Science.gov

Sample records for advanced integration matrix

  1. Advanced Integration Matrix Education Outreach

    NASA Technical Reports Server (NTRS)

    Paul Heather L.

    2004-01-01

    The Advanced Integration Matrix (AIM) will design a ground-based test facility for developing revolutionary integrated systems for joint human-robotic missions in order to study and solve systems-level integration issues for exploration missions beyond Low Earth Orbit (LEO). This paper describes development plans for educational outreach activities related to technological and operational integration scenarios similar to the challenges that will be encountered through this project. The education outreach activities will provide hands-on, interactive exercises to allow students of all levels to experience design and operational challenges similar to what NASA deals with everyday in performing the integration of complex missions. These experiences will relate to and impact students everyday lives by demonstrating how their interests in science and engineering can develop into future careers, and reinforcing the concepts of teamwork and conflict resolution. Allowing students to experience and contribute to real-world development, research, and scientific studies of ground-based simulations for complex exploration missions will stimulate interest in the space program, and bring NASA's challenges to the student level. By enhancing existing educational programs and developing innovative activities and presentations, AIM will support NASA s endeavor to "inspire the next generation of explorers.. .as only NASA can."

  2. A Probabilistic Risk Analysis (PRA) of Human Space Missions for the Advanced Integration Matrix (AIM)

    NASA Technical Reports Server (NTRS)

    Jones, Harry W.; Dillon-Merrill, Robin L.; Thomas, Gretchen A.

    2003-01-01

    The Advanced Integration Matrix (AIM) Project u7ill study and solve systems-level integration issues for exploration missions beyond Low Earth Orbit (LEO), through the design and development of a ground-based facility for developing revolutionary integrated systems for joint human-robotic missions. This paper describes a Probabilistic Risk Analysis (PRA) of human space missions that was developed to help define the direction and priorities for AIM. Risk analysis is required for all major NASA programs and has been used for shuttle, station, and Mars lander programs. It is a prescribed part of early planning and is necessary during concept definition, even before mission scenarios and system designs exist. PRA cm begin when little failure data are available, and be continually updated and refined as detail becomes available. PRA provides a basis for examining tradeoffs among safety, reliability, performance, and cost. The objective of AIM's PRA is to indicate how risk can be managed and future human space missions enabled by the AIM Project. Many critical events can cause injuries and fatalities to the crew without causing loss of vehicle or mission. Some critical systems are beyond AIM's scope, such as propulsion and guidance. Many failure-causing events can be mitigated by conducting operational tests in AIM, such as testing equipment and evaluating operational procedures, especially in the areas of communications and computers, autonomous operations, life support, thermal design, EVA and rover activities, physiological factors including habitation, medical equipment, and food, and multifunctional tools and repairable systems. AIM is well suited to test and demonstrate the habitat, life support, crew operations, and human interface. Because these account for significant crew, systems performance, and science risks, AIM will help reduce mission risk, and missions beyond LEO are far enough in the future that AIM can have significant impact.

  3. Matrix membranes and integrability

    SciTech Connect

    Zachos, C.; Fairlie, D.; Curtright, T.

    1997-06-01

    This is a pedagogical digest of results reported in Curtright, Fairlie, {ampersand} Zachos 1997, and an explicit implementation of Euler`s construction for the solution of the Poisson Bracket dual Nahm equation. But it does not cover 9 and 10-dimensional systems, and subsequent progress on them Fairlie 1997. Cubic interactions are considered in 3 and 7 space dimensions, respectively, for bosonic membranes in Poisson Bracket form. Their symmetries and vacuum configurations are explored. Their associated first order equations are transformed to Nahm`s equations, and are hence seen to be integrable, for the 3-dimensional case, by virtue of the explicit Lax pair provided. Most constructions introduced also apply to matrix commutator or Moyal Bracket analogs.

  4. Integrable matrix theory: Level statistics.

    PubMed

    Scaramazza, Jasen A; Shastry, B Sriram; Yuzbashyan, Emil A

    2016-09-01

    We study level statistics in ensembles of integrable N×N matrices linear in a real parameter x. The matrix H(x) is considered integrable if it has a prescribed number n>1 of linearly independent commuting partners H^{i}(x) (integrals of motion) [H(x),H^{i}(x)]=0, [H^{i}(x),H^{j}(x)]=0, for all x. In a recent work [Phys. Rev. E 93, 052114 (2016)2470-004510.1103/PhysRevE.93.052114], we developed a basis-independent construction of H(x) for any n from which we derived the probability density function, thereby determining how to choose a typical integrable matrix from the ensemble. Here, we find that typical integrable matrices have Poisson statistics in the N→∞ limit provided n scales at least as logN; otherwise, they exhibit level repulsion. Exceptions to the Poisson case occur at isolated coupling values x=x_{0} or when correlations are introduced between typically independent matrix parameters. However, level statistics cross over to Poisson at O(N^{-0.5}) deviations from these exceptions, indicating that non-Poissonian statistics characterize only subsets of measure zero in the parameter space. Furthermore, we present strong numerical evidence that ensembles of integrable matrices are stationary and ergodic with respect to nearest-neighbor level statistics.

  5. Integrability and generalized monodromy matrix

    SciTech Connect

    Lhallabi, T.; Moujib, A.

    2007-09-15

    We construct the generalized monodromy matrix M-circumflex({omega}) of two-dimensional string effective action by introducing the T-duality group properties. The integrability conditions with general solutions depending on spectral parameter are given. This construction is investigated for the exactly solvable Wess, Zumino, Novikov, and Witten model in pp-wave limit when B=0.

  6. Advanced ceramic matrix composites for TPS

    NASA Technical Reports Server (NTRS)

    Rasky, Daniel J.

    1992-01-01

    Recent advances in ceramic matrix composite (CMC) technology provide considerable opportunity for application to future aircraft thermal protection system (TPS), providing materials with higher temperature capability, lower weight, and higher strength and stiffness than traditional materials. The Thermal Protection Material Branch at NASA Ames Research Center has been making significant progress in the development, characterization, and entry simulation (arc-jet) testing of new CMC's. This protection gives a general overview of the Ames Thermal Protection Materials Branch research activities, followed by more detailed descriptions of recent advances in very-high temperature Zr and Hf based ceramics, high temperature, high strength SiC matrix composites, and some activities in polymer precursors and ceramic coating processing. The presentation closes with a brief comparison of maximum heat flux capabilities of advanced TPS materials.

  7. Advanced Integrated Traction System

    SciTech Connect

    Greg Smith; Charles Gough

    2011-08-31

    The United States Department of Energy elaborates the compelling need for a commercialized competitively priced electric traction drive system to proliferate the acceptance of HEVs, PHEVs, and FCVs in the market. The desired end result is a technically and commercially verified integrated ETS (Electric Traction System) product design that can be manufactured and distributed through a broad network of competitive suppliers to all auto manufacturers. The objectives of this FCVT program are to develop advanced technologies for an integrated ETS capable of 55kW peak power for 18 seconds and 30kW of continuous power. Additionally, to accommodate a variety of automotive platforms the ETS design should be scalable to 120kW peak power for 18 seconds and 65kW of continuous power. The ETS (exclusive of the DC/DC Converter) is to cost no more than $660 (55kW at $12/kW) to produce in quantities of 100,000 units per year, should have a total weight less than 46kg, and have a volume less than 16 liters. The cost target for the optional Bi-Directional DC/DC Converter is $375. The goal is to achieve these targets with the use of engine coolant at a nominal temperature of 105C. The system efficiency should exceed 90% at 20% of rated torque over 10% to 100% of maximum speed. The nominal operating system voltage is to be 325V, with consideration for higher voltages. This project investigated a wide range of technologies, including ETS topologies, components, and interconnects. Each technology and its validity for automotive use were verified and then these technologies were integrated into a high temperature ETS design that would support a wide variety of applications (fuel cell, hybrids, electrics, and plug-ins). This ETS met all the DOE 2010 objectives of cost, weight, volume and efficiency, and the specific power and power density 2015 objectives. Additionally a bi-directional converter was developed that provides charging and electric power take-off which is the first step

  8. Advanced fiber/matrix material systems

    NASA Technical Reports Server (NTRS)

    Hartness, J. Timothy

    1991-01-01

    Work completed in Phase 1 of the NASA Advanced Composite Technology program is discussed. Two towpreg forms (commingled yarns and fused powder towpregs) are being characterized under the program. These towpregs will be used to evaluate textile fabrication technologies for advanced aircraft composite structures. The unique characteristic of both of these material forms is that both fiber and matrix resin are handled in a single operation such as weaving, braiding, or fiber placement. The evaluation of both commingled and fused powder towpreg is described. Various polymer materials are considered for both subsonic and supersonic applications. Polymers initially being evaluated include thermoplastic polyimides such as Larc-TPI and New-TPI, thermoplastics such as PEEK and PEKEKK as well as some toughened crosslinked polyimides. Preliminary mechanical properties as well as tow handling are evaluated.

  9. Development of Damped Metal Matrix Composites for Advanced Structural Applications

    DTIC Science & Technology

    1990-04-01

    DTIP FiLE COPY Applied Research Laboratory (Dto 00 CD Technical Report NO DEVELOPMENT OF DAMPED METAL MATRIX COMPOSITES FOR ADVANCED STRUCTURAL...DEVELOPMENT OF DAMPED METAL MATRIX COMPOSITES FOR ADVANCED STRUCTURAL APPLICATIONS by Clark A. Updike Ram B. Bhagat Technical Report No. TR 90-004 April 1990... Metal Matrix Composites for Advanced Structural Applications 12 PERSONAL AUTHOR(S) C.A. Updike, R. Bhagat 1 3a TYPE OF REPORT 13b TIME COVERED 14. DATE

  10. Advanced integrated safeguards at Barnwell

    SciTech Connect

    Bambas, K.J.; Barnes, L.D.

    1980-06-01

    The development and initial performance testing of an advanced integrated safeguards system at the Barnwell Nuclear Fuel Plant (BNFP) is described. The program concentrates on the integration and coordination of physical security and nuclear materials control and accounting at a single location. Hardware and software for this phase have been installed and are currently being evaluated. The AGNS/DOE program is now in its third year of development at the BNFP.

  11. Nonequilibrium chemistry boundary layer integral matrix procedure

    NASA Technical Reports Server (NTRS)

    Tong, H.; Buckingham, A. C.; Morse, H. L.

    1973-01-01

    The development of an analytic procedure for the calculation of nonequilibrium boundary layer flows over surfaces of arbitrary catalycities is described. An existing equilibrium boundary layer integral matrix code was extended to include nonequilibrium chemistry while retaining all of the general boundary condition features built into the original code. For particular application to the pitch-plane of shuttle type vehicles, an approximate procedure was developed to estimate the nonequilibrium and nonisentropic state at the edge of the boundary layer.

  12. Advanced Ceramic Matrix Composites (CMCs) for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Singh, M.

    2005-01-01

    Advanced ceramic matrix composites (CMCs) are enabling materials for a number of demanding applications in aerospace, energy, and nuclear industries. In the aerospace systems, these materials are being considered for applications in hot sections of jet engines such as the combustor liner, vanes, nozzle components, nose cones, leading edges of reentry vehicles, and space propulsion components. Applications in the energy and environmental industries include radiant heater tubes, heat exchangers, heat recuperators, gas and diesel particulate filters, and components for land based turbines for power generation. These materials are also being considered for use in the first wall and blanket components of fusion reactors. In the last few years, a number of CMC components have been developed and successfully tested for various aerospace and ground based applications. However, a number of challenges still remain slowing the wide scale implementation of these materials. They include robust fabrication and manufacturing, assembly and integration, coatings, property modeling and life prediction, design codes and databases, repair and refurbishment, and cost. Fabrication of net and complex shape components with high density and tailorable matrix properties is quite expensive, and even then various desirable properties are not achievable. In this presentation, a number of examples of successful CMC component development and testing will be provided. In addition, critical need for robust manufacturing, joining and assembly technologies in successful implementation of these systems will be discussed.

  13. Development, implementation, and test results on integrated optics switching matrix

    NASA Technical Reports Server (NTRS)

    Rutz, E.

    1982-01-01

    A small integrated optics switching matrix, which was developed, implemented, and tested, indicates high performance. The matrix serves as a model for the design of larger switching matrices. The larger integrated optics switching matrix should form the integral part of a switching center with high data rate throughput of up to 300 megabits per second. The switching matrix technique can accomplish the design goals of low crosstalk and low distortion. About 50 illustrations help explain and depict the many phases of the integrated optics switching matrix. Many equations used to explain and calculate the experimental data are also included.

  14. Probabilistic Evaluation of Advanced Ceramic Matrix Composite Structures

    NASA Technical Reports Server (NTRS)

    Abumeri, Galib H.; Chamis, Christos C.

    2003-01-01

    The objective of this report is to summarize the deterministic and probabilistic structural evaluation results of two structures made with advanced ceramic composites (CMC): internally pressurized tube and uniformly loaded flange. The deterministic structural evaluation includes stress, displacement, and buckling analyses. It is carried out using the finite element code MHOST, developed for the 3-D inelastic analysis of structures that are made with advanced materials. The probabilistic evaluation is performed using the integrated probabilistic assessment of composite structures computer code IPACS. The affects of uncertainties in primitive variables related to the material, fabrication process, and loadings on the material property and structural response behavior are quantified. The primitive variables considered are: thermo-mechanical properties of fiber and matrix, fiber and void volume ratios, use temperature, and pressure. The probabilistic structural analysis and probabilistic strength results are used by IPACS to perform reliability and risk evaluation of the two structures. The results will show that the sensitivity information obtained for the two composite structures from the computational simulation can be used to alter the design process to meet desired service requirements. In addition to detailed probabilistic analysis of the two structures, the following were performed specifically on the CMC tube: (1) predicted the failure load and the buckling load, (2) performed coupled non-deterministic multi-disciplinary structural analysis, and (3) demonstrated that probabilistic sensitivities can be used to select a reduced set of design variables for optimization.

  15. Advances by the Integral Fast Reactor Program

    SciTech Connect

    Lineberry, M.J.; Pedersen, D.R.; Walters, L.C.; Cahalan, J.E.

    1991-01-01

    The advances by the Integral Fast Reactor Program at Argonne National Laboratory are the subject of this paper. The Integral Fast Reactor (IFR) is an advanced liquid-metal-cooled reactor concept being developed at Argonne National Laboratory. The advances stressed in the paper include fuel irradiation performance, improved passive safety, and the development of a prototype fuel cycle facility. 14 refs.

  16. Advances in biomimetic regeneration of elastic matrix structures

    PubMed Central

    Sivaraman, Balakrishnan; Bashur, Chris A.

    2012-01-01

    Elastin is a vital component of the extracellular matrix, providing soft connective tissues with the property of elastic recoil following deformation and regulating the cellular response via biomechanical transduction to maintain tissue homeostasis. The limited ability of most adult cells to synthesize elastin precursors and assemble them into mature crosslinked structures has hindered the development of functional tissue-engineered constructs that exhibit the structure and biomechanics of normal native elastic tissues in the body. In diseased tissues, the chronic overexpression of proteolytic enzymes can cause significant matrix degradation, to further limit the accumulation and quality (e.g., fiber formation) of newly deposited elastic matrix. This review provides an overview of the role and importance of elastin and elastic matrix in soft tissues, the challenges to elastic matrix generation in vitro and to regenerative elastic matrix repair in vivo, current biomolecular strategies to enhance elastin deposition and matrix assembly, and the need to concurrently inhibit proteolytic matrix disruption for improving the quantity and quality of elastogenesis. The review further presents biomaterial-based options using scaffolds and nanocarriers for spatio-temporal control over the presentation and release of these biomolecules, to enable biomimetic assembly of clinically relevant native elastic matrix-like superstructures. Finally, this review provides an overview of recent advances and prospects for the application of these strategies to regenerating tissue-type specific elastic matrix structures and superstructures. PMID:23355960

  17. Advanced integrated solvent extraction systems

    SciTech Connect

    Horwitz, E.P.; Dietz, M.L.; Leonard, R.A.

    1997-10-01

    Advanced integrated solvent extraction systems are a series of novel solvent extraction (SX) processes that will remove and recover all of the major radioisotopes from acidic-dissolved sludge or other acidic high-level wastes. The major focus of this effort during the last 2 years has been the development of a combined cesium-strontium extraction/recovery process, the Combined CSEX-SREX Process. The Combined CSEX-SREX Process relies on a mixture of a strontium-selective macrocyclic polyether and a novel cesium-selective extractant based on dibenzo 18-crown-6. The process offers several potential advantages over possible alternatives in a chemical processing scheme for high-level waste treatment. First, if the process is applied as the first step in chemical pretreatment, the radiation level for all subsequent processing steps (e.g., transuranic extraction/recovery, or TRUEX) will be significantly reduced. Thus, less costly shielding would be required. The second advantage of the Combined CSEX-SREX Process is that the recovered Cs-Sr fraction is non-transuranic, and therefore will decay to low-level waste after only a few hundred years. Finally, combining individual processes into a single process will reduce the amount of equipment required to pretreat the waste and therefore reduce the size and cost of the waste processing facility. In an ongoing collaboration with Lockheed Martin Idaho Technology Company (LMITCO), the authors have successfully tested various segments of the Advanced Integrated Solvent Extraction Systems. Eichrom Industries, Inc. (Darien, IL) synthesizes and markets the Sr extractant and can supply the Cs extractant on a limited basis. Plans are under way to perform a test of the Combined CSEX-SREX Process with real waste at LMITCO in the near future.

  18. Advanced optical manufacturing digital integrated system

    NASA Astrophysics Data System (ADS)

    Tao, Yizheng; Li, Xinglan; Li, Wei; Tang, Dingyong

    2012-10-01

    It is necessarily to adapt development of advanced optical manufacturing technology with modern science technology development. To solved these problems which low of ration, ratio of finished product, repetition, consistent in big size and high precision in advanced optical component manufacturing. Applied business driven and method of Rational Unified Process, this paper has researched advanced optical manufacturing process flow, requirement of Advanced Optical Manufacturing integrated System, and put forward architecture and key technology of it. Designed Optical component core and Manufacturing process driven of Advanced Optical Manufacturing Digital Integrated System. the result displayed effective well, realized dynamic planning Manufacturing process, information integration improved ratio of production manufactory.

  19. Invariant imbedding and a matrix integral equation of neuronal networks.

    NASA Technical Reports Server (NTRS)

    Kalaba, R.; Ruspini, E. H.

    1971-01-01

    A matrix Fredholm integral equation of neuronal networks is transformed into a Cauchy system suited for numerical and analytical studies. A special case is discussed, and a connection with the classical renewal integral equation of stochastic point processes is presented.

  20. INTEGRATED COI S200 - Hi-NiCalon FIBER WITH AN S200 MATRIX (POLYMER MATRIX COMPOSITE - PMC) / AETB 1

    NASA Technical Reports Server (NTRS)

    2003-01-01

    INTEGRATED COI S200 - Hi-NiCalon FIBER WITH AN S200 MATRIX (POLYMER MATRIX COMPOSITE - PMC) / AETB 16 (FOAM CORE) / CARBON REINFORCED CYANOESTER (CERAMIC MATRIX COMPOSITE - CMC) HOT STRUCTURE, PANEL 884-1: SAMPLE 1

  1. INTEGRATED COI S200 - Hi-NiCalon FIBER WITH AN S200 MATRIX (POLYMER MATRIX COMPOSITE - PMC) / AETB 1

    NASA Technical Reports Server (NTRS)

    2003-01-01

    INTEGRATED COI S200 - Hi-NiCalon FIBER WITH AN S200 MATRIX (POLYMER MATRIX COMPOSITE - PMC) / AETB 16 (FOAM CORE) / CARBON REINFORCED CYANOESTER (CERAMIC MATRIX COMPOSITE - CMC) HOT STRUCTURE, PANEL 884-1: SAMPLE 3

  2. Development of Metal Matrix Composites for NASA'S Advanced Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    2000-01-01

    The state-of-the-art development of several aluminum and copper based Metal Matrix Composites (MMC) for NASA's advanced propulsion systems will be presented. The presentation's goal is to provide an overview of NASA-Marshall Space Flight Center's planned and on-going activities in MMC for advanced liquid rocket engines such as the X-33 vehicle's Aerospike and X-34 Fastrac engine. The focus will be on lightweight and environmental compatibility with oxygen and hydrogen of key MMC materials, within each NASA's new propulsion application, that will provide a high payoff for NASA's reusable launch vehicle systems and space access vehicles. Advanced MMC processing techniques such as plasma spray, centrifugal casting, pressure infiltration casting will be discussed. Development of a novel 3D printing method for low cost production of composite preform, and functional gradient MMC to enhanced rocket engine's dimensional stability will be presented.

  3. Advanced Environmental Barrier Coating Development for SiC-SiC Ceramic Matrix Composite Components

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Harder, Bryan; Bhatt, Ramakrishna; Kiser, Doug; Wiesner, Valerie L.

    2016-01-01

    This presentation reviews the NASA advanced environmental barrier coating (EBC) system development for SiCSiC Ceramic Matrix Composite (CMC) components for next generation turbine engines. The emphasis has been placed on the current design challenges of the 2700F environmental barrier coatings; coating processing and integration with SiCSiC CMCs and component systems; and performance evaluation and demonstration of EBC-CMC systems. This presentation also highlights the EBC-CMC system temperature capability and durability improvements through advanced compositions and architecture designs, as shown in recent simulated engine high heat flux, combustion environment, in conjunction with mechanical creep and fatigue loading testing conditions.

  4. Advanced Studies of Integrable Systems.

    DTIC Science & Technology

    1986-12-18

    Fluctuations in Magnetized Plasmas (Phys. Fluids 27, 1169-75 (1984)] (coauthored with S.N. Antani) The nonlinear interactions of whistler waves with density... Dynamica Problems in Soliton Systems, pp 12-22. ed. S. Takeno, Springer-Verlag, NY (1985)]. S 11. Forced Integrable Systems - An Overview, D. J. Kaup...Kaup, P.J. Hansen, S. Roy Choudhury and Gary E. Thomas (accepted for publication in Phys. Fluids ). A singular perturbation method is used to solve this

  5. Advanced Wireless Integrated Navy Network

    DTIC Science & Technology

    2005-03-01

    Basing visualization of wireless technologies, Ad Hoc networks , network protocols, real-time resource allocation, Ultra Wideband (UWB) communications...4.1 TIP #1: Distributed MIMO UWB sensor networks incorporating software radio 67 4.2 TIP #2: Close-in UWB wireless with applications to Sea- Basing 68...4.3 TIP #3: Secure Ad Hoc Networks 73 4.4 TIP #4: Integration of Close-in UWB wireless with ESM crane for Sea Basing applications 75 5. FINANCIAL REPORT

  6. Development of Metal Matrix Composites for NASA's Advanced Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Lee, J.; Elam, S.

    2001-01-01

    The state-of-the-art development of several Metal Matrix Composites (MMC) for NASA's advanced propulsion systems will be presented. The goal is to provide an overview of NASA-Marshall Space Flight Center's on-going activities in MMC components for advanced liquid rocket engines such as the X-33 vehicle's Aerospike engine and X-34's Fastrac engine. The focus will be on lightweight, low cost, and environmental compatibility with oxygen and hydrogen of key MMC materials, within each of NASA's new propulsion application, that will provide a high payoff for NASA's Reusable Launch Vehicles and space access vehicles. In order to fabricate structures from MMC, effective joining methods must be developed to join MMC to the same or to different monolithic alloys. Therefore, a qualitative assessment of MMC's welding and joining techniques will be outlined.

  7. Nonlinear mechanical behavior of thermoplastic matrix materials for advanced composites

    NASA Technical Reports Server (NTRS)

    Arenz, R. J.; Landel, R. F.

    1989-01-01

    Two recent theories of nonlinear mechanical response are quantitatively compared and related to experimental data. Computer techniques are formulated to handle the numerical integration and iterative procedures needed to solve the associated sets of coupled nonlinear differential equations. Problems encountered during these formulations are discussed and some open questions described. Bearing in mind these cautions, the consequences of changing parameters that appear in the formulations on the resulting engineering properties are discussed. Hence, engineering approaches to the analysis of thermoplastic matrix material can be suggested.

  8. Advanced Wireless Integrated Navy Network - AWINN

    DTIC Science & Technology

    2005-09-30

    progress report No. 3 on AWINN hardware and software configurations of smart, wideband, multi-function antennas , secure configurable platform, close-in...and Robust Networks Visualization of Wireless Technology and Ad Hoc Networks Technology Integration Projects The Advanced Antennas Group has completed a...comprehensive investigation of Wideband and Ultra Wideband (UWB) antennas for the AWINN projects. The investigation concluded that Tapered Slot

  9. Fully Integrated Biochip Platforms for Advanced Healthcare

    PubMed Central

    Carrara, Sandro; Ghoreishizadeh, Sara; Olivo, Jacopo; Taurino, Irene; Baj-Rossi, Camilla; Cavallini, Andrea; de Beeck, Maaike Op; Dehollain, Catherine; Burleson, Wayne; Moussy, Francis Gabriel; Guiseppi-Elie, Anthony; De Micheli, Giovanni

    2012-01-01

    Recent advances in microelectronics and biosensors are enabling developments of innovative biochips for advanced healthcare by providing fully integrated platforms for continuous monitoring of a large set of human disease biomarkers. Continuous monitoring of several human metabolites can be addressed by using fully integrated and minimally invasive devices located in the sub-cutis, typically in the peritoneal region. This extends the techniques of continuous monitoring of glucose currently being pursued with diabetic patients. However, several issues have to be considered in order to succeed in developing fully integrated and minimally invasive implantable devices. These innovative devices require a high-degree of integration, minimal invasive surgery, long-term biocompatibility, security and privacy in data transmission, high reliability, high reproducibility, high specificity, low detection limit and high sensitivity. Recent advances in the field have already proposed possible solutions for several of these issues. The aim of the present paper is to present a broad spectrum of recent results and to propose future directions of development in order to obtain fully implantable systems for the continuous monitoring of the human metabolism in advanced healthcare applications. PMID:23112644

  10. System Engineering and Integration of Controls for Advanced Life Support

    NASA Technical Reports Server (NTRS)

    Overland, David; Hoo, Karlene; Ciskowski, Marvin

    2006-01-01

    The Advanced Integration Matrix (AIM) project at the Johnson Space Center (JSC) was chartered to study and solve systems-level integration issues for exploration missions. One of the first issues identified was an inability to conduct trade studies on control system architectures due to the absence of mature evaluation criteria. Such architectures are necessary to enable integration of regenerative life support systems. A team was formed to address issues concerning software and hardware architectures and system controls.. The team has investigated what is required to integrate controls for the types of non-linear dynamic systems encountered in advanced life support. To this end, a water processing bioreactor testbed is being developed which will enable prototyping and testing of integration strategies and technologies. Although systems such as the water bioreactors exhibit the complexities of interactions between control schemes most vividly, it is apparent that this behavior and its attendant risks will manifest itself among any set of interdependent autonomous control systems. A methodology for developing integration requirements for interdependent and autonomous systems is a goal of this team and this testbed. This paper is a high-level summary of the current status of the investigation, the issues encountered, some tentative conclusions, and the direction expected for further research.

  11. Recent advances on integrated quantum communications

    NASA Astrophysics Data System (ADS)

    Orieux, Adeline; Diamanti, Eleni

    2016-08-01

    In recent years, the use of integrated technologies for applications in the field of quantum information processing and communications has made great progress. The resulting devices feature valuable characteristics such as scalability, reproducibility, low cost and interconnectivity, and have the potential to revolutionize our computation and communication practices in the future, much in the way that electronic integrated circuits have drastically transformed our information processing capacities since the last century. Among the multiple applications of integrated quantum technologies, this review will focus on typical components of quantum communication systems and on overall integrated system operation characteristics. We are interested in particular in the use of photonic integration platforms for developing devices necessary in quantum communications, including sources, detectors and both passive and active optical elements. We also illustrate the challenges associated with performing quantum communications on chip, by using the case study of quantum key distribution—the most advanced application of quantum information science. We conclude with promising perspectives in this field.

  12. Advanced Measurements of Silicon Carbide Ceramic Matrix Composites

    SciTech Connect

    Farhad Farzbod; Stephen J. Reese; Zilong Hua; Marat Khafizov; David H. Hurley

    2012-08-01

    Silicon carbide (SiC) is being considered as a fuel cladding material for accident tolerant fuel under the Light Water Reactor Sustainability (LWRS) Program sponsored by the Nuclear Energy Division of the Department of Energy. Silicon carbide has many potential advantages over traditional zirconium based cladding systems. These include high melting point, low susceptibility to corrosion, and low degradation of mechanical properties under neutron irradiation. In addition, ceramic matrix composites (CMCs) made from SiC have high mechanical toughness enabling these materials to withstand thermal and mechanical shock loading. However, many of the fundamental mechanical and thermal properties of SiC CMCs depend strongly on the fabrication process. As a result, extrapolating current materials science databases for these materials to nuclear applications is not possible. The “Advanced Measurements” work package under the LWRS fuels pathway is tasked with the development of measurement techniques that can characterize fundamental thermal and mechanical properties of SiC CMCs. An emphasis is being placed on development of characterization tools that can used for examination of fresh as well as irradiated samples. The work discuss in this report can be divided into two broad categories. The first involves the development of laser ultrasonic techniques to measure the elastic and yield properties and the second involves the development of laser-based techniques to measurement thermal transport properties. Emphasis has been placed on understanding the anisotropic and heterogeneous nature of SiC CMCs in regards to thermal and mechanical properties. The material properties characterized within this work package will be used as validation of advanced materials physics models of SiC CMCs developed under the LWRS fuels pathway. In addition, it is envisioned that similar measurement techniques can be used to provide process control and quality assurance as well as measurement of

  13. Implementation and Assessment of Advanced Analog Vector-Matrix Processor

    NASA Technical Reports Server (NTRS)

    Gary, Charles K.; Bualat, Maria G.; Lum, Henry, Jr. (Technical Monitor)

    1994-01-01

    This paper discusses the design and implementation of an analog optical vecto-rmatrix coprocessor with a throughput of 128 Mops for a personal computer. Vector matrix calculations are inherently parallel, providing a promising domain for the use of optical calculators. However, to date, digital optical systems have proven too cumbersome to replace electronics, and analog processors have not demonstrated sufficient accuracy in large scale systems. The goal of the work described in this paper is to demonstrate a viable optical coprocessor for linear operations. The analog optical processor presented has been integrated with a personal computer to provide full functionality and is the first demonstration of an optical linear algebra processor with a throughput greater than 100 Mops. The optical vector matrix processor consists of a laser diode source, an acoustooptical modulator array to input the vector information, a liquid crystal spatial light modulator to input the matrix information, an avalanche photodiode array to read out the result vector of the vector matrix multiplication, as well as transport optics and the electronics necessary to drive the optical modulators and interface to the computer. The intent of this research is to provide a low cost, highly energy efficient coprocessor for linear operations. Measurements of the analog accuracy of the processor performing 128 Mops are presented along with an assessment of the implications for future systems. A range of noise sources, including cross-talk, source amplitude fluctuations, shot noise at the detector, and non-linearities of the optoelectronic components are measured and compared to determine the most significant source of error. The possibilities for reducing these sources of error are discussed. Also, the total error is compared with that expected from a statistical analysis of the individual components and their relation to the vector-matrix operation. The sufficiency of the measured accuracy of the

  14. Integrating Advanced Molecular Technologies into Public Health.

    PubMed

    Gwinn, Marta; MacCannell, Duncan R; Khabbaz, Rima F

    2017-03-01

    Advances in laboratory and information technologies are transforming public health microbiology. High-throughput genome sequencing and bioinformatics are enhancing our ability to investigate and control outbreaks, detect emerging infectious diseases, develop vaccines, and combat antimicrobial resistance, all with increased accuracy, timeliness, and efficiency. The Advanced Molecular Detection (AMD) initiative has allowed the Centers for Disease Control and Prevention (CDC) to provide leadership and coordination in integrating new technologies into routine practice throughout the U.S. public health laboratory system. Collaboration and partnerships are the key to navigating this transition and to leveraging the next generation of methods and tools most effectively for public health.

  15. Integration over matrix spaces with unique invariant measures

    NASA Astrophysics Data System (ADS)

    Prosen, T.; Seligman, T. H.; Weidenmüller, H. A.

    2002-10-01

    We present a method to calculate integrals over monomials of matrix elements with invariant measures in terms of Wick contractions. The method gives exact results for monomials of low order. For higher-order monomials, it leads to an error of order 1/Nα, where N is the dimension of the matrix and where α is independent of the degree of the monomial. We give a lower bound on the integer α and show how α can be increased systematically. The method is particularly suited for symbolic computer calculation. Explicit results are given for O(N), U(N), and for the circular orthogonal ensemble.

  16. Recent advances in PLC hybrid integration technology

    NASA Astrophysics Data System (ADS)

    Ogawa, Ikuo; Kitagawa, Takeshi

    2003-07-01

    Opto-electronic hybrid integraiton using a silica-based planar lightwave circuit (PLC) platform is an attractive way to realize the various kinds of opto-electronic components required for future photonic networks. This paper briefly introduces the concept and basic techniques used for PLC hybrid integration, and describes recent advances in this field. We also report on several high-performance optical devices that we recently developed using this technology.

  17. Advanced integrated life support system update

    NASA Technical Reports Server (NTRS)

    Whitley, Phillip E.

    1994-01-01

    The Advanced Integrated Life Support System Program (AILSS) is an advanced development effort to integrate the life support and protection requirements using the U.S. Navy's fighter/attack mission as a starting point. The goal of AILSS is to optimally mate protection from altitude, acceleration, chemical/biological agent, thermal environment (hot, cold, and cold water immersion) stress as well as mission enhancement through improved restraint, night vision, and head-mounted reticules and displays to ensure mission capability. The primary emphasis to date has been to establish garment design requirements and tradeoffs for protection. Here the garment and the human interface are treated as a system. Twelve state-off-the-art concepts from government and industry were evaluated for design versus performance. On the basis of a combination of centrifuge, thermal manikin data, thermal modeling, and mobility studies, some key design parameters have been determined. Future efforts will concentrate on the integration of protection through garment design and the use of a single layer, multiple function concept to streamline the garment system.

  18. SEU In An Advanced Bipolar Integrated Circuit

    NASA Technical Reports Server (NTRS)

    Zoutendyk, John A.; Secrest, Elaine C.; Berndt, Dale F.

    1989-01-01

    Report summarizes investigation of single-event upsets (SEU) in bipolar integrated-circuit set of flip-flops (memory cells). Device tested made by advanced digital bipolar silicon process of Honeywell, Inc. Circuit chip contained 4 cells. Construction enabled study of effect of size on SEU behavior. Each cell externally biased so effect of bias current on SEU behavior. Results of study provides important information for optimal design of devices fabricated using buried-layer bipolar process operating in heavy-ion SEU environments. Designers use information to provide required levels of suppression of SEU in specific applications via combinations of size and/or cell-current scaling.

  19. Advanced Integrated Optical Signal Processing Components.

    NASA Astrophysics Data System (ADS)

    Rastani, Kasra

    This research was aimed at the development of advanced integrated optical components suitable for devices capable of processing multi-dimensional inputs. In such processors, densely packed waveguide arrays with low crosstalk are needed to provide dissection of the information that has been partially processed. Waveguide arrays also expand the information in the plane of the processor while maintaining its coherence. Rib waveguide arrays with low loss, high mode confinement and highly uniform surface quality (660 elements, 8 μm wide, 1 μm high, and 1 cm long with 2 mu m separations) were fabricated on LiNbO _3 substrates through the ion beam milling technique. A novel feature of the multi-dimensional IO processor architecture proposed herein is the implementation of large area uniform outcoupling (with low to moderate outcoupling efficiencies) from rib waveguide arrays in order to access the third dimension of the processor structure. As a means of outcoupling, uniform surface gratings (2 μm and 4 μm grating periods, 0.05 μm high and 1 mm long) with low outcoupling efficiencies (of approximately 2-18%/mm) were fabricated on the nonuniform surface of the rib waveguide arrays. As a practical technique of modulating the low outcoupling efficiencies of the surface gratings, it was proposed to alter the period of the grating as a function of position along each waveguide. Large aperture (2.5 mm) integrated lenses with short positive focal lengths (1.2-2.5 cm) were developed through a modification of the titanium-indiffused proton exchanged (TIPE) technique. Such integrated lenses were fabricated by increasing the refractive index of the slab waveguides by the TIPE process while maintaining the refractive index of the lenses at the lower level of Ti:LiNbO _3 waveguide. By means of curvature reversal of the integrated lenses, positive focal length lenses have been fabricated while providing high mode confinement for the slab waveguide. The above elements performed as

  20. Advanced packaging for Integrated Micro-Instruments

    NASA Technical Reports Server (NTRS)

    Lyke, James L.

    1995-01-01

    The relationship between packaging, microelectronics, and micro-electrical-mechanical systems (MEMS) is an important one, particularly when the edges of performance boundaries are pressed, as in the case of miniaturized systems. Packaging is a sort of physical backbone that enables the maximum performance of these systems to be realized, and the penalties imposed by conventional packing approaches is particularly limiting for MEMS devices. As such, advanced packaging approaches, such as multi-chip modules (MCM's) have been touted as a true means of electronic 'enablement' for a variety of application domains. Realizing an optimum system of packaging, however, in not as simple as replacing a set of single chip packages with a substrate of interconnections. Research at Phillips Laboratory has turned up a number of integrating options in the two- and three-dimensional rending of miniature systems with physical interconnection structures with intrinsically high performance. Not only do these structures motivate the redesign of integrated circuits (IC's) for lower power, but they possess interesting features that provide a framework for the direct integration of MEMS devices. Cost remains a barrier to the application of MEMS devices, even in space systems. Several innovations are suggested that will result in lower cost and more rapid cycle time. First, the novelty of a 'constant floor plan' MCM which encapsulates a variety of commonly used components into a stockable, easily customized assembly is discussed. Next, the use of low-cost substrates is examined. The anticipated advent of ultra-high density interconnect (UHDI) is suggested as the limit argument of advanced packaging. Finally, the concept of a heterogeneous 3-D MCM system is outlined that allows for the combination of different compatible packaging approaches into a uniformly dense structure that could also include MEMS-based sensors.

  1. Advanced Environmental Barrier Coating Development for SiC/SiC Ceramic Matrix Composites: NASA's Perspectives

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming

    2016-01-01

    This presentation reviews NASA environmental barrier coating (EBC) system development programs and the coating materials evolutions for protecting the SiC/SiC Ceramic Matrix Composites in order to meet the next generation engine performance requirements. The presentation focuses on several generations of NASA EBC systems, EBC-CMC component system technologies for SiC/SiC ceramic matrix composite combustors and turbine airfoils, highlighting the temperature capability and durability improvements in simulated engine high heat flux, high pressure, high velocity, and with mechanical creep and fatigue loading conditions. The current EBC development emphasis is placed on advanced NASA 2700F candidate environmental barrier coating systems for SiC/SiC CMCs, their performance benefits and design limitations in long-term operation and combustion environments. Major technical barriers in developing environmental barrier coating systems, the coating integrations with next generation CMCs having the improved environmental stability, erosion-impact resistance, and long-term fatigue-environment system durability performance are described. The research and development opportunities for advanced turbine airfoil environmental barrier coating systems by utilizing improved compositions, state-of-the-art processing methods, and simulated environment testing and durability modeling are discussed.

  2. Lectures on the asymptotic expansion of a Hermitian matrix integral

    NASA Astrophysics Data System (ADS)

    Mulase, Motohico

    In these lectures three different methods of computing the asymptotic expansion of a Hermitian matrix integral is presented. The first one is a combinatorial method using Feynman diagrams. This leads us to the generating function of the reciprocal of the order of the automorphism group of a tiling of a Riemann surface. The second method is based on the classical analysis of orthogonal polynomials. A rigorous asymptotic method is established, and a special case of the matrix integral is computed in terms of the Riemann ζ-function. The third method is derived from a formula for the τ-function solution to the KP equations. This method leads us to a new class of solutions of the KP equations that are transcendental, in the sense that they cannot be obtained by the celebrated Krichever construction and its generalizations based on algebraic geometry of vector bundles on Riemann surfaces. In each case a mathematically rigorous way of dealing with asymptotic series in an infinite number of variables is established.

  3. Recent advances in integrated photonic sensors.

    PubMed

    Passaro, Vittorio M N; de Tullio, Corrado; Troia, Benedetto; La Notte, Mario; Giannoccaro, Giovanni; De Leonardis, Francesco

    2012-11-09

    Nowadays, optical devices and circuits are becoming fundamental components in several application fields such as medicine, biotechnology, automotive, aerospace, food quality control, chemistry, to name a few. In this context, we propose a complete review on integrated photonic sensors, with specific attention to materials, technologies, architectures and optical sensing principles. To this aim, sensing principles commonly used in optical detection are presented, focusing on sensor performance features such as sensitivity, selectivity and rangeability. Since photonic sensors provide substantial benefits regarding compatibility with CMOS technology and integration on chips characterized by micrometric footprints, design and optimization strategies of photonic devices are widely discussed for sensing applications. In addition, several numerical methods employed in photonic circuits and devices, simulations and design are presented, focusing on their advantages and drawbacks. Finally, recent developments in the field of photonic sensing are reviewed, considering advanced photonic sensor architectures based on linear and non-linear optical effects and to be employed in chemical/biochemical sensing, angular velocity and electric field detection.

  4. Recent Advances in Integrated Photonic Sensors

    PubMed Central

    Passaro, Vittorio M. N.; de Tullio, Corrado; Troia, Benedetto; La Notte, Mario; Giannoccaro, Giovanni; De Leonardis, Francesco

    2012-01-01

    Nowadays, optical devices and circuits are becoming fundamental components in several application fields such as medicine, biotechnology, automotive, aerospace, food quality control, chemistry, to name a few. In this context, we propose a complete review on integrated photonic sensors, with specific attention to materials, technologies, architectures and optical sensing principles. To this aim, sensing principles commonly used in optical detection are presented, focusing on sensor performance features such as sensitivity, selectivity and rangeability. Since photonic sensors provide substantial benefits regarding compatibility with CMOS technology and integration on chips characterized by micrometric footprints, design and optimization strategies of photonic devices are widely discussed for sensing applications. In addition, several numerical methods employed in photonic circuits and devices, simulations and design are presented, focusing on their advantages and drawbacks. Finally, recent developments in the field of photonic sensing are reviewed, considering advanced photonic sensor architectures based on linear and non-linear optical effects and to be employed in chemical/biochemical sensing, angular velocity and electric field detection. PMID:23202223

  5. Advanced Ceramic Matrix Composites with Multifunctional and Hybrid Structures

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay; Morscher, Gregory N.

    2004-01-01

    Ceramic matrix composites are leading candidate materials for a number of applications in aeronautics, space, energy, and nuclear industries. Potential composite applications differ in their requirements for thickness. For example, many space applications such as "nozzle ramps" or "heat exchangers" require very thin (< 1 mm) structures whereas turbine blades would require very thick parts (> or = 1 cm). Little is known about the effect of thickness on stress-strain behavior or the elevated temperature tensile properties controlled by oxidation diffusion. In this study, composites consisting of woven Hi-Nicalon (trademark) fibers a carbon interphase and CVI SiC matrix were fabricated with different numbers of plies and thicknesses. The effect of thickness on matrix crack formation, matrix crack growth and diffusion kinetics will be discussed. In another approach, hybrid fiber-lay up concepts have been utilized to "alloy" desirable properties of different fiber types for mechanical properties, thermal stress management, and oxidation resistance. Such an approach has potential for the C(sub I)-SiC and SiC(sub f)-SiC composite systems. CVI SiC matrix composites with different stacking sequences of woven C fiber (T300) layers and woven SiC fiber (Hi-Nicalon (trademark)) layers were fabricated. The results will be compared to standard C fiber reinforced CVI SiC matrix and Hi-Nicalon reinforced CVI SiC matrix composites. In addition, shear properties of these composites at different temperatures will also be presented. Other design and implementation issues will be discussed along with advantages and benefits of using these materials for various components in high temperature applications.

  6. Poling of PVDF matrix composites for integrated structural load sensing

    NASA Astrophysics Data System (ADS)

    Haghiashtiani, Ghazaleh; Greminger, Michael A.; Zhao, Ping

    2014-03-01

    The purpose of this study is to create and evaluate a smart composite structure that can be used for integrated load sensing and structural health monitoring. In this structure, PVDF films are used as the matrix material instead of epoxy resin or other thermoplastics. The reinforcements are two layers of carbon fiber with one layer of Kevlar separating them. Due to the electrical conductivity properties of carbon fiber and the dielectric effect of Kevlar, the structure acts as a capacitor. Furthermore, the piezoelectric properties of the PVDF matrix can be used to monitor the response of the structure under applied loads. In order to exploit the piezoelectric properties of PVDF, the PVDF material must be polarized to align the dipole moments of its crystalline structure. The optimal condition for poling the structure was found by performing a 23 factorial design of experiment (DoE). The factors that were studied in DoE were temperature, voltage, and duration of poling. Finally, the response of the poled structure was monitored by exposing the samples to an applied load.

  7. Boundary layer integral matrix procedure code modifications and verifications

    NASA Technical Reports Server (NTRS)

    Evans, R. M.; Morse, H. L.

    1974-01-01

    A summary of modifications to Aerotherm's Boundary Layer Integral Matrix Procedure (BLIMP) code is presented. These modifications represent a preliminary effort to make BLIMP compatible with other JANNAF codes and to adjust the code for specific application to rocket nozzle flows. Results of the initial verification of the code for prediction of rocket nozzle type flows are discussed. For those cases in which measured free stream flow conditions were used as input to the code, the boundary layer predictions and measurements are in excellent agreement. In two cases, with free stream flow conditions calculated by another JANNAF code (TDK) for use as input to BLIMP, the predictions and the data were in fair agreement for one case and in poor agreement for the other case. The poor agreement is believed to result from failure of the turbulent model in BLIMP to account for laminarization of a turbulent flow. Recommendations for further code modifications and improvements are also presented.

  8. Integrating advanced facades into high performance buildings

    SciTech Connect

    Selkowitz, Stephen E.

    2001-05-01

    Glass is a remarkable material but its functionality is significantly enhanced when it is processed or altered to provide added intrinsic capabilities. The overall performance of glass elements in a building can be further enhanced when they are designed to be part of a complete facade system. Finally the facade system delivers the greatest performance to the building owner and occupants when it becomes an essential element of a fully integrated building design. This presentation examines the growing interest in incorporating advanced glazing elements into more comprehensive facade and building systems in a manner that increases comfort, productivity and amenity for occupants, reduces operating costs for building owners, and contributes to improving the health of the planet by reducing overall energy use and negative environmental impacts. We explore the role of glazing systems in dynamic and responsive facades that provide the following functionality: Enhanced sun protection and cooling load control while improving thermal comfort and providing most of the light needed with daylighting; Enhanced air quality and reduced cooling loads using natural ventilation schemes employing the facade as an active air control element; Reduced operating costs by minimizing lighting, cooling and heating energy use by optimizing the daylighting-thermal tradeoffs; Net positive contributions to the energy balance of the building using integrated photovoltaic systems; Improved indoor environments leading to enhanced occupant health, comfort and performance. In addressing these issues facade system solutions must, of course, respect the constraints of latitude, location, solar orientation, acoustics, earthquake and fire safety, etc. Since climate and occupant needs are dynamic variables, in a high performance building the facade solution have the capacity to respond and adapt to these variable exterior conditions and to changing occupant needs. This responsive performance capability

  9. Advanced Nanocrystalline Ceramic Matrix Composites with Improved Toughness

    DTIC Science & Technology

    2009-01-09

    nanocomposites reinforced with niobium and/or carbon nanotubes were fabricated by advanced powder processing techniques and consolidated by spark plasma...tests were conducted on niobium and/or carbon nanotube-reinforced alumina U 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 09-01-2009 13...Toughness Report Title ABSTRACT Alumina-based nanocomposites reinforced with niobium and/or carbon nanotubes were fabricated by advanced powder processing

  10. Integrating advanced mobility into lunar surface exploration

    NASA Astrophysics Data System (ADS)

    Schlutz, Juergen; Messerschmid, Ernst

    2012-06-01

    With growing knowledge of the lunar surface environment from recent robotic missions, further assessment of human lunar infrastructures and operational aspects for surface exploration become possible. This is of particular interest for the integration of advanced mobility assets, where path planning, balanced energy provision and consumption as well as communication coverage grow in importance with the excursion distance. The existing modeling and simulation tools for the lunar surface environment have therefore been revisited and extended to incorporate aspects of mobile exploration. An extended analysis of the lunar topographic models from past and ongoing lunar orbital missions has resulted in the creation of a tool to calculate and visualize slope angles in selected lunar regions. This allows for the identification of traversable terrain with respect to the mobile system capabilities. In a next step, it is combined with the analysis of the solar illumination conditions throughout this terrain to inform system energy budgets in terms of electrical power availability and thermal control requirements. The combination of the traversability analysis together with a time distributed energy budget assessment then allows for a path planning and optimization for long range lunar surface mobility assets, including manned excursions as well as un-crewed relocation activities. The above mentioned tools are used for a conceptual analysis of the international lunar reference architecture, developed in the frame of the International Architecture Working Group (IAWG) of the International Space Exploration Coordination Group (ISECG). Its systems capabilities are evaluated together with the planned surface exploration range and paths in order to analyze feasibility of the architecture and to identify potential areas of optimization with respect to time-based and location-based integration of activities.

  11. Damage Accumulation in Advanced Metal Matrix Composites Under Thermal Cycling

    DTIC Science & Technology

    1991-02-25

    Cyclically Deformed Fe-25 Cr-2 Al Alloy ," Z. Metallke, Bd. 79, H. 3, pp. 189-193. Touloukian , Y. S., Editor, 1967, "Thermophysical Properties of High...Matrix Properties FeCrAIY alloys are primarily used as high temperature oxidation coatings on nickel based superallovs. The alloys have a chromium...Increasing the aluminum content from 2% to 4% created an increasingly smooth and adherent oxide scale. Aluminum contents greater than 4% made the alloy

  12. Angiogenic Type I Collagen Extracellular Matrix Integrated with Recombinant Bacteriophages Displaying Vascular Endothelial Growth Factors.

    PubMed

    Yoon, Junghyo; Korkmaz Zirpel, Nuriye; Park, Hyun-Ji; Han, Sewoon; Hwang, Kyung Hoon; Shin, Jisoo; Cho, Seung-Woo; Nam, Chang-Hoon; Chung, Seok

    2016-01-21

    Here, a growth-factor-integrated natural extracellular matrix of type I collagen is presented that induces angiogenesis. The developed matrix adapts type I collagen nanofibers integrated with synthetic colloidal particles of recombinant bacteriophages that display vascular endothelial growth factor (VEGF). The integration is achieved during or after gelation of the type I collagen and the matrix enables spatial delivery of VEGF into a desired region. Endothelial cells that contact the VEGF are found to invade into the matrix to form tube-like structures both in vitro and in vivo, proving the angiogenic potential of the matrix.

  13. Comparison of two matrix data structures for advanced CSM testbed applications

    NASA Technical Reports Server (NTRS)

    Regelbrugge, M. E.; Brogan, F. A.; Nour-Omid, B.; Rankin, C. C.; Wright, M. A.

    1989-01-01

    The first section describes data storage schemes presently used by the Computational Structural Mechanics (CSM) testbed sparse matrix facilities and similar skyline (profile) matrix facilities. The second section contains a discussion of certain features required for the implementation of particular advanced CSM algorithms, and how these features might be incorporated into the data storage schemes described previously. The third section presents recommendations, based on the discussions of the prior sections, for directing future CSM testbed development to provide necessary matrix facilities for advanced algorithm implementation and use. The objective is to lend insight into the matrix structures discussed and to help explain the process of evaluating alternative matrix data structures and utilities for subsequent use in the CSM testbed.

  14. Development of advanced ceramic matrix composite insulators for electromagnetic railguns

    SciTech Connect

    Stevenson, R.D.; Rosenwasser, S.N.; Washburn, R.M. )

    1991-01-01

    Stiff, erosion resistant insulator materials are currently needed as bore insulators for electromagnetic railguns. In this paper a status review is given of an ongoing program to develop stiff erosion resistant ceramic composite materials capable of withstanding the severe mechanical, electrical and thermal environment that exists in the bore of such devices. Analytical predictions were made in order to establish property goals. A wide variety of advanced ceramic composite insulator panels have been fabricated and tested. A railgun was modified to serve as a test device for evaluating the new insulator materials. Work has been initiated to scale up the fabrication of selected advanced ceramic composite insulator parts to be tested in full-size railguns.

  15. Advances in Ceramic Matrix Composite Blade Damping Characteristics for Aerospace Turbomachinery Applications

    NASA Technical Reports Server (NTRS)

    Min, James B.; Harris, Donald L.; Ting, J. M.

    2011-01-01

    For advanced aerospace propulsion systems, development of ceramic matrix composite integrally-bladed turbine disk technology is attractive for a number of reasons. The high strength-to-weight ratio of ceramic composites helps to reduce engine weight and the one-piece construction of a blisk will result in fewer parts count, which should translate into reduced operational costs. One shortcoming with blisk construction, however, is that blisks may be prone to high cycle fatigue due to their structural response to high vibration environments. Use of ceramic composites is expected to provide some internal damping to reduce the vibratory stresses encountered due to unsteady flow loads through the bladed turbine regions. A goal of our research was to characterize the vibration viscous damping behavior of C/SiC composites. The vibration damping properties were measured and calculated. Damping appeared to decrease with an increase in the natural frequency. While the critical damping amount of approximately 2% is required for typical aerospace turbomachinery engines, the C/SiC damping at high frequencies was less than 0.2% from our study. The advanced high-performance aerospace propulsion systems almost certainly will require even more damping than what current vehicles require. A purpose of this paper is to review some work on C/SiC vibration damping by the authors for the NASA CMC turbine blisk development program and address an importance of the further investigation of the blade vibration damping characteristics on candidate CMC materials for the NASA s advanced aerospace turbomachinery engine systems.

  16. Integrated Flight and Propulsion Controls for Advanced Aircraft Configurations

    NASA Technical Reports Server (NTRS)

    Merrill, Walter; Garg, Sanjay

    1995-01-01

    The research vision of the NASA Lewis Research Center in the area of integrated flight and propulsion controls technologies is described. In particular the Integrated Method for Propulsion and Airframe Controls developed at the Lewis Research Center is described including its application to an advanced aircraft configuration. Additionally, future research directions in integrated controls are described.

  17. Advances in random matrix theory, zeta functions, and sphere packing.

    PubMed

    Hales, T C; Sarnak, P; Pugh, M C

    2000-11-21

    Over four hundred years ago, Sir Walter Raleigh asked his mathematical assistant to find formulas for the number of cannonballs in regularly stacked piles. These investigations aroused the curiosity of the astronomer Johannes Kepler and led to a problem that has gone centuries without a solution: why is the familiar cannonball stack the most efficient arrangement possible? Here we discuss the solution that Hales found in 1998. Almost every part of the 282-page proof relies on long computer verifications. Random matrix theory was developed by physicists to describe the spectra of complex nuclei. In particular, the statistical fluctuations of the eigenvalues ("the energy levels") follow certain universal laws based on symmetry types. We describe these and then discuss the remarkable appearance of these laws for zeros of the Riemann zeta function (which is the generating function for prime numbers and is the last special function from the last century that is not understood today.) Explaining this phenomenon is a central problem. These topics are distinct, so we present them separately with their own introductory remarks.

  18. Advances in random matrix theory, zeta functions, and sphere packing

    PubMed Central

    Hales, T. C.; Sarnak, P.; Pugh, M. C.

    2000-01-01

    Over four hundred years ago, Sir Walter Raleigh asked his mathematical assistant to find formulas for the number of cannonballs in regularly stacked piles. These investigations aroused the curiosity of the astronomer Johannes Kepler and led to a problem that has gone centuries without a solution: why is the familiar cannonball stack the most efficient arrangement possible? Here we discuss the solution that Hales found in 1998. Almost every part of the 282-page proof relies on long computer verifications. Random matrix theory was developed by physicists to describe the spectra of complex nuclei. In particular, the statistical fluctuations of the eigenvalues (“the energy levels”) follow certain universal laws based on symmetry types. We describe these and then discuss the remarkable appearance of these laws for zeros of the Riemann zeta function (which is the generating function for prime numbers and is the last special function from the last century that is not understood today.) Explaining this phenomenon is a central problem. These topics are distinct, so we present them separately with their own introductory remarks. PMID:11058156

  19. Recent advances in the design of matrix metalloprotease inhibitors.

    PubMed

    Matter, Hans; Schudok, Manfred

    2004-07-01

    Inhibition of matrix metalloproteases (MMPs) for the treatment of diseases, such as cancer, arthritis and other diseases associated with tissue remodeling, has become an area of intense interest in the pharmaceutical industry in recent years. Despite tremendous efforts over the last decade to explore individual members of this target family, along with multiple inhibitor classes, simple and effective drugs for inhibiting individual MMPs have not yet emerged. This review highlights the major developments in research into MMPs and their inhibitors, from the recent medicinal chemistry literature, with a focus on structure-based design, selectivity and pharmacokinetic (PK) properties. The increasing availability of high-resolution X-ray crystal structures for many members of this protein family makes MMPs ideally suited for structure-based design approaches, which are now routinely used in this area. The most challenging aspect of lead optimization for MMP inhibitors is in finding candidates having acceptable pharmacological, PK and selectivity profiles. Clinical trials in cancer giving disappointing results have led to discussions on how to gain adequate MMP selectivity in order to minimize side effects. Unfortunately, careful analysis of X-ray crystal structures has not suggested any simple solutions. These areas collectively constitute the main challenges in the current search for orally available MMP inhibitors, and will be discussed in this review.

  20. Fabrication of synthetic diffractive elements using advanced matrix laser lithography

    NASA Astrophysics Data System (ADS)

    Škereň, M.; Svoboda, J.; Květoň, M.; Fiala, P.

    2013-02-01

    In this paper we present a matrix laser writing device based on a demagnified projection of a micro-structure from a computer driven spatial light modulator. The device is capable of writing completely aperiodic micro-structures with resolution higher than 200 000 DPI. An optical system is combined with ultra high precision piezoelectric stages with an elementary step ~ 4 nm. The device operates in a normal environment, which significantly decreases the costs compared to competitive technologies. Simultaneously, large areas can be exposed up to 100 cm2. The capabilities of the constructed device will be demonstrated on particular elements fabricated for real applications. The optical document security is the first interesting field, where the synthetic image holograms are often combined with sophisticated aperiodic micro-structures. The proposed technology can easily write simple micro-gratings creating the color and kinetic visual effects, but also the diffractive cryptograms, waveguide couplers, and other structures recently used in the field of optical security. A general beam shaping elements and special photonic micro-structures are another important applications which will be discussed in this paper.

  1. The advanced microgrid. Integration and interoperability

    SciTech Connect

    Bower, Ward Isaac; Ton, Dan T.; Guttromson, Ross; Glover, Steven F; Stamp, Jason Edwin; Bhatnagar, Dhruv; Reilly, Jim

    2014-02-01

    This white paper focuses on "advanced microgrids," but sections do, out of necessity, reference today's commercially available systems and installations in order to clearly distinguish the differences and advances. Advanced microgrids have been identified as being a necessary part of the modern electrical grid through a two DOE microgrid workshops, the National Institute of Standards and Technology, Smart Grid Interoperability Panel and other related sources. With their grid-interconnectivity advantages, advanced microgrids will improve system energy efficiency and reliability and provide enabling technologies for grid-independence to end-user sites. One popular definition that has been evolved and is used in multiple references is that a microgrid is a group of interconnected loads and distributed-energy resources within clearly defined electrical boundaries that acts as a single controllable entity with respect to the grid. A microgrid can connect and disconnect from the grid to enable it to operate in both grid-connected or island-mode. Further, an advanced microgrid can then be loosely defined as a dynamic microgrid.

  2. Five-wave classical scattering matrix and integrable equations

    NASA Astrophysics Data System (ADS)

    Zakharov, V. E.; Odesskii, A. V.; Cisternino, M.; Onorato, M.

    2014-07-01

    We study the five-wave classical scattering matrix for nonlinear and dispersive Hamiltonian equations with a nonlinearity of the type u∂u/∂x. Our aim is to find the most general nontrivial form of the dispersion relation ω(k) for which the five-wave interaction scattering matrix is identically zero on the resonance manifold. As could be expected, the matrix in one dimension is zero for the Korteweg-de Vries equation, the Benjamin-Ono equation, and the intermediate long-wave equation. In two dimensions, we find a new equation that satisfies our requirement.

  3. Integrating Language Lab Materials into Advanced Russian.

    ERIC Educational Resources Information Center

    Allar, Gregory

    1986-01-01

    Describes the use of language lab materials supplied by the pedagogical journal "Russkij Jazyk Za Rubezom" in an advanced Russian-language class. Each week students were given a relevant picture and vocabulary list prior to listening to a taped story. The story was used as the basis for conversation. (LMO)

  4. ARTICULAR CARTILAGE TENSILE INTEGRITY: MODULATION BY MATRIX DEPLETION IS MATURATION-DEPENDENT

    PubMed Central

    Asanbaeva, Anna; Tam, Johnny; Schumacher, Barbara L.; Klisch, Stephen M.; Masuda, Koichi; Sah, Robert L.

    2008-01-01

    Articular cartilage function depends on the molecular composition and structure of its extracellular matrix (ECM). The collagen network (CN) provides cartilage with tensile integrity, but must also remodel during growth. Such remodeling may depend on matrix molecules interacting with the CN to modulate the tensile behavior of cartilage. The objective of this study was to determine the effects of increasingly selective matrix depletion on tensile properties of immature and mature articular cartilage, and thereby establish a framework for identifying molecules involved in CN remodeling. Depletion of immature cartilage with guanidine, chondroitinase ABC, chondroitinase AC, and Streptomyces hyaluronidase markedly increased tensile integrity, while the integrity of mature cartilage remained unaltered after depletion with guanidine. The enhanced tensile integrity after matrix depletion suggests that certain ECM components of immature matrix serve to inhibit CN interactions and may act as modulators of physiological alterations of cartilage geometry and tensile properties during growth/maturation. PMID:18394422

  5. Polymer, metal, and ceramic matrix composites for advanced aircraft engine applications

    SciTech Connect

    Mc Daniels, D.L.; Serafini, T.T.; Di Carlo, J.A.

    1986-06-01

    Advanced aircraft engine research within NASA Lewis focuses on propulsion systems for subsonic, supersonic, and hypersonic aircraft. Each of these flight regimes requires different types of engines, but all require advanced materials to meet their goals of performance, thrust-to-weight ratio, and fuel efficiency. The high strength/weight and stiffness/weight properties of resin, metal, and ceramic matrix composites will play an increasingly key role in meeting these performance requirements. At NASA Lewis, research is ongoing to apply graphite/polyimide composites to engine components and to develop polymer matrices with higher operating temperature capabilities. Metal matrix composites, using magnesium, aluminum, titanium, and superalloy matrices, are being developed for application to static and rotating engine components, as well as for space applications, over a broad temperature range. Ceramic matrix composites are also being examined to increase the toughness and reliability of ceramics for application to high-temperature engine structures and components.

  6. Fine structure of matrix Darboux-Toda integrable mapping

    NASA Astrophysics Data System (ADS)

    Leznov, A. N.; Yuzbashyan, E. A.

    1998-05-01

    The matrix Darboux-Toda mapping is represented as a product of a number of commutative mappings. The matrix Davey-Stewartson hierarchy is invariant with respect to each of these mappings. We thus introduce an entirely new type of discrete transformation for this hierarchy. The discrete transformation for the vector nonlinear Schrödinger system coincides with one of the mappings under necessary reduction conditions.

  7. Advances in the theory of box integrals

    SciTech Connect

    Bailey, David H.; Borwein, J.M.; Crandall, R.E.

    2009-06-25

    Box integrals - expectations <|{rvec r}|{sup s}> or <|{rvec r}-{rvec q}|{sup s}> over the unit n-cube (or n-box) - have over three decades been occasionally given closed forms for isolated n,s. By employing experimental mathematics together with a new, global analytic strategy, we prove that for n {le} 4 dimensions the box integrals are for any integer s hypergeometrically closed in a sense we clarify herein. For n = 5 dimensions, we show that a single unresolved integral we call K{sub 5} stands in the way of such hyperclosure proofs. We supply a compendium of exemplary closed forms that naturally arise algorithmically from this theory.

  8. Advancing Instructional Communication: Integrating a Biosocial Approach

    ERIC Educational Resources Information Center

    Horan, Sean M.; Afifi, Tamara D.

    2014-01-01

    Celebrating 100 years of the National Communication Association necessitates that, as we commemorate our past, we also look toward our future. As part of a larger conversation about the future of instructional communication, this essay reinvestigates the importance of integrating biosocial approaches into instructional communication research. In…

  9. Integrated modeling of advanced optical systems

    NASA Technical Reports Server (NTRS)

    Briggs, Hugh C.; Needels, Laura; Levine, B. Martin

    1993-01-01

    This poster session paper describes an integrated modeling and analysis capability being developed at JPL under funding provided by the JPL Director's Discretionary Fund and the JPL Control/Structure Interaction Program (CSI). The posters briefly summarize the program capabilities and illustrate them with an example problem. The computer programs developed under this effort will provide an unprecedented capability for integrated modeling and design of high performance optical spacecraft. The engineering disciplines supported include structural dynamics, controls, optics and thermodynamics. Such tools are needed in order to evaluate the end-to-end system performance of spacecraft such as OSI, POINTS, and SMMM. This paper illustrates the proof-of-concept tools that have been developed to establish the technology requirements and demonstrate the new features of integrated modeling and design. The current program also includes implementation of a prototype tool based upon the CAESY environment being developed under the NASA Guidance and Control Research and Technology Computational Controls Program. This prototype will be available late in FY-92. The development plan proposes a major software production effort to fabricate, deliver, support and maintain a national-class tool from FY-93 through FY-95.

  10. Integrating spatial information in unmixing using the nonnegative matrix factorization

    NASA Astrophysics Data System (ADS)

    Goenaga-Jimenez, Miguel A.; Vélez-Reyes, Miguel

    2014-06-01

    An approach to incorporate spatial information in unmixing using the nonnegative matrix factorization is presented. We call this method the spectrally adaptive constrained NMF (sacNMF). The spatial information is incorporated by partitioning hyperspectral images into spectrally homogeneous regions using quadtree region partitioning. Endmembers for each region are extracted using the nonnegative matrix factorization and then clustered in spectral endmembers classes. The endmember classes better account for the variability of spectral endmembers across the landscape. Abundances are estimated using all spectral endmembers. Experimental results using AVIRIS data from Indian Pines is used to demonstrate the potential of the proposed approach. Comparisons with other published approaches are presented.

  11. Low Cost, Advanced, Integrated Microcontroller Training Kit

    NASA Astrophysics Data System (ADS)

    Somantri, Y.; Fushshilat, I.

    2017-03-01

    This paper describes the design of an AVR microcontroller training kit with a low cost and the additional feature of an integrated downloader. The main components of this device include: Microcontroller, terminal, I/O keypad, push button, LED, seven segment display, LCD, motor stepper, and sensors. The device configuration results in low cost and ease of use; this device is suitable for laboratories with limited funding. The device can also be used as a training kit for the teaching and learning of microcontrollers.

  12. Form factors in quantum integrable models with GL(3)-invariant R-matrix

    NASA Astrophysics Data System (ADS)

    Pakuliak, S.; Ragoucy, E.; Slavnov, N. A.

    2014-04-01

    We study integrable models solvable by the nested algebraic Bethe ansatz and possessing GL(3)-invariant R-matrix. We obtain determinant representations for form factors of off-diagonal entries of the monodromy matrix. These representations can be used for the calculation of form factors and correlation functions of the XXX SU(3)-invariant Heisenberg chain.

  13. Systems Engineering and Integration for Advanced Life Support System and HST

    NASA Technical Reports Server (NTRS)

    Kamarani, Ali K.

    2005-01-01

    Systems engineering (SE) discipline has revolutionized the way engineers and managers think about solving issues related to design of complex systems: With continued development of state-of-the-art technologies, systems are becoming more complex and therefore, a systematic approach is essential to control and manage their integrated design and development. This complexity is driven from integration issues. In this case, subsystems must interact with one another in order to achieve integration objectives, and also achieve the overall system's required performance. Systems engineering process addresses these issues at multiple levels. It is a technology and management process dedicated to controlling all aspects of system life cycle to assure integration at all levels. The Advanced Integration Matrix (AIM) project serves as the systems engineering and integration function for the Human Support Technology (HST) program. AIM provides means for integrated test facilities and personnel for performance trade studies, analyses, integrated models, test results, and validated requirements of the integration of HST. The goal of AIM is to address systems-level integration issues for exploration missions. It will use an incremental systems integration approach to yield technologies, baselines for further development, and possible breakthrough concepts in the areas of technological and organizational interfaces, total information flow, system wide controls, technical synergism, mission operations protocols and procedures, and human-machine interfaces.

  14. Current advances in systems and integrative biology

    PubMed Central

    Robinson, Scott W.; Fernandes, Marco; Husi, Holger

    2014-01-01

    Systems biology has gained a tremendous amount of interest in the last few years. This is partly due to the realization that traditional approaches focusing only on a few molecules at a time cannot describe the impact of aberrant or modulated molecular environments across a whole system. Furthermore, a hypothesis-driven study aims to prove or disprove its postulations, whereas a hypothesis-free systems approach can yield an unbiased and novel testable hypothesis as an end-result. This latter approach foregoes assumptions which predict how a biological system should react to an altered microenvironment within a cellular context, across a tissue or impacting on distant organs. Additionally, re-use of existing data by systematic data mining and re-stratification, one of the cornerstones of integrative systems biology, is also gaining attention. While tremendous efforts using a systems methodology have already yielded excellent results, it is apparent that a lack of suitable analytic tools and purpose-built databases poses a major bottleneck in applying a systematic workflow. This review addresses the current approaches used in systems analysis and obstacles often encountered in large-scale data analysis and integration which tend to go unnoticed, but have a direct impact on the final outcome of a systems approach. Its wide applicability, ranging from basic research, disease descriptors, pharmacological studies, to personalized medicine, makes this emerging approach well suited to address biological and medical questions where conventional methods are not ideal. PMID:25379142

  15. Advanced integrated WDM system for POF communication

    NASA Astrophysics Data System (ADS)

    Haupt, M.; Fischer, U. H. P.

    2009-01-01

    Polymer Optical Fibres (POFs) show clear advantages compared to copper and glass fibres. In essence, POFs are inexpensive, space-saving and not susceptible to electromagnetic interference. Thus, the usage of POFs have become a reasonable alternative in short distance data communication. Today, POFs are applied in a wide number of applications due to these specific advantages. These applications include automotive communication systems and in-house-networks. State-of-the-art is to transmit data with only one channel over POF, this limits the bandwidth. To solve this problem, an integrated MUX/DEMUX-element for WDM over POF is designed and developed to use multiple channels. This integration leads to low costs, therefore this component is suitable for mass market applications. The fundamental idea is to separate the chromatic parts of the light in its monochromatic components by means of a grating based on an aspheric mirror. Due to the high NA of the POF the setup has to be designed in a 3D-approach. Therefore this setup cannot be compared with the planar solutions available on market, they would result high losses in the 3rd dimension. To achieve a fast and optimized design an optical simulation program is used. Particular attention has to be paid to the design of the POF as a light source in the simulation program and the optimisation of the grating. The following realization of the demultiplexer is planed to be done with injection molding. This technology offers easy and very economical processing. These advantages make this technology first choice for optical components in the low-cost array.

  16. Integrating Advance Research Directives into the European Legal Framework.

    PubMed

    Andorno, Roberto; Gennet, Eloïse; Jongsma, Karin; Elger, Bernice

    2016-04-01

    The possibility of using advance directives to prospectively consent to research participation in the event of dementia remains largely unexplored in Europe. Moreover, the legal status of advance directives for research is unclear in the European regulations governing biomedical research. The article explores the place that advance research directives have in the current European legal framework, and considers the possibility of integrating them more explicitly into the existing regulations. Special focus is placed on issues regarding informed consent, the role of proxies, and the level of acceptable risks and burdens.

  17. Advances in NLTE Modeling for Integrated Simulations

    SciTech Connect

    Scott, H A; Hansen, S B

    2009-07-08

    The last few years have seen significant progress in constructing the atomic models required for non-local thermodynamic equilibrium (NLTE) simulations. Along with this has come an increased understanding of the requirements for accurately modeling the ionization balance, energy content and radiative properties of different elements for a wide range of densities and temperatures. Much of this progress is the result of a series of workshops dedicated to comparing the results from different codes and computational approaches applied to a series of test problems. The results of these workshops emphasized the importance of atomic model completeness, especially in doubly excited states and autoionization transitions, to calculating ionization balance, and the importance of accurate, detailed atomic data to producing reliable spectra. We describe a simple screened-hydrogenic model that calculates NLTE ionization balance with surprising accuracy, at a low enough computational cost for routine use in radiation-hydrodynamics codes. The model incorporates term splitting, {Delta}n = 0 transitions, and approximate UTA widths for spectral calculations, with results comparable to those of much more detailed codes. Simulations done with this model have been increasingly successful at matching experimental data for laser-driven systems and hohlraums. Accurate and efficient atomic models are just one requirement for integrated NLTE simulations. Coupling the atomic kinetics to hydrodynamics and radiation transport constrains both discretizations and algorithms to retain energy conservation, accuracy and stability. In particular, the strong coupling between radiation and populations can require either very short timesteps or significantly modified radiation transport algorithms to account for NLTE material response. Considerations such as these continue to provide challenges for NLTE simulations.

  18. Characterization of the proteins comprising the integral matrix of Strongylocentrotus purpuratus embryonic spicules

    NASA Technical Reports Server (NTRS)

    Killian, C. E.; Wilt, F. H.

    1996-01-01

    In the present study, we enumerate and characterize the proteins that comprise the integral spicule matrix of the Strongylocentrotus purpuratus embryo. Two-dimensional gel electrophoresis of [35S]methionine radiolabeled spicule matrix proteins reveals that there are 12 strongly radiolabeled spicule matrix proteins and approximately three dozen less strongly radiolabeled spicule matrix proteins. The majority of the proteins have acidic isoelectric points; however, there are several spicule matrix proteins that have more alkaline isoelectric points. Western blotting analysis indicates that SM50 is the spicule matrix protein with the most alkaline isoelectric point. In addition, two distinct SM30 proteins are identified in embryonic spicules, and they have apparent molecular masses of approximately 43 and 46 kDa. Comparisons between embryonic spicule matrix proteins and adult spine integral matrix proteins suggest that the embryonic 43-kDa SM30 protein is an embryonic isoform of SM30. An adult 49-kDa spine matrix protein is also identified as a possible adult isoform of SM30. Analysis of the SM30 amino acid sequences indicates that a portion of SM30 proteins is very similar to the carbohydrate recognition domain of C-type lectin proteins.

  19. Addressable-Matrix Integrated-Circuit Test Structure

    NASA Technical Reports Server (NTRS)

    Sayah, Hoshyar R.; Buehler, Martin G.

    1991-01-01

    Method of quality control based on use of row- and column-addressable test structure speeds collection of data on widths of resistor lines and coverage of steps in integrated circuits. By use of straightforward mathematical model, line widths and step coverages deduced from measurements of electrical resistances in each of various combinations of lines, steps, and bridges addressable in test structure. Intended for use in evaluating processes and equipment used in manufacture of application-specific integrated circuits.

  20. The potential benefit of an advanced integrated utility system

    NASA Technical Reports Server (NTRS)

    Wolfer, B. M.

    1975-01-01

    The applicability of an advanced integrated utility system based on 1980 technology was investigated. An example of such a system, which provides electricity, heating and air conditioning, solid waste disposal, and water treatment in a single integrated plant, is illustrated for a hypothetical apartment complex. The system requires approximately 50 percent of the energy and approximately 55 percent of the water that would be required by a typical current conventional system.

  1. ADVANCED COMPRESSOR ENGINE CONTROLS TO ENHANCE OPERATION, RELIABILITY AND INTEGRITY

    SciTech Connect

    Gary D. Bourn; Jess W. Gingrich; Jack A. Smith

    2004-03-01

    This document is the final report for the ''Advanced Compressor Engine Controls to Enhance Operation, Reliability, and Integrity'' project. SwRI conducted this project for DOE in conjunction with Cooper Compression, under DOE contract number DE-FC26-03NT41859. This report addresses an investigation of engine controls for integral compressor engines and the development of control strategies that implement closed-loop NOX emissions feedback.

  2. Addressable Inverter Matrix Tests Integrated-Circuit Wafer

    NASA Technical Reports Server (NTRS)

    Buehler, Martin G.

    1988-01-01

    Addressing elements indirectly through shift register reduces number of test probes. With aid of new technique, complex test structure on silicon wafer tested with relatively small number of test probes. Conserves silicon area by reduction of area devoted to pads. Allows thorough evaluation of test structure characteristics and of manufacturing process parameters. Test structure consists of shift register and matrix of inverter/transmission-gate cells connected to two-by-ten array of probe pads. Entire pattern contained in square area having only 1.6-millimeter sides. Shift register is conventional static CMOS device using inverters and transmission gates in master/slave D flip-flop configuration.

  3. Age-Related Effects of Advanced Glycation End Products (Ages) in Bone Matrix on Osteoclastic Resorption.

    PubMed

    Yang, Xiao; Gandhi, Chintan; Rahman, Md Mizanur; Appleford, Mark; Sun, Lian-Wen; Wang, Xiaodu

    2015-12-01

    Advanced glycation end products (AGEs) accumulate in bone extracellular matrix as people age. Previous studies have shown controversial results regarding the role of in situ AGEs accumulation in osteoclastic resorption. To address this issue, this study cultured human osteoclast cells directly on human cadaveric bone slices from different age groups (young and elderly) to warrant its relevance to in vivo conditions. The cell culture was terminated on the 3rd, 7th, and 10th day, respectively, to assess temporal changes in the number of differentiated osteoclasts, the number and size of osteoclastic resorption pits, the amount of bone resorbed, as well as the amount of matrix AGEs released in the medium by resorption. In addition, the in situ concentration of matrix AGEs at each resorption pit was also estimated based on its AGEs autofluorescent intensity. The results indicated that (1) osteoclastic resorption activities were significantly correlated with the donor age, showing larger but shallower resorption pits on the elderly bone substrates than on the younger ones; (2) osteoclast resorption activities were not significantly dependent on the in situ AGEs concentration in bone matrix, and (3) a correlation was observed between osteoclast activities and the concentration of AGEs released by the resorption. These results suggest that osteoclasts tend to migrate away from initial anchoring sites on elderly bone substrate during resorption compared to younger bone substrates. However, such behavior is not directly related to the in situ concentration of AGEs in bone matrix at the resorption sites.

  4. Stimulatory effects of advanced glycation endproducts (AGEs) on fibronectin matrix assembly.

    PubMed

    Pastino, Alexandra K; Greco, Todd M; Mathias, Rommel A; Cristea, Ileana M; Schwarzbauer, Jean E

    2017-05-01

    Advanced glycation endproducts (AGEs) are a heterogeneous group of compounds that form via non-enzymatic glycation of proteins throughout our lifespan and at a higher rate in certain chronic diseases such as diabetes. AGEs contribute to the progression of fibrosis, in part by stimulating cellular pathways that affect gene expression. Long-lived ECM proteins are targets for non-enzymatic glycation but the question of whether the AGE-modified ECM leads to excess ECM accumulation and fibrosis remains unanswered. In this study, cellular changes due to AGE accretion in the ECM were investigated. Non-enzymatic glycation of proteins in a decellularized fibroblast ECM was achieved by incubating the ECM in a solution of methylglyoxal (MGO). Mass spectrometry of fibronectin (FN) isolated from the glycated matrix identified twenty-eight previously unidentified MGO-derived AGE modification sites including functional sites such as the RGD integrin-binding sequence. Mesangial cells grown on the glycated, decellularized matrix assembled increased amounts of FN matrix. Soluble AGE-modified bovine serum albumin (BSA) also stimulated FN matrix assembly and this effect was reduced by function-blocking antibodies against the receptor for AGE (RAGE). These results indicate that cells respond to AGEs by increasing matrix assembly and that RAGE is involved in this response. This raises the possibility that the accumulation of ECM during the progression of fibrosis may be enhanced by cell interactions with AGEs on a glycated ECM.

  5. a Matrix Model Representation of the Integrable Xxz Heisenberg Chain on Random Surfaces

    NASA Astrophysics Data System (ADS)

    Ambjørn, J.; Sedrakyan, A.

    2013-11-01

    We consider integrable models, i.e. models defined by R-matrices, on random Manhattan lattices (RML). The set of random Manhattan lattices is defined as the set dual to the lattice random surfaces embedded on a regular d-dimensional lattice. As an example we formulate a random matrix model where the partition function reproduces annealed average of the XXZ Heisenberg chain over all RML. A technique is presented which reduces the random matrix integration in partition function to an integration over their eigenvalues.

  6. Material Protection, Accounting, and Control Technologies (MPACT) Advanced Integration Roadmap

    SciTech Connect

    Durkee, Joe W.; Cipiti, Ben; Demuth, Scott Francis; Fallgren, Andrew James; Jarman, Ken; Li, Shelly; Meier, Dave; Miller, Mike; Osburn, Laura Ann; Pereira, Candido; Dasari, Venkateswara Rao; Ticknor, Lawrence O.; Yoo, Tae-Sic

    2016-09-30

    The development of sustainable advanced nuclear fuel cycles is a long-term goal of the Office of Nuclear Energy’s (DOE-NE) Fuel Cycle Technologies program. The Material Protection, Accounting, and Control Technologies (MPACT) campaign is supporting research and development (R&D) of advanced instrumentation, analysis tools, and integration methodologies to meet this goal (Miller, 2015). This advanced R&D is intended to facilitate safeguards and security by design of fuel cycle facilities. The lab-scale demonstration of a virtual facility, distributed test bed, that connects the individual tools being developed at National Laboratories and university research establishments, is a key program milestone for 2020. These tools will consist of instrumentation and devices as well as computer software for modeling, simulation and integration.

  7. Matrix integral solutions to the discrete KP hierarchy and its Pfaffianized version

    NASA Astrophysics Data System (ADS)

    Lafortune, Stéphane; Li, Chun-Xia

    2016-11-01

    Matrix integrals used in random matrix theory for the study of eigenvalues of Hermitian ensembles have been shown to provide τ-functions for several hierarchies of integrable equations. In this article, we extend this relation by showing that such integrals can also provide τ-functions for the discrete KP hierarchy and a coupled version of the same hierarchy obtained through the process of Pfaffianization. To do so, we consider the first equation of the discrete KP hierarchy, the Hirota-Miwa equation. We write the Wronskian determinant solutions to the Hirota-Miwa equation and consider a particular form of matrix integrals, which we show is an example of those Wronskian solutions. The argument is then generalized to the whole hierarchy. A similar strategy is used for the Pfaffianized version of the hierarchy except that in that case, the solutions are written in terms of Pfaffians rather than determinants.

  8. Integrable deformations in the matrix pseudo differential operators

    NASA Astrophysics Data System (ADS)

    Helminck, G. F.

    2017-03-01

    Inside the algebra MPsd of matrix pseudo differential operators we consider deformations of the generators of a commutative subalgebra, built out of a commutative subalgebra of the n × n-matrices of maximal dimension. The evolution equations that we impose on these generators depend of the way in which one decomposes the algebra MPsd into the direct sum of two Lie subalgebras. We treat two cases that both lead to a compatible system of Lax equations inside MPsd. These systems generalize well-known systems as the AKNS-hierarchy and the multicomponent KP hierarchy. Finally, one shows that the Lax form of the systems is equivalent to a set of zero curvature relations.

  9. Elements of an advanced integrated operator control station

    SciTech Connect

    Clarke, M.M.; Kreifeldt, J.G.

    1984-01-01

    One of the critical determinants of peformance for any remotely operated maintenance system is the compatibility achieved between elements of the man/machine interface (e.g., master manipulator controller, controls, displays, etc.) and the human operator. In the Remote Control Engineering task of the Consolidated Fuel Reprocessing Program, considerable attention has been devoted to optimizing the man/machine interface of the operator control station. This system must be considered an integral element of the overall maintenance work system which includes transporters, manipulators, remote viewing, and other parts. The control station must reflect the integration of the operator team, control/display panels, manipulator master controllers, and remote viewing monitors. Human factors principles and experimentation have been used in the development of an advanced integrated operator control station designed for the advance servomanipulator. Key features of this next-generation design are summarized in this presentation. 7 references, 4 figures.

  10. Elements of an advanced integrated operator control station

    SciTech Connect

    Clarke, M.M.; Kreifeldt, J.G.

    1984-01-01

    One of the critical determinants of performance for any remotely operated maintenance system is the compatibility achieved between elements of the man/machine interface (e.g., master manipulator controller, controls, displays) and the human operator. In the remote control engineering task of the Consolidated Fuel Reprocessing Program, considerable attention has been devoted to optimizing the man/machine interface of the operator control station. This system must be considered an integral element of the overall maintenance work system which includes transporters, manipulators, remote viewing, and other parts. The control station must reflect the integration of the operator team, control/display panels, manipulator master controllers, and remote viewing monitors. Human factors principles and experimentation have been used in the development of an advanced integrated operator control station designed for the advance servomanipulator. Key features of this next-generation design are summarized in this presentation. 7 references, 4 figures.

  11. Extracellular matrix-associated proteins form an integral and dynamic system during Pseudomonas aeruginosa biofilm development

    PubMed Central

    Zhang, Weipeng; Sun, Jin; Ding, Wei; Lin, Jinshui; Tian, Renmao; Lu, Liang; Liu, Xiaofen; Shen, Xihui; Qian, Pei-Yuan

    2015-01-01

    Though the essential role of extracellular matrix in biofilm development has been extensively documented, the function of matrix-associated proteins is elusive. Determining the dynamics of matrix-associated proteins would be a useful way to reveal their functions in biofilm development. Therefore, we applied iTRAQ-based quantitative proteomics to evaluate matrix-associated proteins isolated from different phases of Pseudomonas aeruginosa ATCC27853 biofilms. Among the identified 389 proteins, 54 changed their abundance significantly. The increased abundance of stress resistance and nutrient metabolism-related proteins over the period of biofilm development was consistent with the hypothesis that biofilm matrix forms micro-environments in which cells are optimally organized to resist stress and use available nutrients. Secreted proteins, including novel putative effectors of the type III secretion system were identified, suggesting that the dynamics of pathogenesis-related proteins in the matrix are associated with biofilm development. Interestingly, there was a good correlation between the abundance changes of matrix-associated proteins and their expression. Further analysis revealed complex interactions among these modulated proteins, and the mutation of selected proteins attenuated biofilm development. Collectively, this work presents the first dynamic picture of matrix-associated proteins during biofilm development, and provides evidences that the matrix-associated proteins may form an integral and well regulated system that contributes to stress resistance, nutrient acquisition, pathogenesis and the stability of the biofilm. PMID:26029669

  12. Matrix equilibration in method of moment solutions of surface integral equations

    NASA Astrophysics Data System (ADS)

    Kolundzija, Branko M.; Kostic, Milan M.

    2014-12-01

    Basic theory of matrix equilibration is presented, relating it to other techniques for decreasing the condition number of matrix equations obtained by the method of moments (MOM) applied to surface integral equations (SIEs). It is shown that matrix equilibration is a general technique that can be used for both (1) balancing field and source quantities in SIEs, which is used to decrease the condition number in the case of SIEs of mixed type and high contrast in material properties, and (2) scaling basis and test functions in MOM, which is used to decrease the condition number in the case of higher-order bases and patches of different sizes. In particular, it is demonstrated that a combination of such balancing and scaling can be performed using simple matrix equilibration based on magnitudes of diagonal elements and 2-norms of rows/columns of the MOM matrix.

  13. Bethe Vectors of Quantum Integrable Models with GL(3) Trigonometric R-Matrix

    NASA Astrophysics Data System (ADS)

    Belliard, Samuel; Pakuliak, Stanislav; Ragoucy, Eric; Slavnov, Nikita A.

    2013-10-01

    We study quantum integrable models with GL(3) trigonometric R-matrix and solvable by the nested algebraic Bethe ansatz. Using the presentation of the universal Bethe vectors in terms of projections of products of the currents of the quantum affine algebra U_q(widehat{{gl}}_3) onto intersections of different types of Borel subalgebras, we prove that the set of the nested Bethe vectors is closed under the action of the elements of the monodromy matrix.

  14. An advanced Gibbs-Duhem integration method: theory and applications.

    PubMed

    van 't Hof, A; Peters, C J; de Leeuw, S W

    2006-02-07

    The conventional Gibbs-Duhem integration method is very convenient for the prediction of phase equilibria of both pure components and mixtures. However, it turns out to be inefficient. The method requires a number of lengthy simulations to predict the state conditions at which phase coexistence occurs. This number is not known from the outset of the numerical integration process. Furthermore, the molecular configurations generated during the simulations are merely used to predict the coexistence condition and not the liquid- and vapor-phase densities and mole fractions at coexistence. In this publication, an advanced Gibbs-Duhem integration method is presented that overcomes above-mentioned disadvantage and inefficiency. The advanced method is a combination of Gibbs-Duhem integration and multiple-histogram reweighting. Application of multiple-histogram reweighting enables the substitution of the unknown number of simulations by a fixed and predetermined number. The advanced method has a retroactive nature; a current simulation improves the predictions of previously computed coexistence points as well. The advanced Gibbs-Duhem integration method has been applied for the prediction of vapor-liquid equilibria of a number of binary mixtures. The method turned out to be very convenient, much faster than the conventional method, and provided smooth simulation results. As the employed force fields perfectly predict pure-component vapor-liquid equilibria, the binary simulations were very well suitable for testing the performance of different sets of combining rules. Employing Lorentz-Hudson-McCoubrey combining rules for interactions between unlike molecules, as opposed to Lorentz-Berthelot combining rules for all interactions, considerably improved the agreement between experimental and simulated data.

  15. Enhancing interacting residue prediction with integrated contact matrix prediction in protein-protein interaction.

    PubMed

    Du, Tianchuan; Liao, Li; Wu, Cathy H

    2016-12-01

    Identifying the residues in a protein that are involved in protein-protein interaction and identifying the contact matrix for a pair of interacting proteins are two computational tasks at different levels of an in-depth analysis of protein-protein interaction. Various methods for solving these two problems have been reported in the literature. However, the interacting residue prediction and contact matrix prediction were handled by and large independently in those existing methods, though intuitively good prediction of interacting residues will help with predicting the contact matrix. In this work, we developed a novel protein interacting residue prediction system, contact matrix-interaction profile hidden Markov model (CM-ipHMM), with the integration of contact matrix prediction and the ipHMM interaction residue prediction. We propose to leverage what is learned from the contact matrix prediction and utilize the predicted contact matrix as "feedback" to enhance the interaction residue prediction. The CM-ipHMM model showed significant improvement over the previous method that uses the ipHMM for predicting interaction residues only. It indicates that the downstream contact matrix prediction could help the interaction site prediction.

  16. Integrated intelligent systems in advanced reactor control rooms

    SciTech Connect

    Beckmeyer, R.R.

    1989-01-01

    An intelligent, reactor control room, information system is designed to be an integral part of an advanced control room and will assist the reactor operator's decision making process by continuously monitoring the current plant state and providing recommended operator actions to improve that state. This intelligent system is an integral part of, as well as an extension to, the plant protection and control systems. This paper describes the interaction of several functional components (intelligent information data display, technical specifications monitoring, and dynamic procedures) of the overall system and the artificial intelligence laboratory environment assembled for testing the prototype. 10 refs., 5 figs.

  17. Structure of collagen-glycosaminoglycan matrix and the influence to its integrity and stability.

    PubMed

    Bi, Yuying; Patra, Prabir; Faezipour, Miad

    2014-01-01

    Glycosaminoglycan (GAG) is a chain-like disaccharide that is linked to polypeptide core to connect two collagen fibrils/fibers and provide the intermolecular force in Collagen-GAG matrix (C-G matrix). Thus, the distribution of GAG in C-G matrix contributes to the integrity and mechanical properties of the matrix and related tissue. This paper analyzes the transverse isotropic distribution of GAG in C-G matrix. The angle of GAGs related to collagen fibrils is used as parameters to qualify the GAGs isotropic characteristic in both 3D and 2D rendering. Statistical results included that over one third of GAGs were perpendicular directed to collagen fibril with symmetrical distribution for both 3D matrix and 2D plane cross through collagen fibrils. The three factors tested in this paper: collagen radius, collagen distribution, and GAGs density, were not statistically significant for the strength of Collagen-GAG matrix in 3D rendering. However in 2D rendering, a significant factor found was the radius of collagen in matrix for the GAGs directed to orthogonal plane of Collagen-GAG matrix. Between two cross-section selected from Collagen-GAG matrix model, the plane cross through collagen fibrils was symmetrically distributed but the total percentage of perpendicular directed GAG was deducted by decreasing collagen radius. There were some symmetry features of GAGs angle distribution in selected 2D plane that passed through space between collagen fibrils, but most models showed multiple peaks in GAGs angle distribution. With less GAGs directed to perpendicular of collagen fibril, strength in collagen cross-section weakened. Collagen distribution was also a factor that influences GAGs angle distribution in 2D rendering. True hexagonal collagen packaging is reported in this paper to have less strength at collagen cross-section compared to quasi-hexagonal collagen arrangement. In this work focus is on GAGs matrix within the collagen and its relevance to anisotropy.

  18. A feasibility study for advanced technology integration for general aviation

    NASA Technical Reports Server (NTRS)

    Kohlman, D. L.; Matsuyama, G. T.; Hawley, K. E.; Meredith, P. T.

    1980-01-01

    An investigation was conducted to identify candidate technologies and specific developments which offer greatest promise for improving safety, fuel efficiency, performance, and utility of general aviation airplanes. Interviews were conducted with general aviation airframe and systems manufacturers and NASA research centers. The following technologies were evaluated for use in airplane design tradeoff studies conducted during the study: avionics, aerodynamics, configurations, structures, flight controls, and propulsion. Based on industry interviews and design tradeoff studies, several recommendations were made for further high payoff research. The most attractive technologies for use by the general aviation industry appear to be advanced engines, composite materials, natural laminar flow airfoils, and advanced integrated avionics systems. The integration of these technologies in airplane design can yield significant increases in speeds, ranges, and payloads over present aircraft with 40 percent to 50 percent reductions in fuel used.

  19. Advanced Integrated Power and Attitude Control System (IPACS) study

    NASA Technical Reports Server (NTRS)

    Oglevie, R. E.; Eisenhaure, D. B.

    1985-01-01

    Integrated Power and Attitude Control System (IPACS) studies performed over a decade ago established the feasibility of simultaneously satisfying the demands of energy storage and attitude control through the use of rotating flywheels. It was demonstrated that, for a wide spectrum of applications, such a system possessed many advantages over contemporary energy storage and attitude control approaches. More recent technology advances in composite material rotors, magnetic suspension systems, and power control electronics have triggered new optimism regarding the applicability and merits of this concept. This study is undertaken to define an advanced IPACS and to evaluate its merits for a space station application. System and component designs are developed to establish the performance of this concept and system trade studies conducted to examine the viability of this approach relative to conventional candidate systems. It is clearly demonstrated that an advanced IPACS concept is not only feasible, but also offers substantial savings in mass and life-cycle cost for the space station mission.

  20. Investigation of an advanced fault tolerant integrated avionics system

    NASA Technical Reports Server (NTRS)

    Dunn, W. R.; Cottrell, D.; Flanders, J.; Javornik, A.; Rusovick, M.

    1986-01-01

    Presented is an advanced, fault-tolerant multiprocessor avionics architecture as could be employed in an advanced rotorcraft such as LHX. The processor structure is designed to interface with existing digital avionics systems and concepts including the Army Digital Avionics System (ADAS) cockpit/display system, navaid and communications suites, integrated sensing suite, and the Advanced Digital Optical Control System (ADOCS). The report defines mission, maintenance and safety-of-flight reliability goals as might be expected for an operational LHX aircraft. Based on use of a modular, compact (16-bit) microprocessor card family, results of a preliminary study examining simplex, dual and standby-sparing architectures is presented. Given the stated constraints, it is shown that the dual architecture is best suited to meet reliability goals with minimum hardware and software overhead. The report presents hardware and software design considerations for realizing the architecture including redundancy management requirements and techniques as well as verification and validation needs and methods.

  1. Monolithic microwave integrated circuit technology for advanced space communication

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Romanofsky, Robert R.

    1988-01-01

    Future Space Communications subsystems will utilize GaAs Monolithic Microwave Integrated Circuits (MMIC's) to reduce volume, weight, and cost and to enhance system reliability. Recent advances in GaAs MMIC technology have led to high-performance devices which show promise for insertion into these next generation systems. The status and development of a number of these devices operating from Ku through Ka band will be discussed along with anticipated potential applications.

  2. Advanced Laser Chemical Processing For Microelectronics and Integrated Optics

    DTIC Science & Technology

    1992-08-15

    Barbara, CA (June 25-27, 1990). 15. R.M. Osgood, Jr., " Laser - Fabrication for Integrated Electronics and Optics," OITDA Conference, Tokyo, Japan, (July 5...Society Meeting, Boston, MA, November 26 - December 3, 1990. 20. R.M. Osgood, Jr., "Advances in Laser Fabrication for Solid-State Electronics and...Thin, Excimer Laser-Deposited Cd Interlayers," J. Elec. Mat. 12, 1239 (July, 1990). 14. R.M. Osgood, Jr., " Laser - Fabrication for Solid State

  3. Foundational development of an advanced nuclear reactor integrated safety code.

    SciTech Connect

    Clarno, Kevin; Lorber, Alfred Abraham; Pryor, Richard J.; Spotz, William F.; Schmidt, Rodney Cannon; Belcourt, Kenneth; Hooper, Russell Warren; Humphries, Larry LaRon

    2010-02-01

    This report describes the activities and results of a Sandia LDRD project whose objective was to develop and demonstrate foundational aspects of a next-generation nuclear reactor safety code that leverages advanced computational technology. The project scope was directed towards the systems-level modeling and simulation of an advanced, sodium cooled fast reactor, but the approach developed has a more general applicability. The major accomplishments of the LDRD are centered around the following two activities. (1) The development and testing of LIME, a Lightweight Integrating Multi-physics Environment for coupling codes that is designed to enable both 'legacy' and 'new' physics codes to be combined and strongly coupled using advanced nonlinear solution methods. (2) The development and initial demonstration of BRISC, a prototype next-generation nuclear reactor integrated safety code. BRISC leverages LIME to tightly couple the physics models in several different codes (written in a variety of languages) into one integrated package for simulating accident scenarios in a liquid sodium cooled 'burner' nuclear reactor. Other activities and accomplishments of the LDRD include (a) further development, application and demonstration of the 'non-linear elimination' strategy to enable physics codes that do not provide residuals to be incorporated into LIME, (b) significant extensions of the RIO CFD code capabilities, (c) complex 3D solid modeling and meshing of major fast reactor components and regions, and (d) an approach for multi-physics coupling across non-conformal mesh interfaces.

  4. Robust Joining and Integration Technologies for Advanced Metallic, Ceramic, and Composite Systems

    NASA Technical Reports Server (NTRS)

    Singh, M.; Shpargel, Tarah; Morscher, Gregory N.; Halbig, Michael H.; Asthana, Rajiv

    2006-01-01

    Robust integration and assembly technologies are critical for the successful implementation of advanced metallic, ceramic, carbon-carbon, and ceramic matrix composite components in a wide variety of aerospace, space exploration, and ground based systems. Typically, the operating temperature of these components varies from few hundred to few thousand Kelvin with different working times (few minutes to years). The wide ranging system performance requirements necessitate the use of different integration technologies which includes adhesive bonding, low temperature soldering, active metal brazing, diffusion bonding, ARCJoinT, and ultra high temperature joining technologies. In this presentation, a number of joining examples and test results will be provided related to the adhesive bonding and active metal brazing of titanium to C/C composites, diffusion bonding of silicon carbide to silicon carbide using titanium interlayer, titanium and hastelloy brazing to silicon carbide matrix composites, and ARCJoinT joining of SiC ceramics and SiC matrix composites. Various issues in the joining of metal-ceramic systems including thermal expansion mismatch and resulting residual stresses generated during joining will be discussed. In addition, joint design and testing issues for a wide variety of joints will be presented.

  5. Time and band limiting for matrix valued functions: an integral and a commuting differential operator

    NASA Astrophysics Data System (ADS)

    Grünbaum, F. A.; Pacharoni, I.; Zurrián, I.

    2017-02-01

    The problem of recovering a signal of finite duration from a piece of its Fourier transform was solved at Bell Labs in the 1960’s, by exploiting a ‘miracle’: a certain naturally appearing integral operator commutes with an explicit differential one. Here we show that this same miracle holds in a matrix valued version of the same problem.

  6. Enhanced performance in graphene RF transistors via advanced process integration

    NASA Astrophysics Data System (ADS)

    Hong, Seul Ki; Oh, Joong Gun; Hwang, Wan Sik; Cho, Byung Jin

    2017-04-01

    The state-of-the-art performance of a graphene radio-frequency (RF) field-effect transistor (FET) made of chemical vapor deposition (CVD) graphene is presented. The record high cut-off frequency as high as 380 GHz using CVD graphene was attributed to the implementation of advanced process integration. On the one hand, interface engineering has become critical in two-dimensional (2D) electronics since the charge transport of a 2D electron system like graphene is highly affected by the interface. The interface engineering was made for both the top and bottom of the graphene surface by implementing a non-polar material (1, 3, 5-trimethyl-1, 3, 5-trivinyl cyclotrisiloxane). In contrast to conventional polar materials, such as SiO2, the non-polar materials significantly reduce the surface optical phonon scattering in the graphene channel, leading to the enhanced RF performance of graphene FET. On the other hand, micro-scaled holes over the multilayer graphene and self-aligned structure also become a critical factor in minimizing the parasitic resistance that is inversely proportional to RF performance. As the growth technique of CVD graphene greatly advances, the advanced process integration scheme could bring graphene electronics one step further towards practical application.

  7. Human Exploration Spacecraft Testbed for Integration and Advancement (HESTIA)

    NASA Technical Reports Server (NTRS)

    Banker, Brian F.; Robinson, Travis

    2016-01-01

    The proposed paper will cover ongoing effort named HESTIA (Human Exploration Spacecraft Testbed for Integration and Advancement), led at the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) to promote a cross-subsystem approach to developing Mars-enabling technologies with the ultimate goal of integrated system optimization. HESTIA also aims to develop the infrastructure required to rapidly test these highly integrated systems at a low cost. The initial focus is on the common fluids architecture required to enable human exploration of mars, specifically between life support and in-situ resource utilization (ISRU) subsystems. An overview of the advancements in both integrated technologies, in infrastructure, in simulation, and in modeling capabilities will be presented, as well as the results and findings of integrated testing,. Due to the enormous mass gear-ratio required for human exploration beyond low-earth orbit, (for every 1 kg of payload landed on Mars, 226 kg will be required on Earth), minimization of surface hardware and commodities is paramount. Hardware requirements can be minimized by reduction of equipment performing similar functions though for different subsystems. If hardware could be developed which meets the requirements of both life support and ISRU it could result in the reduction of primary hardware and/or reduction in spares. Minimization of commodities to the surface of mars can be achieved through the creation of higher efficiency systems producing little to no undesired waste, such as a closed-loop life support subsystem. Where complete efficiency is impossible or impractical, makeup commodities could be manufactured via ISRU. Although, utilization of ISRU products (oxygen and water) for crew consumption holds great promise of reducing demands on life support hardware, there exist concerns as to the purity and transportation of commodities. To date, ISRU has been focused on production rates and purities for

  8. Predicting drug-target interactions by dual-network integrated logistic matrix factorization

    NASA Astrophysics Data System (ADS)

    Hao, Ming; Bryant, Stephen H.; Wang, Yanli

    2017-01-01

    In this work, we propose a dual-network integrated logistic matrix factorization (DNILMF) algorithm to predict potential drug-target interactions (DTI). The prediction procedure consists of four steps: (1) inferring new drug/target profiles and constructing profile kernel matrix; (2) diffusing drug profile kernel matrix with drug structure kernel matrix; (3) diffusing target profile kernel matrix with target sequence kernel matrix; and (4) building DNILMF model and smoothing new drug/target predictions based on their neighbors. We compare our algorithm with the state-of-the-art method based on the benchmark dataset. Results indicate that the DNILMF algorithm outperforms the previously reported approaches in terms of AUPR (area under precision-recall curve) and AUC (area under curve of receiver operating characteristic) based on the 5 trials of 10-fold cross-validation. We conclude that the performance improvement depends on not only the proposed objective function, but also the used nonlinear diffusion technique which is important but under studied in the DTI prediction field. In addition, we also compile a new DTI dataset for increasing the diversity of currently available benchmark datasets. The top prediction results for the new dataset are confirmed by experimental studies or supported by other computational research.

  9. Predicting drug-target interactions by dual-network integrated logistic matrix factorization

    PubMed Central

    Hao, Ming; Bryant, Stephen H.; Wang, Yanli

    2017-01-01

    In this work, we propose a dual-network integrated logistic matrix factorization (DNILMF) algorithm to predict potential drug-target interactions (DTI). The prediction procedure consists of four steps: (1) inferring new drug/target profiles and constructing profile kernel matrix; (2) diffusing drug profile kernel matrix with drug structure kernel matrix; (3) diffusing target profile kernel matrix with target sequence kernel matrix; and (4) building DNILMF model and smoothing new drug/target predictions based on their neighbors. We compare our algorithm with the state-of-the-art method based on the benchmark dataset. Results indicate that the DNILMF algorithm outperforms the previously reported approaches in terms of AUPR (area under precision-recall curve) and AUC (area under curve of receiver operating characteristic) based on the 5 trials of 10-fold cross-validation. We conclude that the performance improvement depends on not only the proposed objective function, but also the used nonlinear diffusion technique which is important but under studied in the DTI prediction field. In addition, we also compile a new DTI dataset for increasing the diversity of currently available benchmark datasets. The top prediction results for the new dataset are confirmed by experimental studies or supported by other computational research. PMID:28079135

  10. Advanced general aviation comparative engine/airframe integration study

    NASA Technical Reports Server (NTRS)

    Huggins, G. L.; Ellis, D. R.

    1981-01-01

    The NASA Advanced Aviation Comparative Engine/Airframe Integration Study was initiated to help determine which of four promising concepts for new general aviation engines for the 1990's should be considered for further research funding. The engine concepts included rotary, diesel, spark ignition, and turboprop powerplants; a conventional state-of-the-art piston engine was used as a baseline for the comparison. Computer simulations of the performance of single and twin engine pressurized aircraft designs were used to determine how the various characteristics of each engine interacted in the design process. Comparisons were made of how each engine performed relative to the others when integrated into an airframe and required to fly a transportation mission.

  11. Integration of Advanced Simulation and Visualization for Manufacturing Process Optimization

    NASA Astrophysics Data System (ADS)

    Zhou, Chenn; Wang, Jichao; Tang, Guangwu; Moreland, John; Fu, Dong; Wu, Bin

    2016-05-01

    The integration of simulation and visualization can provide a cost-effective tool for process optimization, design, scale-up and troubleshooting. The Center for Innovation through Visualization and Simulation (CIVS) at Purdue University Northwest has developed methodologies for such integration with applications in various manufacturing processes. The methodologies have proven to be useful for virtual design and virtual training to provide solutions addressing issues on energy, environment, productivity, safety, and quality in steel and other industries. In collaboration with its industrial partnerships, CIVS has provided solutions to companies, saving over US38 million. CIVS is currently working with the steel industry to establish an industry-led Steel Manufacturing Simulation and Visualization Consortium through the support of National Institute of Standards and Technology AMTech Planning Grant. The consortium focuses on supporting development and implementation of simulation and visualization technologies to advance steel manufacturing across the value chain.

  12. Advanced integrated solvent extraction and ion exchange systems

    SciTech Connect

    Horwitz, P.

    1996-10-01

    Advanced integrated solvent extraction (SX) and ion exchange (IX) systems are a series of novel SX and IX processes that extract and recover uranium and transuranics (TRUs) (neptunium, plutonium, americium) and fission products {sup 90}Sr, {sup 99}Tc, and {sup 137}Cs from acidic high-level liquid waste and that sorb and recover {sup 90}Sr, {sup 99}Tc, and {sup 137}Cs from alkaline supernatant high-level waste. Each system is based on the use of new selective liquid extractants or chromatographic materials. The purpose of the integrated SX and IX processes is to minimize the quantity of waste that must be vitrified and buried in a deep geologic repository by producing raffinates (from SX) and effluent streams (from IX) that will meet the specifications of Class A low-level waste.

  13. Advanced composite structures. [metal matrix composites - structural design criteria for spacecraft construction materials

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A monograph is presented which establishes structural design criteria and recommends practices to ensure the design of sound composite structures, including composite-reinforced metal structures. (It does not discuss design criteria for fiber-glass composites and such advanced composite materials as beryllium wire or sapphire whiskers in a matrix material.) Although the criteria were developed for aircraft applications, they are general enough to be applicable to space vehicles and missiles as well. The monograph covers four broad areas: (1) materials, (2) design, (3) fracture control, and (4) design verification. The materials portion deals with such subjects as material system design, material design levels, and material characterization. The design portion includes panel, shell, and joint design, applied loads, internal loads, design factors, reliability, and maintainability. Fracture control includes such items as stress concentrations, service-life philosophy, and the management plan for control of fracture-related aspects of structural design using composite materials. Design verification discusses ways to prove flightworthiness.

  14. Study of mould design and forming process on advanced polymer-matrix composite complex structure

    NASA Astrophysics Data System (ADS)

    Li, S. J.; Zhan, L. H.; Bai, H. M.; Chen, X. P.; Zhou, Y. Q.

    2015-07-01

    Advanced carbon fibre-reinforced polymer-matrix composites are widely applied to aviation manufacturing field due to their outstanding performance. In this paper, the mould design and forming process of the complex composite structure were discussed in detail using the hat stiffened structure as an example. The key issues of the moulddesign were analyzed, and the corresponding solutions were also presented. The crucial control points of the forming process such as the determination of materials and stacking sequence, the temperature and pressure route of the co-curing process were introduced. In order to guarantee the forming quality of the composite hat stiffened structure, a mathematical model about the aperture of rubber mandrel was introduced. The study presented in this paper may provide some actual references for the design and manufacture of the important complex composite structures.

  15. An integrated psychological strategy for advanced colorectal cancer patients

    PubMed Central

    Pugliese, Patrizia; Perrone, Maria; Nisi, Enrica; Garufi, Carlo; Giannarelli, Diana; Bottomley, Andrew; Terzoli, Edmondo

    2006-01-01

    Background There is evidence regarding the usefulness of psychosocial intervention to improve health related quality of life (HRQOL) in adult cancer patients. The aim of this report is to describe an integrated approach and to evaluate its feasibility in routine clinical practice in 98 advanced colorectal cancer (ACC) patients during chronomodulated chemotherapy. Methods A prospective non-randomised design was developed and applied in a cancer out-patient setting. The intervention consisted of an integrated approach, whereby the psycho-oncologist had an active role in the health care team with the physician and routinely included psychological understanding in the medical treatment program. The psychological evaluation assessed: a) adaptation, awareness, psychopathological disorders through a psychodynamic interview; b) anxiety and depression using the HAD scale; c) subjective perception of care quality through a structured interview and d) HRQOL evaluation assessment with the EORTC QLQ C30. Outcomes data were collected before and after 18 weeks of chemotherapy. Results After 18 weeks of chemotherapy a significant improvement of adaptation and awareness was observed. The HADs results showed a significant decrease in anxiety when compared to pre-treatment. The structured interview showed a significant increase of patients who positively experienced the impact of medical treatment on HRQOL, anxiety, depression, interpersonal relationships, free-time and who positively experienced the care quality. Indeed, a majority of patients positively experienced the team relationship modality during the whole treatment. All scales on the EORTC questionnaire remained unchanged during the entire treatment. Conclusion Our results suggest that it is feasible to carry out an integrated approach during chemotherapy. These results seem to support the integrated approach as a tool in aiding advanced colorectal cancer patients' ability to cope with their diagnosis and treatment although

  16. A fission matrix based validation protocol for computed power distributions in the advanced test reactor

    SciTech Connect

    Nielsen, J. W.; Nigg, D. W.; LaPorta, A. W.

    2013-07-01

    The Idaho National Laboratory (INL) has been engaged in a significant multi year effort to modernize the computational reactor physics tools and validation procedures used to support operations of the Advanced Test Reactor (ATR) and its companion critical facility (ATRC). Several new protocols for validation of computed neutron flux distributions and spectra as well as for validation of computed fission power distributions, based on new experiments and well-recognized least-squares statistical analysis techniques, have been under development. In the case of power distributions, estimates of the a priori ATR-specific fuel element-to-element fission power correlation and covariance matrices are required for validation analysis. A practical method for generating these matrices using the element-to-element fission matrix is presented, along with a high-order scheme for estimating the underlying fission matrix itself. The proposed methodology is illustrated using the MCNP5 neutron transport code for the required neutronics calculations. The general approach is readily adaptable for implementation using any multidimensional stochastic or deterministic transport code that offers the required level of spatial, angular, and energy resolution in the computed solution for the neutron flux and fission source. (authors)

  17. Integrated Analysis Tools for Determination of Structural Integrity and Durability of High temperature Polymer Matrix Composites

    DTIC Science & Technology

    2008-08-18

    Dillon none 2306T / X Dr. Charles Y-C. Lee i-incc » Objective : To develop a materials qualification approach based on a combinatorial multi-scale...approaches will be identified and targeted to provide the material supplier with a more efficient way to optimize the material for a particular application...Matrix Composites 16. SECURITY CLASSIFICATION OF: a. REPORT U b. ABSTRACT U c. THIS PAGE U 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES

  18. Advanced High Temperature Polymer Matrix Composites for Gas Turbine Engines Program Expansion

    NASA Technical Reports Server (NTRS)

    Hanley, David; Carella, John

    1999-01-01

    This document, submitted by AlliedSignal Engines (AE), a division of AlliedSignal Aerospace Company, presents the program final report for the Advanced High Temperature Polymer Matrix Composites for Gas Turbine Engines Program Expansion in compliance with data requirements in the statement of work, Contract No. NAS3-97003. This document includes: 1 -Technical Summary: a) Component Design, b) Manufacturing Process Selection, c) Vendor Selection, and d) Testing Validation: 2-Program Conclusion and Perspective. Also, see the Appendix at the back of this report. This report covers the program accomplishments from December 1, 1996, to August 24, 1998. The Advanced High Temperature PMC's for Gas Turbine Engines Program Expansion was a one year long, five task technical effort aimed at designing, fabricating and testing a turbine engine component using NASA's high temperature resin system AMB-21. The fiber material chosen was graphite T650-35, 3K, 8HS with UC-309 sizing. The first four tasks included component design and manufacturing, process selection, vendor selection, component fabrication and validation testing. The final task involved monthly financial and technical reports.

  19. Melt Infiltrated Ceramic Matrix Composites for Shrouds and Combustor Liners of Advanced Industrial Gas Turbines

    SciTech Connect

    Gregory Corman; Krishan Luthra; Jill Jonkowski; Joseph Mavec; Paul Bakke; Debbie Haught; Merrill Smith

    2011-01-07

    This report covers work performed under the Advanced Materials for Advanced Industrial Gas Turbines (AMAIGT) program by GE Global Research and its collaborators from 2000 through 2010. A first stage shroud for a 7FA-class gas turbine engine utilizing HiPerComp{reg_sign}* ceramic matrix composite (CMC) material was developed. The design, fabrication, rig testing and engine testing of this shroud system are described. Through two field engine tests, the latter of which is still in progress at a Jacksonville Electric Authority generating station, the robustness of the CMC material and the shroud system in general were demonstrated, with shrouds having accumulated nearly 7,000 hours of field engine testing at the conclusion of the program. During the latter test the engine performance benefits from utilizing CMC shrouds were verified. Similar development of a CMC combustor liner design for a 7FA-class engine is also described. The feasibility of using the HiPerComp{reg_sign} CMC material for combustor liner applications was demonstrated in a Solar Turbines Ceramic Stationary Gas Turbine (CSGT) engine test where the liner performed without incident for 12,822 hours. The deposition processes for applying environmental barrier coatings to the CMC components were also developed, and the performance of the coatings in the rig and engine tests is described.

  20. Influence of in vitro cultivation on the integration of cell-matrix constructs after subcutaneous implantation.

    PubMed

    Seitz, Sebastian; Ern, Khrystyna; Lamper, Gabriella; Docheva, Denitsa; Drosse, Inga; Milz, Stefan; Mutschler, Wolf; Schieker, Matthias

    2007-05-01

    Dynamic cultivation of scaffolds loaded with undifferentiated stem cells can lead toward osteogenic differentiation in vivo. The aim of this study was to examine the influence of different in vitro cultivation setups on the integration of cell-matrix constructs after subcutaneous implantation. Human mesenchymal stem cells (hMSC) were inoculated on clinically approved scaffolds. These cell-matrix constructs were then cultured under static (12 hours or 14 days) or dynamic (14 days) conditions, followed by paravertebral subcutaneous implantation in athymic nude mice. After 2 weeks and 12 weeks the constructs and selected organs were harvested for histological evaluation, and qualitative and quantitative polymerase chain reaction (PCR). Histological analysis showed good integration of cell-matrix constructs independent of culture conditions and a differential effect of static and dynamic in vitro culture on fat cell formation in vivo. Human DNA (hDNA) was detected in explanted cell-matrix constructs at all time points with a significant decrease in human cells on the constructs compared to the initial amount of cells seeded. No hDNA was detected in the explanted organs. In conclusion, we could prove the survival of hMSC on scaffolds after in vitro cultivation and consecutive implantation in vivo. While the amount of adipose tissue increased after static cultivation, we could not achieve osteogenic differentiation.

  1. Environmental Barrier Coating Development for SiC/SiC Ceramic Matrix Composites: Recent Advances and Future Directions

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming

    2016-01-01

    This presentation briefly reviews the SiC/SiC major environmental and environment-fatigue degradations encountered in simulated turbine combustion environments, and thus NASA environmental barrier coating system evolution for protecting the SiC/SiC Ceramic Matrix Composites for meeting the engine performance requirements. The presentation will review several generations of NASA EBC materials systems, EBC-CMC component system technologies for SiC/SiC ceramic matrix composite combustors and turbine airfoils, highlighting the temperature capability and durability improvements in simulated engine high heat flux, high pressure, high velocity, and with mechanical creep and fatigue loading conditions. This paper will also focus on the performance requirements and design considerations of environmental barrier coatings for next generation turbine engine applications. The current development emphasis is placed on advanced NASA candidate environmental barrier coating systems for SiC/SiC CMCs, their performance benefits and design limitations in long-term operation and combustion environments. The efforts have been also directed to developing prime-reliant, self-healing 2700F EBC bond coat; and high stability, lower thermal conductivity, and durable EBC top coats. Major technical barriers in developing environmental barrier coating systems, the coating integrations with next generation CMCs having the improved environmental stability, erosion-impact resistance, and long-term fatigue-environment system durability performance will be described. The research and development opportunities for turbine engine environmental barrier coating systems by utilizing improved compositions, state-of-the-art processing methods, and simulated environment testing and durability modeling will be briefly discussed.

  2. Integration of isothermal amplification methods in microfluidic devices: Recent advances.

    PubMed

    Giuffrida, Maria Chiara; Spoto, Giuseppe

    2017-04-15

    The integration of nucleic acids detection assays in microfluidic devices represents a highly promising approach for the development of convenient, cheap and efficient diagnostic tools for clinical, food safety and environmental monitoring applications. Such tools are expected to operate at the point-of-care and in resource-limited settings. The amplification of the target nucleic acid sequence represents a key step for the development of sensitive detection protocols. The integration in microfluidic devices of the most popular technology for nucleic acids amplifications, polymerase chain reaction (PCR), is significantly limited by the thermal cycling needed to obtain the target sequence amplification. This review provides an overview of recent advances in integration of isothermal amplification methods in microfluidic devices. Isothermal methods, that operate at constant temperature, have emerged as promising alternative to PCR and greatly simplify the implementation of amplification methods in point-of-care diagnostic devices and devices to be used in resource-limited settings. Possibilities offered by isothermal methods for digital droplet amplification are discussed.

  3. Integrity of Narrow Epithelial Tubes in the C. elegans Excretory System Requires a Transient Luminal Matrix.

    PubMed

    Gill, Hasreet K; Cohen, Jennifer D; Ayala-Figueroa, Jesus; Forman-Rubinsky, Rachel; Poggioli, Corey; Bickard, Kevin; Parry, Jean M; Pu, Pu; Hall, David H; Sundaram, Meera V

    2016-08-01

    Most epithelial cells secrete a glycoprotein-rich apical extracellular matrix that can have diverse but still poorly understood roles in development and physiology. Zona Pellucida (ZP) domain glycoproteins are common constituents of these matrices, and their loss in humans is associated with a number of diseases. Understanding of the functions, organization and regulation of apical matrices has been hampered by difficulties in imaging them both in vivo and ex vivo. We identified the PAN-Apple, mucin and ZP domain glycoprotein LET-653 as an early and transient apical matrix component that shapes developing epithelia in C. elegans. LET-653 has modest effects on shaping of the vulva and epidermis, but is essential to prevent lumen fragmentation in the very narrow, unicellular excretory duct tube. We were able to image the transient LET-653 matrix by both live confocal imaging and transmission electron microscopy. Structure/function and fluorescence recovery after photobleaching studies revealed that LET-653 exists in two separate luminal matrix pools, a loose fibrillar matrix in the central core of the lumen, to which it binds dynamically via its PAN domains, and an apical-membrane-associated matrix, to which it binds stably via its ZP domain. The PAN domains are both necessary and sufficient to confer a cyclic pattern of duct lumen localization that precedes each molt, while the ZP domain is required for lumen integrity. Ectopic expression of full-length LET-653, but not the PAN domains alone, could expand lumen diameter in the developing gut tube, where LET-653 is not normally expressed. Together, these data support a model in which the PAN domains regulate the ability of the LET-653 ZP domain to interact with other factors at the apical membrane, and this ZP domain interaction promotes expansion and maintenance of lumen diameter. These data identify a transient apical matrix component present prior to cuticle secretion in C. elegans, demonstrate critical roles for

  4. Integrity of Narrow Epithelial Tubes in the C. elegans Excretory System Requires a Transient Luminal Matrix

    PubMed Central

    Ayala-Figueroa, Jesus; Parry, Jean M.; Pu, Pu; Hall, David H.

    2016-01-01

    Most epithelial cells secrete a glycoprotein-rich apical extracellular matrix that can have diverse but still poorly understood roles in development and physiology. Zona Pellucida (ZP) domain glycoproteins are common constituents of these matrices, and their loss in humans is associated with a number of diseases. Understanding of the functions, organization and regulation of apical matrices has been hampered by difficulties in imaging them both in vivo and ex vivo. We identified the PAN-Apple, mucin and ZP domain glycoprotein LET-653 as an early and transient apical matrix component that shapes developing epithelia in C. elegans. LET-653 has modest effects on shaping of the vulva and epidermis, but is essential to prevent lumen fragmentation in the very narrow, unicellular excretory duct tube. We were able to image the transient LET-653 matrix by both live confocal imaging and transmission electron microscopy. Structure/function and fluorescence recovery after photobleaching studies revealed that LET-653 exists in two separate luminal matrix pools, a loose fibrillar matrix in the central core of the lumen, to which it binds dynamically via its PAN domains, and an apical-membrane-associated matrix, to which it binds stably via its ZP domain. The PAN domains are both necessary and sufficient to confer a cyclic pattern of duct lumen localization that precedes each molt, while the ZP domain is required for lumen integrity. Ectopic expression of full-length LET-653, but not the PAN domains alone, could expand lumen diameter in the developing gut tube, where LET-653 is not normally expressed. Together, these data support a model in which the PAN domains regulate the ability of the LET-653 ZP domain to interact with other factors at the apical membrane, and this ZP domain interaction promotes expansion and maintenance of lumen diameter. These data identify a transient apical matrix component present prior to cuticle secretion in C. elegans, demonstrate critical roles for

  5. Integrating Organic Matter Structure with Ecosystem Function using Advanced Analytical Chemistry Techniques

    NASA Astrophysics Data System (ADS)

    Boot, C. M.

    2012-12-01

    Microorganisms are the primary transformers of organic matter in terrestrial and aquatic ecosystems. The structure of organic matter controls its bioavailability and researchers have long sought to link the chemical characteristics of the organic matter pool to its lability. To date this effort has been primarily attempted using low resolution descriptive characteristics (e.g. organic matter content, carbon to nitrogen ratio, aromaticity, etc .). However, recent progress in linking these two important ecosystem components has been advanced using advanced high resolution tools (e.g. nuclear magnetic resonance (NMR) spectroscopy, and mass spectroscopy (MS)-based techniques). A series of experiments will be presented that highlight the application of high resolution techniques in a variety of terrestrial and aquatic ecosystems with the focus on how these data explicitly provide the foundation for integrating organic matter structure into our concept of ecosystem function. The talk will highlight results from a series of experiments including: an MS-based metabolomics and fluorescence excitation emission matrix approach evaluating seasonal and vegetation based changes in dissolved organic matter (DOM) composition from arctic soils; Fourier transform ion cyclotron resonance (FTICR) MS and MS metabolomics analysis of DOM from three lakes in an alpine watershed; and the transformation of 13C labeled glucose track with NMR during a rewetting experiment from Colorado grassland soils. These data will be synthesized to illustrate how the application of advanced analytical techniques provides novel insight into our understanding of organic matter processing in a wide range of ecosystems.

  6. Accumulation of Extracellular Matrix in Advanced Lesions of Canine Distemper Demyelinating Encephalitis.

    PubMed

    Seehusen, Frauke; Al-Azreg, Seham A; Raddatz, Barbara B; Haist, Verena; Puff, Christina; Spitzbarth, Ingo; Ulrich, Reiner; Baumgärtner, Wolfgang

    2016-01-01

    In demyelinating diseases, changes in the quality and quantity of the extracellular matrix (ECM) may contribute to demyelination and failure of myelin repair and axonal sprouting, especially in chronic lesions. To characterize changes in the ECM in canine distemper demyelinating leukoencephalitis (DL), histochemical and immunohistochemical investigations of formalin-fixed paraffin-embedded cerebella using azan, picrosirius red and Gomori`s silver stain as well as antibodies directed against aggrecan, type I and IV collagen, fibronectin, laminin and phosphacan showed alterations of the ECM in CDV-infected dogs. A significantly increased amount of aggrecan was detected in early and late white matter lesions. In addition, the positive signal for collagens I and IV as well as fibronectin was significantly increased in late lesions. Conversely, the expression of phosphacan was significantly decreased in early and more pronounced in late lesions compared to controls. Furthermore, a set of genes involved in ECM was extracted from a publically available microarray data set and was analyzed for differential gene expression. Gene expression of ECM molecules, their biosynthesis pathways, and pro-fibrotic factors was mildly up-regulated whereas expression of matrix remodeling enzymes was up-regulated to a relatively higher extent. Summarized, the observed findings indicate that changes in the quality and content of ECM molecules represent important, mainly post-transcriptional features in advanced canine distemper lesions. Considering the insufficiency of morphological regeneration in chronic distemper lesions, the accumulated ECM seems to play a crucial role upon regenerative processes and may explain the relatively small regenerative potential in late stages of this disease.

  7. Accumulation of Extracellular Matrix in Advanced Lesions of Canine Distemper Demyelinating Encephalitis

    PubMed Central

    Seehusen, Frauke; Al-Azreg, Seham A.; Raddatz, Barbara B.; Haist, Verena; Puff, Christina; Spitzbarth, Ingo; Ulrich, Reiner; Baumgärtner, Wolfgang

    2016-01-01

    In demyelinating diseases, changes in the quality and quantity of the extracellular matrix (ECM) may contribute to demyelination and failure of myelin repair and axonal sprouting, especially in chronic lesions. To characterize changes in the ECM in canine distemper demyelinating leukoencephalitis (DL), histochemical and immunohistochemical investigations of formalin-fixed paraffin-embedded cerebella using azan, picrosirius red and Gomori`s silver stain as well as antibodies directed against aggrecan, type I and IV collagen, fibronectin, laminin and phosphacan showed alterations of the ECM in CDV-infected dogs. A significantly increased amount of aggrecan was detected in early and late white matter lesions. In addition, the positive signal for collagens I and IV as well as fibronectin was significantly increased in late lesions. Conversely, the expression of phosphacan was significantly decreased in early and more pronounced in late lesions compared to controls. Furthermore, a set of genes involved in ECM was extracted from a publically available microarray data set and was analyzed for differential gene expression. Gene expression of ECM molecules, their biosynthesis pathways, and pro-fibrotic factors was mildly up-regulated whereas expression of matrix remodeling enzymes was up-regulated to a relatively higher extent. Summarized, the observed findings indicate that changes in the quality and content of ECM molecules represent important, mainly post-transcriptional features in advanced canine distemper lesions. Considering the insufficiency of morphological regeneration in chronic distemper lesions, the accumulated ECM seems to play a crucial role upon regenerative processes and may explain the relatively small regenerative potential in late stages of this disease. PMID:27441688

  8. Advanced Packaging and Integration Technologies for Microsensors. Phase 1

    DTIC Science & Technology

    1994-08-12

    CV VU CW %so - U Advanced Packaging & Integration Technologies for " icrosensors Final Report A.AUTN0I) i A. A. Ned and A. D. Kurtz 7. P.i-• N - 0-1O... N •AnMN NAME(SI AND .----- •S$() 6L P•,•E•_-_G •---•wWaOu Kulite Semiconductor Products, Inc. NPOW u•NeUMBE One Willow Tree Rd. Leonia, NJ 07605 I1...T I YaAU W 16UJNU S 17. S ý " cu. . t lmV IC .M N . I& . SO ,-,- C L, •.A T 1% ý, . . C L . ... ... L O • .A .. _ w un Unclassified Unclassified

  9. Aggrecan-based extracellular matrix is an integral part of the human basal ganglia circuit.

    PubMed

    Brückner, G; Morawski, M; Arendt, T

    2008-01-24

    The extracellular matrix is known to be involved in neuronal communication and the regulation of plastic changes, and also considered to protect neurons and synapses against damage. The goal of this study was to investigate how major extracellular matrix components (aggrecan, link protein, hyaluronan) constitute the pathways of the nigral system in the human basal ganglia circuit affected by neurodegeneration in Parkinson's disease. Here we show that aggrecan- and link protein-related components form clear regional distribution patterns, whereas hyaluronan is widely distributed in gray and white matter. Two predominant phenotypes of the aggrecan-based matrix can be discriminated: (1) perineuronal nets (PNs) and (2) axonal coats (ACs) encapsulating preterminal fibers and synaptic boutons. Clearly contoured PNs are associated with GABAergic projection neurons in the external and internal division of the globus pallidus, the lateral and reticular part of the substantia nigra, as well as subpopulations of striatal and thalamic inhibitory interneurons. Dopaminergic nigral neurons are devoid of PNs but are contacted to a different extent by matrix-coated boutons forming subnucleus-specific patterns. A very dense network of ACs is characteristic especially of the posterior lateral cell groups of the compact substantia nigra (nigrosome 1). In the subthalamic nucleus and the lateral thalamic nuclei numerous AC-associated axons were attached to principal neurons devoid of PNs. We conclude from the region-specific patterns that the aggrecan-based extracellular matrix is adapted to the fast processing of sensorimotor activities which are the therapeutic target of surgery and deep brain stimulation in the treatment of advanced stages of Parkinson's disease.

  10. Fast and accurate computation of system matrix for area integral model-based algebraic reconstruction technique

    NASA Astrophysics Data System (ADS)

    Zhang, Shunli; Zhang, Dinghua; Gong, Hao; Ghasemalizadeh, Omid; Wang, Ge; Cao, Guohua

    2014-11-01

    Iterative algorithms, such as the algebraic reconstruction technique (ART), are popular for image reconstruction. For iterative reconstruction, the area integral model (AIM) is more accurate for better reconstruction quality than the line integral model (LIM). However, the computation of the system matrix for AIM is more complex and time-consuming than that for LIM. Here, we propose a fast and accurate method to compute the system matrix for AIM. First, we calculate the intersection of each boundary line of a narrow fan-beam with pixels in a recursive and efficient manner. Then, by grouping the beam-pixel intersection area into six types according to the slopes of the two boundary lines, we analytically compute the intersection area of the narrow fan-beam with the pixels in a simple algebraic fashion. Overall, experimental results show that our method is about three times faster than the Siddon algorithm and about two times faster than the distance-driven model (DDM) in computation of the system matrix. The reconstruction speed of our AIM-based ART is also faster than the LIM-based ART that uses the Siddon algorithm and DDM-based ART, for one iteration. The fast reconstruction speed of our method was accomplished without compromising the image quality.

  11. Integration of large chemical kinetic mechanisms via exponential methods with Krylov approximations to Jacobian matrix functions

    NASA Astrophysics Data System (ADS)

    Bisetti, Fabrizio

    2012-06-01

    Recent trends in hydrocarbon fuel research indicate that the number of species and reactions in chemical kinetic mechanisms is rapidly increasing in an effort to provide predictive capabilities for fuels of practical interest. In order to cope with the computational cost associated with the time integration of stiff, large chemical systems, a novel approach is proposed. The approach combines an exponential integrator and Krylov subspace approximations to the exponential function of the Jacobian matrix. The components of the approach are described in detail and applied to the ignition of stoichiometric methane-air and iso-octane-air mixtures, here described by two widely adopted chemical kinetic mechanisms. The approach is found to be robust even at relatively large time steps and the global error displays a nominal third-order convergence. The performance of the approach is improved by utilising an adaptive algorithm for the selection of the Krylov subspace size, which guarantees an approximation to the matrix exponential within user-defined error tolerance. The Krylov projection of the Jacobian matrix onto a low-dimensional space is interpreted as a local model reduction with a well-defined error control strategy. Finally, the performance of the approach is discussed with regard to the optimal selection of the parameters governing the accuracy of its individual components.

  12. ATOS: Integration of advanced technology software within distributed Spacecraft Mission Operations Systems

    NASA Technical Reports Server (NTRS)

    Jones, M.; Wheadon, J.; Omullane, W.; Whitgift, D.; Poulter, K.; Niezette, M.; Timmermans, R.; Rodriguez, Ivan; Romero, R.

    1994-01-01

    The Advanced Technology Operations System (ATOS) is a program of studies into the integration of advanced applications (including knowledge based systems (KBS)) with ground systems for the support of spacecraft mission operations.

  13. Preparation and characterization of an advanced collagen aggregate from porcine acellular dermal matrix.

    PubMed

    Liu, Xinhua; Dan, Nianhua; Dan, Weihua

    2016-07-01

    The objective of this study was to extract and characterize an advanced collagen aggregate (Ag-col) from porcine acellular dermal matrix (pADM). Based on histological examination, scanning electron microscopy (SEM) and atomic force microscope (AFM), Ag-col was composed of the D-periodic cross-striated collagen fibrils and thick collagen fiber bundles with uneven diameters and non-orientated arrangement. Fourier transform infrared (FTIR) spectra of pADM, Ag-col and Col were similar and revealed the presence of the triple helix. Circular dichroism (CD) analysis exhibited a slightly higher content of α-helix but inappreciably less amount of random coil structure in Ag-col compared to Col. Moreover, imino acid contents of pADM, Ag-col and Col were 222.43, 218.30 and 190.01 residues/1000 residues, respectively. From zeta potential analysis, a net charge of zero was found at pH 6.45 and 6.11 for Ag-col and Col, respectively. Differential scanning calorimetry (DSC) study suggested that the Td of Ag-col was 20°C higher than that of Col as expected, and dynamic mechanical analysis (DMA) indicated that Ag-col possessed a higher storage modulus but similar loss factor compared to Col. Therefore, the collagen aggregate from pADM could serve as a better alternative source of collagens for further applications in food and biological industries.

  14. The effect of matrix temper on particulate integrity in an Al/Al[sub 2]O[sub 3] metal matrix composite

    SciTech Connect

    Ferry, M.; Munroe, P.R. . School of Materials Science and Engineering)

    1994-07-15

    Aluminium-based particulate metal-matrix composites (PMMC's) are being developed for application in both the aerospace and automotive industries. The near-isotropic properties of these materials allow them to be processed through the same conventional thermomechanical routes that are applied to unreinforced aluminium alloys. However, the microstructural behavior of these materials during such treatments has not been widely studied. It is also relevant to note that matrix prior to processing may strongly affect the behavior of these alloys during deformation. This paper describes the microstructural development during cold work of a PMMC consisting of a 2xxx series alloy matrix, reinforced with alumina particles, heat treated to two different starting tempers. Of particular importance is the effect of matrix temper on the integrity of the alumina particulates.

  15. Cancer Pharmacogenomics: Integrating Discoveries in Basic, Clinical and Population Sciences to Advance Predictive Cancer Care

    Cancer.gov

    Cancer Pharmacogenomics: Integrating Discoveries in Basic, Clinical and Population Sciences to Advance Predictive Cancer Care, a 2010 workshop sponsored by the Epidemiology and Genomics Research Program.

  16. Matrilin-3 switches from anti- to pro-anabolic upon integration to the extracellular matrix.

    PubMed

    Vincourt, Jean-Baptiste; Etienne, Stéphanie; Grossin, Laurent; Cottet, Justine; Bantsimba-Malanda, Claudie; Netter, Patrick; Mainard, Didier; Libante, Virginie; Gillet, Pierre; Magdalou, Jacques

    2012-06-01

    The extracellular matrix (ECM) has long been viewed primarily as an organized network of solid-phase ligands for integrin receptors. During degenerative processes, such as osteoarthritis, the ECM undergoes deterioration, resulting in its remodeling and in the release of some of its components. Matrilin-3 (MATN3) is an almost cartilage specific, pericellular protein acting in the assembly of the ECM of chondrocytes. In the past, MATN3 was found required for cartilage homeostasis, but also involved in osteoarthritis-related pro-catabolic functions. Here, to better understand the pathological and physiological functions of MATN3, its concentration as a circulating protein in articular fluids of human osteoarthritic patients was determined and its functions as a recombinant protein produced in human cells were investigated with particular emphasis on the physical state under which it is presented to chondrocytes. MATN3 down-regulated cartilage extracellular matrix (ECM) synthesis and up-regulated catabolism when administered as a soluble protein. When artificially immobilized, however, MATN3 induced chondrocyte adhesion via a α5β1 integrin-dependent mechanism, AKT activation and favored survival and ECM synthesis. Furthermore, MATN3 bound directly to isolated α5β1 integrin in vitro. TGFβ1 stimulation of chondrocytes allowed integration of exogenous MATN3 into their ECM and ECM-integrated MATN3 induced AKT phosphorylation and improved ECM synthesis and accumulation. In conclusion, the integration of MATN3 to the pericellular matrix of chondrocytes critically determines the direction toward which MATN3 regulates cartilage metabolism. These data explain how MATN3 plays either beneficial or detrimental functions in cartilage and highlight the important role played by the physical state of ECM molecules.

  17. Split skin graft application over an integrating, biodegradable temporizing polymer matrix: immediate and delayed.

    PubMed

    Greenwood, John Edward; Dearman, Bronwyn Louise

    2012-01-01

    Sorb™ platform will allow the creation of two inexpensive dermal matrix products; an immediate scaffold to allow a thicker grafting result and a biodegradable temporizing matrix (BTM) for wound integration after burn debridement while donor sites become reharvestable. However, further modification on the BTM structure is necessary to further reduce wound contraction pregrafting.

  18. High Thermal Conductivity Polymer Matrix Composites (PMC) for Advanced Space Radiators

    NASA Technical Reports Server (NTRS)

    Shin, E. Eugene; Bowman, Cheryl; Beach, Duane

    2007-01-01

    High temperature polymer matrix composites (PMC) reinforced with high thermal conductivity (approx. 1000 W/mK) pitch-based carbon fibers are evaluated for a facesheet/fin structure of large space radiator systems. Significant weight reductions along with improved thermal performance, structural integrity and space durability toward its metallic counterparts were envisioned. Candidate commercial resin systems including Cyanate Esters, BMIs, and polyimide were selected based on thermal capabilities and processability. PMC laminates were designed to match the thermal expansion coefficient of various metal heat pipes or tubes. Large, but thin composite panels were successfully fabricated after optimizing cure conditions. Space durability of PMC with potential degradation mechanisms was assessed by simulated thermal aging tests in high vacuum, 1-3 x 10(exp -6) torr, at three temperatures, 227 C, 277 C, and 316 C for up to one year. Nanocomposites with vapor-grown carbon nano-fibers and exfoliated graphite flakes were attempted to improve thermal conductivity (TC) and microcracking resistance. Good quality nanocomposites were fabricated and evaluated for TC and durability including radiation resistance. TC was measured in both in-plan and thru-the-thickness directions, and the effects of microcracks on TC are also being evaluated. This paper will discuss the systematic experimental approaches, various performance-durability evaluations, and current subcomponent design and fabrication/manufacturing efforts.

  19. Jacobi wavelet operational matrix of fractional integration for solving fractional integro-differential equation

    NASA Astrophysics Data System (ADS)

    Rong, Loh Jian; Chang, Phang

    2016-02-01

    In this paper, we first define generalized shifted Jacobi polynomial on interval and then use it to define Jacobi wavelet. Then, the operational matrix of fractional integration for Jacobi wavelet is being derived to solve fractional differential equation and fractional integro-differential equation. This method can be seen as a generalization of other orthogonal wavelet operational methods, e.g. Legendre wavelets, Chebyshev wavelets of 1st kind, Chebyshev wavelets of 2nd kind, etc. which are special cases of the Jacobi wavelets. We apply our method to a special type of fractional integro-differential equation of Fredholm type.

  20. Cooperative Research and Development for Advanced Microturbines Program on Advanced Integrated Microturbine System

    SciTech Connect

    Michael J. Bowman

    2007-05-30

    The Advanced Integrated Microturbine Systems (AIMS) project was kicked off in October of 2000 to develop the next generation microturbine system. The overall objective of the project was to develop a design for a 40% electrical efficiency microturbine system and demonstrate many of the enabling technologies. The project was initiated as a collaborative effort between several units of GE, Elliott Energy Systems, Turbo Genset, Oak Ridge National Lab and Kyocera. Since the inception of the project the partners have changed but the overall direction of the project has stayed consistent. The project began as a systems study to identify design options to achieve the ultimate goal of 40% electrical efficiency. Once the optimized analytical design was identified for the 40% system, it was determined that a 35% efficient machine would be capable of demonstrating many of the advanced technologies within the given budget and timeframe. The items that would not be experimentally demonstrated were fully produced ceramic parts. However, to understand the requirements of these ceramics, an effort was included in the project to experimentally evaluate candidate materials in representative conditions. The results from this effort would clearly identify the challenges and improvement required of these materials for the full design. Following the analytical effort, the project was dedicated to component development and testing. Each component and subsystem was designed with the overall system requirements in mind and each tested to the fullest extent possible prior to being integrated together. This method of component development and evaluation helps to minimize the technical risk of the project. Once all of the components were completed, they were assembled into the full system and experimentally evaluated.

  1. PD plus error-dependent integral nonlinear controllers for robot manipulators with an uncertain Jacobian matrix.

    PubMed

    Huang, C Q; Xie, L F; Liu, Y L

    2012-11-01

    In framework of traditional PID controllers, there are only three parameters available to tune, as a result, performance of the resulting system is always limited. As for Cartesian regulation of robot manipulators with uncertain Jacobian matrix, a scheme of PID controllers with error-dependent integral action is proposed. Compare with traditional PID controllers, the error-dependent integration is employed in the proposed PID controller, in which more parameters are available to be tuned. It provides additional flexibility for controller characteristics and tuning as well, and hence makes better transient performance. In addition, asymptotic stability of the resulting closed-loop system is guaranteed. All signals in the system are bounded when exogenous disturbances and measurement noises are bounded. Numerical example demonstrates the superior transient performance of the proposed controller over the traditional one via Cartesian space set-point manipulation of two-link robotic manipulator.

  2. Structural integrity, immunogenicity and biomechanical evaluation of rabbit decelluarized tracheal matrix.

    PubMed

    Sun, Fei; Pan, Shu; Shi, Hong-Can; Zhang, Fang-Biao; Zhang, Wei-Dong; Ye, Gang; Liu, Xing-Chen; Zhang, Si-Quan; Zhong, Chong-Hao; Yuan, Xiao-Long

    2015-04-01

    Decellularization techniques have been widely used as an alternative strategy to produce matrices for organ reconstruction. This study investigated the impact of a detergent-enzymatic decellularization protocol on the extracellular matrix integrity, mechanical properties, and biocompatibility of decellularized tracheal matrices from rabbits. The tracheas of New Zealand white rabbits were decellularized using a modified detergent-enzymatic method (DEM). Antigenicity, cellularity, glycosaminoglycan content, DNA content, histoarchitecture, and mechanical properties were monitored during processing. The surface ultrastructure of the matrix was examined by scanning electron microscopy (SEM). Bioengineered and control tracheas were then implanted in major histocompatibility complex-unmatched rats (xenograft) heterotopically for 7, 15, and 30 days. Structural and functional analysis was performed after transplantation. The results showed that seven cycles of decellularization removed most of the cells and eliminated antigenicity. Histological and molecular biology analysis demonstrated that most of the cellular components and nuclear material were removed. SEM analysis revealed that the decellularized matrices retained the hierarchical structure of the native trachea, and biomechanical tests showed that decellularization did not significantly influence the mechanical properties. Seven, 15 and 30 days after implantation, decreased (p < 0.01) inflammatory reactions were observed in the xenograft models for decellularized matrices compared with control tracheas. No increases in IgM or IgG content were observed in rats that received bioengineered tracheas. In conclusion, this work suggests that seven cycles of the DEM generates a bioengineered rabbit tracheal matrix that is structurally and mechanically similar to native trachea.

  3. Advanced polymer systems for optoelectronic integrated circuit applications

    NASA Astrophysics Data System (ADS)

    Eldada, Louay A.; Stengel, Kelly M. T.; Shacklette, Lawrence W.; Norwood, Robert A.; Xu, Chengzeng; Wu, Chengjiu; Yardley, James T.

    1997-01-01

    An advanced versatile low-cost polymeric waveguide technology is proposed for optoelectronic integrated circuit applications. We have developed high-performance organic polymeric materials that can be readily made into both multimode and single-mode optical waveguide structures of controlled numerical aperture (NA) and geometry. These materials are formed from highly crosslinked acrylate monomers with specific linkages that determine properties such as flexibility, toughness, loss, and stability against yellowing and humidity. These monomers are intermiscible, providing for precise adjustment of the refractive index from 1.30 to 1.60. Waveguides are formed photolithographically, with the liquid monomer mixture polymerizing upon illumination in the UV via either mask exposure or laser direct-writing. A wide range of rigid and flexible substrates can be used, including glass, quartz, oxidized silicon, glass-filled epoxy printed circuit board substrate, and flexible polyimide film. We discuss the use of these materials on chips and on multi-chip modules (MCMs), specifically in transceivers where we adaptively produced waveguides on vertical-cavity surface-emitting lasers (VCSELs) embedded in transmitter MCMs and on high- speed photodetector chips in receiver MCMs. Light coupling from and to chips is achieved by cutting 45 degree mirrors using excimer laser ablation. The fabrication of our polymeric structures directly on the modules provides for stability, ruggedness, and hermeticity in packaging.

  4. Integration of advanced teleoperation technologies for control of space robots

    NASA Technical Reports Server (NTRS)

    Stagnaro, Michael J.

    1993-01-01

    Teleoperated robots require one or more humans to control actuators, mechanisms, and other robot equipment given feedback from onboard sensors. To accomplish this task, the human or humans require some form of control station. Desirable features of such a control station include operation by a single human, comfort, and natural human interfaces (visual, audio, motion, tactile, etc.). These interfaces should work to maximize performance of the human/robot system by streamlining the link between human brain and robot equipment. This paper describes development of a control station testbed with the characteristics described above. Initially, this testbed will be used to control two teleoperated robots. Features of the robots include anthropomorphic mechanisms, slaving to the testbed, and delivery of sensory feedback to the testbed. The testbed will make use of technologies such as helmet mounted displays, voice recognition, and exoskeleton masters. It will allow tor integration and testing of emerging telepresence technologies along with techniques for coping with control link time delays. Systems developed from this testbed could be applied to ground control of space based robots. During man-tended operations, the Space Station Freedom may benefit from ground control of IVA or EVA robots with science or maintenance tasks. Planetary exploration may also find advanced teleoperation systems to be very useful.

  5. Integrated Refrigeration and Storage for Advanced Liquid Hydrogen Operations

    NASA Technical Reports Server (NTRS)

    Swanger, A. M.; Notardonato, W. U.; Johnson, W. L.; Tomsik, T. M.

    2016-01-01

    NASA has used liquefied hydrogen (LH2) on a large scale since the beginning of the space program as fuel for the Centaur and Apollo upper stages, and more recently to feed the three space shuttle main engines. The LH2 systems currently in place at the Kennedy Space Center (KSC) launch pads are aging and inefficient compared to the state-of-the-art. Therefore, the need exists to explore advanced technologies and operations that can drive commodity costs down, and provide increased capabilities. The Ground Operations Demonstration Unit for Liquid Hydrogen (GODU-LH2) was developed at KSC to pursue these goals by demonstrating active thermal control of the propellant state by direct removal of heat using a cryocooler. The project has multiple objectives including zero loss storage and transfer, liquefaction of gaseous hydrogen, and densification of liquid hydrogen. The key technology challenge was efficiently integrating the cryogenic refrigerator into the LH2 storage tank. A Linde LR1620 Brayton cycle refrigerator is used to produce up to 900W cooling at 20K, circulating approximately 22 g/s gaseous helium through the hydrogen via approximately 300 m of heat exchanger tubing. The GODU-LH2 system is fully operational, and is currently under test. This paper will discuss the design features of the refrigerator and storage system, as well as the current test results.

  6. Improved Fabrication of Ceramic Matrix Composite/Foam Core Integrated Structures

    NASA Technical Reports Server (NTRS)

    Hurwitz, Frances I.

    2009-01-01

    The use of hybridized carbon/silicon carbide (C/SiC) fabric to reinforce ceramic matrix composite face sheets and the integration of such face sheets with a foam core creates a sandwich structure capable of withstanding high-heatflux environments (150 W/cm2) in which the core provides a temperature drop of 1,000 C between the surface and the back face without cracking or delamination of the structure. The composite face sheet exhibits a bilinear response, which results from the SiC matrix not being cracked on fabrication. In addition, the structure exhibits damage tolerance under impact with projectiles, showing no penetration to the back face sheet. These attributes make the composite ideal for leading edge structures and control surfaces in aerospace vehicles, as well as for acreage thermal protection systems and in high-temperature, lightweight stiffened structures. By tailoring the coefficient of thermal expansion (CTE) of a carbon fiber containing ceramic matrix composite (CMC) face sheet to match that of a ceramic foam core, the face sheet and the core can be integrally fabricated without any delamination. Carbon and SiC are woven together in the reinforcing fabric. Integral densification of the CMC and the foam core is accomplished with chemical vapor deposition, eliminating the need for bond-line adhesive. This means there is no need to separately fabricate the core and the face sheet, or to bond the two elements together, risking edge delamination during use. Fibers of two or more types are woven together on a loom. The carbon and ceramic fibers are pulled into the same pick location during the weaving process. Tow spacing may be varied to accommodate the increased volume of the combined fiber tows while maintaining a target fiber volume fraction in the composite. Foam pore size, strut thickness, and ratio of face sheet to core thickness can be used to tailor thermal and mechanical properties. The anticipated CTE for the hybridized composite is managed by

  7. Energy Systems Integration: NREL + Advanced Energy (Fact Sheet)

    SciTech Connect

    Not Available

    2015-02-01

    This fact sheet describes the collaboration between NREL and Advanced Energy Industries at the ESIF to test its advanced photovoltaic inverter technology with the ESIF's power hardware-in-the-loop system and megawatt-scale grid simulators.

  8. Flowering and genome integrity control by a nuclear matrix protein in Arabidopsis.

    PubMed

    Xu, Yifeng; Gan, Eng-Seng; He, Yuehui; Ito, Toshiro

    2013-01-01

    The matrix attachment regions (MARs) binding proteins could finely orchestrate temporal and spatial gene expression during development. In Arabidopsis, transposable elements (TEs) and TE-like repeat sequences are transcriptionally repressed or attenuated by the coordination of many key players including DNA methyltransferases, histone deacetylases, histone methyltransferases and the siRNA pathway, which help to protect genomic integrity and control multiple developmental processes such as flowering. We have recently reported that an AT-hook nuclear matrix binding protein, TRANSPOSABLE ELEMENT SILENCING VIA AT-HOOK (TEK), participates in a histone deacetylation (HDAC) complex to silence TEs and genes containing a TE-like sequence, including AtMu1, FWA and FLOWERING LOCUS C (FLC) in Ler background. We have shown that TEK knockdown causes increased histone acetylation, reduced H3K9me2 and moderate reduction of DNA methylation in the target loci, leading to the de-repression of FLC and FWA, as well as TE reactivation. Here we discuss the role of TEK as a putative MAR binding protein which functions in the maintenance of genome integrity and in flowering control by silencing TEs and repeat-containing genes.

  9. United by Goals: There Is No Integrated Advancement without Communications and Marketing

    ERIC Educational Resources Information Center

    DiConsiglio, John

    2011-01-01

    The idea behind integrated advancement is simple and dates back to the 1990s: A strong relationship between advancement offices conserves resources. It leads to a more efficient workforce. It portrays a highly unified message to stakeholders, including donors, alumni, local officials, and opinion leaders. In short, the entire advancement team…

  10. Biological Matrix Effects in Quantitative Tandem Mass Spectrometry-Based Analytical Methods: Advancing Biomonitoring

    PubMed Central

    Panuwet, Parinya; Hunter, Ronald E.; D’Souza, Priya E.; Chen, Xianyu; Radford, Samantha A.; Cohen, Jordan R.; Marder, M. Elizabeth; Kartavenka, Kostya; Ryan, P. Barry; Barr, Dana Boyd

    2015-01-01

    The ability to quantify levels of target analytes in biological samples accurately and precisely, in biomonitoring, involves the use of highly sensitive and selective instrumentation such as tandem mass spectrometers and a thorough understanding of highly variable matrix effects. Typically, matrix effects are caused by co-eluting matrix components that alter the ionization of target analytes as well as the chromatographic response of target analytes, leading to reduced or increased sensitivity of the analysis. Thus, before the desired accuracy and precision standards of laboratory data are achieved, these effects must be characterized and controlled. Here we present our review and observations of matrix effects encountered during the validation and implementation of tandem mass spectrometry-based analytical methods. We also provide systematic, comprehensive laboratory strategies needed to control challenges posed by matrix effects in order to ensure delivery of the most accurate data for biomonitoring studies assessing exposure to environmental toxicants. PMID:25562585

  11. Advanced general aviation engine/airframe integration study

    NASA Technical Reports Server (NTRS)

    Zmroczek, L. A.

    1982-01-01

    A comparison of the in-airframe performance and efficiency of the advanced engine concepts is presented. The results indicate that the proposed advanced engines can significantly improve the performance and economy of general aviation airplanes. The engine found to be most promising is the highly advanced version of a rotary combustion (Wankel) engine. The low weight and fuel consumption of this engine, as well as its small size, make it suited for aircraft use.

  12. Structural Integrity Of Low-Velocity Impacted C/SIC Ceramic Matrix Composites

    NASA Astrophysics Data System (ADS)

    Knoche, R.; Drose, A.

    2012-07-01

    Carbon fibre reinforced silicon carbide (C/SiC) ceramic matrix composites (CMC) are most favourable for thermal protection systems & hot structures in re-entry vehicles since they offer superior heat resistance, high specific strength as well as a low coefficient of temperature expansion (CTE). To ensure the structural integrity of these C/SiC structures and thus mission safety all potential degradation effects during manufacturing and lifetime have to be considered. One of the most probable defects which may harm the structural integrity significantly can be caused by low-velocity impacts (LVI) which may occur during transportation and integration by e.g. dropping of tools. Thus the present study focuses on the residual mechanical and thermo-mechanical performance of C/SiC composites after being exposed to a low-velocity impact in terms of initial and residual mechanical performance, changes in microstructure, as well as thermo-mechanical performance through exposing specimens to multiple experimentally simulated re-entries. The results reveal the impact characteristics and damage mechanisms of C/SiC CMC exposed to a low-velocity impact and evidence the functional reliability as well as the damage tolerance of the C/SiC material investigated.

  13. Fabrication, polarization, and characterization of PVDF matrix composites for integrated structural load sensing

    NASA Astrophysics Data System (ADS)

    Haghiashtiani, Ghazaleh; Greminger, Michael A.

    2015-04-01

    The focus of this work is to evaluate a new carbon fiber reinforced composite structure with integrated sensing capabilities. In this composite structure, the typical matrix material used for carbon fiber reinforced composites is replaced with the thermoplastic polyvinylidene difluoride (PVDF). Since PVDF has piezoelectric properties, it enables the structure to be used for integrated load sensing. In addition, the electrical conductivity property of the carbon fabric is harnessed to form the electrodes of the integrated sensor. In order to prevent the carbon fiber electrodes from shorting to each other, a thin Kevlar fabric layer is placed between the two carbon fiber electrode layers as a dielectric. The optimal polarization parameters were determined using a design of experiments approach. Once polarized, the samples were then used in compression and tensile tests to determine the effective d33 and d31 piezoelectric coefficients. The degree of polarization of the PVDF material was determined by relating the effective d33 coefficient of the composite to the achieved d33 of the PVDF component of the composite using a closed form expression. Using this approach, it was shown that optimal polarization of the composite material results in a PVDF component d33 of 3.2 pC N-1. Moreover, the Young’s modulus of the composite structure has been characterized.

  14. Grid Integration Studies: Advancing Clean Energy Planning and Deployment

    SciTech Connect

    Katz, Jessica; Chernyakhovskiy, Ilya

    2016-07-01

    Integrating significant variable renewable energy (VRE) into the grid requires an evolution in power system planning and operation. To plan for this evolution, power system stakeholders can undertake grid integration studies. This Greening the Grid document reviews grid integration studies, common elements, questions, and guidance for system planners.

  15. Modified integrative color intensity co-occurrence matrix for texture image representation

    NASA Astrophysics Data System (ADS)

    Khaldi, Belal; Kherfi, Mohammed Lamine

    2016-09-01

    Gray-level co-occurrence matrix (GLCM) is one of the most used methods for texture representation. As it can be computed only from gray-level images, a significant amount of information that could be provided by color is totally ignored. We propose a generalization of GLCM from gray level to hue saturation value color space, which we refer to as modified integrative color intensity co-occurrence matrix (MICICM). To reach such a generalization, a mapping function, which determines for each pixel value the bin it falls into, is needed. In many previous studies, this function uses a hard mapping where all pixel values that fall in a bin are considered as the same, regardless of their values. This presents a number of drawbacks. To fix them, we introduce a color and gray-level mapping scheme based on a set of weight assignment functions we propose. In our scheme, each pixel is mapped to more than one possible color (and gray-level) bin, to avoid the drawbacks of hard mapping. Although a fuzzy-based scheme has been recently proposed, our MICICM has successfully outperformed it and those of the state of the art. Our findings make several noteworthy contributions to image representation.

  16. A thermally modified polymer matrix composite material with structural integrity to 371 C

    NASA Technical Reports Server (NTRS)

    Bowles, Kenneth J.

    1988-01-01

    The potential for utilizing surface coatings to inhibit the thermal oxidation of polymer matrix composites was studied. Isothermal, inert gas exposures of graphite/PMR-15 composites indicated that after an initial loss of weight, no significant amounts of thermal degradation products are given off during high temperature exposures in the absence of oxygen. As long as a coating remains effective, the composite material should remain stable. It was also found that the glass transition temperature T sub g of the matrix resin could be increased to values in excess of 400 C. This resulted in measured short beam shear strengths of 75.9 MPa (11 Ksi), flexural strengths of 1172 MPa (170 Ksi) and flexural moduli of 141 GPa (20.5 Msi) for the material at a test temperature of 371 C. The treatment that was used caused a decrease in the PMR-15 resin density from 1.31 to 1.29 gm/cc. It was concluded that state-of-the-art composites, protected by oxygen-impervious coatings, can be used as materials of construction with structural integrity to at least 371 C and possibly above.

  17. Linear matrix inequality-based proportional-integral control design with application to F-16 aircraft

    NASA Astrophysics Data System (ADS)

    Theodore, Zachary B.

    A robust proportional-integral (PI) controller was synthesized for the F-16 VISTA (Variable stability In-flight Simulator Test Aircraft) using a linear matrix inequality (LMI) approach, with the goal of eventually designing and implementing a linear parameter-varying PI controller on high performance aircraft. The combination of classical and modern control theory provides theoretically guaranteed stability and performance throughout the flight envelope and ease of implementation due to the simplicity of the PI controller structure. The controller is designed by solving a set of LMIs with pole placement constraints. This closed-loop system was simulated in MATLAB/Simulink to analyze the performance of the controller. A robust Hinfinity controller was also developed to compare performance with PI controller. The simulation results showed stability, albeit with poor performance compared to the Hinfinity controlle.

  18. Integrated extracellular matrix signaling in mammary gland development and breast cancer progression.

    PubMed

    Zhu, Jieqing; Xiong, Gaofeng; Trinkle, Christine; Xu, Ren

    2014-09-01

    Extracellular matrix (ECM), a major component of the cellular microenvironment, plays critical roles in normal tissue morphogenesis and disease progression. Binding of ECM to membrane receptor proteins, such as integrin, discoidin domain receptors, and dystroglycan, elicits biochemical and biomechanical signals that control cellular architecture and gene expression. These ECM signals cooperate with growth factors and hormones to regulate cell migration, differentiation, and transformation. ECM signaling is tightly regulated during normal mammary gland development. Deposition and alignment of fibrillar collagens direct migration and invasion of mammary epithelial cells during branching morphogenesis. Basement membrane proteins are required for polarized acinar morphogenesis and milk protein expression. Deregulation of ECM proteins in the long run is sufficient to promote breast cancer development and progression. Recent studies demonstrate that the integrated biophysical and biochemical signals from ECM and soluble factors are crucial for normal mammary gland development as well as breast cancer progression.

  19. Integrated approach to estimate the ocean's time variable dynamic topography including its covariance matrix

    NASA Astrophysics Data System (ADS)

    Müller, Silvia; Brockmann, Jan Martin; Schuh, Wolf-Dieter

    2015-04-01

    The ocean's dynamic topography as the difference between the sea surface and the geoid reflects many characteristics of the general ocean circulation. Consequently, it provides valuable information for evaluating or tuning ocean circulation models. The sea surface is directly observed by satellite radar altimetry while the geoid cannot be observed directly. The satellite-based gravity field determination requires different measurement principles (satellite-to-satellite tracking (e.g. GRACE), satellite-gravity-gradiometry (GOCE)). In addition, hydrographic measurements (salinity, temperature and pressure; near-surface velocities) provide information on the dynamic topography. The observation types have different representations and spatial as well as temporal resolutions. Therefore, the determination of the dynamic topography is not straightforward. Furthermore, the integration of the dynamic topography into ocean circulation models requires not only the dynamic topography itself but also its inverse covariance matrix on the ocean model grid. We developed a rigorous combination method in which the dynamic topography is parameterized in space as well as in time. The altimetric sea surface heights are expressed as a sum of geoid heights represented in terms of spherical harmonics and the dynamic topography parameterized by a finite element method which can be directly related to the particular ocean model grid. Besides the difficult task of combining altimetry data with a gravity field model, a major aspect is the consistent combination of satellite data and in-situ observations. The particular characteristics and the signal content of the different observations must be adequately considered requiring the introduction of auxiliary parameters. Within our model the individual observation groups are combined in terms of normal equations considering their full covariance information; i.e. a rigorous variance/covariance propagation from the original measurements to the

  20. Three-Dimensional Integration Technology for Advanced Focal Planes and Integrated Circuits

    SciTech Connect

    Keast, Craig

    2007-02-28

    Over the last five years MIT Lincoln Laboratory (MIT-LL) has developed a three-dimensional (3D) circuit integration technology that exploits the advantages of silicon-on-insulator (SOI) technology to enable wafer-level stacking and micrometer-scale electrical interconnection of fully fabricated circuit wafers. Advanced focal plane arrays have been the first applications to exploit the benefits of this 3D integration technology because the massively parallel information flow present in 2D imaging arrays maps very nicely into a 3D computational structure as information flows from circuit-tier to circuit-tier in the z-direction. To date, the MIT-LL 3D integration technology has been used to fabricate four different focal planes including: a 2-tier 64 x 64 imager with fully parallel per-pixel A/D conversion; a 3-tier 640 x 480 imager consisting of an imaging tier, an A/D conversion tier, and a digital signal processing tier; a 2-tier 1024 x 1024 pixel, 4-side-abutable imaging modules for tiling large mosaic focal planes, and a 3-tier Geiger-mode avalanche photodiode (APD) 3-D LIDAR array, using a 30 volt APD tier, a 3.3 volt CMOS tier, and a 1.5 volt CMOS tier. Recently, the 3D integration technology has been made available to the circuit design research community through DARPA-sponsored Multiproject fabrication runs. The first Multiproject Run (3DL1) completed fabrication in early 2006 and included over 30 different circuit designs from 21 different research groups. 3D circuit concepts explored in this run included stacked memories, field programmable gate arrays (FPGAs), and mixed-signal circuits. The second Multiproject Run (3DM2) is currently in fabrication and includes particle detector readouts designed by Fermilab. This talk will provide a brief overview of MIT-LL's 3D-integration process, discuss some of the focal plane applications where the technology is being applied, and provide a summary of some of the Multiproject Run circuit results.

  1. A new low drift integrator system for the Experiment Advanced Superconductor Tokamak.

    PubMed

    Liu, D M; Wan, B N; Wang, Y; Wu, Y C; Shen, B; Ji, Z S; Luo, J R

    2009-05-01

    A new type of the integrator system with the low drift characteristic has been developed to accommodate the long pulse plasma discharges on Experiment Advanced Superconductor Tokamak (EAST). The integrator system is composed of the Ethernet control module and the integral module which includes one integrator circuit, followed by two isolation circuits and two program-controlled amplifier circuits. It compensates automatically integration drift and is applied in real-time control. The performance test and the experimental results in plasma discharges show that the developed integrator system can meet the requirements of plasma control on the accuracy and noise level of the integrator in long pulse discharges.

  2. Recent advances in the field of ceramic fibers and ceramic matrix composites

    NASA Astrophysics Data System (ADS)

    Naslain, R.

    2005-03-01

    Progress achieved during the last decade in the field of ceramic fibers and related ceramic matrix composites is reviewed. Both SiC-based and alumina-based fine fibers have been improved in terms of thermal stability and creep resistance with temperature limit of about 1400 and 1200 ° C, respectively. Two concepts for achieving damage-tolerant ceramic matrix composites have been identified : (i) that of non-oxide composites with a dense matrix in which matrix cracks formed under load are deflected and arrested in a weak fiber coating referred to as the interphase and (ii) that of all-oxide composites with a highly porous matrix with no need of any fiber coating. The lifetime under load of non-oxide composites in oxidizing atmospheres, is improved through the use of multilayered self-healing interphases and matrices deposited from gaseous precursors by chemical vapor infiltration (CVI). Lifetime ranging from 1000 to 10,000 hours at 1200 ° C under cyclic loading in air are foreseen. Alumina-based composites although attractive for long term exposures in oxidizing atmospheres up to ≈1200 ° C, are still experimental materials.

  3. Flow integration transform: detecting shapes in matrix-array 3D ultrasound data

    NASA Astrophysics Data System (ADS)

    Stetten, George D.; Caines, Michael; von Ramm, Olaf T.

    1995-03-01

    Matrix-array ultrasound produces real-time 3D images of the heart, by employing a square array of transducers to steer the ultrasound beam in three dimensions electronically with no moving parts. Other 3D modalities such as MR, MUGA, and CT require the use of gated studies, which combine many cardiac cycles to produce a single average cycle. Three- dimensional ultrasound eliminates this restriction, in theory permitting the continuous measurement of cardiac ventricular volume, which we call the volumetricardiogram. Towards implementing the volumetricardiogram, we have developed the flow integration transform (FIT), which operates on a 2D slice within the volumetric ultrasound data. The 3D ultrasound machine's scan converter produces a set of such slices in real time, at any desired location and orientation, to which the FIT may then be applied. Although lacking rotational or scale invariance, the FIT is designed to operate in dedicated hardware where an entire transform could be completed within a few microseconds with present integrated circuit technology. This speed would permit the application of a large battery of test shapes, or the evolution of the test shape to converge on that of the actual target.

  4. The effect of an autologous cellular gel-matrix integrated implant system on wound healing

    PubMed Central

    2010-01-01

    Background This manuscript reports the production and preclinical studies to examine the tolerance and efficacy of an autologous cellular gel-matrix integrated implant system (IIS) aimed to treat full-thickness skin lesions. Methods The best concentration of fibrinogen and thrombin was experimentally determined by employing 28 formula ratios of thrombin and fibrinogen and checking clot formation and apparent stability. IIS was formed by integrating skin cells by means of the in situ gelification of fibrin into a porous crosslinked scaffold composed of chitosan, gelatin and hyaluronic acid. The in vitro cell proliferation within the IIS was examined by the MTT assay and PCNA expression. An experimental rabbit model consisting of six circular lesions was utilized to test each of the components of the IIS. Then, the IIS was utilized in an animal model to cover a 35% body surface full thickness lesion. Results The preclinical assays in rabbits demonstrated that the IIS was well tolerated and also that IIS-treated rabbit with lesions of 35% of their body surface, exhibited a better survival rate (p = 0,06). Conclusion IIS should be further studied as a new wound dressing which shows promising properties, being the most remarkable its good biological tolerance and cell growth promotion properties. PMID:20565787

  5. Development of an alternating integrator for magnetic measurements for experimental advanced superconducting tokamak

    SciTech Connect

    Liu, D. M. Zhao, W. Z.; He, Y. G.; Chen, B.; Wan, B. N.; Shen, B.; Huang, J.; Liu, H. Q.

    2014-11-15

    A high-performance integrator is one of the key electronic devices for reliably controlling plasma in the experimental advanced superconducting tokamak for long pulse operation. We once designed an integrator system of real-time drift compensation, which has a low integration drift. However, it is not feasible for really continuous operations due to capacitive leakage error and nonlinearity error. To solve the above-mentioned problems, this paper presents a new alternating integrator. In the new integrator, the integrator system of real-time drift compensation is adopted as one integral cell while two such integral cells work alternately. To achieve the alternate function, a Field Programmable Gate Array built in the digitizer is utilized. The performance test shows that the developed integrator with the integration time constant of 20 ms has a low integration drift (<15 mV) for 1000 s.

  6. Fluorescence Excitation-Emission Matrix Regional Integration to Quantify Spectra for Dissolved Organic Matter

    USGS Publications Warehouse

    Chen, W.; Westerhoff, P.; Leenheer, J.A.; Booksh, K.

    2003-01-01

    Excitation-emission matrix (EEM) fluorescence spectroscopy has been widely used to characterize dissolved organic matter (DOM) in water and soil. However, interpreting the >10,000 wavelength-dependent fluorescence intensity data points represented in EEMs has posed a significant challenge. Fluorescence regional integration, a quantitative technique that integrates the volume beneath an EEM, was developed to analyze EEMs. EEMs were delineated into five excitation-emission regions based on fluorescence of model compounds, DOM fractions, and marine waters or freshwaters. Volumetric integration under the EEM within each region, normalized to the projected excitation-emission area within that region and dissolved organic carbon concentration, resulted in a normalized region-specific EEM volume (??i,n). Solid-state carbon nuclear magnetic resonance (13C NMR), Fourier transform infrared (FTIR) analysis, ultraviolet-visible absorption spectra, and EEMs were obtained for standard Suwannee River fulvic acid and 15 hydrophobic or hydrophilic acid, neutral, and base DOM fractions plus nonfractionated DOM from wastewater effluents and rivers in the southwestern United States. DOM fractions fluoresced in one or more EEM regions. The highest cumulative EEM volume (??T,n = ????i,n) was observed for hydrophobic neutral DOM fractions, followed by lower ??T,n values for hydrophobic acid, base, and hydrophilic acid DOM fractions, respectively. An extracted wastewater biomass DOM sample contained aromatic protein- and humic-like material and was characteristic of bacterial-soluble microbial products. Aromatic carbon and the presence of specific aromatic compounds (as indicated by solid-state 13C NMR and FTIR data) resulted in EEMs that aided in differentiating wastewater effluent DOM from drinking water DOM.

  7. Implementation of advanced matrix corrections for active interrogation of waste drums using the CTEN instrument

    SciTech Connect

    Melton, S.; Estep, R.; Hollas, C.

    1998-12-31

    The combined thermal/epithermal neutron instrument (CTEN) was designed at Los Alamos to improve measurement accuracy and mitigate self shielding effects inherent in the differential dieaway technique (DDT). A major goal in this research effort has been the development of a calibration technique that incorporates recently developed matrix and self-shielding corrections using data generated from additional detectors and new acquisition techniques. A comprehensive data set containing both active and passive measurements was generated using 26 different matrices and comprising a total of 1,400 measurements. In all, 31 flux-and-matrix-dependent parameters, 24 positional parameters, two dieaway times, and a correlated ratio were determined from each of the over 1,400 measurements. A reduced list of matrix indicators, prioritized using the alternating conditional expectation (ACE) algorithm, was used to train a neural network using a generalized regression technique (GRNN) to determine matrix- and position-corrected calibration factors. This paper describes the experimental, analytical, and empirical techniques used to determine the corrected calibration factor for an unknown waste drum. Results from a range of cases are compared with those obtained using a mobile DDT instrument and traditional DDT algorithms.

  8. Tomorrow`s energy today for cities and counties -- Alternative wastewater treatment: Advanced Integrated Pond systems

    SciTech Connect

    Not Available

    1993-10-01

    This report provides a discussion of the design, construction, operation, and maintenance of the Advanced Integrated Pond System as an alternative for other more costly municipal waste water treatment plants.

  9. Nondestructive Evaluation of Advanced Fiber Reinforced Polymer Matrix Composites: A Technology Assessment

    NASA Technical Reports Server (NTRS)

    Yolken, H. Thomas; Matzkanin, George A.

    2009-01-01

    Because of their increasing utilization in structural applications, the nondestructive evaluation (NDE) of advanced fiber reinforced polymer composites continues to receive considerable research and development attention. Due to the heterogeneous nature of composites, the form of defects is often very different from a metal and fracture mechanisms are more complex. The purpose of this report is to provide an overview and technology assessment of the current state-of-the-art with respect to NDE of advanced fiber reinforced polymer composites.

  10. Advanced integrated safeguards using front-end-triggering devices

    SciTech Connect

    Howell, J.A.; Whitty, W.J.

    1995-12-01

    This report addresses potential uses of front-end-triggering devices for enhanced safeguards. Such systems incorporate video surveillance as well as radiation and other sensors. Also covered in the report are integration issues and analysis techniques.

  11. School Integration Matters: Research-Based Strategies to Advance Equity

    ERIC Educational Resources Information Center

    Frankenberg, Erica, Ed.; Garces, Liliana M., Ed.; Hopkins, Megan, Ed.

    2016-01-01

    More than 60 years after the "Brown v. Board of Education" decision declared segregated schooling inherently unequal, this timely book sheds light on how and why U.S. schools are experiencing increasing segregation along racial, socioeconomic, and linguistic lines. It offers policy and programmatic alternatives for advancing equity and…

  12. Recent advances in understanding the reinforcing ability and mechanism of carbon nanotubes in ceramic matrix composites.

    PubMed

    Estili, Mehdi; Sakka, Yoshio

    2014-12-01

    Since the discovery of carbon nanotubes (CNTs), commonly referred to as ultimate reinforcement, the main purpose for fabricating CNT-ceramic matrix composites has been mainly to improve the fracture toughness and strength of the ceramic matrix materials. However, there have been many studies reporting marginal improvements or even the degradation of mechanical properties. On the other hand, those studies claiming noticeable toughening measured using indentation, which is an indirect/unreliable characterization method, have not demonstrated the responsible mechanisms applicable to the nanoscale, flexible CNTs; instead, those studies proposed those classical methods applicable to microscale fiber/whisker reinforced ceramics without showing any convincing evidence of load transfer to the CNTs. Therefore, the ability of CNTs to directly improve the macroscopic mechanical properties of structural ceramics has been strongly questioned and debated in the last ten years. In order to properly discuss the reinforcing ability (and possible mechanisms) of CNTs in a ceramic host material, there are three fundamental questions to our knowledge at both the nanoscale and macroscale levels that need to be addressed: (1) does the intrinsic load-bearing ability of CNTs change when embedded in a ceramic host matrix?; (2) when there is an intimate atomic-level interface without any chemical reaction with the matrix, could one expect any load transfer to the CNTs along with effective load bearing by them during crack propagation?; and (3) considering their nanometer-scale dimensions, flexibility and radial softness, are the CNTs able to improve the mechanical properties of the host ceramic matrix at the macroscale when individually, intimately and uniformly dispersed? If so, how? Also, what is the effect of CNT concentration in such a defect-free composite system? Here, we briefly review the recent studies addressing the above fundamental questions. In particular, we discuss the new

  13. Recent advances in understanding the reinforcing ability and mechanism of carbon nanotubes in ceramic matrix composites

    NASA Astrophysics Data System (ADS)

    Estili, Mehdi; Sakka, Yoshio

    2014-12-01

    Since the discovery of carbon nanotubes (CNTs), commonly referred to as ultimate reinforcement, the main purpose for fabricating CNT-ceramic matrix composites has been mainly to improve the fracture toughness and strength of the ceramic matrix materials. However, there have been many studies reporting marginal improvements or even the degradation of mechanical properties. On the other hand, those studies claiming noticeable toughening measured using indentation, which is an indirect/unreliable characterization method, have not demonstrated the responsible mechanisms applicable to the nanoscale, flexible CNTs; instead, those studies proposed those classical methods applicable to microscale fiber/whisker reinforced ceramics without showing any convincing evidence of load transfer to the CNTs. Therefore, the ability of CNTs to directly improve the macroscopic mechanical properties of structural ceramics has been strongly questioned and debated in the last ten years. In order to properly discuss the reinforcing ability (and possible mechanisms) of CNTs in a ceramic host material, there are three fundamental questions to our knowledge at both the nanoscale and macroscale levels that need to be addressed: (1) does the intrinsic load-bearing ability of CNTs change when embedded in a ceramic host matrix?; (2) when there is an intimate atomic-level interface without any chemical reaction with the matrix, could one expect any load transfer to the CNTs along with effective load bearing by them during crack propagation?; and (3) considering their nanometer-scale dimensions, flexibility and radial softness, are the CNTs able to improve the mechanical properties of the host ceramic matrix at the macroscale when individually, intimately and uniformly dispersed? If so, how? Also, what is the effect of CNT concentration in such a defect-free composite system? Here, we briefly review the recent studies addressing the above fundamental questions. In particular, we discuss the new

  14. Recent advances in understanding the reinforcing ability and mechanism of carbon nanotubes in ceramic matrix composites

    PubMed Central

    Estili, Mehdi; Sakka, Yoshio

    2014-01-01

    Since the discovery of carbon nanotubes (CNTs), commonly referred to as ultimate reinforcement, the main purpose for fabricating CNT–ceramic matrix composites has been mainly to improve the fracture toughness and strength of the ceramic matrix materials. However, there have been many studies reporting marginal improvements or even the degradation of mechanical properties. On the other hand, those studies claiming noticeable toughening measured using indentation, which is an indirect/unreliable characterization method, have not demonstrated the responsible mechanisms applicable to the nanoscale, flexible CNTs; instead, those studies proposed those classical methods applicable to microscale fiber/whisker reinforced ceramics without showing any convincing evidence of load transfer to the CNTs. Therefore, the ability of CNTs to directly improve the macroscopic mechanical properties of structural ceramics has been strongly questioned and debated in the last ten years. In order to properly discuss the reinforcing ability (and possible mechanisms) of CNTs in a ceramic host material, there are three fundamental questions to our knowledge at both the nanoscale and macroscale levels that need to be addressed: (1) does the intrinsic load-bearing ability of CNTs change when embedded in a ceramic host matrix?; (2) when there is an intimate atomic-level interface without any chemical reaction with the matrix, could one expect any load transfer to the CNTs along with effective load bearing by them during crack propagation?; and (3) considering their nanometer-scale dimensions, flexibility and radial softness, are the CNTs able to improve the mechanical properties of the host ceramic matrix at the macroscale when individually, intimately and uniformly dispersed? If so, how? Also, what is the effect of CNT concentration in such a defect-free composite system? Here, we briefly review the recent studies addressing the above fundamental questions. In particular, we discuss the new

  15. Integration of SWPF into the DWPF Flowsheet: Gap Analysis and Test Matrix Development

    SciTech Connect

    Peeler, D. K.; Edwards, T. B.

    2014-12-10

    Based on Revision 19 of the High Level Waste (HLW) System Plan, it is anticipated that the Salt Waste Processing Facility (SWPF) will be integrated into the Defense Waste Processing Facility (DWPF) flowsheet in October 2018 (or with Sludge Batch 11 (SB11)). Given that, Savannah River Remediation (SRR) has requested a technical basis be developed that validates the current Product Composition Control System (PCCS) models for use during the processing of the SWPF-based coupled flowsheet or that leads to the refinements of or modifications to the models that are needed so that the models may be used during the processing of the SWPF-based coupled flowsheet. To support this objective, Savannah River National Laboratory (SRNL) has completed three key interim activities prior to validation of the current or development of refined PCCS models over the anticipated glass composition region for SWPF processing. These three key activities include: (1) defining the glass compositional region over which SWPF is anticipated to be processed, (2) comparing the current PCCS model validation ranges to the SWPF glass compositional region from which compositional gaps can be identified, and (3) developing a test matrix to cover the compositional gaps.

  16. Efficient Drug-Pathway Association Analysis via Integrative Penalized Matrix Decomposition.

    PubMed

    Li, Cong; Yang, Can; Hather, Greg; Liu, Ray; Zhao, Hongyu

    2016-01-01

    Traditional drug discovery practice usually follows the "one drug - one target" approach, seeking to identify drug molecules that act on individual targets, which ignores the systemic nature of human diseases. Pathway-based drug discovery recently emerged as an appealing approach to overcome this limitation. An important first step of such pathway-based drug discovery is to identify associations between drug molecules and biological pathways. This task has been made feasible by the accumulating data from high-throughput transcription and drug sensitivity profiling. In this paper, we developed "iPaD", an integrative Penalized Matrix Decomposition method to identify drug-pathway associations through jointly modeling of such high-throughput transcription and drug sensitivity data. A scalable bi-convex optimization algorithm was implemented and gave iPaD tremendous advantage in computational efficiency over current state-of-the-art method, which allows it to handle the ever-growing large-scale data sets that current method cannot afford to. On two widely used real data sets, iPaD also significantly outperformed the current method in terms of the number of validated drug-pathway associations that were identified. The Matlab code of our algorithm publicly available at http://licong-jason.github.io/iPaD/.

  17. Systems integration and demonstration of advanced reusable structure for ALS

    NASA Technical Reports Server (NTRS)

    Gibbins, Martin N.

    1991-01-01

    The objective was to investigate the potential of advanced material to achieve life cycle cost (LCC) benefits for reusable structure on the advanced launch system. Three structural elements were investigated - all components of an Advanced Launch System reusable propulsion/avionics module. Leading aeroshell configurations included sandwich structure using titanium, graphite/polyimide (Gr/PI), or high-temperature aluminum (HTA) face sheets. Thrust structure truss concepts used titanium, graphite/epoxy, or silicon carbide/aluminum struts. Leading aft bulkhead concepts employed graphite epoxy and aluminum. The technical effort focused on the aeroshell because the greatest benefits were expected there. Thermal analyses show the structural temperature profiles during operation. Finite element analyses show stresses during splash-down. Weight statements and manufacturing cost estimates were prepared for calculation of LCC for each design. The Gr/PI aeroshell showed the lowest potential LCC, but the HTA aeroshell was judged to be lower risk. A technology development plan was prepared to validate the applicable structural technology.

  18. Air Vehicle Technology Integration Program (AVTIP). Delivery Order 0004: Advanced Sol-Gel Adhesion Processes

    DTIC Science & Technology

    2002-04-01

    AFRL-ML-WP-TR-2003-4173 AIR VEHICLE TECHNOLOGY INTEGRATION PROGRAM (AVTIP) Delivery Order 0004: Advanced Sol-Gel Adhesion Processes Kay Y...2001 – 03/31/2002 5a. CONTRACT NUMBER F33615-00-D-3052 5b. GRANT NUMBER 4. TITLE AND SUBTITLE AIR VEHICLE TECHNOLOGY INTEGRATION PROGRAM

  19. Academic Integration Supplement to the Advanced Food Science and Nutrition Curriculum Guide.

    ERIC Educational Resources Information Center

    Texas Tech Univ., Lubbock. Home Economics Curriculum Center.

    This supplement to an advanced food science and nutrition curriculum guide was developed for use in integrating academic principles with vocational home economics education in Texas. It contains learning and evaluation experiences specifically designed to integrate mathematics, science, language arts, and social studies principles within the…

  20. Advancing health system integration through supply chain improvement.

    PubMed

    Rosser, Mike

    2006-01-01

    Collaboration is a key element to success in the provision of sustainable and integrated healthcare services. Among the many initiatives undertaken to improve service quality and reduce costs, collaboration among hospitals in Ontario has been difficult to achieve; however, voluntary collaboration is vital to achieving transformation of the magnitude envisioned by system leaders.

  1. Melatonin Preserves Blood-Brain Barrier Integrity and Permeability via Matrix Metalloproteinase-9 Inhibition

    PubMed Central

    Alluri, Himakarnika; Wilson, Rickesha L.; Anasooya Shaji, Chinchusha; Wiggins-Dohlvik, Katie; Patel, Savan; Liu, Yang; Peng, Xu; Beeram, Madhava R.; Davis, Matthew L.; Huang, Jason H.; Tharakan, Binu

    2016-01-01

    Microvascular hyperpermeability that occurs at the level of the blood-brain barrier (BBB) often leads to vasogenic brain edema and elevated intracranial pressure following traumatic brain injury (TBI). At a cellular level, tight junction proteins (TJPs) between neighboring endothelial cells maintain the integrity of the BBB via TJ associated proteins particularly, zonula occludens-1 (ZO-1) that binds to the transmembrane TJPs and actin cytoskeleton intracellularly. The pro-inflammatory cytokine, interleukin-1β (IL-1β) as well as the proteolytic enzymes, matrix metalloproteinase-9 (MMP-9) are key mediators of trauma-associated brain edema. Recent studies indicate that melatonin a pineal hormone directly binds to MMP-9 and also might act as its endogenous inhibitor. We hypothesized that melatonin treatment will provide protection against TBI-induced BBB hyperpermeability via MMP-9 inhibition. Rat brain microvascular endothelial cells grown as monolayers were used as an in vitro model of the BBB and a mouse model of TBI using a controlled cortical impactor was used for all in vivo studies. IL-1β (10 ng/mL; 2 hours)-induced endothelial monolayer hyperpermeability was significantly attenuated by melatonin (10 μg/mL; 1 hour), GM6001 (broad spectrum MMP inhibitor; 10 μM; 1 hour), MMP-9 inhibitor-1 (MMP-9 specific inhibitor; 5 nM; 1 hour) or MMP-9 siRNA transfection (48 hours) in vitro. Melatonin and MMP-9 inhibitor-1 pretreatment attenuated IL-1β-induced MMP-9 activity, loss of ZO-1 junctional integrity and f-actin stress fiber formation. IL-1β treatment neither affected ZO-1 protein or mRNA expression or cell viability. Acute melatonin treatment attenuated BBB hyperpermeability in a mouse controlled cortical impact model of TBI in vivo. In conclusion, one of the protective effects of melatonin against BBB hyperpermeability occurs due to enhanced BBB integrity via MMP-9 inhibition. In addition, acute melatonin treatment provides protection against BBB

  2. Advanced Amine Solvent Formulations and Process Integration for Near-Term CO2 Capture Success

    SciTech Connect

    Fisher, Kevin S.; Searcy, Katherine; Rochelle, Gary T.; Ziaii, Sepideh; Schubert, Craig

    2007-06-28

    This Phase I SBIR project investigated the economic and technical feasibility of advanced amine scrubbing systems for post-combustion CO2 capture at coal-fired power plants. Numerous combinations of advanced solvent formulations and process configurations were screened for energy requirements, and three cases were selected for detailed analysis: a monoethanolamine (MEA) base case and two “advanced” cases: an MEA/Piperazine (PZ) case, and a methyldiethanolamine (MDEA) / PZ case. The MEA/PZ and MDEA/PZ cases employed an advanced “double matrix” stripper configuration. The basis for calculations was a model plant with a gross capacity of 500 MWe. Results indicated that CO2 capture increased the base cost of electricity from 5 cents/kWh to 10.7 c/kWh for the MEA base case, 10.1 c/kWh for the MEA / PZ double matrix, and 9.7 c/kWh for the MDEA / PZ double matrix. The corresponding cost per metric tonne CO2 avoided was 67.20 $/tonne CO2, 60.19 $/tonne CO2, and 55.05 $/tonne CO2, respectively. Derated capacities, including base plant auxiliary load of 29 MWe, were 339 MWe for the base case, 356 MWe for the MEA/PZ double matrix, and 378 MWe for the MDEA / PZ double matrix. When compared to the base case, systems employing advanced solvent formulations and process configurations were estimated to reduce reboiler steam requirements by 20 to 44%, to reduce derating due to CO2 capture by 13 to 30%, and to reduce the cost of CO2 avoided by 10 to 18%. These results demonstrate the potential for significant improvements in the overall economics of CO2 capture via advanced solvent formulations and process configurations.

  3. Integrating Advanced Physical Training Programs into the Marine Corps

    DTIC Science & Technology

    2009-02-20

    the CrossFit program and consequently a fee is required to participate in the CrossFit 3 P90X , Extreme Body Workout, (unknown... P90X , Extreme Body Workout n.d.) , P90X is a home based DVD workout program designed to achieve results in 90 days at a cost of $119.85. 4...PFT and is characterized by anaerobic (short burst) energy demands”.13 By coincidence, many of the advanced training programs, such as P90X , CrossFit

  4. An evaluation of fiber-reinforced titanium matrix composites for advanced high-temperature aerospace applications

    SciTech Connect

    Larsen, J.M.; Russ, S.M.; Jones, J.W.

    1995-12-01

    The current capabilities of continuous silicon-carbide fiber-reinforced titanium matrix composites (TMCs) are reviewed with respect to application needs and compared to the capabilities of conventional high-temperature monolithic alloys and aluminides. In particular, the properties of a first-generation titanium aluminide composite, SCS-6/Ti-24Al-11Nb, and a second-generation metastable beta alloy composite, SCS-6/TIMETAL 21S, are compared with the nickel-base superalloy IN100, the high-temperature titanium alloy Ti-1100, and a relatively new titanium aluminide alloy. Emphasis is given to life-limiting cyclic and monotonic properties and to the influence of time-dependent deformation and environmental effects on these properties. The composite materials offer a wide range of performance capabilities, depending on laminate architecture. In many instances, unidirectional composites exhibit outstanding properties, although the same materials loaded transverse to the fiber direction typically exhibit very poor properties, primarily due to the weak fiber/matrix interface. Depending on the specific mechanical property under consideration, composite cross-ply laminates often show no improvement over the capability of conventional monolithic materials. Thus, it is essential that these composite materials be tailored to achieve a balance of properties suitable to the specific application needs if these materials are to be attractive candidates to replace more conventional materials.

  5. Durability and CMAS Resistance of Advanced Environmental Barrier Coatings Systems for SiC/SiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming

    2015-01-01

    Environmental barrier coatings (EBCs) and SiCSiC ceramic matrix composites (CMCs) systems will play a crucial role in next generation turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures with improved efficiency, reduce engine weight and cooling requirements. This paper will emphasize advanced environmental barrier coating developments for SiCSiC turbine airfoil components, by using advanced coating compositions and processing, in conjunction with mechanical and environment testing and durability validations. The coating-CMC degradations and durability in the laboratory simulated engine fatigue-creep and complex operating environments are being addressed. The effects of Calcium-Magnesium-Alumino-Silicate (CMAS) from road sand or volcano-ash deposits on the degradation mechanisms of the environmental barrier coating systems will be discussed. The results help understand the advanced EBC-CMC system performance, aiming at the durability improvements of more robust, prime-reliant environmental barrier coatings for successful applications of the component technologies and lifing methodologies.

  6. Structural design of integral tankage for advanced space transportation systems

    NASA Technical Reports Server (NTRS)

    Macconochie, I. O.; Davis, R. B.; Lemessurier, R. W.

    1982-01-01

    Fully reusable launch vehicle concepts being studied for post-Shuttle era transports present major challenges for the structural design of large propellant tankage. The dominant structural elements are internal tankage for both cryogenic and non-cryogenic propellants which must operate in a broad range of thermal environments while meeting requirements for low weight and reusability. Several approaches to integral tank design are discussed and an analysis of a hot structure honeycomb sandwich tank for a circular body vehicle is presented.

  7. Integrated Seismic Event Detection and Location by Advanced Array Processing

    SciTech Connect

    Kvaerna, T; Gibbons, S J; Ringdal, F; Harris, D B

    2007-02-09

    The principal objective of this two-year study is to develop and test a new advanced, automatic approach to seismic detection/location using array processing. We address a strategy to obtain significantly improved precision in the location of low-magnitude events compared with current fully-automatic approaches, combined with a low false alarm rate. We have developed and evaluated a prototype automatic system which uses as a basis regional array processing with fixed, carefully calibrated, site-specific parameters in conjuction with improved automatic phase onset time estimation. We have in parallel developed tools for Matched Field Processing for optimized detection and source-region identification of seismic signals. This narrow-band procedure aims to mitigate some of the causes of difficulty encountered using the standard array processing system, specifically complicated source-time histories of seismic events and shortcomings in the plane-wave approximation for seismic phase arrivals at regional arrays.

  8. Advancement of Bi-Level Integrated System Synthesis (BLISS)

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, Jaroslaw; Emiley, Mark S.; Agte, Jeremy S.; Sandusky, Robert R., Jr.

    2000-01-01

    Bi-Level Integrated System Synthesis (BLISS) is a method for optimization of an engineering system, e.g., an aerospace vehicle. BLISS consists of optimizations at the subsystem (module) and system levels to divide the overall large optimization task into sets of smaller ones that can be executed concurrently. In the initial version of BLISS that was introduced and documented in previous publications, analysis in the modules was kept at the early conceptual design level. This paper reports on the next step in the BLISS development in which the fidelity of the aerodynamic drag and structural stress and displacement analyses were upgraded while the method's satisfactory convergence rate was retained.

  9. Ceramic Integration Technologies for Advanced Energy Systems: Critical Needs, Technical Challenges, and Opportunities

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay

    2010-01-01

    Advanced ceramic integration technologies dramatically impact the energy landscape due to wide scale application of ceramics in all aspects of alternative energy production, storage, distribution, conservation, and efficiency. Examples include fuel cells, thermoelectrics, photovoltaics, gas turbine propulsion systems, distribution and transmission systems based on superconductors, nuclear power generation and waste disposal. Ceramic integration technologies play a key role in fabrication and manufacturing of large and complex shaped parts with multifunctional properties. However, the development of robust and reliable integrated systems with optimum performance requires the understanding of many thermochemical and thermomechanical factors, particularly for high temperature applications. In this presentation, various needs, challenges, and opportunities in design, fabrication, and testing of integrated similar (ceramic ceramic) and dissimilar (ceramic metal) material www.nasa.gov 45 ceramic-ceramic-systems have been discussed. Experimental results for bonding and integration of SiC based Micro-Electro-Mechanical-Systems (MEMS) LDI fuel injector and advanced ceramics and composites for gas turbine applications are presented.

  10. Mueller matrix for an ensemble of particles of arbitrary shape with an arbitrary square integrable orientation distribution function

    SciTech Connect

    Paramonov, L.E.

    1994-12-01

    Scattering of electromagnetic radiation from the elementary volume containing particles of an arbitrary shape with an arbitrary square integrable orientation distribution function is considered. Based on the T-matrix approach and the quantum theory of angular momentum, an analytical method is suggested for estimating the Mueller matrix elements and the Stokes vector of radiation scattered from an ensemble of particles in the case of an arbituary number of incident radiation sources. The constructive existence theorem is proved for the expansion of the scattering matrix elements as a power series in Wigner functions in the elementary volume having a rotational symmetry relative to the direction of the incident radiation propagation. Corollaries of the results obtained are considered. 24 refs.

  11. Integrative systems and synthetic biology of cell-matrix adhesion sites

    PubMed Central

    Zamir, Eli

    2016-01-01

    ABSTRACT The complexity of cell-matrix adhesion convolves its roles in the development and functioning of multicellular organisms and their evolutionary tinkering. Cell-matrix adhesion is mediated by sites along the plasma membrane that anchor the actin cytoskeleton to the matrix via a large number of proteins, collectively called the integrin adhesome. Fundamental challenges for understanding how cell-matrix adhesion sites assemble and function arise from their multi-functionality, rapid dynamics, large number of components and molecular diversity. Systems biology faces these challenges in its strive to understand how the integrin adhesome gives rise to functional adhesion sites. Synthetic biology enables engineering intracellular modules and circuits with properties of interest. In this review I discuss some of the fundamental questions in systems biology of cell-matrix adhesion and how synthetic biology can help addressing them. PMID:26853318

  12. The role of monolithic integration in advanced laser products

    NASA Astrophysics Data System (ADS)

    Marsh, John H.

    2006-02-01

    The design and performance of single-mode high-power (>100 mW) semiconductor lasers suitable for integration into large arrays are reported. In 830 nm lasers, quantum well intermixing (QWI) has been used to increase the bandgap of the waveguide in the facet region by 120 meV, and the catastrophic optical damage threshold of uncoated devices increased by a factor of >3 as a result. The passive waveguides are relatively cool, bringing high reliability, improving the single-mode waveguide stability and enabling high-temperature operation. Furthermore, the passive waveguides relax the cleaving and packaging alignment tolerances, giving a high yield process suitable for manufacture. A far-field reduction layer is included in the lasers giving a fast axis divergence of <20° FWHM. Arrays in which each emitter operates at several 100 mW, have excellent uniformity of laser parameters such as kink power, operating power and optical beam profile.

  13. Advancing the integration of history and ecology for conservation.

    PubMed

    Szabó, Péter; Hédl, Radim

    2011-08-01

    The important role of humans in the development of current ecosystems was recognized decades ago; however, the integration of history and ecology in order to inform conservation has been difficult. We identified four issues that hinder historical ecological research and considered possible solutions. First, differences in concepts and methods between the fields of ecology and history are thought to be large. However, most differences stem from miscommunication between ecologists and historians and are less substantial than is usually assumed. Cooperation can be achieved by focusing on the features ecology and history have in common and through understanding and acceptance of differing points of view. Second, historical ecological research is often hampered by differences in spatial and temporal scales between ecology and history. We argue that historical ecological research can only be conducted at extents for which sources in both disciplines have comparable resolutions. Researchers must begin by clearly defining the relevant scales for the given purpose. Third, periods for which quantitative historical sources are not easily accessible (before AD 1800) have been neglected in historical ecological research. Because data from periods before 1800 are as relevant to the current state of ecosystems as more recent data, we suggest that historical ecologists actively seek out data from before 1800 and apply analytic methods commonly used in ecology to these data. Fourth, humans are not usually considered an intrinsic ecological factor in current ecological research. In our view, human societies should be acknowledged as integral parts of ecosystems and societal processes should be recognized as driving forces of ecosystem change.

  14. Advancing Partnerships Towards an Integrated Approach to Oil Spill Response

    NASA Astrophysics Data System (ADS)

    Green, D. S.; Stough, T.; Gallegos, S. C.; Leifer, I.; Murray, J. J.; Streett, D.

    2015-12-01

    Oil spills can cause enormous ecological and economic devastation, necessitating application of the best science and technology available, and remote sensing is playing a growing critical role in the detection and monitoring of oil spills, as well as facilitating validation of remote sensing oil spill products. The FOSTERRS (Federal Oil Science Team for Emergency Response Remote Sensing) interagency working group seeks to ensure that during an oil spill, remote sensing assets (satellite/aircraft/instruments) and analysis techniques are quickly, effectively, appropriately, and seamlessly available to oil spills responders. Yet significant challenges remain for addressing oils spanning a vast range of chemical properties that may be spilled from the Tropics to the Arctic, with algorithms and scientific understanding needing advances to keep up with technology. Thus, FOSTERRS promotes enabling scientific discovery to ensure robust utilization of available technology as well as identifying technologies moving up the TRL (Technology Readiness Level). A recent FOSTERRS facilitated support activity involved deployment of the AVIRIS NG (Airborne Visual Infrared Imaging Spectrometer- Next Generation) during the Santa Barbara Oil Spill to validate the potential of airborne hyperspectral imaging to real-time map beach tar coverage including surface validation data. Many developing airborne technologies have potential to transition to space-based platforms providing global readiness.

  15. Analog integrator for the Korea superconducting tokamak advanced research magnetic diagnostics

    SciTech Connect

    Bak, J. G.; Lee, S. G.; Son, D.; Ga, E. M.

    2007-04-15

    An analog integrator, which automatically compensates an integrating drift, has been developed for the magnetic diagnostics in the Korea superconducting tokamak advanced research (KSTAR). The compensation of the drift is done by the analog to digital converter-register-digital to analog converter in the integrator. The integrator will be used in the equilibrium magnetic field measurements by using inductive magnetic sensors during a plasma discharge in the KSTAR machine. Two differential amplifiers are added to the signal path between each magnetic sensor and the integrator in order to improve the performance of the integrator because a long signal cable of 100 m will be used for the measurement in the KSTAR machine. In this work, the characteristics of the integrator with two differential amplifiers are experimentally investigated.

  16. Analog integrator for the Korea superconducting tokamak advanced research magnetic diagnostics

    NASA Astrophysics Data System (ADS)

    Bak, J. G.; Lee, S. G.; Son, D.; Ga, E. M.

    2007-04-01

    An analog integrator, which automatically compensates an integrating drift, has been developed for the magnetic diagnostics in the Korea superconducting tokamak advanced research (KSTAR). The compensation of the drift is done by the analog to digital converter-register-digital to analog converter in the integrator. The integrator will be used in the equilibrium magnetic field measurements by using inductive magnetic sensors during a plasma discharge in the KSTAR machine. Two differential amplifiers are added to the signal path between each magnetic sensor and the integrator in order to improve the performance of the integrator because a long signal cable of 100 m will be used for the measurement in the KSTAR machine. In this work, the characteristics of the integrator with two differential amplifiers are experimentally investigated.

  17. Analog integrator for the Korea superconducting tokamak advanced research magnetic diagnostics.

    PubMed

    Bak, J G; Lee, S G; Son, D; Ga, E M

    2007-04-01

    An analog integrator, which automatically compensates an integrating drift, has been developed for the magnetic diagnostics in the Korea superconducting tokamak advanced research (KSTAR). The compensation of the drift is done by the analog to digital converter-register-digital to analog converter in the integrator. The integrator will be used in the equilibrium magnetic field measurements by using inductive magnetic sensors during a plasma discharge in the KSTAR machine. Two differential amplifiers are added to the signal path between each magnetic sensor and the integrator in order to improve the performance of the integrator because a long signal cable of 100 m will be used for the measurement in the KSTAR machine. In this work, the characteristics of the integrator with two differential amplifiers are experimentally investigated.

  18. Integrated Droplet-Based Microextraction with ESI-MS for Removal of Matrix Interference in Single-Cell Analysis

    PubMed Central

    Zhang, Xiao-Chao; Wei, Zhen-Wei; Gong, Xiao-Yun; Si, Xing-Yu; Zhao, Yao-Yao; Yang, Cheng-Dui; Zhang, Si-Chun; Zhang, Xin-Rong

    2016-01-01

    Integrating droplet-based microfluidics with mass spectrometry is essential to high-throughput and multiple analysis of single cells. Nevertheless, matrix effects such as the interference of culture medium and intracellular components influence the sensitivity and the accuracy of results in single-cell analysis. To resolve this problem, we developed a method that integrated droplet-based microextraction with single-cell mass spectrometry. Specific extraction solvent was used to selectively obtain intracellular components of interest and remove interference of other components. Using this method, UDP-Glc-NAc, GSH, GSSG, AMP, ADP and ATP were successfully detected in single MCF-7 cells. We also applied the method to study the change of unicellular metabolites in the biological process of dysfunctional oxidative phosphorylation. The method could not only realize matrix-free, selective and sensitive detection of metabolites in single cells, but also have the capability for reliable and high-throughput single-cell analysis. PMID:27126222

  19. Integrating Matrix Method for Determining the Natural Vibrations of a Rotating, Unsymmetrical Beam with Application to Twisted Propeller Blades

    NASA Technical Reports Server (NTRS)

    Hunter, William F.

    1967-01-01

    A numerical method is Presented for determining the natural vibration frequencies, and the corresponding mode shapes, of a rotating cantilever beam which has a nonuniform, unsymmetrical cross section. Two coupled fourth-order differential equations of motion with variable coefficients are derived which govern the motion of such a beam having deformations in two directions. Through the development and utilization of the integrating matrix, the solution of the differential equations is obtained in the form of an eigenvalue problem. The solutions to the eigenvalue problem are determined by an iteration method based upon a special orthogonality relationship which is derived. Numerical examples, including an application to a twisted propeller blade, are presented with the results of the integrating matrix solutions being compared to exact solutions and experimental data.

  20. Development of ceramic matrix composites for application in the ceramic technology for advanced heat engines project

    SciTech Connect

    Yeh, H.; Solidum, E.; Karasek, K.; Stranford, G.; Yuhas, D.; Schienle, J.; Bradley, S. . Garrett Ceramic Components Div.)

    1992-04-01

    The objective of this effort (Phase II of a multi-phase program) was to maximize the toughness of a high-temperature Si{sub 3}N{sub 4} (GN-10) by the near-net-shape fabrication technology established previously (Phase I). Acid-etched American Matrix SiC whiskers were selected as the reinforcement. Extensive green forming and densification process optimizations were conducted. The results showed that whisker addition increased the toughness slightly, but decreased the strength of the material. It has been recommended to discontinue the whisker reinforcement approach, and to instead pursue the in-situ grown-whisker reinforcement approach. To address future needs for the composite technology, two supplemental efforts were conducted using monolithic GN-10 Si{sub 3}N{sub 4}. These were nanometer deposition of sintering aids and ultrasonic characterization of drying. Spray drying, polymerization, basic precipitation, and evaporation yielded more uniform sintering aid distributions than conventional ball milling. Spray drying was selected for scale-up study. Improved mechanical properties were demonstrated. The results of the ultrasonic study showed that variations in ultrasonic compressional velocity in slip-cast components are more complex than anticipated. Specifically, it was found that the sonic velocity, as a function of moisture content, was double-valued. This behavior, together with the problems associated with maintaining uniform couplant, precludes the use of ultrasonics as a routine means of monitoring moisture content.

  1. Integration Architecture of Content Addressable Memory and Massive-Parallel Memory-Embedded SIMD Matrix for Versatile Multimedia Processor

    NASA Astrophysics Data System (ADS)

    Kumaki, Takeshi; Ishizaki, Masakatsu; Koide, Tetsushi; Mattausch, Hans Jürgen; Kuroda, Yasuto; Gyohten, Takayuki; Noda, Hideyuki; Dosaka, Katsumi; Arimoto, Kazutami; Saito, Kazunori

    This paper presents an integration architecture of content addressable memory (CAM) and a massive-parallel memory-embedded SIMD matrix for constructing a versatile multimedia processor. The massive-parallel memory-embedded SIMD matrix has 2,048 2-bit processing elements, which are connected by a flexible switching network, and supports 2-bit 2,048-way bit-serial and word-parallel operations with a single command. The SIMD matrix architecture is verified to be a better way for processing the repeated arithmetic operation types in multimedia applications. The proposed architecture, reported in this paper, exploits in addition CAM technology and enables therefore fast pipelined table-lookup coding operations. Since both arithmetic and table-lookup operations execute extremely fast, the proposed novel architecture can realize consequently efficient and versatile multimedia data processing. Evaluation results of the proposed CAM-enhanced massive-parallel SIMD matrix processor for the example of the frequently used JPEG image-compression application show that the necessary clock cycle number can be reduced by 86% in comparison to a conventional mobile DSP architecture. The determined performances in Mpixel/mm2 are factors 3.3 and 4.4 better than with a CAM-less massive-parallel memory-embedded SIMD matrix processor and a conventional mobile DSP, respectively.

  2. Integrative Chemistry: Advanced functional cellular materials bearing multiscale porosity

    NASA Astrophysics Data System (ADS)

    Depardieu, M.; Kinadjian, N.; Backov, R.

    2015-07-01

    With this mini review we show through the sol-gel and emulsion-based Integrative Chemistry how it is possible to trigger materials dimensionality and beyond their functionalities when reaching enhanced applications. In here we focus on 3D macrocellular monolithic foams bearing hierarchical porosities and applications thereof. We first depict the general background of emulsions focusing on concentrated ones, acting as soft templates for the design of PolyHIPE foams, HIPE being the acronym of High Internal Phase Emulsions while encompassing both sol-gel and polymer chemistry. Secondly we extend this approach toward the design of hybrid organic-inorganic foams, labeled Organo-Si(HIPE), where photonics and heterogeneous catalysis applications are addressed. In a third section we show how inorganic Si(HIPE) matrices can be employed as sacrificial hard templates for the generation carbonaceous foams, labeled Carbon(HIPE). These foams being conductive we show applications when employed as electrodes for Li-S battery and as hosts for Li(BH4)-based hydrogen storage.

  3. AN ADVANCED TOOL FOR APPLIED INTEGRATED SAFETY MANAGEMENT

    SciTech Connect

    Potts, T. Todd; Hylko, James M.; Douglas, Terence A.

    2003-02-27

    WESKEM, LLC's Environmental, Safety and Health (ES&H) Department had previously assessed that a lack of consistency, poor communication and using antiquated communication tools could result in varying operating practices, as well as a failure to capture and disseminate appropriate Integrated Safety Management (ISM) information. To address these issues, the ES&H Department established an Activity Hazard Review (AHR)/Activity Hazard Analysis (AHA) process for systematically identifying, assessing, and controlling hazards associated with project work activities during work planning and execution. Depending on the scope of a project, information from field walkdowns and table-top meetings are collected on an AHR form. The AHA then documents the potential failure and consequence scenarios for a particular hazard. Also, the AHA recommends whether the type of mitigation appears appropriate or whether additional controls should be implemented. Since the application is web based, the information is captured into a single system and organized according to the >200 work activities already recorded in the database. Using the streamlined AHA method improved cycle time from over four hours to an average of one hour, allowing more time to analyze unique hazards and develop appropriate controls. Also, the enhanced configuration control created a readily available AHA library to research and utilize along with standardizing hazard analysis and control selection across four separate work sites located in Kentucky and Tennessee. The AHR/AHA system provides an applied example of how the ISM concept evolved into a standardized field-deployed tool yielding considerable efficiency gains in project planning and resource utilization. Employee safety is preserved through detailed planning that now requires only a portion of the time previously necessary. The available resources can then be applied to implementing appropriate engineering, administrative and personal protective equipment

  4. Advancing human health risk assessment: Integrating recent advisory committee recommendations

    PubMed Central

    Becker, Richard A.; Haber, Lynne T.; Pottenger, Lynn H.; Bredfeldt, Tiffany; Fenner-Crisp, Penelope A.

    2013-01-01

    Over the last dozen years, many national and international expert groups have considered specific improvements to risk assessment. Many of their stated recommendations are mutually supportive, but others appear conflicting, at least in an initial assessment. This review identifies areas of consensus and difference and recommends a practical, biology-centric course forward, which includes: (1) incorporating a clear problem formulation at the outset of the assessment with a level of complexity that is appropriate for informing the relevant risk management decision; (2) using toxicokinetics and toxicodynamic information to develop Chemical Specific Adjustment Factors (CSAF); (3) using mode of action (MOA) information and an understanding of the relevant biology as the key, central organizing principle for the risk assessment; (4) integrating MOA information into dose–response assessments using existing guidelines for non-cancer and cancer assessments; (5) using a tiered, iterative approach developed by the World Health Organization/International Programme on Chemical Safety (WHO/IPCS) as a scientifically robust, fit-for-purpose approach for risk assessment of combined exposures (chemical mixtures); and (6) applying all of this knowledge to enable interpretation of human biomonitoring data in a risk context. While scientifically based defaults will remain important and useful when data on CSAF or MOA to refine an assessment are absent or insufficient, assessments should always strive to use these data. The use of available 21st century knowledge of biological processes, clinical findings, chemical interactions, and dose–response at the molecular, cellular, organ and organism levels will minimize the need for extrapolation and reliance on default approaches. PMID:23844697

  5. Complex integration of matrix, oxidative stress, and apoptosis in genetic emphysema.

    PubMed

    Podowski, Megan; Calvi, Carla L; Cheadle, Christopher; Tuder, Rubin M; Biswals, Shyam; Neptune, Enid R

    2009-07-01

    Alveolar enlargement, which is characteristic of bronchopulmonary dysplasia, congenital matrix disorders, and cigarette smoke-induced emphysema, is thought to result from enhanced inflammation and ensuing excessive matrix proteolysis. Although there is recent evidence that cell death and oxidative stress punctuate these diseases, the mechanistic link between abnormal lung extracellular matrix and alveolar enlargement is lacking. We hypothesized that the tight-skin (TSK) mouse, which harbors a spontaneous internal duplication in the microfibrillar glycoprotein fibrillin-1, might show whether matrix alterations are sufficient to promote oxidative stress and cell death, injury cascades central to the development of clinical emphysema. We observed no evidence of increased metalloprotease activation by histochemical and zymographic methods. We did find initial oxidative stress followed by increased apoptosis in the postnatal TSK lung. Both blunted antioxidant production and reduced extracellular superoxide dismutase activity were evident in the neonatal lung. High-dose antioxidant treatment with N-acetylcysteine improved airspace caliber and attenuated oxidative stress and apoptosis in neonatal and adult TSK mice. These data establish that an abnormal extracellular matrix without overt elastolysis is sufficient to confer susceptibility to postnatal normoxia, reminiscent of bronchopulmonary dysplasia. The resultant oxidative stress and apoptosis culminate in profound airspace enlargement. The TSK lung exemplifies the critical interplay between extracellular matrix, oxidative stress, and cell-death cascades that may contribute to genetic and acquired airspace enlargement.

  6. Complex Integration of Matrix, Oxidative Stress, and Apoptosis in Genetic Emphysema

    PubMed Central

    Podowski, Megan; Calvi, Carla L.; Cheadle, Christopher; Tuder, Rubin M.; Biswals, Shyam; Neptune, Enid R.

    2009-01-01

    Alveolar enlargement, which is characteristic of bronchopulmonary dysplasia, congenital matrix disorders, and cigarette smoke-induced emphysema, is thought to result from enhanced inflammation and ensuing excessive matrix proteolysis. Although there is recent evidence that cell death and oxidative stress punctuate these diseases, the mechanistic link between abnormal lung extracellular matrix and alveolar enlargement is lacking. We hypothesized that the tight-skin (TSK) mouse, which harbors a spontaneous internal duplication in the microfibrillar glycoprotein fibrillin-1, might show whether matrix alterations are sufficient to promote oxidative stress and cell death, injury cascades central to the development of clinical emphysema. We observed no evidence of increased metalloprotease activation by histochemical and zymographic methods. We did find initial oxidative stress followed by increased apoptosis in the postnatal TSK lung. Both blunted antioxidant production and reduced extracellular superoxide dismutase activity were evident in the neonatal lung. High-dose antioxidant treatment with N-acetylcysteine improved airspace caliber and attenuated oxidative stress and apoptosis in neonatal and adult TSK mice. These data establish that an abnormal extracellular matrix without overt elastolysis is sufficient to confer susceptibility to postnatal normoxia, reminiscent of bronchopulmonary dysplasia. The resultant oxidative stress and apoptosis culminate in profound airspace enlargement. The TSK lung exemplifies the critical interplay between extracellular matrix, oxidative stress, and cell-death cascades that may contribute to genetic and acquired airspace enlargement. PMID:19541933

  7. Nanocarrier-Integrated Microspheres: Nanogel Tectonic Engineering for Advanced Drug-Delivery Systems.

    PubMed

    Tahara, Yoshiro; Mukai, Sada-Atsu; Sawada, Shin-Ichi; Sasaki, Yoshihiro; Akiyoshi, Kazunari

    2015-09-09

    A nanocarrier-integrated bottom-up method is a promising strategy for advanced drug-release systems. Self-assembled nanogels, which are one of the most beneficial nanocarriers for drug-delivery systems, are tectonically integrated to prepare nanogel-crosslinked (NanoClik) microspheres. NanoClik microspheres consisting of nanogel-derived structures (observed by STED microscopy) release "drug-loaded nanogels" after hydrolysis, resulting in successful sustained drug delivery in vivo.

  8. Identification of transformation products during advanced oxidation of diatrizoate: Effect of water matrix and oxidation process.

    PubMed

    Azerrad, Sara P; Lütke Eversloh, Christian; Gilboa, Maayan; Schulz, Manoj; Ternes, Thomas; Dosoretz, Carlos G

    2016-10-15

    Removal of micropollutants from reverse osmosis (RO) brines of wastewater desalination by oxidation processes is influenced by the scavenging capacity of brines components, resulting in the accumulation of transformation products (TPs) rather than complete mineralization. In this work the iodinated contrast media diatrizoate (DTZ) was used as model compound due to its relative resistance to oxidation. Identification of TPs was performed in ultrapure water (UPW) and RO brines applying nonthermal plasma (NTP) and UVA-TiO2 as oxidation techniques. The influence of main RO brines components in the formation and accumulation of TPs, such as chloride, bicarbonate alkalinity and humic acid, was also studied during UVA-TiO2. DTZ oxidation pattern in UPW resulted similar in both UVA-TiO2 and NTP achieving 66 and 61% transformation, respectively. However, DTZ transformation in RO brines was markedly lower in UVA-TiO2 (9%) than in NTP (27%). These differences can be attributed to the synergic effect of RO brines components during NTP. Moreover, reactive species other than hydroxyl radical contributed to DTZ transformation, i.e., direct photolysis in UVA-TiO2 and direct photolysis + O3 in NTP accounted for 16 and 23%, respectively. DTZ transformation led to iodide formation in both oxidation techniques but it further oxidized to iodate by ozone in NTP. In total 14 transformation products were identified in UPW of which 3 were present only in UVA-TiO2 and 2 were present exclusively in NTP; 5 of the 14 TPs were absent in RO brines. Five of them were new and were denoted as TP-474A/B, TP-522, TP-586, TP-602, TP-628. TP-522 (mono-chlorinated) was elucidated only in presence of high chloride titer-synthetic water matrix in NTP, most probably formed by active chlorine species generated in situ. TPs accumulation in RO brines was markedly different in comparison to UPW. This denotes the influence of RO brines components in the formation of reactive species that could further attack

  9. Multi-Purpose Thermal Hydraulic Loop: Advanced Reactor Technology Integral System Test (ARTIST) Facility for Support of Advanced Reactor Technologies

    SciTech Connect

    James E. O'Brien; Piyush Sabharwall; SuJong Yoon

    2001-11-01

    Effective and robust high temperature heat transfer systems are fundamental to the successful deployment of advanced reactors for both power generation and non-electric applications. Plant designs often include an intermediate heat transfer loop (IHTL) with heat exchangers at either end to deliver thermal energy to the application while providing isolation of the primary reactor system. In order to address technical feasibility concerns and challenges a new high-temperature multi-fluid, multi-loop test facility “Advanced Reactor Technology Integral System Test facility” (ARTIST) is under development at the Idaho National Laboratory. The facility will include three flow loops: high-temperature helium, molten salt, and steam/water. Details of some of the design aspects and challenges of this facility, which is currently in the conceptual design phase, are discussed

  10. The Green's matrix and the boundary integral equations for analysis of time-harmonic dynamics of elastic helical springs.

    PubMed

    Sorokin, Sergey V

    2011-03-01

    Helical springs serve as vibration isolators in virtually any suspension system. Various exact and approximate methods may be employed to determine the eigenfrequencies of vibrations of these structural elements and their dynamic transfer functions. The method of boundary integral equations is a meaningful alternative to obtain exact solutions of problems of the time-harmonic dynamics of elastic springs in the framework of Bernoulli-Euler beam theory. In this paper, the derivations of the Green's matrix, of the Somigliana's identities, and of the boundary integral equations are presented. The vibrational power transmission in an infinitely long spring is analyzed by means of the Green's matrix. The eigenfrequencies and the dynamic transfer functions are found by solving the boundary integral equations. In the course of analysis, the essential features and advantages of the method of boundary integral equations are highlighted. The reported analytical results may be used to study the time-harmonic motion in any wave guide governed by a system of linear differential equations in a single spatial coordinate along its axis.

  11. Advanced Simulation in Undergraduate Pilot Training: Systems Integration. Final Report (February 1972-March 1975).

    ERIC Educational Resources Information Center

    Larson, D. F.; Terry, C.

    The Advanced Simulator for Undergraduate Pilot Training (ASUPT) was designed to investigate the role of simulation in the future Undergraduate Pilot Training (UPT) program. The problem addressed in this report was one of integrating two unlike components into one synchronized system. These two components were the Basic T-37 Simulators and their…

  12. Integration of a Communicating Science Module into an Advanced Chemistry Laboratory Course

    ERIC Educational Resources Information Center

    Renaud, Jessica; Squier, Christopher; Larsen, Sarah C.

    2006-01-01

    A communicating science module was introduced into an advanced undergraduate physical chemistry laboratory course. The module was integrated into the course such that students received formal instruction in communicating science interwoven with the chemistry laboratory curriculum. The content of the communicating science module included three…

  13. Effects of the Integrated Online Advance Organizer Teaching Materials on Students' Science Achievement and Attitude

    ERIC Educational Resources Information Center

    Korur, Fikret; Toker, Sacip; Eryilmaz, Ali

    2016-01-01

    This two-group quasi-experimental study investigated the effects of the Online Advance Organizer Concept Teaching Material (ONACOM) integrated with inquiry teaching and expository teaching methods. Grade 7 students' posttest performances on the light unit achievement and light unit attitude tests controlled for gender, previous semester science…

  14. Using the Student Research Project to Integrate Macroeconomics and Statistics in an Advanced Cost Accounting Course

    ERIC Educational Resources Information Center

    Hassan, Mahamood M.; Schwartz, Bill N.

    2014-01-01

    This paper discusses a student research project that is part of an advanced cost accounting class. The project emphasizes active learning, integrates cost accounting with macroeconomics and statistics by "learning by doing" using real world data. Students analyze sales data for a publicly listed company by focusing on the company's…

  15. NASA's Advanced Environmental Barrier Coatings Development for SiC/SiC Ceramic Matrix Composites: Understanding Calcium Magnesium Alumino-Silicate (CMAS) Degradations and Resistance

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming

    2014-01-01

    Environmental barrier coatings (EBCs) and SiCSiC ceramic matrix composites (CMCs) systems will play a crucial role in next generation turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures with improved efficiency, reduce engine weight and cooling requirements. The development of prime-reliant environmental barrier coatings is essential to the viability and reliability of the envisioned CMC engine component applications, ensuring integrated EBC-CMC system durability and designs are achievable for successful applications of the game-changing component technologies and lifing methodologies.This paper will emphasize recent NASA environmental barrier coating developments for SiCSiC turbine airfoil components, utilizing advanced coating compositions, state-of-the-art processing methods, and combined mechanical and environment testing and durability evaluations. The coating-CMC degradations in the engine fatigue-creep and operating environments are particularly complex; one of the important coating development aspects is to better understand engine environmental interactions and coating life debits, and we have particularly addressed the effect of Calcium-Magnesium-Alumino-Silicate (CMAS) from road sand or volcano-ash deposits on the durability of the environmental barrier coating systems, and how the temperature capability, stability and cyclic life of the candidate rare earth oxide and silicate coating systems will be impacted in the presence of the CMAS at high temperatures and under simulated heat flux conditions. Advanced environmental barrier coating systems, including HfO2-Si with rare earth dopant based bond coat systems, will be discussed for the performance improvements to achieve better temperature capability and CMAS resistance for future engine operating conditions.

  16. A model for the control of DNA integrity by the sperm nuclear matrix

    PubMed Central

    Gawecka, Joanna E; Ribas-Maynou, Jordi; Benet, Jordi; Ward, W Steven

    2015-01-01

    The highly condensed chromatin of mammalian spermatozoa is usually considered to be biologically inert before fertilization. However, we have demonstrated that even in this compacted state, sperm chromatin is subject to degradation at open configurations associated with the nuclear matrix through a process we have termed sperm chromatin fragmentation (SCF). This suggests that a mechanism exists to monitor the health of spermatozoa during transit through the male reproductive tract and to destroy the genome of defective sperm cells. The site of DNA damage in SCF, the matrix attachment sites, are the same that we hypothesize initiate DNA synthesis in the zygote. When sperm that have damaged DNA are injected into the oocyte, the newly created zygote responds by delaying DNA synthesis in the male pronucleus and, if the damage is severe enough, arresting the embryo's development. Here we present a model for paternal DNA regulation by the nuclear matrix that begins during sperm maturation and continues through early embryonic development. PMID:25926613

  17. Characterization of an Integral Thermal Protection and Cryogenic Insulation Material for Advanced Space Transportation Vehicles

    NASA Technical Reports Server (NTRS)

    Salerno, L. J.; White, S. M.; Helvensteijn, B. P. M.

    2000-01-01

    NASA's planned advanced space transportation vehicles will benefit from the use of integral/conformal cryogenic propellant tanks which will reduce the launch weight and lower the earth-to-orbit costs considerably. To implement the novel concept of integral/conformal tanks requires developing an equally novel concept in thermal protection materials. Providing insulation against reentry heating and preserving propellant mass can no longer be considered separate problems to be handled by separate materials. A new family of materials, Superthermal Insulation (STI), has been conceiving and investigated by NASA's Ames Research Center to simultaneously provide both thermal protection and cryogenic insulation in a single, integral material.

  18. How the structural integrity of the matrix can influence the microstructural response of articular cartilage to compression.

    PubMed

    Fick, James M

    2013-01-01

    This study investigated how the structural integrity of healthy, surface-removed (healthy), and degenerate matrices can modify the response of cartilage to compression. Six groups of specimens were loaded up to the onset of consolidation or at full consolidation (N = 30, 5 per group, respectively) and then subsequently chemically fixed to capture the deformed state of the tissues. Creep compression was applied through an 8 mm flat-ended indenter containing a 450 μm diameter central pore, providing a region of high stress that also allowed the tissue samples to deform freely around the indenter pore during compression. Differential interference contrast microscopy was used in order to explore the microstructural responses of the tissues. The results demonstrated that superficial layer removal or tissue degeneration can reduce the observed deformation within the tissue region corresponding to the central pore of the loading indenter. Fibril crimping within the central pore matrix and matrix shear at the indenter edge regions are also reduced by both superficial layer removal and by tissue degeneration. These findings suggest that surface removal or tissue degeneration renders the matrix more susceptible to deformation and can also reduce the tissue's ability to transfer forces over a greater surface area and induce stress within the matrix.

  19. Time dependent integration of matrix metalloproteinases and their targeted substrates directs axonal sprouting and synaptogenesis following central nervous system injury

    PubMed Central

    Phillips, Linda L.; Chan, Julie L.; Doperalski, Adele E.; Reeves, Thomas M.

    2014-01-01

    Over the past two decades, many investigators have reported how extracellular matrix molecules act to regulate neuroplasticity. The majority of these studies involve proteins which are targets of matrix metalloproteinases. Importantly, these enzyme/substrate interactions can regulate degenerative and regenerative phases of synaptic plasticity, directing axonal and dendritic reorganization after brain insult. The present review first summarizes literature support for the prominent role of matrix metalloproteinases during neuroregeneration, followed by a discussion of data contrasting adaptive and maladaptive neuroplasticity that reveals time-dependent metalloproteinase/substrate regulation of postinjury synaptic recovery. The potential for these enzymes to serve as therapeutic targets for enhanced neuroplasticity after brain injury is illustrated with experiments demonstrating that metalloproteinase inhibitors can alter adaptive and maladaptive outcome. Finally, the complexity of metalloproteinase role in reactive synaptogenesis is revealed in new studies showing how these enzymes interact with immune molecules to mediate cellular response in the local regenerative environment, and are regulated by novel binding partners in the brain extracellular matrix. Together, these different examples show the complexity with which metalloproteinases are integrated into the process of neuroregeneration, and point to a promising new angle for future studies exploring how to facilitate brain plasticity. PMID:25206824

  20. Fluorescence excitation-emission matrix spectra coupled with parallel factor and regional integration analysis to characterize organic matter humification.

    PubMed

    He, Xiao-Song; Xi, Bei-Dou; Li, Xiang; Pan, Hong-Wei; An, Da; Bai, Shuo-Guo; Li, Dan; Cui, Dong-Yu

    2013-11-01

    The present several humification indexes cannot provide the whole fluorescence information on organic matter composition and the evaluation results from them are inconsistent sometimes. In this study, fluorescence excitation-emission matrix spectra coupled with parallel factor analysis and fluorescence regional integration analysis were utilized to investigate organic matter humification, and the projection pursuit cluster (PPC) model was applied to form a suitable index for overcoming the difficulties in multi-index evaluation. The result showed that the ratio between the volume of humic- and fulvic-like fluorescence region and the volume of protein-like fluorescence region not only revealed the heterogeneity of organic matter, but also provided more accurate information on organic matter humification. In addition, the results showed that the PPC model could be used to characterize integrally the humification, and the projected characteristic value calculated from the PPC model could be used as the integrated humification evaluation index.

  1. Nuclear Energy Advanced Modeling and Simulation (NEAMS) Waste Integrated Performance and Safety Codes (IPSC) : FY10 development and integration.

    SciTech Connect

    Criscenti, Louise Jacqueline; Sassani, David Carl; Arguello, Jose Guadalupe, Jr.; Dewers, Thomas A.; Bouchard, Julie F.; Edwards, Harold Carter; Freeze, Geoffrey A.; Wang, Yifeng; Schultz, Peter Andrew

    2011-02-01

    This report describes the progress in fiscal year 2010 in developing the Waste Integrated Performance and Safety Codes (IPSC) in support of the U.S. Department of Energy (DOE) Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Campaign. The goal of the Waste IPSC is to develop an integrated suite of computational modeling and simulation capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive waste storage or disposal system. The Waste IPSC will provide this simulation capability (1) for a range of disposal concepts, waste form types, engineered repository designs, and geologic settings, (2) for a range of time scales and distances, (3) with appropriate consideration of the inherent uncertainties, and (4) in accordance with robust verification, validation, and software quality requirements. Waste IPSC activities in fiscal year 2010 focused on specifying a challenge problem to demonstrate proof of concept, developing a verification and validation plan, and performing an initial gap analyses to identify candidate codes and tools to support the development and integration of the Waste IPSC. The current Waste IPSC strategy is to acquire and integrate the necessary Waste IPSC capabilities wherever feasible, and develop only those capabilities that cannot be acquired or suitably integrated, verified, or validated. This year-end progress report documents the FY10 status of acquisition, development, and integration of thermal-hydrologic-chemical-mechanical (THCM) code capabilities, frameworks, and enabling tools and infrastructure.

  2. Mini Review of Integrated Care and Implications for Advanced Practice Nurse Role

    PubMed Central

    McIntosh, Diana; Startsman, Laura F.; Perraud, Suzanne

    2016-01-01

    Literature related to primary care and behavioral health integration initiatives is becoming abundant. The United States’ 2010 Patient Protection and Affordable Care Act included provisions encouraging increased collaboration of care for individuals with behavioral and physical health service needs in the public sector. There is relatively little known of Advanced Practice Registered Nurses’ (APRNs) roles with integrating primary and behavioral healthcare. The goal of this review article is to: (a) define integration of physical and behavioral healthcare and potential models; (b) answer the question as to what are effective evidence based models/strategies for integrating behavioral health and primary care; (c) explore the future role and innovations of APRNs in the integration of physical and behavioral healthcare. Results: The evidence- based literature is limited to three systematic reviews and six randomized controlled trials. It was difficult to generalize the data and the effective integration strategies varied from such interventions as care management to use of sertraline to depression management and to access. There were, though, implications for the integrated care advanced practice nurse to have roles inclusive of competencies, leadership, engagement, collaboration and advocacy. PMID:27347258

  3. Biomimetics of the Extracellular Matrix: An Integrated Three-Dimensional Fiber-Hydrogel Composite for Cartilage Tissue Engineering

    PubMed Central

    Coburn, Jeannine; Gibson, Matt; Bandalini, Pierre Alain; Laird, Christopher; Mao, Hai-Quan; Moroni, Lorenzo; Seliktar, Dror

    2012-01-01

    The native extracellular matrix (ECM) consists of an integrated fibrous protein network and proteoglycan-based ground (hydrogel) substance. We designed a novel electrospinning technique to engineer a three dimensional fiber-hydrogel composite that mimics the native ECM structure, is injectable, and has practical macroscale dimensions for clinically relevant tissue defects. In a model system of articular cartilage tissue engineering, the fiber-hydrogel composites enhanced the biological response of adult stem cells, with dynamic mechanical stimulation resulting in near native levels of extracellular matrix. This technology platform was expanded through structural and biochemical modification of the fibers including hydrophilic fibers containing chondroitin sulfate, a significant component of endogenous tissues, and hydrophobic fibers containing ECM microparticles. PMID:22287978

  4. Fiber-matrix integrity, micromorphology and flexural strength of glass fiber posts: Evaluation of the impact of rotary instruments.

    PubMed

    Pereira, Gabriel Kalil Rocha; Lançanova, Mateus; Wandscher, Vinicius Felipe; Kaizer, Osvaldo Bazzan; Limberger, Inácio; Özcan, Mutlu; Valandro, Luiz Felipe

    2015-08-01

    Several rotary instruments have been daily employed on clinic to promote cut aiming to adjust the length of fiber posts to the radicular conduct, but there is no information on the literature about the effects of the different rotary instruments and its impact on the micromorphology of surface and mechanical properties of the glass fiber post. This study aimed the impact of rotary instruments upon fiber-matrix integrity, micromorphology and flexural-strength of glass-fiber posts (GFP). GFP (N=110) were divided into 5 groups: Ctrl: as-received posts, DBc: coarse diamond-bur, DBff: extra-fine diamond-bur, CB: carbide-bur, DD: diamond-disc. Cutting procedures were performed under abundant irrigation. Posts exposed to rotary instruments were then subjected to 2-point inclined loading test (compression 45°) (n=10/group) and 3-point flexural-strength test (n=10/group). Fiber-matrix integrity and micromorphology at the cut surface were analyzed using a SEM (n=2/group). Cutting procedures did not significantly affect the 2-point (51.7±4.3-56.7±5.1 MPa) (p=0.0233) and 3-point flexural-strength (671.5±35.3-709.1±33.1 MPa) (p=0.0968) of the posts (One-way ANOVA and Tukey׳s test). Fiber detachment was observed only at the end point of the cut at the margins of the post. Cut surfaces of the CB group were smoother than those of the other groups. After 3-point flexural strength test, fiber-matrix separation was evident at the tensile side of the post. Rotary instruments tested with simultaneous water-cooling did not affect the resistance of the tested fiber posts but caused disintegration of the fibers from the matrix at the end of the cut, located at the margins.

  5. Multiscale Modeling of Inclusions and Precipitation Hardening in Metal Matrix Composites: Application to Advanced High-Strength Steels

    SciTech Connect

    Askari, Hesam; Zbib, Hussein M.; Sun, Xin

    2013-06-01

    In this study, the strengthening effect of inclusions and precipitates in metals is investigated within a multiscale approach that utilizes models at various length scales, namely, Molecular Mechanics (MM), discrete Dislocation Dynamics (DD), and an Eigenstrain Inclusion Method (EIM). Particularly, precipitates are modeled as hardsoft particles whose stress fields interact with dislocations. The stress field resulting from the elastic mismatch between the particles and the matrix is accounted for through the EIM. While the MM method is employed for the purpose of developing rules for DD for short range interaction between a single dislocation and an inclusion, the DD method is used to predict the strength of the composite resulting from the interaction between ensembles of dislocations and particles. As an application to this method, the mechanical behavior of Advanced High Strength Steel (AHSS) is investigated and the results are then compared to the experimental data. The results show that the finely dispersive precipitates can strengthen the material by pinning the dislocations up to a certain shear stress and retarding the recovery, as well as annihilation of dislocations. The DD results show that strengthening due to nano sized particles is a function of the density and size of the precipitates. This size effect is then explained using a mechanistic model developed based on dislocation-particle interaction.

  6. Insight into Pathologic Abnormalities in Congenital Semilunar Valve Disease Based on Advances in Understanding Normal Valve Microstructure and Extracellular Matrix

    PubMed Central

    Stephens, Elizabeth H.; Kearney, Debra L.; Grande-Allen, K. Jane

    2011-01-01

    Congenitally diseased valves are relatively frequent causes of significant morbidity and mortality. Pathology descriptions of such valves have primarily focused on gross structural features including the number of leaflets or commissures (bicuspid/bicommissural valve) and alterations in the contour, thickness and consistency of the leaflets (dysplastic valve). Functional correlates of these pathologic alterations are valvar stenosis, insufficiency or both. Further characterization of the microstructural abnormalities seen in these malformed valves may not only provide insight into the correlation of distinct pathologies with their respective pathogenesis and clinical sequelae, but also may prove pivotal in uncovering new avenues for therapeutic interventions and prevention regimens. This review summarizes microstructural findings in congenital semilunar valve disease (CSVD) and discusses their relevance in light of recent advances in knowledge of normal valve microstructure, biology, and function. Specifically, the biological and mechanical roles of various matrix components and their interactions are discussed in the context of CSVD. Indeed, recent research in normal valves adds significant insight into CSVD, and raises many hypotheses that will need to be addressed by future studies. PMID:21349746

  7. Advanced, Integrated Control for Building Operations to Achieve 40% Energy Saving

    SciTech Connect

    Lu, Yan; Song, Zhen; Loftness, Vivian; Ji, Kun; Zheng, Sam; Lasternas, Bertrand; Marion, Flore; Yuebin, Yu

    2012-10-15

    We developed and demonstrated a software based integrated advanced building control platform called Smart Energy Box (SEB), which can coordinate building subsystem controls, integrate variety of energy optimization algorithms and provide proactive and collaborative energy management and control for building operations using weather and occupancy information. The integrated control system is a low cost solution and also features: Scalable component based architecture allows to build a solution for different building control system configurations with needed components; Open Architecture with a central data repository for data exchange among runtime components; Extendible to accommodate variety of communication protocols. Optimal building control for central loads, distributed loads and onsite energy resource; uses web server as a loosely coupled way to engage both building operators and building occupants in collaboration for energy conservation. Based on the open platform of SEB, we have investigated and evaluated a variety of operation and energy saving control strategies on Carnegie Mellon University Intelligent Work place which is equipped with alternative cooling/heating/ventilation/lighting methods, including radiant mullions, radiant cooling/heating ceiling panels, cool waves, dedicated ventilation unit, motorized window and blinds, and external louvers. Based on the validation results of these control strategies, they were integrated in SEB in a collaborative and dynamic way. This advanced control system was programmed and computer tested with a model of the Intelligent Workplace's northern section (IWn). The advanced control program was then installed in the IWn control system; the performance was measured and compared with that of the state of the art control system to verify the overall energy savings great than 40%. In addition advanced human machine interfaces (HMI's) were developed to communicate both with building occupants and

  8. Science based integrated approach to advanced nuclear fuel development - vision, approach, and overview

    SciTech Connect

    Unal, Cetin; Pasamehmetoglu, Kemal; Carmack, Jon

    2010-01-01

    Advancing the performance of Light Water Reactors, Advanced Nuclear Fuel Cycles, and Advanced Rcactors, such as the Next Generation Nuclear Power Plants, requires enhancing our fundamental understanding of fuel and materials behavior under irradiation. The capability to accurately model the nuclear fuel systems is critical. In order to understand specific aspects of the nuclear fuel, fully coupled fuel simulation codes are required to achieve licensing of specific nuclear fuel designs for operation. The backbone of these codes, models, and simulations is a fundamental understanding and predictive capability for simulating the phase and microstructural behavior of the nuclear fuel system materials and matrices. The purpose of this paper is to identify the modeling and simulation approach in order to deliver predictive tools for advanced fuels development. The coordination between experimental nuclear fuel design, development technical experts, and computational fuel modeling and simulation technical experts is a critical aspect of the approach and naturally leads to an integrated, goal-oriented science-based R & D approach and strengthens both the experimental and computational efforts. The Advanced Fuels Campaign (AFC) and Nuclear Energy Advanced Modeling and Simulation (NEAMS) Fuels Integrated Performance and Safety Code (IPSC) are working together to determine experimental data and modeling needs. The primary objective of the NEAMS fuels IPSC project is to deliver a coupled, three-dimensional, predictive computational platform for modeling the fabrication and both normal and abnormal operation of nuclear fuel pins and assemblies, applicable to both existing and future reactor fuel designs. The science based program is pursuing the development of an integrated multi-scale and multi-physics modeling and simulation platform for nuclear fuels. This overview paper discusses the vision, goals and approaches how to develop and implement the new approach.

  9. A Time Integration Algorithm Based on the State Transition Matrix for Structures with Time Varying and Nonlinear Properties

    NASA Technical Reports Server (NTRS)

    Bartels, Robert E.

    2003-01-01

    A variable order method of integrating the structural dynamics equations that is based on the state transition matrix has been developed. The method has been evaluated for linear time variant and nonlinear systems of equations. When the time variation of the system can be modeled exactly by a polynomial it produces nearly exact solutions for a wide range of time step sizes. Solutions of a model nonlinear dynamic response exhibiting chaotic behavior have been computed. Accuracy of the method has been demonstrated by comparison with solutions obtained by established methods.

  10. Integrating random matrix theory predictions with short-time dynamical effects in chaotic systems.

    PubMed

    Smith, A Matthew; Kaplan, Lev

    2010-07-01

    We discuss a modification to random matrix theory eigenstate statistics that systematically takes into account the nonuniversal short-time behavior of chaotic systems. The method avoids diagonalization of the Hamiltonian; instead it requires only knowledge of short-time dynamics for a chaotic system or ensemble of similar systems. Standard random matrix theory and semiclassical predictions are recovered in the limits of zero Ehrenfest time and infinite Heisenberg time, respectively. As examples, we discuss wave-function autocorrelations and cross correlations, and show that significant improvement in accuracy is obtained for simple chaotic systems where comparison can be made with brute-force diagonalization. The accuracy of the method persists even when the short-time dynamics of the system or ensemble is known only in a classical approximation. Further improvement in the rate of convergence is obtained when the method is combined with the correlation function bootstrapping approach introduced previously.

  11. Advancements in Wind Integration Study Data Modeling: The Wind Integration National Dataset (WIND) Toolkit; Preprint

    SciTech Connect

    Draxl, C.; Hodge, B. M.; Orwig, K.; Jones, W.; Searight, K.; Getman, D.; Harrold, S.; McCaa, J.; Cline, J.; Clark, C.

    2013-10-01

    Regional wind integration studies in the United States require detailed wind power output data at many locations to perform simulations of how the power system will operate under high-penetration scenarios. The wind data sets that serve as inputs into the study must realistically reflect the ramping characteristics, spatial and temporal correlations, and capacity factors of the simulated wind plants, as well as be time synchronized with available load profiles. The Wind Integration National Dataset (WIND) Toolkit described in this paper fulfills these requirements. A wind resource dataset, wind power production time series, and simulated forecasts from a numerical weather prediction model run on a nationwide 2-km grid at 5-min resolution will be made publicly available for more than 110,000 onshore and offshore wind power production sites.

  12. Advanced fighter technology integration (AFTI)/F-16 Automated Maneuvering Attack System final flight test results

    NASA Technical Reports Server (NTRS)

    Dowden, Donald J.; Bessette, Denis E.

    1987-01-01

    The AFTI F-16 Automated Maneuvering Attack System has undergone developmental and demonstration flight testing over a total of 347.3 flying hours in 237 sorties. The emphasis of this phase of the flight test program was on the development of automated guidance and control systems for air-to-air and air-to-ground weapons delivery, using a digital flight control system, dual avionics multiplex buses, an advanced FLIR sensor with laser ranger, integrated flight/fire-control software, advanced cockpit display and controls, and modified core Multinational Stage Improvement Program avionics.

  13. Symmetry and integrability of non-singlet sectors in matrix quantum mechanics

    NASA Astrophysics Data System (ADS)

    Hatsuda, Yasuyuki; Matsuo, Yutaka

    2007-02-01

    We study the non-singlet sectors of matrix quantum mechanics (MQM) through an operator algebra which generates the spectrum. The algebra is a nonlinear extension of the {{\\cal W}}_\\infty algebra where the nonlinearity comes from the angular part of the matrix which cannot be neglected in the non-singlet sector. The algebra contains an infinite set of commuting generators which can be regarded as the conserved currents of MQM. We derive the spectrum and the eigenfunctions of these conserved quantities by a group theoretical method. An interesting feature of the spectrum of these charges in the non-singlet sectors is that they are identical to those of the singlet sector except for the multiplicities. We also derive the explicit form of these commuting charges in terms of the eigenvalues of the matrix and show that the interaction terms which are typical in Calogero-Sutherland systems appear. Finally, we discuss the bosonization and rewrite the commuting charges in terms of a free boson together with a finite number of extra degrees of freedom for the non-singlet sectors.

  14. Correlation between the properties of the lipid matrix and the degrees of integrity and cohesion in healthy human Stratum corneum.

    PubMed

    Berthaud, Fabienne; Boncheva, Mila

    2011-03-01

    The correlation between the degrees of integrity and cohesion in healthy human Stratum corneum (SC) and the properties of the SC lipid matrix could be examined non-invasively in vivo using ATR-FTIR spectroscopy and measurements of pH, conductance, and transepidermal water loss (TEWL) taken in the course of tape-stripping. The change of TEWL following the removal of a SC layer with a predefined thickness served as a measure for the SC integrity, and the amount of protein removed by predefined number of tapes - as a measure for the SC cohesion. The extent of lipids organized in orthorhombic lattices and the pH in the inner SC emerged as the main factors that determine the degree of integrity. The amounts and molecular organization of the SC lipids did not correlate with the degree of cohesion, while the pH and the hydration of SC correlated well with the degree of cohesion in the superficial but not in the inner SC layers. This study evidenced the variability of SC integrity and cohesion existing in healthy human skin, demonstrated the importance of the lipid molecular organization for the SC integrity, and illustrated the limitations in the determination the degree of corneodesmolysis in SC based only on the protein content of tape-strips.

  15. Vertical stratification of matrix production is essential for physical integrity and architecture of macrocolony biofilms of E scherichia coli

    PubMed Central

    Serra, Diego O.; Klauck, Gisela

    2015-01-01

    Summary Bacterial macrocolony biofilms grow into intricate three‐dimensional structures that depend on self‐produced extracellular polymers conferring protection, cohesion and elasticity to the biofilm. In E scherichia coli, synthesis of this matrix – consisting of amyloid curli fibres and cellulose – requires CsgD, a transcription factor regulated by the stationary phase sigma factor RpoS, and occurs in the nutrient‐deprived cells of the upper layer of macrocolonies. Is this asymmetric matrix distribution functionally important or is it just a fortuitous by‐product of an unavoidable nutrient gradient? In order to address this question, the RpoS‐dependent csgD promoter was replaced by a vegetative promoter. This re‐wiring of csgD led to CsgD and matrix production in both strata of macrocolonies, with the lower layer transforming into a rigid ‘base plate’ of growing yet curli‐connected cells. As a result, the two strata broke apart followed by desiccation and exfoliation of the top layer. By contrast, matrix‐free cells at the bottom of wild‐type macrocolonies maintain colony contact with the humid agar support by flexibly filling the space that opens up under buckling areas of the macrocolony. Precisely regulated stratification in matrix‐free and matrix‐producing cell layers is thus essential for the physical integrity and architecture of E . coli macrocolony biofilms. PMID:26234179

  16. Fabricating high-resolution offset color-filter black matrix by integrating heterostructured substrate with inkjet printing

    NASA Astrophysics Data System (ADS)

    Lu, Guo-Shin; You, Po-Chin; Lin, Kai-Lun; Hong, Chien-Chong; Liou, Tong-Miin

    2014-05-01

    This paper presents a self-aligning ink by integrating an inkjet printing technique and heterostructures to fabricate a black matrix with a micrometer-scale tunable thickness. The black matrix is a grid-like structure used in color filters. Traditionally, a black matrix has been fabricated using photolithography techniques, the disadvantages of which are high material consumption, less fabrication flexibility, complex processing procedures, and high chemical pollution. Inkjet printing technology has garnered attention because of its low material costs, high fabrication flexibility, and reduced processing procedures and pollution. In this study, a fabricating process combining an inkjet printing technique with heterostructures to form stripe-arranged and delta-arranged thickness-tunable black matrices has been demonstrated. The deformation and self-aligning process of ink droplet impingement onto gutters are driven by designed heterogeneous surface properties. The minimum track width attained is 10 µm, which is competitive for color filter resolutions for thin-film transistor liquid crystal displays. The developed technology surmounts the bottlenecks of inkjet printing resolution, and saves more than 75% black material than modern photolithography.

  17. Path integral molecular dynamics method based on a pair density matrix approximation: An algorithm for distinguishable and identical particle systems

    NASA Astrophysics Data System (ADS)

    Miura, Shinichi; Okazaki, Susumu

    2001-09-01

    In this paper, the path integral molecular dynamics (PIMD) method has been extended to employ an efficient approximation of the path action referred to as the pair density matrix approximation. Configurations of the isomorphic classical systems were dynamically sampled by introducing fictitious momenta as in the PIMD based on the standard primitive approximation. The indistinguishability of the particles was handled by a pseudopotential of particle permutation that is an extension of our previous one [J. Chem. Phys. 112, 10 116 (2000)]. As a test of our methodology for Boltzmann statistics, calculations have been performed for liquid helium-4 at 4 K. We found that the PIMD with the pair density matrix approximation dramatically reduced the computational cost to obtain the structural as well as dynamical (using the centroid molecular dynamics approximation) properties at the same level of accuracy as that with the primitive approximation. With respect to the identical particles, we performed the calculation of a bosonic triatomic cluster. Unlike the primitive approximation, the pseudopotential scheme based on the pair density matrix approximation described well the bosonic correlation among the interacting atoms. Convergence with a small number of discretization of the path achieved by this approximation enables us to construct a method of avoiding the problem of the vanishing pseudopotential encountered in the calculations by the primitive approximation.

  18. Polymer planar lightwave circuit based hybrid-integrated coherent receiver for advanced modulation signals

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Han, Yang; Liang, Zhongcheng; Chen, Yongjin

    2012-11-01

    Applying coherent detection technique to advanced modulation formats makes it possible to electronically compensate the signal impairments. A key issue for a successful deployment of coherent detection technique is the availability of cost-efficient and compact integrated receivers, which are composed of an optical 90° hybrid mixer and four photodiodes (PDs). In this work, three different types of optical hybrids are fabricated with polymer planar lightwave circuit (PLC), and hybridly integrated with four vertical backside illuminated III-V PDs. Their performances, such as the insertion loss, the transmission imbalance, the polarization dependence and the phase deviation of 90° hybrid will be discussed.

  19. Multiplexing electro-optic architectures for advanced aircraft integrated flight control systems

    NASA Technical Reports Server (NTRS)

    Seal, D. W.

    1989-01-01

    This report describes the results of a 10 month program sponsored by NASA. The objective of this program was to evaluate various optical sensor modulation technologies and to design an optimal Electro-Optic Architecture (EOA) for servicing remote clusters of sensors and actuators in advanced aircraft flight control systems. The EOA's supply optical power to remote sensors and actuators, process the modulated optical signals returned from the sensors, and produce conditioned electrical signals acceptable for use by a digital flight control computer or Vehicle Management System (VMS) computer. This study was part of a multi-year initiative under the Fiber Optic Control System Integration (FOCSI) program to design, develop, and test a totally integrated fiber optic flight/propulsion control system for application to advanced aircraft. Unlike earlier FOCSI studies, this program concentrated on the design of the EOA interface rather than the optical transducer technology itself.

  20. Positive semidefinite tensor factorizations of the two-electron integral matrix for low-scaling ab initio electronic structure

    SciTech Connect

    Hoy, Erik P.; Mazziotti, David A.

    2015-08-14

    Tensor factorization of the 2-electron integral matrix is a well-known technique for reducing the computational scaling of ab initio electronic structure methods toward that of Hartree-Fock and density functional theories. The simplest factorization that maintains the positive semidefinite character of the 2-electron integral matrix is the Cholesky factorization. In this paper, we introduce a family of positive semidefinite factorizations that generalize the Cholesky factorization. Using an implementation of the factorization within the parametric 2-RDM method [D. A. Mazziotti, Phys. Rev. Lett. 101, 253002 (2008)], we study several inorganic molecules, alkane chains, and potential energy curves and find that this generalized factorization retains the accuracy and size extensivity of the Cholesky factorization, even in the presence of multi-reference correlation. The generalized family of positive semidefinite factorizations has potential applications to low-scaling ab initio electronic structure methods that treat electron correlation with a computational cost approaching that of the Hartree-Fock method or density functional theory.

  1. Microfluidic chip with integrated electrical cell-impedance sensing for monitoring single cancer cell migration in three-dimensional matrixes.

    PubMed

    Nguyen, Tien Anh; Yin, Tsung-I; Reyes, Diego; Urban, Gerald A

    2013-11-19

    Cell migration has been recognized as one hallmark of malignant tumor progression. By integrating the method of electrical cell-substrate impedance sensing (ECIS) with the Boyden chamber design, the state-of-the-art techniques provide kinetic information about cell migration and invasion processes in three-dimensional (3D) extracellular matrixes. However, the information related to the initial stage of cell migration with single-cell resolution, which plays a unique role in the metastasis-invasion cascade of cancer, is not yet available. In this paper, we present a microfluidic device integrated with ECIS for investigating single cancer cell migration in 3D matrixes. Using microfluidics techniques without the requirement of physical connections to off-chip pneumatics, the proposed sensor chip can efficiently capture single cells on microelectrode arrays for sequential on-chip 2D or 3D cell culture and impedance measurement. An on-chip single-cell migration assay was successfully demonstrated within several minutes. Migration of single metastatic MDA-MB-231 cells in their initial stage can be monitored in real time; it shows a rapid change in impedance magnitude of approximately 10 Ω/s, whereas no prominent impedance change is observed for less-metastasis MCF-7 cells. The proposed sensor chip, allowing for a rapid and selective detection of the migratory properties of cancer cells at the single-cell level, could be applied as a new tool for cancer research.

  2. Positive semidefinite tensor factorizations of the two-electron integral matrix for low-scaling ab initio electronic structure.

    PubMed

    Hoy, Erik P; Mazziotti, David A

    2015-08-14

    Tensor factorization of the 2-electron integral matrix is a well-known technique for reducing the computational scaling of ab initio electronic structure methods toward that of Hartree-Fock and density functional theories. The simplest factorization that maintains the positive semidefinite character of the 2-electron integral matrix is the Cholesky factorization. In this paper, we introduce a family of positive semidefinite factorizations that generalize the Cholesky factorization. Using an implementation of the factorization within the parametric 2-RDM method [D. A. Mazziotti, Phys. Rev. Lett. 101, 253002 (2008)], we study several inorganic molecules, alkane chains, and potential energy curves and find that this generalized factorization retains the accuracy and size extensivity of the Cholesky factorization, even in the presence of multi-reference correlation. The generalized family of positive semidefinite factorizations has potential applications to low-scaling ab initio electronic structure methods that treat electron correlation with a computational cost approaching that of the Hartree-Fock method or density functional theory.

  3. Advanced Nursing Directives: Integrating Validated Clinical Scoring Systems into Nursing Care in the Pediatric Emergency Department

    PubMed Central

    deForest, Erin Kate; Thompson, Graham Cameron

    2012-01-01

    In an effort to improve the quality and flow of care provided to children presenting to the emergency department the implementation of nurse-initiated protocols is on the rise. We review the current literature on nurse-initiated protocols, validated emergency department clinical scoring systems, and the merging of the two to create Advanced Nursing Directives (ANDs). The process of developing a clinical pathway for children presenting to our pediatric emergency department (PED) with suspected appendicitis will be used to demonstrate the successful integration of validated clinical scoring systems into practice through the use of Advanced Nursing Directives. Finally, examples of 2 other Advanced Nursing Directives for common clinical PED presentations will be provided. PMID:22778944

  4. [Health-related quality of life among patients with advanced cancer: an integrative review].

    PubMed

    Freire, Maria Eliane Moreira; Sawada, Namie Okino; de França, Inácia Sátiro Xavier; da Costa, Solange Fátima Geraldo; Oliveira, Cecília Danielle Bezerra

    2014-04-01

    This integrative literature review aimed to characterize scientific articles on health-related quality of life - HRQoL - among patients with advanced cancer from national and international literature, and summarize those factors evidenced in the literature that contributed to the improvement or worsening of HRQoL among patients with advanced cancer. The search for materials was conducted in the following databases: CINAHL, EMBASE, PubMed, SciELO and LILACS. Among the 21 articles in the sample, 13 showed an improvement of HRQoL among patients with advanced cancer related to the development of physical, emotional and spiritual interventions. In eight studies, we identified predictive symptoms of low HRQoL, such as pain, fatigue, sleep disorders, depression, nutritional changes, and others. The results showed that clinical manifestations, which many times were inherent in cancer, such as factors that can lower patients' HRQoL, while physical, psychological and spiritual benefits resulting from therapeutic interventions may promote its improvement.

  5. Advancing Tissue Engineering: A Tale of Nano-, Micro-, and Macroscale Integration.

    PubMed

    Leijten, Jeroen; Rouwkema, Jeroen; Zhang, Yu Shrike; Nasajpour, Amir; Dokmeci, Mehmet Remzi; Khademhosseini, Ali

    2016-04-27

    Tissue engineering has the potential to revolutionize the health care industry. Delivering on this promise requires the generation of efficient, controllable and predictable implants. The integration of nano- and microtechnologies into macroscale regenerative biomaterials plays an essential role in the generation of such implants, by enabling spatiotemporal control of the cellular microenvironment. Here we review the role, function and progress of a wide range of nano- and microtechnologies that are driving the advancements in the field of tissue engineering.

  6. Advancing Tissue Engineering: a Tale of Nano, Micro and Macro Scale Integration

    PubMed Central

    Leijten, Jeroen; Rouwkema, Jeroen; Zhang, Yu Shrike; Nasajpour, Amir; Dokmeci, Mehmet Remzi

    2016-01-01

    Tissue engineering has the potential to revolutionize the health care industry. Delivering on this promise requires the generation of efficient, controllable and predictable implants. The integration of nano- and microtechnologies into macroscale regenerative biomaterials is playing an essential role in the generation of such implants, by enabling spatiotemporal control of the cellular microenvironment. Here we review the role, function and progress of a wide range of nano- and microtechnologies that are driving the advancements in the field of tissue engineering. PMID:27101419

  7. IN SITU ACCUMULATION OF ADVANCED GLYCATION ENDPRODUCTS (AGES) IN BONE MATRIX AND ITS CORRELATION WITH OSTEOCLASTIC BONE RESORPTION

    PubMed Central

    Dong, X. Neil; Qin, An; Xu, Jiake; Wang, Xiaodu

    2011-01-01

    Advanced glycation end products (AGEs) have been observed to accumulate in bone with increasing age and may impose effects on bone resorption activities. However, the underlying mechanism of AGEs accumulation in bone is still poorly understood. In this study, human cortical bone specimens from young (31±6 years old), middle-aged (51±3 years old) and elderly (76±4 years old) groups were examined to determine the spatial-temporal distribution of AGEs in bone matrix and its effect on bone resorption activities by directly culturing osteoclastic cells on bone slices. The results of this study indicated that the fluorescence intensity (excitation wave length 360 nm and emission wave length 470±40 nm) could be used to estimate the relative distribution of AGEs in bone (pentosidine as its marker) under an epifluorescence microscope. Using the fluorescence intensity as the relative measure of AGEs concentration, it was found that the concentration of AGEs varied with biological tissue ages, showing the greatest amount in the interstitial tissue, followed by the old osteons, and the least amount in newly formed osteons. In addition, AGEs accumulation was found to be dependent on donor ages, suggesting that the younger the donor the less AGEs were accumulated in the tissue. Most interestingly, AGEs accumulation appeared to initiate from the region of cement lines, and spread diffusively to the other parts as the tissue aged. Finally, it was observed that the bone resorption activities of osteoclasts were positively correlated with the in situ concentration of AGEs and such an effect was enhanced with increasing donor age. These findings may help elucidate the mechanism of AGEs accumulation in bone and its association with bone remodeling process. PMID:21530698

  8. Advanced Glycation End Products in Extracellular Matrix Proteins Contribute to the Failure of Sensory Nerve Regeneration in Diabetes

    PubMed Central

    Duran-Jimenez, Beatriz; Dobler, Darin; Moffatt, Sarah; Rabbani, Naila; Streuli, Charles H.; Thornalley, Paul J.; Tomlinson, David R.; Gardiner, Natalie J.

    2009-01-01

    OBJECTIVE The goal of this study was to characterize glycation adducts formed in both in vivo extracellular matrix (ECM) proteins of endoneurium from streptozotocin (STZ)-induced diabetic rats and in vitro by glycation of laminin and fibronectin with methylglyoxal and glucose. We also investigated the impact of advanced glycation end product (AGE) residue content of ECM on neurite outgrowth from sensory neurons. RESEARCH DESIGN AND METHODS Glycation, oxidation, and nitration adducts of ECM proteins extracted from the endoneurium of control and STZ-induced diabetic rat sciatic nerve (3–24 weeks post-STZ) and of laminin and fibronectin that had been glycated using glucose or methylglyoxal were examined by liquid chromatography with tandem mass spectrometry. Methylglyoxal-glycated or unmodified ECM proteins were used as substrata for dissociated rat sensory neurons as in vitro models of regeneration. RESULTS STZ-induced diabetes produced a significant increase in early glycation Nε-fructosyl-lysine and AGE residue contents of endoneurial ECM. Glycation of laminin and fibronectin by methylglyoxal and glucose increased glycation adduct residue contents with methylglyoxal-derived hydroimidazolone and Nε-fructosyl-lysine, respectively, of greatest quantitative importance. Glycation of laminin caused a significant decrease in both neurotrophin-stimulated and preconditioned sensory neurite outgrowth. This decrease was prevented by aminoguanidine. Glycation of fibronectin also decreased preconditioned neurite outgrowth, which was prevented by aminoguanidine and nerve growth factor. CONCLUSIONS Early glycation and AGE residue content of endoneurial ECM proteins increase markedly in STZ-induced diabetes. Glycation of laminin and fibronectin causes a reduction in neurotrophin-stimulated neurite outgrowth and preconditioned neurite outgrowth. This may provide a mechanism for the failure of collateral sprouting and axonal regeneration in diabetic neuropathy. PMID:19720799

  9. Advanced Integration in Multi-Scale Mechanics and Welding Process Simulation in Weld Integrity Assessment

    SciTech Connect

    Vitek, J.M.; Wilkowski, G.M.; Brust, F.W.; Babu, S.

    2008-01-30

    In this project, mathematical models that predict the microstructure in pipeline steel welds were to be developed. These models were to be integrated with thermal models that describe the time-temperature history in the weld as a function of location in order to derive the spatial variation of microstructure in the weld. The microstructure predictions were also to be combined with microstructure-hardness relations, based on the additivity principle, to determine the spatial variation of hardness in the weld. EMC2 also developed microstructural models based on empirical relationships. ORNL was to pursue the development of more fundamental, theoretically based models. ORNL applied a previously developed model for inclusion formation to predict the extent and nature of inclusions that form during weld cooling from the liquid. This inclusion model was directly integrated with computational thermodynamics capability. A convenient user interface was developed for both the inclusion model and the thermodynamic phase-stability calculations. The microstructure model was based on the simultaneous transformation theory analysis as applied to the transformation of austenite to various ferrite constituents during weld cooling. The model available on the Materials Algorithm Project web site was used. Extensive modification of this model was required to correct problems with compilation and calculations as a function of the computational platform (Unix, Linux, Windows, etc.) that was used. The user interface for the inclusion model and thermodynamic phase-stability calculations was delivered to EMC2 along with the modified and correct microstructure model. Evaluation of the theoretically based model will be carried out and the predictions will be compared with experimental results as well as predictions based on the empirical models developed by EMC2.

  10. Biofunctionalized magnetic nanoparticle integrated mid-infrared pathogen sensor for food matrixes.

    PubMed

    Ravindranath, Sandeep P; Mauer, Lisa J; Deb-Roy, Chitrita; Irudayaraj, Joseph

    2009-04-15

    Magnetic nanoparticles functionalized with anti-Escherichia coli O157:H7 or anti-Salmonella typhimurium antibodies that can specifically bind to their target organisms were used to isolate E. coli O157:H7 and S. typhimurium separately from a cocktail of bacteria and from food matrixes. The pathogens were then detected using label-free IR fingerprinting. The binding and detection protocol was first validated using a benchtop FT-IR spectrometer and then applied to a portable mid-IR spectrometer to enable this approach as a point-of-detection technology. Highly selective detection was achieved in less than 30 min at both species (E. coli O157:H7 vs S. typhimurium ) and strain (E. coli O157:H7 vs E. coli K12) levels in complex food matrixes (2% milk, spinach extract) with a detection limit of 10(4)-10(5) CFU/mL. The combined approach of functionalized magnetic nanoparticles and IR spectroscopy imparts specificity through spectroscopic fingerprinting and selectivity through species-specific antibodies with an in-built sample extraction step and could be applied in the field for on-site food-borne pathogen monitoring.

  11. Direct integration of a 4-pixel emissive display into a knit fabric matrix

    NASA Astrophysics Data System (ADS)

    Coyle, Jared P.; Li, Bin; Dion, Genevieve; Fontecchio, Adam K.

    2013-03-01

    There exists a growing demand for displays in wearable applications. Wearable displays have traditionally been state-ofthe- art flexible designs that are subsequently mounted onto clothing fabric. Ideally, such a design would itself be fabricintegrated. Recently, much attention has been placed on work involving the weaving of photonic bandgap and other optical fibers to create a true fabric based display. Little exists in the technical literature concerning knit-based fabric displays. In this research, a prototype 4-pixel emissive fabric display is demonstrated. Conductive silver-plated nylon fibers act as a cathode. The fibers are coated in poly-2-methoxy-5-(2'-ethylhexyloxy)-p-phenylene vinylene (MEHPPV). When this layered structure is placed in contact with a separate metallic fiber (functions as an anode), a singlelayer PLED is formed. After drying and annealing, coated fibers are knit into a fabric matrix using a Shima Seiki SSG202SV automated knitting machine. The knit pattern itself provides a passive matrix addressing system similar to that of a more simple weave. Equivalent planar devices and single-pixel fiber structures are also fabricated. The resultant structures are all actuated, and current-voltage data is obtained for individual pixels using a source meter. Electroluminescence spectra are collected under tension using a UV-NIR spectrometer. The performance of the fiber devices is then compared to its planar analogues. Future directions for investigation are also proposed.

  12. "Take" of a polymer-based autologous cultured composite "skin" on an integrated temporizing dermal matrix: proof of concept.

    PubMed

    Dearman, Bronwyn L; Stefani, Kristian; Li, Amy; Greenwood, John E

    2013-01-01

    This study aimed to investigate the ability of an autologous cultured composite skin (CCS) to close similar biodegradable temporizing matrix (BTM)-integrated wounds, and its effectiveness in healing fresh full-thickness wounds after the failure of cultured epithelial autograft in its two forms (sheets and suspensions) to epithelialize over an integrated polymer BTM. Using a porcine model, autologous split-skin grafts were harvested three of four dorsal 8 × 8 cm treatment sites. These three sites were subsequently converted to full-thickness wounds and BTMs were implanted. The grafts were used to produce autologous CCSs for each pig. These consisted of a 1 mm thick biodegradable polymer foam scaffold into which fibroblasts and keratinocytes harvested from the grafts were cocultured. At Day 28, on each animal, the autologous CCSs were applied to two of the integrated BTMs, an autologous split-skin graft was applied to the third integrated BTM, and one CCS was applied immediately into a fresh, "naked" (no BTM applied) wound. The CCSs were capable of generating a bilayer repair over the naked wound's fat base and BTM-integrated wounds, which consisted of dermal elements and a keratinized stratified squamous epidermis anchored with a basement membrane by day 7. The CCSs behaved in different ways: either as a delivery vehicle allowing similar development of a bilayer repair while the polymer foam was shed from the wound, or generating a bilayer repair with the foam scaffold being retained (composite "take"). These results conclude our porcine program and provide proof of concept that the integrated BTM can be closed with an autologous CCS. Once fully optimized, this may provide robust repair without resorting to the split-skin graft, important in those cases where unburned donor site is unavailable.

  13. Leveraging advanced data analytics, machine learning, and metrology models to enable critical dimension metrology solutions for advanced integrated circuit nodes

    NASA Astrophysics Data System (ADS)

    Rana, Narender; Zhang, Yunlin; Kagalwala, Taher; Bailey, Todd

    2014-10-01

    Integrated circuit (IC) technology is changing in multiple ways: 193i to extreme ultraviolet exposure, planar to nonplanar device architecture, from single exposure lithography to multiple exposure and directed self-assembly (DSA) patterning, and so on. Critical dimension (CD) control requirement is becoming stringent and more exhaustive: CD and process windows are shrinking, three-sigma CD control of <2 nm is required in complex geometries, and a metrology uncertainty of <0.2 nm is required to achieve the target CD control for advanced IC nodes (e.g., 14, 10, and 7 nm nodes). There are fundamental capability and accuracy limits in all the metrology techniques that are detrimental to the success of advanced IC nodes. Reference or physical CD metrology is provided by atomic force microscopy (CD-AFM) and TEM while workhorse metrology is provided by CD-SEM, scatterometry, and model-based infrared reflectrometry (MBIR). Precision alone is not sufficient for moving forward. No single technique is sufficient to ensure the required accuracy of patterning. The accuracy of CD-AFM is ˜1 nm and the precision in TEM is poor due to limited statistics. CD scanning electron microscopy (CD-SEM), scatterometry, and MBIR need to be calibrated by reference measurements for ensuring the accuracy of patterned CDs and patterning models. There is a dire need for a measurement with <0.5 nm accuracy and the industry currently does not have that capability with inline measurements. Being aware of the capability gaps for various metrology techniques, we have employed data processing techniques and predictive data analytics, along with patterning simulation and metrology models and data integration techniques to selected applications demonstrating the potential solution and practicality of such an approach to enhance CD metrology accuracy. Data from multiple metrology techniques have been analyzed in multiple ways to extract information with associated uncertainties and integrated to extract

  14. Advances in gallium arsenide monolithic microwave integrated-circuit technology for space communications systems

    NASA Technical Reports Server (NTRS)

    Bhasin, K. B.; Connolly, D. J.

    1986-01-01

    Future communications satellites are likely to use gallium arsenide (GaAs) monolithic microwave integrated-circuit (MMIC) technology in most, if not all, communications payload subsystems. Multiple-scanning-beam antenna systems are expected to use GaAs MMIC's to increase functional capability, to reduce volume, weight, and cost, and to greatly improve system reliability. RF and IF matrix switch technology based on GaAs MMIC's is also being developed for these reasons. MMIC technology, including gigabit-rate GaAs digital integrated circuits, offers substantial advantages in power consumption and weight over silicon technologies for high-throughput, on-board baseband processor systems. In this paper, current developments in GaAs MMIC technology are described, and the status and prospects of the technology are assessed.

  15. Advances in gallium arsenide monolithic microwave integrated-circuit technology for space communications systems

    NASA Astrophysics Data System (ADS)

    Bhasin, K. B.; Connolly, D. J.

    1986-10-01

    Future communications satellites are likely to use gallium arsenide (GaAs) monolithic microwave integrated-circuit (MMIC) technology in most, if not all, communications payload subsystems. Multiple-scanning-beam antenna systems are expected to use GaAs MMIC's to increase functional capability, to reduce volume, weight, and cost, and to greatly improve system reliability. RF and IF matrix switch technology based on GaAs MMIC's is also being developed for these reasons. MMIC technology, including gigabit-rate GaAs digital integrated circuits, offers substantial advantages in power consumption and weight over silicon technologies for high-throughput, on-board baseband processor systems. In this paper, current developments in GaAs MMIC technology are described, and the status and prospects of the technology are assessed.

  16. Integrated Mueller-matrix near-infrared imaging and point-wise spectroscopy improves colonic cancer detection

    PubMed Central

    Wang, Jianfeng; Zheng, Wei; Lin, Kan; Huang, Zhiwei

    2016-01-01

    We report the development and implementation of a unique integrated Mueller-matrix (MM) near-infrared (NIR) imaging and Mueller-matrix point-wise diffuse reflectance (DR) spectroscopy technique for improving colonic cancer detection and diagnosis. Point-wise MM DR spectra can be acquired from any suspicious tissue areas indicated by MM imaging. A total of 30 paired colonic tissue specimens (normal vs. cancer) were measured using the integrated MM imaging and point-wise MM DR spectroscopy system. Polar decomposition algorithms are employed on the acquired images and spectra to derive three polarization metrics including depolarization, diattentuation and retardance for colonic tissue characterization. The decomposition results show that tissue depolarization and retardance are significantly decreased (p<0.001, paired 2-sided Student’s t-test, n = 30); while the tissue diattentuation is significantly increased (p<0.001, paired 2-sided Student’s t-test, n = 30) associated with colonic cancer. Further partial least squares discriminant analysis (PLS-DA) and leave-one tissue site-out, cross validation (LOSCV) show that the combination of the three polarization metrics provide the best diagnostic accuracy of 95.0% (sensitivity: 93.3%, and specificity: 96.7%) compared to either of the three polarization metrics (sensitivities of 93.3%, 83.3%, and 80.0%; and specificities of 90.0%, 96.7%, and 80.0%, respectively, for the depolarization, diattentuation and retardance metrics) for colonic cancer detection. This work suggests that the integrated MM NIR imaging and point-wise MM NIR diffuse reflectance spectroscopy has the potential to improve the early detection and diagnosis of malignant lesions in the colon. PMID:27446640

  17. Evaluating Instructor Technology Integration in Community and Technical Colleges: A Performance Evaluation Matrix

    ERIC Educational Resources Information Center

    Del Favero, Marietta; Hinson, Janice M.

    2007-01-01

    The press for implementing technology based instructional delivery systems in community and technical colleges is well documented. Yet faculty face numerous challenges in integrating technology into instruction (AL-Bataineh & Brooks, 2003; Groves & Zemel, 2000; Khoury, 1997). Stimulating faculty ownership in technology, diffusion of technology use…

  18. Evaluating cell matrix mechanics using an integrated nonlinear optical tweezer-confocal imaging system

    NASA Astrophysics Data System (ADS)

    Peng, Berney; Alonzo, Carlo A. C.; Xia, Lawrence; Speroni, Lucia; Georgakoudi, Irene; Soto, Ana M.; Sonnenschein, Carlos; Cronin-Golomb, Mark

    2013-09-01

    Biomechanics plays a central role in breast epithelial morphogenesis. In this study we have used 3D cultures in which normal breast epithelial cells are able to organize into rounded acini and tubular ducts, the main structures found in the breast tissue. We have identified fiber organization as a main determinant of ductal organization. While bulk rheological properties of the matrix seem to play a negligible role in determining the proportion of acini versus ducts, local changes may be pivotal in shape determination. As such, the ability to make microscale rheology measurements coupled with simultaneous optical imaging in 3D cultures can be critical to assess the biomechanical factors underlying epithelial morphogenesis. This paper describes the inclusion of optical tweezers based microrheology in a microscope that had been designed for nonlinear optical imaging of collagen networks in ECM. We propose two microrheology methods and show preliminary results using a gelatin hydrogel and collagen/Matrigel 3D cultures containing mammary gland epithelial cells.

  19. Robust Joining and Integration of Advanced Ceramics and Composites: Challenges, Opportunities, and Realities

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay

    2006-01-01

    Advanced ceramics and fiber reinforced composites are under active consideration for use in a wide variety of high temperature applications within the aeronautics, space transportation, energy, and nuclear industries. The engineering designs of ceramic and composite components require fabrication and manufacturing of large and complex shaped parts of various thicknesses. In many instances, it is more economical to build up complex shapes by joining simple geometrical shapes. In addition, these components have to be joined or assembled with metallic sub-components. Thus, joining and attachment have been recognized as enabling technologies for successful utilization of ceramic components in various demanding applications. In this presentation, various challenges and opportunities in design, fabrication, and testing of high temperature joints in advanced ceramics and ceramic matrix composites will be presented. Silicon carbide based advanced ceramics and fiber reinforced composites in different shapes and sizes, have been joined using an affordable, robust ceramic joining technology. In addition, some examples of metal-ceramic brazing will also be presented. Microstructure and high temperature mechanical properties of joints in silicon carbide ceramics and composites will be reported. Various joint design philosophies and design issues in joining of ceramics and composites will be discussed.

  20. Integrated Computational Materials Engineering (ICME) for Third Generation Advanced High-Strength Steel Development

    SciTech Connect

    Savic, Vesna; Hector, Louis G.; Ezzat, Hesham; Sachdev, Anil K.; Quinn, James; Krupitzer, Ronald; Sun, Xin

    2015-06-01

    This paper presents an overview of a four-year project focused on development of an integrated computational materials engineering (ICME) toolset for third generation advanced high-strength steels (3GAHSS). Following a brief look at ICME as an emerging discipline within the Materials Genome Initiative, technical tasks in the ICME project will be discussed. Specific aims of the individual tasks are multi-scale, microstructure-based material model development using state-of-the-art computational and experimental techniques, forming, toolset assembly, design optimization, integration and technical cost modeling. The integrated approach is initially illustrated using a 980 grade transformation induced plasticity (TRIP) steel, subject to a two-step quenching and partitioning (Q&P) heat treatment, as an example.

  1. Advancing Coupled Human-Earth System Models: The Integrated Ecosystem Demography Model (iED) Project

    NASA Astrophysics Data System (ADS)

    Hurtt, G. C.; Chini, L. P.; Clarke, L.; Calvin, K. V.; Chambers, J. Q.; Dubayah, R.; Dolan, K.; Edmonds, J. A.; Fisk, J. P.; Flanagan, S.; Frolking, S.; Janetos, A. C.; LePage, Y.; Morton, D. C.; Patel, P.; Rourke, O.; Sahajpal, R.; Thomson, A. M.; Wise, M.; Ying, Q.

    2012-12-01

    Recent studies with integrated assessment models, models linking human and natural systems at a global scale, highlight the importance of terrestrial systems in climate stabilization efforts. Here we introduce a new modeling framework iED, designed to link advanced remote sensing data (active and passive.), height-structured terrestrial ecosystem dynamics (ED), gridded land-use change projections (GLM), and integrated assessment modeling (GCAM) into a single coupled modeling framework with unprecedented spatial resolution and process-level detail. Our research aims to reduce uncertainties associated with forest modeling within integrated assessments, and to quantify the impacts of climate change on forest growth, mortality, and productivity for integrated assessments of terrestrial carbon management. iED is being used to address key science questions including: (1) What are the opportunities for land-use strategies such as afforestation or woody bioenergy crop production to contribute to stabilization of atmospheric CO2 concentrations? (2) How could potentially altered disturbance rates from tropical cyclones and Amazonian fires affect vegetation, carbon stocks and fluxes, and the development of climate change mitigation strategies? (3) What are the linked remote sensing/ecosystem modeling requirements for improving integrated assessments of climate mitigation strategies? With its strong connections to data and conceptual linkages to other models in development, iED is also designed to inform the next generation of remote sensing and integrated Earth system modeling efforts.

  2. The National Lung Matrix Trial: translating the biology of stratification in advanced non-small-cell lung cancer

    PubMed Central

    Middleton, G.; Crack, L. R.; Popat, S.; Swanton, C.; Hollingsworth, S. J.; Buller, R.; Walker, I.; Carr, T. H.; Wherton, D.; Billingham, L. J.

    2015-01-01

    Background The management of NSCLC has been transformed by stratified medicine. The National Lung Matrix Trial (NLMT) is a UK-wide study exploring the activity of rationally selected biomarker/targeted therapy combinations. Patients and methods The Cancer Research UK (CRUK) Stratified Medicine Programme 2 is undertaking the large volume national molecular pre-screening which integrates with the NLMT. At study initiation, there are eight drugs being used to target 18 molecular cohorts. The aim is to determine whether there is sufficient signal of activity in any drug–biomarker combination to warrant further investigation. A Bayesian adaptive design that gives a more realistic approach to decision making and flexibility to make conclusions without fixing the sample size was chosen. The screening platform is an adaptable 28-gene Nextera next-generation sequencing platform designed by Illumina, covering the range of molecular abnormalities being targeted. The adaptive design allows new biomarker–drug combination cohorts to be incorporated by substantial amendment. The pre-clinical justification for each biomarker–drug combination has been rigorously assessed creating molecular exclusion rules and a trumping strategy in patients harbouring concomitant actionable genetic abnormalities. Discrete routes of pathway activation or inactivation determined by cancer genome aberrations are treated as separate cohorts. Key translational analyses include the deep genomic analysis of pre- and post-treatment biopsies, the establishment of patient-derived xenograft models and longitudinal ctDNA collection, in order to define predictive biomarkers, mechanisms of resistance and early markers of response and relapse. Conclusion The SMP2 platform will provide large scale genetic screening to inform entry into the NLMT, a trial explicitly aimed at discovering novel actionable cohorts in NSCLC. Clinical Trial ISRCTN 38344105. PMID:26410619

  3. Limitation to Advanced Life Support in patients admitted to intensive care unit with integrated palliative care

    PubMed Central

    Mazutti, Sandra Regina Gonzaga; Nascimento, Andréia de Fátima; Fumis, Renata Rego Lins

    2016-01-01

    Objective To estimate the incidence of limitations to Advanced Life Support in critically ill patients admitted to an intensive care unit with integrated palliative care. Methods This retrospective cohort study included patients in the palliative care program of the intensive care unit of Hospital Paulistano over 18 years of age from May 1, 2011, to January 31, 2014. The limitations to Advanced Life Support that were analyzed included do-not-resuscitate orders, mechanical ventilation, dialysis and vasoactive drugs. Central tendency measures were calculated for quantitative variables. The chi-squared test was used to compare the characteristics of patients with or without limits to Advanced Life Support, and the Wilcoxon test was used to compare length of stay after Advanced Life Support. Confidence intervals reflecting p ≤ 0.05 were considered for statistical significance. Results A total of 3,487 patients were admitted to the intensive care unit, of whom 342 were included in the palliative care program. It was observed that after entering the palliative care program, it took a median of 2 (1 - 4) days for death to occur in the intensive care unit and 4 (2 - 11) days for hospital death to occur. Many of the limitations to Advanced Life Support (42.7%) took place on the first day of hospitalization. Cardiopulmonary resuscitation (96.8%) and ventilatory support (73.6%) were the most adopted limitations. Conclusion The contribution of palliative care integrated into the intensive care unit was important for the practice of orthothanasia, i.e., the non-extension of the life of a critically ill patient by artificial means. PMID:27626949

  4. Discovering perturbation of modular structure in HIV progression by integrating multiple data sources through non-negative matrix factorization.

    PubMed

    Ray, Sumanta; Maulik, Ujjwal

    2016-12-20

    Detecting perturbation in modular structure during HIV-1 disease progression is an important step to understand stage specific infection pattern of HIV-1 virus in human cell. In this article, we proposed a novel methodology on integration of multiple biological information to identify such disruption in human gene module during different stages of HIV-1 infection. We integrate three different biological information: gene expression information, protein-protein interaction information and gene ontology information in single gene meta-module, through non negative matrix factorization (NMF). As the identified metamodules inherit those information so, detecting perturbation of these, reflects the changes in expression pattern, in PPI structure and in functional similarity of genes during the infection progression. To integrate modules of different data sources into strong meta-modules, NMF based clustering is utilized here. Perturbation in meta-modular structure is identified by investigating the topological and intramodular properties and putting rank to those meta-modules using a rank aggregation algorithm. We have also analyzed the preservation structure of significant GO terms in which the human proteins of the meta-modules participate. Moreover, we have performed an analysis to show the change of coregulation pattern of identified transcription factors (TFs) over the HIV progression stages.

  5. ADVANCED INTEGRATION OF MULTI-SCALE MECHANICS AND WELDING PROCESS SIMULATION IN WELD INTEGRITY ASSESSMENT

    SciTech Connect

    Wilkowski, Gery M.; Rudland, David L.; Shim, Do-Jun; Brust, Frederick W.; Babu, Sundarsanam

    2008-06-30

    -driving force by a factor of 2 depending on strain-hardening, pressure level as a % of SMYS, and flaw size. • From years of experience in circumferential fracture analyses and experimentation, there has not been sufficient integration of work performed for other industries into analogous problems facing the oil and gas pipeline markets. Some very basic concepts and problems solved previously in these fields could have circumvented inconsistencies seen in the stress-based and strain-based analysis efforts. For example, in nuclear utility piping work, more detailed elastic-plastic fracture analyses were always validated in their ability to predict loads and displacements (stresses and strains). The eventual implementation of these methodologies will result in acceleration of the industry adoption of higher-strength line-pipe steels.

  6. Integration Science and Technology of Advanced Ceramics for Energy and Environmental Applications

    NASA Technical Reports Server (NTRS)

    Singh, M.

    2012-01-01

    The discovery of new and innovative materials has been known to culminate in major turning points in human history. The transformative impact and functional manifestation of new materials have been demonstrated in every historical era by their integration into new products, systems, assemblies, and devices. In modern times, the integration of new materials into usable products has a special relevance for the technological development and economic competitiveness of industrial societies. Advanced ceramic technologies dramatically impact the energy and environmental landscape due to potential wide scale applications in all aspects of energy production, storage, distribution, conservation, and efficiency. Examples include gas turbine propulsion systems, fuel cells, thermoelectrics, photovoltaics, distribution and transmission systems based on superconductors, nuclear power generation, and waste disposal. Robust ceramic integration technologies enable hierarchical design and manufacturing of intricate ceramic components starting with geometrically simpler units that are subsequently joined to themselves and/or to metals to create components with progressively higher levels of complexity and functionality. However, for the development of robust and reliable integrated systems with optimum performance under different operating conditions, the detailed understanding of various thermochemical and thermomechanical factors is critical. Different approaches are required for the integration of ceramic-metal and ceramic-ceramic systems across length scales (macro to nano). In this presentation, a few examples of integration of ceramic to metals and ceramic to ceramic systems will be presented. Various challenges and opportunities in design, fabrication, and testing of integrated similar (ceramic-ceramic) and dissimilar (ceramic-metal) material systems will be discussed. Potential opportunities and need for the development of innovative design philosophies, approaches, and

  7. Matrix metalloproteinase 13 modulates intestinal epithelial barrier integrity in inflammatory diseases by activating TNF

    PubMed Central

    Vandenbroucke, Roosmarijn E; Dejonckheere, Eline; Van Hauwermeiren, Filip; Lodens, Sofie; De Rycke, Riet; Van Wonterghem, Elien; Staes, An; Gevaert, Kris; López-Otin, Carlos; Libert, Claude

    2013-01-01

    Several pathological processes, such as sepsis and inflammatory bowel disease (IBD), are associated with impairment of intestinal epithelial barrier. Here, we investigated the role of matrix metalloproteinase MMP13 in these diseases. We observed that MMP13−/− mice display a strong protection in LPS- and caecal ligation and puncture-induced sepsis. We could attribute this protection to reduced LPS-induced goblet cell depletion, endoplasmic reticulum stress, permeability and tight junction destabilization in the gut of MMP13−/− mice compared to MMP13+/+ mice. Both in vitro and in vivo, we found that MMP13 is able to cleave pro-TNF into bioactive TNF. By LC-MS/MS, we identified three MMP13 cleavage sites, which proves that MMP13 is an alternative TNF sheddase next to the TNF converting enzyme TACE. Similarly, we found that the same mechanism was responsible for the observed protection of the MMP13−/− mice in a mouse model of DSS-induced colitis. We identified MMP13 as an important mediator in sepsis and IBD via the shedding of TNF. Hence, we propose MMP13 as a novel drug target for diseases in which damage to the gut is essential. PMID:23723167

  8. Integrating Temperature-Dependent Life Table Data into a Matrix Projection Model for Drosophila suzukii Population Estimation

    PubMed Central

    Wiman, Nik G.; Walton, Vaughn M.; Dalton, Daniel T.; Anfora, Gianfranco; Burrack, Hannah J.; Chiu, Joanna C.; Daane, Kent M.; Grassi, Alberto; Miller, Betsey; Tochen, Samantha; Wang, Xingeng; Ioriatti, Claudio

    2014-01-01

    Temperature-dependent fecundity and survival data was integrated into a matrix population model to describe relative Drosophila suzukii Matsumura (Diptera: Drosophilidae) population increase and age structure based on environmental conditions. This novel modification of the classic Leslie matrix population model is presented as a way to examine how insect populations interact with the environment, and has application as a predictor of population density. For D. suzukii, we examined model implications for pest pressure on crops. As case studies, we examined model predictions in three small fruit production regions in the United States (US) and one in Italy. These production regions have distinctly different climates. In general, patterns of adult D. suzukii trap activity broadly mimicked seasonal population levels predicted by the model using only temperature data. Age structure of estimated populations suggest that trap and fruit infestation data are of limited value and are insufficient for model validation. Thus, we suggest alternative experiments for validation. The model is advantageous in that it provides stage-specific population estimation, which can potentially guide management strategies and provide unique opportunities to simulate stage-specific management effects such as insecticide applications or the effect of biological control on a specific life-stage. The two factors that drive initiation of the model are suitable temperatures (biofix) and availability of a suitable host medium (fruit). Although there are many factors affecting population dynamics of D. suzukii in the field, temperature-dependent survival and reproduction are believed to be the main drivers for D. suzukii populations. PMID:25192013

  9. Performance Tuning of Fock Matrix and Two-Electron Integral Calculations for NWChem on Leading HPC Platforms

    SciTech Connect

    Shan, Hongzhan; Austin, Brian M.; De Jong, Wibe A.; Oliker, Leonid; Wright, Nicholas J.; Apra, Edoardo

    2014-10-01

    Attaining performance in the evaluation of two-electron repulsion integrals and constructing the Fock matrix is of considerable importance to the computational chemistry community. Due to its numerical complexity improving the performance behavior across a variety of leading supercomputing platforms is an increasing challenge due to the significant diversity in high-performance computing architectures. In this paper, we present our successful tuning methodology for these important numerical methods on the Cray XE6, the Cray XC30, the IBM BG/Q, as well as the Intel Xeon Phi. Our optimization schemes leverage key architectural features including vectorization and simultaneous multithreading, and results in speedups of up to 2.5x compared with the original implementation.

  10. OOMM--Object-Oriented Matrix Modelling: an instrument for the integration of the Brasilia Regional Health Information System.

    PubMed

    Cammarota, M; Huppes, V; Gaia, S; Degoulet, P

    1998-01-01

    The development of Health Information Systems is widely determined by the establishment of the underlying information models. An Object-Oriented Matrix Model (OOMM) is described which target is to facilitate the integration of the overall health system. The model is based on information modules named micro-databases that are structured in a three-dimensional network: planning, health structures and information systems. The modelling tool has been developed as a layer on top of a relational database system. A visual browser facilitates the development and maintenance of the information model. The modelling approach has been applied to the Brasilia University Hospital since 1991. The extension of the modelling approach to the Brasilia regional health system is considered.

  11. Chemical stability of astaxanthin integrated into a food matrix: Effects of food processing and methods for preservation.

    PubMed

    Martínez-Delgado, Alejandra Anahí; Khandual, Sanghamitra; Villanueva-Rodríguez, Socorro Josefina

    2017-06-15

    Astaxanthin is a carotenoid pigment found in numerous organisms ranging from bacteria to algae, yeasts, plants, crustaceans and fish such as salmon. Technological importance of this pigment emerged from various studies demonstrating that it is a powerful antioxidant, even with higher activity than alpha-tocopherol and other carotenoids. It has been included in various pharmaceutical products because of several beneficial properties. By its nature, astaxanthin is susceptible to degradation and can undergo chemical changes during food processing. Therefore, different studies have focused on improving the stability of the carotenoid under conditions such as high temperatures, pressures and mechanical force, among others. In this review, common processes involved in food processing and their effect on the stability of astaxanthin, integrated into a food matrix are discussed. Moreover, preservation techniques such as microencapsulation, inclusion in emulsions, suspensions, liposomes, etc., that are being employed to maintain stability of the product are also reviewed.

  12. Response to waste electrical and electronic equipments in China: legislation, recycling system, and advanced integrated process.

    PubMed

    Zhou, Lei; Xu, Zhenming

    2012-05-01

    Over the past 30 years, China has been suffering from negative environmental impacts from distempered waste electrical and electronic equipments (WEEE) recycling activities. For the purpose of environmental protection and resource reusing, China made a great effort to improve WEEE recycling. This article reviews progresses of three major fields in the development of China's WEEE recycling industry: legal system, formal recycling system, and advanced integrated process. Related laws concerning electronic waste (e-waste) management and renewable resource recycling are analyzed from aspects of improvements and loopholes. The outcomes and challenges for existing formal recycling systems are also discussed. The advantage and deficiency related to advanced integrated recycling processes for typical e-wastes are evaluated respectively. Finally, in order to achieve high disposal rates of WEEE, high-quantify separation of different materials in WEEE and high added value final products produced by separated materials from WEEE, an idea of integrated WEEE recycling system is proposed to point future development of WEEE recycling industry.

  13. The impact of IAIMS on the work of information experts. Integrated Advanced Information Management Systems.

    PubMed Central

    Ash, J

    1995-01-01

    Integrated Advanced Information Management Systems (IAIMS) programs differ but have certain characteristics in common. Technological and organizational integration are universal goals. As integration takes place, what happens to those implementing the vision? A survey of 125 staff members, or information experts, involved in information or informatics at an IAIMS-funded institution was conducted during the last year of the implementation phase. The purpose was to measure the impact of IAIMS on the jobs of those in the library and related service units, and the computing, telecommunications, and health informatics divisions. The researchers used newly developed scales measuring levels of integration (knowledge of and involvement with other departments), customer orientation (focus on the user), and informatedness (changes in the nature of work beyond automation of former routines). Ninety-four percent of respondents indicated that their jobs had changed a great deal; the changes were similar regardless of division. To further investigate the impact of IAIMS on librarians in particular, a separate skills survey was conducted. The IAIMS librarians indicated that technology and training skills are especially needed in the new, integrated environment. PMID:8547905

  14. Performance improvements of single-engine business airplanes by the integration of advanced technologies

    NASA Technical Reports Server (NTRS)

    Kohlman, D. L.

    1982-01-01

    An assessment is presented of the performance gains and economic impact of the integration in general aviation aircraft of advanced technologies, relating to such aspects of design as propulsion, natural laminar flow, lift augmentation, unconventional configurations, and advanced aluminum and composite structures. All considerations are with reference to a baseline mission of 1300 nm range and 300-knot cruise speed with a 1300-lb payload, and a baseline aircraft with a 40 lb/sq ft wing loading and an aspect ratio of 8. Extensive analytical results are presented from the NASA-sponsored General Aviation Synthesis Program. Attention is given to the relative performance gains to be expected from the single-engined baseline aircraft's use of a low cost general aviation turbine engine, a spark-ignited reciprocating engine, a diesel engine, and a Wankel rotary engine.

  15. Integrated Water Gas Shift Membrane Reactors Utilizing Novel, Non Precious Metal Mixed Matrix Membrane

    SciTech Connect

    Ferraris, John

    2013-09-30

    Nanoparticles of zeolitic imidazolate frameworks and other related hybrid materials were prepared by modifying published synthesis procedures by introducing bases, changing stoichiometric ratios, or adjusting reaction conditions. These materials were stable at temperatures >300 °C and were compatible with the polymer matrices used to prepare mixed- matrix membranes (MMMs). MMMs tested at 300 °C exhibited a >30 fold increase in permeability, compared to those measured at 35 °C, while maintaining H{sub 2}/CO{sub 2} selectivity. Measurements at high pressure (up to 30 atm) and high temperature (up to 300 °C) resulted in an increase in gas flux across the membrane with retention of selectivity. No variations in permeability were observed at high pressures at either 35 or 300 °C. CO{sub 2}-induced plasticization was not observed for Matrimid®, VTEC, and PBI polymers or their MMMs at 30 atm and 300 °C. Membrane surface modification by cross-linking with ethanol diamine resulted in an increase in H{sub 2}/CO{sub 2} selectivity at 35 °C. Spectrometric analysis showed that the cross-linking was effective to temperatures <150 °C. At higher temperatures, the cross-linked membranes exhibit a H{sub 2}/CO{sub 2} selectivity similar to the uncross-linked polymer. Performance of the polybenzimidazole (PBI) hollow fibers prepared at Santa Fe Science and Technology (SFST, Inc.) showed increased flux o to a flat PBI membrane. A water-gas shift reactor has been built and currently being optimized for testing under DOE conditions.

  16. Spoked-ring microcavities: enabling seamless integration of nanophotonics in unmodified advanced CMOS microelectronics chips

    NASA Astrophysics Data System (ADS)

    Wade, Mark T.; Shainline, Jeffrey M.; Orcutt, Jason S.; Ram, Rajeev J.; Stojanovic, Vladimir; Popovic, Milos A.

    2014-03-01

    We present the spoked-ring microcavity, a nanophotonic building block enabling energy-efficient, active photonics in unmodified, advanced CMOS microelectronics processes. The cavity is realized in the IBM 45nm SOI CMOS process - the same process used to make many commercially available microprocessors including the IBM Power7 and Sony Playstation 3 processors. In advanced SOI CMOS processes, no partial etch steps and no vertical junctions are available, which limits the types of optical cavities that can be used for active nanophotonics. To enable efficient active devices with no process modifications, we designed a novel spoked-ring microcavity which is fully compatible with the constraints of the process. As a modulator, the device leverages the sub-100nm lithography resolution of the process to create radially extending p-n junctions, providing high optical fill factor depletion-mode modulation and thereby eliminating the need for a vertical junction. The device is made entirely in the transistor active layer, low-loss crystalline silicon, which eliminates the need for a partial etch commonly used to create ridge cavities. In this work, we present the full optical and electrical design of the cavity including rigorous mode solver and FDTD simulations to design the Qlimiting electrical contacts and the coupling/excitation. We address the layout of active photonics within the mask set of a standard advanced CMOS process and show that high-performance photonic devices can be seamlessly monolithically integrated alongside electronics on the same chip. The present designs enable monolithically integrated optoelectronic transceivers on a single advanced CMOS chip, without requiring any process changes, enabling the penetration of photonics into the microprocessor.

  17. Integrated mechanics for the passive damping of polymer-matrix composites and composite structures

    NASA Technical Reports Server (NTRS)

    Saravanos, D. A.; Chamis, Christos C.

    1991-01-01

    Some recent developments on integrated damping mechanics for unidirectional composites, laminates, and composite structures are reviewed. Simplified damping micromechanics relate the damping of on-axis and off-axis composites to constituent properties, fiber volume ratio, fiber orientation, temperature, and moisture. Laminate and structural damping mechanics for thin composites are summarized. Discrete layer damping mechanics for thick laminates, including the effects of interlaminar shear damping, are developed and semianalytical predictions of modal damping in thick simply supported specialty composite plates are presented. Applications show the advantages of the unified mechanics, and illustrate the effect of fiber volume ratio, fiber orientation, structural geometry, and temperature on the damping. Additional damping properties for composite plates of various laminations, aspect ratios, fiber content, and temperature illustrate the merits and ranges of applicability of each theory (thin or thick laminates).

  18. Advances in the modeling of single electron transistors for the design of integrated circuit.

    PubMed

    Chi, Yaqing; Sui, Bingcai; Yi, Xun; Fang, Liang; Zhou, Hailiang

    2010-09-01

    Single electron transistor (SET) has become a promising candidate for the key device of logic circuit in the near future. The advances of recent 5 years in the modeling of SETs are reviewed for the simulation of SET/hybrid CMOS-SET integrated circuit. Three dominating SET models, Monte Carlo model, master equation model and macro model, are analyzed, tested and compared on their principles, characteristics, applicability and development trend. The Monte Carlo model is suitable for SET structure research and simulation of small scale SET circuit, while the analytical model based on combination with master equation and macro model is suitable to simulate the SET circuit at balanceable efficiency and accuracy.

  19. F-18 SRA closeup of nose cap showing Advanced L-Probe Air Data Integration experiment

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This L-shaped probe mounted on the forward fuselage of a modified F-18 Systems Research Aircraft was the focus of an air data collection experiment flown at NASA's Dryden Flight Research Center, Edwards, California. The Advanced L-Probe Air Data Integration (ALADIN) experiment focused on providing pilots with angle-of-attack and angle-of-sideslip information as well as traditional airspeed and altitude data from a single system. For the experiment, the probes--one mounted on either side of the F-18's forward fuselage--were hooked to a series of four transducers, which relayed pressure measurements to an on-board research computer.

  20. AFTI/SITAN (Advanced Fighter Technology Integration/Sandia Inertial Terrain-Aided Navigation) final report

    SciTech Connect

    Fellerhoff, J.R.

    1988-11-01

    Sandia Inertial Terrain-Aided Navigation (SITAN) provides continuous position fixes to an inertial navigation system (INS) by real-time comparison of radar altimeter ground clearance measurements with stored digital terrain elevation data (DTED). This is accomplished by using an extended Kalman filter algorithm to estimate the errors in the reference trajectory provided by an INS. In this report, Sandia National Laboratories documents the results of a reimbursable effort funded by the Air Force Wright Aeronautical Laboratories (AFWAL) Avionics Laboratory to flight test SITAN as implemented onboard the Advanced Fighter Technology Integration (AFTI)F-16. 5 refs., 101 figs., 1 tab.

  1. Toward Integrated Operator Interface for Advanced Teleoperation under Time-Delay

    NASA Technical Reports Server (NTRS)

    Bejczy, Antal K.; Fiorini, Paolo; Kim, Won Soo; Schenker, Paul

    1994-01-01

    This paper briefly describes an Advanced Teleoperator (ATOP) system and its control station where a variety of computer-based operator interface devices and techniques are integrated into a functional setting, accommodating a primary operator and secondary operators. Computer graphics is a key operator interface component in the control station where new types of manual interface devices also are employed. The results of some generic and applications task experiments are summarized, including the performance of a simulated remote satellite servicing task, carried out under four to eight seconds communications time delay, using satellite TV and Internet computer communication links. In conclusion, the paper highlights the lessons learned so far,.

  2. Integrating knowledge across domains to advance the science of health behavior: overcoming challenges and facilitating success.

    PubMed

    Klein, William M P; Grenen, Emily G; O'Connell, Mary; Blanch-Hartigan, Danielle; Chou, Wen-Ying Sylvia; Hall, Kara L; Taber, Jennifer M; Vogel, Amanda L

    2017-03-01

    Health behaviors often co-occur and have common determinants at multiple levels (e.g., individual, relational, environmental). Nevertheless, research programs often examine single health behaviors without a systematic attempt to integrate knowledge across behaviors. This paper highlights the significant potential of cross-cutting behavioral research to advance our understanding of the mechanisms and causal factors that shape health behaviors. It also offers suggestions for how researchers could develop more effective interventions. We highlight barriers to such an integrative science along with potential steps that can be taken to address these barriers. With a more nuanced understanding of health behavior, redundancies in research can be minimized, and a stronger evidence base for the development of health behavior interventions can be realized.

  3. Study on the Integrated Geophysic Methods and Application of Advanced Geological Detection for Complicated Tunnel

    NASA Astrophysics Data System (ADS)

    Zhou, L.; Xiao, G.

    2014-12-01

    The engineering geological and hydrological conditions of current tunnels are more and more complicated, as the tunnels are elongated with deeper depth. In constructing these complicated tunnels, geological hazards prone to occur as induced by unfavorable geological bodies, such as fault zones, karst or hydrous structures, etc. The working emphasis and difficulty of the advanced geological exploration for complicated tunnels are mainly focused on the structure and water content of these unfavorable geological bodies. The technical aspects of my paper systematically studied the advanced geological exploration theory and application aspects for complicated tunnels, with discussion on the key technical points and useful conclusions. For the all-aroundness and accuracy of advanced geological exploration results, the objective of my paper is targeted on the comprehensive examination on the structure and hydrous characteristic of the unfavorable geological bodies in complicated tunnels. By the multi-component seismic modeling on a more real model containing the air medium, the wave field response characteristics of unfavorable geological bodies can be analyzed, thus providing theoretical foundation for the observation system layout, signal processing and interpretation of seismic methods. Based on the tomographic imaging theory of seismic and electromagnetic method, 2D integrated seismic and electromagnetic tomographic imaging and visualization software was designed and applied in the advanced drilling hole in the tunnel face, after validation of the forward and inverse modeling results on theoretical models. The transmission wave imaging technology introduced in my paper can be served as a new criterion for detection of unfavorable geological bodies. After careful study on the basic theory, data processing and interpretation, practical applications of TSP and ground penetrating radar (GPR) method, as well as serious examination on their application examples, my paper

  4. Microstructural Characterization of a Mg Matrix U-Mo Dispersion Fuel Plate Irradiated in the Advanced Test Reactor to High Fission Density: SEM Results

    NASA Astrophysics Data System (ADS)

    Keiser, Dennis D.; Jue, Jan-Fong; Miller, Brandon D.; Gan, Jian; Robinson, Adam B.; Medvedev, Pavel G.; Madden, James W.; Moore, Glenn A.

    2016-06-01

    Low-enriched (U-235 <20 pct) U-Mo dispersion fuel is being developed for use in research and test reactors. In most cases, fuel plates with Al or Al-Si alloy matrices have been tested in the Advanced Test Reactor to support this development. In addition, fuel plates with Mg as the matrix have also been tested. The benefit of using Mg as the matrix is that it potentially will not chemically interact with the U-Mo fuel particles during fabrication or irradiation, whereas with Al and Al-Si alloys such interactions will occur. Fuel plate R9R010 is a Mg matrix fuel plate that was aggressively irradiated in ATR. This fuel plate was irradiated as part of the RERTR-8 experiment at high temperature, high fission rate, and high power, up to high fission density. This paper describes the results of the scanning electron microscopy (SEM) analysis of an irradiated fuel plate using polished samples and those produced with a focused ion beam. A follow-up paper will discuss the results of transmission electron microscopy (TEM) analysis. Using SEM, it was observed that even at very aggressive irradiation conditions, negligible chemical interaction occurred between the irradiated U-7Mo fuel particles and Mg matrix; no interconnection of fission gas bubbles from fuel particle to fuel particle was observed; the interconnected fission gas bubbles that were observed in the irradiated U-7Mo particles resulted in some transport of solid fission products to the U-7Mo/Mg interface; the presence of microstructural pathways in some U-9.1 Mo particles that could allow for transport of fission gases did not result in the apparent presence of large porosity at the U-7Mo/Mg interface; and, the Mg-Al interaction layers that were present at the Mg matrix/Al 6061 cladding interface exhibited good radiation stability, i.e. no large pores.

  5. Advanced satellite workstation: An integrated workstation environment for operational support of satellite system planning and analysis

    NASA Technical Reports Server (NTRS)

    Sutton, Stewart A.

    1992-01-01

    A prototype integrated environment, the Advanced Satellite Workstation (ASW), is described that has been developed and delivered for evaluation and operator feedback in an operational satellite control center. The current ASW hardware consists of a Sun Workstation and Macintosh II Workstation connected via an ethernet Network Hardware and Software, Laser Disk System, Optical Storage System, and Telemetry Data File Interface. The central mission of ASW is to provide an intelligent decision support and training environment for operator/analysts of complex systems such as satellites. There have been many workstation implementations recently which incorporate graphical telemetry displays and expert systems. ASW is a considerably broader look at intelligent, integrated environments for decision support, based upon the premise that the central features of such an environment are intelligent data access and integrated toolsets. A variety of tools have been constructed in support of this prototype environment including: an automated pass planner for scheduling vehicle support activities, architectural modeler for hierarchical simulation and analysis of satellite vehicle subsystems, multimedia-based information systems that provide an intuitive and easily accessible interface to Orbit Operations Handbook and other relevant support documentation, and a data analysis architecture that integrates user modifiable telemetry display systems, expert systems for background data analysis, and interfaces to the multimedia system via inter-process communication.

  6. Recent Advances in Registration, Integration and Fusion of Remotely Sensed Data: Redundant Representations and Frames

    NASA Technical Reports Server (NTRS)

    Czaja, Wojciech; Le Moigne-Stewart, Jacqueline

    2014-01-01

    In recent years, sophisticated mathematical techniques have been successfully applied to the field of remote sensing to produce significant advances in applications such as registration, integration and fusion of remotely sensed data. Registration, integration and fusion of multiple source imagery are the most important issues when dealing with Earth Science remote sensing data where information from multiple sensors, exhibiting various resolutions, must be integrated. Issues ranging from different sensor geometries, different spectral responses, differing illumination conditions, different seasons, and various amounts of noise need to be dealt with when designing an image registration, integration or fusion method. This tutorial will first define the problems and challenges associated with these applications and then will review some mathematical techniques that have been successfully utilized to solve them. In particular, we will cover topics on geometric multiscale representations, redundant representations and fusion frames, graph operators, diffusion wavelets, as well as spatial-spectral and operator-based data fusion. All the algorithms will be illustrated using remotely sensed data, with an emphasis on current and operational instruments.

  7. Advancing Exposure Science through Chemical Data Curation and Integration in the Comparative Toxicogenomics Database

    PubMed Central

    Grondin, Cynthia J.; Davis, Allan Peter; Wiegers, Thomas C.; King, Benjamin L.; Wiegers, Jolene A.; Reif, David M.; Hoppin, Jane A.; Mattingly, Carolyn J.

    2016-01-01

    Background: Exposure science studies the interactions and outcomes between environmental stressors and human or ecological receptors. To augment its role in understanding human health and the exposome, we aimed to centralize and integrate exposure science data into the broader biological framework of the Comparative Toxicogenomics Database (CTD), a public resource that promotes understanding of environmental chemicals and their effects on human health. Objectives: We integrated exposure data within the CTD to provide a centralized, freely available resource that facilitates identification of connections between real-world exposures, chemicals, genes/proteins, diseases, biological processes, and molecular pathways. Methods: We developed a manual curation paradigm that captures exposure data from the scientific literature using controlled vocabularies and free text within the context of four primary exposure concepts: stressor, receptor, exposure event, and exposure outcome. Using data from the Agricultural Health Study, we have illustrated the benefits of both centralization and integration of exposure information with CTD core data. Results: We have described our curation process, demonstrated how exposure data can be accessed and analyzed in the CTD, and shown how this integration provides a broad biological context for exposure data to promote mechanistic understanding of environmental influences on human health. Conclusions: Curation and integration of exposure data within the CTD provides researchers with new opportunities to correlate exposures with human health outcomes, to identify underlying potential molecular mechanisms, and to improve understanding about the exposome. Citation: Grondin CJ, Davis AP, Wiegers TC, King BL, Wiegers JA, Reif DM, Hoppin JA, Mattingly CJ. 2016. Advancing exposure science through chemical data curation and integration in the Comparative Toxicogenomics Database. Environ Health Perspect 124:1592–1599; http://dx.doi.org/10

  8. Integrated Analysis of Long Noncoding RNA and mRNA Expression Profile in Advanced Laryngeal Squamous Cell Carcinoma

    PubMed Central

    Lian, Meng; Ma, Hongzhi; He, Ning; Liu, Honggang; Wang, Haizhou; Fang, Jugao

    2016-01-01

    Long non-coding RNA (lncRNA) plays an important role in tumorigenesis. However, the expression pattern and function of lncRNAs in laryngeal squamous cell carcinoma (LSCC) are still unclear. To investigate the aberrantly expressed lncRNAs and mRNAs in advanced LSCC, we screened lncRNA and mRNA expression profiles in 9 pairs of primary Stage IVA LSCC tissues and adjacent non-neoplastic tissues by lncRNA and mRNA integrated microarrays. Gene Ontology and pathway analysis were performed to find out the significant function and pathway of the differentially expressed mRNAs, gene-gene functional interaction network and ceRNA network were constructed to select core mRNAs, and lncRNA-mRNA expression correlation network was built to identify the interactions between lncRNA and mRNA. qRT-PCR was performed to further validate the expressions of selected lncRNAs and mRNAs in advanced LSCC. We found 1459 differentially expressed lncRNAs and 2381 differentially expressed mRNAs, including 846 up-regulated lncRNAs and 613 down-regulated lncRNAs, 1542 up-regulated mRNAs and 839 down-regulated mRNAs. The mRNAs ITGB1, HIF1A, and DDIT4 were selected as core mRNAs, which are mainly involved in biological processes, such as matrix organization, cell cycle, adhesion, and metabolic pathway. LncRNA-mRNA expression correlation network showed LncRNA NR_027340, MIR31HG were positively correlated with ITGB1, HIF1A respectively. LncRNA SOX2-OT was negatively correlated with DDIT4. qRT-PCR further validated the expression of these lncRNAs and mRNAs. The work provides convincing evidence that the identified lncRNAs and mRNAs are potential biomarkers in advanced LSCC for further future studies. PMID:28033431

  9. Integration of magnetic bearings in the design of advanced gas turbine engines

    SciTech Connect

    Storace, A.F.; Sood, D.; Lyons, J.P.; Preston, M.A.

    1995-10-01

    Active magnetic bearings provide revolutionary advantages for gas turbine engine rotor support. These advantages include tremendously improved vibration and stability characteristics, reduced power loss, improved reliability, fault tolerance, and greatly extended bearing service life. The marriage of these advantages with innovative structural network design and advanced materials utilization will permit major increases in thrust-to-weight performance and structural efficiency for future gas turbine engines. However, obtaining the maximum payoff requires two key ingredients. The first is the use of modern magnetic bearing technologies such as innovative digital control techniques, high-density power electronics, high-density magnetic actuators, fault-tolerant system architecture, and electronic (sensorless) position estimation. This paper describes these technologies and the test hardware currently in place for verifying the performance of advanced magnetic actuators, power electronics, and digital controls. The second key ingredient is to go beyond the simple replacement of rolling element bearings with magnetic bearings by incorporating magnetic bearings as an integral part of the overall engine design. This is analogous to the proper approach to designing with composites, whereby the designer tailors the geometry and load-carrying function of the structural system or component for the composite instead of simply substituting composites in a design originally intended for metal material. This paper describes methodologies for the design integration of magnetic bearings in gas turbine engines.

  10. Advancing Environmental Flow Science: Developing Frameworks for Altered Landscapes and Integrating Efforts Across Disciplines.

    PubMed

    Brewer, Shannon K; McManamay, Ryan A; Miller, Andrew D; Mollenhauer, Robert; Worthington, Thomas A; Arsuffi, Tom

    2016-08-01

    Environmental flows represent a legal mechanism to balance existing and future water uses and sustain non-use values. Here, we identify current challenges, provide examples where they are important, and suggest research advances that would benefit environmental flow science. Specifically, environmental flow science would benefit by (1) developing approaches to address streamflow needs in highly modified landscapes where historic flows do not provide reasonable comparisons, (2) integrating water quality needs where interactions are apparent with quantity but not necessarily the proximate factor of the ecological degradation, especially as frequency and magnitudes of inflows to bays and estuaries, (3) providing a better understanding of the ecological needs of native species to offset the often unintended consequences of benefiting non-native species or their impact on flows, (4) improving our understanding of the non-use economic value to balance consumptive economic values, and (5) increasing our understanding of the stakeholder socioeconomic spatial distribution of attitudes and perceptions across the landscape. Environmental flow science is still an emerging interdisciplinary field and by integrating socioeconomic disciplines and developing new frameworks to accommodate our altered landscapes, we should help advance environmental flow science and likely increase successful implementation of flow standards.

  11. Advancing Environmental Flow Science: Developing Frameworks for Altered Landscapes and Integrating Efforts Across Disciplines

    NASA Astrophysics Data System (ADS)

    Brewer, Shannon K.; McManamay, Ryan A.; Miller, Andrew D.; Mollenhauer, Robert; Worthington, Thomas A.; Arsuffi, Tom

    2016-08-01

    Environmental flows represent a legal mechanism to balance existing and future water uses and sustain non-use values. Here, we identify current challenges, provide examples where they are important, and suggest research advances that would benefit environmental flow science. Specifically, environmental flow science would benefit by (1) developing approaches to address streamflow needs in highly modified landscapes where historic flows do not provide reasonable comparisons, (2) integrating water quality needs where interactions are apparent with quantity but not necessarily the proximate factor of the ecological degradation, especially as frequency and magnitudes of inflows to bays and estuaries, (3) providing a better understanding of the ecological needs of native species to offset the often unintended consequences of benefiting non-native species or their impact on flows, (4) improving our understanding of the non-use economic value to balance consumptive economic values, and (5) increasing our understanding of the stakeholder socioeconomic spatial distribution of attitudes and perceptions across the landscape. Environmental flow science is still an emerging interdisciplinary field and by integrating socioeconomic disciplines and developing new frameworks to accommodate our altered landscapes, we should help advance environmental flow science and likely increase successful implementation of flow standards.

  12. Advancing environmental flow science: Developing frameworks for altered landscapes and integrating efforts across disciplines.

    USGS Publications Warehouse

    Brewer, Shannon K.; McManamay, Ryan A.; Miller, Andrew D.; Mollenhauer, Robert; Worthington, Thomas A.; Arsuffi, Tom

    2016-01-01

    Environmental flows represent a legal mechanism to balance existing and future water uses and sustain non-use values. Here, we identify current challenges, provide examples where they are important, and suggest research advances that would benefit environmental flow science. Specifically, environmental flow science would benefit by (1) developing approaches to address streamflow needs in highly modified landscapes where historic flows do not provide reasonable comparisons, (2) integrating water quality needs where interactions are apparent with quantity but not necessarily the proximate factor of the ecological degradation, especially as frequency and magnitudes of inflows to bays and estuaries, (3) providing a better understanding of the ecological needs of native species to offset the often unintended consequences of benefiting non-native species or their impact on flows, (4) improving our understanding of the non-use economic value to balance consumptive economic values, and (5) increasing our understanding of the stakeholder socioeconomic spatial distribution of attitudes and perceptions across the landscape. Environmental flow science is still an emerging interdisciplinary field and by integrating socioeconomic disciplines and developing new frameworks to accommodate our altered landscapes, we should help advance environmental flow science and likely increase successful implementation of flow standards.

  13. Advancing Environmental Flow Science: Developing Frameworks for Altered Landscapes and Integrating Efforts Across Disciplines

    DOE PAGES

    Brewer, Shannon; McManamay, Ryan A.; Miller, Andrew D.; ...

    2016-05-13

    Environmental flows represent a legal mechanism to balance existing and future water uses and sustain non-use values. Here, we identify current challenges, provide examples where they are important, and suggest research advances that would benefit environmental flow science. Specifically, environmental flow science would benefit by (1) developing approaches to address streamflow needs in highly modified landscapes where historic flows do not provide reasonable comparisons, (2) integrating water quality needs where interactions are apparent with quantity but not necessarily the proximate factor of the ecological degradation, especially as frequency and magnitudes of inflows to bays and estuaries, (3) providing a bettermore » understanding of the ecological needs of native species to offset the often unintended consequences of benefiting non-native species or their impact on flows, (4) improving our understanding of the non-use economic value to balance consumptive economic values, and (5) increasing our understanding of the stakeholder socioeconomic spatial distribution of attitudes and perceptions across the landscape. Environmental flow science is still an emerging interdisciplinary field and by integrating socioeconomic disciplines and developing new frameworks to accommodate our altered landscapes, we should help advance environmental flow science and likely increase successful implementation of flow standards.« less

  14. Advancing Environmental Flow Science: Developing Frameworks for Altered Landscapes and Integrating Efforts Across Disciplines

    SciTech Connect

    Brewer, Shannon; McManamay, Ryan A.; Miller, Andrew D.; Mollenhauer, Robert; Worthington, Thomas A.; Arsuffi, Tom

    2016-05-13

    Environmental flows represent a legal mechanism to balance existing and future water uses and sustain non-use values. Here, we identify current challenges, provide examples where they are important, and suggest research advances that would benefit environmental flow science. Specifically, environmental flow science would benefit by (1) developing approaches to address streamflow needs in highly modified landscapes where historic flows do not provide reasonable comparisons, (2) integrating water quality needs where interactions are apparent with quantity but not necessarily the proximate factor of the ecological degradation, especially as frequency and magnitudes of inflows to bays and estuaries, (3) providing a better understanding of the ecological needs of native species to offset the often unintended consequences of benefiting non-native species or their impact on flows, (4) improving our understanding of the non-use economic value to balance consumptive economic values, and (5) increasing our understanding of the stakeholder socioeconomic spatial distribution of attitudes and perceptions across the landscape. Environmental flow science is still an emerging interdisciplinary field and by integrating socioeconomic disciplines and developing new frameworks to accommodate our altered landscapes, we should help advance environmental flow science and likely increase successful implementation of flow standards.

  15. Integration of Novel Materials and Advanced 'Omics' Technologies into New Vaccine Design.

    PubMed

    Liao, Wenzhen; Zhang, Tian-Tian; Gao, Liqian; Lee, Su Seong; Xu, Jie; Zhang, Han; Yang, Zhaogang; Liu, Zhaoyu; Li, Wen

    2017-02-24

    Designing new vaccines is one of the most challenging tasks for public health to prevent both infectious and chronic diseases. Even though many research scientists have spent great efforts in improving the specificity, sensitivity and safety of current available vaccines, there are still much space on how to effectively combine different biomaterials and technologies to design universal or personalized vaccines. Traditionally, vaccines were made based on empirical approaches designed to mimic immunity induced by natural infection. Either live attenuated or killed whole microorganisms were used as vaccines. With the development of biomaterial science, DNA/RNA, recombinant vector, adjuvant and nanoparticles greatly expand the category of vaccines. More importantly, with the tremendous advances of new technologies including genomics, proteomics and immunomics, the paradigm of vaccine design has shifted from microbiological to sequence-based approaches. This ever-growing large amount of genomic data and new genomic approaches such as comparative genomics, reverse vaccinology and pan-genomics, will play critical roles in novel vaccine design and enable development of more effective vaccines to cure and control both chronic and infectious diseases. In this review, we summarize current various vaccine materials, advanced technologies and combinational strategies to integrate biomaterials and advanced technologies for vaccine design, which we hope will provide some very useful guidelines and perspectives for the vaccine design.

  16. Advanced Hybrid Spacesuit Concept Featuring Integrated Open Loop and Closed Loop Ventilation Systems

    NASA Technical Reports Server (NTRS)

    Daniel, Brian A.; Fitzpatrick, Garret R.; Gohmert, Dustin M.; Ybarra, Rick M.; Dub, Mark O.

    2013-01-01

    A document discusses the design and prototype of an advanced spacesuit concept that integrates the capability to function seamlessly with multiple ventilation system approaches. Traditionally, spacesuits are designed to operate both dependently and independently of a host vehicle environment control and life support system (ECLSS). Spacesuits that operate independent of vehicle-provided ECLSS services must do so with equipment selfcontained within or on the spacesuit. Suits that are dependent on vehicle-provided consumables must remain physically connected to and integrated with the vehicle to operate properly. This innovation is the design and prototype of a hybrid spacesuit approach that configures the spacesuit to seamlessly interface and integrate with either type of vehicular systems, while still maintaining the ability to function completely independent of the vehicle. An existing Advanced Crew Escape Suit (ACES) was utilized as the platform from which to develop the innovation. The ACES was retrofitted with selected components and one-off items to achieve the objective. The ventilation system concept was developed and prototyped/retrofitted to an existing ACES. Components were selected to provide suit connectors, hoses/umbilicals, internal breathing system ducting/ conduits, etc. The concept utilizes a lowpressure- drop, high-flow ventilation system that serves as a conduit from the vehicle supply into the suit, up through a neck seal, into the breathing helmet cavity, back down through the neck seal, out of the suit, and returned to the vehicle. The concept also utilizes a modified demand-based breathing system configured to function seamlessly with the low-pressure-drop closed-loop ventilation system.

  17. Sync Matrix

    SciTech Connect

    Metz, William C.; Metz, W. Chris; Mitrani, Jacques E.; Hewett, Jr., Paul L.; Jones, Christopher A.

    2004-12-31

    Sync Matrix provides a graphic display of the relationships among all of the response activities of each jurisdiction. This is accomplished through software that organizes and displays the activities by jurisdiction, function, and time for easy review and analysis. The software can also integrate the displays of multiple jurisdictions to allow examination of the total response.

  18. The MELISSA pilot plant facility as as integration test-bed for advanced life support systems

    NASA Technical Reports Server (NTRS)

    Godia, F.; Albiol, J.; Perez, J.; Creus, N.; Cabello, F.; Montras, A.; Masot, A.; Lasseur, Ch

    2004-01-01

    The different advances in the Micro Ecological Life Support System Alternative project (MELISSA), fostered and coordinated by the European Space Agency, as well as in other associated technologies, are integrated and demonstrated in the MELISSA Pilot Plant laboratory. During the first period of operation, the definition of the different compartments at an individual basis has been achieved, and the complete facility is being re-designed to face a new period of integration of all these compartments. The final objective is to demonstrate the potentiality of biological systems such as MELISSA as life support systems. The facility will also serve as a test bed to study the robustness and stability of the continuous operation of a complex biological system. This includes testing of the associated instrumentation and control for a safe operation, characterization of the chemical and microbial safety of the system, as well as tracking the genetic stability of the microbial strains used. The new period is envisaged as a contribution to the further development of more complete biological life support systems for long-term manned missions, that should be better defined from the knowledge to be gained from this integration phase. This contribution summarizes the current status of the Pilot Plant and the planned steps for the new period. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  19. The MELISSA pilot plant facility as an integration test-bed for advanced life support systems

    NASA Astrophysics Data System (ADS)

    Gòdia, F.; Albiol, J.; Pérez, J.; Creus, N.; Cabello, F.; Montràs, A.; Masot, A.; Lasseur, Ch.

    2004-01-01

    The different advances in the Micro Ecological Life Support System Alternative project (MELISSA), fostered and coordinated by the European Space Agency, as well as in other associated technologies, are integrated and demonstrated in the MELISSA Pilot Plant laboratory. During the first period of operation, the definition of the different compartments at an individual basis has been achieved, and the complete facility is being re-designed to face a new period of integration of all these compartments. The final objective is to demonstrate the potentiality of biological systems such as MELISSA as life support systems. The facility will also serve as a test bed to study the robustness and stability of the continuous operation of a complex biological system. This includes testing of the associated instrumentation and control for a safe operation, characterization of the chemical and microbial safety of the system, as well as tracking the genetic stability of the microbial strains used. The new period is envisaged as a contribution to the further development of more complete biological life support systems for long-term manned missions, that should be better defined from the knowledge to be gained from this integration phase. This contribution summarizes the current status of the Pilot Plant and the planned steps for the new period.

  20. The Melissa Pilot Plant Facility as an Integration Test-bed for Advanced Life Support Systems

    NASA Astrophysics Data System (ADS)

    Godia, F.; Albiol, J.; Perez, J.; Creus, N.; Cabello, F.; Montras, A.; Masot, A.; Lasseur, C.

    The MELISSA Pilot Plant laboratory provides the site where the different advances around the Micro Ecological Life Support System Alternative project coordinated and fostered by the European Space Agency, as well as other associated technologies, are integrated and demonstrated. During its first period of operation, the definition of the different compartments at an individual basis has been achieved, and the complete facility is being re- designed to face a new period of integration of all these compartments. The final objective is to demonstrate the potentiality of MELISSA as life support system, and to use this facility as a test bed to study the robustness and stability of the continuous operation of a complex biological systems. This includes the testing the associated instrumentation and control for a safe operation, characterization of the chemical and microbial safety of the loop, as well as tracking the genetic stability of the microbial strains used. This new period is envisaged as a contribution to the further development of more complete biological life support systems for long term manned missions, that should be better defined from the knowledge to be gained from this integration phase. The presentation will summarize the present status of the Pilot Plant and the planned steps for the new period.

  1. Geospace Science from Ground-based Magnetometer Arrays: Advances in Sensors, Data Collection, and Data Integration

    NASA Astrophysics Data System (ADS)

    Mann, Ian; Chi, Peter

    2016-07-01

    , acceleration, and loss of electrons in the radiation belts promise high profile science returns. Integrated, global scale data products also have potential importance and application for real-time monitoring of the space weather threats to electrical power grids from geomagnetically induced currents. Such data exploitation increasingly relies on the collaborations between multiple national magnetometer arrays to generate single data products with common file format and data properties. We review advances in geospace science which can be delivered by networks of ground-based magnetometers - in terms of advances in sensors, data collection, and data integration - including through collaborations within the Ultra-Large Terrestrial International Magnetometer Array (ULTIMA) consortium.

  2. Erythropoietin attenuates intracerebral hemorrhage by diminishing matrix metalloproteinases and maintaining blood-brain barrier integrity in mice.

    PubMed

    Li, Y; Ogle, M E; Wallace, G C; Lu, Z Y; Yu, S P; Wei, L

    2008-01-01

    The protective mechanism of recombinant human erythropoietin (rhEPO) on blood-brain barrier (BBB) after brain injury is associated with the attenuation of neuro-inflammation. We hypothesize that rhEPO treatment after intracerebral hemorrhage (ICH) modulates matrix metalloproteinase (MMP) activity, maintains BBB integrity, and reduces BBB breakdown-associated inflammation. Adult male 129S2/sv mice were subjected to autologous whole blood-induced ICH. rhEPO or saline was administered intraperitoneally immediately after surgery and for 3 more days until day of sacrifice. BBB permeability was measured by Evans blue leakage, and edema was assessed by brain water content. Immunofluorescence and Western blotting were performed to detect expression of tight junction marker occludin, type IV collagen, MMPs, tissue inhibitor of metalloproteinase (TIMP), and glial fibrillary acidic protein, rhEPO prevented Evans blue leakage, reduced brain edema, and preserved expression of occludin and collagen IV. rhEPO treatment decreased MMP-2 expression, increased TIMP-2 expression, and reduced the number of reactive astrocytes in the brain compared to saline control. We conclude that rhEPO reduces MMP activity, BBB disruption, and the glial cell inflammatory reaction 3 days after ICH. Our study provides additional evidence for the mechanism of rhEPO's neurovascular protective effects and a potential clinical application in the treatment of ICH.

  3. Local hyperspectral data multisharpening based on linear/linear-quadratic nonnegative matrix factorization by integrating lidar data

    NASA Astrophysics Data System (ADS)

    Benhalouche, Fatima Zohra; Karoui, Moussa Sofiane; Deville, Yannick; Ouamri, Abdelaziz

    2015-10-01

    In this paper, a new Spectral-Unmixing-based approach, using Nonnegative Matrix Factorization (NMF), is proposed to locally multi-sharpen hyperspectral data by integrating a Digital Surface Model (DSM) obtained from LIDAR data. In this new approach, the nature of the local mixing model is detected by using the local variance of the object elevations. The hyper/multispectral images are explored using small zones. In each zone, the variance of the object elevations is calculated from the DSM data in this zone. This variance is compared to a threshold value and the adequate linear/linearquadratic spectral unmixing technique is used in the considered zone to independently unmix hyperspectral and multispectral data, using an adequate linear/linear-quadratic NMF-based approach. The obtained spectral and spatial information thus respectively extracted from the hyper/multispectral images are then recombined in the considered zone, according to the selected mixing model. Experiments based on synthetic hyper/multispectral data are carried out to evaluate the performance of the proposed multi-sharpening approach and literature linear/linear-quadratic approaches used on the whole hyper/multispectral data. In these experiments, real DSM data are used to generate synthetic data containing linear and linear-quadratic mixed pixel zones. The DSM data are also used for locally detecting the nature of the mixing model in the proposed approach. Globally, the proposed approach yields good spatial and spectral fidelities for the multi-sharpened data and significantly outperforms the used literature methods.

  4. A fast direct matrix solver for surface integral equation methods for electromagnetic wave scattering from non-penetrable targets

    NASA Astrophysics Data System (ADS)

    Wei, Jian-Gong; Peng, Zhen; Lee, Jin-Fa

    2012-10-01

    The implementation details of a fast direct solver is described herein for solving dense matrix equations from the application of surface integral equation methods for electromagnetic field scatterings from non-penetrable targets. The proposed algorithm exploits the smoothness of the far field and computes a low rank decomposition of the off-diagonal coupling blocks of the matrices through a set of skeletonization processes. Moreover, an artificial surface (the Huygens' surface) is introduced for each clustering group to efficiently account for the couplings between well-separated groups. Furthermore, a recursive multilevel version of the algorithm is presented. Although asymptotically the algorithm would not alter the bleak outlook of the complexity of the worst case scenario,O(N3) for required CPU time where N denotes the number of unknowns, for electrically large electromagnetic (EM) problems; through numerical examples, we found that the proposed multilevel direct solver can scale as good as O(N1.3) in memory consumption and O(N1.8) in CPU time for moderate-sized EM problems. Note that our conclusions are drawn based on a few sample examples that we have conducted and should not be taken as a true complexity analysis for general electrodynamic applications. However, for the fixed frequency (h-refinement) scenario, where the discretization size decreases, the computational complexities observed agree well with the theoretical predictions. Namely, the algorithm exhibits O(N) and O(N1.5) complexities for memory consumption and CPU time, respectively.

  5. Host matrix metalloproteinases in cerebral malaria: new kids on the block against blood–brain barrier integrity?

    PubMed Central

    2014-01-01

    Cerebral malaria (CM) is a life-threatening complication of falciparum malaria, associated with high mortality rates, as well as neurological impairment in surviving patients. Despite disease severity, the etiology of CM remains elusive. Interestingly, although the Plasmodium parasite is sequestered in cerebral microvessels, it does not enter the brain parenchyma: so how does Plasmodium induce neuronal dysfunction? Several independent research groups have suggested a mechanism in which increased blood–brain barrier (BBB) permeability might allow toxic molecules from the parasite or the host to enter the brain. However, the reported severity of BBB damage in CM is variable depending on the model system, ranging from mild impairment to full BBB breakdown. Moreover, the factors responsible for increased BBB permeability are still unknown. Here we review the prevailing theories on CM pathophysiology and discuss new evidence from animal and human CM models implicating BBB damage. Finally, we will review the newly-described role of matrix metalloproteinases (MMPs) and BBB integrity. MMPs comprise a family of proteolytic enzymes involved in modulating inflammatory response, disrupting tight junctions, and degrading sub-endothelial basal lamina. As such, MMPs represent potential innovative drug targets for CM. PMID:24467887

  6. Integrated culture platform based on a human platelet lysate supplement for the isolation and scalable manufacturing of umbilical cord matrix-derived mesenchymal stem/stromal cells.

    PubMed

    de Soure, António M; Fernandes-Platzgummer, Ana; Moreira, Francisco; Lilaia, Carla; Liu, Shi-Hwei; Ku, Chen-Peng; Huang, Yi-Feng; Milligan, William; Cabral, Joaquim M S; da Silva, Cláudia L

    2016-07-22

    Umbilical cord matrix (UCM)-derived mesenchymal stem/stromal cells (MSCs) are promising therapeutic candidates for regenerative medicine settings. UCM MSCs have advantages over adult cells as these can be obtained through a non-invasive harvesting procedure and display a higher proliferative capacity. However, the high cell doses required in the clinical setting make large-scale manufacturing of UCM MSCs mandatory. A commercially available human platelet lysate-based culture supplement (UltraGRO(TM) , AventaCell BioMedical) (5%(v/v)) was tested to effectively isolate UCM MSCs and to expand these cells under (1) static conditions, using planar culture systems and (2) stirred culture using plastic microcarriers in a spinner flask. The MSC-like cells were isolated from UCM explant cultures after 11 ± 2 days. After five passages in static culture, UCM MSCs retained their immunophenotype and multilineage differentiation potential. The UCM MSCs cultured under static conditions using UltraGRO(TM) -supplemented medium expanded more rapidly compared with UCM MSCs expanded using a previously established protocol. Importantly, UCM MSCs were successfully expanded under dynamic conditions on plastic microcarriers using UltraGRO(TM) -supplemented medium in spinner flasks. Upon an initial 54% cell adhesion to the beads, UCM MSCs expanded by >13-fold after 5-6 days, maintaining their immunophenotype and multilineage differentiation ability. The present paper reports the establishment of an easily scalable integrated culture platform based on a human platelet lysate supplement for the effective isolation and expansion of UCM MSCs in a xenogeneic-free microcarrier-based system. This platform represents an important advance in obtaining safer and clinically meaningful MSC numbers for clinical translation. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Integration of Advance Information about a Forthcoming Task Switch – Evidence from Eye Blink Rates

    PubMed Central

    Kleinsorge, Thomas; Scheil, Juliane

    2017-01-01

    We investigated task switching among four tasks by means of a modified cuing procedure with two types of cues. One type of cue consisted of a standard task cue indicating the next task. In half of the trials, this task cue was preceded by another type of cue that reduced the set of candidate tasks from four to two tasks. In addition, we measured participants’ spontaneous eye blink rates (EBRs) at the beginning, in the middle, and at the end of the experiment. Whereas interindividual differences in mean EBR had no pronounced effect on task switching performance, changes in EBRs during the first half of the experiment significantly modulated the interaction of the effects of the two types of cues. We suggest that changes in EBRs in the early phase of the experiment reflect adaptations of dopaminergic projections serving to integrate advance information about a forthcoming task switch. PMID:28293210

  8. Advancements of the Lightweight Integrated Solar Array and Transceiver (LISA-T) Small Spacecraft System

    NASA Technical Reports Server (NTRS)

    Russell, Tiffany; Martinez, Armando; Boyd, Darren; SanSoucie, Michael; Farmer, Brandon; Schneider, Todd; Fabisinski, Leo; Johnson, Les; Carr, John A.

    2015-01-01

    This paper describes recent advancements of the Lightweight Integrated Solar Array and Transceiver (LISA-T) currently being developed at NASA's Marshall Space Flight Center. The LISA-T array comprises a launch stowed, orbit deployed structure on which thin-film photovoltaic (PV) and antenna devices are embedded. The system provides significant electrical power generation at low weights, high stowage efficiency, and without the need for solar tracking. Leveraging high-volume terrestrial-market PVs also gives the potential for lower array costs. LISA-T is addressing the power starvation epidemic currently seen by many small-scale satellites while also enabling the application of deployable antenna arrays. Herein, an overview of the system and its applications are presented alongside sub-system development progress and environmental testing plans/initial results.

  9. Advancements of the Lightweight Integrated Solar Array and Transceiver (LISA-T) Small Spacecraft System

    NASA Technical Reports Server (NTRS)

    Lockett, Tiffany Russell; Martinez, Armando; Boyd, Darren; SanSouice, Michael; Farmer, Brandon; Schneider, Todd; Laue, Greg; Fabisinski, Leo; Johnson, Les; Carr, John A.

    2015-01-01

    This paper describes recent advancements of the Lightweight Integrated Solar Array and Transceiver (LISA-T) currently being developed at NASA's Marshall Space Flight Center. The LISA-T array comprises a launch stowed, orbit deployed structure on which thin-film photovoltaic (PV) and antenna devices are embedded. The system provides significant electrical power generation at low weights, high stowage efficiency, and without the need for solar tracking. Leveraging high-volume terrestrial-market PVs also gives the potential for lower array costs. LISA-T is addressing the power starvation epidemic currently seen by many small-scale satellites while also enabling the application of deployable antenna arrays. Herein, an overview of the system and its applications are presented alongside sub-system development progress and environmental testing plans.

  10. An application of oscillation damped motion for suspended payloads to the advanced integrated maintenance system

    SciTech Connect

    Noakes, M.W. ); Petterson, B.J.; Werner, J.C. )

    1990-01-01

    Transportation of objects using overhead cranes can induce pendulum motion of the object, which usually must be damped or allowed to decay before the next process can take place. Recent work at Sandia National Laboratories (SNL) has shown that oscillation damped transport and swing-free stops are possible by properly programming the acceleration of the transporting crane. This paper reviews the theory associated with oscillation-damped trajectories for simply suspended objects and describes a specific, full-scale implementation of the damped oscillation methods for the Oak Ridge National Laboratory (ORNL) Advanced Integrated Maintenance System (AIMS). Hardware and software requirements and constraints for proper operation are discussed. Finally, test results and lessons learned are presented. 5 refs., 4 figs.

  11. Effects of the Integrated Online Advance Organizer Teaching Materials on Students' Science Achievement and Attitude

    NASA Astrophysics Data System (ADS)

    Korur, Fikret; Toker, Sacip; Eryılmaz, Ali

    2016-08-01

    This two-group quasi-experimental study investigated the effects of the Online Advance Organizer Concept Teaching Material (ONACOM) integrated with inquiry teaching and expository teaching methods. Grade 7 students' posttest performances on the light unit achievement and light unit attitude tests controlled for gender, previous semester science grade, and pretest scores were analyzed. No significant treatment effects were found between the inquiry and expository approaches. However, both groups demonstrated significant pretest-posttest gains in achievement and attitude. Independent from the method used, ONACOM was judged effective in both groups as students demonstrated increased achievement and attitude scores. ONACOM has a social and semantic network-aided infrastructure that can be adapted to both methods to increase students' achievement and improve their attitude.

  12. INTEGRATING TECHNOLOGICAL ADVANCEMENTS IN BEHAVIORAL INTERVENTIONS TO PROMOTE HEALTH: UNPRECEDENTED OPORTUNITIES FOR BEHAVIOR ANALYSTS.

    PubMed

    Kurti, Allison N; Dallery, Jesse

    2014-09-01

    The use of mobile devices is growing worldwide in both industrialized and developing nations. Alongside the worldwide penetration of web-enabled devices, the leading causes of morbidity and mortality are increasingly modifiable lifestyle factors (e.g., improving one's diet and exercising more). Behavior analysts have the opportunity to promote health by combining effective behavioral methods with technological advancements. The objectives of this paper are (1) to highlight the public health gains that may be achieved by integrating technology with a behavior analytic approach to developing interventions, and (2) to review some of the currently, under-examined issues related to merging technology and behavior analysis (enhancing sustainability, obtaining frequent measures of behavior, conducting component analyses, evaluating cost-effectiveness, incorporating behavior analysis in the creation of consumer-based applications, and reducing health disparities). Thorough consideration of these issues may inspire the development, implementation, and dissemination of innovative, efficacious interventions that substantially improve global public health.

  13. Fostering the scholarship of discovery and integration for advanced practice education.

    PubMed

    Fisher, Elaine M; Riley, Tracy A

    2005-01-01

    Graduate faculty are challenged to foster the scholarship of discovery and integration in their students. Fostering this scholarship requires that faculty critically analyze their approach to teaching and learning with the ultimate goal of helping students grow exponentially in ways that will continue after completion of their course or class. This article describes a course activity designed to enhance students' abilities to read, critique, and apply literature from multiple scientific disciplines to a clinical realm while maintaining their focus on their health-related scientific discipline. Applied to a course in advanced pathophysiology, the course activity described is amenable for adoption to multiple graduate-level courses and encourages individual, collective, and practice-specific growth.

  14. A Review of Recent Advancement in Integrating Omics Data with Literature Mining towards Biomedical Discoveries

    PubMed Central

    Raja, Kalpana; Patrick, Matthew; Gao, Yilin; Madu, Desmond; Yang, Yuyang

    2017-01-01

    In the past decade, the volume of “omics” data generated by the different high-throughput technologies has expanded exponentially. The managing, storing, and analyzing of this big data have been a great challenge for the researchers, especially when moving towards the goal of generating testable data-driven hypotheses, which has been the promise of the high-throughput experimental techniques. Different bioinformatics approaches have been developed to streamline the downstream analyzes by providing independent information to interpret and provide biological inference. Text mining (also known as literature mining) is one of the commonly used approaches for automated generation of biological knowledge from the huge number of published articles. In this review paper, we discuss the recent advancement in approaches that integrate results from omics data and information generated from text mining approaches to uncover novel biomedical information. PMID:28331849

  15. Integration of Americium Heat Source into the Advanced Stirling Radioisotope Generator

    NASA Astrophysics Data System (ADS)

    Schulze, Erich; Quinn, Richard

    2014-08-01

    The Lockheed Martin developed Advanced Stirling Radioisotope Generator (ASRG) design uses similar technology as proposed for the European Space Agency (ESA) Radioisotope Power System (RPS) development program but different isotopes. The RPS uses americium, 241Am isotope, while the ASRG uses plutonium, 238Pu isotope. The 238Pu isotope provides four times greater thermal output per kilogram than the 241Am isotope. Lockheed Martin performed an internally funded feasibility assessment that determined integration of a 241Am fueled heat source into the ASRG is achievable with no changes to ASRG technology and only structural and volumetric design considerations required. Lockheed Martin is interested in developing collaborative partnerships with the United Kingdom (UK) for the ESA RPS development program.

  16. System design and integration of the large-scale advanced prop-fan

    NASA Technical Reports Server (NTRS)

    Huth, B. P.

    1986-01-01

    In recent years, considerable attention has been directed toward improving aircraft fuel consumption. Studies have shown that blades with thin airfoils and aerodynamic sweep extend the inherent efficiency advantage that turboprop propulsion systems have demonstrated to the higher speed to today's aircraft. Hamilton Standard has designed a 9-foot diameter single-rotation Prop-Fan. It will test the hardware on a static test stand, in low speed and high speed wind tunnels and on a research aircraft. The major objective of this testing is to establish the structural integrity of large scale Prop-Fans of advanced construction, in addition to the evaluation of aerodynamic performance and the aeroacoustic design. The coordination efforts performed to ensure smooth operation and assembly of the Prop-Fan are summarized. A summary of the loads used to size the system components, the methodology used to establish material allowables and a review of the key analytical results are given.

  17. INTEGRATING TECHNOLOGICAL ADVANCEMENTS IN BEHAVIORAL INTERVENTIONS TO PROMOTE HEALTH: UNPRECEDENTED OPORTUNITIES FOR BEHAVIOR ANALYSTS

    PubMed Central

    KURTI, ALLISON N.; DALLERY, JESSE

    2015-01-01

    The use of mobile devices is growing worldwide in both industrialized and developing nations. Alongside the worldwide penetration of web-enabled devices, the leading causes of morbidity and mortality are increasingly modifiable lifestyle factors (e.g., improving one’s diet and exercising more). Behavior analysts have the opportunity to promote health by combining effective behavioral methods with technological advancements. The objectives of this paper are (1) to highlight the public health gains that may be achieved by integrating technology with a behavior analytic approach to developing interventions, and (2) to review some of the currently, under-examined issues related to merging technology and behavior analysis (enhancing sustainability, obtaining frequent measures of behavior, conducting component analyses, evaluating cost-effectiveness, incorporating behavior analysis in the creation of consumer-based applications, and reducing health disparities). Thorough consideration of these issues may inspire the development, implementation, and dissemination of innovative, efficacious interventions that substantially improve global public health. PMID:25774070

  18. Operating experience with advanced centrifugal contractors in the integrated equipment test facility

    SciTech Connect

    Singh, S.P.; Welesko, P.

    1988-01-01

    As part of the Consolidated Fuel Reprocessing Program (CFRP) at the Oak Ridge National Laboratory (ORNL), advanced design centrifugal contactors for nuclear fuel reprocessing have been operated for several years in the Integrated Equipment Test (IET) facility using depleted uranium. The mixing of the aqueous and organic phases in these contactors is achieved in the annular zone between the stationary housing and the rotor. Mass transfer tests with these contactors using depleted uranium have shown stage efficiencies in excess of 90%. Clarification of the feed to remove particles down to 2 ..mu..m was found to be necessary to prevent operational problems with the extraction bank. The status of the contactor drive system has been monitored using vibration analysis to increase the reliability of the solvent extraction system. 5 refs., 8 figs.

  19. DEMONSTRATION OF AN ADVANCED INTEGRATED CONTROL SYSTEM FOR SIMULTANEOUS EMISSIONS REDUCTION

    SciTech Connect

    Suzanne Shea; Randhir Sehgal; Ilga Celmins; Andrew Maxson

    2002-02-01

    The primary objective of the project titled ''Demonstration of an Advanced Integrated Control System for Simultaneous Emissions Reduction'' was to demonstrate at proof-of-concept scale the use of an online software package, the ''Plant Environmental and Cost Optimization System'' (PECOS), to optimize the operation of coal-fired power plants by economically controlling all emissions simultaneously. It combines physical models, neural networks, and fuzzy logic control to provide both optimal least-cost boiler setpoints to the boiler operators in the control room, as well as optimal coal blending recommendations designed to reduce fuel costs and fuel-related derates. The goal of the project was to demonstrate that use of PECOS would enable coal-fired power plants to make more economic use of U.S. coals while reducing emissions.

  20. Integration of Advanced Probabilistic Analysis Techniques with Multi-Physics Models

    SciTech Connect

    Cetiner, Mustafa Sacit; none,; Flanagan, George F.; Poore III, Willis P.; Muhlheim, Michael David

    2014-07-30

    An integrated simulation platform that couples probabilistic analysis-based tools with model-based simulation tools can provide valuable insights for reactive and proactive responses to plant operating conditions. The objective of this work is to demonstrate the benefits of a partial implementation of the Small Modular Reactor (SMR) Probabilistic Risk Assessment (PRA) Detailed Framework Specification through the coupling of advanced PRA capabilities and accurate multi-physics plant models. Coupling a probabilistic model with a multi-physics model will aid in design, operations, and safety by providing a more accurate understanding of plant behavior. This represents the first attempt at actually integrating these two types of analyses for a control system used for operations, on a faster than real-time basis. This report documents the development of the basic communication capability to exchange data with the probabilistic model using Reliability Workbench (RWB) and the multi-physics model using Dymola. The communication pathways from injecting a fault (i.e., failing a component) to the probabilistic and multi-physics models were successfully completed. This first version was tested with prototypic models represented in both RWB and Modelica. First, a simple event tree/fault tree (ET/FT) model was created to develop the software code to implement the communication capabilities between the dynamic-link library (dll) and RWB. A program, written in C#, successfully communicates faults to the probabilistic model through the dll. A systems model of the Advanced Liquid-Metal Reactor–Power Reactor Inherently Safe Module (ALMR-PRISM) design developed under another DOE project was upgraded using Dymola to include proper interfaces to allow data exchange with the control application (ConApp). A program, written in C+, successfully communicates faults to the multi-physics model. The results of the example simulation were successfully plotted.

  1. OPTIMA: advanced methods for the analysis, integration, and optimization of PRISMA mission products

    NASA Astrophysics Data System (ADS)

    Guzzi, Donatella; Pippi, Ivan; Aiazzi, Bruno; Baronti, Stefano; Carlà, Roberto; Lastri, Cinzia; Nardino, Vanni; Raimondi, Valentina; Santurri, Leonardo; Selva, Massimo; Alparone, Luciano; Garzelli, Andrea; Lopinto, Ettore; Ananasso, Cristina; Barducci, Alessandro

    2015-10-01

    PRISMA is an Earth observation system that combines a hyperspectral sensor with a panchromatic, medium-resolution camera. OPTIMA is one of the five independent scientific research projects funded by the Italian Space Agency in the framework of PRISMA mission for the development of added-value algorithms and advanced applications. The main goal of OPTIMA is to increase and to strengthen the applications of PRISMA through the implementation of advanced methodologies for the analysis, integration and optimization of level 1 and 2 products. The project is comprehensive of several working packages: data simulation, data quality, data optimization, data processing and integration and, finally, evaluation of some applications related to natural hazards. Several algorithms implemented during the project employ high-speed autonomous procedures for the elaboration of the upcoming images acquired by PRISMA. To assess the performances of the developed algorithms and products, an end-to-end simulator of the instrument has been implemented. Data quality analysis has been completed by introducing noise modeling. Stand-alone procedures of radiometric and atmospheric corrections have been developed, allowing the retrieval of at-ground spectral reflectance maps. Specific studies about image enhancement, restoration and pan-sharpening have been carried out for providing added-value data. Regarding the mission capability of monitoring environmental processes and disasters, different techniques for estimating surface humidity and for analyzing burned areas have been investigated. Finally, calibration and validation activities utilizing the CAL/VAL test site managed by CNR-IFAC and located inside the Regional Park of San Rossore (Pisa), Italy have been considered.

  2. Factors influencing intentions to integrate tobacco education among advanced practice nursing faculty.

    PubMed

    Heath, Janie; Crowell, Nancy A

    2007-01-01

    We report on the findings of a national survey that examined factors that influence faculty's intentions to integrate tobacco education in their advanced practice nursing curricula. The addiction component of tobacco use is taking its toll on the health of 48 million smokers in the United States. Several national health authorities recommend and/or mandate that tobacco prevention and tobacco cessation be addressed at every point of entry in the health care delivery system. However, there is increasing evidence that health care providers may not be adequately prepared to meet national goals and/or standards. One hundred sixty-one advanced practice nursing faculty in the United States completed an 88-item survey regarding external factors (e.g., personal history of tobacco use, clinical practice, and current tobacco topics taught) and components of the Theory of Reasoned Action model (including perceived self-efficacy, behavioral beliefs, subjective norms, and control beliefs related to tobacco education). Descriptive statistics, chi(2) analysis, Pearson correlation, and linear regression were used to analyze the data. The findings revealed that sex (chi(2) = 7.949, P = .024), level of education (chi(2) = 26.853, P = .0005), years of academic teaching (chi(2) = 19.418, P = .013), and combined clinical and course responsibility (chi(2) = 10.430, P = .0236) were significant external (demographic) factors and that behavioral beliefs (attitude about tobacco education) demonstrated the strongest relationship with intention scores (r = 0.876, P < .0005). Overall, 62.7% of nurse practitioners reported high scores (>or=5, on a scale of 1-7) for intentions to integrate tobacco education, as compared with 37.5% of nurse midwives, 30.3% of clinical nurse specialists, and 8.7% of nurse anesthetists. This study adds to the growing body of evidence that nursing curricular gaps with tobacco education exist and that national efforts are needed to ensure that widespread changes occur

  3. An application of oscillation-damped motion for suspended payloads to the advanced integrated maintenance system

    SciTech Connect

    Noakes, M.W. ); Petterson, B.J.; Werner, J.C. )

    1990-06-01

    The transportation of objects using overhead cranes can induce pendular motion of the object, which usually must be damped or allowed to decay before the next process can take place. Recent work at Sandia National Laboratories has shown that oscillation-damped transport and swing-free stops are possible by properly programming the acceleration of the transporting crane. Initial studies have been completed using a CIMCORP XR6100 gantry robot. The Advanced Integrated Maintenance System (AIMS) is an engineering and operations test bed developed for remote maintenance and handling studies within the Consolidated Fuel Reprocessing Program (CFRP) at Oak Ridge National Laboratory. The goal of CFRP has been to advanced the technology of in-cell systems planned for future nuclear fuel cycle facilities. The AIMS provides the capabilities to examine the needs and constraints necessary for hot-cell remote maintenance and includes a force-reflecting master/slave teleoperator and overhead transporter system. The associated control system provides a flexible programming environment conducive to controls experimentation. This paper reviews the theory associated with oscillation-damped trajectories for simply suspended objects and describes a specific implementation of the oscillation damping methods for the AIMS transporter. Hardware and software requirements and constraints for proper operation are discussed.

  4. Clinical Implementation of Integrated Genomic Profiling in Patients with Advanced Cancers.

    PubMed

    Borad, Mitesh J; Egan, Jan B; Condjella, Rachel M; Liang, Winnie S; Fonseca, Rafael; Ritacca, Nicole R; McCullough, Ann E; Barrett, Michael T; Hunt, Katherine S; Champion, Mia D; Patel, Maitray D; Young, Scott W; Silva, Alvin C; Ho, Thai H; Halfdanarson, Thorvardur R; McWilliams, Robert R; Lazaridis, Konstantinos N; Ramanathan, Ramesh K; Baker, Angela; Aldrich, Jessica; Kurdoglu, Ahmet; Izatt, Tyler; Christoforides, Alexis; Cherni, Irene; Nasser, Sara; Reiman, Rebecca; Cuyugan, Lori; McDonald, Jacquelyn; Adkins, Jonathan; Mastrian, Stephen D; Valdez, Riccardo; Jaroszewski, Dawn E; Von Hoff, Daniel D; Craig, David W; Stewart, A Keith; Carpten, John D; Bryce, Alan H

    2016-12-01

    DNA focused panel sequencing has been rapidly adopted to assess therapeutic targets in advanced/refractory cancer. Integrated Genomic Profiling (IGP) utilising DNA/RNA with tumour/normal comparisons in a Clinical Laboratory Improvement Amendments (CLIA) compliant setting enables a single assay to provide: therapeutic target prioritisation, novel target discovery/application and comprehensive germline assessment. A prospective study in 35 advanced/refractory cancer patients was conducted using CLIA-compliant IGP. Feasibility was assessed by estimating time to results (TTR), prioritising/assigning putative therapeutic targets, assessing drug access, ascertaining germline alterations, and assessing patient preferences/perspectives on data use/reporting. Therapeutic targets were identified using biointelligence/pathway analyses and interpreted by a Genomic Tumour Board. Seventy-five percent of cases harboured 1-3 therapeutically targetable mutations/case (median 79 mutations of potential functional significance/case). Median time to CLIA-validated results was 116 days with CLIA-validation of targets achieved in 21/22 patients. IGP directed treatment was instituted in 13 patients utilising on/off label FDA approved drugs (n = 9), clinical trials (n = 3) and single patient IND (n = 1). Preliminary clinical efficacy was noted in five patients (two partial response, three stable disease). Although barriers to broader application exist, including the need for wider availability of therapies, IGP in a CLIA-framework is feasible and valuable in selection/prioritisation of anti-cancer therapeutic targets.

  5. CAPE-OPEN Integration for Advanced Process Engineering Co-Simulation

    SciTech Connect

    Zitney, S.E.

    2006-11-01

    This paper highlights the use of the CAPE-OPEN (CO) standard interfaces in the Advanced Process Engineering Co-Simulator (APECS) developed at the National Energy Technology Laboratory (NETL). The APECS system uses the CO unit operation, thermodynamic, and reaction interfaces to provide its plug-and-play co-simulation capabilities, including the integration of process simulation with computational fluid dynamics (CFD) simulation. APECS also relies heavily on the use of a CO COM/CORBA bridge for running process/CFD co-simulations on multiple operating systems. For process optimization in the face of multiple and some time conflicting objectives, APECS offers stochastic modeling and multi-objective optimization capabilities developed to comply with the CO software standard. At NETL, system analysts are applying APECS to a wide variety of advanced power generation systems, ranging from small fuel cell systems to commercial-scale power plants including the coal-fired, gasification-based FutureGen power and hydrogen production plant.

  6. Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transport project: Current and advanced act control system definition study

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The Current and Advanced Technology ACT control system definition tasks of the Integrated Application of Active Controls (IAAC) Technology project within the Energy Efficient Transport Program are summarized. The systems mechanize six active control functions: (1) pitch augmented stability; (2) angle of attack limiting; (3) lateral/directional augmented stability; (4) gust load alleviation; (5) maneuver load control; and (6) flutter mode control. The redundant digital control systems meet all function requirements with required reliability and declining weight and cost as advanced technology is introduced.

  7. Integration of magnetic bearings in the design of advanced gas turbine engines

    NASA Technical Reports Server (NTRS)

    Storace, Albert F.; Sood, Devendra K.; Lyons, James P.; Preston, Mark A.

    1994-01-01

    Active magnetic bearings provide revolutionary advantages for gas turbine engine rotor support. These advantages include tremendously improved vibration and stability characteristics, reduced power loss, improved reliability, fault-tolerance, and greatly extended bearing service life. The marriage of these advantages with innovative structural network design and advanced materials utilization will permit major increases in thrust to weight performance and structural efficiency for future gas turbine engines. However, obtaining the maximum payoff requires two key ingredients. The first key ingredient is the use of modern magnetic bearing technologies such as innovative digital control techniques, high-density power electronics, high-density magnetic actuators, fault-tolerant system architecture, and electronic (sensorless) position estimation. This paper describes these technologies. The second key ingredient is to go beyond the simple replacement of rolling element bearings with magnetic bearings by incorporating magnetic bearings as an integral part of the overall engine design. This is analogous to the proper approach to designing with composites, whereby the designer tailors the geometry and load carrying function of the structural system or component for the composite instead of simply substituting composites in a design originally intended for metal material. This paper describes methodologies for the design integration of magnetic bearings in gas turbine engines.

  8. Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC).

    SciTech Connect

    Schultz, Peter Andrew

    2011-12-01

    The objective of the U.S. Department of Energy Office of Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC) is to provide an integrated suite of computational modeling and simulation (M&S) capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive-waste storage facility or disposal repository. Achieving the objective of modeling the performance of a disposal scenario requires describing processes involved in waste form degradation and radionuclide release at the subcontinuum scale, beginning with mechanistic descriptions of chemical reactions and chemical kinetics at the atomic scale, and upscaling into effective, validated constitutive models for input to high-fidelity continuum scale codes for coupled multiphysics simulations of release and transport. Verification and validation (V&V) is required throughout the system to establish evidence-based metrics for the level of confidence in M&S codes and capabilities, including at the subcontiunuum scale and the constitutive models they inform or generate. This Report outlines the nature of the V&V challenge at the subcontinuum scale, an approach to incorporate V&V concepts into subcontinuum scale modeling and simulation (M&S), and a plan to incrementally incorporate effective V&V into subcontinuum scale M&S destined for use in the NEAMS Waste IPSC work flow to meet requirements of quantitative confidence in the constitutive models informed by subcontinuum scale phenomena.

  9. A membrane-integrated advanced scheme for treatment of industrial wastewater: dynamic modeling towards scale up.

    PubMed

    Kumar, Ramesh; Pal, Parimal

    2013-08-01

    Modeling and simulation was carried out for an advanced membrane-integrated hybrid treatment process that ensures reuse of water with conversion and recovery of ammoniacal nitrogen as value-added struvite fertilizer from coke wastewater. While toxic cyanide was largely removed in a pre-chemical treatment unit using Fenton's reagents under optimized conditions, more than 95% of NH4(+)-N could be recovered as a valuable by-product called struvite through addition of appropriate doses of magnesium and phosphate salts. Water could be turned reusable through a polishing treatment by nanofiltration membranes in a largely fouling free membrane module following a biodegradation step. Mathematical modeling of such an integrated process was done with Haldane-Andrew approach for the associated microbial degradation of phenol by Pseudomonas putida. Residual NH4(+) was degraded by nitrification and denitrification following the modified Monod kinetics. The model could successfully predict the plant performance as reflected in reasonably low relative error (0.03-0.18) and high Willmott d-index (>0.98).

  10. Global search tool for the Advanced Photon Source Integrated Relational Model of Installed Systems (IRMIS) database.

    SciTech Connect

    Quock, D. E. R.; Cianciarulo, M. B.; APS Engineering Support Division; Purdue Univ.

    2007-01-01

    The Integrated Relational Model of Installed Systems (IRMIS) is a relational database tool that has been implemented at the Advanced Photon Source to maintain an updated account of approximately 600 control system software applications, 400,000 process variables, and 30,000 control system hardware components. To effectively display this large amount of control system information to operators and engineers, IRMIS was initially built with nine Web-based viewers: Applications Organizing Index, IOC, PLC, Component Type, Installed Components, Network, Controls Spares, Process Variables, and Cables. However, since each viewer is designed to provide details from only one major category of the control system, the necessity for a one-stop global search tool for the entire database became apparent. The user requirements for extremely fast database search time and ease of navigation through search results led to the choice of Asynchronous JavaScript and XML (AJAX) technology in the implementation of the IRMIS global search tool. Unique features of the global search tool include a two-tier level of displayed search results, and a database data integrity validation and reporting mechanism.

  11. Integration of magnetic bearings in the design of advanced gas turbine engines

    NASA Astrophysics Data System (ADS)

    Storace, Albert F.; Sood, Devendra K.; Lyons, James P.; Preston, Mark A.

    1994-05-01

    Active magnetic bearings provide revolutionary advantages for gas turbine engine rotor support. These advantages include tremendously improved vibration and stability characteristics, reduced power loss, improved reliability, fault-tolerance, and greatly extended bearing service life. The marriage of these advantages with innovative structural network design and advanced materials utilization will permit major increases in thrust to weight performance and structural efficiency for future gas turbine engines. However, obtaining the maximum payoff requires two key ingredients. The first key ingredient is the use of modern magnetic bearing technologies such as innovative digital control techniques, high-density power electronics, high-density magnetic actuators, fault-tolerant system architecture, and electronic (sensorless) position estimation. This paper describes these technologies. The second key ingredient is to go beyond the simple replacement of rolling element bearings with magnetic bearings by incorporating magnetic bearings as an integral part of the overall engine design. This is analogous to the proper approach to designing with composites, whereby the designer tailors the geometry and load carrying function of the structural system or component for the composite instead of simply substituting composites in a design originally intended for metal material. This paper describes methodologies for the design integration of magnetic bearings in gas turbine engines.

  12. Improved methodology for integral analysis of advanced reactors employing passive safety

    NASA Astrophysics Data System (ADS)

    Muftuoglu, A. Kursad

    After four decades of experience with pressurized water reactors, a new generation of nuclear plants are emerging. These advanced designs employ passive safety which relies on natural forces, such as gravity and natural circulation. The new concept of passive safety also necessitates improvement in computational tools available for best-estimate analyses. The system codes originally designed for high pressure conditions in the presence of strong momentum sources such as pumps are challenged in many ways. Increased interaction of the primary system with the containment necessitates a tool for integral analysis. This study addresses some of these concerns. An improved tool for integral analysis coupling primary system with containment calculation is also presented. The code package is based on RELAP5 and CONTAIN programs, best-estimate thermal-hydraulics code for primary system analysis and containment code for containment analysis, respectively. The suitability is demonstrated with a postulated small break loss of coolant accident analysis of Westinghouse AP600 plant. The thesis explains the details of the analysis including the coupling model.

  13. The effect of molybdenum on the physical and mechanical metallurgy of advanced titanium-aluminide alloys and metal matrix composites

    NASA Astrophysics Data System (ADS)

    Quast, Jeffrey Paul

    This dissertation represents a systematic study of microstructure-mechanical property relationships of titanium-aluminum-niobium-molybdenum (Ti-Al-Nb-Mo) alloys and metal matrix composites (MMCs). The aspects investigated were the microstructures, elevated-temperature creep behavior, room-temperature and elevated-temperature tensile behavior, and the out-of-phase thermomechanical fatigue behavior. The specific alloy compositions investigated were: Ti-24Al-17Nb-0.66Mo (at.%) and Ti-24Al-17Nb-2.3Mo (at.%). The MMCs were reinforced with Ultra SCS-6 fibers and the specific compositions of the matrices were: Ti-24Al-17Nb-0.66Mo (at.%), Ti-24Al-17Nb-1.1Mo (at.%), and Ti-24Al-17Nb-2.3Mo (at.%). All of the materials were fabricated using a powder-metallurgy, tape casting technique. A subtransus heat-treatment produced microstructures containing a hexagonal close-packed a2 phase, orthorhombic (O) phase, and a body-centered cubic (BCC) phase. The higher Mo contents were shown to stabilize the BCC phase and result in an increase the O+BCC phase volume percent and a subsequent decrease in the a2 phase volume percent. The creep deformation behavior of the alloys and MMCs was the main focus of this dissertation. Creep experimentation was performed to understand the deformation mechanisms as a function of stress, temperature, and strain rate. Higher Mo contents significantly increased the creep resistance of the alloys, which was attributed to the decrease in the number of a2/a2 grain boundaries, increased O+BCC colony size, and Mo solid solution strengthening. This was one of the major findings of the work. In-situ tensile-creep experiments indicated that grain boundaries were the locus of deformation and cracking in each of the alloys investigated. MMC creep experimentation was performed with the fibers aligned perpendicular to the loading direction. Similar to alloy creep results, higher Mo contents increased the creep resistance of the MMCs. However, the creep resistance of

  14. Integration-Enhanced Zhang Neural Network for Real-Time-Varying Matrix Inversion in the Presence of Various Kinds of Noises.

    PubMed

    Jin, Long; Zhang, Yunong; Li, Shuai

    2016-12-01

    Matrix inversion often arises in the fields of science and engineering. Many models for matrix inversion usually assume that the solving process is free of noises or that the denoising has been conducted before the computation. However, time is precious for the real-time-varying matrix inversion in practice, and any preprocessing for noise reduction may consume extra time, possibly violating the requirement of real-time computation. Therefore, a new model for time-varying matrix inversion that is able to handle simultaneously the noises is urgently needed. In this paper, an integration-enhanced Zhang neural network (IEZNN) model is first proposed and investigated for real-time-varying matrix inversion. Then, the conventional ZNN model and the gradient neural network model are presented and employed for comparison. In addition, theoretical analyses show that the proposed IEZNN model has the global exponential convergence property. Moreover, in the presence of various kinds of noises, the proposed IEZNN model is proven to have an improved performance. That is, the proposed IEZNN model converges to the theoretical solution of the time-varying matrix inversion problem no matter how large the matrix-form constant noise is, and the residual errors of the proposed IEZNN model can be arbitrarily small for time-varying noises and random noises. Finally, three illustrative simulation examples, including an application to the inverse kinematic motion planning of a robot manipulator, are provided and analyzed to substantiate the efficacy and superiority of the proposed IEZNN model for real-time-varying matrix inversion.

  15. Large-scale photonic integration for advanced all-optical routing functions

    NASA Astrophysics Data System (ADS)

    Nicholes, Steven C.

    Advanced InP-based photonic integrated circuits are a critical technology to manage the increasing bandwidth demands of next-generation all-optical networks. Integrating many of the discrete functions required in optical networks into a single device provides a reduction in system footprint and optical losses by eliminating the fiber coupling junctions between components. This translates directly into increased system reliability and cost savings. Although many key network components have been realized via InP-based monolithic integration over the years, truly large-scale photonic ICs have only recently emerged in the marketplace. This lag-time has been mostly due to historically low device yields. In all-optical routing applications, large-scale photonic ICs may be able to address two of the key roadblocks associated with scaling modern electronic routers to higher capacities---namely, power and size. If the functions of dynamic wavelength conversion and routing are moved to the optical layer, we can eliminate the need for power-hungry optical-to-electrical (O/E) and electrical-to-optical (E/O) data conversions at each router node. Additionally, large-scale photonic ICs could reduce the footprint of such a system by combining the similar functions of each port onto a single chip. However, robust design and manufacturing techniques that will enable high-yield production of these chips must be developed. In this work, we demonstrate a monolithic tunable optical router (MOTOR) chip consisting of an array of eight 40-Gbps wavelength converters and a passive arrayed-waveguide grating router that functions as the packet-forwarding switch fabric of an all-optical router. The device represents one of the most complex InP photonic ICs ever reported, with more than 200 integrated functional elements in a single chip. Single-channel 40 Gbps wavelength conversion and channel switching using 231-1 PRBS data showed a power penalty as low as 4.5 dB with less than 2 W drive power

  16. Joint force protection advanced security system (JFPASS) "the future of force protection: integrate and automate"

    NASA Astrophysics Data System (ADS)

    Lama, Carlos E.; Fagan, Joe E.

    2009-09-01

    The United States Department of Defense (DoD) defines 'force protection' as "preventive measures taken to mitigate hostile actions against DoD personnel (to include family members), resources, facilities, and critical information." Advanced technologies enable significant improvements in automating and distributing situation awareness, optimizing operator time, and improving sustainability, which enhance protection and lower costs. The JFPASS Joint Capability Technology Demonstration (JCTD) demonstrates a force protection environment that combines physical security and Chemical, Biological, Radiological, Nuclear, and Explosive (CBRNE) defense through the application of integrated command and control and data fusion. The JFPASS JCTD provides a layered approach to force protection by integrating traditional sensors used in physical security, such as video cameras, battlefield surveillance radars, unmanned and unattended ground sensors. The optimization of human participation and automation of processes is achieved by employment of unmanned ground vehicles, along with remotely operated lethal and less-than-lethal weapon systems. These capabilities are integrated via a tailorable, user-defined common operational picture display through a data fusion engine operating in the background. The combined systems automate the screening of alarms, manage the information displays, and provide assessment and response measures. The data fusion engine links disparate sensors and systems, and applies tailored logic to focus the assessment of events. It enables timely responses by providing the user with automated and semi-automated decision support tools. The JFPASS JCTD uses standard communication/data exchange protocols, which allow the system to incorporate future sensor technologies or communication networks, while maintaining the ability to communicate with legacy or existing systems.

  17. Advanced treatment of biologically pretreated coal gasification wastewater by a novel integration of catalytic ultrasound oxidation and membrane bioreactor.

    PubMed

    Jia, Shengyong; Han, Hongjun; Zhuang, Haifeng; Xu, Peng; Hou, Baolin

    2015-01-01

    Laboratorial scale experiments were conducted to investigate a novel system integrating catalytic ultrasound oxidation (CUO) with membrane bioreactor (CUO-MBR) on advanced treatment of biologically pretreated coal gasification wastewater. Results indicated that CUO with catalyst of FeOx/SBAC (sewage sludge based activated carbon (SBAC) which loaded Fe oxides) represented high efficiencies in eliminating TOC as well as improving the biodegradability. The integrated CUO-MBR system with low energy intensity and high frequency was more effective in eliminating COD, BOD5, TOC and reducing transmembrane pressure than either conventional MBR or ultrasound oxidation integrated MBR. The enhanced hydroxyl radical oxidation, facilitation of substrate diffusion and improvement of cell enzyme secretion were the mechanisms for CUO-MBR performance. Therefore, the integrated CUO-MBR was the promising technology for advanced treatment in engineering applications.

  18. Evaluation of the structural integrity and extracellular matrix components of tracheal allografts following cyclical decellularization techniques: comparison of three protocols.

    PubMed

    Haykal, Siba; Soleas, John P; Salna, Michael; Hofer, Stefan O P; Waddell, Thomas K

    2012-08-01

    Tracheal reconstruction is indicated in cases of malignancy, traumatic injury, and subglottic or tracheal stenosis. Recent progress in airway transplantation has provided renewed optimism for potential solutions for defects involving more than half of the tracheal length in adults or one-third of the tracheal length in children. Biologic scaffolds derived from decellularized tissues and organs have shown great promise in tracheal allotransplantation, and cyclical decellularization techniques have been hypothesized as abrogating the need for immunosuppressive therapy. In this study, we performed a direct comparison of three decellularization protocols (Protocols A, B, and C) previously described in the literature, two of which were described in tracheal tissue (Protocols A and B). We concentrated on the immunogenicity within the epithelium and mucosa, quantified and qualified the extracellular matrix (ECM) components, and performed compliance measurements on large circumferential decellularized tracheal scaffolds following cyclical decellularization techniques using all three protocols. Quantitative measurements of glycosaminoglycans (GAGs) showed a significant decrease in the mucosal component following 17 cycles of all 3 protocols as well as a significant decrease of GAGs in the cartilaginous component following cycles 1, 9, and 17 of Protocol A and cycle 17 of Protocol C. Compliance measurements were also shown to be different between the protocols, with grafts becoming more compliant at physiologic pressures after cyclical decellularization with Protocols A and B and slightly less compliant but remaining similar to native trachea using Protocol C. Positive staining for anti-major histocompatibility complex Class I (anti-MHCI) and anti-MHCII remained within the submucosal glandular components despite multiple cycles of decellularization using all three protocols. This study illustrated that there are significant differences in ECM composition and resultant

  19. Influence of carbon nanoparticles/epoxy matrix interaction on mechanical, electrical and transport properties of structural advanced materials

    NASA Astrophysics Data System (ADS)

    Guadagno, Liberata; Naddeo, Carlo; Raimondo, Marialuigia; Barra, Giuseppina; Vertuccio, Luigi; Russo, Salvatore; Lafdi, Khalid; Tucci, Vincenzo; Spinelli, Giovanni; Lamberti, Patrizia

    2017-03-01

    The focus of this study is to design new nano-modified epoxy formulations using carbon nanofillers, such as carbon nanotubes, carbon nanofibers and graphene-based nanoparticles (CpEG), that reduce the moisture content and provide additional functional performance. The chemical structure of epoxy mixture, using a non-stoichiometric amount of hardener, exhibits unique properties in regard to the water sorption for which the equilibrium concentration of water (C eq) is reduced up to a maximum of 30%. This result, which is very relevant for several industrial applications (aeronautical, shipbuilding industries, wind turbine blades, etc), is due to a strong reduction of the polar groups and/or sites responsible to bond water molecules. All nanofillers are responsible of a second phase at lower glass transition temperature (Tg). Compared with other carbon nanofillers, functionalized graphene-based nanoparticles exhibit the best performance in the multifunctionality. The lowest moisture content, the high performance in the mechanical properties, the low electrical percolation threshold (EPT) have been all ascribed to particular arrangements of the functionalized graphene sheets embedded in the polymeric matrix. Exfoliation degree and edge carboxylated groups are responsible of self-assembled architectures which entrap part of the resin fraction hindering the interaction of water molecules with the polar sites of the resin, also favouring the EPT paths and the attractive/covalent interactions with the matrix.

  20. Influence of carbon nanoparticles/epoxy matrix interaction on mechanical, electrical and transport properties of structural advanced materials.

    PubMed

    Guadagno, Liberata; Naddeo, Carlo; Raimondo, Marialuigia; Barra, Giuseppina; Vertuccio, Luigi; Russo, Salvatore; Lafdi, Khalid; Tucci, Vincenzo; Spinelli, Giovanni; Lamberti, Patrizia

    2017-03-03

    The focus of this study is to design new nano-modified epoxy formulations using carbon nanofillers, such as carbon nanotubes, carbon nanofibers and graphene-based nanoparticles (CpEG), that reduce the moisture content and provide additional functional performance. The chemical structure of epoxy mixture, using a non-stoichiometric amount of hardener, exhibits unique properties in regard to the water sorption for which the equilibrium concentration of water (C eq) is reduced up to a maximum of 30%. This result, which is very relevant for several industrial applications (aeronautical, shipbuilding industries, wind turbine blades, etc), is due to a strong reduction of the polar groups and/or sites responsible to bond water molecules. All nanofillers are responsible of a second phase at lower glass transition temperature (Tg). Compared with other carbon nanofillers, functionalized graphene-based nanoparticles exhibit the best performance in the multifunctionality. The lowest moisture content, the high performance in the mechanical properties, the low electrical percolation threshold (EPT) have been all ascribed to particular arrangements of the functionalized graphene sheets embedded in the polymeric matrix. Exfoliation degree and edge carboxylated groups are responsible of self-assembled architectures which entrap part of the resin fraction hindering the interaction of water molecules with the polar sites of the resin, also favouring the EPT paths and the attractive/covalent interactions with the matrix.

  1. Integration of advanced geoscience and engineering techniques to quantify interwell heterogeneity. Quarterly technical report, January 1--March 31, 1994

    SciTech Connect

    Martin, F.D.; Buckley, J.S.; Weiss, W.W.; Ouenes, A.

    1994-12-31

    The objective of this project is to integrate advanced geoscience and reservoir engineering concepts, with the goal of quantifying the dynamics of fluid-rock and fluid-fluid interactions as they relate to reservoir architecture and lithologic characterization. This interdisciplinary effort will integrate geological and geophysical data with engineering and petrophysical results through reservoir simulation. Technical progress is summarized for the following: geological studies; hydrologic and tracer research; and geophysical research.

  2. Advancing the study of violence against women using mixed methods: integrating qualitative methods into a quantitative research program.

    PubMed

    Testa, Maria; Livingston, Jennifer A; VanZile-Tamsen, Carol

    2011-02-01

    A mixed methods approach, combining quantitative with qualitative data methods and analysis, offers a promising means of advancing the study of violence. Integrating semi-structured interviews and qualitative analysis into a quantitative program of research on women's sexual victimization has resulted in valuable scientific insight and generation of novel hypotheses for testing. This mixed methods approach is described and recommendations for integrating qualitative data into quantitative research are provided.

  3. ADVANCING THE STUDY OF VIOLENCE AGAINST WOMEN USING MIXED METHODS: INTEGRATING QUALITATIVE METHODS INTO A QUANTITATIVE RESEARCH PROGRAM

    PubMed Central

    Testa, Maria; Livingston, Jennifer A.; VanZile-Tamsen, Carol

    2011-01-01

    A mixed methods approach, combining quantitative with qualitative data methods and analysis, offers a promising means of advancing the study of violence. Integrating semi-structured interviews and qualitative analysis into a quantitative program of research on women’s sexual victimization has resulted in valuable scientific insight and generation of novel hypotheses for testing. This mixed methods approach is described and recommendations for integrating qualitative data into quantitative research are provided. PMID:21307032

  4. Demasking the integrated value of discharge - Advanced sensitivity analysis on the components of hydrological models

    NASA Astrophysics Data System (ADS)

    Guse, Björn; Pfannerstill, Matthias; Gafurov, Abror; Fohrer, Nicola; Gupta, Hoshin

    2016-04-01

    The hydrologic response variable most often used in sensitivity analysis is discharge which provides an integrated value of all catchment processes. The typical sensitivity analysis evaluates how changes in the model parameters affect the model output. However, due to discharge being the aggregated effect of all hydrological processes, the sensitivity signal of a certain model parameter can be strongly masked. A more advanced form of sensitivity analysis would be achieved if we could investigate how the sensitivity of a certain modelled process variable relates to the changes in a parameter. Based on this, the controlling parameters for different hydrological components could be detected. Towards this end, we apply the approach of temporal dynamics of parameter sensitivity (TEDPAS) to calculate the daily sensitivities for different model outputs with the FAST method. The temporal variations in parameter dominance are then analysed for both the modelled hydrological components themselves, and also for the rates of change (derivatives) in the modelled hydrological components. The daily parameter sensitivities are then compared with the modelled hydrological components using regime curves. Application of this approach shows that when the corresponding modelled process is investigated instead of discharge, we obtain both an increased indication of parameter sensitivity, and also a clear pattern showing how the seasonal patterns of parameter dominance change over time for each hydrological process. By relating these results with the model structure, we can see that the sensitivity of model parameters is influenced by the function of the parameter. While capacity parameters show more sensitivity to the modelled hydrological component, flux parameters tend to have a higher sensitivity to rates of change in the modelled hydrological component. By better disentangling the information hidden in the discharge values, we can use sensitivity analyses to obtain a clearer signal

  5. Recent advances in bacteria identification by matrix-assisted laser desorption/ionization mass spectrometry using nanomaterials as affinity probes.

    PubMed

    Chiu, Tai-Chia

    2014-04-28

    Identifying trace amounts of bacteria rapidly, accurately, selectively, and with high sensitivity is important to ensuring the safety of food and diagnosing infectious bacterial diseases. Microbial diseases constitute the major cause of death in many developing and developed countries of the world. The early detection of pathogenic bacteria is crucial in preventing, treating, and containing the spread of infections, and there is an urgent requirement for sensitive, specific, and accurate diagnostic tests. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is an extremely selective and sensitive analytical tool that can be used to characterize different species of pathogenic bacteria. Various functionalized or unmodified nanomaterials can be used as affinity probes to capture and concentrate microorganisms. Recent developments in bacterial detection using nanomaterials-assisted MALDI-MS approaches are highlighted in this article. A comprehensive table listing MALDI-MS approaches for identifying pathogenic bacteria, categorized by the nanomaterials used, is provided.

  6. Recent Advances in Bacteria Identification by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Using Nanomaterials as Affinity Probes

    PubMed Central

    Chiu, Tai-Chia

    2014-01-01

    Identifying trace amounts of bacteria rapidly, accurately, selectively, and with high sensitivity is important to ensuring the safety of food and diagnosing infectious bacterial diseases. Microbial diseases constitute the major cause of death in many developing and developed countries of the world. The early detection of pathogenic bacteria is crucial in preventing, treating, and containing the spread of infections, and there is an urgent requirement for sensitive, specific, and accurate diagnostic tests. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is an extremely selective and sensitive analytical tool that can be used to characterize different species of pathogenic bacteria. Various functionalized or unmodified nanomaterials can be used as affinity probes to capture and concentrate microorganisms. Recent developments in bacterial detection using nanomaterials-assisted MALDI-MS approaches are highlighted in this article. A comprehensive table listing MALDI-MS approaches for identifying pathogenic bacteria, categorized by the nanomaterials used, is provided. PMID:24786089

  7. Matrix metalloproteinase-9 expression correlated with tumor response in patients with locally advanced rectal cancer undergoing preoperative chemoradiotherapy

    SciTech Connect

    Unsal, Diclehan . E-mail: diclehan@yahoo.com; Uner, Aytug; Akyurek, Nalan; Erpolat, Petek; Dursun, Ayse; Pak, Yucel

    2007-01-01

    Purpose: To analyze whether the expression of matrix metalloproteinases (MMPs) and their tissue inhibitors are associated with tumor response to preoperative chemoradiotherapy in rectal cancer patients. Methods and Materials: Forty-four patients who had undergone preoperative chemoradiotherapy were evaluated retrospectively. Treatment consisted of pelvic radiotherapy and two cycles of 5-fluorouracil plus leucovorin. Surgery was performed 6-8 weeks later. MMP-2, MMP-9, and tissue inhibitors of metalloproteinase-1 and -2 expression was analyzed by immunohistochemistry of the preradiation biopsy and surgical specimens. The intensity and extent of staining were evaluated separately, and a final score was calculated by multiplying the two scores. The primary endpoint was the correlation of expression with tumor response, with the secondary endpoint the effect of chemoradiotherapy on the expression. Results: Preoperative treatment resulted in downstaging in 20 patients (45%) and no clinical response in 24 (55%). The pathologic tumor response was complete in 11 patients (25%), partial in 23 (52%), and none in 10 (23%). Positive MMP-9 staining was observed in 20 tumors (45%) and was associated with the clinical nodal stage (p = 0.035) and the pathologic and clinical response (p < 0.0001). The staining status of the other markers was associated with neither stage nor response. The overall pathologic response rate was 25% in MMP-9-positive patients vs. 52% in MMP-9-negative patients (p = 0.001). None of the 11 patients with pathologic complete remission was MMP-9 positive. Conclusions: Matrix metalloproteinase-9 expression correlated with a poor tumor response to preoperative chemoradiotherapy in rectal carcinoma patients.

  8. Using Instructional Technology to Integrate CEFR "Can Do" Performance Objectives into an Advanced-Level Language Course

    ERIC Educational Resources Information Center

    Burston, Jack; Athanasiou, Androulla; Neophytou-Yiokari, Maro

    2016-01-01

    The purpose of this presentation is to show how instructional technology can be exploited to effectively integrate Common European Framework of Reference (CEFR) "Can Do" performance objectives (Council of Europe, 2001) into the syllabus and assessment of an advanced (B2) level course. The particular course that will be used for purposes…

  9. The integrated project NF-PRO: recent advances in European research on the near-field system

    SciTech Connect

    Sneyers, Alain; Grambow, Bernd; Aranyossy, Jean-Francois; Johnson, Lawrence

    2007-07-01

    The Integrated Project NF-PRO (Sixth Framework Programme by the European Commission) investigates key-processes in the near-field of a geological repository for the disposal of high-level vitrified waste and spent fuel. The paper discusses the project scope and content and gives a summary overview of advances made by NF-PRO. (authors)

  10. Integration of Technology, Curriculum, and Professional Development for Advancing Middle School Mathematics: Three Large-Scale Studies

    ERIC Educational Resources Information Center

    Roschelle, Jeremy; Shechtman, Nicole; Tatar, Deborah; Hegedus, Stephen; Hopkins, Bill; Empson, Susan; Knudsen, Jennifer; Gallagher, Lawrence P.

    2010-01-01

    The authors present three studies (two randomized controlled experiments and one embedded quasi-experiment) designed to evaluate the impact of replacement units targeting student learning of advanced middle school mathematics. The studies evaluated the SimCalc approach, which integrates an interactive representational technology, paper curriculum,…

  11. Integration of advanced geoscience and engineering techniques to quantify interwell heterogeneity. Quarterly technical report, April 1--June 30, 1995

    SciTech Connect

    Martin, F.D.; Buckley, J.S.; Weiss, W.W.; Ouenes, A.

    1995-09-01

    Objective is to integrate advanced geoscience and reservoir engineering concepts to quantify the dynamics of fluid-rock and fluid-fluid interactions as related to reservoir architecture and lithologic characterization. During this period, studies were made of the permeability, wettability, and porosity of the Sulimar Queen Formation.

  12. Development and Evaluation of an Integrated Basic Combat/Advanced Individual Training Program for Medical Corpsmen (MOS 91A10).

    ERIC Educational Resources Information Center

    Ward, Joseph S.; And Others

    The Human Resources Research Organization undertook this study to determine experimentally the effect of integrating the Basic Combat Training (BCT) and the Advanced Individual Training (AIT) sequence of instruction for conscientious objector (CO) being trained as a Medical Corpsman (MOS 91A10). Other objectives were to develop an improved AIT…

  13. Integration of advanced geoscience and engineering techniques to quantify interwell heterogeneity. Quarterly technical report, July 1, 1995--September 30, 1995

    SciTech Connect

    Buckley, J.S.; Weiss, W.W.; Ouenes, A.

    1995-12-01

    The objective of this project is to integrate advanced geoscience and reservoir engineering concepts with the goal of quantifying the dynamics of fluid-rock and fluid-fluid interactions as they relate to reservoir architecture and lithologic characterization. This interdisciplinary effort will integrate geological and geophysical data with engineering and petrophysical results through reservoir simulation. Several members of the PPRC staff are participating in the development of improved reservoir description by integration of the field and laboratory data, as well as in the development of quantitative reservoir models to aid performance predictions.

  14. Application of Energy Integration Techniques to the Design of Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Levri, Julie; Finn, Cory

    2000-01-01

    Exchanging heat between hot and cold streams within an advanced life support system can save energy. This savings will reduce the equivalent system mass (ESM) of the system. Different system configurations are examined under steady-state conditions for various percentages of food growth and waste treatment. The scenarios investigated represent possible design options for a Mars reference mission. Reference mission definitions are drawn from the ALSS Modeling and Analysis Reference Missions Document, which includes definitions for space station evolution, Mars landers, and a Mars base. For each scenario, streams requiring heating or cooling are identified and characterized by mass flow, supply and target temperatures and heat capacities. The Pinch Technique is applied to identify good matches for energy exchange between the hot and cold streams and to calculate the minimum external heating and cooling requirements for the system. For each pair of hot and cold streams that are matched, there will be a reduction in the amount of external heating and cooling required, and the original heating and cooling equipment will be replaced with a heat exchanger. The net cost savings can be either positive or negative for each stream pairing, and the priority for implementing each pairing can be ranked according to its potential cost savings. Using the Pinch technique, a complete system heat exchange network is developed and heat exchangers are sized to allow for calculation of ESM. The energy-integrated design typically has a lower total ESM than the original design with no energy integration. A comparison of ESM savings in each of the scenarios is made to direct future Pinch Analysis efforts.

  15. Advanced receiver autonomous integrity monitoring using triple frequency data with a focus on treatment of biases

    NASA Astrophysics Data System (ADS)

    El-Mowafy, Ahmed

    2017-04-01

    Most current Advanced Receiver Autonomous Integrity Monitoring (ARAIM) methods are designed to use dual-frequency ionosphere-free observations. These methods assume that receiver bias is absorbed in the common receiver clock offset and bound satellite biases by nominal values. However, most multi-constellation Global Navigation Satellite Systems (GNSS) can offer triple frequency data that can be used for civilian applications in the future, which can improve observation redundancy, solution precision and detection of faults. In this contribution, we explore the use of this type of observations from GPS, Galileo and BeiDou in ARAIM. Nevertheless, the use of triple frequency data introduces receiver differential biases that have to be taken into consideration. To demonstrate the significance of these additional biases we first present a method to quantify them at stations of known coordinates and using available products from the International GNSS service (IGS). To deal with the additional receiver biases, we use a between-satellite single difference (BSSD) observation model that eliminates their effect. A pilot test was performed to evaluate ARAIM availability for Localizer Performance with Vertical guidance down to 200 feet (LPV-200) when using the triple-frequency observations. Real data were collected for one month at stations of known coordinates located in regions of different satellite coverage characteristics. The BSSD triple-frequency model was evaluated to give early indication about its feasibility, where the implementation phase still requires further comprehensive studies. The vertical position error was always found to be bounded by the protection level proven initial validity of the proposed integrity model.

  16. Validation of spectral radiance assignments to integrating sphere radiance standards for the Advanced Baseline Imager

    NASA Astrophysics Data System (ADS)

    Johnson, B. C.; Maxwell, Stephen; Shirley, Eric; Slack, Kim; Graham, Gary D.

    2014-09-01

    The Advanced Baseline Imager (ABI) is the next-generation imaging sensor for the National Oceanic and Atmospheric Administration's (NOAA's) operational meteorological satellites in geostationary orbit. One pathway for traceability to reference standards of the visible and near-infrared radiometric response for ABI is to a 1.65 m diameter integrating sphere source standard of spectral radiance. This source illuminates the full entrance pupil via the ABI Earth-view port, thus determining the absolute spectral radiance responsivity in the visible and shortwave infrared. The spectral radiance values of the large sphere are assigned by Exelis using a double monochromator and a 15.24 cm diameter integrating sphere source standard that is calibrated by NIST. As part of the ABI program, Exelis was required by NASA to have the spectral radiance values assigned by Exelis to the large sphere be validated by NIST. Here we report the results of that activity, which took place in April, 2013. During the week of April 8, Exelis calibrated the 1.65 m diameter sphere at all 24 levels that correspond to the ABI calibration protocol. During the week of April 15, the NIST validation exercise for five selected levels took place. NIST deployed a portable spectral radiance source, a filter radiometer restricted to the visible and near-infrared, and two spectroradiometers that covered from 350 nm to 2500 nm. The NIST sphere source served as the validation standard. The comparison results, which are reported at the ABI bands, agreed to within the combined uncertainties. We describe the methodology, results, and uncertainty estimates related to this effort.

  17. The advanced EctoSys electrolysis as an integral part of a ballast water treatment system.

    PubMed

    Echardt, J; Kornmueller, A

    2009-01-01

    A full-scale 500 m(3)/h ballast water treatment system was tested according to the landbased type approval procedure of the International Maritime Organization (IMO). The system consists of disc filters followed by the advanced EctoSys electrolysis as an integral part for disinfection. The test water quality exceeded by far the minimum requirements for type approval testing. Due to the properties of the special electrodes used together with the striking disinfection effect, the disinfectants assumed to be produced inline by the EctoSys cell in river water were hydroxyl radicals, while in brackish water additionally chlorine and consequently the more stable bromine were formed. In river water, no residual oxidants could be detected in accordance with the assumed production of not responding, highly-reactive and short-living hydroxyl radicals. Accordingly, disinfection byproduct (DBP) formation was very low and close to the limit of quantification in river water. While in brackish water, initial residual oxidant concentrations were maximum 2 mg/L as chlorine and mostly brominated DBP (especially bromoform and bromate) were found. Overall considering this worst case test approach, the DBP concentrations of the treated effluents were below or in the range of the WHO Drinking Water Guideline values and therefore evaluated as acceptable for discharge to the environment. The stringent discharge standard by IMO concerning viable organisms was fully met in river and brackish water, proving the disinfection efficiency of the EctoSys electrolysis against smaller plankton and bacteria.

  18. Integrated Advanced Information Management Systems: a twenty-year history at the University of Cincinnati*

    PubMed Central

    Guard, J. Roger; Brueggemann, Ralph F.; Fant, William K.; Hutton, John J.; Kues, John R.; Marine, Stephen A.; Rouan, Gregory W.; Schick, Leslie C.

    2004-01-01

    The University of Cincinnati (UC) has been active in the National Library of Medicine's Integrated Advanced Information Management Systems (IAIMS) program since IAIMS' inception in 1984. UC received IAIMS planning and modeling grants in the 1980s, spent the 1990s practicing its own form of “iaims” and refining its vision, and, in May 2003, received an IAIMS operations grant in the first round of awards under “the next generation” program. This paper discusses the history of IAIMS at UC and describes the goals, methods, and strategies of the current IAIMS program. The goals of UC's IAIMS program are to: improve teaching effectiveness by improving the assessment of health professional students and residents in laboratory and clinical teaching and learning environments; improve the ability of researchers, educators, and students to acquire and apply the knowledge required to be more productive in genomic research and education; and increase the productivity of researchers and administrators in the pre-award, post-award, and compliance phases of the research lifecycle. PMID:15098045

  19. Joining and Integration of Advanced Carbon-Carbon Composites to Metallic Systems for Thermal Management Applications

    NASA Technical Reports Server (NTRS)

    Singh, M.; Asthana, R.

    2008-01-01

    Recent research and development activities in joining and integration of carbon-carbon (C/C) composites to metals such as Ti and Cu-clad-Mo for thermal management applications are presented with focus on advanced brazing techniques. A wide variety of carbon-carbon composites with CVI and resin-derived matrices were joined to Ti and Cu-clad Mo using a number of active braze alloys. The brazed joints revealed good interfacial bonding, preferential precipitation of active elements (e.g., Ti) at the composite/braze interface. Extensive braze penetration of the inter-fiber channels in the CVI C/C composites was observed. The chemical and thermomechanical compatibility between C/C and metals at elevated temperatures is assessed. The role of residual stresses and thermal conduction in brazed C/C joints is discussed. Theoretical predictions of the effective thermal resistance suggest that composite-to-metal brazed joints may be promising for lightweight thermal management applications.

  20. Advancing Commercialization of Algal Biofuels Through Increased Biomass Productivity and Technology Integration

    SciTech Connect

    Bai, Xuemei; Sabarsky, Martin

    2013-09-30

    Cellana is a leading developer of algae-based bioproducts, and its pre-commercial production of marine microalgae takes place at Cellana?s Kona Demonstration Facility (KDF) in Hawaii. KDF is housing more than 70 high-performing algal strains for different bioproducts, of which over 30 have been grown outside at scale. So far, Cellana has produced more than 10 metric tons of algal biomass for the development of biofuels, animal feed, and high-value nutraceuticals. Cellana?s ALDUO algal cultivation technology allows Cellana to grow non-extremophile algal strains at large scale with no contamination disruptions. Cellana?s research and production at KDF have addressed three major areas that are crucial for the commercialization of algal biofuels: yield improvement, cost reduction, and the overall economics. Commercially acceptable solutions have been developed and tested for major factors limiting areal productivity of algal biomass and lipids based on years of R&D work conducted at KDF. Improved biomass and lipid productivity were achieved through strain improvement, culture management strategies (e.g., alleviation of self-shading, de-oxygenation, and efficient CO2 delivery), and technical advancement in downstream harvesting technology. Cost reduction was achieved through optimized CO2 delivery system, flue gas utilization technology, and energy-efficient harvesting technology. Improved overall economics was achieved through a holistic approach by integration of high-value co-products in the process, in addition to yield improvements and cost reductions.

  1. Indianapolis I3: the third generation Integrated Advanced Information Management Systems.

    PubMed

    McGowan, Julie J; Overhage, J Marc; Barnes, Mike; McDonald, Clement J

    2004-04-01

    In 2001, the Regenstrief Institute for Health Care and the Indiana University School of Medicine (IUSM) began an IAIMS planning effort to create a vision and a tactical plan for the first Integrated Advanced Information Management Systems (IAIMS) implementation to cross a large area and include unaffiliated institutions. A number of elements made this planning effort unique. Among these elements were the existence of a network infrastructure that supported the Indianapolis Network for Patient Care, the existence of a mature medical informatics program at the Regenstrief Institute, and the existence of a wide-area knowledge network fostered by the IUSM libraries. However, the leadership for a strong information technology role in the IUSM that could promote collaboration in support of education and research across the diverse Indianapolis hospital systems had been lacking. By bringing together various groups, each with a commitment to improve health care quality and public health across the Indianapolis metropolitan area, regardless of individual institutional affiliation, the strategic directions for I3-Indianapolis IAIMS Initiative have been defined and the foundations for a third generation IAIMS construct have been laid in Indianapolis, Indiana.

  2. Integration of advanced oxidation processes at mild conditions in wet scrubbers for odourous sulphur compounds treatment.

    PubMed

    Vega, Esther; Martin, Maria J; Gonzalez-Olmos, Rafael

    2014-08-01

    The effectiveness of different advanced oxidation processes on the treatment of a multicomponent aqueous solution containing ethyl mercaptan, dimethyl sulphide and dimethyl disulphide (0.5 mg L(-1) of each sulphur compound) was investigated with the objective to assess which one is the most suitable treatment to be coupled in wet scrubbers used in odour treatment facilities. UV/H2O2, Fenton, photo-Fenton and ozone treatments were tested at mild conditions and the oxidation efficiency obtained was compared. The oxidation tests were carried out in magnetically stirred cylindrical quartz reactors using the same molar concentration of oxidants (hydrogen peroxide or ozone). The results show that ozone and photo-Fenton are the most efficient treatments, achieving up to 95% of sulphur compounds oxidation and a mineralisation degree around 70% in 10 min. Furthermore, the total costs of the treatments taking into account the capital and operational costs were also estimated for a comparative purpose. The economic analysis revealed that the Fenton treatment is the most economical option to be integrated in a wet scrubber to remove volatile organic sulphur compounds, as long as there are no space constraints to install the required reactor volume. In the case of reactor volume limitation or retrofitting complexities, the ozone and photo-Fenton treatments should be considered as viable alternatives.

  3. Integrating Project-Based Service-Learning into an Advanced Environmental Chemistry Course

    NASA Astrophysics Data System (ADS)

    Draper, Alison J.

    2004-02-01

    In an advanced environmental chemistry course, the inclusion of semester-long scientific service projects successfully integrated the research process with course content. Each project involved a unique community-based environmental analysis in which students assessed an aspect of environmental health. The projects were due in small pieces at even intervals, and students worked independently or in pairs. Initially, students wrote a project proposal in which they chose and justified a project. Following a literature review of their topic, they drafted sampling and analysis plans using methods in the literature. Samples were collected and analyzed, and all students assembled scientific posters describing the results of their study. In the last week of the semester, the class traveled to a regional professional meeting to present the posters. In all, students found the experience valuable. They learned to be professional environmental chemists and learned the value of the discipline to community health. Students not only learned about their own project in depth, but they were inspired to learn textbook material, not for an exam, but because it helped them understand their own project. Finally, having a community to answer to at the end of the project motivated students to do careful work.

  4. Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transport project: Program review

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This report summarizes the Integrated Application of Active Controls (IAAC) Technology to an Advanced Subsonic Transport Project, established as one element of the NASA/Boeing Energy Efficient Transport Technology Program. The performance assessment showed that incorporating ACT into an airplane designed to fly approximately 200 passengers approximately 2,000 nmi could yield block fuel savings from 6 to 10 percent at the design range. The principal risks associated with incorporating these active control functions into a commercial airplane are those involved with the ACT system implementation. The Test and Evaluation phase of the IAAC Project focused on the design, fabrication, and test of a system that implemented pitch axis fly-by-wire, pitch axis augmentation, and wing load alleviation. The system was built to be flight worthy, and was planned to be experimentally flown on the 757. The system was installed in the Boeing Digital Avionics Flight Controls Laboratory (DAFCL), where open loop hardware and software tests, and a brief examination of a direct drive valve (DDV) actuation concept were accomplished. The IAAC Project has shown that ACT can be beneficially incorporated into a commercial transport airplane. Based on the results achieved during the testing phase, there appears to be no fundamental reason(s) that would preclude the commercial application of ACT, assuming an appropriate development effort is included.

  5. The Integrated Safety-Critical Advanced Avionics Communication and Control (ISAACC) System Concept: Infrastructure for ISHM

    NASA Technical Reports Server (NTRS)

    Gwaltney, David A.; Briscoe, Jeri M.

    2005-01-01

    Integrated System Health Management (ISHM) architectures for spacecraft will include hard real-time, critical subsystems and soft real-time monitoring subsystems. Interaction between these subsystems will be necessary and an architecture supporting multiple criticality levels will be required. Demonstration hardware for the Integrated Safety-Critical Advanced Avionics Communication & Control (ISAACC) system has been developed at NASA Marshall Space Flight Center. It is a modular system using a commercially available time-triggered protocol, ?Tp/C, that supports hard real-time distributed control systems independent of the data transmission medium. The protocol is implemented in hardware and provides guaranteed low-latency messaging with inherent fault-tolerance and fault-containment. Interoperability between modules and systems of modules using the TTP/C is guaranteed through definition of messages and the precise message schedule implemented by the master-less Time Division Multiple Access (TDMA) communications protocol. "Plug-and-play" capability for sensors and actuators provides automatically configurable modules supporting sensor recalibration and control algorithm re-tuning without software modification. Modular components of controlled physical system(s) critical to control algorithm tuning, such as pumps or valve components in an engine, can be replaced or upgraded as "plug and play" components without modification to the ISAACC module hardware or software. ISAACC modules can communicate with other vehicle subsystems through time-triggered protocols or other communications protocols implemented over Ethernet, MIL-STD- 1553 and RS-485/422. Other communication bus physical layers and protocols can be included as required. In this way, the ISAACC modules can be part of a system-of-systems in a vehicle with multi-tier subsystems of varying criticality. The goal of the ISAACC architecture development is control and monitoring of safety critical systems of a

  6. Advanced Image Intensifier: a 60°field-of-view night vision system with integral electroluminescent display

    NASA Astrophysics Data System (ADS)

    Crenshaw, David A.; Branigan, Robert G.

    1996-06-01

    The Advanced Image Intensifier Advanced Technology Demonstrator is an Army program to develop and demonstrate the next generation of night vision goggle using revolutionary new technologies to improve system performance and expand the capability of currently fielded image intensifier devices. The Advanced Image Intensifier is a helmet mounted imaging and display system that exploits recent advances in diffractive optics, miniature flat panel displays, image intensifier tube technology and manufacturing processes. The system will demonstrate significantly enhanced operational performance by increasing low-light resolution by greater than 25 percent; increasing field of view from 40 degrees to 60 degrees; improving high light performance; and integrating a display for viewing thermal imagery, computer graphics, and symbology. The results of these improvements will increase the night fighting capability, operational effectiveness, mobilty, versatility, and survivability of the dismounted soldier and aviator.

  7. Development of ceramic matrix composites for application in the ceramic technology for advanced heat engines project. Final report, Phase 2

    SciTech Connect

    Yeh, H.; Solidum, E.; Karasek, K.; Stranford, G.; Yuhas, D.; Schienle, J.; Bradley, S.

    1992-04-01

    The objective of this effort (Phase II of a multi-phase program) was to maximize the toughness of a high-temperature Si{sub 3}N{sub 4} (GN-10) by the near-net-shape fabrication technology established previously (Phase I). Acid-etched American Matrix SiC whiskers were selected as the reinforcement. Extensive green forming and densification process optimizations were conducted. The results showed that whisker addition increased the toughness slightly, but decreased the strength of the material. It has been recommended to discontinue the whisker reinforcement approach, and to instead pursue the in-situ grown-whisker reinforcement approach. To address future needs for the composite technology, two supplemental efforts were conducted using monolithic GN-10 Si{sub 3}N{sub 4}. These were nanometer deposition of sintering aids and ultrasonic characterization of drying. Spray drying, polymerization, basic precipitation, and evaporation yielded more uniform sintering aid distributions than conventional ball milling. Spray drying was selected for scale-up study. Improved mechanical properties were demonstrated. The results of the ultrasonic study showed that variations in ultrasonic compressional velocity in slip-cast components are more complex than anticipated. Specifically, it was found that the sonic velocity, as a function of moisture content, was double-valued. This behavior, together with the problems associated with maintaining uniform couplant, precludes the use of ultrasonics as a routine means of monitoring moisture content.

  8. The Lightweight Integrated Solar Array and Transceiver (LISA-T): Second Generation Advancements and the Future of SmallSat Power Generation

    NASA Technical Reports Server (NTRS)

    Carr, John A.; Boyd, Darren; Martinez, Armando; SanSoucie, Michael; Johnson, Les; Laue, Greg; Farmer, Brandon; Smith, Joseph C.; Robertson, Barrett; Johnson, Mark

    2016-01-01

    This paper describes the second generation advancements of the Lightweight Integrated Solar Array and Transceiver (LISA-T) currently being developed at NASA's Marshall Space Flight Center. LISA-T is a launch stowed, orbit deployed array on which thin-film photovoltaic and antenna elements are embedded. Inherently, small satellites are limited in surface area, volume, and mass allocation; driving competition between power, communications, and GN&C (guidance navigation and control) subsystems. This restricts payload capability and limits the value of these low-cost satellites. LISA-T is addressing this issue, deploying large-area arrays from a reduced volume and mass envelope - greatly enhancing power generation and communications capabilities of small spacecraft. A matrix of options are in development, including planar (pointed) and omnidirectional (non-pointed) arrays. The former is seeking the highest performance possible while the latter is seeking GN&C simplicity. In both cases, power generation ranges from tens of watts to several hundred with an expected specific power >250W/kg and a stowed power density >200kW/m(sub 3). Options for leveraging both high performance, 'typical cost' triple junction thin-film solar cells as well as moderate performance, low cost cells are being developed. Alongside, both UHF (ultra high frequency) and S-band antennas are being integrated into the array to move their space claim away from the spacecraft and open the door for omnidirectional communications and electronically steered phase arrays.

  9. Advanced Communication and Control for Distributed Energy Resource Integration: Phase 2 Scientific Report

    SciTech Connect

    BPL Global

    2008-09-30

    The objective of this research project is to demonstrate sensing, communication, information and control technologies to achieve a seamless integration of multivendor distributed energy resource (DER) units at aggregation levels that meet individual user requirements for facility operations (residential, commercial, industrial, manufacturing, etc.) and further serve as resource options for electric and natural gas utilities. The fully demonstrated DER aggregation system with embodiment of communication and control technologies will lead to real-time, interactive, customer-managed service networks to achieve greater customer value. Work on this Advanced Communication and Control Project (ACCP) consists of a two-phase approach for an integrated demonstration of communication and control technologies to achieve a seamless integration of DER units to reach progressive levels of aggregated power output. Phase I involved design and proof-of-design, and Phase II involves real-world demonstration of the Phase I design architecture. The scope of work for Phase II of this ACCP involves demonstrating the Phase I design architecture in large scale real-world settings while integrating with the operations of one or more electricity supplier feeder lines. The communication and control architectures for integrated demonstration shall encompass combinations of software and hardware components, including: sensors, data acquisition and communication systems, remote monitoring systems, metering (interval revenue, real-time), local and wide area networks, Web-based systems, smart controls, energy management/information systems with control and automation of building energy loads, and demand-response management with integration of real-time market pricing. For Phase II, BPL Global shall demonstrate the Phase I design for integrating and controlling the operation of more than 10 DER units, dispersed at various locations in one or more Independent System Operator (ISO) Control Areas, at

  10. Integrated homeland security system with passive thermal imaging and advanced video analytics

    NASA Astrophysics Data System (ADS)

    Francisco, Glen; Tillman, Jennifer; Hanna, Keith; Heubusch, Jeff; Ayers, Robert

    2007-04-01

    for creating initial alerts - we refer to this as software level detection, the next level building block Immersive 3D visual assessment for situational awareness and to manage the reaction process - we refer to this as automated intelligent situational awareness, a third building block Wide area command and control capabilities to allow control from a remote location - we refer to this as the management and process control building block integrating together the lower level building elements. In addition, this paper describes three live installations of complete, total systems that incorporate visible and thermal cameras as well as advanced video analytics. Discussion of both system elements and design is extensive.

  11. Advanced Technologies Demonstrated by the Miniature Integrated Camera and Spectrometer (MICAS) Aboard Deep Space 1

    NASA Astrophysics Data System (ADS)

    Rodgers, David H.; Beauchamp, Patricia M.; Soderblom, Laurence A.; Brown, Robert H.; Chen, Gun-Shing; Lee, Meemong; Sandel, Bill R.; Thomas, David A.; Benoit, Robert T.; Yelle, Roger V.

    2007-04-01

    MICAS is an integrated multi-channel instrument that includes an ultraviolet imaging spectrometer (80 185 nm), two high-resolution visible imagers (10 20 μrad/pixel, 400 900 nm), and a short-wavelength infrared imaging spectrometer (1250 2600 nm). The wavelength ranges were chosen to maximize the science data that could be collected using existing semiconductor technologies and avoiding the need for multi-octave spectrometers. It was flown on DS1 to validate technologies derived from the development of PICS (Planetary Imaging Camera Spectrometer). These technologies provided a novel systems approach enabling the miniaturization and integration of four instruments into one entity, spanning a wavelength range from the UV to IR, and from ambient to cryogenic temperatures with optical performance at a fraction of a wavelength. The specific technologies incorporated were: a built-in fly-by sequence; lightweight and ultra-stable, monolithic silicon-carbide construction, which enabled room-temperature alignment for cryogenic (85 140 K) performance, and provided superb optical performance and immunity to thermal distortion; diffraction-limited, shared optics operating from 80 to 2600 nm; advanced detector technologies for the UV, visible and short-wavelength IR; high-performance thermal radiators coupled directly to the short-wave infrared (SWIR) detector optical bench, providing an instrument with a mass less than 10 kg, instrument power less than 10 W, and total instrument cost of less than ten million dollars. The design allows the wavelength range to be extended by at least an octave at the short wavelength end and to ˜50 microns at the long wavelength end. Testing of the completed instrument demonstrated excellent optical performance down to 77 K, which would enable a greatly reduced background for longer wavelength detectors. During the Deep Space 1 Mission, MICAS successfully collected images and spectra for asteroid 9969 Braille, Mars, and comet 19/P Borrelly

  12. Ecological Effects of Sea Level Rise: Advancing coastal management through integrated research and engagement

    NASA Astrophysics Data System (ADS)

    Kidwell, D. M.

    2012-12-01

    Rising sea level represents a significant threat to coastal communities and ecosystems through land loss, altered habitats, and increased vulnerability to coastal storms and inundation. This threat is exemplified in the northern Gulf of Mexico where low topography, expansive marshes, and a prevalence of tropical storms have already resulted in extensive coastal impacts. The development of robust predictive capabilities that incorporate complex biological processes with physical dynamics are critical for informed planning and restoration efforts for coastal ecosystems. Looking to build upon existing predictive modeling capabilities and allow for use of multiple model (i.e., ensemble) approaches, NOAA initiated the Ecological Effects of Sea Level Rise program in 2010 to advance physical/biological integrative modeling capabilities in the region with a goal to provide user friendly predictive tools for coastal ecosystem management. Focused on the northern Gulf of Mexico, this multi-disciplinary project led by the University of Central Florida will use in situ field studies to parameterize physical and biological models. These field studies will also result in a predictive capability for overland sediment delivery and transport that will further enhance marsh, oyster, and submerged aquatic vegetation models. Results from this integrated modeling effort are envisioned to inform management strategies for reducing risk, restoration and breakwater guidelines, and resource sustainability for project planning, among other uses. In addition to the science components, this project incorporates significant engagement of the management community through a management applications principle investigator and an advisory management committee. Routine engagement between the science team and the management committee, including annual workshops, are focused on ensuring the development of applicable, relevant, and useable products and tools at the conclusion of this project. Particular

  13. Advanced technologies demonstrated by the miniature integrated camera and spectrometer (MICAS) aboard deep space 1

    USGS Publications Warehouse

    Rodgers, D.H.; Beauchamp, P.M.; Soderblom, L.A.; Brown, R.H.; Chen, G.-S.; Lee, M.; Sandel, B.R.; Thomas, D.A.; Benoit, R.T.; Yelle, R.V.

    2007-01-01

    MICAS is an integrated multi-channel instrument that includes an ultraviolet imaging spectrometer (80-185 nm), two high-resolution visible imagers (10-20 ??rad/pixel, 400-900 nm), and a short-wavelength infrared imaging spectrometer (1250-2600 nm). The wavelength ranges were chosen to maximize the science data that could be collected using existing semiconductor technologies and avoiding the need for multi-octave spectrometers. It was flown on DS1 to validate technologies derived from the development of PICS (Planetary Imaging Camera Spectrometer). These technologies provided a novel systems approach enabling the miniaturization and integration of four instruments into one entity, spanning a wavelength range from the UV to IR, and from ambient to cryogenic temperatures with optical performance at a fraction of a wavelength. The specific technologies incorporated were: a built-in fly-by sequence; lightweight and ultra-stable, monolithic silicon-carbide construction, which enabled room-temperature alignment for cryogenic (85-140 K) performance, and provided superb optical performance and immunity to thermal distortion; diffraction-limited, shared optics operating from 80 to 2600 nm; advanced detector technologies for the UV, visible and short-wavelength IR; high-performance thermal radiators coupled directly to the short-wave infrared (SWIR) detector optical bench, providing an instrument with a mass less than 10 kg, instrument power less than 10 W, and total instrument cost of less than ten million dollars. The design allows the wavelength range to be extended by at least an octave at the short wavelength end and to 50 microns at the long wavelength end. Testing of the completed instrument demonstrated excellent optical performance down to 77 K, which would enable a greatly reduced background for longer wavelength detectors. During the Deep Space 1 Mission, MICAS successfully collected images and spectra for asteroid 9969 Braille, Mars, and comet 19/P Borrelly. The

  14. Non-specific lipid transfer proteins in plants: presenting new advances and an integrated functional analysis.

    PubMed

    Liu, Fang; Zhang, Xiaobo; Lu, Changming; Zeng, Xinhua; Li, Yunjing; Fu, Donghui; Wu, Gang

    2015-09-01

    Plant non-specific lipid-transfer proteins (nsLTPs) are small, basic proteins present in abundance in higher plants. They are involved in key processes of plant cytology, such as the stablization of membranes, cell wall organization, and signal transduction. nsLTPs are also known to play important roles in resistance to biotic and abiotic stress, and in plant growth and development, such as sexual reproduction, seed development and germination. The structures of plant nsLTPs contain an eight-cysteine residue conserved motif, linked by four disulfide bonds, and an internal hydrophobic cavity, which comprises the lipid-binding site. This structure endows stability and increases the ability to bind and/or carry hydrophobic molecules. There is growing interest in nsLTPs, due to their critical roles, resulting in the need for a comprehensive review of their form and function. Relevant topics include: nsLTP structure and biochemical features, their classification, identification, and characterization across species, sub-cellular localization, lipid binding and transfer ability, expression profiling, functionality, and evolution. We present advances, as well as limitations and trends, relating to the different topics of the nsLTP gene family. This review collates a large body of research pertaining to the role of nsLTPs across the plant kingdom, which has been integrated as an in depth functional analysis of this group of proteins as a whole, and their activities across multiple biochemical pathways, based on a large number of reports. This review will enhance our understanding of nsLTP activity in planta, prompting further work and insights into the roles of this multifaceted protein family in plants.

  15. Virtual Welded-Joint Design Integrating Advanced Materials and Processing Technologies

    SciTech Connect

    Yang, Z.; Dong, P.; Liu, S.; Babu, S.; Olson, G.; DebRoy, T.

    2005-04-15

    The primary goal of this project is to increase the fatigue life of a welded-joint by 10 times and to reduce energy use by 25% through product performance and productivity improvements using an integrated modeling approach. The fatigue strength of a welded-joint is currently the bottleneck to design high performance and lightweight welded structures using advanced materials such as high strength steels. In order to achieve high fatigue strength in a welded-joint it is necessary to manage the weld bead shape for lower stress concentration, produce preferable residual stress distribution, and obtain the desired microstructure for improved material toughness and strength. This is a systems challenge that requires the optimization of the welding process, the welding consumable, the base material, as well as the structure design. The concept of virtual welded-joint design has been proposed and established in this project. The goal of virtual welded-joint design is to develop a thorough procedure to predict the relationship of welding process, microstructure, property, residual stress, and the ultimate weld fatigue strength by a systematic modeling approach. The systematic approach combines five sub-models: weld thermal-fluid model, weld microstructure model, weld material property model, weld residual stress model, and weld fatigue model. The systematic approach is thus based on interdisciplinary applied sciences including heat transfer, computational fluid dynamics, materials science, engineering mechanics, and material fracture mechanics. The sub-models are based on existing models with further development. The results from modeling have been validated with critical experiments. The systematic modeling approach has been used to design high fatigue resistant welds considering the combined effects of weld bead geometry, residual stress, microstructure, and material property. In particular, a special welding wire has been developed in this project to introduce

  16. Low cost reclamation using the Advanced Integrated Wastewater Pond Systems Technology and reverse osmosis.

    PubMed

    Downing, J B; Bracco, E; Green, F B; Ku, A Y; Lundquist, T J; Zubieta, I X; Oswald, W J

    2002-01-01

    The sustainability of wastewater reclamation and reuse schemes is often limited by the increase in salt concentration that occurs with each water use. In this pilot study, we show that the cost of reclaiming wastewater and removing salt can be dramatically decreased by integrating recent advances in wastewater pond design, solids separation equipment, and membrane technology. Effluent from an AIWPS Facility was clarified in a Krofta Supracell Dissolved Air Flotation (DAF) unit and a Slow Sand Filter (SSF) prior to final treatment in an Expertise S.r.l. reverse osmosis (RO) unit. The ponds of the AIWPS Facility removed an average of 82% of soluble BOD and 80% of soluble nitrogen. Following clarification, filtration, and RO treatment, the pollutant removals were > 99% for soluble BOD, > 99% for soluble nitrogen, and 98% for TDS. Based on membrane fouling rate data, the cleaning interval for the RO membranes in a full-scale AIWPS-RO Facility would be over 100 days. This interval is on par with that typically seen in full-scale reclamation facilities treating secondary activated sludge effluent with microfiltration prior to reverse osmosis. A 4-MLD AIWPS-RO Facility is expected to produce permeate water at substantially lower cost and lower energy consumption (US $698 and 443 kWh per million liters treated) than a system of equal capacity using conventional activated sludge secondary treatment followed by microfiltration and reverse osmosis (US $1274 and 911 kWh per million litres treated). This cost and energy differential is attributable to the lower capital and operating expenses of the AIWPS Technology in comparison with activated sludge.

  17. ECLSS Integration Analysis: Advanced ECLSS Subsystem and Instrumentation Technology Study for the Space Exploration Initiative

    NASA Technical Reports Server (NTRS)

    1990-01-01

    In his July 1989 space policy speech, President Bush proposed a long range continuing commitment to space exploration and development. Included in his goals were the establishment of permanent lunar and Mars habitats and the development of extended duration space transportation. In both cases, a major issue is the availability of qualified sensor technologies for use in real-time monitoring and control of integrated physical/chemical/biological (p/c/b) Environmental Control and Life Support Systems (ECLSS). The purpose of this study is to determine the most promising instrumentation technologies for future ECLSS applications. The study approach is as follows: 1. Precursor ECLSS Subsystem Technology Trade Study - A database of existing and advanced Atmosphere Revitalization (AR) and Water Recovery and Management (WRM) ECLSS subsystem technologies was created. A trade study was performed to recommend AR and WRM subsystem technologies for future lunar and Mars mission scenarios. The purpose of this trade study was to begin defining future ECLSS instrumentation requirements as a precursor to determining the instrumentation technologies that will be applicable to future ECLS systems. 2. Instrumentation Survey - An instrumentation database of Chemical, Microbial, Conductivity, Humidity, Flowrate, Pressure, and Temperature sensors was created. Each page of the sensor database report contains information for one type of sensor, including a description of the operating principles, specifications, and the reference(s) from which the information was obtained. This section includes a cursory look at the history of instrumentation on U.S. spacecraft. 3. Results and Recommendations - Instrumentation technologies were recommended for further research and optimization based on a consideration of both of the above sections. A sensor or monitor technology was recommended based on its applicability to future ECLS systems, as defined by the ECLSS Trade Study (1), and on whether its

  18. IEDA Thesaurus: A Controlled Vocabulary for IEDA Systems to Advance Integration

    NASA Astrophysics Data System (ADS)

    Ji, P.; Lehnert, K. A.; Arko, R. A.; Song, L.; Hsu, L.; Carter, M. R.; Ferrini, V. L.; Ash, J.

    2014-12-01

    Integrated Earth Data Applications (IEDA) is a community-based facility that serves to support, sustain, and advance the geosciences by providing data services for observational geoscience data from the Ocean, Earth, and Polar Sciences. Many dedicated systems such as the Petrological Database (PetDB), Marine Geoscience Data System (MGDS), System for Earth Sample Registration (SESAR), Data Coordination Center for the U.S. Antarctic Program (USAP-DCC), etc., under the umbrella of the IEDA framework, were developed to support the preservation, discovery, retrieval, and analysis of a wide range of observational field and analytical data types from diverse communities. However, it is currently difficult to maintain consistency of indexing content within IEDA schema, and perform unified or precise searching of the data in these diverse systems as each system maintains separate vocabularies, hierarchies, authority files, or sub taxonomies. We present here the IEDA Thesaurus, a system, which combines existing separate controlled vocabularies from the different systems under the IEDA schema into a single master controlled vocabulary, also introducing some new top facets for future long-term use. The IEDA thesaurus contains structured terminology for petrology, geochemistry, sedimentology, oceanography, geochronology, and volcanology, and other general metadata fields. 18 top facets (also called 'top categories') are defined, including equipment, geographic gazetteer, geologic ages, geologic units, materials, etc. The terms of the thesaurus are cross validated with others popular geoscience vocabularies such as GeoRef Thesaurus, U.S. Geological Survey Library Classification System, Global Change Master Directory (GCMD), and Semantic Web for Earth and Environmental Terminology (SWEET) ontologies. The thesaurus is organized along with the ANSI/NISO Z39.19-2005 Guidelines for the Construction, Format, and Management of Monolingual Controlled Vocabularies, and is published using

  19. Advanced Differential Radar Interferometry (A-DInSAR) as integrative tool for a structural geological analysis

    NASA Astrophysics Data System (ADS)

    Crippa, B.; Calcagni, L.; Rossi, G.; Sternai, P.

    2009-04-01

    Advanced Differential SAR interferometry (A-DInSAR) is a technique monitoring large-coverage surface deformations using a stack of interferograms generated from several complex SLC SAR images, acquired over the same target area at different times. In this work are described the results of a procedure to calculate terrain motion velocity on highly correlated pixels (E. Biescas, M. Crosetto, M. Agudo, O. Monserrat e B. Crippa: Two Radar Interferometric Approaches to Monitor Slow and Fast Land Deformation, 2007) in two area Gemona - Friuli, Northern Italy, Pollino - Calabria, Southern Italy, and, furthermore, are presented some consideration, based on successful examples of the present analysis. The choice of these pixels whose displacement velocity is calculated depends on the dispersion index value (DA) or using coherence values along the stack interferograms. A-DInSAR technique allows to obtain highly reliable velocity values of the vertical displacement. These values concern the movement of minimum surfaces of about 80m2 at the maximum resolution and the minimum velocity that can be recognized is of the order of mm/y. Because of the high versatility of the technology, because of the large dimensions of the area that can be analyzed (of about 10000Km2) and because of the high precision and reliability of the results obtained, we think it is possible to exploit radar interferometry to obtain some important information about the structural context of the studied area, otherwise very difficult to recognize. Therefore we propose radar interferometry as a valid investigation tool whose results must be considered as an important integration of the data collected in fieldworks.

  20. Integration of the advanced transparency framework to advanced nuclear systems : enhancing Safety, Operations, Security and Safeguards (SOSS).

    SciTech Connect

    Mendez, Carmen Margarita; Rochau, Gary Eugene; Cleary, Virginia D.

    2008-08-01

    The advent of the nuclear renaissance gives rise to a concern for the effective design of nuclear fuel cycle systems that are safe, secure, nonproliferating and cost-effective. We propose to integrate the monitoring of the four major factors of nuclear facilities by focusing on the interactions between Safeguards, Operations, Security, and Safety (SOSS). We proposed to develop a framework that monitors process information continuously and can demonstrate the ability to enhance safety, operations, security, and safeguards by measuring and reducing relevant SOSS risks, thus ensuring the safe and legitimate use of the nuclear fuel cycle facility. A real-time comparison between expected and observed operations provides the foundation for the calculation of SOSS risk. The automation of new nuclear facilities requiring minimal manual operation provides an opportunity to utilize the abundance of process information for monitoring SOSS risk. A framework that monitors process information continuously can lead to greater transparency of nuclear fuel cycle activities and can demonstrate the ability to enhance the safety, operations, security and safeguards associated with the functioning of the nuclear fuel cycle facility. Sandia National Laboratories (SNL) has developed a risk algorithm for safeguards and is in the process of demonstrating the ability to monitor operational signals in real-time though a cooperative research project with the Japan Atomic Energy Agency (JAEA). The risk algorithms for safety, operations and security are under development. The next stage of this work will be to integrate the four algorithms into a single framework.

  1. A computational method for solving stochastic Itô–Volterra integral equations based on stochastic operational matrix for generalized hat basis functions

    SciTech Connect

    Heydari, M.H.; Hooshmandasl, M.R.; Maalek Ghaini, F.M.; Cattani, C.

    2014-08-01

    In this paper, a new computational method based on the generalized hat basis functions is proposed for solving stochastic Itô–Volterra integral equations. In this way, a new stochastic operational matrix for generalized hat functions on the finite interval [0,T] is obtained. By using these basis functions and their stochastic operational matrix, such problems can be transformed into linear lower triangular systems of algebraic equations which can be directly solved by forward substitution. Also, the rate of convergence of the proposed method is considered and it has been shown that it is O(1/(n{sup 2}) ). Further, in order to show the accuracy and reliability of the proposed method, the new approach is compared with the block pulse functions method by some examples. The obtained results reveal that the proposed method is more accurate and efficient in comparison with the block pule functions method.

  2. Advanced treatment of biologically pretreated coal gasification wastewater by a novel integration of heterogeneous catalytic ozonation and biological process.

    PubMed

    Zhuang, Haifeng; Han, Hongjun; Jia, Shengyong; Hou, Baolin; Zhao, Qian

    2014-08-01

    Advanced treatment of biologically pretreated coal gasification wastewater (CGW) was investigated employing heterogeneous catalytic ozonation integrated with anoxic moving bed biofilm reactor (ANMBBR) and biological aerated filter (BAF) process. The results indicated that catalytic ozonation with the prepared catalyst (i.e. MnOx/SBAC, sewage sludge was converted into sludge based activated carbon (SBAC) which loaded manganese oxides) significantly enhanced performance of pollutants removal by generated hydroxyl radicals. The effluent of catalytic ozonation process was more biodegradable and less toxic than that in ozonation alone. Meanwhile, ANMBBR-BAF showed efficient capacity of pollutants removal in treatment of the effluent of catalytic ozonation at a shorter reaction time, allowing the discharge limits to be met. Therefore, the integrated process with efficient, economical and sustainable advantages was suitable for advanced treatment of real biologically pretreated CGW.

  3. Integration of TomoPy and the ASTRA toolbox for advanced processing and reconstruction of tomographic synchrotron data.

    PubMed

    Pelt, Daniël M; Gürsoy, Dogˇa; Palenstijn, Willem Jan; Sijbers, Jan; De Carlo, Francesco; Batenburg, Kees Joost

    2016-05-01

    The processing of tomographic synchrotron data requires advanced and efficient software to be able to produce accurate results in reasonable time. In this paper, the integration of two software toolboxes, TomoPy and the ASTRA toolbox, which, together, provide a powerful framework for processing tomographic data, is presented. The integration combines the advantages of both toolboxes, such as the user-friendliness and CPU-efficient methods of TomoPy and the flexibility and optimized GPU-based reconstruction methods of the ASTRA toolbox. It is shown that both toolboxes can be easily installed and used together, requiring only minor changes to existing TomoPy scripts. Furthermore, it is shown that the efficient GPU-based reconstruction methods of the ASTRA toolbox can significantly decrease the time needed to reconstruct large datasets, and that advanced reconstruction methods can improve reconstruction quality compared with TomoPy's standard reconstruction method.

  4. Integration of TomoPy and the ASTRA toolbox for advanced processing and reconstruction of tomographic synchrotron data

    PubMed Central

    Pelt, Daniël M.; Gürsoy, Doǧa; Palenstijn, Willem Jan; Sijbers, Jan; De Carlo, Francesco; Batenburg, Kees Joost

    2016-01-01

    The processing of tomographic synchrotron data requires advanced and efficient software to be able to produce accurate results in reasonable time. In this paper, the integration of two software toolboxes, TomoPy and the ASTRA toolbox, which, together, provide a powerful framework for processing tomographic data, is presented. The integration combines the advantages of both toolboxes, such as the user-friendliness and CPU-efficient methods of TomoPy and the flexibility and optimized GPU-based reconstruction methods of the ASTRA toolbox. It is shown that both toolboxes can be easily installed and used together, requiring only minor changes to existing TomoPy scripts. Furthermore, it is shown that the efficient GPU-based reconstruction methods of the ASTRA toolbox can significantly decrease the time needed to reconstruct large datasets, and that advanced reconstruction methods can improve reconstruction quality compared with TomoPy’s standard reconstruction method. PMID:27140167

  5. Quantitative proteomics analysis integrated with microarray data reveals that extracellular matrix proteins, catenins, and p53 binding protein 1 are important for chemotherapy response in ovarian cancers.

    PubMed

    Pan, Sheng; Cheng, Lihua; White, James T; Lu, Wei; Utleg, Angelita G; Yan, Xiaowei; Urban, Nicole D; Drescher, Charles W; Hood, Leroy; Lin, Biaoyang

    2009-08-01

    Chemotherapy with carboplatin and paclitaxel is the standard treatment for ovarian cancer patients. Although most patients initially respond to this treatment, few are cured. Resistance to chemotherapy is the major cause of treatment failure. We applied a quantitative proteomic approach based on ICAT/MS/MS technology to analyze tissues harvested at primary debulking surgery before the initiation of combination chemotherapy in order to identify potential naive or intrinsic chemotherapy response proteins in ovarian cancers. We identified 44 proteins that are overexpressed, and 34 proteins that are underexpressed in the chemosensitive tissue compared to the chemoresistant tissue. The overexpressed proteins identified in the chemoresistant tissue include 10 proteins (25.6%) belonging to the extracellular matrix (ECM), including decorin, versican, basigin (CD147), fibulin-1, extracellular matrix protein 1, biglycan, fibronectin 1, dermatopontin, alpha-cardiac actin (smooth muscle actin), and an EGF-containing fibulin-like extracellular matrix protein 1. Interesting proteins identified as overexpressed in the chemosensitive tissue include gamma-catenin (junction plakoglobin) and delta-catenin, tumor suppressor p53-binding protein 1 (53BP1), insulin-like growth factor-binding protein 2 (IGFBP2), proliferating cell nuclear antigen (PCNA), annexin A11, and 53 kDa selenium binding protein 1. Integrative analysis with expression profiling data of eight chemoresistant tissues and 13 chemosensitive tissues revealed that 16 proteins showed consistent changes at both the protein and the RNA levels. These include P53 binding protein 1, catenin delta 1 and plakoglobin, EGF-containing fibulin-like extracellular matrix protein 1 and voltage-dependent anion-selective channel protein 1. Our results suggest that chemotherapy response may be determined by multiple and complex system properties involving extracellular-matrix, cell adhesion and junction proteins.

  6. NERI FINAL TECHNICAL REPORT, DE-FC07-O5ID14647, OPTIMIZATION OF OXIDE COMPOUNDS FOR ADVANCED INERT MATRIX MATERIALS

    SciTech Connect

    PI: JUAN C. NINO, ASSOCIATE PROFESSOR

    2009-01-11

    In order to reduce the current excesses of plutonium (both weapon grade and reactor grade) and other transuranium elements, a concept of inert matrix fuel (IMF) has been proposed for an uranium free transmutation of fissile actinides which excludes continuous uranium-plutonium conversion in thermal reactors and advanced systems. Magnesium oxide (MgO) is a promising candidate for inert matrix (IM) materials due to its high melting point (2827 C), high thermal conductivity (13 W/K {center_dot} m at 1000 C), good neutronic properties, and irradiation stability However, MgO reacts with water and hydrates easily, which prevents it from being used in light water reactors (LWRs) as an IM. To improve the hydration resistance of MgO-based inert matrix materials, Medvedev and coworkers have recently investigated the introduction of a secondary phase that acts as a hydration barrier. An MgO-ZrO{sub 2} composite was specifically studied and the results showed that the composite exhibited improved hydration resistance than pure MgO. However, ZrO{sub 2} is insoluble in most acids except HF, which is undesirable for fuel reprocessing. Moreover, the thermal conductivity of ZrO{sub 2} is low and typically less than 3 W {center_dot} m{sup -1} {center_dot} K{sup -1} at 1000 C. In search for an alternative composite strategy, Nd{sub 2}Zr{sub 2}O{sub 7}, an oxide compound with pyrochlore structure, has been proposed recently as a corrosion resistant phase, and MgO-Nd{sub 2}Zr{sub 2}O{sub 7} composites have been investigated as potential IM materials. An adequate thermal conductivity of 6 W {center_dot} m{sup -} 1 {center_dot} K{sup -1} at 1000 C for the MgO-Nd{sub 2}Zr{sub 2}O{sub 7} composite with 90 vol% MgO was recently calculated and reported. Other simulations proposed that the MgO-pyrochlore composites could exhibit higher radiation stability than previously reported. Final optimization of the composite microstructure was performed on the 70 vol% MgO-Nd{sub 2}Zr{sub 2}O{sub 7

  7. Advances in numerical solutions to integral equations in liquid state theory

    NASA Astrophysics Data System (ADS)

    Howard, Jesse J.

    Solvent effects play a vital role in the accurate description of the free energy profile for solution phase chemical and structural processes. The inclusion of solvent effects in any meaningful theoretical model however, has proven to be a formidable task. Generally, methods involving Poisson-Boltzmann (PB) theory and molecular dynamic (MD) simulations are used, but they either fail to accurately describe the solvent effects or require an exhaustive computation effort to overcome sampling problems. An alternative to these methods are the integral equations (IEs) of liquid state theory which have become more widely applicable due to recent advancements in the theory of interaction site fluids and the numerical methods to solve the equations. In this work a new numerical method is developed based on a Newton-type scheme coupled with Picard/MDIIS routines. To extend the range of these numerical methods to large-scale data systems, the size of the Jacobian is reduced using basis functions, and the Newton steps are calculated using a GMRes solver. The method is then applied to calculate solutions to the 3D reference interaction site model (RISM) IEs of statistical mechanics, which are derived from first principles, for a solute model of a pair of parallel graphene plates at various separations in pure water. The 3D IEs are then extended to electrostatic models using an exact treatment of the long-range Coulomb interactions for negatively charged walls and DNA duplexes in aqueous electrolyte solutions to calculate the density profiles and solution thermodynamics. It is found that the 3D-IEs provide a qualitative description of the density distributions of the solvent species when compared to MD results, but at a much reduced computational effort in comparison to MD simulations. The thermodynamics of the solvated systems are also qualitatively reproduced by the IE results. The findings of this work show the IEs to be a valuable tool for the study and prediction of

  8. The role of porous matrix in water flow regulation within a karst unsaturated zone: an integrated hydrogeophysical approach

    NASA Astrophysics Data System (ADS)

    Carrière, Simon D.; Chalikakis, Konstantinos; Danquigny, Charles; Davi, Hendrik; Mazzilli, Naomi; Ollivier, Chloé; Emblanch, Christophe

    2016-11-01

    Some portions of the porous rock matrix in the karst unsaturated zone (UZ) can contain large volumes of water and play a major role in water flow regulation. The essential results are presented of a local-scale study conducted in 2011 and 2012 above the Low Noise Underground Laboratory (LSBB - Laboratoire Souterrain à Bas Bruit) at Rustrel, southeastern France. Previous research revealed the geological structure and water-related features of the study site and illustrated the feasibility of specific hydrogeophysical measurements. In this study, the focus is on hydrodynamics at the seasonal and event timescales. Magnetic resonance sounding (MRS) measured a high water content (more than 10 %) in a large volume of rock. This large volume of water cannot be stored in fractures and conduits within the UZ. MRS was also used to measure the seasonal variation of water stored in the karst UZ. A process-based model was developed to simulate the effect of vegetation on groundwater recharge dynamics. In addition, electrical resistivity tomography (ERT) monitoring was used to assess preferential water pathways during a rain event. This study demonstrates the major influence of water flow within the porous rock matrix on the UZ hydrogeological functioning at both the local (LSBB) and regional (Fontaine de Vaucluse) scales. By taking into account the role of the porous matrix in water flow regulation, these findings may significantly improve karst groundwater hydrodynamic modelling, exploitation, and sustainable management.

  9. Advanced technology and manufacturing practices for machining and inspecting metal matrix composites. Final CRADA report for CRADA number Y-1292-0092

    SciTech Connect

    Fell, H.A.; Shelton, J.E.; LaMance, G.M.; Kennedy, C.R.

    1995-02-26

    Lockheed Martin Energy Systems, Inc. (Energy Systems) and the Lanxide Corporation (Lanxide) negotiated a Cooperative Research and Development Agreement (CRADA) to develop advanced technology and manufacturing practices for machining and inspecting metal matrix composites (MMC). The objective of this CRADA was to develop machining parameters to allow manufacturing of automotive components from MMCs. These parts exhibit a range of shapes and dimensional tolerances and require a large number of machining operations. The common characteristic of the components is the use of the light weight MMC materials to replace heavier materials. This allows smaller and lighter moving parts and supporting structural components thereby increasing fuel mileage. The CRADA was divided into three areas: basic investigation of cutting parameters, establishment of a mock production line for components, and optimization of parameters in the mock facility. This report covers the manufacturing of MMCs and preliminary Phase I testing for silicon carbide having various loading percentages and extensive Phase I testing of cutting parameters on 30% alumina loaded aluminum. On January 26, 1995, a letter from the vice president, technology at Lanxide was issued terminating the CRADA due to changes in business. 9 refs., 18 figs., 3 tabs.

  10. Increased pentosidine, an advanced glycation end product, in serum and synovial fluid from patients with knee osteoarthritis and its relation with cartilage oligomeric matrix protein

    PubMed Central

    Senolt, L; Braun, M; Olejarova, M; Forejtova, S; Gatterova, J; Pavelka, K

    2005-01-01

    Background: Pentosidine, an advanced glycation end product, increasingly accumulates in articular cartilage with age, and contributes to the pathogenesis of osteoarthritis (OA). Increased pentosidine concentrations are associated with inflammatory disorders—for example, rheumatoid arthritis. Objective: To compare pentosidine serum concentrations in patients with knee OA and in healthy volunteers and to determine a relationship between pentosidine and cartilage oligomeric matrix protein (COMP)—a marker of articular cartilage destruction. Methods: Paired serum and synovial fluid samples were obtained by arthrocentesis from 38 patients with knee OA and from 38 healthy volunteers. Pentosidine concentration was measured by reverse phase high performance liquid chromatography with fluorescent detection and COMP was determined by sandwich ELISA. Results: Significantly increased serum pentosidine (p<0.01) and COMP (p<0.05) levels were detected in the patients with OA compared with the control group. Serum pentosidine correlated significantly with synovial fluid pentosidine (p<0.001). Pentosidine in synovial fluid (p<0.05) and in serum (p<0.05) correlated significantly with synovial fluid COMP. Pentosidine and COMP concentrations did not correlate significantly with the radiological stage of the disease. Conclusion: Increased pentosidine serum concentration in patients with OA and its correlation with the cartilage destruction marker COMP in synovial fluid suggests that pentosidine may be important in OA pathology and is a new potential OA marker. PMID:15897309

  11. Advanced treatment of biologically pretreated coal gasification wastewater by a novel integration of heterogeneous Fenton oxidation and biological process.

    PubMed

    Xu, Peng; Han, Hongjun; Zhuang, Haifeng; Hou, Baolin; Jia, Shengyong; Xu, Chunyan; Wang, Dexin

    2015-04-01

    Laboratorial scale experiments were conducted in order to investigate a novel system integrating heterogeneous Fenton oxidation (HFO) with anoxic moving bed biofilm reactor (ANMBBR) and biological aerated filter (BAF) process on advanced treatment of biologically pretreated coal gasification wastewater (CGW). The results indicated that HFO with the prepared catalyst (FeOx/SBAC, sewage sludge based activated carbon (SBAC) which loaded Fe oxides) played a key role in eliminating COD and COLOR as well as in improving the biodegradability of raw wastewater. The surface reaction and hydroxyl radicals (OH) oxidation were the mechanisms for FeOx/SBAC catalytic reaction. Compared with ANMBBR-BAF process, the integrated system was more effective in abating COD, BOD5, total phenols (TPs), total nitrogen (TN) and COLOR and could shorten the retention time. Therefore, the integrated system was a promising technology for engineering applications.

  12. Integrating Advance Organizers and Multidimensional Information Display in Electronic Performance Support Systems

    ERIC Educational Resources Information Center

    Hung, Wei-Chen; Chao, Chia-An

    2007-01-01

    This study has reviewed major design approaches for electronic performance support systems and identified two common problems: users' inability to comprehend screen-based material and poorly designed instructional scaffolds. This paper presents a design approach, called the "Matrix-Aided Performance System" ("MAPS"), which enables these problems…

  13. The effect of fission-energy Xe ion irradiation on the structural integrity and dissolution of the CeO2 matrix

    NASA Astrophysics Data System (ADS)

    Popel, A. J.; Le Solliec, S.; Lampronti, G. I.; Day, J.; Petrov, P. K.; Farnan, I.

    2017-02-01

    This work considers the effect of fission fragment damage on the structural integrity and dissolution of the CeO2 matrix in water, as a simulant for the UO2 matrix of spent nuclear fuel. For this purpose, thin films of CeO2 on Si substrates were produced and irradiated by 92 MeV 129Xe23+ ions to a fluence of 4.8 × 1015 ions/cm2 to simulate fission damage that occurs within nuclear fuels along with bulk CeO2 samples. The irradiated and unirradiated samples were characterised and a static batch dissolution experiment was conducted to study the effect of the induced irradiation damage on dissolution of the CeO2 matrix. Complex restructuring took place in the irradiated films and the irradiated samples showed an increase in the amount of dissolved cerium, as compared to the corresponding unirradiated samples. Secondary phases were also observed on the surface of the irradiated CeO2 films after the dissolution experiment.

  14. Repowering with an integrated gasification-cascaded humidified advanced turbine (IG-CHAT) cycle

    SciTech Connect

    Freier, M.D.; Goldstein, H.N.; Swensen, E.C.

    1998-12-31

    This paper presents the results of an evaluation of repowering a typical US based coal fired power plant with a combination of coal gasification and advanced turbine technologies. In this case, an oxygen blown, fixed bed gasifier (based on British Gas-Lurgi technology) generates clean, low temperature, medium Btu gas which is fired in an advanced type of power cycle; namely, the Cascaded Humidified Advanced Turbine, or CHAT cycle which is defined and described below. This conceptual site repowering follows the same methodology and uses the same design parameters as in a recent evaluation of plant repowering utilizing a broad suite of advanced technologies, many of which are currently being demonstrated in the Clean Coal Technology Demonstration Program.

  15. Space Launch System Spacecraft/Payloads Integration and Evolution Office Advanced Development FY 2014 Annual Report

    NASA Technical Reports Server (NTRS)

    Crumbly, C. M.; Bickley, F. P.; Hueter, U.

    2015-01-01

    The Advanced Development Office (ADO), part of the Space Launch System (SLS) program, provides SLS with the advanced development needed to evolve the vehicle from an initial Block 1 payload capability of 70 metric tons (t) to an eventual capability Block 2 of 130 t, with intermediary evolution options possible. ADO takes existing technologies and matures them to the point that insertion into the mainline program minimizes risk. The ADO portfolio of tasks covers a broad range of technical developmental activities. The ADO portfolio supports the development of advanced boosters, upper stages, and other advanced development activities benefiting the SLS program. A total of 36 separate tasks were funded by ADO in FY 2014.

  16. FAA/NASA International Symposium on Advanced Structural Integrity Methods for Airframe Durability and Damage Tolerance

    NASA Technical Reports Server (NTRS)

    Harris, Charles E. (Editor)

    1994-01-01

    International technical experts in durability and damage tolerance of metallic airframe structures were assembled to present and discuss recent research findings and the development of advanced design and analysis methods, structural concepts, and advanced materials. The symposium focused on the dissemination of new knowledge and the peer-review of progress on the development of advanced methodologies. Papers were presented on: structural concepts for enhanced durability, damage tolerance, and maintainability; new metallic alloys and processing technology; fatigue crack initiation and small crack effects; fatigue crack growth models; fracture mechanics failure, criteria for ductile materials; structural mechanics methodology for residual strength and life prediction; development of flight load spectra for design and testing; and advanced approaches to resist corrosion and environmentally assisted fatigue.

  17. The Vanderbilt Professional Nursing Practice Program, part 2: Integrating a professional advancement and performance evaluation system.

    PubMed

    O'Hara, Nancy F; Duvanich, Mary; Foss, Julie; Wells, Nancy

    2003-10-01

    Developing a performance-based advancement system requires evaluation tools that capture essential behaviors and outcomes reflective of key nursing functions. To ensure relevance to clinical practice and enhance buy-in from nursing staff, the behaviors and outcomes were defined by a broad cross-section of nursing staff and administrators. The first article (September 2003) in this 3-part series described the foundation for and the philosophical background of the Vanderbilt Professional Nursing Practice Program (VPNPP), the career advancement program under way at Vanderbilt University Medical Center. This second article describes the development of the evaluation tools used in the VPNPP, the implementation and management of this new system, program evaluation, and improvements since the inception of the program. Additionally, the authors present the challenges and lessons we learned in development and implementation of a dynamic evaluation system that supports our career advancement program. The process of advancing within the program will be described in part 3.

  18. Advanced time integration algorithms for dislocation dynamics simulations of work hardening

    NASA Astrophysics Data System (ADS)

    Sills, Ryan B.; Aghaei, Amin; Cai, Wei

    2016-05-01

    Efficient time integration is a necessity for dislocation dynamics simulations of work hardening to achieve experimentally relevant strains. In this work, an efficient time integration scheme using a high order explicit method with time step subcycling and a newly-developed collision detection algorithm are evaluated. First, time integrator performance is examined for an annihilating Frank-Read source, showing the effects of dislocation line collision. The integrator with subcycling is found to significantly out-perform other integration schemes. The performance of the time integration and collision detection algorithms is then tested in a work hardening simulation. The new algorithms show a 100-fold speed-up relative to traditional schemes. Subcycling is shown to improve efficiency significantly while maintaining an accurate solution, and the new collision algorithm allows an arbitrarily large time step size without missing collisions.

  19. Advanced time integration algorithms for dislocation dynamics simulations of work hardening

    DOE PAGES

    Sills, Ryan B.; Aghaei, Amin; Cai, Wei

    2016-04-25

    Efficient time integration is a necessity for dislocation dynamics simulations of work hardening to achieve experimentally relevant strains. In this work, an efficient time integration scheme using a high order explicit method with time step subcycling and a newly-developed collision detection algorithm are evaluated. First, time integrator performance is examined for an annihilating Frank–Read source, showing the effects of dislocation line collision. The integrator with subcycling is found to significantly out-perform other integration schemes. The performance of the time integration and collision detection algorithms is then tested in a work hardening simulation. The new algorithms show a 100-fold speed-up relativemore » to traditional schemes. As a result, subcycling is shown to improve efficiency significantly while maintaining an accurate solution, and the new collision algorithm allows an arbitrarily large time step size without missing collisions.« less

  20. Advanced time integration algorithms for dislocation dynamics simulations of work hardening

    SciTech Connect

    Sills, Ryan B.; Aghaei, Amin; Cai, Wei

    2016-04-25

    Efficient time integration is a necessity for dislocation dynamics simulations of work hardening to achieve experimentally relevant strains. In this work, an efficient time integration scheme using a high order explicit method with time step subcycling and a newly-developed collision detection algorithm are evaluated. First, time integrator performance is examined for an annihilating Frank–Read source, showing the effects of dislocation line collision. The integrator with subcycling is found to significantly out-perform other integration schemes. The performance of the time integration and collision detection algorithms is then tested in a work hardening simulation. The new algorithms show a 100-fold speed-up relative to traditional schemes. As a result, subcycling is shown to improve efficiency significantly while maintaining an accurate solution, and the new collision algorithm allows an arbitrarily large time step size without missing collisions.

  1. Advanced Photonic Crystal-Based Integrated Structures for Optical Communications and Optical Signal Processing

    DTIC Science & Technology

    2010-11-22

    High Quality Factor Silicon Nitride Planar Microdisk Resonators for Integrated Photonics in the Visible Range,” Integrated Photonics and...III.B. Conference presentations 1. M. Chamanzar, B. Momeni, and A. Adibi, “Highly Sensitive Compact On-Chip Micro- Interferometers,” Integrated ... Photonics and Nanophotonics Research and Applications (IPNRA), Boston, MA, July 2008. 2. E. Shah Hosseini, S. Yegnanarayanan, and Ali Adibi, “Ultra

  2. Framework programmable platform for the advanced software development workstation. Integration mechanism design document

    NASA Technical Reports Server (NTRS)

    Mayer, Richard J.; Blinn, Thomas M.; Mayer, Paula S. D.; Reddy, Uday; Ackley, Keith; Futrell, Mike

    1991-01-01

    The Framework Programmable Software Development Platform (FPP) is a project aimed at combining effective tool and data integration mechanisms with a model of the software development process in an intelligent integrated software development environment. Guided by this model, this system development framework will take advantage of an integrated operating environment to automate effectively the management of the software development process so that costly mistakes during the development phase can be eliminated.

  3. Is health systems integration being advanced through Local Health District planning?

    PubMed

    Saunders, Carla; Carter, David J

    2016-04-21

    Objective Delivering genuine integrated health care is one of three strategic directions in the New South Wales (NSW) Government State Health Plan: Towards 2021. This study investigated the current key health service plan of each NSW Local Health District (LHD) to evaluate the extent and nature of health systems integration strategies that are currently planned.Methods A scoping review was conducted to identify common key principles and practices for successful health systems integration to enable the development of an appraisal tool to content assess LHD strategic health service plans.Results The strategies that are planned for health systems integration across LHDs focus most often on improvements in coordination, health care access and care delivery for complex at-risk patients across the care continuum by both state- and commonwealth-funded systems, providers and agencies. The most common reasons given for integrated activities were to reduce avoidable hospitalisation, avoid inappropriate emergency department attendance and improve patient care.Conclusions Despite the importance of health systems integration and finding that all NSW LHDs have made some commitment towards integration in their current strategic health plans, this analysis suggests that health systems integration is in relatively early development across NSW.What is known about the topic? Effective approaches to managing complex chronic diseases have been found to involve health systems integration, which necessitates sound communication and connection between healthcare providers across community and hospital settings. Planning based on current health systems integration knowledge to ensure the efficient use of scarce resources is a responsibility of all health systems.What does this paper add? Appropriate planning and implementation of health systems integration is becoming an increasingly important expectation and requirement of effective health systems. The present study is the first of its

  4. Advanced Stirling Convertor Dual Convertor Controller Testing at NASA Glenn Research Center in the Radioisotope Power Systems System Integration Laboratory

    NASA Technical Reports Server (NTRS)

    Dugala, Gina M.; Taylor, Linda M.; Bell, Mark E.; Dolce, James L.; Fraeman, Martin; Frankford, David P.

    2015-01-01

    NASA Glenn Research Center (GRC) developed a non-nuclear representation of a Radioisotope Power System (RPS) consisting of a pair of Advanced Stirling Convertors (ASC), a Dual Convertor Controller (DCC) EM (engineering model) 2 & 3, and associated support equipment, which were tested in the Radioisotope Power Systems System Integration Laboratory (RSIL). The DCC was designed by the Johns Hopkins University/Applied Physics Laboratory (JHU/APL) to actively control a pair of Advanced Stirling Convertors (ASC). The first phase of testing included a Dual Advanced Stirling Convertor Simulator (DASCS) which was developed by JHU/APL and simulates the operation and electrical behavior of a pair of ASC's in real time via a combination of hardware and software. RSIL provides insight into the electrical interactions between a representative radioisotope power generator, its associated control schemes, and realistic electric system loads. The first phase of integration testing included the following spacecraft bus configurations: capacitive, battery, and supercapacitor. A load profile, created based on data from several missions, tested the RPS and RSIL ability to maintain operation during load demands above and below the power provided by the RPS. The integration testing also confirmed the DCC's ability to disconnect from the spacecraft when the bus voltage dipped below 22 V or exceeded 36 V. Once operation was verified with the DASCS, the tests were repeated with actual operating ASC's. The goal of this integration testing was to verify operation of the DCC when connected to a spacecraft and to verify the functionality of the newly designed RSIL. The results of these tests are presented in this paper.

  5. Conversion from Li2SO4 to Li2S@C on carbon paper matrix: A novel integrated cathode for lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Wang, D. H.; Xie, D.; Yang, T.; Zhong, Y.; Wang, X. L.; Xia, X. H.; Gu, C. D.; Tu, J. P.

    2016-11-01

    Integral construction of lithium sulfide (Li2S) cathode is indispensable and vital for developing high-performance lithium-sulfur (Li-S) batteries. Herein we have demonstrated a facile strategy for fabricating free-standing carbon paper supported Li2S@C (P-Li2S@C) integrated cathode. The P-Li2S@C cathode is synthesized through simple pyrolysis of low-cost lithium sulfate (Li2SO4) and chitosan, and embedded in the double carbon matrixes with carbon paper support and outer CVD-carbon layer. Li2S nanoparticles are homogeneously dispersed in the above designed double carbon matrixes. The P-Li2S@C cathode exhibits an initial discharge capacity of 820 mAh g-1 at 0.1 C and still maintains 430 mAh g-1after 100 cycles, superior to the P-Li2S counterpart (480 mAh g-1 at 0.1 C and 150 mAh g-1 after 100 cycles). Our research verifies the effectiveness of double carbon modification on the Li2S, especially, the outer carbon coating not only improves the electrical conductivity of electrode, but also further prohibits the "shuttle effect" of polysulfides.

  6. Recent advances and progress towards an integrated interdisciplinary thermal-structural finite element technology

    NASA Technical Reports Server (NTRS)

    Namburu, Raju R.; Tamma, Kumar K.

    1993-01-01

    An integrated finite element approach is presented for interdisciplinary thermal-structural problems. Of the various numerical approaches, finite element methods with direct time integration procedures are most widely used for these nonlinear problems. Traditionally, combined thermal-structural analysis is performed sequentially by transferring data between thermal and structural analysis. This approach is generally effective and routinely used. However, to solve the combined thermal-structural problems, this approach results in cumbersome data transfer, incompatible algorithmic representations, and different discretized element formulations. The integrated approach discussed in this paper effectively combines thermal and structural fields, thus overcoming the above major shortcomings. The approach follows Lax-Wendroff type finite element formulations with flux and stress based representations. As a consequence, this integrated approach uses common algorithmic representations and element formulations. Illustrative test examples show that the approach is effective for integrated thermal-structural problems.

  7. DEVELOPMENT OF AN ADVANCED APPROACH FOR NEXT-GENERATION INTEGRATED RESERVOIR CHARACTERIZATION

    SciTech Connect

    Scott R. Reeves

    2005-04-01

    Accurate, high-resolution, three-dimensional (3D) reservoir characterization can provide substantial benefits for effective oilfield management. By doing so, the predictive reliability of reservoir flow models, which are routinely used as the basis for investment decisions involving hundreds of millions of dollars and designed to recover millions of barrels of oil, can be significantly improved. Even a small improvement in incremental recovery for high-value assets can result in important contributions to bottom-line profitability. Today's standard practice for developing a 3D reservoir description is to use seismic inversion techniques. These techniques make use of geostatistics and other stochastic methods to solve the inverse problem, i.e., to iteratively construct a likely geologic model and then upscale and compare its acoustic response to that actually observed in the field. This method has several inherent flaws, such as: (1) The resulting models are highly non-unique; multiple equiprobable realizations are produced, meaning (2) The results define a distribution of possible outcomes; the best they can do is quantify the uncertainty inherent in the modeling process, and (3) Each realization must be run through a flow simulator and history matched to assess it's appropriateness, and therefore (4) The method is labor intensive and requires significant time to complete a field study; thus it is applied to only a small percentage of oil and gas producing assets. A new approach to achieve this objective was first examined in a Department of Energy (DOE) study performed by Advanced Resources International (ARI) in 2000/2001. The goal of that study was to evaluate whether robust relationships between data at vastly different scales of measurement could be established using virtual intelligence (VI) methods. The proposed workflow required that three specific relationships be established through use of artificial neural networks (ANN's): core-to-log, log

  8. Integrated Advanced Microwave Sounding Unit-A (AMSU-A). Performance Verification Report: Antenna Drive Subsystem METSAT AMSU-A2 (PN:1331200-2, SN:108)

    NASA Technical Reports Server (NTRS)

    Haapala, C.

    1999-01-01

    This is the Performance Verification Report, Antenna Drive Subassembly, Antenna Drive Subsystem, METSAT AMSU-A2 (P/N 1331200-2, SN: 108), for the Integrated Advanced Microwave Sounding Unit-A (AMSU-A).

  9. Developing and Integrating Advanced Movement Features Improves Automated Classification of Ciliate Species

    PubMed Central

    Soleymani, Ali; Pennekamp, Frank; Petchey, Owen L.; Weibel, Robert

    2015-01-01

    Recent advances in tracking technologies such as GPS or video tracking systems describe the movement paths of individuals in unprecedented details and are increasingly used in different fields, including ecology. However, extracting information from raw movement data requires advanced analysis techniques, for instance to infer behaviors expressed during a certain period of the recorded trajectory, or gender or species identity in case data is obtained from remote tracking. In this paper, we address how different movement features affect the ability to automatically classify the species identity, using a dataset of unicellular microbes (i.e., ciliates). Previously, morphological attributes and simple movement metrics, such as speed, were used for classifying ciliate species. Here, we demonstrate that adding advanced movement features, in particular such based on discrete wavelet transform, to morphological features can improve classification. These results may have practical applications in automated monitoring of waste water facilities as well as environmental monitoring of aquatic systems. PMID:26680591

  10. Developing and Integrating Advanced Movement Features Improves Automated Classification of Ciliate Species.

    PubMed

    Soleymani, Ali; Pennekamp, Frank; Petchey, Owen L; Weibel, Robert

    2015-01-01

    Recent advances in tracking technologies such as GPS or video tracking systems describe the movement paths of individuals in unprecedented details and are increasingly used in different fields, including ecology. However, extracting information from raw movement data requires advanced analysis techniques, for instance to infer behaviors expressed during a certain period of the recorded trajectory, or gender or species identity in case data is obtained from remote tracking. In this paper, we address how different movement features affect the ability to automatically classify the species identity, using a dataset of unicellular microbes (i.e., ciliates). Previously, morphological attributes and simple movement metrics, such as speed, were used for classifying ciliate species. Here, we demonstrate that adding advanced movement features, in particular such based on discrete wavelet transform, to morphological features can improve classification. These results may have practical applications in automated monitoring of waste water facilities as well as environmental monitoring of aquatic systems.

  11. Advanced treatment of oilfield production wastewater by an integration of coagulation/flotation, catalytic ozonation and biological processes.

    PubMed

    Chen, Ke-Yong; Zhang, Xiao-Bing; Li, Jun

    2016-10-01

    In this study, advanced treatment of heavily polluted oilfield production wastewater (OPW) was investigated employing the combination of coagulation/dissolved air flotation, heterogeneous catalytic ozonation and sequencing batch reactor (SBR) processes. Two SBR reactors were separately set up before and after the ozonation unit. The results show that microbubble flotation was more efficient than macrobubble flotation in pollutant removal. Catalytic ozonation with the prepared Fe/activated carbon catalyst significantly enhanced pollutant removal in the second SBR by improving wastewater biodegradability and reducing wastewater microtoxicity. The treatment technique decreased oil, chemical oxygen demand and NH3-N by about 97%, 88% and 91%, respectively, allowing the discharge limits to be met. Therefore, the integrated process with efficient, economical and sustainable advantages was suitable for advanced treatment of real OPW.

  12. Pulse advancement and delay in an integrated-optical two-port ring-resonator circuit: direct experimental observations.

    PubMed

    Uranus, H P; Zhuang, L; Roeloffzen, C G H; Hoekstra, H J W M

    2007-09-01

    We report experimental observations of the negative-group-velocity (v(g)) phenomenon in an integrated-optical two-port ring-resonator circuit. We demonstrate that when the v(g) is negative, the (main) peak of output pulse appears earlier than the peak of a reference pulse, while for a positive v(g), the situation is the other way around. We observed that a pulse splitting phenomenon occurs in the neighborhood of the critical-coupling point. This pulse splitting limits the maximum achievable delay and advancement of a single device as well as facilitating a smooth transition from highly advanced to highly delayed pulse, and vice versa, across the critical-coupling point.

  13. Assessment of advanced practice palliative care nursing competencies in nurse practitioner students: implications for the integration of ELNEC curricular modules.

    PubMed

    Shea, Joyce; Grossman, Sheila; Wallace, Meredith; Lange, Jean

    2010-04-01

    Advanced practice nurses (APRNs) have key roles in the care of patients who are nearing death and those living with a disabling chronic disease. This article describes a mixed-method formative assessment of 36 graduate nursing students' knowledge about and attitudes toward palliative care preliminary to curricular integration of the End-of-Life Nursing Education Consortium (ELNEC) graduate core modules. Students' knowledge about palliative care was assessed using the 106-item ELNEC examination. In addition, qualitative data were gathered regarding students' definitions of palliative care, the role of the APRN in palliative care, and their definitions of a "good" and "bad" death. Results revealed students' limited knowledge about palliative care. Qualitative findings indicated that most students exclusively linked palliative care with end-of-life care and believed that the treatment they provide should have the goal of prolonging life over maintaining quality of life. Implications for curriculum design, advanced practice role development, and collaboration with community health partners are discussed.

  14. Aliskiren attenuates bleomycin-induced pulmonary fibrosis in rats: focus on oxidative stress, advanced glycation end products, and matrix metalloproteinase-9.

    PubMed

    Abuelezz, Sally A; Hendawy, Nevien; Osman, Wesam M

    2016-08-01

    Pulmonary fibrosis is a progressive lung disorder with high mortality rate and limited successful treatment. This study was designed to assess the potential anti-oxidant and anti-fibrotic effects of aliskiren (Alsk) during bleomycin (BLM)-induced pulmonary fibrosis. Male Wistar rats were used as control untreated or treated with the following: a single dose of 2.5 mg/kg of BLM endotracheally and BLM and Alsk (either low dose 30 mg/kg/day or high dose 60 mg/kg/day), and another group was given Alsk 60 mg/kg/day alone. Alsk was given by gavage. Alsk anti-oxidant and anti-fibrotic effects were assessed. BLM significantly increased relative lung weight and the levels of lactate dehydrogenase and total and differential leucocytic count in bronchoalveolar lavage that was significantly ameliorated by high-dose Alsk treatment. As markers of oxidative stress, BLM caused a significant increase in the levels of lipid peroxides and nitric oxide accompanied with a significant decrease of superoxide dismutase and glutathione transferase enzymes. High-dose Alsk treatment restored these markers toward normal values. Alsk counteracted the overexpression of advanced glycation end products, matrix metalloproteinase-9 (MMP-9), and tissue inhibitor of metalloproteinases-1 in lung tissue induced by BLM. Fibrosis assessed by measuring hydroxyproline content, which markedly increased in the BLM group, was also significantly reduced by Alsk. These were confirmed by histopathological and immunohistochemical examination which revealed that Alsk attenuates signs of pulmonary fibrosis and decreased the overexpressed MMP-9 and transforming growth factor β1. Collectively, these findings indicate that Alsk has a potential anti-fibrotic effect beside its anti-oxidant activity.

  15. Advancement and Implementation of Integrated Computational Materials Engineering (ICME) for Aerospace Applications

    DTIC Science & Technology

    2010-03-01

    companies within the aerospace industry have internal materials models, often proprietary, based on phenomenological, statistical, and neural network...distributions) it also applies to some mechanical properties (e.g., measurement of elevated temperature dwell fatigue under certain environmental conditions...many, if not all, near-term integrated ICME applications can be integrated the old-fashion-way by piping information between software programs

  16. Integrated Advanced Sounding Unit-A (AMSU-A). Configuration Management Plan

    NASA Technical Reports Server (NTRS)

    Cavanaugh, J.

    1996-01-01

    The purpose of this plan is to identify the baseline to be established during the development life cycle of the integrated AMSU-A, and define the methods and procedures which Aerojet will follow in the implementation of configuration control for each established baseline. Also this plan establishes the Configuration Management process to be used for the deliverable hardware, software, and firmware of the Integrated AMSU-A during development, design, fabrication, test, and delivery.

  17. Fiber Optic Control System integration for advanced aircraft. Electro-optic and sensor fabrication, integration, and environmental testing for flight control systems

    NASA Technical Reports Server (NTRS)

    Seal, Daniel W.; Weaver, Thomas L.; Kessler, Bradley L.; Bedoya, Carlos A.; Mattes, Robert E.

    1994-01-01

    This report describes the design, development, and testing of passive fiber optic sensors and a multiplexing electro-optic architecture (EOA) for installation and flight test on a NASA-owned F-18 aircraft. This hardware was developed under the Fiber Optic Control Systems for Advanced Aircraft program, part of a multiyear NASA initiative to design, develop, and demonstrate through flight test 'fly-by-light' systems for application to advanced aircraft flight and propulsion control. This development included the design and production of 10 passive optical sensors and associated multiplexed EOA hardware based on wavelength division multiplexed (WDM) technology. A variety of sensor types (rotary position, linear position, temperature, and pressure) incorporating a broad range of sensor technologies (WDM analog, WDM digital, analog microbend, and fluorescent time rate of decay) were obtained from different manufacturers and functionally integrated with an independently designed EOA. The sensors were built for installation in a variety of aircraft locations, placing the sensors in a variety of harsh environments. The sensors and EOA were designed and built to have the resulting devices be as close as practical to a production system. The integrated system was delivered to NASA for flight testing on a NASA-owned F-18 aircraft. Development and integration testing of the system provided valuable information as to which sensor types were simplest to design and build for a military aircraft environment and which types were simplest to operate with a multiplexed EOA. Not all sensor types met the full range of performance and environmental requirements. EOA development problems provided information on directions to pursue in future fly-by-light flight control development programs. Lessons learned in the development of the EOA and sensor hardware are summarized.

  18. Fiber Optic Control System integration for advanced aircraft. Electro-optic and sensor fabrication, integration, and environmental testing for flight control systems

    NASA Astrophysics Data System (ADS)

    Seal, Daniel W.; Weaver, Thomas L.; Kessler, Bradley L.; Bedoya, Carlos A.; Mattes, Robert E.

    1994-11-01

    This report describes the design, development, and testing of passive fiber optic sensors and a multiplexing electro-optic architecture (EOA) for installation and flight test on a NASA-owned F-18 aircraft. This hardware was developed under the Fiber Optic Control Systems for Advanced Aircraft program, part of a multiyear NASA initiative to design, develop, and demonstrate through flight test 'fly-by-light' systems for application to advanced aircraft flight and propulsion control. This development included the design and production of 10 passive optical sensors and associated multiplexed EOA hardware based on wavelength division multiplexed (WDM) technology. A variety of sensor types (rotary position, linear position, temperature, and pressure) incorporating a broad range of sensor technologies (WDM analog, WDM digital, analog microbend, and fluorescent time rate of decay) were obtained from different manufacturers and functionally integrated with an independently designed EOA. The sensors were built for installation in a variety of aircraft locations, placing the sensors in a variety of harsh environments. The sensors and EOA were designed and built to have the resulting devices be as close as practical to a production system. The integrated system was delivered to NASA for flight testing on a NASA-owned F-18 aircraft. Development and integration testing of the system provided valuable information as to which sensor types were simplest to design and build for a military aircraft environment and which types were simplest to operate with a multiplexed EOA. Not all sensor types met the full range of performance and environmental requirements. EOA development problems provided information on directions to pursue in future fly-by-light flight control development programs. Lessons learned in the development of the EOA and sensor hardware are summarized.

  19. Special Features of the Advanced Loans Module of the ABCD Integrated Library System

    ERIC Educational Resources Information Center

    de Smet, Egbert

    2011-01-01

    Purpose: The "advanced loans" module of the relatively new library software, ABCD, is an addition to the normal loans module and it offers a "generic transaction decision-making engine" functionality. The module requires extra installation effort and parameterisation, so this article aims to explain to the many potentially interested libraries,…

  20. Advances in integrated system heath management system technologies : overview of NASA and industry collaborative activities

    NASA Technical Reports Server (NTRS)

    Dixit, Sunil; Brown, Steve; Fijany, Amir; Park, Han; Mackey, Ryan; James, Mark; Baroth, Ed

    2005-01-01

    This paper will describe recent advances in ISHM technologies made through collaboration between NASA and industry. In particular, the paper will focus on past, present, and future technology development and maturation efforts at the Jet Propulsion Laboratory (JPL) and its industry partner, Northrop Grumman lntegrated Systems (NGIS).

  1. Integrating Project-Based Service-Learning into an Advanced Environmental Chemistry Course

    ERIC Educational Resources Information Center

    Draper, Alison J.

    2004-01-01

    An active service-learning research work is conducted in the field of advanced environmental chemistry. Multiple projects are assigned to students, which promote individual learning skills, self-confidence as scientists, and a deep understanding of the environmental chemist's profession.

  2. The Ford Partnership for Advanced Studies: A New Case for Curriculum Integration in Technology Education

    ERIC Educational Resources Information Center

    Zinser, Richard; Poledink, Paul

    2005-01-01

    The Ford Motor Company launched a new pre-engineering curriculum for high schools in the Fall of 2004. Building on an earlier manufacturing program, the development process for the Ford Partnership for Advanced Studies took approximately three years. Ford and the course designers wanted the new program to incorporate the best principles and…

  3. Integrating Social Neuroscience and Social Work: Innovations for Advancing Practice-Based Research

    ERIC Educational Resources Information Center

    Matto, Holly C.; Strolin-Goltzman, Jessica

    2010-01-01

    Throughout the social work profession, there is ongoing interest in building a social science agenda that can address the complex practice-based questions faced by social work professionals today. Methodological innovations and unique funding opportunities have already significantly advanced research on social work practice. Still, there is…

  4. Advances in flavanoid glycosyltransferase research: integrating recent findings with long-term citrus studies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flavonoid glycosides are required for a number of crucial roles in planta and have the potential for development in a variety of agricultural, medicinal, and biotechnological applications. A number of recent advancements have been made in characterizing glycosyltransferases, the enzymes that are res...

  5. Community College Advanced Technology Centers: Meeting America's Need for Integrated, Comprehensive Economic Development.

    ERIC Educational Resources Information Center

    Hinckley, Richard; And Others

    By entering into partnerships with business and industry, community colleges are able to offset the high cost of remaining current with training techniques, job market skill requirements, and state-of-the-art hardware. The construction of advanced technology centers (ATCs) located on community college campuses is one key element supporting these…

  6. Project T.E.A.M. (Technical Education Advancement Modules). Fundementals of Workplace Integration.

    ERIC Educational Resources Information Center

    Kraeling, Vicki

    This module is one of a series of instructional guides developed by Project TEAM (Technical Education Advancement Modules), a cooperative demonstration program for high technology training for unemployed, underemployed, and existing industrial employees whose basic technical skills are in need of upgrading. The module is a 27-hour overview course…

  7. Advanced System-Level Reliability Analysis and Prediction with Field Data Integration

    DTIC Science & Technology

    2011-09-01

    innovative life prediction methodologies that incorporate emerging probabilistic lifing techniques as well as advanced physics-of- failure...often based on simplifying assumptions and their predictions may suffer from different sources of uncertainty. For instance, one source of...system level, most modeling approaches focus on life prediction for single components and fail to account for the interdependencies that may result

  8. Envisioning and advancing marginalized men's health disparities scholarship: the marginality-cultural competence integrative framework (M-CCIF).

    PubMed

    Willis, Danny G; Porche, Demetrius J

    2006-05-01

    Given the current focus of the National Institutes of Health (NIH) on eliminating health disparities among minority populations, a substantive body of culturally competent scholarship about marginalized men's health disparities is needed to add knowledge about the complex features, processes, and relationships underlying health disparities, marginality, men's health, interventions, and clinical outcomes. Marginalized men in the United States suffer disproportionately from mental and chronic health problems. Historically disadvantaged, their voices have not been privileged in health care and clinical discourses. Utilizing the concepts of marginalization and culturally competent scholarship, an integrative framework has been created to facilitate clinicians and scholars in envisioning and advancing critical scholarship related to marginalized men's health disparities.

  9. Towards integrated approaches to advance understanding of ecohydrological systems across scales

    NASA Astrophysics Data System (ADS)

    Tetzlaff, Doerthe; Soulsby, Chris

    2016-04-01

    It is increasingly recognised that the processes and connections in our landscapes are influencing the functioning of aquatic ecosystems. Fundamental scientific understanding of the functioning of both aquatic and terrestrial ecosystems is required for an integrated and sustainable management of landscapes and riverscapes to maintain their ecosystem services and biological integrity at multiple scales. This talk will show how the interactions and feedbacks in ecohydrological systems can be quantitatively assessed through a number of novel, integrated approaches. Importantly, this talk will discuss the need to understand the role of vegetation on water partitioning at the terrestrial and aquatic interface. Terrestrial and aquatic ecosystems are interacting at every scale level and cross-scale investigations are extremely useful to gain an integrated understanding of ecohydrological systems. Environmental tracers are valuable tools to understand the functioning of ecohydrological systems at the landscape scale in terms of understand flow paths, sources of water and associated biogeochemical interactions. Extensive empirical studies were conducted at the plot and hillslope scale to understand ecohydrological systems, and in particular, soil-vegetation-water interlinkages. This empirically based understanding was then integrated into spatially distributed, tracer-aided models to understand mixing of water, flows to the stream and water age distribution at the catchment scale. Finally, remote sensing techniques were used to integrate empirically based findings and to extrapolate system understanding to cross-regional scales, specifically in terms of studying hydroclimatic variability, vegetation dynamics and consequent changes of plant water use and water partitioning.

  10. Preliminary data from an advanced dementia consult service: integrating research, education, and clinical expertise.

    PubMed

    Catic, Angela G; Berg, Andrea I; Moran, Julie A; Knopp, Julie R; Givens, Jane L; Kiely, Dan K; Quinlan, Nicky; Mitchell, Susan L

    2013-11-01

    Hospitalized individuals with advanced dementia often receive care that is of limited clinical benefit and inconsistent with preferences. An advanced dementia consultation service was designed, and a pre and post pilot study was conducted in a Boston hospital to evaluate it. Geriatricians and a palliative care nurse practitioner conducted consultations, which consisted of structured consultation, counseling and provision of an information booklet to the family, and postdischarge follow-up with the family and primary care providers. Individuals aged 65 and older with advanced dementia who were admitted were identified, and consultations were solicited using pop-ups programmed into the computerized provider order entry (POE) system. In the initial 3-month period, 24 subjects received usual care. In the subsequent 3-month period, consultations were provided to five subjects for whom they were requested. Data were obtained from the electronic medical record and proxy interviews (admission, 1 month after discharge). Mean age of the combined sample (N = 29) was 85.4, 58.6% were from nursing homes, and 86.2% of their proxies stated that comfort was the goal of care. Nonetheless, their hospitalizations were characterized by high rates of intravenous antibiotics (86.2%), more than five venipunctures (44.8%), and radiological examinations (96.6%). Acknowledging the small sample size, there were trends toward better outcomes in the intervention group, including greater proxy knowledge of the disease, better communication between proxies and providers, more advance care planning, lower rehospitalization rates, and fewer feeding tube insertions after discharge. Targeted consultation for advanced dementia is feasible and may promote greater engagement of proxies and goal-directed care after discharge.

  11. Modelling and assessment of advanced processes for integrated environmental control of coal-fired power plants. Technical progress report

    SciTech Connect

    Barrett, J.G.; Bloyd, C.N.; McMichael, F.C.; Rubin, E.S.

    1984-07-01

    The key objective of this research is the development of a computer based model for the assessment of integrated environmental control (IEC) systems for conventional and advanced coal fired power plant designs. Efforts during the period April 1-June 30, 1984 focused on, (1) testing of a preliminary integrated model linking pre-combustion and post-combustion control options for conventional plants; (2) documentation of the analytical models of existing control technology options; (3) development and preliminary testing of a second model design for the propagation and analysis of uncertainty; and (4) development of new analytical models needed for IEC assessments. Activities and accomplishments in each of these areas are described. 4 references, 13 figures, 4 tables.

  12. A self-sustaining advanced lignocellulosic biofuel production by integration of anaerobic digestion and aerobic fungal fermentation.

    PubMed

    Zhong, Yuan; Ruan, Zhenhua; Zhong, Yingkui; Archer, Steven; Liu, Yan; Liao, Wei

    2015-03-01

    High energy demand hinders the development and application of aerobic microbial biofuel production from lignocellulosic materials. In order to address this issue, this study focused on developing an integrated system including anaerobic digestion and aerobic fungal fermentation to convert corn stover, animal manure and food wastes into microbial lipids for biodiesel production. Dairy manure and food waste were first anaerobically digested to produce energy and solid digestate (AD fiber). AD fiber and corn stover were then processed by a combined alkali and acid hydrolysis, followed by fungal lipid accumulation. The integrated process can generate 1L biodiesel and 1.9 kg methane from 12.8 kg dry dairy manure, 3.1 kg dry food wastes and 12.2 kg dry corn stover with a positive net energy of 57 MJ, which concludes a self-sustaining lignocellulosic biodiesel process and provides a new route to co-utilize corn stover and organic wastes for advanced biofuel production.

  13. Integration of advanced geoscience and engineering techniques to quantify interwell heterogeneity. Quarterly technical report, January 1, 1996--March 31, 1996

    SciTech Connect

    Buckley, J.S.; Ouenes, A.

    1996-06-01

    The objective of this project is to integrate advanced geoscience and reservoir engineering concepts with the goal of quantifying the dynamics of fluid-rock and fluid-fluid interactions as they relate to reservoir architecture and lithologic characterization. This interdisciplinary effort will integrate geological and geophysical data with engineering and petrophysical results through reservoir simulation. The essence of the work completed in the first quarter of 1996 is summarized in the following three statements: automatic log digitizing software is superior to hand digitizing; laboratory wettability tests suggest that the reservoir is mixed-wet and results of the non-reactive tracer test were used to revise the mechanics of the wettability test design to include tracer injection below a packer.

  14. Advanced Stirling Convertor Dual Convertor Controller Testing at NASA Glenn Research Center in the Radioisotope Power Systems System Integration Laboratory

    NASA Technical Reports Server (NTRS)

    Dugala, Gina M.; Taylor, Linda M.; Bell, Mark E.; Dolce, James L.; Fraeman, Martin; Frankford, David P.

    2015-01-01

    NASA Glenn Research Center developed a nonnuclear representation of a Radioisotope Power System (RPS) consisting of a pair of Advanced Stirling Convertors (ASCs), Dual Convertor Controller (DCC) EMs (engineering models) 2 and 3, and associated support equipment, which were tested in the Radioisotope Power Systems System Integration Laboratory (RSIL). The DCC was designed by the Johns Hopkins University Applied Physics Laboratory (JHU/APL) to actively control a pair of ASCs. The first phase of testing included a Dual Advanced Stirling Convertor Simulator (DASCS), which was developed by JHU/APL and simulates the operation and electrical behavior of a pair of ASCs in real time via a combination of hardware and software. RSIL provides insight into the electrical interactions between a representative radioisotope power generator, its associated control schemes, and realistic electric system loads. The first phase of integration testing included the following spacecraft bus configurations: capacitive, battery, and super-capacitor. A load profile, created based on data from several missions, tested the RPS's and RSIL's ability to maintain operation during load demands above and below the power provided by the RPS. The integration testing also confirmed the DCC's ability to disconnect from the spacecraft when the bus voltage dipped below 22 volts or exceeded 36 volts. Once operation was verified with the DASCS, the tests were repeated with actual operating ASCs. The goal of this integration testing was to verify operation of the DCC when connected to a spacecraft and to verify the functionality of the newly designed RSIL. The results of these tests are presented in this paper.

  15. Faces of matrix models

    NASA Astrophysics Data System (ADS)

    Morozov, A.

    2012-08-01

    Partition functions of eigenvalue matrix models possess a number of very different descriptions: as matrix integrals, as solutions to linear and nonlinear equations, as τ-functions of integrable hierarchies and as special-geometry prepotentials, as result of the action of W-operators and of various recursions on elementary input data, as gluing of certain elementary building blocks. All this explains the central role of such matrix models in modern mathematical physics: they provide the basic "special functions" to express the answers and relations between them, and they serve as a dream model of what one should try to achieve in any other field.

  16. Advanced Ceramic Armor Materials

    DTIC Science & Technology

    1990-05-11

    materials, toughened alumina, fiber -reinforced glass matrix composites, and multilayer-gradient materials for ballistic testing. Fabrication and...material systems: Multilayer advanced armor materials consisting of a hard ceramic faceplate bonded to a graphite fiber -reinforced glass matrix...toughened alumina, and fiber - applied studies of advanced reinforced ceramic matrix glass and glass -ceramic composites for ballistic testing. technologies

  17. The Role of Technical Advances in the Adoption and Integration of Patient-Reported Outcomes in Clinical Care

    PubMed Central

    Jensen, Roxanne E.; Rothrock, Nan E.; DeWitt, Esi Morgan; Spiegel, Brennan; Tucker, Carole A.; Crane, Heidi M.; Forrest, Christopher B.; Patrick, Donald L.; Fredericksen, Rob; Shulman, Lisa M.; Cella, David; Crane, Paul K.

    2016-01-01

    Background Patient-reported outcomes (PROs) are gaining recognition as key measures for improving the quality of patient care in clinical care settings. Three factors have made the implementation of PROs in clinical care more feasible: increased use of modern measurement methods in PRO design and validation, rapid progression of technology (e.g., touch screen tablets, Internet accessibility, and electronic health records (EHRs)), and greater demand for measurement and monitoring of PROs by regulators, payers, accreditors, and professional organizations. As electronic PRO collection and reporting capabilities have improved, the challenges of collecting PRO data have changed. Objectives To update information on PRO adoption considerations in clinical care, highlighting electronic and technical advances with respect to measure selection, clinical workflow, data infrastructure, and outcomes reporting. Methods Five practical case studies across diverse healthcare settings and patient populations are used to explore how implementation barriers were addressed to promote the successful integration of PRO collection into the clinical workflow. The case studies address selecting and reporting of relevant content, workflow integration, pre-visit screening, effective evaluation, and EHR integration. Conclusions These case studies exemplify elements of well-designed electronic systems, including response automation, tailoring of item selection and reporting algorithms, flexibility of collection location, and integration with patient health care data elements. They also highlight emerging logistical barriers in this area, such as the need for specialized technological and methodological expertise, and design limitations of current electronic data capture systems. PMID:25588135

  18. Integrated safeguards testing laboratories in support of the advanced fuel cycle initiative

    SciTech Connect

    Santi, Peter A; Demuth, Scott F; Klasky, Kristen L; Lee, Haeok; Miller, Michael C; Sprinkle, James K; Tobin, Stephen J; Williams, Bradley

    2009-01-01

    A key enabler for advanced fuel cycle safeguards research and technology development for programs such as the Advanced Fuel Cycle Initiative (AFCI) is access to facilities and nuclear materials. This access is necessary in many cases in order to ensure that advanced safeguards techniques and technologies meet the measurement needs for which they were designed. One such crucial facility is a hot cell based laboratory which would allow developers from universities, national laboratories, and commercial companies to perform iterative research and development of advanced safeguards instrumentation under realistic operating conditions but not be subject to production schedule limitations. The need for such a facility arises from the requirement to accurately measure minor actinide and/or fission product bearing nuclear materials that cannot be adequately shielded in glove boxes. With the contraction of the DOE nuclear complex following the end of the cold war, many suitable facilities at DOE sites are increasingly costly to operate and are being evaluated for closure. A hot cell based laboratory that allowed developers to install and remove instrumentation from the hot cell would allow for both risk mitigation and performance optimization of the instrumentation prior to fielding equipment in facilities where maintenance and repair of the instrumentation is difficult or impossible. These benefits are accomplished by providing developers the opportunity to iterate between testing the performance of the instrumentation by measuring realistic types and amounts of nuclear material, and adjusting and refining the instrumentation based on the results of these measurements. In this paper, we review the requirements for such a facility using the Wing 9 hot cells in the Los Alamos National Laboratory's Chemistry and Metallurgy Research facility as a model for such a facility and describe recent use of these hot cells in support of AFCI.

  19. Integrated Medical Information Technology System (IMITS): Information and Clinical Technologies for the Advancement of Healthcare

    DTIC Science & Technology

    2010-08-31

    Communications in Medicine ( DICOM ) standard interfaces allow communication between the DRDWA and various PACS vendors throughout the Air Force. This...Final Report: FY05 IMITS: Information and Clinical Technologies for the Advancement of Healthcare Page 15  DICOM standardization ensures...interoperability with all existing DICOM capable imaging repositories and future additions to the Air Force medical imaging initiative. The Air Force maintains a

  20. Process control integration requirements for advanced life support systems applicable to manned space missions

    NASA Technical Reports Server (NTRS)

    Spurlock, Paul; Spurlock, Jack M.; Evanich, Peggy L.

    1991-01-01

    An overview of recent developments in process-control technology which might have applications in future advanced life support systems for long-duration space operations is presented. Consideration is given to design criteria related to control system selection and optimization, and process-control interfacing methodology. Attention is also given to current life support system process control strategies, innovative sensors, instrumentation and control, and innovations in process supervision.

  1. Space transfer vehicle concepts and requirements study. Volume 2, book 4: Integrated advanced technology development

    NASA Technical Reports Server (NTRS)

    Weber, Gary A.

    1991-01-01

    The Space Transfer Vehicle (STV) program provides both an opportunity and a requirement to increase our upper stage capabilities with the development and applications of new technologies. Issues such as man rating, space basing, reusability, and long lunar surface storage times drive the need for new technology developments and applications. In addition, satisfaction of mission requirements such as lunar cargo delivery capability and lunar landing either require new technology development or can be achieved in a more cost-effective manner with judicious applications of advanced technology. During the STV study, advanced technology development requirements and plans have been addressed by the Technology/Advanced Development Working Group composed of NASA and contractor representatives. This report discusses the results to date of this working group. The first section gives an overview of the technologies that have potential or required applications for the STV and identifies those technologies baselined for the STV. Figures are provided that list the technology categories and show the priority placed on those technology categories for either the space-based or ground-based options. The second section covers the plans and schedules for incorporating the technologies into the STV program.

  2. NCD Diamond Semiconductor System for Advanced Power Electronics Systems Integration : CRADA report

    SciTech Connect

    Sumant, Anirudha

    2016-07-22

    The integration of 2D materials such as molybdenum disulphide (MoS2) with diamond (3D) was achieved by forming an heterojunction between these two materials and its electrical performance was studied experimentally. The device charactertics did show good rectifying nature when p-type single crystal diamond was integrated with n-type MoS2. These results are very encouraging indicating possible applications in semiconductor electronics, however further studies are required for a detailed understanding of the transport phenomena at the MoS2/diamond interface.

  3. Guidelines for Implementing Advanced Distribution Management Systems-Requirements for DMS Integration with DERMS and Microgrids

    SciTech Connect

    Wang, Jianhui; Chen, Chen; Lu, Xiaonan

    2015-08-01

    This guideline focuses on the integration of DMS with DERMS and microgrids connected to the distribution grid by defining generic and fundamental design and implementation principles and strategies. It starts by addressing the current status, objectives, and core functionalities of each system, and then discusses the new challenges and the common principles of DMS design and implementation for integration with DERMS and microgrids to realize enhanced grid operation reliability and quality power delivery to consumers while also achieving the maximum energy economics from the DER and microgrid connections.

  4. Microfluidic immunosensor with integrated liquid core waveguides for sensitive Mie scattering detection of avian influenza antigens in a real biological matrix.

    PubMed

    Heinze, Brian C; Gamboa, Jessica R; Kim, Keesung; Song, Jae-Young; Yoon, Jeong-Yeol

    2010-11-01

    This work presents the use of integrated, liquid core, optical waveguides for measuring immunoagglutination-induced light scattering in a microfluidic device, towards rapid and sensitive detection of avian influenza (AI) viral antigens in a real biological matrix (chicken feces). Mie scattering simulations were performed and tested to optimize the scattering efficiency of the device through proper scatter angle waveguide geometry. The detection limit is demonstrated to be 1 pg mL(-1) in both clean buffer and real biological matrix. This low detection limit is made possible through on-chip diffusional mixing of AI target antigens and high acid content microparticle assay reagents, coupled with real-time monitoring of immunoagglutination-induced forward Mie scattering via high refractive index liquid core optical waveguides in close proximity (100 μm) to the sample chamber. The detection time for the assay is <2 min. This device could easily be modified to detect trace levels of any biological molecules that antibodies are available for, moving towards a robust platform for point-of-care disease diagnostics.

  5. Path integral density matrix dynamics: A method for calculating time-dependent properties in thermal adiabatic and non-adiabatic systems

    NASA Astrophysics Data System (ADS)

    Habershon, Scott

    2013-09-01

    We introduce a new approach for calculating quantum time-correlation functions and time-dependent expectation values in many-body thermal systems; both electronically adiabatic and non-adiabatic cases can be treated. Our approach uses a path integral simulation to sample an initial thermal density matrix; subsequent evolution of this density matrix is equivalent to solution of the time-dependent Schrödinger equation, which we perform using a linear expansion of Gaussian wavepacket basis functions which evolve according to simple classical-like trajectories. Overall, this methodology represents a formally exact approach for calculating time-dependent quantum properties; by introducing approximations into both the imaginary-time and real-time propagations, this approach can be adapted for complex many-particle systems interacting through arbitrary potentials. We demonstrate this method for the spin Boson model, where we find good agreement with numerically exact calculations. We also discuss future directions of improvement for our approach with a view to improving accuracy and efficiency.

  6. A reduced-order integral formulation to account for the finite size effect of isotropic square panels using the transfer matrix method.

    PubMed

    Bonfiglio, Paolo; Pompoli, Francesco; Lionti, Riccardo

    2016-04-01

    The transfer matrix method is a well-established prediction tool for the simulation of sound transmission loss and the sound absorption coefficient of flat multilayer systems. Much research has been dedicated to enhancing the accuracy of the method by introducing a finite size effect of the structure to be simulated. The aim of this paper is to present a reduced-order integral formulation to predict radiation efficiency and radiation impedance for a panel with equal lateral dimensions. The results are presented and discussed for different materials in terms of radiation efficiency, sound transmission loss, and the sound absorption coefficient. Finally, the application of the proposed methodology for rectangular multilayer systems is also investigated and validated against experimental data.

  7. Deposition of Ge-doped silica thin films for an integrated optic application using a matrix distributed electron cyclotron resonance PECVD reactor

    NASA Astrophysics Data System (ADS)

    Botha, Roelene; Bulkin, Pavel V.; Swart, Pieter L.

    2007-10-01

    Optical quality Ge-doped SiO2 thin films, suitable for an integrated optic version of a gain equalizer for erbium-doped fibre amplifiers (EDFAs), have been deposited using a matrix distributed electron cyclotron resonance plasma-enhanced chemical vapour deposition (MDECR-PECVD) system. Using spectroscopic ellipsometry and infrared transmission spectroscopy, the optical constants and hydroxyl content of the films were calculated. Losses due to the hydroxyl overtone at 1.37 μm are found to be approximately 0.251 dB/cm. An RBS analysis determined the germanium content of the films to be in the vicinity of 4 at.%. A comparison of the atomic percentage of germanium in the films and their corresponding refractive indices with values obtained using other deposition methods is also discussed.

  8. Sun-downing and integration for the advancement of science and therapeutics: the National Institute on Substance Use Disorders (NISUD).

    PubMed

    Grabowski, John

    2010-12-01

    The National Institutes of Health (NIH) is the most prominent funding source for scientific research in the world. It is also a complex and diverse organization, having multiple institutes, centers and offices. NIH emphasizes the need for innovation and collaboration in research to discover critical knowledge, enhance health and prevent disease. Advancement in science requires not only sophisticated methods, but also logical organization. Here, an overview of ‘behavioral research’ (writ large) at NIH is presented, focusing upon the common trinity of ‘alcohol, tobacco/nicotine and other drugs’ and programmatic overlap across entities. Consideration is also given to the origins of institutes and their historical movement across organizational boundaries. Specific issues, concerns and advantages of integration of the National Institute on Drug Abuse and National Institute on Alcoholism and Alcohol Abuse are addressed. It is concluded that advances in understanding, treating and preventing substance use disorders would best be served by (1)review and integration of all related research throughout NIH, (2) logical placement of leadership for this activity in a single institute, here entitled the National Institute on Substance Use Disorders, and (3) close collaboration of this institute with its complementary partner, the National Institute on Mental Health. Thus, NIH can establish an organizational structure and collaborations reflecting the realities of the scientific and disease/health domains. This would make a prominent statement to the world scientific and health communities regarding NIH recognition of the need for innovation (scientific and organizational) and focus upon these myriad interrelated and costly problems.

  9. Advancing Early Detection of Autism Spectrum Disorder by Applying an Integrated Two-Stage Screening Approach

    ERIC Educational Resources Information Center

    Oosterling, Iris J.; Wensing, Michel; Swinkels, Sophie H.; van der Gaag, Rutger Jan; Visser, Janne C.; Woudenberg, Tim; Minderaa, Ruud; Steenhuis, Mark-Peter; Buitelaar, Jan K.

    2010-01-01

    Background: Few field trials exist on the impact of implementing guidelines for the early detection of autism spectrum disorders (ASD). The aims of the present study were to develop and evaluate a clinically relevant integrated early detection programme based on the two-stage screening approach of Filipek et al. (1999), and to expand the evidence…

  10. Integrating Syntax, Semantics, and Discourse DARPA (Defense Advanced Research Projects Agency) Natural Language Understanding Program

    DTIC Science & Technology

    1988-08-01

    resolution of anaphoric references, and an analysis of temporal relations. The resulting data structure is known as the Integrated Discourse Representation... binding procedures * semantics.pl - the Semantic Interpreter * world.pl - general knowledge base procedures - Pragmatics * discourse-rules.pl - manage

  11. Advances in directed self assembly integration and manufacturability at 300 mm

    NASA Astrophysics Data System (ADS)

    Rathsack, Benjamen; Somervell, Mark; Muramatsu, Makato; Tanouchi, Keiji; Kitano, Takahiro; Nishimura, Eiichi; Yatsuda, Koichi; Nagahara, Seiji; Iwaki, Hiroyuki; Akai, Keiji; Ozawa, Mariko; Romo Negreira, Ainhoa; Tahara, Shigeru; Nafus, Kathleen

    2013-03-01

    Directed self-assembly (DSA) has the potential to extend scaling for both line/space and hole patterns. DSA has shown the capability for pitch reduction (multiplication), hole shrinks, CD self-healing as well as a pathway towards LWR and pattern collapse improvement [1-10]. TEL has developed a DSA development ecosystem (collaboration with customers, consortia, inspection vendors and material suppliers) to successfully demonstrate directed PS-PMMA DSA patterns using chemo-epitaxy (lift-off and etch guide) and grapho-epitaxy integrations on 300 mm wafers. New processes are being developed to simplify process integration, to reduce defects and to address design integration challenges with the long term goal of robust manufacturability. For hole DSA applications, a wet development process has been developed that enables traditional post-develop metrology through the high selectivity removal of PMMA cylindrical cores. For line/ space DSA applications, new track, cleans and etch processes have been developed to improve manufacturability. In collaboration with universities and consortia, fundamental process studies and simulations are used to drive process improvement and defect investigation. To extend DSA resolution beyond a PS-PMMA system, high chi materials and processes are also explored. In this paper, TEL's latest process solutions for both hole and line/space DSA process integrations are presented.

  12. Leadership Education Is Not Enough: Advancing an Integrated Model of Student-Athlete Development

    ERIC Educational Resources Information Center

    DiPaolo, Donald G.

    2017-01-01

    This article advocates a new approach to how we work with the millions of student-athletes in schools by examining a more holistic model of player development. Rather than assisting students in separate silos and initiatives, the argument is made for integrating the areas of leadership education, performance psychology, and personal development…

  13. Technologies for Inclusive Education: Beyond Traditional Integration Approaches. Advances in Educational Technologies and Instructional Design

    ERIC Educational Resources Information Center

    Barres, David Griol; Carrion, Zoraida Callejas; Lopez-Cozar Delgado, Ramon

    2013-01-01

    By providing students with the opportunities to receive a high quality education regardless of their social or cultural background, inclusive education is a new area that goes beyond traditional integration approaches. These approaches hope to provide the educative system with the ability to adapt to the diversity of its students. Technologies for…

  14. Procedure and information displays in advanced nuclear control rooms: experimental evaluation of an integrated design.

    PubMed

    Chen, Yue; Gao, Qin; Song, Fei; Li, Zhizhong; Wang, Yufan

    2017-02-13

    In the main control rooms of nuclear power plants, operators frequently have to switch between procedure displays and system information displays. In this study, we proposed an operation-unit-based integrated design, which combines the two displays to facilitate the synthesis of information. We grouped actions that complete a single goal into operation units and showed these operation units on the displays of system states. In addition, we used different levels of visual salience to highlight the current unit and provided a list of execution history records. A laboratory experiment, with 42 students performing a simulated procedure to deal with unexpected high pressuriser level, was conducted to compare this design against an action-based integrated design and the existing separated-displays design. The results indicate that our operation-unit-based integrated design yields the best performance in terms of time and completion rate and helped more participants to detect unexpected system failures. Practitioner Summary: In current nuclear control rooms, operators frequently have to switch between procedure and system information displays. We developed an integrated design that incorporates procedure information into system displays. A laboratory study showed that the proposed design significantly improved participants' performance and increased the probability of detecting unexpected system failures.

  15. Faculty Professional Development: Advancing Integrative Social Pedagogy Using ePortfolio

    ERIC Educational Resources Information Center

    Bhika, Rajendra; Francis, Andrea; Miller, Dionne

    2013-01-01

    This article highlights the work of three faculty members across two different professional development seminars at LaGuardia Community College. It illustrates how their work was guided and is linked together by a common thread--the use of ePortfolio to foster integrative social pedagogy--as a result of their participation in these seminars. This…

  16. A flexible sulfur-graphene-polypropylene separator integrated electrode for advanced Li-S batteries.

    PubMed

    Zhou, Guangmin; Li, Lu; Wang, Da-Wei; Shan, Xu-Yi; Pei, Songfeng; Li, Feng; Cheng, Hui-Ming

    2015-01-27

    A flexible Li-S battery based on an integrated structure of sulfur and graphene on a separator is developed. The internal graphene current collector offers a continuous conductive pathway, a modified interface with sulfur, and a good barrier to and an effective reservoir for dissolved polysulfides, consequently improving the capacity and cyclic life of the Li-S battery.

  17. Advancing Renewable Materials by Integrated Light and X-ray Scattering - Final Technical Report

    SciTech Connect

    Akpalu, Yvonne A

    2010-06-30

    Polyhydroxyalkanotes (PHAs), a group of newly developed, commercially available biopolymers, and their composites have the potential to replace petroleum-based amorphous and semicrystalline polymers currently in use for consumer packaging, adhesives, and coating applications and to have significant advantages in medical applications such as tissue engineering. While the potential of PHAs is recognized in the literature and has even been realized in some cases, knowledge of these systems is decades behind that of synthetic polymers. Composites based on PHAs, furthermore, are just emerging in the research community. We argue that widespread adoption of nano-enhanced PHA materials can only be achieved through a proper characterization of the nanofiller morphology and its impact on the polymer matrix. Our goal is to build a robust understanding of the structure-processing relationships of PHAs to make it possible to achieve fundamental control over the final properties of these biopolymers and their bionanocomposites and to develop cost-effective manufacturing technologies for them. With the ultimate goal to design PHA polymer nanocomposites with tailored properties, we have performed a systematic study of the influence of cooling rate on the thermal properties and morphology of linear PHAs (PHB Mw = 690,000 g/mol; PHBV Mw = 407,000 g/mol, 8 mol % HV) and branched (PHBHx, Mw = 903, 000 g/mol, 7.2 mol % Hx) copolymers. Structure-property relations for silica/PHBHx nanocomposites were also investigated. Our studies show that simple two-phase composite models do not account for the molecular weight dependent enhancement in the modulus. Although improvement of the mechanical properties (stiffness/modulus and toughness) must be due to alteration of the matrix by the nanoparticle filler, the observed improvement was not caused by the change of crystallinity or spherulitic morphology. Since the mechanical properties of polymer nanocomposites can be affected by many factors

  18. An integrated PM2.5 source apportionment study: Positive Matrix Factorisation vs. the chemical transport model CAMx

    NASA Astrophysics Data System (ADS)

    Bove, M. C.; Brotto, P.; Cassola, F.; Cuccia, E.; Massabò, D.; Mazzino, A.; Piazzalunga, A.; Prati, P.

    2014-09-01

    Receptor and Chemical Transport Models are commonly used tools in source apportionment studies, even if different expertise is required. We describe an experiment using both approaches to apportion the PM2.5 (i.e., particulate matter with aerodynamic diameters below 2.5 μm) sources in the city of Genoa (Italy). A sampling campaign was carried out to collect PM2.5 samples daily for approximately six month during 2011 in three sites. The subsequent compositional analyses included the speciation of elements, major ions and both organic and elemental carbon; these data produced a large database for receptor modelling through Positive Matrix Factorisation (PMF). In the same period, a meteorological and air quality modelling system was implemented based on the mesoscale numerical weather prediction model WRF and the chemical transport model CAMx to obtain meteorological and pollutant concentrations up to a resolution of 1.1 km. The source apportionment was evaluated by CAMx over the same period that was used for the monitoring campaign using the Particulate Source Apportionment Technology tool. Even if the source categorisations were changed (i.e., groups of time-correlated compounds in PMF vs. activity categories in CAMx), the PM2.5 source apportionment by PMF and CAMx produced comparable results. The different information provided by the two approaches (e.g., real-world factor profile by PMF and apportionment of a secondary aerosol by CAMx) was used jointly to elucidate the composition and origin of PM2.5 and to develop a more general methodology. When studying the primary and secondary components of PM, the main anthropogenic sources in the area were road transportation, energy production/industry and maritime emissions, accounting for 40%-50%, 20%-30% and 10%-15%, of PM2.5, respectively.

  19. Pilot vehicle interface on the advanced fighter technology integration F-16

    NASA Technical Reports Server (NTRS)

    Dana, W. H.; Smith, W. B.; Howard, J. D.

    1986-01-01

    This paper focuses on the work load aspects of the pilot vehicle interface in regard to the new technologies tested during AMAS Phase II. Subjects discussed in this paper include: a wide field-of-view head-up display; automated maneuvering attack system/sensor tracker system; master modes that configure flight controls and mission avionics; a modified helmet mounted sight; improved multifunction display capability; a voice interactive command system; ride qualities during automated weapon delivery; a color moving map; an advanced digital map display; and a g-induced loss-of-consciousness and spatial disorientation autorecovery system.

  20. Process Integration Study of Cache Valley Cheese Plant [Advanced Industrial Heat Pump Applications and Evaluations

    SciTech Connect

    Eastwood, A.

    1991-10-01

    This work has carried out in two phases: Phase 1; identification of opportunities for heat pumps in industrial applications and Phase 2; evaluation of heat pumps in industrial applications. In Phase 1, pinch analysis was applied to several industrial sites to identify the best opportunities for heat pumping and other forms of heat integration. In Phase 2, more detailed analyses were undertaken, including the evaluation of a heat pump installed as a recommendation of Phase 1.

  1. Integrated nitrogen removal biofilter system with ceramic membrane for advanced post-treatment of municipal wastewater.

    PubMed

    Son, Dong-Jin; Yun, Chan-Young; Kim, Woo-Yeol; Zhang, Xing-Ya; Kim, Dae-Gun; Chang, Duk; Sunwoo, Young; Hong, Ki-Ho

    2016-12-01

    The pre-denitrification biofilm process for nitrogen removal was combined with ceramic membrane with pore sizes of 0.05-0.1 µm as a system for advanced post-treatment of municipal wastewater. The system was operated under an empty bed hydraulic retention time of 7.8 h, recirculation ratio of 3, and transmembrane pressure of 0.47 bar. The system showed average removals of organics, total nitrogen, and solids as high as 93%, 80%, and 100%, respectively. Rapid nitrification could be achieved and denitrification was performed in the anoxic filter without external carbon supplements. The residual particulate organics and nitrogen in effluent from biofilm process could be also removed successfully through membrane filtration and the removal of total coliform was noticeably improved after membrane filtration. Thus, a system composed of the pre-denitrification biofilm process with ceramic membrane would be a compact and flexible option for advanced post-treatment of municipal wastewater.

  2. Recent Advances in the Method of Forces: Integrated Force Method of Structural Analysis

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Coroneos, Rula M.; Hopkins, Dale A.

    1998-01-01

    Stress that can be induced in an elastic continuum can be determined directly through the simultaneous application of the equilibrium equations and the compatibility conditions. In the literature, this direct stress formulation is referred to as the integrated force method. This method, which uses forces as the primary unknowns, complements the popular equilibrium-based stiffness method, which considers displacements as the unknowns. The integrated force method produces accurate stress, displacement, and frequency results even for modest finite element models. This version of the force method should be developed as an alternative to the stiffness method because the latter method, which has been researched for the past several decades, may have entered its developmental plateau. Stress plays a primary role in the development of aerospace and other products, and its analysis is difficult. Therefore, it is advisable to use both methods to calculate stress and eliminate errors through comparison. This paper examines the role of the integrated force method in analysis, animation and design.

  3. Advances and challenges in logical modeling of cell cycle regulation: perspective for multi-scale, integrative yeast cell models

    PubMed Central

    Barberis, Matteo; Todd, Robert G.; van der Zee, Lucas

    2016-01-01

    The eukaryotic cell cycle is robustly designed, with interacting molecules organized within a definite topology that ensures temporal precision of its phase transitions. Its underlying dynamics are regulated by molecular switches, for which remarkable insights have been provided by genetic and molecular biology efforts. In a number of cases, this information has been made predictive, through computational models. These models have allowed for the identification of novel molecular mechanisms, later validated experimentally. Logical modeling represents one of the youngest approaches to address cell cycle regulation. We summarize the advances that this type of modeling has achieved to reproduce and predict cell cycle dynamics. Furthermore, we present the challenge that this type of modeling is now ready to tackle: its integration with intracellular networks, and its formalisms, to understand crosstalks underlying systems level properties, ultimate aim of multi-scale models. Specifically, we discuss and illustrate how such an integration may be realized, by integrating a minimal logical model of the cell cycle with a metabolic network. PMID:27993914

  4. Advances and challenges in logical modeling of cell cycle regulation: perspective for multi-scale, integrative yeast cell models.

    PubMed

    Barberis, Matteo; Todd, Robert G; van der Zee, Lucas

    2017-01-01

    The eukaryotic cell cycle is robustly designed, with interacting molecules organized within a definite topology that ensures temporal precision of its phase transitions. Its underlying dynamics are regulated by molecular switches, for which remarkable insights have been provided by genetic and molecular biology efforts. In a number of cases, this information has been made predictive, through computational models. These models have allowed for the identification of novel molecular mechanisms, later validated experimentally. Logical modeling represents one of the youngest approaches to address cell cycle regulation. We summarize the advances that this type of modeling has achieved to reproduce and predict cell cycle dynamics. Furthermore, we present the challenge that this type of modeling is now ready to tackle: its integration with intracellular networks, and its formalisms, to understand crosstalks underlying systems level properties, ultimate aim of multi-scale models. Specifically, we discuss and illustrate how such an integration may be realized, by integrating a minimal logical model of the cell cycle with a metabolic network.

  5. Integrated magnetic and kinetic control of advanced tokamak plasmas on DIII-D based on data-driven models

    NASA Astrophysics Data System (ADS)

    Moreau, D.; Walker, M. L.; Ferron, J. R.; Liu, F.; Schuster, E.; Barton, J. E.; Boyer, M. D.; Burrell, K. H.; Flanagan, S. M.; Gohil, P.; Groebner, R. J.; Holcomb, C. T.; Humphreys, D. A.; Hyatt, A. W.; Johnson, R. D.; La Haye, R. J.; Lohr, J.; Luce, T. C.; Park, J. M.; Penaflor, B. G.; Shi, W.; Turco, F.; Wehner, W.; the ITPA-IOS Group members; experts

    2013-06-01

    The first real-time profile control experiments integrating magnetic and kinetic variables were performed on DIII-D in view of regulating and extrapolating advanced tokamak scenarios to steady-state devices and burning plasma experiments. Device-specific, control-oriented models were obtained from experimental data using a generic two-time-scale method that was validated on JET, JT-60U and DIII-D under the framework of the International Tokamak Physics Activity for Integrated Operation Scenarios (Moreau et al 2011 Nucl. Fusion 51 063009). On DIII-D, these data-driven models were used to synthesize integrated magnetic and kinetic profile controllers. The neutral beam injection (NBI), electron cyclotron current drive (ECCD) systems and ohmic coil provided the heating and current drive (H&CD) sources. The first control actuator was the plasma surface loop voltage (i.e. the ohmic coil), and the available beamlines and gyrotrons were grouped to form five additional H&CD actuators: co-current on-axis NBI, co-current off-axis NBI, counter-current NBI, balanced NBI and total ECCD power from all gyrotrons (with off-axis current deposition). Successful closed-loop experiments showing the control of (a) the poloidal flux profile, Ψ(x), (b) the poloidal flux profile together with the normalized pressure parameter, βN, and (c) the inverse of the safety factor profile, \\bar{\\iota}(x)=1/q(x) , are described.

  6. The 10th GCC Closed Forum: rejected data, GCP in bioanalysis, extract stability, BAV, processed batch acceptance, matrix stability, critical reagents, ELN and data integrity and counteracting fraud.

    PubMed

    Cape, Stephanie; Islam, Rafiq; Nehls, Corey; Allinson, John; Safavi, Afshin; Bennett, Patrick; Hulse, James; Beaver, Chris; Khan, Masood; Karnik, Shane; Caturla, Maria Cruz; Lowes, Steve; Iordachescu, Adriana; Silvestro, Luigi; Tayyem, Rabab; Shoup, Ron; Mowery, Stephanie; Keyhani, Anahita; Wakefield, Andrea; Li, Yinghe; Zimmer, Jennifer; Torres, Javier; Couerbe, Philippe; Khadang, Ardeshir; Bourdage, James; Hughes, Nicola; Awaiye, Kayode; Matthews, Brent; Fatmi, Saadya; Johnson, Rhonda; Satterwhite, Christina; Yu, Mathilde; Lin, Jenny; Cojocaru, Laura; Fiscella, Michele; Thomas, Eric; Kurylak, Kai; Kamerud, John; Lin, Zhongping John; Garofolo, Wei; Savoie, Natasha; Buonarati, Mike; Boudreau, Nadine; Williard, Clark; Liu, Yansheng; Warrino, Dominic; Kale, Prashant; Adcock, Neil; Shekar, Radha; O'Connor, Edward; Ritzen, Hanna; Sanchez, Christina; Hayes, Roger; Bouhajib, Mohammed; Savu, Simona Rizea; Stouffer, Bruce; Tabler, Edward; Tu, Jing; Briscoe, Chad; der Strate, Barry van; Rhyne, Paul; Conliffe, Phyllis; DuBey, Ira; Yamashita, Jim; Tang, Daniel; Groeber, Elizabeth; Vija, Jenifer; Malone, Michele; Osman, Mohamed

    2017-03-24

    The 10th Global CRO Council (GCC) Closed Forum was held in Orlando, FL, USA on 18 April 2016. In attendance were decision makers from international CRO member companies offering bioanalytical services. The objective of this meeting was for GCC members to meet and discuss scientific and regulatory issues specific to bioanalysis. The issues discussed at this closed forum included reporting data from failed method validation runs, GCP for clinical sample bioanalysis, extracted sample stability, biomarker assay validation, processed batch acceptance criteria, electronic laboratory notebooks and data integrity, Health Canada's Notice regarding replicates in matrix stability evaluations, critical reagents and regulatory approaches to counteract fraud. In order to obtain the pharma perspectives on some of these topics, the first joint CRO-Pharma Scientific Interchange Meeting was held on 12 November 2016, in Denver, Colorado, USA. The five topics discussed at this Interchange meeting were reporting data from failed method validation runs, GCP for clinical sample bioanalysis, extracted sample stability, processed batch acceptance criteria and electronic laboratory notebooks and data integrity. The conclusions from the discussions of these topics at both meetings are included in this report.

  7. LSST system analysis and integration task for an advanced science and application space platform

    NASA Technical Reports Server (NTRS)

    1980-01-01

    To support the development of an advanced science and application space platform (ASASP) requirements of a representative set of payloads requiring large separation distances selected from the Science and Applications Space Platform data base. These payloads were a 100 meter diameter atmospheric gravity wave antenna, a 100 meter by 100 meter particle beam injection experiment, a 2 meter diameter, 18 meter long astrometric telescope, and a 15 meter diameter, 35 meter long large ambient deployable IR telescope. A low earth orbit at 500 km altitude and 56 deg inclination was selected as being the best compromise for meeting payload requirements. Platform subsystems were defined which would support the payload requirements and a physical platform concept was developed. Structural system requirements which included utilities accommodation, interface requirements, and platform strength and stiffness requirements were developed. An attitude control system concept was also described. The resultant ASASP concept was analyzed and technological developments deemed necessary in the area of large space systems were recommended.

  8. Advanced sluicing system test report for single shell tank waste retrieval integrated testing

    SciTech Connect

    Berglin, E.J.

    1997-05-29

    This document describes the testing performed by ARD Environmental, Inc., and Los Alamos Technical Associates of the LATA/ARD Advanced Sluicing System, in support of ACTR Phase 1 activities. Testing was to measure the impact force and pressures of sluicing streams at three different distances, as measured by the Government supplied load cell. Simulated sluicing of large simulated salt cake and hard pan waste coupons was also performed. Due to operational difficulties experienced with the Government supplied load cell, no meaningful results with respect to sluice stream impact pressure distribution or stream coherence were obtained. Sluice testing using 3000 psi salt cake simulants measured waste retrieval rates of approximately 12 Ml/day (17.6 ft{sup 3}/hr). Rates as high as 314 m{sup 3}/day (463 ft{sup 3}/hr) were measured against the lower strength salt cake simulants.

  9. A flammability and combustion model for integrated accident analysis. [Advanced light water reactors

    SciTech Connect

    Plys, M.G.; Astleford, R.D.; Epstein, M. )

    1988-01-01

    A model for flammability characteristics and combustion of hydrogen and carbon monoxide mixtures is presented for application to severe accident analysis of Advanced Light Water Reactors (ALWR's). Flammability of general mixtures for thermodynamic conditions anticipated during a severe accident is quantified with a new correlation technique applied to data for several fuel and inertant mixtures and using accepted methods for combining these data. Combustion behavior is quantified by a mechanistic model consisting of a continuity and momentum balance for the burned gases, and considering an uncertainty parameter to match the idealized process to experiment. Benchmarks against experiment demonstrate the validity of this approach for a single recommended value of the flame flux multiplier parameter. The models presented here are equally applicable to analysis of current LWR's. 21 refs., 16 figs., 6 tabs.

  10. Advances in Integrative Nanomedicine for Improving Infectious Disease Treatment in Public Health

    PubMed Central

    Bell, Iris R.; Schwartz, Gary E.; Boyer, Nancy N.; Koithan, Mary; Brooks, Audrey J.

    2012-01-01

    Introduction Infectious diseases present public health challenges worldwide. An emerging integrative approach to treating infectious diseases is using nanoparticle (NP) forms of traditional and alternative medicines. Advantages of nanomedicine delivery methods include better disease targeting, especially for intracellular pathogens, ability to cross membranes and enter cells, longer duration drug action, reduced side effects, and cost savings from lower doses. Methods We searched Pubmed articles in English with keywords related to nanoparticles and nanomedicine. Nanotechnology terms were also combined with keywords for drug delivery, infectious diseases, herbs, antioxidants, homeopathy, and adaptation. Results NPs are very small forms of material substances, measuring 1–100 nanometers along at least one dimension. Compared with bulk forms, NPs’ large ratio of surface-area-to-volume confers increased reactivity and adsorptive capacity, with unique electromagnetic, chemical, biological, and quantum properties. Nanotechnology uses natural botanical agents for green manufacturing of less toxic NPs. Discussion Nanoparticle herbs and nutriceuticals can treat infections via improved bioavailability and antiinflammatory, antioxidant, and immunomodulatory effects. Recent studies demonstrate that homeopathic medicines may contain source and/or silica nanoparticles because of their traditional manufacturing processes. Homeopathy, as a form of nanomedicine, has a promising history of treating epidemic infectious diseases, including malaria, leptospirosis and HIV/AIDS, in addition to acute upper respiratory infections. Adaptive changes in the host’s complex networks underlie effects. Conclusions Nanomedicine is integrative, blending modern technology with natural products to reduce toxicity and support immune function. Nanomedicine using traditional agents from alternative systems of medicine can facilitate progress in integrative public health approaches to infectious

  11. Technology readiness assessment of advanced space engine integrated controls and health monitoring

    NASA Technical Reports Server (NTRS)

    Millis, Marc G.

    1991-01-01

    An evaluation is given for an integrated control and health monitoring system (ICHM) system that is designed to be used with hydrogen-oxygen rocket engines. The minimum required ICHM functions, system elements, technology readiness, and system cost are assessed for a system which permits the operation of H-O engines that are space-based, reusable, and descent throttleable. Based on the evaluation of the H-O ICHM, it is estimated that the minimum system requirements for demonstration on an engine system testbed will require an investment of 30 to 45 million dollars over six years.

  12. Conceptual Study of LSTAT Integration to Robotics and Other Advanced Medical Technologies

    DTIC Science & Technology

    2004-07-31

    of two factors: the timeframe within which it can be expected to be available for integration to NG-LSTAT and the R &D effort needed to maturate the...timeframe. For example, even though the technical R &D may be complete, it may be several years for a technology to be available if it has not yet been...frame R &D required 1=none 5=much Inter- dependency 1=low, 5=high digital x-ray imaging locate & measure internal bleeding; locate shrapnel

  13. Nationwide Buildings Energy Research enabled through an integrated Data Intensive Scientific Workflow and Advanced Analysis Environment

    SciTech Connect

    Kleese van Dam, Kerstin; Lansing, Carina S.; Elsethagen, Todd O.; Hathaway, John E.; Guillen, Zoe C.; Dirks, James A.; Skorski, Daniel C.; Stephan, Eric G.; Gorrissen, Willy J.; Gorton, Ian; Liu, Yan

    2014-01-28

    Modern workflow systems enable scientists to run ensemble simulations at unprecedented scales and levels of complexity, allowing them to study system sizes previously impossible to achieve, due to the inherent resource requirements needed for the modeling work. However as a result of these new capabilities the science teams suddenly also face unprecedented data volumes that they are unable to analyze with their existing tools and methodologies in a timely fashion. In this paper we will describe the ongoing development work to create an integrated data intensive scientific workflow and analysis environment that offers researchers the ability to easily create and execute complex simulation studies and provides them with different scalable methods to analyze the resulting data volumes. The integration of simulation and analysis environments is hereby not only a question of ease of use, but supports fundamental functions in the correlated analysis of simulation input, execution details and derived results for multi-variant, complex studies. To this end the team extended and integrated the existing capabilities of the Velo data management and analysis infrastructure, the MeDICi data intensive workflow system and RHIPE the R for Hadoop version of the well-known statistics package, as well as developing a new visual analytics interface for the result exploitation by multi-domain users. The capabilities of the new environment are demonstrated on a use case that focusses on the Pacific Northwest National Laboratory (PNNL) building energy team, showing how they were able to take their previously local scale simulations to a nationwide level by utilizing data intensive computing techniques not only for their modeling work, but also for the subsequent analysis of their modeling results. As part of the PNNL research initiative PRIMA (Platform for Regional Integrated Modeling and Analysis) the team performed an initial 3 year study of building energy demands for the US Eastern

  14. Development of advanced blanket performance under irradiation and system integration through JUPITER-II project

    SciTech Connect

    Abe, Katsunori; Kohyama, Akira; Tanaka, Satoru; Namba, C.; Terai, T.; Kunugi, T.; Muroga, Takeo; Hasegawa, Akira; Sagara, A.; Berk, S.; Zinkle, Steven J.; Sze, Dai Kai; Petti, D. A.; Abdou, Mohamed A.; Morley, Neil B.; Kurtz, Richard J.; Snead, Lance L.; Ghoniem, Nasr M.

    2008-12-01

    This report describes an outline of the activities of the JUPITER-II collaboration (japan-USA program of Irradiation/Integration test for Fusion Research-II), Which has bee carried out through six years (2001-2006) under Phase 4 of the collabroation implemented by Amendment 4 of Annex 1 to the DOE (United States Department of Energy)-MEXT (Ministry of Education ,Culture,Sports,Science and Technology) Cooperation. This program followed the RTNS-II Program (Phase1:1982-4986), the FFTF/MOTA Program (Phase2:1987-1994) and the JUPITER Program (Phase 3: 1995-2000) [1].

  15. Advanced reactor development: The LMR integral fast reactor program at Argonne

    SciTech Connect

    Till, C.E.

    1990-01-01

    Reactor technology for the 21st Century must develop with characteristics that can now be seen to be important for the future, quite different from the things when the fundamental materials and design choices for present reactors were made in the 1950s. Argonne National Laboratory, since 1984, has been developing the Integral Fast Reactor (IFR). This paper will describe the way in which this new reactor concept came about; the technical, public acceptance, and environmental issues that are addressed by the IFR; the technical progress that has been made; and our expectations for this program in the near term. 3 figs.

  16. Integrated Physics Advances in Simulation of Wave Interactions with Extended MHD Phenomena

    SciTech Connect

    Batchelor, Donald B; D'Azevedo, Eduardo; Bateman, Glenn; Bernholdt, David E; Berry, Lee A; Bonoli, P.; Bramley, R; Breslau, J.; Chance, M.; Chen, J.; Choi, M.; Elwasif, Wael R; Fu, GuoYong; Harvey, R. W.; Houlberg, Wayne A; Jaeger, Erwin Frederick; Jardin, S. C.; Keyes, David E; Klasky, Scott A; Kruger, Scott; Ku, Long-Poe; McCune, Douglas; Schissel, D.; Schnack, D.; Wright, J. C.

    2007-06-01

    The broad scientific objectives of the SWIM (Simulation of Wave Interaction with MHD) project are: (A) To improve our understanding of interactions that both RF wave and particle sources have on extended-MHD phenomena, and to substantially improve our capability for predicting and optimizing the performance of burning plasmas in devices such as ITER: and (B) To develop an integrated computational system for treating multi-physics phenomena with the required flexibility and extensibility to serve as a prototype for the Fusion Simulation Project (FSP).

  17. Integration of Stem Cell to Chondrocyte-Derived Cartilage Matrix in Healthy and Osteoarthritic States in the Presence of Hydroxyapatite Nanoparticles

    PubMed Central

    Dua, Rupak; Comella, Kristin; Butler, Ryan; Castellanos, Glenda; Brazille, Bryn; Claude, Andrew; Agarwal, Arvind; Liao, Jun; Ramaswamy, Sharan

    2016-01-01

    We investigated the effectiveness of integrating tissue engineered cartilage derived from human bone marrow derived stem cells (HBMSCs) to healthy as well as osteoarthritic cartilage mimics using hydroxyapatite (HA) nanoparticles immersed within a hydrogel substrate. Healthy and diseased engineered cartilage from human chondrocytes (cultured in agar gels) were integrated with human bone marrow stem cell (HBMSC)-derived cartilaginous engineered matrix with and without HA, and evaluated after 28 days of growth. HBMSCs were seeded within photopolymerizable poly (ethylene glycol) diacrylate (PEGDA) hydrogels. In addition, we also conducted a preliminary in vivo evaluation of cartilage repair in rabbit knee chondral defects treated with subchondral bone microfracture and cell-free PEGDA with and without HA. Under in vitro conditions, the interfacial shear strength between tissue engineered cartilage derived from HBMSCs and osteoarthritic chondrocytes was significantly higher (p < 0.05) when HA nanoparticles were incorporated within the HBMSC culture system. Histological evidence confirmed a distinct spatial transition zone, rich in calcium phosphate deposits. Assessment of explanted rabbit knees by histology demonstrated that cellularity within the repair tissues that had filled the defects were of significantly higher number (p < 0.05) when HA was used. HA nanoparticles play an important role in treating chondral defects when osteoarthritis is a co-morbidity. We speculate that the calcified layer formation at the interface in the osteoarthritic environment in the presence of HA is likely to have attributed to higher interfacial strength found in vitro. From an in vivo standpoint, the presence of HA promoted cellularity in the tissues that subsequently filled the chondral defects. This higher presence of cells can be considered important in the context of accelerating long-term cartilage remodeling. We conclude that HA nanoparticles play an important role in engineered

  18. Precision measurement of the top quark mass in the lepton + jets channel using a matrix element method with Quasi-Monte Carlo integration

    SciTech Connect

    Lujan, Paul Joseph

    2009-12-01

    This thesis presents a measurement of the top quark mass obtained from p$\\bar{p}$ collisions at √s = 1.96 TeV at the Fermilab Tevatron using the CDF II detector. The measurement uses a matrix element integration method to calculate a t$\\bar{t}$ likelihood, employing a Quasi-Monte Carlo integration, which enables us to take into account effects due to finite detector angular resolution and quark mass effects. We calculate a t$\\bar{t}$ likelihood as a 2-D function of the top pole mass mt and ΔJES, where ΔJES parameterizes the uncertainty in our knowledge of the jet energy scale; it is a shift applied to all jet energies in units of the jet-dependent systematic error. By introducing ΔJES into the likelihood, we can use the information contained in W boson decays to constrain ΔJES and reduce error due to this uncertainty. We use a neural network discriminant to identify events likely to be background, and apply a cut on the peak value of individual event likelihoods to reduce the effect of badly reconstructed events. This measurement uses a total of 4.3 fb-1 of integrated luminosity, requiring events with a lepton, large ET, and exactly four high-energy jets in the pseudorapidity range |η| < 2.0, of which at least one must be tagged as coming from a b quark. In total, we observe 738 events before and 630 events after applying the likelihood cut, and measure mt = 172.6 ± 0.9 (stat.) ± 0.7 (JES) ± 1.1 (syst.) GeV/c2, or mt = 172.6 ± 1.6 (tot.) GeV/c2.

  19. Application Evaluation of Air-Sparging and Aerobic Bioremediation in PAM(Physical Aquifer Model) with Advanced and Integrated Module

    NASA Astrophysics Data System (ADS)

    Hong, U.; Ko, J.; Park, S.; Kim, Y.; Kwon, S.; Ha, J.; Lim, J.; Han, K.

    2010-12-01

    It is generally difficult for a single process to remediate contaminated soil and groundwater contaminated with various organic compounds such as total petroleum hydrocarbon (TPH), benzene, toluene, ethylbenzene, xylene (BTEX), chlorinated aliphatic hydrocarbons (CAHs) because those contaminants show different chemical properties in two phases (e.g. soil and groundwater). Therefore, it is necessary to design an in-situ remediation system which can remove various contaminants simultaneously. For the purpose, we constructed integrated well module which can apply several remediation process such as air sparging, soil vapor extraction, and bioventing. The advanced integrated module consisted of three main parts such as head, body, and end cap. First of all, head part has three 3.6-cm-diameter stainless lines and can simultaneously inject air or extract NAPL, respectively. Secondly, body part has two 10-cm-height screen intervals with 100-mesh stainless inserts for unsaturated and smear zone. Lastly, we constructed three different sizes of end caps for injection and extraction from a saturated zone. We assumed that the integrated module can play bioremediation, air sparging, cometabolic sparging, chemical oxidation. In this study, we examined application of air sparing and aerobic bioremediation of toluene in Physical Aquifer Model (PAM) with an integrated well module. During air sparging experiments, toluene concentration decreased by injection of air. In addition, we accomplished bioremediation experiment to evaluate removal of toluene by indigenous microbes in PAM with continuous air injection. From the two experiments result, we confirmed that air sparging and aerobic bioremediation processes can be simultaneously carried out by an intergrated well module.

  20. Advances in the integration of transcriptional regulatory information into genome-scale metabolic models.

    PubMed

    Vivek-Ananth, R P; Samal, Areejit

    2016-09-01

    A major goal of systems biology is to build predictive computational models of cellular metabolism. Availability of complete genome sequences and wealth of legacy biochemical information has led to the reconstruction of genome-scale metabolic networks in the last 15 years for several organisms across the three domains of life. Due to paucity of information on kinetic parameters associated with metabolic reactions, the constraint-based modelling approach, flux balance analysis (FBA), has proved to be a vital alternative to investigate the capabilities of reconstructed metabolic networks. In parallel, advent of high-throughput technologies has led to the generation of massive amounts of omics data on transcriptional regulation comprising mRNA transcript levels and genome-wide binding profile of transcriptional regulators. A frontier area in metabolic systems biology has been the development of methods to integrate the available transcriptional regulatory information into constraint-based models of reconstructed metabolic networks in order to increase the predictive capabilities of computational models and understand the regulation of cellular metabolism. Here, we review the existing methods to integrate transcriptional regulatory information into constraint-based models of metabolic networks.

  1. Recent advances in nanoplasmonic biosensors: applications and lab-on-a-chip integration

    NASA Astrophysics Data System (ADS)

    Lopez, Gerardo A.; Estevez, M.-Carmen; Soler, Maria; Lechuga, Laura M.

    2017-01-01

    Motivated by the recent progress in the nanofabrication field and the increasing demand for cost-effective, portable, and easy-to-use point-of-care platforms, localized surface plasmon resonance (LSPR) biosensors have been subjected to a great scientific interest in the last few years. The progress observed in the research of this nanoplasmonic technology is remarkable not only from a nanostructure fabrication point of view but also in the complete development and integration of operative devices and their application. The potential benefits that LSPR biosensors can offer, such as sensor miniaturization, multiplexing opportunities, and enhanced performances, have quickly positioned them as an interesting candidate in the design of lab-on-a-chip (LOC) optical biosensor platforms. This review covers specifically the most significant achievements that occurred in recent years towards the integration of this technology in compact devices, with views of obtaining LOC devices. We also discuss the most relevant examples of the use of the nanoplasmonic biosensors for real bioanalytical and clinical applications from assay development and validation to the identification of the implications, requirements, and challenges to be surpassed to achieve fully operative devices.

  2. Recent advances in nanoplasmonic biosensors: applications and lab-on-a-chip integration

    NASA Astrophysics Data System (ADS)

    Lopez, Gerardo A.; Estevez, M.-Carmen; Soler, Maria; Lechuga, Laura M.

    2016-08-01

    Motivated by the recent progress in the nanofabrication field and the increasing demand for cost-effective, portable, and easy-to-use point-of-care platforms, localized surface plasmon resonance (LSPR) biosensors have been subjected to a great scientific interest in the last few years. The progress observed in the research of this nanoplasmonic technology is remarkable not only from a nanostructure fabrication point of view but also in the complete development and integration of operative devices and their application. The potential benefits that LSPR biosensors can offer, such as sensor miniaturization, multiplexing opportunities, and enhanced performances, have quickly positioned them as an interesting candidate in the design of lab-on-a-chip (LOC) optical biosensor platforms. This review covers specifically the most significant achievements that occurred in recent years towards the integration of this technology in compact devices, with views of obtaining LOC devices. We also discuss the most relevant examples of the use of the nanoplasmonic biosensors for real bioanalytical and clinical applications from assay development and validation to the identification of the implications, requirements, and challenges to be surpassed to achieve fully operative devices.

  3. Advanced imaging with dynamic focus and extended depth using integrated FR4 platform.

    PubMed

    Isikman, Serhan O; Varghese, Samuel; Abdullah, Fahd; Augustine, Robin; Sprague, Randy B; Andron, Voytek; Urey, Hakan

    2009-09-14

    A two-degrees-of-freedom scanned beam imaging system with large dynamic range and dynamic focusing is demonstrated. The laser diode, photo-detector and the optical components are integrated on a moving platform that is made of FR4 (Flame-Retardant 4), a common polymeric substrate used in printed circuit boards. A scan angle of 52 degrees is demonstrated at 60 Hz resonant frequency while the laser is moved 250 um in the out-of-plane direction to achieve dynamic focusing. The laser is scanned by physically rotating the laser diode and the collection optics to achieve high signal-to-noise ratio and good ambient light rejection. The collection optics is engineered such that the collection efficiency decreases when collecting light from close distances to avoid detector saturation. The detection range is extended from contact distance up to 600 mm while the collected power level varies only by a factor of 30 within this long range. Slight modifications will allow increasing the detection range up to one meter. This is the first demonstration of a laser scan engine with such a high degree of integration of electronics, optoelectronics, optics and micromechanics on the same platform.

  4. Current advances of integrated processes combining chemical absorption and biological reduction for NO x removal from flue gas.

    PubMed

    Zhang, Shihan; Chen, Han; Xia, Yinfeng; Liu, Nan; Lu, Bi-Hong; Li, Wei

    2014-10-01

    Anthropogenic nitrogen oxides (NO x ) emitted from the fossil-fuel-fired power plants cause adverse environmental issues such as acid rain, urban ozone smoke, and photochemical smog. A novel chemical absorption-biological reduction (CABR) integrated process under development is regarded as a promising alternative to the conventional selective catalytic reduction processes for NO x removal from the flue gas because it is economic and environmentally friendly. CABR process employs ferrous ethylenediaminetetraacetate [Fe(II)EDTA] as a solvent to absorb the NO x following microbial denitrification of NO x to harmless nitrogen gas. Meanwhile, the absorbent Fe(II)EDTA is biologically regenerated to sustain the adequate NO x removal. Compared with conventional denitrification process, CABR not only enhances the mass transfer of NO from gas to liquid phase but also minimize the impact of oxygen on the microorganisms. This review provides the current advances of the development of the CABR process for NO x removal from the flue gas.

  5. Integration Process Development for Improved Compatibility with Organic Non-Porous Ultralow-k Dielectric Fluorocarbon on Advanced Cu Interconnects

    NASA Astrophysics Data System (ADS)

    Gu, Xun; Tomita, Yugo; Nemoto, Takenao; Miyatani, Kotaro; Saito, Akane; Kobayashi, Yasuo; Teramoto, Akinobu; Kuroda, Rihito; Kuroki, Shin-Ichiro; Kawase, Kazumasa; Nozawa, Toshihisa; Matsuoka, Takaaki; Sugawa, Shigetoshi; Ohmi, Tadahiro

    2012-05-01

    Integration of an organic non-porous ultralow-k dielectric, fluorocarbon (k= 2.2), into advanced Cu interconnects was demonstrated. The challenges of process-induced damage, such as delamination and variances of both the structure and electrical properties of the fluorocarbon during fabrication, were investigated on Cu/fluorocarbon damascene interconnects. A titanium-based barrier layer, instead of a tantalum-based barrier layer, was used to avoid delamination between Cu and fluorocarbon in Cu/fluorocarbon interconnects. A moisture-hermetic dielectric protective layer was also effective to avoid damage induced by wet chemical cleaning. On the other hand, a post-etching nitrogen plasma treatment to form a stable protective layer on the surface of the fluorocarbon was proposed for the practical minimization of damage introduction to fluorocarbon in the following damascene process, such as post-etching cleaning.

  6. Improved estimation of intrinsic growth r(max) for long-lived species: integrating matrix models and allometry.

    PubMed

    Dillingham, Peter W; Moore, Jeffrey E; Fletcher, David; Cortes, Enric; Curtis, K Alexandra; James, Kelsey C; Lewison, Rebecca L

    2016-01-01

    Intrinsic population growth rate (r(max)) is an important parameter for many ecological applications, such as population risk assessment and harvest management. However, r(max) can be a difficult parameter to estimate, particularly for long-lived species, for which appropriate life table data or abundance time series are typically not obtainable. We describe a method for improving estimates of r(max) for long-lived species by integrating life-history theory (allometric models) and population-specific demographic data (life table models). Broad allometric relationships, such as those between life history traits and body size, have long been recognized by ecologists. These relationships are useful for deriving theoretical expectations for r(max), but r(max) for real populations may vary from simple allometric estimators for "archetypical" species of a given taxa or body mass. Meanwhile, life table approaches can provide population-specific estimates of r(max) from empirical data, but these may have poor precision from imprecise and missing vital rate parameter estimates. Our method borrows strength from both approaches to provide estimates that are consistent with both life-history theory and population-specific empirical data, and are likely to be more robust than estimates provided by either method alone. Our method uses an' allometric constant: the product of r(max) and the associated generation time for a stable-age population growing at this rate. We conducted a meta-analysis to estimate the mean and variance of this allometric constant across well-studied populations from three vertebrate taxa (birds, mammals, and elasmobranchs) and found that the mean was approximately 1.0 for each taxon. We used these as informative Bayesian priors that determine how much to "shrink" imprecise vital rate estimates for a data-limited population toward the allometric expectation. The approach ultimately provides estimates of r(max) (and other vital rates) that reflect a balance

  7. Potential for integrated optical circuits in advanced aircraft with fiber optic control and monitoring systems

    NASA Technical Reports Server (NTRS)

    Baumbick, Robert

    1991-01-01

    The current Fiber Optic Control System Integration (FOCSI) program is reviewed and the potential role of IOCs in FOCSI applications is described. The program is intended for building, environmentally testing, and demonstrating operation in piggyback flight tests (no active control with optical sensors) of a representative sensor system for propulsion and flight control. The optical sensor systems are to be designed to fit alongside the bill-of-materials sensors for comparison. The sensors are to be connected to electrooptic architecture cards which will contain the optical sources and detectors to recover and process the modulated optical signals. The FOCSI program is to collect data on the behavior of passive optical sensor systems in a flight environment and provide valuable information on installation amd maintenance problems for this technology, as well as component survivability (light sources, connectors, optical fibers, etc.).

  8. Alignment and integration of large optical systems based on advanced metrology.

    NASA Astrophysics Data System (ADS)

    Aliverti, M.; Riva, M.; Moschetti, M.; Pariani, G.; Genoni, M.; Zerbi, F. M.

    Optical alignment is a key activity in opto-mechanical system Integration. Traditional techniques require adjustable mounting, driven by optical references that allows the tuning of the optics position along all 6 Degree of Freedom. Nevertheless, the required flexibility imposes reduced stiffness and consequently less stability of the system. The Observatory of Brera (OAB) started few years ago a research activity focused onto the overcoming of this limits exploiting the high metrology performances of Coordinate Measuring Machines (CMM) with the main objectives of relax the manufacturing tolerances and maximize mounting stiffness. Through the T-REX grants, OAB acquired all the instrumentation needed for that activity furthermore considering the ESPRESSO project training and testing also oriented to large scale instrumentation like the E-ELT one. We will present in this paper the definition of the VLTs convergence point and the feasibility study of large mirrors alignment done by mechanical measurements methods. skip=8pt

  9. 3D Navigation and Integrated Hazard Display in Advanced Avionics: Workload, Performance, and Situation Awareness

    NASA Technical Reports Server (NTRS)

    Wickens, Christopher D.; Alexander, Amy L.

    2004-01-01

    We examined the ability for pilots to estimate traffic location in an Integrated Hazard Display, and how such estimations should be measured. Twelve pilots viewed static images of traffic scenarios and then estimated the outside world locations of queried traffic represented in one of three display types (2D coplanar, 3D exocentric, and split-screen) and in one of four conditions (display present/blank crossed with outside world present/blank). Overall, the 2D coplanar display best supported both vertical (compared to 3D) and lateral (compared to split-screen) traffic position estimation performance. Costs of the 3D display were associated with perceptual ambiguity. Costs of the split screen display were inferred to result from inappropriate attention allocation. Furthermore, although pilots were faster in estimating traffic locations when relying on memory, accuracy was greatest when the display was available.

  10. Integrating advanced writing content into a scholarly inquiry in nursing course.

    PubMed

    Mandleco, Barbara L; Bohn, Christina; Callister, Lynn C; Lassetter, Jane; Carlton, Troy

    2012-02-17

    Since there are few data examining methods to help students learn to write in a scholarly manner, the purposes of this project were to (1) evaluate students' learning of writing content integrated into a Scholarly Inquiry in Nursing course by examining differences in scores on a writing assessment taken at the beginning and end of the course; and (2) examine student confidence ratings relative to writing to see if it improved during the course. After obtaining IRB approval and informed consent, the CLIPS pre and post assessment mean scores of 82 students in a Scholarly Inquiry in Nursing course were compared using the Wilcoxon signed-rank test. Confidence ratings in formal and informal writing were also obtained from a subsample of 47 students. Mean scores improved in 12 out of 26 assessment categories related to punctuation, correct usage of words, and sentence construction. Student mean confidence ratings increased each month.

  11. Automated, Miniaturized and Integrated Quality Control-on-Chip (QC-on-a-Chip) for Advanced Cell Therapy Applications

    NASA Astrophysics Data System (ADS)

    Wartmann, David; Rothbauer, Mario; Kuten, Olga; Barresi, Caterina; Visus, Carmen; Felzmann, Thomas; Ertl, Peter

    2015-09-01

    The combination of microfabrication-based technologies with cell biology has laid the foundation for the development of advanced in vitro diagnostic systems capable of evaluating cell cultures under defined, reproducible and standardizable measurement conditions. In the present review we describe recent lab-on-a-chip developments for cell analysis and how these methodologies could improve standard quality control in the field of manufacturing cell-based vaccines for clinical purposes. We highlight in particular the regulatory requirements for advanced cell therapy applications using as an example dendritic cell-based cancer vaccines to describe the tangible advantages of microfluidic devices that overcome most of the challenges associated with automation, miniaturization and integration of cell-based assays. As its main advantage lab-on-a-chip technology allows for precise regulation of culturing conditions, while simultaneously monitoring cell relevant parameters using embedded sensory systems. State-of-the-art lab-on-a-chip platforms for in vitro assessment of cell cultures and their potential future applications for cell therapies and cancer immunotherapy are discussed in the present review.

  12. Integration and Exploitation of Advanced Visualization and Data Technologies to Teach STEM Subjects

    NASA Astrophysics Data System (ADS)

    Brandon, M. A.; Garrow, K. H.

    2014-12-01

    We live in an age where the volume of content available online to the general public is staggering. Integration of data from new technologies gives us amazing educational opportunities when appropriate narratives are provided. We prepared a distance learning credit bearing module that showcased many currently available data sets and state of the art technologies. It has been completed by many thousands of students with good feedback. Module highlights were the wide ranging and varied online activities which taught a wide range of STEM content. For example: it is well known that on Captain Scott's Terra Nova Expedition 1910-13, three researchers completed the "the worst journey in the world" to study emperor penguins. Using their primary records and clips from location filmed television documentaries we can tell their story and the reasons why it was important. However using state of the art content we can go much further. Using satellite data students can trace the path the researchers took and observe the penguin colony that they studied. Linking to modern Open Access literature students learn how they can estimate the numbers of animals in this and similar locations. Then by linking to freely available data from Antarctic Automatic Weather Stations students can learn quantitatively about the climatic conditions the animals are enduring in real time. They can then download and compare this with the regional climatic record to see if their observations are what could be expected. By considering the environment the penguins live in students can be taught about the evolutionary and behavioural adaptations the animals have undergone to survive. In this one activity we can teach a wide range of key learning points in an engaging and coherent way. It opened some students' eyes to the range of possibilities available to learn about our, and other planets. The addition and integration of new state of the art techniques and data sets only increases the opportunities to

  13. Integrating reconstructed scatterometer and advanced very high resolution radiometer data for tropical forest inventory

    NASA Astrophysics Data System (ADS)

    Hardin, Perry J.; Long, David G.

    1995-11-01

    A scientific effort is currently underway to assess tropical forest degradation and its potential impact on Earth's climate. Because of the large continental regions involved, Advanced Very High Resolution Radiometer (AVHRR) imagery and its derivative vegetation index products with resolutions between 1 and 12 km are typically used to inventory the Earth's equatorial vegetation. Archival AVHRR imagery is also used to obtain a temporal baseline of historical forest extent. Recently however, 50-km Seasat-A Scatterometer (SASS) Ku-band imagery (acquired in 1978) has been reconstructed to approximately equals 4-km resolution, making it a supplement to AVHRR imagery for historical vegetation assessment. In order to test the utility of reconstructed Ku-band scatterometer imagery for this purpose, seasonal AVHRR vegetation index and SASS images of identical resolutions were constructed. Using the imagery, discrimination experiments involving 18 vegetation categories were conducted for a central South America study area. The results of these experiments indicate that AVHRR vegetation- index images are slightly superior to reconstructed SASS images for differentiating between equatorial vegetation classes when used alone. However, combining the scatterometer imagery with the vegetation-index images provides discrimination superior to any other combination of the data sets. Using the two data sets together, 90.3% of the test data could be correctly classified into broad classes of equatorial forest, degraded woodland/forest, woodland/savanna, and caatinga.

  14. Analysis of line integrated electron density using plasma position data on Korea Superconducting Tokamak Advanced Researcha)

    NASA Astrophysics Data System (ADS)

    Nam, Y. U.; Chung, J.

    2010-10-01

    A 280 GHz single-channel horizontal millimeter-wave interferometer system has been installed for plasma electron density measurements on the Korea Superconducting Tokamak Advanced Research (KSTAR) device. This system has a triangular beam path that does not pass through the plasma axis due to geometrical constraints in the superconducting tokamak. The term line density on KSTAR has a different meaning from the line density of other tokamaks. To estimate the peak density and the mean density from the measured line density, information on the position of the plasma is needed. The information has been calculated from tangentially viewed visible images using the toroidal symmetry of the plasma. Interface definition language routines have been developed for this purpose. The calculated plasma position data correspond well to calculation results from magnetic analysis. With the position data and an estimated plasma profile, the peak density and the mean density have been obtained from the line density. From these results, changes of plasma density themselves can be separated from effects of the plasma movements, so they can give valuable information on the plasma status.

  15. BELFA: an integrated bridge loading truck for application of the advanced test method EXTRA

    NASA Astrophysics Data System (ADS)

    Schwesinger, Peter; Thor, Bianca

    2001-08-01

    In Germany a research group from four universities has developed an advanced experimental supported objective condition assessment method for concrete bridges, called 'EXTRA'. This method is useable preferably in cases, where conventional assessment methods cannot be applied successfully. In the past more than 200 bridges and buildings were evaluated regarding their real actual load bearing capacity using this method. An authorized guideline for the practical use at concrete structures is available. Until now the process of mounting and dismantling the loading structure was the most time-consuming part of such a test and influenced testing costs and duration of traffic interruption decisive. This background and the technical conception for development and testing the truck prototype with a maximum total loading capacity of 150 t will be introduced. Main subjects are a brief characterization of EXTRA method, the truck structure, the hydraulic loading system, measurement equipment and control facilities as well as the loading regime and belonging on-line information controlling the structure response as main parts of the testing process. The concept of the future employment of such trucks and ideas for a co-operation of consulting offices, owners and authorities will be short discussed. First testing experiences and an outlook on further activities will be given. Acknowledgments finalize the contribution.

  16. Developing a common framework for integrated solid waste management advances in Managua, Nicaragua.

    PubMed

    Olley, Jane E; IJgosse, Jeroen; Rudin, Victoria; Alabaster, Graham

    2014-09-01

    This article describes the municipal solid waste management system in Managua, Nicaragua. It updates an initial profile developed by the authors for the 2010 UN-HABITAT publication Solid Waste Management in the World's Cities and applies the methodology developed in that publication. In recent years, the municipality of Managua has been the beneficiary of a range of international cooperation projects aimed at improving municipal solid waste management in the city. The article describes how these technical assistance and infrastructure investments have changed the municipal solid waste management panorama in the city and analyses the sustainability of these changes. The article concludes that by working closely with the municipal government, the UN-HABITAT project Strengthening Capacities for Solid Waste Management in Managua was able to unite these separate efforts and situate them within a strategic framework to guide the evolution of the municipal solid waste management system in the forthcoming years. The creation of this multi-stakeholder platform allowed for the implementation of joint activities and ensured coherence in the products generated by the different projects. This approach could be replicated in other cities and in other sectors with similar effect. Developing a long term vision was essential for the advancement of municipal solid waste management in the city. Nevertheless, plan implementation may still be undermined by the pressures of the short term municipal administrative government, which emphasize operational over strategic investment.

  17. Advancing biopharmaceutical process development by system-level data analysis and integration of omics data.

    PubMed

    Schaub, Jochen; Clemens, Christoph; Kaufmann, Hitto; Schulz, Torsten W

    2012-01-01

    Development of efficient bioprocesses is essential for cost-effective manufacturing of recombinant therapeutic proteins. To achieve further process improvement and process rationalization comprehensive data analysis of both process data and phenotypic cell-level data is essential. Here, we present a framework for advanced bioprocess data analysis consisting of multivariate data analysis (MVDA), metabolic flux analysis (MFA), and pathway analysis for mapping of large-scale gene expression data sets. This data analysis platform was applied in a process development project with an IgG-producing Chinese hamster ovary (CHO) cell line in which the maximal product titer could be increased from about 5 to 8 g/L.Principal component analysis (PCA), k-means clustering, and partial least-squares (PLS) models were applied to analyze the macroscopic bioprocess data. MFA and gene expression analysis revealed intracellular information on the characteristics of high-performance cell cultivations. By MVDA, for example, correlations between several essential amino acids and the product concentration were observed. Also, a grouping into rather cell specific productivity-driven and process control-driven processes could be unraveled. By MFA, phenotypic characteristics in glycolysis, glutaminolysis, pentose phosphate pathway, citrate cycle, coupling of amino acid metabolism to citrate cycle, and in the energy yield could be identified. By gene expression analysis 247 deregulated metabolic genes were identified which are involved, inter alia, in amino acid metabolism, transport, and protein synthesis.

  18. Integrated Graphics Operations and Analysis Lab Development of Advanced Computer Graphics Algorithms

    NASA Technical Reports Server (NTRS)

    Wheaton, Ira M.

    2011-01-01

    The focus of this project is to aid the IGOAL in researching and implementing algorithms for advanced computer graphics. First, this project focused on porting the current International Space Station (ISS) Xbox experience to the web. Previously, the ISS interior fly-around education and outreach experience only ran on an Xbox 360. One of the desires was to take this experience and make it into something that can be put on NASA s educational site for anyone to be able to access. The current code works in the Unity game engine which does have cross platform capability but is not 100% compatible. The tasks for an intern to complete this portion consisted of gaining familiarity with Unity and the current ISS Xbox code, porting the Xbox code to the web as is, and modifying the code to work well as a web application. In addition, a procedurally generated cloud algorithm will be developed. Currently, the clouds used in AGEA animations and the Xbox experiences are a texture map. The desire is to create a procedurally generated cloud algorithm to provide dynamically generated clouds for both AGEA animations and the Xbox experiences. This task consists of gaining familiarity with AGEA and the plug-in interface, developing the algorithm, creating an AGEA plug-in to implement the algorithm inside AGEA, and creating a Unity script to implement the algorithm for the Xbox. This portion of the project was unable to be completed in the time frame of the internship; however, the IGOAL will continue to work on it in the future.

  19. Integrating organic micropollutant removal into tertiary filtration: Combining PAC adsorption with advanced phosphorus removal.

    PubMed

    Altmann, Johannes; Sperlich, Alexander; Jekel, Martin

    2015-11-01

    Direct addition of powdered activated carbon (PAC) to a deep-bed filter was investigated at pilot-scale as a single advanced treatment stage for simultaneous removal of organic micropollutants (OMPs) and phosphorus from secondary effluent. PAC doses of 10-50 mg/L were assessed with regard to their impacts on filter performance and removal of 15 selected OMPs over a period of 18 months. The PAC was effectively retained by the filter and had no negative effect on filter head loss. Filter runtime until particle breakthrough depended mainly on coagulant dose and did not decrease significantly due to the additional PAC load. Removal of suspended solids and phosphorus by coagulation was effective independent of the PAC dose. A PAC dose of 35 mg/L PAC was suitable to remove well-adsorbing OMPs (e.g. carbamazepine, diclofenac) by >80% and medium adsorbing OMPs (e.g. primidone, sulfamethoxazole) by 50-80%. Median removals were 50-80% for well-adsorbing and 30-50% for medium adsorbing OMPs with 20 mg/L PAC. Abatement of all OMPs was low (<50%) with 10 mg/L PAC, possibly because of the high effluent organic matter content (median dissolved organic carbon (DOC) concentrations of 11.2 mg/L). In addition to adsorptive removal, relevant concentration decreases of certain OMPs (e.g. 4-formylaminoantipyrine) were attributed to biological transformation in the filter. Adsorption onto accumulating PAC in the top layer of the filter bed led to improved OMP adsorption with increasing filter runtime. The comparison of OMP removal in the pilot filter with laboratory adsorption tests demonstrates that batch test results can be applied to estimate adsorptive OMP removal in real applications.

  20. Integrated processes for produced water polishing: Enhanced flotation/sedimentation combined with advanced oxidation processes.

    PubMed

    Jiménez, Silvia; Micó, María M; Arnaldos, Marina; Ferrero, Enrique; Malfeito, Jorge J; Medina, Francisco; Contreras, Sandra

    2017-02-01

    In this study, bench scale dissolved air flotation (DAF) and settling processes have been studied and compared to a novel flotation technology based on the use of glass microspheres of limited buoyancy and its combination with conventional DAF, (Enhanced DAF or E-DAF). They were evaluated as pretreatments for advanced oxidation processes (AOPs) to polish produced water (PW) for reuse purposes. Settling and E-DAF without air injection showed adequate turbidity and oil and grease (O&G) removals, with eliminations higher than 87% and 90% respectively, employing 70 mg L(-1) of FeCl3 and 83 min of settling time, and 57.9 mg L(-1) of FeCl3, 300 mg L(-1) of microspheres and a flocculation rate of 40 rpm in the E-DAF process. A linear correlation was observed between final O&G concentration and turbidity after E-DAF. In order to polish the O&G content of the effluent even further, to remove soluble compounds as phenol and to take advantage of residual iron after these treatments, Fenton and photo-Fenton reactions were essayed. After 6 h of the Fenton reaction at pH 3, the addition of 1660 mg L(-1) of H2O2 and 133 mg L(-1) of iron showed a maximum O&G elimination of 57.6% and a phenol removal up to 80%. Photo-Fenton process showed better results after 3 h, adding 600 mg L(-1) of H2O2 and 300 mg L(-1) of iron, at pH 3, with a higher fraction of elimination of the O&G content (73.7%) and phenol (95%) compared to the conventional Fenton process.