Science.gov

Sample records for advanced integrated process

  1. Integration of advanced nuclear materials separation processes

    SciTech Connect

    Jarvinen, G.D.; Worl, L.A.; Padilla, D.D.; Berg, J.M.; Neu, M.P.; Reilly, S.D.; Buelow, S.

    1998-12-31

    This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project has examined the fundamental chemistry of plutonium that affects the integration of hydrothermal technology into nuclear materials processing operations. Chemical reactions in high temperature water allow new avenues for waste treatment and radionuclide separation.Successful implementation of hydrothermal technology offers the potential to effective treat many types of radioactive waste, reduce the storage hazards and disposal costs, and minimize the generation of secondary waste streams. The focus has been on the chemistry of plutonium(VI) in solution with carbonate since these are expected to be important species in the effluent from hydrothermal oxidation of Pu-containing organic wastes. The authors investigated the structure, solubility, and stability of the key plutonium complexes. Installation and testing of flow and batch hydrothermal reactors in the Plutonium Facility was accomplished. Preliminary testing with Pu-contaminated organic solutions gave effluent solutions that readily met discard requirements. A new effort in FY 1998 will build on these promising initial results.

  2. Integration of Advanced Simulation and Visualization for Manufacturing Process Optimization

    NASA Astrophysics Data System (ADS)

    Zhou, Chenn; Wang, Jichao; Tang, Guangwu; Moreland, John; Fu, Dong; Wu, Bin

    2016-05-01

    The integration of simulation and visualization can provide a cost-effective tool for process optimization, design, scale-up and troubleshooting. The Center for Innovation through Visualization and Simulation (CIVS) at Purdue University Northwest has developed methodologies for such integration with applications in various manufacturing processes. The methodologies have proven to be useful for virtual design and virtual training to provide solutions addressing issues on energy, environment, productivity, safety, and quality in steel and other industries. In collaboration with its industrial partnerships, CIVS has provided solutions to companies, saving over US38 million. CIVS is currently working with the steel industry to establish an industry-led Steel Manufacturing Simulation and Visualization Consortium through the support of National Institute of Standards and Technology AMTech Planning Grant. The consortium focuses on supporting development and implementation of simulation and visualization technologies to advance steel manufacturing across the value chain.

  3. Integrated metrology: an enabler for advanced process control (APC)

    NASA Astrophysics Data System (ADS)

    Schneider, Claus; Pfitzner, Lothar; Ryssel, Heiner

    2001-04-01

    Advanced process control (APC) techniques become more and more important as short innovation cycles in microelectronics and a highly competitive market requires cost-effective solutions in semiconductor manufacturing. APC marks a paradigm shift from statistically based techniques (SPC) using monitor wafers for sampling measurement data towards product wafer control. The APC functionalities including run-to-run control, fault detection, and fault analysis allow to detect process drifts and excursions at an early stage and to minimize the number of misprocessed wafers. APC is being established as part of factory control systems through the definition of an APC framework. A precondition for APC is the availability of sensors and measurement methods providing the necessary wafer data. This paper discusses integrated metrology as an enabler for APC and demonstrates practical implementations in semiconductor manufacturing.

  4. Integration of advanced oxidation technologies and biological processes: recent developments, trends, and advances.

    PubMed

    Tabrizi, Gelareh Bankian; Mehrvar, Mehrab

    2004-01-01

    The greatest challenge of today's wastewater treatment technology is to optimize the use of biological and chemical wastewater treatment processes. The choice of the process and/or integration of the processes depend strongly on the wastewater characteristics, concentrations, and the desired efficiencies. It has been observed by many investigators that the coupling of a bioreactor and advanced oxidation processes (AOPs) could reduce the final concentrations of the effluent to the desired values. However, optimizing the total cost of the treatment is a challenge, as AOPs are much more expensive than biological processes alone. Therefore, an appropriate design should not only consider the ability of this coupling to reduce the concentration of organic pollutants, but also try to obtain the desired results in a cost effective process. To consider the total cost of the treatment, the residence time in biological and photochemical reactors, the kinetic rates, and the capital and operating costs of the reactors play significant roles. In this study, recent developments and trends (1996-2003) on the integration of photochemical and biological processes for the degradation of problematic pollutants in wastewater have been reviewed. The conditions to get the optimum results from this integration have also been considered. In most of the studies, it has been shown that the integrated processes were more efficient than individual processes. However, slight changes in the configuration of the reactors, temperature, pH, treatment time, concentration of the oxidants, and microorganism's colonies could lead to a great deviation in results. It has also been demonstrated that the treatment cost in both reactors is a function of time, which changes by the flow rate. The minimum cost in the coupling of the processes cannot be achieved unless considering the best treatment time in chemical and biological reactors individually.

  5. Integrated Seismic Event Detection and Location by Advanced Array Processing

    SciTech Connect

    Kvaerna, T; Gibbons, S J; Ringdal, F; Harris, D B

    2007-02-09

    The principal objective of this two-year study is to develop and test a new advanced, automatic approach to seismic detection/location using array processing. We address a strategy to obtain significantly improved precision in the location of low-magnitude events compared with current fully-automatic approaches, combined with a low false alarm rate. We have developed and evaluated a prototype automatic system which uses as a basis regional array processing with fixed, carefully calibrated, site-specific parameters in conjuction with improved automatic phase onset time estimation. We have in parallel developed tools for Matched Field Processing for optimized detection and source-region identification of seismic signals. This narrow-band procedure aims to mitigate some of the causes of difficulty encountered using the standard array processing system, specifically complicated source-time histories of seismic events and shortcomings in the plane-wave approximation for seismic phase arrivals at regional arrays.

  6. Process Integration Study [Advanced Industrial Heat Pump Applications and Evaluations

    SciTech Connect

    Eastwood, A.

    1992-06-01

    This work was carried out in two phases: Phase 1; identification of opportunities for heat pumps in industrial applications and Phase 2; evaluation of heat pumps in industrial applications. In Phase 1, pinch analysis was applied to several industrial sites to identify the best opportunities for heat pumping and other forms of heat integration. In Phase 2, more detailed analyses were undertaken, including the evaluation of a heat pump installed as a recommendation of Phase 1.

  7. Virtual Welded - Joint Design Integrating Advanced Materials and Processing Technology

    SciTech Connect

    Yang, Zhishang; Ludewig, Howard W.; Babu, S. Suresh

    2005-06-30

    Virtual Welede-Joint Design, a systematic modeling approach, has been developed in this project to predict the relationship of welding process, microstructure, properties, residual stress, and the ultimate weld fatique strength. This systematic modeling approach was applied in the welding of high strength steel. A special welding wire was developed in this project to introduce compressive residual stress at weld toe. The results from both modeling and experiments demonstrated that more than 10x fatique life improvement can be acheived in high strength steel welds by the combination of compressive residual stress from the special welding wire and the desired weld bead shape from a unique welding process. The results indicate a technology breakthrough in the design of lightweight and high fatique performance welded structures using high strength steels.

  8. Interferometric metrology of wafer nanotopography for advanced CMOS process integration

    NASA Astrophysics Data System (ADS)

    Valley, John F.; Koliopoulos, Chris L.; Tang, Shouhong

    2001-12-01

    According to industry standards (SEMI M43, Guide for Reporting Wafer Nanotopography), Nanotopography is the non- planar deviation of the whole front wafer surface within a spatial wavelength range of approximately 0.2 to 20 mm and within the fixed quality area (FQA). The need for precision metrology of wafer nanotopography is being actively addressed by interferometric technology. In this paper we present an approach to mapping the whole wafer front surface nanotopography using an engineered coherence interferometer. The interferometer acquires a whole wafer raw topography map. The raw map is then filtered to remove the long spatial wavelength, high amplitude shape contributions and reveal the nanotopography in the filtered map. Filtered maps can be quantitatively analyzed in a variety of ways to enable statistical process control (SPC) of nanotopography parameters. The importance of tracking these parameters for CMOS gate level processes at 180-nm critical dimension, and below, is examined.

  9. Response to waste electrical and electronic equipments in China: legislation, recycling system, and advanced integrated process.

    PubMed

    Zhou, Lei; Xu, Zhenming

    2012-05-01

    Over the past 30 years, China has been suffering from negative environmental impacts from distempered waste electrical and electronic equipments (WEEE) recycling activities. For the purpose of environmental protection and resource reusing, China made a great effort to improve WEEE recycling. This article reviews progresses of three major fields in the development of China's WEEE recycling industry: legal system, formal recycling system, and advanced integrated process. Related laws concerning electronic waste (e-waste) management and renewable resource recycling are analyzed from aspects of improvements and loopholes. The outcomes and challenges for existing formal recycling systems are also discussed. The advantage and deficiency related to advanced integrated recycling processes for typical e-wastes are evaluated respectively. Finally, in order to achieve high disposal rates of WEEE, high-quantify separation of different materials in WEEE and high added value final products produced by separated materials from WEEE, an idea of integrated WEEE recycling system is proposed to point future development of WEEE recycling industry.

  10. CAPE-OPEN Integration for Advanced Process Engineering Co-Simulation

    SciTech Connect

    Zitney, S.E.

    2006-11-01

    This paper highlights the use of the CAPE-OPEN (CO) standard interfaces in the Advanced Process Engineering Co-Simulator (APECS) developed at the National Energy Technology Laboratory (NETL). The APECS system uses the CO unit operation, thermodynamic, and reaction interfaces to provide its plug-and-play co-simulation capabilities, including the integration of process simulation with computational fluid dynamics (CFD) simulation. APECS also relies heavily on the use of a CO COM/CORBA bridge for running process/CFD co-simulations on multiple operating systems. For process optimization in the face of multiple and some time conflicting objectives, APECS offers stochastic modeling and multi-objective optimization capabilities developed to comply with the CO software standard. At NETL, system analysts are applying APECS to a wide variety of advanced power generation systems, ranging from small fuel cell systems to commercial-scale power plants including the coal-fired, gasification-based FutureGen power and hydrogen production plant.

  11. Advanced Integration in Multi-Scale Mechanics and Welding Process Simulation in Weld Integrity Assessment

    SciTech Connect

    Vitek, J.M.; Wilkowski, G.M.; Brust, F.W.; Babu, S.

    2008-01-30

    In this project, mathematical models that predict the microstructure in pipeline steel welds were to be developed. These models were to be integrated with thermal models that describe the time-temperature history in the weld as a function of location in order to derive the spatial variation of microstructure in the weld. The microstructure predictions were also to be combined with microstructure-hardness relations, based on the additivity principle, to determine the spatial variation of hardness in the weld. EMC2 also developed microstructural models based on empirical relationships. ORNL was to pursue the development of more fundamental, theoretically based models. ORNL applied a previously developed model for inclusion formation to predict the extent and nature of inclusions that form during weld cooling from the liquid. This inclusion model was directly integrated with computational thermodynamics capability. A convenient user interface was developed for both the inclusion model and the thermodynamic phase-stability calculations. The microstructure model was based on the simultaneous transformation theory analysis as applied to the transformation of austenite to various ferrite constituents during weld cooling. The model available on the Materials Algorithm Project web site was used. Extensive modification of this model was required to correct problems with compilation and calculations as a function of the computational platform (Unix, Linux, Windows, etc.) that was used. The user interface for the inclusion model and thermodynamic phase-stability calculations was delivered to EMC2 along with the modified and correct microstructure model. Evaluation of the theoretically based model will be carried out and the predictions will be compared with experimental results as well as predictions based on the empirical models developed by EMC2.

  12. ADVANCED INTEGRATION OF MULTI-SCALE MECHANICS AND WELDING PROCESS SIMULATION IN WELD INTEGRITY ASSESSMENT

    SciTech Connect

    Wilkowski, Gery M.; Rudland, David L.; Shim, Do-Jun; Brust, Frederick W.; Babu, Sundarsanam

    2008-06-30

    -driving force by a factor of 2 depending on strain-hardening, pressure level as a % of SMYS, and flaw size. • From years of experience in circumferential fracture analyses and experimentation, there has not been sufficient integration of work performed for other industries into analogous problems facing the oil and gas pipeline markets. Some very basic concepts and problems solved previously in these fields could have circumvented inconsistencies seen in the stress-based and strain-based analysis efforts. For example, in nuclear utility piping work, more detailed elastic-plastic fracture analyses were always validated in their ability to predict loads and displacements (stresses and strains). The eventual implementation of these methodologies will result in acceleration of the industry adoption of higher-strength line-pipe steels.

  13. Integrating interprofessional collaboration skills into the advanced practice registered nurse socialization process.

    PubMed

    Farrell, Kathleen; Payne, Camille; Heye, Mary

    2015-01-01

    The emergence of interprofessional collaboration and practice as a means to provide patient-centered care and to decrease the current fragmentation of health care services in the 21st century provides a clear and unique opportunity for the advanced practice registered nurse (APRN) to assume a key role. For APRNs and other health care providers, to participate effectively as team members requires an interprofessional mindset. Development of interprofessional skills and knowledge for the APRN has been hindered by a silo approach to APRN role socialization. The Institute of Medicine Report (IOM; 2010) states that current health care systems should focus on team collaboration to deliver accessible, high-quality, patient-centered health care that addresses wellness and prevention of illness and adverse events, management of chronic illness, and increased capacity of all providers on the team. The purpose of this article is to demonstrate the need to incorporate interprofessional education (IPE) into the socialization models used in advanced practice nursing programs. IPE requires moving beyond profession-specific educational efforts to engage students of different health care professions in interactive learning. Being able to work effectively as member of a clinical team while a student is a fundamental part of that learning (Interprofessional Education Collaborative Expert Panel, 2011). The objective of IPE curriculum models in graduate nursing programs is to educate APRNs in the development of an interprofessional mindset. Interprofessional collaboration and coordination are needed to achieve seamless transitions for patients between providers, specialties, and health care settings (IOM, 2010). Achieving the vision requires the continuous development of interprofessional competencies by APRNs as part of the learning process, so that upon entering the workforce, APRNs are ready to practice effective teamwork and team-based care. Socialization of the professional APRN

  14. Virtual Welded-Joint Design Integrating Advanced Materials and Processing Technologies

    SciTech Connect

    Yang, Z.; Dong, P.; Liu, S.; Babu, S.; Olson, G.; DebRoy, T.

    2005-04-15

    The primary goal of this project is to increase the fatigue life of a welded-joint by 10 times and to reduce energy use by 25% through product performance and productivity improvements using an integrated modeling approach. The fatigue strength of a welded-joint is currently the bottleneck to design high performance and lightweight welded structures using advanced materials such as high strength steels. In order to achieve high fatigue strength in a welded-joint it is necessary to manage the weld bead shape for lower stress concentration, produce preferable residual stress distribution, and obtain the desired microstructure for improved material toughness and strength. This is a systems challenge that requires the optimization of the welding process, the welding consumable, the base material, as well as the structure design. The concept of virtual welded-joint design has been proposed and established in this project. The goal of virtual welded-joint design is to develop a thorough procedure to predict the relationship of welding process, microstructure, property, residual stress, and the ultimate weld fatigue strength by a systematic modeling approach. The systematic approach combines five sub-models: weld thermal-fluid model, weld microstructure model, weld material property model, weld residual stress model, and weld fatigue model. The systematic approach is thus based on interdisciplinary applied sciences including heat transfer, computational fluid dynamics, materials science, engineering mechanics, and material fracture mechanics. The sub-models are based on existing models with further development. The results from modeling have been validated with critical experiments. The systematic modeling approach has been used to design high fatigue resistant welds considering the combined effects of weld bead geometry, residual stress, microstructure, and material property. In particular, a special welding wire has been developed in this project to introduce

  15. Advanced Amine Solvent Formulations and Process Integration for Near-Term CO2 Capture Success

    SciTech Connect

    Fisher, Kevin S.; Searcy, Katherine; Rochelle, Gary T.; Ziaii, Sepideh; Schubert, Craig

    2007-06-28

    This Phase I SBIR project investigated the economic and technical feasibility of advanced amine scrubbing systems for post-combustion CO2 capture at coal-fired power plants. Numerous combinations of advanced solvent formulations and process configurations were screened for energy requirements, and three cases were selected for detailed analysis: a monoethanolamine (MEA) base case and two “advanced” cases: an MEA/Piperazine (PZ) case, and a methyldiethanolamine (MDEA) / PZ case. The MEA/PZ and MDEA/PZ cases employed an advanced “double matrix” stripper configuration. The basis for calculations was a model plant with a gross capacity of 500 MWe. Results indicated that CO2 capture increased the base cost of electricity from 5 cents/kWh to 10.7 c/kWh for the MEA base case, 10.1 c/kWh for the MEA / PZ double matrix, and 9.7 c/kWh for the MDEA / PZ double matrix. The corresponding cost per metric tonne CO2 avoided was 67.20 $/tonne CO2, 60.19 $/tonne CO2, and 55.05 $/tonne CO2, respectively. Derated capacities, including base plant auxiliary load of 29 MWe, were 339 MWe for the base case, 356 MWe for the MEA/PZ double matrix, and 378 MWe for the MDEA / PZ double matrix. When compared to the base case, systems employing advanced solvent formulations and process configurations were estimated to reduce reboiler steam requirements by 20 to 44%, to reduce derating due to CO2 capture by 13 to 30%, and to reduce the cost of CO2 avoided by 10 to 18%. These results demonstrate the potential for significant improvements in the overall economics of CO2 capture via advanced solvent formulations and process configurations.

  16. Advanced optical manufacturing digital integrated system

    NASA Astrophysics Data System (ADS)

    Tao, Yizheng; Li, Xinglan; Li, Wei; Tang, Dingyong

    2012-10-01

    It is necessarily to adapt development of advanced optical manufacturing technology with modern science technology development. To solved these problems which low of ration, ratio of finished product, repetition, consistent in big size and high precision in advanced optical component manufacturing. Applied business driven and method of Rational Unified Process, this paper has researched advanced optical manufacturing process flow, requirement of Advanced Optical Manufacturing integrated System, and put forward architecture and key technology of it. Designed Optical component core and Manufacturing process driven of Advanced Optical Manufacturing Digital Integrated System. the result displayed effective well, realized dynamic planning Manufacturing process, information integration improved ratio of production manufactory.

  17. Current advances of integrated processes combining chemical absorption and biological reduction for NO x removal from flue gas.

    PubMed

    Zhang, Shihan; Chen, Han; Xia, Yinfeng; Liu, Nan; Lu, Bi-Hong; Li, Wei

    2014-10-01

    Anthropogenic nitrogen oxides (NO x ) emitted from the fossil-fuel-fired power plants cause adverse environmental issues such as acid rain, urban ozone smoke, and photochemical smog. A novel chemical absorption-biological reduction (CABR) integrated process under development is regarded as a promising alternative to the conventional selective catalytic reduction processes for NO x removal from the flue gas because it is economic and environmentally friendly. CABR process employs ferrous ethylenediaminetetraacetate [Fe(II)EDTA] as a solvent to absorb the NO x following microbial denitrification of NO x to harmless nitrogen gas. Meanwhile, the absorbent Fe(II)EDTA is biologically regenerated to sustain the adequate NO x removal. Compared with conventional denitrification process, CABR not only enhances the mass transfer of NO from gas to liquid phase but also minimize the impact of oxygen on the microorganisms. This review provides the current advances of the development of the CABR process for NO x removal from the flue gas.

  18. Advanced integrated solvent extraction systems

    SciTech Connect

    Horwitz, E.P.; Dietz, M.L.; Leonard, R.A.

    1997-10-01

    Advanced integrated solvent extraction systems are a series of novel solvent extraction (SX) processes that will remove and recover all of the major radioisotopes from acidic-dissolved sludge or other acidic high-level wastes. The major focus of this effort during the last 2 years has been the development of a combined cesium-strontium extraction/recovery process, the Combined CSEX-SREX Process. The Combined CSEX-SREX Process relies on a mixture of a strontium-selective macrocyclic polyether and a novel cesium-selective extractant based on dibenzo 18-crown-6. The process offers several potential advantages over possible alternatives in a chemical processing scheme for high-level waste treatment. First, if the process is applied as the first step in chemical pretreatment, the radiation level for all subsequent processing steps (e.g., transuranic extraction/recovery, or TRUEX) will be significantly reduced. Thus, less costly shielding would be required. The second advantage of the Combined CSEX-SREX Process is that the recovered Cs-Sr fraction is non-transuranic, and therefore will decay to low-level waste after only a few hundred years. Finally, combining individual processes into a single process will reduce the amount of equipment required to pretreat the waste and therefore reduce the size and cost of the waste processing facility. In an ongoing collaboration with Lockheed Martin Idaho Technology Company (LMITCO), the authors have successfully tested various segments of the Advanced Integrated Solvent Extraction Systems. Eichrom Industries, Inc. (Darien, IL) synthesizes and markets the Sr extractant and can supply the Cs extractant on a limited basis. Plans are under way to perform a test of the Combined CSEX-SREX Process with real waste at LMITCO in the near future.

  19. Advanced Process Control Experiments.

    ERIC Educational Resources Information Center

    Deshpande, Pradeep B.; And Others

    1980-01-01

    Describes laboratory experiments of a chemistry course on advanced process control. The equipment for the process around which these experiments were developed by the University of Louisville was constructed from data provided by Exxon Oil Company. (HM)

  20. Process Integration Study of Cache Valley Cheese Plant [Advanced Industrial Heat Pump Applications and Evaluations

    SciTech Connect

    Eastwood, A.

    1991-10-01

    This work has carried out in two phases: Phase 1; identification of opportunities for heat pumps in industrial applications and Phase 2; evaluation of heat pumps in industrial applications. In Phase 1, pinch analysis was applied to several industrial sites to identify the best opportunities for heat pumping and other forms of heat integration. In Phase 2, more detailed analyses were undertaken, including the evaluation of a heat pump installed as a recommendation of Phase 1.

  1. Integrated approaches to the application of advanced modeling technology in process development and optimization

    SciTech Connect

    Allgor, R.J.; Feehery, W.F.; Tolsma, J.E.

    1995-12-31

    The batch process development problem serves as good candidate to guide the development of process modeling environments. It demonstrates that very robust numerical techniques are required within an environment that can collect, organize, and maintain the data and models required to address the batch process development problem. This paper focuses on improving the robustness and efficiency of the numerical algorithms required in such a modeling environment through the development of hybrid numerical and symbolic strategies.

  2. Advances in speech processing

    NASA Astrophysics Data System (ADS)

    Ince, A. Nejat

    1992-10-01

    The field of speech processing is undergoing a rapid growth in terms of both performance and applications and this is fueled by the advances being made in the areas of microelectronics, computation, and algorithm design. The use of voice for civil and military communications is discussed considering advantages and disadvantages including the effects of environmental factors such as acoustic and electrical noise and interference and propagation. The structure of the existing NATO communications network and the evolving Integrated Services Digital Network (ISDN) concept are briefly reviewed to show how they meet the present and future requirements. The paper then deals with the fundamental subject of speech coding and compression. Recent advances in techniques and algorithms for speech coding now permit high quality voice reproduction at remarkably low bit rates. The subject of speech synthesis is next treated where the principle objective is to produce natural quality synthetic speech from unrestricted text input. Speech recognition where the ultimate objective is to produce a machine which would understand conversational speech with unrestricted vocabulary, from essentially any talker, is discussed. Algorithms for speech recognition can be characterized broadly as pattern recognition approaches and acoustic phonetic approaches. To date, the greatest degree of success in speech recognition has been obtained using pattern recognition paradigms. It is for this reason that the paper is concerned primarily with this technique.

  3. Current advances of integrated processes combining chemical absorption and biological reduction for NO x removal from flue gas.

    PubMed

    Zhang, Shihan; Chen, Han; Xia, Yinfeng; Liu, Nan; Lu, Bi-Hong; Li, Wei

    2014-10-01

    Anthropogenic nitrogen oxides (NO x ) emitted from the fossil-fuel-fired power plants cause adverse environmental issues such as acid rain, urban ozone smoke, and photochemical smog. A novel chemical absorption-biological reduction (CABR) integrated process under development is regarded as a promising alternative to the conventional selective catalytic reduction processes for NO x removal from the flue gas because it is economic and environmentally friendly. CABR process employs ferrous ethylenediaminetetraacetate [Fe(II)EDTA] as a solvent to absorb the NO x following microbial denitrification of NO x to harmless nitrogen gas. Meanwhile, the absorbent Fe(II)EDTA is biologically regenerated to sustain the adequate NO x removal. Compared with conventional denitrification process, CABR not only enhances the mass transfer of NO from gas to liquid phase but also minimize the impact of oxygen on the microorganisms. This review provides the current advances of the development of the CABR process for NO x removal from the flue gas. PMID:25149446

  4. Advanced Integrated Traction System

    SciTech Connect

    Greg Smith; Charles Gough

    2011-08-31

    The United States Department of Energy elaborates the compelling need for a commercialized competitively priced electric traction drive system to proliferate the acceptance of HEVs, PHEVs, and FCVs in the market. The desired end result is a technically and commercially verified integrated ETS (Electric Traction System) product design that can be manufactured and distributed through a broad network of competitive suppliers to all auto manufacturers. The objectives of this FCVT program are to develop advanced technologies for an integrated ETS capable of 55kW peak power for 18 seconds and 30kW of continuous power. Additionally, to accommodate a variety of automotive platforms the ETS design should be scalable to 120kW peak power for 18 seconds and 65kW of continuous power. The ETS (exclusive of the DC/DC Converter) is to cost no more than $660 (55kW at $12/kW) to produce in quantities of 100,000 units per year, should have a total weight less than 46kg, and have a volume less than 16 liters. The cost target for the optional Bi-Directional DC/DC Converter is $375. The goal is to achieve these targets with the use of engine coolant at a nominal temperature of 105C. The system efficiency should exceed 90% at 20% of rated torque over 10% to 100% of maximum speed. The nominal operating system voltage is to be 325V, with consideration for higher voltages. This project investigated a wide range of technologies, including ETS topologies, components, and interconnects. Each technology and its validity for automotive use were verified and then these technologies were integrated into a high temperature ETS design that would support a wide variety of applications (fuel cell, hybrids, electrics, and plug-ins). This ETS met all the DOE 2010 objectives of cost, weight, volume and efficiency, and the specific power and power density 2015 objectives. Additionally a bi-directional converter was developed that provides charging and electric power take-off which is the first step

  5. Non-CAR resists and advanced materials for Massively Parallel E-Beam Direct Write process integration

    NASA Astrophysics Data System (ADS)

    Pourteau, Marie-Line; Servin, Isabelle; Lepinay, Kévin; Essomba, Cyrille; Dal'Zotto, Bernard; Pradelles, Jonathan; Lattard, Ludovic; Brandt, Pieter; Wieland, Marco

    2016-03-01

    The emerging Massively Parallel-Electron Beam Direct Write (MP-EBDW) is an attractive high resolution high throughput lithography technology. As previously shown, Chemically Amplified Resists (CARs) meet process/integration specifications in terms of dose-to-size, resolution, contrast, and energy latitude. However, they are still limited by their line width roughness. To overcome this issue, we tested an alternative advanced non-CAR and showed it brings a substantial gain in sensitivity compared to CAR. We also implemented and assessed in-line post-lithographic treatments for roughness mitigation. For outgassing-reduction purpose, a top-coat layer is added to the total process stack. A new generation top-coat was tested and showed improved printing performances compared to the previous product, especially avoiding dark erosion: SEM cross-section showed a straight pattern profile. A spin-coatable charge dissipation layer based on conductive polyaniline has also been tested for conductivity and lithographic performances, and compatibility experiments revealed that the underlying resist type has to be carefully chosen when using this product. Finally, the Process Of Reference (POR) trilayer stack defined for 5 kV multi-e-beam lithography was successfully etched with well opened and straight patterns, and no lithography-etch bias.

  6. Advances in Process Control.

    ERIC Educational Resources Information Center

    Morrison, David L.; And Others

    1982-01-01

    Advances in electronics and computer science have enabled industries (pulp/paper, iron/steel, petroleum/chemical) to attain better control of their processes with resulting increases in quality, productivity, profitability, and compliance with government regulations. (JN)

  7. Highly integrated hybrid process with ceramic ultrafiltration-membrane for advanced treatment of drinking water: a pilot study.

    PubMed

    Guo, Jianning; Wang, Lingyun; Zhu, Jia; Zhang, Jianguo; Sheng, Deyang; Zhang, Xihui

    2013-01-01

    This article presents a highly integrated hybrid process for the advanced treatment of drinking water in dealing with the micro-polluted raw water. A flat sheet ceramic membrane with the pore size of 50∼60 nm for ultrafiltration (UF) is used to integrate coagulation and ozonation together. At the same time, biological activated carbon filtration (BAC) is used to remove the ammonia and organic pollutants in raw water. A pilot study in the scale of 120 m(3)/d has been conducted in Southern China. The mainly-analyzed parameters include turbidity, particle counts, ammonia, total organic carbon (TOC), UV254, biological dissolved organic carbon (BDOC), dissolved oxygen (DO) as well as trans-membrane pressure (TMP). The experiments demonstrated that ceramic UF-membrane was able to remove most of turbidity and suspended particulate matters. The final effluent turbidity reached to 0.14 NTU on average. BAC was effective in removing ammonia and organic matters. Dissolved oxygen (DO) is necessary for the biodegradation of ammonia at high concentration. The removal efficiencies reached to 90% for ammonia with the initial concentration of 3.6 mg/L and 76% for TOC with the initial concentration of 3.8 mg/L. Ozonation can alter the molecular structure of organics in terms of UV254, reduce membrane fouling, and extend the operation circle. It is believed the hybrid treatment process developed in this article can achieve high performance with less land occupation and lower cost compared with the conventional processes. It is especially suitable for the developing countries in order to obtain high-quality drinking water in a cost-effective way.

  8. Final Scientific Report, Integrated Seismic Event Detection and Location by Advanced Array Processing

    SciTech Connect

    Kvaerna, T.; Gibbons. S.J.; Ringdal, F; Harris, D.B.

    2007-01-30

    In the field of nuclear explosion monitoring, it has become a priority to detect, locate, and identify seismic events down to increasingly small magnitudes. The consideration of smaller seismic events has implications for a reliable monitoring regime. Firstly, the number of events to be considered increases greatly; an exponential increase in naturally occurring seismicity is compounded by large numbers of seismic signals generated by human activity. Secondly, the signals from smaller events become more difficult to detect above the background noise and estimates of parameters required for locating the events may be subject to greater errors. Thirdly, events are likely to be observed by a far smaller number of seismic stations, and the reliability of event detection and location using a very limited set of observations needs to be quantified. For many key seismic stations, detection lists may be dominated by signals from routine industrial explosions which should be ascribed, automatically and with a high level of confidence, to known sources. This means that expensive analyst time is not spent locating routine events from repeating seismic sources and that events from unknown sources, which could be of concern in an explosion monitoring context, are more easily identified and can be examined with due care. We have obtained extensive lists of confirmed seismic events from mining and other artificial sources which have provided an excellent opportunity to assess the quality of existing fully-automatic event bulletins and to guide the development of new techniques for online seismic processing. Comparing the times and locations of confirmed events from sources in Fennoscandia and NW Russia with the corresponding time and location estimates reported in existing automatic bulletins has revealed substantial mislocation errors which preclude a confident association of detected signals with known industrial sources. The causes of the errors are well understood and are

  9. Advanced integrated enhanced vision systems

    NASA Astrophysics Data System (ADS)

    Kerr, J. R.; Luk, Chiu H.; Hammerstrom, Dan; Pavel, Misha

    2003-09-01

    In anticipation of its ultimate role in transport, business and rotary wing aircraft, we clarify the role of Enhanced Vision Systems (EVS): how the output data will be utilized, appropriate architecture for total avionics integration, pilot and control interfaces, and operational utilization. Ground-map (database) correlation is critical, and we suggest that "synthetic vision" is simply a subset of the monitor/guidance interface issue. The core of integrated EVS is its sensor processor. In order to approximate optimal, Bayesian multi-sensor fusion and ground correlation functionality in real time, we are developing a neural net approach utilizing human visual pathway and self-organizing, associative-engine processing. In addition to EVS/SVS imagery, outputs will include sensor-based navigation and attitude signals as well as hazard detection. A system architecture is described, encompassing an all-weather sensor suite; advanced processing technology; intertial, GPS and other avionics inputs; and pilot and machine interfaces. Issues of total-system accuracy and integrity are addressed, as well as flight operational aspects relating to both civil certification and military applications in IMC.

  10. Advanced Polymer Processing Facility

    SciTech Connect

    Muenchausen, Ross E.

    2012-07-25

    Some conclusions of this presentation are: (1) Radiation-assisted nanotechnology applications will continue to grow; (2) The APPF will provide a unique focus for radiolytic processing of nanomaterials in support of DOE-DP, other DOE and advanced manufacturing initiatives; (3) {gamma}, X-ray, e-beam and ion beam processing will increasingly be applied for 'green' manufacturing of nanomaterials and nanocomposites; and (4) Biomedical science and engineering may ultimately be the biggest application area for radiation-assisted nanotechnology development.

  11. Advanced integrated safeguards at Barnwell

    SciTech Connect

    Bambas, K.J.; Barnes, L.D.

    1980-06-01

    The development and initial performance testing of an advanced integrated safeguards system at the Barnwell Nuclear Fuel Plant (BNFP) is described. The program concentrates on the integration and coordination of physical security and nuclear materials control and accounting at a single location. Hardware and software for this phase have been installed and are currently being evaluated. The AGNS/DOE program is now in its third year of development at the BNFP.

  12. Modelling and assessment of advanced processes for integrated environmental control of coal-fired power plants. Technical progress report

    SciTech Connect

    Barrett, J.G.; Bloyd, C.N.; McMichael, F.C.; Rubin, E.S.

    1984-07-01

    The key objective of this research is the development of a computer based model for the assessment of integrated environmental control (IEC) systems for conventional and advanced coal fired power plant designs. Efforts during the period April 1-June 30, 1984 focused on, (1) testing of a preliminary integrated model linking pre-combustion and post-combustion control options for conventional plants; (2) documentation of the analytical models of existing control technology options; (3) development and preliminary testing of a second model design for the propagation and analysis of uncertainty; and (4) development of new analytical models needed for IEC assessments. Activities and accomplishments in each of these areas are described. 4 references, 13 figures, 4 tables.

  13. Advanced soldering processes

    SciTech Connect

    Jellison, J.L.; Golden, J.; Frear, D.R.; Hosking, F.M.; Keicher, D.M.; Yost, F.G.

    1993-02-20

    Advanced soldering processes are discussed in a complete manner. The ability to meet the needs of electronic manufacturing, while addressing the environmental issues are challenging goals. Government regulations mandate the elimination of most solvents in solder flux removal. Alternative approaches to promoting wetting are discussed. Inert atmosphere soldering, acid vapor fluxless soldering, atomic and ionic hydrogen as reactive atmospheres, fluxless laser soldering in a controlled atmosphere are offered as soldering mechanisms for the future. Laser are discussed as alternate heat sources. Various types of lasers, advantages of lasers, and fiber optic beam delivery are considered.

  14. AISI/DOE Advanced Process Control Program Vol. 3 of 6 Microstructure Engineering in Hot Strip Mills, Part 1 of 2: Integrated Mathematical Model

    SciTech Connect

    J.K. Brimacombe; I.V. Samarasekera; E.B. Hawbolt; T.R. Meadowcroft; M. Militzer; W.J. Pool; D.Q. Jin

    1999-07-31

    This report describes the work of developing an integrated model used to predict the thermal history, deformation, roll forces, microstructural evolution and mechanical properties of steel strip in a hot-strip mill. This achievement results from a joint research effort that is part of the American Iron and Steel Institute's (AIS) Advanced Process Control Program, a collaboration between the U.S. DOE and fifteen North American Steelmakers.

  15. Advanced detectors and signal processing

    NASA Technical Reports Server (NTRS)

    Greve, D. W.; Rasky, P. H. L.; Kryder, M. H.

    1986-01-01

    Continued progress is reported toward development of a silicon on garnet technology which would allow fabrication of advanced detection and signal processing circuits on bubble memories. The first integrated detectors and propagation patterns have been designed and incorporated on a new mask set. In addition, annealing studies on spacer layers are performed. Based on those studies, a new double layer spacer is proposed which should reduce contamination of the silicon originating in the substrate. Finally, the magnetic sensitivity of uncontaminated detectors from the last lot of wafers is measured. The measured sensitivity is lower than anticipated but still higher than present magnetoresistive detectors.

  16. Recent advances on integrated quantum communications

    NASA Astrophysics Data System (ADS)

    Orieux, Adeline; Diamanti, Eleni

    2016-08-01

    In recent years, the use of integrated technologies for applications in the field of quantum information processing and communications has made great progress. The resulting devices feature valuable characteristics such as scalability, reproducibility, low cost and interconnectivity, and have the potential to revolutionize our computation and communication practices in the future, much in the way that electronic integrated circuits have drastically transformed our information processing capacities since the last century. Among the multiple applications of integrated quantum technologies, this review will focus on typical components of quantum communication systems and on overall integrated system operation characteristics. We are interested in particular in the use of photonic integration platforms for developing devices necessary in quantum communications, including sources, detectors and both passive and active optical elements. We also illustrate the challenges associated with performing quantum communications on chip, by using the case study of quantum key distribution—the most advanced application of quantum information science. We conclude with promising perspectives in this field.

  17. Advanced powder processing

    SciTech Connect

    Janney, M.A.

    1997-04-01

    Gelcasting is an advanced powder forming process. It is most commonly used to form ceramic or metal powders into complex, near-net shapes. Turbine rotors, gears, nozzles, and crucibles have been successfully gelcast in silicon nitride, alumina, nickel-based superalloy, and several steels. Gelcasting can also be used to make blanks that can be green machined to near-net shape and then high fired. Green machining has been successfully applied to both ceramic and metal gelcast blanks. Recently, the authors have used gelcasting to make tooling for metal casting applications. Most of the work has centered on H13 tool steel. They have demonstrated an ability to gelcast and sinter H13 to near net shape for metal casting tooling. Also, blanks of H13 have been cast, green machined into complex shape, and fired. Issues associated with forming, binder burnout, and sintering are addressed.

  18. Advanced microwave processing concepts

    SciTech Connect

    Lauf, R.J.; McMillan, A.D.; Paulauskas, F.L.

    1997-04-01

    The purpose of this work is to explore the feasibility of several advanced microwave processing concepts to develop new energy-efficient materials and processes. The project includes two tasks: (1) commercialization of the variable-frequency microwave furnace; and (2) microwave curing of polymeric materials. The variable frequency microwave furnace, whose initial conception and design was funded by the AIM Materials Program, allows the authors, for the first time, to conduct microwave processing studies over a wide frequency range. This novel design uses a high-power traveling wave tube (TWT) originally developed for electronic warfare. By using this microwave source, one can not only select individual microwave frequencies for particular experiments, but also achieve uniform power densities over a large area by the superposition of many different frequencies. Microwave curing of various thermoset resins will be studied because it holds the potential of in-situ curing of continuous-fiber composites for strong, lightweight components or in-situ curing of adhesives, including metal-to-metal. Microwave heating can shorten curing times, provided issues of scaleup, uniformity, and thermal management can be adequately addressed.

  19. Advanced microwave processing concepts

    SciTech Connect

    Lauf, R.J.; McMillan, A.D.; Paulauskas, F.L.

    1995-05-01

    The purpose of this work is to explore the feasibility of several advanced microwave processing concepts to develop new energy-efficient materials and processes. The project includes two tasks: (1) commercialization of the variable-frequency microwave furnace; and (2) microwave curing of polymer composites. The variable frequency microwave furnace, whose initial conception and design was funded by the AIC Materials Program, will allow us, for the first time, to conduct microwave processing studies over a wide frequency range. This novel design uses a high-power traveling wave tube (TWT) originally developed for electronic warfare. By using this microwave source, one can not only select individual microwave frequencies for particular experiments, but also achieve uniform power densities over a large area by the superposition of many different frequencies. Microwave curing of thermoset resins will be studied because it hold the potential of in-situ curing of continuous-fiber composites for strong, lightweight components. Microwave heating can shorten curing times, provided issues of scaleup, uniformity, and thermal management can be adequately addressed.

  20. Advanced Integration Matrix Education Outreach

    NASA Technical Reports Server (NTRS)

    Paul Heather L.

    2004-01-01

    The Advanced Integration Matrix (AIM) will design a ground-based test facility for developing revolutionary integrated systems for joint human-robotic missions in order to study and solve systems-level integration issues for exploration missions beyond Low Earth Orbit (LEO). This paper describes development plans for educational outreach activities related to technological and operational integration scenarios similar to the challenges that will be encountered through this project. The education outreach activities will provide hands-on, interactive exercises to allow students of all levels to experience design and operational challenges similar to what NASA deals with everyday in performing the integration of complex missions. These experiences will relate to and impact students everyday lives by demonstrating how their interests in science and engineering can develop into future careers, and reinforcing the concepts of teamwork and conflict resolution. Allowing students to experience and contribute to real-world development, research, and scientific studies of ground-based simulations for complex exploration missions will stimulate interest in the space program, and bring NASA's challenges to the student level. By enhancing existing educational programs and developing innovative activities and presentations, AIM will support NASA s endeavor to "inspire the next generation of explorers.. .as only NASA can."

  1. Advanced Communication Processing Techniques

    NASA Astrophysics Data System (ADS)

    Scholtz, Robert A.

    This document contains the proceedings of the workshop Advanced Communication Processing Techniques, held May 14 to 17, 1989, near Ruidoso, New Mexico. Sponsored by the Army Research Office (under Contract DAAL03-89-G-0016) and organized by the Communication Sciences Institute of the University of Southern California, the workshop had as its objective to determine those applications of intelligent/adaptive communication signal processing that have been realized and to define areas of future research. We at the Communication Sciences Institute believe that there are two emerging areas which deserve considerably more study in the near future: (1) Modulation characterization, i.e., the automation of modulation format recognition so that a receiver can reliably demodulate a signal without using a priori information concerning the signal's structure, and (2) the incorporation of adaptive coding into communication links and networks. (Encoders and decoders which can operate with a wide variety of codes exist, but the way to utilize and control them in links and networks is an issue). To support these two new interest areas, one must have both a knowledge of (3) the kinds of channels and environments in which the systems must operate, and of (4) the latest adaptive equalization techniques which might be employed in these efforts.

  2. Advanced approaches to focal plane integration

    NASA Astrophysics Data System (ADS)

    Nelson, R. D.; Smith, E. C., Jr.

    1980-01-01

    Both visible and infrared focal plane assemblies have common architectural driving parameters which guide their design approaches. The key drivers for advanced focal plane assemblies (FPA) are: the detector type and performance required; the number of detector chips; the packaging density; and the geometry. The impact of these drivers is seen to determine the engineering compromises necessary to establish FPA design approach. Several new designs are discussed which show a range of applications from single detector assemblies to monolithic detector chips with on-chip signal processing. The main objective of many advanced designs is to integrate the focal plane components in order to reduce power and reduce the number of interconnections.

  3. Integrated protein production and electricity generation using renewable alfalfa feedstock in a combination advanced IGCC and feed processing arrangement

    SciTech Connect

    DeLong, M.M.; Oelke, E.A.; Hanson, C.

    1999-07-01

    A feasibility study was conducted to determine the viability of a co-production concept of alfalfa leaf meal as a concentrated protein animal feed and the generation of electricity from the remaining stem material. Alfalfa is a well-known and widely-planted crop that offers environmental and soil conservation advantages when grown as a 4-year segment in a 7-year rotation with corn and soybeans. Alfalfa fixes nitrogen from the air, thereby enhancing soil nitrogen and decreasing the need for manufactured nitrogen fertilizer. With alfalfa yields of 8.96 metric tonnes/hectare (4 dry tons per acre) per year and with separated alfalfa leaves being sold as a high-value animal feed, separated alfalfa stems can be economically viable fuel feedstock for a gasifier/combined cycle power plant. This paper reports on a feasibility study for an integrated biomass power system, where an energy crop (alfalfa) is coupled to a processing plant and a power plant (integrated gasification combined cycle with hot gas cleanup) in a way that benefits the joint venture of an alfalfa producers cooperative and a utility entity. The sale of a mid-level protein animal feed-co-product and electricity both support the production cost of alfalfa. The co-product/fuel processing operation uses a common train of equipment, thereby requiring neither product to carry the total cost. The power plant provides an important continuous demand for the feedstock and results in continuous supply of leaf product to provide a reliable supply needed for the leaf meal product. This concept provides a means for rural economic development with a sustainable approach to production agriculture.

  4. ADVANCED OXIDATION PROCESS

    SciTech Connect

    Dr. Colin P. Horwitz; Dr. Terrence J. Collins

    2003-11-04

    The removal of recalcitrant sulfur species, dibenzothiophene and its derivatives, from automotive fuels is an integral component in the development of cleaner burning and more efficient automobile engines. Oxidative desulfurization (ODS) wherein the dibenzothiophene derivative is converted to its corresponding sulfoxide and sulfone is an attractive approach to sulfur removal because the oxidized species are easily extracted or precipitated and filtered from the hydrocarbon phase. Fe-TAML{reg_sign} activators of hydrogen peroxide (TAML is Tetra-Amido-Macrocyclic-Ligand) catalytically convert dibenzothiophene and its derivatives rapidly and effectively at moderate temperatures (50-60 C) and ambient pressure to the corresponding sulfoxides and sulfones. The oxidation process can be performed in both aqueous systems containing alcohols such as methanol, ethanol, or t-butanol, and in a two-phase hydrocarbon/aqueous system containing tert-butanol or acetonitrile. In the biphasic system, essentially complete conversion of the DBT to its oxidized products can be achieved using slightly longer reaction times than in homogeneous solution. Among the key features of the technology are the mild reaction conditions, the very high selectivity where no over oxidation of the sulfur compounds occurs, the near stoichiometric use of hydrogen peroxide, the apparent lack of degradation of sensitive fuel components, and the ease of separation of oxidized products.

  5. Simultaneous nitrate reduction and acetaminophen oxidation using the continuous-flow chemical-less VUV process as an integrated advanced oxidation and reduction process.

    PubMed

    Moussavi, Gholamreza; Shekoohiyan, Sakine

    2016-11-15

    This work was aimed at investigating the performance of the continuous-flow VUV photoreactor as a novel chemical-less advanced process for simultaneously oxidizing acetaminophen (ACT) as a model of pharmaceuticals and reducing nitrate in a single reactor. Solution pH was an important parameter affecting the performance of VUV; the highest ACT oxidation and nitrate reduction attained at solution pH between 6 and 8. The ACT was oxidized mainly by HO while the aqueous electrons were the main working agents in the reduction of nitrate. The performance of VUV photoreactor improved with the increase of hydraulic retention time (HRT); the complete degradation of ACT and ∼99% reduction of nitrate with 100% N2 selectivity achieved at HRT of 80min. The VUV effluent concentrations of nitrite and ammonium at HRT of 80min were below the drinking water standards. The real water sample contaminated with the ACT and nitrate was efficiently treated in the VUV photoreactor. Therefore, the VUV photoreactor is a chemical-less advanced process in which both advanced oxidation and advanced reduction reactions are accomplished. This unique feature possesses VUV photoreactor as a promising method of treating water contaminated with both pharmaceutical and nitrate. PMID:27434736

  6. Simultaneous nitrate reduction and acetaminophen oxidation using the continuous-flow chemical-less VUV process as an integrated advanced oxidation and reduction process.

    PubMed

    Moussavi, Gholamreza; Shekoohiyan, Sakine

    2016-11-15

    This work was aimed at investigating the performance of the continuous-flow VUV photoreactor as a novel chemical-less advanced process for simultaneously oxidizing acetaminophen (ACT) as a model of pharmaceuticals and reducing nitrate in a single reactor. Solution pH was an important parameter affecting the performance of VUV; the highest ACT oxidation and nitrate reduction attained at solution pH between 6 and 8. The ACT was oxidized mainly by HO while the aqueous electrons were the main working agents in the reduction of nitrate. The performance of VUV photoreactor improved with the increase of hydraulic retention time (HRT); the complete degradation of ACT and ∼99% reduction of nitrate with 100% N2 selectivity achieved at HRT of 80min. The VUV effluent concentrations of nitrite and ammonium at HRT of 80min were below the drinking water standards. The real water sample contaminated with the ACT and nitrate was efficiently treated in the VUV photoreactor. Therefore, the VUV photoreactor is a chemical-less advanced process in which both advanced oxidation and advanced reduction reactions are accomplished. This unique feature possesses VUV photoreactor as a promising method of treating water contaminated with both pharmaceutical and nitrate.

  7. SEU In An Advanced Bipolar Integrated Circuit

    NASA Technical Reports Server (NTRS)

    Zoutendyk, John A.; Secrest, Elaine C.; Berndt, Dale F.

    1989-01-01

    Report summarizes investigation of single-event upsets (SEU) in bipolar integrated-circuit set of flip-flops (memory cells). Device tested made by advanced digital bipolar silicon process of Honeywell, Inc. Circuit chip contained 4 cells. Construction enabled study of effect of size on SEU behavior. Each cell externally biased so effect of bias current on SEU behavior. Results of study provides important information for optimal design of devices fabricated using buried-layer bipolar process operating in heavy-ion SEU environments. Designers use information to provide required levels of suppression of SEU in specific applications via combinations of size and/or cell-current scaling.

  8. Future integrated design process

    NASA Technical Reports Server (NTRS)

    Meyer, D. D.

    1980-01-01

    The design process is one of the sources used to produce requirements for a computer system to integrate and manage product design data, program management information, and technical computation and engineering data management activities of the aerospace design process. Design activities were grouped chronologically and explored for activity type, activity interface, data quantity, and data flow. The work was based on analysis of the design process of several typical aerospace products, including both conventional and supersonic airplanes and a hydrofoil design. Activities examined included research, preliminary design, detail design, manufacturing interface, product verification, and product support. The design process was then described in an IPAD environment--the future.

  9. Biochemical Platform Processing Integration

    SciTech Connect

    2006-06-01

    The objective of this project is to facilitate deployment of enzyme-based biomass conversion technology. The immediate goal is to explore integration issues that impact process performance and to demonstrate improved performance of the lower-cost enzymes being developed by Genencor and Novozymes.

  10. Advanced Hydrogen Liquefaction Process

    SciTech Connect

    Schwartz, Joseph; Kromer, Brian; Neu, Ben; Jankowiak, Jerome; Barrett, Philip; Drnevich, Raymond

    2011-09-28

    The project identified and quantified ways to reduce the cost of hydrogen liquefaction, and reduce the cost of hydrogen distribution. The goal was to reduce the power consumption by 20% and then to reduce the capital cost. Optimizing the process, improving process equipment, and improving ortho-para conversion significantly reduced the power consumption of liquefaction, but by less than 20%. Because the efficiency improvement was less than the target, the program was stopped before the capital cost was addressed. These efficiency improvements could provide a benefit to the public to improve the design of future hydrogen liquefiers. The project increased the understanding of hydrogen liquefaction by modeling different processes and thoroughly examining ortho-para separation and conversion. The process modeling provided a benefit to the public because the project incorporated para hydrogen into the process modeling software, so liquefaction processes can be modeled more accurately than using only normal hydrogen. Adding catalyst to the first heat exchanger, a simple method to reduce liquefaction power, was identified, analyzed, and quantified. The demonstrated performance of ortho-para separation is sufficient for at least one identified process concept to show reduced power cost when compared to hydrogen liquefaction processes using conventional ortho-para conversion. The impact of improved ortho-para conversion can be significant because ortho para conversion uses about 20-25% of the total liquefaction power, but performance improvement is necessary to realize a substantial benefit. Most of the energy used in liquefaction is for gas compression. Improvements in hydrogen compression will have a significant impact on overall liquefier efficiency. Improvements to turbines, heat exchangers, and other process equipment will have less impact.

  11. Comparative and integrative environmental assessment of advanced wastewater treatment processes based on an average removal of pharmaceuticals.

    PubMed

    Igos, Elorri; Benetto, Enrico; Venditti, Silvia; Köhler, Christian; Cornelissen, Alex

    2013-01-01

    Pharmaceuticals are normally barely removed by conventional wastewater treatments. Advanced technologies as a post-treatment, could prevent these pollutants reaching the environment and could be included in a centralized treatment plant or, alternatively, at the primary point source, e.g. hospitals. In this study, the environmental impacts of different options, as a function of several advanced treatments as well as the centralized/decentralized implementation options, have been evaluated using Life Cycle Assessment (LCA) methodology. In previous publications, the characterization of the toxicity of pharmaceuticals within LCA suffers from high uncertainties. In our study, LCA was therefore only used to quantify the generated impacts (electricity, chemicals, etc.) of different treatment scenarios. These impacts are then weighted by the average removal rate of pharmaceuticals using a new Eco-efficiency Indicator EFI. This new way of comparing the scenarios shows significant advantages of upgrading a centralized plant with ozonation as the post-treatment. The decentralized treatment option reveals no significant improvement on the avoided environmental impact, due to the comparatively small pollutant load coming from the hospital and the uncertainties in the average removal of the decentralized scenarios. When comparing the post-treatment technologies, UV radiation has a lower performance than both ozonation and activated carbon adsorption.

  12. Advanced composite materials and processes

    NASA Technical Reports Server (NTRS)

    Baucom, Robert M.

    1991-01-01

    Composites are generally defined as two or more individual materials, which, when combined into a single material system, results in improved physical and/or mechanical properties. The freedom of choice of the starting components for composites allows the generation of materials that can be specifically tailored to meet a variety of applications. Advanced composites are described as a combination of high strength fibers and high performance polymer matrix materials. These advanced materials are required to permit future aircraft and spacecraft to perform in extended environments. Advanced composite precursor materials, processes for conversion of these materials to structures, and selected applications for composites are reviewed.

  13. @neurIST: infrastructure for advanced disease management through integration of heterogeneous data, computing, and complex processing services.

    PubMed

    Benkner, Siegfried; Arbona, Antonio; Berti, Guntram; Chiarini, Alessandro; Dunlop, Robert; Engelbrecht, Gerhard; Frangi, Alejandro F; Friedrich, Christoph M; Hanser, Susanne; Hasselmeyer, Peer; Hose, Rod D; Iavindrasana, Jimison; Köhler, Martin; Iacono, Luigi Lo; Lonsdale, Guy; Meyer, Rodolphe; Moore, Bob; Rajasekaran, Hariharan; Summers, Paul E; Wöhrer, Alexander; Wood, Steven

    2010-11-01

    The increasing volume of data describing human disease processes and the growing complexity of understanding, managing, and sharing such data presents a huge challenge for clinicians and medical researchers. This paper presents the @neurIST system, which provides an infrastructure for biomedical research while aiding clinical care, by bringing together heterogeneous data and complex processing and computing services. Although @neurIST targets the investigation and treatment of cerebral aneurysms, the system's architecture is generic enough that it could be adapted to the treatment of other diseases. Innovations in @neurIST include confining the patient data pertaining to aneurysms inside a single environment that offers clinicians the tools to analyze and interpret patient data and make use of knowledge-based guidance in planning their treatment. Medical researchers gain access to a critical mass of aneurysm related data due to the system's ability to federate distributed information sources. A semantically mediated grid infrastructure ensures that both clinicians and researchers are able to seamlessly access and work on data that is distributed across multiple sites in a secure way in addition to providing computing resources on demand for performing computationally intensive simulations for treatment planning and research.

  14. 3D printed electromagnetic transmission and electronic structures fabricated on a single platform using advanced process integration techniques

    NASA Astrophysics Data System (ADS)

    Deffenbaugh, Paul Issac

    3D printing has garnered immense attention from many fields including in-office rapid prototyping of mechanical parts, outer-space satellite replication, garage functional firearm manufacture, and NASA rocket engine component fabrication. 3D printing allows increased design flexibility in the fabrication of electronics, microwave circuits and wireless antennas and has reached a level of maturity which allows functional parts to be printed. Much more work is necessary in order to perfect the processes of 3D printed electronics especially in the area of automation. Chapter 1 shows several finished prototypes of 3D printed electronics as well as newly developed techniques in fabrication. Little is known about the RF and microwave properties and applications of the standard materials which have been developed for 3D printing. Measurement of a wide variety of materials over a broad spectrum of frequencies up to 10 GHz using a variety of well-established measurement methods is performed throughout chapter 2. Several types of high frequency RF transmission lines are fabricated and valuable model-matched data is gathered and provided in chapter 3 for future designers' use. Of particular note is a fully 3D printed stripline which was automatically fabricated in one process on one machine. Some core advantages of 3D printing RF/microwave components include rapid manufacturing of complex, dimensionally sensitive circuits (such as antennas and filters which are often iteratively tuned) and the ability to create new devices that cannot be made using standard fabrication techniques. Chapter 4 describes an exemplary fully 3D printed curved inverted-F antenna.

  15. Integration of biofiltration and advanced oxidation processes for tertiary treatment of an oil refinery wastewater aiming at water reuse.

    PubMed

    Nogueira, A A; Bassin, J P; Cerqueira, A C; Dezotti, M

    2016-05-01

    The combination of biological and chemical oxidation processes is an interesting approach to remove ready, poor, and non-biodegradable compounds from complex industrial wastewaters. In this study, biofiltration followed by H2O2/UV oxidation (or microfiltration) and final reverse osmosis (RO) step was employed for tertiary treatment of an oil refinery wastewater. Biofiltration alone allowed obtaining total organic carbon (TOC), chemical oxygen demand (COD), UV absorbance at 254 nm (UV254), ammonium, and turbidity removal of around 46, 46, 23, 50, and 61 %, respectively. After the combined biological-chemical oxidation treatment, TOC and UV254 removal amounted to 88 and 79 %, respectively. Whereas, the treatment performance achieved with different UV lamp powers (55 and 95 W) and therefore distinct irradiance levels (26.8 and 46.3 mW/cm(2), respectively) were very similar and TOC and UV254 removal rates were highly affected by the applied C/H2O2 ratio. Silt density index (SDI) was effectively reduced by H2O2/UV oxidation, favoring further RO application. C/H2O2 ratio of 1:4, 55 W UV lamp, and 20-min oxidation reaction corresponded to the experimental condition which provided the best cost/benefit ratio for TOC, UV254, and SDI reduction from the biofilter effluent. The array of treatment processes proposed in this study has shown to be adequate for tertiary treatment of the oil refinery wastewater, ensuring the mitigation of membrane fouling problems and producing a final effluent which is suitable for reuse applications. PMID:26850095

  16. Process for producing advanced ceramics

    DOEpatents

    Kwong, Kyei-Sing

    1996-01-01

    A process for the synthesis of homogeneous advanced ceramics such as SiC+AlN, SiAlON, SiC+Al.sub.2 O.sub.3, and Si.sub.3 N.sub.4 +AlN from natural clays such as kaolin, halloysite and montmorillonite by an intercalation and heat treatment method. Included are the steps of refining clays, intercalating organic compounds into the layered structure of clays, drying the intercalated mixture, firing the treated atmospheres and grinding the loosely agglomerated structure. Advanced ceramics produced by this procedure have the advantages of homogeneity, cost effectiveness, simplicity of manufacture, ease of grind and a short process time. Advanced ceramics produced by this process can be used for refractory, wear part and structure ceramics.

  17. Process and information integration via hypermedia

    NASA Technical Reports Server (NTRS)

    Hammen, David G.; Labasse, Daniel L.; Myers, Robert M.

    1990-01-01

    Success stories for advanced automation prototypes abound in the literature but the deployments of practical large systems are few in number. There are several factors that militate against the maturation of such prototypes into products. Here, the integration of advanced automation software into large systems is discussed. Advanced automation systems tend to be specific applications that need to be integrated and aggregated into larger systems. Systems integration can be achieved by providing expert user-developers with verified tools to efficiently create small systems that interface to large systems through standard interfaces. The use of hypermedia as such a tool in the context of the ground control centers that support Shuttle and space station operations is explored. Hypermedia can be an integrating platform for data, conventional software, and advanced automation software, enabling data integration through the display of diverse types of information and through the creation of associative links between chunks of information. Further, hypermedia enables process integration through graphical invoking of system functions. Through analysis and examples, researchers illustrate how diverse information and processing paradigms can be integrated into a single software platform.

  18. Advanced digital SAR processing study

    NASA Technical Reports Server (NTRS)

    Martinson, L. W.; Gaffney, B. P.; Liu, B.; Perry, R. P.; Ruvin, A.

    1982-01-01

    A highly programmable, land based, real time synthetic aperture radar (SAR) processor requiring a processed pixel rate of 2.75 MHz or more in a four look system was designed. Variations in range and azimuth compression, number of looks, range swath, range migration and SR mode were specified. Alternative range and azimuth processing algorithms were examined in conjunction with projected integrated circuit, digital architecture, and software technologies. The advaced digital SAR processor (ADSP) employs an FFT convolver algorithm for both range and azimuth processing in a parallel architecture configuration. Algorithm performace comparisons, design system design, implementation tradeoffs and the results of a supporting survey of integrated circuit and digital architecture technologies are reported. Cost tradeoffs and projections with alternate implementation plans are presented.

  19. Plasma Processing of Advanced Materials

    SciTech Connect

    Heberlein, Joachim, V.R.; Pfender, Emil; Kortshagen, Uwe

    2005-02-28

    Plasma Processing of Advanced Materials The project had the overall objective of improving our understanding of the influences of process parameters on the properties of advanced superhard materials. The focus was on high rate deposition processes using thermal plasmas and atmospheric pressure glow discharges, and the emphasis on superhard materials was chosen because of the potential impact of such materials on industrial energy use and on the environment. In addition, the development of suitable diagnostic techniques was pursued. The project was divided into four tasks: (1) Deposition of superhard boron containing films using a supersonic plasma jet reactor (SPJR), and the characterization of the deposition process. (2) Deposition of superhard nanocomposite films in the silicon-nitrogen-carbon system using the triple torch plasma reactor (TTPR), and the characterization of the deposition process. (3) Deposition of films consisting of carbon nanotubes using an atmospheric pressure glow discharge reactor. (4) Adapting the Thomson scattering method for characterization of atmospheric pressure non-uniform plasmas with steep spatial gradients and temporal fluctuations. This report summarizes the results.

  20. Advanced System for Process Engineering

    1992-02-01

    ASPEN (Advanced System for Process Engineering) is a state of the art process simulator and economic evaluation package which was designed for use in engineering fossil energy conversion processes. ASPEN can represent multiphase streams including solids, and handle complex substances such as coal. The system can perform steady state material and energy balances, determine equipment size and cost, and carry out preliminary economic evaluations. It is supported by a comprehensive physical property system for computationmore » of major properties such as enthalpy, entropy, free energy, molar volume, equilibrium ratio, fugacity coefficient, viscosity, thermal conductivity, and diffusion coefficient for specified phase conditions; vapor, liquid, or solid. The properties may be computed for pure components, mixtures, or components in a mixture, as appropriate. The ASPEN Input Language is oriented towards process engineers.« less

  1. Fully Integrated Biochip Platforms for Advanced Healthcare

    PubMed Central

    Carrara, Sandro; Ghoreishizadeh, Sara; Olivo, Jacopo; Taurino, Irene; Baj-Rossi, Camilla; Cavallini, Andrea; de Beeck, Maaike Op; Dehollain, Catherine; Burleson, Wayne; Moussy, Francis Gabriel; Guiseppi-Elie, Anthony; De Micheli, Giovanni

    2012-01-01

    Recent advances in microelectronics and biosensors are enabling developments of innovative biochips for advanced healthcare by providing fully integrated platforms for continuous monitoring of a large set of human disease biomarkers. Continuous monitoring of several human metabolites can be addressed by using fully integrated and minimally invasive devices located in the sub-cutis, typically in the peritoneal region. This extends the techniques of continuous monitoring of glucose currently being pursued with diabetic patients. However, several issues have to be considered in order to succeed in developing fully integrated and minimally invasive implantable devices. These innovative devices require a high-degree of integration, minimal invasive surgery, long-term biocompatibility, security and privacy in data transmission, high reliability, high reproducibility, high specificity, low detection limit and high sensitivity. Recent advances in the field have already proposed possible solutions for several of these issues. The aim of the present paper is to present a broad spectrum of recent results and to propose future directions of development in order to obtain fully implantable systems for the continuous monitoring of the human metabolism in advanced healthcare applications. PMID:23112644

  2. Fully integrated biochip platforms for advanced healthcare.

    PubMed

    Carrara, Sandro; Ghoreishizadeh, Sara; Olivo, Jacopo; Taurino, Irene; Baj-Rossi, Camilla; Cavallini, Andrea; de Beeck, Maaike Op; Dehollain, Catherine; Burleson, Wayne; Moussy, Francis Gabriel; Guiseppi-Elie, Anthony; De Micheli, Giovanni

    2012-01-01

    Recent advances in microelectronics and biosensors are enabling developments of innovative biochips for advanced healthcare by providing fully integrated platforms for continuous monitoring of a large set of human disease biomarkers. Continuous monitoring of several human metabolites can be addressed by using fully integrated and minimally invasive devices located in the sub-cutis, typically in the peritoneal region. This extends the techniques of continuous monitoring of glucose currently being pursued with diabetic patients. However, several issues have to be considered in order to succeed in developing fully integrated and minimally invasive implantable devices. These innovative devices require a high-degree of integration, minimal invasive surgery, long-term biocompatibility, security and privacy in data transmission, high reliability, high reproducibility, high specificity, low detection limit and high sensitivity. Recent advances in the field have already proposed possible solutions for several of these issues. The aim of the present paper is to present a broad spectrum of recent results and to propose future directions of development in order to obtain fully implantable systems for the continuous monitoring of the human metabolism in advanced healthcare applications.

  3. Advances in natural language processing.

    PubMed

    Hirschberg, Julia; Manning, Christopher D

    2015-07-17

    Natural language processing employs computational techniques for the purpose of learning, understanding, and producing human language content. Early computational approaches to language research focused on automating the analysis of the linguistic structure of language and developing basic technologies such as machine translation, speech recognition, and speech synthesis. Today's researchers refine and make use of such tools in real-world applications, creating spoken dialogue systems and speech-to-speech translation engines, mining social media for information about health or finance, and identifying sentiment and emotion toward products and services. We describe successes and challenges in this rapidly advancing area.

  4. Advanced Information Processing System (AIPS)

    NASA Technical Reports Server (NTRS)

    Pitts, Felix L.

    1993-01-01

    Advanced Information Processing System (AIPS) is a computer systems philosophy, a set of validated hardware building blocks, and a set of validated services as embodied in system software. The goal of AIPS is to provide the knowledgebase which will allow achievement of validated fault-tolerant distributed computer system architectures, suitable for a broad range of applications, having failure probability requirements of 10E-9 at 10 hours. A background and description is given followed by program accomplishments, the current focus, applications, technology transfer, FY92 accomplishments, and funding.

  5. Practical Advances in Petroleum Processing

    NASA Astrophysics Data System (ADS)

    Hsu, Chang S.; Robinson, Paul R.

    "This comprehensive book by Robinson and Hsu will certainly become the standard text book for the oil refining business...[A] must read for all who are associated with oil refining." - Dr. Walter Fritsch, Senior Vice President Refining, OMV "This book covers a very advanced horizon of petroleum processing technology. For all refiners facing regional and global environmental concerns, and for those who seek a more sophisticated understanding of the refining of petroleum resources, this book has been long in coming." - Mr. Naomasa Kondo, Cosmo Oil Company, Ltd.

  6. Integrating advanced facades into high performance buildings

    SciTech Connect

    Selkowitz, Stephen E.

    2001-05-01

    Glass is a remarkable material but its functionality is significantly enhanced when it is processed or altered to provide added intrinsic capabilities. The overall performance of glass elements in a building can be further enhanced when they are designed to be part of a complete facade system. Finally the facade system delivers the greatest performance to the building owner and occupants when it becomes an essential element of a fully integrated building design. This presentation examines the growing interest in incorporating advanced glazing elements into more comprehensive facade and building systems in a manner that increases comfort, productivity and amenity for occupants, reduces operating costs for building owners, and contributes to improving the health of the planet by reducing overall energy use and negative environmental impacts. We explore the role of glazing systems in dynamic and responsive facades that provide the following functionality: Enhanced sun protection and cooling load control while improving thermal comfort and providing most of the light needed with daylighting; Enhanced air quality and reduced cooling loads using natural ventilation schemes employing the facade as an active air control element; Reduced operating costs by minimizing lighting, cooling and heating energy use by optimizing the daylighting-thermal tradeoffs; Net positive contributions to the energy balance of the building using integrated photovoltaic systems; Improved indoor environments leading to enhanced occupant health, comfort and performance. In addressing these issues facade system solutions must, of course, respect the constraints of latitude, location, solar orientation, acoustics, earthquake and fire safety, etc. Since climate and occupant needs are dynamic variables, in a high performance building the facade solution have the capacity to respond and adapt to these variable exterior conditions and to changing occupant needs. This responsive performance capability

  7. Advanced System for Process Engineering

    1998-09-14

    PRO ASPEN/PC1.0 (Advanced System for Process Engineering) is a state of the art process simulator and economic evaluation package which was designed for use in engineering fossil energy conversion processes and has been ported to run on a PC. PRO ASPEN/PC1.0 can represent multiphase streams including solids, and handle complex substances such as coal. The system can perform steady state material and energy balances, determine equipment size and cost, and carry out preliminary economic evaluations.more » It is supported by a comprehensive physical property system for computation of major properties such as enthalpy, entropy, free energy, molar volume, equilibrium ratio, fugacity coefficient, viscosity, thermal conductivity, and diffusion coefficient for specified phase conditions; vapor, liquid, or solid. The properties may be computed for pure components, mixtures, or components in a mixture, as appropriate. The PRO ASPEN/PC1.0 Input Language is oriented towards process engineers.« less

  8. Advancing representation of hydrologic processes in the Soil and Water Assessment Tool (SWAT) through integration of the TOPographic MODEL (TOPMODEL) features

    NASA Astrophysics Data System (ADS)

    Chen, Ji; Wu, Yiping

    2012-02-01

    SummaryThis paper presents a study of the integration of the Soil and Water Assessment Tool (SWAT) model and the TOPographic MODEL (TOPMODEL) features for enhancing the physical representation of hydrologic processes. In SWAT, four hydrologic processes, which are surface runoff, baseflow, groundwater re-evaporation and deep aquifer percolation, are modeled by using a group of empirical equations. The empirical equations usually constrain the simulation capability of relevant processes. To replace these equations and to model the influences of topography and water table variation on streamflow generation, the TOPMODEL features are integrated into SWAT, and a new model, the so-called SWAT-TOP, is developed. In the new model, the process of deep aquifer percolation is removed, the concept of groundwater re-evaporation is refined, and the processes of surface runoff and baseflow are remodeled. Consequently, three parameters in SWAT are discarded, and two new parameters to reflect the TOPMODEL features are introduced. SWAT-TOP and SWAT are applied to the East River basin in South China, and the results reveal that, compared with SWAT, the new model can provide a more reasonable simulation of the hydrologic processes of surface runoff, groundwater re-evaporation, and baseflow. This study evidences that an established hydrologic model can be further improved by integrating the features of another model, which is a possible way to enhance our understanding of the workings of catchments.

  9. Advancing representation of hydrologic processes in the Soil and Water Assessment Tool (SWAT) through integration of the TOPographic MODEL (TOPMODEL) features

    USGS Publications Warehouse

    Chen, J.; Wu, Y.

    2012-01-01

    This paper presents a study of the integration of the Soil and Water Assessment Tool (SWAT) model and the TOPographic MODEL (TOPMODEL) features for enhancing the physical representation of hydrologic processes. In SWAT, four hydrologic processes, which are surface runoff, baseflow, groundwater re-evaporation and deep aquifer percolation, are modeled by using a group of empirical equations. The empirical equations usually constrain the simulation capability of relevant processes. To replace these equations and to model the influences of topography and water table variation on streamflow generation, the TOPMODEL features are integrated into SWAT, and a new model, the so-called SWAT-TOP, is developed. In the new model, the process of deep aquifer percolation is removed, the concept of groundwater re-evaporation is refined, and the processes of surface runoff and baseflow are remodeled. Consequently, three parameters in SWAT are discarded, and two new parameters to reflect the TOPMODEL features are introduced. SWAT-TOP and SWAT are applied to the East River basin in South China, and the results reveal that, compared with SWAT, the new model can provide a more reasonable simulation of the hydrologic processes of surface runoff, groundwater re-evaporation, and baseflow. This study evidences that an established hydrologic model can be further improved by integrating the features of another model, which is a possible way to enhance our understanding of the workings of catchments.

  10. Integrated decontamination process for metals

    DOEpatents

    Snyder, Thomas S.; Whitlow, Graham A.

    1991-01-01

    An integrated process for decontamination of metals, particularly metals that are used in the nuclear energy industry contaminated with radioactive material. The process combines the processes of electrorefining and melt refining to purify metals that can be decontaminated using either electrorefining or melt refining processes.

  11. Electrochromic Windows: Advanced Processing Technology

    SciTech Connect

    SAGE Electrochromics, Inc

    2006-12-13

    This project addresses the development of advanced fabrication capabilities for energy saving electrochromic (EC) windows. SAGE EC windows consist of an inorganic stack of thin films deposited onto a glass substrate. The window tint can be reversibly changed by the application of a low power dc voltage. This property can be used to modulate the amount of light and heat entering buildings (or vehicles) through the glazings. By judicious management of this so-called solar heat gain, it is possible to derive significant energy savings due to reductions in heating lighting, and air conditioning (HVAC). Several areas of SAGE’s production were targeted during this project to allow significant improvements to processing throughput, yield and overall quality of the processing, in an effort to reduce the cost and thereby improve the market penetration. First, the overall thin film process was optimized to allow a more robust set of operating points to be used, thereby maximizing the yield due to the thin film deposition themselves. Other significant efforts aimed at improving yield were relating to implementing new procedures and processes for the manufacturing process, to improve the quality of the substrate preparation, and the quality of the IGU fabrication. Furthermore, methods for reworking defective devices were developed, to enable devices which would otherwise be scrapped to be made into useful product. This involved the in-house development of some customized equipment. Finally, the improvements made during this project were validated to ensure that they did not impact the exceptional durability of the SageGlass® products. Given conservative estimates for cost and market penetration, energy savings due to EC windows in residences in the US are calculated to be of the order 0.026 quad (0.026×1015BTU/yr) by the year 2017.

  12. Advances in Ecological Speciation: an integrative approach.

    PubMed

    Faria, Rui; Renaut, Sebastien; Galindo, Juan; Pinho, Catarina; Melo-Ferreira, José; Melo, Martim; Jones, Felicity; Salzburger, Walter; Schluter, Dolph; Butlin, Roger

    2014-02-01

    The role of natural selection in promoting reproductive isolation has received substantial renewed interest within the last two decades. As a consequence, the study of ecological speciation has become an extremely productive research area in modern evolutionary biology. Recent innovations in sequencing technologies offer an unprecedented opportunity to study the mechanisms involved in ecological speciation. Genome scans provide significant insights but have some important limitations; efforts are needed to integrate them with other approaches to make full use of the sequencing data deluge. An international conference 'Advances in Ecological Speciation' organized by the University of Porto (Portugal) aimed to review current progress in ecological speciation. Using some of the examples presented at the conference, we highlight the benefits of integrating ecological and genomic data and discuss different mechanisms of parallel evolution. Finally, future avenues of research are suggested to advance our knowledge concerning the role of natural selection in the establishment of reproductive isolation during ecological speciation.

  13. Advanced oxidation process sanitization of eggshell surfaces.

    PubMed

    Gottselig, Steven M; Dunn-Horrocks, Sadie L; Woodring, Kristy S; Coufal, Craig D; Duong, Tri

    2016-06-01

    The microbial quality of eggs entering the hatchery represents an important critical control point for biosecurity and pathogen reduction programs in integrated poultry production. The development of safe and effective interventions to reduce microbial contamination on the surface of eggs will be important to improve the overall productivity and microbial food safety of poultry and poultry products. The hydrogen peroxide (H2O2) and ultraviolet (UV) light advanced oxidation process is a potentially important alternative to traditional sanitizers and disinfectants for egg sanitation. The H2O2/UV advanced oxidation process was demonstrated previously to be effective in reducing surface microbial contamination on eggs. In this study, we evaluated treatment conditions affecting the efficacy of H2O2/UV advanced oxidation in order to identify operational parameters for the practical application of this technology in egg sanitation. The effect of the number of application cycles, UV intensity, duration of UV exposure, and egg rotation on the recovery of total aerobic bacteria from the surface of eggs was evaluated. Of the conditions evaluated, we determined that reduction of total aerobic bacteria from naturally contaminated eggs was optimized when eggs were sanitized using 2 repeated application cycles with 5 s exposure to 14 mW cm(-2) UV light, and that rotation of the eggs between application cycles was unnecessary. Additionally, using these optimized conditions, the H2O2/UV process reduced Salmonella by greater than 5 log10 cfu egg(-1) on the surface of experimentally contaminated eggs. This study demonstrates the potential for practical application of the H2O2/UV advanced oxidation process in egg sanitation and its effectiveness in reducing Salmonella on eggshell surfaces. PMID:27030693

  14. Integrated palm oil processing

    SciTech Connect

    Compere, A.L.; Googin, J.M.; Griffith, W.L.

    1983-12-01

    Tree palms are a promising source of fuel extenders and substitutes. They are perennials which bear oil for a period of two to three decades after a roughly four year preliminary growth period. Because palms are an important crop in many areas of Asia, Africa, and South America, considerable attention has been given to palm genetic improvement, with the result that tree palms are one of the most efficient energy crops, providing much better solar energy capture than, for example, sugar cane and cassava. Tree palms are particularly attractive in areas where more conventional farming would pose a significant threat of laterization or cause major ecological problems. Technology for palm oil production, including harvest, tree management, and oil pressing are generally suited to village or plantation use, and, for the most part, have been directed toward supplying process energy through the combustion of process waste products, such as palm fruit residue and palm bunch fibers.

  15. Integrated coal liquefaction process

    DOEpatents

    Effron, Edward

    1978-01-01

    In a process for the liquefaction of coal in which coal liquids containing phenols and other oxygenated compounds are produced during the liquefaction step and later hydrogenated, oxygenated compounds are removed from at least part of the coal liquids in the naphtha and gas oil boiling range prior to the hydrogenation step and employed as a feed stream for the manufacture of a synthesis gas or for other purposes.

  16. Development of an Integrated Multi-Contaminant Removal Process Applied to Warm Syngas Cleanup for Coal-Based Advanced Gasification Systems

    SciTech Connect

    Meyer, Howard

    2010-11-30

    This project met the objective to further the development of an integrated multi-contaminant removal process in which H2S, NH3, HCl and heavy metals including Hg, As, Se and Cd present in the coal-derived syngas can be removed to specified levels in a single/integrated process step. The process supports the mission and goals of the Department of Energy's Gasification Technologies Program, namely to enhance the performance of gasification systems, thus enabling U.S. industry to improve the competitiveness of gasification-based processes. The gasification program will reduce equipment costs, improve process environmental performance, and increase process reliability and flexibility. Two sulfur conversion concepts were tested in the laboratory under this project, i.e., the solventbased, high-pressure University of California Sulfur Recovery Process High Pressure (UCSRP-HP) and the catalytic-based, direct oxidation (DO) section of the CrystaSulf-DO process. Each process required a polishing unit to meet the ultra-clean sulfur content goals of <50 ppbv (parts per billion by volume) as may be necessary for fuel cells or chemical production applications. UCSRP-HP was also tested for the removal of trace, non-sulfur contaminants, including ammonia, hydrogen chloride, and heavy metals. A bench-scale unit was commissioned and limited testing was performed with simulated syngas. Aspen-Plus®-based computer simulation models were prepared and the economics of the UCSRP-HP and CrystaSulf-DO processes were evaluated for a nominal 500 MWe, coal-based, IGCC power plant with carbon capture. This report covers the progress on the UCSRP-HP technology development and the CrystaSulf-DO technology.

  17. Berezin integrals and Poisson processes

    NASA Astrophysics Data System (ADS)

    DeAngelis, G. F.; Jona-Lasinio, G.; Sidoravicius, V.

    1998-01-01

    We show that the calculation of Berezin integrals over anticommuting variables can be reduced to the evaluation of expectations of functionals of Poisson processes via an appropriate Feynman-Kac formula. In this way the tools of ordinary analysis can be applied to Berezin integrals and, as an example, we prove a simple upper bound. Possible applications of our results are briefly mentioned.

  18. Integrated palm oil processing

    SciTech Connect

    Compere, A.L.; Griffith, W.L.; Googin, J.M.

    1983-01-01

    Tree palms are a promising source of fuel extenders and substitutes. They are perennials which bear oil for a period of two to three decades after a roughly four year preliminary growth period. Tree palms are now one of the most efficient energy crops: the best modern varieties can provide up to 6 tonnes per hectare per year of mesocarp and kernal oils. Palms are particularly attractive in areas where more conventional farming would pose a significant threat of laterization of cause major ecological problems. Technology for palm oil production is can range between village level manual operations and highly industrialized mills. Process energy is often supplied by combustion of byproducts. Although palm oil is a good energy crop, its physical and combustion properties preclude most use in conventional diesel engines, although palm oil could be directly blended with residual fuel oils for use in some large engines. At present, two uses for palm oil as a diesel fuel extender or substitute appear attractive: microemulsion blends using palm soapstock and monoesters produced by exchanging small alcohols for the glycerol in triglycerides. The amount of alcohols required for conversion of a substantial fraction of palm oil or palm oil soapstock to fuel extenders or substitutes is proportionately small, and, to a major extent, can be supplied by palm processing waste materials. Fermentation and gasification produced alcohols in the one to four carbon range are suitable for use in formulating palm oil based fuels. On a stoichiometric basis, it appears that the value of the palm oil and alcohols are very close to their value as export items. Use of these palm oil fuels could help to decrease balance of payments problems for developing countries, as well as provide a secure market for agricultural products and improved rural employment.

  19. Fully Integrating the Design Process

    SciTech Connect

    T.A. Bjornard; R.S. Bean

    2008-03-01

    The basic approach to designing nuclear facilities in the United States does not currently reflect the routine consideration of proliferation resistance and international safeguards. The fully integrated design process is an approach for bringing consideration of international safeguards and proliferation resistance, together with state safeguards and security, fully into the design process from the very beginning, while integrating them sensibly and synergistically with the other project functions. In view of the recently established GNEP principles agreed to by the United States and at least eighteen other countries, this paper explores such an integrated approach, and its potential to help fulfill the new internationally driven design requirements with improved efficiencies and reduced costs.

  20. Advanced integrated life support system update

    NASA Technical Reports Server (NTRS)

    Whitley, Phillip E.

    1994-01-01

    The Advanced Integrated Life Support System Program (AILSS) is an advanced development effort to integrate the life support and protection requirements using the U.S. Navy's fighter/attack mission as a starting point. The goal of AILSS is to optimally mate protection from altitude, acceleration, chemical/biological agent, thermal environment (hot, cold, and cold water immersion) stress as well as mission enhancement through improved restraint, night vision, and head-mounted reticules and displays to ensure mission capability. The primary emphasis to date has been to establish garment design requirements and tradeoffs for protection. Here the garment and the human interface are treated as a system. Twelve state-off-the-art concepts from government and industry were evaluated for design versus performance. On the basis of a combination of centrifuge, thermal manikin data, thermal modeling, and mobility studies, some key design parameters have been determined. Future efforts will concentrate on the integration of protection through garment design and the use of a single layer, multiple function concept to streamline the garment system.

  1. Teaching Process Design through Integrated Process Synthesis

    ERIC Educational Resources Information Center

    Metzger, Matthew J.; Glasser, Benjamin J.; Patel, Bilal; Hildebrandt, Diane; Glasser, David

    2012-01-01

    The design course is an integral part of chemical engineering education. A novel approach to the design course was recently introduced at the University of the Witwatersrand, Johannesburg, South Africa. The course aimed to introduce students to systematic tools and techniques for setting and evaluating performance targets for processes, as well as…

  2. Advanced packaging for Integrated Micro-Instruments

    NASA Technical Reports Server (NTRS)

    Lyke, James L.

    1995-01-01

    The relationship between packaging, microelectronics, and micro-electrical-mechanical systems (MEMS) is an important one, particularly when the edges of performance boundaries are pressed, as in the case of miniaturized systems. Packaging is a sort of physical backbone that enables the maximum performance of these systems to be realized, and the penalties imposed by conventional packing approaches is particularly limiting for MEMS devices. As such, advanced packaging approaches, such as multi-chip modules (MCM's) have been touted as a true means of electronic 'enablement' for a variety of application domains. Realizing an optimum system of packaging, however, in not as simple as replacing a set of single chip packages with a substrate of interconnections. Research at Phillips Laboratory has turned up a number of integrating options in the two- and three-dimensional rending of miniature systems with physical interconnection structures with intrinsically high performance. Not only do these structures motivate the redesign of integrated circuits (IC's) for lower power, but they possess interesting features that provide a framework for the direct integration of MEMS devices. Cost remains a barrier to the application of MEMS devices, even in space systems. Several innovations are suggested that will result in lower cost and more rapid cycle time. First, the novelty of a 'constant floor plan' MCM which encapsulates a variety of commonly used components into a stockable, easily customized assembly is discussed. Next, the use of low-cost substrates is examined. The anticipated advent of ultra-high density interconnect (UHDI) is suggested as the limit argument of advanced packaging. Finally, the concept of a heterogeneous 3-D MCM system is outlined that allows for the combination of different compatible packaging approaches into a uniformly dense structure that could also include MEMS-based sensors.

  3. Treatment of an actual slaughterhouse wastewater by integration of biological and advanced oxidation processes: Modeling, optimization, and cost-effectiveness analysis.

    PubMed

    Bustillo-Lecompte, Ciro Fernando; Mehrvar, Mehrab

    2016-11-01

    Biological and advanced oxidation processes are combined to treat an actual slaughterhouse wastewater (SWW) by a sequence of an anaerobic baffled reactor, an aerobic activated sludge reactor, and a UV/H2O2 photoreactor with recycle in continuous mode at laboratory scale. In the first part of this study, quadratic modeling along with response surface methodology are used for the statistical analysis and optimization of the combined process. The effects of the influent total organic carbon (TOC) concentration, the flow rate, the pH, the inlet H2O2 concentration, and their interaction on the overall treatment efficiency, CH4 yield, and H2O2 residual in the effluent of the photoreactor are investigated. The models are validated at different operating conditions using experimental data. Maximum TOC and total nitrogen (TN) removals of 91.29 and 86.05%, respectively, maximum CH4 yield of 55.72%, and minimum H2O2 residual of 1.45% in the photoreactor effluent were found at optimal operating conditions. In the second part of this study, continuous distribution kinetics is applied to establish a mathematical model for the degradation of SWW as a function of time. The agreement between model predictions and experimental values indicates that the proposed model could describe the performance of the combined anaerobic-aerobic-UV/H2O2 processes for the treatment of SWW. In the final part of the study, the optimized combined anaerobic-aerobic-UV/H2O2 processes with recycle were evaluated using a cost-effectiveness analysis to minimize the retention time, the electrical energy consumption, and the overall incurred treatment costs required for the efficient treatment of slaughterhouse wastewater effluents. PMID:27568982

  4. Advances on the fabrication process of Er3+/Yb3+:GeO2-PbO pedestal waveguides for integrated photonics

    NASA Astrophysics Data System (ADS)

    Bomfim, F. A.; da Silva, D. M.; Kassab, L. R. P.; de Assumpção, T. A. A.; Del Cacho, V. D.; Alayo, M. I.

    2015-11-01

    The present work reports the fabrication, passive and active characterization of Yb3+/Er3+ codoped GeO2-PbO pedestal waveguides. We show the advances obtained in pedestal fabrication by comparing waveguides obtained under different processes parameters. The thin films were deposited on previously oxidized silicon wafers in Ar plasma at 5 mTorr; pedestal waveguides, with 1-100 μm width range were defined by conventional lithography procedure, followed by reactive ion etching (RIE). A comparison between the results of propagation losses and internal gain is presented in order to show that the improvement of fabrication process contributed to enhance the performance of the pedestal waveguides. Reduction of about 50% was observed for the propagation losses at 632 and 1068 nm, whereas enhancement of approximately 50% was obtained for the internal gain at 1530 nm (4 and 6 dB/cm, for 70 μm waveguide width), under 980 nm excitation. The present results demonstrate the possibility of using Yb3+/Er3+ codoped GeO2-PbO as pedestal waveguide amplifiers.

  5. System Engineering and Integration of Controls for Advanced Life Support

    NASA Technical Reports Server (NTRS)

    Overland, David; Hoo, Karlene; Ciskowski, Marvin

    2006-01-01

    The Advanced Integration Matrix (AIM) project at the Johnson Space Center (JSC) was chartered to study and solve systems-level integration issues for exploration missions. One of the first issues identified was an inability to conduct trade studies on control system architectures due to the absence of mature evaluation criteria. Such architectures are necessary to enable integration of regenerative life support systems. A team was formed to address issues concerning software and hardware architectures and system controls.. The team has investigated what is required to integrate controls for the types of non-linear dynamic systems encountered in advanced life support. To this end, a water processing bioreactor testbed is being developed which will enable prototyping and testing of integration strategies and technologies. Although systems such as the water bioreactors exhibit the complexities of interactions between control schemes most vividly, it is apparent that this behavior and its attendant risks will manifest itself among any set of interdependent autonomous control systems. A methodology for developing integration requirements for interdependent and autonomous systems is a goal of this team and this testbed. This paper is a high-level summary of the current status of the investigation, the issues encountered, some tentative conclusions, and the direction expected for further research.

  6. Advanced methods for processing ceramics

    SciTech Connect

    Carter, W.B.

    1995-05-01

    Combustion chemical vapor deposition (CCVD) is a flame assisted, open air chemical vapor deposition (CVD) process. The process is capable of producing textured, epitaxial coatings on single crystal substrates using low cost reagents. Combustion chemical vapor deposition is a relatively inexpensive, alternative thin film deposition process with potential to replace conventional coating technologies for certain applications. The goals of this project are to develop the CCVD process to the point that potential industrial applications can be identified and reliably assessed.

  7. Pilot-scale test of an advanced, integrated wastewater treatment process with sludge reduction, inorganic solids separation, phosphorus recovery, and enhanced nutrient removal (SIPER).

    PubMed

    Yan, Peng; Ji, Fangying; Wang, Jing; Fan, Jianping; Guan, Wei; Chen, Qingkong

    2013-08-01

    Sludge reduction technologies are increasingly important in wastewater treatment, but have some defects. In order to remedy them, a novel, integrated process including sludge reduction, inorganic solids separation, phosphorus recovery, and enhanced nutrient removal was developed. The pilot-scale system was operated steadily at a treatment scale of 10 m(3)/d for 90 days. The results showed excellent nutrient removal, with average removal efficiencies for NH4(+)-N, TN, TP, and COD reaching 98.2 ± 1.34%, 75.5 ± 3.46%, 95.3 ± 1.65%, and 92.7 ± 2.49%, respectively. The ratio of mixed liquor volatile suspended solids (MLVSS) to mixed liquor suspended solids (MLSS) in the system gradually increased, from 0.33 to 0.52. The process effectively prevented the accumulation of inert or inorganic solids in activated sludge. Phosphorus was recovered as a crystalline product with aluminum ion from wastewater. The observed sludge yield Yobs of the system was 0.103 gVSS/g COD, demonstrating that the system's sludge reduction potential is excellent.

  8. Lunar materials processing system integration

    NASA Technical Reports Server (NTRS)

    Sherwood, Brent

    1992-01-01

    The theme of this paper is that governmental resources will not permit the simultaneous development of all viable lunar materials processing (LMP) candidates. Choices will inevitably be made, based on the results of system integration trade studies comparing candidates to each other for high-leverage applications. It is in the best long-term interest of the LMP community to lead the selection process itself, quickly and practically. The paper is in five parts. The first part explains what systems integration means and why the specialized field of LMP needs this activity now. The second part defines the integration context for LMP -- by outlining potential lunar base functions, their interrelationships and constraints. The third part establishes perspective for prioritizing the development of LMP methods, by estimating realistic scope, scale, and timing of lunar operations. The fourth part describes the use of one type of analytical tool for gaining understanding of system interactions: the input/output model. A simple example solved with linear algebra is used to illustrate. The fifth and closing part identifies specific steps needed to refine the current ability to study lunar base system integration. Research specialists have a crucial role to play now in providing the data upon which this refinement process must be based.

  9. Recent advances in integrated photonic sensors.

    PubMed

    Passaro, Vittorio M N; de Tullio, Corrado; Troia, Benedetto; La Notte, Mario; Giannoccaro, Giovanni; De Leonardis, Francesco

    2012-01-01

    Nowadays, optical devices and circuits are becoming fundamental components in several application fields such as medicine, biotechnology, automotive, aerospace, food quality control, chemistry, to name a few. In this context, we propose a complete review on integrated photonic sensors, with specific attention to materials, technologies, architectures and optical sensing principles. To this aim, sensing principles commonly used in optical detection are presented, focusing on sensor performance features such as sensitivity, selectivity and rangeability. Since photonic sensors provide substantial benefits regarding compatibility with CMOS technology and integration on chips characterized by micrometric footprints, design and optimization strategies of photonic devices are widely discussed for sensing applications. In addition, several numerical methods employed in photonic circuits and devices, simulations and design are presented, focusing on their advantages and drawbacks. Finally, recent developments in the field of photonic sensing are reviewed, considering advanced photonic sensor architectures based on linear and non-linear optical effects and to be employed in chemical/biochemical sensing, angular velocity and electric field detection. PMID:23202223

  10. Technology Advancement for Integrative Stem Cell Analyses

    PubMed Central

    Jeong, Yoon

    2014-01-01

    Scientists have endeavored to use stem cells for a variety of applications ranging from basic science research to translational medicine. Population-based characterization of such stem cells, while providing an important foundation to further development, often disregard the heterogeneity inherent among individual constituents within a given population. The population-based analysis and characterization of stem cells and the problems associated with such a blanket approach only underscore the need for the development of new analytical technology. In this article, we review current stem cell analytical technologies, along with the advantages and disadvantages of each, followed by applications of these technologies in the field of stem cells. Furthermore, while recent advances in micro/nano technology have led to a growth in the stem cell analytical field, underlying architectural concepts allow only for a vertical analytical approach, in which different desirable parameters are obtained from multiple individual experiments and there are many technical challenges that limit vertically integrated analytical tools. Therefore, we propose—by introducing a concept of vertical and horizontal approach—that there is the need of adequate methods to the integration of information, such that multiple descriptive parameters from a stem cell can be obtained from a single experiment. PMID:24874188

  11. Development of Advanced Tools for Cryogenic Integration

    NASA Astrophysics Data System (ADS)

    Bugby, D. C.; Marland, B. C.; Stouffer, C. J.; Kroliczek, E. J.

    2004-06-01

    This paper describes four advanced devices (or tools) that were developed to help solve problems in cryogenic integration. The four devices are: (1) an across-gimbal nitrogen cryogenic loop heat pipe (CLHP); (2) a miniaturized neon CLHP; (3) a differential thermal expansion (DTE) cryogenic thermal switch (CTSW); and (4) a dual-volume nitrogen cryogenic thermal storage unit (CTSU). The across-gimbal CLHP provides a low torque, high conductance solution for gimbaled cryogenic systems wishing to position their cryocoolers off-gimbal. The miniaturized CLHP combines thermal transport, flexibility, and thermal switching (at 35 K) into one device that can be directly mounted to both the cooler cold head and the cooled component. The DTE-CTSW, designed and successfully tested in a previous program using a stainless steel tube and beryllium (Be) end-pieces, was redesigned with a polymer rod and high-purity aluminum (Al) end-pieces to improve performance and manufacturability while still providing a miniaturized design. Lastly, the CTSU was designed with a 6063 Al heat exchanger and integrally welded, segmented, high purity Al thermal straps for direct attachment to both a cooler cold head and a Be component whose peak heat load exceeds its average load by 2.5 times. For each device, the paper will describe its development objective, operating principles, heritage, requirements, design, test data and lessons learned.

  12. Technology advancement for integrative stem cell analyses.

    PubMed

    Jeong, Yoon; Choi, Jonghoon; Lee, Kwan Hyi

    2014-12-01

    Scientists have endeavored to use stem cells for a variety of applications ranging from basic science research to translational medicine. Population-based characterization of such stem cells, while providing an important foundation to further development, often disregard the heterogeneity inherent among individual constituents within a given population. The population-based analysis and characterization of stem cells and the problems associated with such a blanket approach only underscore the need for the development of new analytical technology. In this article, we review current stem cell analytical technologies, along with the advantages and disadvantages of each, followed by applications of these technologies in the field of stem cells. Furthermore, while recent advances in micro/nano technology have led to a growth in the stem cell analytical field, underlying architectural concepts allow only for a vertical analytical approach, in which different desirable parameters are obtained from multiple individual experiments and there are many technical challenges that limit vertically integrated analytical tools. Therefore, we propose--by introducing a concept of vertical and horizontal approach--that there is the need of adequate methods to the integration of information, such that multiple descriptive parameters from a stem cell can be obtained from a single experiment.

  13. Recent Advances in Integrated Photonic Sensors

    PubMed Central

    Passaro, Vittorio M. N.; de Tullio, Corrado; Troia, Benedetto; La Notte, Mario; Giannoccaro, Giovanni; De Leonardis, Francesco

    2012-01-01

    Nowadays, optical devices and circuits are becoming fundamental components in several application fields such as medicine, biotechnology, automotive, aerospace, food quality control, chemistry, to name a few. In this context, we propose a complete review on integrated photonic sensors, with specific attention to materials, technologies, architectures and optical sensing principles. To this aim, sensing principles commonly used in optical detection are presented, focusing on sensor performance features such as sensitivity, selectivity and rangeability. Since photonic sensors provide substantial benefits regarding compatibility with CMOS technology and integration on chips characterized by micrometric footprints, design and optimization strategies of photonic devices are widely discussed for sensing applications. In addition, several numerical methods employed in photonic circuits and devices, simulations and design are presented, focusing on their advantages and drawbacks. Finally, recent developments in the field of photonic sensing are reviewed, considering advanced photonic sensor architectures based on linear and non-linear optical effects and to be employed in chemical/biochemical sensing, angular velocity and electric field detection. PMID:23202223

  14. Advanced methods for processing ceramics

    SciTech Connect

    Carter, W.B.

    1997-04-01

    Combustion chemical vapor deposition (combustion CVD) is being developed for the deposition of high temperature oxide coatings. The process is being evaluated as an alternative to more capital intensive conventional coating processes. The thrusts during this reporting period were the development of the combustion CVD process for depositing lanthanum monazite, the determination of the influence of aerosol size on coating morphology, the incorporation of combustion CVD coatings into thermal barrier coatings (TBCs) and related oxidation research, and continued work on the deposition of zirconia-yttria coatings.

  15. Generative inspection process planner for integrated production

    SciTech Connect

    Brown, C.W. . Kansas City Div.); Gyorog, D.A. . Dept. of Mechanical Engineering)

    1990-04-01

    This work describes the design prototype development of a generative process planning system for dimensional inspection. The system, IPPEX (Inspection Process Planning EXpert), is a rule-based expert system for integrated production. Using as advanced product modeler, relational databases, and artificial intelligence techniques, IPPEX generates the process plan and part program for the dimensional inspection of products using CMMs. Through an application interface, the IPPEX system software accesses product definition from the product modeler. The modeler is a solid geometric modeler coupled with a dimension and tolerance modeler. Resource data regarding the machines, probes, and fixtures are queried from databases. IPPEX represents inspection process knowledge as production rules and incorporates an embedded inference engine to perform decision making. The IPPEX system, its functional architecture, system architecture, system approach, product modeling environment, inspection features, inspection knowledge, hierarchical planning strategy, user interface formats, and other fundamental issues related to inspection planning and part programming for CMMs are described. 27 refs., 16 figs., 4 tabs.

  16. Advanced integrated solvent extraction and ion exchange systems

    SciTech Connect

    Horwitz, P.

    1996-10-01

    Advanced integrated solvent extraction (SX) and ion exchange (IX) systems are a series of novel SX and IX processes that extract and recover uranium and transuranics (TRUs) (neptunium, plutonium, americium) and fission products {sup 90}Sr, {sup 99}Tc, and {sup 137}Cs from acidic high-level liquid waste and that sorb and recover {sup 90}Sr, {sup 99}Tc, and {sup 137}Cs from alkaline supernatant high-level waste. Each system is based on the use of new selective liquid extractants or chromatographic materials. The purpose of the integrated SX and IX processes is to minimize the quantity of waste that must be vitrified and buried in a deep geologic repository by producing raffinates (from SX) and effluent streams (from IX) that will meet the specifications of Class A low-level waste.

  17. Natural language processing and advanced information management

    NASA Technical Reports Server (NTRS)

    Hoard, James E.

    1989-01-01

    Integrating diverse information sources and application software in a principled and general manner will require a very capable advanced information management (AIM) system. In particular, such a system will need a comprehensive addressing scheme to locate the material in its docuverse. It will also need a natural language processing (NLP) system of great sophistication. It seems that the NLP system must serve three functions. First, it provides an natural language interface (NLI) for the users. Second, it serves as the core component that understands and makes use of the real-world interpretations (RWIs) contained in the docuverse. Third, it enables the reasoning specialists (RSs) to arrive at conclusions that can be transformed into procedures that will satisfy the users' requests. The best candidate for an intelligent agent that can satisfactorily make use of RSs and transform documents (TDs) appears to be an object oriented data base (OODB). OODBs have, apparently, an inherent capacity to use the large numbers of RSs and TDs that will be required by an AIM system and an inherent capacity to use them in an effective way.

  18. Advanced reburning with new process enhancements

    SciTech Connect

    Folsom, B.; Payne, R.; Moyeda, D.

    1996-01-01

    Advanced Reburning (AR) is a synergistic integration of reburning and selective non-catalytic reduction (SNCR) which can reduce NO{sub x} emissions by over 85% from boilers and furnaces. Reburning is used to set up conditions which optimize the performance of SNCR including broadening of the temperature window and reduction of ammonia slip. AR has been tested extensively at pilot scale as part of two DOE projects. Recently, two AR improvements have been developed and tested at bench scale: reagent injection into the reburning zone and specific promoters which enhance NO{sub x} control, broaden the SNCR temperature window, and further reduce ammonia slip. The reburning zone reagent injection can be used to eliminate the injection of urea or ammonia SNCR agents thus significantly reducing total capital cost. Alternately, two injection stages can be used to increase NO{sub x} control to 95%. This paper presents the results of pilot and bench scale tests of both the AR and the new process enhancements. Plans for additional development and a full scale field evaluation are discussed.

  19. Advanced Materials and Processing 2010

    NASA Astrophysics Data System (ADS)

    Zhang, Yunfeng; Su, Chun Wei; Xia, Hui; Xiao, Pengfei

    2011-06-01

    Strain sensors made from MWNT/polymer nanocomposites / Gang Yin, Ning Hu and Yuan Li -- Shear band evolution and nanostructure formation in titanium by cold rolling / Dengke Yang, Peter D. Hodgson and Cuie Wen -- Biodegradable Mg-Zr-Ca alloys for bone implant materials / Yuncang Li ... [et al.] -- Hydroxyapatite synthesized from nanosized calcium carbonate via hydrothermal method / Yu-Shiang Wu, Wen-Ku Chang and Min Jou -- Modeling of the magnetization process and orthogonal fluxgate sensitivity of ferromagnetic micro-wire arrays / Fan Jie ... [et al.] -- Fabrication of silicon oxide nanowires on Ni coated silicon substrate by simple heating process / Bo Peng and Kwon-Koo Cho -- Deposition of TiOxNy thin films with various nitrogen flow rate: growth behavior and structural properties / S.-J. Cho ... [et al.] -- Observation on photoluminescence evolution in 300 KeV self-ion implanted and annealed silicon / Yu Yang ... [et al.] -- Facile synthesis of lithium niobate from a novel precursor H[symbol] / Meinan Liu ... [et al.] -- Effects of the buffer layers on the adhesion and antimicrobial properties of the amorphous ZrAlNiCuSi films / Pai-Tsung Chiang ... [et al.] -- Fabrication of ZnO nanorods by electrochemical deposition process and its photovoltaic properties / Jin-Hwa Kim ... [et al.] -- Cryogenic resistivities of NbTiAlVTaLax, CoCrFeNiCu and CoCrFeNiAl high entropy alloys / Xiao Yang and Yong Zhang -- Modeling of centrifugal force field and the effect on filling and solidification in centrifugal casting / Wenbin Sheng, Chunxue Ma and Wanli Gu -- Electrochemical properties of TiO[symbol] nanotube arrays film prepared by anodic oxidation / Young-Jin Choi ... [et al.] -- Effect of Ce additions on high temperature properties of Mg-5Sn-3Al-1Zn alloy / Byoung Soo Kang ... [et al.] -- Sono-electroless plating of Ni-Mo-P film / Atsushi Chiba, Masato Kanou and Wen-Chang Wu -- Diameter dependence of giant magneto-impedance effect in co-based melt extracted amorphous

  20. Advanced Materials and Processing 2010

    NASA Astrophysics Data System (ADS)

    Zhang, Yunfeng; Su, Chun Wei; Xia, Hui; Xiao, Pengfei

    2011-06-01

    Strain sensors made from MWNT/polymer nanocomposites / Gang Yin, Ning Hu and Yuan Li -- Shear band evolution and nanostructure formation in titanium by cold rolling / Dengke Yang, Peter D. Hodgson and Cuie Wen -- Biodegradable Mg-Zr-Ca alloys for bone implant materials / Yuncang Li ... [et al.] -- Hydroxyapatite synthesized from nanosized calcium carbonate via hydrothermal method / Yu-Shiang Wu, Wen-Ku Chang and Min Jou -- Modeling of the magnetization process and orthogonal fluxgate sensitivity of ferromagnetic micro-wire arrays / Fan Jie ... [et al.] -- Fabrication of silicon oxide nanowires on Ni coated silicon substrate by simple heating process / Bo Peng and Kwon-Koo Cho -- Deposition of TiOxNy thin films with various nitrogen flow rate: growth behavior and structural properties / S.-J. Cho ... [et al.] -- Observation on photoluminescence evolution in 300 KeV self-ion implanted and annealed silicon / Yu Yang ... [et al.] -- Facile synthesis of lithium niobate from a novel precursor H[symbol] / Meinan Liu ... [et al.] -- Effects of the buffer layers on the adhesion and antimicrobial properties of the amorphous ZrAlNiCuSi films / Pai-Tsung Chiang ... [et al.] -- Fabrication of ZnO nanorods by electrochemical deposition process and its photovoltaic properties / Jin-Hwa Kim ... [et al.] -- Cryogenic resistivities of NbTiAlVTaLax, CoCrFeNiCu and CoCrFeNiAl high entropy alloys / Xiao Yang and Yong Zhang -- Modeling of centrifugal force field and the effect on filling and solidification in centrifugal casting / Wenbin Sheng, Chunxue Ma and Wanli Gu -- Electrochemical properties of TiO[symbol] nanotube arrays film prepared by anodic oxidation / Young-Jin Choi ... [et al.] -- Effect of Ce additions on high temperature properties of Mg-5Sn-3Al-1Zn alloy / Byoung Soo Kang ... [et al.] -- Sono-electroless plating of Ni-Mo-P film / Atsushi Chiba, Masato Kanou and Wen-Chang Wu -- Diameter dependence of giant magneto-impedance effect in co-based melt extracted amorphous

  1. Advanced planning for ISS payload ground processing

    NASA Astrophysics Data System (ADS)

    Page, Kimberly A.

    2000-01-01

    Ground processing at John F. Kennedy Space Center (KSC) is the concluding phase of the payload/flight hardware development process and is the final opportunity to ensure safe and successful recognition of mission objectives. Planning for the ground processing of on-orbit flight hardware elements and payloads for the International Space Station is a responsibility taken seriously at KSC. Realizing that entering into this operational environment can be an enormous undertaking for a payload customer, KSC continually works to improve this process by instituting new/improved services for payload developer/owner, applying state-of-the-art technologies to the advanced planning process, and incorporating lessons learned for payload ground processing planning to ensure complete customer satisfaction. This paper will present an overview of the KSC advanced planning activities for ISS hardware/payload ground processing. It will focus on when and how KSC begins to interact with the payload developer/owner, how that interaction changes (and grows) throughout the planning process, and how KSC ensures that advanced planning is successfully implemented at the launch site. It will also briefly consider the type of advance planning conducted by the launch site that is transparent to the payload user but essential to the successful processing of the payload (i.e. resource allocation, executing documentation, etc.) .

  2. Integrated design and analysis of advanced airfoil shapes for gas turbine engines

    SciTech Connect

    Hill, B.A.; Rooney, P.J.

    1986-01-01

    An integral process in the mechanical design of gas turbine airfoils is the conversion of hot or running geometry into cold or as-manufactured geometry. New and advanced methods of design and analysis must be created that parallel new and technologically advanced turbine components. In particular, to achieve the high performance required of today's gas turbine engines, the industry is forced to design and manufacture increasingly complex airfoil shapes using advanced analysis and modeling techniques. This paper describes a method of integrating advanced, general purpose finite element analysis techniques in the mechanical design process.

  3. Integrated reforming/aromatization process

    SciTech Connect

    Harandi, M.N.; Owen, H.

    1990-06-26

    This patent describes an integrated process for increasing the gasoline yield from a catalytic reforming process. It comprises: charging a naphtha boiling range feedstream to a catalytic reforming reaction zone under reforming conversion conditions; withdrawing a reactor effluent stream from the reforming reaction zone; separating the reactor effluent stream into a hydrogen-rich gas stream and an unstabilized reformate stream; further separating the unstabilized reformate in a fractionator into an overhead stream containing C{sub 4} - components and a bottom stream containing C{sub 6} + components; charging the fractionator overhead stream to a catalytic aromatization zone under aromatization conversion conditions; withdrawing an aromatization zone effluent stream from the aromatization zone; cooling the aromatization zone effluent stream; separating the cooled aromatization zone effluent steam into a C{sub 4} - stream and a C{sub 5} + stream; and refluxing the C{sub 5} + aromatic gasoline stream to the fractionation zone.

  4. Process Integration Study of the Decatur HFCS Plant for American Fructose Company, Decatur, AL [Advanced Industrial Heat Pump Applications and Evaluations

    SciTech Connect

    Eastwood, A.

    1989-11-10

    This work has carried out in two phases: Phase 1, identification of opportunities for heat pumps in industrial applications and Phase 2; evaluation of heat pumps in industrial applications. In Phase 1, pinch analysis was applied to several industrial sites to identify the best opportunities for heat pumping and other forms of heat integration. In Phase 2, more detailed analyses were undertaken, including the evaluation of a heat pump installed as a recommendation of Phase 1.

  5. Advanced general aviation comparative engine/airframe integration study

    NASA Technical Reports Server (NTRS)

    Huggins, G. L.; Ellis, D. R.

    1981-01-01

    The NASA Advanced Aviation Comparative Engine/Airframe Integration Study was initiated to help determine which of four promising concepts for new general aviation engines for the 1990's should be considered for further research funding. The engine concepts included rotary, diesel, spark ignition, and turboprop powerplants; a conventional state-of-the-art piston engine was used as a baseline for the comparison. Computer simulations of the performance of single and twin engine pressurized aircraft designs were used to determine how the various characteristics of each engine interacted in the design process. Comparisons were made of how each engine performed relative to the others when integrated into an airframe and required to fly a transportation mission.

  6. Advanced integrated WDM system for POF communication

    NASA Astrophysics Data System (ADS)

    Haupt, M.; Fischer, U. H. P.

    2009-01-01

    Polymer Optical Fibres (POFs) show clear advantages compared to copper and glass fibres. In essence, POFs are inexpensive, space-saving and not susceptible to electromagnetic interference. Thus, the usage of POFs have become a reasonable alternative in short distance data communication. Today, POFs are applied in a wide number of applications due to these specific advantages. These applications include automotive communication systems and in-house-networks. State-of-the-art is to transmit data with only one channel over POF, this limits the bandwidth. To solve this problem, an integrated MUX/DEMUX-element for WDM over POF is designed and developed to use multiple channels. This integration leads to low costs, therefore this component is suitable for mass market applications. The fundamental idea is to separate the chromatic parts of the light in its monochromatic components by means of a grating based on an aspheric mirror. Due to the high NA of the POF the setup has to be designed in a 3D-approach. Therefore this setup cannot be compared with the planar solutions available on market, they would result high losses in the 3rd dimension. To achieve a fast and optimized design an optical simulation program is used. Particular attention has to be paid to the design of the POF as a light source in the simulation program and the optimisation of the grating. The following realization of the demultiplexer is planed to be done with injection molding. This technology offers easy and very economical processing. These advantages make this technology first choice for optical components in the low-cost array.

  7. The American Institute for Manufacturing Integrated Photonics: advancing the ecosystem

    NASA Astrophysics Data System (ADS)

    Koch, Thomas L.; Liehr, Michael; Coolbaugh, Douglas; Bowers, John E.; Alferness, Rod; Watts, Michael; Kimerling, Lionel

    2016-02-01

    The American Institute for Manufacturing Integrated Photonics (AIM Photonics) is focused on developing an end-to-end integrated photonics ecosystem in the U.S., including domestic foundry access, integrated design tools, automated packaging, assembly and test, and workforce development. This paper describes how the institute has been structured to achieve these goals, with an emphasis on advancing the integrated photonics ecosystem. Additionally, it briefly highlights several of the technological development targets that have been identified to provide enabling advances in the manufacture and application of integrated photonics.

  8. Plan for advanced microelectronics processing technology application

    SciTech Connect

    Goland, A.N.

    1990-10-01

    The ultimate objective of the tasks described in the research agreement was to identify resources primarily, but not exclusively, within New York State that are available for the development of a Center for Advanced Microelectronics Processing (CAMP). Identification of those resources would enable Brookhaven National Laboratory to prepare a program plan for the CAMP. In order to achieve the stated goal, the principal investigators undertook to meet the key personnel in relevant NYS industrial and academic organizations to discuss the potential for economic development that could accompany such a Center and to gauge the extent of participation that could be expected from each interested party. Integrated of these discussions was to be achieved through a workshop convened in the summer of 1990. The culmination of this workshop was to be a report (the final report) outlining a plan for implementing a Center in the state. As events unfolded, it became possible to identify the elements of a major center for x-ray lithography on Lone Island at Brookhaven National Laboratory. The principal investigators were than advised to substitute a working document based upon that concept in place of a report based upon the more general CAMP workshop originally envisioned. Following that suggestion from the New York State Science and Technology Foundation, the principals established a working group consisting of representatives of the Grumman Corporation, Columbia University, the State University of New York at Stony Brook, and Brookhaven National Laboratory. Regular meetings and additional communications between these collaborators have produced a preproposal that constitutes the main body of the final report required by the contract. Other components of this final report include the interim report and a brief description of the activities which followed the establishment of the X-ray Lithography Center working group.

  9. HANDBOOK ON ADVANCED PHOTOCHEMICAL OXIDATION PROCESSES

    EPA Science Inventory

    This handbook summarizes commercial-scale system performance and cost data for advanced photochemical oxidation (APO) treatment of contaminated water, air, and solids. Similar information from pilot- and bench-scale evaluations of APO processes is also included to supplement the...

  10. HANDBOOK ON ADVANCED NONPHOTOCHEMICAL OXIDATION PROCESSES

    EPA Science Inventory

    The purpose of this handbook is to summarize commercial-scale system performance and cost data for advanced nonphotochemical oxidation (ANPO) treatment of contaminated water, air, and soil. Similar information from pilot-and bench-scale evaluations of ANPO processes is also inclu...

  11. Ion beam processing of advanced electronic materials

    SciTech Connect

    Cheung, N.W.; Marwick, A.D.; Roberto, J.B.; International Business Machines Corp., Yorktown Heights, NY . Thomas J. Watson Research Center; Oak Ridge National Lab., TN )

    1989-01-01

    This report contains research programs discussed at the materials research society symposia on ion beam processing of advanced electronic materials. Major topics include: shallow implantation and solid-phase epitaxy; damage effects; focused ion beams; MeV implantation; high-dose implantation; implantation in III-V materials and multilayers; and implantation in electronic materials. Individual projects are processed separately for the data bases. (CBS)

  12. Process simulation for advanced composites production

    SciTech Connect

    Allendorf, M.D.; Ferko, S.M.; Griffiths, S.

    1997-04-01

    The objective of this project is to improve the efficiency and lower the cost of chemical vapor deposition (CVD) processes used to manufacture advanced ceramics by providing the physical and chemical understanding necessary to optimize and control these processes. Project deliverables include: numerical process models; databases of thermodynamic and kinetic information related to the deposition process; and process sensors and software algorithms that can be used for process control. Target manufacturing techniques include CVD fiber coating technologies (used to deposit interfacial coatings on continuous fiber ceramic preforms), chemical vapor infiltration, thin-film deposition processes used in the glass industry, and coating techniques used to deposit wear-, abrasion-, and corrosion-resistant coatings for use in the pulp and paper, metals processing, and aluminum industries.

  13. The advanced microgrid. Integration and interoperability

    SciTech Connect

    Bower, Ward Isaac; Ton, Dan T.; Guttromson, Ross; Glover, Steven F; Stamp, Jason Edwin; Bhatnagar, Dhruv; Reilly, Jim

    2014-02-01

    This white paper focuses on "advanced microgrids," but sections do, out of necessity, reference today's commercially available systems and installations in order to clearly distinguish the differences and advances. Advanced microgrids have been identified as being a necessary part of the modern electrical grid through a two DOE microgrid workshops, the National Institute of Standards and Technology, Smart Grid Interoperability Panel and other related sources. With their grid-interconnectivity advantages, advanced microgrids will improve system energy efficiency and reliability and provide enabling technologies for grid-independence to end-user sites. One popular definition that has been evolved and is used in multiple references is that a microgrid is a group of interconnected loads and distributed-energy resources within clearly defined electrical boundaries that acts as a single controllable entity with respect to the grid. A microgrid can connect and disconnect from the grid to enable it to operate in both grid-connected or island-mode. Further, an advanced microgrid can then be loosely defined as a dynamic microgrid.

  14. Assessment of advanced coal gasification processes

    NASA Technical Reports Server (NTRS)

    Mccarthy, J.; Ferrall, J.; Charng, T.; Houseman, J.

    1981-01-01

    A technical assessment of the following advanced coal gasification processes is presented: high throughput gasification (HTG) process; single stage high mass flux (HMF) processes; (CS/R) hydrogasification process; and the catalytic coal gasification (CCG) process. Each process is evaluated for its potential to produce synthetic natural gas from a bituminous coal. Key similarities, differences, strengths, weaknesses, and potential improvements to each process are identified. The HTG and the HMF gasifiers share similarities with respect to: short residence time (SRT), high throughput rate, slagging, and syngas as the initial raw product gas. The CS/R hydrogasifier is also SRT, but is nonslagging and produces a raw gas high in methane content. The CCG gasifier is a long residence time, catalytic, fluidbed reactor producing all of the raw product methane in the gasifier.

  15. Systems engineering and integration: Advanced avionics laboratories

    NASA Technical Reports Server (NTRS)

    1990-01-01

    In order to develop the new generation of avionics which will be necessary for upcoming programs such as the Lunar/Mars Initiative, Advanced Launch System, and the National Aerospace Plane, new Advanced Avionics Laboratories are required. To minimize costs and maximize benefits, these laboratories should be capable of supporting multiple avionics development efforts at a single location, and should be of a common design to support and encourage data sharing. Recent technological advances provide the capability of letting the designer or analyst perform simulations and testing in an environment similar to his engineering environment and these features should be incorporated into the new laboratories. Existing and emerging hardware and software standards must be incorporated wherever possible to provide additional cost savings and compatibility. Special care must be taken to design the laboratories such that real-time hardware-in-the-loop performance is not sacrificed in the pursuit of these goals. A special program-independent funding source should be identified for the development of Advanced Avionics Laboratories as resources supporting a wide range of upcoming NASA programs.

  16. Integrated review software advances at Los Alamos

    SciTech Connect

    Klosterbuer, S. F.; Michel, K. D.; Betts, S. E.; Determan, J. C.; Longo, J. F.; Parker, R. F.; Pelowitz, D. G.; Rothrock, R. B.; Schneider, C. M.; Nordquist, H. M.

    2004-01-01

    Since 1988, Los Alamos National Laboratory (LANL) has been developing software for unattended monitoring systems. These systems are composed of three categories of software: acquisition, collection and review. The data acquisition software is contained in modular instrumentation distributed throughout facilities to continuously acquire data from devices ranging from radiation detectors to cameras to binary switches. The data collection software runs on computers connected to the instruments and offloads and stores the acquired data. The review software enables the end user to quickly and easily examine the data collected from these different systems and compare the results to declared operator activities. This paper addresses the review software. The original standalone review software processed only radiation data. This software was expanded to include new programs (tools) to display and correlate video and operator declarations and added an interface to the standard neutron coincidence counter analysis program. This expanded review software containing multiple review tools is referred to collectively as the Integrated Review Software (IRS). The IRS continues to expand and evolve. Two primary IRS developments will be described in this paper. First, the IRS was expanded to include review tools to display and analyze new data types. Position Review was developed to display Global Positioning System (GPS) location data to aid in tracking radiation movements. Isotopic Review is being developed to provide a link to the standard gamma isotopic analysis software. In addition significant enhancements are being added to the existing review tools such as Operator Review, Radiation Review and Digital Video Review. A second IRS development is to produce standardized components with published interfaces enabling other parties to produce custom components that plug into review software. It is anticipated that there will be four primary types of components that could be

  17. Advances in the theory of box integrals

    SciTech Connect

    Bailey, David H.; Borwein, J.M.; Crandall, R.E.

    2009-06-25

    Box integrals - expectations <|{rvec r}|{sup s}> or <|{rvec r}-{rvec q}|{sup s}> over the unit n-cube (or n-box) - have over three decades been occasionally given closed forms for isolated n,s. By employing experimental mathematics together with a new, global analytic strategy, we prove that for n {le} 4 dimensions the box integrals are for any integer s hypergeometrically closed in a sense we clarify herein. For n = 5 dimensions, we show that a single unresolved integral we call K{sub 5} stands in the way of such hyperclosure proofs. We supply a compendium of exemplary closed forms that naturally arise algorithmically from this theory.

  18. The integration of process monitoring for safeguards.

    SciTech Connect

    Cipiti, Benjamin B.; Zinaman, Owen R.

    2010-09-01

    The Separations and Safeguards Performance Model is a reprocessing plant model that has been developed for safeguards analyses of future plant designs. The model has been modified to integrate bulk process monitoring data with traditional plutonium inventory balances to evaluate potential advanced safeguards systems. Taking advantage of the wealth of operator data such as flow rates and mass balances of bulk material, the timeliness of detection of material loss was shown to improve considerably. Four diversion cases were tested including both abrupt and protracted diversions at early and late times in the run. The first three cases indicated alarms before half of a significant quantity of material was removed. The buildup of error over time prevented detection in the case of a protracted diversion late in the run. Some issues related to the alarm conditions and bias correction will need to be addressed in future work. This work both demonstrates the use of the model for performing diversion scenario analyses and for testing advanced safeguards system designs.

  19. Advanced parallel processing with supercomputer architectures

    SciTech Connect

    Hwang, K.

    1987-10-01

    This paper investigates advanced parallel processing techniques and innovative hardware/software architectures that can be applied to boost the performance of supercomputers. Critical issues on architectural choices, parallel languages, compiling techniques, resource management, concurrency control, programming environment, parallel algorithms, and performance enhancement methods are examined and the best answers are presented. The authors cover advanced processing techniques suitable for supercomputers, high-end mainframes, minisupers, and array processors. The coverage emphasizes vectorization, multitasking, multiprocessing, and distributed computing. In order to achieve these operation modes, parallel languages, smart compilers, synchronization mechanisms, load balancing methods, mapping parallel algorithms, operating system functions, application library, and multidiscipline interactions are investigated to ensure high performance. At the end, they assess the potentials of optical and neural technologies for developing future supercomputers.

  20. Advancing Instructional Communication: Integrating a Biosocial Approach

    ERIC Educational Resources Information Center

    Horan, Sean M.; Afifi, Tamara D.

    2014-01-01

    Celebrating 100 years of the National Communication Association necessitates that, as we commemorate our past, we also look toward our future. As part of a larger conversation about the future of instructional communication, this essay reinvestigates the importance of integrating biosocial approaches into instructional communication research. In…

  1. Advanced miniature processing handware for ATR applications

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin (Inventor); Daud, Taher (Inventor); Thakoor, Anikumar (Inventor)

    2003-01-01

    A Hybrid Optoelectronic Neural Object Recognition System (HONORS), is disclosed, comprising two major building blocks: (1) an advanced grayscale optical correlator (OC) and (2) a massively parallel three-dimensional neural-processor. The optical correlator, with its inherent advantages in parallel processing and shift invariance, is used for target of interest (TOI) detection and segmentation. The three-dimensional neural-processor, with its robust neural learning capability, is used for target classification and identification. The hybrid optoelectronic neural object recognition system, with its powerful combination of optical processing and neural networks, enables real-time, large frame, automatic target recognition (ATR).

  2. Human factors challenges for advanced process control

    SciTech Connect

    Stubler, W.F.; O`Hara, J..M.

    1996-08-01

    New human-system interface technologies provide opportunities for improving operator and plant performance. However, if these technologies are not properly implemented, they may introduce new challenges to performance and safety. This paper reports the results from a survey of human factors considerations that arise in the implementation of advanced human-system interface technologies in process control and other complex systems. General trends were identified for several areas based on a review of technical literature and a combination of interviews and site visits with process control organizations. Human factors considerations are discussed for two of these areas, automation and controls.

  3. Integrated modeling of advanced optical systems

    NASA Astrophysics Data System (ADS)

    Briggs, Hugh C.; Needels, Laura; Levine, B. Martin

    1993-02-01

    This poster session paper describes an integrated modeling and analysis capability being developed at JPL under funding provided by the JPL Director's Discretionary Fund and the JPL Control/Structure Interaction Program (CSI). The posters briefly summarize the program capabilities and illustrate them with an example problem. The computer programs developed under this effort will provide an unprecedented capability for integrated modeling and design of high performance optical spacecraft. The engineering disciplines supported include structural dynamics, controls, optics and thermodynamics. Such tools are needed in order to evaluate the end-to-end system performance of spacecraft such as OSI, POINTS, and SMMM. This paper illustrates the proof-of-concept tools that have been developed to establish the technology requirements and demonstrate the new features of integrated modeling and design. The current program also includes implementation of a prototype tool based upon the CAESY environment being developed under the NASA Guidance and Control Research and Technology Computational Controls Program. This prototype will be available late in FY-92. The development plan proposes a major software production effort to fabricate, deliver, support and maintain a national-class tool from FY-93 through FY-95.

  4. Courage as integral to advancing nursing practice.

    PubMed

    Spence, Deb; Smythe, Liz

    2007-11-01

    Courage is an elusive but fundamental component of nursing. Yet it is seldom mentioned in professional texts and other literature nor is it often recognised and supported in practice. This paper focuses on the illumination of courage in nursing. Data from a hermeneutic analysis of nurses' practice stories is integrated with literature to assist deeper understanding of the meaning of courage in contemporary nursing practice. The purpose is to make visible a phenomenon that needs to be actively fostered or 'en-courage-d' if nursing is to effectively contribute to an improved health service. PMID:18293656

  5. Advanced PPA Reactor and Process Development

    NASA Technical Reports Server (NTRS)

    Wheeler, Raymond; Aske, James; Abney, Morgan B.; Miller, Lee A.; Greenwood, Zachary

    2012-01-01

    Design and development of a second generation Plasma Pyrolysis Assembly (PPA) reactor is currently underway as part of NASA s Atmosphere Revitalization Resource Recovery effort. By recovering up to 75% of the hydrogen currently lost as methane in the Sabatier reactor effluent, the PPA helps to minimize life support resupply costs for extended duration missions. To date, second generation PPA development has demonstrated significant technology advancements over the first generation device by doubling the methane processing rate while, at the same time, more than halving the required power. One development area of particular interest to NASA system engineers is fouling of the PPA reactor with carbonaceous products. As a mitigation plan, NASA MSFC has explored the feasibility of using an oxidative plasma based upon metabolic CO2 to regenerate the reactor window and gas inlet ports. The results and implications of this testing are addressed along with the advanced PPA reactor development work.

  6. Current advances in systems and integrative biology

    PubMed Central

    Robinson, Scott W.; Fernandes, Marco; Husi, Holger

    2014-01-01

    Systems biology has gained a tremendous amount of interest in the last few years. This is partly due to the realization that traditional approaches focusing only on a few molecules at a time cannot describe the impact of aberrant or modulated molecular environments across a whole system. Furthermore, a hypothesis-driven study aims to prove or disprove its postulations, whereas a hypothesis-free systems approach can yield an unbiased and novel testable hypothesis as an end-result. This latter approach foregoes assumptions which predict how a biological system should react to an altered microenvironment within a cellular context, across a tissue or impacting on distant organs. Additionally, re-use of existing data by systematic data mining and re-stratification, one of the cornerstones of integrative systems biology, is also gaining attention. While tremendous efforts using a systems methodology have already yielded excellent results, it is apparent that a lack of suitable analytic tools and purpose-built databases poses a major bottleneck in applying a systematic workflow. This review addresses the current approaches used in systems analysis and obstacles often encountered in large-scale data analysis and integration which tend to go unnoticed, but have a direct impact on the final outcome of a systems approach. Its wide applicability, ranging from basic research, disease descriptors, pharmacological studies, to personalized medicine, makes this emerging approach well suited to address biological and medical questions where conventional methods are not ideal. PMID:25379142

  7. Advances in Treatment Integrity Research: Multidisciplinary Perspectives on the Conceptualization, Measurement, and Enhancement of Treatment Integrity

    ERIC Educational Resources Information Center

    Schulte, Ann C.; Easton, Julia E.; Parker, Justin

    2009-01-01

    Documenting treatment integrity is an important issue in research and practice in any discipline concerned with prevention and intervention. However, consensus concerning the dimensions of treatment integrity and how they should be measured has yet to emerge. Advances from three areas in which significant treatment integrity work has taken…

  8. How Physicians Integrate Advances into Clinical Practices.

    ERIC Educational Resources Information Center

    Lockyer, Jocelyn M.; And Others

    1985-01-01

    Family physicians and specialists were asked to identify the sources of information they used in the process of making changes in their clinical practices. An average of 3.08 sources of information were utilized for each change and over 50 percent of the changes were complete in less than one year. (CT)

  9. Model-based advanced process control of coagulation.

    PubMed

    Baxter, C W; Shariff, R; Stanley, S J; Smith, D W; Zhang, Q; Saumer, E D

    2002-01-01

    The drinking water treatment industry has seen a recent increase in the use of artificial neural networks (ANNs) for process modelling and offline process control tools and applications. While conceptual frameworks for integrating the ANN technology into the real-time control of complex treatment processes have been proposed, actual working systems have yet to be developed. This paper presents development and application of an ANN model-based advanced process control system for the coagulation process at a pilot-scale water treatment facility in Edmonton, Alberta, Canada. The system was successfully used to maintain a user-defined set point for effluent quality, by automatically varying operating conditions in response to changes in influent water quality. This new technology has the potential to realize significant operational cost saving for utilities when applied in full-scale applications.

  10. Advanced bioreactor concepts for coal processing

    SciTech Connect

    Scott, C.D.

    1988-01-01

    The development of advanced bioreactor systems for the processing of coal should follow some basic principles. Continuous operation is preferred, with maximum bioreagent concentrations and enhanced mass transfer. Although conventional stirred-tank bioreactors will be more appropriate for some processing concepts, columnar reactors with retained bioreagents could be the system of choice for most of the applications. Serious consideration must now be given to process development of some biological coal processing concepts. Process biology and biochemistry will continue to be very important, but efficient bioreactor systems will be necessary for economic feasibility. Conventional bioreactor concepts will be useful for some applications, but columnar systems represent an innovative approach to the design of continuous bioreactors with high productivity and good operational control. Fluidized and packed beds are the most promising configurations, especially where three-phase operation is required and where interphase mass transport is a likely controlling mechanism. Although the biocatalyst must be immobilized into or onto particles to be retained in the bioreactors, this also results in a very high biocatalyst concentration without washout and a significant enhancement in bioconversion rates. The multistage nature of these types of bioreactors also contributes to higher efficiencies for many types of biocatalytic processes. 25 refs.

  11. Advances in NLTE Modeling for Integrated Simulations

    SciTech Connect

    Scott, H A; Hansen, S B

    2009-07-08

    The last few years have seen significant progress in constructing the atomic models required for non-local thermodynamic equilibrium (NLTE) simulations. Along with this has come an increased understanding of the requirements for accurately modeling the ionization balance, energy content and radiative properties of different elements for a wide range of densities and temperatures. Much of this progress is the result of a series of workshops dedicated to comparing the results from different codes and computational approaches applied to a series of test problems. The results of these workshops emphasized the importance of atomic model completeness, especially in doubly excited states and autoionization transitions, to calculating ionization balance, and the importance of accurate, detailed atomic data to producing reliable spectra. We describe a simple screened-hydrogenic model that calculates NLTE ionization balance with surprising accuracy, at a low enough computational cost for routine use in radiation-hydrodynamics codes. The model incorporates term splitting, {Delta}n = 0 transitions, and approximate UTA widths for spectral calculations, with results comparable to those of much more detailed codes. Simulations done with this model have been increasingly successful at matching experimental data for laser-driven systems and hohlraums. Accurate and efficient atomic models are just one requirement for integrated NLTE simulations. Coupling the atomic kinetics to hydrodynamics and radiation transport constrains both discretizations and algorithms to retain energy conservation, accuracy and stability. In particular, the strong coupling between radiation and populations can require either very short timesteps or significantly modified radiation transport algorithms to account for NLTE material response. Considerations such as these continue to provide challenges for NLTE simulations.

  12. Advanced optical network architecture for integrated digital avionics

    NASA Astrophysics Data System (ADS)

    Morgan, D. Reed

    1996-12-01

    For the first time in the history of avionics, the network designer now has a choice in selecting the media that interconnects the sources and sinks of digital data on aircraft. Electrical designs are already giving way to photonics in application areas where the data rate times distance product is large or where special design requirements such as low weight or EMI considerations are critical. Future digital avionic architectures will increasingly favor the use of photonic interconnects as network data rates of one gigabit/second and higher are needed to support real-time operation of high-speed integrated digital processing. As the cost of optical network building blocks is reduced and as temperature-rugged laser sources are matured, metal interconnects will be forced to retreat to applications spanning shorter and shorter distances. Although the trend is already underway, the widespread use of digital optics will first occur at the system level, where gigabit/second, real-time interconnects between sensors, processors, mass memories and displays separated by a least of few meters will be required. The application of photonic interconnects for inter-printed wiring board signalling across the backplane will eventually find application for gigabit/second applications since signal degradation over copper traces occurs before one gigabit/second and 0.5 meters are reached. For the foreseeable future however, metal interconnects will continue to be used to interconnect devices on printed wiring boards since 5 gigabit/second signals can be sent over metal up to around 15 centimeters. Current-day applications of optical interconnects at the system level are described and a projection of how advanced optical interconnect technology will be driven by the use of high speed integrated digital processing on future aircraft is presented. The recommended advanced network for application in the 2010 time frame is a fiber-based system with a signalling speed of around 2

  13. Advanced helmet vision system (AHVS) integrated night vision helmet mounted display (HMD)

    NASA Astrophysics Data System (ADS)

    Ashcraft, Todd W.; Atac, Robert

    2012-06-01

    Gentex Corporation, under contract to Naval Air Systems Command (AIR 4.0T), designed the Advanced Helmet Vision System to provide aircrew with 24-hour, visor-projected binocular night vision and HMD capability. AHVS integrates numerous key technologies, including high brightness Light Emitting Diode (LED)-based digital light engines, advanced lightweight optical materials and manufacturing processes, and innovations in graphics processing software. This paper reviews the current status of miniaturization and integration with the latest two-part Gentex modular helmet, highlights the lessons learned from previous AHVS phases, and discusses plans for qualification and flight testing.

  14. ADVANCED COMPRESSOR ENGINE CONTROLS TO ENHANCE OPERATION, RELIABILITY AND INTEGRITY

    SciTech Connect

    Gary D. Bourn; Jess W. Gingrich; Jack A. Smith

    2004-03-01

    This document is the final report for the ''Advanced Compressor Engine Controls to Enhance Operation, Reliability, and Integrity'' project. SwRI conducted this project for DOE in conjunction with Cooper Compression, under DOE contract number DE-FC26-03NT41859. This report addresses an investigation of engine controls for integral compressor engines and the development of control strategies that implement closed-loop NOX emissions feedback.

  15. The potential benefit of an advanced integrated utility system

    NASA Technical Reports Server (NTRS)

    Wolfer, B. M.

    1975-01-01

    The applicability of an advanced integrated utility system based on 1980 technology was investigated. An example of such a system, which provides electricity, heating and air conditioning, solid waste disposal, and water treatment in a single integrated plant, is illustrated for a hypothetical apartment complex. The system requires approximately 50 percent of the energy and approximately 55 percent of the water that would be required by a typical current conventional system.

  16. Combining Advanced Oxidation Processes: Assessment Of Process Additivity, Synergism, And Antagonism

    SciTech Connect

    Peters, Robert W.; Sharma, M.P.; Gbadebo Adewuyi, Yusuf

    2007-07-01

    This paper addresses the process interactions from combining integrated processes (such as advanced oxidation processes (AOPs), biological operations, air stripping, etc.). AOPs considered include: Fenton's reagent, ultraviolet light, titanium dioxide, ozone (O{sub 3}), hydrogen peroxide (H{sub 2}O{sub 2}), sonication/acoustic cavitation, among others. A critical review of the technical literature has been performed, and the data has been analyzed in terms of the processes being additive, synergistic, or antagonistic. Predictions based on the individual unit operations are made and compared against the behavior of the combined unit operations. The data reported in this paper focus primarily on treatment of petroleum hydrocarbons and chlorinated solvents. (authors)

  17. Advanced Integrated Photonics in Doped Silica Glass

    NASA Astrophysics Data System (ADS)

    Ferrera, Marcello; Duchesne, David; Razzari, L.; Peccianti, Marco; Pasquazi, Alessia; Park, Yong-Woo; Azaña, Jose; Morandotti, Roberto; Little, Brent E.; Chu, Sai T.; Moss, David J.

    Broadband optical communication systems are rapidly becoming the key to overcome the stringent limitations imposed by standard electronic telecommunication networks. However, in order to complete the inevitable transition from electronics to photonics, several critical requirements must be addressed, including lowering energetic demands, achieving higher efficiency, increasing bandwidth and flexibility, all within a compact form factor [1-3]. In particular, it is broadly accepted that future photonic devices must be CMOS compatible in order to exploit the existing silicon fabrication technology that has been largely developed during the last 60 years [4-7]. Following this idea, there has been a tremendous growth of hybrid optoelectronic technologies that has not only responded to the need of lowering costs, but has also enabled on-chip ultra-fast signal processing. However, these hybrid solutions are an intermediate step to achieve the ambitious goal of an all-optical technology, which would bring together the intrinsic benefit of lowering the production costs and simplifying future ultrafast communication networks.

  18. Integrated lunar materials manufacturing process

    NASA Technical Reports Server (NTRS)

    Gibson, Michael A. (Inventor); Knudsen, Christian W. (Inventor)

    1990-01-01

    A manufacturing plant and process for production of oxygen on the moon uses lunar minerals as feed and a minimum of earth-imported, process materials. Lunar feed stocks are hydrogen-reducible minerals, ilmenite and lunar agglutinates occurring in numerous, explored locations mixed with other minerals in the pulverized surface layer of lunar soil known as regolith. Ilmenite (FeTiO.sub.3) and agglutinates contain ferrous (Fe.sup.+2) iron reducible by hydrogen to yield H.sub.2 O and metallic Fe at about 700.degree.-1,200.degree. C. The H.sub.2 O is electrolyzed in gas phase to yield H.sub.2 for recycle and O.sub.2 for storage and use. Hydrogen losses to lunar vacuum are minimized, with no net hydrogen (or any other earth-derived reagent) consumption except for small leaks. Feed minerals are surface-mined by front shovels and transported in trucks to the processing area. The machines are manned or robotic. Ilmenite and agglutinates occur mixed with silicate minerals which are not hydrogen-reducible at 700.degree.-1,200.degree. C. and consequently are separated and concentrated before feeding to the oxygen generation process. Solids rejected from the separation step and reduced solids from the oxygen process are returned to the mine area. The plant is powered by nuclear or solar power generators. Vapor-phase water electrolysis, a staged, countercurrent, fluidized bed reduction reactor and a radio-frequency-driven ceramic gas heater are used to improve thermal efficiency.

  19. Advanced Technology Composite Fuselage - Materials and Processes

    NASA Technical Reports Server (NTRS)

    Scholz, D. B.; Dost, E. F.; Flynn, B. W.; Ilcewicz, L. B.; Nelson, K. M.; Sawicki, A. J.; Walker, T. H.; Lakes, R. S.

    1997-01-01

    The goal of Boeing's Advanced Technology Composite Aircraft Structures (ATCAS) program was to develop the technology required for cost and weight efficient use of composite materials in transport fuselage structure. This contractor report describes results of material and process selection, development, and characterization activities. Carbon fiber reinforced epoxy was chosen for fuselage skins and stiffening elements and for passenger and cargo floor structures. The automated fiber placement (AFP) process was selected for fabrication of monolithic and sandwich skin panels. Circumferential frames and window frames were braided and resin transfer molded (RTM'd). Pultrusion was selected for fabrication of floor beams and constant section stiffening elements. Drape forming was chosen for stringers and other stiffening elements. Significant development efforts were expended on the AFP, braiding, and RTM processes. Sandwich core materials and core edge close-out design concepts were evaluated. Autoclave cure processes were developed for stiffened skin and sandwich structures. The stiffness, strength, notch sensitivity, and bearing/bypass properties of fiber-placed skin materials and braided/RTM'd circumferential frame materials were characterized. The strength and durability of cocured and cobonded joints were evaluated. Impact damage resistance of stiffened skin and sandwich structures typical of fuselage panels was investigated. Fluid penetration and migration mechanisms for sandwich panels were studied.

  20. Technology advances for Space Shuttle processing

    NASA Technical Reports Server (NTRS)

    Wiskerchen, M. J.; Mollakarimi, C. L.

    1988-01-01

    One of the major initial tasks of the Space Systems Integration and Operations Research Applications (SIORA) Program was the application of automation and robotics technology to all aspects of the Shuttle tile processing and inspection system. The SIORA Program selected a nonlinear systems engineering methodology which emphasizes a team approach for defining, developing, and evaluating new concepts and technologies for the operational system. This is achieved by utilizing rapid prototyping testbeds whereby the concepts and technologies can be iteratively tested and evaluated by the team. The present methodology has clear advantages for the design of large complex systems as well as for the upgrading and evolution of existing systems.

  1. A flexible architecture for advanced process control solutions

    NASA Astrophysics Data System (ADS)

    Faron, Kamyar; Iourovitski, Ilia

    2005-05-01

    Advanced Process Control (APC) is now mainstream practice in the semiconductor manufacturing industry. Over the past decade and a half APC has evolved from a "good idea", and "wouldn"t it be great" concept to mandatory manufacturing practice. APC developments have primarily dealt with two major thrusts, algorithms and infrastructure, and often the line between them has been blurred. The algorithms have evolved from very simple single variable solutions to sophisticated and cutting edge adaptive multivariable (input and output) solutions. Spending patterns in recent times have demanded that the economics of a comprehensive APC infrastructure be completely justified for any and all cost conscious manufacturers. There are studies suggesting integration costs as high as 60% of the total APC solution costs. Such cost prohibitive figures clearly diminish the return on APC investments. This has limited the acceptance and development of pure APC infrastructure solutions for many fabs. Modern APC solution architectures must satisfy the wide array of requirements from very manual R&D environments to very advanced and automated "lights out" manufacturing facilities. A majority of commercially available control solutions and most in house developed solutions lack important attributes of scalability, flexibility, and adaptability and hence require significant resources for integration, deployment, and maintenance. Many APC improvement efforts have been abandoned and delayed due to legacy systems and inadequate architectural design. Recent advancements (Service Oriented Architectures) in the software industry have delivered ideal technologies for delivering scalable, flexible, and reliable solutions that can seamlessly integrate into any fabs" existing system and business practices. In this publication we shall evaluate the various attributes of the architectures required by fabs and illustrate the benefits of a Service Oriented Architecture to satisfy these requirements. Blue

  2. Technology advancement of the static feed water electrolysis process

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Wynveen, R. A.

    1977-01-01

    A program to advance the technology of oxygen- and hydrogen-generating subsystems based on water electrolysis was studied. Major emphasis was placed on static feed water electrolysis, a concept characterized by low power consumption and high intrinsic reliability. The static feed based oxygen generation subsystem consists basically of three subassemblies: (1) a combined water electrolysis and product gas dehumidifier module; (2) a product gas pressure controller and; (3) a cyclically filled water feed tank. Development activities were completed at the subsystem as well as at the component level. An extensive test program including single cell, subsystem and integrated system testing was completed with the required test support accessories designed, fabricated, and assembled. Mini-product assurance activities were included throughout all phases of program activities. An extensive number of supporting technology studies were conducted to advance the technology base of the static feed water electrolysis process and to resolve problems.

  3. Advancements in Wind Integration Study Input Data Modeling: The Wind Integration National Dataset (WIND) Toolkit

    NASA Astrophysics Data System (ADS)

    Hodge, B.; Orwig, K.; McCaa, J. R.; Harrold, S.; Draxl, C.; Jones, W.; Searight, K.; Getman, D.

    2013-12-01

    Regional wind integration studies in the United States, such as the Western Wind and Solar Integration Study (WWSIS), Eastern Wind Integration and Transmission Study (EWITS), and Eastern Renewable Generation Integration Study (ERGIS), perform detailed simulations of the power system to determine the impact of high wind and solar energy penetrations on power systems operations. Some of the specific aspects examined include: infrastructure requirements, impacts on grid operations and conventional generators, ancillary service requirements, as well as the benefits of geographic diversity and forecasting. These studies require geographically broad and temporally consistent wind and solar power production input datasets that realistically reflect the ramping characteristics, spatial and temporal correlations, and capacity factors of wind and solar power plant production, and are time-synchronous with load profiles. The original western and eastern wind datasets were generated independently for 2004-2006 using numerical weather prediction (NWP) models run on a ~2 km grid with 10-minute resolution. Each utilized its own site selection process to augment existing wind plants with simulated sites of high development potential. The original dataset also included day-ahead simulated forecasts. These datasets were the first of their kind and many lessons were learned from their development. For example, the modeling approach used generated periodic false ramps that later had to be removed due to unrealistic impacts on ancillary service requirements. For several years, stakeholders have been requesting an updated dataset that: 1) covers more recent years; 2) spans four or more years to better evaluate interannual variability; 3) uses improved methods to minimize false ramps and spatial seams; 4) better incorporates solar power production inputs; and 5) is more easily accessible. To address these needs, the U.S. Department of Energy (DOE) Wind and Solar Programs have funded two

  4. Advanced laser processing of glass materials

    NASA Astrophysics Data System (ADS)

    Sugioka, Koji; Obata, Kotaro; Cheng, Ya; Midorikawa, Katsumi

    2003-09-01

    Three kinds of advanced technologies using lasers for glass microprocessing are reviewed. Simultaneous irradiation of vacuum ultraviolet (VUV) laser beam, which possesses extremely small laser fluence, with ultraviolet (UV) laser achieves enhanced high surface and edge quality ablation in fused silica and other hard materials with little debris deposition as well as high-speed and high-efficiency refractive index modification of fused silica (VUV-UV multiwavelength excitation processing). Metal plasma generated by the laser beam effectively assists high-quality ablation of transparent materials, resulting in surface microstructuring, high-speed holes drilling, crack-free marking, color marking, painting and metal interconnection for the various kinds of glass materials (laser-induced plasma-assisted ablation (LIPAA)). In the meanwhile, a nature of multiphoton absorption of femtosecond laser by transparent materials realizes fabrication of true three-dimensional microstructures embedded in photosensitive glass.

  5. Elements of an advanced integrated operator control station

    SciTech Connect

    Clarke, M.M.; Kreifeldt, J.G.

    1984-01-01

    One of the critical determinants of peformance for any remotely operated maintenance system is the compatibility achieved between elements of the man/machine interface (e.g., master manipulator controller, controls, displays, etc.) and the human operator. In the Remote Control Engineering task of the Consolidated Fuel Reprocessing Program, considerable attention has been devoted to optimizing the man/machine interface of the operator control station. This system must be considered an integral element of the overall maintenance work system which includes transporters, manipulators, remote viewing, and other parts. The control station must reflect the integration of the operator team, control/display panels, manipulator master controllers, and remote viewing monitors. Human factors principles and experimentation have been used in the development of an advanced integrated operator control station designed for the advance servomanipulator. Key features of this next-generation design are summarized in this presentation. 7 references, 4 figures.

  6. Elements of an advanced integrated operator control station

    SciTech Connect

    Clarke, M.M.; Kreifeldt, J.G.

    1984-01-01

    One of the critical determinants of performance for any remotely operated maintenance system is the compatibility achieved between elements of the man/machine interface (e.g., master manipulator controller, controls, displays) and the human operator. In the remote control engineering task of the Consolidated Fuel Reprocessing Program, considerable attention has been devoted to optimizing the man/machine interface of the operator control station. This system must be considered an integral element of the overall maintenance work system which includes transporters, manipulators, remote viewing, and other parts. The control station must reflect the integration of the operator team, control/display panels, manipulator master controllers, and remote viewing monitors. Human factors principles and experimentation have been used in the development of an advanced integrated operator control station designed for the advance servomanipulator. Key features of this next-generation design are summarized in this presentation. 7 references, 4 figures.

  7. Novel imazethapyr detoxification applying advanced oxidation processes.

    PubMed

    Stathis, Ioannis; Hela, Dimitra G; Scrano, Laura; Lelario, Filomena; Emanuele, Lucia; Bufo, Sabino A

    2011-01-01

    Different degradation methods have been applied to assess the suitability of advanced oxidation process (AOPs) to promote mineralization of imazethapyr [(RS)-5-ethyl-2-(4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl)nicotinic acid], a widely used imidazolinone class herbicide, the persistence of which has been demonstrated in surface and ground waters destined to human uses. Independent of the oxidation process assessed, the decomposition of imazethapyr always followed a pseudo-first order kinetic. The direct UV-irradiation (UV) of the herbicide as well as its oxidation with ozone (O₃), and hydrogen peroxide tied to UV-irradiation (H₂O₂/UV) were sufficiently slow to permit the identification of intermediate products, the formation pathway of which has been proposed. Ozonation joined to UV-irradiation (O₃/UV), ozonation joined to titanium dioxide photo-catalysis (TiO₂/UV+O₃), sole photo-catalysis (TiO₂/UV), and photo-catalysis reinforced with hydrogen peroxide-oxidation (TiO₂/UV+H₂O₂) were characterized by a faster degradation and rapid formation of a lot of small molecules, which were quickly degraded to complete mineralization. The most effective oxidation methods were those using titanium dioxide photo-catalysis enhanced either by ozonation or hydrogen peroxide. Most of all, these last processes were useful to avoid the development of dangerous by-products. PMID:21726140

  8. Model Identification of Integrated ARMA Processes

    ERIC Educational Resources Information Center

    Stadnytska, Tetiana; Braun, Simone; Werner, Joachim

    2008-01-01

    This article evaluates the Smallest Canonical Correlation Method (SCAN) and the Extended Sample Autocorrelation Function (ESACF), automated methods for the Autoregressive Integrated Moving-Average (ARIMA) model selection commonly available in current versions of SAS for Windows, as identification tools for integrated processes. SCAN and ESACF can…

  9. Aromatization and etherification process integration

    SciTech Connect

    Harandi, M.N.; Owen, H.

    1989-08-08

    This patent describes a continuous process for the production of aromatics-rich high octane gasoline and ether-rich high octane gasoline. It comprises the steps of: contacting a C/sub 4/+ hydrocarbon feedstream containing iso-olefins and excess methanol based on the iso-olefins with an acid etherification catalyst under etherification conditions in an etherification zone whereby an effluent stream is produced comprising methyl tertiary alkyl ethers, unreacted methanol and hydrocarbons; distilling the effluent stream whereby a distillate bottom stream is produced comprising high octane ether-rich C/sub 5/+ gasoline and a distillate overhead stream comprising unreacted methanol and C/sub 5/- hydrocarbons; passing the distillate overhead stream and an aromatization hydrocarbon feedstream comprising an ethene rich gas feedstream and C/sub 3/ hydrocarbons to an olefins and paraffins fixed, fluid or moving bed aromatization zone under aromatization conditions in contact with medium pore size shape selective metallosilicate catalyst having the structure of ZSM-5 whereby a high octane aromatics-rich C/sub 5/+ gasoline is procluded and hydrogen-rich fuel gas.

  10. Recent advances in EEG data processing.

    PubMed

    Zetterberg, L H

    1978-01-01

    It is argued that the most interesting advances in EEG signal processing are with methods based on descriptive mathematical models of the process. Formulation of auto-regressive (AR) and mixed autoregressive and moving average (ARMA) models is reviewed for the scalar and the multidimensional cases and extensions to allow time-varying coefficients are pointed out. Data processing with parametric models, DPPM, involves parameter estimation and a large number of algorithms are available. Emphasis is put on those that are simple to apply and require a modest amount of computation. A recursive algorithm by Levinson, Robinson and Durbin is well suited for estimation of the coefficients in the AR model and for tests of model order. It is applicable to both the scalar and multidimensional cases. The ARMA model can be handled by approximation of an AR model or by nonlinear optimization. Recursive estimation with AR and ARMA models is reviewed and the connection with the Kalman filter pointed out. In this way processes with time-varying properties may be handled and a stationarity index is defined. The recursive algorithms can deal with AR or ARMA models in the same way. A reformulation of the algorithm to include sparsely updated parameter estimates significantly speeds up the calculations. It will allow several EEG channels to be handled simultaneously in real time on a modern minicomputer installation. DPPM has been particularly successful in the areas of spectral analysis and detection of short transients such as spikes and sharp waves. Recently some interesting attempts have been made to apply classification algorithms to estimated parameters. A brief review is made of the main results in these areas.

  11. Induced effects of advanced oxidation processes

    NASA Astrophysics Data System (ADS)

    Liu, Peng; Li, Chaolin; Zhao, Zhuanjun; Lu, Gang; Cui, Haibo; Zhang, Wenfang

    2014-02-01

    Hazardous organic wastes from industrial, military, and commercial activities represent one of the greatest challenges to human beings. Advanced oxidation processes (AOPs) are alternatives to the degradation of those organic wastes. However, the knowledge about the exact mechanisms of AOPs is still incomplete. Here we report a phenomenon in the AOPs: induced effects, which is a common property of combustion reaction. Through analysis EDTA oxidation processes by Fenton and UV-Fenton system, the results indicate that, just like combustion, AOPs are typical induction reactions. One most compelling example is that pre-feeding easily oxidizable organic matter can promote the oxidation of refractory organic compound when it was treated by AOPs. Connecting AOPs to combustion, it is possible to achieve some helpful enlightenment from combustion to analyze, predict and understand AOPs. In addition, we assume that maybe other oxidation reactions also have induced effects, such as corrosion, aging and passivation. Muchmore research is necessary to reveal the possibilities of induced effects in those fields.

  12. Induced effects of advanced oxidation processes

    PubMed Central

    Liu, Peng; Li, Chaolin; Zhao, Zhuanjun; Lu, Gang; Cui, Haibo; Zhang, Wenfang

    2014-01-01

    Hazardous organic wastes from industrial, military, and commercial activities represent one of the greatest challenges to human beings. Advanced oxidation processes (AOPs) are alternatives to the degradation of those organic wastes. However, the knowledge about the exact mechanisms of AOPs is still incomplete. Here we report a phenomenon in the AOPs: induced effects, which is a common property of combustion reaction. Through analysis EDTA oxidation processes by Fenton and UV-Fenton system, the results indicate that, just like combustion, AOPs are typical induction reactions. One most compelling example is that pre-feeding easily oxidizable organic matter can promote the oxidation of refractory organic compound when it was treated by AOPs. Connecting AOPs to combustion, it is possible to achieve some helpful enlightenment from combustion to analyze, predict and understand AOPs. In addition, we assume that maybe other oxidation reactions also have induced effects, such as corrosion, aging and passivation. Muchmore research is necessary to reveal the possibilities of induced effects in those fields. PMID:24503715

  13. INTEGRATED FISCHER TROPSCH MODULAR PROCESS MODEL

    SciTech Connect

    Donna Post Guillen; Richard Boardman; Anastasia M. Gribik; Rick A. Wood; Robert A. Carrington

    2007-12-01

    With declining petroleum reserves, increased world demand, and unstable politics in some of the world’s richest oil producing regions, the capability for the U.S. to produce synthetic liquid fuels from domestic resources is critical to national security and economic stability. Coal, biomass and other carbonaceous materials can be converted to liquid fuels using several conversion processes. The leading candidate for large-scale conversion of coal to liquid fuels is the Fischer Tropsch (FT) process. Process configuration, component selection, and performance are interrelated and dependent on feed characteristics. This paper outlines a flexible modular approach to model an integrated FT process that utilizes a library of key component models, supporting kinetic data and materials and transport properties allowing rapid development of custom integrated plant models. The modular construction will permit rapid assessment of alternative designs and feed stocks. The modeling approach consists of three thrust areas, or “strands” – model/module development, integration of the model elements into an end to end integrated system model, and utilization of the model for plant design. Strand 1, model/module development, entails identifying, developing, and assembling a library of codes, user blocks, and data for FT process unit operations for a custom feedstock and plant description. Strand 2, integration development, provides the framework for linking these component and subsystem models to form an integrated FT plant simulation. Strand 3, plant design, includes testing and validation of the comprehensive model and performing design evaluation analyses.

  14. Integrative and complementary therapies for patients with advanced cancer.

    PubMed

    Marchand, Lucille

    2014-07-01

    In integrative medicine, well-being is emphasized, and in palliative care, quality of life (QOL) is a similar concept or goal. Both can occur despite advanced cancer. Integrative medicine serves to combine the best of alternative, complementary and conventional therapies to optimize well-being and QOL, whether or not a person is at the end of their life. When integrative medicine is combined with palliative care modalities, the toolbox to provide symptom control and well-being or QOL is increased or broadened. Palliative care and integrative medicine are best provided early in the trajectory of illness such as cancer, and increase in amount as the illness progresses toward end of life. In cancer care, symptoms of the cancer, as well as symptoms produced by cancer therapies, are addressed with conventional and integrative therapies. Goals of care change as the disease progresses, and a patient's unique situation creates a different balance of integrative and conventional therapies. Integrative therapies such as music, aromatherapy, and massage might appeal to more patients than more specific, less common integrative therapies that might be more expensive, or seem more unusual such as Ayurvedic medicine and energy modalities. Each person may be drawn to different integrative modalities depending on factors such as cultural traditions, beliefs, lifestyle, internet information, advice from family and friends, books, etc. This review focuses on how integrative and complementary modalities can be included in comprehensive palliative care for patients with advanced malignancies. Nutrition and movement, often neglected in conventional treatment strategies, will also be included in the larger context of integrative and palliative modalities. Both conventional and integrative modalities in palliative care help patients live with empowerment, hope, and well-being no matter how long their lives last. A comprehensive review of all integrative and complementary therapies is

  15. The process of assimilative psychodynamic integration.

    PubMed

    Stricker, George

    2013-09-01

    Assimilative psychotherapy integration is described and then characterized by a series of common processes: (1) multiple selves; (2) rupture repair; (3) corrective emotional experience; and (4) homework. These processes each have some degree of research support, are related to each other because of their contribution to the therapeutic relationship, and contribute to evidence-based practice. PMID:24000860

  16. A feasibility study for advanced technology integration for general aviation

    NASA Technical Reports Server (NTRS)

    Kohlman, D. L.; Matsuyama, G. T.; Hawley, K. E.; Meredith, P. T.

    1980-01-01

    An investigation was conducted to identify candidate technologies and specific developments which offer greatest promise for improving safety, fuel efficiency, performance, and utility of general aviation airplanes. Interviews were conducted with general aviation airframe and systems manufacturers and NASA research centers. The following technologies were evaluated for use in airplane design tradeoff studies conducted during the study: avionics, aerodynamics, configurations, structures, flight controls, and propulsion. Based on industry interviews and design tradeoff studies, several recommendations were made for further high payoff research. The most attractive technologies for use by the general aviation industry appear to be advanced engines, composite materials, natural laminar flow airfoils, and advanced integrated avionics systems. The integration of these technologies in airplane design can yield significant increases in speeds, ranges, and payloads over present aircraft with 40 percent to 50 percent reductions in fuel used.

  17. New advances in the integrated management of food processing by-products in Europe: sustainable exploitation of fruit and cereal processing by-products with the production of new food products (NAMASTE EU).

    PubMed

    Fava, Fabio; Zanaroli, Giulio; Vannini, Lucia; Guerzoni, Elisabetta; Bordoni, Alessandra; Viaggi, Davide; Robertson, Jim; Waldron, Keith; Bald, Carlos; Esturo, Aintzane; Talens, Clara; Tueros, Itziar; Cebrián, Marta; Sebők, András; Kuti, Tunde; Broeze, Jan; Macias, Marta; Brendle, Hans-Georg

    2013-09-25

    By-products generated every year by the European fruit and cereal processing industry currently exceed several million tons. They are disposed of mainly through landfills and thus are largely unexploited sources of several valuable biobased compounds potentially profitable in the formulation of novel food products. The opportunity to design novel strategies to turn them into added value products and food ingredients via novel and sustainable processes is the main target of recently EC-funded FP7 project NAMASTE-EU. NAMASTE-EU aims at developing new laboratory-scale protocols and processes for the exploitation of citrus processing by-products and wheat bran surpluses via the production of ingredients useful for the formulation of new beverage and food products. Among the main results achieved in the first two years of the project, there are the development and assessment of procedures for the selection, stabilization and the physical/biological treatment of citrus and wheat processing by-products, the obtainment and recovery of some bioactive molecules and ingredients and the development of procedures for assessing the quality of the obtained ingredients and for their exploitation in the preparation of new food products. PMID:23689042

  18. New advances in the integrated management of food processing by-products in Europe: sustainable exploitation of fruit and cereal processing by-products with the production of new food products (NAMASTE EU).

    PubMed

    Fava, Fabio; Zanaroli, Giulio; Vannini, Lucia; Guerzoni, Elisabetta; Bordoni, Alessandra; Viaggi, Davide; Robertson, Jim; Waldron, Keith; Bald, Carlos; Esturo, Aintzane; Talens, Clara; Tueros, Itziar; Cebrián, Marta; Sebők, András; Kuti, Tunde; Broeze, Jan; Macias, Marta; Brendle, Hans-Georg

    2013-09-25

    By-products generated every year by the European fruit and cereal processing industry currently exceed several million tons. They are disposed of mainly through landfills and thus are largely unexploited sources of several valuable biobased compounds potentially profitable in the formulation of novel food products. The opportunity to design novel strategies to turn them into added value products and food ingredients via novel and sustainable processes is the main target of recently EC-funded FP7 project NAMASTE-EU. NAMASTE-EU aims at developing new laboratory-scale protocols and processes for the exploitation of citrus processing by-products and wheat bran surpluses via the production of ingredients useful for the formulation of new beverage and food products. Among the main results achieved in the first two years of the project, there are the development and assessment of procedures for the selection, stabilization and the physical/biological treatment of citrus and wheat processing by-products, the obtainment and recovery of some bioactive molecules and ingredients and the development of procedures for assessing the quality of the obtained ingredients and for their exploitation in the preparation of new food products.

  19. Advances in Processing of Bulk Ferroelectric Materials

    NASA Astrophysics Data System (ADS)

    Galassi, Carmen

    The development of ferroelectric bulk materials is still under extensive investigation, as new and challenging issues are growing in relation to their widespread applications. Progress in understanding the fundamental aspects requires adequate technological tools. This would enable controlling and tuning the material properties as well as fully exploiting them into the scale production. Apart from the growing number of new compositions, interest in the first ferroelectrics like BaTiO3 or PZT materials is far from dropping. The need to find new lead-free materials, with as high performance as PZT ceramics, is pushing towards a full exploitation of bariumbased compositions. However, lead-based materials remain the best performing at reasonably low production costs. Therefore, the main trends are towards nano-size effects and miniaturisation, multifunctional materials, integration, and enhancement of the processing ability in powder synthesis. Also, in control of dispersion and packing, to let densification occur in milder conditions. In this chapter, after a general review of the composition and main properties of the principal ferroelectric materials, methods of synthesis are analysed with emphasis on recent results from chemical routes and cold consolidation methods based on the colloidal processing.

  20. Advanced information processing system: Local system services

    NASA Technical Reports Server (NTRS)

    Burkhardt, Laura; Alger, Linda; Whittredge, Roy; Stasiowski, Peter

    1989-01-01

    The Advanced Information Processing System (AIPS) is a multi-computer architecture composed of hardware and software building blocks that can be configured to meet a broad range of application requirements. The hardware building blocks are fault-tolerant, general-purpose computers, fault-and damage-tolerant networks (both computer and input/output), and interfaces between the networks and the computers. The software building blocks are the major software functions: local system services, input/output, system services, inter-computer system services, and the system manager. The foundation of the local system services is an operating system with the functions required for a traditional real-time multi-tasking computer, such as task scheduling, inter-task communication, memory management, interrupt handling, and time maintenance. Resting on this foundation are the redundancy management functions necessary in a redundant computer and the status reporting functions required for an operator interface. The functional requirements, functional design and detailed specifications for all the local system services are documented.

  1. Advanced Coal Conversion Process Demonstration Project

    SciTech Connect

    Not Available

    1992-04-01

    Western Energy Company (WECO) was selected by the Department of Energy (DOE) to demonstrate the Advanced Coal Conversion Process (ACCP) which upgrades low rank coals into high Btu, low sulfur, synthetic bituminous coal. As specified in the Corporate Agreement, RSCP is required to develop an Environmental Monitoring Plan (EMP) which describes in detail the environmental monitoring activities to be performed during the project execution. The purpose of the EMP is to: (1) identify monitoring activities that will be undertaken to show compliance to applicable regulations, (2) confirm the specific environmental impacts predicted in the National Environmental Policy Act documentation, and (3) establish an information base of the assessment of the environmental performance of the technology demonstrated by the project. The EMP specifies the streams to be monitored (e.g. gaseous, aqueous, and solid waste), the parameters to be measured (e.g. temperature, pressure, flow rate), and the species to be analyzed (e.g. sulfur compounds, nitrogen compounds, trace elements) as well as human health and safety exposure levels. The operation and frequency of the monitoring activities is specified, as well as the timing for the monitoring activities related to project phase (e.g. preconstruction, construction, commissioning, operational, post-operational). The EMP is designed to assess the environmental impacts and the environmental improvements resulting from construction and operation of the project.

  2. Advanced Integrated Power and Attitude Control System (IPACS) study

    NASA Technical Reports Server (NTRS)

    Oglevie, R. E.; Eisenhaure, D. B.

    1985-01-01

    Integrated Power and Attitude Control System (IPACS) studies performed over a decade ago established the feasibility of simultaneously satisfying the demands of energy storage and attitude control through the use of rotating flywheels. It was demonstrated that, for a wide spectrum of applications, such a system possessed many advantages over contemporary energy storage and attitude control approaches. More recent technology advances in composite material rotors, magnetic suspension systems, and power control electronics have triggered new optimism regarding the applicability and merits of this concept. This study is undertaken to define an advanced IPACS and to evaluate its merits for a space station application. System and component designs are developed to establish the performance of this concept and system trade studies conducted to examine the viability of this approach relative to conventional candidate systems. It is clearly demonstrated that an advanced IPACS concept is not only feasible, but also offers substantial savings in mass and life-cycle cost for the space station mission.

  3. Investigation of an advanced fault tolerant integrated avionics system

    NASA Technical Reports Server (NTRS)

    Dunn, W. R.; Cottrell, D.; Flanders, J.; Javornik, A.; Rusovick, M.

    1986-01-01

    Presented is an advanced, fault-tolerant multiprocessor avionics architecture as could be employed in an advanced rotorcraft such as LHX. The processor structure is designed to interface with existing digital avionics systems and concepts including the Army Digital Avionics System (ADAS) cockpit/display system, navaid and communications suites, integrated sensing suite, and the Advanced Digital Optical Control System (ADOCS). The report defines mission, maintenance and safety-of-flight reliability goals as might be expected for an operational LHX aircraft. Based on use of a modular, compact (16-bit) microprocessor card family, results of a preliminary study examining simplex, dual and standby-sparing architectures is presented. Given the stated constraints, it is shown that the dual architecture is best suited to meet reliability goals with minimum hardware and software overhead. The report presents hardware and software design considerations for realizing the architecture including redundancy management requirements and techniques as well as verification and validation needs and methods.

  4. Recent advances in the integrative nutrition of arthropods.

    PubMed

    Simpson, Stephen J; Clissold, Fiona J; Lihoreau, Mathieu; Ponton, Fleur; Wilder, Shawn M; Raubenheimer, David

    2015-01-01

    In this review we highlight recent advances in four areas in which nutrition shapes the relationships between organisms: between plants and herbivores, between hosts and their microbiota, between individuals within groups and societies, and between species within food webs. We demonstrate that taking an explicitly multidimensional view of nutrition and employing the logic of the geometric framework for nutrition provide novel insights and offer a means of integration across different levels of organization, from individuals to ecosystems.

  5. Monolithic microwave integrated circuit technology for advanced space communication

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Romanofsky, Robert R.

    1988-01-01

    Future Space Communications subsystems will utilize GaAs Monolithic Microwave Integrated Circuits (MMIC's) to reduce volume, weight, and cost and to enhance system reliability. Recent advances in GaAs MMIC technology have led to high-performance devices which show promise for insertion into these next generation systems. The status and development of a number of these devices operating from Ku through Ka band will be discussed along with anticipated potential applications.

  6. Foundational development of an advanced nuclear reactor integrated safety code.

    SciTech Connect

    Clarno, Kevin; Lorber, Alfred Abraham; Pryor, Richard J.; Spotz, William F.; Schmidt, Rodney Cannon; Belcourt, Kenneth; Hooper, Russell Warren; Humphries, Larry LaRon

    2010-02-01

    This report describes the activities and results of a Sandia LDRD project whose objective was to develop and demonstrate foundational aspects of a next-generation nuclear reactor safety code that leverages advanced computational technology. The project scope was directed towards the systems-level modeling and simulation of an advanced, sodium cooled fast reactor, but the approach developed has a more general applicability. The major accomplishments of the LDRD are centered around the following two activities. (1) The development and testing of LIME, a Lightweight Integrating Multi-physics Environment for coupling codes that is designed to enable both 'legacy' and 'new' physics codes to be combined and strongly coupled using advanced nonlinear solution methods. (2) The development and initial demonstration of BRISC, a prototype next-generation nuclear reactor integrated safety code. BRISC leverages LIME to tightly couple the physics models in several different codes (written in a variety of languages) into one integrated package for simulating accident scenarios in a liquid sodium cooled 'burner' nuclear reactor. Other activities and accomplishments of the LDRD include (a) further development, application and demonstration of the 'non-linear elimination' strategy to enable physics codes that do not provide residuals to be incorporated into LIME, (b) significant extensions of the RIO CFD code capabilities, (c) complex 3D solid modeling and meshing of major fast reactor components and regions, and (d) an approach for multi-physics coupling across non-conformal mesh interfaces.

  7. Measurement and modeling of advanced coal conversion processes

    SciTech Connect

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G. ); Smoot, L.D.; Brewster, B.S. )

    1992-01-01

    The objectives of this proposed study are to establish the mechanisms and rates of basic steps in coal conversion processes, to integrate and incorporate this information into comprehensive computer models for coal conversion processes, to evaluate these models and to apply them to gasification, mild gasification and combustion in heat engines. This report describes progress during twenty second quarter of the program. Specifically, the paper discusses progress in three task areas: (1) Submodel development and evaluation: coal to char chemistry submodel; fundamental high-pressure reaction rate data; secondary reaction of pyrolysis product and burnout submodels; ash physics and chemistry submodel; large particle submodels; large char particle oxidation at high pressures; and SO[sub x]-NO[sub x] submodel development and evaluation; (2) Comprehensive model development and evaluation: integration of advanced submodels into entrained-flow code, with evaluation and documentation; comprehensive fixed-bed modeling review, development evaluation and implementation; and generalized fuels feedstock submodel; and (3) Application of integrated codes: application of generalized pulverized coal comprehensive code and application of fixed-bed code.

  8. Integrated Multi-process Microfluidic Systems for Automating Analysis

    PubMed Central

    Yang, Weichun; Woolley, Adam T.

    2010-01-01

    Microfluidic technologies have been applied extensively in rapid sample analysis. Some current challenges for standard microfluidic systems are relatively high detection limits, and reduced resolving power and peak capacity compared to conventional approaches. The integration of multiple functions and components onto a single platform can overcome these separation and detection limitations of microfluidics. Multiplexed systems can greatly increase peak capacity in multidimensional separations and can increase sample throughput by analyzing many samples simultaneously. On-chip sample preparation, including labeling, preconcentration, cleanup and amplification, can all serve to speed up and automate processes in integrated microfluidic systems. This paper summarizes advances in integrated multi-process microfluidic systems for automated analysis, their benefits and areas for needed improvement. PMID:20514343

  9. Systems Engineering and Integration for Advanced Life Support System and HST

    NASA Technical Reports Server (NTRS)

    Kamarani, Ali K.

    2005-01-01

    Systems engineering (SE) discipline has revolutionized the way engineers and managers think about solving issues related to design of complex systems: With continued development of state-of-the-art technologies, systems are becoming more complex and therefore, a systematic approach is essential to control and manage their integrated design and development. This complexity is driven from integration issues. In this case, subsystems must interact with one another in order to achieve integration objectives, and also achieve the overall system's required performance. Systems engineering process addresses these issues at multiple levels. It is a technology and management process dedicated to controlling all aspects of system life cycle to assure integration at all levels. The Advanced Integration Matrix (AIM) project serves as the systems engineering and integration function for the Human Support Technology (HST) program. AIM provides means for integrated test facilities and personnel for performance trade studies, analyses, integrated models, test results, and validated requirements of the integration of HST. The goal of AIM is to address systems-level integration issues for exploration missions. It will use an incremental systems integration approach to yield technologies, baselines for further development, and possible breakthrough concepts in the areas of technological and organizational interfaces, total information flow, system wide controls, technical synergism, mission operations protocols and procedures, and human-machine interfaces.

  10. Recent Advances in Flexible and Stretchable Bio-Electronic Devices Integrated with Nanomaterials.

    PubMed

    Choi, Suji; Lee, Hyunjae; Ghaffari, Roozbeh; Hyeon, Taeghwan; Kim, Dae-Hyeong

    2016-06-01

    Flexible and stretchable electronics and optoelectronics configured in soft, water resistant formats uniquely address seminal challenges in biomedicine. Over the past decade, there has been enormous progress in the materials, designs, and manufacturing processes for flexible/stretchable system subcomponents, including transistors, amplifiers, bio-sensors, actuators, light emitting diodes, photodetector arrays, photovoltaics, energy storage elements, and bare die integrated circuits. Nanomaterials prepared using top-down processing approaches and synthesis-based bottom-up methods have helped resolve the intrinsic mechanical mismatch between rigid/planar devices and soft/curvilinear biological structures, thereby enabling a broad range of non-invasive, minimally invasive, and implantable systems to address challenges in biomedicine. Integration of therapeutic functional nanomaterials with soft bioelectronics demonstrates therapeutics in combination with unconventional diagnostics capabilities. Recent advances in soft materials, devices, and integrated systems are reviewes, with representative examples that highlight the utility of soft bioelectronics for advanced medical diagnostics and therapies.

  11. Recent Advances in Flexible and Stretchable Bio-Electronic Devices Integrated with Nanomaterials.

    PubMed

    Choi, Suji; Lee, Hyunjae; Ghaffari, Roozbeh; Hyeon, Taeghwan; Kim, Dae-Hyeong

    2016-06-01

    Flexible and stretchable electronics and optoelectronics configured in soft, water resistant formats uniquely address seminal challenges in biomedicine. Over the past decade, there has been enormous progress in the materials, designs, and manufacturing processes for flexible/stretchable system subcomponents, including transistors, amplifiers, bio-sensors, actuators, light emitting diodes, photodetector arrays, photovoltaics, energy storage elements, and bare die integrated circuits. Nanomaterials prepared using top-down processing approaches and synthesis-based bottom-up methods have helped resolve the intrinsic mechanical mismatch between rigid/planar devices and soft/curvilinear biological structures, thereby enabling a broad range of non-invasive, minimally invasive, and implantable systems to address challenges in biomedicine. Integration of therapeutic functional nanomaterials with soft bioelectronics demonstrates therapeutics in combination with unconventional diagnostics capabilities. Recent advances in soft materials, devices, and integrated systems are reviewes, with representative examples that highlight the utility of soft bioelectronics for advanced medical diagnostics and therapies. PMID:26779680

  12. Advanced integrated spectrometer designs for miniaturized optical coherence tomography systems

    NASA Astrophysics Data System (ADS)

    Akca, B. I.; Považay, B.; Chang, L.; Alex, A.; Wörhoff, K.; de Ridder, R. M.; Drexler, W.; Pollnau, M.

    2013-06-01

    Optical coherence tomography (OCT) has enabled clinical applications that revolutionized in vivo medical diagnostics. Nevertheless, its current limitations owing to cost, size, complexity, and the need for accurate alignment must be overcome by radically novel approaches. Exploiting integrated optics, the central components of a spectral-domain OCT (SD-OCT) system can be integrated on a chip. Arrayed-waveguide grating (AWG) spectrometers with their high spectral resolution and compactness are excellent candidates for on-chip SD-OCT systems. However, specific design-related issues of AWG spectrometers limit the performance of on-chip SD-OCT systems. Here we present advanced AWG designs which could overcome the limitations arising from free spectral range, polarization dependency, and curved focal plane of the AWG spectrometers. Using these advanced AWG designs in an SD-OCT system can provide not only better overall performance but also some unique aspects that a commercial system does not have. Additionally, a partially integrated OCT system comprising an AWG spectrometer and an integrated beam splitter, as well as the in vivo imaging using this system are demonstrated.

  13. The Advanced Integration Matrix Project and Analog Sites: Difference or Duplication?

    NASA Technical Reports Server (NTRS)

    Wells, Kevin M.

    2004-01-01

    Several project teams have conducted Mars and Lunar mission simulations at analog sites and facilities over the past decade. These projects have a range of scope, participants, and objectives. NASA has provided many of these projects with funding, equipment, and personnel. Despite their variety, a consistent aim of these sites is advancing our capability to return to the Moon or to go to Mars. The Advanced Integration Matrix (AIM) Project was begun in 2002 with a corollary aim: that of advancing the technology needed for long duration human exploration of space. As a new project, it is prudent to ask and answer the question: "What does AIM offer to NASA that is distinct from what current and past analog sites offer?" The price tag for human spaceflight is high enough without needless duplication of efforts. The AIM Project concept is distinct from currently operating terrestrial analogs in three important ways. First, AIM is not strictly an analog site or facility; second, AIM is primarily focused on systems and integration issues; and finally, AIM is organizationally related to NASA s advanced development groups and subject to the rigors of the JSC Engineering Directorate s development process. The successful development of destination-independent, cost-effective, safe, and reliable long duration human exploration systems requires that NASA use both the analog sites and ground-based systems integration efforts. The Advanced Integration Matrix Project will not simply duplicate the former, but will give the agency the capability for the latter.

  14. Safety Analysis of Soybean Processing for Advanced Life Support

    NASA Technical Reports Server (NTRS)

    Hentges, Dawn L.

    1999-01-01

    Soybeans (cv. Hoyt) is one of the crops planned for food production within the Advanced Life Support System Integration Testbed (ALSSIT), a proposed habitat simulation for long duration lunar/Mars missions. Soybeans may be processed into a variety of food products, including soymilk, tofu, and tempeh. Due to the closed environmental system and importance of crew health maintenance, food safety is a primary concern on long duration space missions. Identification of the food safety hazards and critical control points associated with the closed ALSSIT system is essential for the development of safe food processing techniques and equipment. A Hazard Analysis Critical Control Point (HACCP) model was developed to reflect proposed production and processing protocols for ALSSIT soybeans. Soybean processing was placed in the type III risk category. During the processing of ALSSIT-grown soybeans, critical control points were identified to control microbiological hazards, particularly mycotoxins, and chemical hazards from antinutrients. Critical limits were suggested at each CCP. Food safety recommendations regarding the hazards and risks associated with growing, harvesting, and processing soybeans; biomass management; and use of multifunctional equipment were made in consideration of the limitations and restraints of the closed ALSSIT.

  15. Advanced remote handling for future applications: The advanced integrated maintenance system

    SciTech Connect

    Herndon, J.N.; Kring, C.T.; Rowe, J.C.

    1986-01-01

    The Consolidated Fuel Reprocessing Program at Oak Ridge National Laboratory has been developing advanced techniques for remote maintenance of future US fuel reprocessing plants. The developed technology has a wide spectrum of application for other hazardous environments. These efforts are based on the application of teleoperated, force-reflecting servomanipulators for dexterous remote handling with television viewing for large-volume hazardous applications. These developments fully address the nonrepetitive nature of remote maintenance in the unstructured environments encountered in fuel reprocessing. This paper covers the primary emphasis in the present program; the design, fabrication, installation, and operation of a prototype remote handling system for reprocessing applications, the Advanced Integrated Maintenance System.

  16. Automatic generation of signal processing integrated circuits

    SciTech Connect

    Pope, S.P.

    1985-01-01

    A system for the automated design of signal processing integrated circuits is described in this thesis. The system is based on a library of circuit cells, and a software package that can configure the cells into complete integrated circuits. The architecture of the cell library is optimized for low and medium bandwidth digital signal processing applications. Circuits designed with the system use a multiprocessor architecture. Input to the system is a design file written in a specialized programming language. Software emulation from the design file is used to verify performance. A two-pass silicon compiler is used to translate the design file into a mask-level description of an integrated circuit. A major goal of the project is to make the system useable by those with little or no formal training in integrated circuits. A second goal is to reduce the time and cost associated with performing an integrated circuit design, while still producing designs which are reasonably efficient in their use of the technology. Development of the system was guided by basic research on appropriate architectures and circuit constructs for signal processors. As part of this research an integrated circuit was designed which performs speech analysis and synthesis. This vocoder circuit is intended for use in low-bit-rate digital speech transmission systems.

  17. H Scan/AHP advanced technology proposal evaluation process

    SciTech Connect

    Mack, S.; Valladares, M.R.S. de

    1996-10-01

    It is anticipated that a family of high value/impact projects will be funded by the Hydrogen Program to field test hydrogen technologies that are at advanced stages of development. These projects will add substantial value to the Program in several ways, by: demonstrating successful integration of multiple advanced technologies, providing critical insight on issues of larger scale equipment design, construction and operations management, yielding cost and performance data for competitive analysis, refining and deploying enhanced safety measures. These projects will be selected through a competitive proposal evaluation process. Because of the significant scope and funding levels of projects at these development phases, Program management has indicated the need for an augmented proposal evaluation strategy to ensure that supported projects are implemented by capable investigative teams and that their successful completion will optimally advance programmatic objectives. These objectives comprise a complex set of both quantitative and qualitative factors, many of which can only be estimated using expert judgment and opinion. To meet the above need, the National Renewable Energy Laboratory (NREL) and Energetics Inc. have jointly developed a proposal evaluation methodology called H Scan/AHP. The H Scan component of the process was developed by NREL. It is a two-part survey instrument that substantially augments the type and scope of information collected in a traditional proposal package. The AHP (Analytic Hierarchy Process) component was developed by Energetics. The AHP is an established decision support methodology that allows the Program decision makers to evaluate proposals relatively based on a unique set of weighted criteria that they have determined.

  18. [Integrated care for patients with advanced chronic obstructive pulmonary disease].

    PubMed

    Jassem, Ewa; Górecka, Dorota; Krakowiak, Piotr; Kozielski, Jerzy; Słomiński, J Marek; Krajnik, Małgorzata; Fal, Andrzej M

    2010-01-01

    Chronic obstructive pulmonary disease (COPD) is the third cause of mortality and disability (assessed by DALY) among patients above 60 year old. Severe and very severe COPD (FEV(1) = equal or less than 50% and 30% of expected value, respectively) is estimated at 20% of all COPD patients. Advanced COPD usually leads to physical and mental deterioration, the patients often manage with the problems caused by the disease and other comorbidities poorly. This leads to increased risk of COPD exacerbations and further deterioration of the patient's status, increased costs of medical care and eventually increased risk of death. Current organization of medical care for those patients does not provide adequate health and social support for them. However, it seems that introducing an integrated approach proposed by World Health Organization, could improve the situation of advanced COPD patients. In Poland, this kind of care has been provided in advanced cancer patients throughout stationary palliative care units and hospices during the last several years. This experience should be helpful in integrating actions of general practitioners and specialized nurses, as well as providing access for the specialists' consultations according to the individual needs of the patients. It should also allow for broad cooperation with auxiliary staff, such as social workers, medical assistants and volunteers, as well as psychologists and clergymen (especially in the terminal phase of the disease).

  19. Integration Process for the Habitat Demonstration Unit

    NASA Technical Reports Server (NTRS)

    Gill, Tracy; Merbitz, Jerad; Kennedy, Kriss; Tri, Terry; Howe, A. Scott

    2010-01-01

    The Habitat Demonstration Unit (HDU) is an experimental exploration habitat technology and architecture test platform designed for analog demonstration activities The HDU project has required a team to integrate a variety of contributions from NASA centers and outside collaborators and poses a challenge in integrating these disparate efforts into a cohesive architecture To complete the development of the HDU from conception in June 2009 to rollout for operations in July 2010, a cohesive integration strategy has been developed to integrate the various systems of HDU and the payloads, such as the Geology Lab, that those systems will support The utilization of interface design standards and uniquely tailored reviews have allowed for an accelerated design process Scheduled activities include early fit-checks and the utilization of a Habitat avionics test bed prior to equipment installation into HDU A coordinated effort to utilize modeling and simulation systems has aided in design and integration concept development Modeling tools have been effective in hardware systems layout, cable routing and length estimation, and human factors analysis Decision processes on the shell development including the assembly sequence and the transportation have been fleshed out early on HDU to maximize the efficiency of both integration and field operations Incremental test operations leading up to an integrated systems test allows for an orderly systems test program The HDU will begin its journey as an emulation of a Pressurized Excursion Module (PEM) for 2010 field testing and then may evolve to a Pressurized Core Module (PCM) for 2011 and later field tests, depending on agency architecture decisions The HDU deployment will vary slightly from current lunar architecture plans to include developmental hardware and software items and additional systems called opportunities for technology demonstration One of the HDU challenges has been designing to be prepared for the integration of

  20. The use of safeguards data for process monitoring in the Advanced Test Line for Actinide Separations

    SciTech Connect

    Barnes, J.W.; Yarbro, S.L.

    1987-01-01

    Los Alamos is constructing an integrated process monitoring/materials control and accounting (PM/MC and A) system in the Advanced Testing Line for Actinide Separations (ATLAS) at the Los Alamos Plutonium Facility. The ATLAS will test and demonstrate new methods for aqueous processing of plutonium. The ATLAS will also develop, test, and demonstrate the concepts for integrated process monitoring/materials control and accounting. We describe how this integrated PM/MC and A system will function and provide benefits to both process research and materials accounting personnel.

  1. Synthesis and optimization of integrated chemical processes

    SciTech Connect

    Barton, Paul I.; Evans, Lawrence B.

    2002-04-26

    This is the final technical report for the project titled ''Synthesis and optimization of integrated chemical processes''. Progress is reported on novel algorithms for the computation of all heteroazeotropic compositions present in complex liquid mixtures; the design of novel flexible azeotropic separation processes using middle vessel batch distillation columns; and theory and algorithms for sensitivity analysis and numerical optimization of hybrid discrete/continuous dynamic systems.

  2. Advanced Reduction Processes: A New Class of Treatment Processes

    PubMed Central

    Vellanki, Bhanu Prakash; Batchelor, Bill; Abdel-Wahab, Ahmed

    2013-01-01

    Abstract A new class of treatment processes called advanced reduction processes (ARPs) is proposed. ARPs combine activation methods and reducing agents to form highly reactive reducing radicals that degrade oxidized contaminants. Batch screening experiments were conducted to identify effective ARPs by applying several combinations of activation methods (ultraviolet light, ultrasound, electron beam, and microwaves) and reducing agents (dithionite, sulfite, ferrous iron, and sulfide) to degradation of four target contaminants (perchlorate, nitrate, perfluorooctanoic acid, and 2,4 dichlorophenol) at three pH-levels (2.4, 7.0, and 11.2). These experiments identified the combination of sulfite activated by ultraviolet light produced by a low-pressure mercury vapor lamp (UV-L) as an effective ARP. More detailed kinetic experiments were conducted with nitrate and perchlorate as target compounds, and nitrate was found to degrade more rapidly than perchlorate. Effectiveness of the UV-L/sulfite treatment process improved with increasing pH for both perchlorate and nitrate. We present the theory behind ARPs, identify potential ARPs, demonstrate their effectiveness against a wide range of contaminants, and provide basic experimental evidence in support of the fundamental hypothesis for ARP, namely, that activation methods can be applied to reductants to form reducing radicals that degrade oxidized contaminants. This article provides an introduction to ARPs along with sufficient data to identify potentially effective ARPs and the target compounds these ARPs will be most effective in destroying. Further research will provide a detailed analysis of degradation kinetics and the mechanisms of contaminant destruction in an ARP. PMID:23840160

  3. Human Exploration Spacecraft Testbed for Integration and Advancement (HESTIA)

    NASA Technical Reports Server (NTRS)

    Banker, Brian F.; Robinson, Travis

    2016-01-01

    The proposed paper will cover ongoing effort named HESTIA (Human Exploration Spacecraft Testbed for Integration and Advancement), led at the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) to promote a cross-subsystem approach to developing Mars-enabling technologies with the ultimate goal of integrated system optimization. HESTIA also aims to develop the infrastructure required to rapidly test these highly integrated systems at a low cost. The initial focus is on the common fluids architecture required to enable human exploration of mars, specifically between life support and in-situ resource utilization (ISRU) subsystems. An overview of the advancements in both integrated technologies, in infrastructure, in simulation, and in modeling capabilities will be presented, as well as the results and findings of integrated testing,. Due to the enormous mass gear-ratio required for human exploration beyond low-earth orbit, (for every 1 kg of payload landed on Mars, 226 kg will be required on Earth), minimization of surface hardware and commodities is paramount. Hardware requirements can be minimized by reduction of equipment performing similar functions though for different subsystems. If hardware could be developed which meets the requirements of both life support and ISRU it could result in the reduction of primary hardware and/or reduction in spares. Minimization of commodities to the surface of mars can be achieved through the creation of higher efficiency systems producing little to no undesired waste, such as a closed-loop life support subsystem. Where complete efficiency is impossible or impractical, makeup commodities could be manufactured via ISRU. Although, utilization of ISRU products (oxygen and water) for crew consumption holds great promise of reducing demands on life support hardware, there exist concerns as to the purity and transportation of commodities. To date, ISRU has been focused on production rates and purities for

  4. Integration of heat pumps into industrial processes

    SciTech Connect

    Chappell, R.N. ); Priebe, S.J. )

    1989-01-01

    The Department of Energy and others have funded studies to assess the potential for energy savings using industrial heat pumps. The studies included classifications of heat pumps, economic evaluations, and placement of heat pumps in industrial processes. Pinch technology was used in the placement studies to determine the placement, size, and type of heat pumps for a given applications. There appears to be considerable scope for heat pumping in several industries, but, where maximum process energy savings are desired, it is important to consider heat pumping in the context of overall process integration. 19 refs., 15 figs.

  5. Integration Process for the Habitat Demonstration Unit

    NASA Technical Reports Server (NTRS)

    Gill, Tracy; Merbitz, Jerad; Kennedy, Kriss; Tn, Terry; Toups, Larry; Howe, A. Scott; Smitherman, David

    2011-01-01

    The Habitat Demonstration Unit (HDU) is an experimental exploration habitat technology and architecture test platform designed for analog demonstration activities. The HDU previously served as a test bed for testing technologies and sub-systems in a terrestrial surface environment. in 2010 in the Pressurized Excursion Module (PEM) configuration. Due to the amount of work involved to make the HDU project successful, the HDU project has required a team to integrate a variety of contributions from NASA centers and outside collaborators The size of the team and number of systems involved With the HDU makes Integration a complicated process. However, because the HDU shell manufacturing is complete, the team has a head start on FY--11 integration activities and can focus on integrating upgrades to existing systems as well as integrating new additions. To complete the development of the FY-11 HDU from conception to rollout for operations in July 2011, a cohesive integration strategy has been developed to integrate the various systems of HDU and the payloads. The highlighted HDU work for FY-11 will focus on performing upgrades to the PEM configuration, adding the X-Hab as a second level, adding a new porch providing the astronauts a larger work area outside the HDU for EVA preparations, and adding a Hygiene module. Together these upgrades result in a prototype configuration of the Deep Space Habitat (DSH), an element under evaluation by NASA's Human Exploration Framework Team (HEFT) Scheduled activates include early fit-checks and the utilization of a Habitat avionics test bed prior to installation into HDU. A coordinated effort to utilize modeling and simulation systems has aided in design and integration concept development. Modeling tools have been effective in hardware systems layout, cable routing, sub-system interface length estimation and human factors analysis. Decision processes on integration and use of all new subsystems will be defined early in the project to

  6. Integrated Software Framework for Geophysical Data Processing

    NASA Astrophysics Data System (ADS)

    Chubak, G. D.; Morozov, I. B.

    2005-12-01

    An integrated software framework for geophysical data processing was designed by extending a seismic processing system developed previously. Unlike other systems, the new processing monitor is essentially content-agnostic, supports structured multicomponent seismic data streams, multidimensional data objects, and employs a unique backpropagation execution logic. This results in an unusual flexibility of processing, allowing the system to handle nearly any geophysical data. The core package includes nearly 190 tools for seismic, travel-time, and potential-field processing, interfaces to popular graphics and other packages (such as Seismic Unix and GMT). The system also offers an extensive processing environment, including: 1) a modern and feature-rich Graphical User Interface allowing submission of processing jobs and interaction with them during run time, 2) parallel processing capabilities, including load distribution on Beowulf clusters or local area networks; 3) web service operation allowing submission of complex processing jobs to shared remote servers; 4) automated software update service for code distribution to multiple systems, 5) automated online documentation, and 6) software development utilities. The core package was used in several areas of seismology (shallow, reflection, crustal wide-angle, and teleseismic) and in 3D potential-field processing. As a first example of its application, the new web service component (http://seisweb.usask.ca/SIA/ws.php).was used to build a library of processing examples, ranging from simple (UTM coordinate transformations or calculation of great-arc distances) to more complex (such as synthetic seismic modeling).

  7. Chronic illness: the process of integration

    PubMed Central

    Whittemore, Robin; Dixon, Jane

    2013-01-01

    Aim The aim of this study was to explore how adults with a chronic illness integrate the illness experience into their life context. Background Adults with chronic illnesses are challenged to learn self-management strategies to prevent complications and achieve an acceptable quality of life. Integration represents the process undertaken by an individual to achieve a sense of balance in self-managing a chronic illness and living a personally meaningful life. Design A mixed-method descriptive design was employed to recruit English-speaking adults with a chronic illness. A semi-structured interview was completed, transcribed verbatim and content analysed. Descriptive data were collected on demographics, co-morbidity and depressive symptoms. The research was undertaken in Connecticut, USA. Results The sample (n = 26) was diverse with respect to age (25–80 years), education (8–24 years), duration of illness (1–39 years), gender (63% female) and ethnicity (63% white). Participants reported a mean of four chronic illnesses and 31% of the sample had increased depressive symptoms. The process of integration was complex and multifactorial. Themes of integration included: shifting sands, staying afloat, weathering the storms, rescuing oneself and navigating life. Numerous factors including treatment side effects, a progressive or uncertain illness trajectory, co-morbidity, bad days, financial hardships and interpersonal/environmental challenges contributed to a disruption or difficulty in the integration process. Conclusion All participants made considerable effort to integrate the illness into their life context and participate in a personally meaningful life. However, it was easy to be consumed with ‘living an illness’ as the daily tasks, the changing symptoms and the fluctuating emotions could be overwhelming. There was a complex co-existence between ‘living a life’ and ‘living an illness’. Relevance to clinical practice There were numerous challenges to

  8. Modeling and Advanced Control for Sustainable Process Systems

    EPA Science Inventory

    This book chapter introduces a novel process systems engineering framework that integrates process control with sustainability assessment tools for the simultaneous evaluation and optimization of process operations. The implemented control strategy consists of a biologically-insp...

  9. Modeling and Advanced Control for Sustainable Process Systems (chapter 5)

    EPA Science Inventory

    This book chapter introduces a novel process systems engineering framework that integrates process control with sustainability assessment tools for the simultaneous evaluation and optimization of process operations. The implemented control strategy consists of a biologically-insp...

  10. Project T.E.A.M. (Technical Education Advancement Modules). Advanced Statistical Process Control.

    ERIC Educational Resources Information Center

    Dunlap, Dale

    This instructional guide, one of a series developed by the Technical Education Advancement Modules (TEAM) project, is a 20-hour advanced statistical process control (SPC) and quality improvement course designed to develop the following competencies: (1) understanding quality systems; (2) knowing the process; (3) solving quality problems; and (4)…

  11. Radionuclide migration in clayrock host formations for deep geological disposal of radioactive waste: advances in process understanding and up-scaling methods resulting from the EC integrated project `Funmig

    NASA Astrophysics Data System (ADS)

    Altmann, S.; Tournassat, C.; Goutelard, F.; Parneix, J. C.; Gimmi, T.; Maes, N.

    2009-04-01

    One of the ‘pillars' supporting Safety Cases for deep geological disposal of radioactive waste in clayrock formations is the knowledge base regarding radionuclide (Rn) retention by sorption and diffusion-driven transport which is why the EC integrated project ‘Funmig' focused a major part of its effort on advancing understanding of these two macroscopic phenomena. This talk presents some of the main results of this four year effort (2005-2008). One of the keys to understanding diffusion-driven transport of anionic and cationic radionuclide species in clayrocks lies in a detailed understanding of the phenomena governing Rn total concentration and speciation (dissolved, adsorbed) in the different types of pore spaces present in highly-compacted masses of permanently charged clay minerals. Work carried out on a specifically synthesized montmorillonite (a model for the clay mineral fraction in clayrocks) led to development, and preliminary experimental validation, of a conceptually coherent set of theoretical models (molecular dynamics, electrostatic double layer, thermodynamic) describing dissolved ion and water solvent behavior in this material. This work, complemented by the existing state of the art, provides a sound theoretical basis for explaining such important phenomena as anion exclusion, cation exchange and the diffusion behavior of anions, weakly sorbing cations and water tracers. Concerning the behavior of strongly sorbing and/or redox-reactive radionuclides in clay systems, project research improved understanding of the nature of sorption reactions and sorbed species structure for key radioelements, or analogues (U, Se, Eu, Sm, Yb, Nd) on the basal surfaces and in the interlayers of synthetic or purified clay minerals. A probable mechanism for Se(IV) retention by reduction to Se° in Fe2+-containing clays was brought to light; this same process was also studied on the Callovo-Oxfordien clayrock targeted by the French radwaste management program. The

  12. Advanced materials for geothermal energy processes

    SciTech Connect

    Kukacka, L.E.

    1985-08-01

    The primary goal of the geothermal materials program is to ensure that the private sector development of geothermal energy resources is not constrained by the availability of technologically and economically viable materials of construction. This requires the performance of long-term high risk GHTD-sponsored materials R and D. Ongoing programs described include high temperature elastomers for dynamic sealing applications, advanced materials for lost circulation control, waste utilization and disposal, corrosion resistant elastomeric liners for well casing, and non-metallic heat exchangers. 9 refs.

  13. Technology advancement of the electrochemical CO2 concentrating process

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Woods, R. R.; Hallick, T. M.; Heppner, D. B.

    1977-01-01

    A five-cell, liquid-cooled advanced electrochemical depolarized carbon dioxide concentrator module was fabricated. The cells utilized the advanced, lightweight, plated anode current collector concept and internal liquid-cooling. The five cell module was designed to meet the carbon dioxide removal requirements of one man and was assembled using plexiglass endplates. This one-man module was tested as part of an integrated oxygen generation and recovery subsystem.

  14. Advances in three-dimensional integration technologies in support of infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Temple, D. S.; Vick, E. P.; Malta, D.; Lueck, M. R.; Skokan, M. R.; Masterjohn, C. M.; Muzilla, M. S.

    2015-01-01

    Staring infrared focal plane arrays (FPAs) require pixel-level, three-dimensional (3D) integration with silicon readout integrated circuits (ROICs) that provide detector bias, integrate detector current, and may further process the signals. There is an increased interest in ROIC technology as a result of two trends in the evolution of infrared FPAs. The first trend involves decreasing the FPA pixel size, which leads to the increased information content within the same FPA die size. The second trend involves the desire to enhance signal processing capability at the FPA level, which opens the door to the detector behaving like a smart peripheral rather than a passive component—with complex signal processing functions being executed on, rather than off, the FPA chip. In this paper, we review recent advances in 3D integration process technologies that support these key trends in the development of infrared FPAs. Specifically, we discuss approaches in which the infrared sensor is integrated with 3D ROIC stacks composed of multiple layers of silicon circuitry interconnected using metal-filled through-silicon vias. We describe the continued development of the 3D integration technology and summarize key demonstrations that show its viability for pixels as small as 5 microns.

  15. Class of integrable diffusion-reaction processes

    PubMed

    Alimohammadi; Ahmadi

    2000-08-01

    We consider a process in which there are two types of particles, A and B, on an infinite one-dimensional lattice. The particles hop to their adjacent sites, like the totally asymmetric exclusion process (ASEP), and have also the following interactions: A+B-->B+B and B+A-->B+B, which all occur with equal rate. We study this process by imposing four boundary conditions on the ASEP master equation. It is shown that this model is integrable, in the sense that its N-particle S matrix is factorized into a product of two-particle S matrices and, more importantly, the two-particle S matrix satisfies the quantum Yang-Baxter equation. Using the coordinate Bethe-ansatz, the N-particle wave functions and the two-particle conditional probabilities are found exactly. Further, by imposing four reasonable physical conditions on two-species diffusion-reaction processes (where the most important ones are the equality of the reaction rates and the conservation of the number of particles in each reaction), we show that among the 4096 types of interactions which have these properties and can be modeled by a master equation and an appropriate set of boundary conditions, there are only 28 independent interactions which are integrable. We find all these interactions and also their corresponding wave functions. Some of these may be new solutions of the quantum Yang-Baxter equation. PMID:11088628

  16. Audiovisual integration facilitates unconscious visual scene processing.

    PubMed

    Tan, Jye-Sheng; Yeh, Su-Ling

    2015-10-01

    Meanings of masked complex scenes can be extracted without awareness; however, it remains unknown whether audiovisual integration occurs with an invisible complex visual scene. The authors examine whether a scenery soundtrack can facilitate unconscious processing of a subliminal visual scene. The continuous flash suppression paradigm was used to render a complex scene picture invisible, and the picture was paired with a semantically congruent or incongruent scenery soundtrack. Participants were asked to respond as quickly as possible if they detected any part of the scene. Release-from-suppression time was used as an index of unconscious processing of the complex scene, which was shorter in the audiovisual congruent condition than in the incongruent condition (Experiment 1). The possibility that participants adopted different detection criteria for the 2 conditions was excluded (Experiment 2). The audiovisual congruency effect did not occur for objects-only (Experiment 3) and background-only (Experiment 4) pictures, and it did not result from consciously mediated conceptual priming (Experiment 5). The congruency effect was replicated when catch trials without scene pictures were added to exclude participants with high false-alarm rates (Experiment 6). This is the first study demonstrating unconscious audiovisual integration with subliminal scene pictures, and it suggests expansions of scene-perception theories to include unconscious audiovisual integration.

  17. Recent advances in imaging subcellular processes

    PubMed Central

    Myers, Kenneth A.; Janetopoulos, Christopher

    2016-01-01

    Cell biology came about with the ability to first visualize cells. As microscopy techniques advanced, the early microscopists became the first cell biologists to observe the inner workings and subcellular structures that control life. This ability to see organelles within a cell provided scientists with the first understanding of how cells function. The visualization of the dynamic architecture of subcellular structures now often drives questions as researchers seek to understand the intricacies of the cell. With the advent of fluorescent labeling techniques, better and new optical techniques, and more sensitive and faster cameras, a whole array of questions can now be asked. There has been an explosion of new light microscopic techniques, and the race is on to build better and more powerful imaging systems so that we can further our understanding of the spatial and temporal mechanisms controlling molecular cell biology. PMID:27408708

  18. Recent advances in imaging subcellular processes.

    PubMed

    Myers, Kenneth A; Janetopoulos, Christopher

    2016-01-01

    Cell biology came about with the ability to first visualize cells. As microscopy techniques advanced, the early microscopists became the first cell biologists to observe the inner workings and subcellular structures that control life. This ability to see organelles within a cell provided scientists with the first understanding of how cells function. The visualization of the dynamic architecture of subcellular structures now often drives questions as researchers seek to understand the intricacies of the cell. With the advent of fluorescent labeling techniques, better and new optical techniques, and more sensitive and faster cameras, a whole array of questions can now be asked. There has been an explosion of new light microscopic techniques, and the race is on to build better and more powerful imaging systems so that we can further our understanding of the spatial and temporal mechanisms controlling molecular cell biology. PMID:27408708

  19. Challenge to advanced materials processing with lasers in Japan

    NASA Astrophysics Data System (ADS)

    Miyamoto, Isamu

    2003-02-01

    Japan is one of the most advanced countries in manufacturing technology, and lasers have been playing an important role for advancement of manufacturing technology in a variety of industrial fields. Contribution of laser materials processing to Japanese industry is significant for both macroprocessing and microprocessing. The present paper describes recent trend and topics of industrial applications in terms of the hardware and the software to show how Japanese industry challenges to advanced materials processing using lasers, and national products related to laser materials processing are also briefly introduced.

  20. Advances in integrated photonic circuits for packet-switched interconnection

    NASA Astrophysics Data System (ADS)

    Williams, Kevin A.; Stabile, Ripalta

    2014-03-01

    Sustained increases in capacity and connectivity are needed to overcome congestion in a range of broadband communication network nodes. Packet routing and switching in the electronic domain are leading to unsustainable energy- and bandwidth-densities, motivating research into hybrid solutions: optical switching engines are introduced for massive-bandwidth data transport while the electronic domain is clocked at more modest GHz rates to manage routing. Commercially-deployed optical switching engines using MEMS technologies are unwieldy and too slow to reconfigure for future packet-based networking. Optoelectronic packet-compliant switch technologies have been demonstrated as laboratory prototypes, but they have so far mostly used discretely pigtailed components, which are impractical for control plane development and product assembly. Integrated photonics has long held the promise of reduced hardware complexity and may be the critical step towards packet-compliant optical switching engines. Recently a number of laboratories world-wide have prototyped optical switching circuits using monolithic integration technology with up to several hundreds of integrated optical components per chip. Our own work has focused on multi-input to multi-output switching matrices. Recently we have demonstrated 8×8×8λ space and wavelength selective switches using gated cyclic routers and 16×16 broadband switching chips using monolithic multi-stage networks. We now operate these advanced circuits with custom control planes implemented with FPGAs to explore real time packet routing in multi-wavelength, multi-port test-beds. We review our contributions in the context of state of the art photonic integrated circuit technology and packet optical switching hardware demonstrations.

  1. Recent advances in integrated multidisciplinary optimization of rotorcraft

    NASA Technical Reports Server (NTRS)

    Adelman, Howard M.; Walsh, Joanne L.; Pritchard, Jocelyn I.

    1992-01-01

    A joint activity involving NASA and Army researchers at NASA LaRC to develop optimization procedures to improve the rotor blade design process by integrating appropriate disciplines and accounting for all of the important interactions among the disciplines is described. The disciplines involved include rotor aerodynamics, rotor dynamics, rotor structures, airframe dynamics, and acoustics. The work is focused on combining these five key disciplines in an optimization procedure capable of designing a rotor system to satisfy multidisciplinary design requirements. Fundamental to the plan is a three-phased approach. In phase 1, the disciplines of blade dynamics, blade aerodynamics, and blade structure are closely coupled while acoustics and airframe dynamics are decoupled and are accounted for as effective constraints on the design for the first three disciplines. In phase 2, acoustics is integrated with the first three disciplines. Finally, in phase 3, airframe dynamics is integrated with the other four disciplines. Representative results from work performed to date are described. These include optimal placement of tuning masses for reduction of blade vibratory shear forces, integrated aerodynamic/dynamic optimization, and integrated aerodynamic/dynamic/structural optimization. Examples of validating procedures are described.

  2. An integrated computer system for preliminary design of advanced aircraft.

    NASA Technical Reports Server (NTRS)

    Fulton, R. E.; Sobieszczanski, J.; Landrum, E. J.

    1972-01-01

    A progress report is given on the first phase of a research project to develop a system of Integrated Programs for Aerospace-Vehicle Design (IPAD) which is intended to automate to the largest extent possible the preliminary and detailed design of advanced aircraft. The approach used is to build a pilot system and simultaneously to carry out two major contractual studies to define a practical IPAD system preparatory to programing. The paper summarizes the specifications and goals of the IPAD system, the progress to date, and any conclusion reached regarding its feasibility and scope. Sample calculations obtained with the pilot system are given for aircraft preliminary designs optimized with respect to discipline parameters, such as weight or L/D, and these results are compared with designs optimized with respect to overall performance parameters, such as range or payload.

  3. Integrated planning and scheduling for Earth science data processing

    NASA Technical Reports Server (NTRS)

    Boddy, Mark; White, Jim; Goldman, Robert; Short, Nick, Jr.

    1995-01-01

    Several current NASA programs such as the EOSDIS Core System (ECS) have data processing and data management requirements that call for an integrated planning and scheduling capability. In this paper, we describe the experience of applying advanced scheduling technology operationally, in terms of what was accomplished, lessons learned, and what remains to be done in order to achieve similar successes in ECS and other programs. We discuss the importance and benefits of advanced scheduling tools, and our progress toward realizing them, through examples and illustrations based on ECS requirements. The first part of the paper focuses on the Data Archive and Distribution (DADS) V0 Scheduler. We then discuss system integration issues ranging from communication with the scheduler to the monitoring of system events and re-scheduling in response to them. The challenge of adapting the scheduler to domain-specific features and scheduling policies is also considered. Extrapolation to the ECS domain raises issues of integrating scheduling with a product-generation planner (such as PlaSTiC), and implementing conditional planning in an operational system. We conclude by briefly noting ongoing technology development and deployment projects being undertaken by HTC and the ISTB.

  4. Process Systems Engineering R&D for Advanced Fossil Energy Systems

    SciTech Connect

    Zitney, S.E.

    2007-09-11

    This presentation will examine process systems engineering R&D needs for application to advanced fossil energy (FE) systems and highlight ongoing research activities at the National Energy Technology Laboratory (NETL) under the auspices of a recently launched Collaboratory for Process & Dynamic Systems Research. The three current technology focus areas include: 1) High-fidelity systems with NETL's award-winning Advanced Process Engineering Co-Simulator (APECS) technology for integrating process simulation with computational fluid dynamics (CFD) and virtual engineering concepts, 2) Dynamic systems with R&D on plant-wide IGCC dynamic simulation, control, and real-time training applications, and 3) Systems optimization including large-scale process optimization, stochastic simulation for risk/uncertainty analysis, and cost estimation. Continued R&D aimed at these and other key process systems engineering models, methods, and tools will accelerate the development of advanced gasification-based FE systems and produce increasingly valuable outcomes for DOE and the Nation.

  5. Recent Advances in Techniques for Hyperspectral Image Processing

    NASA Technical Reports Server (NTRS)

    Plaza, Antonio; Benediktsson, Jon Atli; Boardman, Joseph W.; Brazile, Jason; Bruzzone, Lorenzo; Camps-Valls, Gustavo; Chanussot, Jocelyn; Fauvel, Mathieu; Gamba, Paolo; Gualtieri, Anthony; Marconcini, Mattia; Tilton, James C.; Trianni, Giovanna

    2009-01-01

    Imaging spectroscopy, also known as hyperspectral imaging, has been transformed in less than 30 years from being a sparse research tool into a commodity product available to a broad user community. Currently, there is a need for standardized data processing techniques able to take into account the special properties of hyperspectral data. In this paper, we provide a seminal view on recent advances in techniques for hyperspectral image processing. Our main focus is on the design of techniques able to deal with the highdimensional nature of the data, and to integrate the spatial and spectral information. Performance of the discussed techniques is evaluated in different analysis scenarios. To satisfy time-critical constraints in specific applications, we also develop efficient parallel implementations of some of the discussed algorithms. Combined, these parts provide an excellent snapshot of the state-of-the-art in those areas, and offer a thoughtful perspective on future potentials and emerging challenges in the design of robust hyperspectral imaging algorithms

  6. Dissecting neural circuits for multisensory integration and crossmodal processing

    PubMed Central

    Yau, Jeffrey M.; DeAngelis, Gregory C.; Angelaki, Dora E.

    2015-01-01

    We rely on rich and complex sensory information to perceive and understand our environment. Our multisensory experience of the world depends on the brain's remarkable ability to combine signals across sensory systems. Behavioural, neurophysiological and neuroimaging experiments have established principles of multisensory integration and candidate neural mechanisms. Here we review how targeted manipulation of neural activity using invasive and non-invasive neuromodulation techniques have advanced our understanding of multisensory processing. Neuromodulation studies have provided detailed characterizations of brain networks causally involved in multisensory integration. Despite substantial progress, important questions regarding multisensory networks remain unanswered. Critically, experimental approaches will need to be combined with theory in order to understand how distributed activity across multisensory networks collectively supports perception. PMID:26240418

  7. Lime enhanced chromium removal in advanced integrated wastewater pond system.

    PubMed

    Tadesse, I; Isoaho, S A; Green, F B; Puhakka, J A

    2006-03-01

    The removal of trivalent chromium from a combined tannery effluent in horizontal settling tanks and subsequent Advanced Integrated Wastewater Pond System (AIWPS) reactors was investigated. The raw combined effluent from Modjo tannery had pH in the range of 11.2-12. At this pH, a trivalent chromium removal of 46-72% was obtained in the horizontal settling tanks after a one-day detention time. Trivalent chromium precipitated as chromium hydroxide, Cr(OH)3. 58-95% Cr(III) was removed in the advanced facultative pond (AFP) where the water column pH of 7.2-8.4 was close to pH 8, which is the optimum precipitation pH for trivalent chromium. Chromium removals in the secondary facultative pond (SFP) and maturation pond (MP) were 30-50% and 6-16%, respectively. With Cr(III) concentration of 0.2-0.8 mg/l in the final treated effluent, the AIWPS preceded by horizontal settling tanks produced effluent that could easily meet most of the current Cr(III) discharge limits to receive water bodies.

  8. Single event soft error in advanced integrated circuit

    NASA Astrophysics Data System (ADS)

    Yuanfu, Zhao; Suge, Yue; Xinyuan, Zhao; Shijin, Lu; Qiang, Bian; Liang, Wang; Yongshu, Sun

    2015-11-01

    As technology feature size decreases, single event upset (SEU), and single event transient (SET) dominate the radiation response of microcircuits. Multiple bit upset (MBU) (or multi cell upset) effects, digital single event transient (DSET) and analogue single event transient (ASET) cause serious problems for advanced integrated circuits (ICs) applied in a radiation environment and have become a pressing issue. To face this challenge, a lot of work has been put into the single event soft error mechanism and mitigation schemes. This paper presents a review of SEU and SET, including: a brief historical overview, which summarizes the historical development of the SEU and SET since their first observation in the 1970's; effects prominent in advanced technology, which reviews the effects such as MBU, MSET as well as SET broadening and quenching with the influence of temperature, device structure etc.; the present understanding of single event soft error mechanisms, which review the basic mechanism of single event generation including various component of charge collection; and a discussion of various SEU and SET mitigation schemes divided as circuit hardening and layout hardening that could help the designer meet his goals.

  9. Process modeling of comprehensive integrated forest biorefinery--an integrated approach.

    PubMed

    Huang, Hua-Jiang; Lin, Weilu; Ramaswamy, Shri; Tschirner, Ulrike

    2009-05-01

    The key to expanding the energy supply, increasing energy security, and reducing the dependency on foreign oil is to develop advanced technologies to efficiently transform our renewable bioresources into domestically produced bioenergy and bioproducts. Conventional biorefineries, i.e., forest products industry's pulp and paper mills with long history of sustainable utilization of lignocellulose (wood), offer a suitable platform for being expanded into future integrated forest biorefineries. Due to the pre-existing infrastructure in current forest products operations, this could present a very cost-effective approach to future biorefineries. In order to better understand the overall process, technical, economic, and environmental impacts, a detailed process modeling of the whole integrated forest biorefinery is presented here. This approach uses a combination of Aspen Plus, WinGEMS, and Microsoft Excel to simulate the entire biorefinery in detail with sophisticated communication interface between the three simulations. Preliminary results for a simple case study of an integrated biorefinery show the feasibility of this approach. Further investigations, including additional details, more process options, and complete integration, are currently underway.

  10. Study on advanced information processing system

    NASA Technical Reports Server (NTRS)

    Shin, Kang G.; Liu, Jyh-Charn

    1992-01-01

    Issues related to the reliability of a redundant system with large main memory are addressed. In particular, the Fault-Tolerant Processor (FTP) for Advanced Launch System (ALS) is used as a basis for our presentation. When the system is free of latent faults, the probability of system crash due to nearly-coincident channel faults is shown to be insignificant even when the outputs of computing channels are infrequently voted on. In particular, using channel error maskers (CEMs) is shown to improve reliability more effectively than increasing the number of channels for applications with long mission times. Even without using a voter, most memory errors can be immediately corrected by CEMs implemented with conventional coding techniques. In addition to their ability to enhance system reliability, CEMs--with a low hardware overhead--can be used to reduce not only the need of memory realignment, but also the time required to realign channel memories in case, albeit rare, such a need arises. Using CEMs, we have developed two schemes, called Scheme 1 and Scheme 2, to solve the memory realignment problem. In both schemes, most errors are corrected by CEMs, and the remaining errors are masked by a voter.

  11. Multiplexing electro-optic architectures for advanced aircraft integrated flight control systems

    NASA Technical Reports Server (NTRS)

    Seal, D. W.

    1989-01-01

    This report describes the results of a 10 month program sponsored by NASA. The objective of this program was to evaluate various optical sensor modulation technologies and to design an optimal Electro-Optic Architecture (EOA) for servicing remote clusters of sensors and actuators in advanced aircraft flight control systems. The EOA's supply optical power to remote sensors and actuators, process the modulated optical signals returned from the sensors, and produce conditioned electrical signals acceptable for use by a digital flight control computer or Vehicle Management System (VMS) computer. This study was part of a multi-year initiative under the Fiber Optic Control System Integration (FOCSI) program to design, develop, and test a totally integrated fiber optic flight/propulsion control system for application to advanced aircraft. Unlike earlier FOCSI studies, this program concentrated on the design of the EOA interface rather than the optical transducer technology itself.

  12. Integrated etherification and oxygenates to gasoline process

    SciTech Connect

    Harandi, M.N.; Owen, H.

    1989-05-02

    An integrated once through process for the production of ether-rich liquid fuels is described comprising: (a) reacting a fresh mixture of excess methanol in a hydrocarbon feedstock containing C/sub 4/+ isoalkenes in the presence of acidic etherification catalyst under etherification conditions whereby an etherification effluent stream containing methyl tertiary alkyl ethers is produced; (b) separating the etherification effluent stream to provide a first stream comprising ether-rich gasoline and a second stream comprising unreacted methanol and olefinic hydrocarbons; and (c) contacting the second stream with an acidic metallosilicate catalyst under olefinic and oxygenates conversion conditions at elevated temperature whereby C/sub 6/+ gasoline is produced.

  13. Optical Multiple Access Network (OMAN) for advanced processing satellite applications

    NASA Technical Reports Server (NTRS)

    Mendez, Antonio J.; Gagliardi, Robert M.; Park, Eugene; Ivancic, William D.; Sherman, Bradley D.

    1991-01-01

    An OMAN breadboard for exploring advanced processing satellite circuit switch applications is introduced. Network architecture, hardware trade offs, and multiple user interference issues are presented. The breadboard test set up and experimental results are discussed.

  14. Process Technology and Advanced Concepts: Organic Solar Cells (Fact Sheet)

    SciTech Connect

    Not Available

    2011-06-01

    Capabilities fact sheet for the National Center for Photovoltaics: Process Technology and Advanced Concepts: Organic Solar Cell that includes scope, core competencies and capabilities, and contact/web information.

  15. Cold plasma processing technology makes advances

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cold plasma (AKA nonthermal plasma, cool plasma, gas plasma, etc.) is a rapidly maturing antimicrobial process being developed for applications in the food industry. A wide array of devices can be used to create cold plasma, but the defining characteristic is that they operate at or near room temper...

  16. Trapped rubber processing for advanced composites

    NASA Technical Reports Server (NTRS)

    Marra, P. J.

    1976-01-01

    Trapped rubber processing is a molding technique for composites in which precast silicone rubber is placed within a closed cavity where it thermally expands against the composite's surface supported by the vessel walls. The method has been applied by the Douglas Aircraft Company, under contract to NASA-Langley, to the design and fabrication of 10 DC-10 graphite/epoxy upper aft rudder assemblies. A three-bay development tool form mold die has been designed and manufactured, and tooling parameters have been established. Fabrication procedures include graphite layup, assembly of details in the tool, and a cure cycle. The technique has made it possible for the cocured fabrication of complex primary box structures otherwise impracticable via standard composite material processes.

  17. Advances in the shell coal gasification process

    SciTech Connect

    Doering, E.L.; Cremer, G.A.

    1995-12-31

    The Shell Coal Gasification Process (SCGP) is a dry-feed, oxygen-blown, entrained flow coal gasification process which has the capability to convert virtually any coal or petroleum coke into a clean medium Btu synthesis gas, or syngas, consisting predominantly of carbon monoxide and hydrogen. In SCGP, high pressure nitrogen or recycled syngas is used to pneumatically convey dried, pulverized coal to the gasifier. The coal enters the gasifier through diametrically opposed burners where it reacts with oxygen at temperatures in excess of 2500{degrees}F. The gasification temperature is maintained to ensure that the mineral matter in the coal is molten and will flow smoothly down the gasifier wall and out the slag tap. Gasification conditions are optimized, depending on coal properties, to achieve the highest coal to gas conversion efficiency, with minimum formation of undesirable byproducts.

  18. System Development by Process Integrated Knowledge Management

    NASA Astrophysics Data System (ADS)

    Stoll, Margareth; Laner, Dietmar

    Due to globalization and ever shorter change cycle's organizations improve increasingly faster their products, services, technologies, IT and organization according to customer requirements, optimize their efficiency, effectiveness and reduce costs. Thus the largest potential is the continually improvement and the management of information, data and knowledge. Long time organizations had developed lot separate and frequently independent IT applications. In the last years they were integrated by interfaces and always more by common databases. In large sized enterprises or in the public administration IT must operate various different applications, which requires a lot of personal and cost. Many organizations improve their IT starting from the lived processes using new technologies, but ask not, how they can use technology to support new processes.

  19. Characterisation of integrated WAAM and machining processes

    NASA Astrophysics Data System (ADS)

    Adebayo, Adeyinka

    This research describes the process of manufacturing and machining of wire and arc additive manufactured (WAAM) thin wall structures on integrated and non-integrated WAAM systems. The overall aim of this thesis is to obtain a better understanding of deposition and machining of WAAM wall parts through an integrated system. This research includes the study of the comparison of deposition of WAAM wall structures on different WAAM platforms, namely an Integrated SAM Edgetek grinding machine, an ABB robot and a Friction Stir Welding (FSW) machine. The result shows that WAAM is a robustly transferable technique that can be implemented across a variety of different platforms typically available in industry.. For WAAM deposition, a rise in output repeatedly involves high welding travel speed that usually leads to an undesired humping effect. Part of the objectives of this work was to study the travel speed limit for humping. The findings from this research show that the travel speed limit falls within a certain region at which humping starts to occur. One of the objectives of this thesis was to study the effect of lubricants during sequential and non-sequential machining/deposition of the WAAM parts. Conventional fluid lubricants and solid lubricants were used. In addition, the effect of cleaning of deposited wall samples with acetone was also studied. A systematic study shows that a significant amount of solid lubricant contamination can be found in the deposited material. Furthermore, the results indicate that even cleaning of the wire and arc additive manufactured surfaces with acetone prior to the weld deposition can affect the microstructure of the deposited material..

  20. Advances in multi-scale modeling of solidification and casting processes

    NASA Astrophysics Data System (ADS)

    Liu, Baicheng; Xu, Qingyan; Jing, Tao; Shen, Houfa; Han, Zhiqiang

    2011-04-01

    The development of the aviation, energy and automobile industries requires an advanced integrated product/process R&D systems which could optimize the product and the process design as well. Integrated computational materials engineering (ICME) is a promising approach to fulfill this requirement and make the product and process development efficient, economic, and environmentally friendly. Advances in multi-scale modeling of solidification and casting processes, including mathematical models as well as engineering applications are presented in the paper. Dendrite morphology of magnesium and aluminum alloy of solidification process by using phase field and cellular automaton methods, mathematical models of segregation of large steel ingot, and microstructure models of unidirectionally solidified turbine blade casting are studied and discussed. In addition, some engineering case studies, including microstructure simulation of aluminum casting for automobile industry, segregation of large steel ingot for energy industry, and microstructure simulation of unidirectionally solidified turbine blade castings for aviation industry are discussed.

  1. ATOS: Integration of advanced technology software within distributed Spacecraft Mission Operations Systems

    NASA Technical Reports Server (NTRS)

    Jones, M.; Wheadon, J.; Omullane, W.; Whitgift, D.; Poulter, K.; Niezette, M.; Timmermans, R.; Rodriguez, Ivan; Romero, R.

    1994-01-01

    The Advanced Technology Operations System (ATOS) is a program of studies into the integration of advanced applications (including knowledge based systems (KBS)) with ground systems for the support of spacecraft mission operations.

  2. Advanced alarm systems: Display and processing issues

    SciTech Connect

    O`Hara, J.M.; Wachtel, J.; Perensky, J.

    1995-05-01

    This paper describes a research program sponsored by the US Nuclear Regulatory Commission to address the human factors engineering (HFE) deficiencies associated with nuclear power plant alarm systems. The overall objective of the study is to develop HFE review guidance for alarm systems. In support of this objective, human performance issues needing additional research were identified. Among the important issues were alarm processing strategies and alarm display techniques. This paper will discuss these issues and briefly describe our current research plan to address them.

  3. Advanced information processing system for advanced launch system: Avionics architecture synthesis

    NASA Technical Reports Server (NTRS)

    Lala, Jaynarayan H.; Harper, Richard E.; Jaskowiak, Kenneth R.; Rosch, Gene; Alger, Linda S.; Schor, Andrei L.

    1991-01-01

    The Advanced Information Processing System (AIPS) is a fault-tolerant distributed computer system architecture that was developed to meet the real time computational needs of advanced aerospace vehicles. One such vehicle is the Advanced Launch System (ALS) being developed jointly by NASA and the Department of Defense to launch heavy payloads into low earth orbit at one tenth the cost (per pound of payload) of the current launch vehicles. An avionics architecture that utilizes the AIPS hardware and software building blocks was synthesized for ALS. The AIPS for ALS architecture synthesis process starting with the ALS mission requirements and ending with an analysis of the candidate ALS avionics architecture is described.

  4. Cancer Pharmacogenomics: Integrating Discoveries in Basic, Clinical and Population Sciences to Advance Predictive Cancer Care

    Cancer.gov

    Cancer Pharmacogenomics: Integrating Discoveries in Basic, Clinical and Population Sciences to Advance Predictive Cancer Care, a 2010 workshop sponsored by the Epidemiology and Genomics Research Program.

  5. Integration of advanced practice providers into the Israeli healthcare system.

    PubMed

    Aaron, Eliana Marcus; Andrews, Caryn Scheinberg

    2016-01-01

    Many countries around the world have integrated various types of Advanced Practice Providers (APPs) into their healthcare systems. The main motivating factors for recognizing and developing APPs worldwide include physician shortages and the need for improved access or delivery (US, France, Belgium, Scotland, Switzerland), reduced residency hours (US, UK), shortages in underserved regions (US, Canada, Finland, Australia), and cost containment (Germany, Netherlands, UK, US). Israel is experiencing a shortage of physicians in peripheral geographic regions and in critical medical specialties. Recent by-laws approved by the Knesset (Parliament), combined with Israel Ministry of Health (MOH) policies, have thus far been unable to fully address the shortages. To understand the potential contribution of APPs in Israel, we evaluated the international historical foundations and development of APP roles. We assessed how APPs have impacted healthcare in other countries by analyzing public data and published international research about APP education, safety, quality of care, motivators, barriers, and impact. We found that APPs are recognized in dozens of countries, and have similar scopes of practice, graduate level education requirements (in developed countries), and clinical training. At the same time, there is wide variability among countries in the actual function and independence of the advanced practice nurse (APN), particularly the nurse practitioner (NP). APPs have been established as cost effective, safe healthcare providers who improve healthcare access. Israel has begun to introduce APPs, specifically NPs, in a variety of fields, including geriatrics, palliative care and diabetic care. We recommend a rapid expansion of existing and new APP roles into the Israeli healthcare system based on evidence and the recommendations of international evaluations by non-government organizations. By shifting the education to a university setting, mirroring successful, evidence

  6. Leveraging advanced data analytics, machine learning, and metrology models to enable critical dimension metrology solutions for advanced integrated circuit nodes

    NASA Astrophysics Data System (ADS)

    Rana, Narender; Zhang, Yunlin; Kagalwala, Taher; Bailey, Todd

    2014-10-01

    Integrated circuit (IC) technology is changing in multiple ways: 193i to extreme ultraviolet exposure, planar to nonplanar device architecture, from single exposure lithography to multiple exposure and directed self-assembly (DSA) patterning, and so on. Critical dimension (CD) control requirement is becoming stringent and more exhaustive: CD and process windows are shrinking, three-sigma CD control of <2 nm is required in complex geometries, and a metrology uncertainty of <0.2 nm is required to achieve the target CD control for advanced IC nodes (e.g., 14, 10, and 7 nm nodes). There are fundamental capability and accuracy limits in all the metrology techniques that are detrimental to the success of advanced IC nodes. Reference or physical CD metrology is provided by atomic force microscopy (CD-AFM) and TEM while workhorse metrology is provided by CD-SEM, scatterometry, and model-based infrared reflectrometry (MBIR). Precision alone is not sufficient for moving forward. No single technique is sufficient to ensure the required accuracy of patterning. The accuracy of CD-AFM is ˜1 nm and the precision in TEM is poor due to limited statistics. CD scanning electron microscopy (CD-SEM), scatterometry, and MBIR need to be calibrated by reference measurements for ensuring the accuracy of patterned CDs and patterning models. There is a dire need for a measurement with <0.5 nm accuracy and the industry currently does not have that capability with inline measurements. Being aware of the capability gaps for various metrology techniques, we have employed data processing techniques and predictive data analytics, along with patterning simulation and metrology models and data integration techniques to selected applications demonstrating the potential solution and practicality of such an approach to enhance CD metrology accuracy. Data from multiple metrology techniques have been analyzed in multiple ways to extract information with associated uncertainties and integrated to extract

  7. SOFC system with integrated catalytic fuel processing

    NASA Astrophysics Data System (ADS)

    Finnerty, Caine; Tompsett, Geoff. A.; Kendall, Kevin; Ormerod, R. Mark

    In recent years, there has been much interest in the development of solid oxide fuel cell technology operating directly on hydrocarbon fuels. The development of a catalytic fuel processing system, which is integrated with the solid oxide fuel cell (SOFC) power source is outlined here. The catalytic device utilises a novel three-way catalytic system consisting of an in situ pre-reformer catalyst, the fuel cell anode catalyst and a platinum-based combustion catalyst. The three individual catalytic stages have been tested in a model catalytic microreactor. Both temperature-programmed and isothermal reaction techniques have been applied. Results from these experiments were used to design the demonstration SOFC unit. The apparatus used for catalytic characterisation can also perform in situ electrochemical measurements as described in previous papers [C.M. Finnerty, R.H. Cunningham, K. Kendall, R.M. Ormerod, Chem. Commun. (1998) 915-916; C.M. Finnerty, N.J. Coe, R.H. Cunningham, R.M. Ormerod, Catal. Today 46 (1998) 137-145]. This enabled the performance of the SOFC to be determined at a range of temperatures and reaction conditions, with current output of 290 mA cm -2 at 0.5 V, being recorded. Methane and butane have been evaluated as fuels. Thus, optimisation of the in situ partial oxidation pre-reforming catalyst was essential, with catalysts producing high H 2/CO ratios at reaction temperatures between 873 K and 1173 K being chosen. These included Ru and Ni/Mo-based catalysts. Hydrocarbon fuels were directly injected into the catalytic SOFC system. Microreactor measurements revealed the reaction mechanisms as the fuel was transported through the three-catalyst device. The demonstration system showed that the fuel processing could be successfully integrated with the SOFC stack.

  8. Advanced Manufacturing Systems in Food Processing and Packaging Industry

    NASA Astrophysics Data System (ADS)

    Shafie Sani, Mohd; Aziz, Faieza Abdul

    2013-06-01

    In this paper, several advanced manufacturing systems in food processing and packaging industry are reviewed, including: biodegradable smart packaging and Nano composites, advanced automation control system consists of fieldbus technology, distributed control system and food safety inspection features. The main purpose of current technology in food processing and packaging industry is discussed due to major concern on efficiency of the plant process, productivity, quality, as well as safety. These application were chosen because they are robust, flexible, reconfigurable, preserve the quality of the food, and efficient.

  9. Cooperative Research and Development for Advanced Microturbines Program on Advanced Integrated Microturbine System

    SciTech Connect

    Michael J. Bowman

    2007-05-30

    The Advanced Integrated Microturbine Systems (AIMS) project was kicked off in October of 2000 to develop the next generation microturbine system. The overall objective of the project was to develop a design for a 40% electrical efficiency microturbine system and demonstrate many of the enabling technologies. The project was initiated as a collaborative effort between several units of GE, Elliott Energy Systems, Turbo Genset, Oak Ridge National Lab and Kyocera. Since the inception of the project the partners have changed but the overall direction of the project has stayed consistent. The project began as a systems study to identify design options to achieve the ultimate goal of 40% electrical efficiency. Once the optimized analytical design was identified for the 40% system, it was determined that a 35% efficient machine would be capable of demonstrating many of the advanced technologies within the given budget and timeframe. The items that would not be experimentally demonstrated were fully produced ceramic parts. However, to understand the requirements of these ceramics, an effort was included in the project to experimentally evaluate candidate materials in representative conditions. The results from this effort would clearly identify the challenges and improvement required of these materials for the full design. Following the analytical effort, the project was dedicated to component development and testing. Each component and subsystem was designed with the overall system requirements in mind and each tested to the fullest extent possible prior to being integrated together. This method of component development and evaluation helps to minimize the technical risk of the project. Once all of the components were completed, they were assembled into the full system and experimentally evaluated.

  10. Advanced oxidation processes with coke plant wastewater treatment.

    PubMed

    Krzywicka, A; Kwarciak-Kozłowska, A

    2014-01-01

    The aim of this study was to determine the most efficient method of coke wastewater treatment. This research examined two processes - advanced oxidation with Fenton and photo-Fenton reaction. It was observed that the use of ultraviolet radiation with Fenton process had a better result in removal of impurities.

  11. TECHNOLOGY SUMMARY ADVANCING TANK WASTE RETRIEVAL AND PROCESSING

    SciTech Connect

    SAMS TL; MENDOZA RE

    2010-08-11

    This technology overview provides a high-level summary of technologies being investigated and developed by Washington River Protection Solutions (WRPS) to advance Hanford Site tank waste retrieval and processing. Technology solutions are outlined, along with processes and priorities for selecting and developing them.

  12. A Reverse Osmosis System for an Advanced Separation Process Laboratory.

    ERIC Educational Resources Information Center

    Slater, C. S.; Paccione, J. D.

    1987-01-01

    Focuses on the development of a pilot unit for use in an advanced separations process laboratory in an effort to develop experiments on such processes as reverse osmosis, ultrafiltration, adsorption, and chromatography. Discusses reverse osmosis principles, the experimental system design, and some experimental studies. (TW)

  13. TECHNOLOGY SUMMARY ADVANCING TANK WASTE RETREIVAL AND PROCESSING

    SciTech Connect

    SAMS TL

    2010-07-07

    This technology overview provides a high-level summary of technologies being investigated and developed by Washington River Protection Solutions (WRPS) to advance Hanford Site tank waste retrieval and processing. Technology solutions are outlined, along with processes and priorities for selecting and developing them.

  14. Integrated Refrigeration and Storage for Advanced Liquid Hydrogen Operations

    NASA Technical Reports Server (NTRS)

    Swanger, A. M.; Notardonato, W. U.; Johnson, W. L.; Tomsik, T. M.

    2016-01-01

    NASA has used liquefied hydrogen (LH2) on a large scale since the beginning of the space program as fuel for the Centaur and Apollo upper stages, and more recently to feed the three space shuttle main engines. The LH2 systems currently in place at the Kennedy Space Center (KSC) launch pads are aging and inefficient compared to the state-of-the-art. Therefore, the need exists to explore advanced technologies and operations that can drive commodity costs down, and provide increased capabilities. The Ground Operations Demonstration Unit for Liquid Hydrogen (GODU-LH2) was developed at KSC to pursue these goals by demonstrating active thermal control of the propellant state by direct removal of heat using a cryocooler. The project has multiple objectives including zero loss storage and transfer, liquefaction of gaseous hydrogen, and densification of liquid hydrogen. The key technology challenge was efficiently integrating the cryogenic refrigerator into the LH2 storage tank. A Linde LR1620 Brayton cycle refrigerator is used to produce up to 900W cooling at 20K, circulating approximately 22 g/s gaseous helium through the hydrogen via approximately 300 m of heat exchanger tubing. The GODU-LH2 system is fully operational, and is currently under test. This paper will discuss the design features of the refrigerator and storage system, as well as the current test results.

  15. Integration of advanced teleoperation technologies for control of space robots

    NASA Technical Reports Server (NTRS)

    Stagnaro, Michael J.

    1993-01-01

    Teleoperated robots require one or more humans to control actuators, mechanisms, and other robot equipment given feedback from onboard sensors. To accomplish this task, the human or humans require some form of control station. Desirable features of such a control station include operation by a single human, comfort, and natural human interfaces (visual, audio, motion, tactile, etc.). These interfaces should work to maximize performance of the human/robot system by streamlining the link between human brain and robot equipment. This paper describes development of a control station testbed with the characteristics described above. Initially, this testbed will be used to control two teleoperated robots. Features of the robots include anthropomorphic mechanisms, slaving to the testbed, and delivery of sensory feedback to the testbed. The testbed will make use of technologies such as helmet mounted displays, voice recognition, and exoskeleton masters. It will allow tor integration and testing of emerging telepresence technologies along with techniques for coping with control link time delays. Systems developed from this testbed could be applied to ground control of space based robots. During man-tended operations, the Space Station Freedom may benefit from ground control of IVA or EVA robots with science or maintenance tasks. Planetary exploration may also find advanced teleoperation systems to be very useful.

  16. Sparse regularization techniques provide novel insights into outcome integration processes.

    PubMed

    Mohr, Holger; Wolfensteller, Uta; Frimmel, Steffi; Ruge, Hannes

    2015-01-01

    By exploiting information that is contained in the spatial arrangement of neural activations, multivariate pattern analysis (MVPA) can detect distributed brain activations which are not accessible by standard univariate analysis. Recent methodological advances in MVPA regularization techniques have made it feasible to produce sparse discriminative whole-brain maps with highly specific patterns. Furthermore, the most recent refinement, the Graph Net, explicitly takes the 3D-structure of fMRI data into account. Here, these advanced classification methods were applied to a large fMRI sample (N=70) in order to gain novel insights into the functional localization of outcome integration processes. While the beneficial effect of differential outcomes is well-studied in trial-and-error learning, outcome integration in the context of instruction-based learning has remained largely unexplored. In order to examine neural processes associated with outcome integration in the context of instruction-based learning, two groups of subjects underwent functional imaging while being presented with either differential or ambiguous outcomes following the execution of varying stimulus-response instructions. While no significant univariate group differences were found in the resulting fMRI dataset, L1-regularized (sparse) classifiers performed significantly above chance and also clearly outperformed the standard L2-regularized (dense) Support Vector Machine on this whole-brain between-subject classification task. Moreover, additional L2-regularization via the Elastic Net and spatial regularization by the Graph Net improved interpretability of discriminative weight maps but were accompanied by reduced classification accuracies. Most importantly, classification based on sparse regularization facilitated the identification of highly specific regions differentially engaged under ambiguous and differential outcome conditions, comprising several prefrontal regions previously associated with

  17. A Complexity Perspective on Leadership and Change in the Post-Merger Integration Process

    ERIC Educational Resources Information Center

    Lauser, Barbel; Peters, Mike

    2008-01-01

    After 30 years of research in mergers and acquisitions and advances in the research of post-merger integration (PMI) processes, the outcome of a merger remains hardly predicable. Traditional leadership and change theories have not succeeded in fully explaining PMI processes and therefore new theories are needed. This article offers new insights…

  18. Energy Systems Integration: NREL + Advanced Energy (Fact Sheet)

    SciTech Connect

    Not Available

    2015-02-01

    This fact sheet describes the collaboration between NREL and Advanced Energy Industries at the ESIF to test its advanced photovoltaic inverter technology with the ESIF's power hardware-in-the-loop system and megawatt-scale grid simulators.

  19. Advanced information processing system for advanced launch system: Hardware technology survey and projections

    NASA Technical Reports Server (NTRS)

    Cole, Richard

    1991-01-01

    The major goals of this effort are as follows: (1) to examine technology insertion options to optimize Advanced Information Processing System (AIPS) performance in the Advanced Launch System (ALS) environment; (2) to examine the AIPS concepts to ensure that valuable new technologies are not excluded from the AIPS/ALS implementations; (3) to examine advanced microprocessors applicable to AIPS/ALS, (4) to examine radiation hardening technologies applicable to AIPS/ALS; (5) to reach conclusions on AIPS hardware building blocks implementation technologies; and (6) reach conclusions on appropriate architectural improvements. The hardware building blocks are the Fault-Tolerant Processor, the Input/Output Sequencers (IOS), and the Intercomputer Interface Sequencers (ICIS).

  20. Advanced Process Technology: Combi Materials Science and Atmospheric Processing (Fact Sheet)

    SciTech Connect

    Not Available

    2011-06-01

    Capabilities fact sheet for the National Center for Photovoltaics: Process Technology and Advanced Concepts -- High-Throughput Combi Material Science and Atmospheric Processing that includes scope, core competencies and capabilities, and contact/web information.

  1. GEOTECHNICAL/GEOCHEMICAL CHARACTERIZATION OF ADVANCED COAL PROCESS WASTE STREAMS

    SciTech Connect

    Edwin S. Olson; Charles J. Moretti

    1999-11-01

    Thirteen solid wastes, six coals and one unreacted sorbent produced from seven advanced coal utilization processes were characterized for task three of this project. The advanced processes from which samples were obtained included a gas-reburning sorbent injection process, a pressurized fluidized-bed coal combustion process, a coal-reburning process, a SO{sub x}, NO{sub x}, RO{sub x}, BOX process, an advanced flue desulfurization process, and an advanced coal cleaning process. The waste samples ranged from coarse materials, such as bottom ashes and spent bed materials, to fine materials such as fly ashes and cyclone ashes. Based on the results of the waste characterizations, an analysis of appropriate waste management practices for the advanced process wastes was done. The analysis indicated that using conventional waste management technology should be possible for disposal of all the advanced process wastes studied for task three. However, some wastes did possess properties that could present special problems for conventional waste management systems. Several task three wastes were self-hardening materials and one was self-heating. Self-hardening is caused by cementitious and pozzolanic reactions that occur when water is added to the waste. All of the self-hardening wastes setup slowly (in a matter of hours or days rather than minutes). Thus these wastes can still be handled with conventional management systems if care is taken not to allow them to setup in storage bins or transport vehicles. Waste self-heating is caused by the exothermic hydration of lime when the waste is mixed with conditioning water. If enough lime is present, the temperature of the waste will rise until steam is produced. It is recommended that self-heating wastes be conditioned in a controlled manner so that the heat will be safely dissipated before the material is transported to an ultimate disposal site. Waste utilization is important because an advanced process waste will not require

  2. United by Goals: There Is No Integrated Advancement without Communications and Marketing

    ERIC Educational Resources Information Center

    DiConsiglio, John

    2011-01-01

    The idea behind integrated advancement is simple and dates back to the 1990s: A strong relationship between advancement offices conserves resources. It leads to a more efficient workforce. It portrays a highly unified message to stakeholders, including donors, alumni, local officials, and opinion leaders. In short, the entire advancement team…

  3. Multistage integrated process for upgrading olefins

    SciTech Connect

    Harandi, M.N.

    1991-03-19

    This patent describes a continuous multi-stage process for increasing octane quality and yield of liquid hydrocarbons from an integrated fluidized catalytic cracking unit and olefins oligomerization reaction zone. It comprises: contacting heavy hydrocarbon feedstock in a primary fluidized bed reaction stage with cracking catalyst comprising particulate solid large pore acid aluminosilicate zeolite catalyst at conversion conditions to produce a hydrocarbon effluent comprising gas containing C{sub 2}-C{sub 6} olefins intermediate hydrocarbons in the gasoline and distillate range, and cracked bottoms; regenerating the primary stage zeolite cracking catalyst in a primary stage regeneration zone and returning at least a portion of the resulting regenerated zeolite cracking catalyst to the primary reaction stage; withdrawing another portion of the catalyst from the regeneration zone and adding fresh makeup catalyst thereto separating primary stage effluent to recover olefinic gas containing C{sub 2}-C{sub 6} olefins; reacting at least a portion of the olefinic gas in a secondary fluidized bed reactor stage in contact with a closed fluidized bed of acid zeolite catalyst particles.

  4. [Health integration processes: challenges for MERCOSUR in the health field].

    PubMed

    Sánchez, Delia M

    2007-01-01

    This paper describes the institutional background in Latin American integration in both the economy and health, and proposes a systematization of possible health integration modalities. Facilitating and inhibiting factors for integration according to each modality are identified, and their feasibility is discussed in the present context. The structure and functioning of MERCOSUR health structures (Ministerial Meeting and Sub-group 11) are briefly described, as well as the advances achieved to date, reflecting on the possible causes of uneven progress in different areas.

  5. Technology advancement of the electrochemical CO2 concentrating process

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Woods, R. R.; Hallick, T. M.; Heppner, D. B.

    1978-01-01

    The overall objectives of the present program are to: (1) improve the performance of the electrochemical CO2 removal technique by increasing CO2 removal efficiencies at pCO2 levels below 400 Pa, increasing cell power output and broadening the tolerance of electrochemical cells for operation over wide ranges of cabin relative humidity; (2) design, fabricate, and assemble development hardware to continue the evolution of the electrochemical concentrating technique from the existing level to an advanced level able to efficiently meet the CO2 removal needs of a spacecraft air revitalization system (ARS); (3) develop and incorporate into the EDC the components and concepts that allow for the efficient integration of the electrochemical technique with other subsystems to form a spacecraft ARS; (4) combine ARS functions to enable the elimination of subsystem components and interfaces; and (5) demonstrate the integration concepts through actual operation of a functionally integrated ARS.

  6. Plan for advanced microelectronics processing technology application. Final report

    SciTech Connect

    Goland, A.N.

    1990-10-01

    The ultimate objective of the tasks described in the research agreement was to identify resources primarily, but not exclusively, within New York State that are available for the development of a Center for Advanced Microelectronics Processing (CAMP). Identification of those resources would enable Brookhaven National Laboratory to prepare a program plan for the CAMP. In order to achieve the stated goal, the principal investigators undertook to meet the key personnel in relevant NYS industrial and academic organizations to discuss the potential for economic development that could accompany such a Center and to gauge the extent of participation that could be expected from each interested party. Integrated of these discussions was to be achieved through a workshop convened in the summer of 1990. The culmination of this workshop was to be a report (the final report) outlining a plan for implementing a Center in the state. As events unfolded, it became possible to identify the elements of a major center for x-ray lithography on Lone Island at Brookhaven National Laboratory. The principal investigators were than advised to substitute a working document based upon that concept in place of a report based upon the more general CAMP workshop originally envisioned. Following that suggestion from the New York State Science and Technology Foundation, the principals established a working group consisting of representatives of the Grumman Corporation, Columbia University, the State University of New York at Stony Brook, and Brookhaven National Laboratory. Regular meetings and additional communications between these collaborators have produced a preproposal that constitutes the main body of the final report required by the contract. Other components of this final report include the interim report and a brief description of the activities which followed the establishment of the X-ray Lithography Center working group.

  7. Electron processing of fibre-reinforced advanced composites

    NASA Astrophysics Data System (ADS)

    Singh, Ajit; Saunders, Chris B.; Barnard, John W.; Lopata, Vince J.; Kremers, Walter; McDougall, Tom E.; Chung, Minda; Tateishi, Miyoko

    1996-08-01

    Advanced composites, such as carbon-fibre-reinforced epoxies, are used in the aircraft, aerospace, sporting goods, and transportation industries. Though thermal curing is the dominant industrial process for advanced composites, electron curing of similar composites containing acrylated epoxy matrices has been demonstrated by our work. The main attraction of electron processing technology over thermal technology is the advantages it offers which include ambient temperature curing, reduced curing times, reduced volatile emissions, better material handling, and reduced costs. Electron curing technology allows for the curing of many types of products, such as complex shaped, those containing different types of fibres, and up to 15 cm thick. Our work has been done principally with the AECL's 10 MeV, 1 kW electron accelerator; we have also done some comparative work with an AECL Gammacell 220. In this paper we briefly review our work on the various aspects of electron curing of advanced composites and their properties.

  8. Advanced general aviation engine/airframe integration study

    NASA Technical Reports Server (NTRS)

    Zmroczek, L. A.

    1982-01-01

    A comparison of the in-airframe performance and efficiency of the advanced engine concepts is presented. The results indicate that the proposed advanced engines can significantly improve the performance and economy of general aviation airplanes. The engine found to be most promising is the highly advanced version of a rotary combustion (Wankel) engine. The low weight and fuel consumption of this engine, as well as its small size, make it suited for aircraft use.

  9. 49 CFR 1106.4 - The Safety Integration Plan process.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 8 2010-10-01 2010-10-01 false The Safety Integration Plan process. 1106.4... OF CONTROL § 1106.4 The Safety Integration Plan process. (a) Each applicant in a transaction subject... ongoing environmental review process under 49 CFR part 1105. The procedures governing the process shall...

  10. Measurement and modeling of advanced coal conversion processes

    SciTech Connect

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G. ); Smoot, L.D.; Brewster, B.S. )

    1991-09-25

    The objectives of this study are to establish the mechanisms and rates of basic steps in coal conversion processes, to integrate and incorporate this information into comprehensive computer models for coal conversion processes, to evaluate these models and to apply them to gasification, mild gasification and combustion in heat engines. (VC)

  11. Microeconomics of advanced process window control for 50-nm gates

    NASA Astrophysics Data System (ADS)

    Monahan, Kevin M.; Chen, Xuemei; Falessi, Georges; Garvin, Craig; Hankinson, Matt; Lev, Amir; Levy, Ady; Slessor, Michael D.

    2002-07-01

    Fundamentally, advanced process control enables accelerated design-rule reduction, but simple microeconomic models that directly link the effects of advanced process control to profitability are rare or non-existent. In this work, we derive these links using a simplified model for the rate of profit generated by the semiconductor manufacturing process. We use it to explain why and how microprocessor manufacturers strive to avoid commoditization by producing only the number of dies required to satisfy the time-varying demand in each performance segment. This strategy is realized using the tactic known as speed binning, the deliberate creation of an unnatural distribution of microprocessor performance that varies according to market demand. We show that the ability of APC to achieve these economic objectives may be limited by variability in the larger manufacturing context, including measurement delays and process window variation.

  12. Advanced Instruction: Facilitation of Individual Learning Processes in Large Groups

    ERIC Educational Resources Information Center

    Putz, Claus; Intveen, Geesche

    2009-01-01

    By supplying various combinations of advanced instructions and different forms of exercises individual learning processes within the impartation of basic knowledge can be activated and supported at best. The fundamentals of our class "Introduction to spatial-geometric cognition using CAD" are constructional inputs, which systematically induce the…

  13. Data Processing (Advanced Business Programming) Volume II. Instructor's Guide.

    ERIC Educational Resources Information Center

    Litecky, Charles R.; Lamkin, Tim

    This curriculum guide for an advanced course in data processing is for use as a companion publication to a textbook or textbooks; references to appropriate textbooks are given in most units. Student completion of assignments in Volume I, available separately (see ED 220 604), is a prerequisite. Topics covered in the 18 units are introduction,…

  14. Advanced potato breeding clones: storage and processing evaluation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The accumulation of reducing sugars during cold storage of potato tubers is a serious and costly problem for producers and processors. The degree to which cultivars accumulate reducing sugars during storage determines their processing and market potential. Cultivars or advanced breeding lines with...

  15. Pyrometallurgical processing of Integral Fast Reactor metal fuels

    SciTech Connect

    Battles, J.E.; Miller, W.E.; Gay, E.C.

    1991-01-01

    The pyrometallurgical process for recycling spent metal fuels from the Integral Fast Reactor is now in an advanced state of development. This process involves electrorefining spent fuel with a cadmium anode, solid and liquid cathodes, and a molten salt electrolyte (LiCl-KCl) at 500{degrees}C. The initial process feasibility and flowsheet verification studies have been conducted in a laboratory-scale electrorefiner. Based on these studies, a dual cathode approach has been adopted, where uranium is recovered on a solid cathode mandrel and uranium-plutonium is recovered in a liquid cadmium cathode. Consolidation and purification (salt and cadmium removal) of uranium and uranium-plutonium products from the electrorefiner have been successful. The process is being developed with the aid of an engineering-scale electrorefiner, which has been successfully operated for more than three years. In this electrorefiner, uranium has been electrotransported from the cadmium anode to a solid cathode in 10 kg quantities. Also, anodic dissolution of 10 kg batches of chopped, simulated fuel (U--10% Zr) has been demonstrated. Development of the liquid cadmium cathode for recovering uranium-plutonium is under way.

  16. Evaluation of advanced oxidation process for the treatment of groundwater

    SciTech Connect

    Garland, S.B. II ); Peyton, G.R. ); Rice, L.E. . Kansas City Div.)

    1990-01-01

    An advanced oxidation process utilizing ozone, ultraviolet radiation, and hydrogen peroxide was selected for the removal of chlorinated hydrocarbons, particularly trichlorethene and 1,2-dichlorethene, from groundwater underlying the US Department of Energy Kansas City Plant. Since the performance of this process for the removal of organics from groundwater is not well-documented, an evaluation was initiated to determine the performance of the treatment plant, document the operation and maintenance costs experience, and evaluate contaminant removal mechanisms. 11 refs., 3 figs.

  17. Advancing the integration of history and ecology for conservation.

    PubMed

    Szabó, Péter; Hédl, Radim

    2011-08-01

    The important role of humans in the development of current ecosystems was recognized decades ago; however, the integration of history and ecology in order to inform conservation has been difficult. We identified four issues that hinder historical ecological research and considered possible solutions. First, differences in concepts and methods between the fields of ecology and history are thought to be large. However, most differences stem from miscommunication between ecologists and historians and are less substantial than is usually assumed. Cooperation can be achieved by focusing on the features ecology and history have in common and through understanding and acceptance of differing points of view. Second, historical ecological research is often hampered by differences in spatial and temporal scales between ecology and history. We argue that historical ecological research can only be conducted at extents for which sources in both disciplines have comparable resolutions. Researchers must begin by clearly defining the relevant scales for the given purpose. Third, periods for which quantitative historical sources are not easily accessible (before AD 1800) have been neglected in historical ecological research. Because data from periods before 1800 are as relevant to the current state of ecosystems as more recent data, we suggest that historical ecologists actively seek out data from before 1800 and apply analytic methods commonly used in ecology to these data. Fourth, humans are not usually considered an intrinsic ecological factor in current ecological research. In our view, human societies should be acknowledged as integral parts of ecosystems and societal processes should be recognized as driving forces of ecosystem change.

  18. Oil shale, tar sand, coal research, advanced exploratory process technology jointly sponsored research

    SciTech Connect

    Not Available

    1992-01-01

    Accomplishments for the quarter are presented for the following areas of research: oil shale, tar sand, coal, advanced exploratory process technology, and jointly sponsored research. Oil shale research includes; oil shale process studies, environmental base studies for oil shale, and miscellaneous basic concept studies. Tar sand research covers process development. Coal research includes; underground coal gasification, coal combustion, integrated coal processing concepts, and solid waste management. Advanced exploratory process technology includes; advanced process concepts, advanced mitigation concepts, and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; development and validation of a standard test method for sequential batch extraction fluid; operation and evaluation of the CO[sub 2] HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesa Verde Group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced recovery techniques; and menu driven access to the WDEQ Hydrologic Data Management Systems.

  19. Noninvasive sensors for in-situ process monitoring and control in advanced microelectronics manufacturing

    NASA Astrophysics Data System (ADS)

    Moslehi, Mehrdad M.

    1991-04-01

    The combination of noninvasive in-situ monitoring sensors single-wafer processing modules vacuum-integrated cluster tools and computer-integrated manufacturing (CIM) can provide a suitable fabrication environment for flexible and high-yield advanced semiconductor device manufacturing. The use of in-situ sensors for monitoring of equipment process and wafer parameters results in increased equipment/process up-time reduced process and device parameter spread improved cluster tool reliability and functionality and reduced overall device manufacturing cycle time. This paper will present an overview of the main features and impact of noninvasive in-situ monitoring sensors for semiconductor device manufacturing applications. Specific examples will be presented for the use of critical sensors in conjunction with cluster tools for advanced CMOS device processing. A noninvasive temperature sensor will be presented which can monitor true wafer temperature via infrared (5. 35 jtm) pyrometery and laser-assisted real-time spectral wafer emissivity measurements. This sensor design eliminates any. temperature measurement errors caused by the heating lamp radiation and wafer emissivity variations. 1. SENSORS: MOTIVATIONS AND IMPACT Semiconductor chip manufacturing factories usually employ well-established statistical process control (SPC) techniques to minimize the process parameter deviations and to increase the device fabrication yield. The conventional fabrication environments rely on controlling a limited set of critical equipment and process parameters (e. g. process pressure gas flow rates substrate temperature RF power etc. ) however most of the significant wafer process and equipment parameters of interest are not monitored in real

  20. Advanced Thermoelectric Materials for Efficient Waste Heat Recovery in Process Industries

    SciTech Connect

    Adam Polcyn; Moe Khaleel

    2009-01-06

    The overall objective of the project was to integrate advanced thermoelectric materials into a power generation device that could convert waste heat from an industrial process to electricity with an efficiency approaching 20%. Advanced thermoelectric materials were developed with figure-of-merit ZT of 1.5 at 275 degrees C. These materials were not successfully integrated into a power generation device. However, waste heat recovery was demonstrated from an industrial process (the combustion exhaust gas stream of an oxyfuel-fired flat glass melting furnace) using a commercially available (5% efficiency) thermoelectric generator coupled to a heat pipe. It was concluded that significant improvements both in thermoelectric material figure-of-merit and in cost-effective methods for capturing heat would be required to make thermoelectric waste heat recovery viable for widespread industrial application.

  1. Study on the Integrated Geophysic Methods and Application of Advanced Geological Detection for Complicated Tunnel

    NASA Astrophysics Data System (ADS)

    Zhou, L.; Xiao, G.

    2014-12-01

    The engineering geological and hydrological conditions of current tunnels are more and more complicated, as the tunnels are elongated with deeper depth. In constructing these complicated tunnels, geological hazards prone to occur as induced by unfavorable geological bodies, such as fault zones, karst or hydrous structures, etc. The working emphasis and difficulty of the advanced geological exploration for complicated tunnels are mainly focused on the structure and water content of these unfavorable geological bodies. The technical aspects of my paper systematically studied the advanced geological exploration theory and application aspects for complicated tunnels, with discussion on the key technical points and useful conclusions. For the all-aroundness and accuracy of advanced geological exploration results, the objective of my paper is targeted on the comprehensive examination on the structure and hydrous characteristic of the unfavorable geological bodies in complicated tunnels. By the multi-component seismic modeling on a more real model containing the air medium, the wave field response characteristics of unfavorable geological bodies can be analyzed, thus providing theoretical foundation for the observation system layout, signal processing and interpretation of seismic methods. Based on the tomographic imaging theory of seismic and electromagnetic method, 2D integrated seismic and electromagnetic tomographic imaging and visualization software was designed and applied in the advanced drilling hole in the tunnel face, after validation of the forward and inverse modeling results on theoretical models. The transmission wave imaging technology introduced in my paper can be served as a new criterion for detection of unfavorable geological bodies. After careful study on the basic theory, data processing and interpretation, practical applications of TSP and ground penetrating radar (GPR) method, as well as serious examination on their application examples, my paper

  2. Advanced Oxyfuel Boilers and Process Heaters for Cost Effective CO2 Capture and Sequestration

    SciTech Connect

    Max Christie; Rick Victor; Bart van Hassel; Nagendra Nagabushana; Juan Li; Joseph Corpus; Jamie Wilson

    2007-03-31

    The purpose of the advanced boilers and process heaters program is to assess the feasibility of integrating Oxygen Transport Membranes (OTM) into combustion processes for cost effective CO{sub 2} capture and sequestration. Introducing CO{sub 2} capture into traditional combustion processes can be expensive, and the pursuit of alternative methods, like the advanced boiler/process heater system, may yield a simple and cost effective solution. In order to assess the integration of an advanced boiler/process heater process, this program addressed the following tasks: Task 1--Conceptual Design; Task 2--Laboratory Scale Evaluation; Task 3--OTM Development; Task 4--Economic Evaluation and Commercialization Planning; and Task 5--Program Management. This Final report documents and summarizes all of the work performed for the DOE award DE-FC26-01NT41147 during the period from January 2002-March 2007. This report outlines accomplishments for the following tasks: conceptual design and economic analysis, oxygen transport membrane (OTM) development, laboratory scale evaluations, and program management.

  3. Advancing MEMS Technology Usage through the MUMPS (Multi-User MEMS Processes) Program

    NASA Technical Reports Server (NTRS)

    Koester, D. A.; Markus, K. W.; Dhuler, V.; Mahadevan, R.; Cowen, A.

    1995-01-01

    In order to help provide access to advanced micro-electro-mechanical systems (MEMS) technologies and lower the barriers for both industry and academia, the Microelectronic Center of North Carolina (MCNC) and ARPA have developed a program which provides users with access to both MEMS processes and advanced electronic integration techniques. The four distinct aspects of this program, the multi-user MEMS processes (MUMP's), the consolidated micro-mechanical element library, smart MEMS, and the MEMS technology network are described in this paper. MUMP's is an ARPA-supported program created to provide inexpensive access to MEMS technology in a multi-user environment. It is both a proof-of-concept and educational tool that aids in the development of MEMS in the domestic community. MUMP's technologies currently include a 3-layer poly-silicon surface micromachining process and LIGA (lithography, electroforming, and injection molding) processes that provide reasonable design flexibility within set guidelines. The consolidated micromechanical element library (CaMEL) is a library of active and passive MEMS structures that can be downloaded by the MEMS community via the internet. Smart MEMS is the development of advanced electronics integration techniques for MEMS through the application of flip chip technology. The MEMS technology network (TechNet) is a menu of standard substrates and MEMS fabrication processes that can be purchased and combined to create unique process flows. TechNet provides the MEMS community greater flexibility and enhanced technology accessibility.

  4. Novel Optimization Methodology for Welding Process/Consumable Integration

    SciTech Connect

    Quintana, Marie A; DebRoy, Tarasankar; Vitek, John; Babu, Suresh

    2006-01-15

    Advanced materials are being developed to improve the energy efficiency of many industries of future including steel, mining, and chemical, as well as, US infrastructures including bridges, pipelines and buildings. Effective deployment of these materials is highly dependent upon the development of arc welding technology. Traditional welding technology development is slow and often involves expensive and time-consuming trial and error experimentation. The reason for this is the lack of useful predictive tools that enable welding technology development to keep pace with the deployment of new materials in various industrial sectors. Literature reviews showed two kinds of modeling activities. Academic and national laboratory efforts focus on developing integrated weld process models by employing the detailed scientific methodologies. However, these models are cumbersome and not easy to use. Therefore, these scientific models have limited application in real-world industrial conditions. On the other hand, industrial users have relied on simple predictive models based on analytical and empirical equations to drive their product development. The scopes of these simple models are limited. In this research, attempts were made to bridge this gap and provide the industry with a computational tool that combines the advantages of both approaches. This research resulted in the development of predictive tools which facilitate the development of optimized welding processes and consumables. The work demonstrated that it is possible to develop hybrid integrated models for relating the weld metal composition and process parameters to the performance of welds. In addition, these tools can be deployed for industrial users through user friendly graphical interface. In principle, the welding industry users can use these modular tools to guide their welding process parameter and consumable composition selection. It is hypothesized that by expanding these tools throughout welding industry

  5. Advanced Reactors Thermal Energy Transport for Process Industries

    SciTech Connect

    P. Sabharwall; S.J. Yoon; M.G. McKellar; C. Stoots; George Griffith

    2014-07-01

    The operation temperature of advanced nuclear reactors is generally higher than commercial light water reactors and thermal energy from advanced nuclear reactor can be used for various purposes such as liquid fuel production, district heating, desalination, hydrogen production, and other process heat applications, etc. Some of the major technology challenges that must be overcome before the advanced reactors could be licensed on the reactor side are qualification of next generation of nuclear fuel, materials that can withstand higher temperature, improvement in power cycle thermal efficiency by going to combined cycles, SCO2 cycles, successful demonstration of advanced compact heat exchangers in the prototypical conditions, and from the process side application the challenge is to transport the thermal energy from the reactor to the process plant with maximum efficiency (i.e., with minimum temperature drop). The main focus of this study is on doing a parametric study of efficient heat transport system, with different coolants (mainly, water, He, and molten salts) to determine maximum possible distance that can be achieved.

  6. Advancing Exposure Science through Chemical Data Curation and Integration in the Comparative Toxicogenomics Database

    PubMed Central

    Grondin, Cynthia J.; Davis, Allan Peter; Wiegers, Thomas C.; King, Benjamin L.; Wiegers, Jolene A.; Reif, David M.; Hoppin, Jane A.; Mattingly, Carolyn J.

    2016-01-01

    Background: Exposure science studies the interactions and outcomes between environmental stressors and human or ecological receptors. To augment its role in understanding human health and the exposome, we aimed to centralize and integrate exposure science data into the broader biological framework of the Comparative Toxicogenomics Database (CTD), a public resource that promotes understanding of environmental chemicals and their effects on human health. Objectives: We integrated exposure data within the CTD to provide a centralized, freely available resource that facilitates identification of connections between real-world exposures, chemicals, genes/proteins, diseases, biological processes, and molecular pathways. Methods: We developed a manual curation paradigm that captures exposure data from the scientific literature using controlled vocabularies and free text within the context of four primary exposure concepts: stressor, receptor, exposure event, and exposure outcome. Using data from the Agricultural Health Study, we have illustrated the benefits of both centralization and integration of exposure information with CTD core data. Results: We have described our curation process, demonstrated how exposure data can be accessed and analyzed in the CTD, and shown how this integration provides a broad biological context for exposure data to promote mechanistic understanding of environmental influences on human health. Conclusions: Curation and integration of exposure data within the CTD provides researchers with new opportunities to correlate exposures with human health outcomes, to identify underlying potential molecular mechanisms, and to improve understanding about the exposome. Citation: Grondin CJ, Davis AP, Wiegers TC, King BL, Wiegers JA, Reif DM, Hoppin JA, Mattingly CJ. 2016. Advancing exposure science through chemical data curation and integration in the Comparative Toxicogenomics Database. Environ Health Perspect 124:1592–1599; http://dx.doi.org/10

  7. Advanced CO2 removal process control and monitor instrumentation development

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.; Dalhausen, M. J.; Klimes, R.

    1982-01-01

    A progam to evaluate, design and demonstrate major advances in control and monitor instrumentation was undertaken. A carbon dioxide removal process, one whose maturity level makes it a prime candidate for early flight demonstration was investigated. The instrumentation design incorporates features which are compatible with anticipated flight requirements. Current electronics technology and projected advances are included. In addition, the program established commonality of components for all advanced life support subsystems. It was concluded from the studies and design activities conducted under this program that the next generation of instrumentation will be greatly smaller than the prior one. Not only physical size but weight, power and heat rejection requirements were reduced in the range of 80 to 85% from the former level of research and development instrumentation. Using a microprocessor based computer, a standard computer bus structure and nonvolatile memory, improved fabrication techniques and aerospace packaging this instrumentation will greatly enhance overall reliability and total system availability.

  8. Advanced titanium alloys and processes for minimally invasive surgery

    NASA Astrophysics Data System (ADS)

    Rack, H. J.; Qazi, Javaid

    2005-11-01

    Major advances continue to be made in enhancing patient care while at the same time attempting to slow ever-rising health costs. Among the most innovative of these advances are minimally invasive surgical techniques, which allow patients to undergo life-saving and quality-of-life enhancing surgery with minimized risk and substantially reduced hospital stays. Recently this approach was introduced for orthopedic procedures (e.g., during total hip replacement surgery). In this instance, the implantable devices will bear the same loads and will therefore be subject to higher stress. This paper provides a brief overview of several potential approaches for developing new advanced titanium alloys and processes that should provide substantial benefit for this application in minimally invasive devices.

  9. Advanced satellite workstation: An integrated workstation environment for operational support of satellite system planning and analysis

    NASA Technical Reports Server (NTRS)

    Sutton, Stewart A.

    1992-01-01

    A prototype integrated environment, the Advanced Satellite Workstation (ASW), is described that has been developed and delivered for evaluation and operator feedback in an operational satellite control center. The current ASW hardware consists of a Sun Workstation and Macintosh II Workstation connected via an ethernet Network Hardware and Software, Laser Disk System, Optical Storage System, and Telemetry Data File Interface. The central mission of ASW is to provide an intelligent decision support and training environment for operator/analysts of complex systems such as satellites. There have been many workstation implementations recently which incorporate graphical telemetry displays and expert systems. ASW is a considerably broader look at intelligent, integrated environments for decision support, based upon the premise that the central features of such an environment are intelligent data access and integrated toolsets. A variety of tools have been constructed in support of this prototype environment including: an automated pass planner for scheduling vehicle support activities, architectural modeler for hierarchical simulation and analysis of satellite vehicle subsystems, multimedia-based information systems that provide an intuitive and easily accessible interface to Orbit Operations Handbook and other relevant support documentation, and a data analysis architecture that integrates user modifiable telemetry display systems, expert systems for background data analysis, and interfaces to the multimedia system via inter-process communication.

  10. Development of an alternating integrator for magnetic measurements for experimental advanced superconducting tokamak.

    PubMed

    Liu, D M; Wan, B N; Zhao, W Z; Shen, B; He, Y G; Chen, B; Huang, J; Liu, H Q

    2014-11-01

    A high-performance integrator is one of the key electronic devices for reliably controlling plasma in the experimental advanced superconducting tokamak for long pulse operation. We once designed an integrator system of real-time drift compensation, which has a low integration drift. However, it is not feasible for really continuous operations due to capacitive leakage error and nonlinearity error. To solve the above-mentioned problems, this paper presents a new alternating integrator. In the new integrator, the integrator system of real-time drift compensation is adopted as one integral cell while two such integral cells work alternately. To achieve the alternate function, a Field Programmable Gate Array built in the digitizer is utilized. The performance test shows that the developed integrator with the integration time constant of 20 ms has a low integration drift (<15 mV) for 1000 s.

  11. Development of an alternating integrator for magnetic measurements for experimental advanced superconducting tokamak

    SciTech Connect

    Liu, D. M. Zhao, W. Z.; He, Y. G.; Chen, B.; Wan, B. N.; Shen, B.; Huang, J.; Liu, H. Q.

    2014-11-15

    A high-performance integrator is one of the key electronic devices for reliably controlling plasma in the experimental advanced superconducting tokamak for long pulse operation. We once designed an integrator system of real-time drift compensation, which has a low integration drift. However, it is not feasible for really continuous operations due to capacitive leakage error and nonlinearity error. To solve the above-mentioned problems, this paper presents a new alternating integrator. In the new integrator, the integrator system of real-time drift compensation is adopted as one integral cell while two such integral cells work alternately. To achieve the alternate function, a Field Programmable Gate Array built in the digitizer is utilized. The performance test shows that the developed integrator with the integration time constant of 20 ms has a low integration drift (<15 mV) for 1000 s.

  12. Compact component for integrated quantum optic processing.

    PubMed

    Sahu, Partha Pratim

    2015-01-01

    Quantum interference is indispensable to derive integrated quantum optic technologies (1-2). For further progress in large scale integration of quantum optic circuit, we have introduced first time two mode interference (TMI) coupler as an ultra compact component. The quantum interference varying with coupling length corresponding to the coupling ratio is studied and the larger HOM dip with peak visibility ~0.963 ± 0.009 is found at half coupling length of TMI coupler. Our results also demonstrate complex quantum interference with high fabrication tolerance and quantum visibility in TMI coupler.

  13. AN ADVANCED TOOL FOR APPLIED INTEGRATED SAFETY MANAGEMENT

    SciTech Connect

    Potts, T. Todd; Hylko, James M.; Douglas, Terence A.

    2003-02-27

    WESKEM, LLC's Environmental, Safety and Health (ES&H) Department had previously assessed that a lack of consistency, poor communication and using antiquated communication tools could result in varying operating practices, as well as a failure to capture and disseminate appropriate Integrated Safety Management (ISM) information. To address these issues, the ES&H Department established an Activity Hazard Review (AHR)/Activity Hazard Analysis (AHA) process for systematically identifying, assessing, and controlling hazards associated with project work activities during work planning and execution. Depending on the scope of a project, information from field walkdowns and table-top meetings are collected on an AHR form. The AHA then documents the potential failure and consequence scenarios for a particular hazard. Also, the AHA recommends whether the type of mitigation appears appropriate or whether additional controls should be implemented. Since the application is web based, the information is captured into a single system and organized according to the >200 work activities already recorded in the database. Using the streamlined AHA method improved cycle time from over four hours to an average of one hour, allowing more time to analyze unique hazards and develop appropriate controls. Also, the enhanced configuration control created a readily available AHA library to research and utilize along with standardizing hazard analysis and control selection across four separate work sites located in Kentucky and Tennessee. The AHR/AHA system provides an applied example of how the ISM concept evolved into a standardized field-deployed tool yielding considerable efficiency gains in project planning and resource utilization. Employee safety is preserved through detailed planning that now requires only a portion of the time previously necessary. The available resources can then be applied to implementing appropriate engineering, administrative and personal protective equipment

  14. Advancing human health risk assessment: integrating recent advisory committee recommendations.

    PubMed

    Dourson, Michael; Becker, Richard A; Haber, Lynne T; Pottenger, Lynn H; Bredfeldt, Tiffany; Fenner-Crisp, Penelope A

    2013-07-01

    Over the last dozen years, many national and international expert groups have considered specific improvements to risk assessment. Many of their stated recommendations are mutually supportive, but others appear conflicting, at least in an initial assessment. This review identifies areas of consensus and difference and recommends a practical, biology-centric course forward, which includes: (1) incorporating a clear problem formulation at the outset of the assessment with a level of complexity that is appropriate for informing the relevant risk management decision; (2) using toxicokinetics and toxicodynamic information to develop Chemical Specific Adjustment Factors (CSAF); (3) using mode of action (MOA) information and an understanding of the relevant biology as the key, central organizing principle for the risk assessment; (4) integrating MOA information into dose-response assessments using existing guidelines for non-cancer and cancer assessments; (5) using a tiered, iterative approach developed by the World Health Organization/International Programme on Chemical Safety (WHO/IPCS) as a scientifically robust, fit-for-purpose approach for risk assessment of combined exposures (chemical mixtures); and (6) applying all of this knowledge to enable interpretation of human biomonitoring data in a risk context. While scientifically based defaults will remain important and useful when data on CSAF or MOA to refine an assessment are absent or insufficient, assessments should always strive to use these data. The use of available 21st century knowledge of biological processes, clinical findings, chemical interactions, and dose-response at the molecular, cellular, organ and organism levels will minimize the need for extrapolation and reliance on default approaches. PMID:23844697

  15. Advancing human health risk assessment: Integrating recent advisory committee recommendations

    PubMed Central

    Becker, Richard A.; Haber, Lynne T.; Pottenger, Lynn H.; Bredfeldt, Tiffany; Fenner-Crisp, Penelope A.

    2013-01-01

    Over the last dozen years, many national and international expert groups have considered specific improvements to risk assessment. Many of their stated recommendations are mutually supportive, but others appear conflicting, at least in an initial assessment. This review identifies areas of consensus and difference and recommends a practical, biology-centric course forward, which includes: (1) incorporating a clear problem formulation at the outset of the assessment with a level of complexity that is appropriate for informing the relevant risk management decision; (2) using toxicokinetics and toxicodynamic information to develop Chemical Specific Adjustment Factors (CSAF); (3) using mode of action (MOA) information and an understanding of the relevant biology as the key, central organizing principle for the risk assessment; (4) integrating MOA information into dose–response assessments using existing guidelines for non-cancer and cancer assessments; (5) using a tiered, iterative approach developed by the World Health Organization/International Programme on Chemical Safety (WHO/IPCS) as a scientifically robust, fit-for-purpose approach for risk assessment of combined exposures (chemical mixtures); and (6) applying all of this knowledge to enable interpretation of human biomonitoring data in a risk context. While scientifically based defaults will remain important and useful when data on CSAF or MOA to refine an assessment are absent or insufficient, assessments should always strive to use these data. The use of available 21st century knowledge of biological processes, clinical findings, chemical interactions, and dose–response at the molecular, cellular, organ and organism levels will minimize the need for extrapolation and reliance on default approaches. PMID:23844697

  16. High Efficiency, Ultra-Low Emission, Integrated Process Heater System

    SciTech Connect

    Mason, Howard; Boral, Anindya; Chhotray, San; Martin, Matthew

    2006-06-19

    The team of TIAX LLC, ExxonMobil Research and Engineering Company, and Callidus Technologies, LLC conducted a six-year program to develop an ultra-low emission process heater burner and an advanced high efficiency heater design. This project addresses the critical need of process heater operators for reliable, economical emission reduction technologies to comply with stringent emission regulations, and for heater design alternatives that reduce process heater energy requirements without significant cost increase. The key project targets were NOx emissions of 10 ppm (@ 3% O2), and a heater thermal efficiency of 95 percent. The ultra low NOx burner was developed through a series of pilot-scale and field tests combined with computational fluid dynamic modeling to arrive at simultaneous low emissions and suitable flame shape and stability. Pilot scale tests were run at TIAX, at the 2 MMBtu/hr scale, and at Callidus at 8 MMBtu/hr. The full scale burner was installed on a 14 burner atmospheric pipestill furnace at an ExxonMobil refinery. A variety of burner configurations, gas tips and flame stabilizers were tested to determine the lowest emissions with acceptable flame shape and stability. The resulting NOx emissions were 22 ppm on average. Starting in 2001, Callidus commercialized the original ultra low NOx burner and made subsequent design improvements in a series of commercial burners evolving from the original concept and/or development. Emissions in the field with the ultra low-NOx burner over a broad spectrum of heater applications have varied from 5 ppm to 30 ppm depending on heater geometry, heater service, fuel and firing capacity. To date, 1550 of the original burners, and 2500 of subsequent generation burners have been sold by Callidus. The advanced heater design was developed by parametric evaluations of a variety of furnace and combustion air preheater configurations and technologies for enhancing convective and radiative heat transfer. The design evolution

  17. Integrating the autonomous subsystems management process

    NASA Technical Reports Server (NTRS)

    Ashworth, Barry R.

    1992-01-01

    Ways in which the ranking of the Space Station Module Power Management and Distribution testbed may be achieved and an individual subsystem's internal priorities may be managed within the complete system are examined. The application of these results in the integration and performance leveling of the autonomously managed system is discussed.

  18. Advanced information processing system: Input/output network management software

    NASA Technical Reports Server (NTRS)

    Nagle, Gail; Alger, Linda; Kemp, Alexander

    1988-01-01

    The purpose of this document is to provide the software requirements and specifications for the Input/Output Network Management Services for the Advanced Information Processing System. This introduction and overview section is provided to briefly outline the overall architecture and software requirements of the AIPS system before discussing the details of the design requirements and specifications of the AIPS I/O Network Management software. A brief overview of the AIPS architecture followed by a more detailed description of the network architecture.

  19. Integrating advanced visualization technology into the planetary Geoscience workflow

    NASA Astrophysics Data System (ADS)

    Huffman, John; Forsberg, Andrew; Loomis, Andrew; Head, James; Dickson, James; Fassett, Caleb

    2011-09-01

    Recent advances in computer visualization have allowed us to develop new tools for analyzing the data gathered during planetary missions, which is important, since these data sets have grown exponentially in recent years to tens of terabytes in size. As part of the Advanced Visualization in Solar System Exploration and Research (ADVISER) project, we utilize several advanced visualization techniques created specifically with planetary image data in mind. The Geoviewer application allows real-time active stereo display of images, which in aggregate have billions of pixels. The ADVISER desktop application platform allows fast three-dimensional visualization of planetary images overlain on digital terrain models. Both applications include tools for easy data ingest and real-time analysis in a programmatic manner. Incorporation of these tools into our everyday scientific workflow has proved important for scientific analysis, discussion, and publication, and enabled effective and exciting educational activities for students from high school through graduate school.

  20. Tomorrow`s energy today for cities and counties -- Alternative wastewater treatment: Advanced Integrated Pond systems

    SciTech Connect

    Not Available

    1993-10-01

    This report provides a discussion of the design, construction, operation, and maintenance of the Advanced Integrated Pond System as an alternative for other more costly municipal waste water treatment plants.

  1. An integrative process model of leadership: examining loci, mechanisms, and event cycles.

    PubMed

    Eberly, Marion B; Johnson, Michael D; Hernandez, Morela; Avolio, Bruce J

    2013-09-01

    Utilizing the locus (source) and mechanism (transmission) of leadership framework (Hernandez, Eberly, Avolio, & Johnson, 2011), we propose and examine the application of an integrative process model of leadership to help determine the psychological interactive processes that constitute leadership. In particular, we identify the various dynamics involved in generating leadership processes by modeling how the loci and mechanisms interact through a series of leadership event cycles. We discuss the major implications of this model for advancing an integrative understanding of what constitutes leadership and its current and future impact on the field of psychological theory, research, and practice.

  2. Using Process/CFD Co-Simulation for the Design and Analysis of Advanced Energy Systems

    SciTech Connect

    Zitney, S.E.

    2007-04-01

    In this presentation we describe the major features and capabilities of NETL’s Advanced Process Engineering Co-Simulator (APECS) and highlight its application to advanced energy systems, ranging from small fuel cell systems to commercial-scale power plants including the coal-fired, gasification-based electricity and hydrogen plant in the DOE’s $1 billion, 10-year FutureGen demonstration project. APECS is an integrated software suite which allows the process and energy industries to optimize overall plant performance with respect to complex thermal and fluid flow phenomena by combining process simulation (e.g., Aspen Plus®) with high-fidelity equipment simulations based on computational fluid dynamics (CFD) models (e.g., FLUENT®).

  3. Integrating Organic Matter Structure with Ecosystem Function using Advanced Analytical Chemistry Techniques

    NASA Astrophysics Data System (ADS)

    Boot, C. M.

    2012-12-01

    Microorganisms are the primary transformers of organic matter in terrestrial and aquatic ecosystems. The structure of organic matter controls its bioavailability and researchers have long sought to link the chemical characteristics of the organic matter pool to its lability. To date this effort has been primarily attempted using low resolution descriptive characteristics (e.g. organic matter content, carbon to nitrogen ratio, aromaticity, etc .). However, recent progress in linking these two important ecosystem components has been advanced using advanced high resolution tools (e.g. nuclear magnetic resonance (NMR) spectroscopy, and mass spectroscopy (MS)-based techniques). A series of experiments will be presented that highlight the application of high resolution techniques in a variety of terrestrial and aquatic ecosystems with the focus on how these data explicitly provide the foundation for integrating organic matter structure into our concept of ecosystem function. The talk will highlight results from a series of experiments including: an MS-based metabolomics and fluorescence excitation emission matrix approach evaluating seasonal and vegetation based changes in dissolved organic matter (DOM) composition from arctic soils; Fourier transform ion cyclotron resonance (FTICR) MS and MS metabolomics analysis of DOM from three lakes in an alpine watershed; and the transformation of 13C labeled glucose track with NMR during a rewetting experiment from Colorado grassland soils. These data will be synthesized to illustrate how the application of advanced analytical techniques provides novel insight into our understanding of organic matter processing in a wide range of ecosystems.

  4. Advanced integrated safeguards using front-end-triggering devices

    SciTech Connect

    Howell, J.A.; Whitty, W.J.

    1995-12-01

    This report addresses potential uses of front-end-triggering devices for enhanced safeguards. Such systems incorporate video surveillance as well as radiation and other sensors. Also covered in the report are integration issues and analysis techniques.

  5. Process development status report for advanced manufacturing projects

    SciTech Connect

    Brinkman, J.R.; Homan, D.A.

    1990-03-30

    This is the final status report for the approved Advanced Manufacturing Projects for FY 1989. Five of the projects were begun in FY 1987, one in FY 1988, and one in FY 1989. The approved projects cover technology areas in welding, explosive material processing and evaluation, ion implantation, and automated manufacturing. It is expected that the successful completion of these projects well result in improved quality and/or reduced cost for components produced by Mound. Those projects not brought to completion will be continued under Process development in FY 1990.

  6. Smelting Associated with the Advanced Spent Fuel Conditioning Process

    SciTech Connect

    Hur, J-M.; Jeong, M-S.; Lee, W-K.; Cho, S-H.; Seo, C-S.; Park, S-W.

    2004-10-03

    The smelting process associated with the advanced spent fuel conditioning process (ACP) of Korea Atomic Energy Research Institute was studied by using surrogate materials. Considering the vaporization behaviors of input materials, the operation procedure of smelting was set up as (1) removal of residual salts, (2) melting of metal powder, and (3) removal of dross from a metal ingot. The behaviors of porous MgO crucible during smelting were tested and the chemical stability of MgO in the salt-being atmosphere was confirmed.

  7. Integrating interface slicing into software engineering processes

    NASA Technical Reports Server (NTRS)

    Beck, Jon

    1993-01-01

    Interface slicing is a tool which was developed to facilitate software engineering. As previously presented, it was described in terms of its techniques and mechanisms. The integration of interface slicing into specific software engineering activities is considered by discussing a number of potential applications of interface slicing. The applications discussed specifically address the problems, issues, or concerns raised in a previous project. Because a complete interface slicer is still under development, these applications must be phrased in future tenses. Nonetheless, the interface slicing techniques which were presented can be implemented using current compiler and static analysis technology. Whether implemented as a standalone tool or as a module in an integrated development or reverse engineering environment, they require analysis no more complex than that required for current system development environments. By contrast, conventional slicing is a methodology which, while showing much promise and intuitive appeal, has yet to be fully implemented in a production language environment despite 12 years of development.

  8. Psychiatric Advance Directives and Social Workers: An Integrative Review

    ERIC Educational Resources Information Center

    Van Dorn, Richard A.; Scheyett, Anna; Swanson, Jeffrey W.; Swartz, Marvin S.

    2010-01-01

    Psychiatric advance directives (PADs) are legal documents that allow individuals to express their wishes for future psychiatric care and to authorize a legally appointed proxy to make decisions on their behalf during incapacitating crises. PADs are viewed as an alternative to the coercive interventions that sometimes accompany mental health crises…

  9. Integrated manufacturing and processing predoctoral fellowships. Final performance report

    SciTech Connect

    Rozzell, Thomas

    1999-10-01

    The first and fourth cohorts of U.S. Department of Energy Integrated Manufacturing and Processing Predoctoral Fellows were supported under this grant for up to three years of study leading to a PhD degree in a field related to integrated manufacturing and processing.

  10. Advances in process intensification through multifunctional reactor engineering

    SciTech Connect

    O'Hern, T. J.

    2012-03-01

    This project was designed to advance the art of process intensification leading to a new generation of multifunctional chemical reactors. Experimental testing was performed in order to fully characterize the hydrodynamic operating regimes critical to process intensification and implementation in commercial applications. Physics of the heat and mass transfer and chemical kinetics and how these processes are ultimately scaled were investigated. Specifically, we progressed the knowledge and tools required to scale a multifunctional reactor for acid-catalyzed C4 paraffin/olefin alkylation to industrial dimensions. Understanding such process intensification strategies is crucial to improving the energy efficiency and profitability of multifunctional reactors, resulting in a projected energy savings of 100 trillion BTU/yr by 2020 and a substantial reduction in the accompanying emissions.

  11. Application of the Hydroecological Integrity Assessment Process for Missouri Streams

    USGS Publications Warehouse

    Kennen, Jonathan G.; Henriksen, James A.; Heasley, John; Cade, Brian S.; Terrell, James W.

    2009-01-01

    Natural flow regime concepts and theories have established the justification for maintaining or restoring the range of natural hydrologic variability so that physiochemical processes, native biodiversity, and the evolutionary potential of aquatic and riparian assemblages can be sustained. A synthesis of recent research advances in hydroecology, coupled with stream classification using hydroecologically relevant indices, has produced the Hydroecological Integrity Assessment Process (HIP). HIP consists of (1) a regional classification of streams into hydrologic stream types based on flow data from long-term gaging-station records for relatively unmodified streams, (2) an identification of stream-type specific indices that address 11 subcomponents of the flow regime, (3) an ability to establish environmental flow standards, (4) an evaluation of hydrologic alteration, and (5) a capacity to conduct alternative analyses. The process starts with the identification of a hydrologic baseline (reference condition) for selected locations, uses flow data from a stream-gage network, and proceeds to classify streams into hydrologic stream types. Concurrently, the analysis identifies a set of non-redundant and ecologically relevant hydrologic indices for 11 subcomponents of flow for each stream type. Furthermore, regional hydrologic models for synthesizing flow conditions across a region and the development of flow-ecology response relations for each stream type can be added to further enhance the process. The application of HIP to Missouri streams identified five stream types ((1) intermittent, (2) perennial runoff-flashy, (3) perennial runoff-moderate baseflow, (4) perennial groundwater-stable, and (5) perennial groundwater-super stable). Two Missouri-specific computer software programs were developed: (1) a Missouri Hydrologic Assessment Tool (MOHAT) which is used to establish a hydrologic baseline, provide options for setting environmental flow standards, and compare past and

  12. Advanced Image Intensifier: a 60°field-of-view night vision system with integral electroluminescent display

    NASA Astrophysics Data System (ADS)

    Crenshaw, David A.; Branigan, Robert G.

    1996-06-01

    The Advanced Image Intensifier Advanced Technology Demonstrator is an Army program to develop and demonstrate the next generation of night vision goggle using revolutionary new technologies to improve system performance and expand the capability of currently fielded image intensifier devices. The Advanced Image Intensifier is a helmet mounted imaging and display system that exploits recent advances in diffractive optics, miniature flat panel displays, image intensifier tube technology and manufacturing processes. The system will demonstrate significantly enhanced operational performance by increasing low-light resolution by greater than 25 percent; increasing field of view from 40 degrees to 60 degrees; improving high light performance; and integrating a display for viewing thermal imagery, computer graphics, and symbology. The results of these improvements will increase the night fighting capability, operational effectiveness, mobilty, versatility, and survivability of the dismounted soldier and aviator.

  13. An Overview of the JPSS Ground Project Algorithm Integration Process

    NASA Astrophysics Data System (ADS)

    Vicente, G. A.; Williams, R.; Dorman, T. J.; Williamson, R. C.; Shaw, F. J.; Thomas, W. M.; Hung, L.; Griffin, A.; Meade, P.; Steadley, R. S.; Cember, R. P.

    2015-12-01

    The smooth transition, implementation and operationalization of scientific software's from the National Oceanic and Atmospheric Administration (NOAA) development teams to the Join Polar Satellite System (JPSS) Ground Segment requires a variety of experiences and expertise. This task has been accomplished by a dedicated group of scientist and engineers working in close collaboration with the NOAA Satellite and Information Services (NESDIS) Center for Satellite Applications and Research (STAR) science teams for the JPSS/Suomi-NPOES Preparatory Project (S-NPP) Advanced Technology Microwave Sounder (ATMS), Cross-track Infrared Sounder (CrIS), Visible Infrared Imaging Radiometer Suite (VIIRS) and Ozone Mapping and Profiler Suite (OMPS) instruments. The presentation purpose is to describe the JPSS project process for algorithm implementation from the very early delivering stages by the science teams to the full operationalization into the Interface Processing Segment (IDPS), the processing system that provides Environmental Data Records (EDR's) to NOAA. Special focus is given to the NASA Data Products Engineering and Services (DPES) Algorithm Integration Team (AIT) functional and regression test activities. In the functional testing phase, the AIT uses one or a few specific chunks of data (granules) selected by the NOAA STAR Calibration and Validation (cal/val) Teams to demonstrate that a small change in the code performs properly and does not disrupt the rest of the algorithm chain. In the regression testing phase, the modified code is placed into to the Government Resources for Algorithm Verification, Integration, Test and Evaluation (GRAVITE) Algorithm Development Area (ADA), a simulated and smaller version of the operational IDPS. Baseline files are swapped out, not edited and the whole code package runs in one full orbit of Science Data Records (SDR's) using Calibration Look Up Tables (Cal LUT's) for the time of the orbit. The purpose of the regression test is to

  14. A graphene superficial layer for the advanced electroforming process

    NASA Astrophysics Data System (ADS)

    Rho, Hokyun; Park, Mina; Lee, Seungmin; Bae, Sukang; Kim, Tae-Wook; Ha, Jun-Seok; Lee, Sang Hyun

    2016-06-01

    Advances in electroplating technology facilitate the progress of modern electronic devices, including computers, microprocessors and other microelectronic devices. Metal layers with high electrical and thermal conductivities are essential for high speed and high power devices. In this paper, we report an effective route to fabricate free-standing metal films using graphene as a superficial layer in the electroforming process. Chemical vapor deposition (CVD) graphene grown on a Cu foil was used as a template, which provides high electrical conductivity and low adhesive force with the template, thus enabling an effective electroforming process. The required force for delamination of the electroplated Cu layer from graphene is more than one order smaller than the force required for removing graphene from the Cu foil. We also demonstrated that the electroformed free-standing Cu thin films could be utilized for patterning microstructures and incorporated onto a flexible substrate for LEDs. This innovative process could be beneficial for the advancement of flexible electronics and optoelectronics, which require a wide range of mechanical and physical properties.Advances in electroplating technology facilitate the progress of modern electronic devices, including computers, microprocessors and other microelectronic devices. Metal layers with high electrical and thermal conductivities are essential for high speed and high power devices. In this paper, we report an effective route to fabricate free-standing metal films using graphene as a superficial layer in the electroforming process. Chemical vapor deposition (CVD) graphene grown on a Cu foil was used as a template, which provides high electrical conductivity and low adhesive force with the template, thus enabling an effective electroforming process. The required force for delamination of the electroplated Cu layer from graphene is more than one order smaller than the force required for removing graphene from the Cu foil

  15. Bridging Microstructure, Properties and Processing of Polymer Based Advanced Materials

    SciTech Connect

    Li, Dongsheng; Ahzi, Said; Khaleel, Mohammad A.

    2012-01-01

    This is a guest editorial for a special issue in Journal of Engineering Materials and Technology. The papers collected in this special issue emphasize significant challenges, current approaches and future strategies necessary to advance the development of polymer-based materials. They were partly presented at the symposium of 'Bridging microstructure, properties and processing of polymer based advanced materials' in the TMS 2011 annual conference meeting, which was held in San Diego, US, on Feb 28 to March 3, 2011. This symposium was organized by the Pacific Northwest National Laboratory (USA) and the Institute of Mechanics of Fluids and Solids of the University of Strasbourg (France). The organizers were D.S. Li, S. Ahzi, and M. Khaleel.

  16. Advanced Plasma Pyrolysis Assembly (PPA) Reactor and Process Development

    NASA Technical Reports Server (NTRS)

    Wheeler, Richard R., Jr.; Hadley, Neal M.; Dahl, Roger W.; Abney, Morgan B.; Greenwood, Zachary; Miller, Lee; Medlen, Amber

    2012-01-01

    Design and development of a second generation Plasma Pyrolysis Assembly (PPA) reactor is currently underway as part of NASA's Atmosphere Revitalization Resource Recovery effort. By recovering up to 75% of the hydrogen currently lost as methane in the Sabatier reactor effluent, the PPA helps to minimize life support resupply costs for extended duration missions. To date, second generation PPA development has demonstrated significant technology advancements over the first generation device by doubling the methane processing rate while, at the same time, more than halving the required power. One development area of particular interest to NASA system engineers is fouling of the PPA reactor with carbonaceous products. As a mitigation plan, NASA MSFC has explored the feasibility of using an oxidative plasma based upon metabolic CO2 to regenerate the reactor window and gas inlet ports. The results and implications of this testing are addressed along with the advanced PPA reactor development.

  17. Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research

    SciTech Connect

    Not Available

    1992-01-01

    Progress made in five research programs is described. The subtasks in oil shale study include oil shale process studies and unconventional applications and markets for western oil shale.The tar sand study is on recycle oil pyrolysis and extraction (ROPE) process. Four tasks are described in coal research: underground coal gasification; coal combustion; integrated coal processing concepts; and sold waste management. Advanced exploratory process technology includes: advanced process concepts; advanced mitigation concepts; and oil and gas technology. Jointly sponsored research covers: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO[sub 2] HUFF-N-PUFF process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; shallow oil production using horizontal wells with enhanced oil recovery techniques; NMR analysis of sample from the ocean drilling program; and menu driven access to the WDEQ hydrologic data management system.

  18. Electrochemical advanced oxidation processes: today and tomorrow. A review.

    PubMed

    Sirés, Ignasi; Brillas, Enric; Oturan, Mehmet A; Rodrigo, Manuel A; Panizza, Marco

    2014-01-01

    In recent years, new advanced oxidation processes based on the electrochemical technology, the so-called electrochemical advanced oxidation processes (EAOPs), have been developed for the prevention and remediation of environmental pollution, especially focusing on water streams. These methods are based on the electrochemical generation of a very powerful oxidizing agent, such as the hydroxyl radical ((•)OH) in solution, which is then able to destroy organics up to their mineralization. EAOPs include heterogeneous processes like anodic oxidation and photoelectrocatalysis methods, in which (•)OH are generated at the anode surface either electrochemically or photochemically, and homogeneous processes like electro-Fenton, photoelectro-Fenton, and sonoelectrolysis, in which (•)OH are produced in the bulk solution. This paper presents a general overview of the application of EAOPs on the removal of aqueous organic pollutants, first reviewing the most recent works and then looking to the future. A global perspective on the fundamentals and experimental setups is offered, and laboratory-scale and pilot-scale experiments are examined and discussed.

  19. Virus Reduction during Advanced Bardenpho and Conventional Wastewater Treatment Processes.

    PubMed

    Schmitz, Bradley W; Kitajima, Masaaki; Campillo, Maria E; Gerba, Charles P; Pepper, Ian L

    2016-09-01

    The present study investigated wastewater treatment for the removal of 11 different virus types (pepper mild mottle virus; Aichi virus; genogroup I, II, and IV noroviruses; enterovirus; sapovirus; group-A rotavirus; adenovirus; and JC and BK polyomaviruses) by two wastewater treatment facilities utilizing advanced Bardenpho technology and compared the results with conventional treatment processes. To our knowledge, this is the first study comparing full-scale treatment processes that all received sewage influent from the same region. The incidence of viruses in wastewater was assessed with respect to absolute abundance, occurrence, and reduction in monthly samples collected throughout a 12 month period in southern Arizona. Samples were concentrated via an electronegative filter method and quantified using TaqMan-based quantitative polymerase chain reaction (qPCR). Results suggest that Plant D, utilizing an advanced Bardenpho process as secondary treatment, effectively reduced pathogenic viruses better than facilities using conventional processes. However, the absence of cell-culture assays did not allow an accurate assessment of infective viruses. On the basis of these data, the Aichi virus is suggested as a conservative viral marker for adequate wastewater treatment, as it most often showed the best correlation coefficients to viral pathogens, was always detected at higher concentrations, and may overestimate the potential virus risk. PMID:27447291

  20. Systems integration and demonstration of advanced reusable structure for ALS

    NASA Technical Reports Server (NTRS)

    Gibbins, Martin N.

    1991-01-01

    The objective was to investigate the potential of advanced material to achieve life cycle cost (LCC) benefits for reusable structure on the advanced launch system. Three structural elements were investigated - all components of an Advanced Launch System reusable propulsion/avionics module. Leading aeroshell configurations included sandwich structure using titanium, graphite/polyimide (Gr/PI), or high-temperature aluminum (HTA) face sheets. Thrust structure truss concepts used titanium, graphite/epoxy, or silicon carbide/aluminum struts. Leading aft bulkhead concepts employed graphite epoxy and aluminum. The technical effort focused on the aeroshell because the greatest benefits were expected there. Thermal analyses show the structural temperature profiles during operation. Finite element analyses show stresses during splash-down. Weight statements and manufacturing cost estimates were prepared for calculation of LCC for each design. The Gr/PI aeroshell showed the lowest potential LCC, but the HTA aeroshell was judged to be lower risk. A technology development plan was prepared to validate the applicable structural technology.

  1. Chemical Process Design: An Integrated Teaching Approach.

    ERIC Educational Resources Information Center

    Debelak, Kenneth A.; Roth, John A.

    1982-01-01

    Reviews a one-semester senior plant design/laboratory course, focusing on course structure, student projects, laboratory assignments, and course evaluation. Includes discussion of laboratory exercises related to process waste water and sludge. (SK)

  2. An introduction to NASA's advanced computing program: Integrated computing systems in advanced multichip modules

    NASA Technical Reports Server (NTRS)

    Fang, Wai-Chi; Alkalai, Leon

    1996-01-01

    Recent changes within NASA's space exploration program favor the design, implementation, and operation of low cost, lightweight, small and micro spacecraft with multiple launches per year. In order to meet the future needs of these missions with regard to the use of spacecraft microelectronics, NASA's advanced flight computing (AFC) program is currently considering industrial cooperation and advanced packaging architectures. In relation to this, the AFC program is reviewed, considering the design and implementation of NASA's AFC multichip module.

  3. High-power ultrasonic processing: Recent developments and prospective advances

    NASA Astrophysics Data System (ADS)

    Gallego-Juarez, Juan A.

    2010-01-01

    Although the application of ultrasonic energy to produce or to enhance a wide variety of processes have been explored since about the middle of the 20th century, only a reduced number of ultrasonic processes have been established at industrial level. However, during the last ten years the interest in ultrasonic processing has revived particularly in industrial sectors where the ultrasonic technology may represent a clean and efficient tool to improve classical existing processes or an innovation alternative for the development of new processes. Such seems to be the case of relevant sectors such as food industry, environment, pharmaceuticals and chemicals manufacture, machinery, mining, etc where power ultrasound is becoming an emerging technology for process development. The possible major problem in the application of high-intensity ultrasound on industrial processing is the design and development of efficient power ultrasonic systems (generators and reactors) capable of large scale successful operation specifically adapted to each individual process. In the area of ultrasonic processing in fluid media and more specifically in gases, the development of the steppedplate transducers and other power ge with extensive radiating surface has strongly contributed to the implementation at semi-industrial and industrial stage of several commercial applications, in sectors such as food and beverage industry (defoaming, drying, extraction, etc), environment (air cleaning, sludge filtration, etc...), machinery and process for manufacturing (textile washing, paint manufacture, etc). The development of different cavitational reactors for liquid treatment in continuous flow is helping to introduce into industry the wide potential of the area of sonochemistry. Processes such as water and effluent treatment, crystallization, soil remediation, etc have been already implemented at semi-industrial and/or industrial stage. Other single advances in sectors like mining or energy have

  4. An application of oscillation damped motion for suspended payloads to the advanced integrated maintenance system

    SciTech Connect

    Noakes, M.W. ); Petterson, B.J.; Werner, J.C. )

    1990-01-01

    Transportation of objects using overhead cranes can induce pendulum motion of the object, which usually must be damped or allowed to decay before the next process can take place. Recent work at Sandia National Laboratories (SNL) has shown that oscillation damped transport and swing-free stops are possible by properly programming the acceleration of the transporting crane. This paper reviews the theory associated with oscillation-damped trajectories for simply suspended objects and describes a specific, full-scale implementation of the damped oscillation methods for the Oak Ridge National Laboratory (ORNL) Advanced Integrated Maintenance System (AIMS). Hardware and software requirements and constraints for proper operation are discussed. Finally, test results and lessons learned are presented. 5 refs., 4 figs.

  5. Advanced Coal Conversion Process Demonstration: A DOE Assessment

    SciTech Connect

    National Energy Technology Laboratory

    2005-04-01

    The objective of this project was to demonstrate a process for upgrading subbituminous coal by reducing its moisture and sulfur content and increasing its heating value using the Advanced Coal Conversion Process (ACCP) unit. The ACCP unit, with a capacity of 68.3 tons of feed coal per hour (two trains of 34 tons/hr each), was located next to a unit train loading facility at WECo's Rosebud Coal Mine near Colstrip, Montana. Most of the coal processed was Rosebud Mine coal, but several other coals were also tested. The SynCoal® produced was tested both at utilities and at several industrial sites. The demonstration unit was designed to handle about one tenth of the projected throughput of a commercial facility.

  6. Advanced process control with design-based metrology

    NASA Astrophysics Data System (ADS)

    Yang, Hyunjo; Kim, Jungchan; Hong, Jongkyun; Yim, Donggyu; Kim, Jinwoong; Hasebe, Toshiaki; Yamamoto, Masahiro

    2007-03-01

    K1 factor for development and mass-production of memory devices has been decreased down to below 0.30 in recent years. Process technology has responded with extreme resolution enhancement technologies (RET) and much more complex OPC technologies than before. ArF immersion lithography is expected to remain the major patterning technology through under 35 nm node, where the degree of process difficulties and the sensitivity to process variations grow even higher. So, Design for manufacturing (DFM) is proposed to lower the degree of process difficulties and advanced process control (APC) is required to reduce the process variations. However, both DFM and APC need much feed-back from the wafer side such as hot spot inspection results and total CDU measurements at the lot, wafer, field and die level. In this work, we discuss a new design based metrology which can compare SEM image with CAD data and measure the whole CD deviations from the original layouts in a full die. It can provide the full information of hot spots and the whole CD distribution diagram of various transistors in peripheral regions as well as cell layout. So, it is possible to analyze the root cause of the CD distribution of some specific transistors or cell layout, such as OPC error, mask CDU, lens aberrations or etch process variation and so on. The applications of this new inspection tool will be introduced and APC using the analysis result will be presented in detail.

  7. OPTIMA: advanced methods for the analysis, integration, and optimization of PRISMA mission products

    NASA Astrophysics Data System (ADS)

    Guzzi, Donatella; Pippi, Ivan; Aiazzi, Bruno; Baronti, Stefano; Carlà, Roberto; Lastri, Cinzia; Nardino, Vanni; Raimondi, Valentina; Santurri, Leonardo; Selva, Massimo; Alparone, Luciano; Garzelli, Andrea; Lopinto, Ettore; Ananasso, Cristina; Barducci, Alessandro

    2015-10-01

    PRISMA is an Earth observation system that combines a hyperspectral sensor with a panchromatic, medium-resolution camera. OPTIMA is one of the five independent scientific research projects funded by the Italian Space Agency in the framework of PRISMA mission for the development of added-value algorithms and advanced applications. The main goal of OPTIMA is to increase and to strengthen the applications of PRISMA through the implementation of advanced methodologies for the analysis, integration and optimization of level 1 and 2 products. The project is comprehensive of several working packages: data simulation, data quality, data optimization, data processing and integration and, finally, evaluation of some applications related to natural hazards. Several algorithms implemented during the project employ high-speed autonomous procedures for the elaboration of the upcoming images acquired by PRISMA. To assess the performances of the developed algorithms and products, an end-to-end simulator of the instrument has been implemented. Data quality analysis has been completed by introducing noise modeling. Stand-alone procedures of radiometric and atmospheric corrections have been developed, allowing the retrieval of at-ground spectral reflectance maps. Specific studies about image enhancement, restoration and pan-sharpening have been carried out for providing added-value data. Regarding the mission capability of monitoring environmental processes and disasters, different techniques for estimating surface humidity and for analyzing burned areas have been investigated. Finally, calibration and validation activities utilizing the CAL/VAL test site managed by CNR-IFAC and located inside the Regional Park of San Rossore (Pisa), Italy have been considered.

  8. Integrating optical fabrication and metrology into the optical design process.

    PubMed

    Harvey, James E

    2015-03-20

    The recent validation of a generalized linear systems formulation of surface scatter theory and an analysis of image degradation due to surface scatter in the presence of aberrations has provided credence to the development of a systems engineering analysis of image quality as degraded not only by diffraction effects and geometrical aberrations, but to scattering effects due to residual optical fabrication errors as well. This generalized surface scatter theory provides insight and understanding by characterizing surface scatter behavior with a surface transfer function closely related to the modulation transfer function of classical image formation theory. Incorporating the inherently band-limited relevant surface roughness into the surface scatter theory provides mathematical rigor into surface scatter analysis, and implementing a fast Fourier transform algorithm with logarithmically spaced data points facilitates the practical calculation of scatter behavior from surfaces with a large dynamic range of relevant spatial frequencies. These advances, combined with the continuing increase in computer speed, leave the optical design community in a position to routinely derive the optical fabrication tolerances necessary to satisfy specific image quality requirements during the design phase of a project; i.e., to integrate optical metrology and fabrication into the optical design process.

  9. Advanced Manufacturing Processes Laboratory Building 878 hazards assessment document

    SciTech Connect

    Wood, C.; Thornton, W.; Swihart, A.; Gilman, T.

    1994-07-01

    The introduction of the hazards assessment process is to document the impact of the release of hazards at the Advanced Manufacturing Processes Laboratory (AMPL) that are significant enough to warrant consideration in Sandia National Laboratories` operational emergency management program. This hazards assessment is prepared in accordance with the Department of Energy Order 5500.3A requirement that facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment provides an analysis of the potential airborne release of chemicals associated with the operations and processes at the AMPL. This research and development laboratory develops advanced manufacturing technologies, practices, and unique equipment and provides the fabrication of prototype hardware to meet the needs of Sandia National Laboratories, Albuquerque, New Mexico (SNL/NM). The focus of the hazards assessment is the airborne release of materials because this requires the most rapid, coordinated emergency response on the part of the AMPL, SNL/NM, collocated facilities, and surrounding jurisdiction to protect workers, the public, and the environment.

  10. Metrology aspects of SIMS depth profiling for advanced ULSI processes

    SciTech Connect

    Budrevich, Andre; Hunter, Jerry

    1998-11-24

    As the semiconductor industry roadmap passes through the 0.1 {mu}m technology node, the junction depth of the transistor source/drain extension will be required to be less than 20 nm and the well doping will be near 1.0 {mu}m in depth. The development of advanced ULSI processing techniques requires the evolution of new metrology tools to ensure process capability. High sensitivity (ppb) coupled with excellent depth resolution (1 nm) makes SIMS the technique of choice for measuring the in-depth chemical distribution of these dopants with high precision and accuracy. This paper will discuss the issues, which impact the accuracy and precision of SIMS measurements of ion implants (both shallow and deep). First this paper will discuss common uses of the SIMS technique in the technology development and manufacturing of advanced ULSI processes. In the second part of this paper the ability of SIMS to make high precision measurements of ion implant depth profiles will be studied.

  11. Fuel ethanol production: process design trends and integration opportunities.

    PubMed

    Cardona, Carlos A; Sánchez, Oscar J

    2007-09-01

    Current fuel ethanol research and development deals with process engineering trends for improving biotechnological production of ethanol. In this work, the key role that process design plays during the development of cost-effective technologies is recognized through the analysis of major trends in process synthesis, modeling, simulation and optimization related to ethanol production. Main directions in techno-economical evaluation of fuel ethanol processes are described as well as some prospecting configurations. The most promising alternatives for compensating ethanol production costs by the generation of valuable co-products are analyzed. Opportunities for integration of fuel ethanol production processes and their implications are underlined. Main ways of process intensification through reaction-reaction, reaction-separation and separation-separation processes are analyzed in the case of bioethanol production. Some examples of energy integration during ethanol production are also highlighted. Finally, some concluding considerations on current and future research tendencies in fuel ethanol production regarding process design and integration are presented.

  12. Integrate Evaluation into the Planning Process.

    ERIC Educational Resources Information Center

    Camp, William

    1985-01-01

    In an attempt to correct for limitations in the Program Evaluation and Review Technique-Critical Path Method (PERT-CPM), the Graphical Evaluation and Review Technique (GERT) has been developed. This management tool allows for evaluation during the facilities' development process. Two figures and two references are provided. (DCS)

  13. Global search tool for the Advanced Photon Source Integrated Relational Model of Installed Systems (IRMIS) database.

    SciTech Connect

    Quock, D. E. R.; Cianciarulo, M. B.; APS Engineering Support Division; Purdue Univ.

    2007-01-01

    The Integrated Relational Model of Installed Systems (IRMIS) is a relational database tool that has been implemented at the Advanced Photon Source to maintain an updated account of approximately 600 control system software applications, 400,000 process variables, and 30,000 control system hardware components. To effectively display this large amount of control system information to operators and engineers, IRMIS was initially built with nine Web-based viewers: Applications Organizing Index, IOC, PLC, Component Type, Installed Components, Network, Controls Spares, Process Variables, and Cables. However, since each viewer is designed to provide details from only one major category of the control system, the necessity for a one-stop global search tool for the entire database became apparent. The user requirements for extremely fast database search time and ease of navigation through search results led to the choice of Asynchronous JavaScript and XML (AJAX) technology in the implementation of the IRMIS global search tool. Unique features of the global search tool include a two-tier level of displayed search results, and a database data integrity validation and reporting mechanism.

  14. Integrated payload and mission planning, phase 3. Volume 1: Integrated payload and mission planning process evaluation

    NASA Technical Reports Server (NTRS)

    Sapp, T. P.; Davin, D. E.

    1977-01-01

    The integrated payload and mission planning process for STS payloads was defined, and discrete tasks which evaluate performance and support initial implementation of this process were conducted. The scope of activity was limited to NASA and NASA-related payload missions only. The integrated payload and mission planning process was defined in detail, including all related interfaces and scheduling requirements. Related to the payload mission planning process, a methodology for assessing early Spacelab mission manager assignment schedules was defined.

  15. Integration of distributed plant process computer systems to nuclear power generation facilities

    SciTech Connect

    Bogard, T.; Finlay, K.

    1996-11-01

    Many operating nuclear power generation facilities are replacing their plant process computer. Such replacement projects are driven by equipment obsolescence issues and associated objectives to improve plant operability, increase plant information access, improve man machine interface characteristics, and reduce operation and maintenance costs. This paper describes a few recently completed and on-going replacement projects with emphasis upon the application integrated distributed plant process computer systems. By presenting a few recent projects, the variations of distributed systems design show how various configurations can address needs for flexibility, open architecture, and integration of technological advancements in instrumentation and control technology. Architectural considerations for optimal integration of the plant process computer and plant process instrumentation & control are evident from variations of design features.

  16. Integrated process for coalbed brine disposal

    SciTech Connect

    Brandt, H. |; Bourcier, W.L.; Jackson, K.J.

    1994-03-01

    A brine disposal process is described that converts the brine stream of a coalbed gas producing site into clean water for agricultural use, combustion products and water vapor that can be released into the atmosphere and dry solids that can be recycled for industrial consumption. The process uses a reverse osmosis unit, a submerged combustion evaporator and a pulse combustion dryer. Pretreatment of the brine feedstream is necessary to prevent fouling of the membranes of the reverse osmosis unit and to separate from the brine stream hazardous metal and other constituents that may make the permeate from the reverse osmosis unit unsuitable for agricultural or other use. A chemical modeling code is used to calculate the saturation states of solids that may precipitate and foul the reverse osmosis membranes. Sodium carbonate is added to the brine to precipitate carbonates of Ba, Ca, Mg and Sr prior to filtration, acidification, and passage into the reverse osmosis unit. Optimization of the process in terms of types and amounts of additives is possible with analysis using the modeling code. The minimum amounts of additives to prevent scaling are calculated. In a typical operation, a brine feedstream of 1,000 m{sup 3}/day (6,290 bpd) that may have a total dissolved salt concentration (TDS) of 7,000 ppm will be separated into a permeate stream of 750 m{sup 3}/day (4,718 bpd) with a TDS of 400 ppm and a concentrated brine stream of 250 m{sup 3}/day (1,573 bpd) with a TDS of 26,800 ppm. The submerged combustion evaporator will concentrate this latter stream to a concentration of 268,000 ppm and reduce the volume to 25 m{sup 3}/day (158 bpd). The pulse combustion dryer can dry the concentrated brine mixture to a low moisture salt. Energy costs to operate the reverse osmosis unit are primarily the pumping costs.

  17. Quality assessment of digested sludges produced by advanced stabilization processes.

    PubMed

    Braguglia, C M; Coors, A; Gallipoli, A; Gianico, A; Guillon, E; Kunkel, U; Mascolo, G; Richter, E; Ternes, T A; Tomei, M C; Mininni, G

    2015-05-01

    The European Union (EU) Project Routes aimed to discover new routes in sludge stabilization treatments leading to high-quality digested sludge, suitable for land application. In order to investigate the impact of different enhanced sludge stabilization processes such as (a) thermophilic digestion integrated with thermal hydrolysis pretreatment (TT), (b) sonication before mesophilic/thermophilic digestion (UMT), and (c) sequential anaerobic/aerobic digestion (AA) on digested sludge quality, a broad class of conventional and emerging organic micropollutants as well as ecotoxicity was analyzed, extending the assessment beyond the parameters typically considered (i.e., stability index and heavy metals). The stability index was improved by adding aerobic posttreatment or by operating dual-stage process but not by pretreatment integration. Filterability was worsened by thermophilic digestion, either alone (TT) or coupled with mesophilic digestion (UMT). The concentrations of heavy metals, present in ranking order Zn > Cu > Pb > Cr ~ Ni > Cd > Hg, were always below the current legal requirements for use on land and were not removed during the processes. Removals of conventional and emerging organic pollutants were greatly enhanced by performing double-stage digestion (UMT and AA treatment) compared to a single-stage process as TT; the same trend was found as regards toxicity reduction. Overall, all the digested sludges exhibited toxicity to the soil bacterium Arthrobacter globiformis at concentrations about factor 100 higher than the usual application rate of sludge to soil in Europe. For earthworms, a safety margin of factor 30 was generally achieved for all the digested samples. PMID:24903249

  18. Systems Integration Processes for NASA Ares I Crew Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Taylor, James L.; Reuter, James L.; Sexton, Jeffrey D.

    2006-01-01

    NASA's Exploration Initiative will require development of many new elements to constitute a robust system of systems. New launch vehicles are needed to place cargo and crew in stable Low Earth Orbit (LEO). This paper examines the systems integration processes NASA is utilizing to ensure integration and control of propulsion and nonpropulsion elements within NASA's Crew Launch Vehicle (CLV), now known as the Ares I. The objective of the Ares I is to provide the transportation capabilities to meet the Constellation Program requirements for delivering a Crew Exploration Vehicle (CEV) or other payload to LEO in support of the lunar and Mars missions. The Ares I must successfully provide this capability within cost and schedule, and with an acceptable risk approach. This paper will describe the systems engineering management processes that will be applied to assure Ares I Project success through complete and efficient technical integration. Discussion of technical review and management processes for requirements development and verification, integrated design and analysis, integrated simulation and testing, and the integration of reliability, maintainability and supportability (RMS) into the design will also be included. The Ares I Project is logically divided into elements by the major hardware groupings, and associated management, system engineering, and integration functions. The processes to be described herein are designed to integrate within these Ares I elements and among the other Constellation projects. Also discussed is launch vehicle stack integration (Ares I to CEV, and Ground and Flight Operations integration) throughout the life cycle, including integrated vehicle performance through orbital insertion, recovery of the first stage, and reentry of the upper stage. The processes for decomposing requirements to the elements and ensuring that requirements have been correctly validated, decomposed, and allocated, and that the verification requirements are

  19. Systems Integration Processes for NASA's Crew Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Reuter, James L.; Taylor, James L., Jr.; Sexton, Jeffery R.

    2006-01-01

    NASA's Exploration Initiative will require development of many new elements to constitute a robust system of systems. New launch vehicles are needed to place cargo and crew in stable low earth orbit. This paper examines the systems integration processes NASA is utilizing to ensure integration and control of propulsion and non-propulsion elements within NASA's Crew Launch Vehicle (CLV). The objective of the CLV is to provide the transportation capabilities to meet the Constellation Program requirements for delivering a Crew Exploration Vehicle (CEV) or other payload to Low Earth Orbit (LEO) in support of the lunar and Mars missions. The CLV must successfully provide the capability within cost and schedule with an acceptable risk approach. This paper will describe in detail the systems engineering management processes that will be applied to assure CLV Project success through complete and efficient technical integration. Discussion of specific processes for requirements development and verification, integrated design and analysis, integrated simulation and testing and the integration of reliability, maintainability and supportability (RMS) into the design will also be included. The CLV Project is broken logically into elements by the major hardware groupings, and associated management, system engineering, and integration functions. The processes to be described herein are designed to integrate within these CLV elements and among the other Constellation projects. Launch vehicle stack integration (CLV to CEV, and Ground and Flight Operations integration) throughout the life cycle, including integrated vehicle performance through orbital insertion, recovery of the first stage, and reentry of the upper stage will also be discussed. The processes for decomposing requirements to the Elements and ensuring that requirements have been correctly validated, decomposed, allocated, and that the verification requirements are properly defined to ensure that the system design meets

  20. Advancement of Bi-Level Integrated System Synthesis (BLISS)

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, J.; Emiley, Mark S.; Agte, Jeremy S.; Sandusky, Robert R., Jr.

    2000-01-01

    Bi-Level Integrated System Synthesis (BLISS) is a method for optimization of an engineering system, e.g., an aerospace vehicle. BLISS consists of optimizations at the subsystem (module) and system levels to divide the overall large optimization task into sets of smaller ones that can be executed concurrently. In the initial version of BLISS that was introduced and documented in previous publications, analysis in the modules was kept at the early conceptual design level. This paper reports on the next step in the BLISS development in which the fidelity of the aerodynamic drag and structural stress and displacement analyses were upgraded while the method's satisfactory convergence rate was retained.

  1. Evaluation, engineering and development of advanced cyclone processes

    SciTech Connect

    Durney, T.E.; Cook, A.; Ferris, D.D.

    1995-11-01

    This research and development project is one of three seeking to develop advanced, cost-effective, coal cleaning processes to help industry comply with 1990 Clean Air Act Regulations. The specific goal for this project is to develop a cycloning technology that will beneficiate coal to a level approaching 85% pyritic sulfur rejection while retaining 85% of the parent coal`s heating value. A clean coal ash content of less than 6% and a moisture content, for both clean coal and reject, of less than 30% are targeted. The process under development is a physical, gravimetric-based cleaning system that removes ash bearing mineral matter and pyritic sulfur. Since a large portion of the Nation`s coal reserves contain significant amounts of pyrite, physical beneficiation is viewed as a potential near-term, cost effective means of producing an environmentally acceptable fuel.

  2. Advanced biological unit processes for domestic water recycling.

    PubMed

    Jefferson, B; Laine, A L; Stephenson, T; Judd, S J

    2001-01-01

    The potential of advanced biological unit operations for the recycling of grey and black waters has been evaluated. The membrane bioreactor (MBR) demonstrated the greatest efficacy towards water recycling in terms of all the quality determinants. Both the biologically aerated filter (BAF) and the MBR were able to effectively treat the organic and physical pollutants in all the types of wastewater tested. The main difference was observed in terms of the microbiological quality, measured as total coliforms. The open bed structure of the BAF enabled passage of coliforms whereas the complete barrier of the MBR produced a non detectable level in the effluent. The MBR process complied with commonly adopted water recycling quality standards for the all determinants during the grey water trials and failed only in terms of total coliform counts once black water had been introduced into the feed. The MBR was seen as a particularly suitable advanced biological process as it was very effective at stabilising out the considerable load variations encountered during the trial.

  3. Geospace Science from Ground-based Magnetometer Arrays: Advances in Sensors, Data Collection, and Data Integration

    NASA Astrophysics Data System (ADS)

    Mann, Ian; Chi, Peter

    2016-07-01

    Networks of ground-based magnetometers now provide the basis for the diagnosis of magnetic disturbances associated with solar wind-magnetosphere-ionosphere coupling on a truly global scale. Advances in sensor and digitisation technologies offer increases in sensitivity in fluxgate, induction coil, and new micro-sensor technologies - including the promise of hybrid sensors. Similarly, advances in remote connectivity provide the capacity for truly real-time monitoring of global dynamics at cadences sufficient for monitoring and in many cases resolving system level spatio-temporal ambiguities especially in combination with conjugate satellite measurements. A wide variety of the plasmaphysical processes active in driving geospace dynamics can be monitored based on the response of the electrical current system, including those associated with changes in global convection, magnetospheric substorms and nightside tail flows, as well as due to solar wind changes in both dynamic pressure and in response to rotations of the direction of the IMF. Significantly, any changes to the dynamical system must be communicated by the propagation of long-period Alfven and/or compressional waves. These wave populations hence provide diagnostics for not only the energy transport by the wave fields themselves, but also provide a mechanism for diagnosing the structure of the background plasma medium through which the waves propagate. Ultra-low frequency (ULF) waves are especially significant in offering a monitor for mass density profiles, often invisible to particle detectors because of their very low energy, through the application of a variety of magneto-seismology and cross-phase techniques. Renewed scientific interest in the plasma waves associated with near-Earth substorm dynamics, including magnetosphere-ionosphere coupling at substorm onset and their relation to magnetotail flows, as well the importance of global scale ultra-low frequency waves for the energisation, transport

  4. Advanced information processing system: Hosting of advanced guidance, navigation and control algorithms on AIPS using ASTER

    NASA Technical Reports Server (NTRS)

    Brenner, Richard; Lala, Jaynarayan H.; Nagle, Gail A.; Schor, Andrei; Turkovich, John

    1994-01-01

    This program demonstrated the integration of a number of technologies that can increase the availability and reliability of launch vehicles while lowering costs. Availability is increased with an advanced guidance algorithm that adapts trajectories in real-time. Reliability is increased with fault-tolerant computers and communication protocols. Costs are reduced by automatically generating code and documentation. This program was realized through the cooperative efforts of academia, industry, and government. The NASA-LaRC coordinated the effort, while Draper performed the integration. Georgia Institute of Technology supplied a weak Hamiltonian finite element method for optimal control problems. Martin Marietta used MATLAB to apply this method to a launch vehicle (FENOC). Draper supplied the fault-tolerant computing and software automation technology. The fault-tolerant technology includes sequential and parallel fault-tolerant processors (FTP & FTPP) and authentication protocols (AP) for communication. Fault-tolerant technology was incrementally incorporated. Development culminated with a heterogeneous network of workstations and fault-tolerant computers using AP. Draper's software automation system, ASTER, was used to specify a static guidance system based on FENOC, navigation, flight control (GN&C), models, and the interface to a user interface for mission control. ASTER generated Ada code for GN&C and C code for models. An algebraic transform engine (ATE) was developed to automatically translate MATLAB scripts into ASTER.

  5. Application of advanced oxidation processes for TNT removal: A review.

    PubMed

    Ayoub, Kaidar; van Hullebusch, Eric D; Cassir, Michel; Bermond, Alain

    2010-06-15

    Nowadays, there are increasingly stringent regulations requiring drastic treatment of 2,4,6-trinitrotoluene (TNT) contaminated waters to generate treated waters which could be easily reused or released into the environment without any harmful effects. TNT is among the most highly suspected explosive compounds that interfere with groundwater system due to its high toxicity and low biodegradability. The present work is an overview of the literature on TNT removal from polluted waters and soils and, more particularly, its treatability by advanced oxidation processes (AOPs). Among the remediation technologies, AOPs constitute a promising technology for the treatment of wastewaters containing non-easily biodegradable organic compounds. Data concerning the degradation of TNT reported during the period 1990-2009 are evaluated in this review. Among the AOPs, the following techniques are successively debated: processes based on hydrogen peroxide (H(2)O(2)+UV, Fenton, photo-Fenton and Fenton-like processes), photocatalysis, processes based on ozone (O(3), O(3)+UV) and electrochemical processes. Kinetic constants related to TNT degradation and the different mechanistic degradation pathways are discussed. Possible future treatment strategies, such as, coupling AOP with biological treatment is also considered as a mean to improve TNT remediation efficiency and kinetic.

  6. Ceramic Integration Technologies for Advanced Energy Systems: Critical Needs, Technical Challenges, and Opportunities

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay

    2010-01-01

    Advanced ceramic integration technologies dramatically impact the energy landscape due to wide scale application of ceramics in all aspects of alternative energy production, storage, distribution, conservation, and efficiency. Examples include fuel cells, thermoelectrics, photovoltaics, gas turbine propulsion systems, distribution and transmission systems based on superconductors, nuclear power generation and waste disposal. Ceramic integration technologies play a key role in fabrication and manufacturing of large and complex shaped parts with multifunctional properties. However, the development of robust and reliable integrated systems with optimum performance requires the understanding of many thermochemical and thermomechanical factors, particularly for high temperature applications. In this presentation, various needs, challenges, and opportunities in design, fabrication, and testing of integrated similar (ceramic ceramic) and dissimilar (ceramic metal) material www.nasa.gov 45 ceramic-ceramic-systems have been discussed. Experimental results for bonding and integration of SiC based Micro-Electro-Mechanical-Systems (MEMS) LDI fuel injector and advanced ceramics and composites for gas turbine applications are presented.

  7. Integrating Scientific Array Processing into Standard SQL

    NASA Astrophysics Data System (ADS)

    Misev, Dimitar; Bachhuber, Johannes; Baumann, Peter

    2014-05-01

    We live in a time that is dominated by data. Data storage is cheap and more applications than ever accrue vast amounts of data. Storing the emerging multidimensional data sets efficiently, however, and allowing them to be queried by their inherent structure, is a challenge many databases have to face today. Despite the fact that multidimensional array data is almost always linked to additional, non-array information, array databases have mostly developed separately from relational systems, resulting in a disparity between the two database categories. The current SQL standard and SQL DBMS supports arrays - and in an extension also multidimensional arrays - but does so in a very rudimentary and inefficient way. This poster demonstrates the practicality of an SQL extension for array processing, implemented in a proof-of-concept multi-faceted system that manages a federation of array and relational database systems, providing transparent, efficient and scalable access to the heterogeneous data in them.

  8. Integrated coal cleaning, liquefaction, and gasification process

    DOEpatents

    Chervenak, Michael C.

    1980-01-01

    Coal is finely ground and cleaned so as to preferentially remove denser ash-containing particles along with some coal. The resulting cleaned coal portion having reduced ash content is then fed to a coal hydrogenation system for the production of desirable hydrocarbon gases and liquid products. The remaining ash-enriched coal portion is gasified to produce a synthesis gas, the ash is removed from the gasifier usually as slag, and the synthesis gas is shift converted with steam and purified to produce the high purity hydrogen needed in the coal hydrogenation system. This overall process increases the utilization of as-mined coal, reduces the problems associated with ash in the liquefaction-hydrogenation system, and permits a desirable simplification of a liquids-solids separation step otherwise required in the coal hydrogenation system.

  9. Integration of Virtual Reality with Computational Fluid Dynamics for Process Optimization

    NASA Astrophysics Data System (ADS)

    Wu, B.; Chen, G. H.; Fu, D.; Moreland, John; Zhou, Chenn Q.

    2010-03-01

    Computational Fluid Dynamics (CFD) has become a powerful simulation technology used in many industrial applications for process design and optimization to save energy, improve environment, and reduce costs. In order to better understand CFD results and more easily communicate with non-CFD experts, advanced virtual reality (VR) visualization is desired for CFD post-processing. Efforts have recently been made at Purdue University Calumet to integrate VR with CFD to visualize complex data in three dimensions in an interactive, virtual environment. The virtual engineering environment greatly enhances the value of CFD simulations and allows engineers to gain much needed process insights for the design and optimization of industrial processes.

  10. An application of oscillation-damped motion for suspended payloads to the advanced integrated maintenance system

    SciTech Connect

    Noakes, M.W. ); Petterson, B.J.; Werner, J.C. )

    1990-06-01

    The transportation of objects using overhead cranes can induce pendular motion of the object, which usually must be damped or allowed to decay before the next process can take place. Recent work at Sandia National Laboratories has shown that oscillation-damped transport and swing-free stops are possible by properly programming the acceleration of the transporting crane. Initial studies have been completed using a CIMCORP XR6100 gantry robot. The Advanced Integrated Maintenance System (AIMS) is an engineering and operations test bed developed for remote maintenance and handling studies within the Consolidated Fuel Reprocessing Program (CFRP) at Oak Ridge National Laboratory. The goal of CFRP has been to advanced the technology of in-cell systems planned for future nuclear fuel cycle facilities. The AIMS provides the capabilities to examine the needs and constraints necessary for hot-cell remote maintenance and includes a force-reflecting master/slave teleoperator and overhead transporter system. The associated control system provides a flexible programming environment conducive to controls experimentation. This paper reviews the theory associated with oscillation-damped trajectories for simply suspended objects and describes a specific implementation of the oscillation damping methods for the AIMS transporter. Hardware and software requirements and constraints for proper operation are discussed.

  11. Integration of sustainability into process simulaton of a dairy process

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Life cycle analysis, a method used to quantify the energy and environmental flows of a process or product on the environment, is increasingly utilized by food processors to develop strategies to lessen the carbon footprint of their operations. In the case of the milk supply chain, the method requir...

  12. Case study: Lockheed-Georgia Company integrated design process

    NASA Technical Reports Server (NTRS)

    Waldrop, C. T.

    1980-01-01

    A case study of the development of an Integrated Design Process is presented. The approach taken in preparing for the development of an integrated design process includes some of the IPAD approaches such as developing a Design Process Model, cataloging Technical Program Elements (TPE's), and examining data characteristics and interfaces between contiguous TPE's. The implementation plan is based on an incremental development of capabilities over a period of time with each step directed toward, and consistent with, the final architecture of a total integrated system. Because of time schedules and different computer hardware, this system will not be the same as the final IPAD release; however, many IPAD concepts will no doubt prove applicable as the best approach. Full advantage will be taken of the IPAD development experience. A scenario that could be typical for many companies, even outside the aerospace industry, in developing an integrated design process for an IPAD-type environment is represented.

  13. Recent advances in the deformation processing of titanium alloys

    NASA Astrophysics Data System (ADS)

    Tamirisakandala, S.; Bhat, R. B.; Vedam, B. V.

    2003-12-01

    Titanium (Ti) alloys are special-purpose materials used for several critical applications in aerospace as well as non-aerospace industries, and extensive deformation processing is necessary to shape-form these materials, which poses many challenges due to the microstructural complexities. Some of the recent developments in the deformation processing of Ti alloys and usefulness of integrating the material behavior information with simulation schemes while designing and optimizing manufacturing process schedules are discussed in this paper. Discussions are primarily focused on the most important alloy, Ti-6Al-4V and on developing a clear understanding on the influence of key parameters (e.g., oxygen content, starting microstructure, temperature, and strain rate) on the deformation behavior during hot working. These studies are very useful not only for obtaining controlled microstructures but also to design complex multi-step processing sequences to produce defect-free components. Strain-induced porosity (SIP) has been a serious problem during titanium alloy processing, and improved scientific understanding helps in seeking elegant solutions to avoid SIP. A novel high-speed processing technique for microstructural conversion in titanium has been described, which provides several benefits over the conventional slow-speed practices. The hot working behavior of some of the affordable α+β and β titanium alloys being developed recently—namely, Ti-5.5Al-1Fe, Ti-10V-2Fe-3Al, Ti-6.8Mo-4.5Fe-1.5Al, and Ti-10V-4.5Fe-1.5Al—has been analyzed, and the usefulness of the processing maps in optimizing the process parameters and design of hot working schedules in these alloys is demonstrated. Titanium alloys modified with small additions of boron are emerging as potential candidates for replacing structural components requiring high specific strength and stiffness. Efforts to understand the microstructural mechanisms during deformation processing of Ti-B alloys and the issues

  14. Integration mockup and process material management system

    NASA Technical Reports Server (NTRS)

    Verble, Adas James, Jr.

    1992-01-01

    Work to define and develop a full scale Space Station Freedom (SSF) mockup with the flexibility to evolve into future designs, to validate techniques for maintenance and logistics and verify human task allocations and support trade studies is described. This work began in early 1985 and ended in August, 1991. The mockups are presently being used at MSFC in Building 4755 as a technology and design testbed, as well as for public display. Micro Craft also began work on the Process Material Management System (PMMS) under this contract. The PMMS simulator was a sealed enclosure for testing to identify liquids, gaseous, particulate samples, and specimen including, urine, waste water, condensate, hazardous gases, surrogate gasses, liquids, and solids. The SSF would require many trade studies to validate techniques for maintenance and logistics and verify system task allocations; it was necessary to develop a full scale mockup which would be representative of current SSF design with the ease of changing those designs as the SSF design evolved and changed. The tasks defined for Micro Craft were to provide the personnel, services, tools, and materials for the SSF mockup which would consist of four modules, nodes, interior components, and part task mockups of MSFC responsible engineering systems. This included the Engineering Control and Life Support Systems (ECLSS) testbed. For the initial study, the mockups were low fidelity, soft mockups of graphics art bottle, and other low cost materials, which evolved into higher fidelity mockups as the R&D design evolved, by modifying or rebuilding, an important cost saving factor in the design process. We designed, fabricated, and maintained the full size mockup shells and support stands. The shells consisted of cylinders, end cones, rings, longerons, docking ports, crew airlocks, and windows. The ECLSS required a heavier cylinder to support the ECLSS systems test program. Details of this activity will be covered. Support stands were

  15. Integration mockup and process material management system

    NASA Astrophysics Data System (ADS)

    Verble, Adas James, Jr.

    1992-02-01

    Work to define and develop a full scale Space Station Freedom (SSF) mockup with the flexibility to evolve into future designs, to validate techniques for maintenance and logistics and verify human task allocations and support trade studies is described. This work began in early 1985 and ended in August, 1991. The mockups are presently being used at MSFC in Building 4755 as a technology and design testbed, as well as for public display. Micro Craft also began work on the Process Material Management System (PMMS) under this contract. The PMMS simulator was a sealed enclosure for testing to identify liquids, gaseous, particulate samples, and specimen including, urine, waste water, condensate, hazardous gases, surrogate gasses, liquids, and solids. The SSF would require many trade studies to validate techniques for maintenance and logistics and verify system task allocations; it was necessary to develop a full scale mockup which would be representative of current SSF design with the ease of changing those designs as the SSF design evolved and changed. The tasks defined for Micro Craft were to provide the personnel, services, tools, and materials for the SSF mockup which would consist of four modules, nodes, interior components, and part task mockups of MSFC responsible engineering systems. This included the Engineering Control and Life Support Systems (ECLSS) testbed. For the initial study, the mockups were low fidelity, soft mockups of graphics art bottle, and other low cost materials, which evolved into higher fidelity mockups as the R&D design evolved, by modifying or rebuilding, an important cost saving factor in the design process. We designed, fabricated, and maintained the full size mockup shells and support stands. The shells consisted of cylinders, end cones, rings, longerons, docking ports, crew airlocks, and windows. The ECLSS required a heavier cylinder to support the ECLSS systems test program. Details of this activity will be covered. Support stands were

  16. Integration of MGDS design into the licensing process

    SciTech Connect

    1997-12-01

    This paper presents an overview of how the Mined Geologic Disposal System (MGDS) design for a potential repository is integrated into the licensing process. The integration process employs a two-told approach: (1) ensure that the MGDS design complies with applicable Nuclear Regulatory Commission (NRC) licensing requirements, and (2) ensure that the MGDS design is appropriately reflected in a license application that is acceptable to the NRC for performing acceptance and compliance reviews.

  17. The process for integrating the NNSA knowledge base.

    SciTech Connect

    Wilkening, Lisa K.; Carr, Dorthe Bame; Young, Christopher John; Hampton, Jeff; Martinez, Elaine

    2009-03-01

    From 2002 through 2006, the Ground Based Nuclear Explosion Monitoring Research & Engineering (GNEMRE) program at Sandia National Laboratories defined and modified a process for merging different types of integrated research products (IRPs) from various researchers into a cohesive, well-organized collection know as the NNSA Knowledge Base, to support operational treaty monitoring. This process includes defining the KB structure, systematically and logically aggregating IRPs into a complete set, and verifying and validating that the integrated Knowledge Base works as expected.

  18. Psychiatric Advance Directives and Social Workers: An Integrative Review

    PubMed Central

    Van Dorn, Richard A.; Scheyett, Anna; Swanson, Jeffrey W.; Swartz, Marvin S.

    2013-01-01

    Psychiatric Advance Directives (PADs) are legal documents that allow individuals to express their wishes for future psychiatric care and to authorize a legally appointed proxy to make decisions on their behalf during incapacitating crises. PADs are viewed as an alternative to the coercive interventions that sometimes accompany mental health crises for persons with mental illness. Insofar as coercive interventions can abridge clients’ autonomy and self-determination -- values supported by the Profession’s Code of Ethics -- social workers have a vested interest in finding ways to reduce coercion and increase autonomy and self-determination in their practice. However, PADs are also viewed as having the potential to positively affect a variety of other clinical outcomes, including but not limited to treatment engagement, treatment satisfaction, and working alliance. This article reviews the clinical and legal history of PADs and empirical evidence for their implementation and effectiveness. Despite what should be an inherent interest in PADs, and the fact that laws authorizing PADs have proliferated in the past decade, there is little theoretical or empirical research in the social work literature. PMID:20408357

  19. Advancing Partnerships Towards an Integrated Approach to Oil Spill Response

    NASA Astrophysics Data System (ADS)

    Green, D. S.; Stough, T.; Gallegos, S. C.; Leifer, I.; Murray, J. J.; Streett, D.

    2015-12-01

    Oil spills can cause enormous ecological and economic devastation, necessitating application of the best science and technology available, and remote sensing is playing a growing critical role in the detection and monitoring of oil spills, as well as facilitating validation of remote sensing oil spill products. The FOSTERRS (Federal Oil Science Team for Emergency Response Remote Sensing) interagency working group seeks to ensure that during an oil spill, remote sensing assets (satellite/aircraft/instruments) and analysis techniques are quickly, effectively, appropriately, and seamlessly available to oil spills responders. Yet significant challenges remain for addressing oils spanning a vast range of chemical properties that may be spilled from the Tropics to the Arctic, with algorithms and scientific understanding needing advances to keep up with technology. Thus, FOSTERRS promotes enabling scientific discovery to ensure robust utilization of available technology as well as identifying technologies moving up the TRL (Technology Readiness Level). A recent FOSTERRS facilitated support activity involved deployment of the AVIRIS NG (Airborne Visual Infrared Imaging Spectrometer- Next Generation) during the Santa Barbara Oil Spill to validate the potential of airborne hyperspectral imaging to real-time map beach tar coverage including surface validation data. Many developing airborne technologies have potential to transition to space-based platforms providing global readiness.

  20. Rapid Intelligent Inspection Process Definition for dimensional measurement in advanced manufacturing

    SciTech Connect

    Brown, C.W.

    1993-03-01

    The Rapid Intelligent Inspection Process Definition (RIIPD) project is an industry-led effort to advance computer integrated manufacturing (CIM) systems for the creation and modification of inspection process definitions. The RIIPD project will define, design, develop, and demonstrate an automated tool (i.e., software) to generate inspection process plans and coordinate measuring machine (CMM) inspection programs, as well as produce support information for the dimensional measurement of piece parts. The goal of this project is to make the inspection and part verification function, specifically CMM measurements, a more effective production support tool by reducing inspection process definition flowtime, creating consistent and standard inspections, increasing confidence of measurement results, and capturing inspection expertise. This objective is accomplished through importing STEP geometry definitions, applying solid modeling, incorporating explicit tolerance representations, establishing dimensional inspection,techniques, embedding artificial intelligence techniques, and adhering to the Dimensional Measuring Interface Standard (DMIS) national standard.

  1. Advances in Process Intensification through Multifunctional Reactor Engineering

    SciTech Connect

    O'Hern, Timothy; Evans, Lindsay; Miller, Jim; Cooper, Marcia; Torczynski, John; Pena, Donovan; Gill, Walt; Groten, Will; Judzis, Arvids; Foley, Richard; Smith, Larry; Cross, Will; Vogt, T.

    2011-06-27

    This project was designed to advance the art of process intensification leading to a new generation of multifunctional chemical reactors utilizing pulse flow. Experimental testing was performed in order to fully characterize the hydrodynamic operating regimes associated with pulse flow for implementation in commercial applications. Sandia National Laboratories (SNL) operated a pilot-scale multifunctional reactor experiment for operation with and investigation of pulse flow operation. Validation-quality data sets of the fluid dynamics, heat and mass transfer, and chemical kinetics were acquired and shared with Chemical Research and Licensing (CR&L). Experiments in a two-phase air-water system examined the effects of bead diameter in the packing, and viscosity. Pressure signals were used to detect pulsing. Three-phase experiments used immiscible organic and aqueous liquids, and air or nitrogen as the gas phase. Hydrodynamic studies of flow regimes and holdup were performed for different types of packing, and mass transfer measurements were performed for a woven packing. These studies substantiated the improvements in mass transfer anticipated for pulse flow in multifunctional reactors for the acid-catalyzed C4 paraffin/olefin alkylation process. CR&L developed packings for this alkylation process, utilizing their alkylation process pilot facilities in Pasadena, TX. These packings were evaluated in the pilot-scale multifunctional reactor experiments established by Sandia to develop a more fundamental understanding of their role in process intensification. Lummus utilized the alkylation technology developed by CR&L to design and optimize the full commercial process utilizing multifunctional reactors containing the packings developed by CR&L and evaluated by Sandia. This hydrodynamic information has been developed for multifunctional chemical reactors utilizing pulse flow, for the acid-catalyzed C4 paraffin/olefin alkylation process, and is now accessible for use in

  2. Advances in Process Intensification through Multifunctional Reactor Engineering

    SciTech Connect

    O'Hern, Timothy; Evans, Lindsay; Miller, Jim; Cooper, Marcia; Torczynski, John; Pena, Donovan; Gill, Walt

    2011-02-01

    This project was designed to advance the art of process intensification leading to a new generation of multifunctional chemical reactors utilizing pulse flow. Experimental testing was performed in order to fully characterize the hydrodynamic operating regimes associated with pulse flow for implementation in commercial applications. Sandia National Laboratories (SNL) operated a pilot-scale multifunctional reactor experiment for operation with and investigation of pulse flow operation. Validation-quality data sets of the fluid dynamics, heat and mass transfer, and chemical kinetics were acquired and shared with Chemical Research and Licensing (CR&L). Experiments in a two-phase air-water system examined the effects of bead diameter in the packing, and viscosity. Pressure signals were used to detect pulsing. Three-phase experiments used immiscible organic and aqueous liquids, and air or nitrogen as the gas phase. Hydrodynamic studies of flow regimes and holdup were performed for different types of packing, and mass transfer measurements were performed for a woven packing. These studies substantiated the improvements in mass transfer anticipated for pulse flow in multifunctional reactors for the acid-catalyzed C4 paraffin/olefin alkylation process. CR&L developed packings for this alkylation process, utilizing their alkylation process pilot facilities in Pasadena, TX. These packings were evaluated in the pilot-scale multifunctional reactor experiments established by Sandia to develop a more fundamental understanding of their role in process intensification. Lummus utilized the alkylation technology developed by CR&L to design and optimize the full commercial process utilizing multifunctional reactors containing the packings developed by CR&L and evaluated by Sandia. This hydrodynamic information has been developed for multifunctional chemical reactors utilizing pulse flow, for the acid-catalyzed C4 paraffin/olefin alkylation process, and is now accessible for use in

  3. Advanced Power Electronics for LED Drivers: Advanced Technologies for integrated Power Electronics

    SciTech Connect

    2010-09-01

    ADEPT Project: MIT is teaming with Georgia Institute of Technology, Dartmouth College, and the University of Pennsylvania (UPenn) to create more efficient power circuits for energy-efficient light-emitting diodes (LEDs) through advances in 3 related areas. First, the team is using semiconductors made of high-performing gallium nitride grown on a low-cost silicon base (GaN-on-Si). These GaN-on-Si semiconductors conduct electricity more efficiently than traditional silicon semiconductors. Second, the team is developing new magnetic materials and structures to reduce the size and increase the efficiency of an important LED power component, the inductor. This advancement is important because magnetics are the largest and most expensive part of a circuit. Finally, the team is creating an entirely new circuit design to optimize the performance of the new semiconductors and magnetic devices it is using.

  4. Economic assessment of advanced flue gas desulfurization processes. Final report

    SciTech Connect

    Bierman, G. R.; May, E. H.; Mirabelli, R. E.; Pow, C. N.; Scardino, C.; Wan, E. I.

    1981-09-01

    This report presents the results of a project sponsored by the Morgantown Energy Technology Center (METC). The purpose of the study was to perform an economic and market assessment of advanced flue gas desulfurization (FGD) processes for application to coal-fired electric utility plants. The time period considered in the study is 1981 through 1990, and costs are reported in 1980 dollars. The task was divided into the following four subtasks: (1) determine the factors affecting FGD cost evaluations; (2) select FGD processes to be cost-analyzed; (3) define the future electric utility FGD system market; and (4) perform cost analyses for the selected FGD processes. The study was initiated in September 1979, and separate reports were prepared for the first two subtasks. The results of the latter two subtasks appear only in this final reprot, since the end-date of those subtasks coincided with the end-date of the overall task. The Subtask 1 report, Criteria and Methods for Performing FGD Cost Evaluations, was completed in October 1980. A slightly modified and condensed version of that report appears as appendix B to this report. The Subtask 2 report, FGD Candidate Process Selection, was completed in January 1981, and the principal outputs of that subtask appear in Appendices C and D to this report.

  5. Recent Advances in Marine Enzymes for Biotechnological Processes.

    PubMed

    Lima, R N; Porto, A L M

    2016-01-01

    In the last decade, new trends in the food and pharmaceutical industries have increased concern for the quality and safety of products. The use of biocatalytic processes using marine enzymes has become an important and useful natural product for biotechnological applications. Bioprocesses using biocatalysts like marine enzymes (fungi, bacteria, plants, animals, algae, etc.) offer hyperthermostability, salt tolerance, barophilicity, cold adaptability, chemoselectivity, regioselectivity, and stereoselectivity. Currently, enzymatic methods are used to produce a large variety of products that humans consume, and the specific nature of the enzymes including processing under mild pH and temperature conditions result in fewer unwanted side-effects and by-products. This offers high selectivity in industrial processes. The marine habitat has been become increasingly studied because it represents a huge source potential biocatalysts. Enzymes include oxidoreductases, hydrolases, transferases, isomerases, ligases, and lyases that can be used in food and pharmaceutical applications. Finally, recent advances in biotechnological processes using enzymes of marine organisms (bacterial, fungi, algal, and sponges) are described and also our work on marine organisms from South America, especially marine-derived fungi and bacteria involved in biotransformations and biodegradation of organic compounds. PMID:27452170

  6. Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC).

    SciTech Connect

    Schultz, Peter Andrew

    2011-12-01

    The objective of the U.S. Department of Energy Office of Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC) is to provide an integrated suite of computational modeling and simulation (M&S) capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive-waste storage facility or disposal repository. Achieving the objective of modeling the performance of a disposal scenario requires describing processes involved in waste form degradation and radionuclide release at the subcontinuum scale, beginning with mechanistic descriptions of chemical reactions and chemical kinetics at the atomic scale, and upscaling into effective, validated constitutive models for input to high-fidelity continuum scale codes for coupled multiphysics simulations of release and transport. Verification and validation (V&V) is required throughout the system to establish evidence-based metrics for the level of confidence in M&S codes and capabilities, including at the subcontiunuum scale and the constitutive models they inform or generate. This Report outlines the nature of the V&V challenge at the subcontinuum scale, an approach to incorporate V&V concepts into subcontinuum scale modeling and simulation (M&S), and a plan to incrementally incorporate effective V&V into subcontinuum scale M&S destined for use in the NEAMS Waste IPSC work flow to meet requirements of quantitative confidence in the constitutive models informed by subcontinuum scale phenomena.

  7. Multilevel integration of patternable low-κ material into advanced Cu BEOL

    NASA Astrophysics Data System (ADS)

    Lin, Qinghuang; Chen, S. T.; Nelson, A.; Brock, P.; Cohen, S.; Davis, B.; Fuller, N.; Kaplan, R.; Kwong, R.; Liniger, E.; Neumayer, D.; Patel, J.; Shobha, H.; Sooriyakumaran, R.; Purushothaman, S.; Spooner, T.; Miller, R.; Allen, R.; Wisnieff, R.

    2010-04-01

    In this paper, we wish to report, for the first time, on a simple, low-cost, novel way to form dual-damascene copper (Cu) on-chip interconnect or Back-End-Of-the-Line (BEOL) structures using a patternable low dielectric constant (low-κ) dielectric material concept. A patternable low-κ dielectric material combines the functions of a traditional resist and a dielectric material into one single material. It acts as a traditional resist during patterning and is subsequently converted to a low-κ dielectric material during a post-patterning curing process. No sacrificial materials (separate resists or hardmasks) and their related deposition, pattern transfer (etch) and removal (strip) are required to form dual-damascene BEOL patterns. We have successfully demonstrated multi-level dual-damascene integration of a novel patternable low-κ dielectric material into advanced Cu BEOL. This κ=2.7 patternable low-κ material is based on the industry standard SiCOH-based (silsesquioxane polymer) material platform and is compatible with 248 nm optical lithography. Multilevel integration of this patternable low-κ material at 45 nm node Cu BEOL fatwire levels has been demonstrated with very high electrical yields using the current manufacturing infrastructure.

  8. [Application of BAF-BAC process in advanced treatment of secondary effluent of refinery processing factory].

    PubMed

    Wu, Jiangjin; Sun, Changhong; Ma, Jianju; Qin, Yongsheng

    2003-11-01

    To find a new advanced technology for wastewater reuse in refinery processing factory, a pilot test using BAF-BAC process was carried out. The results revealed that when the COD concentration of the influent was less than 130 mg/L and BAF filtration rate was lower than 4.24 m/h, the average effluent COD concentration of BAF-BAC process was less than 50 mg/L, average turbidity was 4.46 NTU. At the same time this process has some effective removal rate on ammonia-nitrogen.

  9. Processing and Preparation of Advanced Stirling Convertors for Extended Operation

    NASA Technical Reports Server (NTRS)

    Oriti, Salvatore M.; Cornell, Paggy A.

    2008-01-01

    The U.S. Department of Energy (DOE), Lockheed Martin Space Company (LMSC), Sunpower Inc., and NASA Glenn Research Center (GRC) have been developing an Advanced Stirling Radioisotope Generator (ASRG) for use as a power system on space science missions. This generator will make use of the free-piston Stirling convertors to achieve higher conversion efficiency than currently available alternatives. NASA GRC is supporting the development of the ASRG by providing extended operation of several Sunpower Inc. Advanced Stirling Convertors (ASCs). In the past year and a half, eight ASCs have operated in continuous, unattended mode in both air and thermal vacuum environments. Hardware, software, and procedures were developed to prepare each convertor for extended operation with intended durations on the order of tens of thousands of hours. Steps taken to prepare a convertor for long-term operation included geometry measurements, thermocouple instrumentation, evaluation of working fluid purity, evacuation with bakeout, and high purity charge. Actions were also taken to ensure the reliability of support systems, such as data acquisition and automated shutdown checkouts. Once a convertor completed these steps, it underwent short-term testing to gather baseline performance data before initiating extended operation. These tests included insulation thermal loss characterization, low-temperature checkout, and full-temperature and power demonstration. This paper discusses the facilities developed to support continuous, unattended operation, and the processing results of the eight ASCs currently on test.

  10. Integrative Chemistry: Advanced functional cellular materials bearing multiscale porosity

    NASA Astrophysics Data System (ADS)

    Depardieu, M.; Kinadjian, N.; Backov, R.

    2015-07-01

    With this mini review we show through the sol-gel and emulsion-based Integrative Chemistry how it is possible to trigger materials dimensionality and beyond their functionalities when reaching enhanced applications. In here we focus on 3D macrocellular monolithic foams bearing hierarchical porosities and applications thereof. We first depict the general background of emulsions focusing on concentrated ones, acting as soft templates for the design of PolyHIPE foams, HIPE being the acronym of High Internal Phase Emulsions while encompassing both sol-gel and polymer chemistry. Secondly we extend this approach toward the design of hybrid organic-inorganic foams, labeled Organo-Si(HIPE), where photonics and heterogeneous catalysis applications are addressed. In a third section we show how inorganic Si(HIPE) matrices can be employed as sacrificial hard templates for the generation carbonaceous foams, labeled Carbon(HIPE). These foams being conductive we show applications when employed as electrodes for Li-S battery and as hosts for Li(BH4)-based hydrogen storage.

  11. Integrated Main Propulsion System Performance Reconstruction Process/Models

    NASA Technical Reports Server (NTRS)

    Lopez, Eduardo; Elliott, Katie; Snell, Steven; Evans, Michael

    2013-01-01

    The Integrated Main Propulsion System (MPS) Performance Reconstruction process provides the MPS post-flight data files needed for postflight reporting to the project integration management and key customers to verify flight performance. This process/model was used as the baseline for the currently ongoing Space Launch System (SLS) work. The process utilizes several methodologies, including multiple software programs, to model integrated propulsion system performance through space shuttle ascent. It is used to evaluate integrated propulsion systems, including propellant tanks, feed systems, rocket engine, and pressurization systems performance throughout ascent based on flight pressure and temperature data. The latest revision incorporates new methods based on main engine power balance model updates to model higher mixture ratio operation at lower engine power levels.

  12. Recent Advances in Understanding Particle Acceleration Processes in Solar Flares

    NASA Astrophysics Data System (ADS)

    Zharkova, V. V.; Arzner, K.; Benz, A. O.; Browning, P.; Dauphin, C.; Emslie, A. G.; Fletcher, L.; Kontar, E. P.; Mann, G.; Onofri, M.; Petrosian, V.; Turkmani, R.; Vilmer, N.; Vlahos, L.

    2011-09-01

    We review basic theoretical concepts in particle acceleration, with particular emphasis on processes likely to occur in regions of magnetic reconnection. Several new developments are discussed, including detailed studies of reconnection in three-dimensional magnetic field configurations (e.g., current sheets, collapsing traps, separatrix regions) and stochastic acceleration in a turbulent environment. Fluid, test-particle, and particle-in-cell approaches are used and results compared. While these studies show considerable promise in accounting for the various observational manifestations of solar flares, they are limited by a number of factors, mostly relating to available computational power. Not the least of these issues is the need to explicitly incorporate the electrodynamic feedback of the accelerated particles themselves on the environment in which they are accelerated. A brief prognosis for future advancement is offered.

  13. Secondary hospital wastewater detoxification and disinfection by advanced oxidation processes.

    PubMed

    Machado, E L; Kist, L T; Schmidt, R; Hoeltz, J M; Dalberto, D; Alcayaga, E L A

    2007-10-01

    Secondary hospital wastewater treatment was investigated as an alternative to detoxification and disinfection after anaerobic digestion in a hospital located in southern Brazil. Tertiary and secondary effluents were assessed by general parameters. The use of advanced oxidation processes (UV/O3 and UV/TiO2/O3) showed potential capacity for disinfection and detoxification of wastewater effluents. The UV/TiO2/O3 method yielded the best results, decreasing toxicity of EC50 = 65 to nontoxic levels, also reducing MPN/100ml of 1.1 x 10(6) to values less than 2 and increasing wastewater biodegradability. The low energetic consumption of the proposed UV/TiO2/O3 method can be considered operationally advantageous.

  14. Advanced information processing system: Inter-computer communication services

    NASA Technical Reports Server (NTRS)

    Burkhardt, Laura; Masotto, Tom; Sims, J. Terry; Whittredge, Roy; Alger, Linda S.

    1991-01-01

    The purpose is to document the functional requirements and detailed specifications for the Inter-Computer Communications Services (ICCS) of the Advanced Information Processing System (AIPS). An introductory section is provided to outline the overall architecture and functional requirements of the AIPS and to present an overview of the ICCS. An overview of the AIPS architecture as well as a brief description of the AIPS software is given. The guarantees of the ICCS are provided, and the ICCS is described as a seven-layered International Standards Organization (ISO) Model. The ICCS functional requirements, functional design, and detailed specifications as well as each layer of the ICCS are also described. A summary of results and suggestions for future work are presented.

  15. Evaluation methodologies for an advanced information processing system

    NASA Technical Reports Server (NTRS)

    Schabowsky, R. S., Jr.; Gai, E.; Walker, B. K.; Lala, J. H.; Motyka, P.

    1984-01-01

    The system concept and requirements for an Advanced Information Processing System (AIPS) are briefly described, but the emphasis of this paper is on the evaluation methodologies being developed and utilized in the AIPS program. The evaluation tasks include hardware reliability, maintainability and availability, software reliability, performance, and performability. Hardware RMA and software reliability are addressed with Markov modeling techniques. The performance analysis for AIPS is based on queueing theory. Performability is a measure of merit which combines system reliability and performance measures. The probability laws of the performance measures are obtained from the Markov reliability models. Scalar functions of this law such as the mean and variance provide measures of merit in the AIPS performability evaluations.

  16. Advanced information processing system: Input/output system services

    NASA Technical Reports Server (NTRS)

    Masotto, Tom; Alger, Linda

    1989-01-01

    The functional requirements and detailed specifications for the Input/Output (I/O) Systems Services of the Advanced Information Processing System (AIPS) are discussed. The introductory section is provided to outline the overall architecture and functional requirements of the AIPS system. Section 1.1 gives a brief overview of the AIPS architecture as well as a detailed description of the AIPS fault tolerant network architecture, while section 1.2 provides an introduction to the AIPS systems software. Sections 2 and 3 describe the functional requirements and design and detailed specifications of the I/O User Interface and Communications Management modules of the I/O System Services, respectively. Section 4 illustrates the use of the I/O System Services, while Section 5 concludes with a summary of results and suggestions for future work in this area.

  17. Integrated controls/structures study of advanced space systems

    NASA Technical Reports Server (NTRS)

    Greene, C. S.; Cunningham, T. B.

    1982-01-01

    A cost tradeoff is postulated for a stiff structure utilizing minimal controls (and control expense) to point and stabilize the vehicle. Extra costs for a stiff structure are caused by weight, packaging size, etc. Likewise, a more flexible vehicle should result in reduced structural costs but increased costs associated with additional control hardware and data processing required for vibration control of the structure. This tradeoff occurs as the ratio of the control bandwidth required for the mission to the lowest (significant) bending mode of the vehicle. The cost of controlling a spacecraft for a specific mission and the same basic configuration but varying the flexibility is established.

  18. Advancing System Flexibility for High Penetration Renewable Integration

    SciTech Connect

    Milligan, Michael; Frew, Bethany; Zhou, Ella; Arent, Douglas J.

    2015-10-01

    This report summarizes some of the issues discussed during the engagement on power system flexibility. By design, the focus is on flexibility options used in the United States. Exploration of whether and how U.S. experiences can inform Chinese energy planning will be part of the continuing project, and will benefit from the knowledge base provided by this report. We believe the initial stage of collaboration represented in this report has successfully started a process of mutual understanding, helping Chinese researchers to begin evaluating how lessons learned in other countries might translate to China's unique geographic, economic, social, and political contexts.

  19. A self-sustaining advanced lignocellulosic biofuel production by integration of anaerobic digestion and aerobic fungal fermentation.

    PubMed

    Zhong, Yuan; Ruan, Zhenhua; Zhong, Yingkui; Archer, Steven; Liu, Yan; Liao, Wei

    2015-03-01

    High energy demand hinders the development and application of aerobic microbial biofuel production from lignocellulosic materials. In order to address this issue, this study focused on developing an integrated system including anaerobic digestion and aerobic fungal fermentation to convert corn stover, animal manure and food wastes into microbial lipids for biodiesel production. Dairy manure and food waste were first anaerobically digested to produce energy and solid digestate (AD fiber). AD fiber and corn stover were then processed by a combined alkali and acid hydrolysis, followed by fungal lipid accumulation. The integrated process can generate 1L biodiesel and 1.9 kg methane from 12.8 kg dry dairy manure, 3.1 kg dry food wastes and 12.2 kg dry corn stover with a positive net energy of 57 MJ, which concludes a self-sustaining lignocellulosic biodiesel process and provides a new route to co-utilize corn stover and organic wastes for advanced biofuel production.

  20. Integrating optical fabrication and metrology into the optical design process

    NASA Astrophysics Data System (ADS)

    Harvey, James E.

    2014-12-01

    Image degradation due to scattered radiation from residual optical fabrication errors is a serious problem in many short wavelength (X-ray/EUV) imaging systems. Most commercially-available image analysis codes (ZEMAX, Code V, ASAP, FRED, etc.) currently require the scatter behavior (BSDF data) to be provided as input in order to calculate the image quality of such systems. This BSDF data is difficult to measure and rarely available for the operational wavelengths of interest. Since the smooth-surface approximation is often not satisfied at these short wavelengths, the classical Rayleigh-Rice expression that indicates the BRDF is directly proportional to the surface PSD cannot be used to calculate BRDFs from surface metrology data for even slightly rough surfaces. However, an FFTLog numerical Hankel transform algorithm enables the practical use of the computationally intensive Generalized Harvey-Shack (GHS) surface scatter theory [1] to calculate BRDFs from surface PSDs for increasingly short wavelengths that violate the smooth surface approximation implicit in the Rayleigh-Rice surface scatter theory [2-3]. The recent numerical validation [4] of the GHS theory (a generalized linear systems formulation of surface scatter theory), and an analysis of image degradation due to surface scatter in the presence of aberrations [5] has provided credence to the development of a systems engineering analysis of image quality as degraded not only by diffraction effects and geometrical aberrations, but to scattering effects due to residual optical fabrication errors as well. These advances, combined with the continuing increase in computer speed, leave us poised to fully integrate optical metrology and fabrication into the optical design process.

  1. Joint force protection advanced security system (JFPASS) "the future of force protection: integrate and automate"

    NASA Astrophysics Data System (ADS)

    Lama, Carlos E.; Fagan, Joe E.

    2009-09-01

    The United States Department of Defense (DoD) defines 'force protection' as "preventive measures taken to mitigate hostile actions against DoD personnel (to include family members), resources, facilities, and critical information." Advanced technologies enable significant improvements in automating and distributing situation awareness, optimizing operator time, and improving sustainability, which enhance protection and lower costs. The JFPASS Joint Capability Technology Demonstration (JCTD) demonstrates a force protection environment that combines physical security and Chemical, Biological, Radiological, Nuclear, and Explosive (CBRNE) defense through the application of integrated command and control and data fusion. The JFPASS JCTD provides a layered approach to force protection by integrating traditional sensors used in physical security, such as video cameras, battlefield surveillance radars, unmanned and unattended ground sensors. The optimization of human participation and automation of processes is achieved by employment of unmanned ground vehicles, along with remotely operated lethal and less-than-lethal weapon systems. These capabilities are integrated via a tailorable, user-defined common operational picture display through a data fusion engine operating in the background. The combined systems automate the screening of alarms, manage the information displays, and provide assessment and response measures. The data fusion engine links disparate sensors and systems, and applies tailored logic to focus the assessment of events. It enables timely responses by providing the user with automated and semi-automated decision support tools. The JFPASS JCTD uses standard communication/data exchange protocols, which allow the system to incorporate future sensor technologies or communication networks, while maintaining the ability to communicate with legacy or existing systems.

  2. Advancing System Flexibility for High Penetration Renewable Integration (Chinese Translation)

    SciTech Connect

    Milligan, Michael; Frew, Bethany; Zhou, Ella; Arent, Douglas J.

    2015-10-01

    This is a Chinese translation of NREL/TP-6A20-64864. This report summarizes some of the issues discussed during the engagement on power system flexibility. By design, the focus is on flexibility options used in the United States. Exploration of whether and how U.S. experiences can inform Chinese energy planning will be part of the continuing project, and will benefit from the knowledge base provided by this report. We believe the initial stage of collaboration represented in this report has successfully started a process of mutual understanding, helping Chinese researchers to begin evaluating how lessons learned in other countries might translate to China's unique geographic, economic, social, and political contexts.

  3. High-speed parallel-processing networks for advanced architectures

    SciTech Connect

    Morgan, D.R.

    1988-06-01

    This paper describes various parallel-processing architecture networks that are candidates for eventual airborne use. An attempt at projecting which type of network is suitable or optimum for specific metafunction or stand-alone applications is made. However, specific algorithms will need to be developed and bench marks executed before firm conclusions can be drawn. Also, a conceptual projection of how these processors can be built in small, flyable units through the use of wafer-scale integration is offered. The use of the PAVE PILLAR system architecture to provide system level support for these tightly coupled networks is described. The author concludes that: (1) extremely high processing speeds implemented in flyable hardware is possible through parallel-processing networks if development programs are pursued; (2) dramatic speed enhancements through parallel processing requires an excellent match between the algorithm and computer-network architecture; (3) matching several high speed parallel oriented algorithms across the aircraft system to a limited set of hardware modules may be the most cost-effective approach to achieving speed enhancements; and (4) software-development tools and improved operating systems will need to be developed to support efficient parallel-processor use.

  4. Primary Process Integration on the Rorschach and Achievement in Children.

    ERIC Educational Resources Information Center

    Russ, Sandra W.

    1980-01-01

    The relationship between primary process integration (PPI) and achievement was investigated. Fifty-one second graders received the Rorschach, which was scored by Holt's Primary Process Scoring System. Achievement criteria were academic grade average and reading test scores. The hypothesis that PPI is positively related to achievement was…

  5. Geophysical investigation of subrosion processes - an integrated approach

    NASA Astrophysics Data System (ADS)

    Miensopust, Marion; Hupfer, Sarah; Kobe, Martin; Schneider-Löbens, Christiane; Wadas, Sonja; Krawczyk, Charlotte

    2016-04-01

    Subrosion, i.e., leaching of readily soluble rocks mostly due to groundwater, is usually of natural origin but can be enhanced by anthropogenic interferences. In recent years, public awareness of subrosion processes in terms of the in parts catastrophic implications and incidences increased. Especially the sinkholes in Schmalkalden and Tiefenort (Germany) are - based on unforeseen collapse events and associated damage in 2010 - two dramatic examples. They illustrate that to date the knowledge of those processes and therefore the predictability of such events is insufficient. The complexity of the processes requires an integrated geophysical approach which investigates the interlinking of structure, hydraulics, solution processes, and mechanics. This finally contributes to a better understanding of the processes by reliable imaging and characterisation of subrosion structures. At LIAG an inter-sectional group is engaged in geophysical investigation of subrosion processes. The focus is application, enhancement and combination of various geophysical methods both at surface and in boreholes. This includes monitoring of (surface) deformation and variation of gravity as well as seismic, geoelectric and electromagnetic methods. Petrophysical investigations (with focus on spectral induced polarisation - SIP) are conducted to characterise the processes on pore scale. Numerical studies are applied to advance the understanding of void forming processes and the mechanical consequences in the dynamic interaction. Since March 2014, quarterly campaigns are conducted to monitor time-lapse gravity changes at 12 stations in the urban area of Bad Frankenhausen. The standard deviations of the gravity differences between the survey points are low and the accompanying levelling locally shows continuous subsidence in the mm/year-range. Eight shear-wave reflection seismic profiles were surveyed in Bad Frankenhausen using a landstreamer and an electro-dynamic vibrator. This method is

  6. Final Report - ADVANCED LASER-BASED SENSORS FOR INDUSTRIAL PROCESS CONTROL

    SciTech Connect

    Gupta, Manish; Baer, Douglas

    2013-09-30

    The objective of this work is to capture the potential of real-time monitoring and overcome the challenges of harsh industrial environments, Los Gatos Research (LGR) is fabricating, deploying, and commercializing advanced laser-based gas sensors for process control monitoring in industrial furnaces (e.g. electric arc furnaces). These sensors can achieve improvements in process control, leading to enhanced productivity, improved product quality, and reduced energy consumption and emissions. The first sensor will utilize both mid-infrared and near-infrared lasers to make rapid in-situ measurements of industrial gases and associated temperatures in the furnace off-gas. The second sensor will make extractive measurements of process gases. During the course of this DOE project, Los Gatos Research (LGR) fabricated, tested, and deployed both in-situ tunable diode laser absorption spectrometry (TDLAS) analyzers and extractive Off-Axis Integrated Cavity Output Spectroscopy (Off-Axis ICOS) analyzers.

  7. Implementation and benefits of advanced process control for lithography CD and overlay

    NASA Astrophysics Data System (ADS)

    Zavyalova, Lena; Fu, Chong-Cheng; Seligman, Gary S.; Tapp, Perry A.; Pol, Victor

    2003-05-01

    Due to the rapidly reduced imaging process windows and increasingly stingent device overlay requirements, sub-130 nm lithography processes are more severely impacted than ever by systamic fault. Limits on critical dimensions (CD) and overlay capability further challenge the operational effectiveness of a mix-and-match environment using multiple lithography tools, as such mode additionally consumes the available error budgets. Therefore, a focus on advanced process control (APC) methodologies is key to gaining control in the lithographic modules for critical device levels, which in turn translates to accelerated yield learning, achieving time-to-market lead, and ultimately a higher return on investment. This paper describes the implementation and unique challenges of a closed-loop CD and overlay control solution in high voume manufacturing of leading edge devices. A particular emphasis has been placed on developing a flexible APC application capable of managing a wide range of control aspects such as process and tool drifts, single and multiple lot excursions, referential overlay control, 'special lot' handling, advanced model hierarchy, and automatic model seeding. Specific integration cases, including the multiple-reticle complementary phase shift lithography process, are discussed. A continuous improvement in the overlay and CD Cpk performance as well as the rework rate has been observed through the implementation of this system, and the results are studied.

  8. Launch Vehicle Design Process: Characterization, Technical Integration, and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Blair, J. C.; Ryan, R. S.; Schutzenhofer, L. A.; Humphries, W. R.

    2001-01-01

    Engineering design is a challenging activity for any product. Since launch vehicles are highly complex and interconnected and have extreme energy densities, their design represents a challenge of the highest order. The purpose of this document is to delineate and clarify the design process associated with the launch vehicle for space flight transportation. The goal is to define and characterize a baseline for the space transportation design process. This baseline can be used as a basis for improving effectiveness and efficiency of the design process. The baseline characterization is achieved via compartmentalization and technical integration of subsystems, design functions, and discipline functions. First, a global design process overview is provided in order to show responsibility, interactions, and connectivity of overall aspects of the design process. Then design essentials are delineated in order to emphasize necessary features of the design process that are sometimes overlooked. Finally the design process characterization is presented. This is accomplished by considering project technical framework, technical integration, process description (technical integration model, subsystem tree, design/discipline planes, decision gates, and tasks), and the design sequence. Also included in the document are a snapshot relating to process improvements, illustrations of the process, a survey of recommendations from experienced practitioners in aerospace, lessons learned, references, and a bibliography.

  9. Integrating Thermal Tools Into the Mechanical Design Process

    NASA Technical Reports Server (NTRS)

    Tsuyuki, Glenn T.; Siebes, Georg; Novak, Keith S.; Kinsella, Gary M.

    1999-01-01

    The intent of mechanical design is to deliver a hardware product that meets or exceeds customer expectations, while reducing cycle time and cost. To this end, an integrated mechanical design process enables the idea of parallel development (concurrent engineering). This represents a shift from the traditional mechanical design process. With such a concurrent process, there are significant issues that have to be identified and addressed before re-engineering the mechanical design process to facilitate concurrent engineering. These issues also assist in the integration and re-engineering of the thermal design sub-process since it resides within the entire mechanical design process. With these issues in mind, a thermal design sub-process can be re-defined in a manner that has a higher probability of acceptance, thus enabling an integrated mechanical design process. However, the actual implementation is not always problem-free. Experience in applying the thermal design sub-process to actual situations provides the evidence for improvement, but more importantly, for judging the viability and feasibility of the sub-process.

  10. Role of pyro-chemical processes in advanced fuel cycles

    NASA Astrophysics Data System (ADS)

    Nawada, Hosadu Parameswara; Fukuda, Kosaku

    2005-02-01

    Partitioning and Transmutation (P&T) of Minor Actinides (MAs) and Long-Lived Fission Products (LLFP) arising out of the back-end of the fuel cycle would be one of the key-steps in any future sustainable nuclear fuel cycle. Pyro-chemical separation methods would form a critical stage of P&T by recovering long-lived elements and thus reducing the environmental impact by the back-end of the fuel-cycle. This paper attempts to overview global developments of pyro-chemical process that are envisaged in advanced nuclear fuel cycles. Research and development needs for molten-salt electro-refining as well as molten salt extraction process that are foreseen as partitioning methods for spent nuclear fuels such as oxide, metal and nitride fuels from thermal or fast reactors; high level liquid waste from back-end fuel cycle as well as targets from sub-critical Accelerator Driven Sub-critical reactors would be addressed. The role of high temperature thermodynamic data of minor actinides in defining efficiency of recovery or separation of minor actinides from other fission products such as lanthanides will also be illustrated. In addition, the necessity for determination of accurate high temperature thermodynamic data of minor actinides would be discussed.

  11. The influence of advanced processing on PWA 1480

    NASA Technical Reports Server (NTRS)

    Fritzemeier, L. G.; Schnittgrund, G. D.

    1989-01-01

    High thermal gradient casting of PWA 1480 was evaluated as an avenue for reducing the size of casting porosity. Hot isostatic pressing (HIP) was also employed for the elimination of casting pores. An alternate to the standard PWA 1480 coating plus diffusion bonding aging heat treatment cycle was also evaluated for potential improvements in the properties of interest to the Space Shuttle Main Engine (SSME) application. Microstructural changes associated with the high thermal gradient casting process were quantified by measurement of the size and density of the casting porosity, the amount of retained casting eutectic, and dendrite arm spacings. The results of the advanced processing have shown an improvement in material microstructure due to high thermal gradient casting. Improved homogeneity of PWA 1480 is advantageous in providing an improved solution heat treatment window and, potentially, easier HIP. High thermal gradient casting improves fatigue life by reducing casting pore size. The alternate heat treatment improves the balance of strength and ductility which appears to improve low cycle fatigue life, but with a reduction in short time stress rupture life. Based upon these tests, hot isostatic pressing appears to afford further improvements in cyclic life, though additional evaluation is suggested. Development of the alternate heat treatment is not recommended due to the reduced stress rupture capability and the need to develop a new properties data base. High thermal gradient casting and HIP are recommended for application to single crystal castings.

  12. Advanced hot gas cleaning system for coal gasification processes

    NASA Astrophysics Data System (ADS)

    Newby, R. A.; Bannister, R. L.

    1994-04-01

    The United States electric industry is entering a period where growth and the aging of existing plants will mandate a decision on whether to repower, add capacity, or do both. The power generation cycle of choice, today, is the combined cycle that utilizes the Brayton and Rankine cycles. The combustion turbine in a combined cycle can be used in a repowering mode or in a greenfield plant installation. Today's fuel of choice for new combined cycle power generation is natural gas. However, due to a 300-year supply of coal within the United States, the fuel of the future will include coal. Westinghouse has supported the development of coal-fueled gas turbine technology over the past thirty years. Working with the U.S. Department of Energy and other organizations, Westinghouse is actively pursuing the development and commercialization of several coal-fueled processes. To protect the combustion turbine and environment from emissions generated during coal conversion (gasification/combustion) a gas cleanup system must be used. This paper reports on the status of fuel gas cleaning technology and describes the Westinghouse approach to developing an advanced hot gas cleaning system that contains component systems that remove particulate, sulfur, and alkali vapors. The basic process uses ceramic barrier filters for multiple cleaning functions.

  13. Virtual Collaborative Simulation Environment for Integrated Product and Process Development

    NASA Technical Reports Server (NTRS)

    Gulli, Michael A.

    1997-01-01

    Deneb Robotics is a leader in the development of commercially available, leading edge three- dimensional simulation software tools for virtual prototyping,, simulation-based design, manufacturing process simulation, and factory floor simulation and training applications. Deneb has developed and commercially released a preliminary Virtual Collaborative Engineering (VCE) capability for Integrated Product and Process Development (IPPD). This capability allows distributed, real-time visualization and evaluation of design concepts, manufacturing processes, and total factory and enterprises in one seamless simulation environment.

  14. Flow measurements in semiconductor processing; New advances in measurement technology

    NASA Astrophysics Data System (ADS)

    Tison, S. A.; Calabrese, A. M.

    1998-11-01

    Gas flow measurement, control, and distribution are an integral part in meeting present and future semiconductor processing requirements (1). Changes in processing and environmental concerns have put additional pressure not only on accurate measurement of the gas flow, but also in reducing flows. To address the need for more accurate metering of gas flows, NIST has developed primary flow standards which have uncertainties of 0.1% of reading or better over the flow range of 10-9 mol/s to 10-3 mol/s (0.001 sccm to 1000 sccm). These standards have been used to test NIST-designed high repeatability flow transfer standards (2) which can be used to document and improve flow measurements in the semiconductor industry (3). In particular two flowmeters have been developed at NIST; the first is a pressure-based flow sensor and the second a Doppler-shift flowmeter, both of which can be used for in-situ calibration of thermal mass flow controllers or for direct metering of process gases.

  15. Framework programmable platform for the advanced software development workstation. Integration mechanism design document

    NASA Technical Reports Server (NTRS)

    Mayer, Richard J.; Blinn, Thomas M.; Mayer, Paula S. D.; Reddy, Uday; Ackley, Keith; Futrell, Mike

    1991-01-01

    The Framework Programmable Software Development Platform (FPP) is a project aimed at combining effective tool and data integration mechanisms with a model of the software development process in an intelligent integrated software development environment. Guided by this model, this system development framework will take advantage of an integrated operating environment to automate effectively the management of the software development process so that costly mistakes during the development phase can be eliminated.

  16. Using the Student Research Project to Integrate Macroeconomics and Statistics in an Advanced Cost Accounting Course

    ERIC Educational Resources Information Center

    Hassan, Mahamood M.; Schwartz, Bill N.

    2014-01-01

    This paper discusses a student research project that is part of an advanced cost accounting class. The project emphasizes active learning, integrates cost accounting with macroeconomics and statistics by "learning by doing" using real world data. Students analyze sales data for a publicly listed company by focusing on the company's…

  17. Advanced Simulation in Undergraduate Pilot Training: Systems Integration. Final Report (February 1972-March 1975).

    ERIC Educational Resources Information Center

    Larson, D. F.; Terry, C.

    The Advanced Simulator for Undergraduate Pilot Training (ASUPT) was designed to investigate the role of simulation in the future Undergraduate Pilot Training (UPT) program. The problem addressed in this report was one of integrating two unlike components into one synchronized system. These two components were the Basic T-37 Simulators and their…

  18. Effects of the Integrated Online Advance Organizer Teaching Materials on Students' Science Achievement and Attitude

    ERIC Educational Resources Information Center

    Korur, Fikret; Toker, Sacip; Eryilmaz, Ali

    2016-01-01

    This two-group quasi-experimental study investigated the effects of the Online Advance Organizer Concept Teaching Material (ONACOM) integrated with inquiry teaching and expository teaching methods. Grade 7 students' posttest performances on the light unit achievement and light unit attitude tests controlled for gender, previous semester science…

  19. An advanced microcomputer design for processing of semiconductor materials

    NASA Technical Reports Server (NTRS)

    Bjoern, L.; Lindkvist, L.; Zaar, J.

    1988-01-01

    In the Get Away Special 330 payload two germanium samples doped with gallium will be processed. The aim of the experiments is to create a planar solid/liquid interface, and to study the breakdown of this interface as the crystal growth rate increases. For the experiments a gradient furnace was designed which is heated by resistive heaters. Cooling is provided by circulating gas from the atmosphere in the cannister through cooling channels in the furnace. The temperature along the sample are measured by platinum/rhodium thermocouples. The furnace is controlled by a microcomputer system, based upon the processor 80C88. A data acquisition system is integrated into the system. In order to synchronize the different actions in time, a multitask manager is used.

  20. PROLIFERATION RESISTANCE OF ADVANCED SPENT FUEL CONDITIONING PROCESS

    SciTech Connect

    MARLOW, JOHNNA B.; LEE, SANG Y.; THOMAS, KENNETH E.; MILLER, MICHAEL C.; KIM, H.D.

    2007-02-01

    The Advanced Spent Fuel Conditioning Process (ACP) is a pyro-metallurgical spent fuel conditioning technology that is under development by the Korea Atomic Energy Research Institute (KAERI). KAERl has been developing this technology to resolve the high-level waste (HLW) disposition problem since 1997 and is planning to perform a lab-scale demonstration in 2008. The proposed concept is an electrometallurgical treatment technique that converts spent nuclear fuels into a single set of disposal metal forms to reduce the volume and simplify the qualification process. The goal of the project is to recover more than 99% of the actinides in metallic form from oxide spent fuel in a proliferation-resistant manner. With this technology, a significant reduction of the volume and heat load of spent fuel is expected, decreasing the burden of the final disposal in terms of size, safety, and cost. The success of the ACP will depend on a number of factors. One key factor is 'proliferation resistance,' and it should be judged by the manner in which it addresses issues of proliferation concern. In this paper, the proliferation resistance of the ACP technology has been analyzed. The intrinsic and extrinsic proliferation resistance features of the ACP technology were examined for the pilot-scale ACP facility based on the Nuclear Energy Research Advisory Committee's TOPS (Task Force on Technology Opportunities for Increasing the Proliferation Resistance of Global Civilian Nuclear Power System) metrics. It was found that the ACP system was more proliferation-resistant than aqueous technologies. The ACP as envisioned in current process flow is not capable of separating plutonium, and significant additional steps would be required to create a pathway to produce plutonium. However, like other processes, it could be modified to directly obtain weapon-usable materials. In this paper, several options are suggested for modification of the process or facility design in order to reduce the

  1. Evaluating landscape health: Integrating societal goals and biophysical process

    USGS Publications Warehouse

    Rapport, D.J.; Gaudet, C.; Karr, J.R.; Baron, J. S.; Bohlen, C.; Jackson, W.; Jones, B.; Naiman, R.J.; Norton, B.; Pollock, M. M.

    1998-01-01

    Evaluating landscape change requires the integration of the social and natural sciences. The social sciences contribute to articulating societal values that govern landscape change, while the natural sciences contribute to understanding the biophysical processes that are influenced by human activity and result in ecological change. Building upon Aldo Leopold's criteria for landscape health, the roles of societal values and biophysical processes in shaping the landscape are explored. A framework is developed for indicators of landscape health and integrity. Indicators of integrity are useful in measuring biological condition relative to the condition in landscapes largely unaffected by human activity, while indicators of health are useful in evaluating changes in highly modified landscapes. Integrating societal goals and biophysical processes requires identification of ecological services to be sustained within a given landscape. It also requires the proper choice of temporal and spatial scales. Societal values are based upon inter-generational concerns at regional scales (e.g. soil and ground water quality). Assessing the health and integrity of the environment at the landscape scale over a period of decades best integrates societal values with underlying biophysical processes. These principles are illustrated in two contrasting case studies: (1) the South Platte River study demonstrates the role of complex biophysical processes acting at a distance; and (2) the Kissimmee River study illustrates the critical importance of social, cultural and economic concerns in the design of remedial action plans. In both studies, however, interactions between the social and the biophysical governed the landscape outcomes. The legacy of evolution and the legacy of culture requires integration for the purpose of effectively coping with environmental change.

  2. Nuclear Energy Advanced Modeling and Simulation (NEAMS) Waste Integrated Performance and Safety Codes (IPSC) : FY10 development and integration.

    SciTech Connect

    Criscenti, Louise Jacqueline; Sassani, David Carl; Arguello, Jose Guadalupe, Jr.; Dewers, Thomas A.; Bouchard, Julie F.; Edwards, Harold Carter; Freeze, Geoffrey A.; Wang, Yifeng; Schultz, Peter Andrew

    2011-02-01

    This report describes the progress in fiscal year 2010 in developing the Waste Integrated Performance and Safety Codes (IPSC) in support of the U.S. Department of Energy (DOE) Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Campaign. The goal of the Waste IPSC is to develop an integrated suite of computational modeling and simulation capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive waste storage or disposal system. The Waste IPSC will provide this simulation capability (1) for a range of disposal concepts, waste form types, engineered repository designs, and geologic settings, (2) for a range of time scales and distances, (3) with appropriate consideration of the inherent uncertainties, and (4) in accordance with robust verification, validation, and software quality requirements. Waste IPSC activities in fiscal year 2010 focused on specifying a challenge problem to demonstrate proof of concept, developing a verification and validation plan, and performing an initial gap analyses to identify candidate codes and tools to support the development and integration of the Waste IPSC. The current Waste IPSC strategy is to acquire and integrate the necessary Waste IPSC capabilities wherever feasible, and develop only those capabilities that cannot be acquired or suitably integrated, verified, or validated. This year-end progress report documents the FY10 status of acquisition, development, and integration of thermal-hydrologic-chemical-mechanical (THCM) code capabilities, frameworks, and enabling tools and infrastructure.

  3. Development of an Advanced Fine Coal Suspension Dewatering Process

    SciTech Connect

    B. K. Parekh; D. P. Patil

    2008-04-30

    With the advancement in fine coal cleaning technology, recovery of fine coal (minus 28 mesh) has become an attractive route for the U.S. coal industry. The clean coal recovered using the advanced flotation technology i.e. column flotation, contains on average 20% solids and 80% water, with an average particle size of 35 microns. Fine coal slurry is usually dewatered using a vacuum dewatering technique, providing a material with about 25 to 30 percent moisture. The process developed in this project will improve dewatering of fine (0.6mm) coal slurry to less than 20 percent moisture. Thus, thermal drying of dewatered wet coal will be eliminated. This will provide significant energy savings for the coal industry along with some environmental benefits. A 1% increase in recovery of coal and producing a filter cake material of less than 20 % moisture will amount to energy savings of 1900 trillion Btu/yr/unit. In terms of the amount of coal it will be about 0.8% of the total coal being used in the USA for electric power generation. It is difficult to dewater the fine clean coal slurry to about 20% moisture level using the conventional dewatering techniques. The finer the particle, the larger the surface area and thus, it retains large amounts of moisture on the surface. The coal industry has shown some reluctance in using the advanced coal recovery techniques, because of unavailability of an economical dewatering technique which can provide a product containing less than 20% moisture. The U.S.DOE and Industry has identified the dewatering of coal fines as a high priority problem. The goal of the proposed program is to develop and evaluate a novel two stage dewatering process developed at the University of Kentucky, which involves utilization of two forces, namely, vacuum and pressure for dewatering of fine coal slurries. It has been observed that a fine coal filter cake formed under vacuum has a porous structure with water trapped in the capillaries. When this porous cake

  4. Integrating digital topology in image-processing libraries.

    PubMed

    Lamy, Julien

    2007-01-01

    This paper describes a method to integrate digital topology informations in image-processing libraries. This additional information allows a library user to write algorithms respecting topological constraints, for example, a seed fill or a skeletonization algorithm. As digital topology is absent from most image-processing libraries, such constraints cannot be fulfilled. We describe and give code samples for all the structures necessary for this integration, and show a use case in the form of a homotopic thinning filter inside ITK. The obtained filter can be up to a hundred times as fast as ITK's thinning filter and works for any image dimension. This paper mainly deals of integration within ITK, but can be adapted with only minor modifications to other image-processing libraries.

  5. Mini Review of Integrated Care and Implications for Advanced Practice Nurse Role

    PubMed Central

    McIntosh, Diana; Startsman, Laura F.; Perraud, Suzanne

    2016-01-01

    Literature related to primary care and behavioral health integration initiatives is becoming abundant. The United States’ 2010 Patient Protection and Affordable Care Act included provisions encouraging increased collaboration of care for individuals with behavioral and physical health service needs in the public sector. There is relatively little known of Advanced Practice Registered Nurses’ (APRNs) roles with integrating primary and behavioral healthcare. The goal of this review article is to: (a) define integration of physical and behavioral healthcare and potential models; (b) answer the question as to what are effective evidence based models/strategies for integrating behavioral health and primary care; (c) explore the future role and innovations of APRNs in the integration of physical and behavioral healthcare. Results: The evidence- based literature is limited to three systematic reviews and six randomized controlled trials. It was difficult to generalize the data and the effective integration strategies varied from such interventions as care management to use of sertraline to depression management and to access. There were, though, implications for the integrated care advanced practice nurse to have roles inclusive of competencies, leadership, engagement, collaboration and advocacy. PMID:27347258

  6. Process modeling for the Integrated Nonthermal Treatment System (INTS) study

    SciTech Connect

    Brown, B.W.

    1997-04-01

    This report describes the process modeling done in support of the Integrated Nonthermal Treatment System (INTS) study. This study was performed to supplement the Integrated Thermal Treatment System (ITTS) study and comprises five conceptual treatment systems that treat DOE contract-handled mixed low-level wastes (MLLW) at temperatures of less than 350{degrees}F. ASPEN PLUS, a chemical process simulator, was used to model the systems. Nonthermal treatment systems were developed as part of the INTS study and include sufficient processing steps to treat the entire inventory of MLLW. The final result of the modeling is a process flowsheet with a detailed mass and energy balance. In contrast to the ITTS study, which modeled only the main treatment system, the INTS study modeled each of the various processing steps with ASPEN PLUS, release 9.1-1. Trace constituents, such as radionuclides and minor pollutant species, were not included in the calculations.

  7. Neuromorphic opto-electronic integrated circuits for optical signal processing

    NASA Astrophysics Data System (ADS)

    Romeira, B.; Javaloyes, J.; Balle, S.; Piro, O.; Avó, R.; Figueiredo, J. M. L.

    2014-08-01

    The ability to produce narrow optical pulses has been extensively investigated in laser systems with promising applications in photonics such as clock recovery, pulse reshaping, and recently in photonics artificial neural networks using spiking signal processing. Here, we investigate a neuromorphic opto-electronic integrated circuit (NOEIC) comprising a semiconductor laser driven by a resonant tunneling diode (RTD) photo-detector operating at telecommunication (1550 nm) wavelengths capable of excitable spiking signal generation in response to optical and electrical control signals. The RTD-NOEIC mimics biologically inspired neuronal phenomena and possesses high-speed response and potential for monolithic integration for optical signal processing applications.

  8. Collaborative business process support in eHealth: integrating IHE profiles through ebXML business process specification language.

    PubMed

    Dogac, Asuman; Kabak, Yildiray; Namli, Tuncay; Okcan, Alper

    2008-11-01

    Integrating healthcare enterprise (IHE) specifies integration profiles describing selected real world use cases to facilitate the interoperability of healthcare information resources. While realizing a complex real-world scenario, IHE profiles are combined by grouping the related IHE actors. Grouping IHE actors implies that the associated business processes (IHE profiles) that the actors are involved must be combined, that is, the choreography of the resulting collaborative business process must be determined by deciding on the execution sequence of transactions coming from different profiles. There are many IHE profiles and each user or vendor may support a different set of IHE profiles that fits to its business need. However, determining the precedence of all the involved transactions manually for each possible combination of the profiles is a very tedious task. In this paper, we describe how to obtain the overall business process automatically when IHE actors are grouped. For this purpose, we represent the IHE profiles through a standard, machine-processable language, namely, Organization for the Advancement of Structured Information Standards (OASIS) ebusiness eXtensible Markup Language (ebXML) Business Process Specification (ebBP) Language. We define the precedence rules among the transactions of the IHE profiles, again, in a machine-processable way. Then, through a graphical tool, we allow users to select the actors to be grouped and automatically produce the overall business process in a machine-processable format.

  9. Advanced modelling, monitoring, and process control of bioconversion systems

    NASA Astrophysics Data System (ADS)

    Schmitt, Elliott C.

    Production of fuels and chemicals from lignocellulosic biomass is an increasingly important area of research and industrialization throughout the world. In order to be competitive with fossil-based fuels and chemicals, maintaining cost-effectiveness is critical. Advanced process control (APC) and optimization methods could significantly reduce operating costs in the biorefining industry. Two reasons APC has previously proven challenging to implement for bioprocesses include: lack of suitable online sensor technology of key system components, and strongly nonlinear first principal models required to predict bioconversion behavior. To overcome these challenges batch fermentations with the acetogen Moorella thermoacetica were monitored with Raman spectroscopy for the conversion of real lignocellulosic hydrolysates and a kinetic model for the conversion of synthetic sugars was developed. Raman spectroscopy was shown to be effective in monitoring the fermentation of sugarcane bagasse and sugarcane straw hydrolysate, where univariate models predicted acetate concentrations with a root mean square error of prediction (RMSEP) of 1.9 and 1.0 g L-1 for bagasse and straw, respectively. Multivariate partial least squares (PLS) models were employed to predict acetate, xylose, glucose, and total sugar concentrations for both hydrolysate fermentations. The PLS models were more robust than univariate models, and yielded a percent error of approximately 5% for both sugarcane bagasse and sugarcane straw. In addition, a screening technique was discussed for improving Raman spectra of hydrolysate samples prior to collecting fermentation data. Furthermore, a mechanistic model was developed to predict batch fermentation of synthetic glucose, xylose, and a mixture of the two sugars to acetate. The models accurately described the bioconversion process with an RMSEP of approximately 1 g L-1 for each model and provided insights into how kinetic parameters changed during dual substrate

  10. Anvil Forecast Tool in the Advanced Weather Interactive Processing System

    NASA Technical Reports Server (NTRS)

    Barrett, Joe H., III; Hood, Doris

    2009-01-01

    Meteorologists from the 45th Weather Squadron (45 WS) and National Weather Service Spaceflight Meteorology Group (SMG) have identified anvil forecasting as one of their most challenging tasks when predicting the probability of violations of the Lightning Launch Commit Criteria and Space Shuttle Flight Rules. As a result, the Applied Meteorology Unit (AMU) was tasked to create a graphical overlay tool for the Meteorological Interactive Data Display System (MIDDS) that indicates the threat of thunderstorm anvil clouds, using either observed or model forecast winds as input. The tool creates a graphic depicting the potential location of thunderstorm anvils one, two, and three hours into the future. The locations are based on the average of the upper level observed or forecasted winds. The graphic includes 10 and 20 n mi standoff circles centered at the location of interest, as well as one-, two-, and three-hour arcs in the upwind direction. The arcs extend outward across a 30 sector width based on a previous AMU study that determined thunderstorm anvils move in a direction plus or minus 15 of the upper-level wind direction. The AMU was then tasked to transition the tool to the Advanced Weather Interactive Processing System (AWIPS). SMG later requested the tool be updated to provide more flexibility and quicker access to model data. This presentation describes the work performed by the AMU to transition the tool into AWIPS, as well as the subsequent improvements made to the tool.

  11. Recent advances in lactic acid production by microbial fermentation processes.

    PubMed

    Abdel-Rahman, Mohamed Ali; Tashiro, Yukihiro; Sonomoto, Kenji

    2013-11-01

    Fermentative production of optically pure lactic acid has roused interest among researchers in recent years due to its high potential for applications in a wide range of fields. More specifically, the sharp increase in manufacturing of biodegradable polylactic acid (PLA) materials, green alternatives to petroleum-derived plastics, has significantly increased the global interest in lactic acid production. However, higher production costs have hindered the large-scale application of PLA because of the high price of lactic acid. Therefore, reduction of lactic acid production cost through utilization of inexpensive substrates and improvement of lactic acid production and productivity has become an important goal. Various methods have been employed for enhanced lactic acid production, including several bioprocess techniques facilitated by wild-type and/or engineered microbes. In this review, we will discuss lactic acid producers with relation to their fermentation characteristics and metabolism. Inexpensive fermentative substrates, such as dairy products, food and agro-industrial wastes, glycerol, and algal biomass alternatives to costly pure sugars and food crops are introduced. The operational modes and fermentation methods that have been recently reported to improve lactic acid production in terms of concentrations, yields, and productivities are summarized and compared. High cell density fermentation through immobilization and cell-recycling techniques are also addressed. Finally, advances in recovery processes and concluding remarks on the future outlook of lactic acid production are presented. PMID:23624242

  12. Advanced Coal Conversion Process Demonstration Project. Environmental Monitoring Plan

    SciTech Connect

    Not Available

    1992-04-01

    Western Energy Company (WECO) was selected by the Department of Energy (DOE) to demonstrate the Advanced Coal Conversion Process (ACCP) which upgrades low rank coals into high Btu, low sulfur, synthetic bituminous coal. As specified in the Corporate Agreement, RSCP is required to develop an Environmental Monitoring Plan (EMP) which describes in detail the environmental monitoring activities to be performed during the project execution. The purpose of the EMP is to: (1) identify monitoring activities that will be undertaken to show compliance to applicable regulations, (2) confirm the specific environmental impacts predicted in the National Environmental Policy Act documentation, and (3) establish an information base of the assessment of the environmental performance of the technology demonstrated by the project. The EMP specifies the streams to be monitored (e.g. gaseous, aqueous, and solid waste), the parameters to be measured (e.g. temperature, pressure, flow rate), and the species to be analyzed (e.g. sulfur compounds, nitrogen compounds, trace elements) as well as human health and safety exposure levels. The operation and frequency of the monitoring activities is specified, as well as the timing for the monitoring activities related to project phase (e.g. preconstruction, construction, commissioning, operational, post-operational). The EMP is designed to assess the environmental impacts and the environmental improvements resulting from construction and operation of the project.

  13. Elements for successful sensor-based process control {Integrated Metrology}

    NASA Astrophysics Data System (ADS)

    Butler, Stephanie Watts

    1998-11-01

    Current productivity needs have stimulated development of alternative metrology, control, and equipment maintenance methods. Specifically, sensor applications provide the opportunity to increase productivity, tighten control, reduce scrap, and improve maintenance schedules and procedures. Past experience indicates a complete integrated solution must be provided for sensor-based control to be used successfully in production. In this paper, Integrated Metrology is proposed as the term for an integrated solution that will result in a successful application of sensors for process control. This paper defines and explores the perceived four elements of successful sensor applications: business needs, integration, components, and form. Based upon analysis of existing successful commercially available controllers, the necessary business factors have been determined to be strong, measurable industry-wide business needs whose solution is profitable and feasible. This paper examines why the key aspect of integration is the decision making process. A detailed discussion is provided of the components of most importance to sensor based control: decision-making methods, the 3R's of sensors, and connectivity. A metric for one of the R's (resolution) is proposed to allow focus on this important aspect of measurement. A form for these integrated components which synergistically partitions various aspects of control at the equipment and MES levels to efficiently achieve desired benefits is recommended.

  14. A flexible importance sampling method for integrating subgrid processes

    NASA Astrophysics Data System (ADS)

    Raut, E. K.; Larson, V. E.

    2016-01-01

    Numerical models of weather and climate need to compute grid-box-averaged rates of physical processes such as microphysics. These averages are computed by integrating subgrid variability over a grid box. For this reason, an important aspect of atmospheric modeling is spatial integration over subgrid scales. The needed integrals can be estimated by Monte Carlo integration. Monte Carlo integration is simple and general but requires many evaluations of the physical process rate. To reduce the number of function evaluations, this paper describes a new, flexible method of importance sampling. It divides the domain of integration into eight categories, such as the portion that contains both precipitation and cloud, or the portion that contains precipitation but no cloud. It then allows the modeler to prescribe the density of sample points within each of the eight categories. The new method is incorporated into the Subgrid Importance Latin Hypercube Sampler (SILHS). The resulting method is tested on drizzling cumulus and stratocumulus cases. In the cumulus case, the sampling error can be considerably reduced by drawing more sample points from the region of rain evaporation.

  15. A flexible importance sampling method for integrating subgrid processes

    DOE PAGES

    Raut, E. K.; Larson, V. E.

    2016-01-29

    Numerical models of weather and climate need to compute grid-box-averaged rates of physical processes such as microphysics. These averages are computed by integrating subgrid variability over a grid box. For this reason, an important aspect of atmospheric modeling is spatial integration over subgrid scales. The needed integrals can be estimated by Monte Carlo integration. Monte Carlo integration is simple and general but requires many evaluations of the physical process rate. To reduce the number of function evaluations, this paper describes a new, flexible method of importance sampling. It divides the domain of integration into eight categories, such as the portion that containsmore » both precipitation and cloud, or the portion that contains precipitation but no cloud. It then allows the modeler to prescribe the density of sample points within each of the eight categories. The new method is incorporated into the Subgrid Importance Latin Hypercube Sampler (SILHS). The resulting method is tested on drizzling cumulus and stratocumulus cases. In the cumulus case, the sampling error can be considerably reduced by drawing more sample points from the region of rain evaporation.« less

  16. Field study of disposed solid wastes from advanced coal processes

    SciTech Connect

    Not Available

    1992-01-01

    Radian Corporation and the North Dakota Energy and Environmental Research Center (EERC) are funded to develop information to be used by private industry and government agencies for managing solid wastes produced by advanced coal combustion processes. This information will be developed by conducting several field studies on disposed wastes from these processes. Data will be collected to characterize these wastes and their interactions with the environments in which they are disposed. Three sites were selected for the field studies: Colorado Ute's fluidized bed combustion (FBC) unit in Nucla, Colorado; Ohio Edison's limestone injection multistage burner (LIMB) retrofit in Lorain, Ohio; and Freeman United's mine site in central Illinois with wastes supplied by the nearby Midwest Grain FBC unit. During the past year, field monitoring and sampling of the four landfill test cases constructed in 1989 and 1991 has continued. Option 1 of the contract was approved last year to add financing for the fifth test case at the Freeman United site. The construction of the Test Case 5 cells is scheduled to begin in November, 1992. Work during this past year has focused on obtaining data on the physical and chemical properties of the landfilled wastes, and on developing a conceptual framework for interpreting this information. Results to date indicate that hydration reactions within the landfilled wastes have had a major impact on the physical and chemical properties of the materials but these reactions largely ceased after the first year, and physical properties have changed little since then. Conditions in Colorado remained dry and no porewater samples were collected. In Ohio, hydration reactions and increases in the moisture content of the waste tied up much of the water initially infiltrating the test cells.

  17. Integration Process for Payloads in the Fluids and Combustion Facility

    NASA Technical Reports Server (NTRS)

    Free, James M.; Nall, Marsha M.

    2001-01-01

    The Fluids and Combustion Facility (FCF) is an ISS research facility located in the United States Laboratory (US Lab), Destiny. The FCF is a multi-discipline facility that performs microgravity research primarily in fluids physics science and combustion science. This facility remains on-orbit and provides accommodations to multi-user and Principal investigator (PI) unique hardware. The FCF is designed to accommodate 15 PI's per year. In order to allow for this number of payloads per year, the FCF has developed an end-to-end analytical and physical integration process. The process includes provision of integration tools, products and interface management throughout the life of the payload. The payload is provided with a single point of contact from the facility and works with that interface from PI selection through post flight processing. The process utilizes electronic tools for creation of interface documents/agreements, storage of payload data and rollup for facility submittals to ISS. Additionally, the process provides integration to and testing with flight-like simulators prior to payload delivery to KSC. These simulators allow the payload to test in the flight configuration and perform final facility interface and science verifications. The process also provides for support to the payload from the FCF through the Payload Safety Review Panel (PSRP). Finally, the process includes support in the development of operational products and the operation of the payload on-orbit.

  18. Assessment of advanced coal-gasification processes. [AVCO high throughput gasification in process; Bell High Mass Flux process; CS-R process; and Exxon Gasification process

    SciTech Connect

    McCarthy, J.; Ferrall, J.; Charng, T.; Houseman, J.

    1981-06-01

    This report represents a technical assessment of the following advanced coal gasification processes: AVCO High Throughput Gasification (HTG) Process, Bell Single - Stage High Mass Flux (HMF) Process, Cities Service/Rockwell (CS/R) Hydrogasification Process, and the Exxon Catalytic Coal Gasification (CCG) Process. Each process is evaluated for its potential to produce SNG from a bituminous coal. In addition to identifying the new technology these processes represent, key similarities/differences, strengths/weaknesses, and potential improvements to each process are identified. The AVCO HTG and the Bell HMF gasifiers share similarities with respect to: short residence time (SRT), high throughput rate, slagging and syngas as the initial raw product gas. The CS/R Hydrogasifier is also SRT but is non-slagging and produces a raw gas high in methane content. The Exxon CCG gasifier is a long residence time, catalytic fluidbed reactor producing all of the raw product methane in the gasifier.

  19. Advances in process overlay: alignment solutions for future technology nodes

    NASA Astrophysics Data System (ADS)

    Megens, Henry; van Haren, Richard; Musa, Sami; Doytcheva, Maya; Lalbahadoersing, Sanjay; van Kemenade, Marc; Lee, Hyun-Woo; Hinnen, Paul; van Bilsen, Frank

    2007-03-01

    Semiconductor industry has an increasing demand for improvement of the total lithographic overlay performance. To improve the level of on-product overlay control the number of alignment measurements increases. Since more mask levels will be integrated, more alignment marks need to be printed when using direct-alignment (also called layer-to-layer alignment). Accordingly, the alignment mark size needs to become smaller, to fit all marks into the scribelane. For an in-direct alignment scheme, e.g. a scheme that aligns to another layer than the layer to which overlay is being measured, the number of needed alignment marks can be reduced. Simultaneously there is a requirement to reduce the size of alignment mark sub-segmentations without compromising the alignment and overlay performance. Smaller features within alignment marks can prevent processing issues like erosion, dishing and contamination. However, when the sub-segmentation size within an alignment mark becomes comparable to the critical dimension, and thus smaller than the alignment-illuminating wavelength, polarization effects might start to occur. Polarization effects are a challenge for optical alignment systems to maintain mark detectability. Nevertheless, this paper shows how to actually utilize those effects in order to obtain enhanced alignment and overlay performance to support future technology nodes. Finally, another challenge to be met for new semiconductor product technologies is the ability to align through semi-opaque materials, like for instance new hard-mask materials. Enhancement of alignment signal strength can be reached by adapting to new alignment marks that generate a higher alignment signal. This paper provides a description of an integral alignment solution that meets with these emerging customer application requirements. Complying with these requirements will significantly enhance the flexibility in production strategies while maintaining or improving the alignment and overlay

  20. Technology advancement of the electrochemical CO2 concentrating process

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Heppner, D. B.; Hallick, T. M.; Woods, R. R.

    1979-01-01

    Two multicell, liquid-cooled, advanced electrochemical depolarized carbon dioxide concentrator modules were fabricated. The cells utilized advanced, lightweight, plated anode current collectors, internal liquid cooling and lightweight cell frames. Both were designed to meet the carbon dioxide removal requirements of one-person, i.e., 1.0 kg/d (2.2 lb/d).

  1. Advancing Commercialization of Algal Biofuels Through Increased Biomass Productivity and Technology Integration

    SciTech Connect

    Bai, Xuemei; Sabarsky, Martin

    2013-09-30

    Cellana is a leading developer of algae-based bioproducts, and its pre-commercial production of marine microalgae takes place at Cellana?s Kona Demonstration Facility (KDF) in Hawaii. KDF is housing more than 70 high-performing algal strains for different bioproducts, of which over 30 have been grown outside at scale. So far, Cellana has produced more than 10 metric tons of algal biomass for the development of biofuels, animal feed, and high-value nutraceuticals. Cellana?s ALDUO algal cultivation technology allows Cellana to grow non-extremophile algal strains at large scale with no contamination disruptions. Cellana?s research and production at KDF have addressed three major areas that are crucial for the commercialization of algal biofuels: yield improvement, cost reduction, and the overall economics. Commercially acceptable solutions have been developed and tested for major factors limiting areal productivity of algal biomass and lipids based on years of R&D work conducted at KDF. Improved biomass and lipid productivity were achieved through strain improvement, culture management strategies (e.g., alleviation of self-shading, de-oxygenation, and efficient CO2 delivery), and technical advancement in downstream harvesting technology. Cost reduction was achieved through optimized CO2 delivery system, flue gas utilization technology, and energy-efficient harvesting technology. Improved overall economics was achieved through a holistic approach by integration of high-value co-products in the process, in addition to yield improvements and cost reductions.

  2. Process Integration of Bioethanol from Sugar Cane and Hydrogen Production

    NASA Astrophysics Data System (ADS)

    Hernandez, L.; Kafarov, V.

    In this study several alternatives for process integration of bioethanol from sugar cane and hydrogen production were evaluated. Bioethanol was produced above all in the fermentation of sweetened juice from sugar cane, stillage was removed. Stillage and bagasse are the process byproducts. The bioethanol steam reforming is an endothermic catalytic process when vaporized ethanol and steam are fed using a 1:6 molar ratio to reformer with a Ni-catalyst at atmospheric pressure and 350xC. Taking into account the processes properties mentioned above, it is possible to integrate the bioethanol production from sugar cane and its reforming by using byproducts like bagasse and stillage and to produce energy for steam reforming and bioethanol solution concentration by direct firing (for bagasse) or anaerobic digestion to get methane (for stillage).

  3. Advancements in Wind Integration Study Data Modeling: The Wind Integration National Dataset (WIND) Toolkit; Preprint

    SciTech Connect

    Draxl, C.; Hodge, B. M.; Orwig, K.; Jones, W.; Searight, K.; Getman, D.; Harrold, S.; McCaa, J.; Cline, J.; Clark, C.

    2013-10-01

    Regional wind integration studies in the United States require detailed wind power output data at many locations to perform simulations of how the power system will operate under high-penetration scenarios. The wind data sets that serve as inputs into the study must realistically reflect the ramping characteristics, spatial and temporal correlations, and capacity factors of the simulated wind plants, as well as be time synchronized with available load profiles. The Wind Integration National Dataset (WIND) Toolkit described in this paper fulfills these requirements. A wind resource dataset, wind power production time series, and simulated forecasts from a numerical weather prediction model run on a nationwide 2-km grid at 5-min resolution will be made publicly available for more than 110,000 onshore and offshore wind power production sites.

  4. Integrated reactive absorption process for synthesis of fatty esters.

    PubMed

    Kiss, Anton Alexandru; Bildea, Costin Sorin

    2011-01-01

    Reactive separations using green catalysts offer great opportunities for manufacturing fatty esters, involved in specialty chemicals and biodiesel production. Integrating reaction and separation into one unit provides key benefits such as: simplified operation, no waste, reduced capital investment and low operating costs. This work presents a novel heat-integrated reactive absorption process that eliminates all conventional catalyst related operations, efficiently uses the raw materials and equipment, and considerably reduces the energy requirements for biodiesel production--85% lower as compared to the base case. Rigorous simulations based on experimental results were carried out using Aspen Plus and Dynamics. Despite the high degree of integration, the process is well controllable using an efficient control structure proposed in this work. The main results are provided for a plant producing 10 ktpy fatty acid methyl esters from methanol and waste vegetable oil with high free fatty acids content, using sulfated zirconia as solid acid catalyst.

  5. Development of Probabilistic Structural Analysis Integrated with Manufacturing Processes

    NASA Technical Reports Server (NTRS)

    Pai, Shantaram S.; Nagpal, Vinod K.

    2007-01-01

    An effort has been initiated to integrate manufacturing process simulations with probabilistic structural analyses in order to capture the important impacts of manufacturing uncertainties on component stress levels and life. Two physics-based manufacturing process models (one for powdered metal forging and the other for annular deformation resistance welding) have been linked to the NESSUS structural analysis code. This paper describes the methodology developed to perform this integration including several examples. Although this effort is still underway, particularly for full integration of a probabilistic analysis, the progress to date has been encouraging and a software interface that implements the methodology has been developed. The purpose of this paper is to report this preliminary development.

  6. Space Medicine in the Human System Integration Process

    NASA Technical Reports Server (NTRS)

    Scheuring, Richard A.

    2010-01-01

    This slide presentation reviews the importance of integration of space medicine in the human system of lunar exploration. There is a review of historical precedence in reference to lunar surface operations. The integration process is reviewed in a chart which shows the steps from research to requirements development, requirements integration, design, verification, operations and using the lessons learned, giving more information and items for research. These steps are reviewed in view of specific space medical issues. Some of the testing of the operations are undertaken in an environment that is an analog to the exploration environment. Some of these analog environments are reviewed, and there is some discussion of the benefits of use of an analog environment in testing the processes that are derived.

  7. Integrated ODP Metrology Matching To Reference Metrology For Lithography Process Control

    NASA Astrophysics Data System (ADS)

    Kearney, Patrick; Uchida, Junichi; Weichert, Heiko; Likhachev, Dmitriy; Hetzer, David; Fleischer, Göran

    2009-09-01

    Advanced DRAM manufacturing demands rigorous and tight process control using high measurement precision, accurate, traceable and high throughput metrology solutions. Scatterometry is one of the advanced metrology techniques which satisfies all of these requirements. Scatterometry has been implemented in semiconductor manufacturing for monitoring and controlling critical dimensions and other important structural parameters. One of the major contributing factors to the acceptance and implementation of scatterometry systems is the ability to match to reference metrology. Failure to understand the optimum matching conditions, can lead to wrong conclusions with respect to hardware stability and/or incorrect analysis of production data. This paper shows the use of the integrated scatterometry system to control the lithography processes in a real production environment. In the control system, the scatterometry Optical Digital Profilometry (ODP™) data is referenced to sampled CD-SEM data. A significant improvement in matching between the two metrology systems was achieved following the implementation of a new ODP-function. The results also reveal a clearer roadmap for the implementation of an integrated scatterometry based control loop system. The results also pointed to how to achieve a reduced setup time as well as a deeper understanding of the relationship between test data and production data. It has been clearly shown that to achieve the desired sub-nanometer matching in scatterometry measurements for advanced process control, we need to pay scrupulous attention to matching data not only from test wafers but from production data in order to derive functions that will produce the optimum matching conditions.

  8. Modeling the Dependency Structure of Integrated Intensity Processes

    PubMed Central

    Ma, Yong-Ki

    2015-01-01

    This paper studies an important issue of dependence structure. To model this structure, the intensities within the Cox processes are driven by dependent shot noise processes, where jumps occur simultaneously and their sizes are correlated. The joint survival probability of the integrated intensities is explicitly obtained from the copula with exponential marginal distributions. Subsequently, this result can provide a very useful guide for credit risk management. PMID:26270638

  9. A new, integrated, continuous purification process template for monoclonal antibodies: Process modeling and cost of goods studies.

    PubMed

    Xenopoulos, Alex

    2015-11-10

    An evolving biopharmaceutical industry requires advancements in biomanufacturing that offer increased productivity and improved economics without sacrificing process robustness. Accordingly, we have developed a new monoclonal antibody purification template comprised of flocculation-based clarification, capture by continuous multi-column protein A chromatography and flow-through polishing. The new process offers a robust, single-use manufacturing solution while significantly reducing overall cost of goods. Modeling studies verify that the individual clarification, capture and polishing solutions offer significant advantages as stand-alone unit operations. These technologies were also designed to be integrated into a continuous purification template. Process modeling studies have been used to highlight both cost and operational advantages of the new process template. Depending on scale, savings of more than 20% and 60% were seen for commercial and clinical operation, respectively. Integrating the technologies into a continuous process consistently offered additional cost advantages. During template development, process modeling was instrumental in highlighting the importance of identifying technologies that provided high product yield and purification factors. Additionally, high product concentration and eliminating the need for intermediate product dilution emerged as important considerations for newly developed unit operations. Combining experimental work with insights from modeling can significantly improve the outcome of product and process development.

  10. Advanced, Integrated Control for Building Operations to Achieve 40% Energy Saving

    SciTech Connect

    Lu, Yan; Song, Zhen; Loftness, Vivian; Ji, Kun; Zheng, Sam; Lasternas, Bertrand; Marion, Flore; Yuebin, Yu

    2012-10-15

    We developed and demonstrated a software based integrated advanced building control platform called Smart Energy Box (SEB), which can coordinate building subsystem controls, integrate variety of energy optimization algorithms and provide proactive and collaborative energy management and control for building operations using weather and occupancy information. The integrated control system is a low cost solution and also features: Scalable component based architecture allows to build a solution for different building control system configurations with needed components; Open Architecture with a central data repository for data exchange among runtime components; Extendible to accommodate variety of communication protocols. Optimal building control for central loads, distributed loads and onsite energy resource; uses web server as a loosely coupled way to engage both building operators and building occupants in collaboration for energy conservation. Based on the open platform of SEB, we have investigated and evaluated a variety of operation and energy saving control strategies on Carnegie Mellon University Intelligent Work place which is equipped with alternative cooling/heating/ventilation/lighting methods, including radiant mullions, radiant cooling/heating ceiling panels, cool waves, dedicated ventilation unit, motorized window and blinds, and external louvers. Based on the validation results of these control strategies, they were integrated in SEB in a collaborative and dynamic way. This advanced control system was programmed and computer tested with a model of the Intelligent Workplace's northern section (IWn). The advanced control program was then installed in the IWn control system; the performance was measured and compared with that of the state of the art control system to verify the overall energy savings great than 40%. In addition advanced human machine interfaces (HMI's) were developed to communicate both with building occupants and

  11. Integrated approach for the intensification of heterogeneous catalytic processes.

    PubMed

    Kiwi-Minsker, Lioubov; Crespo-Quesada, Micaela

    2011-01-01

    The integrated approach for the design of solid catalysts for process intensification is presented addressing simultaneously different levels of scale and complexity involved in the development starting from the molecular/nano-scale of the active phase optimization up to the macro-scale of the catalytic reactor design. The feasibility of this approach is demonstrated through case studies carried out in our group.

  12. Fast Quantum Algorithms for Numerical Integrals and Stochastic Processes

    NASA Technical Reports Server (NTRS)

    Abrams, D.; Williams, C.

    1999-01-01

    We discuss quantum algorithms that calculate numerical integrals and descriptive statistics of stochastic processes. With either of two distinct approaches, one obtains an exponential speed increase in comparison to the fastest known classical deterministic algotithms and a quadratic speed increase incomparison to classical Monte Carlo methods.

  13. METHODS FOR INTEGRATING ENVIRONMENTAL CONSIDERATIONS INTO CHEMICAL PROCESS DESIGN DECISIONS

    EPA Science Inventory

    The objective of this cooperative agreement was to postulate a means by which an engineer could routinely include environmental considerations in day-to-day conceptual design problems; a means that could easily integrate with existing design processes, and thus avoid massive retr...

  14. Chemical vapor deposition for automatic processing of integrated circuits

    NASA Technical Reports Server (NTRS)

    Kennedy, B. W.

    1980-01-01

    Chemical vapor deposition for automatic processing of integrated circuits including the wafer carrier and loading from a receiving air track into automatic furnaces and unloading on to a sending air track is discussed. Passivation using electron beam deposited quartz is also considered.

  15. Morphological Decomposition and Semantic Integration in Word Processing

    ERIC Educational Resources Information Center

    Meunier, Fanny; Longtin, Catherine-Marie

    2007-01-01

    In the present study, we looked at cross-modal priming effects produced by auditory presentation of morphologically complex pseudowords in order to investigate semantic integration during the processing of French morphologically complex items. In Experiment 1, we used as primes pseudowords consisting of a non-interpretable combination of roots and…

  16. Integrating the Medical Home into the EHDI Process

    ERIC Educational Resources Information Center

    Munoz, Karen F.; Nelson, Lauri; Bradham, Tamala S.; Hoffman, Jeff; Houston, K. Todd

    2011-01-01

    State coordinators of early hearing detection and intervention (EHDI) programs completed a strengths, weaknesses, opportunities, and threats, or SWOT, analysis that examined 12 areas within state EHDI programs. Related to how the medical home is integrated into the EHDI process, 273 items were listed by 48 coordinators, and themes were identified…

  17. Pressure-Volume Integral Expressions for Work in Irreversible Processes

    ERIC Educational Resources Information Center

    Gislason, Eric A.; Craig, Norman C.

    2007-01-01

    Different formulations of thermodynamic work "w" as a pressure-volume integral are examined for a piston moving against a gas in an irreversible process. Proper expressions are obtained using the instantaneous pressure of the gas on the piston as the integrand and also using certain external pressures as the integrand. There are two common yet…

  18. Science based integrated approach to advanced nuclear fuel development - vision, approach, and overview

    SciTech Connect

    Unal, Cetin; Pasamehmetoglu, Kemal; Carmack, Jon

    2010-01-01

    Advancing the performance of Light Water Reactors, Advanced Nuclear Fuel Cycles, and Advanced Rcactors, such as the Next Generation Nuclear Power Plants, requires enhancing our fundamental understanding of fuel and materials behavior under irradiation. The capability to accurately model the nuclear fuel systems is critical. In order to understand specific aspects of the nuclear fuel, fully coupled fuel simulation codes are required to achieve licensing of specific nuclear fuel designs for operation. The backbone of these codes, models, and simulations is a fundamental understanding and predictive capability for simulating the phase and microstructural behavior of the nuclear fuel system materials and matrices. The purpose of this paper is to identify the modeling and simulation approach in order to deliver predictive tools for advanced fuels development. The coordination between experimental nuclear fuel design, development technical experts, and computational fuel modeling and simulation technical experts is a critical aspect of the approach and naturally leads to an integrated, goal-oriented science-based R & D approach and strengthens both the experimental and computational efforts. The Advanced Fuels Campaign (AFC) and Nuclear Energy Advanced Modeling and Simulation (NEAMS) Fuels Integrated Performance and Safety Code (IPSC) are working together to determine experimental data and modeling needs. The primary objective of the NEAMS fuels IPSC project is to deliver a coupled, three-dimensional, predictive computational platform for modeling the fabrication and both normal and abnormal operation of nuclear fuel pins and assemblies, applicable to both existing and future reactor fuel designs. The science based program is pursuing the development of an integrated multi-scale and multi-physics modeling and simulation platform for nuclear fuels. This overview paper discusses the vision, goals and approaches how to develop and implement the new approach.

  19. Integrated Product and Process Data for B2B Collaboration

    SciTech Connect

    Kulvatunyou, Boonserm; Ivezic, Nenad; Jones, Albert; Wysk, Richard A.

    2003-09-01

    Collaborative development of engineered products in a business-to-business (B2B) environment will require more than just the selection of components from an on-line catalogue. It will involve the electronic exchange of product, process, and production engineering information during both design and manufacturing. While the state-of-the-practice does include a variety of ways to exchange product data electronically, it does not extend to the exchange of manufacturing process data. The reason is simple; process data is usually tied to specific manufacturing resources. These resources are not known typically at product development time. This paper proposes an approach, called an Integrated Product and Process Data (IPPD), where manufacturing process data is considered during product development. This approach replaces traditional process plans, which are resource specific, with a resource-independent process representation. Such a representation will allow a much wider collaboration among business partners and provide the necessary base for collaborative product development.

  20. Improvement of process control using wafer geometry for enhanced manufacturability of advanced semiconductor devices

    NASA Astrophysics Data System (ADS)

    Lee, Honggoo; Lee, Jongsu; Kim, Sang Min; Lee, Changhwan; Han, Sangjun; Kim, Myoungsoo; Kwon, Wontaik; Park, Sung-Ki; Vukkadala, Pradeep; Awasthi, Amartya; Kim, J. H.; Veeraraghavan, Sathish; Choi, DongSub; Huang, Kevin; Dighe, Prasanna; Lee, Cheouljung; Byeon, Jungho; Dey, Soham; Sinha, Jaydeep

    2015-03-01

    Aggressive advancements in semiconductor technology have resulted in integrated chip (IC) manufacturing capability at sub-20nm half-pitch nodes. With this, lithography overlay error budgets are becoming increasingly stringent. The delay in EUV lithography readiness for high volume manufacturing (HVM) and the need for multiple-patterning lithography with 193i technology has further amplified the overlay issue. Thus there exists a need for technologies that can improve overlay errors in HVM. The traditional method for reducing overlay errors predominantly focused on improving lithography scanner printability performance. However, processes outside of the lithography sector known as processinduced overlay errors can contribute significantly to the total overlay at the current requirements. Monitoring and characterizing process-induced overlay has become critical for advanced node patterning. Recently a relatively new technique for overlay control that uses high-resolution wafer geometry measurements has gained significance. In this work we present the implementation of this technique in an IC fabrication environment to monitor wafer geometry changes induced across several points in the process flow, of multiple product layers with critical overlay performance requirement. Several production wafer lots were measured and analyzed on a patterned wafer geometry tool. Changes induced in wafer geometry as a result of wafer processing were related to down-stream overlay error contribution using the analytical in-plane distortion (IPD) calculation model. Through this segmentation, process steps that are major contributors to down-stream overlay were identified. Subsequent process optimization was then isolated to those process steps where maximum benefit might be realized. Root-cause for the within-wafer, wafer-to-wafer, tool-to-tool, and station-to-station variations observed were further investigated using local shape curvature changes - which is directly related to

  1. Advanced fighter technology integration (AFTI)/F-16 Automated Maneuvering Attack System final flight test results

    NASA Technical Reports Server (NTRS)

    Dowden, Donald J.; Bessette, Denis E.

    1987-01-01

    The AFTI F-16 Automated Maneuvering Attack System has undergone developmental and demonstration flight testing over a total of 347.3 flying hours in 237 sorties. The emphasis of this phase of the flight test program was on the development of automated guidance and control systems for air-to-air and air-to-ground weapons delivery, using a digital flight control system, dual avionics multiplex buses, an advanced FLIR sensor with laser ranger, integrated flight/fire-control software, advanced cockpit display and controls, and modified core Multinational Stage Improvement Program avionics.

  2. Delicate visual artifacts of advanced digital video processing algorithms

    NASA Astrophysics Data System (ADS)

    Nicolas, Marina M.; Lebowsky, Fritz

    2005-03-01

    With the incoming of digital TV, sophisticated video processing algorithms have been developed to improve the rendering of motion or colors. However, the perceived subjective quality of these new systems sometimes happens to be in conflict with the objective measurable improvement we expect to get. In this presentation, we show examples where algorithms should visually improve the skin tone rendering of decoded pictures under normal conditions, but surprisingly fail, when the quality of mpeg encoding drops below a just noticeable threshold. In particular, we demonstrate that simple objective criteria used for the optimization, such as SAD, PSNR or histogram sometimes fail, partly because they are defined on a global scale, ignoring local characteristics of the picture content. We then integrate a simple human visual model to measure potential artifacts with regard to spatial and temporal variations of the objects' characteristics. Tuning some of the model's parameters allows correlating the perceived objective quality with compression metrics of various encoders. We show the evolution of our reference parameters in respect to the compression ratios. Finally, using the output of the model, we can control the parameters of the skin tone algorithm to reach an improvement in overall system quality.

  3. Development of Processing Techniques for Advanced Thermal Protection Materials

    NASA Technical Reports Server (NTRS)

    Selvaduray, Guna; Cox, Michael; Srinivasan, Vijayakumar

    1997-01-01

    Thermal Protection Materials Branch (TPMB) has been involved in various research programs to improve the properties and structural integrity of the existing aerospace high temperature materials. Specimens from various research programs were brought into the analytical laboratory for the purpose of obtaining and refining the material characterization. The analytical laboratory in TPMB has many different instruments which were utilized to determine the physical and chemical characteristics of materials. Some of the instruments that were utilized by the SJSU students are: Scanning Electron Microscopy (SEM), Energy Dispersive X-ray analysis (EDX), X-ray Diffraction Spectrometer (XRD), Fourier Transform-Infrared Spectroscopy (FTIR), Ultra Violet Spectroscopy/Visible Spectroscopy (UV/VIS), Particle Size Analyzer (PSA), and Inductively Coupled Plasma Atomic Emission Spectrometer (ICP-AES). The above mentioned analytical instruments were utilized in the material characterization process of the specimens from research programs such as: aerogel ceramics (I) and (II), X-33 Blankets, ARC-Jet specimens, QUICFIX specimens and gas permeability of lightweight ceramic ablators. In addition to analytical instruments in the analytical laboratory at TPMB, there are several on-going experiments. One particular experiment allows the measurement of permeability of ceramic ablators. From these measurements, physical characteristics of the ceramic ablators can be derived.

  4. Modular Advanced Oxidation Process Enabled by Cathodic Hydrogen Peroxide Production

    PubMed Central

    2015-01-01

    Hydrogen peroxide (H2O2) is frequently used in combination with ultraviolet (UV) light to treat trace organic contaminants in advanced oxidation processes (AOPs). In small-scale applications, such as wellhead and point-of-entry water treatment systems, the need to maintain a stock solution of concentrated H2O2 increases the operational cost and complicates the operation of AOPs. To avoid the need for replenishing a stock solution of H2O2, a gas diffusion electrode was used to generate low concentrations of H2O2 directly in the water prior to its exposure to UV light. Following the AOP, the solution was passed through an anodic chamber to lower the solution pH and remove the residual H2O2. The effectiveness of the technology was evaluated using a suite of trace contaminants that spanned a range of reactivity with UV light and hydroxyl radical (HO•) in three different types of source waters (i.e., simulated groundwater, simulated surface water, and municipal wastewater effluent) as well as a sodium chloride solution. Irrespective of the source water, the system produced enough H2O2 to treat up to 120 L water d–1. The extent of transformation of trace organic contaminants was affected by the current density and the concentrations of HO• scavengers in the source water. The electrical energy per order (EEO) ranged from 1 to 3 kWh m–3, with the UV lamp accounting for most of the energy consumption. The gas diffusion electrode exhibited high efficiency for H2O2 production over extended periods and did not show a diminution in performance in any of the matrices. PMID:26039560

  5. Modular advanced oxidation process enabled by cathodic hydrogen peroxide production.

    PubMed

    Barazesh, James M; Hennebel, Tom; Jasper, Justin T; Sedlak, David L

    2015-06-16

    Hydrogen peroxide (H2O2) is frequently used in combination with ultraviolet (UV) light to treat trace organic contaminants in advanced oxidation processes (AOPs). In small-scale applications, such as wellhead and point-of-entry water treatment systems, the need to maintain a stock solution of concentrated H2O2 increases the operational cost and complicates the operation of AOPs. To avoid the need for replenishing a stock solution of H2O2, a gas diffusion electrode was used to generate low concentrations of H2O2 directly in the water prior to its exposure to UV light. Following the AOP, the solution was passed through an anodic chamber to lower the solution pH and remove the residual H2O2. The effectiveness of the technology was evaluated using a suite of trace contaminants that spanned a range of reactivity with UV light and hydroxyl radical (HO(•)) in three different types of source waters (i.e., simulated groundwater, simulated surface water, and municipal wastewater effluent) as well as a sodium chloride solution. Irrespective of the source water, the system produced enough H2O2 to treat up to 120 L water d(-1). The extent of transformation of trace organic contaminants was affected by the current density and the concentrations of HO(•) scavengers in the source water. The electrical energy per order (EEO) ranged from 1 to 3 kWh m(-3), with the UV lamp accounting for most of the energy consumption. The gas diffusion electrode exhibited high efficiency for H2O2 production over extended periods and did not show a diminution in performance in any of the matrices.

  6. Modular advanced oxidation process enabled by cathodic hydrogen peroxide production.

    PubMed

    Barazesh, James M; Hennebel, Tom; Jasper, Justin T; Sedlak, David L

    2015-06-16

    Hydrogen peroxide (H2O2) is frequently used in combination with ultraviolet (UV) light to treat trace organic contaminants in advanced oxidation processes (AOPs). In small-scale applications, such as wellhead and point-of-entry water treatment systems, the need to maintain a stock solution of concentrated H2O2 increases the operational cost and complicates the operation of AOPs. To avoid the need for replenishing a stock solution of H2O2, a gas diffusion electrode was used to generate low concentrations of H2O2 directly in the water prior to its exposure to UV light. Following the AOP, the solution was passed through an anodic chamber to lower the solution pH and remove the residual H2O2. The effectiveness of the technology was evaluated using a suite of trace contaminants that spanned a range of reactivity with UV light and hydroxyl radical (HO(•)) in three different types of source waters (i.e., simulated groundwater, simulated surface water, and municipal wastewater effluent) as well as a sodium chloride solution. Irrespective of the source water, the system produced enough H2O2 to treat up to 120 L water d(-1). The extent of transformation of trace organic contaminants was affected by the current density and the concentrations of HO(•) scavengers in the source water. The electrical energy per order (EEO) ranged from 1 to 3 kWh m(-3), with the UV lamp accounting for most of the energy consumption. The gas diffusion electrode exhibited high efficiency for H2O2 production over extended periods and did not show a diminution in performance in any of the matrices. PMID:26039560

  7. Model choice considerations and information integration using analytical hierarchy process

    SciTech Connect

    Langenbrunner, James R; Hemez, Francois M; Booker, Jane M; Ross, Timothy J.

    2010-10-15

    Using the theory of information-gap for decision-making under severe uncertainty, it has been shown that model output compared to experimental data contains irrevocable trade-offs between fidelity-to-data, robustness-to-uncertainty and confidence-in-prediction. We illustrate a strategy for information integration by gathering and aggregating all available data, knowledge, theory, experience, similar applications. Such integration of information becomes important when the physics is difficult to model, when observational data are sparse or difficult to measure, or both. To aggregate the available information, we take an inference perspective. Models are not rejected, nor wasted, but can be integrated into a final result. We show an example of information integration using Saaty's Analytic Hierarchy Process (AHP), integrating theory, simulation output and experimental data. We used expert elicitation to determine weights for two models and two experimental data sets, by forming pair-wise comparisons between model output and experimental data. In this way we transform epistemic and/or statistical strength from one field of study into another branch of physical application. The price to pay for utilizing all available knowledge is that inferences drawn for the integrated information must be accounted for and the costs can be considerable. Focusing on inferences and inference uncertainty (IU) is one way to understand complex information.

  8. Numerical approach for the voloxidation process of an advanced spent fuel conditioning process (ACP)

    SciTech Connect

    Park, Byung Heung; Jeong, Sang Mun; Seo, Chung-Seok

    2007-07-01

    A voloxidation process is adopted as the first step of an advanced spent fuel conditioning process in order to prepare the SF oxide to be reduced in the following electrolytic reduction process. A semi-batch type voloxidizer was devised to transform a SF pellet into powder. In this work, a simple reactor model was developed for the purpose of correlating a gas phase flow rate with an operation time as a numerical approach. With an assumption that a solid phase and a gas phase are homogeneous in a reactor, a reaction rate for an oxidation was introduced into a mass balance equation. The developed equation can describe a change of an outlet's oxygen concentration including such a case that a gas flow is not sufficient enough to continue a reaction at its maximum reaction rate. (authors)

  9. Advanced process engineering co-simulation using CFD-based reduced order models

    SciTech Connect

    Lang, Y.-D.; Biegler, L.T.; Munteanu, S.; Madsen, J.I.; Zitney, S.E.

    2007-11-04

    The process and energy industries face the challenge of designing the next generation of plants to operate with unprecedented efficiency and near-zero emissions, while performing profitably amid fluctuations in costs for raw materials, finished products, and energy. To achieve these targets, the designers of future plants are increasingly relying upon modeling and simulation to create virtual plants that allow them to evaluate design concepts without the expense of pilot-scale and demonstration facilities. Two of the more commonly used simulation tools include process simulators for describing the entire plant as a network of simplified equipment models and computational fluid dynamic (CFD) packages for modeling an isolated equipment item in great detail by accounting for complex thermal and fluid flow phenomena. The Advanced Process Engineering Co-Simulator (APECS) sponsored by the U.S. Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) has been developed to combine process simulation software with CFD-based equipment simulation software so that design engineers can analyze and optimize the coupled fluid flow, heat and mass transfer, and chemical reactions that drive overall plant performance (Zitney et al., 2006). The process/CFD software integration was accomplished using the process-industry standard CAPE-OPEN interfaces.

  10. SULFATE RADICAL-BASED ADVANCED OXIDATION PROCESSES- ACS MEETING

    EPA Science Inventory

    This paper will present an overview of sulfate radical-based advanced oxidation technologies for the destruction of environmentally toxic chemicals in wastewater, industrial water, groundwater and sources of water supply. The paper will include fundamental aspects of the generati...

  11. Development of advanced host cell protein enrichment and detection strategies to enable process relevant spike challenge studies.

    PubMed

    Soderquist, Ryan G; Trumbo, Mihaela; Hart, Roger A; Zhang, Qingchun; Flynn, Gregory C

    2015-01-01

    An orthogonal chromatography methodology for the enrichment of host cell protein (HCP) species relative to monoclonal antibody (mAb) products was developed and applied for the successful enrichment of HCP from post-Protein A process pools for seven different mAb products. An advanced two-dimensional liquid chromatography/mass spectrometry platform (2D-LC/MS(E) ) was utilized to demonstrate that the HCP enriched material was representative, in terms of species content, to pre-enriched process pools. The HCP enrichment methodology was scaled up for two different mAb products, and this process relevant enriched HCP material was used to conduct advanced spike challenge studies to demonstrate the utility of the approach for the understanding of (1) quantitative HCP clearance, (2) individual species clearance, and (3) species clearance redundancy across polishing chromatography steps. The combined ability to enrich process relevant HCP, detect individual HCP species with 2D-LC/MS(E) technology, and conduct advanced challenge studies with process relevant material surmounts prior limitations to high integrity process challenge study implementation, and facilitates significant process understanding for development of risk-based control strategies and strategic process design. This also demonstrates implementation of a foundational strategy for conducting spike-challenge studies using process-relevant impurities isolated from processes of interest using orthogonal approaches. PMID:26014278

  12. Development of advanced host cell protein enrichment and detection strategies to enable process relevant spike challenge studies.

    PubMed

    Soderquist, Ryan G; Trumbo, Mihaela; Hart, Roger A; Zhang, Qingchun; Flynn, Gregory C

    2015-01-01

    An orthogonal chromatography methodology for the enrichment of host cell protein (HCP) species relative to monoclonal antibody (mAb) products was developed and applied for the successful enrichment of HCP from post-Protein A process pools for seven different mAb products. An advanced two-dimensional liquid chromatography/mass spectrometry platform (2D-LC/MS(E) ) was utilized to demonstrate that the HCP enriched material was representative, in terms of species content, to pre-enriched process pools. The HCP enrichment methodology was scaled up for two different mAb products, and this process relevant enriched HCP material was used to conduct advanced spike challenge studies to demonstrate the utility of the approach for the understanding of (1) quantitative HCP clearance, (2) individual species clearance, and (3) species clearance redundancy across polishing chromatography steps. The combined ability to enrich process relevant HCP, detect individual HCP species with 2D-LC/MS(E) technology, and conduct advanced challenge studies with process relevant material surmounts prior limitations to high integrity process challenge study implementation, and facilitates significant process understanding for development of risk-based control strategies and strategic process design. This also demonstrates implementation of a foundational strategy for conducting spike-challenge studies using process-relevant impurities isolated from processes of interest using orthogonal approaches.

  13. Integrated software framework for processing of geophysical data

    NASA Astrophysics Data System (ADS)

    Chubak, Glenn; Morozov, Igor

    2006-07-01

    We present an integrated software framework for geophysical data processing, based on an updated seismic data processing program package originally developed at the Program for Crustal Studies at the University of Wyoming. Unlike other systems, this processing monitor supports structured multi-component seismic data streams, multi-dimensional data traces, and employs a unique backpropagation execution logic. This results in an unusual flexibility of processing, allowing the system to handle nearly any geophysical data. A modern and feature-rich graphical user interface (GUI) was developed for the system, allowing editing and submission of processing flows and interaction with running jobs. Multiple jobs can be executed in a distributed multi-processor networks and controlled from the same GUI. Jobs, in their turn, can also be parallelized to take advantage of parallel processing environments, such as local area networks and Beowulf clusters.

  14. Evaluation of Resin Dissolution Using an Advanced Oxidation Process - 13241

    SciTech Connect

    Goulart de Araujo, Leandro; Vicente de Padua Ferreira, Rafael; Takehiro Marumo, Julio; Passos Piveli, Roque; Campos, Fabio

    2013-07-01

    The ion-exchange resin is widely used in nuclear reactors, in cooling water purification and removing radioactive elements. Because of the long periods of time inside the reactor system, the resin becomes radioactive. When the useful life of them is over, its re-utilization becomes inappropriate, and for this reason, the resin is considered radioactive waste. The most common method of treatment is the immobilization of spent ion exchange resin in cement in order to form a solid monolithic matrix, which reduces the radionuclides release into the environment. However, the characteristic of contraction and expansion of the resin limits its incorporation in 10%, resulting in high cost in its direct immobilization. Therefore, it is recommended the utilization of a pre-treatment, capable of reducing the volume and degrading the resin, which would increase the load capacity in the immobilization. This work aims to develop a method of degradation of ion spent resins from the nuclear research reactor of Nuclear and Energy Research Institute (IPEN/CNEN-SP), Brazil, using the Advanced Oxidative Process (AOP) with Fenton's reagent (hydrogen peroxide and ferrous sulphate as catalyst). The resin evaluated was a mixture of cationic (IR 120P) and anionic (IRA 410) resins. The reactions were conducted by varying the concentration of the catalyst (25, 50, 100 e 150 mM) and the volume of the hydrogen peroxide, at three different temperatures, 50, 60 and 70 deg. C. The time of reaction was three hours. Total organic carbon content was determined periodically in order to evaluate the degradation as a function of time. The concentration of 50 mM of catalyst was the most effective in degrading approximately 99%, using up to 330 mL of hydrogen peroxide. The most effective temperature was about 60 deg. C, because of the decomposition of hydrogen peroxide in higher temperatures. TOC content was influenced by the concentration of the catalyst, interfering in the beginning of the degradation

  15. Integrated process for preparing a carboxylic acid from an alkane

    SciTech Connect

    Benderly, Abraham; Chadda, Nitin; Sevon, Douglass

    2011-12-20

    The present invention relates to an integrated process for producing unsaturated carboxylic acids from the corresponding C.sub.2-C.sub.4 alkane. The process begins with performance of thermally integrated dehydrogenation reactions which convert a C.sub.2-C.sub.4 alkane to its corresponding C.sub.2-C.sub.4 alkene, and which involve exothermically converting a portion of an alkane to its corresponding alkene by oxidative dehydrogenation in an exothermic reaction zone, in the presence of oxygen and a suitable catalyst, and then feeding the products of the exothermic reaction zone to an endothermic reaction zone wherein at least a portion of the remaining unconverted alkane is endothermically dehydrogenated to form an additional quantity of the same corresponding alkene, in the presence of carbon dioxide and an other suitable catalyst. The alkene products of the thermally integrated dehydrogenation reactions are then provided to a catalytic vapor phase partial oxidation process for conversion of the alkene to the corresponding unsaturated carboxylic acid or nitrile. Unreacted alkene and carbon dioxide are recovered from the oxidation product stream and recycled back to the thermally integrated dehydrogenation reactions.

  16. Measurement and modeling of advanced coal conversion processes

    SciTech Connect

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G.; Smoot, L.D.; Brewster, B.S. Brigham Young Univ., Provo, UT )

    1991-01-01

    The overall objective of this program is the development of predictive capability for the design, scale up, simulation, control and feedstock evaluation in advanced coal conversion devices. This program will merge significant advances made in measuring and quantitatively describing the mechanisms in coal conversion behavior. Comprehensive computer codes for mechanistic modeling of entrained-bed gasification. Additional capabilities in predicting pollutant formation will be implemented and the technology will be expanded to fixed-bed reactors.

  17. Advanced Process Heater for the Steel, Aluminum and Chemical Industries of the Future

    SciTech Connect

    Thomas D. Briselden

    2007-10-31

    The Roadmap for Process Heating Technology (March 16, 2001), identified the following priority R&D needs: “Improved performance of high temperature materials; improved methods for stabilizing low emission flames; heating technologies that simultaneously reduce emissions, increase efficiency, and increase heat transfer”. Radiant tubes are used in almost every industry of the future. Examples include Aluminum re-heat furnaces; Steel strip annealing furnaces, Petroleum cracking/ refining furnaces, Metal Casting/Heat Treating in atmosphere and fluidized bed furnaces, Glass lair annealing furnaces, Forest Products infrared paper driers, Chemical heat exchangers and immersion heaters, and the indirect grain driers in the Agriculture Industry. Several common needs among the industries are evident: (1) Energy Reductions, (2) Productivity Improvements, (3) Zero Emissions, and (4) Increased Component Life. The Category I award entitled “Proof of Concept of an Advanced Process Heater (APH) for Steel, Aluminum, and Petroleum Industries of the Future” met the technical feasibility goals of: (1) doubling the heat transfer rates (2) improving thermal efficiencies by 20%, (3) improving temperature uniformity by 100oF (38 oC) and (4) simultaneously reducing NOx and CO2 emissions. The APH addresses EERE’s primary mission of increasing efficiency/reducing fuel usage in energy intensive industries. The primary goal of this project was to design, manufacture and test a commercial APH prototype by integrating three components: (1) Helical Heat Exchanger, (2) Shared Wall Radiant U-tube, and (3) Helical Flame Stabilization Element. To accomplish the above, a near net shape powder ceramic Si-SiC low-cost forming process was used to manufacture the components. The project defined the methods for making an Advanced Process Heater that produced an efficiency between 70% to 80% with temperature uniformities of less than 5oF/ft (9oC/m). Three spin-off products resulted from this

  18. Advancing Tissue Engineering: A Tale of Nano-, Micro-, and Macroscale Integration.

    PubMed

    Leijten, Jeroen; Rouwkema, Jeroen; Zhang, Yu Shrike; Nasajpour, Amir; Dokmeci, Mehmet Remzi; Khademhosseini, Ali

    2016-04-27

    Tissue engineering has the potential to revolutionize the health care industry. Delivering on this promise requires the generation of efficient, controllable and predictable implants. The integration of nano- and microtechnologies into macroscale regenerative biomaterials plays an essential role in the generation of such implants, by enabling spatiotemporal control of the cellular microenvironment. Here we review the role, function and progress of a wide range of nano- and microtechnologies that are driving the advancements in the field of tissue engineering. PMID:27101419

  19. Curriculum Advancement for Work Force Colleges: The Nicolet College Process.

    ERIC Educational Resources Information Center

    Bass, Howard G. Sam

    The rapid growth since the 1980s of the use of total quality workforce methods in U.S. companies has contributed to the movement for integrating academic and vocational/technical education. This integration seeks to improve the intellectual capabilities of students through applied and contextual learning and thus make them more capable of adapting…

  20. Integrated homeland security system with passive thermal imaging and advanced video analytics

    NASA Astrophysics Data System (ADS)

    Francisco, Glen; Tillman, Jennifer; Hanna, Keith; Heubusch, Jeff; Ayers, Robert

    2007-04-01

    for creating initial alerts - we refer to this as software level detection, the next level building block Immersive 3D visual assessment for situational awareness and to manage the reaction process - we refer to this as automated intelligent situational awareness, a third building block Wide area command and control capabilities to allow control from a remote location - we refer to this as the management and process control building block integrating together the lower level building elements. In addition, this paper describes three live installations of complete, total systems that incorporate visible and thermal cameras as well as advanced video analytics. Discussion of both system elements and design is extensive.

  1. Integral processing in beyond-Hartree-Fock calculations

    NASA Technical Reports Server (NTRS)

    Taylor, P. R.

    1986-01-01

    The increasing rate at which improvements in processing capacity outstrip improvements in input/output performance of large computers has led to recent attempts to bypass generation of a disk-based integral file. The direct self-consistent field (SCF) method of Almlof and co-workers represents a very successful implementation of this approach. This paper is concerned with the extension of this general approach to configuration interaction (CI) and multiconfiguration-self-consistent field (MCSCF) calculations. After a discussion of the particular types of molecular orbital (MO) integrals for which -- at least for most current generation machines -- disk-based storage seems unavoidable, it is shown how all the necessary integrals can be obtained as matrix elements of Coulomb and exchange operators that can be calculated using a direct approach. Computational implementations of such a scheme are discussed.

  2. A highly reliable, autonomous data communication subsystem for an advanced information processing system

    NASA Technical Reports Server (NTRS)

    Nagle, Gail; Masotto, Thomas; Alger, Linda

    1990-01-01

    The need to meet the stringent performance and reliability requirements of advanced avionics systems has frequently led to implementations which are tailored to a specific application and are therefore difficult to modify or extend. Furthermore, many integrated flight critical systems are input/output intensive. By using a design methodology which customizes the input/output mechanism for each new application, the cost of implementing new systems becomes prohibitively expensive. One solution to this dilemma is to design computer systems and input/output subsystems which are general purpose, but which can be easily configured to support the needs of a specific application. The Advanced Information Processing System (AIPS), currently under development has these characteristics. The design and implementation of the prototype I/O communication system for AIPS is described. AIPS addresses reliability issues related to data communications by the use of reconfigurable I/O networks. When a fault or damage event occurs, communication is restored to functioning parts of the network and the failed or damage components are isolated. Performance issues are addressed by using a parallelized computer architecture which decouples Input/Output (I/O) redundancy management and I/O processing from the computational stream of an application. The autonomous nature of the system derives from the highly automated and independent manner in which I/O transactions are conducted for the application as well as from the fact that the hardware redundancy management is entirely transparent to the application.

  3. How gamma radiation processing systems are benefiting from the latest advances in information technology

    NASA Astrophysics Data System (ADS)

    Gibson, Wayne H.; Levesque, Daniel

    2000-03-01

    This paper discusses how gamma irradiation plants are putting the latest advances in computer and information technology to use for better process control, cost savings, and strategic advantages. Some irradiator operations are gaining significant benefits by integrating computer technology and robotics with real-time information processing, multi-user databases, and communication networks. The paper reports on several irradiation facilities that are making good use of client/server LANs, user-friendly graphics interfaces, supervisory control and data acquisition (SCADA) systems, distributed I/O with real-time sensor devices, trending analysis, real-time product tracking, dynamic product scheduling, and automated dosimetry reading. These plants are lowering costs by fast and reliable reconciliation of dosimetry data, easier validation to GMP requirements, optimizing production flow, and faster release of sterilized products to market. There is a trend in the manufacturing sector towards total automation using "predictive process control". Real-time verification of process parameters "on-the-run" allows control parameters to be adjusted appropriately, before the process strays out of limits. Applying this technology to the gamma radiation process, control will be based on monitoring the key parameters such as time, and making adjustments during the process to optimize quality and throughput. Dosimetry results will be used as a quality control measurement rather than as a final monitor for the release of the product. Results are correlated with the irradiation process data to quickly and confidently reconcile variations. Ultimately, a parametric process control system utilizing responsive control, feedback and verification will not only increase productivity and process efficiency, but can also result in operating within tighter dose control set points.

  4. Experimental Advanced Airborne Research Lidar (EAARL) Data Processing Manual

    USGS Publications Warehouse

    Bonisteel, Jamie M.; Nayegandhi, Amar; Wright, C. Wayne; Brock, John C.; Nagle, David

    2009-01-01

    The Experimental Advanced Airborne Research Lidar (EAARL) is an example of a Light Detection and Ranging (Lidar) system that utilizes a blue-green wavelength (532 nanometers) to determine the distance to an object. The distance is determined by recording the travel time of a transmitted pulse at the speed of light (fig. 1). This system uses raster laser scanning with full-waveform (multi-peak) resolving capabilities to measure submerged topography and adjacent coastal land elevations simultaneously (Nayegandhi and others, 2009). This document reviews procedures for the post-processing of EAARL data using the custom-built Airborne Lidar Processing System (ALPS). ALPS software was developed in an open-source programming environment operated on a Linux platform. It has the ability to combine the laser return backscatter digitized at 1-nanosecond intervals with aircraft positioning information. This solution enables the exploration and processing of the EAARL data in an interactive or batch mode. ALPS also includes modules for the creation of bare earth, canopy-top, and submerged topography Digital Elevation Models (DEMs). The EAARL system uses an Earth-centered coordinate and reference system that removes the necessity to reference submerged topography data relative to water level or tide gages (Nayegandhi and others, 2006). The EAARL system can be mounted in an array of small twin-engine aircraft that operate at 300 meters above ground level (AGL) at a speed of 60 meters per second (117 knots). While other systems strive to maximize operational depth limits, EAARL has a narrow transmit beam and receiver field of view (1.5 to 2 milliradians), which improves the depth-measurement accuracy in shallow, clear water but limits the maximum depth to about 1.5 Secchi disk depth (~20 meters) in clear water. The laser transmitter [Continuum EPO-5000 yttrium aluminum garnet (YAG)] produces up to 5,000 short-duration (1.2 nanosecond), low-power (70 microjoules) pulses each second

  5. Integrating Autonomic Grid Components and Process-Driven Business Applications

    NASA Astrophysics Data System (ADS)

    Weigold, Thomas; Aldinucci, Marco; Danelutto, Marco; Getov, Vladimir

    Today's business applications are increasingly process driven, meaning that the main application logic is executed by a dedicate process engine. In addition, component-oriented software development has been attracting attention for building complex distributed applications. In this paper we present the experiences gained from building a process-driven biometric identification application which makes use of Grid infrastructures via the Grid Component Model (GCM). GCM, besides guaranteeing access to Grid resources, supports autonomic management of notable parallel composite components. This feature is exploited within our biometric identification application to ensure real time identification of fingerprints. Therefore, we briefly introduce the GCM framework and the process engine used, and we describe the implementation of the application using autonomic GCM components. Finally, we summarize the results, experiences, and lessons learned focusing on the integration of autonomic GCM components and the process-driven approach.

  6. Anvil Tool in the Advanced Weather Interactive Processing System

    NASA Technical Reports Server (NTRS)

    Barrett, Joe, III; Bauman, William, III; Keen, Jeremy

    2007-01-01

    Meteorologists from the 45th Weather Squadron (45 WS) and Spaceflight Meteorology Group (SMG) have identified anvil forecasting as one of their most challenging tasks when predicting the probability of violations of the lightning Launch Commit Criteria and Space Shuttle Flight Rules. As a result, the Applied Meteorology Unit (AMU) created a graphical overlay tool for the Meteorological Interactive Data Display Systems (MIDDS) to indicate the threat of thunderstorm anvil clouds, using either observed or model forecast winds as input. In order for the Anvil Tool to remain available to the meteorologists, the AMU was tasked to transition the tool to the Advanced Weather interactive Processing System (AWIPS). This report describes the work done by the AMU to develop the Anvil Tool for AWIPS to create a graphical overlay depicting the threat from thunderstorm anvil clouds. The AWIPS Anvil Tool is based on the previously deployed AMU MIDDS Anvil Tool. SMG and 45 WS forecasters have used the MIDDS Anvil Tool during launch and landing operations. SMG's primary weather analysis and display system is now AWIPS and the 45 WS has plans to replace MIDDS with AWIPS. The Anvil Tool creates a graphic that users can overlay on satellite or radar imagery to depict the potential location of thunderstorm anvils one, two, and three hours into the future. The locations are based on an average of the upper-level observed or forecasted winds. The graphic includes 10 and 20 nm standoff circles centered at the location of interest, in addition to one-, two-, and three-hour arcs in the upwind direction. The arcs extend outward across a 30 degree sector width based on a previous AMU study which determined thunderstorm anvils move in a direction plus or minus 15 degrees of the upper-level (300- to 150-mb) wind direction. This report briefly describes the history of the MIDDS Anvil Tool and then explains how the initial development of the AWIPS Anvil Tool was carried out. After testing was

  7. Mess management in microbial ecology: Rhetorical processes of disciplinary integration

    NASA Astrophysics Data System (ADS)

    McCracken, Christopher W.

    As interdisciplinary work becomes more common in the sciences, research into the rhetorical processes mediating disciplinary integration becomes more vital. This dissertation, which takes as its subject the integration of microbiology and ecology, combines a postplural approach to rhetoric of science research with Victor Turner's "social drama" analysis and a third-generation activity theory methodological framework to identify conceptual and practical conflicts in interdisciplinary work and describe how, through visual and verbal communication, scientists negotiate these conflicts. First, to understand the conflicting disciplinary principles that might impede integration, the author conducts a Turnerian analysis of a disciplinary conflict that took place in the 1960s and 70s, during which American ecologists and biologists debated whether they should participate in the International Biological Program (IBP). Participation in the IBP ultimately contributed to the emergence of ecology as a discipline distinct from biology, and Turnerian social drama analysis of the debate surrounding participation lays bare the conflicting principles separating biology and ecology. Second, to answer the question of how these conflicting principles are negotiated in practice, the author reports on a yearlong qualitative study of scientists working in a microbial ecology laboratory. Focusing specifically on two case studies from this fieldwork that illustrate the key concept of textually mediated disciplinary integration, the author's analysis demonstrates how scientific objects emerge in differently situated practices, and how these objects manage to cohere despite their multiplicity through textually mediated rhetorical processes of calibration and alignment.

  8. PROCESS MONITORING FOR SAFEGUARDS VIA EVENT GENERATION, INTEGRATION, AND INTERPRETATION

    SciTech Connect

    Humberto E. Garcia; Wen-Chiao Lin; Tae-Sic Yoo

    2010-07-01

    There is a recognized safeguards benefit from using process monitoring (PM) on nuclear facilities to complement nuclear materials accountancy. We introduce a model-based approach for PM in which the assessment regarding the state of the monitored system is conducted at a system-centric level. The proposed architecture integrates both time-driven and event-driven data integration and analysis for decision-making. While the time-driven layers of the proposed architecture encompass more traditional PM methods based on time series data and analysis, the event-driven layers encompass operation monitoring methods based on discrete event data integration and analysis. By integrating process- and operation-related information and methodologies within an unified modeling and monitoring framework that includes not only current but also past plant behaviors, the task of anomaly detection is greatly improved because this decision-making approach can benefit from not only known time-series relationships among measured signals but also from known event sequence relationships among generated events. Building from the proposed system-centric PM architecture, we briefly introduce methods that can be used to implement its different components. The application of the proposed approach is then demonstrated via simulation experiments.

  9. Advancing understanding of microbial bioenergy conversion processes by activity-based protein profiling

    SciTech Connect

    Liu, Yun; Fredrickson, James K.; Sadler, Natalie C.; Nandhikonda, Premchendar; Smith, Richard D.; Wright, Aaron T.

    2015-09-25

    Here, the development of renewable biofuels is a global priority, but success will require novel technologies that greatly improve our understanding of microbial systems biology. An approach with great promise in enabling functional characterization of microbes is activity-based protein profiling (ABPP), which employs chemical probes to directly measure enzyme function in discrete enzyme classes in vivo and/or in vitro, thereby facilitating the rapid discovery of new biocatalysts and enabling much improved biofuel production platforms. We review general design strategies in ABPP, and highlight recent advances that are or could be pivotal to biofuels processes including applications of ABPP to cellulosic bioethanol, biodiesel, and phototrophic production of hydrocarbons. We also examine the key challenges and opportunities of ABPP in renewable biofuels research. The integration of ABPP with molecular and systems biology approaches will shed new insight on the catalytic and regulatory mechanisms of functional enzymes and their synergistic effects in the field of biofuels production.

  10. Integrative Advances for OCT-Guided Ophthalmic Surgery and Intraoperative OCT: Microscope Integration, Surgical Instrumentation, and Heads-Up Display Surgeon Feedback

    PubMed Central

    Ehlers, Justis P.; Srivastava, Sunil K.; Feiler, Daniel; Noonan, Amanda I.; Rollins, Andrew M.; Tao, Yuankai K.

    2014-01-01

    Purpose To demonstrate key integrative advances in microscope-integrated intraoperative optical coherence tomography (iOCT) technology that will facilitate adoption and utilization during ophthalmic surgery. Methods We developed a second-generation prototype microscope-integrated iOCT system that interfaces directly with a standard ophthalmic surgical microscope. Novel features for improved design and functionality included improved profile and ergonomics, as well as a tunable lens system for optimized image quality and heads-up display (HUD) system for surgeon feedback. Novel material testing was performed for potential suitability for OCT-compatible instrumentation based on light scattering and transmission characteristics. Prototype surgical instruments were developed based on material testing and tested using the microscope-integrated iOCT system. Several surgical maneuvers were performed and imaged, and surgical motion visualization was evaluated with a unique scanning and image processing protocol. Results High-resolution images were successfully obtained with the microscope-integrated iOCT system with HUD feedback. Six semi-transparent materials were characterized to determine their attenuation coefficients and scatter density with an 830 nm OCT light source. Based on these optical properties, polycarbonate was selected as a material substrate for prototype instrument construction. A surgical pick, retinal forceps, and corneal needle were constructed with semi-transparent materials. Excellent visualization of both the underlying tissues and surgical instrument were achieved on OCT cross-section. Using model eyes, various surgical maneuvers were visualized, including membrane peeling, vessel manipulation, cannulation of the subretinal space, subretinal intraocular foreign body removal, and corneal penetration. Conclusions Significant iterative improvements in integrative technology related to iOCT and ophthalmic surgery are demonstrated. PMID:25141340

  11. Integrated electronics for peripheral nerve recording and signal processing.

    PubMed

    Limnuson, Kanokwan; Tyler, Dustin J; Mohseni, Pedram

    2009-01-01

    This paper describes the integrated circuit implementation of an electronic system for peripheral nerve recording and signal processing. Specifically, the system aims to record and condition neural activity from the phrenic nerve as a good indicator for breathing, and generate a stimulus trigger signal for a laryngeal pacemaker device to reanimate a paralyzed muscle with electrical stimulation paced with respiration. The 2.2 x 2.2-mm(2) integrated circuit is fabricated using the AMI 1.5 microm 2P/2M n-well CMOS process, and consumes 1 mW from +/-1.5 V. System architecture, circuit design, simulation results, and measurement data in benchtop experiments are presented.

  12. FAA/NASA International Symposium on Advanced Structural Integrity Methods for Airframe Durability and Damage Tolerance

    NASA Technical Reports Server (NTRS)

    Harris, Charles E. (Editor)

    1994-01-01

    International technical experts in durability and damage tolerance of metallic airframe structures were assembled to present and discuss recent research findings and the development of advanced design and analysis methods, structural concepts, and advanced materials. The symposium focused on the dissemination of new knowledge and the peer-review of progress on the development of advanced methodologies. Papers were presented on: structural concepts for enhanced durability, damage tolerance, and maintainability; new metallic alloys and processing technology; fatigue crack initiation and small crack effects; fatigue crack growth models; fracture mechanics failure, criteria for ductile materials; structural mechanics methodology for residual strength and life prediction; development of flight load spectra for design and testing; and advanced approaches to resist corrosion and environmentally assisted fatigue.

  13. Integrating Stakeholders and Users into the Geography Discipline's Research Process

    USGS Publications Warehouse

    Hermans, Caroline M.; Taketa, Richard

    2006-01-01

    Future research priorities of Geography emphasize the discipline's leadership role in the U.S. Geological Survey (USGS) in multidisciplinary and integrated research on human and environmental systems and how these systems are interrelated and respond to change Geography's research priorities also emphasize providing science that is usable to society and creating decision support products applicable to given customer problems. To achieve these goals, we must understand the relationship between our research and our customer, and how to integrate the customer into the research process. This report details the elements of the research process that help achieve the degree of stakeholder involvement necessary to ensure a successful end-product. It offers suggestions that can help researchers better understand stakeholders and customers and involve them in the research process more effectively, while preserving the integrity of the science. Its aim is to help researchers understand the problems and challenges faced by our customers and communicate the ways in which Geography can help address their problems. Adopting these guidelines can improve the efficiency of the research process and lead to higher quality output. We will be able to conduct better research because we will have an improved understanding of the research problem and the stakeholders involved. This report covers a broad range of topics, from identifying and communicating with stakeholders and users, to the use of language, to how to effectively present scientific information to the user. It does not offer a 'one size fits all' method. Instead, perhaps only specific sections are suitable for a given project and customers, depending on project scope and needs. This report is based on the objectives of Geography's strategic plan, U. S. Geological Survey's strategic plan, and Department of Interior's strategic plan. Section 2 of these guidelines describes the purpose of the research process in Geography and

  14. Advanced in-situ electron-beam lithography for deterministic nanophotonic device processing.

    PubMed

    Kaganskiy, Arsenty; Gschrey, Manuel; Schlehahn, Alexander; Schmidt, Ronny; Schulze, Jan-Hindrik; Heindel, Tobias; Strittmatter, André; Rodt, Sven; Reitzenstein, Stephan

    2015-07-01

    We report on an advanced in-situ electron-beam lithography technique based on high-resolution cathodoluminescence (CL) spectroscopy at low temperatures. The technique has been developed for the deterministic fabrication and quantitative evaluation of nanophotonic structures. It is of particular interest for the realization and optimization of non-classical light sources which require the pre-selection of single quantum dots (QDs) with very specific emission features. The two-step electron-beam lithography process comprises (a) the detailed optical study and selection of target QDs by means of CL-spectroscopy and (b) the precise retrieval of the locations and integration of target QDs into lithographically defined nanostructures. Our technology platform allows for a detailed pre-process determination of important optical and quantum optical properties of the QDs, such as the emission energies of excitonic complexes, the excitonic fine-structure splitting, the carrier dynamics, and the quantum nature of emission. In addition, it enables a direct and precise comparison of the optical properties of a single QD before and after integration which is very beneficial for the quantitative evaluation of cavity-enhanced quantum devices. PMID:26233395

  15. Advanced in-situ electron-beam lithography for deterministic nanophotonic device processing

    SciTech Connect

    Kaganskiy, Arsenty; Gschrey, Manuel; Schlehahn, Alexander; Schmidt, Ronny; Schulze, Jan-Hindrik; Heindel, Tobias; Rodt, Sven Reitzenstein, Stephan; Strittmatter, André

    2015-07-15

    We report on an advanced in-situ electron-beam lithography technique based on high-resolution cathodoluminescence (CL) spectroscopy at low temperatures. The technique has been developed for the deterministic fabrication and quantitative evaluation of nanophotonic structures. It is of particular interest for the realization and optimization of non-classical light sources which require the pre-selection of single quantum dots (QDs) with very specific emission features. The two-step electron-beam lithography process comprises (a) the detailed optical study and selection of target QDs by means of CL-spectroscopy and (b) the precise retrieval of the locations and integration of target QDs into lithographically defined nanostructures. Our technology platform allows for a detailed pre-process determination of important optical and quantum optical properties of the QDs, such as the emission energies of excitonic complexes, the excitonic fine-structure splitting, the carrier dynamics, and the quantum nature of emission. In addition, it enables a direct and precise comparison of the optical properties of a single QD before and after integration which is very beneficial for the quantitative evaluation of cavity-enhanced quantum devices.

  16. Advanced in-situ electron-beam lithography for deterministic nanophotonic device processing

    NASA Astrophysics Data System (ADS)

    Kaganskiy, Arsenty; Gschrey, Manuel; Schlehahn, Alexander; Schmidt, Ronny; Schulze, Jan-Hindrik; Heindel, Tobias; Strittmatter, André; Rodt, Sven; Reitzenstein, Stephan

    2015-07-01

    We report on an advanced in-situ electron-beam lithography technique based on high-resolution cathodoluminescence (CL) spectroscopy at low temperatures. The technique has been developed for the deterministic fabrication and quantitative evaluation of nanophotonic structures. It is of particular interest for the realization and optimization of non-classical light sources which require the pre-selection of single quantum dots (QDs) with very specific emission features. The two-step electron-beam lithography process comprises (a) the detailed optical study and selection of target QDs by means of CL-spectroscopy and (b) the precise retrieval of the locations and integration of target QDs into lithographically defined nanostructures. Our technology platform allows for a detailed pre-process determination of important optical and quantum optical properties of the QDs, such as the emission energies of excitonic complexes, the excitonic fine-structure splitting, the carrier dynamics, and the quantum nature of emission. In addition, it enables a direct and precise comparison of the optical properties of a single QD before and after integration which is very beneficial for the quantitative evaluation of cavity-enhanced quantum devices.

  17. Integration of the advanced transparency framework to advanced nuclear systems : enhancing Safety, Operations, Security and Safeguards (SOSS).

    SciTech Connect

    Mendez, Carmen Margarita; Rochau, Gary Eugene; Cleary, Virginia D.

    2008-08-01

    The advent of the nuclear renaissance gives rise to a concern for the effective design of nuclear fuel cycle systems that are safe, secure, nonproliferating and cost-effective. We propose to integrate the monitoring of the four major factors of nuclear facilities by focusing on the interactions between Safeguards, Operations, Security, and Safety (SOSS). We proposed to develop a framework that monitors process information continuously and can demonstrate the ability to enhance safety, operations, security, and safeguards by measuring and reducing relevant SOSS risks, thus ensuring the safe and legitimate use of the nuclear fuel cycle facility. A real-time comparison between expected and observed operations provides the foundation for the calculation of SOSS risk. The automation of new nuclear facilities requiring minimal manual operation provides an opportunity to utilize the abundance of process information for monitoring SOSS risk. A framework that monitors process information continuously can lead to greater transparency of nuclear fuel cycle activities and can demonstrate the ability to enhance the safety, operations, security and safeguards associated with the functioning of the nuclear fuel cycle facility. Sandia National Laboratories (SNL) has developed a risk algorithm for safeguards and is in the process of demonstrating the ability to monitor operational signals in real-time though a cooperative research project with the Japan Atomic Energy Agency (JAEA). The risk algorithms for safety, operations and security are under development. The next stage of this work will be to integrate the four algorithms into a single framework.

  18. Integrating artificial and human intelligence into tablet production process.

    PubMed

    Gams, Matjaž; Horvat, Matej; Ožek, Matej; Luštrek, Mitja; Gradišek, Anton

    2014-12-01

    We developed a new machine learning-based method in order to facilitate the manufacturing processes of pharmaceutical products, such as tablets, in accordance with the Process Analytical Technology (PAT) and Quality by Design (QbD) initiatives. Our approach combines the data, available from prior production runs, with machine learning algorithms that are assisted by a human operator with expert knowledge of the production process. The process parameters encompass those that relate to the attributes of the precursor raw materials and those that relate to the manufacturing process itself. During manufacturing, our method allows production operator to inspect the impacts of various settings of process parameters within their proven acceptable range with the purpose of choosing the most promising values in advance of the actual batch manufacture. The interaction between the human operator and the artificial intelligence system provides improved performance and quality. We successfully implemented the method on data provided by a pharmaceutical company for a particular product, a tablet, under development. We tested the accuracy of the method in comparison with some other machine learning approaches. The method is especially suitable for analyzing manufacturing processes characterized by a limited amount of data.

  19. MCFC integrated system in a biodiesel production process

    NASA Astrophysics Data System (ADS)

    Urbani, F.; Freni, S.; Galvagno, A.; Chiodo, V.

    2011-03-01

    The continuous increasing in biodiesel production by transesterification process is leading to an excess of glycerol production as a byproduct. The utilization of this huge amount of glycerol appears as a not easy solvable problem and thus several authors have proposed alternative ways. The integration of the main production process with a glycerol feed molten carbonate fuel cells bottoming cycle, to satisfy plant energy requirements, seems to be one of the most promising one. The proposed paper reports the main results obtained by authors in the framework of an investigation on a possible use of glycerol as energy sources for a real pilot plant for biodiesel production. An overall evaluation of worldwide biodiesel production plants was made and especially about the production capacity in European Union in the last decade. To make a more detailed study, authors were taken into account a real production plant. After a preliminary step, purported to plant mass and energy flows determination, authors considered the integration of a bottoming cycle based on: (i) steam reforming of glycerol for syn-gas production; (ii) molten carbonate fuel cells (MCFC) system supplied by syn-gas for heat and electricity production. A mathematical model, based on experimental data, has been developed to calculate mass and energy balances for the proposed plant lay-out as well as plant energy efficiency enhancement has been determined. Results have evidenced the feasibility of this process and demonstrated that plant integrated with bottoming cycle can reach a very high level of energy self-production.

  20. Advances in directed self assembly integration and manufacturability at 300 mm

    NASA Astrophysics Data System (ADS)

    Rathsack, Benjamen; Somervell, Mark; Muramatsu, Makato; Tanouchi, Keiji; Kitano, Takahiro; Nishimura, Eiichi; Yatsuda, Koichi; Nagahara, Seiji; Iwaki, Hiroyuki; Akai, Keiji; Ozawa, Mariko; Romo Negreira, Ainhoa; Tahara, Shigeru; Nafus, Kathleen

    2013-03-01

    Directed self-assembly (DSA) has the potential to extend scaling for both line/space and hole patterns. DSA has shown the capability for pitch reduction (multiplication), hole shrinks, CD self-healing as well as a pathway towards LWR and pattern collapse improvement [1-10]. TEL has developed a DSA development ecosystem (collaboration with customers, consortia, inspection vendors and material suppliers) to successfully demonstrate directed PS-PMMA DSA patterns using chemo-epitaxy (lift-off and etch guide) and grapho-epitaxy integrations on 300 mm wafers. New processes are being developed to simplify process integration, to reduce defects and to address design integration challenges with the long term goal of robust manufacturability. For hole DSA applications, a wet development process has been developed that enables traditional post-develop metrology through the high selectivity removal of PMMA cylindrical cores. For line/ space DSA applications, new track, cleans and etch processes have been developed to improve manufacturability. In collaboration with universities and consortia, fundamental process studies and simulations are used to drive process improvement and defect investigation. To extend DSA resolution beyond a PS-PMMA system, high chi materials and processes are also explored. In this paper, TEL's latest process solutions for both hole and line/space DSA process integrations are presented.

  1. Integrated Computational Materials Engineering (ICME) for Third Generation Advanced High-Strength Steel Development

    SciTech Connect

    Savic, Vesna; Hector, Louis G.; Ezzat, Hesham; Sachdev, Anil K.; Quinn, James; Krupitzer, Ronald; Sun, Xin

    2015-06-01

    This paper presents an overview of a four-year project focused on development of an integrated computational materials engineering (ICME) toolset for third generation advanced high-strength steels (3GAHSS). Following a brief look at ICME as an emerging discipline within the Materials Genome Initiative, technical tasks in the ICME project will be discussed. Specific aims of the individual tasks are multi-scale, microstructure-based material model development using state-of-the-art computational and experimental techniques, forming, toolset assembly, design optimization, integration and technical cost modeling. The integrated approach is initially illustrated using a 980 grade transformation induced plasticity (TRIP) steel, subject to a two-step quenching and partitioning (Q&P) heat treatment, as an example.

  2. Materials and Process Design for High-Temperature Carburizing: Integrating Processing and Performance

    SciTech Connect

    D. Apelian

    2007-07-23

    The objective of the project is to develop an integrated process for fast, high-temperature carburizing. The new process results in an order of magnitude reduction in cycle time compared to conventional carburizing and represents significant energy savings in addition to a corresponding reduction of scrap associated with distortion free carburizing steels.

  3. The Integrated Patient's Self-Care Process Model.

    PubMed

    Milavec Kapun, Marija; Šusteršič, Olga; Rajkovič, Vladislav

    2016-01-01

    Long-term care is more efficient and effective when it involves the active participation of the empowered patient and informal caregivers. To achieve this, it is necessary to guide the patient and informal caregivers through the systematic process of self-care. Well-documented observations and assessments are fundamental to plan further interventions of the interdisciplinary team. A systematic literature review revealed that the self-care process and the support of information technology are focused on just one chronic disease. Defined self-care process has a positive impact on the functionality and satisfaction of patients with comorbidity and on their caregivers. The model of the patient's self-care process should be an integral part of the long-term care. PMID:27332172

  4. Non-specific lipid transfer proteins in plants: presenting new advances and an integrated functional analysis.

    PubMed

    Liu, Fang; Zhang, Xiaobo; Lu, Changming; Zeng, Xinhua; Li, Yunjing; Fu, Donghui; Wu, Gang

    2015-09-01

    Plant non-specific lipid-transfer proteins (nsLTPs) are small, basic proteins present in abundance in higher plants. They are involved in key processes of plant cytology, such as the stablization of membranes, cell wall organization, and signal transduction. nsLTPs are also known to play important roles in resistance to biotic and abiotic stress, and in plant growth and development, such as sexual reproduction, seed development and germination. The structures of plant nsLTPs contain an eight-cysteine residue conserved motif, linked by four disulfide bonds, and an internal hydrophobic cavity, which comprises the lipid-binding site. This structure endows stability and increases the ability to bind and/or carry hydrophobic molecules. There is growing interest in nsLTPs, due to their critical roles, resulting in the need for a comprehensive review of their form and function. Relevant topics include: nsLTP structure and biochemical features, their classification, identification, and characterization across species, sub-cellular localization, lipid binding and transfer ability, expression profiling, functionality, and evolution. We present advances, as well as limitations and trends, relating to the different topics of the nsLTP gene family. This review collates a large body of research pertaining to the role of nsLTPs across the plant kingdom, which has been integrated as an in depth functional analysis of this group of proteins as a whole, and their activities across multiple biochemical pathways, based on a large number of reports. This review will enhance our understanding of nsLTP activity in planta, prompting further work and insights into the roles of this multifaceted protein family in plants.

  5. Dynamic Complexity Study of Nuclear Reactor and Process Heat Application Integration

    SciTech Connect

    J'Tia Patrice Taylor; David E. Shropshire

    2009-09-01

    system and the economic allocation of electricity and heat resources. Safety issues include changes in regulatory constraints imposed on the facilities. Modeling and analysis tools, such as System Dynamics for time dependent operational and economic issues and RELAP5 3D for chemical transient affects, are evaluated. The results of this study advance the body of knowledge toward integration of nuclear reactors and process heat applications.

  6. Radiation processing of carbon fibre-reinforced advanced composites

    NASA Astrophysics Data System (ADS)

    Singh, Ajit

    2001-12-01

    Carbon fibre-reinforced advanced composites are being used for a variety of structural applications, because of their useful mechanical properties, including high strength-to-weight ratio and corrosion resistance. Thermal curing of composite products results in internal stresses, due to the mismatch of the coefficients of expansion of the tools and the composite products. Because radiation curing can be done at ambient temperatures, the possibility that the residual stresses might be absent, or much lower in the radiation-cured products, originally led to the start of work on radiation curing of advanced composites at AECL's Whiteshell Laboratories in Pinawa, Canada, in 1985. Research work during the last two decades has shown that advanced composites can be radiation-cured with electron beams or γ radiation. Many of the advantages of radiation curing, as compared to thermal curing, which include curing at ambient temperature, reduced curing time, improved resin stability and reduced volatile emissions, have now been demonstrated. The initial work focussed on electron curing of acrylated epoxy matrices. Since then, procedures have been developed to radiation cure conventional aerospace epoxies, as well. Electron beam cured advanced composites are now being developed for use in the aircraft and aerospace industry. Repair of advanced composite structures is also possible using radiation curing technology. Radiation curing work is continuing at Pinawa and has also been done by Aerospatiale, who have facilities for electron curing composite rocket motor casings and by Chappas and co-workers who have electron cured part of a boat hull. In this paper, the work done on this emerging new technology by the various groups is briefly reviewed.

  7. Developing a demand model integrating end uses of water (DMEUW): structure and process of integration.

    PubMed

    Sarker, R C; Gato-Trinidad, S

    2015-01-01

    The process of developing an integrated water demand model integrating end uses of water has been presented. The model estimates and forecasts average daily water demand based on the end-use pattern and trend of residential water consumption, daily rainfall and temperature, water restrictions and water conservation programmes. The end-use model uses the latest end-use data set collected from Yarra Valley Water, Australia. A computer interface has also been developed using hypertext markup language and hypertext pre-processor. The developed model can be used by water authorities and water resource planners in forecasting water demand and by household owners in determining household water consumption. PMID:25746644

  8. Limitation to Advanced Life Support in patients admitted to intensive care unit with integrated palliative care

    PubMed Central

    Mazutti, Sandra Regina Gonzaga; Nascimento, Andréia de Fátima; Fumis, Renata Rego Lins

    2016-01-01

    Objective To estimate the incidence of limitations to Advanced Life Support in critically ill patients admitted to an intensive care unit with integrated palliative care. Methods This retrospective cohort study included patients in the palliative care program of the intensive care unit of Hospital Paulistano over 18 years of age from May 1, 2011, to January 31, 2014. The limitations to Advanced Life Support that were analyzed included do-not-resuscitate orders, mechanical ventilation, dialysis and vasoactive drugs. Central tendency measures were calculated for quantitative variables. The chi-squared test was used to compare the characteristics of patients with or without limits to Advanced Life Support, and the Wilcoxon test was used to compare length of stay after Advanced Life Support. Confidence intervals reflecting p ≤ 0.05 were considered for statistical significance. Results A total of 3,487 patients were admitted to the intensive care unit, of whom 342 were included in the palliative care program. It was observed that after entering the palliative care program, it took a median of 2 (1 - 4) days for death to occur in the intensive care unit and 4 (2 - 11) days for hospital death to occur. Many of the limitations to Advanced Life Support (42.7%) took place on the first day of hospitalization. Cardiopulmonary resuscitation (96.8%) and ventilatory support (73.6%) were the most adopted limitations. Conclusion The contribution of palliative care integrated into the intensive care unit was important for the practice of orthothanasia, i.e., the non-extension of the life of a critically ill patient by artificial means. PMID:27626949

  9. Ecological Effects of Sea Level Rise: Advancing coastal management through integrated research and engagement

    NASA Astrophysics Data System (ADS)

    Kidwell, D. M.

    2012-12-01

    Rising sea level represents a significant threat to coastal communities and ecosystems through land loss, altered habitats, and increased vulnerability to coastal storms and inundation. This threat is exemplified in the northern Gulf of Mexico where low topography, expansive marshes, and a prevalence of tropical storms have already resulted in extensive coastal impacts. The development of robust predictive capabilities that incorporate complex biological processes with physical dynamics are critical for informed planning and restoration efforts for coastal ecosystems. Looking to build upon existing predictive modeling capabilities and allow for use of multiple model (i.e., ensemble) approaches, NOAA initiated the Ecological Effects of Sea Level Rise program in 2010 to advance physical/biological integrative modeling capabilities in the region with a goal to provide user friendly predictive tools for coastal ecosystem management. Focused on the northern Gulf of Mexico, this multi-disciplinary project led by the University of Central Florida will use in situ field studies to parameterize physical and biological models. These field studies will also result in a predictive capability for overland sediment delivery and transport that will further enhance marsh, oyster, and submerged aquatic vegetation models. Results from this integrated modeling effort are envisioned to inform management strategies for reducing risk, restoration and breakwater guidelines, and resource sustainability for project planning, among other uses. In addition to the science components, this project incorporates significant engagement of the management community through a management applications principle investigator and an advisory management committee. Routine engagement between the science team and the management committee, including annual workshops, are focused on ensuring the development of applicable, relevant, and useable products and tools at the conclusion of this project. Particular

  10. Contexts of Reading. Advances in Discourse Processes Series. Volume XVIII.

    ERIC Educational Resources Information Center

    Hedley, Carolyn N., Ed.; Baratta, Anthony N., Ed.

    Focusing on the reading-thinking-learning process, the classrooms in which such processes occur, and the means for studying these processes, this book presents essays on teaching, learning, and assessing the reading process. The first section contains essays on learning contexts that are interactive and participatory, while essays in the second…

  11. The Ford Partnership for Advanced Studies: A New Case for Curriculum Integration in Technology Education

    ERIC Educational Resources Information Center

    Zinser, Richard; Poledink, Paul

    2005-01-01

    The Ford Motor Company launched a new pre-engineering curriculum for high schools in the Fall of 2004. Building on an earlier manufacturing program, the development process for the Ford Partnership for Advanced Studies took approximately three years. Ford and the course designers wanted the new program to incorporate the best principles and…

  12. Processing negation and disjunction in logic programs through integrity constraints.

    SciTech Connect

    Gaasterland, T.; Lobo, J.; Mathematics and Computer Science; Univ. of Illinois at Chicago

    1993-01-01

    Integrity constraints were initially defined to verify the correctness of the data that is stored in a database. They were used to restrict the modifications that can be applied to a database. However, there are many other applications in which integrity constraints can play an important role. For example, the semantic query optimization method developed by Chakravarthy, Grant, and Minker for definite deductive databases uses integrity constraints during query processing to prevent the exploration of search space that is bound to fail. In this paper, we generalize the semantic query optimization method to apply to negated atoms. The generalized method is referred to as semantic compilation. This exploration has led to two significant results. First, semantic compilation provides an alternative search space for negative query literals. The alternative search space can find answers in cases for which negation-as-finite-failure and constructive negation cannot. Second, we show how semantic compilation can be used to transform a disjunctive database with or without functions and denial constraints without negation into a new disjunctive database that complies with the integrity constraints.

  13. Process modeling for the Integrated Thermal Treatment System (ITTS) study

    SciTech Connect

    Liebelt, K.H.; Brown, B.W.; Quapp, W.J.

    1995-09-01

    This report describes the process modeling done in support of the integrated thermal treatment system (ITTS) study, Phases 1 and 2. ITTS consists of an integrated systems engineering approach for uniform comparison of widely varying thermal treatment technologies proposed for treatment of the contact-handled mixed low-level wastes (MLLW) currently stored in the U.S. Department of Energy complex. In the overall study, 19 systems were evaluated. Preconceptual designs were developed that included all of the various subsystems necessary for a complete installation, from waste receiving through to primary and secondary stabilization and disposal of the processed wastes. Each system included the necessary auxiliary treatment subsystems so that all of the waste categories in the complex were fully processed. The objective of the modeling task was to perform mass and energy balances of the major material components in each system. Modeling of trace materials, such as pollutants and radioactive isotopes, were beyond the present scope. The modeling of the main and secondary thermal treatment, air pollution control, and metal melting subsystems was done using the ASPEN PLUS process simulation code, Version 9.1-3. These results were combined with calculations for the remainder of the subsystems to achieve the final results, which included offgas volumes, and mass and volume waste reduction ratios.

  14. Integration Science and Technology of Advanced Ceramics for Energy and Environmental Applications

    NASA Technical Reports Server (NTRS)

    Singh, M.

    2012-01-01

    The discovery of new and innovative materials has been known to culminate in major turning points in human history. The transformative impact and functional manifestation of new materials have been demonstrated in every historical era by their integration into new products, systems, assemblies, and devices. In modern times, the integration of new materials into usable products has a special relevance for the technological development and economic competitiveness of industrial societies. Advanced ceramic technologies dramatically impact the energy and environmental landscape due to potential wide scale applications in all aspects of energy production, storage, distribution, conservation, and efficiency. Examples include gas turbine propulsion systems, fuel cells, thermoelectrics, photovoltaics, distribution and transmission systems based on superconductors, nuclear power generation, and waste disposal. Robust ceramic integration technologies enable hierarchical design and manufacturing of intricate ceramic components starting with geometrically simpler units that are subsequently joined to themselves and/or to metals to create components with progressively higher levels of complexity and functionality. However, for the development of robust and reliable integrated systems with optimum performance under different operating conditions, the detailed understanding of various thermochemical and thermomechanical factors is critical. Different approaches are required for the integration of ceramic-metal and ceramic-ceramic systems across length scales (macro to nano). In this presentation, a few examples of integration of ceramic to metals and ceramic to ceramic systems will be presented. Various challenges and opportunities in design, fabrication, and testing of integrated similar (ceramic-ceramic) and dissimilar (ceramic-metal) material systems will be discussed. Potential opportunities and need for the development of innovative design philosophies, approaches, and

  15. Preface to the special issue on "Integrated Microwave Photonic Signal Processing"

    NASA Astrophysics Data System (ADS)

    Azaña, José; Yao, Jianping

    2016-08-01

    As Guest Editors, we are pleased to introduce this special issue on "Integrated Microwave Photonic Signal Processing" published by the Elsevier journal Optics Communications. Microwave photonics is a field of growing importance from both scientific and practical application perspectives. The field of microwave photonics is devoted to the study, development and application of optics-based techniques and technologies aimed to the generation, processing, control, characterization and/or distribution of microwave signals, including signals well into the millimeter-wave frequency range. The use of photonic technologies for these microwave applications translates into a number of key advantages, such as the possibility of dealing with high-frequency, wide bandwidth signals with minimal losses and reduced electromagnetic interferences, and the potential for enhanced reconfigurability. The central purpose of this special issue is to provide an overview of the state of the art of generation, processing and characterization technologies for high-frequency microwave signals. It is now widely accepted that the practical success of microwave photonics at a large scale will essentially depend on the realization of high-performance microwave-photonic signal-processing engines in compact and integrated formats, preferably on a chip. Thus, the focus of the issue is on techniques implemented using integrated photonic technologies, with the goal of providing an update of the most recent advances toward realization of this vision.

  16. Integration between chemical oxidation and membrane thermophilic biological process.

    PubMed

    Bertanza, G; Collivignarelli, M C; Crotti, B M; Pedrazzani, R

    2010-01-01

    Full scale applications of activated sludge thermophilic aerobic process for treatment of liquid wastes are rare. This experimental work was carried out at a facility, where a thermophilic reactor (1,000 m(3) volume) is operated. In order to improve the global performance of the plant, it was decided to upgrade it, by means of two membrane filtration units (ultrafiltration -UF-, in place of the final sedimentation, and nanofiltration -NF-). Subsequently, the integration with chemical oxidation (O(3) and H(2)O(2)/UV processes) was taken into consideration. Studied solutions dealt with oxidation of both the NF effluents (permeate and concentrate). Based on experimental results and economic evaluation, an algorithm was proposed for defining limits of convenience of this process.

  17. Development of a plan for automating integrated circuit processing

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The operations analysis and equipment evaluations pertinent to the design of an automated production facility capable of manufacturing beam-lead CMOS integrated circuits are reported. The overall plan shows approximate cost of major equipment, production rate and performance capability, flexibility, and special maintenance requirements. Direct computer control is compared with supervisory-mode operations. The plan is limited to wafer processing operations from the starting wafer to the finished beam-lead die after separation etching. The work already accomplished in implementing various automation schemes, and the type of equipment which can be found for instant automation are described. The plan is general, so that small shops or large production units can perhaps benefit. Examples of major types of automated processing machines are shown to illustrate the general concepts of automated wafer processing.

  18. Integrated Advanced Sounding Unit-A (AMSU-A). Configuration Management Plan

    NASA Technical Reports Server (NTRS)

    Cavanaugh, J.

    1996-01-01

    The purpose of this plan is to identify the baseline to be established during the development life cycle of the integrated AMSU-A, and define the methods and procedures which Aerojet will follow in the implementation of configuration control for each established baseline. Also this plan establishes the Configuration Management process to be used for the deliverable hardware, software, and firmware of the Integrated AMSU-A during development, design, fabrication, test, and delivery.

  19. Advanced Communication and Control for Distributed Energy Resource Integration: Phase 2 Scientific Report

    SciTech Connect

    BPL Global

    2008-09-30

    The objective of this research project is to demonstrate sensing, communication, information and control technologies to achieve a seamless integration of multivendor distributed energy resource (DER) units at aggregation levels that meet individual user requirements for facility operations (residential, commercial, industrial, manufacturing, etc.) and further serve as resource options for electric and natural gas utilities. The fully demonstrated DER aggregation system with embodiment of communication and control technologies will lead to real-time, interactive, customer-managed service networks to achieve greater customer value. Work on this Advanced Communication and Control Project (ACCP) consists of a two-phase approach for an integrated demonstration of communication and control technologies to achieve a seamless integration of DER units to reach progressive levels of aggregated power output. Phase I involved design and proof-of-design, and Phase II involves real-world demonstration of the Phase I design architecture. The scope of work for Phase II of this ACCP involves demonstrating the Phase I design architecture in large scale real-world settings while integrating with the operations of one or more electricity supplier feeder lines. The communication and control architectures for integrated demonstration shall encompass combinations of software and hardware components, including: sensors, data acquisition and communication systems, remote monitoring systems, metering (interval revenue, real-time), local and wide area networks, Web-based systems, smart controls, energy management/information systems with control and automation of building energy loads, and demand-response management with integration of real-time market pricing. For Phase II, BPL Global shall demonstrate the Phase I design for integrating and controlling the operation of more than 10 DER units, dispersed at various locations in one or more Independent System Operator (ISO) Control Areas, at

  20. Integration and optimization of the DUV ALTA pattern generation system using a CAR process with the Tetra photomask etch system

    NASA Astrophysics Data System (ADS)

    Buxbaum, Alex H.; Fuller, Scott E.; Montgomery, Warren; Ungureit, Michael E.

    2003-12-01

    Etec Systems, the Mask Business Group of Applied Materials, is in a unique position within the mask making industry - Etec has the opportunity to integrate individual parts of the overall mask manufacturing process to provide a more complete solution. Here we present the integration of the DUV ALTA laser pattern generator and the TetraTM photomask etch system with advanced CAR resist processes. Dry etch process effects of flow, overetch, and oxygen content (in a Cl2/O2/He plasma) are discussed for the baseline POR resist in terms of etch rate, selectivity, etch bias, CD uniformity and micro-loading; the optimized etch process space was then implemented for advanced CAR resists. Iso-dense bias, football pattern loading and other pattern transfer results influencing mask manufactureability are also presented. Within the synthesis and optimization of the pattern generation system, process, and dry etch sub 13 nm range process uniformity has been achieved. The integrated ALTA / Tetra / Advanced-CAR solution set is characterized on both Etec test patterns and customer demonstrations.

  1. Development of Integrated Programs for Aerospace-vehicle design (IPAD): Integrated information processing requirements

    NASA Technical Reports Server (NTRS)

    Southall, J. W.

    1979-01-01

    The engineering-specified requirements for integrated information processing by means of the Integrated Programs for Aerospace-Vehicle Design (IPAD) system are presented. A data model is described and is based on the design process of a typical aerospace vehicle. General data management requirements are specified for data storage, retrieval, generation, communication, and maintenance. Information management requirements are specified for a two-component data model. In the general portion, data sets are managed as entities, and in the specific portion, data elements and the relationships between elements are managed by the system, allowing user access to individual elements for the purpose of query. Computer program management requirements are specified for support of a computer program library, control of computer programs, and installation of computer programs into IPAD.

  2. Introduction to special section of the Journal of Family Psychology, advances in mixed methods in family psychology: integrative and applied solutions for family science.

    PubMed

    Weisner, Thomas S; Fiese, Barbara H

    2011-12-01

    Mixed methods in family psychology refer to the systematic integration of qualitative and quantitative techniques to represent family processes and settings. Over the past decade, significant advances have been made in study design, analytic strategies, and technological support (such as software) that allow for the integration of quantitative and qualitative methods and for making appropriate inferences from mixed methods. This special section of the Journal of Family Psychology illustrates how mixed methods may be used to advance knowledge in family science through identifying important cultural differences in family structure, beliefs, and practices, and revealing patterns of family relationships to generate new measurement paradigms and inform clinical practice. Guidance is offered to advance mixed methods research in family psychology through sound principles of peer review.

  3. Cost analysis of advanced turbine blade manufacturing processes

    NASA Technical Reports Server (NTRS)

    Barth, C. F.; Blake, D. E.; Stelson, T. S.

    1977-01-01

    A rigorous analysis was conducted to estimate relative manufacturing costs for high technology gas turbine blades prepared by three candidate materials process systems. The manufacturing costs for the same turbine blade configuration of directionally solidified eutectic alloy, an oxide dispersion strengthened superalloy, and a fiber reinforced superalloy were compared on a relative basis to the costs of the same blade currently in production utilizing the directional solidification process. An analytical process cost model was developed to quantitatively perform the cost comparisons. The impact of individual process yield factors on costs was also assessed as well as effects of process parameters, raw materials, labor rates and consumable items.

  4. Development of an integrated energetic neutral particle measurement system on experimental advanced full superconducting tokamak

    SciTech Connect

    Zhu, Y. B. Liu, D.; Heidbrink, W. W.; Zhang, J. Z.; Qi, M. Z.; Xia, S. B.; Wan, B. N.; Li, J. G.

    2014-11-15

    Full function integrated, compact silicon photodiode based solid state neutral particle analyzers (ssNPA) have been developed for energetic particle (EP) relevant studies on the Experimental Advanced Superconducting Tokamak (EAST). The ssNPAs will be mostly operated in advanced current mode with a few channels to be operated in conventional pulse-counting mode, aiming to simultaneously achieve individually proved ultra-fast temporal, spatial, and spectral resolution capabilities. The design details together with considerations on EAST specific engineering realities and physics requirements are presented. The system, including a group of single detectors on two vertical ports and two 16-channel arrays on a horizontal port, can provide both active and passive charge exchange measurements. ssNPA detectors, with variable thickness of ultra thin tungsten dominated foils directly deposited on the front surface, are specially fabricated and utilized to achieve about 22 keV energy resolution for deuterium particle detection.

  5. Development of an integrated energetic neutral particle measurement system on experimental advanced full superconducting tokamak

    NASA Astrophysics Data System (ADS)

    Zhu, Y. B.; Zhang, J. Z.; Qi, M. Z.; Xia, S. B.; Liu, D.; Heidbrink, W. W.; Wan, B. N.; Li, J. G.

    2014-11-01

    Full function integrated, compact silicon photodiode based solid state neutral particle analyzers (ssNPA) have been developed for energetic particle (EP) relevant studies on the Experimental Advanced Superconducting Tokamak (EAST). The ssNPAs will be mostly operated in advanced current mode with a few channels to be operated in conventional pulse-counting mode, aiming to simultaneously achieve individually proved ultra-fast temporal, spatial, and spectral resolution capabilities. The design details together with considerations on EAST specific engineering realities and physics requirements are presented. The system, including a group of single detectors on two vertical ports and two 16-channel arrays on a horizontal port, can provide both active and passive charge exchange measurements. ssNPA detectors, with variable thickness of ultra thin tungsten dominated foils directly deposited on the front surface, are specially fabricated and utilized to achieve about 22 keV energy resolution for deuterium particle detection.

  6. Performance improvements of single-engine business airplanes by the integration of advanced technologies

    NASA Technical Reports Server (NTRS)

    Kohlman, D. L.

    1982-01-01

    An assessment is presented of the performance gains and economic impact of the integration in general aviation aircraft of advanced technologies, relating to such aspects of design as propulsion, natural laminar flow, lift augmentation, unconventional configurations, and advanced aluminum and composite structures. All considerations are with reference to a baseline mission of 1300 nm range and 300-knot cruise speed with a 1300-lb payload, and a baseline aircraft with a 40 lb/sq ft wing loading and an aspect ratio of 8. Extensive analytical results are presented from the NASA-sponsored General Aviation Synthesis Program. Attention is given to the relative performance gains to be expected from the single-engined baseline aircraft's use of a low cost general aviation turbine engine, a spark-ignited reciprocating engine, a diesel engine, and a Wankel rotary engine.

  7. Development of an integrated energetic neutral particle measurement system on experimental advanced full superconducting tokamak.

    PubMed

    Zhu, Y B; Zhang, J Z; Qi, M Z; Xia, S B; Liu, D; Heidbrink, W W; Wan, B N; Li, J G

    2014-11-01

    Full function integrated, compact silicon photodiode based solid state neutral particle analyzers (ssNPA) have been developed for energetic particle (EP) relevant studies on the Experimental Advanced Superconducting Tokamak (EAST). The ssNPAs will be mostly operated in advanced current mode with a few channels to be operated in conventional pulse-counting mode, aiming to simultaneously achieve individually proved ultra-fast temporal, spatial, and spectral resolution capabilities. The design details together with considerations on EAST specific engineering realities and physics requirements are presented. The system, including a group of single detectors on two vertical ports and two 16-channel arrays on a horizontal port, can provide both active and passive charge exchange measurements. ssNPA detectors, with variable thickness of ultra thin tungsten dominated foils directly deposited on the front surface, are specially fabricated and utilized to achieve about 22 keV energy resolution for deuterium particle detection.

  8. Integration of adaptive process control with computational simulation for spin-forming

    SciTech Connect

    Raboin, P. J., LLNL

    1998-03-10

    Improvements in spin-forming capabilities through upgrades to a metrology and machine control system and advances in numerical simulation techniques were studied in a two year project funded by Laboratory Directed Research and Development (LDRD) at Lawrence Livermore National Laboratory. Numerical analyses were benchmarked with spin-forming experiments and computational speeds increased sufficiently to now permit actual part forming simulations. Extensive modeling activities examined the simulation speeds and capabilities of several metal forming computer codes for modeling flat plate and cylindrical spin-forming geometries. Shape memory research created the first numerical model to describe this highly unusual deformation behavior in Uranium alloys. A spin-forming metrology assessment led to sensor and data acquisition improvements that will facilitate future process accuracy enhancements, such as a metrology frame. Finally, software improvements (SmartCAM) to the manufacturing process numerically integrate the part models to the spin-forming process and to computational simulations.

  9. Application Evaluation of Air-Sparging and Aerobic Bioremediation in PAM(Physical Aquifer Model) with Advanced and Integrated Module

    NASA Astrophysics Data System (ADS)

    Hong, U.; Ko, J.; Park, S.; Kim, Y.; Kwon, S.; Ha, J.; Lim, J.; Han, K.

    2010-12-01

    It is generally difficult for a single process to remediate contaminated soil and groundwater contaminated with various organic compounds such as total petroleum hydrocarbon (TPH), benzene, toluene, ethylbenzene, xylene (BTEX), chlorinated aliphatic hydrocarbons (CAHs) because those contaminants show different chemical properties in two phases (e.g. soil and groundwater). Therefore, it is necessary to design an in-situ remediation system which can remove various contaminants simultaneously. For the purpose, we constructed integrated well module which can apply several remediation process such as air sparging, soil vapor extraction, and bioventing. The advanced integrated module consisted of three main parts such as head, body, and end cap. First of all, head part has three 3.6-cm-diameter stainless lines and can simultaneously inject air or extract NAPL, respectively. Secondly, body part has two 10-cm-height screen intervals with 100-mesh stainless inserts for unsaturated and smear zone. Lastly, we constructed three different sizes of end caps for injection and extraction from a saturated zone. We assumed that the integrated module can play bioremediation, air sparging, cometabolic sparging, chemical oxidation. In this study, we examined application of air sparing and aerobic bioremediation of toluene in Physical Aquifer Model (PAM) with an integrated well module. During air sparging experiments, toluene concentration decreased by injection of air. In addition, we accomplished bioremediation experiment to evaluate removal of toluene by indigenous microbes in PAM with continuous air injection. From the two experiments result, we confirmed that air sparging and aerobic bioremediation processes can be simultaneously carried out by an intergrated well module.

  10. Valorization of artichoke wastewaters by integrated membrane process.

    PubMed

    Conidi, C; Cassano, A; Garcia-Castello, E

    2014-01-01

    In this work an integrated membrane system was developed on laboratory scale to fractionate artichoke wastewaters. In particular, a preliminary ultrafiltration (UF) step, based on the use of hollow fibre membranes, was investigated to remove suspended solids from an artichoke extract. The clarified solution was then submitted to a nanofiltration (NF) step. Two different 2.5 × 21 in. spiral-wound membranes (Desal DL and NP030) with different properties were investigated. Both membranes showed a high rejection towards the phenolic compounds analysed (chlorogenic acid, cynarin and apigenin-7-O-glucoside) and, consequently, towards the total antioxidant activity (TAA). On the other hand, the Desal DL membrane was characterized by a high rejection towards sugar compounds (glucose, fructose and sucrose) (100%) when compared with the NP030 membrane (4.02%). The performance of selected membranes in terms of permeate flux, fouling index and water permeability recovery was also evaluated. On the base of experimental results, an integrated membrane process for the fractionation of artichoke wastewaters was proposed. This conceptual process design permitted to obtain different valuable products: a retentate fraction (from the NP030 membrane) enriched in phenolic compounds suitable for nutraceutical, cosmeceutical or food application; a retentate fraction (from the Desal DL membrane), enriched in sugar compounds, of interest for food applications; a clear permeate (from the Desal DL membrane) which can be reused as process water or for membrane cleaning. PMID:24125635

  11. Integrated process for high conversion and high yield protein PEGylation.

    PubMed

    Pfister, David; Morbidelli, Massimo

    2016-08-01

    Over the past decades, PEGylation has become a powerful technique to increase the in vivo circulation half-life of therapeutic proteins while maintaining their activity. The development of new therapeutic proteins is likely to require further improvement of the PEGylation methods to reach even better selectivity and yield for reduced costs. The intensification of the PEGylation process was investigated through the integration of a chromatographic step in order to increase yield and conversion for the production of mono-PEGylated protein. Lysozyme was used as a model protein to demonstrate the feasibility of such approach. In the integrated reaction/separation process, chromatography was used as fractionation technique in order to isolate and recycle the unreacted protein from the PEGylated products. This allows operating the reactor with short reaction times so as to minimize the production of multi-PEGylated proteins (i.e., conjugated to more than one polymer). That is, the reaction is stopped before the desired product (i.e., the mono-PEGylated protein) can further react, thus leading to limited conversion but high yield. The recycling of the unreacted protein was then considered to drive the protein overall conversion to completion. This approach has great potential to improve processes whose yield is limited by the further reaction of the product leading to undesirable by-products. Biotechnol. Bioeng. 2016;113: 1711-1718. © 2016 Wiley Periodicals, Inc.

  12. Integrated time-lapse geoelectrical imaging of wetland hydrological processes

    NASA Astrophysics Data System (ADS)

    Uhlemann, S. S.; Sorensen, J. P. R.; House, A. R.; Wilkinson, P. B.; Roberts, C.; Gooddy, D. C.; Binley, A. M.; Chambers, J. E.

    2016-03-01

    Wetlands provide crucial habitats, are critical in the global carbon cycle, and act as key biogeochemical and hydrological buffers. The effectiveness of these services is mainly controlled by hydrological processes, which can be highly variable both spatially and temporally due to structural complexity and seasonality. Spatial analysis of 2-D geoelectrical monitoring data integrated into the interpretation of conventional hydrological data has been implemented to provide a detailed understanding of hydrological processes in a riparian wetland. A two-layered hydrological system was observed in the peat. In the lower part of the peat, upwelling of deeper groundwater from underlying deposits was considered the driver for a 30% increase in peat resistivity during Winter/Spring. In Spring/Summer there was a 60% decrease in resistivity in the near-surface peats due to plant transpiration and/or microbial activity. Water exchange between the layers only appeared to be initiated following large drops in the encircling surface water stage. For the first time, we demonstrated that automated interpretation of geoelectrical data can be used to quantify ground movement in the vertical direction. Here, we applied this method to quantify shrink-swell of expandable soils, affecting hydrological parameters, such as, porosity and permeability. This study shows that an integrated interpretation of hydrological and geophysical data can significantly improve the understanding of wetland hydrological processes. Potentially, this approach can provide the basis for the evaluation of ecosystem services and may aid in the optimization of wetland management strategies.

  13. Reinventing the International Space Station Payload Integration Processes and Capabilities

    NASA Technical Reports Server (NTRS)

    Jones, Rod; Price, Carmen; Copeland, Scott; Geiger, Wade; Geiger, Wade; Rice, Amanda; Lauchner, Adam

    2011-01-01

    The fundamental ISS payload integration philosophy, processes and capabilities were established in the context of how NASA science programs were conducted and executed in the early 1990 s. Today, with the designation of the United States (US) portion of ISS as a National Lab, the ISS payload customer base is growing to include other government agencies, private and commercial research. The fields of research are becoming more diverse expanding from the NASA centric physical, materials and human research sciences to test beds for exploration and technology demonstration, biology and biotechnology, and as an Earth and Space science platform. This new customer base has a broader more diverse set of expectations and requirements for payload design, verification, integration, test, training, and operations. One size fits all processes are not responsive to this broader customer base. To maintain an organization s effectiveness it must listen to its customers, understand their needs, learn from its mistakes, and foster an environment of continual process improvement. The ISS Payloads office is evolving to meet these new customer expectations.

  14. 78 FR 32010 - Pipeline Safety: Public Workshop on Integrity Verification Process

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-28

    ... published April 11, 2000, (65 FR 19477). Information on Services for Individuals with Disabilities: For... Verification Process AGENCY: Pipeline and Hazardous Materials Safety Administration, DOT. ACTION: Notice of... ``Integrity Verification Process.'' The Integrity Verification Process shares similar characteristics...

  15. Moral judgment as information processing: an integrative review

    PubMed Central

    Guglielmo, Steve

    2015-01-01

    How do humans make moral judgments about others’ behavior? This article reviews dominant models of moral judgment, organizing them within an overarching framework of information processing. This framework poses two distinct questions: (1) What input information guides moral judgments? and (2) What psychological processes generate these judgments? Information Models address the first question, identifying critical information elements (including causality, intentionality, and mental states) that shape moral judgments. A subclass of Biased Information Models holds that perceptions of these information elements are themselves driven by prior moral judgments. Processing Models address the second question, and existing models have focused on the relative contribution of intuitive versus deliberative processes. This review organizes existing moral judgment models within this framework and critically evaluates them on empirical and theoretical grounds; it then outlines a general integrative model grounded in information processing, and concludes with conceptual and methodological suggestions for future research. The information-processing framework provides a useful theoretical lens through which to organize extant and future work in the rapidly growing field of moral judgment. PMID:26579022

  16. Fundamentals of the advanced Fresnel tracer used for two-dimensional in-process micromeasurements

    NASA Astrophysics Data System (ADS)

    Huhnke, Burkhard; Urbschat, Gunnar

    1998-12-01

    The drive to short development times and closed-loop process control has created a demand for new tools to collect the needed dimensional data. Optical technologies in fields such as sensors, signal processing, metrology, and instrumentation offer unique solutions to many areas of monitoring, diagnostics and control. The Advanced Fresnel Tracer (AFT), an innovative instrumentation for in-process micromeasurement consisting of a smart optical sensors and an automatic follow-up system, based on a temperature controlled grated glass scale or interferometer will be presented. This device may readily be integrated into a turning or grinding machine, e.g. for the needs of quality assurance and to enable an on-line automatic compensation of diameter deviations/1/2. The device contains an optical Fresnel diffraction sensor allowing a fast measurement of the surface topography, achieving three goals: 1) improvement of the instantaneous diameter measurement, 2) surface quality inspection, and 3) determination of the edge gradient or the waviness of the workpiece. The new compact, smart, and precise optical multiparamter sensor, the AFT has been developed and tested.

  17. NASA Advanced Concepts Office, Earth-To-Orbit Team Design Process and Tools

    NASA Technical Reports Server (NTRS)

    Waters, Eric D.; Garcia, Jessica; Threet, Grady E., Jr.; Phillips, Alan

    2013-01-01

    The Earth-to-Orbit Team (ETO) of the Advanced Concepts Office (ACO) at NASA Marshall Space Flight Center (MSFC) is considered the pre-eminent "go-to" group for pre-phase A and phase A concept definition. Over the past several years the ETO team has evaluated thousands of launch vehicle concept variations for a significant number of studies including agency-wide efforts such as the Exploration Systems Architecture Study (ESAS), Constellation, Heavy Lift Launch Vehicle (HLLV), Augustine Report, Heavy Lift Propulsion Technology (HLPT), Human Exploration Framework Team (HEFT), and Space Launch System (SLS). The ACO ETO Team is called upon to address many needs in NASA's design community; some of these are defining extremely large trade-spaces, evaluating advanced technology concepts which have not been addressed by a large majority of the aerospace community, and the rapid turn-around of highly time critical actions. It is the time critical actions, those often limited by schedule or little advanced warning, that have forced the five member ETO team to develop a design process robust enough to handle their current output level in order to meet their customer's needs. Based on the number of vehicle concepts evaluated over the past year this output level averages to four completed vehicle concepts per day. Each of these completed vehicle concepts includes a full mass breakdown of the vehicle to a tertiary level of subsystem components and a vehicle trajectory analysis to determine optimized payload delivery to specified orbital parameters, flight environments, and delta v capability. A structural analysis of the vehicle to determine flight loads based on the trajectory output, material properties, and geometry of the concept is also performed. Due to working in this fast-paced and sometimes rapidly changing environment, the ETO Team has developed a finely tuned process to maximize their delivery capabilities. The objective of this paper is to describe the interfaces

  18. NASA Advanced Concepts Office, Earth-To-Orbit Team Design Process and Tools

    NASA Technical Reports Server (NTRS)

    Waters, Eric D.; Creech, Dennis M.; Garcia, Jessica; Threet, Grady E., Jr.; Phillips, Alan

    2012-01-01

    The Earth-to-Orbit Team (ETO) of the Advanced Concepts Office (ACO) at NASA Marshall Space Flight Center (MSFC) is considered the pre-eminent go-to group for pre-phase A and phase A concept definition. Over the past several years the ETO team has evaluated thousands of launch vehicle concept variations for a significant number of studies including agency-wide efforts such as the Exploration Systems Architecture Study (ESAS), Constellation, Heavy Lift Launch Vehicle (HLLV), Augustine Report, Heavy Lift Propulsion Technology (HLPT), Human Exploration Framework Team (HEFT), and Space Launch System (SLS). The ACO ETO Team is called upon to address many needs in NASA s design community; some of these are defining extremely large trade-spaces, evaluating advanced technology concepts which have not been addressed by a large majority of the aerospace community, and the rapid turn-around of highly time critical actions. It is the time critical actions, those often limited by schedule or little advanced warning, that have forced the five member ETO team to develop a design process robust enough to handle their current output level in order to meet their customer s needs. Based on the number of vehicle concepts evaluated over the past year this output level averages to four completed vehicle concepts per day. Each of these completed vehicle concepts includes a full mass breakdown of the vehicle to a tertiary level of subsystem components and a vehicle trajectory analysis to determine optimized payload delivery to specified orbital parameters, flight environments, and delta v capability. A structural analysis of the vehicle to determine flight loads based on the trajectory output, material properties, and geometry of the concept is also performed. Due to working in this fast-paced and sometimes rapidly changing environment, the ETO Team has developed a finely tuned process to maximize their delivery capabilities. The objective of this paper is to describe the interfaces

  19. Operational readiness: an integral part of the facility planning process.

    PubMed

    Kidd, LeeAnne; Howe, Rob

    2014-01-01

    Large capital building projects benefit from an operational readiness strategy prior to new facility occupancy. St. Joseph's Healthcare used a structured approach for their readiness planning that included individual work plan meetings, tools for ensuring integration across programs and services and process improvement support to ensure a smooth transition. Over 1100 staff were oriented using a Train-the-Trainer model. Significant effort was required to co-ordinate the customized training, which involved "staffing up" to ensure sufficient resources for backfill. Operational readiness planning places additional demands on managers, requiring support and assistance from dedicated resources both prior to occupancy and several months post-move.

  20. Operational readiness: an integral part of the facility planning process.

    PubMed

    Kidd, LeeAnne; Howe, Rob

    2014-01-01

    Large capital building projects benefit from an operational readiness strategy prior to new facility occupancy. St. Joseph's Healthcare used a structured approach for their readiness planning that included individual work plan meetings, tools for ensuring integration across programs and services and process improvement support to ensure a smooth transition. Over 1100 staff were oriented using a Train-the-Trainer model. Significant effort was required to co-ordinate the customized training, which involved "staffing up" to ensure sufficient resources for backfill. Operational readiness planning places additional demands on managers, requiring support and assistance from dedicated resources both prior to occupancy and several months post-move. PMID:25906468