solid state arrays.

  11. Infrared source test

    SciTech Connect

    Ott, L.

    1994-11-15

    The purpose of the Infrared Source Test (IRST) is to demonstrate the ability to track a ground target with an infrared sensor from an airplane. The system is being developed within the Advance Technology Program`s Theater Missile Defense/Unmanned Aerial Vehicle (UAV) section. The IRST payload consists of an Amber Radiance 1 infrared camera system, a computer, a gimbaled mirror, and a hard disk. The processor is a custom R3000 CPU board made by Risq Modular Systems, Inc. for LLNL. The board has ethernet, SCSI, parallel I/O, and serial ports, a DMA channel, a video (frame buffer) interface, and eight MBytes of main memory. The real-time operating system VxWorks has been ported to the processor. The application code is written in C on a host SUN 4 UNIX workstation. The IRST is the result of a combined effort by physicists, electrical and mechanical engineers, and computer scientists.

  12. Germanium blocked impurity band far infrared detectors

    SciTech Connect

    Rossington, C.S.

    1988-04-01

    The infrared portion of the electromagnetic spectrum has been of interest to scientist since the eighteenth century when Sir William Herschel discovered the infrared as he measured temperatures in the sun's spectrum and found that there was energy beyond the red. In the late nineteenth century, Thomas Edison established himself as the first infrared astronomer to look beyond the solar system when he observed the star Arcturus in the infrared. Significant advances in infrared technology and physics, long since Edison's time, have resulted in many scientific developments, such as the Infrared Astronomy Satellite (IRAS) which was launched in 1983, semiconductor infrared detectors for materials characterization, military equipment such as night-vision goggles and infrared surveillance equipment. It is now planned that cooled semiconductor infrared detectors will play a major role in the ''Star Wars'' nuclear defense scheme proposed by the Reagan administration.

  13. Ultraspectral sounder data compression using the non-exhaustive Tunstall coding

    NASA Astrophysics Data System (ADS)

    Wei, Shih-Chieh; Huang, Bormin

    2008-08-01

    With its bulky volume, the ultraspectral sounder data might still suffer a few bits of error after channel coding. Therefore it is beneficial to incorporate some mechanism in source coding for error containment. The Tunstall code is a variable-to- fixed length code which can reduce the error propagation encountered in fixed-to-variable length codes like Huffman and arithmetic codes. The original Tunstall code uses an exhaustive parse tree where internal nodes extend every symbol in branching. It might result in assignment of precious codewords to less probable parse strings. Based on an infinitely extended parse tree, a modified Tunstall code is proposed which grows an optimal non-exhaustive parse tree by assigning the complete codewords only to top probability nodes in the infinite tree. Comparison will be made among the original exhaustive Tunstall code, our modified non-exhaustive Tunstall code, the CCSDS Rice code, and JPEG-2000 in terms of compression ratio and percent error rate using the ultraspectral sounder data.

  14. Modification and Development of a Control Mechanism for the Scanning Microwave Limb Sounder

    NASA Technical Reports Server (NTRS)

    Greene, Zach

    2011-01-01

    The scanning microwave limb sounder (SMLS) is the latest instrument to probe the Earth's atmosphere to come out of the Microwave Limb Sounder (MLS) team. Once deployed to the upper stratosphere, it will use microwave detection to measure geo-atmospheric variables such as temperature, pressure, and chemical composition. In addition to previous missions that used vertical limb scans to observe altitudinal variations, the SMLS will rotate laterally allowing it to establish two-dimensional variable dependencies with a single run. A program was originated by a previous intern that will automatically control the movement of the two rotational axes along with a switching mirror and chopper once the instrument is in flight. However, it lacked the code essential to control system's ability to function fully and reliably. By modifying and rewriting parts of the code I sought to have a finished ready-for-flight control system that would be easy to navigate. Three of the major alterations I made including instituting a gyroscope, implementing a restart button, and instigating the automatic creation of a file log with each run to record the position and orientation of the SMLS.

  15. Sounder stimulated D(sub n) resonances in Jupiter's Io plasma torus

    NASA Technical Reports Server (NTRS)

    Osherovich, V. A.; Benson, R. F.; Fainberg, J.; Stone, R. G.; Macdowall, R. J.

    1993-01-01

    On February 8, 1992, the Ulysses spacecraft passed through Jupiter's Io plasma torus, where rich spectra of narrow-band resonances were stimulated by the relaxation sounder of the Ulysses unified radio and plasma wave (URAP) instrument. Since the gyrofrequency f(sub g) is comparable to the plasma frequency f(sub p) in the Io torus, it was predicted that the general classification of stimulated ionospheric D(sub n) resonances, developed for 1 is less than or equal to f(sub p)/f(sub g) is less than or equal to 8 in the Earth's topside ionosphere, should apply in the Io torus as well as the Earth's magnetosphere (Osherovich, 1989). The URAP plasmagrams (sounder spectra) in the portions of the Io torus satisfying these plasma conditions are dominated by the D(sub n) resonances for frequencies below f(sub p). On most of these plasmagrams the f(sub p) resonance is also present, but it is seldom the dominant resonance. Neither upper hybrid nor nf(sub g) resonances have been found on these plasmagrams. The identification of D(sub n) resonances has allowed both the electron density and the magnetic field amplitude to be calculated. The derived densities on the outbound pass agree well with a Voyager model of Bagenal (1992). The derived magnetic field values are close to the Goddard Space Flight Center O(sub 6) magnetic field model.

  16. Submillimeter limb-emission sounder JEM/SMILES aboard the Space Station

    NASA Astrophysics Data System (ADS)

    Inatani, Junji; Ozeki, Hiroyuki; Satoh, Ryouta; Nishibori, Toshiyuki; Ikeda, Naomi; Fujii, Yasunori; Nakajima, Takashi; Iida, Yukiei; Iida, Teruhito; Kikuchi, Ken'ichi; Miura, Takeshi; Masuko, Harunobu; Manabe, Takeshi; Ochiai, Satoshi; Seta, Masumichi; Irimajiri, Yoshihisa; Kasai, Yasuko; Suzuki, Makoto; Shirai, Tomoko; Tsujimaru, Sho; Shibasaki, Kazuo; Shiotani, Masato

    2000-12-01

    A submillimeter limb-emission sounder, that is to be aboard the Japanese Experiment Module (JEM, dubbed as KIBO) at the International Space Station, has been designed. This payload, Superconducting Submillimeter-wave Limb-emission Sounder (SMILES), is aimed at global mappings of stratospheric trace gases by means of the most sensitive submillimeter receiver ever operated in space. Such sensitivity is ascribed to a Superconductor-Insulator- Superconductor (SIS) mixer, which is operated at 4.5 K in a dedicated cryostat combined with a mechanical cooler. SMILES will observe ozone-depletion-related molecules such as ClO, Hcl, HO2, HNO3, BrO and O3 in the frequency bands at 624.32-626.32 GHz and 649.12-650.32 GHz. A scanning antenna will cover tangent altitudes from 10 to 60 km in every 53 seconds, while tracing the latitudes form 38 S to 65 N along its orbit. This global coverage makes SMILES a useful tool of observing the low- and mid- latitudinal areas as well as the Arctic peripheral region. The molecular emissions will be detected by two units of acousto-optic spectrometers (AOS), each of which has coverage of 1.2 GHz with a resolution of 1.8 MHz. This high-resolution spectroscopy will allow us to detect weak emission lines attributing to less-abundant species.

  17. Preliminary validation of refractivity from a new radio occultation sounder GNOS/FY-3C

    NASA Astrophysics Data System (ADS)

    Liao, M.; Zhang, P.; Yang, G. L.; Bi, Y. M.; Liu, Y.; Bai, W. H.; Meng, X. G.; Du, Q. F.; Sun, Y. Q.

    2015-09-01

    As a new member of space-based radio occultation sounder, the GNOS (Global Navigation Satellite System Occultation Sounder) mounted on FY-3C has been carrying out the atmospheric sounding since 23 September 2013. GNOS takes a daily measurement up to 800 times with GPS (Global Position System) and Chinese BDS (BeiDou navigation satellite) signals. The refractivity profiles from GNOS are compared with the co-located ECMWF (European Centre for Medium-Range Weather Forecasts) analyses in this paper. Bias and standard deviation have being calculated as the function of altitude. The mean bias is about 0.2 % from the near surface to 35 km. The average standard deviation is within 2 % while it is down to about 1 % in the range 5-30 km where best soundings are usually made. To evaluate the performance of GNOS, COSMIC (Constellation Observing System for Meteorology, Ionosphere and Climate) and GRAS/METOP-A (GNSS Receiver for Atmospheric Sounding) data are also compared to ECMWF analyses as the reference. The results show that GNOS/FY-3C meets the requirements of the design well. It possesses a sounding capability similar to COSMIC and GRAS in the vertical range of 0-30 km, though it needs improvement in higher altitude. Generally, it provides a new data source for global NWP (numerical weather prediction) community.

  18. Advanced methods for preparation and characterization of infrared detector materials. [crystallization and phase diagrams of Hg sub 1-x Cd sub x Te

    NASA Technical Reports Server (NTRS)

    Lehoczy, S. L.

    1979-01-01

    Crystal growth of Hg sub 1-x Cd sub x Te and density measurements of ingot slices are discussed. Radial compositional variations are evaluated from the results of infrared transmission edge mapping. The pseudo-binary HgTe-CdTe phase diagram is examined with reference to differential thermal analysis measurements. The phase equilibria calculations, based on the 'regular association solution' theory (R.A.S.) are explained and, using the obtained R.A.S. parameters, the activities of Hg, Cd, and Te vapors and their partial pressures over the pseudo-binary melt are calculated.

  19. Subsurface sounders

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Airborne or spaceborne electromagnetic systems used to detect subsurface features are discussed. Data are given as a function of resistivity of ground material, magnetic permeability of free space, and angular frequency. It was noted that resistivities vary with the water content and temperature.

  20. The design of a multi-detector spectrometer for the infrared. [satellite-borne atmospheric temperature sounder

    NASA Technical Reports Server (NTRS)

    Koch, D. G.; Aubrecht, J. A.

    1978-01-01

    A modified Ebert-Fastie spectrometer has been developed for atmospheric temperature sounding applications. The device is described with reference to its resolution, grating, focal-length mirror, mirror, equivalent f-number, and projected area of grating. The images of the entrance slit appear tilted backwards away from the concave mirror. Astigmatism and spherical aberration are reduced by asperizing the mirror. The resolution and f-number of the instrument are limited by the sagittal coma. The orientation and size of the exit slit are functions of wavelength.

  1. Feasibility of modifying the high resolution infrared radiation sounder (HIRS/2) for measuring spectral components of Earth radiation budget

    NASA Technical Reports Server (NTRS)

    Koenig, E. W.; Holman, K. A.

    1980-01-01

    The concept of adding four spectral channels to the 20 channel HIRS/2 instrument for the purpose of determining the origin and profile of radiant existence from the Earth's atmosphere is considered. Methods of addition of three channels at 0.5, 1.0 and 1.6 micron m to the present 0.7 micron m visible channel and an 18-25 micron m channel to the present 19 channels spaced from 3.7 micron m to 15 micron m are addressed. Optical components and physical positions were found that permit inclusion of these added channels with negligible effect on the performance of the present 20 channels. Data format changes permit inclusion of the ERB data in the 288 bits allocated to HIRS for each scan element. A lamp and collimating optic assembly may replace one of the on board radiometric black bodies to provide a reference source for the albedo channels. Some increase in instrument dimensions, weight and power will be required to accommodate the modifications.

  2. An Instrument Concept for Atmospheric Infrared Sounding from Medium Earth Orbit

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Baron, Richard l.

    2004-01-01

    Medium Earth Orbit (MEO) offers a unique vantage point for atmospheric infrared sounding. The orbit allows the entire globe to be covered each day with one satellite. The orbit is slow enough to allow multiple views of a single target to be made on each pass. this paper discusses the advantages in coverage and revisit rate from MEO for a particular concept for a Medium Earth Orbit Infrared Atmospheric Sounder (MIRIS). The requirements for this instrument in terms of spectral range, spatial resolution, field of view, and calibration are presented as well as the radiometric performance expectations.

  3. Small infrared sensors

    NASA Astrophysics Data System (ADS)

    Horn, Stuart B.; Lohrmann, Dieter; Miller, James E.; McCormack, Kent; Newsome, Gwendolyn W.; Brown, James C.; Campbell, James, Jr.; Perconti, Philip; Klager, Gene A.

    2001-09-01

    Small, low cost, low poer infrared imaging sensors are relatively recent innovation, employing the most advanced MEMS processing techniques, integrated circuit design, optical materials, and focal plane array packaging. We will review the rationale behind the development of low cost, small IR cameras, discuss several of the medium performance applications for these sensors via a modeling analysis, discuss the goals and status of our applied research uncooled focal plane array technology programs, and discuss the future of uncooled focal plane arrays.

  4. Hyperspectral Microwave Atmospheric Sounder (HyMAS) - New Capability in the CoSMIR-CoSSIR Scanhead

    NASA Technical Reports Server (NTRS)

    Hilliard, Lawrence; Racette, Paul; Blackwell, William; Galbraith, Christopher; Thompson, Erik

    2015-01-01

    Lincoln Laboratory and NASA's Goddard Space Flight Center have teamed to re-use an existing instrument platform, the CoSMIR/CoSSIR system for atmospheric sounding, to develop a new capability in hyperspectral filtering, data collection, and display. The volume of the scanhead accomodated an intermediate frequency processor(IFP), that provides the filtering and digitization of the raw data and the interoperable remote component (IRC) adapted to CoSMIR, CoSSIR, and HyMAS that stores and archives the data with time tagged calibration and navigation data. The first element of the work is the demonstration of a hyperspectral microwave receiver subsystem that was recently shown using a comprehensive simulation study to yield performance that substantially exceeds current state-of-the-art. Hyperspectral microwave sounders with approximately 100 channels offer temperature and humidity sounding improvements similar to those obtained when infrared sensors became hyperspectral, but with the relative insensitivity to clouds that characterizes microwave sensors. Hyperspectral microwave operation is achieved using independent RF antenna/receiver arrays that sample the same area/volume of the Earth's surface/atmosphere at slightly different frequencies and therefore synthesize a set of dense, finely spaced vertical weighting functions. The second, enabling element of the proposal is the development of a compact 52-channel Intermediate Frequency processor module. A principal challenge in the development of a hyperspectral microwave system is the size of the IF filter bank required for channelization. Large bandwidths are simultaneously processed, thus complicating the use of digital back-ends with associated high complexities, costs, and power requirements. Our approach involves passive filters implemented using low-temperature co-fired ceramic (LTCC) technology to achieve an ultra-compact module that can be easily integrated with existing radio frequency front-end technology

  5. Hyperspectral Microwave Atmospheric Sounder (HyMas) - New Capability in the CoSMIR-CoSSIR Scanhead

    NASA Technical Reports Server (NTRS)

    Hilliard, L. M.; Racette, P. E.; Blackwell, W.; Galbraith, C.; Thompson, E.

    2015-01-01

    Lincoln Laboratory and NASA's Goddard Space Flight Center have teamed to re-use an existing instrument platform, the CoSMIRCoSSIR system for atmospheric sounding, to develop a new capability in hyperspectral filtering, data collection, and display. The volume of the scanhead accomodated an intermediate frequency processor(IFP), that provides the filtering and digitization of the raw data and the interoperable remote component (IRC) adapted to CoSMIR, CoSSIR, and HyMAS that stores and archives the data with time tagged calibration and navigation data.The first element of the work is the demonstration of a hyperspectral microwave receiver subsystem that was recently shown using a comprehensive simulation study to yield performance that substantially exceeds current state-of-the-art. Hyperspectral microwave sounders with 100 channels offer temperature and humidity sounding improvements similar to those obtained when infrared sensors became hyperspectral, but with the relative insensitivity to clouds that characterizes microwave sensors. Hyperspectral microwave operation is achieved using independent RF antennareceiver arrays that sample the same areavolume of the Earths surfaceatmosphere at slightly different frequencies and therefore synthesize a set of dense, finely spaced vertical weighting functions. The second, enabling element of the proposal is the development of a compact 52-channel Intermediate Frequency processor module. A principal challenge in the development of a hyperspectral microwave system is the size of the IF filter bank required for channelization. Large bandwidths are simultaneously processed, thus complicating the use of digital back-ends with associated high complexities, costs, and power requirements. Our approach involves passive filters implemented using low-temperature co-fired ceramic (LTCC) technology to achieve an ultra-compact module that can be easily integrated with existing RF front-end technology. This IF processor is universally

  6. Why Infrared?

    ERIC Educational Resources Information Center

    Harris, J. R.

    1973-01-01

    Discusses applications of techniques developed for the remote sensing of infrared radiation. In addition to military applications, remote sensing has become important in collecting environmental data and detecting ecological problems. (JR)

  7. Lessons Learned from the Deployment and Integration of a Microwave Sounder Based Tropical Cyclone Intensity and Surface Wind Estimation Algorithm into NOAA/NESDIS Satellite Product Operations

    NASA Astrophysics Data System (ADS)

    Longmore, S. P.; Knaff, J. A.; Schumacher, A.; Dostalek, J.; DeMaria, R.; Chirokova, G.; Demaria, M.; Powell, D. C.; Sigmund, A.; Yu, W.

    2014-12-01

    The Colorado State University (CSU) Cooperative Institute for Research in the Atmosphere (CIRA) has recently deployed a tropical cyclone (TC) intensity and surface wind radii estimation algorithm that utilizes Suomi National Polar-orbiting Partnership (S-NPP) satellite Advanced Technology Microwave Sounder (ATMS) and Advanced Microwave Sounding Unit (AMSU) from the NOAA18, NOAA19 and METOPA polar orbiting satellites for testing, integration and operations for the Product System Development and Implementation (PSDI) projects at NOAA's National Environmental Satellite, Data, and Information Service (NESDIS). This presentation discusses the evolution of the CIRA NPP/AMSU TC algorithms internally at CIRA and its migration and integration into the NOAA Data Exploitation (NDE) development and testing frameworks. The discussion will focus on 1) the development cycle of internal NPP/AMSU TC algorithms components by scientists and software engineers, 2) the exchange of these components into the NPP/AMSU TC software systems using the subversion version control system and other exchange methods, 3) testing, debugging and integration of the NPP/AMSU TC systems both at CIRA/NESDIS and 4) the update cycle of new releases through continuous integration. Lastly, a discussion of the methods that were effective and those that need revision will be detailed for the next iteration of the NPP/AMSU TC system.

  8. Compensation for the Atmosphere in Radiance Measured by the Airborne Visible/Infrared Imaging Spectrometer and Applications to an Advanced Land Remote Sensing System

    NASA Technical Reports Server (NTRS)

    Green, R. O.; Conel, J. E.

    1993-01-01

    The Airborne Visible/Infrared Imaging Spectrometer measures spatial images of the total upwelling spectral radiance from 400 to 2500 nm through 10 nm spectral channels. Quantitative research and application objectives for surface investigations require conversion of the measured radiance to surface reflectance or surface leaving radiance. To calculate apparent surface reflectance an estimation of atmospheric water vapor abundance, cirrus cloud effects, surface pressure elevation and aerosol optical depth is also required. Algorithms for the estimation of these parameters from the AVIRIS data themselves are described. Based upon these determined atmospheric parameters we show an example of the calculation of apparent surface reflectance from the AVIRIS-measured radiance using a radiative transfer code.

  9. WindSat Soil Moisture and Vegetation Validation and Performance Prediction for the NPOESS Microwave Imager/Sounder (MIS)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The National Polar-orbiting Operational Environmental Satellite System’s (NPOESS) Microwave Imager/Sounder (MIS) instrument is in development, with soil moisture sensing depth as one of the two Key Performance Parameters (KPPs). The other one is ocean surface wind speed precision. Based on the curre...

  10. Effect of HF Emission of the topside sounder transmitter aboard the COSMOS-1809 satellite on the ionospheric plasma

    NASA Astrophysics Data System (ADS)

    Baranets, N. V.; Gladyshev, V. A.; Afonin, V. V.

    The experiment on investigation of effect of the HF emission (300 W) by the dipole antenna on the ionospheric plasma was carried out onboard the COSMOS-1809 satellite (1987). The sounder accelerated particles (SAP) at the electron cyclotron harmonics n x omegace and in the frequency region of antenna resonance were detected by the charged particle spectrometer.

  11. TIDs in the Bottomside Ionospheric F-region Observed Near Jicamarca Using the TIDDBIT HF Doppler Sounder

    NASA Astrophysics Data System (ADS)

    Crowley, G.; Chau, J. L.

    2012-12-01

    The equatorial ionosphere is the site of complex interactions between various geospace drivers, including thermospheric winds, electric fields, and tides propagating from below. Less well known is the effect of gravity waves, and their manifestation as traveling ionospheric disturbances (TIDs). HF Doppler sounders represent a low-cost and low-maintenance solution for monitoring wave activity in the F region ionosphere. Together with modern data analysis techniques, they can provide comprehensive TID characteristics, including both horizontal and vertical TID velocities and wavelengths across the entire spectrum from periods of 1 min to over an hour. In this invited talk, we review some of the previous observations of TIDs at low latitudes, and present new observations from the TIDDBIT HF Doppler Sounder recently developed by Atmospheric and Space Technology Research Associates LLC, and deployed at Jicamarca, Peru. The completeness of the wave information obtained from the TIDDBIT system makes it possible to reconstruct the vertical displacement of isoionic contours over the 200 km horizontal dimension of the sounder array, and movies revealing the detailed shape and motion of isoionic surfaces over Peru will be shown. We demonstrate how the TID characteristics in Peru vary with season and magnetic activity. We discuss their possible impact on triggering of ionospheric bubbles and irregularities. Such information will be relevant for various operational needs involving navigation, communication, and surveillance systems. Crowley G., and F.S. Rodrigues (2012), Characteristics of Traveling Ionospheric Disturbances Observed by the TIDDBIT Sounder, Radio Sci., doi:10.1029/2011RS004959.

  12. ISIS topside-sounder Plasma-wave investigations as guides to desired Virtual Wave Observatory (VWO) data search capabilities

    NASA Astrophysics Data System (ADS)

    Benson, R. F.; Fung, S. F.

    2008-12-01

    Many plasma-wave phenomena, observed by space-borne radio sounders, cannot be properly explained in terms of wave propagation in a cold plasma consisting of mobile electrons and infinitely massive positive ions. These phenomena include signals known as plasma resonances. The principal resonances at the harmonics of the electron cyclotron frequency, the plasma frequency, and the upper-hybrid frequency are well explained by the warm-plasma propagation of sounder-generated electrostatic waves. Other resonances have been attributed to sounder-stimulated plasma instability and non-linear effects, eigenmodes of cylindrical electromagnetic plasma oscillations, and plasma memory processes. Data from the topside sounders of the International Satellites for Ionospheric Studies (ISIS) program played a major role in these interpretations. A data transformation and preservation effort at the Goddard Space Flight Center has produced digital ISIS topside ionograms and a metadata search program that has enabled some recent discoveries pertaining to the physics of these plasma resonances. For example, data records were obtained that enabled the long-standing question (several decades) of the origin of the plasma resonance at the fundamental electron cyclotron frequency to be explained [Muldrew, Radio Sci., 2006]. These data-search capabilities, and the science enabled by them, will be presented as a guide to desired data search capabilities to be included in the Virtual Wave Observatory (VWO).

  13. ISIS Topside-Sounder Plasma-Wave Investigations as Guides to Desired Virtual Wave Observatory (VWO) Data Search Capabilities

    NASA Technical Reports Server (NTRS)

    Benson, Robert F.; Fung, Shing F.

    2008-01-01

    Many plasma-wave phenomena, observed by space-borne radio sounders, cannot be properly explained in terms of wave propagation in a cold plasma consisting of mobile electrons and infinitely massive positive ions. These phenomena include signals known as plasma resonances. The principal resonances at the harmonics of the electron cyclotron frequency, the plasma frequency, and the upper-hybrid frequency are well explained by the warm-plasma propagation of sounder-generated electrostatic waves, Other resonances have been attributed to sounder-stimulated plasma instability and non-linear effects, eigenmodes of cylindrical electromagnetic plasma oscillations, and plasma memory processes. Data from the topside sounders of the International Satellites for Ionospheric Studies (ISIS) program played a major role in these interpretations. A data transformation and preservation effort at the Goddard Space Flight Center has produced digital ISIS topside ionograms and a metadata search program that has enabled some recent discoveries pertaining to the physics of these plasma resonances. For example, data records were obtained that enabled the long-standing question (several decades) of the origin of the plasma resonance at the fundamental electron cyclotron frequency to be explained [Muldrew, Radio Sci., 2006]. These data-search capabilities, and the science enabled by them, will be presented as a guide to desired data search capabilities to be included in the Virtual Wave Observatory (VWO).

  14. Acoustical Surveys of Methane Plumes by Using the Quantitative Echo Sounder in Japan Sea

    NASA Astrophysics Data System (ADS)

    Aoyama, C.; Matsumoto, R.; Hiruta, A.; Machiyama, H.; Numanami, H.; Tomaru, H.; Snyder, G.; Hiromatsu, M.; Igeta, Y.; Freitas, L.

    2006-12-01

    R&T/V Umitaka-maru(Tokyo Univ. of Marine Science and Technology) and R/V Natsushima(JAMSTEC) sailed to the methane seep area on a small ridge in the Naoetsu Basin, in the eastern margin of the Sea of Japan on July 2004 and July 2005 and July 2006 to survey the gas hydrate in the ocean floor and related acoustic signatures of methane plumes by using a quantitative echo sounder. Detailed bathymetric profiles have revealed a number of mounds, pockmarks and collapsed structures within 3km x 4km on the ridge at the water depth of 910m to 980m. We minutely mapped methane plumes by using a quantitative echo sounder (frequency is 38 kHz, beam width is -19.1dB) with positioning data from GPS. The vessels sailed at intervals of 0.05 nmi, and their speed was under 3kt. We also measured averaged echo intensity from the methane plumes and sea bottoms both in every 100m range and every one minute by the echo integrator. We obtained the following results from the present echo-sounder survey. 1) We mapped in detail the methane plumes and the seep areas. There are over pockmark-mound zone. 2) For the survey in 2005, we checked several methane plumes on echogram in another area included in the survey conducted in 2004. 3) Average volume backscattering strength (SV) of each methane plume tends to be related to water temperature and water pressure. The hydrate bubbles float upward until they reach warm waters at 300m depth. The gas volume abruptly increases at this point as the hydrate coating melts. 4) We recovered several fist-sized chunks of methane hydrate by piston coring at the area where we observed the methane plumes. As a following up project, we are planning 1) to measure the SV of methane bubbles and methane hydrate floating in water columns by using the submarine vehicle, called Hyper Dolphin, 2) to make a trial calculation of the amount of floating methane bubbles and methane hydrates and 3) to study how to sample the acoustical data of methane plumes by using a side

  15. High-Power Radar Sounders for the Investigation of Jupiter Icy Moons

    NASA Technical Reports Server (NTRS)

    Safaeinili, A.; Ostro, S.; Rodriquez, E.; Blankenship, D.; Kurth, W.; Kirchner, D.

    2005-01-01

    The high power and high data rate capability made available by a Prometheus class spacecraft could significantly enhance our ability to probe the subsurface of the planets/moons and asteroid/comets. The main technology development driver for our radar is the proposed Jupiter Icy Moon Orbiter (or JIMO) mission due to its harsh radiation environment. We plan to develop a dual-band radar at 5 and 50 MHz in response to the two major science requirements identified by the JIMO Science Definition Team: studying the near subsurface (less than 2 km) at high resolution and detection of the ice/ocean interface for Europa (depth up to 30 km). The 50-MHz band is necessary to provide high spatial resolution (footprint and depth) as required by the JIMO mission science requirements as currently defined. Our preliminary assessment indicates that the 50-MHz system is not required to be as high-power as the 5-MHz system since it will be more limited by the surface clutter than the Jupiter or galactic background noise. The low frequency band (e.g. 5 MHz), which is the focus of this effort, would be necessary to mitigate the performance risks posed by the unknown subsurface structure both in terms of unknown attenuation due to volumetric scattering and also the detection of the interface through the attenuative transition region at the ice/ocean interface. Additionally, the 5-MHz band is less affected by the surface roughness that can cause loss of coherence and clutter noise. However, since the Signal-to-Noise-Ratio (SNR) of the 5-MHz radar band is reduced due to Jupiter noise when operating in the Jupiter side of the moon, it is necessary to increase the radiated power. Our challenge is to design a high-power HF radar that can hnction in Jupiter's high radiation environment, yet be able to fit into spacecraft resource constraints such as mass and thermal limits. Our effort to develop the JIMO radar sounder will rely on our team's experience with planetary radar sounder design

  16. Feasibility Study of Graphite Epoxy Antenna for a Microwave Limb Sounder Radiometer (MLSR)

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Results are presented of a feasibility study to design graphite epoxy antenna reflectors for a jet propulsion laboratory microwave limb sounder instrument (MLSR). Two general configurations of the offset elliptic parabolic reflectors are presented that will meet the requirements on geometry and reflector accuracy. The designs consist of sandwich construction for the primary reflectors, secondary reflector support structure and cross-tie members between reflector pairs. Graphite epoxy materials of 3 and 6 plies are used in the facesheets of the sandwich. An aluminum honeycomb is used for the core. A built-in adjustment system is proposed to reduce surface distortions during assembly. The manufacturing and environmental effects are expected to result in surface distortions less than .0015 inch and pointing errors less than .002 degree.

  17. Mountain Waves in the Middle Atmosphere: Microwave Limb Sounder Observations and Analyses

    NASA Technical Reports Server (NTRS)

    Jiang, Jonathan H.; Wu, Dong L.; Eckermann, Stephen D.; Ma, Jun

    2003-01-01

    Observations and analyses of mesoscale gravity waves in the stratosphere from the Upper Atmosphere Research Satellite (UARS) Microwave Limb Sounder (MLS) are summarized, with focus on global distribution of topography related wave activities. We found most of the orographical wave activities occur during the winter seasons over high latitude mountain ridges. In the northern hemisphere, the strongest waves are those over Scandinavia, Central Eurasia, and southern Greenland, whereas in the southern hemisphere, wave activities are outstanding over the Andes, New Zealand, and Antarctic rim;, MLS observations suggest that these orographic waves are located mostly on the down stream side of the mountain ridge with downward phase progression and have horizontal phase velocities opposite to the stratospheric jet-stream. Future studies using MLS data and numerical modeling will lead to better understanding of gravity wave effects on dynamics and chemistry in the middle atmosphere.

  18. No widespread dust in the middle atmosphere of Mars from Mars Climate Sounder observations

    NASA Astrophysics Data System (ADS)

    Kleinböhl, Armin; Schofield, John T.; Kass, David M.; Abdou, Wedad A.; McCleese, Daniel J.

    2015-11-01

    It has been established that dust in the atmosphere of Mars is not distributed homogeneously in the vertical but exhibits layering in the lower atmosphere. Recently published results also suggest a dust maximum in the middle atmosphere that predominantly occurs at 50-60 km altitude on the daytime hemisphere. We use measurements from the Mars Climate Sounder to investigate the distribution of dust above ∼ 40 km altitude. Our results do not support the existence of widespread dust in the middle atmosphere of Mars inferred from earlier observations. The average dust extinction does not exceed 10-6 km-1 at 463 cm-1 above 50 km altitude in atmospheric conditions without large dust storms.

  19. Laser Atmospheric Wind Sounder (LAWS) phase 1. Volume 3: Project cost estimates

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The laser atmospheric wind sounder (LAWS) cost modeling activities were initiated in phase 1 to establish the ground rules and cost model that would apply to both phase 1 and phase 2 cost analyses. The primary emphasis in phase 1 was development of a cost model for a LAWS instrument for the Japanese Polar Orbiting Platform (JPOP). However, the Space Station application was also addressed in this model, and elements were included, where necessary, to account for Space Station unique items. The cost model presented in the following sections defines the framework for all LAWS cost modeling. The model is consistent with currently available detail, and can be extended to account for greater detail as the project definition progresses.

  20. On the assimilation of satellite sounder data in cloudy skies in numerical weather prediction models

    NASA Astrophysics Data System (ADS)

    Li, Jun; Wang, Pei; Han, Hyojin; Li, Jinlong; Zheng, Jing

    2016-04-01

    Satellite measurements are an important source of global observations in support of numerical weather prediction (NWP). The assimilation of satellite radiances under clear skies has greatly improved NWP forecast scores. However, the application of radiances in cloudy skies remains a significant challenge. In order to better assimilate radiances in cloudy skies, it is very important to detect any clear field-of-view (FOV) accurately and assimilate cloudy radiances appropriately. Research progress on both clear FOV detection methodologies and cloudy radiance assimilation techniques are reviewed in this paper. Overview on approaches being implemented in the operational centers and studied by the satellite data assimilation research community is presented. Challenges and future directions for satellite sounder radiance assimilation in cloudy skies in NWP models are also discussed.

  1. Ultraspectral sounder data compression using a novel marker-based error-resilient arithmetic coder

    NASA Astrophysics Data System (ADS)

    Huang, Bormin; Sriraja, Y.; Wei, Shih-Chieh

    2006-08-01

    Entropy coding techniques aim to achieve the entropy of the source data by assigning variable-length codewords to symbols with the code lengths linked to the corresponding symbol probabilities. Entropy coders (e.g. Huffman coding, arithmetic coding), in one form or the other, are commonly used as the last stage in various compression schemes. While these variable-length coders provide better compression than fixed-length coders, they are vulnerable to transmission errors. Even a single bit error in the transmission process can cause havoc in the subsequent decoded stream. To cope with it, this research proposes a marker-based sentinel mechanism in entropy coding for error detection and recovery. We use arithmetic coding as an example to demonstrate this error-resilient technique for entropy coding. Experimental results on ultraspectral sounder data indicate that the marker-based error-resilient arithmetic coder provides remarkable robustness to correct transmission errors without significantly compromising the compression gains.

  2. Microwave Sounder for GEOS-R - A GeoSTAR Progress Report

    NASA Technical Reports Server (NTRS)

    Lambrigtsen, Bjorn H.; Wilson, William; Tanner, Alan; Kangaslahti, Pekka P.

    2005-01-01

    The Geostationary Synthetic Thinned Aperture Radiometer (GeoSTAR) is a new concept for a microwave sounder, intended to be deployed on NOAA's next generation of geostationary weather satellites, GOES-R. A ground based prototype has been developed at the Jet Propulsion Laboratory, under NASA Instrument Incubator Program sponsorship, and is now undergoing tests and performance characterization. The initial space version of GeoSTAR will have performance characteristics equal to those of the AMSU system currently operating on polar orbiting environmental satellites, but subsequent versions will significantly outperform AMSU. In addition to all-weather temperature and humidity soundings, GeoSTAR will also provide continuous rain mapping, tropospheric wind profiling and real time storm tracking.

  3. Using lunar sounder imagery to distinguish surface from subsurface reflectors in lunar highlands areas

    NASA Technical Reports Server (NTRS)

    Cooper, Bonnie L.; Carter, James L.

    1993-01-01

    We have developed a method using the Apollo 17 Lunar Sounder imagery data which appears capable of filtering out off-nadir surface noise from highland area profiles, so that subsurface features may now be detected in highland areas as well as mare areas. Previously, this had been impossible because the rough topography in the highland areas created noise in the profiles which could not be distinguished from subsurface echoes. The new method is an image processing procedure involving the computerized selection of pixels which represent intermediate echo intensity values, then manually removing those pixels from the profile. Using this technique, a subsurface feature with a horizontal extent of about 150 km, at a calculated depth of approximately 3 km, has been detected beneath the crater Riccioli in the highlands near Oceanus Procellarum. This result shows that the ALSE data contain much useful information that remains to be extracted and used.

  4. Overview and early results of the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES)

    NASA Astrophysics Data System (ADS)

    Kikuchi, Ken-Ichi; Nishibori, Toshiyuki; Ochiai, Satoshi; Ozeki, Hiroyuki; Irimajiri, Yoshihisa; Kasai, Yasuko; Koike, Makoto; Manabe, Takeshi; Mizukoshi, Kazuo; Murayama, Yasuhiro; Nagahama, Tomoo; Sano, Takuki; Sato, Ryota; Seta, Masumichi; Takahashi, Chikako; Takayanagi, Masahiro; Masuko, Harunobu; Inatani, Junji; Suzuki, Makoto; Shiotani, Masato

    2010-12-01

    The Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) was successfully launched and attached to the Japanese Experiment Module (JEM) on the International Space Station (ISS) on 25 September 2009. It has been making atmospheric observations since 12 October 2009 with the aid of a 4 K mechanical cooler and superconducting mixers for submillimeter limb-emission sounding in the frequency bands of 624.32-626.32 GHz and 649.12-650.32 GHz . On the basis of the observed spectra, the data processing has been retrieving vertical profiles for the atmospheric minor constituents in the middle atmosphere, such as O3 with isotopes, HCl, ClO, HO2, BrO, and HNO3. Results from SMILES have demonstrated its high potential to observe atmospheric minor constituents in the middle atmosphere. Unfortunately, SMILES observations have been suspended since 21 April 2010 owing to the failure of a critical component.

  5. Microwave Limb Sounder/El Nino Watch - February thru December, 1997

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This series of six images shows the movement of atmospheric water vapor over the Pacific Ocean during the formation of the 1997 El Nino condition. Higher than normal ocean water temperatures increase the rate of evaporation and the resulting warm moist air rises into the atmosphere altering global weather patterns. Data obtained by the Microwave Limb Sounder (MLS) on NASA's Upper Atmosphere Research Satellite (UARS), from late February 1997 to late December 1997, show the movement from the western Pacific to the eastern Pacific of high levels of water vapor (red) at 10 kilometers (6 miles) above the surface. Areas of unusually drier air (blue) appear over Indonesia. December 1997 data also show a rapid increase of water vapor off the coast of South America, the result of very high water temperatures in that region.

  6. Preliminary Regional Analysis of the Kaguya Lunar Radar Sounder (LRS) Data through Eastern Mare Imbrium

    NASA Technical Reports Server (NTRS)

    Cooper, B.L.; Antonenko, I.; Yamaguchi, Y.; Osinski, G.; Ono, T.; Ku-mamoto, A.

    2009-01-01

    The Lunar Radar Sounder (LRS) experiment on board the Kaguya spacecraft is observing the subsurface structure of the Moon, using ground-penetrating radar operating in the frequency range of 5 MHz [1]. Because LRS data provides in-formation about lunar features below the surface, it allows us to improve our understanding of the processes that formed the Moon, and the post-formation changes that have occurred (such as basin formation and volcanism). We look at a swath of preliminary LRS data, that spans from 7 to 72 N, and from 2 to 10 W, passing through the eastern portion of Mare Imbrium (Figure 1). Using software, designed for the mineral exploration industry, we produce a preliminary, coarse 3D model, showing the regional structure beneath the study area. Future research will involve smaller subsets of the data in regions of interest, where finer structures, such as those identified in [2], can be studied.

  7. On the potential use of satellite sounder data in forecasting tropical cyclone motion

    NASA Technical Reports Server (NTRS)

    Kidder, S. Q.; Shyu, K.

    1984-01-01

    Although many prediction schemes are available, tropical cyclone track forecast errors are still unacceptably large. A primary difficulty is that tropical cyclones and their environments are poorly observed by conventional data networks. Satellite sounders, however, routinely provide numerous observations near these storms. Mean layer temperatures from the Scanning Microwave Spectrometer (SCAMS) on board the Nimbus-6 satellite are decomposed using empirical orthogonal functions, and the expansion coefficients are related to deviations from persistence track forecasts. Based on multiple correlation coefficients it appears that upper-level (250-100 mb) temperatures contain significant information about the right-angle error of the persistence forecast location. Temperatures from the 1000-500 mb layer seemed to contain little forecast information. Implications of these results for further work are offered.

  8. The Laser Atmospheric Wind Sounder (LAWS) Phase 2 Preliminary Laser Design

    NASA Technical Reports Server (NTRS)

    Lawrence, T. Rhidian; Pindroh, Albert L.; Bowers, Mark S.; Dehart, Terence E.; Mcdonald, Kenneth F.; Cousins, Ananda; Moody, Stephen E.

    1992-01-01

    The requirements for the Laser Atmospheric Wind Sounder (LAWS) were determined from system considerations and are summarized in tabular form. The laser subsystem provides for the generation and frequency control of two beams, the transmit high power and local oscillator beams, which are delivered to the optical and receiver subsystems, respectively. In our baseline approach, the excitation of the gain section is achieved by a self-sustaining uv-(corona) preionized discharge. Gas is recirculated within the laser loop using a transverse flow fan. An intra-flow-loop heat exchanger, catalyst monolith, and acoustic attenuators condition the gas to ensure uniform energy output and high beam quality during high pulse repetition rate operation. The baseline LAWS laser pulse temporal profile as calculated by in-house laser codes is given in graphical form.

  9. Navigation Signal Disturbances by Multipath Propagation - Scaled Measurements with a Universal Channel Sounder Architecture

    NASA Astrophysics Data System (ADS)

    Geise, Robert; Neubauer, Bjoern; Zimmer, Georg

    2015-11-01

    The performance of navigation systems is always reduced by unwanted multipath propagation. This is especially of practical importance for airborne navigation systems like the instrument landing system (ILS) or the VHF omni directional radio range (VOR). Nevertheless, the quantitative analysis of corresponding, potentially harmful multipath propagation disturbances is very difficult due to the large parameter space. Experimentally difficulties arise due to very expensive, real scale measurement campaigns and numerical simulation techniques still have shortcomings which are briefly discussed. In this contribution a new universal approach is introduced on how to measure very flexibly multipath propagation effects for arbitrary navigation systems using a channel sounder architecture in a scaled measurement environment. Two relevant scenarios of multipath propagation and the impact on navigation signals are presented. The first describes disturbances of the ILS due to large taxiing aircraft. The other example shows the influence of rotating wind turbines on the VOR.

  10. Ionospheric tsunami disturbances probed by HF Doppler sounder, ionosonde and ground-based GPS TEC

    NASA Astrophysics Data System (ADS)

    Chen, Wei-Suan; Liu, Jann-Yenq Tiger; Wu, Tso-Ren; Tsai, Yu-Lin

    2016-04-01

    Tsunami waves induced by the 26 December 2004 Mw 9.3 Sumatra earthquake, the 11 March 2011 Mw 9.0 Tohoku earthquake, and the 16 September 2015 Mw 8.2 Chile earthquake are recorded by tide gauges around Taiwan. In this paper, the tsunami waves are studied by the tide gauge data and Cornell Multi-grid Coupled of Tsunami Model (COMCOT) simulations, while ionospheric tsunami disturbances (ITDs) are probed by the HF Doppler sounder with a sounding frequency of 5.26 MHz, ionosonde, and GPS TEC derived by ground-based GPS receivers in Taiwan. It is found that ITDs tend to lead their associated tsunami by about 30-60 minutes. A comparison between ITDs and tsunami waves will be presented and discussed.

  11. Calibration of the Microwave Limb Sounder on the Upper Atmosphere Research Satellite

    NASA Technical Reports Server (NTRS)

    Jarnot, R. F.; Cofield, R. E.; Waters, J. W.; Flower, D. A.; Peckham, G. E.

    1996-01-01

    The Microwave Limb Sounder (MLS) is a three-radiometer, passive, limb emission instrument onboard the Upper Atmosphere Research Satellite (UARS). Radiometric, spectral and field-of-view calibrations of the MLS instrument are described in this paper. In-orbit noise performance, gain stability, spectral baseline and dynamic range are described, as well as use of in-flight data for validation and refinement of prelaunch calibrations. Estimated systematic scaling uncertainties (3 sigma) on calibrated limb radiances from prelaunch calibrations are 2.6% in bands 1 through 3, 3.4% in band 4, and 6% in band 5. The observed systematic errors in band 6 are about 15%, consistent with prelaunch calibration uncertainties. Random uncertainties on individual limb radiance measurements are very close to the levels predicted from measured radiometer noise temperature, with negligible contribution from noise and drifts on the regular in-flight gain calibration measurements.

  12. Development of a global backscatter model for NASA's laser atmospheric wind sounder

    NASA Technical Reports Server (NTRS)

    Bowdle, David; Collins, Laurie; Mach, Douglas; Mcnider, Richard; Song, Aaron

    1992-01-01

    During the Contract Period April 1, 1989, to September 30, 1992, the Earth Systems Science Laboratory (ESSL) in the Research Institute at the University of Alabama in Huntsville (UAH) conducted a program of basic research on atmospheric backscatter characteristics, leading to the development of a global backscatter model. The ESSL research effort was carried out in conjunction with the Earth System Observing Branch (ES43) at the National Aeronautics and Space Administration (NASA) Marshall Space Flight Center, as part of NASA Contract NAS8-37585 under the Atmospheric Dynamics Program at NASA Headquarters. This research provided important inputs to NASA's GLObal Backscatter Experiment (GLOBE) program, especially in the understanding of global aerosol life cycles, and to NASA's Doppler Lidar research program, especially the development program for their prospective space-based Laser Atmospheric Wind Sounder (LAWS).

  13. A statistical evaluation and comparison of VISSR Atmospheric Sounder (VAS) data and corresponding rawinsonde measurements

    NASA Technical Reports Server (NTRS)

    Jedlovec, G. J.

    1984-01-01

    The mesoscale accuracy of GOES Visible/IR Spin-Scan-Radiometer (VISSR) Atmospheric Sounder (VAS) temperature profiles and mean-precipitable-water measurements obtained over central Texas on March 6, 1982, is evaluated on the basis of comparing them with three-hourly rawinsonde data (up to 100 mbar) of similar spatial resolution for the same area and time. The VAS data comprise three sets: physical retrievals by the method of Smith (1970), modified physical retrievals by the method of Smith (1983), and regression soundings (incorporating some rawinsonde data) by the method of Lee et al. (1983). The data are presented graphically, and all three VAS data sets are found to have similar temperature biases, which vary from hot to cold with altitude and are apparently related to major inversions. Systematic moisture biases are seen in the physical and modified physical data sets, while the regression soundings are relatively unbiased but do not accurately reproduce moisture gradients seen in the rawinsonde data.

  14. The Impact of Upper Tropospheric Humidity from Microwave Limb Sounder on the Midlatitude Greenhouse Effect

    NASA Technical Reports Server (NTRS)

    Hu, Hua; Liu, W. Timothy

    1998-01-01

    This paper presents an analysis of upper tropospheric humidity, as measured by the Microwave Limb Sounder, and the impact of the humidity on the greenhouse effect in the midlatitudes. Enhanced upper tropospheric humidity and an enhanced greenhouse effect occur over the storm tracks in the North Pacific and North Atlantic. In these areas, strong baroclinic activity and the large number of deep convective clouds transport more water vapor to the upper troposphere, and hence increase greenhouse trapping. The greenhouse effect increases with upper tropospheric humidity in areas with a moist upper troposphere (such as areas over storm tracks), but it is not sensitive to changes in upper tropospheric humidity in regions with a dry upper troposphere, clearly demonstrating that there are different mechanisms controlling the geographical distribution of the greenhouse effect in the midlatitudes.

  15. VISSR Atmospheric Sounder (VAS) simulation experiment for a severe storm environment

    NASA Technical Reports Server (NTRS)

    Chesters, D.; Uccellini, L. W.; Mostek, A.

    1981-01-01

    Radiance fields were simulated for prethunderstorm environments in Oklahoma to demonstrate three points: (1) significant moisture gradients can be seen directly in images of the VISSIR Atmospheric Sounder (VAS) channels; (2) temperature and moisture profiles can be retrieved from VAS radiances with sufficient accuracy to be useful for mesoscale analysis of a severe storm environment; and (3) the quality of VAS mesoscale soundings improves with conditioning by local weather statistics. The results represent the optimum retrievability of mesoscale information from VAS radiance without the use of ancillary data. The simulations suggest that VAS data will yield the best soundings when a human being classifies the scene, picks relatively clear areas for retrieval, and applies a "local" statistical data base to resolve the ambiguities of satellite observations in favor of the most probable atmospheric structure.

  16. Estimating oil concentration and flow rate with calibrated vessel-mounted acoustic echo sounders

    PubMed Central

    Weber, Thomas C.; De Robertis, Alex; Greenaway, Samuel F.; Smith, Shep; Mayer, Larry; Rice, Glen

    2012-01-01

    As part of a larger program aimed at evaluating acoustic techniques for mapping the distribution of subsurface oil and gas associated with the Deepwater Horizon-Macondo oil spill, observations were made on June 24 and 25, 2010 using vessel-mounted calibrated single-beam echo sounders on the National Oceanic and Atmospheric Administration ship Thomas Jefferson. Coincident with visual observations of oil at the sea surface, the 200-kHz echo sounder showed anomalously high-volume scattering strength in the upper 200 m on the western side of the wellhead, more than 100 times higher than the surrounding waters at 1,800-m distance from the wellhead, and weakening with increasing distance out to 5,000 m. Similar high-volume scattering anomalies were not observed at 12 or 38 kHz, although observations of anomalously low-volume scattering strength were made in the deep scattering layer at these frequencies at approximately the same locations. Together with observations of ocean currents, the acoustic observations are consistent with a rising plume of small (< 1-mm radius) oil droplets. Using simplistic but reasonable assumptions about the properties of the oil droplets, an estimate of the flow rate was made that is remarkably consistent with those made at the wellhead by other means. The uncertainty in this acoustically derived estimate is high due to lack of knowledge of the size distribution and rise speed of the oil droplets. If properly constrained, these types of acoustic measurements can be used to rapidly estimate the flow rate of oil reaching the surface over large temporal and spatial scales. PMID:22167799

  17. Estimating oil concentration and flow rate with calibrated vessel-mounted acoustic echo sounders.

    PubMed

    Weber, Thomas C; De Robertis, Alex; Greenaway, Samuel F; Smith, Shep; Mayer, Larry; Rice, Glen

    2012-12-11

    As part of a larger program aimed at evaluating acoustic techniques for mapping the distribution of subsurface oil and gas associated with the Deepwater Horizon-Macondo oil spill, observations were made on June 24 and 25, 2010 using vessel-mounted calibrated single-beam echo sounders on the National Oceanic and Atmospheric Administration ship Thomas Jefferson. Coincident with visual observations of oil at the sea surface, the 200-kHz echo sounder showed anomalously high-volume scattering strength in the upper 200 m on the western side of the wellhead, more than 100 times higher than the surrounding waters at 1,800-m distance from the wellhead, and weakening with increasing distance out to 5,000 m. Similar high-volume scattering anomalies were not observed at 12 or 38 kHz, although observations of anomalously low-volume scattering strength were made in the deep scattering layer at these frequencies at approximately the same locations. Together with observations of ocean currents, the acoustic observations are consistent with a rising plume of small (< 1-mm radius) oil droplets. Using simplistic but reasonable assumptions about the properties of the oil droplets, an estimate of the flow rate was made that is remarkably consistent with those made at the wellhead by other means. The uncertainty in this acoustically derived estimate is high due to lack of knowledge of the size distribution and rise speed of the oil droplets. If properly constrained, these types of acoustic measurements can be used to rapidly estimate the flow rate of oil reaching the surface over large temporal and spatial scales. PMID:22167799

  18. Observation capability of Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) from International Space Station

    NASA Astrophysics Data System (ADS)

    Kasai, Yasuko; Tanaka, Takahiro; Dupuy, Eric; Kita, Kazuyuki; Baron, Philippe; Ochiai, Satoshi; Nishibori, Toshiyuki; Kikuchi, Kenichi; Mendrok, Jana; Murtagh, Donal P.; Urban, Joachim; Smiles Mission Team

    A new generation of sub-millimeter-wave receivers employing sensitive SIS (Superconductor-Insulator-Superconductor) detector technology will provide new opportunities for precise pas-sive remote sensing observation of minor constituents in atmosphere. Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) had been launched in September 11, 2009 and installed to the Japanese Experiment Module (JEM) on the International Space Station (ISS). SMILES is a collaboration project of National Institute of Information and Communications Technology (NICT) and Japan Aerospace Exploration Agency (JAXA). Mission objectives of SMILES are: 1. Space demonstration of super-sensitive SIS mixer and 4-K mechanical cooler technology 2. Super-sensitive global observation of atmospheric minor constituents with sub-millimeter-wave limb emission sounder JEM/SMILES will allow to observe the atmospheric species such as O3, H35Cl, H37Cl, ClO, HO2, BrO, HOCl, HOBr, HNO3, CH3CN, Ozone isotope species, H2O, and Ice Cloud with the precisions in a few to several tens percents. The altitude region of observation is from the upper troposphere to the mesopouse. We performed the early comparison/validation of ozone with 4 satellites measurements, AURA/MLS, Odin/SMR, ACE, and Odin/OSIRIS, and ozonesonde. SMILES ozone was in good agreement with these data. For example, difference between SMILES and MLS was less than 2 percent be-tween 20-50km. These results are consistent with the observation capabilities of JEM/SMILES with error analysis. This super technology may allow us to open new issues in atmospheric science.

  19. Progress in developing GeoSTAR: a microwave sounder for GOES-R

    NASA Astrophysics Data System (ADS)

    Lambrigtsen, B. H.; Brown, S. T.; Dinardo, S. J.; Kangaslahti, P. P.; Tanner, A. B.; Wilson, W. J.

    2005-08-01

    The Geostationary Synthetic Thinned Aperture Radiometer (GeoSTAR) is a new concept for a microwave sounder, intended to be deployed on NOAA's next generation of geostationary weather satellites, GOES-R. A ground based prototype has been developed at the Jet Propulsion Laboratory, under NASA Instrument Incubator Program sponsorship, and is currently undergoing tests and performance characterization. The initial space version of GeoSTAR will have performance characteristics equal to those of the AMSU system currently operating on polar orbiting environmental satellites, but subsequent versions will significantly outperform AMSU. In addition to all-weather temperature and humidity soundings, GeoSTAR will also provide continuous rain mapping, tropospheric wind profiling and real time storm tracking. In particular, with the aperture synthesis approach used by GeoSTAR it is possible to achieve very high spatial resolutions without having to deploy the impractically large parabolic reflector antenna that is required with the conventional approach. GeoSTAR therefore offers both a feasible way of getting a microwave sounder in GEO as well as a clear upgrade path to meet future requirements. GeoSTAR offers a number of other advantages relative to real-aperture systems as well, such as 2D spatial coverage without mechanical scanning, system robustness and fault tolerance, operational flexibility, high quality beam formation, and open ended performance expandability. The technology and system design required for GeoSTAR are rapidly maturing, and it is expected that a space demonstration mission can be developed before the first GOES-R launch. GeoSTAR will be ready for operational deployment 2-3 years after that.

  20. GeoSTAR: a synthetic aperture microwave sounder for geostationary missions

    NASA Astrophysics Data System (ADS)

    Lambrigtsen, Bjorn H.; Wilson, William J.; Tanner, Alan B.; Kangaslahti, Pekka

    2005-01-01

    The Geostationary Synthetic Thinned Aperture Radiometer (GeoSTAR) is a new microwave atmospheric sounder under development. It will bring capabilities similar to those now available on low-earth orbiting environmental satellites to geostationary orbit - where such capabilities have not been available. GeoSTAR will synthesize the multi-meter aperture needed to achieve the required spatial resolution, which will overcome the obstacle that has prevented a GEO microwave sounder from being implemented until now. The synthetic aperture approach has until recently not been feasible, due to the high power needed to operate the on-board high-speed massively parallel processing system required for 2D-synthesis, as well as a number of system and calibration obstacles. The development effort under way at JPL, with important contributions from the Goddard Space Flight Center and the University of Michigan, is intended to demonstrate the measurement concept and retire much of the technology risk. To that purpose a small ground based demo version of GeoSTAR is being constructed, which will be used to characterize system performance and test various calibration methods. This prototype development, which is being sponsored by NASA through its Instrument Incubator Program, will be completed in 2005. A GeoSTAR space mission can then be initiated. In parallel with the technology development, mission architecture studies are also under way in collaboration with the NOAA Office of System Development. In particular, the feasibility of incorporating GeoSTAR on the next generation of the geostationary weather satellites, GOES-R, is being closely examined. That would fill a long standing gap in the national weather monitoring capabilities.

  1. Physical Retrieval of Surface Emissivity Spectrum from Hyperspectral Infrared Radiances

    NASA Technical Reports Server (NTRS)

    Li, Jun; Weisz, Elisabeth; Zhou, Daniel K.

    2007-01-01

    Retrieval of temperature, moisture profiles and surface skin temperature from hyperspectral infrared (IR) radiances requires spectral information about the surface emissivity. Using constant or inaccurate surface emissivities typically results in large retrieval errors, particularly over semi-arid or arid areas where the variation in emissivity spectrum is large both spectrally and spatially. In this study, a physically based algorithm has been developed to retrieve a hyperspectral IR emissivity spectrum simultaneously with the temperature and moisture profiles, as well as the surface skin temperature. To make the solution stable and efficient, the hyperspectral emissivity spectrum is represented by eigenvectors, derived from the laboratory measured hyperspectral emissivity database, in the retrieval process. Experience with AIRS (Atmospheric InfraRed Sounder) radiances shows that a simultaneous retrieval of the emissivity spectrum and the sounding improves the surface skin temperature as well as temperature and moisture profiles, particularly in the near surface layer.

  2. Infrared target array development

    NASA Astrophysics Data System (ADS)

    Scott, E. A.

    1980-04-01

    The US Army Yuma Proving Ground (USAYPG) was requested to develop and acquire a series of infrared targets with controllable thermal signatures to support the test and evaluation of the Target Acquisition Designation System/Pilot Night Vision System (TADS/PNVS) subsystems of the Advanced Attack Helicopter (AAH) Fire Control System. Prior to this development effort, no capability beyond the use of real-scene targets existed at USAYPG to provide thermally active targets with characteristic signatures in the infrared band. Three targets were acquired: (1) a detection target; (2) a recognition target; and (3) a laser scoring board. It is concluded that design goals were met and the system was delivered in time to perform its function. The system provides sufficient thermal realism and has advanced the state-of-the-art of infrared imaging system test and evaluation. It is recommended that the Field Equivalent Bar Target (FEBT) system be validated as a potential test standard and that environmentally 'hardened' targets be acquired for continued thermal sight testing.

  3. Remote sensing of greenhouse gases (CO2 and CH4) using hyperspectral observations in the thermal infrared

    NASA Astrophysics Data System (ADS)

    Crevoisier, Cyril; Chedin, Alain; Nobileau, Delphine; Armante, Raymond; Thonat, Thibaud; Scott, Noelle A.

    Densely sampling the atmosphere in time and space, satellite measurements of the distribution of global atmospheric CO2 concentration could in principle provide a way to constrain atmo-spheric inversions of CO2 surface fluxes. Until the recent launch of the first dedicated CO2 observing instrument JAXA/GOSAT in January 2009, information on CO2 and other green-house gas atmospheric distribution have been obtained for several years from thermal infrared sounders, such as the Atmospheric Infrared Sounder (AIRS) launched onboard the NASA/Aqua satellite in May 2002 or the Infrared Atmospheric Sounding Interferometer (IASI) launched on-board the European MetOp platform in October 2006. We use coupled observations in the thermal infrared from IASI, and in the microwave from the Advanced Microwave Sounding Unit (AMSU), also launched onboard MetOp, to retrieve mid-to-upper tropospheric contents of carbon dioxide (CO2) and methane (CH4) in clear-sky conditions, in the tropics. Thermal observations, sensitive to both temperature and either CO2 or CH4, are used in conjunction with microwave observations, only sensitive to temperature, to decorrelate both signals through a non-linear inference scheme based on neural networks. A key point of this approach is that no use is made of prior information in terms of gas seasonality, trend, or geographical patterns. The precision of the IASI retrieval is estimated to be about 2 ppmv (less than 1 Features of the retrieved CO2-CH4 space-time distributions include: (1) a CO2 trend of 2.1 ppmv.yr-1 in average, and a CH4 trend of 10 ppbv.yr-1 in the last couple of years, which confirms the recent increase of methane detected at surface stations; (2) a strong seasonal cycle in the northern tropics, and a lower seasonal cycle in the southern tropics, in agreement with in-situ measurements; in particular, comparison between AIRS and IASI retrievals highlights the time-lag of CO2 cycle while transported from the surface to the upper troposphere

  4. Infrared Camera

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A sensitive infrared camera that observes the blazing plumes from the Space Shuttle or expendable rocket lift-offs is capable of scanning for fires, monitoring the environment and providing medical imaging. The hand-held camera uses highly sensitive arrays in infrared photodetectors known as quantum well infrared photo detectors (QWIPS). QWIPS were developed by the Jet Propulsion Laboratory's Center for Space Microelectronics Technology in partnership with Amber, a Raytheon company. In October 1996, QWIP detectors pointed out hot spots of the destructive fires speeding through Malibu, California. Night vision, early warning systems, navigation, flight control systems, weather monitoring, security and surveillance are among the duties for which the camera is suited. Medical applications are also expected.

  5. Remote sensing of the atmosphere of Mars using infrared pressure modulation and filter radiometry

    NASA Technical Reports Server (NTRS)

    Mccleese, D. J.; Schofield, J. T.; Zurek, R. W.; Martonchik, J. V.; Haskins, R. D.

    1986-01-01

    The study of the atmosphere and climate of Mars will soon be advanced considerably by the Mars Observer mission. This paper describes the atmospheric sounder for this mission and how it will measure key Martian atmospheric parameters using IR gas correlation and filter radiometry. The instrument now under development will provide high-resolution vertical profiles of atmospheric temperature, pressure, water vapor, dust, and clouds using limb sounding techniques as well as nadir observations of surface thermal properties and polar radiative balance.

  6. Infrared Thermometer

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Diatek Corporation, San Diego, CA and the Jet Propulsion Lab developed the Diatek Model 7000 aural thermometer which weighs only eight ounces, and measures temperature in less than two seconds using infrared astronomy technology to measure the amount of infrared energy emitted by the eardrum (the same way temperature of stars and planets is measured). This method avoids contact with mucous membranes, virtually eliminating the possibility of cross infection, and permits temperature measurement of newborn, critically ill, or incapacitated patients. Diatek Corporation was purchased by Welch Allyn Inc. The Diatek Model 7000 is now marketed as SureTemp.

  7. Infrared Scanning

    NASA Technical Reports Server (NTRS)

    1987-01-01

    United Scanning Technologies, Inc.'s Infrared thermography is a relatively new noncontact, nondestructive inspection and testing tool which makes temperatures visible to the human eye. Infrared scanning devices produce images that show, by color or black and white shading differences, heat losses through damaged or inadequately insulated walls or roofs. The MISS Aeroscan services are designed to take the guesswork out of industrial roof maintenance and provide companies big savings by identifying the location of moisture damage from roof leaks, effectively targeting maintenance attention.

  8. Infrared telescope

    NASA Technical Reports Server (NTRS)

    Karr, G. R.; Hendricks, J. B.

    1985-01-01

    The development of the Infrared Telescope for Spacelab 2 is discussed. The design, development, and testing required to interface a stationary superfluid helium dewar with a scanning cryostate capable of operating in the zero-g environment in the space shuttle bay is described.

  9. Infrared Thermometers

    ERIC Educational Resources Information Center

    Schaefers, John

    2006-01-01

    An infrared (IR) thermometer lab offers the opportunity to give science students a chance to measure surface temperatures, utilizing off-the-shelf technology. Potential areas of study include astronomy (exoplanets), electromagnetic spectrum, chemistry, evaporation rates, anatomy, crystal formation, and water or liquids. This article presents one…

  10. Infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Lopez, B. A.

    1984-11-01

    Infrared spectroscopic analysis is reviewed. Applications to chemical analysis of preimpregnated carbon fiber materials, including polystyrene spectra, epoxy resin analysis, mineral loads analysis, determination of epoxy groups and identification of spurious organic materials are discussed. The advantages of the method for quality control are pointed out.

  11. Error Consistency Analysis Scheme for Infrared Ultraspectral Sounding Retrieval Error Budget Estimation

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Larar, Allen M.; Liu, Xu; Smith, William L.; Strow, Larry, L.

    2013-01-01

    Great effort has been devoted towards validating geophysical parameters retrieved from ultraspectral infrared radiances obtained from satellite remote sensors. An error consistency analysis scheme (ECAS), utilizing fast radiative transfer model (RTM) forward and inverse calculations, has been developed to estimate the error budget in terms of mean difference and standard deviation of error in both spectral radiance and retrieval domains. The retrieval error is assessed through ECAS without relying on other independent measurements such as radiosonde data. ECAS establishes a link between the accuracies of radiances and retrieved geophysical parameters. ECAS can be applied to measurements from any ultraspectral instrument and any retrieval scheme with its associated RTM. In this manuscript, ECAS is described and demonstrated with measurements from the MetOp-A satellite Infrared Atmospheric Sounding Interferometer (IASI). This scheme can be used together with other validation methodologies to give a more definitive characterization of the error and/or uncertainty of geophysical parameters retrieved from ultraspectral radiances observed from current and future satellite remote sensors such as IASI, the Atmospheric Infrared Sounder (AIRS), and the Cross-track Infrared Sounder (CrIS).

  12. Trends in infrared imaging detecting technology

    NASA Astrophysics Data System (ADS)

    Fan, Jinxiang; Yang, Jianyu

    2013-10-01

    In this paper, the current status of infrared imaging detecting technology was introduced briefly. The impact of changes of target, environment and mission on the development of infrared imaging detecting technology was analyzed. The main innovation strategies of infrared imaging detecting technology-modifying information acquisition mode, enhancing realization ability and increasing resources utilization were discussed. The promoting effects of the advancement of basic theories and the revolution of relevant technologies on the development of infrared imaging detecting technology were analyzed. The fundamental law of the development of infrared imaging detecting technology was summarized as stepwise evolution from low into high dimension detection. And the developing trends and main characteristics of future infrared imaging detecting technology were deduced based on this fundamental law. Furthermore, technology directions that should be concerned were introduced according to the development of new concept and technologies for infrared imaging detecting, especially, meeting the new requirements through new concept imaging mechanism such as novel optical technology and computing imaging.

  13. Aura's Microwave Limb Sounder Estimates of Ozone Loss, 2004/2005 Arctic Winter

    NASA Technical Reports Server (NTRS)

    2005-01-01

    These data maps from Aura's Microwave Limb Sounder depict levels of hydrogen chloride (top), chlorine monoxide (center), and ozone (bottom) at an altitude of approximately 19 kilometers (490,000 feet) on selected days during the 2004-05 Arctic winter. White contours demark the boundary of the winter polar vortex.

    The maps from December 23, 2004, illustrate vortex conditions shortly before significant chemical ozone destruction began. By January 23, 2005, chlorine is substantially converted from the 'safe' form of hydrogen chloride, which is depleted throughout the vortex, to the 'unsafe' form of chlorine monoxide, which is enhanced in the portions of the region that receive sunlight at that time of year. Ozone increased over the month as a result of dynamical effects, and chemical ozone destruction is just beginning at this time. A brief period of intense cold a few days later promotes further chlorine activation and consequent changes in hydrogen chloride and chlorine monoxide levels on January 27, 2005. Peak chlorine monoxide enhancement occurs in early February.

    By February 24, 2005, chlorine deactivation is well underway, with chlorine monoxide abundances dropping and hydrogen chloride abundances rising. Almost all chlorine monoxide has been quenched by March 10, 2005. The fact that hydrogen chloride has not fully rebounded to December abundances suggests that some of that chemical was recovered into another chlorine reservoir species.

    Ozone maps for January 27, 2005, through March 10, 2005, show indications of mixing of air from outside the polar vortex into it. Such occurrences throughout this winter, especially in late February and early March, complicate analyses, and detailed calculations are required to rigorously disentangle chemical and dynamical effects and accurately diagnose chemical ozone destruction.

    Based on various analyses of Microwave Limb Sounder data, we estimate that maximum local ozone loss of approximately 2 parts