Sample records for advanced intelligent network

  1. Macromolecular networks and intelligence in microorganisms

    PubMed Central

    Westerhoff, Hans V.; Brooks, Aaron N.; Simeonidis, Evangelos; García-Contreras, Rodolfo; He, Fei; Boogerd, Fred C.; Jackson, Victoria J.; Goncharuk, Valeri; Kolodkin, Alexey

    2014-01-01

    Living organisms persist by virtue of complex interactions among many components organized into dynamic, environment-responsive networks that span multiple scales and dimensions. Biological networks constitute a type of information and communication technology (ICT): they receive information from the outside and inside of cells, integrate and interpret this information, and then activate a response. Biological networks enable molecules within cells, and even cells themselves, to communicate with each other and their environment. We have become accustomed to associating brain activity – particularly activity of the human brain – with a phenomenon we call “intelligence.” Yet, four billion years of evolution could have selected networks with topologies and dynamics that confer traits analogous to this intelligence, even though they were outside the intercellular networks of the brain. Here, we explore how macromolecular networks in microbes confer intelligent characteristics, such as memory, anticipation, adaptation and reflection and we review current understanding of how network organization reflects the type of intelligence required for the environments in which they were selected. We propose that, if we were to leave terms such as “human” and “brain” out of the defining features of “intelligence,” all forms of life – from microbes to humans – exhibit some or all characteristics consistent with “intelligence.” We then review advances in genome-wide data production and analysis, especially in microbes, that provide a lens into microbial intelligence and propose how the insights derived from quantitatively characterizing biomolecular networks may enable synthetic biologists to create intelligent molecular networks for biotechnology, possibly generating new forms of intelligence, first in silico and then in vivo. PMID:25101076

  2. The TENOR Architecture for Advanced Distributed Learning and Intelligent Training

    DTIC Science & Technology

    2002-01-01

    called TENOR, for Training Education Network on Request. There have been a number of recent learning systems developed that leverage off Internet...AG2-14256 AIAA 2002-1054 The TENOR Architecture for Advanced Distributed Learning and Intelligent Training C. Tibaudo, J. Kristl and J. Schroeder...COVERED 4. TITLE AND SUBTITLE The TENOR Architecture for Advanced Distributed Learning and Intelligent Training 5a. CONTRACT NUMBER F33615-00-M

  3. Wireless intelligent network: infrastructure before services?

    NASA Astrophysics Data System (ADS)

    Chu, Narisa N.

    1996-01-01

    The Wireless Intelligent Network (WIN) intends to take advantage of the Advanced Intelligent Network (AIN) concepts and products developed from wireline communications. However, progress of the AIN deployment has been slow due to the many barriers that exist in the traditional wireline carriers' deployment procedures and infrastructure. The success of AIN has not been truly demonstrated. The AIN objectives and directions are applicable to the wireless industry although the plans and implementations could be significantly different. This paper points out WIN characteristics in architecture, flexibility, deployment, and value to customers. In order to succeed, the technology driven AIN concept has to be reinforced by the market driven WIN services. An infrastructure suitable for the WIN will contain elements that are foreign to the wireline network. The deployment process is expected to seed with the revenue generated services. Standardization will be achieved by simplifying and incorporating the IS-41C, AIN, and Intelligent Network CS-1 recommendations. Integration of the existing and future systems impose the biggest challenge of all. Service creation has to be complemented with service deployment process which heavily impact the carriers' infrastructure. WIN deployment will likely start from an Intelligent Peripheral, a Service Control Point and migrate to a Service Node when sufficient triggers are implemented in the mobile switch for distributed call control. The struggle to move forward will not be based on technology, but rather on the impact to existing infrastructure.

  4. Association of Structural Global Brain Network Properties with Intelligence in Normal Aging

    PubMed Central

    Fischer, Florian U.; Wolf, Dominik; Scheurich, Armin; Fellgiebel, Andreas

    2014-01-01

    Higher general intelligence attenuates age-associated cognitive decline and the risk of dementia. Thus, intelligence has been associated with cognitive reserve or resilience in normal aging. Neurophysiologically, intelligence is considered as a complex capacity that is dependent on a global cognitive network rather than isolated brain areas. An association of structural as well as functional brain network characteristics with intelligence has already been reported in young adults. We investigated the relationship between global structural brain network properties, general intelligence and age in a group of 43 cognitively healthy elderly, age 60–85 years. Individuals were assessed cross-sectionally using Wechsler Adult Intelligence Scale-Revised (WAIS-R) and diffusion-tensor imaging. Structural brain networks were reconstructed individually using deterministic tractography, global network properties (global efficiency, mean shortest path length, and clustering coefficient) were determined by graph theory and correlated to intelligence scores within both age groups. Network properties were significantly correlated to age, whereas no significant correlation to WAIS-R was observed. However, in a subgroup of 15 individuals aged 75 and above, the network properties were significantly correlated to WAIS-R. Our findings suggest that general intelligence and global properties of structural brain networks may not be generally associated in cognitively healthy elderly. However, we provide first evidence of an association between global structural brain network properties and general intelligence in advanced elderly. Intelligence might be affected by age-associated network deterioration only if a certain threshold of structural degeneration is exceeded. Thus, age-associated brain structural changes seem to be partially compensated by the network and the range of this compensation might be a surrogate of cognitive reserve or brain resilience. PMID:24465994

  5. Brain Anatomical Network and Intelligence

    PubMed Central

    Li, Jun; Qin, Wen; Li, Kuncheng; Yu, Chunshui; Jiang, Tianzi

    2009-01-01

    Intuitively, higher intelligence might be assumed to correspond to more efficient information transfer in the brain, but no direct evidence has been reported from the perspective of brain networks. In this study, we performed extensive analyses to test the hypothesis that individual differences in intelligence are associated with brain structural organization, and in particular that higher scores on intelligence tests are related to greater global efficiency of the brain anatomical network. We constructed binary and weighted brain anatomical networks in each of 79 healthy young adults utilizing diffusion tensor tractography and calculated topological properties of the networks using a graph theoretical method. Based on their IQ test scores, all subjects were divided into general and high intelligence groups and significantly higher global efficiencies were found in the networks of the latter group. Moreover, we showed significant correlations between IQ scores and network properties across all subjects while controlling for age and gender. Specifically, higher intelligence scores corresponded to a shorter characteristic path length and a higher global efficiency of the networks, indicating a more efficient parallel information transfer in the brain. The results were consistently observed not only in the binary but also in the weighted networks, which together provide convergent evidence for our hypothesis. Our findings suggest that the efficiency of brain structural organization may be an important biological basis for intelligence. PMID:19492086

  6. Low Power Multi-Hop Networking Analysis in Intelligent Environments.

    PubMed

    Etxaniz, Josu; Aranguren, Gerardo

    2017-05-19

    Intelligent systems are driven by the latest technological advances in many different areas such as sensing, embedded systems, wireless communications or context recognition. This paper focuses on some of those areas. Concretely, the paper deals with wireless communications issues in embedded systems. More precisely, the paper combines the multi-hop networking with Bluetooth technology and a quality of service (QoS) metric, the latency. Bluetooth is a radio license-free worldwide communication standard that makes low power multi-hop wireless networking available. It establishes piconets (point-to-point and point-to-multipoint links) and scatternets (multi-hop networks). As a result, many Bluetooth nodes can be interconnected to set up ambient intelligent networks. Then, this paper presents the results of the investigation on multi-hop latency with park and sniff Bluetooth low power modes conducted over the hardware test bench previously implemented. In addition, the empirical models to estimate the latency of multi-hop communications over Bluetooth Asynchronous Connectionless Links (ACL) in park and sniff mode are given. The designers of devices and networks for intelligent systems will benefit from the estimation of the latency in Bluetooth multi-hop communications that the models provide.

  7. Low Power Multi-Hop Networking Analysis in Intelligent Environments

    PubMed Central

    Etxaniz, Josu; Aranguren, Gerardo

    2017-01-01

    Intelligent systems are driven by the latest technological advances in many different areas such as sensing, embedded systems, wireless communications or context recognition. This paper focuses on some of those areas. Concretely, the paper deals with wireless communications issues in embedded systems. More precisely, the paper combines the multi-hop networking with Bluetooth technology and a quality of service (QoS) metric, the latency. Bluetooth is a radio license-free worldwide communication standard that makes low power multi-hop wireless networking available. It establishes piconets (point-to-point and point-to-multipoint links) and scatternets (multi-hop networks). As a result, many Bluetooth nodes can be interconnected to set up ambient intelligent networks. Then, this paper presents the results of the investigation on multi-hop latency with park and sniff Bluetooth low power modes conducted over the hardware test bench previously implemented. In addition, the empirical models to estimate the latency of multi-hop communications over Bluetooth Asynchronous Connectionless Links (ACL) in park and sniff mode are given. The designers of devices and networks for intelligent systems will benefit from the estimation of the latency in Bluetooth multi-hop communications that the models provide. PMID:28534847

  8. Human intelligence and brain networks

    PubMed Central

    Colom, Roberto; Karama, Sherif; Jung, Rex E.; Haier, Richard J.

    2010-01-01

    Intelligence can be defined as a general mental ability for reasoning, problem solving, and learning. Because of its general nature, intelligence integrates cognitive functions such as perception, attention, memory, language, or planning. On the basis of this definition, intelligence can be reliably measured by standardized tests with obtained scores predicting several broad social outcomes such as educational achievement, job performance, health, and longevity. A detailed understanding of the brain mechanisms underlying this general mental ability could provide significant individual and societal benefits. Structural and functional neuroimaging studies have generally supported a frontoparietal network relevant for intelligence. This same network has also been found to underlie cognitive functions related to perception, short-term memory storage, and language. The distributed nature of this network and its involvement in a wide range of cognitive functions fits well with the integrative nature of intelligence. A new key phase of research is beginning to investigate how functional networks relate to structural networks, with emphasis on how distributed brain areas communicate with each other. PMID:21319494

  9. Soft optics in intelligent optical networks

    NASA Astrophysics Data System (ADS)

    Shue, Chikong; Cao, Yang

    2001-10-01

    In addition to the recent advances in Hard-optics that pushes the optical transmission speed, distance, wave density and optical switching capacity, Soft-optics provides the necessary intelligence and control software that reduces operational costs, increase efficiency, and enhances revenue generating services by automating optimal optical circuit placement and restoration, and enabling value-added new services like Optical VPN. This paper describes the advances in 1) Overall Hard-optics and Soft-optics 2) Layered hierarchy of Soft-optics 3) Component of Soft-optics, including hard-optics drivers, Management Soft-optics, Routing Soft-optics and System Soft-optics 4) Key component of Routing and System Soft-optics, namely optical routing and signaling (including UNI/NNI and GMPLS signaling). In summary, the soft-optics on a new generation of OXC's enables Intelligent Optical Networks to provide just-in-time service delivery and fast restoration, and real-time capacity management that eliminates stranded bandwidth. It reduces operational costs and provides new revenue opportunities.

  10. "TIS": An Intelligent Gateway Computer for Information and Modeling Networks. Overview.

    ERIC Educational Resources Information Center

    Hampel, Viktor E.; And Others

    TIS (Technology Information System) is being used at the Lawrence Livermore National Laboratory (LLNL) to develop software for Intelligent Gateway Computers (IGC) suitable for the prototyping of advanced, integrated information networks. Dedicated to information management, TIS leads the user to available information resources, on TIS or…

  11. FPGA implementation of advanced FEC schemes for intelligent aggregation networks

    NASA Astrophysics Data System (ADS)

    Zou, Ding; Djordjevic, Ivan B.

    2016-02-01

    In state-of-the-art fiber-optics communication systems the fixed forward error correction (FEC) and constellation size are employed. While it is important to closely approach the Shannon limit by using turbo product codes (TPC) and low-density parity-check (LDPC) codes with soft-decision decoding (SDD) algorithm; rate-adaptive techniques, which enable increased information rates over short links and reliable transmission over long links, are likely to become more important with ever-increasing network traffic demands. In this invited paper, we describe a rate adaptive non-binary LDPC coding technique, and demonstrate its flexibility and good performance exhibiting no error floor at BER down to 10-15 in entire code rate range, by FPGA-based emulation, making it a viable solution in the next-generation high-speed intelligent aggregation networks.

  12. Network traffic intelligence using a low interaction honeypot

    NASA Astrophysics Data System (ADS)

    Nyamugudza, Tendai; Rajasekar, Venkatesh; Sen, Prasad; Nirmala, M.; Madhu Viswanatham, V.

    2017-11-01

    Advancements in networking technology have seen more and more devices becoming connected day by day. This has given organizations capacity to extend their networks beyond their boundaries to remote offices and remote employees. However as the network grows security becomes a major challenge since the attack surface also increases. There is need to guard the network against different types of attacks like intrusion and malware through using different tools at different networking levels. This paper describes how network intelligence can be acquired through implementing a low-interaction honeypot which detects and track network intrusion. Honeypot allows an organization to interact and gather information about an attack earlier before it compromises the network. This process is important because it allows the organization to learn about future attacks of the same nature and allows them to develop counter measures. The paper further shows how honeypot-honey net based model for interruption detection system (IDS) can be used to get the best valuable information about the attacker and prevent unexpected harm to the network.

  13. Communications and Intelligent Systems Division Overview

    NASA Technical Reports Server (NTRS)

    Emerson, Dawn

    2017-01-01

    Provides expertise, and plans, conducts and directs research and engineering development in the competency fields of advanced communications and intelligent systems technologies for applications in current and future aeronautics and space systems.Advances communication systems engineering, development and analysis needed for Glenn Research Center's leadership in communications and intelligent systems technology. Focus areas include advanced high frequency devices, components, and antennas; optical communications, health monitoring and instrumentation; digital signal processing for communications and navigation, and cognitive radios; network architectures, protocols, standards and network-based applications; intelligent controls, dynamics and diagnostics; and smart micro- and nano-sensors and harsh environment electronics. Research and discipline engineering allow for the creation of innovative concepts and designs for aerospace communication systems with reduced size and weight, increased functionality and intelligence. Performs proof-of-concept studies and analyses to assess the impact of the new technologies.

  14. Functional brain networks related to individual differences in human intelligence at rest

    PubMed Central

    Hearne, Luke J.; Mattingley, Jason B.; Cocchi, Luca

    2016-01-01

    Intelligence is a fundamental ability that sets humans apart from other animal species. Despite its importance in defining human behaviour, the neural networks responsible for intelligence are not well understood. The dominant view from neuroimaging work suggests that intelligent performance on a range of tasks is underpinned by segregated interactions in a fronto-parietal network of brain regions. Here we asked whether fronto-parietal interactions associated with intelligence are ubiquitous, or emerge from more widespread associations in a task-free context. First we undertook an exploratory mapping of the existing literature on functional connectivity associated with intelligence. Next, to empirically test hypotheses derived from the exploratory mapping, we performed network analyses in a cohort of 317 unrelated participants from the Human Connectome Project. Our results revealed a novel contribution of across-network interactions between default-mode and fronto-parietal networks to individual differences in intelligence at rest. Specifically, we found that greater connectivity in the resting state was associated with higher intelligence scores. Our findings highlight the need to broaden the dominant fronto-parietal conceptualisation of intelligence to encompass more complex and context-specific network dynamics. PMID:27561736

  15. Functional brain networks related to individual differences in human intelligence at rest.

    PubMed

    Hearne, Luke J; Mattingley, Jason B; Cocchi, Luca

    2016-08-26

    Intelligence is a fundamental ability that sets humans apart from other animal species. Despite its importance in defining human behaviour, the neural networks responsible for intelligence are not well understood. The dominant view from neuroimaging work suggests that intelligent performance on a range of tasks is underpinned by segregated interactions in a fronto-parietal network of brain regions. Here we asked whether fronto-parietal interactions associated with intelligence are ubiquitous, or emerge from more widespread associations in a task-free context. First we undertook an exploratory mapping of the existing literature on functional connectivity associated with intelligence. Next, to empirically test hypotheses derived from the exploratory mapping, we performed network analyses in a cohort of 317 unrelated participants from the Human Connectome Project. Our results revealed a novel contribution of across-network interactions between default-mode and fronto-parietal networks to individual differences in intelligence at rest. Specifically, we found that greater connectivity in the resting state was associated with higher intelligence scores. Our findings highlight the need to broaden the dominant fronto-parietal conceptualisation of intelligence to encompass more complex and context-specific network dynamics.

  16. An Artificial Neural Network Controller for Intelligent Transportation Systems Applications

    DOT National Transportation Integrated Search

    1996-01-01

    An Autonomous Intelligent Cruise Control (AICC) has been designed using a feedforward artificial neural network, as an example for utilizing artificial neural networks for nonlinear control problems arising in intelligent transportation systems appli...

  17. Transition from intelligence cycle to intelligence process: the network-centric intelligence in narrow seas

    NASA Astrophysics Data System (ADS)

    Büker, Engin

    2015-05-01

    The defence technologies which have been developing and changing rapidly, today make it difficult to be able to foresee the next environment and spectrum of warfare. When said change and development is looked in specific to the naval operations, it can be said that the possible battlefield and scenarios to be developed in the near and middle terms (5-20 years) are more clarified with compare to other force components. Network Centric Naval Warfare Concept that was developed for the floating, diving and flying fleet platforms which serves away from its own mainland for miles, will keep its significance in the future. Accordingly, Network Centric Intelligence structure completely integrating with the command and control systems will have relatively more importance. This study will firstly try to figure out the transition from the traditional intelligence cycle that is still used in conventional war to Network Centric Intelligence Production Process. In the last part, the use of this new approach on the base of UAV that is alternative to satellite based command control and data transfer systems in the joint operations in narrow seas will be examined, a model suggestion for the use of operative and strategic UAVs which are assured within the scope of the NATO AGS2 for this aim will be brought.

  18. A Deeper Level of Network Intelligence: Combating Cyber Warfare

    DTIC Science & Technology

    2010-04-01

    A Deeper Level of Network Intelligence: Combating Cyber Warfare This information is provided for your review only and is not for any distribution...A Deeper Level of Network Intelligence: Combating Cyber Warfare 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d

  19. The intelligent user interface for NASA's advanced information management systems

    NASA Technical Reports Server (NTRS)

    Campbell, William J.; Short, Nicholas, Jr.; Rolofs, Larry H.; Wattawa, Scott L.

    1987-01-01

    NASA has initiated the Intelligent Data Management Project to design and develop advanced information management systems. The project's primary goal is to formulate, design and develop advanced information systems that are capable of supporting the agency's future space research and operational information management needs. The first effort of the project was the development of a prototype Intelligent User Interface to an operational scientific database, using expert systems and natural language processing technologies. An overview of Intelligent User Interface formulation and development is given.

  20. Intelligent Sensing and Classification in DSR-Based Ad Hoc Networks

    NASA Astrophysics Data System (ADS)

    Dempsey, Tae; Sahin, Gokhan; Morton, Yu T. (Jade

    Wireless ad hoc networks have fundamentally altered today's battlefield, with applications ranging from unmanned air vehicles to randomly deployed sensor networks. Security and vulnerabilities in wireless ad hoc networks have been considered at different layers, and many attack strategies have been proposed, including denial of service (DoS) through the intelligent jamming of the most critical packet types of flows in a network. This paper investigates the effectiveness of intelligent jamming in wireless ad hoc networks using the Dynamic Source Routing (DSR) and TCP protocols and introduces an intelligent classifier to facilitate the jamming of such networks. Assuming encrypted packet headers and contents, our classifier is based solely on the observable characteristics of size, inter-arrival timing, and direction and classifies packets with up to 99.4% accuracy in our experiments.

  1. Emotional intelligence skills for maintaining social networks in healthcare organizations.

    PubMed

    Freshman, Brenda; Rubino, Louis

    2004-01-01

    For healthcare organizations to survive in these increasingly challenging times, leadership and management must face mounting interpersonal concerns. The authors present the boundaries of internal and external social networks with respect to leadership and managerial functions: Social networks within the organization are stretched by reductions in available resources and structural ambiguity, whereas external social networks are stressed by interorganizational competitive pressures. The authors present the development of emotional intelligence skills in employees as a strategic training objective that can strengthen the internal and external social networks of healthcare organizations. The authors delineate the unique functions of leadership and management with respect to the application of emotional intelligence skills and discuss training and future research implications for emotional intelligence skill sets and social networks.

  2. Sensors-network and its application in the intelligent storage security

    NASA Astrophysics Data System (ADS)

    Zhang, Qingying; Nicolescu, Mihai; Jiang, Xia; Zhang, Ying; Yue, Weihong; Xiao, Weihong

    2004-11-01

    Intelligent storage systems run on different advanced technologies, such as linear layout, business intelligence and data mining. Security, the basic desire of the storage system, has been focused on with the indraught of multimedia communication technology and sensors" network. Along with the developing of science and the social demands, multifarious alarming system has been designed and improved to be intelligentized, modularized and have network connections. It is of great moment to make the storage, and further more, the logistics system more and more efficient and perfect with modern science and technology. Diversified information on the spot should be caught by different kinds of sensors. Those signals are treated and communicated to the control center to give the further actions. For fire-proofing, broad-spectrum gas sensors, fume sensors, flame sensors and temperature sensors are used to catch the information in their own ways. Once the fire is taken somewhere, the sensors work by the fume, temperature, and flame as well as gas immediately. Meanwhile the intelligent control system starts. It passes the tidings to the center unit. At the same time, it sets those movable walls on to work quickly to obstruct the fire"s spreading. While for guarding the warehouse against theft, cut-off sensors, body sensors, photoelectric sensors, microwave sensors and closed-circuit television as well as electronic clocks are available to monitor the warehouse reasonably. All of those sensors work in a net way. The intelligent control system is made with a digital circuit instead of traditional switch one. This system can work in a better way in many cases. Its reliability is high and the cost is low.

  3. Human Intelligence: An Introduction to Advances in Theory and Research.

    ERIC Educational Resources Information Center

    Lohman, David F.

    1989-01-01

    Recent advances in three research traditions are summarized: trait theories of intelligence, information-processing theories of intelligence, and general theories of thinking. Work on fluid and crystallized abilities by J. Horn and R. Snow, mental speed, spatial visualization, cognitive psychology, artificial intelligence, and the construct of…

  4. Integrated intelligent systems in advanced reactor control rooms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beckmeyer, R.R.

    1989-01-01

    An intelligent, reactor control room, information system is designed to be an integral part of an advanced control room and will assist the reactor operator's decision making process by continuously monitoring the current plant state and providing recommended operator actions to improve that state. This intelligent system is an integral part of, as well as an extension to, the plant protection and control systems. This paper describes the interaction of several functional components (intelligent information data display, technical specifications monitoring, and dynamic procedures) of the overall system and the artificial intelligence laboratory environment assembled for testing the prototype. 10 refs.,more » 5 figs.« less

  5. Brain Network Architecture and Global Intelligence in Children with Focal Epilepsy.

    PubMed

    Paldino, M J; Golriz, F; Chapieski, M L; Zhang, W; Chu, Z D

    2017-02-01

    The biologic basis for intelligence rests to a large degree on the capacity for efficient integration of information across the cerebral network. We aimed to measure the relationship between network architecture and intelligence in the pediatric, epileptic brain. Patients were retrospectively identified with the following: 1) focal epilepsy; 2) brain MR imaging at 3T, including resting-state functional MR imaging; and 3) full-scale intelligence quotient measured by a pediatric neuropsychologist. The cerebral cortex was parcellated into approximately 700 gray matter network "nodes." The strength of a connection between 2 nodes was defined by the correlation between their blood oxygen level-dependent time-series. We calculated the following topologic properties: clustering coefficient, transitivity, modularity, path length, and global efficiency. A machine learning algorithm was used to measure the independent contribution of each metric to the intelligence quotient after adjusting for all other metrics. Thirty patients met the criteria (4-18 years of age); 20 patients required anesthesia during MR imaging. After we accounted for age and sex, clustering coefficient and path length were independently associated with full-scale intelligence quotient. Neither motion parameters nor general anesthesia was an important variable with regard to accurate intelligence quotient prediction by the machine learning algorithm. A longer history of epilepsy was associated with shorter path lengths ( P = .008), consistent with reorganization of the network on the basis of seizures. Considering only patients receiving anesthesia during machine learning did not alter the patterns of network architecture contributing to global intelligence. These findings support the physiologic relevance of imaging-based metrics of network architecture in the pathologic, developing brain. © 2017 by American Journal of Neuroradiology.

  6. An introduction to intelligent networks

    NASA Astrophysics Data System (ADS)

    Getto, Wolf

    1994-02-01

    Intelligent networking is a new and developing technology that is already having significant impact on telecommunications architectures. This paper offers a summary of this technology, concluding with a brief discussion of how it is likely to affect the military communications of the Australian Defence Force (ADF).

  7. Intelligent Microscopes: Recent And Near-Future Advances

    NASA Astrophysics Data System (ADS)

    Prewitt, Judith M. S.

    1980-02-01

    Robert Hooke conjectured about fluid circulation in plants as well as in animals in Micrographia in a passage that is equally important as a commentary on the dependence, not of technology on science, but of science on technology: It seems very probable that Nature has ... very many appropriated instruments and contrivances, whereby to bring her designs and end to pass, which 'tis not improbable but that some diligent observer, if helped with better Microscopes, may in time detect.This paper, written in the form of a scientific poem, reviews the current and near- future state-of-the-art of automated intelligent microscopes based on computer science and technology. The basic concepts of computer intelligence for cytology and histology are presented and elaborated. Limitations of commercial devices and research proto- types are examined (Dx), and remedies are suggested (Rx). The course of action pro- posed and being undertaken constitutes an original contribution toward advancing the state-of-the-science, in the hope of advancing the state-of-the-art of medicine.With rapid, contemporary advances in both science and technology, it may now be appropriate to modify Hooke's passage:It seems very probable that Nature has ... very many appropriated instruments and contrivances, whereby to bring her designs and end to pass, which 'tis not improbable but that some diligent observer, if helped with Intelligent Microscopes, may in time detect.

  8. Development of a Real-Time Intelligent Network Environment.

    ERIC Educational Resources Information Center

    Gordonov, Anatoliy; Kress, Michael; Klibaner, Roberta

    This paper presents a model of an intelligent computer network that provides real-time evaluation of students' performance by incorporating intelligence into the application layer protocol. Specially designed drills allow students to independently solve a number of problems based on current lecture material; students are switched to the most…

  9. Behavioral networks as a model for intelligent agents

    NASA Technical Reports Server (NTRS)

    Sliwa, Nancy E.

    1990-01-01

    On-going work at NASA Langley Research Center in the development and demonstration of a paradigm called behavioral networks as an architecture for intelligent agents is described. This work focuses on the need to identify a methodology for smoothly integrating the characteristics of low-level robotic behavior, including actuation and sensing, with intelligent activities such as planning, scheduling, and learning. This work assumes that all these needs can be met within a single methodology, and attempts to formalize this methodology in a connectionist architecture called behavioral networks. Behavioral networks are networks of task processes arranged in a task decomposition hierarchy. These processes are connected by both command/feedback data flow, and by the forward and reverse propagation of weights which measure the dynamic utility of actions and beliefs.

  10. A Belief-Space Approach to Integrated Intelligence - Research Area 10.3: Intelligent Networks

    DTIC Science & Technology

    2017-12-05

    A Belief-Space Approach to Integrated Intelligence- Research Area 10.3: Intelligent Networks The views , opinions and/or findings contained in this...high dimensionality and multi -modality of their hybrid configuration spaces. Planners that perform a purely geometric search are prohibitively slow...Hamburg, January Paper Title: Hierarchical planning for multi -contact non-prehensile manipulation Publication Type: Conference Paper or Presentation

  11. Intelligence is associated with the modular structure of intrinsic brain networks.

    PubMed

    Hilger, Kirsten; Ekman, Matthias; Fiebach, Christian J; Basten, Ulrike

    2017-11-22

    General intelligence is a psychological construct that captures in a single metric the overall level of behavioural and cognitive performance in an individual. While previous research has attempted to localise intelligence in circumscribed brain regions, more recent work focuses on functional interactions between regions. However, even though brain networks are characterised by substantial modularity, it is unclear whether and how the brain's modular organisation is associated with general intelligence. Modelling subject-specific brain network graphs from functional MRI resting-state data (N = 309), we found that intelligence was not associated with global modularity features (e.g., number or size of modules) or the whole-brain proportions of different node types (e.g., connector hubs or provincial hubs). In contrast, we observed characteristic associations between intelligence and node-specific measures of within- and between-module connectivity, particularly in frontal and parietal brain regions that have previously been linked to intelligence. We propose that the connectivity profile of these regions may shape intelligence-relevant aspects of information processing. Our data demonstrate that not only region-specific differences in brain structure and function, but also the network-topological embedding of fronto-parietal as well as other cortical and subcortical brain regions is related to individual differences in higher cognitive abilities, i.e., intelligence.

  12. Advances in Intelligence Research: What Should be Expected in the XXI Century (Questions & Answers).

    PubMed

    Colom, Roberto

    2016-12-06

    Here I briefly delineate my view about the main question of this International Seminar, namely, what should we expecting from the XXI Century regarding the advancements in intelligence research. This view can be summarized as 'The Brain Connection' (TBC), meaning that neuroscience will be of paramount relevance for increasing our current knowledge related to the key question: why are some people smarter than others? We need answers to the issue of what happens in our brains when the genotype and the environment are integrated. The scientific community has devoted great research efforts, ranging from observable behavior to hidden genetics, but we are still far from having a clear general picture of what it means to be more or less intelligent. After the discussion held with the panel of experts participating in the seminar, it is concluded that advancements will be more solid and safe increasing the collaboration of scientists with shared research interests worldwide. Paralleling current sophisticated analyses of how the brain computes, nowadays science may embrace a network approach.

  13. Relationship between Social Networks Adoption and Social Intelligence

    ERIC Educational Resources Information Center

    Gunduz, Semseddin

    2017-01-01

    The purpose of this study was to set forth the relationship between the individuals' states to adopt social networks and social intelligence and analyze both concepts according to various variables. Research data were collected from 1145 social network users in the online media by using the Adoption of Social Network Scale and Social Intelligence…

  14. Developing an intelligence analysis process through social network analysis

    NASA Astrophysics Data System (ADS)

    Waskiewicz, Todd; LaMonica, Peter

    2008-04-01

    Intelligence analysts are tasked with making sense of enormous amounts of data and gaining an awareness of a situation that can be acted upon. This process can be extremely difficult and time consuming. Trying to differentiate between important pieces of information and extraneous data only complicates the problem. When dealing with data containing entities and relationships, social network analysis (SNA) techniques can be employed to make this job easier. Applying network measures to social network graphs can identify the most significant nodes (entities) and edges (relationships) and help the analyst further focus on key areas of concern. Strange developed a model that identifies high value targets such as centers of gravity and critical vulnerabilities. SNA lends itself to the discovery of these high value targets and the Air Force Research Laboratory (AFRL) has investigated several network measures such as centrality, betweenness, and grouping to identify centers of gravity and critical vulnerabilities. Using these network measures, a process for the intelligence analyst has been developed to aid analysts in identifying points of tactical emphasis. Organizational Risk Analyzer (ORA) and Terrorist Modus Operandi Discovery System (TMODS) are the two applications used to compute the network measures and identify the points to be acted upon. Therefore, the result of leveraging social network analysis techniques and applications will provide the analyst and the intelligence community with more focused and concentrated analysis results allowing them to more easily exploit key attributes of a network, thus saving time, money, and manpower.

  15. An approach to efficient mobility management in intelligent networks

    NASA Technical Reports Server (NTRS)

    Murthy, K. M. S.

    1995-01-01

    Providing personal communication systems supporting full mobility require intelligent networks for tracking mobile users and facilitating outgoing and incoming calls over different physical and network environments. In realizing the intelligent network functionalities, databases play a major role. Currently proposed network architectures envision using the SS7-based signaling network for linking these DB's and also for interconnecting DB's with switches. If the network has to support ubiquitous, seamless mobile services, then it has to support additionally mobile application parts, viz., mobile origination calls, mobile destination calls, mobile location updates and inter-switch handovers. These functions will generate significant amount of data and require them to be transferred between databases (HLR, VLR) and switches (MSC's) very efficiently. In the future, the users (fixed or mobile) may use and communicate with sophisticated CPE's (e.g. multimedia, multipoint and multisession calls) which may require complex signaling functions. This will generate volumness service handling data and require efficient transfer of these message between databases and switches. Consequently, the network providers would be able to add new services and capabilities to their networks incrementally, quickly and cost-effectively.

  16. Intelligence Constraints on Terrorist Network Plots

    NASA Astrophysics Data System (ADS)

    Woo, Gordon

    Since 9/11, the western intelligence and law enforcement services have managed to interdict the great majority of planned attacks against their home countries. Network analysis shows that there are important intelligence constraints on the number and complexity of terrorist plots. If two many terrorists are involved in plots at a given time, a tipping point is reached whereby it becomes progressively easier for the dots to be joined and for the conspirators to be arrested, and for the aggregate evidence to secure convictions. Implications of this analysis are presented for the campaign to win hearts and minds.

  17. Distributed intelligent control and status networking

    NASA Technical Reports Server (NTRS)

    Fortin, Andre; Patel, Manoj

    1993-01-01

    Over the past two years, the Network Control Systems Branch (Code 532) has been investigating control and status networking technologies. These emerging technologies use distributed processing over a network to accomplish a particular custom task. These networks consist of small intelligent 'nodes' that perform simple tasks. Containing simple, inexpensive hardware and software, these nodes can be easily developed and maintained. Once networked, the nodes can perform a complex operation without a central host. This type of system provides an alternative to more complex control and status systems which require a central computer. This paper will provide some background and discuss some applications of this technology. It will also demonstrate the suitability of one particular technology for the Space Network (SN) and discuss the prototyping activities of Code 532 utilizing this technology.

  18. Smart Collision Avoidance and Hazard Routing Mechanism for Intelligent Transport Network

    NASA Astrophysics Data System (ADS)

    Singh, Gurpreet; Gupta, Pooja; Wahab, Mohd Helmy Abd

    2017-08-01

    The smart vehicular ad-hoc network is the network that consists of vehicles for smooth movement and better management of the vehicular connectivity across the given network. This research paper aims to propose a set of solution for the VANETs consisting of the automatic driven vehicles, also called as the autonomous car. Such vehicular networks are always prone to collision due to the natural or un-natural reasons which must be solved before the large-scale deployment of the autonomous transport systems. The newly designed intelligent transport movement control mechanism is based upon the intelligent data propagation along with the vehicle collision and traffic jam prevention schema [8], which may help the future designs of smart cities to become more robust and less error-prone. In the proposed model, the focus is on designing a new dynamic and robust hazard routing protocol for intelligent vehicular networks for improvement of the overall performance in various aspects. It is expected to improve the overall transmission delay as well as the number of collisions or adversaries across the vehicular network zone.

  19. An intelligent anti-jamming network system of data link

    NASA Astrophysics Data System (ADS)

    Fan, Xiangrui; Lin, Jingyong; Liu, Jiarun; Zhou, Chunmei

    2017-10-01

    Data link is the key information system for the cooperation of weapons, single physical layer anti-jamming technology has been unable to meet its requirements. High dynamic precision-guided weapon nodes like missiles, anti-jamming design of data link system need to have stronger pertinence and effectiveness: the best anti-jamming communication mode can be selected intelligently in combat environment, in real time, guarantee the continuity of communication. We discuss an anti-jamming intelligent networking technology of data link based on interference awareness, put forward a model of intelligent anti-jamming system, and introduces the cognitive node protocol stack model and intelligent anti-jamming method, in order to improve the data chain of intelligent anti-jamming ability.

  20. Adaptive routing in wireless communication networks using swarm intelligence

    NASA Technical Reports Server (NTRS)

    Arabshahi, P.; Gray, A.; Kassabalidis, I.; Das, A.; Narayanan, S.; Sharkawi, M. El; Marks, R. J.

    2001-01-01

    In this paper we focus on the network routing problem, and survey swarm intelligent approaches for its efficient solution, after a brief overview of power-aware routing schemes, which are important in the network examples outlined above.

  1. Intelligent Engine Systems: Thermal Management and Advanced Cooling

    NASA Technical Reports Server (NTRS)

    Bergholz, Robert

    2008-01-01

    The objective of the Advanced Turbine Cooling and Thermal Management program is to develop intelligent control and distribution methods for turbine cooling, while achieving a reduction in total cooling flow and assuring acceptable turbine component safety and reliability. The program also will develop embedded sensor technologies and cooling system models for real-time engine diagnostics and health management. Both active and passive control strategies will be investigated that include the capability of intelligent modulation of flow quantities, pressures, and temperatures both within the supply system and at the turbine component level. Thermal management system concepts were studied, with a goal of reducing HPT blade cooling air supply temperature. An assessment will be made of the use of this air by the active clearance control system as well. Turbine component cooling designs incorporating advanced, high-effectiveness cooling features, will be evaluated. Turbine cooling flow control concepts will be studied at the cooling system level and the component level. Specific cooling features or sub-elements of an advanced HPT blade cooling design will be downselected for core fabrication and casting demonstrations.

  2. Advanced obstacle avoidance for a laser based wheelchair using optimised Bayesian neural networks.

    PubMed

    Trieu, Hoang T; Nguyen, Hung T; Willey, Keith

    2008-01-01

    In this paper we present an advanced method of obstacle avoidance for a laser based intelligent wheelchair using optimized Bayesian neural networks. Three neural networks are designed for three separate sub-tasks: passing through a door way, corridor and wall following and general obstacle avoidance. The accurate usable accessible space is determined by including the actual wheelchair dimensions in a real-time map used as inputs to each networks. Data acquisitions are performed separately to collect the patterns required for specified sub-tasks. Bayesian frame work is used to determine the optimal neural network structure in each case. Then these networks are trained under the supervision of Bayesian rule. Experiment results showed that compare to the VFH algorithm our neural networks navigated a smoother path following a near optimum trajectory.

  3. Modelling intelligent behavior

    NASA Technical Reports Server (NTRS)

    Green, H. S.; Triffet, T.

    1993-01-01

    An introductory discussion of the related concepts of intelligence and consciousness suggests criteria to be met in the modeling of intelligence and the development of intelligent materials. Methods for the modeling of actual structure and activity of the animal cortex have been found, based on present knowledge of the ionic and cellular constitution of the nervous system. These have led to the development of a realistic neural network model, which has been used to study the formation of memory and the process of learning. An account is given of experiments with simple materials which exhibit almost all properties of biological synapses and suggest the possibility of a new type of computer architecture to implement an advanced type of artificial intelligence.

  4. FPGA Based "Intelligent Tap" Device for Real-Time Ethernet Network Monitoring

    NASA Astrophysics Data System (ADS)

    Cupek, Rafał; Piękoś, Piotr; Poczobutt, Marcin; Ziębiński, Adam

    This paper describes an "Intelligent Tap" - hardware device dedicated to support real-time Ethernet networks monitoring. Presented solution was created as a student project realized in Institute of Informatics, Silesian University of Technology with support from Softing A.G company. Authors provide description of realized FPGA based "Intelligent Tap" architecture dedicated for Real-Time Ethernet network monitoring systems. The practical device realization and feasibility study conclusions are presented also.

  5. Self-Learning Intelligent Agents for Dynamic Traffic Routing on Transportation Networks

    NASA Astrophysics Data System (ADS)

    Sadek, Add; Basha, Nagi

    Intelligent Transportation Systems (ITS) are designed to take advantage of recent advances in communications, electronics, and Information Technology in improving the efficiency and safety of transportation systems. Among the several ITS applications is the notion of Dynamic Traffic Routing (DTR), which involves generating "optimal" routing recommendations to drivers with the aim of maximizing network utilizing. In this paper, we demonstrate the feasibility of using a self-learning intelligent agent to solve the DTR problem to achieve traffic user equilibrium in a transportation network. The core idea is to deploy an agent to a simulation model of a highway. The agent then learns by itself by interacting with the simulation model. Once the agent reaches a satisfactory level of performance, it can then be deployed to the real-world, where it would continue to learn how to refine its control policies over time. To test this concept in this paper, the Cell Transmission Model (CTM) developed by Carlos Daganzo of the University of California at Berkeley is used to simulate a simple highway with two main alternative routes. With the model developed, a Reinforcement Learning Agent (RLA) is developed to learn how to best dynamically route traffic, so as to maximize the utilization of existing capacity. Preliminary results obtained from our experiments are promising. RL, being an adaptive online learning technique, appears to have a great potential for controlling a stochastic dynamic systems such as a transportation system. Furthermore, the approach is highly scalable and applicable to a variety of networks and roadways.

  6. Fluid Intelligence Predicts Novel Rule Implementation in a Distributed Frontoparietal Control Network.

    PubMed

    Tschentscher, Nadja; Mitchell, Daniel; Duncan, John

    2017-05-03

    Fluid intelligence has been associated with a distributed cognitive control or multiple-demand (MD) network, comprising regions of lateral frontal, insular, dorsomedial frontal, and parietal cortex. Human fluid intelligence is also intimately linked to task complexity, and the process of solving complex problems in a sequence of simpler, more focused parts. Here, a complex target detection task included multiple independent rules, applied one at a time in successive task epochs. Although only one rule was applied at a time, increasing task complexity (i.e., the number of rules) impaired performance in participants of lower fluid intelligence. Accompanying this loss of performance was reduced response to rule-critical events across the distributed MD network. The results link fluid intelligence and MD function to a process of attentional focus on the successive parts of complex behavior. SIGNIFICANCE STATEMENT Fluid intelligence is intimately linked to the ability to structure complex problems in a sequence of simpler, more focused parts. We examine the basis for this link in the functions of a distributed frontoparietal or multiple-demand (MD) network. With increased task complexity, participants of lower fluid intelligence showed reduced responses to task-critical events. Reduced responses in the MD system were accompanied by impaired behavioral performance. Low fluid intelligence is linked to poor foregrounding of task-critical information across a distributed MD system. Copyright © 2017 Tschentscher et al.

  7. Instrumentation for Scientific Computing in Neural Networks, Information Science, Artificial Intelligence, and Applied Mathematics.

    DTIC Science & Technology

    1987-10-01

    include Security Classification) Instrumentation for scientific computing in neural networks, information science, artificial intelligence, and...instrumentation grant to purchase equipment for support of research in neural networks, information science, artificail intellignece , and applied mathematics...in Neural Networks, Information Science, Artificial Intelligence, and Applied Mathematics Contract AFOSR 86-0282 Principal Investigator: Stephen

  8. Advanced Artificial Intelligence Technology Testbed

    NASA Technical Reports Server (NTRS)

    Anken, Craig S.

    1993-01-01

    The Advanced Artificial Intelligence Technology Testbed (AAITT) is a laboratory testbed for the design, analysis, integration, evaluation, and exercising of large-scale, complex, software systems, composed of both knowledge-based and conventional components. The AAITT assists its users in the following ways: configuring various problem-solving application suites; observing and measuring the behavior of these applications and the interactions between their constituent modules; gathering and analyzing statistics about the occurrence of key events; and flexibly and quickly altering the interaction of modules within the applications for further study.

  9. Association between resting-state coactivation in the parieto-frontal network and intelligence during late childhood and adolescence.

    PubMed

    Li, C; Tian, L

    2014-06-01

    A number of studies have associated the adult intelligence quotient with the structure and function of the bilateral parieto-frontal networks, whereas the relationship between intelligence quotient and parieto-frontal network function has been found to be relatively weak in early childhood. Because both human intelligence and brain function undergo protracted development into adulthood, the purpose of the present study was to provide a better understanding of the development of the parieto-frontal network-intelligence quotient relationship. We performed independent component analysis of resting-state fMRI data of 84 children and 50 adolescents separately and then correlated full-scale intelligence quotient with the spatial maps of the bilateral parieto-frontal networks of each group. In children, significant positive spatial-map versus intelligence quotient correlations were detected in the right angular gyrus and inferior frontal gyrus in the right parieto-frontal network, and no significant correlation was observed in the left parieto-frontal network. In adolescents, significant positive correlation was detected in the left inferior frontal gyrus in the left parieto-frontal network, and the correlations in the frontal pole in the 2 parieto-frontal networks were only marginally significant. The present findings not only support the critical role of the parieto-frontal networks for intelligence but indicate that the relationship between intelligence quotient and the parieto-frontal network in the right hemisphere has been well established in late childhood, and that the relationship in the left hemisphere was also established in adolescence. © 2014 by American Journal of Neuroradiology.

  10. Application of sensor networks to intelligent transportation systems.

    DOT National Transportation Integrated Search

    2009-12-01

    The objective of the research performed is the application of wireless sensor networks to intelligent transportation infrastructures, with the aim of increasing their dependability and improving the efficacy of data collection and utilization. Exampl...

  11. Intelligent Wireless Sensor Networks for System Health Monitoring

    NASA Technical Reports Server (NTRS)

    Alena, Rick

    2011-01-01

    Wireless sensor networks (WSN) based on the IEEE 802.15.4 Personal Area Network (PAN) standard are finding increasing use in the home automation and emerging smart energy markets. The network and application layers, based on the ZigBee 2007 Standard, provide a convenient framework for component-based software that supports customer solutions from multiple vendors. WSNs provide the inherent fault tolerance required for aerospace applications. The Discovery and Systems Health Group at NASA Ames Research Center has been developing WSN technology for use aboard aircraft and spacecraft for System Health Monitoring of structures and life support systems using funding from the NASA Engineering and Safety Center and Exploration Technology Development and Demonstration Program. This technology provides key advantages for low-power, low-cost ancillary sensing systems particularly across pressure interfaces and in areas where it is difficult to run wires. Intelligence for sensor networks could be defined as the capability of forming dynamic sensor networks, allowing high-level application software to identify and address any sensor that joined the network without the use of any centralized database defining the sensors characteristics. The IEEE 1451 Standard defines methods for the management of intelligent sensor systems and the IEEE 1451.4 section defines Transducer Electronic Datasheets (TEDS), which contain key information regarding the sensor characteristics such as name, description, serial number, calibration information and user information such as location within a vehicle. By locating the TEDS information on the wireless sensor itself and enabling access to this information base from the application software, the application can identify the sensor unambiguously and interpret and present the sensor data stream without reference to any other information. The application software is able to read the status of each sensor module, responding in real-time to changes of

  12. Higher Intelligence Is Associated with Less Task-Related Brain Network Reconfiguration

    PubMed Central

    Cole, Michael W.

    2016-01-01

    The human brain is able to exceed modern computers on multiple computational demands (e.g., language, planning) using a small fraction of the energy. The mystery of how the brain can be so efficient is compounded by recent evidence that all brain regions are constantly active as they interact in so-called resting-state networks (RSNs). To investigate the brain's ability to process complex cognitive demands efficiently, we compared functional connectivity (FC) during rest and multiple highly distinct tasks. We found previously that RSNs are present during a wide variety of tasks and that tasks only minimally modify FC patterns throughout the brain. Here, we tested the hypothesis that, although subtle, these task-evoked FC updates from rest nonetheless contribute strongly to behavioral performance. One might expect that larger changes in FC reflect optimization of networks for the task at hand, improving behavioral performance. Alternatively, smaller changes in FC could reflect optimization for efficient (i.e., small) network updates, reducing processing demands to improve behavioral performance. We found across three task domains that high-performing individuals exhibited more efficient brain connectivity updates in the form of smaller changes in functional network architecture between rest and task. These smaller changes suggest that individuals with an optimized intrinsic network configuration for domain-general task performance experience more efficient network updates generally. Confirming this, network update efficiency correlated with general intelligence. The brain's reconfiguration efficiency therefore appears to be a key feature contributing to both its network dynamics and general cognitive ability. SIGNIFICANCE STATEMENT The brain's network configuration varies based on current task demands. For example, functional brain connections are organized in one way when one is resting quietly but in another way if one is asked to make a decision. We found that

  13. The 13 th Annual Intelligent Ground Vehicle Competition: intelligent ground vehicles created by intelligent teams

    NASA Astrophysics Data System (ADS)

    Theisen, Bernard L.

    2005-10-01

    The Intelligent Ground Vehicle Competition (IGVC) is one of three, unmanned systems, student competitions that were founded by the Association for Unmanned Vehicle Systems International (AUVSI) in the 1990s. The IGVC is a multidisciplinary exercise in product realization that challenges college engineering student teams to integrate advanced control theory, machine vision, vehicular electronics, and mobile platform fundamentals to design and build an unmanned system. Teams from around the world focus on developing a suite of dual-use technologies to equip ground vehicles of the future with intelligent driving capabilities. Over the past 13 years, the competition has challenged undergraduate, graduate and Ph.D. students with real world applications in intelligent transportation systems, the military and manufacturing automation. To date, teams from over 50 universities and colleges have participated. This paper describes some of the applications of the technologies required by this competition and discusses the educational benefits. The primary goal of the IGVC is to advance engineering education in intelligent vehicles and related technologies. The employment and professional networking opportunities created for students and industrial sponsors through a series of technical events over the three-day competition are highlighted. Finally, an assessment of the competition based on participant feedback is presented.

  14. Advanced, Adaptive, Modular, Distributed, Generic Universal FADEC Framework for Intelligent Propulsion Control Systems (Preprint)

    DTIC Science & Technology

    2007-09-01

    AFRL-RZ-WP-TP-2008-2044 ADVANCED, ADAPTIVE, MODULAR, DISTRIBUTED, GENERIC UNIVERSAL FADEC FRAMEWORK FOR INTELLIGENT PROPULSION CONTROL...GRANT NUMBER 4. TITLE AND SUBTITLE ADVANCED, ADAPTIVE, MODULAR, DISTRIBUTED, GENERIC UNIVERSAL FADEC FRAMEWORK FOR INTELLIGENT PROPULSION... FADEC is unique and expensive to develop, produce, maintain, and upgrade for its particular application. Each FADEC is a centralized system, with a

  15. Some recent advances of intelligent health monitoring systems for civil infrastructures in HIT

    NASA Astrophysics Data System (ADS)

    Ou, Jinping

    2005-06-01

    The intelligent health monitoring systems more and more become a technique for ensuring the health and safety of civil infrastructures and also an important approach for research of the damage accumulation or even disaster evolving characteristics of civil infrastructures, and attracts prodigious research interests and active development interests of scientists and engineers since a great number of civil infrastructures are planning and building each year in mainland China. In this paper, some recent advances on research, development nad implementation of intelligent health monitoring systems for civil infrastructuresin mainland China, especially in Harbin Institute of Technology (HIT), P.R.China. The main contents include smart sensors such as optical fiber Bragg grating (OFBG) and polivinyllidene fluoride (PVDF) sensors, fatigue life gauges, self-sensing mortar and carbon fiber reinforced polymer (CFRP), wireless sensor networks and their implementation in practical infrastructures such as offshore platform structures, hydraulic engineering structures, large span bridges and large space structures. Finally, the relative research projects supported by the national foundation agencies of China are briefly introduced.

  16. Fluid and flexible minds: Intelligence reflects synchrony in the brain’s intrinsic network architecture

    PubMed Central

    Ferguson, Michael A.; Anderson, Jeffrey S.; Spreng, R. Nathan

    2017-01-01

    Human intelligence has been conceptualized as a complex system of dissociable cognitive processes, yet studies investigating the neural basis of intelligence have typically emphasized the contributions of discrete brain regions or, more recently, of specific networks of functionally connected regions. Here we take a broader, systems perspective in order to investigate whether intelligence is an emergent property of synchrony within the brain’s intrinsic network architecture. Using a large sample of resting-state fMRI and cognitive data (n = 830), we report that the synchrony of functional interactions within and across distributed brain networks reliably predicts fluid and flexible intellectual functioning. By adopting a whole-brain, systems-level approach, we were able to reliably predict individual differences in human intelligence by characterizing features of the brain’s intrinsic network architecture. These findings hold promise for the eventual development of neural markers to predict changes in intellectual function that are associated with neurodevelopment, normal aging, and brain disease.

  17. Advanced microprocessor based power protection system using artificial neural network techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Z.; Kalam, A.; Zayegh, A.

    This paper describes an intelligent embedded microprocessor based system for fault classification in power system protection system using advanced 32-bit microprocessor technology. The paper demonstrates the development of protective relay to provide overcurrent protection schemes for fault detection. It also describes a method for power fault classification in three-phase system based on the use of neural network technology. The proposed design is implemented and tested on a single line three phase power system in power laboratory. Both the hardware and software development are described in detail.

  18. Underwater Acoustic Wireless Sensor Networks: Advances and Future Trends in Physical, MAC and Routing Layers

    PubMed Central

    Climent, Salvador; Sanchez, Antonio; Capella, Juan Vicente; Meratnia, Nirvana; Serrano, Juan Jose

    2014-01-01

    This survey aims to provide a comprehensive overview of the current research on underwater wireless sensor networks, focusing on the lower layers of the communication stack, and envisions future trends and challenges. It analyzes the current state-of-the-art on the physical, medium access control and routing layers. It summarizes their security threads and surveys the currently proposed studies. Current envisioned niches for further advances in underwater networks research range from efficient, low-power algorithms and modulations to intelligent, energy-aware routing and medium access control protocols. PMID:24399155

  19. Underwater acoustic wireless sensor networks: advances and future trends in physical, MAC and routing layers.

    PubMed

    Climent, Salvador; Sanchez, Antonio; Capella, Juan Vicente; Meratnia, Nirvana; Serrano, Juan Jose

    2014-01-06

    This survey aims to provide a comprehensive overview of the current research on underwater wireless sensor networks, focusing on the lower layers of the communication stack, and envisions future trends and challenges. It analyzes the current state-of-the-art on the physical, medium access control and routing layers. It summarizes their security threads and surveys the currently proposed studies. Current envisioned niches for further advances in underwater networks research range from efficient, low-power algorithms and modulations to intelligent, energy-aware routing and medium access control protocols.

  20. Network-Capable Application Process and Wireless Intelligent Sensors for ISHM

    NASA Technical Reports Server (NTRS)

    Figueroa, Fernando; Morris, Jon; Turowski, Mark; Wang, Ray

    2011-01-01

    Intelligent sensor technology and systems are increasingly becoming attractive means to serve as frameworks for intelligent rocket test facilities with embedded intelligent sensor elements, distributed data acquisition elements, and onboard data acquisition elements. Networked intelligent processors enable users and systems integrators to automatically configure their measurement automation systems for analog sensors. NASA and leading sensor vendors are working together to apply the IEEE 1451 standard for adding plug-and-play capabilities for wireless analog transducers through the use of a Transducer Electronic Data Sheet (TEDS) in order to simplify sensor setup, use, and maintenance, to automatically obtain calibration data, and to eliminate manual data entry and error. A TEDS contains the critical information needed by an instrument or measurement system to identify, characterize, interface, and properly use the signal from an analog sensor. A TEDS is deployed for a sensor in one of two ways. First, the TEDS can reside in embedded, nonvolatile memory (typically flash memory) within the intelligent processor. Second, a virtual TEDS can exist as a separate file, downloadable from the Internet. This concept of virtual TEDS extends the benefits of the standardized TEDS to legacy sensors and applications where the embedded memory is not available. An HTML-based user interface provides a visual tool to interface with those distributed sensors that a TEDS is associated with, to automate the sensor management process. Implementing and deploying the IEEE 1451.1-based Network-Capable Application Process (NCAP) can achieve support for intelligent process in Integrated Systems Health Management (ISHM) for the purpose of monitoring, detection of anomalies, diagnosis of causes of anomalies, prediction of future anomalies, mitigation to maintain operability, and integrated awareness of system health by the operator. It can also support local data collection and storage. This

  1. Driving the brain towards creativity and intelligence: A network control theory analysis.

    PubMed

    Kenett, Yoed N; Medaglia, John D; Beaty, Roger E; Chen, Qunlin; Betzel, Richard F; Thompson-Schill, Sharon L; Qiu, Jiang

    2018-01-04

    High-level cognitive constructs, such as creativity and intelligence, entail complex and multiple processes, including cognitive control processes. Recent neurocognitive research on these constructs highlight the importance of dynamic interaction across neural network systems and the role of cognitive control processes in guiding such a dynamic interaction. How can we quantitatively examine the extent and ways in which cognitive control contributes to creativity and intelligence? To address this question, we apply a computational network control theory (NCT) approach to structural brain imaging data acquired via diffusion tensor imaging in a large sample of participants, to examine how NCT relates to individual differences in distinct measures of creative ability and intelligence. Recent application of this theory at the neural level is built on a model of brain dynamics, which mathematically models patterns of inter-region activity propagated along the structure of an underlying network. The strength of this approach is its ability to characterize the potential role of each brain region in regulating whole-brain network function based on its anatomical fingerprint and a simplified model of node dynamics. We find that intelligence is related to the ability to "drive" the brain system into easy to reach neural states by the right inferior parietal lobe and lower integration abilities in the left retrosplenial cortex. We also find that creativity is related to the ability to "drive" the brain system into difficult to reach states by the right dorsolateral prefrontal cortex (inferior frontal junction) and higher integration abilities in sensorimotor areas. Furthermore, we found that different facets of creativity-fluency, flexibility, and originality-relate to generally similar but not identical network controllability processes. We relate our findings to general theories on intelligence and creativity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Distributed Problem Solving: Adaptive Networks with a Computer Intermediary Resource. Intelligent Executive Computer Communication

    DTIC Science & Technology

    1991-06-01

    Proceedings of The National Conference on Artificial Intelligence , pages 181-184, The American Association for Aritificial Intelligence , Pittsburgh...Intermediary Resource: Intelligent Executive Computer Communication John Lyman and Carla J. Conaway University of California at Los Angeles for Contracting...Include Security Classification) Interim Report: Distributed Problem Solving: Adaptive Networks With a Computer Intermediary Resource: Intelligent

  3. Intelligent Network Flow Optimization (INFLO) prototype acceptance test summary.

    DOT National Transportation Integrated Search

    2015-05-01

    This report summarizes the results of System Acceptance Testing for the implementation of the Intelligent Network Flow Optimization (INFLO) Prototype bundle within the Dynamic Mobility Applications (DMA) portion of the Connected Vehicle Program. This...

  4. Intercluster Connection in Cognitive Wireless Mesh Networks Based on Intelligent Network Coding

    NASA Astrophysics Data System (ADS)

    Chen, Xianfu; Zhao, Zhifeng; Jiang, Tao; Grace, David; Zhang, Honggang

    2009-12-01

    Cognitive wireless mesh networks have great flexibility to improve spectrum resource utilization, within which secondary users (SUs) can opportunistically access the authorized frequency bands while being complying with the interference constraint as well as the QoS (Quality-of-Service) requirement of primary users (PUs). In this paper, we consider intercluster connection between the neighboring clusters under the framework of cognitive wireless mesh networks. Corresponding to the collocated clusters, data flow which includes the exchanging of control channel messages usually needs four time slots in traditional relaying schemes since all involved nodes operate in half-duplex mode, resulting in significant bandwidth efficiency loss. The situation is even worse at the gateway node connecting the two colocated clusters. A novel scheme based on network coding is proposed in this paper, which needs only two time slots to exchange the same amount of information mentioned above. Our simulation shows that the network coding-based intercluster connection has the advantage of higher bandwidth efficiency compared with the traditional strategy. Furthermore, how to choose an optimal relaying transmission power level at the gateway node in an environment of coexisting primary and secondary users is discussed. We present intelligent approaches based on reinforcement learning to solve the problem. Theoretical analysis and simulation results both show that the intelligent approaches can achieve optimal throughput for the intercluster relaying in the long run.

  5. Designing a holistic end-to-end intelligent network analysis and security platform

    NASA Astrophysics Data System (ADS)

    Alzahrani, M.

    2018-03-01

    Firewall protects a network from outside attacks, however, once an attack entering a network, it is difficult to detect. Recent significance accidents happened. i.e.: millions of Yahoo email account were stolen and crucial data from institutions are held for ransom. Within two year Yahoo’s system administrators were not aware that there are intruder inside the network. This happened due to the lack of intelligent tools to monitor user behaviour in internal network. This paper discusses a design of an intelligent anomaly/malware detection system with proper proactive actions. The aim is to equip the system administrator with a proper tool to battle the insider attackers. The proposed system adopts machine learning to analyse user’s behaviour through the runtime behaviour of each node in the network. The machine learning techniques include: deep learning, evolving machine learning perceptron, hybrid of Neural Network and Fuzzy, as well as predictive memory techniques. The proposed system is expanded to deal with larger network using agent techniques.

  6. Intelligent reservoir operation system based on evolving artificial neural networks

    NASA Astrophysics Data System (ADS)

    Chaves, Paulo; Chang, Fi-John

    2008-06-01

    We propose a novel intelligent reservoir operation system based on an evolving artificial neural network (ANN). Evolving means the parameters of the ANN model are identified by the GA evolutionary optimization technique. Accordingly, the ANN model should represent the operational strategies of reservoir operation. The main advantages of the Evolving ANN Intelligent System (ENNIS) are as follows: (i) only a small number of parameters to be optimized even for long optimization horizons, (ii) easy to handle multiple decision variables, and (iii) the straightforward combination of the operation model with other prediction models. The developed intelligent system was applied to the operation of the Shihmen Reservoir in North Taiwan, to investigate its applicability and practicability. The proposed method is first built to a simple formulation for the operation of the Shihmen Reservoir, with single objective and single decision. Its results were compared to those obtained by dynamic programming. The constructed network proved to be a good operational strategy. The method was then built and applied to the reservoir with multiple (five) decision variables. The results demonstrated that the developed evolving neural networks improved the operation performance of the reservoir when compared to its current operational strategy. The system was capable of successfully simultaneously handling various decision variables and provided reasonable and suitable decisions.

  7. The Role of Intelligent Agents in Advanced Information Systems

    NASA Technical Reports Server (NTRS)

    Kerschberg, Larry

    1999-01-01

    In this presentation we review the current ongoing research within George Mason University's (GMU) Center for Information Systems Integration and Evolution (CISE). We define characteristics of advanced information systems, discuss a family of agents for such systems, and show how GMU's Domain modeling tools and techniques can be used to define a product line Architecture for configuring NASA missions. These concepts can be used to define Advanced Engineering Environments such as those envisioned for NASA's new initiative for intelligent design and synthesis environments.

  8. Intelligent deflection routing in buffer-less networks.

    PubMed

    Haeri, Soroush; Trajković, Ljiljana

    2015-02-01

    Deflection routing is employed to ameliorate packet loss caused by contention in buffer-less architectures such as optical burst-switched networks. The main goal of deflection routing is to successfully deflect a packet based only on a limited knowledge that network nodes possess about their environment. In this paper, we present a framework that introduces intelligence to deflection routing (iDef). iDef decouples the design of the signaling infrastructure from the underlying learning algorithm. It consists of a signaling and a decision-making module. Signaling module implements a feedback management protocol while the decision-making module implements a reinforcement learning algorithm. We also propose several learning-based deflection routing protocols, implement them in iDef using the ns-3 network simulator, and compare their performance.

  9. Intelligent video storage of visual evidences on site in fast deployment

    NASA Astrophysics Data System (ADS)

    Desurmont, Xavier; Bastide, Arnaud; Delaigle, Jean-Francois

    2004-07-01

    In this article we present a generic, flexible, scalable and robust approach for an intelligent real-time forensic visual system. The proposed implementation could be rapidly deployable and integrates minimum logistic support as it embeds low complexity devices (PCs and cameras) that communicate through wireless network. The goal of these advanced tools is to provide intelligent video storage of potential video evidences for fast intervention during deployment around a hazardous sector after a terrorism attack, a disaster, an air crash or before attempt of it. Advanced video analysis tools, such as segmentation and tracking are provided to support intelligent storage and annotation.

  10. Power Grid Maintenance Scheduling Intelligence Arrangement Supporting System Based on Power Flow Forecasting

    NASA Astrophysics Data System (ADS)

    Xie, Chang; Wen, Jing; Liu, Wenying; Wang, Jiaming

    With the development of intelligent dispatching, the intelligence level of network control center full-service urgent need to raise. As an important daily work of network control center, the application of maintenance scheduling intelligent arrangement to achieve high-quality and safety operation of power grid is very important. By analyzing the shortages of the traditional maintenance scheduling software, this paper designs a power grid maintenance scheduling intelligence arrangement supporting system based on power flow forecasting, which uses the advanced technologies in maintenance scheduling, such as artificial intelligence, online security checking, intelligent visualization techniques. It implements the online security checking of maintenance scheduling based on power flow forecasting and power flow adjusting based on visualization, in order to make the maintenance scheduling arrangement moreintelligent and visual.

  11. Supporting tactical intelligence using collaborative environments and social networking

    NASA Astrophysics Data System (ADS)

    Wollocko, Arthur B.; Farry, Michael P.; Stark, Robert F.

    2013-05-01

    Modern military environments place an increased emphasis on the collection and analysis of intelligence at the tactical level. The deployment of analytical tools at the tactical level helps support the Warfighter's need for rapid collection, analysis, and dissemination of intelligence. However, given the lack of experience and staffing at the tactical level, most of the available intelligence is not exploited. Tactical environments are staffed by a new generation of intelligence analysts who are well-versed in modern collaboration environments and social networking. An opportunity exists to enhance tactical intelligence analysis by exploiting these personnel strengths, but is dependent on appropriately designed information sharing technologies. Existing social information sharing technologies enable users to publish information quickly, but do not unite or organize information in a manner that effectively supports intelligence analysis. In this paper, we present an alternative approach to structuring and supporting tactical intelligence analysis that combines the benefits of existing concepts, and provide detail on a prototype system embodying that approach. Since this approach employs familiar collaboration support concepts from social media, it enables new-generation analysts to identify the decision-relevant data scattered among databases and the mental models of other personnel, increasing the timeliness of collaborative analysis. Also, the approach enables analysts to collaborate visually to associate heterogeneous and uncertain data within the intelligence analysis process, increasing the robustness of collaborative analyses. Utilizing this familiar dynamic collaboration environment, we hope to achieve a significant reduction of time and skill required to glean actionable intelligence in these challenging operational environments.

  12. Neuroanatomical Correlates of Intelligence

    PubMed Central

    Luders, Eileen; Narr, Katherine L.; Thompson, Paul M.; Toga, Arthur W.

    2009-01-01

    With the advancement of image acquisition and analysis methods in recent decades, unique opportunities have emerged to study the neuroanatomical correlates of intelligence. Traditional approaches examining global measures have been complemented by insights from more regional analyses based on pre-defined areas. Newer state-of-the-art approaches have further enhanced our ability to localize the presence of correlations between cerebral characteristics and intelligence with high anatomic precision. These in vivo assessments have confirmed mainly positive correlations, suggesting that optimally increased brain regions are associated with better cognitive performance. Findings further suggest that the models proposed to explain the anatomical substrates of intelligence should address contributions from not only (pre)frontal regions, but also widely distributed networks throughout the whole brain. PMID:20160919

  13. An Intelligent Monitoring Network for Detection of Cracks in Anvils of High-Press Apparatus.

    PubMed

    Tian, Hao; Yan, Zhaoli; Yang, Jun

    2018-04-09

    Due to the endurance of alternating high pressure and temperature, the carbide anvils of the high-press apparatus, which are widely used in the synthetic diamond industry, are prone to crack. In this paper, an acoustic method is used to monitor the crack events, and the intelligent monitoring network is proposed to classify the sound samples. The pulse sound signals produced by such cracking are first extracted based on a short-time energy threshold. Then, the signals are processed with the proposed intelligent monitoring network to identify the operation condition of the anvil of the high-pressure apparatus. The monitoring network is an improved convolutional neural network that solves the problems that may occur in practice. The length of pulse sound excited by the crack growth is variable, so a spatial pyramid pooling layer is adopted to solve the variable-length input problem. An adaptive weighted algorithm for loss function is proposed in this method to handle the class imbalance problem. The good performance regarding the accuracy and balance of the proposed intelligent monitoring network is validated through the experiments finally.

  14. Application of hierarchical dissociated neural network in closed-loop hybrid system integrating biological and mechanical intelligence.

    PubMed

    Li, Yongcheng; Sun, Rong; Zhang, Bin; Wang, Yuechao; Li, Hongyi

    2015-01-01

    Neural networks are considered the origin of intelligence in organisms. In this paper, a new design of an intelligent system merging biological intelligence with artificial intelligence was created. It was based on a neural controller bidirectionally connected to an actual mobile robot to implement a novel vehicle. Two types of experimental preparations were utilized as the neural controller including 'random' and '4Q' (cultured neurons artificially divided into four interconnected parts) neural network. Compared to the random cultures, the '4Q' cultures presented absolutely different activities, and the robot controlled by the '4Q' network presented better capabilities in search tasks. Our results showed that neural cultures could be successfully employed to control an artificial agent; the robot performed better and better with the stimulus because of the short-term plasticity. A new framework is provided to investigate the bidirectional biological-artificial interface and develop new strategies for a future intelligent system using these simplified model systems.

  15. Application of Hierarchical Dissociated Neural Network in Closed-Loop Hybrid System Integrating Biological and Mechanical Intelligence

    PubMed Central

    Zhang, Bin; Wang, Yuechao; Li, Hongyi

    2015-01-01

    Neural networks are considered the origin of intelligence in organisms. In this paper, a new design of an intelligent system merging biological intelligence with artificial intelligence was created. It was based on a neural controller bidirectionally connected to an actual mobile robot to implement a novel vehicle. Two types of experimental preparations were utilized as the neural controller including ‘random’ and ‘4Q’ (cultured neurons artificially divided into four interconnected parts) neural network. Compared to the random cultures, the ‘4Q’ cultures presented absolutely different activities, and the robot controlled by the ‘4Q’ network presented better capabilities in search tasks. Our results showed that neural cultures could be successfully employed to control an artificial agent; the robot performed better and better with the stimulus because of the short-term plasticity. A new framework is provided to investigate the bidirectional biological-artificial interface and develop new strategies for a future intelligent system using these simplified model systems. PMID:25992579

  16. The twelfth annual Intelligent Ground Vehicle Competition: team approaches to intelligent vehicles

    NASA Astrophysics Data System (ADS)

    Theisen, Bernard L.; Maslach, Daniel

    2004-10-01

    The Intelligent Ground Vehicle Competition (IGVC) is one of three, unmanned systems, student competitions that were founded by the Association for Unmanned Vehicle Systems International (AUVSI) in the 1990s. The IGVC is a multidisciplinary exercise in product realization that challenges college engineering student teams to integrate advanced control theory, machine vision, vehicular electronics, and mobile platform fundamentals to design and build an unmanned system. Both U.S. and international teams focus on developing a suite of dual-use technologies to equip ground vehicles of the future with intelligent driving capabilities. Over the past 12 years, the competition has challenged undergraduate, graduate and Ph.D. students with real world applications in intelligent transportation systems, the military and manufacturing automation. To date, teams from over 43 universities and colleges have participated. This paper describes some of the applications of the technologies required by this competition and discusses the educational benefits. The primary goal of the IGVC is to advance engineering education in intelligent vehicles and related technologies. The employment and professional networking opportunities created for students and industrial sponsors through a series of technical events over the three-day competition are highlighted. Finally, an assessment of the competition based on participant feedback is presented.

  17. Cooperation and the evolution of intelligence

    PubMed Central

    McNally, Luke; Brown, Sam P.; Jackson, Andrew L.

    2012-01-01

    The high levels of intelligence seen in humans, other primates, certain cetaceans and birds remain a major puzzle for evolutionary biologists, anthropologists and psychologists. It has long been held that social interactions provide the selection pressures necessary for the evolution of advanced cognitive abilities (the ‘social intelligence hypothesis’), and in recent years decision-making in the context of cooperative social interactions has been conjectured to be of particular importance. Here we use an artificial neural network model to show that selection for efficient decision-making in cooperative dilemmas can give rise to selection pressures for greater cognitive abilities, and that intelligent strategies can themselves select for greater intelligence, leading to a Machiavellian arms race. Our results provide mechanistic support for the social intelligence hypothesis, highlight the potential importance of cooperative behaviour in the evolution of intelligence and may help us to explain the distribution of cooperation with intelligence across taxa. PMID:22496188

  18. The relationship of certified flight instructors' emotional intelligence levels on flight student advancement

    NASA Astrophysics Data System (ADS)

    Hokeness, Mark Merrill

    Aviation researchers estimate airline companies will require nearly 500,000 pilots in the next 20 years. The role of a Certified Flight Instructor (CFI) is to move student pilots to professional pilots with training typically conducted in one-on-one student and instructor sessions. The knowledge of aviation, professionalism as a teacher, and the CFI’s interpersonal skills can directly affect the successes and advancement of a student pilot. A new and emerging assessment of people skills is known as emotional intelligence (EI). The EI of the CFI can and will affect a flight students’ learning experiences. With knowledge of emotional intelligence and its effect on flight training, student pilot dropouts from aviation may be reduced, thus helping to ensure an adequate supply of pilots. Without pilots, the growth of the commercial aviation industry will be restricted. This mixed method research study established the correlation between a CFI’s measured EI levels and the advancement of flight students. The elements contributing to a CFI’s EI level were not found to be teaching or flight-related experiences, suggesting other life factors are drawn upon by the CFI and are reflected in their emotional intelligence levels presented to flight students. Students respond positively to CFIs with higher levels of emotional intelligence. Awareness of EI skills by both the CFI and flight student contribute to flight student successes and advancement.

  19. Distributed intelligent monitoring and reporting facilities

    NASA Astrophysics Data System (ADS)

    Pavlou, George; Mykoniatis, George; Sanchez-P, Jorge-A.

    1996-06-01

    Distributed intelligent monitoring and reporting facilities are of paramount importance in both service and network management as they provide the capability to monitor quality of service and utilization parameters and notify degradation so that corrective action can be taken. By intelligent, we refer to the capability of performing the monitoring tasks in a way that has the smallest possible impact on the managed network, facilitates the observation and summarization of information according to a number of criteria and in its most advanced form and permits the specification of these criteria dynamically to suit the particular policy in hand. In addition, intelligent monitoring facilities should minimize the design and implementation effort involved in such activities. The ISO/ITU Metric, Summarization and Performance management functions provide models that only partially satisfy the above requirements. This paper describes our extensions to the proposed models to support further capabilities, with the intention to eventually lead to fully dynamically defined monitoring policies. The concept of distributing intelligence is also discussed, including the consideration of security issues and the applicability of the model in ODP-based distributed processing environments.

  20. Prototyping and Simulation of Robot Group Intelligence using Kohonen Networks.

    PubMed

    Wang, Zhijun; Mirdamadi, Reza; Wang, Qing

    2016-01-01

    Intelligent agents such as robots can form ad hoc networks and replace human being in many dangerous scenarios such as a complicated disaster relief site. This project prototypes and builds a computer simulator to simulate robot kinetics, unsupervised learning using Kohonen networks, as well as group intelligence when an ad hoc network is formed. Each robot is modeled using an object with a simple set of attributes and methods that define its internal states and possible actions it may take under certain circumstances. As the result, simple, reliable, and affordable robots can be deployed to form the network. The simulator simulates a group of robots as an unsupervised learning unit and tests the learning results under scenarios with different complexities. The simulation results show that a group of robots could demonstrate highly collaborative behavior on a complex terrain. This study could potentially provide a software simulation platform for testing individual and group capability of robots before the design process and manufacturing of robots. Therefore, results of the project have the potential to reduce the cost and improve the efficiency of robot design and building.

  1. Prototyping and Simulation of Robot Group Intelligence using Kohonen Networks

    PubMed Central

    Wang, Zhijun; Mirdamadi, Reza; Wang, Qing

    2016-01-01

    Intelligent agents such as robots can form ad hoc networks and replace human being in many dangerous scenarios such as a complicated disaster relief site. This project prototypes and builds a computer simulator to simulate robot kinetics, unsupervised learning using Kohonen networks, as well as group intelligence when an ad hoc network is formed. Each robot is modeled using an object with a simple set of attributes and methods that define its internal states and possible actions it may take under certain circumstances. As the result, simple, reliable, and affordable robots can be deployed to form the network. The simulator simulates a group of robots as an unsupervised learning unit and tests the learning results under scenarios with different complexities. The simulation results show that a group of robots could demonstrate highly collaborative behavior on a complex terrain. This study could potentially provide a software simulation platform for testing individual and group capability of robots before the design process and manufacturing of robots. Therefore, results of the project have the potential to reduce the cost and improve the efficiency of robot design and building. PMID:28540284

  2. Energy-efficient hierarchical processing in the network of wireless intelligent sensors (WISE)

    NASA Astrophysics Data System (ADS)

    Raskovic, Dejan

    Sensor network nodes have benefited from technological advances in the field of wireless communication, processing, and power sources. However, the processing power of microcontrollers is often not sufficient to perform sophisticated processing, while the power requirements of digital signal processing boards or handheld computers are usually too demanding for prolonged system use. We are matching the intrinsic hierarchical nature of many digital signal-processing applications with the natural hierarchy in distributed wireless networks, and building the hierarchical system of wireless intelligent sensors. Our goal is to build a system that will exploit the hierarchical organization to optimize the power consumption and extend battery life for the given time and memory constraints, while providing real-time processing of sensor signals. In addition, we are designing our system to be able to adapt to the current state of the environment, by dynamically changing the algorithm through procedure replacement. This dissertation presents the analysis of hierarchical environment and methods for energy profiling used to evaluate different system design strategies, and to optimize time-effective and energy-efficient processing.

  3. A Workflow-based Intelligent Network Data Movement Advisor with End-to-end Performance Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Michelle M.; Wu, Chase Q.

    2013-11-07

    Next-generation eScience applications often generate large amounts of simulation, experimental, or observational data that must be shared and managed by collaborative organizations. Advanced networking technologies and services have been rapidly developed and deployed to facilitate such massive data transfer. However, these technologies and services have not been fully utilized mainly because their use typically requires significant domain knowledge and in many cases application users are even not aware of their existence. By leveraging the functionalities of an existing Network-Aware Data Movement Advisor (NADMA) utility, we propose a new Workflow-based Intelligent Network Data Movement Advisor (WINDMA) with end-to-end performance optimization formore » this DOE funded project. This WINDMA system integrates three major components: resource discovery, data movement, and status monitoring, and supports the sharing of common data movement workflows through account and database management. This system provides a web interface and interacts with existing data/space management and discovery services such as Storage Resource Management, transport methods such as GridFTP and GlobusOnline, and network resource provisioning brokers such as ION and OSCARS. We demonstrate the efficacy of the proposed transport-support workflow system in several use cases based on its implementation and deployment in DOE wide-area networks.« less

  4. Battery-free Wireless Sensor Network For Advanced Fossil-Fuel Based Power Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yi Jia

    2011-02-28

    This report summarizes technical progress achieved during the project supported by the Department of Energy under Award Number DE-FG26-07NT4306. The aim of the project was to conduct basic research into battery-free wireless sensing mechanism in order to develop novel wireless sensors and sensor network for physical and chemical parameter monitoring in a harsh environment. Passive wireless sensing platform and five wireless sensors including temperature sensor, pressure sensor, humidity sensor, crack sensor and networked sensors developed and demonstrated in our laboratory setup have achieved the objective for the monitoring of various physical and chemical parameters in a harsh environment through remotemore » power and wireless sensor communication, which is critical to intelligent control of advanced power generation system. This report is organized by the sensors developed as detailed in each progress report.« less

  5. 77 FR 3544 - Meeting and Webinar on the Active Traffic and Demand Management and Intelligent Network Flow...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-24

    ... Intelligent Network Flow Optimization Operational Concepts; Notice of Public Meeting AGENCY: Research and... Demand Management (ADTM) and Intelligent Network Flow Optimization (INFLO) operational concepts. The ADTM... February 8, 2012, 8:30 to 4:30 p.m. The location for both meetings is the Hall of States, 444 North Capitol...

  6. Intelligent pump test system based on virtual instrument

    NASA Astrophysics Data System (ADS)

    Ma, Jungong; Wang, Shifu; Wang, Zhanlin

    2003-09-01

    The intelligent pump system is the key component of the aircraft hydraulic system that can solve the problem, such as the temperature sharply increasing. As the performance of the intelligent pump directly determines that of the aircraft hydraulic system and seriously affects fly security and reliability. So it is important to test all kinds of performance parameters of intelligent pump during design and development, while the advanced, reliable and complete test equipments are the necessary instruments for achieving the goal. In this paper, the application of virtual instrument and computer network technology in aircraft intelligent pump test is presented. The composition of the hardware, software, hydraulic circuit in this system are designed and implemented.

  7. Brain Networks for Working Memory and Factors of Intelligence Assessed in Males and Females with fMRI and DTI

    ERIC Educational Resources Information Center

    Tang, C. Y.; Eaves, E. L.; Ng, J. C.; Carpenter, D. M.; Mai, X.; Schroeder, D. H.; Condon, C. A.; Colom, R.; Haier, R. J.

    2010-01-01

    Neuro-imaging studies of intelligence implicate the importance of a parietal-frontal network. One unresolved issue is whether this network underlies a general factor of intelligence ("g") or other specific cognitive factors. A second unresolved issue is whether males and females use different parts of this network. Here we obtained intelligence…

  8. Multi-objects recognition for distributed intelligent sensor networks

    NASA Astrophysics Data System (ADS)

    He, Haibo; Chen, Sheng; Cao, Yuan; Desai, Sachi; Hohil, Myron E.

    2008-04-01

    This paper proposes an innovative approach for multi-objects recognition for homeland security and defense based intelligent sensor networks. Unlike the conventional way of information analysis, data mining in such networks is typically characterized with high information ambiguity/uncertainty, data redundancy, high dimensionality and real-time constrains. Furthermore, since a typical military based network normally includes multiple mobile sensor platforms, ground forces, fortified tanks, combat flights, and other resources, it is critical to develop intelligent data mining approaches to fuse different information resources to understand dynamic environments, to support decision making processes, and finally to achieve the goals. This paper aims to address these issues with a focus on multi-objects recognition. Instead of classifying a single object as in the traditional image classification problems, the proposed method can automatically learn multiple objectives simultaneously. Image segmentation techniques are used to identify the interesting regions in the field, which correspond to multiple objects such as soldiers or tanks. Since different objects will come with different feature sizes, we propose a feature scaling method to represent each object in the same number of dimensions. This is achieved by linear/nonlinear scaling and sampling techniques. Finally, support vector machine (SVM) based learning algorithms are developed to learn and build the associations for different objects, and such knowledge will be adaptively accumulated for objects recognition in the testing stage. We test the effectiveness of proposed method in different simulated military environments.

  9. Worldwide Intelligent Systems: Approaches to Telecommunications and Network Management. Frontiers in Artificial Intelligence and Applications, Volume 24.

    ERIC Educational Resources Information Center

    Liebowitz, Jay, Ed.; Prerau, David S., Ed.

    This is an international collection of 12 papers addressing artificial intelligence (AI) and knowledge technology applications in telecommunications and network management. It covers the latest and emerging AI technologies as applied to the telecommunications field. The papers are: "The Potential for Knowledge Technology in…

  10. Intelligent optical networking with photonic cross connections

    NASA Astrophysics Data System (ADS)

    Ceuppens, L.; Jerphagnon, Olivier L.; Lang, Jonathan; Banerjee, Ayan; Blumenthal, Daniel J.

    2002-09-01

    Optical amplification and dense wavelength division multiplexing (DWDM) have fundamentally changed optical transport networks. Now that these technologies are widely adopted, the bottleneck has moved from the outside line plant to nodal central offices, where electrical switching equipment has not kept pace. While OEO technology was (and still is) necessary for grooming and traffic aggregation, the transport network has dramatically changed, requiring a dramatic rethinking of how networks need to be designed and operated. While todays transport networks carry remarkable amounts of bandwidth, their optical layer is fundamentally static and provides for only simple point-to-point transport. Efficiently managing the growing number of wavelengths can only be achieved through a new breed of networking element. Photonic switching systems (PSS) can efficiently execute these functions because they are bit rate, wavelength, and protocol transparent. With their all-optical switch cores and interfaces, PSS can switch optical signals at various levels of granularity wavelength, sub band, and composite DWDM fiber levels. Though cross-connect systems with electrical switch cores are available, they perform these functions at very high capital costs and operational inefficiencies. This paper examines enabling technologies for deployment of intelligent optical transport networks (OTN), and takes a practical perspective on survivability architecture migration and implementation issues.

  11. F-15 IFCS: Intelligent Flight Control System

    NASA Technical Reports Server (NTRS)

    Bosworth, John

    2007-01-01

    This viewgraph presentation describes the F-15 Intelligent Flight Control System (IFCS). The goals of this project include: 1) Demonstrate revolutionary control approaches that can efficiently optimize aircraft performance in both normal and failure conditions; and 2) Demonstrate advance neural network-based flight control technology for new aerospace systems designs.

  12. An Intelligent Ensemble Neural Network Model for Wind Speed Prediction in Renewable Energy Systems.

    PubMed

    Ranganayaki, V; Deepa, S N

    2016-01-01

    Various criteria are proposed to select the number of hidden neurons in artificial neural network (ANN) models and based on the criterion evolved an intelligent ensemble neural network model is proposed to predict wind speed in renewable energy applications. The intelligent ensemble neural model based wind speed forecasting is designed by averaging the forecasted values from multiple neural network models which includes multilayer perceptron (MLP), multilayer adaptive linear neuron (Madaline), back propagation neural network (BPN), and probabilistic neural network (PNN) so as to obtain better accuracy in wind speed prediction with minimum error. The random selection of hidden neurons numbers in artificial neural network results in overfitting or underfitting problem. This paper aims to avoid the occurrence of overfitting and underfitting problems. The selection of number of hidden neurons is done in this paper employing 102 criteria; these evolved criteria are verified by the computed various error values. The proposed criteria for fixing hidden neurons are validated employing the convergence theorem. The proposed intelligent ensemble neural model is applied for wind speed prediction application considering the real time wind data collected from the nearby locations. The obtained simulation results substantiate that the proposed ensemble model reduces the error value to minimum and enhances the accuracy. The computed results prove the effectiveness of the proposed ensemble neural network (ENN) model with respect to the considered error factors in comparison with that of the earlier models available in the literature.

  13. An Intelligent Ensemble Neural Network Model for Wind Speed Prediction in Renewable Energy Systems

    PubMed Central

    Ranganayaki, V.; Deepa, S. N.

    2016-01-01

    Various criteria are proposed to select the number of hidden neurons in artificial neural network (ANN) models and based on the criterion evolved an intelligent ensemble neural network model is proposed to predict wind speed in renewable energy applications. The intelligent ensemble neural model based wind speed forecasting is designed by averaging the forecasted values from multiple neural network models which includes multilayer perceptron (MLP), multilayer adaptive linear neuron (Madaline), back propagation neural network (BPN), and probabilistic neural network (PNN) so as to obtain better accuracy in wind speed prediction with minimum error. The random selection of hidden neurons numbers in artificial neural network results in overfitting or underfitting problem. This paper aims to avoid the occurrence of overfitting and underfitting problems. The selection of number of hidden neurons is done in this paper employing 102 criteria; these evolved criteria are verified by the computed various error values. The proposed criteria for fixing hidden neurons are validated employing the convergence theorem. The proposed intelligent ensemble neural model is applied for wind speed prediction application considering the real time wind data collected from the nearby locations. The obtained simulation results substantiate that the proposed ensemble model reduces the error value to minimum and enhances the accuracy. The computed results prove the effectiveness of the proposed ensemble neural network (ENN) model with respect to the considered error factors in comparison with that of the earlier models available in the literature. PMID:27034973

  14. CATO: a CAD tool for intelligent design of optical networks and interconnects

    NASA Astrophysics Data System (ADS)

    Chlamtac, Imrich; Ciesielski, Maciej; Fumagalli, Andrea F.; Ruszczyk, Chester; Wedzinga, Gosse

    1997-10-01

    Increasing communication speed requirements have created a great interest in very high speed optical and all-optical networks and interconnects. The design of these optical systems is a highly complex task, requiring the simultaneous optimization of various parts of the system, ranging from optical components' characteristics to access protocol techniques. Currently there are no computer aided design (CAD) tools on the market to support the interrelated design of all parts of optical communication systems, thus the designer has to rely on costly and time consuming testbed evaluations. The objective of the CATO (CAD tool for optical networks and interconnects) project is to develop a prototype of an intelligent CAD tool for the specification, design, simulation and optimization of optical communication networks. CATO allows the user to build an abstract, possible incomplete, model of the system, and determine its expected performance. Based on design constraints provided by the user, CATO will automatically complete an optimum design, using mathematical programming techniques, intelligent search methods and artificial intelligence (AI). Initial design and testing of a CATO prototype (CATO-1) has been completed recently. The objective was to prove the feasibility of combining AI techniques, simulation techniques, an optical device library and a graphical user interface into a flexible CAD tool for obtaining optimal communication network designs in terms of system cost and performance. CATO-1 is an experimental tool for designing packet-switching wavelength division multiplexing all-optical communication systems using a LAN/MAN ring topology as the underlying network. The two specific AI algorithms incorporated are simulated annealing and a genetic algorithm. CATO-1 finds the optimal number of transceivers for each network node, using an objective function that includes the cost of the devices and the overall system performance.

  15. Addressing fundamental architectural challenges of an activity-based intelligence and advanced analytics (ABIAA) system

    NASA Astrophysics Data System (ADS)

    Yager, Kevin; Albert, Thomas; Brower, Bernard V.; Pellechia, Matthew F.

    2015-06-01

    The domain of Geospatial Intelligence Analysis is rapidly shifting toward a new paradigm of Activity Based Intelligence (ABI) and information-based Tipping and Cueing. General requirements for an advanced ABIAA system present significant challenges in architectural design, computing resources, data volumes, workflow efficiency, data mining and analysis algorithms, and database structures. These sophisticated ABI software systems must include advanced algorithms that automatically flag activities of interest in less time and within larger data volumes than can be processed by human analysts. In doing this, they must also maintain the geospatial accuracy necessary for cross-correlation of multi-intelligence data sources. Historically, serial architectural workflows have been employed in ABIAA system design for tasking, collection, processing, exploitation, and dissemination. These simpler architectures may produce implementations that solve short term requirements; however, they have serious limitations that preclude them from being used effectively in an automated ABIAA system with multiple data sources. This paper discusses modern ABIAA architectural considerations providing an overview of an advanced ABIAA system and comparisons to legacy systems. It concludes with a recommended strategy and incremental approach to the research, development, and construction of a fully automated ABIAA system.

  16. Digital intelligent booster for DCC miniature train networks

    NASA Astrophysics Data System (ADS)

    Ursu, M. P.; Condruz, D. A.

    2017-08-01

    Modern miniature trains are now driven by means of the DCC (Digital Command and Control) system, which allows the human operator or a personal computer to launch commands to each individual train or even to control different features of the same train. The digital command station encodes these commands and sends them to the trains by means of electrical pulses via the rails of the railway network. Due to the development of the miniature railway network, it may happen that the power requirement of the increasing number of digital locomotives, carriages and accessories exceeds the nominal output power of the digital command station. This digital intelligent booster relieves the digital command station from powering the entire railway network all by itself, and it automatically handles the multiple powered sections of the network. This electronic device is also able to detect and process short-circuits and overload conditions, without the intervention of the digital command station.

  17. Fluid Intelligence Allows Flexible Recruitment of the Parieto-Frontal Network in Analogical Reasoning

    PubMed Central

    Preusse, Franziska; Elke, van der Meer; Deshpande, Gopikrishna; Krueger, Frank; Wartenburger, Isabell

    2011-01-01

    Fluid intelligence is the ability to think flexibly and to understand abstract relations. People with high fluid intelligence (hi-fluIQ) perform better in analogical reasoning tasks than people with average fluid intelligence (ave-fluIQ). Although previous neuroimaging studies reported involvement of parietal and frontal brain regions in geometric analogical reasoning (which is a prototypical task for fluid intelligence), however, neuroimaging findings on geometric analogical reasoning in hi-fluIQ are sparse. Furthermore, evidence on the relation between brain activation and intelligence while solving cognitive tasks is contradictory. The present study was designed to elucidate the cerebral correlates of geometric analogical reasoning in a sample of hi-fluIQ and ave-fluIQ high school students. We employed a geometric analogical reasoning task with graded levels of task difficulty and confirmed the involvement of the parieto-frontal network in solving this task. In addition to characterizing the brain regions involved in geometric analogical reasoning in hi-fluIQ and ave-fluIQ, we found that blood oxygenation level dependency (BOLD) signal changes were greater for hi-fluIQ than for ave-fluIQ in parietal brain regions. However, ave-fluIQ showed greater BOLD signal changes in the anterior cingulate cortex and medial frontal gyrus than hi-fluIQ. Thus, we showed that a similar network of brain regions is involved in geometric analogical reasoning in both groups. Interestingly, the relation between brain activation and intelligence is not mono-directional, but rather, it is specific for each brain region. The negative brain activation–intelligence relationship in frontal brain regions in hi-fluIQ goes along with a better behavioral performance and reflects a lower demand for executive monitoring compared to ave-fluIQ individuals. In conclusion, our data indicate that flexibly modulating the extent of regional cerebral activity is characteristic for fluid intelligence

  18. Intelligent buildings.

    PubMed

    Williams, W E

    1987-01-01

    The maturing of technologies in computer capabilities, particularly direct digital signals, has provided an exciting variety of new communication and facility control opportunities. These include telecommunications, energy management systems, security systems, office automation systems, local area networks, and video conferencing. New applications are developing continuously. The so-called "intelligent" or "smart" building concept evolves from the development of this advanced technology in building environments. Automation has had a dramatic effect on facility planning. For decades, communications were limited to the telephone, the typewritten message, and copy machines. The office itself and its functions had been essentially unchanged for decades. Office automation systems began to surface during the energy crisis and, although their newer technology was timely, they were, for the most part, designed separately from other new building systems. For example, most mainframe computer systems were originally stand-alone, as were word processing installations. In the last five years, the advances in distributive systems, networking, and personal computer capabilities have provided opportunities to make such dramatic improvements in productivity that the Selectric typewriter has gone from being the most advanced piece of office equipment to nearly total obsolescence.

  19. Processing speed in recurrent visual networks correlates with general intelligence.

    PubMed

    Jolij, Jacob; Huisman, Danielle; Scholte, Steven; Hamel, Ronald; Kemner, Chantal; Lamme, Victor A F

    2007-01-08

    Studies on the neural basis of general fluid intelligence strongly suggest that a smarter brain processes information faster. Different brain areas, however, are interconnected by both feedforward and feedback projections. Whether both types of connections or only one of the two types are faster in smarter brains remains unclear. Here we show, by measuring visual evoked potentials during a texture discrimination task, that general fluid intelligence shows a strong correlation with processing speed in recurrent visual networks, while there is no correlation with speed of feedforward connections. The hypothesis that a smarter brain runs faster may need to be refined: a smarter brain's feedback connections run faster.

  20. Dynamic mobility applications policy analysis : policy and institutional issues for intelligent network flow optimization (INFLO).

    DOT National Transportation Integrated Search

    2014-12-01

    The report documents policy considerations for the Intelligent Network Flow Optimization (INFLO) connected vehicle applications bundle. INFLO aims to optimize network flow on freeways and arterials by informing motorists of existing and impendi...

  1. SNMP-SI: A Network Management Tool Based on Slow Intelligence System Approach

    NASA Astrophysics Data System (ADS)

    Colace, Francesco; de Santo, Massimo; Ferrandino, Salvatore

    The last decade has witnessed an intense spread of computer networks that has been further accelerated with the introduction of wireless networks. Simultaneously with, this growth has increased significantly the problems of network management. Especially in small companies, where there is no provision of personnel assigned to these tasks, the management of such networks is often complex and malfunctions can have significant impacts on their businesses. A possible solution is the adoption of Simple Network Management Protocol. Simple Network Management Protocol (SNMP) is a standard protocol used to exchange network management information. It is part of the Transmission Control Protocol/Internet Protocol (TCP/IP) protocol suite. SNMP provides a tool for network administrators to manage network performance, find and solve network problems, and plan for network growth. SNMP has a big disadvantage: its simple design means that the information it deals with is neither detailed nor well organized enough to deal with the expanding modern networking requirements. Over the past years much efforts has been given to improve the lack of Simple Network Management Protocol and new frameworks has been developed: A promising approach involves the use of Ontology. This is the starting point of this paper where a novel approach to the network management based on the use of the Slow Intelligence System methodologies and Ontology based techniques is proposed. Slow Intelligence Systems is a general-purpose systems characterized by being able to improve performance over time through a process involving enumeration, propagation, adaptation, elimination and concentration. Therefore, the proposed approach aims to develop a system able to acquire, according to an SNMP standard, information from the various hosts that are in the managed networks and apply solutions in order to solve problems. To check the feasibility of this model first experimental results in a real scenario are showed.

  2. Advanced information society(2)

    NASA Astrophysics Data System (ADS)

    Masuyama, Keiichi

    Our modern life is full of information and information infiltrates into our daily life. Networking of the telecommunication is extended to society, company, and individual level. Although we have just entered the advanced information society, business world and our daily life have been steadily transformed by the advancement of information network. This advancement of information brings a big influence on economy, and will play they the main role in the expansion of domestic demands. This paper tries to view the image of coming advanced information society, focusing on the transforming businessman's life and the situation of our daily life, which became wealthy by the spread of daily life information and the visual information by satellite system, in the development of the intelligent city.

  3. Construction of Gene Regulatory Networks Using Recurrent Neural Networks and Swarm Intelligence.

    PubMed

    Khan, Abhinandan; Mandal, Sudip; Pal, Rajat Kumar; Saha, Goutam

    2016-01-01

    We have proposed a methodology for the reverse engineering of biologically plausible gene regulatory networks from temporal genetic expression data. We have used established information and the fundamental mathematical theory for this purpose. We have employed the Recurrent Neural Network formalism to extract the underlying dynamics present in the time series expression data accurately. We have introduced a new hybrid swarm intelligence framework for the accurate training of the model parameters. The proposed methodology has been first applied to a small artificial network, and the results obtained suggest that it can produce the best results available in the contemporary literature, to the best of our knowledge. Subsequently, we have implemented our proposed framework on experimental (in vivo) datasets. Finally, we have investigated two medium sized genetic networks (in silico) extracted from GeneNetWeaver, to understand how the proposed algorithm scales up with network size. Additionally, we have implemented our proposed algorithm with half the number of time points. The results indicate that a reduction of 50% in the number of time points does not have an effect on the accuracy of the proposed methodology significantly, with a maximum of just over 15% deterioration in the worst case.

  4. Prediction of Sybil attack on WSN using Bayesian network and swarm intelligence

    NASA Astrophysics Data System (ADS)

    Muraleedharan, Rajani; Ye, Xiang; Osadciw, Lisa Ann

    2008-04-01

    Security in wireless sensor networks is typically sacrificed or kept minimal due to limited resources such as memory and battery power. Hence, the sensor nodes are prone to Denial-of-service attacks and detecting the threats is crucial in any application. In this paper, the Sybil attack is analyzed and a novel prediction method, combining Bayesian algorithm and Swarm Intelligence (SI) is proposed. Bayesian Networks (BN) is used in representing and reasoning problems, by modeling the elements of uncertainty. The decision from the BN is applied to SI forming an Hybrid Intelligence Scheme (HIS) to re-route the information and disconnecting the malicious nodes in future routes. A performance comparison based on the prediction using HIS vs. Ant System (AS) helps in prioritizing applications where decisions are time-critical.

  5. Advances in the Neuroscience of Intelligence: from Brain Connectivity to Brain Perturbation.

    PubMed

    Santarnecchi, Emiliano; Rossi, Simone

    2016-12-06

    Our view is that intelligence, as expression of the complexity of the human brain and of its evolutionary path, represents an intriguing example of "system level brain plasticity": tangible proofs of this assertion lie in the strong links intelligence has with vital brain capacities as information processing (i.e., pure, rough capacity to transfer information in an efficient way), resilience (i.e., the ability to cope with loss of efficiency and/or loss of physical elements in a network) and adaptability (i.e., being able to efficiently rearrange its dynamics in response to environmental demands). Current evidence supporting this view move from theoretical models correlating intelligence and individual response to systematic "lesions" of brain connectivity, as well as from the field of Noninvasive Brain Stimulation (NiBS). Perturbation-based approaches based on techniques as transcranial magnetic stimulation (TMS) and transcranial alternating current stimulation (tACS), are opening new in vivo scenarios which could allow to disclose more causal relationship between intelligence and brain plasticity, overcoming the limitations of brain-behavior correlational evidence.

  6. AAAIC '88 - Aerospace Applications of Artificial Intelligence; Proceedings of the Fourth Annual Conference, Dayton, OH, Oct. 25-27, 1988. Volumes 1 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, J.R.; Netrologic, Inc., San Diego, CA)

    1988-01-01

    Topics presented include integrating neural networks and expert systems, neural networks and signal processing, machine learning, cognition and avionics applications, artificial intelligence and man-machine interface issues, real time expert systems, artificial intelligence, and engineering applications. Also considered are advanced problem solving techniques, combinational optimization for scheduling and resource control, data fusion/sensor fusion, back propagation with momentum, shared weights and recurrency, automatic target recognition, cybernetics, optical neural networks.

  7. New application of intelligent agents in sporadic amyotrophic lateral sclerosis identifies unexpected specific genetic background.

    PubMed

    Penco, Silvana; Buscema, Massimo; Patrosso, Maria Cristina; Marocchi, Alessandro; Grossi, Enzo

    2008-05-30

    Few genetic factors predisposing to the sporadic form of amyotrophic lateral sclerosis (ALS) have been identified, but the pathology itself seems to be a true multifactorial disease in which complex interactions between environmental and genetic susceptibility factors take place. The purpose of this study was to approach genetic data with an innovative statistical method such as artificial neural networks to identify a possible genetic background predisposing to the disease. A DNA multiarray panel was applied to genotype more than 60 polymorphisms within 35 genes selected from pathways of lipid and homocysteine metabolism, regulation of blood pressure, coagulation, inflammation, cellular adhesion and matrix integrity, in 54 sporadic ALS patients and 208 controls. Advanced intelligent systems based on novel coupling of artificial neural networks and evolutionary algorithms have been applied. The results obtained have been compared with those derived from the use of standard neural networks and classical statistical analysis Advanced intelligent systems based on novel coupling of artificial neural networks and evolutionary algorithms have been applied. The results obtained have been compared with those derived from the use of standard neural networks and classical statistical analysis. An unexpected discovery of a strong genetic background in sporadic ALS using a DNA multiarray panel and analytical processing of the data with advanced artificial neural networks was found. The predictive accuracy obtained with Linear Discriminant Analysis and Standard Artificial Neural Networks ranged from 70% to 79% (average 75.31%) and from 69.1 to 86.2% (average 76.6%) respectively. The corresponding value obtained with Advanced Intelligent Systems reached an average of 96.0% (range 94.4 to 97.6%). This latter approach allowed the identification of seven genetic variants essential to differentiate cases from controls: apolipoprotein E arg158cys; hepatic lipase -480 C/T; endothelial

  8. Web Intelligence and Artificial Intelligence in Education

    ERIC Educational Resources Information Center

    Devedzic, Vladan

    2004-01-01

    This paper surveys important aspects of Web Intelligence (WI) in the context of Artificial Intelligence in Education (AIED) research. WI explores the fundamental roles as well as practical impacts of Artificial Intelligence (AI) and advanced Information Technology (IT) on the next generation of Web-related products, systems, services, and…

  9. An Intelligent Pattern Recognition System Based on Neural Network and Wavelet Decomposition for Interpretation of Heart Sounds

    DTIC Science & Technology

    2001-10-25

    wavelet decomposition of signals and classification using neural network. Inputs to the system are the heart sound signals acquired by a stethoscope in a...Proceedings. pp. 415–418, 1990. [3] G. Ergun, “An intelligent diagnostic system for interpretation of arterpartum fetal heart rate tracings based on ANNs and...AN INTELLIGENT PATTERN RECOGNITION SYSTEM BASED ON NEURAL NETWORK AND WAVELET DECOMPOSITION FOR INTERPRETATION OF HEART SOUNDS I. TURKOGLU1, A

  10. Middleware Architecture for Ambient Intelligence in the Networked Home

    NASA Astrophysics Data System (ADS)

    Georgantas, Nikolaos; Issarny, Valerie; Mokhtar, Sonia Ben; Bromberg, Yerom-David; Bianco, Sebastien; Thomson, Graham; Raverdy, Pierre-Guillaume; Urbieta, Aitor; Cardoso, Roberto Speicys

    With computing and communication capabilities now embedded in most physical objects of the surrounding environment and most users carrying wireless computing devices, the Ambient Intelligence (AmI) / pervasive computing vision [28] pioneered by Mark Weiser [32] is becoming a reality. Devices carried by nomadic users can seamlessly network with a variety of devices, both stationary and mobile, both nearby and remote, providing a wide range of functional capabilities, from base sensing and actuating to rich applications (e.g., smart spaces). This then allows the dynamic deployment of pervasive applications, which dynamically compose functional capabilities accessible in the pervasive network at the given time and place of an application request.

  11. Tunable thin film filters for intelligent WDM networks

    NASA Astrophysics Data System (ADS)

    Cahill, Michael; Bartolini, Glenn; Lourie, Mark; Domash, Lawrence

    2006-08-01

    Optical transmission systems have evolved rapidly in recent years with the emergence of new technologies for gain management, wavelength multiplexing, tunability, and switching. WDM networks are increasingly expected to be agile, flexible, and reconfigurable which in turn has led to a need for monitoring to be more widely distributed within the network. Automation of many actions performed on these networks, such as channel provisioning and power balancing, can only be realized by the addition of optical channel monitors (OCMs). These devices provide information about the optical transmission system including the number of optical channels, channel identification, wavelength, power, and in some cases optical signal-to-noise ratio (OSNR). Until recently OCMs were costly and bulky and thus the number of OCMs used in optical networks was often kept to a minimum. We describe a family of tunable thin film filters which have greatly reduced the cost and physical footprint of channel monitors, making possible 'monitoring everywhere' for intelligent optical networks which can serve long haul, metro and access requirements from a single technology platform. As examples of specific applications we discuss network issues such as auto provisioning, wavelength collision avoidance, power balancing, OSNR balancing, gain equalization, alien wavelength recognition, interoperability, and other requirements assigned to the emerging concept of an Optical Control Plane.

  12. A swarm intelligence framework for reconstructing gene networks: searching for biologically plausible architectures.

    PubMed

    Kentzoglanakis, Kyriakos; Poole, Matthew

    2012-01-01

    In this paper, we investigate the problem of reverse engineering the topology of gene regulatory networks from temporal gene expression data. We adopt a computational intelligence approach comprising swarm intelligence techniques, namely particle swarm optimization (PSO) and ant colony optimization (ACO). In addition, the recurrent neural network (RNN) formalism is employed for modeling the dynamical behavior of gene regulatory systems. More specifically, ACO is used for searching the discrete space of network architectures and PSO for searching the corresponding continuous space of RNN model parameters. We propose a novel solution construction process in the context of ACO for generating biologically plausible candidate architectures. The objective is to concentrate the search effort into areas of the structure space that contain architectures which are feasible in terms of their topological resemblance to real-world networks. The proposed framework is initially applied to the reconstruction of a small artificial network that has previously been studied in the context of gene network reverse engineering. Subsequently, we consider an artificial data set with added noise for reconstructing a subnetwork of the genetic interaction network of S. cerevisiae (yeast). Finally, the framework is applied to a real-world data set for reverse engineering the SOS response system of the bacterium Escherichia coli. Results demonstrate the relative advantage of utilizing problem-specific knowledge regarding biologically plausible structural properties of gene networks over conducting a problem-agnostic search in the vast space of network architectures.

  13. Intelligent Resource Management for Local Area Networks: Approach and Evolution

    NASA Technical Reports Server (NTRS)

    Meike, Roger

    1988-01-01

    The Data Management System network is a complex and important part of manned space platforms. Its efficient operation is vital to crew, subsystems and experiments. AI is being considered to aid in the initial design of the network and to augment the management of its operation. The Intelligent Resource Management for Local Area Networks (IRMA-LAN) project is concerned with the application of AI techniques to network configuration and management. A network simulation was constructed employing real time process scheduling for realistic loads, and utilizing the IEEE 802.4 token passing scheme. This simulation is an integral part of the construction of the IRMA-LAN system. From it, a causal model is being constructed for use in prediction and deep reasoning about the system configuration. An AI network design advisor is being added to help in the design of an efficient network. The AI portion of the system is planned to evolve into a dynamic network management aid. The approach, the integrated simulation, project evolution, and some initial results are described.

  14. An Intelligent Control for the Distributed Flexible Network Photovoltaic System using Autonomous Control and Agent

    NASA Astrophysics Data System (ADS)

    Park, Sangsoo; Miura, Yushi; Ise, Toshifumi

    This paper proposes an intelligent control for the distributed flexible network photovoltaic system using autonomous control and agent. The distributed flexible network photovoltaic system is composed of a secondary battery bank and a number of subsystems which have a solar array, a dc/dc converter and a load. The control mode of dc/dc converter can be selected based on local information by autonomous control. However, if only autonomous control using local information is applied, there are some problems associated with several cases such as voltage drop on long power lines. To overcome these problems, the authors propose introducing agents to improve control characteristics. The autonomous control with agents is called as intelligent control in this paper. The intelligent control scheme that employs the communication between agents is applied for the model system and proved with simulation using PSCAD/EMTDC.

  15. An Architecture for Intelligent Systems Based on Smart Sensors

    NASA Technical Reports Server (NTRS)

    Schmalzel, John; Figueroa, Fernando; Morris, Jon; Mandayam, Shreekanth; Polikar, Robi

    2004-01-01

    Based on requirements for a next-generation rocket test facility, elements of a prototype Intelligent Rocket Test Facility (IRTF) have been implemented. A key component is distributed smart sensor elements integrated using a knowledgeware environment. One of the specific goals is to imbue sensors with the intelligence needed to perform self diagnosis of health and to participate in a hierarchy of health determination at sensor, process, and system levels. The preliminary results provide the basis for future advanced development and validation using rocket test stand facilities at Stennis Space Center (SSC). We have identified issues important to further development of health-enabled networks, which should be of interest to others working with smart sensors and intelligent health management systems.

  16. Intrusion-Tolerant Location Information Services in Intelligent Vehicular Networks

    NASA Astrophysics Data System (ADS)

    Yan, Gongjun; Yang, Weiming; Shaner, Earl F.; Rawat, Danda B.

    Intelligent Vehicular Networks, known as Vehicle-to-Vehicle and Vehicle-to-Roadside wireless communications (also called Vehicular Ad hoc Networks), are revolutionizing our daily driving with better safety and more infortainment. Most, if not all, applications will depend on accurate location information. Thus, it is of importance to provide intrusion-tolerant location information services. In this paper, we describe an adaptive algorithm that detects and filters the false location information injected by intruders. Given a noisy environment of mobile vehicles, the algorithm estimates the high resolution location of a vehicle by refining low resolution location input. We also investigate results of simulations and evaluate the quality of the intrusion-tolerant location service.

  17. Wireless Sensor Network Based Subsurface Contaminant Plume Monitoring

    DTIC Science & Technology

    2012-04-16

    Sensor Network (WSN) to monitor contaminant plume movement in naturally heterogeneous subsurface formations to advance the sensor networking based...time to assess the source and predict future plume behavior. This proof-of-concept research aimed at demonstrating the use of an intelligent Wireless

  18. Orthogonal Patterns In A Binary Neural Network

    NASA Technical Reports Server (NTRS)

    Baram, Yoram

    1991-01-01

    Report presents some recent developments in theory of binary neural networks. Subject matter relevant to associate (content-addressable) memories and to recognition of patterns - both of considerable importance in advancement of robotics and artificial intelligence. When probed by any pattern, network converges to one of stored patterns.

  19. An Intelligent Agent Approach for Teaching Neural Networks Using LEGO[R] Handy Board Robots

    ERIC Educational Resources Information Center

    Imberman, Susan P.

    2004-01-01

    In this article we describe a project for an undergraduate artificial intelligence class. The project teaches neural networks using LEGO[R] handy board robots. Students construct robots with two motors and two photosensors. Photosensors provide readings that act as inputs for the neural network. Output values power the motors and maintain the…

  20. Classification of intelligence quotient via brainwave sub-band power ratio features and artificial neural network.

    PubMed

    Jahidin, A H; Megat Ali, M S A; Taib, M N; Tahir, N Md; Yassin, I M; Lias, S

    2014-04-01

    This paper elaborates on the novel intelligence assessment method using the brainwave sub-band power ratio features. The study focuses only on the left hemisphere brainwave in its relaxed state. Distinct intelligence quotient groups have been established earlier from the score of the Raven Progressive Matrices. Sub-band power ratios are calculated from energy spectral density of theta, alpha and beta frequency bands. Synthetic data have been generated to increase dataset from 50 to 120. The features are used as input to the artificial neural network. Subsequently, the brain behaviour model has been developed using an artificial neural network that is trained with optimized learning rate, momentum constant and hidden nodes. Findings indicate that the distinct intelligence quotient groups can be classified from the brainwave sub-band power ratios with 100% training and 88.89% testing accuracies. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  1. 11th Annual Intelligent Ground Vehicle Competition: team approaches to intelligent driving and machine vision

    NASA Astrophysics Data System (ADS)

    Theisen, Bernard L.; Lane, Gerald R.

    2003-10-01

    The Intelligent Ground Vehicle Competition (IGVC) is one of three, unmanned systems, student competitions that were founded by the Association for Unmanned Vehicle Systems International (AUVSI) in the 1990's. The IGVC is a multidisciplinary exercise in product realization that challenges college engineering student teams to integrate advanced control theory, machine vision, vehicular electronics, and mobile platform fundamentals to design and build an unmanned system. Both the U.S. and international teams focus on developing a suite of dual-use technologies to equip ground vehicles of the future with intelligtent driving capabilities. Over the past 11 years, the competition has challenged both undergraduates and graduates, including Ph.D. students with real world applications in intelligent transportation systems, the military, and manufacturing automation. To date, teams from over 40 universities and colleges have participated. In this paper, we describe some of the applications of the technologies required by this competition, and discuss the educational benefits. The primary goal of the IGVC is to advance engineering education in intelligent vehicles and related technologies. The employment and professional networking opportunities created for students and industrial sponsors through a series of technical events over the three-day competition are highlighted. Finally, an assessment of the competition based on participant feedback is presented.

  2. An intelligent switch with back-propagation neural network based hybrid power system

    NASA Astrophysics Data System (ADS)

    Perdana, R. H. Y.; Fibriana, F.

    2018-03-01

    The consumption of conventional energy such as fossil fuels plays the critical role in the global warming issues. The carbon dioxide, methane, nitrous oxide, etc. could lead the greenhouse effects and change the climate pattern. In fact, 77% of the electrical energy is generated from fossil fuels combustion. Therefore, it is necessary to use the renewable energy sources for reducing the conventional energy consumption regarding electricity generation. This paper presents an intelligent switch to combine both energy resources, i.e., the solar panels as the renewable energy with the conventional energy from the State Electricity Enterprise (PLN). The artificial intelligence technology with the back-propagation neural network was designed to control the flow of energy that is distributed dynamically based on renewable energy generation. By the continuous monitoring on each load and source, the dynamic pattern of the intelligent switch was better than the conventional switching method. The first experimental results for 60 W solar panels showed the standard deviation of the trial at 0.7 and standard deviation of the experiment at 0.28. The second operation for a 900 W of solar panel obtained the standard deviation of the trial at 0.05 and 0.18 for the standard deviation of the experiment. Moreover, the accuracy reached 83% using this method. By the combination of the back-propagation neural network with the observation of energy usage of the load using wireless sensor network, each load can be evenly distributed and will impact on the reduction of conventional energy usage.

  3. TALON: the telescope alert operation network system: intelligent linking of distributed autonomous robotic telescopes

    NASA Astrophysics Data System (ADS)

    White, Robert R.; Wren, James; Davis, Heath R.; Galassi, Mark; Starr, Daniel; Vestrand, W. T.; Wozniak, P.

    2004-09-01

    The internet has brought about great change in the astronomical community, but this interconnectivity is just starting to be exploited for use in instrumentation. Utilizing the internet for communicating between distributed astronomical systems is still in its infancy, but it already shows great potential. Here we present an example of a distributed network of telescopes that performs more efficiently in synchronous operation than as individual instruments. RAPid Telescopes for Optical Response (RAPTOR) is a system of telescopes at LANL that has intelligent intercommunication, combined with wide-field optics, temporal monitoring software, and deep-field follow-up capability all working in closed-loop real-time operation. The Telescope ALert Operations Network (TALON) is a network server that allows intercommunication of alert triggers from external and internal resources and controls the distribution of these to each of the telescopes on the network. TALON is designed to grow, allowing any number of telescopes to be linked together and communicate. Coupled with an intelligent alert client at each telescope, it can analyze and respond to each distributed TALON alert based on the telescopes needs and schedule.

  4. Do Narcissism and Emotional Intelligence Win Us Friends? Modeling Dynamics of Peer Popularity Using Inferential Network Analysis.

    PubMed

    Czarna, Anna Z; Leifeld, Philip; Śmieja, Magdalena; Dufner, Michael; Salovey, Peter

    2016-09-27

    This research investigated effects of narcissism and emotional intelligence (EI) on popularity in social networks. In a longitudinal field study, we examined the dynamics of popularity in 15 peer groups in two waves (N = 273). We measured narcissism, ability EI, and explicit and implicit self-esteem. In addition, we measured popularity at zero acquaintance and 3 months later. We analyzed the data using inferential network analysis (temporal exponential random graph modeling, TERGM) accounting for self-organizing network forces. People high in narcissism were popular, but increased less in popularity over time than people lower in narcissism. In contrast, emotionally intelligent people increased more in popularity over time than less emotionally intelligent people. The effects held when we controlled for explicit and implicit self-esteem. These results suggest that narcissism is rather disadvantageous and that EI is rather advantageous for long-term popularity. © 2016 by the Society for Personality and Social Psychology, Inc.

  5. General, crystallized and fluid intelligence are not associated with functional global network efficiency: A replication study with the human connectome project 1200 data set.

    PubMed

    Kruschwitz, J D; Waller, L; Daedelow, L S; Walter, H; Veer, I M

    2018-05-01

    One hallmark example of a link between global topological network properties of complex functional brain connectivity and cognitive performance is the finding that general intelligence may depend on the efficiency of the brain's intrinsic functional network architecture. However, although this association has been featured prominently over the course of the last decade, the empirical basis for this broad association of general intelligence and global functional network efficiency is quite limited. In the current study, we set out to replicate the previously reported association between general intelligence and global functional network efficiency using the large sample size and high quality data of the Human Connectome Project, and extended the original study by testing for separate association of crystallized and fluid intelligence with global efficiency, characteristic path length, and global clustering coefficient. We were unable to provide evidence for the proposed association between general intelligence and functional brain network efficiency, as was demonstrated by van den Heuvel et al. (2009), or for any other association with the global network measures employed. More specifically, across multiple network definition schemes, ranging from voxel-level networks to networks of only 100 nodes, no robust associations and only very weak non-significant effects with a maximal R 2 of 0.01 could be observed. Notably, the strongest (non-significant) effects were observed in voxel-level networks. We discuss the possibility that the low power of previous studies and publication bias may have led to false positive results fostering the widely accepted notion of general intelligence being associated to functional global network efficiency. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Intelligent fault diagnosis of rolling bearings using an improved deep recurrent neural network

    NASA Astrophysics Data System (ADS)

    Jiang, Hongkai; Li, Xingqiu; Shao, Haidong; Zhao, Ke

    2018-06-01

    Traditional intelligent fault diagnosis methods for rolling bearings heavily depend on manual feature extraction and feature selection. For this purpose, an intelligent deep learning method, named the improved deep recurrent neural network (DRNN), is proposed in this paper. Firstly, frequency spectrum sequences are used as inputs to reduce the input size and ensure good robustness. Secondly, DRNN is constructed by the stacks of the recurrent hidden layer to automatically extract the features from the input spectrum sequences. Thirdly, an adaptive learning rate is adopted to improve the training performance of the constructed DRNN. The proposed method is verified with experimental rolling bearing data, and the results confirm that the proposed method is more effective than traditional intelligent fault diagnosis methods.

  7. Network-based modeling and intelligent data mining of social media for improving care.

    PubMed

    Akay, Altug; Dragomir, Andrei; Erlandsson, Bjorn-Erik

    2015-01-01

    Intelligently extracting knowledge from social media has recently attracted great interest from the Biomedical and Health Informatics community to simultaneously improve healthcare outcomes and reduce costs using consumer-generated opinion. We propose a two-step analysis framework that focuses on positive and negative sentiment, as well as the side effects of treatment, in users' forum posts, and identifies user communities (modules) and influential users for the purpose of ascertaining user opinion of cancer treatment. We used a self-organizing map to analyze word frequency data derived from users' forum posts. We then introduced a novel network-based approach for modeling users' forum interactions and employed a network partitioning method based on optimizing a stability quality measure. This allowed us to determine consumer opinion and identify influential users within the retrieved modules using information derived from both word-frequency data and network-based properties. Our approach can expand research into intelligently mining social media data for consumer opinion of various treatments to provide rapid, up-to-date information for the pharmaceutical industry, hospitals, and medical staff, on the effectiveness (or ineffectiveness) of future treatments.

  8. A survey on evolutionary algorithm based hybrid intelligence in bioinformatics.

    PubMed

    Li, Shan; Kang, Liying; Zhao, Xing-Ming

    2014-01-01

    With the rapid advance in genomics, proteomics, metabolomics, and other types of omics technologies during the past decades, a tremendous amount of data related to molecular biology has been produced. It is becoming a big challenge for the bioinformatists to analyze and interpret these data with conventional intelligent techniques, for example, support vector machines. Recently, the hybrid intelligent methods, which integrate several standard intelligent approaches, are becoming more and more popular due to their robustness and efficiency. Specifically, the hybrid intelligent approaches based on evolutionary algorithms (EAs) are widely used in various fields due to the efficiency and robustness of EAs. In this review, we give an introduction about the applications of hybrid intelligent methods, in particular those based on evolutionary algorithm, in bioinformatics. In particular, we focus on their applications to three common problems that arise in bioinformatics, that is, feature selection, parameter estimation, and reconstruction of biological networks.

  9. A fuzzy neural network for intelligent data processing

    NASA Astrophysics Data System (ADS)

    Xie, Wei; Chu, Feng; Wang, Lipo; Lim, Eng Thiam

    2005-03-01

    In this paper, we describe an incrementally generated fuzzy neural network (FNN) for intelligent data processing. This FNN combines the features of initial fuzzy model self-generation, fast input selection, partition validation, parameter optimization and rule-base simplification. A small FNN is created from scratch -- there is no need to specify the initial network architecture, initial membership functions, or initial weights. Fuzzy IF-THEN rules are constantly combined and pruned to minimize the size of the network while maintaining accuracy; irrelevant inputs are detected and deleted, and membership functions and network weights are trained with a gradient descent algorithm, i.e., error backpropagation. Experimental studies on synthesized data sets demonstrate that the proposed Fuzzy Neural Network is able to achieve accuracy comparable to or higher than both a feedforward crisp neural network, i.e., NeuroRule, and a decision tree, i.e., C4.5, with more compact rule bases for most of the data sets used in our experiments. The FNN has achieved outstanding results for cancer classification based on microarray data. The excellent classification result for Small Round Blue Cell Tumors (SRBCTs) data set is shown. Compared with other published methods, we have used a much fewer number of genes for perfect classification, which will help researchers directly focus their attention on some specific genes and may lead to discovery of deep reasons of the development of cancers and discovery of drugs.

  10. Acoustic richness modulates the neural networks supporting intelligible speech processing.

    PubMed

    Lee, Yune-Sang; Min, Nam Eun; Wingfield, Arthur; Grossman, Murray; Peelle, Jonathan E

    2016-03-01

    The information contained in a sensory signal plays a critical role in determining what neural processes are engaged. Here we used interleaved silent steady-state (ISSS) functional magnetic resonance imaging (fMRI) to explore how human listeners cope with different degrees of acoustic richness during auditory sentence comprehension. Twenty-six healthy young adults underwent scanning while hearing sentences that varied in acoustic richness (high vs. low spectral detail) and syntactic complexity (subject-relative vs. object-relative center-embedded clause structures). We manipulated acoustic richness by presenting the stimuli as unprocessed full-spectrum speech, or noise-vocoded with 24 channels. Importantly, although the vocoded sentences were spectrally impoverished, all sentences were highly intelligible. These manipulations allowed us to test how intelligible speech processing was affected by orthogonal linguistic and acoustic demands. Acoustically rich speech showed stronger activation than acoustically less-detailed speech in a bilateral temporoparietal network with more pronounced activity in the right hemisphere. By contrast, listening to sentences with greater syntactic complexity resulted in increased activation of a left-lateralized network including left posterior lateral temporal cortex, left inferior frontal gyrus, and left dorsolateral prefrontal cortex. Significant interactions between acoustic richness and syntactic complexity occurred in left supramarginal gyrus, right superior temporal gyrus, and right inferior frontal gyrus, indicating that the regions recruited for syntactic challenge differed as a function of acoustic properties of the speech. Our findings suggest that the neural systems involved in speech perception are finely tuned to the type of information available, and that reducing the richness of the acoustic signal dramatically alters the brain's response to spoken language, even when intelligibility is high. Copyright © 2015 Elsevier

  11. Water Intelligence and the Cyber-Infrastructure Revolution

    NASA Astrophysics Data System (ADS)

    Cline, D. W.

    2015-12-01

    As an intrinsic factor in national security, the global economy, food and energy production, and human and ecological health, fresh water resources are increasingly being considered by an ever-widening array of stakeholders. The U.S. intelligence community has identified water as a key factor in the Nation's security risk profile. Water industries are growing rapidly, and seek to revolutionize the role of water in the global economy, making water an economic value rather than a limitation on operations. Recent increased focus on the complex interrelationships and interdependencies between water, food, and energy signal a renewed effort to move towards integrated water resource management. Throughout all of this, hydrologic extremes continue to wreak havoc on communities and regions around the world, in some cases threatening long-term economic stability. This increased attention on water coincides with the "second IT revolution" of cyber-infrastructure (CI). The CI concept is a convergence of technology, data, applications and human resources, all coalescing into a tightly integrated global grid of computing, information, networking and sensor resources, and ultimately serving as an engine of change for collaboration, education and scientific discovery and innovation. In the water arena, we have unprecedented opportunities to apply the CI concept to help address complex water challenges and shape the future world of water resources - on both science and socio-economic application fronts. Providing actionable local "water intelligence" nationally or globally is now becoming feasible through high-performance computing, data technologies, and advanced hydrologic modeling. Further development on all of these fronts appears likely and will help advance this much-needed capability. Lagging behind are water observation systems, especially in situ networks, which need significant innovation to keep pace with and help fuel rapid advancements in water intelligence.

  12. Amplify scientific discovery with artificial intelligence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gil, Yolanda; Greaves, Mark T.; Hendler, James

    Computing innovations have fundamentally changed many aspects of scientific inquiry. For example, advances in robotics, high-end computing, networking, and databases now underlie much of what we do in science such as gene sequencing, general number crunching, sharing information between scientists, and analyzing large amounts of data. As computing has evolved at a rapid pace, so too has its impact in science, with the most recent computing innovations repeatedly being brought to bear to facilitate new forms of inquiry. Recently, advances in Artificial Intelligence (AI) have deeply penetrated many consumer sectors, including for example Apple’s Siri™ speech recognition system, real-time automatedmore » language translation services, and a new generation of self-driving cars and self-navigating drones. However, AI has yet to achieve comparable levels of penetration in scientific inquiry, despite its tremendous potential in aiding computers to help scientists tackle tasks that require scientific reasoning. We contend that advances in AI will transform the practice of science as we are increasingly able to effectively and jointly harness human and machine intelligence in the pursuit of major scientific challenges.« less

  13. Intelligent manipulation technique for multi-branch robotic systems

    NASA Technical Reports Server (NTRS)

    Chen, Alexander Y. K.; Chen, Eugene Y. S.

    1990-01-01

    New analytical development in kinematics planning is reported. The INtelligent KInematics Planner (INKIP) consists of the kinematics spline theory and the adaptive logic annealing process. Also, a novel framework of robot learning mechanism is introduced. The FUzzy LOgic Self Organized Neural Networks (FULOSONN) integrates fuzzy logic in commands, control, searching, and reasoning, the embedded expert system for nominal robotics knowledge implementation, and the self organized neural networks for the dynamic knowledge evolutionary process. Progress on the mechanical construction of SRA Advanced Robotic System (SRAARS) and the real time robot vision system is also reported. A decision was made to incorporate the Local Area Network (LAN) technology in the overall communication system.

  14. Hybrid Swarm Intelligence Optimization Approach for Optimal Data Storage Position Identification in Wireless Sensor Networks

    PubMed Central

    Mohanasundaram, Ranganathan; Periasamy, Pappampalayam Sanmugam

    2015-01-01

    The current high profile debate with regard to data storage and its growth have become strategic task in the world of networking. It mainly depends on the sensor nodes called producers, base stations, and also the consumers (users and sensor nodes) to retrieve and use the data. The main concern dealt here is to find an optimal data storage position in wireless sensor networks. The works that have been carried out earlier did not utilize swarm intelligence based optimization approaches to find the optimal data storage positions. To achieve this goal, an efficient swam intelligence approach is used to choose suitable positions for a storage node. Thus, hybrid particle swarm optimization algorithm has been used to find the suitable positions for storage nodes while the total energy cost of data transmission is minimized. Clustering-based distributed data storage is utilized to solve clustering problem using fuzzy-C-means algorithm. This research work also considers the data rates and locations of multiple producers and consumers to find optimal data storage positions. The algorithm is implemented in a network simulator and the experimental results show that the proposed clustering and swarm intelligence based ODS strategy is more effective than the earlier approaches. PMID:25734182

  15. Hybrid swarm intelligence optimization approach for optimal data storage position identification in wireless sensor networks.

    PubMed

    Mohanasundaram, Ranganathan; Periasamy, Pappampalayam Sanmugam

    2015-01-01

    The current high profile debate with regard to data storage and its growth have become strategic task in the world of networking. It mainly depends on the sensor nodes called producers, base stations, and also the consumers (users and sensor nodes) to retrieve and use the data. The main concern dealt here is to find an optimal data storage position in wireless sensor networks. The works that have been carried out earlier did not utilize swarm intelligence based optimization approaches to find the optimal data storage positions. To achieve this goal, an efficient swam intelligence approach is used to choose suitable positions for a storage node. Thus, hybrid particle swarm optimization algorithm has been used to find the suitable positions for storage nodes while the total energy cost of data transmission is minimized. Clustering-based distributed data storage is utilized to solve clustering problem using fuzzy-C-means algorithm. This research work also considers the data rates and locations of multiple producers and consumers to find optimal data storage positions. The algorithm is implemented in a network simulator and the experimental results show that the proposed clustering and swarm intelligence based ODS strategy is more effective than the earlier approaches.

  16. Artificial intelligence for analyzing orthopedic trauma radiographs.

    PubMed

    Olczak, Jakub; Fahlberg, Niklas; Maki, Atsuto; Razavian, Ali Sharif; Jilert, Anthony; Stark, André; Sköldenberg, Olof; Gordon, Max

    2017-12-01

    Background and purpose - Recent advances in artificial intelligence (deep learning) have shown remarkable performance in classifying non-medical images, and the technology is believed to be the next technological revolution. So far it has never been applied in an orthopedic setting, and in this study we sought to determine the feasibility of using deep learning for skeletal radiographs. Methods - We extracted 256,000 wrist, hand, and ankle radiographs from Danderyd's Hospital and identified 4 classes: fracture, laterality, body part, and exam view. We then selected 5 openly available deep learning networks that were adapted for these images. The most accurate network was benchmarked against a gold standard for fractures. We furthermore compared the network's performance with 2 senior orthopedic surgeons who reviewed images at the same resolution as the network. Results - All networks exhibited an accuracy of at least 90% when identifying laterality, body part, and exam view. The final accuracy for fractures was estimated at 83% for the best performing network. The network performed similarly to senior orthopedic surgeons when presented with images at the same resolution as the network. The 2 reviewer Cohen's kappa under these conditions was 0.76. Interpretation - This study supports the use for orthopedic radiographs of artificial intelligence, which can perform at a human level. While current implementation lacks important features that surgeons require, e.g. risk of dislocation, classifications, measurements, and combining multiple exam views, these problems have technical solutions that are waiting to be implemented for orthopedics.

  17. Intelligence and childlessness.

    PubMed

    Kanazawa, Satoshi

    2014-11-01

    Demographers debate why people have children in advanced industrial societies where children are net economic costs. From an evolutionary perspective, however, the important question is why some individuals choose not to have children. Recent theoretical developments in evolutionary psychology suggest that more intelligent individuals may be more likely to prefer to remain childless than less intelligent individuals. Analyses of the National Child Development Study show that more intelligent men and women express preference to remain childless early in their reproductive careers, but only more intelligent women (not more intelligent men) are more likely to remain childless by the end of their reproductive careers. Controlling for education and earnings does not at all attenuate the association between childhood general intelligence and lifetime childlessness among women. One-standard-deviation increase in childhood general intelligence (15 IQ points) decreases women's odds of parenthood by 21-25%. Because women have a greater impact on the average intelligence of future generations, the dysgenic fertility among women is predicted to lead to a decline in the average intelligence of the population in advanced industrial nations. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. TALON - The Telescope Alert Operation Network System : intelligent linking of distributed autonomous robotic telescopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, R. R.; Wren, J.; Davis, H. R.

    2004-01-01

    The internet has brought about great change in the astronomical community, but this interconnectivity is just starting to be exploited for use in instrumentation. Utilizing the internet for communicating between distributed astronomical systems is still in its infancy, but it already shows great potential. Here we present an example of a distributed network of telescopes that performs more efficienfiy in synchronous operation than as individual instruments. RAPid Telescopes for Optical Response (RAPTOR) is a system of telescopes at LANL that has intelligent intercommunication, combined with wide-field optics, temporal monitoring software, and deep-field follow-up capability all working in closed-loop real-time operation.more » The Telescope ALert Operations Network (TALON) is a network server that allows intercommunication of alert triggers from external and internal resources and controls the distribution of these to each of the telescopes on the network. TALON is designed to grow, allowing any number of telescopes to be linked together and communicate. Coupled with an intelligent alert client at each telescope, it can analyze and respond to each distributed TALON alert based on the telescopes needs and schedule.« less

  19. Advanced networks and computing in healthcare

    PubMed Central

    Ackerman, Michael

    2011-01-01

    As computing and network capabilities continue to rise, it becomes increasingly important to understand the varied applications for using them to provide healthcare. The objective of this review is to identify key characteristics and attributes of healthcare applications involving the use of advanced computing and communication technologies, drawing upon 45 research and development projects in telemedicine and other aspects of healthcare funded by the National Library of Medicine over the past 12 years. Only projects publishing in the professional literature were included in the review. Four projects did not publish beyond their final reports. In addition, the authors drew on their first-hand experience as project officers, reviewers and monitors of the work. Major themes in the corpus of work were identified, characterizing key attributes of advanced computing and network applications in healthcare. Advanced computing and network applications are relevant to a range of healthcare settings and specialties, but they are most appropriate for solving a narrower range of problems in each. Healthcare projects undertaken primarily to explore potential have also demonstrated effectiveness and depend on the quality of network service as much as bandwidth. Many applications are enabling, making it possible to provide service or conduct research that previously was not possible or to achieve outcomes in addition to those for which projects were undertaken. Most notable are advances in imaging and visualization, collaboration and sense of presence, and mobility in communication and information-resource use. PMID:21486877

  20. A Systems Engineering Survey of Artificial Intelligence and Smart Sensor Networks in a Network-Centric Environment

    DTIC Science & Technology

    2009-09-01

    problems, to better model the problem solving of computer systems. This research brought about the intertwining of AI and cognitive psychology . Much of...where symbol sequences are sequential intelligent states of the network, and must be classified as normal, abnormal , or unknown. These symbols...is associated with abnormal behavior; and abcbc is associated with unknown behavior, as it fits no known behavior. Predicted outcomes from

  1. Concept development and needs identification for intelligent network flow optimization (INFLO) : test readiness assessment.

    DOT National Transportation Integrated Search

    2012-11-01

    The purpose of this project is to develop for the Intelligent Network Flow Optimization (INFLO), which is one collection (or bundle) of high-priority transformative applications identified by the United States Department of Transportation (USDOT) Mob...

  2. Concept development and needs identification for intelligent network flow optimization (INFLO) : concept of operations.

    DOT National Transportation Integrated Search

    2012-06-01

    The purpose of this project is to develop for the Intelligent Network Flow Optimization (INFLO), which is one collection (or bundle) of high-priority transformative applications identified by the United States Department of Transportation (USDOT) Mob...

  3. SINET3: advanced optical and IP hybrid network

    NASA Astrophysics Data System (ADS)

    Urushidani, Shigeo

    2007-11-01

    This paper introduces the new Japanese academic backbone network called SINET3, which has been in full-scale operation since June 2007. SINET3 provides a wide variety of network services, such as multi-layer transfer, enriched VPN, enhanced QoS, and layer-1 bandwidth on demand (BoD) services to create an innovative and prolific science infrastructure for more than 700 universities and research institutions. The network applies an advanced hybrid network architecture composed of 75 layer-1 switches and 12 high-performance IP routers to accommodate such diversified services in a single network platform, and provides sufficient bandwidth using Japan's first STM256 (40 Gbps) lines. The network adopts lots of the latest networking technologies, such as next-generation SDH (VCAT/GFP/LCAS), GMPLS, advanced MPLS, and logical-router technologies, for high network convergence, flexible resource assignment, and high service availability. This paper covers the network services, network design, and networking technologies of SINET3.

  4. Personal mobility and manipulation using robotics, artificial intelligence and advanced control.

    PubMed

    Cooper, Rory A; Ding, Dan; Grindle, Garrett G; Wang, Hongwu

    2007-01-01

    Recent advancements of technologies, including computation, robotics, machine learning, communication, and miniaturization technologies, bring us closer to futuristic visions of compassionate intelligent devices. The missing element is a basic understanding of how to relate human functions (physiological, physical, and cognitive) to the design of intelligent devices and systems that aid and interact with people. Our stakeholder and clinician consultants identified a number of mobility barriers that have been intransigent to traditional approaches. The most important physical obstacles are stairs, steps, curbs, doorways (doors), rough/uneven surfaces, weather hazards (snow, ice), crowded/cluttered spaces, and confined spaces. Focus group participants suggested a number of ways to make interaction simpler, including natural language interfaces such as the ability to say "I want a drink", a library of high level commands (open a door, park the wheelchair, ...), and a touchscreen interface with images so the user could point and use other gestures.

  5. The role of networks and artificial intelligence in nanotechnology design and analysis.

    PubMed

    Hudson, D L; Cohen, M E

    2004-05-01

    Techniques with their origins in artificial intelligence have had a great impact on many areas of biomedicine. Expert-based systems have been used to develop computer-assisted decision aids. Neural networks have been used extensively in disease classification and more recently in many bioinformatics applications including genomics and drug design. Network theory in general has proved useful in modeling all aspects of biomedicine from healthcare organizational structure to biochemical pathways. These methods show promise in applications involving nanotechnology both in the design phase and in interpretation of system functioning.

  6. The ADVANCE network: accelerating data value across a national community health center network

    PubMed Central

    DeVoe, Jennifer E; Gold, Rachel; Cottrell, Erika; Bauer, Vance; Brickman, Andrew; Puro, Jon; Nelson, Christine; Mayer, Kenneth H; Sears, Abigail; Burdick, Tim; Merrell, Jonathan; Matthews, Paul; Fields, Scott

    2014-01-01

    The ADVANCE (Accelerating Data Value Across a National Community Health Center Network) clinical data research network (CDRN) is led by the OCHIN Community Health Information Network in partnership with Health Choice Network and Fenway Health. The ADVANCE CDRN will ‘horizontally’ integrate outpatient electronic health record data for over one million federally qualified health center patients, and ‘vertically’ integrate hospital, health plan, and community data for these patients, often under-represented in research studies. Patient investigators, community investigators, and academic investigators with diverse expertise will work together to meet project goals related to data integration, patient engagement and recruitment, and the development of streamlined regulatory policies. By enhancing the data and research infrastructure of participating organizations, the ADVANCE CDRN will serve as a ‘community laboratory’ for including disadvantaged and vulnerable patients in patient-centered outcomes research that is aligned with the priorities of patients, clinics, and communities in our network. PMID:24821740

  7. F-15 837 IFCS Intelligent Flight Control System Project

    NASA Technical Reports Server (NTRS)

    Bosworth, John T.

    2007-01-01

    This viewgraph presentation reviews the use of Intelligent Flight Control System (IFCS) for the F-15. The goals of the project are: (1) Demonstrate Revolutionary Control Approaches that can Efficiently Optimize Aircraft Performance in both Normal and Failure Conditions (2) Advance Neural Network-Based Flight Control Technology for New Aerospace Systems Designs. The motivation for the development are to reduce the chance and skill required for survival.

  8. Data management system advanced development

    NASA Technical Reports Server (NTRS)

    Douglas, Katherine; Humphries, Terry

    1990-01-01

    The Data Management System (DMS) Advanced Development task provides for the development of concepts, new tools, DMS services, and for the testing of the Space Station DMS hardware and software. It also provides for the development of techniques capable of determining the effects of system changes/enhancements, additions of new technology, and/or hardware and software growth on system performance. This paper will address the built-in characteristics which will support network monitoring requirements in the design of the evolving DMS network implementation, functional and performance requirements for a real-time, multiprogramming, multiprocessor operating system, and the possible use of advanced development techniques such as expert systems and artificial intelligence tools in the DMS design.

  9. DATA MAYHEM VERSUS NIMBLE INFORMATION: TRANSFORMING HECTIC IMAGERY INTELLIGENCE DATA INTO ACTIONABLE INFORMATION USING ARTIFICIAL NEURAL NETWORKS

    DTIC Science & Technology

    2017-10-01

    AU/ACSC/MORALES/AY17 AIR COMMAND AND STAFF COLLEGE DISTANCE LEARNING AIR UNIVERSITY DATA MAYHEM VERSUS NIMBLE INFORMATION : TRANSFORMING...HECTIC IMAGERY INTELLIGENCE DATA INTO ACTIONABLE INFORMATION USING ARTIFICIAL NEURAL NETWORKS by Luis A. Morales, Major, USAF A Research...finding solutions to compliment and supplement human analysts’ capacity, so intelligence and information can reach operators and end-users at the

  10. Advanced Analysis Cognition: Improving the Cognition of Intelligence Analysis

    DTIC Science & Technology

    2013-09-01

    NSC-17. Reorganization of the Intelligence Community , 1977. (RW 423) Anonymous. Presidential Review Memorandum NSC- 11 . Intelligence Structure and...Tubes [Powerpoint Presentation]" Global Intelligence Forum 2010, Dungarvan, Ireland, July 11 -13, 2010 (RW 4233) Anonymous. Sinclair Community ...Israel’s Intelligence Community ," International Journal of Intelligence and Counterintelligence, Vol. 11 , No. 2, 1998, pp. 154-174. (RW 723) 72

  11. Technical report on prototype intelligent network flow optimization (INFLO) dynamic speed harmonization and queue warning.

    DOT National Transportation Integrated Search

    2015-06-01

    This Technical Report on Prototype Intelligent Network Flow Optimization (INFLO) Dynamic Speed Harmonization and Queue Warning is the final report for the project. It describes the prototyping, acceptance testing and small-scale demonstration of the ...

  12. Artificial Intelligence.

    ERIC Educational Resources Information Center

    Wash, Darrel Patrick

    1989-01-01

    Making a machine seem intelligent is not easy. As a consequence, demand has been rising for computer professionals skilled in artificial intelligence and is likely to continue to go up. These workers develop expert systems and solve the mysteries of machine vision, natural language processing, and neural networks. (Editor)

  13. Self-Calibration and Optimal Response in Intelligent Sensors Design Based on Artificial Neural Networks

    PubMed Central

    Rivera, José; Carrillo, Mariano; Chacón, Mario; Herrera, Gilberto; Bojorquez, Gilberto

    2007-01-01

    The development of smart sensors involves the design of reconfigurable systems capable of working with different input sensors. Reconfigurable systems ideally should spend the least possible amount of time in their calibration. An autocalibration algorithm for intelligent sensors should be able to fix major problems such as offset, variation of gain and lack of linearity, as accurately as possible. This paper describes a new autocalibration methodology for nonlinear intelligent sensors based on artificial neural networks, ANN. The methodology involves analysis of several network topologies and training algorithms. The proposed method was compared against the piecewise and polynomial linearization methods. Method comparison was achieved using different number of calibration points, and several nonlinear levels of the input signal. This paper also shows that the proposed method turned out to have a better overall accuracy than the other two methods. Besides, experimentation results and analysis of the complete study, the paper describes the implementation of the ANN in a microcontroller unit, MCU. In order to illustrate the method capability to build autocalibration and reconfigurable systems, a temperature measurement system was designed and tested. The proposed method is an improvement over the classic autocalibration methodologies, because it impacts on the design process of intelligent sensors, autocalibration methodologies and their associated factors, like time and cost.

  14. Extraterrestrial intelligence? Not likely.

    PubMed

    DeVore, I

    2001-12-01

    The possibility that there exist extraterrestrial creatures with advanced intelligence is considered by examining major events in mammalian, primate, and human evolution on earth. The overwhelming evidence is that the evolution of intelligence in creatures elsewhere who have the capability to communicate with us is vanishingly small. The history of the evolution of advanced forms of life on this planet is so beset by adventitious, unpredictable events and multiple contingencies that the evolution of human-level intelligence is highly unlikely on any planet, including earth.

  15. An Intelligent Cooperative Visual Sensor Network for Urban Mobility.

    PubMed

    Leone, Giuseppe Riccardo; Moroni, Davide; Pieri, Gabriele; Petracca, Matteo; Salvetti, Ovidio; Azzarà, Andrea; Marino, Francesco

    2017-11-10

    Smart cities are demanding solutions for improved traffic efficiency, in order to guarantee optimal access to mobility resources available in urban areas. Intelligent video analytics deployed directly on board embedded sensors offers great opportunities to gather highly informative data about traffic and transport, allowing reconstruction of a real-time neat picture of urban mobility patterns. In this paper, we present a visual sensor network in which each node embeds computer vision logics for analyzing in real time urban traffic. The nodes in the network share their perceptions and build a global and comprehensive interpretation of the analyzed scenes in a cooperative and adaptive fashion. This is possible thanks to an especially designed Internet of Things (IoT) compliant middleware which encompasses in-network event composition as well as full support of Machine-2-Machine (M2M) communication mechanism. The potential of the proposed cooperative visual sensor network is shown with two sample applications in urban mobility connected to the estimation of vehicular flows and parking management. Besides providing detailed results of each key component of the proposed solution, the validity of the approach is demonstrated by extensive field tests that proved the suitability of the system in providing a scalable, adaptable and extensible data collection layer for managing and understanding mobility in smart cities.

  16. Machine learning based Intelligent cognitive network using fog computing

    NASA Astrophysics Data System (ADS)

    Lu, Jingyang; Li, Lun; Chen, Genshe; Shen, Dan; Pham, Khanh; Blasch, Erik

    2017-05-01

    In this paper, a Cognitive Radio Network (CRN) based on artificial intelligence is proposed to distribute the limited radio spectrum resources more efficiently. The CRN framework can analyze the time-sensitive signal data close to the signal source using fog computing with different types of machine learning techniques. Depending on the computational capabilities of the fog nodes, different features and machine learning techniques are chosen to optimize spectrum allocation. Also, the computing nodes send the periodic signal summary which is much smaller than the original signal to the cloud so that the overall system spectrum source allocation strategies are dynamically updated. Applying fog computing, the system is more adaptive to the local environment and robust to spectrum changes. As most of the signal data is processed at the fog level, it further strengthens the system security by reducing the communication burden of the communications network.

  17. Artificial intelligence in medicine.

    PubMed Central

    Ramesh, A. N.; Kambhampati, C.; Monson, J. R. T.; Drew, P. J.

    2004-01-01

    INTRODUCTION: Artificial intelligence is a branch of computer science capable of analysing complex medical data. Their potential to exploit meaningful relationship with in a data set can be used in the diagnosis, treatment and predicting outcome in many clinical scenarios. METHODS: Medline and internet searches were carried out using the keywords 'artificial intelligence' and 'neural networks (computer)'. Further references were obtained by cross-referencing from key articles. An overview of different artificial intelligent techniques is presented in this paper along with the review of important clinical applications. RESULTS: The proficiency of artificial intelligent techniques has been explored in almost every field of medicine. Artificial neural network was the most commonly used analytical tool whilst other artificial intelligent techniques such as fuzzy expert systems, evolutionary computation and hybrid intelligent systems have all been used in different clinical settings. DISCUSSION: Artificial intelligence techniques have the potential to be applied in almost every field of medicine. There is need for further clinical trials which are appropriately designed before these emergent techniques find application in the real clinical setting. PMID:15333167

  18. Artificial intelligence in medicine.

    PubMed

    Ramesh, A N; Kambhampati, C; Monson, J R T; Drew, P J

    2004-09-01

    Artificial intelligence is a branch of computer science capable of analysing complex medical data. Their potential to exploit meaningful relationship with in a data set can be used in the diagnosis, treatment and predicting outcome in many clinical scenarios. Medline and internet searches were carried out using the keywords 'artificial intelligence' and 'neural networks (computer)'. Further references were obtained by cross-referencing from key articles. An overview of different artificial intelligent techniques is presented in this paper along with the review of important clinical applications. The proficiency of artificial intelligent techniques has been explored in almost every field of medicine. Artificial neural network was the most commonly used analytical tool whilst other artificial intelligent techniques such as fuzzy expert systems, evolutionary computation and hybrid intelligent systems have all been used in different clinical settings. Artificial intelligence techniques have the potential to be applied in almost every field of medicine. There is need for further clinical trials which are appropriately designed before these emergent techniques find application in the real clinical setting.

  19. International experience on the use of artificial neural networks in gastroenterology.

    PubMed

    Grossi, E; Mancini, A; Buscema, M

    2007-03-01

    In this paper, we reconsider the scientific background for the use of artificial intelligence tools in medicine. A review of some recent significant papers shows that artificial neural networks, the more advanced and effective artificial intelligence technique, can improve the classification accuracy and survival prediction of a number of gastrointestinal diseases. We discuss the 'added value' the use of artificial neural networks-based tools can bring in the field of gastroenterology, both at research and clinical application level, when compared with traditional statistical or clinical-pathological methods.

  20. Artificial intelligence for analyzing orthopedic trauma radiographs

    PubMed Central

    Olczak, Jakub; Fahlberg, Niklas; Maki, Atsuto; Razavian, Ali Sharif; Jilert, Anthony; Stark, André; Sköldenberg, Olof

    2017-01-01

    Background and purpose — Recent advances in artificial intelligence (deep learning) have shown remarkable performance in classifying non-medical images, and the technology is believed to be the next technological revolution. So far it has never been applied in an orthopedic setting, and in this study we sought to determine the feasibility of using deep learning for skeletal radiographs. Methods — We extracted 256,000 wrist, hand, and ankle radiographs from Danderyd’s Hospital and identified 4 classes: fracture, laterality, body part, and exam view. We then selected 5 openly available deep learning networks that were adapted for these images. The most accurate network was benchmarked against a gold standard for fractures. We furthermore compared the network’s performance with 2 senior orthopedic surgeons who reviewed images at the same resolution as the network. Results — All networks exhibited an accuracy of at least 90% when identifying laterality, body part, and exam view. The final accuracy for fractures was estimated at 83% for the best performing network. The network performed similarly to senior orthopedic surgeons when presented with images at the same resolution as the network. The 2 reviewer Cohen’s kappa under these conditions was 0.76. Interpretation — This study supports the use for orthopedic radiographs of artificial intelligence, which can perform at a human level. While current implementation lacks important features that surgeons require, e.g. risk of dislocation, classifications, measurements, and combining multiple exam views, these problems have technical solutions that are waiting to be implemented for orthopedics. PMID:28681679

  1. The 21st annual intelligent ground vehicle competition: robotists for the future

    NASA Astrophysics Data System (ADS)

    Theisen, Bernard L.

    2013-12-01

    The Intelligent Ground Vehicle Competition (IGVC) is one of four, unmanned systems, student competitions that were founded by the Association for Unmanned Vehicle Systems International (AUVSI). The IGVC is a multidisciplinary exercise in product realization that challenges college engineering student teams to integrate advanced control theory, machine vision, vehicular electronics and mobile platform fundamentals to design and build an unmanned system. Teams from around the world focus on developing a suite of dual-use technologies to equip ground vehicles of the future with intelligent driving capabilities. Over the past 21 years, the competition has challenged undergraduate, graduate and Ph.D. students with real world applications in intelligent transportation systems, the military and manufacturing automation. To date, teams from over 80 universities and colleges have participated. This paper describes some of the applications of the technologies required by this competition and discusses the educational benefits. The primary goal of the IGVC is to advance engineering education in intelligent vehicles and related technologies. The employment and professional networking opportunities created for students and industrial sponsors through a series of technical events over the fourday competition are highlighted. Finally, an assessment of the competition based on participation is presented.

  2. Big Data and the Global Public Health Intelligence Network (GPHIN)

    PubMed Central

    Dion, M; AbdelMalik, P; Mawudeku, A

    2015-01-01

    Background Globalization and the potential for rapid spread of emerging infectious diseases have heightened the need for ongoing surveillance and early detection. The Global Public Health Intelligence Network (GPHIN) was established to increase situational awareness and capacity for the early detection of emerging public health events. Objective To describe how the GPHIN has used Big Data as an effective early detection technique for infectious disease outbreaks worldwide and to identify potential future directions for the GPHIN. Findings Every day the GPHIN analyzes over more than 20,000 online news reports (over 30,000 sources) in nine languages worldwide. A web-based program aggregates data based on an algorithm that provides potential signals of emerging public health events which are then reviewed by a multilingual, multidisciplinary team. An alert is sent out if a potential risk is identified. This process proved useful during the Severe Acute Respiratory Syndrome (SARS) outbreak and was adopted shortly after by a number of countries to meet new International Health Regulations that require each country to have the capacity for early detection and reporting. The GPHIN identified the early SARS outbreak in China, was credited with the first alert on MERS-CoV and has played a significant role in the monitoring of the Ebola outbreak in West Africa. Future developments are being considered to advance the GPHIN’s capacity in light of other Big Data sources such as social media and its analytical capacity in terms of algorithm development. Conclusion The GPHIN’s early adoption of Big Data has increased global capacity to detect international infectious disease outbreaks and other public health events. Integration of additional Big Data sources and advances in analytical capacity could further strengthen the GPHIN’s capability for timely detection and early warning. PMID:29769954

  3. Intelligent Control via Wireless Sensor Networks for Advanced Coal Combustion Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aman Behal; Sunil Kumar; Goodarz Ahmadi

    2007-08-05

    Numerical Modeling of Solid Gas Flow, System Identification for purposes of modeling and control, and Wireless Sensor and Actor Network design were pursued as part of this project. Time series input-output data was obtained from NETL's Morgantown CFB facility courtesy of Dr. Lawrence Shadle. It was run through a nonlinear kernel estimator and nonparametric models were obtained for the system. Linear and first-order nonlinear kernels were then utilized to obtain a state-space description of the system. Neural networks were trained that performed better at capturing the plant dynamics. It is possible to use these networks to find a plant modelmore » and the inversion of this model can be used to control the system. These models allow one to compare with physics based models whose parameters can then be determined by comparing them against the available data based model. On a parallel track, Dr. Kumar designed an energy-efficient and reliable transport protocol for wireless sensor and actor networks, where the sensors could be different types of wireless sensors used in CFB based coal combustion systems and actors are more powerful wireless nodes to set up a communication network while avoiding the data congestion. Dr. Ahmadi's group studied gas solid flow in a duct. It was seen that particle concentration clearly shows a preferential distribution. The particles strongly interact with the turbulence eddies and are concentrated in narrow bands that are evolving with time. It is believed that observed preferential concentration is due to the fact that these particles are flung out of eddies by centrifugal force.« less

  4. An Intelligent Pinger Network for Solid Glacier Environments

    NASA Astrophysics Data System (ADS)

    Schönitz, S.; Reuter, S.; Henke, C.; Jeschke, S.; Ewert, D.; Eliseev, D.; Heinen, D.; Linder, P.; Scholz, F.; Weinstock, L.; Wickmann, S.; Wiebusch, C.; Zierke, S.

    2016-12-01

    This talk presents a novel approach for an intelligent, agent-based pinger network in an extraterrestrial glacier environment. Because of recent findings of the Cassini spacecraft, a mission to Saturn's moon Enceladus is planned in order search for extraterrestrial life within the ocean beneath Enceladus' ice crust. Therefore, a maneuverable melting probe, the EnEx probe, was developed to melt into Enceladus' ice and take liquid samples from water-filled crevasses. Hence, the probe collecting the samples has to be able to navigate in ice which is a hard problem, because neither visual nor gravitational methods can be used. To enhance the navigability of the probe, a network of autonomous pinger units (APU) is in development that is able to extract a map of the ice environment via ultrasonic soundwaves. A network of these APUs will be deployed on the surface of Enceladus, melt into the ice and form a network to help guide the probe safely to its destination. The APU network is able to form itself fully autonomously and to compensate system failures of individual APUs. The agents controlling the single APU are realized by rule-based expert systems implemented in CLIPS. The rule-based expert system evaluates available information of the environment, decides for actions to take to achieve the desired goal (e.g. a specific network topology), and executes and monitors such actions. In general, it encodes certain situations that are evaluated whenever an APU is currently idle, and then decides for a next action to take. It bases this decision on its internal world model that is shared with the other APUs. The optimal network topology that defines each agents position is iteratively determined by mixed-integer nonlinear programming. Extensive simulations studies show that the proposed agent design enables the APUs to form a robust network topology that is suited to create a reliable 3D map of the ice environment.

  5. Advanced Networks in Motion Mobile Sensorweb

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Stewart, David H.

    2011-01-01

    Advanced mobile networking technology applicable to mobile sensor platforms was developed, deployed and demonstrated. A two-tier sensorweb design was developed. The first tier utilized mobile network technology to provide mobility. The second tier, which sits above the first tier, utilizes 6LowPAN (Internet Protocol version 6 Low Power Wireless Personal Area Networks) sensors. The entire network was IPv6 enabled. Successful mobile sensorweb system field tests took place in late August and early September of 2009. The entire network utilized IPv6 and was monitored and controlled using a remote Web browser via IPv6 technology. This paper describes the mobile networking and 6LowPAN sensorweb design, implementation, deployment and testing as well as wireless systems and network monitoring software developed to support testing and validation.

  6. The Lateral Tracking Control for the Intelligent Vehicle Based on Adaptive PID Neural Network.

    PubMed

    Han, Gaining; Fu, Weiping; Wang, Wen; Wu, Zongsheng

    2017-05-30

    The intelligent vehicle is a complicated nonlinear system, and the design of a path tracking controller is one of the key technologies in intelligent vehicle research. This paper mainly designs a lateral control dynamic model of the intelligent vehicle, which is used for lateral tracking control. Firstly, the vehicle dynamics model (i.e., transfer function) is established according to the vehicle parameters. Secondly, according to the vehicle steering control system and the CARMA (Controlled Auto-Regression and Moving-Average) model, a second-order control system model is built. Using forgetting factor recursive least square estimation (FFRLS), the system parameters are identified. Finally, a neural network PID (Proportion Integral Derivative) controller is established for lateral path tracking control based on the vehicle model and the steering system model. Experimental simulation results show that the proposed model and algorithm have the high real-time and robustness in path tracing control. This provides a certain theoretical basis for intelligent vehicle autonomous navigation tracking control, and lays the foundation for the vertical and lateral coupling control.

  7. The Lateral Tracking Control for the Intelligent Vehicle Based on Adaptive PID Neural Network

    PubMed Central

    Han, Gaining; Fu, Weiping; Wang, Wen; Wu, Zongsheng

    2017-01-01

    The intelligent vehicle is a complicated nonlinear system, and the design of a path tracking controller is one of the key technologies in intelligent vehicle research. This paper mainly designs a lateral control dynamic model of the intelligent vehicle, which is used for lateral tracking control. Firstly, the vehicle dynamics model (i.e., transfer function) is established according to the vehicle parameters. Secondly, according to the vehicle steering control system and the CARMA (Controlled Auto-Regression and Moving-Average) model, a second-order control system model is built. Using forgetting factor recursive least square estimation (FFRLS), the system parameters are identified. Finally, a neural network PID (Proportion Integral Derivative) controller is established for lateral path tracking control based on the vehicle model and the steering system model. Experimental simulation results show that the proposed model and algorithm have the high real-time and robustness in path tracing control. This provides a certain theoretical basis for intelligent vehicle autonomous navigation tracking control, and lays the foundation for the vertical and lateral coupling control. PMID:28556817

  8. Intelligent Approaches in Improving In-vehicle Network Architecture and Minimizing Power Consumption in Combat Vehicles

    DTIC Science & Technology

    2011-01-01

    4 . TITLE AND SUBTITLE INTELLIGENT APPROACHES IN IMPROVING IN-VEHICLE NETWORK ARCHITECTURE AND MINIMIZING POWER CONSUMPTION IN COMBAT VEHICLES 5a... 4 1.3 Organization...32 CHAPTER 4 – SOFTWARE RELIABILITY PREDICTION FOR COMBAT VEHICLES . 33 4.1 Introduction

  9. Lateral Prefrontal Cortex Contributes to Fluid Intelligence Through Multinetwork Connectivity.

    PubMed

    Cole, Michael W; Ito, Takuya; Braver, Todd S

    2015-10-01

    Our ability to effectively adapt to novel circumstances--as measured by general fluid intelligence--has recently been tied to the global connectivity of lateral prefrontal cortex (LPFC). Global connectivity is a broad measure that summarizes both within-network connectivity and across-network connectivity. We used additional graph theoretical measures to better characterize the nature of LPFC connectivity and its relationship with fluid intelligence. We specifically hypothesized that LPFC is a connector hub with an across-network connectivity that contributes to fluid intelligence independent of within-network connectivity. We verified that LPFC was in the top 10% of brain regions in terms of across-network connectivity, suggesting it is a strong connector hub. Importantly, we found that the LPFC across-network connectivity predicted individuals' fluid intelligence and this correlation remained statistically significant when controlling for global connectivity (which includes within-network connectivity). This supports the conclusion that across-network connectivity independently contributes to the relationship between LPFC connectivity and intelligence. These results suggest that LPFC contributes to fluid intelligence by being a connector hub with a truly global multisystem connectivity throughout the brain.

  10. Application of Frame Theory in Intelligent Packet-Based Communication Networks

    NASA Astrophysics Data System (ADS)

    Escobar-Moreira, León A.

    2007-09-01

    Frames are a stable and redundant representation of signals in a Hilbert space that have been used in signal processing because of their resilience to additive noise, quantization error, and their robustness to losses in packet-based networks [1,2]. Depending on the number of erasures (losses), there are some considerations to be taken into account in order to optimize the frame design. Further discussions will explain the innate characteristics of frames to include intelligence on the packet-based communication devices (routers) to increase their performance under different channel behaviors.

  11. Intelligent self-organization methods for wireless ad hoc sensor networks based on limited resources

    NASA Astrophysics Data System (ADS)

    Hortos, William S.

    2006-05-01

    A wireless ad hoc sensor network (WSN) is a configuration for area surveillance that affords rapid, flexible deployment in arbitrary threat environments. There is no infrastructure support and sensor nodes communicate with each other only when they are in transmission range. To a greater degree than the terminals found in mobile ad hoc networks (MANETs) for communications, sensor nodes are resource-constrained, with limited computational processing, bandwidth, memory, and power, and are typically unattended once in operation. Consequently, the level of information exchange among nodes, to support any complex adaptive algorithms to establish network connectivity and optimize throughput, not only deplete those limited resources and creates high overhead in narrowband communications, but also increase network vulnerability to eavesdropping by malicious nodes. Cooperation among nodes, critical to the mission of sensor networks, can thus be disrupted by the inappropriate choice of the method for self-organization. Recent published contributions to the self-configuration of ad hoc sensor networks, e.g., self-organizing mapping and swarm intelligence techniques, have been based on the adaptive control of the cross-layer interactions found in MANET protocols to achieve one or more performance objectives: connectivity, intrusion resistance, power control, throughput, and delay. However, few studies have examined the performance of these algorithms when implemented with the limited resources of WSNs. In this paper, self-organization algorithms for the initiation, operation and maintenance of a network topology from a collection of wireless sensor nodes are proposed that improve the performance metrics significant to WSNs. The intelligent algorithm approach emphasizes low computational complexity, energy efficiency and robust adaptation to change, allowing distributed implementation with the actual limited resources of the cooperative nodes of the network. Extensions of the

  12. An Intelligent Cooperative Visual Sensor Network for Urban Mobility

    PubMed Central

    Leone, Giuseppe Riccardo; Petracca, Matteo; Salvetti, Ovidio; Azzarà, Andrea

    2017-01-01

    Smart cities are demanding solutions for improved traffic efficiency, in order to guarantee optimal access to mobility resources available in urban areas. Intelligent video analytics deployed directly on board embedded sensors offers great opportunities to gather highly informative data about traffic and transport, allowing reconstruction of a real-time neat picture of urban mobility patterns. In this paper, we present a visual sensor network in which each node embeds computer vision logics for analyzing in real time urban traffic. The nodes in the network share their perceptions and build a global and comprehensive interpretation of the analyzed scenes in a cooperative and adaptive fashion. This is possible thanks to an especially designed Internet of Things (IoT) compliant middleware which encompasses in-network event composition as well as full support of Machine-2-Machine (M2M) communication mechanism. The potential of the proposed cooperative visual sensor network is shown with two sample applications in urban mobility connected to the estimation of vehicular flows and parking management. Besides providing detailed results of each key component of the proposed solution, the validity of the approach is demonstrated by extensive field tests that proved the suitability of the system in providing a scalable, adaptable and extensible data collection layer for managing and understanding mobility in smart cities. PMID:29125535

  13. The 20th annual intelligent ground vehicle competition: building a generation of robotists

    NASA Astrophysics Data System (ADS)

    Theisen, Bernard L.; Kosinski, Andrew

    2013-01-01

    The Intelligent Ground Vehicle Competition (IGVC) is one of four, unmanned systems, student competitions that were founded by the Association for Unmanned Vehicle Systems International (AUVSI). The IGVC is a multidisciplinary exercise in product realization that challenges college engineering student teams to integrate advanced control theory, machine vision, vehicular electronics and mobile platform fundamentals to design and build an unmanned system. Teams from around the world focus on developing a suite of dual-use technologies to equip ground vehicles of the future with intelligent driving capabilities. Over the past 20 years, the competition has challenged undergraduate, graduate and Ph.D. students with real world applications in intelligent transportation systems, the military and manufacturing automation. To date, teams from over 80 universities and colleges have participated. This paper describes some of the applications of the technologies required by this competition and discusses the educational benefits. The primary goal of the IGVC is to advance engineering education in intelligent vehicles and related technologies. The employment and professional networking opportunities created for students and industrial sponsors through a series of technical events over the four-day competition are highlighted. Finally, an assessment of the competition based on participation is presented.

  14. Intelligent route surveillance

    NASA Astrophysics Data System (ADS)

    Schoemaker, Robin; Sandbrink, Rody; van Voorthuijsen, Graeme

    2009-05-01

    Intelligence on abnormal and suspicious behaviour along roads in operational domains is extremely valuable for countering the IED (Improvised Explosive Device) threat. Local sensor networks at strategic spots can gather data for continuous monitoring of daily vehicle activity. Unattended intelligent ground sensor networks use simple sensing nodes, e.g. seismic, magnetic, radar, or acoustic, or combinations of these in one housing. The nodes deliver rudimentary data at any time to be processed with software that filters out the required information. At TNO (Netherlands Organisation for Applied Scientific Research) research has started on how to equip a sensor network with data analysis software to determine whether behaviour is suspicious or not. Furthermore, the nodes should be expendable, if necessary, and be small in size such that they are hard to detect by adversaries. The network should be self-configuring and self-sustaining and should be reliable, efficient, and effective during operational tasks - especially route surveillance - as well as robust in time and space. If data from these networks are combined with data from other remote sensing devices (e.g. UAVs (Unmanned Aerial Vehicles)/aerostats), an even more accurate assessment of the tactical situation is possible. This paper shall focus on the concepts of operation towards a working intelligent route surveillance (IRS) research demonstrator network for monitoring suspicious behaviour in IED sensitive domains.

  15. Information Dissemination of Public Health Emergency on Social Networks and Intelligent Computation

    PubMed Central

    Hu, Hongzhi; Mao, Huajuan; Hu, Xiaohua; Hu, Feng; Sun, Xuemin; Jing, Zaiping; Duan, Yunsuo

    2015-01-01

    Due to the extensive social influence, public health emergency has attracted great attention in today's society. The booming social network is becoming a main information dissemination platform of those events and caused high concerns in emergency management, among which a good prediction of information dissemination in social networks is necessary for estimating the event's social impacts and making a proper strategy. However, information dissemination is largely affected by complex interactive activities and group behaviors in social network; the existing methods and models are limited to achieve a satisfactory prediction result due to the open changeable social connections and uncertain information processing behaviors. ACP (artificial societies, computational experiments, and parallel execution) provides an effective way to simulate the real situation. In order to obtain better information dissemination prediction in social networks, this paper proposes an intelligent computation method under the framework of TDF (Theory-Data-Feedback) based on ACP simulation system which was successfully applied to the analysis of A (H1N1) Flu emergency. PMID:26609303

  16. Information Dissemination of Public Health Emergency on Social Networks and Intelligent Computation.

    PubMed

    Hu, Hongzhi; Mao, Huajuan; Hu, Xiaohua; Hu, Feng; Sun, Xuemin; Jing, Zaiping; Duan, Yunsuo

    2015-01-01

    Due to the extensive social influence, public health emergency has attracted great attention in today's society. The booming social network is becoming a main information dissemination platform of those events and caused high concerns in emergency management, among which a good prediction of information dissemination in social networks is necessary for estimating the event's social impacts and making a proper strategy. However, information dissemination is largely affected by complex interactive activities and group behaviors in social network; the existing methods and models are limited to achieve a satisfactory prediction result due to the open changeable social connections and uncertain information processing behaviors. ACP (artificial societies, computational experiments, and parallel execution) provides an effective way to simulate the real situation. In order to obtain better information dissemination prediction in social networks, this paper proposes an intelligent computation method under the framework of TDF (Theory-Data-Feedback) based on ACP simulation system which was successfully applied to the analysis of A (H1N1) Flu emergency.

  17. Artificial intelligence in radiology.

    PubMed

    Hosny, Ahmed; Parmar, Chintan; Quackenbush, John; Schwartz, Lawrence H; Aerts, Hugo J W L

    2018-05-17

    Artificial intelligence (AI) algorithms, particularly deep learning, have demonstrated remarkable progress in image-recognition tasks. Methods ranging from convolutional neural networks to variational autoencoders have found myriad applications in the medical image analysis field, propelling it forward at a rapid pace. Historically, in radiology practice, trained physicians visually assessed medical images for the detection, characterization and monitoring of diseases. AI methods excel at automatically recognizing complex patterns in imaging data and providing quantitative, rather than qualitative, assessments of radiographic characteristics. In this Opinion article, we establish a general understanding of AI methods, particularly those pertaining to image-based tasks. We explore how these methods could impact multiple facets of radiology, with a general focus on applications in oncology, and demonstrate ways in which these methods are advancing the field. Finally, we discuss the challenges facing clinical implementation and provide our perspective on how the domain could be advanced.

  18. Intelligent Evaluation Method of Tank Bottom Corrosion Status Based on Improved BP Artificial Neural Network

    NASA Astrophysics Data System (ADS)

    Qiu, Feng; Dai, Guang; Zhang, Ying

    According to the acoustic emission information and the appearance inspection information of tank bottom online testing, the external factors associated with tank bottom corrosion status are confirmed. Applying artificial neural network intelligent evaluation method, three tank bottom corrosion status evaluation models based on appearance inspection information, acoustic emission information, and online testing information are established. Comparing with the result of acoustic emission online testing through the evaluation of test sample, the accuracy of the evaluation model based on online testing information is 94 %. The evaluation model can evaluate tank bottom corrosion accurately and realize acoustic emission online testing intelligent evaluation of tank bottom.

  19. Pervasive community care platform: Ambient Intelligence leveraging sensor networks and mobile agents

    NASA Astrophysics Data System (ADS)

    Su, Chuan-Jun; Chiang, Chang-Yu

    2014-04-01

    Several powerful trends are contributing to an aging of much of the world's population, especially in economically developed countries. To mitigate the negative effects of rapidly ageing populations, societies must act early to plan for the welfare, medical care and residential arrangements of their senior citizens, and for the manpower and associated training needed to execute these plans. This paper describes the development of an Ambient Intelligent Community Care Platform (AICCP), which creates an environment of Ambient Intelligence through the use of sensor network and mobile agent (MA) technologies. The AICCP allows caregivers to quickly and accurately locate their charges; access, update and share critical treatment and wellness data; and automatically archive all records. The AICCP presented in this paper is expected to enable caregivers and communities to offer pervasive, accurate and context-aware care services.

  20. An Advanced Orbiting Systems Approach to Quality of Service in Space-Based Intelligent Communication Networks

    NASA Technical Reports Server (NTRS)

    Riha, Andrew P.

    2005-01-01

    As humans and robotic technologies are deployed in future constellation systems, differing traffic services will arise, e.g., realtime and non-realtime. In order to provide a quality of service framework that would allow humans and robotic technologies to interoperate over a wide and dynamic range of interactions, a method of classifying data as realtime or non-realtime is needed. In our paper, we present an approach that leverages the Consultative Committee for Space Data Systems (CCSDS) Advanced Orbiting Systems (AOS) data link protocol. Specifically, we redefine the AOS Transfer Frame Replay Flag in order to provide an automated store-and-forward approach on a per-service basis for use in the next-generation Interplanetary Network. In addition to addressing the problem of intermittent connectivity and associated services, we propose a follow-on methodology for prioritizing data through further modification of the AOS Transfer Frame.

  1. Advance reservation access control using software-defined networking and tokens

    DOE PAGES

    Chung, Joaquin; Jung, Eun-Sung; Kettimuthu, Rajkumar; ...

    2017-03-09

    Advance reservation systems allow users to reserve dedicated bandwidth connection resources from advanced high-speed networks. A common use case for such systems is data transfers in distributed science environments in which a user wants exclusive access to the reservation. However, current advance network reservation methods cannot ensure exclusive access of a network reservation to the specific flow for which the user made the reservation. We present in this paper a novel network architecture that addresses this limitation and ensures that a reservation is used only by the intended flow. We achieve this by leveraging software-defined networking (SDN) and token-based authorization.more » We use SDN to orchestrate and automate the reservation of networking resources, end-to-end and across multiple administrative domains, and tokens to create a strong binding between the user or application that requested the reservation and the flows provisioned by SDN. Finally, we conducted experiments on the ESNet 100G SDN testbed, and demonstrated that our system effectively protects authorized flows from competing traffic in the network.« less

  2. Advance reservation access control using software-defined networking and tokens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Joaquin; Jung, Eun-Sung; Kettimuthu, Rajkumar

    Advance reservation systems allow users to reserve dedicated bandwidth connection resources from advanced high-speed networks. A common use case for such systems is data transfers in distributed science environments in which a user wants exclusive access to the reservation. However, current advance network reservation methods cannot ensure exclusive access of a network reservation to the specific flow for which the user made the reservation. We present in this paper a novel network architecture that addresses this limitation and ensures that a reservation is used only by the intended flow. We achieve this by leveraging software-defined networking (SDN) and token-based authorization.more » We use SDN to orchestrate and automate the reservation of networking resources, end-to-end and across multiple administrative domains, and tokens to create a strong binding between the user or application that requested the reservation and the flows provisioned by SDN. Finally, we conducted experiments on the ESNet 100G SDN testbed, and demonstrated that our system effectively protects authorized flows from competing traffic in the network.« less

  3. Advance reservation access control using software-defined networking and tokens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Joaquin; Jung, Eun-Sung; Kettimuthu, Rajkumar

    Advance reservation systems allow users to reserve dedicated bandwidth connection resources from advanced high-speed networks. A common use case for such systems is data transfers in distributed science environments in which a user wants exclusive access to the reservation. However, current advance network reservation methods cannot ensure exclusive access of a network reservation to the specific flow for which the user made the reservation. We present here a novel network architecture that addresses this limitation and ensures that a reservation is used only by the intended flow. We achieve this by leveraging software-defined networking (SDN) and token-based authorization. We usemore » SDN to orchestrate and automate the reservation of networking resources, end-to-end and across multiple administrative domains, and tokens to create a strong binding between the user or application that requested the reservation and the flows provisioned by SDN. We conducted experiments on the ESNet 100G SDN testbed, and demonstrated that our system effectively protects authorized flows from competing traffic in the network. (C) 2017 Elsevier B.V. All rights reserved.« less

  4. Intelligent systems technology infrastructure for integrated systems

    NASA Technical Reports Server (NTRS)

    Lum, Henry, Jr.

    1991-01-01

    Significant advances have occurred during the last decade in intelligent systems technologies (a.k.a. knowledge-based systems, KBS) including research, feasibility demonstrations, and technology implementations in operational environments. Evaluation and simulation data obtained to date in real-time operational environments suggest that cost-effective utilization of intelligent systems technologies can be realized for Automated Rendezvous and Capture applications. The successful implementation of these technologies involve a complex system infrastructure integrating the requirements of transportation, vehicle checkout and health management, and communication systems without compromise to systems reliability and performance. The resources that must be invoked to accomplish these tasks include remote ground operations and control, built-in system fault management and control, and intelligent robotics. To ensure long-term evolution and integration of new validated technologies over the lifetime of the vehicle, system interfaces must also be addressed and integrated into the overall system interface requirements. An approach for defining and evaluating the system infrastructures including the testbed currently being used to support the on-going evaluations for the evolutionary Space Station Freedom Data Management System is presented and discussed. Intelligent system technologies discussed include artificial intelligence (real-time replanning and scheduling), high performance computational elements (parallel processors, photonic processors, and neural networks), real-time fault management and control, and system software development tools for rapid prototyping capabilities.

  5. Research on Intelligent Synthesis Environments

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Lobeck, William E.

    2002-01-01

    Four research activities related to Intelligent Synthesis Environment (ISE) have been performed under this grant. The four activities are: 1) non-deterministic approaches that incorporate technologies such as intelligent software agents, visual simulations and other ISE technologies; 2) virtual labs that leverage modeling, simulation and information technologies to create an immersive, highly interactive virtual environment tailored to the needs of researchers and learners; 3) advanced learning modules that incorporate advanced instructional, user interface and intelligent agent technologies; and 4) assessment and continuous improvement of engineering team effectiveness in distributed collaborative environments.

  6. Research on Intelligent Synthesis Environments

    NASA Astrophysics Data System (ADS)

    Noor, Ahmed K.; Loftin, R. Bowen

    2002-12-01

    Four research activities related to Intelligent Synthesis Environment (ISE) have been performed under this grant. The four activities are: 1) non-deterministic approaches that incorporate technologies such as intelligent software agents, visual simulations and other ISE technologies; 2) virtual labs that leverage modeling, simulation and information technologies to create an immersive, highly interactive virtual environment tailored to the needs of researchers and learners; 3) advanced learning modules that incorporate advanced instructional, user interface and intelligent agent technologies; and 4) assessment and continuous improvement of engineering team effectiveness in distributed collaborative environments.

  7. Intelligence Control System for Landfills Based on Wireless Sensor Network

    NASA Astrophysics Data System (ADS)

    Zhang, Qian; Huang, Chuan; Gong, Jian

    2018-06-01

    This paper put forward an intelligence system for controlling the landfill gas in landfills to make the landfill gas (LFG) exhaust controllably and actively. The system, which is assigned by the wireless sensor network, were developed and supervised by remote applications in workshop instead of manual work. An automatic valve control depending on the sensor units embedded is installed in tube, the air pressure and concentration of LFG are detected to decide the level of the valve switch. The paper also proposed a modified algorithm to solve transmission problem, so that the system can keep a high efficiency and long service life.

  8. Intelligent Surveillance Robot with Obstacle Avoidance Capabilities Using Neural Network

    PubMed Central

    2015-01-01

    For specific purpose, vision-based surveillance robot that can be run autonomously and able to acquire images from its dynamic environment is very important, for example, in rescuing disaster victims in Indonesia. In this paper, we propose architecture for intelligent surveillance robot that is able to avoid obstacles using 3 ultrasonic distance sensors based on backpropagation neural network and a camera for face recognition. 2.4 GHz transmitter for transmitting video is used by the operator/user to direct the robot to the desired area. Results show the effectiveness of our method and we evaluate the performance of the system. PMID:26089863

  9. Reconfigurable Robust Routing for Mobile Outreach Network

    NASA Technical Reports Server (NTRS)

    Lin, Ching-Fang

    2010-01-01

    The Reconfigurable Robust Routing for Mobile Outreach Network (R3MOO N) provides advanced communications networking technologies suitable for the lunar surface environment and applications. The R3MOON techn ology is based on a detailed concept of operations tailored for luna r surface networks, and includes intelligent routing algorithms and wireless mesh network implementation on AGNC's Coremicro Robots. The product's features include an integrated communication solution inco rporating energy efficiency and disruption-tolerance in a mobile ad h oc network, and a real-time control module to provide researchers an d engineers a convenient tool for reconfiguration, investigation, an d management.

  10. Intelligent routing protocol for ad hoc wireless network

    NASA Astrophysics Data System (ADS)

    Peng, Chaorong; Chen, Chang Wen

    2006-05-01

    A novel routing scheme for mobile ad hoc networks (MANETs), which combines hybrid and multi-inter-routing path properties with a distributed topology discovery route mechanism using control agents is proposed in this paper. In recent years, a variety of hybrid routing protocols for Mobile Ad hoc wireless networks (MANETs) have been developed. Which is proactively maintains routing information for a local neighborhood, while reactively acquiring routes to destinations beyond the global. The hybrid protocol reduces routing discovery latency and the end-to-end delay by providing high connectivity without requiring much of the scarce network capacity. On the other side the hybrid routing protocols in MANETs likes Zone Routing Protocol still need route "re-discover" time when a route between zones link break. Sine the topology update information needs to be broadcast routing request on local zone. Due to this delay, the routing protocol may not be applicable for real-time data and multimedia communication. We utilize the advantages of a clustering organization and multi-routing path in routing protocol to achieve several goals at the same time. Firstly, IRP efficiently saves network bandwidth and reduces route reconstruction time when a routing path fails. The IRP protocol does not require global periodic routing advertisements, local control agents will automatically monitor and repair broke links. Secondly, it efficiently reduces congestion and traffic "bottlenecks" for ClusterHeads in clustering network. Thirdly, it reduces significant overheads associated with maintaining clusters. Fourthly, it improves clusters stability due to dynamic topology changing frequently. In this paper, we present the Intelligent Routing Protocol. First, we discuss the problem of routing in ad hoc networks and the motivation of IRP. We describe the hierarchical architecture of IRP. We describe the routing process and illustrate it with an example. Further, we describe the control manage

  11. Speech enhancement based on neural networks improves speech intelligibility in noise for cochlear implant users.

    PubMed

    Goehring, Tobias; Bolner, Federico; Monaghan, Jessica J M; van Dijk, Bas; Zarowski, Andrzej; Bleeck, Stefan

    2017-02-01

    Speech understanding in noisy environments is still one of the major challenges for cochlear implant (CI) users in everyday life. We evaluated a speech enhancement algorithm based on neural networks (NNSE) for improving speech intelligibility in noise for CI users. The algorithm decomposes the noisy speech signal into time-frequency units, extracts a set of auditory-inspired features and feeds them to the neural network to produce an estimation of which frequency channels contain more perceptually important information (higher signal-to-noise ratio, SNR). This estimate is used to attenuate noise-dominated and retain speech-dominated CI channels for electrical stimulation, as in traditional n-of-m CI coding strategies. The proposed algorithm was evaluated by measuring the speech-in-noise performance of 14 CI users using three types of background noise. Two NNSE algorithms were compared: a speaker-dependent algorithm, that was trained on the target speaker used for testing, and a speaker-independent algorithm, that was trained on different speakers. Significant improvements in the intelligibility of speech in stationary and fluctuating noises were found relative to the unprocessed condition for the speaker-dependent algorithm in all noise types and for the speaker-independent algorithm in 2 out of 3 noise types. The NNSE algorithms used noise-specific neural networks that generalized to novel segments of the same noise type and worked over a range of SNRs. The proposed algorithm has the potential to improve the intelligibility of speech in noise for CI users while meeting the requirements of low computational complexity and processing delay for application in CI devices. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  12. US long distance fiber optic networks: Technology, evolution and advanced concepts. Volume 3: Advanced networks and economics

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This study projects until 2000 the evolution of long distance fiber optic networks in the U.S. Volume 1 is the executive Summary. Volume 2 focuses on fiber optic components and systems that are directly related to the operation of long-haul networks. Optimistic, pessimistic and most likely scenarios of technology development are presented. The activities of national and regional companies implementing fiber long haul networks are also highlighted, along with an analysis of the market and regulatory forces affecting network evolution. Volume 3 presents advanced fiber optic network concept definitions. Inter-LATA traffic is quantified and forms the basis for the construction of 11-, 15-, 17-, and 23-node networks. Using the technology projections from Volume 2, a financial model identifies cost drivers and determines circuit mile costs between any two LATAs. A comparison of fiber optics with alternative transmission concludes the report.

  13. US long distance fiber optic networks: Technology, evolution and advanced concepts. Volume 3: Advanced networks and economics

    NASA Astrophysics Data System (ADS)

    1986-10-01

    This study projects until 2000 the evolution of long distance fiber optic networks in the U.S. Volume 1 is the executive Summary. Volume 2 focuses on fiber optic components and systems that are directly related to the operation of long-haul networks. Optimistic, pessimistic and most likely scenarios of technology development are presented. The activities of national and regional companies implementing fiber long haul networks are also highlighted, along with an analysis of the market and regulatory forces affecting network evolution. Volume 3 presents advanced fiber optic network concept definitions. Inter-LATA traffic is quantified and forms the basis for the construction of 11-, 15-, 17-, and 23-node networks. Using the technology projections from Volume 2, a financial model identifies cost drivers and determines circuit mile costs between any two LATAs. A comparison of fiber optics with alternative transmission concludes the report.

  14. Intelligence Fusion for Combined Operations

    DTIC Science & Technology

    1994-06-03

    Database ISE - Intelligence Support Element JASMIN - Joint Analysis System for Military Intelligence RC - Joint Intelligence Center JDISS - Joint Defense...has made accessable otherwise inaccessible networks such as connectivity to the German Joint Analysis System for Military Intelligence ( JASMIN ) and the...successfully any mission in the Battlespace is the essence of the C41 for the Warrior concept."’ It recognizes that the current C41 systems do not

  15. The TurboLAN project. Phase 1: Protocol choices for high speed local area networks. Phase 2: TurboLAN Intelligent Network Adapter Card, (TINAC) architecture

    NASA Technical Reports Server (NTRS)

    Alkhatib, Hasan S.

    1991-01-01

    The hardware and the software architecture of the TurboLAN Intelligent Network Adapter Card (TINAC) are described. A high level as well as detailed treatment of the workings of various components of the TINAC are presented. The TINAC is divided into the following four major functional units: (1) the network access unit (NAU); (2) the buffer management unit; (3) the host interface unit; and (4) the node processor unit.

  16. Resource Aware Intelligent Network Services (RAINS) Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehman, Tom; Yang, Xi

    The Resource Aware Intelligent Network Services (RAINS) project conducted research and developed technologies in the area of cyber infrastructure resource modeling and computation. The goal of this work was to provide a foundation to enable intelligent, software defined services which spanned the network AND the resources which connect to the network. A Multi-Resource Service Plane (MRSP) was defined, which allows resource owners/managers to locate and place themselves from a topology and service availability perspective within the dynamic networked cyberinfrastructure ecosystem. The MRSP enables the presentation of integrated topology views and computation results which can include resources across the spectrum ofmore » compute, storage, and networks. The RAINS project developed MSRP includes the following key components: i) Multi-Resource Service (MRS) Ontology/Multi-Resource Markup Language (MRML), ii) Resource Computation Engine (RCE), iii) Modular Driver Framework (to allow integration of a variety of external resources). The MRS/MRML is a general and extensible modeling framework that allows for resource owners to model, or describe, a wide variety of resource types. All resources are described using three categories of elements: Resources, Services, and Relationships between the elements. This modeling framework defines a common method for the transformation of cyber infrastructure resources into data in the form of MRML models. In order to realize this infrastructure datification, the RAINS project developed a model based computation system, i.e. “RAINS Computation Engine (RCE)”. The RCE has the ability to ingest, process, integrate, and compute based on automatically generated MRML models. The RCE interacts with the resources thru system drivers which are specific to the type of external network or resource controller. The RAINS project developed a modular and pluggable driver system which facilities a variety of resource controllers to automatically

  17. Effect of noise in intelligent cellular decision making.

    PubMed

    Bates, Russell; Blyuss, Oleg; Alsaedi, Ahmed; Zaikin, Alexey

    2015-01-01

    Similar to intelligent multicellular neural networks controlling human brains, even single cells, surprisingly, are able to make intelligent decisions to classify several external stimuli or to associate them. This happens because of the fact that gene regulatory networks can perform as perceptrons, simple intelligent schemes known from studies on Artificial Intelligence. We study the role of genetic noise in intelligent decision making at the genetic level and show that noise can play a constructive role helping cells to make a proper decision. We show this using the example of a simple genetic classifier able to classify two external stimuli.

  18. Applying Network Theory to Develop a Dedicated National Intelligence Network

    DTIC Science & Technology

    2006-09-01

    Los Angeles Sheriff’s Department .133 There is an interesting difference between the Washington, D.C. Police Department mission and others in...123 Atlanta, the TEW (Terrorist Early Warning) group (which is part of the Los Angeles Police Department ), and the intelligence and counter...intelligence “fusion” centers and perhaps the Los Angeles Police Department TEW. The

  19. Open ended intelligence: the individuation of intelligent agents

    NASA Astrophysics Data System (ADS)

    Weinbaum Weaver, David; Veitas, Viktoras

    2017-03-01

    Artificial general intelligence is a field of research aiming to distil the principles of intelligence that operate independently of a specific problem domain and utilise these principles in order to synthesise systems capable of performing any intellectual task a human being is capable of and beyond. While "narrow" artificial intelligence which focuses on solving specific problems such as speech recognition, text comprehension, visual pattern recognition and robotic motion has shown impressive breakthroughs lately, understanding general intelligence remains elusive. We propose a paradigm shift from intelligence perceived as a competence of individual agents defined in relation to an a priori given problem domain or a goal, to intelligence perceived as a formative process of self-organisation. We call this process open-ended intelligence. Starting with a brief introduction of the current conceptual approach, we expose a number of serious limitations that are traced back to the ontological roots of the concept of intelligence. Open-ended intelligence is then developed as an abstraction of the process of human cognitive development, so its application can be extended to general agents and systems. We introduce and discuss three facets of the idea: the philosophical concept of individuation, sense-making and the individuation of general cognitive agents. We further show how open-ended intelligence can be framed in terms of a distributed, self-organising network of interacting elements and how such process is scalable. The framework highlights an important relation between coordination and intelligence and a new understanding of values.

  20. Adaptive neural network/expert system that learns fault diagnosis for different structures

    NASA Astrophysics Data System (ADS)

    Simon, Solomon H.

    1992-08-01

    Corporations need better real-time monitoring and control systems to improve productivity by watching quality and increasing production flexibility. The innovative technology to achieve this goal is evolving in the form artificial intelligence and neural networks applied to sensor processing, fusion, and interpretation. By using these advanced Al techniques, we can leverage existing systems and add value to conventional techniques. Neural networks and knowledge-based expert systems can be combined into intelligent sensor systems which provide real-time monitoring, control, evaluation, and fault diagnosis for production systems. Neural network-based intelligent sensor systems are more reliable because they can provide continuous, non-destructive monitoring and inspection. Use of neural networks can result in sensor fusion and the ability to model highly, non-linear systems. Improved models can provide a foundation for more accurate performance parameters and predictions. We discuss a research software/hardware prototype which integrates neural networks, expert systems, and sensor technologies and which can adapt across a variety of structures to perform fault diagnosis. The flexibility and adaptability of the prototype in learning two structures is presented. Potential applications are discussed.

  1. Common neural correlates of intertemporal choices and intelligence in adolescents.

    PubMed

    Ripke, Stephan; Hübner, Thomas; Mennigen, Eva; Müller, Kathrin U; Li, Shu-Chen; Smolka, Michael N

    2015-02-01

    Converging behavioral evidence indicates that temporal discounting, measured by intertemporal choice tasks, is inversely related to intelligence. At the neural level, the parieto-frontal network is pivotal for complex, higher-order cognitive processes. Relatedly, underrecruitment of the pFC during a working memory task has been found to be associated with steeper temporal discounting. Furthermore, this network has also been shown to be related to the consistency of intertemporal choices. Here we report an fMRI study that directly investigated the association of neural correlates of intertemporal choice behavior with intelligence in an adolescent sample (n = 206; age 13.7-15.5 years). After identifying brain regions where the BOLD response during intertemporal choice was correlated with individual differences in intelligence, we further tested whether BOLD responses in these areas would mediate the associations between intelligence, the discounting rate, and choice consistency. We found positive correlations between BOLD response in a value-independent decision network (i.e., dorsolateral pFC, precuneus, and occipital areas) and intelligence. Furthermore, BOLD response in a value-dependent decision network (i.e., perigenual ACC, inferior frontal gyrus, ventromedial pFC, ventral striatum) was positively correlated with intelligence. The mediation analysis revealed that BOLD responses in the value-independent network mediated the association between intelligence and choice consistency, whereas BOLD responses in the value-dependent network mediated the association between intelligence and the discounting rate. In summary, our findings provide evidence for common neural correlates of intertemporal choice and intelligence, possibly linked by valuation as well as executive functions.

  2. Countering Threat Networks

    DTIC Science & Technology

    2016-12-21

    PLANNING TO COUNTER THREAT NETWORKS  Joint Intelligence Preparation of the Operational Environment and Threat Networks...Army Expeditionary Forensic Facility in Afghanistan ........ E-9 E-4 Exploitation Support to Intelligence Fusion and Decision Making ......... E-10...Approach The groundwork for successful countering threat networks activities starts with information and intelligence to develop an understanding

  3. Concept design and cluster control of advanced space connectable intelligent microsatellite

    NASA Astrophysics Data System (ADS)

    Wang, Xiaohui; Li, Shuang; She, Yuchen

    2017-12-01

    In this note, a new type of advanced space connectable intelligent microsatellite is presented to extend the range of potential application of microsatellite and improve the efficiency of cooperation. First, the overall concept of the micro satellite cluster is described, which is characterized by autonomously connecting with each other and being able to realize relative rotation through the external interfaces. Second, the multi-satellite autonomous assembly algorithm and control algorithm of the cluster motion are developed to make the cluster system combine into a variety of configurations in order to achieve different types of functionality. Finally, the design of the satellite cluster system is proposed, and the possible applications are discussed.

  4. The application of artificial intelligence techniques to large distributed networks

    NASA Technical Reports Server (NTRS)

    Dubyah, R.; Smith, T. R.; Star, J. L.

    1985-01-01

    Data accessibility and transfer of information, including the land resources information system pilot, are structured as large computer information networks. These pilot efforts include the reduction of the difficulty to find and use data, reducing processing costs, and minimize incompatibility between data sources. Artificial Intelligence (AI) techniques were suggested to achieve these goals. The applicability of certain AI techniques are explored in the context of distributed problem solving systems and the pilot land data system (PLDS). The topics discussed include: PLDS and its data processing requirements, expert systems and PLDS, distributed problem solving systems, AI problem solving paradigms, query processing, and distributed data bases.

  5. MRI correlates of general intelligence in neurotypical adults.

    PubMed

    Malpas, Charles B; Genc, Sila; Saling, Michael M; Velakoulis, Dennis; Desmond, Patricia M; O'Brien, Terence J

    2016-02-01

    There is growing interest in the neurobiological substrate of general intelligence. Psychometric estimates of general intelligence are reduced in a range of neurological disorders, leading to practical application as sensitive, but non-specific, markers of cerebral disorder. This study examined estimates of general intelligence in neurotypical adults using diffusion tensor imaging and resting-state functional connectivity analysis. General intelligence was related to white matter organisation across multiple brain regions, confirming previous work in older healthy adults. We also found that variation in general intelligence was related to a large functional sub-network involving all cortical lobes of the brain. These findings confirm that individual variance in general intelligence is related to diffusely represented brain networks. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Patient positioning using artificial intelligence neural networks, trained magnetic field sensors and magnetic implants.

    PubMed

    Lennernäs, B; Edgren, M; Nilsson, S

    1999-01-01

    The purpose of this study was to evaluate the precision of a sensor and to ascertain the maximum distance between the sensor and the magnet, in a magnetic positioning system for external beam radiotherapy using a trained artificial intelligence neural network for position determination. Magnetic positioning for radiotherapy, previously described by Lennernäs and Nilsson, is a functional technique, but it is time consuming. The sensors are large and the distance between the sensor and the magnetic implant is limited to short distances. This paper presents a new technique for positioning, using an artificial intelligence neural network, which was trained to position the magnetic implant with at least 0.5 mm resolution in X and Y dimensions. The possibility of using the system for determination in the Z dimension, that is the distance between the magnet and the sensor, was also investigated. After training, this system positioned the magnet with a mean error of maximum 0.15 mm in all dimensions and up to 13 mm from the sensor. Of 400 test positions, 8 determinations had an error larger than 0.5 mm, maximum 0.55 mm. A position was determined in approximately 0.01 s.

  7. Fixed Point Learning Based Intelligent Traffic Control System

    NASA Astrophysics Data System (ADS)

    Zongyao, Wang; Cong, Sui; Cheng, Shao

    2017-10-01

    Fixed point learning has become an important tool to analyse large scale distributed system such as urban traffic network. This paper presents a fixed point learning based intelligence traffic network control system. The system applies convergence property of fixed point theorem to optimize the traffic flow density. The intelligence traffic control system achieves maximum road resources usage by averaging traffic flow density among the traffic network. The intelligence traffic network control system is built based on decentralized structure and intelligence cooperation. No central control is needed to manage the system. The proposed system is simple, effective and feasible for practical use. The performance of the system is tested via theoretical proof and simulations. The results demonstrate that the system can effectively solve the traffic congestion problem and increase the vehicles average speed. It also proves that the system is flexible, reliable and feasible for practical use.

  8. An intelligent service matching method for mechanical equipment condition monitoring using the fibre Bragg grating sensor network

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; Zhou, Zude; Liu, Quan; Xu, Wenjun

    2017-02-01

    Due to the advantages of being able to function under harsh environmental conditions and serving as a distributed condition information source in a networked monitoring system, the fibre Bragg grating (FBG) sensor network has attracted considerable attention for equipment online condition monitoring. To provide an overall conditional view of the mechanical equipment operation, a networked service-oriented condition monitoring framework based on FBG sensing is proposed, together with an intelligent matching method for supporting monitoring service management. In the novel framework, three classes of progressive service matching approaches, including service-chain knowledge database service matching, multi-objective constrained service matching and workflow-driven human-interactive service matching, are developed and integrated with an enhanced particle swarm optimisation (PSO) algorithm as well as a workflow-driven mechanism. Moreover, the manufacturing domain ontology, FBG sensor network structure and monitoring object are considered to facilitate the automatic matching of condition monitoring services to overcome the limitations of traditional service processing methods. The experimental results demonstrate that FBG monitoring services can be selected intelligently, and the developed condition monitoring system can be re-built rapidly as new equipment joins the framework. The effectiveness of the service matching method is also verified by implementing a prototype system together with its performance analysis.

  9. Emergency Situation Prediction Mechanism: A Novel Approach for Intelligent Transportation System Using Vehicular Ad Hoc Networks

    PubMed Central

    Gokulakrishnan, P.

    2015-01-01

    In Indian four-lane express highway, millions of vehicles are travelling every day. Accidents are unfortunate and frequently occurring in these highways causing deaths, increase in death toll, and damage to infrastructure. A mechanism is required to avoid such road accidents at the maximum to reduce the death toll. An Emergency Situation Prediction Mechanism, a novel and proactive approach, is proposed in this paper for achieving the best of Intelligent Transportation System using Vehicular Ad Hoc Network. ESPM intends to predict the possibility of occurrence of an accident in an Indian four-lane express highway. In ESPM, the emergency situation prediction is done by the Road Side Unit based on (i) the Status Report sent by the vehicles in the range of RSU and (ii) the road traffic flow analysis done by the RSU. Once the emergency situation or accident is predicted in advance, an Emergency Warning Message is constructed and disseminated to all vehicles in the area of RSU to alert and prevent the vehicles from accidents. ESPM performs well in emergency situation prediction in advance to the occurrence of an accident. ESPM predicts the emergency situation within 0.20 seconds which is comparatively less than the statistical value. The prediction accuracy of ESPM against vehicle density is found better in different traffic scenarios. PMID:26065014

  10. The Use of Artificial Neural Networks to Estimate Speech Intelligibility from Acoustic Variables: A Preliminary Analysis.

    ERIC Educational Resources Information Center

    Metz, Dale Evan; And Others

    1992-01-01

    A preliminary scheme for estimating the speech intelligibility of hearing-impaired speakers from acoustic parameters, using a computerized artificial neural network to process mathematically the acoustic input variables, is outlined. Tests with 60 hearing-impaired speakers found the scheme to be highly accurate in identifying speakers separated by…

  11. 47 CFR 51.5 - Terms and definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    .... The Communications Act of 1934, as amended. Advanced intelligent network. Advanced intelligent network is a telecommunications network architecture in which call processing, call routing, and network... carrier's network. Advanced services. The term “advanced services” is defined as high speed, switched...

  12. A Wavelet Neural Network Optimal Control Model for Traffic-Flow Prediction in Intelligent Transport Systems

    NASA Astrophysics Data System (ADS)

    Huang, Darong; Bai, Xing-Rong

    Based on wavelet transform and neural network theory, a traffic-flow prediction model, which was used in optimal control of Intelligent Traffic system, is constructed. First of all, we have extracted the scale coefficient and wavelet coefficient from the online measured raw data of traffic flow via wavelet transform; Secondly, an Artificial Neural Network model of Traffic-flow Prediction was constructed and trained using the coefficient sequences as inputs and raw data as outputs; Simultaneous, we have designed the running principium of the optimal control system of traffic-flow Forecasting model, the network topological structure and the data transmitted model; Finally, a simulated example has shown that the technique is effectively and exactly. The theoretical results indicated that the wavelet neural network prediction model and algorithms have a broad prospect for practical application.

  13. Distributed neural system for emotional intelligence revealed by lesion mapping.

    PubMed

    Barbey, Aron K; Colom, Roberto; Grafman, Jordan

    2014-03-01

    Cognitive neuroscience has made considerable progress in understanding the neural architecture of human intelligence, identifying a broadly distributed network of frontal and parietal regions that support goal-directed, intelligent behavior. However, the contributions of this network to social and emotional aspects of intellectual function remain to be well characterized. Here we investigated the neural basis of emotional intelligence in 152 patients with focal brain injuries using voxel-based lesion-symptom mapping. Latent variable modeling was applied to obtain measures of emotional intelligence, general intelligence and personality from the Mayer, Salovey, Caruso Emotional Intelligence Test (MSCEIT), the Wechsler Adult Intelligence Scale and the Neuroticism-Extroversion-Openness Inventory, respectively. Regression analyses revealed that latent scores for measures of general intelligence and personality reliably predicted latent scores for emotional intelligence. Lesion mapping results further indicated that these convergent processes depend on a shared network of frontal, temporal and parietal brain regions. The results support an integrative framework for understanding the architecture of executive, social and emotional processes and make specific recommendations for the interpretation and application of the MSCEIT to the study of emotional intelligence in health and disease.

  14. Distributed neural system for emotional intelligence revealed by lesion mapping

    PubMed Central

    Colom, Roberto; Grafman, Jordan

    2014-01-01

    Cognitive neuroscience has made considerable progress in understanding the neural architecture of human intelligence, identifying a broadly distributed network of frontal and parietal regions that support goal-directed, intelligent behavior. However, the contributions of this network to social and emotional aspects of intellectual function remain to be well characterized. Here we investigated the neural basis of emotional intelligence in 152 patients with focal brain injuries using voxel-based lesion-symptom mapping. Latent variable modeling was applied to obtain measures of emotional intelligence, general intelligence and personality from the Mayer, Salovey, Caruso Emotional Intelligence Test (MSCEIT), the Wechsler Adult Intelligence Scale and the Neuroticism-Extroversion-Openness Inventory, respectively. Regression analyses revealed that latent scores for measures of general intelligence and personality reliably predicted latent scores for emotional intelligence. Lesion mapping results further indicated that these convergent processes depend on a shared network of frontal, temporal and parietal brain regions. The results support an integrative framework for understanding the architecture of executive, social and emotional processes and make specific recommendations for the interpretation and application of the MSCEIT to the study of emotional intelligence in health and disease. PMID:23171618

  15. Using Marine and Freshwater Fish Environmental Intelligence Networks Under Different Climate Change Scenarios to Evaluate the Effectiveness of the Minamata Convention on Mercury

    NASA Astrophysics Data System (ADS)

    Bank, M. S.

    2017-12-01

    The Minamata Convention on Mercury was recently ratified and will go into effect on August 16, 2017. As noted in the convention text, fish are an important source of nutrition to consumers worldwide and several marine and freshwater species represent important links in the global source-receptor dynamics of methylmercury. However, despite its importance, a coordinated global program for marine and freshwater fish species using accredited laboratories, reproducible data and reliable models is still lacking. In recent years fish mercury science has evolved significantly with its use of advanced technologies and computational models to address this complex and ubiquitous environmental and public health issue. These advances in the field have made it essential that transparency be enhanced to ensure that fish mercury studies used in support of the convention are truly reproducible and scientifically sound. One primary goal of this presentation is to evaluate fish bioinformatics and methods, results and inferential reproducibility as it relates to aggregated uncertainty in mercury fish research models, science, and biomonitoring. I use models, environmental intelligence networks and simulations of the effects of a changing climate on methylmercury in marine and freshwater fish to examine how climate change and the convention itself may create further uncertainties for policymakers to consider. Lastly, I will also present an environmental intelligence framework for fish mercury bioaccumulation models and biomonitoring in support of the evaluation of the effectiveness of the Minamata Convention on Mercury.

  16. Energy Logic (EL): a novel fusion engine of multi-modality multi-agent data/information fusion for intelligent surveillance systems

    NASA Astrophysics Data System (ADS)

    Rababaah, Haroun; Shirkhodaie, Amir

    2009-04-01

    The rapidly advancing hardware technology, smart sensors and sensor networks are advancing environment sensing. One major potential of this technology is Large-Scale Surveillance Systems (LS3) especially for, homeland security, battlefield intelligence, facility guarding and other civilian applications. The efficient and effective deployment of LS3 requires addressing number of aspects impacting the scalability of such systems. The scalability factors are related to: computation and memory utilization efficiency, communication bandwidth utilization, network topology (e.g., centralized, ad-hoc, hierarchical or hybrid), network communication protocol and data routing schemes; and local and global data/information fusion scheme for situational awareness. Although, many models have been proposed to address one aspect or another of these issues but, few have addressed the need for a multi-modality multi-agent data/information fusion that has characteristics satisfying the requirements of current and future intelligent sensors and sensor networks. In this paper, we have presented a novel scalable fusion engine for multi-modality multi-agent information fusion for LS3. The new fusion engine is based on a concept we call: Energy Logic. Experimental results of this work as compared to a Fuzzy logic model strongly supported the validity of the new model and inspired future directions for different levels of fusion and different applications.

  17. Neural computing thermal comfort index PMV for the indoor environment intelligent control system

    NASA Astrophysics Data System (ADS)

    Liu, Chang; Chen, Yifei

    2013-03-01

    Providing indoor thermal comfort and saving energy are two main goals of indoor environmental control system. An intelligent comfort control system by combining the intelligent control and minimum power control strategies for the indoor environment is presented in this paper. In the system, for realizing the comfort control, the predicted mean vote (PMV) is designed as the control goal, and with chastening formulas of PMV, it is controlled to optimize for improving indoor comfort lever by considering six comfort related variables. On the other hand, a RBF neural network based on genetic algorithm is designed to calculate PMV for better performance and overcoming the nonlinear feature of the PMV calculation better. The formulas given in the paper are presented for calculating the expected output values basing on the input samples, and the RBF network model is trained depending on input samples and the expected output values. The simulation result is proved that the design of the intelligent calculation method is valid. Moreover, this method has a lot of advancements such as high precision, fast dynamic response and good system performance are reached, it can be used in practice with requested calculating error.

  18. Bio-Intelligence: A Research Program Facilitating the Development of New Paradigms for Tomorrow's Patient Care

    NASA Astrophysics Data System (ADS)

    Phan, Sieu; Famili, Fazel; Liu, Ziying; Peña-Castillo, Lourdes

    The advancement of omics technologies in concert with the enabling information technology development has accelerated biological research to a new realm in a blazing speed and sophistication. The limited single gene assay to the high throughput microarray assay and the laborious manual count of base-pairs to the robotic assisted machinery in genome sequencing are two examples to name. Yet even more sophisticated, the recent development in literature mining and artificial intelligence has allowed researchers to construct complex gene networks unraveling many formidable biological puzzles. To harness these emerging technologies to their full potential to medical applications, the Bio-intelligence program at the Institute for Information Technology, National Research Council Canada, aims to develop and exploit artificial intelligence and bioinformatics technologies to facilitate the development of intelligent decision support tools and systems to improve patient care - for early detection, accurate diagnosis/prognosis of disease, and better personalized therapeutic management.

  19. Advanced Optical Burst Switched Network Concepts

    NASA Astrophysics Data System (ADS)

    Nejabati, Reza; Aracil, Javier; Castoldi, Piero; de Leenheer, Marc; Simeonidou, Dimitra; Valcarenghi, Luca; Zervas, Georgios; Wu, Jian

    would have to securely transport 1.2 GB of data every 30 s [230]. According to the above explanation it is clear that these types of applications need a new network infrastructure and transport technology that makes large amounts of bandwidth at subwavelength granularity, storage, computation, and visualization resources potentially available to a wide user base for specified time durations. As these types of collaborative and network-based applications evolve addressing a wide range and large number of users, it is infeasible to build dedicated networks for each application type or category. Consequently, there should be an adaptive network infrastructure able to support all application types, each with their own access, network, and resource usage patterns. This infrastructure should offer flexible and intelligent network elements and control mechanism able to deploy new applications quickly and efficiently.

  20. Intelligent Middle-Ware Architecture for Mobile Networks

    NASA Astrophysics Data System (ADS)

    Rayana, Rayene Ben; Bonnin, Jean-Marie

    Recent advances in electronic and automotive industries as well as in wireless telecommunication technologies have drawn a new picture where each vehicle became “fully networked”. Multiple stake-holders (network operators, drivers, car manufacturers, service providers, etc.) will participate in this emerging market, which could grow following various models. To free the market from technical constraints, it is important to return to the basics of the Internet, i.e., providing embarked devices with a fully operational Internet connectivity (IPv6).

  1. Synthetic biology routes to bio-artificial intelligence

    PubMed Central

    Zaikin, Alexey; Saka, Yasushi; Romano, M. Carmen; Giuraniuc, Claudiu V.; Kanakov, Oleg; Laptyeva, Tetyana

    2016-01-01

    The design of synthetic gene networks (SGNs) has advanced to the extent that novel genetic circuits are now being tested for their ability to recapitulate archetypal learning behaviours first defined in the fields of machine and animal learning. Here, we discuss the biological implementation of a perceptron algorithm for linear classification of input data. An expansion of this biological design that encompasses cellular ‘teachers’ and ‘students’ is also examined. We also discuss implementation of Pavlovian associative learning using SGNs and present an example of such a scheme and in silico simulation of its performance. In addition to designed SGNs, we also consider the option to establish conditions in which a population of SGNs can evolve diversity in order to better contend with complex input data. Finally, we compare recent ethical concerns in the field of artificial intelligence (AI) and the future challenges raised by bio-artificial intelligence (BI). PMID:27903825

  2. Cellular computational generalized neuron network for frequency situational intelligence in a multi-machine power system.

    PubMed

    Wei, Yawei; Venayagamoorthy, Ganesh Kumar

    2017-09-01

    To prevent large interconnected power system from a cascading failure, brownout or even blackout, grid operators require access to faster than real-time information to make appropriate just-in-time control decisions. However, the communication and computational system limitations of currently used supervisory control and data acquisition (SCADA) system can only deliver delayed information. However, the deployment of synchrophasor measurement devices makes it possible to capture and visualize, in near-real-time, grid operational data with extra granularity. In this paper, a cellular computational network (CCN) approach for frequency situational intelligence (FSI) in a power system is presented. The distributed and scalable computing unit of the CCN framework makes it particularly flexible for customization for a particular set of prediction requirements. Two soft-computing algorithms have been implemented in the CCN framework: a cellular generalized neuron network (CCGNN) and a cellular multi-layer perceptron network (CCMLPN), for purposes of providing multi-timescale frequency predictions, ranging from 16.67 ms to 2 s. These two developed CCGNN and CCMLPN systems were then implemented on two different scales of power systems, one of which installed a large photovoltaic plant. A real-time power system simulator at weather station within the Real-Time Power and Intelligent Systems (RTPIS) laboratory at Clemson, SC, was then used to derive typical FSI results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. An intelligent traffic controller

    DOT National Transportation Integrated Search

    1995-11-01

    Advances in computing sciences have not been applied to traffic control. This paper describes the development of an intelligent controller. A controller with advanced control logic can significantly improve traffic flows at intersections. In this vei...

  4. Intelligent Tutoring Systems

    NASA Astrophysics Data System (ADS)

    Anderson, John R.; Boyle, C. Franklin; Reiser, Brian J.

    1985-04-01

    Cognitive psychology, artificial intelligence, and computer technology have advanced to the point where it is feasible to build computer systems that are as effective as intelligent human tutors. Computer tutors based on a set of pedagogical principles derived from the ACT theory of cognition have been developed for teaching students to do proofs in geometry and to write computer programs in the language LISP.

  5. Intelligent tutoring systems.

    PubMed

    Anderson, J R; Boyle, C F; Reiser, B J

    1985-04-26

    Cognitive psychology, artificial intelligence, and computer technology have advanced to the point where it is feasible to build computer systems that are as effective as intelligent human tutors. Computer tutors based on a set of pedagogical principles derived from the ACT theory of cognition have been developed for teaching students to do proofs in geometry and to write computer programs in the language LISP.

  6. A New Efficient Hybrid Intelligent Model for Biodegradation Process of DMP with Fuzzy Wavelet Neural Networks

    PubMed Central

    Huang, Mingzhi; Zhang, Tao; Ruan, Jujun; Chen, Xiaohong

    2017-01-01

    A new efficient hybrid intelligent approach based on fuzzy wavelet neural network (FWNN) was proposed for effectively modeling and simulating biodegradation process of Dimethyl phthalate (DMP) in an anaerobic/anoxic/oxic (AAO) wastewater treatment process. With the self learning and memory abilities of neural networks (NN), handling uncertainty capacity of fuzzy logic (FL), analyzing local details superiority of wavelet transform (WT) and global search of genetic algorithm (GA), the proposed hybrid intelligent model can extract the dynamic behavior and complex interrelationships from various water quality variables. For finding the optimal values for parameters of the proposed FWNN, a hybrid learning algorithm integrating an improved genetic optimization and gradient descent algorithm is employed. The results show, compared with NN model (optimized by GA) and kinetic model, the proposed FWNN model have the quicker convergence speed, the higher prediction performance, and smaller RMSE (0.080), MSE (0.0064), MAPE (1.8158) and higher R2 (0.9851) values. which illustrates FWNN model simulates effluent DMP more accurately than the mechanism model. PMID:28120889

  7. A New Efficient Hybrid Intelligent Model for Biodegradation Process of DMP with Fuzzy Wavelet Neural Networks

    NASA Astrophysics Data System (ADS)

    Huang, Mingzhi; Zhang, Tao; Ruan, Jujun; Chen, Xiaohong

    2017-01-01

    A new efficient hybrid intelligent approach based on fuzzy wavelet neural network (FWNN) was proposed for effectively modeling and simulating biodegradation process of Dimethyl phthalate (DMP) in an anaerobic/anoxic/oxic (AAO) wastewater treatment process. With the self learning and memory abilities of neural networks (NN), handling uncertainty capacity of fuzzy logic (FL), analyzing local details superiority of wavelet transform (WT) and global search of genetic algorithm (GA), the proposed hybrid intelligent model can extract the dynamic behavior and complex interrelationships from various water quality variables. For finding the optimal values for parameters of the proposed FWNN, a hybrid learning algorithm integrating an improved genetic optimization and gradient descent algorithm is employed. The results show, compared with NN model (optimized by GA) and kinetic model, the proposed FWNN model have the quicker convergence speed, the higher prediction performance, and smaller RMSE (0.080), MSE (0.0064), MAPE (1.8158) and higher R2 (0.9851) values. which illustrates FWNN model simulates effluent DMP more accurately than the mechanism model.

  8. Fuzzy Logic, Neural Networks, Genetic Algorithms: Views of Three Artificial Intelligence Concepts Used in Modeling Scientific Systems

    ERIC Educational Resources Information Center

    Sunal, Cynthia Szymanski; Karr, Charles L.; Sunal, Dennis W.

    2003-01-01

    Students' conceptions of three major artificial intelligence concepts used in the modeling of systems in science, fuzzy logic, neural networks, and genetic algorithms were investigated before and after a higher education science course. Students initially explored their prior ideas related to the three concepts through active tasks. Then,…

  9. Fuzzy mobile-robot positioning in intelligent spaces using wireless sensor networks.

    PubMed

    Herrero, David; Martínez, Humberto

    2011-01-01

    This work presents the development and experimental evaluation of a method based on fuzzy logic to locate mobile robots in an Intelligent Space using wireless sensor networks (WSNs). The problem consists of locating a mobile node using only inter-node range measurements, which are estimated by radio frequency signal strength attenuation. The sensor model of these measurements is very noisy and unreliable. The proposed method makes use of fuzzy logic for modeling and dealing with such uncertain information. Besides, the proposed approach is compared with a probabilistic technique showing that the fuzzy approach is able to handle highly uncertain situations that are difficult to manage by well-known localization methods.

  10. Connectionist Models for Intelligent Computation

    DTIC Science & Technology

    1989-07-26

    Intelligent Canputation 12. PERSONAL AUTHOR(S) H.H. Chen and Y.C. Lee 13a. o R,POT Cal 13b TIME lVD/rED 14 DATE OF REPORT (Year, Month, Day) JS PAGE...fied Project Title: Connectionist Models-for Intelligent Computation Contract/Grant No.: AFOSR-87-0388 Contract/Grant Period of Performance: Sept. 1...underlying principles, architectures and appilications of artificial neural networks for intelligent computations.o, Approach: -) We use both numerical

  11. A Survey of Geosensor Networks: Advances in Dynamic Environmental Monitoring

    PubMed Central

    Nittel, Silvia

    2009-01-01

    In the recent decade, several technology trends have influenced the field of geosciences in significant ways. The first trend is the more readily available technology of ubiquitous wireless communication networks and progress in the development of low-power, short-range radio-based communication networks, the miniaturization of computing and storage platforms as well as the development of novel microsensors and sensor materials. All three trends have changed the type of dynamic environmental phenomena that can be detected, monitored and reacted to. Another important aspect is the real-time data delivery of novel platforms today. In this paper, I will survey the field of geosensor networks, and mainly focus on the technology of small-scale geosensor networks, example applications and their feasibility and lessons learnt as well as the current research questions posed by using this technology today. Furthermore, my objective is to investigate how this technology can be embedded in the current landscape of intelligent sensor platforms in the geosciences and identify its place and purpose. PMID:22346721

  12. Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data

    NASA Astrophysics Data System (ADS)

    Jia, Feng; Lei, Yaguo; Lin, Jing; Zhou, Xin; Lu, Na

    2016-05-01

    Aiming to promptly process the massive fault data and automatically provide accurate diagnosis results, numerous studies have been conducted on intelligent fault diagnosis of rotating machinery. Among these studies, the methods based on artificial neural networks (ANNs) are commonly used, which employ signal processing techniques for extracting features and further input the features to ANNs for classifying faults. Though these methods did work in intelligent fault diagnosis of rotating machinery, they still have two deficiencies. (1) The features are manually extracted depending on much prior knowledge about signal processing techniques and diagnostic expertise. In addition, these manual features are extracted according to a specific diagnosis issue and probably unsuitable for other issues. (2) The ANNs adopted in these methods have shallow architectures, which limits the capacity of ANNs to learn the complex non-linear relationships in fault diagnosis issues. As a breakthrough in artificial intelligence, deep learning holds the potential to overcome the aforementioned deficiencies. Through deep learning, deep neural networks (DNNs) with deep architectures, instead of shallow ones, could be established to mine the useful information from raw data and approximate complex non-linear functions. Based on DNNs, a novel intelligent method is proposed in this paper to overcome the deficiencies of the aforementioned intelligent diagnosis methods. The effectiveness of the proposed method is validated using datasets from rolling element bearings and planetary gearboxes. These datasets contain massive measured signals involving different health conditions under various operating conditions. The diagnosis results show that the proposed method is able to not only adaptively mine available fault characteristics from the measured signals, but also obtain superior diagnosis accuracy compared with the existing methods.

  13. Some Steps towards Intelligent Computer Tutoring Systems.

    ERIC Educational Resources Information Center

    Tchogovadze, Gotcha G.

    1986-01-01

    Describes one way of structuring an intelligent tutoring system (ITS) in light of developments in artificial intelligence. A specialized intelligent operating system (SIOS) is proposed for software for a network of microcomputers, and it is postulated that a general learning system must be used as a basic framework for the SIOS. (Author/LRW)

  14. Where value lives in a networked world.

    PubMed

    Sawhney, M; Parikh, D

    2001-01-01

    While many management thinkers proclaim an era of radical uncertainty, authors Sawhney and Parikh assert that the seemingly endless upheavals of the digital age are more predictable than that: today's changes have a common root, and that root lies in the nature of intelligence in networks. Understanding the patterns of intelligence migration can help companies decipher and plan for the inevitable disruptions in today's business environment. Two patterns in network intelligence are reshaping industries and organizations. First, intelligence is decoupling--that is, modern high-speed networks are pushing back-end intelligence and front-end intelligence toward opposite ends of the network, making the ends the two major sources of potential profits. Second, intelligence is becoming more fluid and modular. Small units of intelligence now float freely like molecules in the ether, coalescing into temporary bundles whenever and wherever necessary to solve problems. The authors present four strategies that companies can use to profit from these patterns: arbitrage allows companies to move intelligence to new regions or countries where the cost of maintaining intelligence is lower; aggregation combines formerly isolated pieces of infrastructure intelligence into a large pool of shared infrastructure provided over a network; rewiring allows companies to connect islands of intelligence by creating common information backbones; and reassembly allows businesses to reorganize pieces of intelligence into coherent, personalized packages for customers. By being aware of patterns in network intelligence and by acting rather than reacting, companies can turn chaos into opportunity, say the authors.

  15. Advancing Health Professions Education Research by Creating a Network of Networks.

    PubMed

    Carney, Patricia A; Brandt, Barbara; Dekhtyar, Michael; Holmboe, Eric S

    2018-02-27

    Producing the best evidence to show educational outcomes, such as competency achievement and credentialing effectiveness, across the health professions education continuum will require large multisite research projects and longitudinal studies. Current limitations that must be overcome to reach this goal include the prevalence of single-institution study designs, assessments of a single curricular component, and cross-sectional study designs that provide only a snapshot in time of a program or initiative rather than a longitudinal perspective.One solution to overcoming these limitations is to develop a network of networks that collaborates, using longitudinal approaches, across health professions and regions of the United States. Currently, individual networks are advancing educational innovation toward understanding the effectiveness of educational and credentialing programs. Examples of such networks include: (1) the American Medical Association's Accelerating Change in Medical Education initiative, (2) the National Center for Interprofessional Practice and Education, and (3) the Accreditation Council for Graduate Medical Education's Accreditation System. In this Invited Commentary, the authors briefly profile these existing networks, identify their progress and the challenges they have encountered, and propose a vigorous way forward toward creating a national network of networks designed to determine the effectiveness of health professions education and credentialing.

  16. A Research Program on Artificial Intelligence in Process Engineering.

    ERIC Educational Resources Information Center

    Stephanopoulos, George

    1986-01-01

    Discusses the use of artificial intelligence systems in process engineering. Describes a new program at the Massachusetts Institute of Technology which attempts to advance process engineering through technological advances in the areas of artificial intelligence and computers. Identifies the program's hardware facilities, software support,…

  17. Teaching Advanced Concepts in Computer Networks: VNUML-UM Virtualization Tool

    ERIC Educational Resources Information Center

    Ruiz-Martinez, A.; Pereniguez-Garcia, F.; Marin-Lopez, R.; Ruiz-Martinez, P. M.; Skarmeta-Gomez, A. F.

    2013-01-01

    In the teaching of computer networks the main problem that arises is the high price and limited number of network devices the students can work with in the laboratories. Nowadays, with virtualization we can overcome this limitation. In this paper, we present a methodology that allows students to learn advanced computer network concepts through…

  18. Touching the elephant: The search for fluid intelligence.

    PubMed

    Wasserman, Theodore; Wasserman, Lori Drucker

    2017-01-01

    Many constructs that we take for granted in modern neuropsychology, fluid intelligence among them, can best be explained by conceptionalizing them as a collection of task specific processes engaged in by an integrated recruited network involved in problem solving. Fractionalizing the network in an attempt to describe elements of its function leads to arbitrarily defined segments that may be interesting to discuss abstractly, but never occur independently in the real world operation of the system. We will seek to demonstrate that the construct of fluid intelligence is like that. It is a description of a type of operation of a network dedicated to solving problems and the composition of the network that is responsible for the activity changes in a task specific manner. As a result, fluid intelligence is not an independent skill, or a thing that lives on its own, or can be measured independently of the other things that contribute to the overall operation of the network as it seeks to solve problems.

  19. An Advanced IoT-based System for Intelligent Energy Management in Buildings.

    PubMed

    Marinakis, Vangelis; Doukas, Haris

    2018-02-16

    The energy sector is closely interconnected with the building sector and integrated Information and Communication Technologies (ICT) solutions for effective energy management supporting decision-making at building, district and city level are key fundamental elements for making a city Smart. The available systems are designed and intended exclusively for a predefined number of cases and systems without allowing for expansion and interoperability with other applications that is partially due to the lack of semantics. This paper presents an advanced Internet of Things (IoT) based system for intelligent energy management in buildings. A semantic framework is introduced aiming at the unified and standardised modelling of the entities that constitute the building environment. Suitable rules are formed, aiming at the intelligent energy management and the general modus operandi of Smart Building. In this context, an IoT-based system was implemented, which enhances the interactivity of the buildings' energy management systems. The results from its pilot application are presented and discussed. The proposed system extends existing approaches and integrates cross-domain data, such as the building's data (e.g., energy management systems), energy production, energy prices, weather data and end-users' behaviour, in order to produce daily and weekly action plans for the energy end-users with actionable personalised information.

  20. An Advanced IoT-based System for Intelligent Energy Management in Buildings

    PubMed Central

    Doukas, Haris

    2018-01-01

    The energy sector is closely interconnected with the building sector and integrated Information and Communication Technologies (ICT) solutions for effective energy management supporting decision-making at building, district and city level are key fundamental elements for making a city Smart. The available systems are designed and intended exclusively for a predefined number of cases and systems without allowing for expansion and interoperability with other applications that is partially due to the lack of semantics. This paper presents an advanced Internet of Things (IoT) based system for intelligent energy management in buildings. A semantic framework is introduced aiming at the unified and standardised modelling of the entities that constitute the building environment. Suitable rules are formed, aiming at the intelligent energy management and the general modus operandi of Smart Building. In this context, an IoT-based system was implemented, which enhances the interactivity of the buildings’ energy management systems. The results from its pilot application are presented and discussed. The proposed system extends existing approaches and integrates cross-domain data, such as the building’s data (e.g., energy management systems), energy production, energy prices, weather data and end-users’ behaviour, in order to produce daily and weekly action plans for the energy end-users with actionable personalised information. PMID:29462957

  1. Biological neural networks as model systems for designing future parallel processing computers

    NASA Technical Reports Server (NTRS)

    Ross, Muriel D.

    1991-01-01

    One of the more interesting debates of the present day centers on whether human intelligence can be simulated by computer. The author works under the premise that neurons individually are not smart at all. Rather, they are physical units which are impinged upon continuously by other matter that influences the direction of voltage shifts across the units membranes. It is only the action of a great many neurons, billions in the case of the human nervous system, that intelligent behavior emerges. What is required to understand even the simplest neural system is painstaking analysis, bit by bit, of the architecture and the physiological functioning of its various parts. The biological neural network studied, the vestibular utricular and saccular maculas of the inner ear, are among the most simple of the mammalian neural networks to understand and model. While there is still a long way to go to understand even this most simple neural network in sufficient detail for extrapolation to computers and robots, a start was made. Moreover, the insights obtained and the technologies developed help advance the understanding of the more complex neural networks that underlie human intelligence.

  2. NASA/ARC proposed training in intelligent control

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.

    1990-01-01

    Viewgraphs on NASA Ames Research Center proposed training in intelligent control was presented. Topics covered include: fuzzy logic control; neural networks in control; artificial intelligence in control; hybrid approaches; hands on experience; and fuzzy controllers.

  3. Developing an Intelligent System for Diagnosis of Asthma Based on Artificial Neural Network.

    PubMed

    Alizadeh, Behrouz; Safdari, Reza; Zolnoori, Maryam; Bashiri, Azadeh

    2015-08-01

    Lack of proper diagnosis and inadequate treatment of asthma, leads to physical and financial complications. This study aimed to use data mining techniques and creating a neural network intelligent system for diagnosis of asthma. The study population is the patients who had visited one of the Lung Clinics in Tehran. Data were analyzed using the SPSS statistical tool and the chi-square Pearson's coefficient was the basis of decision making for data ranking. The considered neural network is trained using back propagation learning technique. According to the analysis performed by means of SPSS to select the top factors, 13 effective factors were selected, in different performances, data was mixed in various forms, so the different modes was made for training the data and testing networks and in all different modes, the network was able to predict correctly 100% of all cases. Using data mining methods before the design structure of system, aimed to reduce the data dimension and the optimum choice of the data, will lead to a more accurate system. So considering the data mining approaches due to the nature of medical data is necessary.

  4. Artificial Intelligence in Astronomy

    NASA Astrophysics Data System (ADS)

    Devinney, E. J.; Prša, A.; Guinan, E. F.; Degeorge, M.

    2010-12-01

    From the perspective (and bias) as Eclipsing Binary researchers, we give a brief overview of the development of Artificial Intelligence (AI) applications, describe major application areas of AI in astronomy, and illustrate the power of an AI approach in an application developed under the EBAI (Eclipsing Binaries via Artificial Intelligence) project, which employs Artificial Neural Network technology for estimating light curve solution parameters of eclipsing binary systems.

  5. Neural Networks for Modeling and Control of Particle Accelerators

    NASA Astrophysics Data System (ADS)

    Edelen, A. L.; Biedron, S. G.; Chase, B. E.; Edstrom, D.; Milton, S. V.; Stabile, P.

    2016-04-01

    Particle accelerators are host to myriad nonlinear and complex physical phenomena. They often involve a multitude of interacting systems, are subject to tight performance demands, and should be able to run for extended periods of time with minimal interruptions. Often times, traditional control techniques cannot fully meet these requirements. One promising avenue is to introduce machine learning and sophisticated control techniques inspired by artificial intelligence, particularly in light of recent theoretical and practical advances in these fields. Within machine learning and artificial intelligence, neural networks are particularly well-suited to modeling, control, and diagnostic analysis of complex, nonlinear, and time-varying systems, as well as systems with large parameter spaces. Consequently, the use of neural network-based modeling and control techniques could be of significant benefit to particle accelerators. For the same reasons, particle accelerators are also ideal test-beds for these techniques. Many early attempts to apply neural networks to particle accelerators yielded mixed results due to the relative immaturity of the technology for such tasks. The purpose of this paper is to re-introduce neural networks to the particle accelerator community and report on some work in neural network control that is being conducted as part of a dedicated collaboration between Fermilab and Colorado State University (CSU). We describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.

  6. Networked sensors for the combat forces

    NASA Astrophysics Data System (ADS)

    Klager, Gene

    2004-11-01

    Real-time and detailed information is critical to the success of ground combat forces. Current manned reconnaissance, surveillance, and target acquisition (RSTA) capabilities are not sufficient to cover battlefield intelligence gaps, provide Beyond-Line-of-Sight (BLOS) targeting, and the ambush avoidance information necessary for combat forces operating in hostile situations, complex terrain, and conducting military operations in urban terrain. This paper describes a current US Army program developing advanced networked unmanned/unattended sensor systems to survey these gaps and provide the Commander with real-time, pertinent information. Networked Sensors for the Combat Forces plans to develop and demonstrate a new generation of low cost distributed unmanned sensor systems organic to the RSTA Element. Networked unmanned sensors will provide remote monitoring of gaps, will increase a unit"s area of coverage, and will provide the commander organic assets to complete his Battlefield Situational Awareness (BSA) picture for direct and indirect fire weapons, early warning, and threat avoidance. Current efforts include developing sensor packages for unmanned ground vehicles, small unmanned aerial vehicles, and unattended ground sensors using advanced sensor technologies. These sensors will be integrated with robust networked communications and Battle Command tools for mission planning, intelligence "reachback", and sensor data management. The network architecture design is based on a model that identifies a three-part modular design: 1) standardized sensor message protocols, 2) Sensor Data Management, and 3) Service Oriented Architecture. This simple model provides maximum flexibility for data exchange, information management and distribution. Products include: Sensor suites optimized for unmanned platforms, stationary and mobile versions of the Sensor Data Management Center, Battle Command planning tools, networked communications, and sensor management software. Details

  7. Neuroscience-Inspired Artificial Intelligence.

    PubMed

    Hassabis, Demis; Kumaran, Dharshan; Summerfield, Christopher; Botvinick, Matthew

    2017-07-19

    The fields of neuroscience and artificial intelligence (AI) have a long and intertwined history. In more recent times, however, communication and collaboration between the two fields has become less commonplace. In this article, we argue that better understanding biological brains could play a vital role in building intelligent machines. We survey historical interactions between the AI and neuroscience fields and emphasize current advances in AI that have been inspired by the study of neural computation in humans and other animals. We conclude by highlighting shared themes that may be key for advancing future research in both fields. Copyright © 2017. Published by Elsevier Inc.

  8. Ethernet-based smart networked elements (sensors and actuators)

    NASA Astrophysics Data System (ADS)

    Mata, Carlos T.; Perotti, José M.; Oostdyk, Rebecca L.; Lucena, Angel

    2006-05-01

    This paper outlines the present design approach for the Ethernet-Based Smart Networked Elements (SNE) being developed by NASA's Instrumentation Branch and the Advanced Electronics and Technology Development Laboratory of ASRC Aerospace Corporation at Kennedy Space Center (KSC). The SNEs are being developed as part of the Integrated Intelligent Health Management System (IIHMS), jointly developed by Stennis Space Center (SSC), KSC, and Marshall Space Flight Center (MSFC). SNEs are sensors/actuators with embedded intelligence, capable of networking among themselves and with higher-level systems (external processors and controllers) to provide not only instrumentation data but also associated data validity qualifiers. NASA KSC has successfully developed and preliminarily demonstrated this new generation of SNEs. SNEs that collect pressure, strain, and temperature measurements (including cryogenic temperature ranges) have been developed and tested in the laboratory and are ready for demonstration in the field.

  9. An intelligent approach to welding robot selection

    NASA Astrophysics Data System (ADS)

    Milano, J.; Mauk, S. D.; Flitter, L.; Morris, R.

    1993-10-01

    In a shipyard where multiple stationary and mobile workcells are employed in the fabrication of components of complex sub-assemblies,efficient operation requires an intelligent method of scheduling jobs and selecting workcells based on optimum throughput and cost. The achievement of this global solution requires the successful organization of resource availability,process requirements,and process constraints. The Off-line Planner (OLP) of the Programmable Automated Weld Systemd (PAWS) is capable of advanced modeling of weld processes and environments as well as the generation of complete weld procedures. These capabilities involve the integration of advanced Computer Aided Design (CAD), path planning, and obstacle detection and avoidance techniques as well as the synthesis of complex design and process information. These existing capabilities provide the basis of the functionality required for the successful implementation of an intelligent weld robot selector and material flow planner. Current efforts are focused on robot selection via the dynamic routing of components to the appropriate work cells. It is proposed that this problem is a variant of the “Traveling Salesman Problem” (TSP) that has been proven to belong to a larger set of optimization problems termed nondeterministic polynomial complete (NP complete). In this paper, a heuristic approach utilizing recurrent neural networks is explored as a rapid means of producing a near optimal, if not optimal, bdweld robot selection.

  10. Hopfield neural network and optical fiber sensor as intelligent heart rate monitor

    NASA Astrophysics Data System (ADS)

    Mutter, Kussay Nugamesh

    2018-01-01

    This paper presents a design and fabrication of an intelligent fiber-optic sensor used for examining and monitoring heart rate activity. It is found in the literature that the use of fiber sensors as heart rate sensor is widely studied. However, the use of smart sensors based on Hopfield neural networks is very low. In this work, the sensor is a three fibers without cladding of about 1 cm, fed by laser light of 1550 nm of wavelength. The sensing portions are mounted with a micro sensitive diaphragm to transfer the pulse pressure on the left radial wrist. The influenced light intensity will be detected by a three photodetectors as inputs into the Hopfield neural network algorithm. The latter is a singlelayer auto-associative memory structure with a same input and output layers. The prior training weights are stored in the net memory for the standard recorded normal heart rate signals. The sensors' heads work on the reflection intensity basis. The novelty here is that the sensor uses a pulse pressure and Hopfield neural network in an integrity approach. The results showed a significant output measurements of heart rate and counting with a plausible error rate.

  11. Designing Distributed Learning Environments with Intelligent Software Agents

    ERIC Educational Resources Information Center

    Lin, Fuhua, Ed.

    2005-01-01

    "Designing Distributed Learning Environments with Intelligent Software Agents" reports on the most recent advances in agent technologies for distributed learning. Chapters are devoted to the various aspects of intelligent software agents in distributed learning, including the methodological and technical issues on where and how intelligent agents…

  12. The Application of Integrated Knowledge-based Systems for the Biomedical Risk Assessment Intelligent Network (BRAIN)

    NASA Technical Reports Server (NTRS)

    Loftin, Karin C.; Ly, Bebe; Webster, Laurie; Verlander, James; Taylor, Gerald R.; Riley, Gary; Culbert, Chris; Holden, Tina; Rudisill, Marianne

    1993-01-01

    One of NASA's goals for long duration space flight is to maintain acceptable levels of crew health, safety, and performance. One way of meeting this goal is through the Biomedical Risk Assessment Intelligent Network (BRAIN), an integrated network of both human and computer elements. The BRAIN will function as an advisor to flight surgeons by assessing the risk of in-flight biomedical problems and recommending appropriate countermeasures. This paper describes the joint effort among various NASA elements to develop BRAIN and an Infectious Disease Risk Assessment (IDRA) prototype. The implementation of this effort addresses the technological aspects of the following: (1) knowledge acquisition; (2) integration of IDRA components; (3) use of expert systems to automate the biomedical prediction process; (4) development of a user-friendly interface; and (5) integration of the IDRA prototype and Exercise Countermeasures Intelligent System (ExerCISys). Because the C Language, CLIPS (the C Language Integrated Production System), and the X-Window System were portable and easily integrated, they were chosen as the tools for the initial IDRA prototype. The feasibility was tested by developing an IDRA prototype that predicts the individual risk of influenza. The application of knowledge-based systems to risk assessment is of great market value to the medical technology industry.

  13. Synthetic biology routes to bio-artificial intelligence.

    PubMed

    Nesbeth, Darren N; Zaikin, Alexey; Saka, Yasushi; Romano, M Carmen; Giuraniuc, Claudiu V; Kanakov, Oleg; Laptyeva, Tetyana

    2016-11-30

    The design of synthetic gene networks (SGNs) has advanced to the extent that novel genetic circuits are now being tested for their ability to recapitulate archetypal learning behaviours first defined in the fields of machine and animal learning. Here, we discuss the biological implementation of a perceptron algorithm for linear classification of input data. An expansion of this biological design that encompasses cellular 'teachers' and 'students' is also examined. We also discuss implementation of Pavlovian associative learning using SGNs and present an example of such a scheme and in silico simulation of its performance. In addition to designed SGNs, we also consider the option to establish conditions in which a population of SGNs can evolve diversity in order to better contend with complex input data. Finally, we compare recent ethical concerns in the field of artificial intelligence (AI) and the future challenges raised by bio-artificial intelligence (BI). © 2016 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY).

  14. National Geospatial-Intelligence Agency Academic Research Program

    NASA Astrophysics Data System (ADS)

    Loomer, S. A.

    2004-12-01

    "Know the Earth.Show the Way." In fulfillment of its vision, the National Geospatial-Intelligence Agency (NGA) provides geospatial intelligence in all its forms and from whatever source-imagery, imagery intelligence, and geospatial data and information-to ensure the knowledge foundation for planning, decision, and action. To achieve this, NGA conducts a multi-disciplinary program of basic research in geospatial intelligence topics through grants and fellowships to the leading investigators, research universities, and colleges of the nation. This research provides the fundamental science support to NGA's applied and advanced research programs. The major components of the NGA Academic Research Program (NARP) are: - NGA University Research Initiatives (NURI): Three-year basic research grants awarded competitively to the best investigators across the US academic community. Topics are selected to provide the scientific basis for advanced and applied research in NGA core disciplines. - Historically Black College and University - Minority Institution Research Initiatives (HBCU-MI): Two-year basic research grants awarded competitively to the best investigators at Historically Black Colleges and Universities, and Minority Institutions across the US academic community. - Director of Central Intelligence Post-Doctoral Research Fellowships: Fellowships providing access to advanced research in science and technology applicable to the intelligence community's mission. The program provides a pool of researchers to support future intelligence community needs and develops long-term relationships with researchers as they move into career positions. This paper provides information about the NGA Academic Research Program, the projects it supports and how other researchers and institutions can apply for grants under the program.

  15. Application of artificial intelligence to the management of urological cancer.

    PubMed

    Abbod, Maysam F; Catto, James W F; Linkens, Derek A; Hamdy, Freddie C

    2007-10-01

    Artificial intelligence techniques, such as artificial neural networks, Bayesian belief networks and neuro-fuzzy modeling systems, are complex mathematical models based on the human neuronal structure and thinking. Such tools are capable of generating data driven models of biological systems without making assumptions based on statistical distributions. A large amount of study has been reported of the use of artificial intelligence in urology. We reviewed the basic concepts behind artificial intelligence techniques and explored the applications of this new dynamic technology in various aspects of urological cancer management. A detailed and systematic review of the literature was performed using the MEDLINE and Inspec databases to discover reports using artificial intelligence in urological cancer. The characteristics of machine learning and their implementation were described and reports of artificial intelligence use in urological cancer were reviewed. While most researchers in this field were found to focus on artificial neural networks to improve the diagnosis, staging and prognostic prediction of urological cancers, some groups are exploring other techniques, such as expert systems and neuro-fuzzy modeling systems. Compared to traditional regression statistics artificial intelligence methods appear to be accurate and more explorative for analyzing large data cohorts. Furthermore, they allow individualized prediction of disease behavior. Each artificial intelligence method has characteristics that make it suitable for different tasks. The lack of transparency of artificial neural networks hinders global scientific community acceptance of this method but this can be overcome by neuro-fuzzy modeling systems.

  16. A Novel Robot System Integrating Biological and Mechanical Intelligence Based on Dissociated Neural Network-Controlled Closed-Loop Environment.

    PubMed

    Li, Yongcheng; Sun, Rong; Wang, Yuechao; Li, Hongyi; Zheng, Xiongfei

    2016-01-01

    We propose the architecture of a novel robot system merging biological and artificial intelligence based on a neural controller connected to an external agent. We initially built a framework that connected the dissociated neural network to a mobile robot system to implement a realistic vehicle. The mobile robot system characterized by a camera and two-wheeled robot was designed to execute the target-searching task. We modified a software architecture and developed a home-made stimulation generator to build a bi-directional connection between the biological and the artificial components via simple binomial coding/decoding schemes. In this paper, we utilized a specific hierarchical dissociated neural network for the first time as the neural controller. Based on our work, neural cultures were successfully employed to control an artificial agent resulting in high performance. Surprisingly, under the tetanus stimulus training, the robot performed better and better with the increasement of training cycle because of the short-term plasticity of neural network (a kind of reinforced learning). Comparing to the work previously reported, we adopted an effective experimental proposal (i.e. increasing the training cycle) to make sure of the occurrence of the short-term plasticity, and preliminarily demonstrated that the improvement of the robot's performance could be caused independently by the plasticity development of dissociated neural network. This new framework may provide some possible solutions for the learning abilities of intelligent robots by the engineering application of the plasticity processing of neural networks, also for the development of theoretical inspiration for the next generation neuro-prostheses on the basis of the bi-directional exchange of information within the hierarchical neural networks.

  17. A Novel Robot System Integrating Biological and Mechanical Intelligence Based on Dissociated Neural Network-Controlled Closed-Loop Environment

    PubMed Central

    Wang, Yuechao; Li, Hongyi; Zheng, Xiongfei

    2016-01-01

    We propose the architecture of a novel robot system merging biological and artificial intelligence based on a neural controller connected to an external agent. We initially built a framework that connected the dissociated neural network to a mobile robot system to implement a realistic vehicle. The mobile robot system characterized by a camera and two-wheeled robot was designed to execute the target-searching task. We modified a software architecture and developed a home-made stimulation generator to build a bi-directional connection between the biological and the artificial components via simple binomial coding/decoding schemes. In this paper, we utilized a specific hierarchical dissociated neural network for the first time as the neural controller. Based on our work, neural cultures were successfully employed to control an artificial agent resulting in high performance. Surprisingly, under the tetanus stimulus training, the robot performed better and better with the increasement of training cycle because of the short-term plasticity of neural network (a kind of reinforced learning). Comparing to the work previously reported, we adopted an effective experimental proposal (i.e. increasing the training cycle) to make sure of the occurrence of the short-term plasticity, and preliminarily demonstrated that the improvement of the robot’s performance could be caused independently by the plasticity development of dissociated neural network. This new framework may provide some possible solutions for the learning abilities of intelligent robots by the engineering application of the plasticity processing of neural networks, also for the development of theoretical inspiration for the next generation neuro-prostheses on the basis of the bi-directional exchange of information within the hierarchical neural networks. PMID:27806074

  18. Advanced information processing system: Input/output network management software

    NASA Technical Reports Server (NTRS)

    Nagle, Gail; Alger, Linda; Kemp, Alexander

    1988-01-01

    The purpose of this document is to provide the software requirements and specifications for the Input/Output Network Management Services for the Advanced Information Processing System. This introduction and overview section is provided to briefly outline the overall architecture and software requirements of the AIPS system before discussing the details of the design requirements and specifications of the AIPS I/O Network Management software. A brief overview of the AIPS architecture followed by a more detailed description of the network architecture.

  19. Saving lives through advanced vehicle safety technology : intelligent vehicle initiative

    DOT National Transportation Integrated Search

    2005-09-01

    This final report provides an overview of the intelligent vehicle initiative's (IVI) progress and accomplishments. Authorized in the 1998 Transportation Equity Act for the 21st Century (TEA-21) as part of the U.S. DOT's Intelligent Transportation Sys...

  20. Unattended network operations technology assessment study. Technical support for defining advanced satellite systems concepts

    NASA Technical Reports Server (NTRS)

    Price, Kent M.; Holdridge, Mark; Odubiyi, Jide; Jaworski, Allan; Morgan, Herbert K.

    1991-01-01

    The results are summarized of an unattended network operations technology assessment study for the Space Exploration Initiative (SEI). The scope of the work included: (1) identified possible enhancements due to the proposed Mars communications network; (2) identified network operations on Mars; (3) performed a technology assessment of possible supporting technologies based on current and future approaches to network operations; and (4) developed a plan for the testing and development of these technologies. The most important results obtained are as follows: (1) addition of a third Mars Relay Satellite (MRS) and MRS cross link capabilities will enhance the network's fault tolerance capabilities through improved connectivity; (2) network functions can be divided into the six basic ISO network functional groups; (3) distributed artificial intelligence technologies will augment more traditional network management technologies to form the technological infrastructure of a virtually unattended network; and (4) a great effort is required to bring the current network technology levels for manned space communications up to the level needed for an automated fault tolerance Mars communications network.

  1. Global connectivity of prefrontal cortex predicts cognitive control and intelligence

    PubMed Central

    Cole, Michael W.; Yarkoni, Tal; Repovs, Grega; Anticevic, Alan; Braver, Todd S.

    2012-01-01

    Control of thought and behavior is fundamental to human intelligence. Evidence suggests a fronto-parietal brain network implements such cognitive control across diverse contexts. We identify a mechanism – global connectivity – by which components of this network might coordinate control of other networks. A lateral prefrontal cortex (LPFC) region’s activity was found to predict performance in a high control demand working memory task, and also to exhibit high global connectivity. Critically, global connectivity in this LPFC region, involving connections both within and outside the fronto-parietal network, showed a highly selective relationship with individual differences in fluid intelligence. These findings suggest LPFC is a global hub with a brain-wide influence that facilitates the ability to implement control processes central to human intelligence. PMID:22745498

  2. An intelligent robotic aid system for human services

    NASA Technical Reports Server (NTRS)

    Kawamura, K.; Bagchi, S.; Iskarous, M.; Pack, R. T.; Saad, A.

    1994-01-01

    The long term goal of our research at the Intelligent Robotic Laboratory at Vanderbilt University is to develop advanced intelligent robotic aid systems for human services. As a first step toward our goal, the current thrusts of our R&D are centered on the development of an intelligent robotic aid called the ISAC (Intelligent Soft Arm Control). In this paper, we describe the overall system architecture and current activities in intelligent control, adaptive/interactive control and task learning.

  3. Student Modeling in an Intelligent Tutoring System

    DTIC Science & Technology

    1996-12-17

    Multi-Agent Architecture." Advances in Artificial Intelligence : Proceedings of the 12 th Brazilian Symposium on Aritificial Intelligence , edited by...STUDENT MODELING IN AN INTELLIGENT TUTORING SYSTEM THESIS Jeremy E. Thompson Captain, USAF AFIT/GCS/ENG/96D-27 DIMTVMON* fCKAJWINT A Appr"v*d t=i...Air Force Base, Ohio AFIT/GCS/ENG/96D-27 STUDENT MODELING IN AN INTELLIGENT TUTORING SYSTEM THESIS Jeremy E. Thompson Captain, USAF AFIT/GCS/ENG/96D

  4. Knowledge-Based Aircraft Automation: Managers Guide on the use of Artificial Intelligence for Aircraft Automation and Verification and Validation Approach for a Neural-Based Flight Controller

    NASA Technical Reports Server (NTRS)

    Broderick, Ron

    1997-01-01

    The ultimate goal of this report was to integrate the powerful tools of artificial intelligence into the traditional process of software development. To maintain the US aerospace competitive advantage, traditional aerospace and software engineers need to more easily incorporate the technology of artificial intelligence into the advanced aerospace systems being designed today. The future goal was to transition artificial intelligence from an emerging technology to a standard technology that is considered early in the life cycle process to develop state-of-the-art aircraft automation systems. This report addressed the future goal in two ways. First, it provided a matrix that identified typical aircraft automation applications conducive to various artificial intelligence methods. The purpose of this matrix was to provide top-level guidance to managers contemplating the possible use of artificial intelligence in the development of aircraft automation. Second, the report provided a methodology to formally evaluate neural networks as part of the traditional process of software development. The matrix was developed by organizing the discipline of artificial intelligence into the following six methods: logical, object representation-based, distributed, uncertainty management, temporal and neurocomputing. Next, a study of existing aircraft automation applications that have been conducive to artificial intelligence implementation resulted in the following five categories: pilot-vehicle interface, system status and diagnosis, situation assessment, automatic flight planning, and aircraft flight control. The resulting matrix provided management guidance to understand artificial intelligence as it applied to aircraft automation. The approach taken to develop a methodology to formally evaluate neural networks as part of the software engineering life cycle was to start with the existing software quality assurance standards and to change these standards to include neural network

  5. PIYAS-proceeding to intelligent service oriented memory allocation for flash based data centric sensor devices in wireless sensor networks.

    PubMed

    Rizvi, Sanam Shahla; Chung, Tae-Sun

    2010-01-01

    Flash memory has become a more widespread storage medium for modern wireless devices because of its effective characteristics like non-volatility, small size, light weight, fast access speed, shock resistance, high reliability and low power consumption. Sensor nodes are highly resource constrained in terms of limited processing speed, runtime memory, persistent storage, communication bandwidth and finite energy. Therefore, for wireless sensor networks supporting sense, store, merge and send schemes, an efficient and reliable file system is highly required with consideration of sensor node constraints. In this paper, we propose a novel log structured external NAND flash memory based file system, called Proceeding to Intelligent service oriented memorY Allocation for flash based data centric Sensor devices in wireless sensor networks (PIYAS). This is the extended version of our previously proposed PIYA [1]. The main goals of the PIYAS scheme are to achieve instant mounting and reduced SRAM space by keeping memory mapping information to a very low size of and to provide high query response throughput by allocation of memory to the sensor data by network business rules. The scheme intelligently samples and stores the raw data and provides high in-network data availability by keeping the aggregate data for a longer period of time than any other scheme has done before. We propose effective garbage collection and wear-leveling schemes as well. The experimental results show that PIYAS is an optimized memory management scheme allowing high performance for wireless sensor networks.

  6. Attention and Working Memory as Predictors of Intelligence

    ERIC Educational Resources Information Center

    Schweizer, Karl; Moosbrugger, Helfried

    2004-01-01

    The paper reports on an investigation of attention and working memory as sources of intelligence. The investigation was concentrated on the relatedness of attention and working memory as predictors of intelligence and on the structure underlying the prediction. In a sample of 120 participants, intelligence was assessed by the Advanced Progressive…

  7. Creative-Dynamics Approach To Neural Intelligence

    NASA Technical Reports Server (NTRS)

    Zak, Michail A.

    1992-01-01

    Paper discusses approach to mathematical modeling of artificial neural networks exhibiting complicated behaviors reminiscent of creativity and intelligence of biological neural networks. Neural network treated as non-Lipschitzian dynamical system - as described in "Non-Lipschitzian Dynamics For Modeling Neural Networks" (NPO-17814). System serves as tool for modeling of temporal-pattern memories and recognition of complicated spatial patterns.

  8. Advanced optical components for next-generation photonic networks

    NASA Astrophysics Data System (ADS)

    Yoo, S. J. B.

    2003-08-01

    Future networks will require very high throughput, carrying dominantly data-centric traffic. The role of Photonic Networks employing all-optical systems will become increasingly important in providing scalable bandwidth, agile reconfigurability, and low-power consumptions in the future. In particular, the self-similar nature of data traffic indicates that packet switching and burst switching will be beneficial in the Next Generation Photonic Networks. While the natural conclusion is to pursue Photonic Packet Switching and Photonic Burst Switching systems, there are significant challenges in realizing such a system due to practical limitations in optical component technologies. Lack of a viable all-optical memory technology will continue to drive us towards exploring rapid reconfigurability in the wavelength domain. We will introduce and discuss the advanced optical component technologies behind the Photonic Packet Routing system designed and demonstrated at UC Davis. The system is capable of packet switching and burst switching, as well as circuit switching with 600 psec switching speed and scalability to 42 petabit/sec aggregated switching capacity. By utilizing a combination of rapidly tunable wavelength conversion and a uniform-loss cyclic frequency (ULCF) arrayed waveguide grating router (AWGR), the system is capable of rapidly switching the packets in wavelength, time, and space domains. The label swapping module inside the Photonic Packet Routing system containing a Mach-Zehnder wavelength converter and a narrow-band fiber Bragg-grating achieves all-optical label swapping with optical 2R (potentially 3R) regeneration while maintaining optical transparency for the data payload. By utilizing the advanced optical component technologies, the Photonic Packet Routing system successfully demonstrated error-free, cascaded, multi-hop photonic packet switching and routing with optical-label swapping. This paper will review the advanced optical component technologies

  9. Intelligent Systems For Aerospace Engineering: An Overview

    NASA Technical Reports Server (NTRS)

    KrishnaKumar, K.

    2003-01-01

    Intelligent systems are nature-inspired, mathematically sound, computationally intensive problem solving tools and methodologies that have become extremely important for advancing the current trends in information technology. Artificially intelligent systems currently utilize computers to emulate various faculties of human intelligence and biological metaphors. They use a combination of symbolic and sub-symbolic systems capable of evolving human cognitive skills and intelligence, not just systems capable of doing things humans do not do well. Intelligent systems are ideally suited for tasks such as search and optimization, pattern recognition and matching, planning, uncertainty management, control, and adaptation. In this paper, the intelligent system technologies and their application potential are highlighted via several examples.

  10. Intelligent Systems for Aerospace Engineering: An Overview

    NASA Technical Reports Server (NTRS)

    Krishnakumar, Kalmanje

    2002-01-01

    Intelligent systems are nature-inspired, mathematically sound, computationally intensive problem solving tools and methodologies that have become extremely important for advancing the current trends in information technology. Artificially intelligent systems currently utilize computers to emulate various faculties of human intelligence and biological metaphors. They use a combination of symbolic and sub-symbolic systems capable of evolving human cognitive skills and intelligence, not just systems capable of doing things humans do not do well. Intelligent systems are ideally suited for tasks such as search and optimization, pattern recognition and matching, planning, uncertainty management, control, and adaptation. In this paper, the intelligent system technologies and their application potential are highlighted via several examples.

  11. An intelligent load shedding scheme using neural networks and neuro-fuzzy.

    PubMed

    Haidar, Ahmed M A; Mohamed, Azah; Al-Dabbagh, Majid; Hussain, Aini; Masoum, Mohammad

    2009-12-01

    Load shedding is some of the essential requirement for maintaining security of modern power systems, particularly in competitive energy markets. This paper proposes an intelligent scheme for fast and accurate load shedding using neural networks for predicting the possible loss of load at the early stage and neuro-fuzzy for determining the amount of load shed in order to avoid a cascading outage. A large scale electrical power system has been considered to validate the performance of the proposed technique in determining the amount of load shed. The proposed techniques can provide tools for improving the reliability and continuity of power supply. This was confirmed by the results obtained in this research of which sample results are given in this paper.

  12. THRESHOLD LOGIC IN ARTIFICIAL INTELLIGENCE

    DTIC Science & Technology

    COMPUTER LOGIC, ARTIFICIAL INTELLIGENCE , BIONICS, GEOMETRY, INPUT OUTPUT DEVICES, LINEAR PROGRAMMING, MATHEMATICAL LOGIC, MATHEMATICAL PREDICTION, NETWORKS, PATTERN RECOGNITION, PROBABILITY, SWITCHING CIRCUITS, SYNTHESIS

  13. Analysis And Augmentation Of Timing Advance Based Geolocation In Lte Cellular Networks

    DTIC Science & Technology

    2016-12-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA DISSERTATION ANALYSIS AND AUGMENTATION OF TIMING ADVANCE-BASED GEOLOCATION IN LTE CELLULAR NETWORKS by...estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources, gathering and maintaining the...AND SUBTITLE ANALYSIS AND AUGMENTATION OF TIMING ADVANCE-BASED GEOLOCA- TION IN LTE CELLULAR NETWORKS 5. FUNDING NUMBERS 6. AUTHOR(S) John D. Roth 7

  14. A performance analysis of advanced I/O architectures for PC-based network file servers

    NASA Astrophysics Data System (ADS)

    Huynh, K. D.; Khoshgoftaar, T. M.

    1994-12-01

    In the personal computing and workstation environments, more and more I/O adapters are becoming complete functional subsystems that are intelligent enough to handle I/O operations on their own without much intervention from the host processor. The IBM Subsystem Control Block (SCB) architecture has been defined to enhance the potential of these intelligent adapters by defining services and conventions that deliver command information and data to and from the adapters. In recent years, a new storage architecture, the Redundant Array of Independent Disks (RAID), has been quickly gaining acceptance in the world of computing. In this paper, we would like to discuss critical system design issues that are important to the performance of a network file server. We then present a performance analysis of the SCB architecture and disk array technology in typical network file server environments based on personal computers (PCs). One of the key issues investigated in this paper is whether a disk array can outperform a group of disks (of same type, same data capacity, and same cost) operating independently, not in parallel as in a disk array.

  15. Making the Net More Intelligent.

    ERIC Educational Resources Information Center

    Somers, Doug

    1998-01-01

    Discusses how service providers can address the challenge of costs and the need for attractive services valuable to business customers. Focuses on Internet service control; applying intelligent networking features to the internet working services dilemma; and providing access control over network-based applications for Internet virtual private…

  16. A Survey of Computational Intelligence Techniques in Protein Function Prediction

    PubMed Central

    Tiwari, Arvind Kumar; Srivastava, Rajeev

    2014-01-01

    During the past, there was a massive growth of knowledge of unknown proteins with the advancement of high throughput microarray technologies. Protein function prediction is the most challenging problem in bioinformatics. In the past, the homology based approaches were used to predict the protein function, but they failed when a new protein was different from the previous one. Therefore, to alleviate the problems associated with homology based traditional approaches, numerous computational intelligence techniques have been proposed in the recent past. This paper presents a state-of-the-art comprehensive review of various computational intelligence techniques for protein function predictions using sequence, structure, protein-protein interaction network, and gene expression data used in wide areas of applications such as prediction of DNA and RNA binding sites, subcellular localization, enzyme functions, signal peptides, catalytic residues, nuclear/G-protein coupled receptors, membrane proteins, and pathway analysis from gene expression datasets. This paper also summarizes the result obtained by many researchers to solve these problems by using computational intelligence techniques with appropriate datasets to improve the prediction performance. The summary shows that ensemble classifiers and integration of multiple heterogeneous data are useful for protein function prediction. PMID:25574395

  17. Advanced Scientific Computing Research Network Requirements: ASCR Network Requirements Review Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bacon, Charles; Bell, Greg; Canon, Shane

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy (DOE) Office of Science (SC), the single largest supporter of basic research in the physical sciences in the United States. In support of SC programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 25 years. In October 2012, ESnet and the Office of Advanced Scientific Computing Research (ASCR) of the DOE SCmore » organized a review to characterize the networking requirements of the programs funded by the ASCR program office. The requirements identified at the review are summarized in the Findings section, and are described in more detail in the body of the report.« less

  18. Neural Networks for Modeling and Control of Particle Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edelen, A. L.; Biedron, S. G.; Chase, B. E.

    Myriad nonlinear and complex physical phenomena are host to particle accelerators. They often involve a multitude of interacting systems, are subject to tight performance demands, and should be able to run for extended periods of time with minimal interruptions. Often times, traditional control techniques cannot fully meet these requirements. One promising avenue is to introduce machine learning and sophisticated control techniques inspired by artificial intelligence, particularly in light of recent theoretical and practical advances in these fields. Within machine learning and artificial intelligence, neural networks are particularly well-suited to modeling, control, and diagnostic analysis of complex, nonlinear, and time-varying systems,more » as well as systems with large parameter spaces. Consequently, the use of neural network-based modeling and control techniques could be of significant benefit to particle accelerators. For the same reasons, particle accelerators are also ideal test-beds for these techniques. Moreover, many early attempts to apply neural networks to particle accelerators yielded mixed results due to the relative immaturity of the technology for such tasks. For the purpose of this paper is to re-introduce neural networks to the particle accelerator community and report on some work in neural network control that is being conducted as part of a dedicated collaboration between Fermilab and Colorado State University (CSU). We also describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.« less

  19. Neural Networks for Modeling and Control of Particle Accelerators

    DOE PAGES

    Edelen, A. L.; Biedron, S. G.; Chase, B. E.; ...

    2016-04-01

    Myriad nonlinear and complex physical phenomena are host to particle accelerators. They often involve a multitude of interacting systems, are subject to tight performance demands, and should be able to run for extended periods of time with minimal interruptions. Often times, traditional control techniques cannot fully meet these requirements. One promising avenue is to introduce machine learning and sophisticated control techniques inspired by artificial intelligence, particularly in light of recent theoretical and practical advances in these fields. Within machine learning and artificial intelligence, neural networks are particularly well-suited to modeling, control, and diagnostic analysis of complex, nonlinear, and time-varying systems,more » as well as systems with large parameter spaces. Consequently, the use of neural network-based modeling and control techniques could be of significant benefit to particle accelerators. For the same reasons, particle accelerators are also ideal test-beds for these techniques. Moreover, many early attempts to apply neural networks to particle accelerators yielded mixed results due to the relative immaturity of the technology for such tasks. For the purpose of this paper is to re-introduce neural networks to the particle accelerator community and report on some work in neural network control that is being conducted as part of a dedicated collaboration between Fermilab and Colorado State University (CSU). We also describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.« less

  20. EARLINET: towards an advanced sustainable European aerosol lidar network

    NASA Astrophysics Data System (ADS)

    Pappalardo, G.; Amodeo, A.; Apituley, A.; Comeron, A.; Freudenthaler, V.; Linné, H.; Ansmann, A.; Bösenberg, J.; D'Amico, G.; Mattis, I.; Mona, L.; Wandinger, U.; Amiridis, V.; Alados-Arboledas, L.; Nicolae, D.; Wiegner, M.

    2014-08-01

    The European Aerosol Research Lidar Network, EARLINET, was founded in 2000 as a research project for establishing a quantitative, comprehensive, and statistically significant database for the horizontal, vertical, and temporal distribution of aerosols on a continental scale. Since then EARLINET has continued to provide the most extensive collection of ground-based data for the aerosol vertical distribution over Europe. This paper gives an overview of the network's main developments since 2000 and introduces the dedicated EARLINET special issue, which reports on the present innovative and comprehensive technical solutions and scientific results related to the use of advanced lidar remote sensing techniques for the study of aerosol properties as developed within the network in the last 13 years. Since 2000, EARLINET has developed greatly in terms of number of stations and spatial distribution: from 17 stations in 10 countries in 2000 to 27 stations in 16 countries in 2013. EARLINET has developed greatly also in terms of technological advances with the spread of advanced multiwavelength Raman lidar stations in Europe. The developments for the quality assurance strategy, the optimization of instruments and data processing, and the dissemination of data have contributed to a significant improvement of the network towards a more sustainable observing system, with an increase in the observing capability and a reduction of operational costs. Consequently, EARLINET data have already been extensively used for many climatological studies, long-range transport events, Saharan dust outbreaks, plumes from volcanic eruptions, and for model evaluation and satellite data validation and integration. Future plans are aimed at continuous measurements and near-real-time data delivery in close cooperation with other ground-based networks, such as in the ACTRIS (Aerosols, Clouds, and Trace gases Research InfraStructure Network) www.actris.net, and with the

  1. Use of artificial intelligence in analytical systems for the clinical laboratory

    PubMed Central

    Truchaud, Alain; Ozawa, Kyoichi; Pardue, Harry; Schnipelsky, Paul

    1995-01-01

    The incorporation of information-processing technology into analytical systems in the form of standard computing software has recently been advanced by the introduction of artificial intelligence (AI), both as expert systems and as neural networks. This paper considers the role of software in system operation, control and automation, and attempts to define intelligence. AI is characterized by its ability to deal with incomplete and imprecise information and to accumulate knowledge. Expert systems, building on standard computing techniques, depend heavily on the domain experts and knowledge engineers that have programmed them to represent the real world. Neural networks are intended to emulate the pattern-recognition and parallel processing capabilities of the human brain and are taught rather than programmed. The future may lie in a combination of the recognition ability of the neural network and the rationalization capability of the expert system. In the second part of the paper, examples are given of applications of AI in stand-alone systems for knowledge engineering and medical diagnosis and in embedded systems for failure detection, image analysis, user interfacing, natural language processing, robotics and machine learning, as related to clinical laboratories. It is concluded that AI constitutes a collective form of intellectual propery, and that there is a need for better documentation, evaluation and regulation of the systems already being used in clinical laboratories. PMID:18924784

  2. Intelligent Transportation Systems (ITS) plan for Canada : en route to intelligent mobility

    DOT National Transportation Integrated Search

    1999-11-01

    Intelligent Transportation Systems (ITS) include the application of advanced information processing, communications, sensor and control technologies and management strategies in an integrated manner to improve the functioning of the transportation sy...

  3. Use of a Deep Recurrent Neural Network to Reduce Wind Noise: Effects on Judged Speech Intelligibility and Sound Quality

    PubMed Central

    Keshavarzi, Mahmoud; Goehring, Tobias; Zakis, Justin; Turner, Richard E.; Moore, Brian C. J.

    2018-01-01

    Despite great advances in hearing-aid technology, users still experience problems with noise in windy environments. The potential benefits of using a deep recurrent neural network (RNN) for reducing wind noise were assessed. The RNN was trained using recordings of the output of the two microphones of a behind-the-ear hearing aid in response to male and female speech at various azimuths in the presence of noise produced by wind from various azimuths with a velocity of 3 m/s, using the “clean” speech as a reference. A paired-comparison procedure was used to compare all possible combinations of three conditions for subjective intelligibility and for sound quality or comfort. The conditions were unprocessed noisy speech, noisy speech processed using the RNN, and noisy speech that was high-pass filtered (which also reduced wind noise). Eighteen native English-speaking participants were tested, nine with normal hearing and nine with mild-to-moderate hearing impairment. Frequency-dependent linear amplification was provided for the latter. Processing using the RNN was significantly preferred over no processing by both subject groups for both subjective intelligibility and sound quality, although the magnitude of the preferences was small. High-pass filtering (HPF) was not significantly preferred over no processing. Although RNN was significantly preferred over HPF only for sound quality for the hearing-impaired participants, for the results as a whole, there was a preference for RNN over HPF. Overall, the results suggest that reduction of wind noise using an RNN is possible and might have beneficial effects when used in hearing aids. PMID:29708061

  4. Use of a Deep Recurrent Neural Network to Reduce Wind Noise: Effects on Judged Speech Intelligibility and Sound Quality.

    PubMed

    Keshavarzi, Mahmoud; Goehring, Tobias; Zakis, Justin; Turner, Richard E; Moore, Brian C J

    2018-01-01

    Despite great advances in hearing-aid technology, users still experience problems with noise in windy environments. The potential benefits of using a deep recurrent neural network (RNN) for reducing wind noise were assessed. The RNN was trained using recordings of the output of the two microphones of a behind-the-ear hearing aid in response to male and female speech at various azimuths in the presence of noise produced by wind from various azimuths with a velocity of 3 m/s, using the "clean" speech as a reference. A paired-comparison procedure was used to compare all possible combinations of three conditions for subjective intelligibility and for sound quality or comfort. The conditions were unprocessed noisy speech, noisy speech processed using the RNN, and noisy speech that was high-pass filtered (which also reduced wind noise). Eighteen native English-speaking participants were tested, nine with normal hearing and nine with mild-to-moderate hearing impairment. Frequency-dependent linear amplification was provided for the latter. Processing using the RNN was significantly preferred over no processing by both subject groups for both subjective intelligibility and sound quality, although the magnitude of the preferences was small. High-pass filtering (HPF) was not significantly preferred over no processing. Although RNN was significantly preferred over HPF only for sound quality for the hearing-impaired participants, for the results as a whole, there was a preference for RNN over HPF. Overall, the results suggest that reduction of wind noise using an RNN is possible and might have beneficial effects when used in hearing aids.

  5. Advanced functional network analysis in the geosciences: The pyunicorn package

    NASA Astrophysics Data System (ADS)

    Donges, Jonathan F.; Heitzig, Jobst; Runge, Jakob; Schultz, Hanna C. H.; Wiedermann, Marc; Zech, Alraune; Feldhoff, Jan; Rheinwalt, Aljoscha; Kutza, Hannes; Radebach, Alexander; Marwan, Norbert; Kurths, Jürgen

    2013-04-01

    Functional networks are a powerful tool for analyzing large geoscientific datasets such as global fields of climate time series originating from observations or model simulations. pyunicorn (pythonic unified complex network and recurrence analysis toolbox) is an open-source, fully object-oriented and easily parallelizable package written in the language Python. It allows for constructing functional networks (aka climate networks) representing the structure of statistical interrelationships in large datasets and, subsequently, investigating this structure using advanced methods of complex network theory such as measures for networks of interacting networks, node-weighted statistics or network surrogates. Additionally, pyunicorn allows to study the complex dynamics of geoscientific systems as recorded by time series by means of recurrence networks and visibility graphs. The range of possible applications of the package is outlined drawing on several examples from climatology.

  6. The benefit of combining a deep neural network architecture with ideal ratio mask estimation in computational speech segregation to improve speech intelligibility.

    PubMed

    Bentsen, Thomas; May, Tobias; Kressner, Abigail A; Dau, Torsten

    2018-01-01

    Computational speech segregation attempts to automatically separate speech from noise. This is challenging in conditions with interfering talkers and low signal-to-noise ratios. Recent approaches have adopted deep neural networks and successfully demonstrated speech intelligibility improvements. A selection of components may be responsible for the success with these state-of-the-art approaches: the system architecture, a time frame concatenation technique and the learning objective. The aim of this study was to explore the roles and the relative contributions of these components by measuring speech intelligibility in normal-hearing listeners. A substantial improvement of 25.4 percentage points in speech intelligibility scores was found going from a subband-based architecture, in which a Gaussian Mixture Model-based classifier predicts the distributions of speech and noise for each frequency channel, to a state-of-the-art deep neural network-based architecture. Another improvement of 13.9 percentage points was obtained by changing the learning objective from the ideal binary mask, in which individual time-frequency units are labeled as either speech- or noise-dominated, to the ideal ratio mask, where the units are assigned a continuous value between zero and one. Therefore, both components play significant roles and by combining them, speech intelligibility improvements were obtained in a six-talker condition at a low signal-to-noise ratio.

  7. Further Structural Intelligence for Sensors Cluster Technology in Manufacturing

    PubMed Central

    Mekid, Samir

    2006-01-01

    With the ever increasing complex sensing and actuating tasks in manufacturing plants, intelligent sensors cluster in hybrid networks becomes a rapidly expanding area. They play a dominant role in many fields from macro and micro scale. Global object control and the ability to self organize into fault-tolerant and scalable systems are expected for high level applications. In this paper, new structural concepts of intelligent sensors and networks with new intelligent agents are presented. Embedding new functionalities to dynamically manage cooperative agents for autonomous machines are interesting key enabling technologies most required in manufacturing for zero defects production.

  8. An "intelligent" approach based on side-by-side cascade-correlation neural networks for estimating thermophysical properties from photothermal responses

    NASA Astrophysics Data System (ADS)

    Grieu, Stéphane; Faugeroux, Olivier; Traoré, Adama; Claudet, Bernard; Bodnar, Jean-Luc

    2015-01-01

    In the present paper, an artificial-intelligence-based approach dealing with the estimation of thermophysical properties is designed and evaluated. This new and "intelligent" approach makes use of photothermal responses obtained when subjecting materials to a light flux. So, the main objective of the present work was to estimate simultaneously both the thermal diffusivity and conductivity of materials, from front-face or rear-face photothermal responses to pseudo random binary signals. To this end, we used side-by-side feedforward neural networks trained with the cascade-correlation algorithm. In addition, computation time was a key point to consider. That is why the developed algorithms are computationally tractable.

  9. Deep Neural Networks: A New Framework for Modeling Biological Vision and Brain Information Processing.

    PubMed

    Kriegeskorte, Nikolaus

    2015-11-24

    Recent advances in neural network modeling have enabled major strides in computer vision and other artificial intelligence applications. Human-level visual recognition abilities are coming within reach of artificial systems. Artificial neural networks are inspired by the brain, and their computations could be implemented in biological neurons. Convolutional feedforward networks, which now dominate computer vision, take further inspiration from the architecture of the primate visual hierarchy. However, the current models are designed with engineering goals, not to model brain computations. Nevertheless, initial studies comparing internal representations between these models and primate brains find surprisingly similar representational spaces. With human-level performance no longer out of reach, we are entering an exciting new era, in which we will be able to build biologically faithful feedforward and recurrent computational models of how biological brains perform high-level feats of intelligence, including vision.

  10. Leveraging Intelligent Vehicle Technologies to Maximize Fuel Economy (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonder, J.

    2011-11-01

    Advancements in vehicle electronics, along with communication and sensing technologies, have led to a growing number of intelligent vehicle applications. Example systems include those for advanced driver information, route planning and prediction, driver assistance, and crash avoidance. The National Renewable Energy Laboratory is exploring ways to leverage intelligent vehicle systems to achieve fuel savings. This presentation discusses several potential applications, such as providing intelligent feedback to drivers on specific ways to improve their driving efficiency, and using information about upcoming driving to optimize electrified vehicle control strategies for maximum energy efficiency and battery life. The talk also covers the potentialmore » of Advanced Driver Assistance Systems (ADAS) and related technologies to deliver significant fuel savings in addition to providing safety and convenience benefits.« less

  11. Acquaintance to Artificial Neural Networks and use of artificial intelligence as a diagnostic tool for tuberculosis: A review.

    PubMed

    Dande, Payal; Samant, Purva

    2018-01-01

    Tuberculosis [TB] has afflicted numerous nations in the world. As per a report by the World Health Organization [WHO], an estimated 1.4 million TB deaths in 2015 and an additional 0.4 million deaths resulting from TB disease among people living with HIV, were observed. Most of the TB deaths can be prevented if it is detected at an early stage. The existing processes of diagnosis like blood tests or sputum tests are not only tedious but also take a long time for analysis and cannot differentiate between different drug resistant stages of TB. The need to find newer prompt methods for disease detection has been aided by the latest Artificial Intelligence [AI] tools. Artificial Neural Network [ANN] is one of the important tools that is being used widely in diagnosis and evaluation of medical conditions. This review aims at providing brief introduction to various AI tools that are used in TB detection and gives a detailed description about the utilization of ANN as an efficient diagnostic technique. The paper also provides a critical assessment of ANN and the existing techniques for their diagnosis of TB. Researchers and Practitioners in the field are looking forward to use ANN and other upcoming AI tools such as Fuzzy-logic, genetic algorithms and artificial intelligence simulation as a promising current and future technology tools towards tackling the global menace of Tuberculosis. Latest advancements in the diagnostic field include the combined use of ANN with various other AI tools like the Fuzzy-logic, which has led to an increase in the efficacy and specificity of the diagnostic techniques. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Intelligent control of robotic arm/hand systems for the NASA EVA retriever using neural networks

    NASA Technical Reports Server (NTRS)

    Mclauchlan, Robert A.

    1989-01-01

    Adaptive/general learning algorithms using varying neural network models are considered for the intelligent control of robotic arm plus dextrous hand/manipulator systems. Results are summarized and discussed for the use of the Barto/Sutton/Anderson neuronlike, unsupervised learning controller as applied to the stabilization of an inverted pendulum on a cart system. Recommendations are made for the application of the controller and a kinematic analysis for trajectory planning to simple object retrieval (chase/approach and capture/grasp) scenarios in two dimensions.

  13. Communications and Intelligent Systems Division Overview

    NASA Technical Reports Server (NTRS)

    Emerson, Dawn

    2016-01-01

    This presentation provides an overview of the research and engineering in the competency fieldsof advanced communications and intelligent systems with emphasis on advanced technologies, architecture definitionand system development for application in current and future aeronautics and space systems.

  14. Computational Foundations of Natural Intelligence

    PubMed Central

    van Gerven, Marcel

    2017-01-01

    New developments in AI and neuroscience are revitalizing the quest to understanding natural intelligence, offering insight about how to equip machines with human-like capabilities. This paper reviews some of the computational principles relevant for understanding natural intelligence and, ultimately, achieving strong AI. After reviewing basic principles, a variety of computational modeling approaches is discussed. Subsequently, I concentrate on the use of artificial neural networks as a framework for modeling cognitive processes. This paper ends by outlining some of the challenges that remain to fulfill the promise of machines that show human-like intelligence. PMID:29375355

  15. Modeling of an intelligent pressure sensor using functional link artificial neural networks.

    PubMed

    Patra, J C; van den Bos, A

    2000-01-01

    A capacitor pressure sensor (CPS) is modeled for accurate readout of applied pressure using a novel artificial neural network (ANN). The proposed functional link ANN (FLANN) is a computationally efficient nonlinear network and is capable of complex nonlinear mapping between its input and output pattern space. The nonlinearity is introduced into the FLANN by passing the input pattern through a functional expansion unit. Three different polynomials such as, Chebyschev, Legendre and power series have been employed in the FLANN. The FLANN offers computational advantage over a multilayer perceptron (MLP) for similar performance in modeling of the CPS. The prime aim of the present paper is to develop an intelligent model of the CPS involving less computational complexity, so that its implementation can be economical and robust. It is shown that, over a wide temperature variation ranging from -50 to 150 degrees C, the maximum error of estimation of pressure remains within +/- 3%. With the help of computer simulation, the performance of the three types of FLANN models has been compared to that of an MLP based model.

  16. A cost-effective intelligent robotic system with dual-arm dexterous coordination and real-time vision

    NASA Technical Reports Server (NTRS)

    Marzwell, Neville I.; Chen, Alexander Y. K.

    1991-01-01

    Dexterous coordination of manipulators based on the use of redundant degrees of freedom, multiple sensors, and built-in robot intelligence represents a critical breakthrough in development of advanced manufacturing technology. A cost-effective approach for achieving this new generation of robotics has been made possible by the unprecedented growth of the latest microcomputer and network systems. The resulting flexible automation offers the opportunity to improve the product quality, increase the reliability of the manufacturing process, and augment the production procedures for optimizing the utilization of the robotic system. Moreover, the Advanced Robotic System (ARS) is modular in design and can be upgraded by closely following technological advancements as they occur in various fields. This approach to manufacturing automation enhances the financial justification and ensures the long-term profitability and most efficient implementation of robotic technology. The new system also addresses a broad spectrum of manufacturing demand and has the potential to address both complex jobs as well as highly labor-intensive tasks. The ARS prototype employs the decomposed optimization technique in spatial planning. This technique is implemented to the framework of the sensor-actuator network to establish the general-purpose geometric reasoning system. The development computer system is a multiple microcomputer network system, which provides the architecture for executing the modular network computing algorithms. The knowledge-based approach used in both the robot vision subsystem and the manipulation control subsystems results in the real-time image processing vision-based capability. The vision-based task environment analysis capability and the responsive motion capability are under the command of the local intelligence centers. An array of ultrasonic, proximity, and optoelectronic sensors is used for path planning. The ARS currently has 18 degrees of freedom made up by two

  17. Concept development and needs identification for intelligent network flow optimization (INFLO) : functional and performance requirements, and high-level data and communication needs.

    DOT National Transportation Integrated Search

    2012-11-01

    The purpose of this project is to develop for the Intelligent Network Flow Optimization (INFLO), which is one collection (or bundle) of high-priority transformative applications identified by the United States Department of Transportation (USDOT) Mob...

  18. Interim Service ISDN Satellite (ISIS) network model for advanced satellite designs and experiments

    NASA Technical Reports Server (NTRS)

    Pepin, Gerard R.; Hager, E. Paul

    1991-01-01

    The Interim Service Integrated Services Digital Network (ISDN) Satellite (ISIS) Network Model for Advanced Satellite Designs and Experiments describes a model suitable for discrete event simulations. A top-down model design uses the Advanced Communications Technology Satellite (ACTS) as its basis. The ISDN modeling abstractions are added to permit the determination and performance for the NASA Satellite Communications Research (SCAR) Program.

  19. iSANLA: intelligent sensor and actuator network for life science applications.

    PubMed

    Schloesser, Mario; Schnitzer, Andreas; Ying, Hong; Silex, Carmen; Schiek, Michael

    2008-01-01

    In the fields of neurological rehabilitation and neurophysiological research there is a strong need for miniaturized, multi channel, battery driven, wireless networking DAQ systems enabling real-time digital signal processing and feedback experiments. For the scientific investigation on the passive auditory based 3D-orientation of Barn Owls and the scientific research on vegetative locomotor coordination of Parkinson's disease patients during rehabilitation we developed our 'intelligent Sensor and Actuator Network for Life science Application' (iSANLA) system. Implemented on the ultra low power microcontroller MSP430 sample rates up to 96 kHz have been realised for single channel DAQ. The system includes lossless local data storage up to 4 GB. With its outer dimensions of 20mm per rim and less than 15 g of weight including the Lithium-Ion battery our modular designed sensor node is thoroughly capable of up to eight channel recordings with 8 kHz sample rate each and provides sufficient computational power for digital signal processing ready to start our first mobile experiments. For wireless mobility a compact communication protocol based on the IEEE 802.15.4 wireless standard with net data rates up to 141 kbit/s has been implemented. To merge the lossless acquired data of the distributed iNODEs a time synchronization protocol has been developed preserving causality. Hence the necessary time synchronous start of the data acquisition inside a network of multiple sensors with a precision better than the highest sample rate has been realized.

  20. The paradox of intelligence: Heritability and malleability coexist in hidden gene-environment interplay.

    PubMed

    Sauce, Bruno; Matzel, Louis D

    2018-01-01

    Intelligence can have an extremely high heritability, but also be malleable; a paradox that has been the source of continuous controversy. Here we attempt to clarify the issue, and advance a frequently overlooked solution to the paradox: Intelligence is a trait with unusual properties that create a large reservoir of hidden gene-environment (GE) networks, allowing for the contribution of high genetic and environmental influences on individual differences in IQ. GE interplay is difficult to specify with current methods, and is underestimated in standard metrics of heritability (thus inflating estimates of "genetic" effects). We describe empirical evidence for GE interplay in intelligence, with malleability existing on top of heritability. The evidence covers cognitive gains consequent to adoption/immigration, changes in IQ's heritability across life span and socioeconomic status, gains in IQ over time consequent to societal development (the Flynn effect), the slowdown of age-related cognitive decline, and the gains in intelligence from early education. The GE solution has novel implications for enduring problems, including our inability to identify intelligence-related genes (also known as IQ's "missing heritability"), and the loss of initial benefits from early intervention programs (such as "Head Start"). The GE solution can be a powerful guide to future research, and may also aid policies to overcome barriers to the development of intelligence, particularly in impoverished and underprivileged populations. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  1. Evolution of the intelligent telecommunications network

    NASA Astrophysics Data System (ADS)

    Mayo, J. S.

    1982-02-01

    The development of the U.S. telecommunications network is described and traced from the invention of the telephone by Bell in 1876 to the use of integrated circuits and the UNIX system for interactive computers. The dialing system was introduced in the 19th century, and amplifiers were invented to permit coast to coast communication by 1914. Hierarchical switching was installed in the 1930s, along with telephoto and teletype services. PCM was invented in the 1930s, but was limited to military applications until the transistorized computer was fabricated in 1958, which coincided with spaceflight and the Telstar satellite in 1962. Fiber optics systems with laser pulse transmission are now entering widespread application, following the 1976 introduction of superfast digital switches controlled by a computer and capable of handling 1/2 million calls per hour. Projected advances are in increased teleconferencing, electronic mail, and full computer terminal services.

  2. The Intelligent Technologies of Electronic Information System

    NASA Astrophysics Data System (ADS)

    Li, Xianyu

    2017-08-01

    Based upon the synopsis of system intelligence and information services, this paper puts forward the attributes and the logic structure of information service, sets forth intelligent technology framework of electronic information system, and presents a series of measures, such as optimizing business information flow, advancing data decision capability, improving information fusion precision, strengthening deep learning application and enhancing prognostic and health management, and demonstrates system operation effectiveness. This will benefit the enhancement of system intelligence.

  3. Ortho Image and DTM Generation with Intelligent Methods

    NASA Astrophysics Data System (ADS)

    Bagheri, H.; Sadeghian, S.

    2013-10-01

    Nowadays the artificial intelligent algorithms has considered in GIS and remote sensing. Genetic algorithm and artificial neural network are two intelligent methods that are used for optimizing of image processing programs such as edge extraction and etc. these algorithms are very useful for solving of complex program. In this paper, the ability and application of genetic algorithm and artificial neural network in geospatial production process like geometric modelling of satellite images for ortho photo generation and height interpolation in raster Digital Terrain Model production process is discussed. In first, the geometric potential of Ikonos-2 and Worldview-2 with rational functions, 2D & 3D polynomials were tested. Also comprehensive experiments have been carried out to evaluate the viability of the genetic algorithm for optimization of rational function, 2D & 3D polynomials. Considering the quality of Ground Control Points, the accuracy (RMSE) with genetic algorithm and 3D polynomials method for Ikonos-2 Geo image was 0.508 pixel sizes and the accuracy (RMSE) with GA algorithm and rational function method for Worldview-2 image was 0.930 pixel sizes. For more another optimization artificial intelligent methods, neural networks were used. With the use of perceptron network in Worldview-2 image, a result of 0.84 pixel sizes with 4 neurons in middle layer was gained. The final conclusion was that with artificial intelligent algorithms it is possible to optimize the existing models and have better results than usual ones. Finally the artificial intelligence methods, like genetic algorithms as well as neural networks, were examined on sample data for optimizing interpolation and for generating Digital Terrain Models. The results then were compared with existing conventional methods and it appeared that these methods have a high capacity in heights interpolation and that using these networks for interpolating and optimizing the weighting methods based on inverse

  4. Architecture and biological applications of artificial neural networks: a tuberculosis perspective.

    PubMed

    Darsey, Jerry A; Griffin, William O; Joginipelli, Sravanthi; Melapu, Venkata Kiran

    2015-01-01

    Advancement of science and technology has prompted researchers to develop new intelligent systems that can solve a variety of problems such as pattern recognition, prediction, and optimization. The ability of the human brain to learn in a fashion that tolerates noise and error has attracted many researchers and provided the starting point for the development of artificial neural networks: the intelligent systems. Intelligent systems can acclimatize to the environment or data and can maximize the chances of success or improve the efficiency of a search. Due to massive parallelism with large numbers of interconnected processers and their ability to learn from the data, neural networks can solve a variety of challenging computational problems. Neural networks have the ability to derive meaning from complicated and imprecise data; they are used in detecting patterns, and trends that are too complex for humans, or other computer systems. Solutions to the toughest problems will not be found through one narrow specialization; therefore we need to combine interdisciplinary approaches to discover the solutions to a variety of problems. Many researchers in different disciplines such as medicine, bioinformatics, molecular biology, and pharmacology have successfully applied artificial neural networks. This chapter helps the reader in understanding the basics of artificial neural networks, their applications, and methodology; it also outlines the network learning process and architecture. We present a brief outline of the application of neural networks to medical diagnosis, drug discovery, gene identification, and protein structure prediction. We conclude with a summary of the results from our study on tuberculosis data using neural networks, in diagnosing active tuberculosis, and predicting chronic vs. infiltrative forms of tuberculosis.

  5. A New Stochastic Technique for Painlevé Equation-I Using Neural Network Optimized with Swarm Intelligence

    PubMed Central

    Raja, Muhammad Asif Zahoor; Khan, Junaid Ali; Ahmad, Siraj-ul-Islam; Qureshi, Ijaz Mansoor

    2012-01-01

    A methodology for solution of Painlevé equation-I is presented using computational intelligence technique based on neural networks and particle swarm optimization hybridized with active set algorithm. The mathematical model of the equation is developed with the help of linear combination of feed-forward artificial neural networks that define the unsupervised error of the model. This error is minimized subject to the availability of appropriate weights of the networks. The learning of the weights is carried out using particle swarm optimization algorithm used as a tool for viable global search method, hybridized with active set algorithm for rapid local convergence. The accuracy, convergence rate, and computational complexity of the scheme are analyzed based on large number of independents runs and their comprehensive statistical analysis. The comparative studies of the results obtained are made with MATHEMATICA solutions, as well as, with variational iteration method and homotopy perturbation method. PMID:22919371

  6. Multi-Modal Intelligent Traffic Signal Systems (MMITSS) impacts assessment.

    DOT National Transportation Integrated Search

    2015-08-01

    The study evaluates the potential network-wide impacts of the Multi-Modal Intelligent Transportation Signal System (MMITSS) based on a field data analysis utilizing data collected from a MMITSS prototype and a simulation analysis. The Intelligent Tra...

  7. The implementation of intelligent home controller

    NASA Astrophysics Data System (ADS)

    Li, Biqing; Li, Zhao

    2018-04-01

    This paper mainly talks about the working way of smart home terminal controller and the design of hardware and software. Controlling the lights and by simulating the lamp and the test of the curtain, destroy the light of lamp ON-OFF and the curtain's UP-DOWN by simulating the lamp and the test of the cuetain. Through the sensor collects the ambient information and sends to the network, such as light, temperature and humidity. Besides, it can realise the control of intelligent home control by PCS. Terminal controller of intelligent home which is based on ZiBee technology has into the intelligent home system, it provides people with convenient, safe and intelligent household experience.

  8. Advanced Fault Diagnosis Methods in Molecular Networks

    PubMed Central

    Habibi, Iman; Emamian, Effat S.; Abdi, Ali

    2014-01-01

    Analysis of the failure of cell signaling networks is an important topic in systems biology and has applications in target discovery and drug development. In this paper, some advanced methods for fault diagnosis in signaling networks are developed and then applied to a caspase network and an SHP2 network. The goal is to understand how, and to what extent, the dysfunction of molecules in a network contributes to the failure of the entire network. Network dysfunction (failure) is defined as failure to produce the expected outputs in response to the input signals. Vulnerability level of a molecule is defined as the probability of the network failure, when the molecule is dysfunctional. In this study, a method to calculate the vulnerability level of single molecules for different combinations of input signals is developed. Furthermore, a more complex yet biologically meaningful method for calculating the multi-fault vulnerability levels is suggested, in which two or more molecules are simultaneously dysfunctional. Finally, a method is developed for fault diagnosis of networks based on a ternary logic model, which considers three activity levels for a molecule instead of the previously published binary logic model, and provides equations for the vulnerabilities of molecules in a ternary framework. Multi-fault analysis shows that the pairs of molecules with high vulnerability typically include a highly vulnerable molecule identified by the single fault analysis. The ternary fault analysis for the caspase network shows that predictions obtained using the more complex ternary model are about the same as the predictions of the simpler binary approach. This study suggests that by increasing the number of activity levels the complexity of the model grows; however, the predictive power of the ternary model does not appear to be increased proportionally. PMID:25290670

  9. An Experiential Approach to Cultural Intelligence Education

    ERIC Educational Resources Information Center

    MacNab, Brent R.

    2012-01-01

    Cultural intelligence (CQ) represents a promising advancement in the area of cross-cultural training and management. Experiential approaches for CQ development have been proposed as highly effective; however, there is a lack of CQ-specific approaches in the management literature. This work overviews the concept of cultural intelligence and its…

  10. Intelligent neural network and fuzzy logic control of industrial and power systems

    NASA Astrophysics Data System (ADS)

    Kuljaca, Ognjen

    The main role played by neural network and fuzzy logic intelligent control algorithms today is to identify and compensate unknown nonlinear system dynamics. There are a number of methods developed, but often the stability analysis of neural network and fuzzy control systems was not provided. This work will meet those problems for the several algorithms. Some more complicated control algorithms included backstepping and adaptive critics will be designed. Nonlinear fuzzy control with nonadaptive fuzzy controllers is also analyzed. An experimental method for determining describing function of SISO fuzzy controller is given. The adaptive neural network tracking controller for an autonomous underwater vehicle is analyzed. A novel stability proof is provided. The implementation of the backstepping neural network controller for the coupled motor drives is described. Analysis and synthesis of adaptive critic neural network control is also provided in the work. Novel tuning laws for the system with action generating neural network and adaptive fuzzy critic are given. Stability proofs are derived for all those control methods. It is shown how these control algorithms and approaches can be used in practical engineering control. Stability proofs are given. Adaptive fuzzy logic control is analyzed. Simulation study is conducted to analyze the behavior of the adaptive fuzzy system on the different environment changes. A novel stability proof for adaptive fuzzy logic systems is given. Also, adaptive elastic fuzzy logic control architecture is described and analyzed. A novel membership function is used for elastic fuzzy logic system. The stability proof is proffered. Adaptive elastic fuzzy logic control is compared with the adaptive nonelastic fuzzy logic control. The work described in this dissertation serves as foundation on which analysis of particular representative industrial systems will be conducted. Also, it gives a good starting point for analysis of learning abilities of

  11. Distributed intelligent scheduling of FMS

    NASA Astrophysics Data System (ADS)

    Wu, Zuobao; Cheng, Yaodong; Pan, Xiaohong

    1995-08-01

    In this paper, a distributed scheduling approach of a flexible manufacturing system (FMS) is presented. A new class of Petri nets called networked time Petri nets (NTPN) for system modeling of networking environment is proposed. The distributed intelligent scheduling is implemented by three schedulers which combine NTPN models with expert system techniques. The simulation results are shown.

  12. Intelligent Facial Recognition Systems: Technology advancements for security applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beer, C.L.

    1993-07-01

    Insider problems such as theft and sabotage can occur within the security and surveillance realm of operations when unauthorized people obtain access to sensitive areas. A possible solution to these problems is a means to identify individuals (not just credentials or badges) in a given sensitive area and provide full time personnel accountability. One approach desirable at Department of Energy facilities for access control and/or personnel identification is an Intelligent Facial Recognition System (IFRS) that is non-invasive to personnel. Automatic facial recognition does not require the active participation of the enrolled subjects, unlike most other biological measurement (biometric) systems (e.g.,more » fingerprint, hand geometry, or eye retinal scan systems). It is this feature that makes an IFRS attractive for applications other than access control such as emergency evacuation verification, screening, and personnel tracking. This paper discusses current technology that shows promising results for DOE and other security applications. A survey of research and development in facial recognition identified several companies and universities that were interested and/or involved in the area. A few advanced prototype systems were also identified. Sandia National Laboratories is currently evaluating facial recognition systems that are in the advanced prototype stage. The initial application for the evaluation is access control in a controlled environment with a constant background and with cooperative subjects. Further evaluations will be conducted in a less controlled environment, which may include a cluttered background and subjects that are not looking towards the camera. The outcome of the evaluations will help identify areas of facial recognition systems that need further development and will help to determine the effectiveness of the current systems for security applications.« less

  13. Behavior Analysis and the Quest for Machine Intelligence.

    ERIC Educational Resources Information Center

    Stephens, Kenneth R.; Hutchison, William R.

    1993-01-01

    Discusses three approaches to building intelligent systems: artificial intelligence, neural networks, and behavior analysis. BANKET, an object-oriented software system, is explained; a commercial application of BANKET is described; and a collaborative effort between the academic and business communities for the use of BANKET is discussed.…

  14. Communications and Intelligent Systems Division Overview

    NASA Technical Reports Server (NTRS)

    Emerson, Dawn

    2017-01-01

    This presentation provides an overview of the research and engineering work being performed in the competency fields of advanced communications and intelligent systems with emphasis on advanced technologies, architecture definition, and systems development for application in current and future aeronautics and space communications systems.

  15. Intelligent composting assisted by a wireless sensing network.

    PubMed

    López, Marga; Martinez-Farre, Xavier; Casas, Oscar; Quilez, Marcos; Polo, Jose; Lopez, Oscar; Hornero, Gemma; Pinilla, Mirta R; Rovira, Carlos; Ramos, Pedro M; Borges, Beatriz; Marques, Hugo; Girão, Pedro Silva

    2014-04-01

    Monitoring of the moisture and temperature of composting process is a key factor to obtain a quality product beyond the quality of raw materials. Current methodologies for monitoring these two parameters are time consuming for workers, sometimes not sufficiently reliable to help decision-making and thus are ignored in some cases. This article describes an advance on monitoring of composting process through a Wireless Sensor Network (WSN) that allows measurement of temperature and moisture in real time in multiple points of the composting material, the Compo-ball system. To implement such measurement capabilities on-line, a WSN composed of multiple sensor nodes was designed and implemented to provide the staff with an efficient monitoring composting management tool. After framing the problem, the objectives and characteristics of the WSN are briefly discussed and a short description of the hardware and software of the network's components are presented. Presentation and discussion of practical issues and results obtained with the WSN during a demonstration stage that took place in several composting sites concludes the paper. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Development of an advanced radioactive airborne particle monitoring system for use in early warning networks.

    PubMed

    Baeza, A; Corbacho, J A; Caballero, J M; Ontalba, M A; Vasco, J; Valencia, D

    2017-09-25

    Automatic real-time warning networks are essential for the almost immediate detection of anomalous levels of radioactivity in the environment. In the case of Extremadura region (SW Spain), a radiological network (RARE) has been operational in the vicinity of the Almaraz nuclear power plant and in other areas farther away since 1992. There are ten air monitoring stations equipped with Geiger-Müller counters in order to evaluate the external ambient gamma dose rate. Four of these stations have a commercial system that provides estimates of the total artificial alpha and beta activity concentrations in aerosols, and of the 131 I activity (gaseous fraction). Despite experience having demonstrated the benefits and robustness of these commercial systems, important improvements have been made to one of these air monitoring systems. In this paper, the analytical and maintenance shortcomings of the original commercial air monitoring system are described first; the new custom-designed advanced air monitoring system is then presented. This system is based mainly on the incorporation of gamma spectrometry using two scintillation detectors, one of NaI:Tl and the other of LaBr 3 :Ce, and compact multichannel analysers. Next, a comparison made of the results provided by the two systems operating simultaneously at the same location for three months shows the advantages of the new advanced air monitoring system. As a result, the gamma spectrometry analysis allows passing from global alpha and beta activity determinations due to artificial radionuclides in aerosols, and the inaccurate measurement of the gaseous 131 I activity concentration, to the possibility of identifying a large number of radionuclides and quantifying each of their activity concentrations. Moreover, the new station's dual capacity is designed to work in early warning monitoring mode and surveillance monitoring mode. This is based on custom developed software that includes an intelligent system to issue the

  17. Proceedings of the Workshop on Advanced Network and Technology Concepts for Mobile, Micro, and Personal Communications

    NASA Technical Reports Server (NTRS)

    Paul, Lori (Editor)

    1991-01-01

    The Workshop on Advanced Network and Technology Concepts for Mobile, Micro, and Personal Communications was held at NASA's JPL Laboratory on 30-31 May 1991. It provided a forum for reviewing the development of advanced network and technology concepts for turn-of-the-century telecommunications. The workshop was organized into three main categories: (1) Satellite-Based Networks (L-band, C-band, Ku-band, and Ka-band); (2) Terrestrial-Based Networks (cellular, CT2, PCN, GSM, and other networks); and (3) Hybrid Satellite/Terrestrial Networks. The proceedings contain presentation papers from each of the above categories.

  18. Learning for intelligent mobile robots

    NASA Astrophysics Data System (ADS)

    Hall, Ernest L.; Liao, Xiaoqun; Alhaj Ali, Souma M.

    2003-10-01

    Unlike intelligent industrial robots which often work in a structured factory setting, intelligent mobile robots must often operate in an unstructured environment cluttered with obstacles and with many possible action paths. However, such machines have many potential applications in medicine, defense, industry and even the home that make their study important. Sensors such as vision are needed. However, in many applications some form of learning is also required. The purpose of this paper is to present a discussion of recent technical advances in learning for intelligent mobile robots. During the past 20 years, the use of intelligent industrial robots that are equipped not only with motion control systems but also with sensors such as cameras, laser scanners, or tactile sensors that permit adaptation to a changing environment has increased dramatically. However, relatively little has been done concerning learning. Adaptive and robust control permits one to achieve point to point and controlled path operation in a changing environment. This problem can be solved with a learning control. In the unstructured environment, the terrain and consequently the load on the robot"s motors are constantly changing. Learning the parameters of a proportional, integral and derivative controller (PID) and artificial neural network provides an adaptive and robust control. Learning may also be used for path following. Simulations that include learning may be conducted to see if a robot can learn its way through a cluttered array of obstacles. If a situation is performed repetitively, then learning can also be used in the actual application. To reach an even higher degree of autonomous operation, a new level of learning is required. Recently learning theories such as the adaptive critic have been proposed. In this type of learning a critic provides a grade to the controller of an action module such as a robot. The creative control process is used that is "beyond the adaptive critic." A

  19. Sense-making for intelligence analysis on social media data

    NASA Astrophysics Data System (ADS)

    Pritzkau, Albert

    2016-05-01

    Social networks, in particular online social networks as a subset, enable the analysis of social relationships which are represented by interaction, collaboration, or other sorts of influence between people. Any set of people and their internal social relationships can be modelled as a general social graph. These relationships are formed by exchanging emails, making phone calls, or carrying out a range of other activities that build up the network. This paper presents an overview of current approaches to utilizing social media as a ubiquitous sensor network in the context of national and global security. Exploitation of social media is usually an interdisciplinary endeavour, in which the relevant technologies and methods are identified and linked in order ultimately demonstrate selected applications. Effective and efficient intelligence is usually accomplished in a combined human and computer effort. Indeed, the intelligence process heavily depends on combining a human's flexibility, creativity, and cognitive ability with the bandwidth and processing power of today's computers. To improve the usability and accuracy of the intelligence analysis we will have to rely on data-processing tools at the level of natural language. Especially the collection and transformation of unstructured data into actionable, structured data requires scalable computational algorithms ranging from Artificial Intelligence, via Machine Learning, to Natural Language Processing (NLP). To support intelligence analysis on social media data, social media analytics is concerned with developing and evaluating computational tools and frameworks to collect, monitor, analyze, summarize, and visualize social media data. Analytics methods are employed to extract of significant patterns that might not be obvious. As a result, different data representations rendering distinct aspects of content and interactions serve as a means to adapt the focus of the intelligence analysis to specific information

  20. Dynamic clustering scheme based on the coordination of management and control in multi-layer and multi-region intelligent optical network

    NASA Astrophysics Data System (ADS)

    Niu, Xiaoliang; Yuan, Fen; Huang, Shanguo; Guo, Bingli; Gu, Wanyi

    2011-12-01

    A Dynamic clustering scheme based on coordination of management and control is proposed to reduce network congestion rate and improve the blocking performance of hierarchical routing in Multi-layer and Multi-region intelligent optical network. Its implement relies on mobile agent (MA) technology, which has the advantages of efficiency, flexibility, functional and scalability. The paper's major contribution is to adjust dynamically domain when the performance of working network isn't in ideal status. And the incorporation of centralized NMS and distributed MA control technology migrate computing process to control plane node which releases the burden of NMS and improves process efficiently. Experiments are conducted on Multi-layer and multi-region Simulation Platform for Optical Network (MSPON) to assess the performance of the scheme.

  1. Advances in molecular labeling, high throughput imaging and machine intelligence portend powerful functional cellular biochemistry tools.

    PubMed

    Price, Jeffrey H; Goodacre, Angela; Hahn, Klaus; Hodgson, Louis; Hunter, Edward A; Krajewski, Stanislaw; Murphy, Robert F; Rabinovich, Andrew; Reed, John C; Heynen, Susanne

    2002-01-01

    Cellular behavior is complex. Successfully understanding systems at ever-increasing complexity is fundamental to advances in modern science and unraveling the functional details of cellular behavior is no exception. We present a collection of prospectives to provide a glimpse of the techniques that will aid in collecting, managing and utilizing information on complex cellular processes via molecular imaging tools. These include: 1) visualizing intracellular protein activity with fluorescent markers, 2) high throughput (and automated) imaging of multilabeled cells in statistically significant numbers, and 3) machine intelligence to analyze subcellular image localization and pattern. Although not addressed here, the importance of combining cell-image-based information with detailed molecular structure and ligand-receptor binding models cannot be overlooked. Advanced molecular imaging techniques have the potential to impact cellular diagnostics for cancer screening, clinical correlations of tissue molecular patterns for cancer biology, and cellular molecular interactions for accelerating drug discovery. The goal of finally understanding all cellular components and behaviors will be achieved by advances in both instrumentation engineering (software and hardware) and molecular biochemistry. Copyright 2002 Wiley-Liss, Inc.

  2. FUDAOWANG: A Web-Based Intelligent Tutoring System Implementing Advanced Education Concepts

    ERIC Educational Resources Information Center

    Xu, Wei; Zhao, Ke; Li, Yatao; Yi, Zhenzhen

    2012-01-01

    Determining how to provide good tutoring functions is an important research direction of intelligent tutoring systems. In this study, the authors develop an intelligent tutoring system with good tutoring functions, called "FUDAOWANG." The research domain that FUDAOWANG treats is junior middle school mathematics, which belongs to the objective…

  3. An Examination of Application of Artificial Neural Network in Cognitive Radios

    NASA Astrophysics Data System (ADS)

    Bello Salau, H.; Onwuka, E. N.; Aibinu, A. M.

    2013-12-01

    Recent advancement in software radio technology has led to the development of smart device known as cognitive radio. This type of radio fuses powerful techniques taken from artificial intelligence, game theory, wideband/multiple antenna techniques, information theory and statistical signal processing to create an outstanding dynamic behavior. This cognitive radio is utilized in achieving diverse set of applications such as spectrum sensing, radio parameter adaptation and signal classification. This paper contributes by reviewing different cognitive radio implementation that uses artificial intelligence such as the hidden markov models, metaheuristic algorithm and artificial neural networks (ANNs). Furthermore, different areas of application of ANNs and their performance metrics based approach are also examined.

  4. Six Information Technology Services Contracts for the Defense Intelligence Community

    DTIC Science & Technology

    2000-04-24

    This category covers Defense Intelligence Community organizations whose mission is to provide for the planning, development, deployment, operation ... management , and oversight of global information networks and infrastructure supporting intelligence producers. • Information Systems. This category

  5. TEx-Sys Model for Building Intelligent Tutoring Systems

    ERIC Educational Resources Information Center

    Stankov, Slavomir; Rosic, Marko; Zitko, Branko; Grubisic, Ani

    2008-01-01

    Special classes of asynchronous e-learning systems are the intelligent tutoring systems which represent an advanced learning and teaching environment adaptable to individual student's characteristics. Authoring shells have an environment that enables development of the intelligent tutoring systems. In this paper we present, in entirety, for the…

  6. Cellular neural network-based hybrid approach toward automatic image registration

    NASA Astrophysics Data System (ADS)

    Arun, Pattathal VijayaKumar; Katiyar, Sunil Kumar

    2013-01-01

    Image registration is a key component of various image processing operations that involve the analysis of different image data sets. Automatic image registration domains have witnessed the application of many intelligent methodologies over the past decade; however, inability to properly model object shape as well as contextual information has limited the attainable accuracy. A framework for accurate feature shape modeling and adaptive resampling using advanced techniques such as vector machines, cellular neural network (CNN), scale invariant feature transform (SIFT), coreset, and cellular automata is proposed. CNN has been found to be effective in improving feature matching as well as resampling stages of registration and complexity of the approach has been considerably reduced using coreset optimization. The salient features of this work are cellular neural network approach-based SIFT feature point optimization, adaptive resampling, and intelligent object modelling. Developed methodology has been compared with contemporary methods using different statistical measures. Investigations over various satellite images revealed that considerable success was achieved with the approach. This system has dynamically used spectral and spatial information for representing contextual knowledge using CNN-prolog approach. This methodology is also illustrated to be effective in providing intelligent interpretation and adaptive resampling.

  7. Intelligent Systems Technologies and Utilization of Earth Observation Data

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.; McConaughy, G. R.; Morse, H. S.

    2004-01-01

    The addition of raw data and derived geophysical parameters from several Earth observing satellites over the last decade to the data held by NASA data centers has created a data rich environment for the Earth science research and applications communities. The data products are being distributed to a large and diverse community of users. Due to advances in computational hardware, networks and communications, information management and software technologies, significant progress has been made in the last decade in archiving and providing data to users. However, to realize the full potential of the growing data archives, further progress is necessary in the transformation of data into information, and information into knowledge that can be used in particular applications. Sponsored by NASA s Intelligent Systems Project within the Computing, Information and Communication Technology (CICT) Program, a conceptual architecture study has been conducted to examine ideas to improve data utilization through the addition of intelligence into the archives in the context of an overall knowledge building system (KBS). Potential Intelligent Archive concepts include: 1) Mining archived data holdings to improve metadata to facilitate data access and usability; 2) Building intelligence about transformations on data, information, knowledge, and accompanying services; 3) Recognizing the value of results, indexing and formatting them for easy access; 4) Interacting as a cooperative node in a web of distributed systems to perform knowledge building; and 5) Being aware of other nodes in the KBS, participating in open systems interfaces and protocols for virtualization, and achieving collaborative interoperability.

  8. Vision 2015: A Globally Networked and Integrated Intelligence Enterprise

    DTIC Science & Technology

    2008-07-01

    of the Intellligence Community agency members. Building such an Enterprise will require the sustained focus of hard -nosed leadership. Services... The purpose of intelligence is not solely to determine truth , but to enable decision-makers to make better choices in dealing with forces...objectivity and relevance, often summarized by the axiom that the Intelligence Community “speaks truth to power.” At times, members of the Intelli- gence

  9. [Advances in the research of application of artificial intelligence in burn field].

    PubMed

    Li, H H; Bao, Z X; Liu, X B; Zhu, S H

    2018-04-20

    Artificial intelligence has been able to automatically learn and judge large-scale data to some extent. Based on database of a large amount of burn data and in-depth learning, artificial intelligence can assist burn surgeons to evaluate burn surface, diagnose burn depth, guide fluid supply during shock stage, and predict prognosis, with high accuracy. With the development of technology, artificial intelligence can provide more accurate information for burn surgeons to make clinical diagnosis and treatment strategies.

  10. Educational Assessment Using Intelligent Systems. Research Report. ETS RR-08-68

    ERIC Educational Resources Information Center

    Shute, Valerie J.; Zapata-Rivera, Diego

    2008-01-01

    Recent advances in educational assessment, cognitive science, and artificial intelligence have made it possible to integrate valid assessment and instruction in the form of modern computer-based intelligent systems. These intelligent systems leverage assessment information that is gathered from various sources (e.g., summative and formative). This…

  11. CESAR research in intelligent machines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weisbin, C.R.

    1986-01-01

    The Center for Engineering Systems Advanced Research (CESAR) was established in 1983 as a national center for multidisciplinary, long-range research and development in machine intelligence and advanced control theory for energy-related applications. Intelligent machines of interest here are artificially created operational systems that are capable of autonomous decision making and action. The initial emphasis for research is remote operations, with specific application to dexterous manipulation in unstructured dangerous environments where explosives, toxic chemicals, or radioactivity may be present, or in other environments with significant risk such as coal mining or oceanographic missions. Potential benefits include reduced risk to man inmore » hazardous situations, machine replication of scarce expertise, minimization of human error due to fear or fatigue, and enhanced capability using high resolution sensors and powerful computers. A CESAR goal is to explore the interface between the advanced teleoperation capability of today, and the autonomous machines of the future.« less

  12. Fluid intelligence and brain functional organization in aging yoga and meditation practitioners

    PubMed Central

    Gard, Tim; Taquet, Maxime; Dixit, Rohan; Hölzel, Britta K.; de Montjoye, Yves-Alexandre; Brach, Narayan; Salat, David H.; Dickerson, Bradford C.; Gray, Jeremy R.; Lazar, Sara W.

    2014-01-01

    Numerous studies have documented the normal age-related decline of neural structure, function, and cognitive performance. Preliminary evidence suggests that meditation may reduce decline in specific cognitive domains and in brain structure. Here we extended this research by investigating the relation between age and fluid intelligence and resting state brain functional network architecture using graph theory, in middle-aged yoga and meditation practitioners, and matched controls. Fluid intelligence declined slower in yoga practitioners and meditators combined than in controls. Resting state functional networks of yoga practitioners and meditators combined were more integrated and more resilient to damage than those of controls. Furthermore, mindfulness was positively correlated with fluid intelligence, resilience, and global network efficiency. These findings reveal the possibility to increase resilience and to slow the decline of fluid intelligence and brain functional architecture and suggest that mindfulness plays a mechanistic role in this preservation. PMID:24795629

  13. ACTS TDMA network control. [Advanced Communication Technology Satellite

    NASA Technical Reports Server (NTRS)

    Inukai, T.; Campanella, S. J.

    1984-01-01

    This paper presents basic network control concepts for the Advanced Communications Technology Satellite (ACTS) System. Two experimental systems, called the low-burst-rate and high-burst-rate systems, along with ACTS ground system features, are described. The network control issues addressed include frame structures, acquisition and synchronization procedures, coordinated station burst-time plan and satellite-time plan changes, on-board clock control based on ground drift measurements, rain fade control by means of adaptive forward-error-correction (FEC) coding and transmit power augmentation, and reassignment of channel capacities on demand. The NASA ground system, which includes a primary station, diversity station, and master control station, is also described.

  14. Building a functional multiple intelligences theory to advance educational neuroscience

    PubMed Central

    Cerruti, Carlo

    2013-01-01

    A key goal of educational neuroscience is to conduct constrained experimental research that is theory-driven and yet also clearly related to educators’ complex set of questions and concerns. However, the fields of education, cognitive psychology, and neuroscience use different levels of description to characterize human ability. An important advance in research in educational neuroscience would be the identification of a cognitive and neurocognitive framework at a level of description relatively intuitive to educators. I argue that the theory of multiple intelligences (MI; Gardner, 1983), a conception of the mind that motivated a past generation of teachers, may provide such an opportunity. I criticize MI for doing little to clarify for teachers a core misunderstanding, specifically that MI was only an anatomical map of the mind but not a functional theory that detailed how the mind actually processes information. In an attempt to build a “functional MI” theory, I integrate into MI basic principles of cognitive and neural functioning, namely interregional neural facilitation and inhibition. In so doing I hope to forge a path toward constrained experimental research that bears upon teachers’ concerns about teaching and learning. PMID:24391613

  15. Building a functional multiple intelligences theory to advance educational neuroscience.

    PubMed

    Cerruti, Carlo

    2013-01-01

    A key goal of educational neuroscience is to conduct constrained experimental research that is theory-driven and yet also clearly related to educators' complex set of questions and concerns. However, the fields of education, cognitive psychology, and neuroscience use different levels of description to characterize human ability. An important advance in research in educational neuroscience would be the identification of a cognitive and neurocognitive framework at a level of description relatively intuitive to educators. I argue that the theory of multiple intelligences (MI; Gardner, 1983), a conception of the mind that motivated a past generation of teachers, may provide such an opportunity. I criticize MI for doing little to clarify for teachers a core misunderstanding, specifically that MI was only an anatomical map of the mind but not a functional theory that detailed how the mind actually processes information. In an attempt to build a "functional MI" theory, I integrate into MI basic principles of cognitive and neural functioning, namely interregional neural facilitation and inhibition. In so doing I hope to forge a path toward constrained experimental research that bears upon teachers' concerns about teaching and learning.

  16. Optical Multiple Access Network (OMAN) for advanced processing satellite applications

    NASA Technical Reports Server (NTRS)

    Mendez, Antonio J.; Gagliardi, Robert M.; Park, Eugene; Ivancic, William D.; Sherman, Bradley D.

    1991-01-01

    An OMAN breadboard for exploring advanced processing satellite circuit switch applications is introduced. Network architecture, hardware trade offs, and multiple user interference issues are presented. The breadboard test set up and experimental results are discussed.

  17. The Convergence of Intelligences

    NASA Astrophysics Data System (ADS)

    Diederich, Joachim

    Minsky (1985) argued an extraterrestrial intelligence may be similar to ours despite very different origins. ``Problem- solving'' offers evolutionary advantages and individuals who are part of a technical civilisation should have this capacity. On earth, the principles of problem-solving are the same for humans, some primates and machines based on Artificial Intelligence (AI) techniques. Intelligent systems use ``goals'' and ``sub-goals'' for problem-solving, with memories and representations of ``objects'' and ``sub-objects'' as well as knowledge of relations such as ``cause'' or ``difference.'' Some of these objects are generic and cannot easily be divided into parts. We must, therefore, assume that these objects and relations are universal, and a general property of intelligence. Minsky's arguments from 1985 are extended here. The last decade has seen the development of a general learning theory (``computational learning theory'' (CLT) or ``statistical learning theory'') which equally applies to humans, animals and machines. It is argued that basic learning laws will also apply to an evolved alien intelligence, and this includes limitations of what can be learned efficiently. An example from CLT is that the general learning problem for neural networks is intractable, i.e. it cannot be solved efficiently for all instances (it is ``NP-complete''). It is the objective of this paper to show that evolved intelligences will be constrained by general learning laws and will use task-decomposition for problem-solving. Since learning and problem-solving are core features of intelligence, it can be said that intelligences converge despite very different origins.

  18. Machine intelligence and robotics: Report of the NASA study group

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Opportunities for the application of machine intelligence and robotics in NASA missions and systems were identified. The benefits of successful adoption of machine intelligence and robotics techniques were estimated and forecasts were prepared to show their growth potential. Program options for research, advanced development, and implementation of machine intelligence and robot technology for use in program planning are presented.

  19. A Risk Based Approach to Node Insertion Within Social Networks

    DTIC Science & Technology

    2015-03-26

    changes to enemy networks, tactical involvement must evolve, beginning with the intelligent use of network infiltration through the application of the...counterterrorism begins with the intelligent use of network infiltration, or the covert insertion of assets into a network, otherwise known as node insertion. The...Federal Bureau of Intelligence (FBI) defines an undercover operation as “an investigation involving a series of related undercover activities over a

  20. The Virtual Environment for Rapid Prototyping of the Intelligent Environment

    PubMed Central

    Bouzouane, Abdenour; Gaboury, Sébastien

    2017-01-01

    Advances in domains such as sensor networks and electronic and ambient intelligence have allowed us to create intelligent environments (IEs). However, research in IE is being held back by the fact that researchers face major difficulties, such as a lack of resources for their experiments. Indeed, they cannot easily build IEs to evaluate their approaches. This is mainly because of economic and logistical issues. In this paper, we propose a simulator to build virtual IEs. Simulators are a good alternative to physical IEs because they are inexpensive, and experiments can be conducted easily. Our simulator is open source and it provides users with a set of virtual sensors that simulates the behavior of real sensors. This simulator gives the user the capacity to build their own environment, providing a model to edit inhabitants’ behavior and an interactive mode. In this mode, the user can directly act upon IE objects. This simulator gathers data generated by the interactions in order to produce datasets. These datasets can be used by scientists to evaluate several approaches in IEs. PMID:29112175

  1. The Virtual Environment for Rapid Prototyping of the Intelligent Environment.

    PubMed

    Francillette, Yannick; Boucher, Eric; Bouzouane, Abdenour; Gaboury, Sébastien

    2017-11-07

    Advances in domains such as sensor networks and electronic and ambient intelligence have allowed us to create intelligent environments (IEs). However, research in IE is being held back by the fact that researchers face major difficulties, such as a lack of resources for their experiments. Indeed, they cannot easily build IEs to evaluate their approaches. This is mainly because of economic and logistical issues. In this paper, we propose a simulator to build virtual IEs. Simulators are a good alternative to physical IEs because they are inexpensive, and experiments can be conducted easily. Our simulator is open source and it provides users with a set of virtual sensors that simulates the behavior of real sensors. This simulator gives the user the capacity to build their own environment, providing a model to edit inhabitants' behavior and an interactive mode. In this mode, the user can directly act upon IE objects. This simulator gathers data generated by the interactions in order to produce datasets. These datasets can be used by scientists to evaluate several approaches in IEs.

  2. Survivability of intelligent transportation systems

    DOT National Transportation Integrated Search

    1999-10-01

    Intelligent Transportation Systems (ITS) are being deployed around the world to improve the safety and efficiency of surface transportation through the application of advanced information technology. The introduction of ITS exposes the transportation...

  3. Intelligent Vehicle Highway Systems Projects

    DOT National Transportation Integrated Search

    1993-02-01

    The Intelligent Vehicle Highway Systems (IVHS) program consists of a range of advanced technologies and concepts which, in combination, can improve mobility and transportation productivity, enhance safety, maximize the use of existing transportation ...

  4. Pathogenesis-based treatments in primary Sjogren's syndrome using artificial intelligence and advanced machine learning techniques: a systematic literature review.

    PubMed

    Foulquier, Nathan; Redou, Pascal; Le Gal, Christophe; Rouvière, Bénédicte; Pers, Jacques-Olivier; Saraux, Alain

    2018-05-17

    Big data analysis has become a common way to extract information from complex and large datasets among most scientific domains. This approach is now used to study large cohorts of patients in medicine. This work is a review of publications that have used artificial intelligence and advanced machine learning techniques to study physio pathogenesis-based treatments in pSS. A systematic literature review retrieved all articles reporting on the use of advanced statistical analysis applied to the study of systemic autoimmune diseases (SADs) over the last decade. An automatic bibliography screening method has been developed to perform this task. The program called BIBOT was designed to fetch and analyze articles from the pubmed database using a list of keywords and Natural Language Processing approaches. The evolution of trends in statistical approaches, sizes of cohorts and number of publications over this period were also computed in the process. In all, 44077 abstracts were screened and 1017 publications were analyzed. The mean number of selected articles was 101.0 (S.D. 19.16) by year, but increased significantly over the time (from 74 articles in 2008 to 138 in 2017). Among them only 12 focused on pSS but none of them emphasized on the aspect of pathogenesis-based treatments. To conclude, medicine progressively enters the era of big data analysis and artificial intelligence, but these approaches are not yet used to describe pSS-specific pathogenesis-based treatment. Nevertheless, large multicentre studies are investigating this aspect with advanced algorithmic tools on large cohorts of SADs patients.

  5. Advanced Satellite Workstation - An integrated workstation environment for operational support of satellite system planning and analysis

    NASA Astrophysics Data System (ADS)

    Hamilton, Marvin J.; Sutton, Stewart A.

    A prototype integrated environment, the Advanced Satellite Workstation (ASW), which was developed and delivered for evaluation and operator feedback in an operational satellite control center, is described. The current ASW hardware consists of a Sun Workstation and Macintosh II Workstation connected via an ethernet Network Hardware and Software, Laser Disk System, Optical Storage System, and Telemetry Data File Interface. The central objective of ASW is to provide an intelligent decision support and training environment for operator/analysis of complex systems such as satellites. Compared to the many recent workstation implementations that incorporate graphical telemetry displays and expert systems, ASW provides a considerably broader look at intelligent, integrated environments for decision support, based on the premise that the central features of such an environment are intelligent data access and integrated toolsets.

  6. Technologies for developing an advanced intelligent ATM with self-defence capabilities

    NASA Astrophysics Data System (ADS)

    Sako, Hiroshi

    2010-01-01

    We have developed several technologies for protecting automated teller machines. These technologies are based mainly on pattern recognition and are used to implement various self-defence functions. They include (i) banknote recognition and information retrieval for preventing machines from accepting counterfeit and damaged banknotes and for retrieving information about detected counterfeits from a relational database, (ii) form processing and character recognition for preventing machines from accepting remittance forms without due dates and/or insufficient payment, (iii) person identification to prevent machines from transacting with non-customers, and (iv) object recognition to guard machines against foreign objects such as spy cams that might be surreptitiously attached to them and to protect users against someone attempting to peek at their user information such as their personal identification number. The person identification technology has been implemented in most ATMs in Japan, and field tests have demonstrated that the banknote recognition technology can recognise more then 200 types of banknote from 30 different countries. We are developing an "advanced intelligent ATM" that incorporates all of these technologies.

  7. Communications and Intelligent Systems Division - Division Overview

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.

    2017-01-01

    This presentation provides an overview of the research and engineering work being performed in the competency fields of advanced communications and intelligent systems with emphasis on advanced technologies, architecture definition,and systems development for application in current and future aeronautics and space communications systems.

  8. Communications and Intelligent Systems Division - Division Overview

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.

    2017-01-01

    This presentation provides an overview of the research and engineering work being performed in the competency fields of advanced communications and intelligent systems with emphasis on advanced technologies, architecture definition, and systems development for application in current and future aeronautics and space communications systems.

  9. Full Service ISDN Satellite (FSIS) network model for advanced ISDN satellite design and experiments

    NASA Technical Reports Server (NTRS)

    Pepin, Gerard R.

    1992-01-01

    The Full Service Integrated Services Digital Network (FSIS) network model for advanced satellite designs describes a model suitable for discrete event simulations. A top down model design uses the Advanced Communications Technology Satellite (ACTS) as its basis. The ACTS and the Interim Service ISDN Satellite (ISIS) perform ISDN protocol analyses and switching decisions in the terrestrial domain, whereas FSIS makes all its analyses and decisions on-board the ISDN satellite.

  10. Coordinating complex problem-solving among distributed intelligent agents

    NASA Technical Reports Server (NTRS)

    Adler, Richard M.

    1992-01-01

    A process-oriented control model is described for distributed problem solving. The model coordinates the transfer and manipulation of information across independent networked applications, both intelligent and conventional. The model was implemented using SOCIAL, a set of object-oriented tools for distributing computing. Complex sequences of distributed tasks are specified in terms of high level scripts. Scripts are executed by SOCIAL objects called Manager Agents, which realize an intelligent coordination model that routes individual tasks to suitable server applications across the network. These tools are illustrated in a prototype distributed system for decision support of ground operations for NASA's Space Shuttle fleet.

  11. Nanocarbon networks for advanced rechargeable lithium batteries.

    PubMed

    Xin, Sen; Guo, Yu-Guo; Wan, Li-Jun

    2012-10-16

    Carbon is one of the essential elements in energy storage. In rechargeable lithium batteries, researchers have considered many types of nanostructured carbons, such as carbon nanoparticles, carbon nanotubes, graphene, and nanoporous carbon, as anode materials and, especially, as key components for building advanced composite electrode materials. Nanocarbons can form efficient three-dimensional conducting networks that improve the performance of electrode materials suffering from the limited kinetics of lithium storage. Although the porous structure guarantees a fast migration of Li ions, the nanocarbon network can serve as an effective matrix for dispersing the active materials to prevent them from agglomerating. The nanocarbon network also affords an efficient electron pathway to provide better electrical contacts. Because of their structural stability and flexibility, nanocarbon networks can alleviate the stress and volume changes that occur in active materials during the Li insertion/extraction process. Through the elegant design of hierarchical electrode materials with nanocarbon networks, researchers can improve both the kinetic performance and the structural stability of the electrode material, which leads to optimal battery capacity, cycling stability, and rate capability. This Account summarizes recent progress in the structural design, chemical synthesis, and characterization of the electrochemical properties of nanocarbon networks for Li-ion batteries. In such systems, storage occurs primarily in the non-carbon components, while carbon acts as the conductor and as the structural buffer. We emphasize representative nanocarbon networks including those that use carbon nanotubes and graphene. We discuss the role of carbon in enhancing the performance of various electrode materials in areas such as Li storage, Li ion and electron transport, and structural stability during cycling. We especially highlight the use of graphene to construct the carbon conducting

  12. Hybrid Architectures and Their Impact on Intelligent Design

    NASA Technical Reports Server (NTRS)

    Kandel, Abe

    1996-01-01

    In this presentation we investigate a novel framework for the design of autonomous fuzzy intelligent systems. The system integrates the following modules into a single autonomous entity: (1) a fuzzy expert system; (2) artificial neural network; (3) genetic algorithm; and (4) case-base reasoning. We describe the integration of these units into one intelligent structure and discuss potential applications.

  13. Hybrid intelligent monironing systems for thermal power plant trips

    NASA Astrophysics Data System (ADS)

    Barsoum, Nader; Ismail, Firas Basim

    2012-11-01

    Steam boiler is one of the main equipment in thermal power plants. If the steam boiler trips it may lead to entire shutdown of the plant, which is economically burdensome. Early boiler trips monitoring is crucial to maintain normal and safe operational conditions. In the present work two artificial intelligent monitoring systems specialized in boiler trips have been proposed and coded within the MATLAB environment. The training and validation of the two systems has been performed using real operational data captured from the plant control system of selected power plant. An integrated plant data preparation framework for seven boiler trips with related operational variables has been proposed for IMSs data analysis. The first IMS represents the use of pure Artificial Neural Network system for boiler trip detection. All seven boiler trips under consideration have been detected by IMSs before or at the same time of the plant control system. The second IMS represents the use of Genetic Algorithms and Artificial Neural Networks as a hybrid intelligent system. A slightly lower root mean square error was observed in the second system which reveals that the hybrid intelligent system performed better than the pure neural network system. Also, the optimal selection of the most influencing variables performed successfully by the hybrid intelligent system.

  14. Plasma Cholesterol–Induced Lesion Networks Activated before Regression of Early, Mature, and Advanced Atherosclerosis

    PubMed Central

    Björkegren, Johan L. M.; Hägg, Sara; Jain, Rajeev K.; Cedergren, Cecilia; Shang, Ming-Mei; Rossignoli, Aránzazu; Takolander, Rabbe; Melander, Olle; Hamsten, Anders; Michoel, Tom; Skogsberg, Josefin

    2014-01-01

    Plasma cholesterol lowering (PCL) slows and sometimes prevents progression of atherosclerosis and may even lead to regression. Little is known about how molecular processes in the atherosclerotic arterial wall respond to PCL and modify responses to atherosclerosis regression. We studied atherosclerosis regression and global gene expression responses to PCL (≥80%) and to atherosclerosis regression itself in early, mature, and advanced lesions. In atherosclerotic aortic wall from Ldlr−/−Apob 100/100 Mttp flox/floxMx1-Cre mice, atherosclerosis regressed after PCL regardless of lesion stage. However, near-complete regression was observed only in mice with early lesions; mice with mature and advanced lesions were left with regression-resistant, relatively unstable plaque remnants. Atherosclerosis genes responding to PCL before regression, unlike those responding to the regression itself, were enriched in inherited risk for coronary artery disease and myocardial infarction, indicating causality. Inference of transcription factor (TF) regulatory networks of these PCL-responsive gene sets revealed largely different networks in early, mature, and advanced lesions. In early lesions, PPARG was identified as a specific master regulator of the PCL-responsive atherosclerosis TF-regulatory network, whereas in mature and advanced lesions, the specific master regulators were MLL5 and SRSF10/XRN2, respectively. In a THP-1 foam cell model of atherosclerosis regression, siRNA targeting of these master regulators activated the time-point-specific TF-regulatory networks and altered the accumulation of cholesterol esters. We conclude that PCL leads to complete atherosclerosis regression only in mice with early lesions. Identified master regulators and related PCL-responsive TF-regulatory networks will be interesting targets to enhance PCL-mediated regression of mature and advanced atherosclerotic lesions. PMID:24586211

  15. Groundhog Day for Medical Artificial Intelligence.

    PubMed

    London, Alex John

    2018-05-01

    Following a boom in investment and overinflated expectations in the 1980s, artificial intelligence entered a period of retrenchment known as the "AI winter." With advances in the field of machine learning and the availability of large datasets for training various types of artificial neural networks, AI is in another cycle of halcyon days. Although medicine is particularly recalcitrant to change, applications of AI in health care have professionals in fields like radiology worried about the future of their careers and have the public tittering about the prospect of soulless machines making life-and-death decisions. Medicine thus appears to be at an inflection point-a kind of Groundhog Day on which either AI will bring a springtime of improved diagnostic and predictive practices or the shadow of public and professional fear will lead to six more metaphorical weeks of winter in medical AI. © 2018 The Hastings Center.

  16. Applications of Artificial Intelligence in Education--A Personal View.

    ERIC Educational Resources Information Center

    Richer, Mark H.

    1985-01-01

    Discusses: how artificial intelligence (AI) can advance education; if the future of software lies in AI; the roots of intelligent computer-assisted instruction; protocol analysis; reactive environments; LOGO programming language; student modeling and coaching; and knowledge-based instructional programs. Numerous examples of AI programs are cited.…

  17. Advanced wireless mobile collaborative sensing network for tactical and strategic missions

    NASA Astrophysics Data System (ADS)

    Xu, Hao

    2017-05-01

    In this paper, an advanced wireless mobile collaborative sensing network will be developed. Through properly combining wireless sensor network, emerging mobile robots and multi-antenna sensing/communication techniques, we could demonstrate superiority of developed sensing network. To be concrete, heterogeneous mobile robots including unmanned aerial vehicle (UAV) and unmanned ground vehicle (UGV) are equipped with multi-model sensors and wireless transceiver antennas. Through real-time collaborative formation control, multiple mobile robots can team the best formation that can provide most accurate sensing results. Also, formatting multiple mobile robots can also construct a multiple-input multiple-output (MIMO) communication system that can provide a reliable and high performance communication network.

  18. Intelligent Elements for ISHM

    NASA Technical Reports Server (NTRS)

    Schmalzel, John L.; Morris, Jon; Turowski, Mark; Figueroa, Fernando; Oostdyk, Rebecca

    2008-01-01

    There are a number of architecture models for implementing Integrated Systems Health Management (ISHM) capabilities. For example, approaches based on the OSA-CBM and OSA-EAI models, or specific architectures developed in response to local needs. NASA s John C. Stennis Space Center (SSC) has developed one such version of an extensible architecture in support of rocket engine testing that integrates a palette of functions in order to achieve an ISHM capability. Among the functional capabilities that are supported by the framework are: prognostic models, anomaly detection, a data base of supporting health information, root cause analysis, intelligent elements, and integrated awareness. This paper focuses on the role that intelligent elements can play in ISHM architectures. We define an intelligent element as a smart element with sufficient computing capacity to support anomaly detection or other algorithms in support of ISHM functions. A smart element has the capabilities of supporting networked implementations of IEEE 1451.x smart sensor and actuator protocols. The ISHM group at SSC has been actively developing intelligent elements in conjunction with several partners at other Centers, universities, and companies as part of our ISHM approach for better supporting rocket engine testing. We have developed several implementations. Among the key features for these intelligent sensors is support for IEEE 1451.1 and incorporation of a suite of algorithms for determination of sensor health. Regardless of the potential advantages that can be achieved using intelligent sensors, existing large-scale systems are still based on conventional sensors and data acquisition systems. In order to bring the benefits of intelligent sensors to these environments, we have also developed virtual implementations of intelligent sensors.

  19. Computational Intelligence in Early Diabetes Diagnosis: A Review

    PubMed Central

    Shankaracharya; Odedra, Devang; Samanta, Subir; Vidyarthi, Ambarish S.

    2010-01-01

    The development of an effective diabetes diagnosis system by taking advantage of computational intelligence is regarded as a primary goal nowadays. Many approaches based on artificial network and machine learning algorithms have been developed and tested against diabetes datasets, which were mostly related to individuals of Pima Indian origin. Yet, despite high accuracies of up to 99% in predicting the correct diabetes diagnosis, none of these approaches have reached clinical application so far. One reason for this failure may be that diabetologists or clinical investigators are sparsely informed about, or trained in the use of, computational diagnosis tools. Therefore, this article aims at sketching out an outline of the wide range of options, recent developments, and potentials in machine learning algorithms as diabetes diagnosis tools. One focus is on supervised and unsupervised methods, which have made significant impacts in the detection and diagnosis of diabetes at primary and advanced stages. Particular attention is paid to algorithms that show promise in improving diabetes diagnosis. A key advance has been the development of a more in-depth understanding and theoretical analysis of critical issues related to algorithmic construction and learning theory. These include trade-offs for maximizing generalization performance, use of physically realistic constraints, and incorporation of prior knowledge and uncertainty. The review presents and explains the most accurate algorithms, and discusses advantages and pitfalls of methodologies. This should provide a good resource for researchers from all backgrounds interested in computational intelligence-based diabetes diagnosis methods, and allows them to extend their knowledge into this kind of research. PMID:21713313

  20. Computational intelligence in early diabetes diagnosis: a review.

    PubMed

    Shankaracharya; Odedra, Devang; Samanta, Subir; Vidyarthi, Ambarish S

    2010-01-01

    The development of an effective diabetes diagnosis system by taking advantage of computational intelligence is regarded as a primary goal nowadays. Many approaches based on artificial network and machine learning algorithms have been developed and tested against diabetes datasets, which were mostly related to individuals of Pima Indian origin. Yet, despite high accuracies of up to 99% in predicting the correct diabetes diagnosis, none of these approaches have reached clinical application so far. One reason for this failure may be that diabetologists or clinical investigators are sparsely informed about, or trained in the use of, computational diagnosis tools. Therefore, this article aims at sketching out an outline of the wide range of options, recent developments, and potentials in machine learning algorithms as diabetes diagnosis tools. One focus is on supervised and unsupervised methods, which have made significant impacts in the detection and diagnosis of diabetes at primary and advanced stages. Particular attention is paid to algorithms that show promise in improving diabetes diagnosis. A key advance has been the development of a more in-depth understanding and theoretical analysis of critical issues related to algorithmic construction and learning theory. These include trade-offs for maximizing generalization performance, use of physically realistic constraints, and incorporation of prior knowledge and uncertainty. The review presents and explains the most accurate algorithms, and discusses advantages and pitfalls of methodologies. This should provide a good resource for researchers from all backgrounds interested in computational intelligence-based diabetes diagnosis methods, and allows them to extend their knowledge into this kind of research.

  1. Early-Life Intelligence Predicts Midlife Biological Age

    PubMed Central

    Caspi, Avshalom; Belsky, Daniel W.; Harrington, Honalee; Houts, Renate; Israel, Salomon; Levine, Morgan E.; Sugden, Karen; Williams, Benjamin; Poulton, Richie; Moffitt, Terrie E.

    2016-01-01

    Objectives: Early-life intelligence has been shown to predict multiple causes of death in populations around the world. This finding suggests that intelligence might influence mortality through its effects on a general process of physiological deterioration (i.e., individual variation in “biological age”). We examined whether intelligence could predict measures of aging at midlife before the onset of most age-related disease. Methods: We tested whether intelligence assessed in early childhood, middle childhood, and midlife predicted midlife biological age in members of the Dunedin Study, a population-representative birth cohort. Results: Lower intelligence predicted more advanced biological age at midlife as captured by perceived facial age, a 10-biomarker algorithm based on data from the National Health and Nutrition Examination Survey (NHANES), and Framingham heart age (r = 0.1–0.2). Correlations between intelligence and telomere length were less consistent. The associations between intelligence and biological age were not explained by differences in childhood health or parental socioeconomic status, and intelligence remained a significant predictor of biological age even when intelligence was assessed before Study members began their formal schooling. Discussion: These results suggest that accelerated aging may serve as one of the factors linking low early-life intelligence to increased rates of morbidity and mortality. PMID:26014827

  2. Intelligent Vehicle Initiative Forum : proceedings

    DOT National Transportation Integrated Search

    1997-08-05

    This event, jointly sponsored by ITS Americas Advanced Vehicle Control and Safety Systems (AVCSS) and Safety and Human Factors (S&HF) Committees, was designed to review and discuss the U.S. Department of Transportations Intelligent Vehicle Init...

  3. Service oriented network architecture for control and management of home appliances

    NASA Astrophysics Data System (ADS)

    Hayakawa, Hiroshi; Koita, Takahiro; Sato, Kenya

    2005-12-01

    Recent advances in multimedia network systems and mechatronics have led to the development of a new generation of applications that associate the use of various multimedia objects with the behavior of multiple robotic actors. The connection of audio and video devices through high speed multimedia networks is expected to make the system more convenient to use. For example, many home appliances, such as a video camera, a display monitor, a video recorder, an audio system and so on, are being equipped with a communication interface in the near future. Recently some platforms (i.e. UPnP1, HAVi2 and so on) are proposed for constructing home networks; however, there are some issues to be solved to realize various services by connecting different equipment via the pervasive peer-to-peer network. UPnP offers network connectivity of PCs of intelligent home appliances, practically, which means to require a PC in the network to control other devices. Meanwhile, HAVi has been developed for intelligent AV equipments with sophisticated functions using high CPU power and large memory. Considering the targets of home alliances are embedded systems, this situation raises issues of software and hardware complexity, cost, power consumption and so on. In this study, we have proposed and developed the service oriented network architecture for control and management of home appliances, named SONICA (Service Oriented Network Interoperability for Component Adaptation), to address these issues described before.

  4. Data-Driven Design of Intelligent Wireless Networks: An Overview and Tutorial.

    PubMed

    Kulin, Merima; Fortuna, Carolina; De Poorter, Eli; Deschrijver, Dirk; Moerman, Ingrid

    2016-06-01

    Data science or "data-driven research" is a research approach that uses real-life data to gain insight about the behavior of systems. It enables the analysis of small, simple as well as large and more complex systems in order to assess whether they function according to the intended design and as seen in simulation. Data science approaches have been successfully applied to analyze networked interactions in several research areas such as large-scale social networks, advanced business and healthcare processes. Wireless networks can exhibit unpredictable interactions between algorithms from multiple protocol layers, interactions between multiple devices, and hardware specific influences. These interactions can lead to a difference between real-world functioning and design time functioning. Data science methods can help to detect the actual behavior and possibly help to correct it. Data science is increasingly used in wireless research. To support data-driven research in wireless networks, this paper illustrates the step-by-step methodology that has to be applied to extract knowledge from raw data traces. To this end, the paper (i) clarifies when, why and how to use data science in wireless network research; (ii) provides a generic framework for applying data science in wireless networks; (iii) gives an overview of existing research papers that utilized data science approaches in wireless networks; (iv) illustrates the overall knowledge discovery process through an extensive example in which device types are identified based on their traffic patterns; (v) provides the reader the necessary datasets and scripts to go through the tutorial steps themselves.

  5. Data-Driven Design of Intelligent Wireless Networks: An Overview and Tutorial

    PubMed Central

    Kulin, Merima; Fortuna, Carolina; De Poorter, Eli; Deschrijver, Dirk; Moerman, Ingrid

    2016-01-01

    Data science or “data-driven research” is a research approach that uses real-life data to gain insight about the behavior of systems. It enables the analysis of small, simple as well as large and more complex systems in order to assess whether they function according to the intended design and as seen in simulation. Data science approaches have been successfully applied to analyze networked interactions in several research areas such as large-scale social networks, advanced business and healthcare processes. Wireless networks can exhibit unpredictable interactions between algorithms from multiple protocol layers, interactions between multiple devices, and hardware specific influences. These interactions can lead to a difference between real-world functioning and design time functioning. Data science methods can help to detect the actual behavior and possibly help to correct it. Data science is increasingly used in wireless research. To support data-driven research in wireless networks, this paper illustrates the step-by-step methodology that has to be applied to extract knowledge from raw data traces. To this end, the paper (i) clarifies when, why and how to use data science in wireless network research; (ii) provides a generic framework for applying data science in wireless networks; (iii) gives an overview of existing research papers that utilized data science approaches in wireless networks; (iv) illustrates the overall knowledge discovery process through an extensive example in which device types are identified based on their traffic patterns; (v) provides the reader the necessary datasets and scripts to go through the tutorial steps themselves. PMID:27258286

  6. New frontiers for intelligent content-based retrieval

    NASA Astrophysics Data System (ADS)

    Benitez, Ana B.; Smith, John R.

    2001-01-01

    In this paper, we examine emerging frontiers in the evolution of content-based retrieval systems that rely on an intelligent infrastructure. Here, we refer to intelligence as the capabilities of the systems to build and maintain situational or world models, utilize dynamic knowledge representation, exploit context, and leverage advanced reasoning and learning capabilities. We argue that these elements are essential to producing effective systems for retrieving audio-visual content at semantic levels matching those of human perception and cognition. In this paper, we review relevant research on the understanding of human intelligence and construction of intelligent system in the fields of cognitive psychology, artificial intelligence, semiotics, and computer vision. We also discus how some of the principal ideas form these fields lead to new opportunities and capabilities for content-based retrieval systems. Finally, we describe some of our efforts in these directions. In particular, we present MediaNet, a multimedia knowledge presentation framework, and some MPEG-7 description tools that facilitate and enable intelligent content-based retrieval.

  7. New frontiers for intelligent content-based retrieval

    NASA Astrophysics Data System (ADS)

    Benitez, Ana B.; Smith, John R.

    2000-12-01

    In this paper, we examine emerging frontiers in the evolution of content-based retrieval systems that rely on an intelligent infrastructure. Here, we refer to intelligence as the capabilities of the systems to build and maintain situational or world models, utilize dynamic knowledge representation, exploit context, and leverage advanced reasoning and learning capabilities. We argue that these elements are essential to producing effective systems for retrieving audio-visual content at semantic levels matching those of human perception and cognition. In this paper, we review relevant research on the understanding of human intelligence and construction of intelligent system in the fields of cognitive psychology, artificial intelligence, semiotics, and computer vision. We also discus how some of the principal ideas form these fields lead to new opportunities and capabilities for content-based retrieval systems. Finally, we describe some of our efforts in these directions. In particular, we present MediaNet, a multimedia knowledge presentation framework, and some MPEG-7 description tools that facilitate and enable intelligent content-based retrieval.

  8. ASI aurora search: an attempt of intelligent image processing for circular fisheye lens.

    PubMed

    Yang, Xi; Gao, Xinbo; Song, Bin; Wang, Nannan; Yang, Dong

    2018-04-02

    The circular fisheye lens exhibits an approximately 180° angular field-of-view (FOV), which is much larger than that of an ordinary lens. Thus, images captured with a circular fisheye lens are distributed non-uniformly with spherical deformation. Along with the fast development of deep neural networks for normal images, how to apply it to achieve intelligent image processing for a circular fisheye lens is a new task of significant importance. In this paper, we take the aurora images captured with all-sky-imagers (ASI) as a typical example. By analyzing the imaging principle of ASI and the magnetic characteristics of the aurora, a deformed region division (DRD) scheme is proposed to replace the region proposals network (RPN) in the advanced mask regional convolutional neural network (Mask R-CNN) framework. Thus, each image can be regarded as a "bag" of deformed regions represented with CNN features. After clustering all CNN features to generate a vocabulary, each deformed region is quantified to its nearest center for indexing. On the stage of an online search, a similarity score is computed by measuring the distances between regions in the query image and all regions in the data set, and the image with the highest value is outputted as the top rank search result. Experimental results show that the proposed method greatly improves the search accuracy and efficiency, demonstrating that it is a valuable attempt of intelligent image processing for circular fisheye lenses.

  9. Integrating Human and Computer Intelligence. Technical Report No. 32.

    ERIC Educational Resources Information Center

    Pea, Roy D.

    This paper explores the thesis that advances in computer applications and artificial intelligence have important implications for the study of development and learning in psychology. Current approaches to the use of computers as devices for problem solving, reasoning, and thinking--i.e., expert systems and intelligent tutoring systems--are…

  10. Intelligent Vehicle Initiative : needs assessment

    DOT National Transportation Integrated Search

    1999-11-01

    The aim of the Intelligent Vehicle Initiative (IVI) is to accelerate the development and availability of advanced safety and information systems for a variety of vehicle types. Public transit, through the Federal Transit Administration (FTA), is an a...

  11. Matrix Completion Optimization for Localization in Wireless Sensor Networks for Intelligent IoT

    PubMed Central

    Nguyen, Thu L. N.; Shin, Yoan

    2016-01-01

    Localization in wireless sensor networks (WSNs) is one of the primary functions of the intelligent Internet of Things (IoT) that offers automatically discoverable services, while the localization accuracy is a key issue to evaluate the quality of those services. In this paper, we develop a framework to solve the Euclidean distance matrix completion problem, which is an important technical problem for distance-based localization in WSNs. The sensor network localization problem is described as a low-rank dimensional Euclidean distance completion problem with known nodes. The task is to find the sensor locations through recovery of missing entries of a squared distance matrix when the dimension of the data is small compared to the number of data points. We solve a relaxation optimization problem using a modification of Newton’s method, where the cost function depends on the squared distance matrix. The solution obtained in our scheme achieves a lower complexity and can perform better if we use it as an initial guess for an interactive local search of other higher precision localization scheme. Simulation results show the effectiveness of our approach. PMID:27213378

  12. Simulation Framework for Intelligent Transportation Systems

    DOT National Transportation Integrated Search

    1996-10-01

    A simulation framework has been developed for a large-scale, comprehensive, scaleable simulation of an Intelligent Transportation System. The simulator is designed for running on parellel computers and distributed (networked) computer systems, but ca...

  13. Artificial Neural Networks and Instructional Technology.

    ERIC Educational Resources Information Center

    Carlson, Patricia A.

    1991-01-01

    Artificial neural networks (ANN), part of artificial intelligence, are discussed. Such networks are fed sample cases (training sets), learn how to recognize patterns in the sample data, and use this experience in handling new cases. Two cognitive roles for ANNs (intelligent filters and spreading, associative memories) are examined. Prototypes…

  14. Advancing satellite operations with intelligent graphical monitoring systems

    NASA Technical Reports Server (NTRS)

    Hughes, Peter M.; Shirah, Gregory W.; Luczak, Edward C.

    1993-01-01

    For nearly twenty-five years, spacecraft missions have been operated in essentially the same manner: human operators monitor displays filled with alphanumeric text watching for limit violations or other indicators that signal a problem. The task is performed predominately by humans. Only in recent years have graphical user interfaces and expert systems been accepted within the control center environment to help reduce operator workloads. Unfortunately, the development of these systems is often time consuming and costly. At the NASA Goddard Space Flight Center (GSFC), a new domain specific expert system development tool called the Generic Spacecraft Analyst Assistant (GenSAA) has been developed. Through the use of a highly graphical user interface and point-and-click operation, GenSAA facilitates the rapid, 'programming-free' construction of intelligent graphical monitoring systems to serve as real-time, fault-isolation assistants for spacecraft analysts. Although specifically developed to support real-time satellite monitoring, GenSAA can support the development of intelligent graphical monitoring systems in a variety of space and commercial applications.

  15. Science of the science, drug discovery and artificial neural networks.

    PubMed

    Patel, Jigneshkumar

    2013-03-01

    Drug discovery process many times encounters complex problems, which may be difficult to solve by human intelligence. Artificial Neural Networks (ANNs) are one of the Artificial Intelligence (AI) technologies used for solving such complex problems. ANNs are widely used for primary virtual screening of compounds, quantitative structure activity relationship studies, receptor modeling, formulation development, pharmacokinetics and in all other processes involving complex mathematical modeling. Despite having such advanced technologies and enough understanding of biological systems, drug discovery is still a lengthy, expensive, difficult and inefficient process with low rate of new successful therapeutic discovery. In this paper, author has discussed the drug discovery science and ANN from very basic angle, which may be helpful to understand the application of ANN for drug discovery to improve efficiency.

  16. User Needs and Advances in Space Wireless Sensing and Communications

    NASA Technical Reports Server (NTRS)

    Kegege, Obadiah

    2017-01-01

    Decades of space exploration and technology trends for future missions show the need for new approaches in space/planetary sensor networks, observatories, internetworking, and communications/data delivery to Earth. The User Needs to be discussed in this talk includes interviews with several scientists and reviews of mission concepts for the next generation of sensors, observatories, and planetary surface missions. These observatories, sensors are envisioned to operate in extreme environments, with advanced autonomy, whereby sometimes communication to Earth is intermittent and delayed. These sensor nodes require software defined networking capabilities in order to learn and adapt to the environment, collect science data, internetwork, and communicate. Also, some user cases require the level of intelligence to manage network functions (either as a host), mobility, security, and interface data to the physical radio/optical layer. For instance, on a planetary surface, autonomous sensor nodes would create their own ad-hoc network, with some nodes handling communication capabilities between the wireless sensor networks and orbiting relay satellites. A section of this talk will cover the advances in space communication and internetworking to support future space missions. NASA's Space Communications and Navigation (SCaN) program continues to evolve with the development of optical communication, a new vision of the integrated network architecture with more capabilities, and the adoption of CCSDS space internetworking protocols. Advances in wireless communications hardware and electronics have enabled software defined networking (DVB-S2, VCM, ACM, DTN, Ad hoc, etc.) protocols for improved wireless communication and network management. Developing technologies to fulfil these user needs for wireless communications and adoption of standardized communication/internetworking protocols will be a huge benefit to future planetary missions, space observatories, and manned missions

  17. Intelligent agent-based intrusion detection system using enhanced multiclass SVM.

    PubMed

    Ganapathy, S; Yogesh, P; Kannan, A

    2012-01-01

    Intrusion detection systems were used in the past along with various techniques to detect intrusions in networks effectively. However, most of these systems are able to detect the intruders only with high false alarm rate. In this paper, we propose a new intelligent agent-based intrusion detection model for mobile ad hoc networks using a combination of attribute selection, outlier detection, and enhanced multiclass SVM classification methods. For this purpose, an effective preprocessing technique is proposed that improves the detection accuracy and reduces the processing time. Moreover, two new algorithms, namely, an Intelligent Agent Weighted Distance Outlier Detection algorithm and an Intelligent Agent-based Enhanced Multiclass Support Vector Machine algorithm are proposed for detecting the intruders in a distributed database environment that uses intelligent agents for trust management and coordination in transaction processing. The experimental results of the proposed model show that this system detects anomalies with low false alarm rate and high-detection rate when tested with KDD Cup 99 data set.

  18. Intelligent Agent-Based Intrusion Detection System Using Enhanced Multiclass SVM

    PubMed Central

    Ganapathy, S.; Yogesh, P.; Kannan, A.

    2012-01-01

    Intrusion detection systems were used in the past along with various techniques to detect intrusions in networks effectively. However, most of these systems are able to detect the intruders only with high false alarm rate. In this paper, we propose a new intelligent agent-based intrusion detection model for mobile ad hoc networks using a combination of attribute selection, outlier detection, and enhanced multiclass SVM classification methods. For this purpose, an effective preprocessing technique is proposed that improves the detection accuracy and reduces the processing time. Moreover, two new algorithms, namely, an Intelligent Agent Weighted Distance Outlier Detection algorithm and an Intelligent Agent-based Enhanced Multiclass Support Vector Machine algorithm are proposed for detecting the intruders in a distributed database environment that uses intelligent agents for trust management and coordination in transaction processing. The experimental results of the proposed model show that this system detects anomalies with low false alarm rate and high-detection rate when tested with KDD Cup 99 data set. PMID:23056036

  19. Overview of NASA Glenn Research Center's Communications and Intelligent Systems Division

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.

    2016-01-01

    The Communications and Intelligent Systems Division provides expertise, plans, conducts and directs research and engineering development in the competency fields of advanced communications and intelligent systems technologies for application in current and future aeronautics and space systems.

  20. Neuroanatomical Correlates of Intelligence

    ERIC Educational Resources Information Center

    Luders, Eileen; Narr, Katherine L.; Thompson, Paul M.; Toga, Arthur W.

    2009-01-01

    With the advancement of image acquisition and analysis methods in recent decades, unique opportunities have emerged to study the neuroanatomical correlates of intelligence. Traditional approaches examining global measures have been complemented by insights from more regional analyses based on pre-defined areas. Newer state-of-the-art approaches…

  1. Study of intelligent building system based on the internet of things

    NASA Astrophysics Data System (ADS)

    Wan, Liyong; Xu, Renbo

    2017-03-01

    In accordance with the problem such as isolated subsystems, weak system linkage and expansibility of the bus type buildings management system, this paper based on the modern intelligent buildings has studied some related technologies of the intelligent buildings and internet of things, and designed system architecture of the intelligent buildings based on the Internet of Things. Meanwhile, this paper has also analyzed wireless networking modes, wireless communication protocol and wireless routing protocol of the intelligent buildings based on the Internet of Things.

  2. A hybrid intelligent algorithm for portfolio selection problem with fuzzy returns

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Zhang, Yang; Wong, Hau-San; Qin, Zhongfeng

    2009-11-01

    Portfolio selection theory with fuzzy returns has been well developed and widely applied. Within the framework of credibility theory, several fuzzy portfolio selection models have been proposed such as mean-variance model, entropy optimization model, chance constrained programming model and so on. In order to solve these nonlinear optimization models, a hybrid intelligent algorithm is designed by integrating simulated annealing algorithm, neural network and fuzzy simulation techniques, where the neural network is used to approximate the expected value and variance for fuzzy returns and the fuzzy simulation is used to generate the training data for neural network. Since these models are used to be solved by genetic algorithm, some comparisons between the hybrid intelligent algorithm and genetic algorithm are given in terms of numerical examples, which imply that the hybrid intelligent algorithm is robust and more effective. In particular, it reduces the running time significantly for large size problems.

  3. A multi-agent intelligent environment for medical knowledge.

    PubMed

    Vicari, Rosa M; Flores, Cecilia D; Silvestre, André M; Seixas, Louise J; Ladeira, Marcelo; Coelho, Helder

    2003-03-01

    AMPLIA is a multi-agent intelligent learning environment designed to support training of diagnostic reasoning and modelling of domains with complex and uncertain knowledge. AMPLIA focuses on the medical area. It is a system that deals with uncertainty under the Bayesian network approach, where learner-modelling tasks will consist of creating a Bayesian network for a problem the system will present. The construction of a network involves qualitative and quantitative aspects. The qualitative part concerns the network topology, that is, causal relations among the domain variables. After it is ready, the quantitative part is specified. It is composed of the distribution of conditional probability of the variables represented. A negotiation process (managed by an intelligent MediatorAgent) will treat the differences of topology and probability distribution between the model the learner built and the one built-in in the system. That negotiation process occurs between the agents that represent the expert knowledge domain (DomainAgent) and the agent that represents the learner knowledge (LearnerAgent).

  4. Advanced optical network architecture for integrated digital avionics

    NASA Astrophysics Data System (ADS)

    Morgan, D. Reed

    1996-12-01

    For the first time in the history of avionics, the network designer now has a choice in selecting the media that interconnects the sources and sinks of digital data on aircraft. Electrical designs are already giving way to photonics in application areas where the data rate times distance product is large or where special design requirements such as low weight or EMI considerations are critical. Future digital avionic architectures will increasingly favor the use of photonic interconnects as network data rates of one gigabit/second and higher are needed to support real-time operation of high-speed integrated digital processing. As the cost of optical network building blocks is reduced and as temperature-rugged laser sources are matured, metal interconnects will be forced to retreat to applications spanning shorter and shorter distances. Although the trend is already underway, the widespread use of digital optics will first occur at the system level, where gigabit/second, real-time interconnects between sensors, processors, mass memories and displays separated by a least of few meters will be required. The application of photonic interconnects for inter-printed wiring board signalling across the backplane will eventually find application for gigabit/second applications since signal degradation over copper traces occurs before one gigabit/second and 0.5 meters are reached. For the foreseeable future however, metal interconnects will continue to be used to interconnect devices on printed wiring boards since 5 gigabit/second signals can be sent over metal up to around 15 centimeters. Current-day applications of optical interconnects at the system level are described and a projection of how advanced optical interconnect technology will be driven by the use of high speed integrated digital processing on future aircraft is presented. The recommended advanced network for application in the 2010 time frame is a fiber-based system with a signalling speed of around 2

  5. A Visual Cortical Network for Deriving Phonological Information from Intelligible Lip Movements.

    PubMed

    Hauswald, Anne; Lithari, Chrysa; Collignon, Olivier; Leonardelli, Elisa; Weisz, Nathan

    2018-05-07

    Successful lip-reading requires a mapping from visual to phonological information [1]. Recently, visual and motor cortices have been implicated in tracking lip movements (e.g., [2]). It remains unclear, however, whether visuo-phonological mapping occurs already at the level of the visual cortex-that is, whether this structure tracks the acoustic signal in a functionally relevant manner. To elucidate this, we investigated how the cortex tracks (i.e., entrains to) absent acoustic speech signals carried by silent lip movements. Crucially, we contrasted the entrainment to unheard forward (intelligible) and backward (unintelligible) acoustic speech. We observed that the visual cortex exhibited stronger entrainment to the unheard forward acoustic speech envelope compared to the unheard backward acoustic speech envelope. Supporting the notion of a visuo-phonological mapping process, this forward-backward difference of occipital entrainment was not present for actually observed lip movements. Importantly, the respective occipital region received more top-down input, especially from left premotor, primary motor, and somatosensory regions and, to a lesser extent, also from posterior temporal cortex. Strikingly, across participants, the extent of top-down modulation of the visual cortex stemming from these regions partially correlated with the strength of entrainment to absent acoustic forward speech envelope, but not to present forward lip movements. Our findings demonstrate that a distributed cortical network, including key dorsal stream auditory regions [3-5], influences how the visual cortex shows sensitivity to the intelligibility of speech while tracking silent lip movements. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. An integrative architecture for general intelligence and executive function revealed by lesion mapping

    PubMed Central

    Colom, Roberto; Solomon, Jeffrey; Krueger, Frank; Forbes, Chad; Grafman, Jordan

    2012-01-01

    Although cognitive neuroscience has made remarkable progress in understanding the involvement of the prefrontal cortex in executive control, the broader functional networks that support high-level cognition and give rise to general intelligence remain to be well characterized. Here, we investigated the neural substrates of the general factor of intelligence (g) and executive function in 182 patients with focal brain damage using voxel-based lesion–symptom mapping. The Wechsler Adult Intelligence Scale and Delis–Kaplan Executive Function System were used to derive measures of g and executive function, respectively. Impaired performance on these measures was associated with damage to a distributed network of left lateralized brain areas, including regions of frontal and parietal cortex and white matter association tracts, which bind these areas into a coordinated system. The observed findings support an integrative framework for understanding the architecture of general intelligence and executive function, supporting their reliance upon a shared fronto-parietal network for the integration and control of cognitive representations and making specific recommendations for the application of the Wechsler Adult Intelligence Scale and Delis–Kaplan Executive Function System to the study of high-level cognition in health and disease. PMID:22396393

  7. Developmental Process Model for the Java Intelligent Tutoring System

    ERIC Educational Resources Information Center

    Sykes, Edward

    2007-01-01

    The Java Intelligent Tutoring System (JITS) was designed and developed to support the growing trend of Java programming around the world. JITS is an advanced web-based personalized tutoring system that is unique in several ways. Most programming Intelligent Tutoring Systems require the teacher to author problems with corresponding solutions. JITS,…

  8. Cost-effective implementation of intelligent systems

    NASA Technical Reports Server (NTRS)

    Lum, Henry, Jr.; Heer, Ewald

    1990-01-01

    Significant advances have occurred during the last decade in knowledge-based engineering research and knowledge-based system (KBS) demonstrations and evaluations using integrated intelligent system technologies. Performance and simulation data obtained to date in real-time operational environments suggest that cost-effective utilization of intelligent system technologies can be realized. In this paper the rationale and potential benefits for typical examples of application projects that demonstrate an increase in productivity through the use of intelligent system technologies are discussed. These demonstration projects have provided an insight into additional technology needs and cultural barriers which are currently impeding the transition of the technology into operational environments. Proposed methods which addresses technology evolution and implementation are also discussed.

  9. Academic research opportunities at the National Geospatial-Intelligence Agency(NGA)

    NASA Astrophysics Data System (ADS)

    Loomer, Scott A.

    2006-05-01

    The vision of the National Geospatial-Intelligence Agency (NGA) is to "Know the Earth...Show the Way." To achieve this vision, the NGA provides geospatial intelligence in all its forms and from whatever source-imagery, imagery intelligence, and geospatial data and information-to ensure the knowledge foundation for planning, decision, and action. Academia plays a key role in the NGA research and development program through the NGA Academic Research Program. This multi-disciplinary program of basic research in geospatial intelligence topics provides grants and fellowships to the leading investigators, research universities, and colleges of the nation. This research provides the fundamental science support to NGA's applied and advanced research programs. The major components of the NGA Academic Research Program are: *NGA University Research Initiatives (NURI): Three-year basic research grants awarded competitively to the best investigators across the US academic community. Topics are selected to provide the scientific basis for advanced and applied research in NGA core disciplines. *Historically Black College and University - Minority Institution Research Initiatives (HBCU-MI): Two-year basic research grants awarded competitively to the best investigators at Historically Black Colleges and Universities, and Minority Institutions across the US academic community. *Intelligence Community Post-Doctoral Research Fellowships: Fellowships providing access to advanced research in science and technology applicable to the intelligence community's mission. The program provides a pool of researchers to support future intelligence community needs and develops long-term relationships with researchers as they move into career positions. This paper provides information about the NGA Academic Research Program, the projects it supports and how researchers and institutions can apply for grants under the program. In addition, other opportunities for academia to engage with NGA through

  10. The role of soft computing in intelligent machines.

    PubMed

    de Silva, Clarence W

    2003-08-15

    An intelligent machine relies on computational intelligence in generating its intelligent behaviour. This requires a knowledge system in which representation and processing of knowledge are central functions. Approximation is a 'soft' concept, and the capability to approximate for the purposes of comparison, pattern recognition, reasoning, and decision making is a manifestation of intelligence. This paper examines the use of soft computing in intelligent machines. Soft computing is an important branch of computational intelligence, where fuzzy logic, probability theory, neural networks, and genetic algorithms are synergistically used to mimic the reasoning and decision making of a human. This paper explores several important characteristics and capabilities of machines that exhibit intelligent behaviour. Approaches that are useful in the development of an intelligent machine are introduced. The paper presents a general structure for an intelligent machine, giving particular emphasis to its primary components, such as sensors, actuators, controllers, and the communication backbone, and their interaction. The role of soft computing within the overall system is discussed. Common techniques and approaches that will be useful in the development of an intelligent machine are introduced, and the main steps in the development of an intelligent machine for practical use are given. An industrial machine, which employs the concepts of soft computing in its operation, is presented, and one aspect of intelligent tuning, which is incorporated into the machine, is illustrated.

  11. Early-Life Intelligence Predicts Midlife Biological Age.

    PubMed

    Schaefer, Jonathan D; Caspi, Avshalom; Belsky, Daniel W; Harrington, Honalee; Houts, Renate; Israel, Salomon; Levine, Morgan E; Sugden, Karen; Williams, Benjamin; Poulton, Richie; Moffitt, Terrie E

    2016-11-01

    Early-life intelligence has been shown to predict multiple causes of death in populations around the world. This finding suggests that intelligence might influence mortality through its effects on a general process of physiological deterioration (i.e., individual variation in "biological age"). We examined whether intelligence could predict measures of aging at midlife before the onset of most age-related disease. We tested whether intelligence assessed in early childhood, middle childhood, and midlife predicted midlife biological age in members of the Dunedin Study, a population-representative birth cohort. Lower intelligence predicted more advanced biological age at midlife as captured by perceived facial age, a 10-biomarker algorithm based on data from the National Health and Nutrition Examination Survey (NHANES), and Framingham heart age (r = 0.1-0.2). Correlations between intelligence and telomere length were less consistent. The associations between intelligence and biological age were not explained by differences in childhood health or parental socioeconomic status, and intelligence remained a significant predictor of biological age even when intelligence was assessed before Study members began their formal schooling. These results suggest that accelerated aging may serve as one of the factors linking low early-life intelligence to increased rates of morbidity and mortality. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Tool path strategy and cutting process monitoring in intelligent machining

    NASA Astrophysics Data System (ADS)

    Chen, Ming; Wang, Chengdong; An, Qinglong; Ming, Weiwei

    2018-06-01

    Intelligent machining is a current focus in advanced manufacturing technology, and is characterized by high accuracy and efficiency. A central technology of intelligent machining—the cutting process online monitoring and optimization—is urgently needed for mass production. In this research, the cutting process online monitoring and optimization in jet engine impeller machining, cranio-maxillofacial surgery, and hydraulic servo valve deburring are introduced as examples of intelligent machining. Results show that intelligent tool path optimization and cutting process online monitoring are efficient techniques for improving the efficiency, quality, and reliability of machining.

  13. Artificial Intelligence and Spacecraft Power Systems

    NASA Technical Reports Server (NTRS)

    Dugel-Whitehead, Norma R.

    1997-01-01

    This talk will present the work which has been done at NASA Marshall Space Flight Center involving the use of Artificial Intelligence to control the power system in a spacecraft. The presentation will include a brief history of power system automation, and some basic definitions of the types of artificial intelligence which have been investigated at MSFC for power system automation. A video tape of one of our autonomous power systems using co-operating expert systems, and advanced hardware will be presented.

  14. Advanced Twisted Pair Cables for Distributed Local Area Networks in Intelligent Structure Systems

    NASA Astrophysics Data System (ADS)

    Semenov, Andrey

    2018-03-01

    The possibility of a significant increase in the length of cable communication channels of local area networks of automation and engineering support systems of buildings in the case of their implementation on balanced twisted pair cables is shown. Assuming a direct connection scheme and an effective speed of 100 Mbit/s, analytical relationships are obtained for the calculation of the maximum communication distance. The necessity of using in the linear part of such systems of twisted pair cables with U/UTP structure and interference parameters at the level of category 5e is grounded.

  15. Intelligent imaging systems for automotive applications

    NASA Astrophysics Data System (ADS)

    Thompson, Chris; Huang, Yingping; Fu, Shan

    2004-03-01

    In common with many other application areas, visual signals are becoming an increasingly important information source for many automotive applications. For several years CCD cameras have been used as research tools for a range of automotive applications. Infrared cameras, RADAR and LIDAR are other types of imaging sensors that have also been widely investigated for use in cars. This paper will describe work in this field performed in C2VIP over the last decade - starting with Night Vision Systems and looking at various other Advanced Driver Assistance Systems. Emerging from this experience, we make the following observations which are crucial for "intelligent" imaging systems: 1. Careful arrangement of sensor array. 2. Dynamic-Self-Calibration. 3. Networking and processing. 4. Fusion with other imaging sensors, both at the image level and the feature level, provides much more flexibility and reliability in complex situations. We will discuss how these problems can be addressed and what are the outstanding issues.

  16. Passive and Active Analysis in DSR-Based Ad Hoc Networks

    NASA Astrophysics Data System (ADS)

    Dempsey, Tae; Sahin, Gokhan; Morton, Y. T. (Jade)

    Security and vulnerabilities in wireless ad hoc networks have been considered at different layers, and many attack strategies have been proposed, including denial of service (DoS) through the intelligent jamming of the most critical packet types of flows in a network. This paper investigates the effectiveness of intelligent jamming in wireless ad hoc networks using the Dynamic Source Routing (DSR) and TCP protocols and introduces an intelligent classifier to facilitate the jamming of such networks. Assuming encrypted packet headers and contents, our classifier is based solely on the observable characteristics of size, inter-arrival timing, and direction and classifies packets with up to 99.4% accuracy in our experiments. Furthermore, we investigate active analysis, which is the combination of a classifier and intelligent jammer to invoke specific responses from a victim network.

  17. Adaptive pattern recognition by mini-max neural networks as a part of an intelligent processor

    NASA Technical Reports Server (NTRS)

    Szu, Harold H.

    1990-01-01

    In this decade and progressing into 21st Century, NASA will have missions including Space Station and the Earth related Planet Sciences. To support these missions, a high degree of sophistication in machine automation and an increasing amount of data processing throughput rate are necessary. Meeting these challenges requires intelligent machines, designed to support the necessary automations in a remote space and hazardous environment. There are two approaches to designing these intelligent machines. One of these is the knowledge-based expert system approach, namely AI. The other is a non-rule approach based on parallel and distributed computing for adaptive fault-tolerances, namely Neural or Natural Intelligence (NI). The union of AI and NI is the solution to the problem stated above. The NI segment of this unit extracts features automatically by applying Cauchy simulated annealing to a mini-max cost energy function. The feature discovered by NI can then be passed to the AI system for future processing, and vice versa. This passing increases reliability, for AI can follow the NI formulated algorithm exactly, and can provide the context knowledge base as the constraints of neurocomputing. The mini-max cost function that solves the unknown feature can furthermore give us a top-down architectural design of neural networks by means of Taylor series expansion of the cost function. A typical mini-max cost function consists of the sample variance of each class in the numerator, and separation of the center of each class in the denominator. Thus, when the total cost energy is minimized, the conflicting goals of intraclass clustering and interclass segregation are achieved simultaneously.

  18. Intelligent Systems for Power Management and Distribution

    NASA Technical Reports Server (NTRS)

    Button, Robert M.

    2002-01-01

    The motivation behind an advanced technology program to develop intelligent power management and distribution (PMAD) systems is described. The program concentrates on developing digital control and distributed processing algorithms for PMAD components and systems to improve their size, weight, efficiency, and reliability. Specific areas of research in developing intelligent DC-DC converters and distributed switchgear are described. Results from recent development efforts are presented along with expected future benefits to the overall PMAD system performance.

  19. Modeling Signaling Networks to Advance New Cancer Therapies.

    PubMed

    Saez-Rodriguez, Julio; MacNamara, Aidan; Cook, Simon

    2015-01-01

    Cell signaling pathways control cells' responses to their environment through an intricate network of proteins and small molecules partitioned by intracellular structures, such as the cytoskeleton and nucleus. Our understanding of these pathways has been revised recently with the advent of more advanced experimental techniques; no longer are signaling pathways viewed as linear cascades of information flowing from membrane-bound receptors to the nucleus. Instead, such pathways must be understood in the context of networks, and studying such networks requires an integration of computational and experimental approaches. This understanding is becoming more important in designing novel therapies for diseases such as cancer. Using the MAPK (mitogen-activated protein kinase) and PI3K (class I phosphoinositide-3' kinase) pathways as case studies of cellular signaling, we give an overview of these pathways and their functions. We then describe, using a number of case studies, how computational modeling has aided in understanding these pathways' deregulation in cancer, and how such understanding can be used to optimally tailor current therapies or help design new therapies against cancer.

  20. Building intelligent systems: Artificial intelligence research at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Friedland, P.; Lum, H.

    1987-01-01

    The basic components that make up the goal of building autonomous intelligent systems are discussed, and ongoing work at the NASA Ames Research Center is described. It is noted that a clear progression of systems can be seen through research settings (both within and external to NASA) to Space Station testbeds to systems which actually fly on the Space Station. The starting point for the discussion is a truly autonomous Space Station intelligent system, responsible for a major portion of Space Station control. Attention is given to research in fiscal 1987, including reasoning under uncertainty, machine learning, causal modeling and simulation, knowledge from design through operations, advanced planning work, validation methodologies, and hierarchical control of and distributed cooperation among multiple knowledge-based systems.

  1. Building intelligent systems - Artificial intelligence research at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Friedland, Peter; Lum, Henry

    1987-01-01

    The basic components that make up the goal of building autonomous intelligent systems are discussed, and ongoing work at the NASA Ames Research Center is described. It is noted that a clear progression of systems can be seen through research settings (both within and external to NASA) to Space Station testbeds to systems which actually fly on the Space Station. The starting point for the discussion is a 'truly' autonomous Space Station intelligent system, responsible for a major portion of Space Station control. Attention is given to research in fiscal 1987, including reasoning under uncertainty, machine learning, causal modeling and simulation, knowledge from design through operations, advanced planning work, validation methodologies, and hierarchical control of and distributed cooperation among multiple knowledge-based systems.

  2. Algorithms for Efficient Intelligence Collection

    DTIC Science & Technology

    2013-09-01

    2006. Cortical substrates for exploratory decisions in humans. Nature 441(7095) 876–879. Deitchman, S. J. 1962. A lanchester model of guerrilla...Monterey, CA. Pearl, J. 1986. Fusion, propagation and structuring in belief networks. Artificial Intelligence 29 241–288. Schaffer, M. B. 1968. Lanchester

  3. Emerging interdisciplinary fields in the coming intelligence/convergence era

    NASA Astrophysics Data System (ADS)

    Noor, Ahmed K.

    2012-09-01

    Dramatic advances are in the horizon resulting from rapid pace of development of several technologies, including, computing, communication, mobile, robotic, and interactive technologies. These advances, along with the trend towards convergence of traditional engineering disciplines with physical, life and other science disciplines will result in the development of new interdisciplinary fields, as well as in new paradigms for engineering practice in the coming intelligence/convergence era (post-information age). The interdisciplinary fields include Cyber Engineering, Living Systems Engineering, Biomechatronics/Robotics Engineering, Knowledge Engineering, Emergent/Complexity Engineering, and Multiscale Systems engineering. The paper identifies some of the characteristics of the intelligence/convergence era, gives broad definition of convergence, describes some of the emerging interdisciplinary fields, and lists some of the academic and other organizations working in these disciplines. The need is described for establishing a Hierarchical Cyber-Physical Ecosystem for facilitating interdisciplinary collaborations, and accelerating development of skilled workforce in the new fields. The major components of the ecosystem are listed. The new interdisciplinary fields will yield critical advances in engineering practice, and help in addressing future challenges in broad array of sectors, from manufacturing to energy, transportation, climate, and healthcare. They will also enable building large future complex adaptive systems-of-systems, such as intelligent multimodal transportation systems, optimized multi-energy systems, intelligent disaster prevention systems, and smart cities.

  4. Intelligent Vehicle Health Management

    NASA Technical Reports Server (NTRS)

    Paris, Deidre E.; Trevino, Luis; Watson, Michael D.

    2005-01-01

    objectives: Guidance and Navigation; Communications and Tracking; Vehicle Monitoring; Information Transport and Integration; Vehicle Diagnostics; Vehicle Prognostics; Vehicle mission Planning; Automated Repair and Replacement; Vehicle Control; Human Computer Interface; and Onboard Verification and Validation. Furthermore, the presented framework provides complete vehicle management which not only allows for increased crew safety and mission success through new intelligence capabilities, but also yields a mechanism for more efficient vehicle operations. The representative IVHM technologies for computer platform using heterogeneous communication, 3) coupled electromagnetic oscillators for enhanced communications, 4) Linux-based real-time systems, 5) genetic algorithms, 6) Bayesian Networks, 7) evolutionary algorithms, 8) dynamic systems control modeling, and 9) advanced sensing capabilities. This paper presents IVHM technologies developed under NASA's NFFP pilot project and the integration of these technologies forms the framework for IIVM.

  5. Intelligent failure-tolerant control

    NASA Technical Reports Server (NTRS)

    Stengel, Robert F.

    1991-01-01

    An overview of failure-tolerant control is presented, beginning with robust control, progressing through parallel and analytical redundancy, and ending with rule-based systems and artificial neural networks. By design or implementation, failure-tolerant control systems are 'intelligent' systems. All failure-tolerant systems require some degrees of robustness to protect against catastrophic failure; failure tolerance often can be improved by adaptivity in decision-making and control, as well as by redundancy in measurement and actuation. Reliability, maintainability, and survivability can be enhanced by failure tolerance, although each objective poses different goals for control system design. Artificial intelligence concepts are helpful for integrating and codifying failure-tolerant control systems, not as alternatives but as adjuncts to conventional design methods.

  6. Neurobiological correlates of emotional intelligence in voice and face perception networks

    PubMed Central

    Karle, Kathrin N; Ethofer, Thomas; Jacob, Heike; Brück, Carolin; Erb, Michael; Lotze, Martin; Nizielski, Sophia; Schütz, Astrid; Wildgruber, Dirk; Kreifelts, Benjamin

    2018-01-01

    Abstract Facial expressions and voice modulations are among the most important communicational signals to convey emotional information. The ability to correctly interpret this information is highly relevant for successful social interaction and represents an integral component of emotional competencies that have been conceptualized under the term emotional intelligence. Here, we investigated the relationship of emotional intelligence as measured with the Salovey-Caruso-Emotional-Intelligence-Test (MSCEIT) with cerebral voice and face processing using functional and structural magnetic resonance imaging. MSCEIT scores were positively correlated with increased voice-sensitivity and gray matter volume of the insula accompanied by voice-sensitivity enhanced connectivity between the insula and the temporal voice area, indicating generally increased salience of voices. Conversely, in the face processing system, higher MSCEIT scores were associated with decreased face-sensitivity and gray matter volume of the fusiform face area. Taken together, these findings point to an alteration in the balance of cerebral voice and face processing systems in the form of an attenuated face-vs-voice bias as one potential factor underpinning emotional intelligence. PMID:29365199

  7. Neurobiological correlates of emotional intelligence in voice and face perception networks.

    PubMed

    Karle, Kathrin N; Ethofer, Thomas; Jacob, Heike; Brück, Carolin; Erb, Michael; Lotze, Martin; Nizielski, Sophia; Schütz, Astrid; Wildgruber, Dirk; Kreifelts, Benjamin

    2018-02-01

    Facial expressions and voice modulations are among the most important communicational signals to convey emotional information. The ability to correctly interpret this information is highly relevant for successful social interaction and represents an integral component of emotional competencies that have been conceptualized under the term emotional intelligence. Here, we investigated the relationship of emotional intelligence as measured with the Salovey-Caruso-Emotional-Intelligence-Test (MSCEIT) with cerebral voice and face processing using functional and structural magnetic resonance imaging. MSCEIT scores were positively correlated with increased voice-sensitivity and gray matter volume of the insula accompanied by voice-sensitivity enhanced connectivity between the insula and the temporal voice area, indicating generally increased salience of voices. Conversely, in the face processing system, higher MSCEIT scores were associated with decreased face-sensitivity and gray matter volume of the fusiform face area. Taken together, these findings point to an alteration in the balance of cerebral voice and face processing systems in the form of an attenuated face-vs-voice bias as one potential factor underpinning emotional intelligence.

  8. Artificial intelligence and robot responsibilities: innovating beyond rights.

    PubMed

    Ashrafian, Hutan

    2015-04-01

    The enduring innovations in artificial intelligence and robotics offer the promised capacity of computer consciousness, sentience and rationality. The development of these advanced technologies have been considered to merit rights, however these can only be ascribed in the context of commensurate responsibilities and duties. This represents the discernable next-step for evolution in this field. Addressing these needs requires attention to the philosophical perspectives of moral responsibility for artificial intelligence and robotics. A contrast to the moral status of animals may be considered. At a practical level, the attainment of responsibilities by artificial intelligence and robots can benefit from the established responsibilities and duties of human society, as their subsistence exists within this domain. These responsibilities can be further interpreted and crystalized through legal principles, many of which have been conserved from ancient Roman law. The ultimate and unified goal of stipulating these responsibilities resides through the advancement of mankind and the enduring preservation of the core tenets of humanity.

  9. INDIRECT INTELLIGENT SLIDING MODE CONTROL OF A SHAPE MEMORY ALLOY ACTUATED FLEXIBLE BEAM USING HYSTERETIC RECURRENT NEURAL NETWORKS.

    PubMed

    Hannen, Jennifer C; Crews, John H; Buckner, Gregory D

    2012-08-01

    This paper introduces an indirect intelligent sliding mode controller (IISMC) for shape memory alloy (SMA) actuators, specifically a flexible beam deflected by a single offset SMA tendon. The controller manipulates applied voltage, which alters SMA tendon temperature to track reference bending angles. A hysteretic recurrent neural network (HRNN) captures the nonlinear, hysteretic relationship between SMA temperature and bending angle. The variable structure control strategy provides robustness to model uncertainties and parameter variations, while effectively compensating for system nonlinearities, achieving superior tracking compared to an optimized PI controller.

  10. Intelligent distributed medical image management

    NASA Astrophysics Data System (ADS)

    Garcia, Hong-Mei C.; Yun, David Y.

    1995-05-01

    The rapid advancements in high performance global communication have accelerated cooperative image-based medical services to a new frontier. Traditional image-based medical services such as radiology and diagnostic consultation can now fully utilize multimedia technologies in order to provide novel services, including remote cooperative medical triage, distributed virtual simulation of operations, as well as cross-country collaborative medical research and training. Fast (efficient) and easy (flexible) retrieval of relevant images remains a critical requirement for the provision of remote medical services. This paper describes the database system requirements, identifies technological building blocks for meeting the requirements, and presents a system architecture for our target image database system, MISSION-DBS, which has been designed to fulfill the goals of Project MISSION (medical imaging support via satellite integrated optical network) -- an experimental high performance gigabit satellite communication network with access to remote supercomputing power, medical image databases, and 3D visualization capabilities in addition to medical expertise anywhere and anytime around the country. The MISSION-DBS design employs a synergistic fusion of techniques in distributed databases (DDB) and artificial intelligence (AI) for storing, migrating, accessing, and exploring images. The efficient storage and retrieval of voluminous image information is achieved by integrating DDB modeling and AI techniques for image processing while the flexible retrieval mechanisms are accomplished by combining attribute- based and content-based retrievals.

  11. Computational intelligence and neuromorphic computing potential for cybersecurity applications

    NASA Astrophysics Data System (ADS)

    Pino, Robinson E.; Shevenell, Michael J.; Cam, Hasan; Mouallem, Pierre; Shumaker, Justin L.; Edwards, Arthur H.

    2013-05-01

    In today's highly mobile, networked, and interconnected internet world, the flow and volume of information is overwhelming and continuously increasing. Therefore, it is believed that the next frontier in technological evolution and development will rely in our ability to develop intelligent systems that can help us process, analyze, and make-sense of information autonomously just as a well-trained and educated human expert. In computational intelligence, neuromorphic computing promises to allow for the development of computing systems able to imitate natural neurobiological processes and form the foundation for intelligent system architectures.

  12. [Artificial intelligence in psychiatry-an overview].

    PubMed

    Meyer-Lindenberg, A

    2018-06-18

    Artificial intelligence and the underlying methods of machine learning and neuronal networks (NN) have made dramatic progress in recent years and have allowed computers to reach superhuman performance in domains that used to be thought of as uniquely human. In this overview, the underlying methodological developments that made this possible are briefly delineated and then the applications to psychiatry in three domains are discussed: precision medicine and biomarkers, natural language processing and artificial intelligence-based psychotherapeutic interventions. In conclusion, some of the risks of this new technology are mentioned.

  13. Identification and interpretation of patterns in rocket engine data: Artificial intelligence and neural network approaches

    NASA Technical Reports Server (NTRS)

    Ali, Moonis; Whitehead, Bruce; Gupta, Uday K.; Ferber, Harry

    1989-01-01

    This paper describes an expert system which is designed to perform automatic data analysis, identify anomalous events, and determine the characteristic features of these events. We have employed both artificial intelligence and neural net approaches in the design of this expert system. The artificial intelligence approach is useful because it provides (1) the use of human experts' knowledge of sensor behavior and faulty engine conditions in interpreting data; (2) the use of engine design knowledge and physical sensor locations in establishing relationships among the events of multiple sensors; (3) the use of stored analysis of past data of faulty engine conditions; and (4) the use of knowledge-based reasoning in distinguishing sensor failure from actual faults. The neural network approach appears promising because neural nets (1) can be trained on extremely noisy data and produce classifications which are more robust under noisy conditions than other classification techniques; (2) avoid the necessity of noise removal by digital filtering and therefore avoid the need to make assumptions about frequency bands or other signal characteristics of anomalous behavior; (3) can, in effect, generate their own feature detectors based on the characteristics of the sensor data used in training; and (4) are inherently parallel and therefore are potentially implementable in special-purpose parallel hardware.

  14. Ontology-Based Architecture for Intelligent Transportation Systems Using a Traffic Sensor Network.

    PubMed

    Fernandez, Susel; Hadfi, Rafik; Ito, Takayuki; Marsa-Maestre, Ivan; Velasco, Juan R

    2016-08-15

    Intelligent transportation systems are a set of technological solutions used to improve the performance and safety of road transportation. A crucial element for the success of these systems is the exchange of information, not only between vehicles, but also among other components in the road infrastructure through different applications. One of the most important information sources in this kind of systems is sensors. Sensors can be within vehicles or as part of the infrastructure, such as bridges, roads or traffic signs. Sensors can provide information related to weather conditions and traffic situation, which is useful to improve the driving process. To facilitate the exchange of information between the different applications that use sensor data, a common framework of knowledge is needed to allow interoperability. In this paper an ontology-driven architecture to improve the driving environment through a traffic sensor network is proposed. The system performs different tasks automatically to increase driver safety and comfort using the information provided by the sensors.

  15. Ontology-Based Architecture for Intelligent Transportation Systems Using a Traffic Sensor Network

    PubMed Central

    Fernandez, Susel; Hadfi, Rafik; Ito, Takayuki; Marsa-Maestre, Ivan; Velasco, Juan R.

    2016-01-01

    Intelligent transportation systems are a set of technological solutions used to improve the performance and safety of road transportation. A crucial element for the success of these systems is the exchange of information, not only between vehicles, but also among other components in the road infrastructure through different applications. One of the most important information sources in this kind of systems is sensors. Sensors can be within vehicles or as part of the infrastructure, such as bridges, roads or traffic signs. Sensors can provide information related to weather conditions and traffic situation, which is useful to improve the driving process. To facilitate the exchange of information between the different applications that use sensor data, a common framework of knowledge is needed to allow interoperability. In this paper an ontology-driven architecture to improve the driving environment through a traffic sensor network is proposed. The system performs different tasks automatically to increase driver safety and comfort using the information provided by the sensors. PMID:27537878

  16. Airborne Network Optimization with Dynamic Network Update

    DTIC Science & Technology

    2015-03-26

    Faculty Department of Electrical and Computer Engineering Graduate School of Engineering and Management Air Force Institute of Technology Air University...Member Dr. Barry E. Mullins Member AFIT-ENG-MS-15-M-030 Abstract Modern networks employ congestion and routing management algorithms that can perform...airborne networks. Intelligent agents can make use of Kalman filter predictions to make informed decisions to manage communication in airborne networks. The

  17. Collective intelligence for translational medicine: Crowdsourcing insights and innovation from an interdisciplinary biomedical research community.

    PubMed

    Budge, Eleanor Jane; Tsoti, Sandra Maria; Howgate, Daniel James; Sivakumar, Shivan; Jalali, Morteza

    2015-01-01

    Translational medicine bridges the gap between discoveries in biomedical science and their safe and effective clinical application. Despite the gross opportunity afforded by modern research for unparalleled advances in this field, the process of translation remains protracted. Efforts to expedite science translation have included the facilitation of interdisciplinary collaboration within both academic and clinical environments in order to generate integrated working platforms fuelling the sharing of knowledge, expertise, and tools to align biomedical research with clinical need. However, barriers to scientific translation remain, and further progress is urgently required. Collective intelligence and crowdsourcing applications offer the potential for global online networks, allowing connection and collaboration between a wide variety of fields. This would drive the alignment of biomedical science with biotechnology, clinical need, and patient experience, in order to deliver evidence-based innovation which can revolutionize medical care worldwide. Here we discuss the critical steps towards implementing collective intelligence in translational medicine using the experience of those in other fields of science and public health.

  18. Flight Test of an Intelligent Flight-Control System

    NASA Technical Reports Server (NTRS)

    Davidson, Ron; Bosworth, John T.; Jacobson, Steven R.; Thomson, Michael Pl; Jorgensen, Charles C.

    2003-01-01

    The F-15 Advanced Controls Technology for Integrated Vehicles (ACTIVE) airplane (see figure) was the test bed for a flight test of an intelligent flight control system (IFCS). This IFCS utilizes a neural network to determine critical stability and control derivatives for a control law, the real-time gains of which are computed by an algorithm that solves the Riccati equation. These derivatives are also used to identify the parameters of a dynamic model of the airplane. The model is used in a model-following portion of the control law, in order to provide specific vehicle handling characteristics. The flight test of the IFCS marks the initiation of the Intelligent Flight Control System Advanced Concept Program (IFCS ACP), which is a collaboration between NASA and Boeing Phantom Works. The goals of the IFCS ACP are to (1) develop the concept of a flight-control system that uses neural-network technology to identify aircraft characteristics to provide optimal aircraft performance, (2) develop a self-training neural network to update estimates of aircraft properties in flight, and (3) demonstrate the aforementioned concepts on the F-15 ACTIVE airplane in flight. The activities of the initial IFCS ACP were divided into three Phases, each devoted to the attainment of a different objective. The objective of Phase I was to develop a pre-trained neural network to store and recall the wind-tunnel-based stability and control derivatives of the vehicle. The objective of Phase II was to develop a neural network that can learn how to adjust the stability and control derivatives to account for failures or modeling deficiencies. The objective of Phase III was to develop a flight control system that uses the neural network outputs as a basis for controlling the aircraft. The flight test of the IFCS was performed in stages. In the first stage, the Phase I version of the pre-trained neural network was flown in a passive mode. The neural network software was running using flight data

  19. Advanced Communication and Networking Technologies for Mars Exploration

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul; Hayden, Jeff; Agre, Jonathan R.; Clare, Loren P.; Yan, Tsun-Yee

    2001-01-01

    Next-generation Mars communications networks will provide communications and navigation services to a wide variety of Mars science vehicles including: spacecraft that are arriving at Mars, spacecraft that are entering and descending in the Mars atmosphere, scientific orbiter spacecraft, spacecraft that return Mars samples to Earth, landers, rovers, aerobots, airplanes, and sensing pods. In the current architecture plans, the communication services will be provided using capabilities deployed on the science vehicles as well as dedicated communication satellites that will together make up the Mars network. This network will evolve as additional vehicles arrive, depart or end their useful missions. Cost savings and increased reliability will result from the ability to share communication services between missions. This paper discusses the basic architecture that is needed to support the Mars Communications Network part of NASA's Space Science Enterprise (SSE) communications architecture. The network may use various networking technologies such as those employed in the terrestrial Internet, as well as special purpose deep-space protocols to move data and commands autonomously between vehicles, at disparate Mars vicinity sites (on the surface or in near-Mars space) and between Mars vehicles and earthbound users. The architecture of the spacecraft on-board local communications is being reconsidered in light of these new networking requirements. The trend towards increasingly autonomous operation of the spacecraft is aimed at reducing the dependence on resource scheduling provided by Earth-based operators and increasing system fault tolerance. However, these benefits will result in increased communication and software development requirements. As a result, the envisioned Mars communications infrastructure requires both hardware and protocol technology advancements. This paper will describe a number of the critical technology needs and some of the ongoing research

  20. Electronic publishing and intelligent information retrieval

    NASA Technical Reports Server (NTRS)

    Heck, A.

    1992-01-01

    Europeans are now taking steps to homogenize policies and standardize procedures in electronic publishing (EP) in astronomy and space sciences. This arose from an open meeting organized in Oct. 1991 at Strasbourg Observatory (France) and another business meeting held late Mar. 1992 with the major publishers and journal editors in astronomy and space sciences. The ultimate aim of EP might be considered as the so-called 'intelligent information retrieval' (IIR) or better named 'advanced information retrieval' (AIR), taking advantage of the fact that the material to be published appears at some stage in a machine-readable form. It is obvious that the combination of desktop and electronic publishing with networking and new structuring of knowledge bases will profoundly reshape not only our ways of publishing, but also our procedures of communicating and retrieving information. It should be noted that a world-wide survey among astronomers and space scientists carried out before the October 1991 colloquium on the various packages and machines used, indicated that TEX-related packages were already in majoritarian use in our community. It has also been stressed at each meeting that the European developments should be carried out in collaboration with what is done in the US (STELLAR project, for instance). American scientists and journal editors actually attended both meetings mentioned above. The paper will offer a review of the status of electronic publishing in astronomy and its possible contribution to advanced information retrieval in this field. It will also report on recent meetings such as the 'Astronomy from Large Databases-2 (ALD-2)' conference dealing with the latest developments in networking, in data, information, and knowledge bases, as well as in the related methodologies.

  1. Intelligentization: an efficient means to get more from optical networking

    NASA Astrophysics Data System (ADS)

    Chen, Zhi Yun

    2001-10-01

    Infocom is a term used to describe the merger of Information and Communications and is used to show the radical changes in today's network traffic. The continuous growth of Infocom traffic, especially that of Internet, is driving Infocom networks to expand rapidly. To service providers, the traffic is consuming the bandwidth of their network. Simultaneously, users are complaining too slow, the net never stopped in China. It is the reality faced by both the service providers and equipment vendors. Demands from both the customers and competition in market call for an efficient network infrastructure. What should a Service Provider do? This paper will first analyze the development trends of optical networking and the formation of the concepts of Intelligent Optical Network (ION) and Automatic Switched Optical Network (ASON) as a solution to this problem. Next it will look at the ways to bring intelligence into optical networks, discussing the benefits to service providers by showing some application examples. Finally, it concludes that the development of optical networking has arrived at a point of introducing intelligence into optical networks. The intelligent optical networks and Automatic Switched Optical Networks will immediately bring a wide range of benefit to service providers, equipment vendors, and, of course, the end users.

  2. Invisible but Essential: The Role of Professional Networks in Promoting Faculty Agency in Career Advancement

    ERIC Educational Resources Information Center

    Niehaus, Elizabeth; O'Meara, KerryAnn

    2015-01-01

    The benefits of professional networks are largely invisible to the people embedded in them (O'Reilly 1991), yet professional networks may provide key benefits for faculty careers. The purpose of the study reported here was to explore the role of professional networks in faculty agency in career advancement, specifically focusing on the overall…

  3. Optoelectronic advancements in analog avionics networking systems

    NASA Astrophysics Data System (ADS)

    Wilgus, Joseph S.

    1996-12-01

    Over the past two decades, the types of networks used in both commercial and military systems to route information throughout a designated platform have essentially remained unchanged. Traditionally, digital networks have been used to route low data rate, low-bandwidth signals usually not exceeding 2 Ghz, amongst a variety of sensors, digital and signal processors and video displays. On the other hand, analog networks have been responsible for routing broad- banded radio-frequency signals, those ranging from 2 Ghz to well beyond 100 Ghz, between a specific antenna aperture and its designated receiver type. Current analog systems use one of either two approaches to transfer this signal information. The first approach uses microwave waveguides. This design is very efficient, albeit bulky, and has typically been used in ground-based systems. HOwever, it does not lend itself very well to airborne platforms where size and weight constraint are of primary concern. The second approach uses coaxial cable, which tends to exhibit excessive loss at higher frequencies and is much heavier than optical fiber. Like its counterpart the microwave waveguide, it too is not ideally suited for airborne platforms. However, up to now it has been the technology of choice for this particular application. This has led to other alternatives to be sought. With recent advancements being made in optoelectronics, optical fiber is becoming a viable alternative to the above mentioned approaches. It is the intent of this paper to identify airborne applications for photonic technology in analog networks and discuss the needed building blocks to implement this particular type of system.

  4. Intelligent Tutor

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA also seeks to advance American education by employing the technology utilization process to develop a computerized, artificial intelligence-based Intelligent Tutoring System (ITS) to help high school and college physics students. The tutoring system is designed for use with the lecture and laboratory portions of a typical physics instructional program. Its importance lies in its ability to observe continually as a student develops problem solutions and to intervene when appropriate with assistance specifically directed at the student's difficulty and tailored to his skill level and learning style. ITS originated as a project of the Johnson Space Center (JSC). It is being developed by JSC's Software Technology Branch in cooperation with Dr. R. Bowen Loftin at the University of Houston-Downtown. Program is jointly sponsored by NASA and ACOT (Apple Classrooms of Tomorrow). Other organizations providing support include Texas Higher Education Coordinating Board, the National Research Council, Pennzoil Products Company and the George R. Brown Foundation. The Physics I class of Clear Creek High School, League City, Texas are providing the classroom environment for test and evaluation of the system. The ITS is a spinoff product developed earlier to integrate artificial intelligence into training/tutoring systems for NASA astronauts flight controllers and engineers.

  5. Applications of artificial intelligence to space station: General purpose intelligent sensor interface

    NASA Technical Reports Server (NTRS)

    Mckee, James W.

    1988-01-01

    This final report describes the accomplishments of the General Purpose Intelligent Sensor Interface task of the Applications of Artificial Intelligence to Space Station grant for the period from October 1, 1987 through September 30, 1988. Portions of the First Biannual Report not revised will not be included but only referenced. The goal is to develop an intelligent sensor system that will simplify the design and development of expert systems using sensors of the physical phenomena as a source of data. This research will concentrate on the integration of image processing sensors and voice processing sensors with a computer designed for expert system development. The result of this research will be the design and documentation of a system in which the user will not need to be an expert in such areas as image processing algorithms, local area networks, image processor hardware selection or interfacing, television camera selection, voice recognition hardware selection, or analog signal processing. The user will be able to access data from video or voice sensors through standard LISP statements without any need to know about the sensor hardware or software.

  6. Communications for unattended sensor networks

    NASA Astrophysics Data System (ADS)

    Nemeroff, Jay L.; Angelini, Paul; Orpilla, Mont; Garcia, Luis; DiPierro, Stefano

    2004-07-01

    The future model of the US Army's Future Combat Systems (FCS) and the Future Force reflects a combat force that utilizes lighter armor protection than the current standard. Survival on the future battlefield will be increased by the use of advanced situational awareness provided by unattended tactical and urban sensors that detect, identify, and track enemy targets and threats. Successful implementation of these critical sensor fields requires the development of advanced sensors, sensor and data-fusion processors, and a specialized communications network. To ensure warfighter and asset survivability, the communications must be capable of near real-time dissemination of the sensor data using robust, secure, stealthy, and jam resistant links so that the proper and decisive action can be taken. Communications will be provided to a wide-array of mission-specific sensors that are capable of processing data from acoustic, magnetic, seismic, and/or Chemical, Biological, Radiological, and Nuclear (CBRN) sensors. Other, more powerful, sensor node configurations will be capable of fusing sensor data and intelligently collect and process data images from infrared or visual imaging cameras. The radio waveform and networking protocols being developed under the Soldier Level Integrated Communications Environment (SLICE) Soldier Radio Waveform (SRW) and the Networked Sensors for the Future Force Advanced Technology Demonstration are part of an effort to develop a common waveform family which will operate across multiple tactical domains including dismounted soldiers, ground sensor, munitions, missiles and robotics. These waveform technologies will ultimately be transitioned to the JTRS library, specifically the Cluster 5 requirement.

  7. The Role of the Principal's Emotional Intelligence in Primary Education Leadership

    ERIC Educational Resources Information Center

    Brinia, Vasiliki; Zimianiti, Lina; Panagiotopoulos, Konstantinos

    2014-01-01

    The development of emotional intelligence skills offers sufficient leadership qualities for advancing the organization and for achieving its objectives. In particular, the emotionally intelligent leader--principal is able to inspire and facilitate a self-conscious and organizational culture by adopting the values of understanding, trust, prospect,…

  8. Evaluation of intelligent transportation infrastructure program (ITIP) in Pittsburgh and Philadelphia, Pennsylvania

    DOT National Transportation Integrated Search

    2003-03-20

    The Transportation Equity Act for the 21st Century (TEA-21) Public Laws 105-178 and 105-206, Title V, Section 5117(b) (3) provides for an Intelligent Transportation Infrastructure Program (ITIP) to advance the deployment of operational intelligent tr...

  9. An advanced artificial intelligence tool for menu design.

    PubMed

    Khan, Abdus Salam; Hoffmann, Achim

    2003-01-01

    The computer-assisted menu design still remains a difficult task. Usually knowledge that aids in menu design by a computer is hard-coded and because of that a computerised menu planner cannot handle the menu design problem for an unanticipated client. To address this problem we developed a menu design tool, MIKAS (menu construction using incremental knowledge acquisition system), an artificial intelligence system that allows the incremental development of a knowledge-base for menu design. We allow an incremental knowledge acquisition process in which the expert is only required to provide hints to the system in the context of actual problem instances during menu design using menus stored in a so-called Case Base. Our system incorporates Case-Based Reasoning (CBR), an Artificial Intelligence (AI) technique developed to mimic human problem solving behaviour. Ripple Down Rules (RDR) are a proven technique for the acquisition of classification knowledge from expert directly while they are using the system, which complement CBR in a very fruitful way. This combination allows the incremental improvement of the menu design system while it is already in routine use. We believe MIKAS allows better dietary practice by leveraging a dietitian's skills and expertise. As such MIKAS has the potential to be helpful for any institution where dietary advice is practised.

  10. A review of evidence of health benefit from artificial neural networks in medical intervention.

    PubMed

    Lisboa, P J G

    2002-01-01

    The purpose of this review is to assess the evidence of healthcare benefits involving the application of artificial neural networks to the clinical functions of diagnosis, prognosis and survival analysis, in the medical domains of oncology, critical care and cardiovascular medicine. The primary source of publications is PUBMED listings under Randomised Controlled Trials and Clinical Trials. The rĵle of neural networks is introduced within the context of advances in medical decision support arising from parallel developments in statistics and artificial intelligence. This is followed by a survey of published Randomised Controlled Trials and Clinical Trials, leading to recommendations for good practice in the design and evaluation of neural networks for use in medical intervention.

  11. Intelligent Assistive Technology Applications to Dementia Care: Current Capabilities, Limitations, and Future Challenges

    PubMed Central

    Bharucha, Ashok J.; Anand, Vivek; Forlizzi, Jodi; Dew, Mary Amanda; Reynolds, Charles F.; Stevens, Scott; Wactlar, Howard

    2009-01-01

    The number of older Americans afflicted by Alzheimer disease and related dementias will triple to 13 million persons by 2050, thus greatly increasing healthcare needs. An approach to this emerging crisis is the development and deployment of intelligent assistive technologies that compensate for the specific physical and cognitive deficits of older adults with dementia, and thereby also reduce caregiver burden. The authors conducted an extensive search of the computer science, engineering, and medical databases to review intelligent cognitive devices, physiologic and environmental sensors, and advanced integrated sensor networks that may find future applications in dementia care. Review of the extant literature reveals an overwhelming focus on the physical disability of younger persons with typically nonprogressive anoxic and traumatic brain injuries, with few clinical studies specifically involving persons with dementia. A discussion of the specific capabilities, strengths, and limitations of each technology is followed by an overview of research methodological challenges that must be addressed to achieve measurable progress to meet the healthcare needs of an aging America. PMID:18849532

  12. Artificial Intelligence: Applications in Education.

    ERIC Educational Resources Information Center

    Thorkildsen, Ron J.; And Others

    1986-01-01

    Artificial intelligence techniques are used in computer programs to search out rapidly and retrieve information from very large databases. Programing advances have also led to the development of systems that provide expert consultation (expert systems). These systems, as applied to education, are the primary emphasis of this article. (LMO)

  13. Parallel plan execution with self-processing networks

    NASA Technical Reports Server (NTRS)

    Dautrechy, C. Lynne; Reggia, James A.

    1989-01-01

    A critical issue for space operations is how to develop and apply advanced automation techniques to reduce the cost and complexity of working in space. In this context, it is important to examine how recent advances in self-processing networks can be applied for planning and scheduling tasks. For this reason, the feasibility of applying self-processing network models to a variety of planning and control problems relevant to spacecraft activities is being explored. Goals are to demonstrate that self-processing methods are applicable to these problems, and that MIRRORS/II, a general purpose software environment for implementing self-processing models, is sufficiently robust to support development of a wide range of application prototypes. Using MIRRORS/II and marker passing modelling techniques, a model of the execution of a Spaceworld plan was implemented. This is a simplified model of the Voyager spacecraft which photographed Jupiter, Saturn, and their satellites. It is shown that plan execution, a task usually solved using traditional artificial intelligence (AI) techniques, can be accomplished using a self-processing network. The fact that self-processing networks were applied to other space-related tasks, in addition to the one discussed here, demonstrates the general applicability of this approach to planning and control problems relevant to spacecraft activities. It is also demonstrated that MIRRORS/II is a powerful environment for the development and evaluation of self-processing systems.

  14. Advanced Polymer Network Structures

    DTIC Science & Technology

    2016-02-01

    double networks in a single step was identified from coarse-grained molecular dynamics simulations of polymer solvents bearing rigid side chains dissolved...in a polymer network. Coarse-grained molecular dynamics simulations also explored the mechanical behavior of traditional double networks and...DRI), polymer networks, polymer gels, molecular dynamics simulations , double networks 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

  15. Design and Implementation of a Wireless Sensor and Actuator Network to Support the Intelligent Control of Efficient Energy Usage.

    PubMed

    Blanco, Jesús; García, Andrés; Morenas, Javier de Las

    2018-06-09

    Energy saving has become a major concern for the developed society of our days. This paper presents a Wireless Sensor and Actuator Network (WSAN) designed to provide support to an automatic intelligent system, based on the Internet of Things (IoT), which enables a responsible consumption of energy. The proposed overall system performs an efficient energetic management of devices, machines and processes, optimizing their operation to achieve a reduction in their overall energy usage at any given time. For this purpose, relevant data is collected from intelligent sensors, which are in-stalled at the required locations, as well as from the energy market through the Internet. This information is analysed to provide knowledge about energy utilization, and to improve efficiency. The system takes autonomous decisions automatically, based on the available information and the specific requirements in each case. The proposed system has been implanted and tested in a food factory. Results show a great optimization of energy efficiency and a substantial improvement on energy and costs savings.

  16. Cyber Intelligence Threat Prioritization

    DTIC Science & Technology

    2014-10-01

    platform that allows anyone to make their organization more visible to threat actors. Online Presence Extracurricular Activities Motive Risk...intelligence • The acquisition and analysis of information to identify, track, and predict cyber capabilities, intentions, and activities to offer courses of...access can significantly aid in identifying the risk to employees. Physical and Network-Based Access Position Abnormal Activity Infrastructure

  17. Seismic activity prediction using computational intelligence techniques in northern Pakistan

    NASA Astrophysics Data System (ADS)

    Asim, Khawaja M.; Awais, Muhammad; Martínez-Álvarez, F.; Iqbal, Talat

    2017-10-01

    Earthquake prediction study is carried out for the region of northern Pakistan. The prediction methodology includes interdisciplinary interaction of seismology and computational intelligence. Eight seismic parameters are computed based upon the past earthquakes. Predictive ability of these eight seismic parameters is evaluated in terms of information gain, which leads to the selection of six parameters to be used in prediction. Multiple computationally intelligent models have been developed for earthquake prediction using selected seismic parameters. These models include feed-forward neural network, recurrent neural network, random forest, multi layer perceptron, radial basis neural network, and support vector machine. The performance of every prediction model is evaluated and McNemar's statistical test is applied to observe the statistical significance of computational methodologies. Feed-forward neural network shows statistically significant predictions along with accuracy of 75% and positive predictive value of 78% in context of northern Pakistan.

  18. Controls and Health Management Technologies for Intelligent Aerospace Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    2004-01-01

    With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Technology Branch at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet these challenges through the concept of an Intelligent Engine. The key enabling technologies for an Intelligent Engine are the increased efficiencies of components through active control, advanced diagnostics and prognostics integrated with intelligent engine control to enhance component life, and distributed control with smart sensors and actuators in an adaptive fault tolerant architecture. This paper describes the current activities of the Controls and Dynamics Technology Branch in the areas of active component control and propulsion system intelligent control, and presents some recent analytical and experimental results in these areas.

  19. Telehealth on advanced networks.

    PubMed

    Wilson, Laurence S; Stevenson, Duncan R; Cregan, Patrick

    2010-01-01

    We address advanced Internet for complex telehealth applications by reviewing four hospital-based broadband telehealth projects and identifying common threads. These projects were conducted in Australia under a 6-year research project on broadband Internet applications. Each project addressed specific clinical needs and its development was guided by the clinicians involved. Each project was trialed in the field and evaluated against the initial requirements. The four projects covered remote management of a resuscitation team in a district hospital, remote guidance and interpretation of echocardiography, virtual-reality-based instructor-student surgical training, and postoperative outpatient consultations following pediatric surgery. Each was characterized by a high level of interpersonal communication, a high level of clinical expertise, and multiple participants. Each made use of multiple high-quality video and audio links and shared real-time access to clinical data. Four common threads were observed. Each application provided a high level of usability and task focus because the design and use of broadband capability was aimed directly to meet the clinicians' needs. Each used the media quality available over broadband to convey words, gestures, body movements, and facial expressions to support communication and a sense of presence among the participants. Each required a complex information space shared among the participants, including real-time access to stored patient data and real-time interactive access to the patients themselves. Finally, each application supported the social and organizational aspects of their healthcare focus, creating and maintaining relationships between the various participants, and this was done by placing the telehealth application into a wider functioning clinical context. These findings provide evidence for a significantly enhanced role for appropriate telemedicine systems running on advanced networks, in a wider range of clinical

  20. Intelligent Traffic Quantification System

    NASA Astrophysics Data System (ADS)

    Mohanty, Anita; Bhanja, Urmila; Mahapatra, Sudipta

    2017-08-01

    Currently, city traffic monitoring and controlling is a big issue in almost all cities worldwide. Vehicular ad-hoc Network (VANET) technique is an efficient tool to minimize this problem. Usually, different types of on board sensors are installed in vehicles to generate messages characterized by different vehicle parameters. In this work, an intelligent system based on fuzzy clustering technique is developed to reduce the number of individual messages by extracting important features from the messages of a vehicle. Therefore, the proposed fuzzy clustering technique reduces the traffic load of the network. The technique also reduces congestion and quantifies congestion.

  1. Non-obvious correlations to disease management unraveled by Bayesian artificial intelligence analyses of CMS data.

    PubMed

    Vemulapalli, Vijetha; Qu, Jiaqi; Garren, Jeonifer M; Rodrigues, Leonardo O; Kiebish, Michael A; Sarangarajan, Rangaprasad; Narain, Niven R; Akmaev, Viatcheslav R

    2016-11-01

    Given the availability of extensive digitized healthcare data from medical records, claims and prescription information, it is now possible to use hypothesis-free, data-driven approaches to mine medical databases for novel insight. The goal of this analysis was to demonstrate the use of artificial intelligence based methods such as Bayesian networks to open up opportunities for creation of new knowledge in management of chronic conditions. Hospital level Medicare claims data containing discharge numbers for most common diagnoses were analyzed in a hypothesis-free manner using Bayesian networks learning methodology. While many interactions identified between discharge rates of diagnoses using this data set are supported by current medical knowledge, a novel interaction linking asthma and renal failure was discovered. This interaction is non-obvious and had not been looked at by the research and clinical communities in epidemiological or clinical data. A plausible pharmacological explanation of this link is proposed together with a verification of the risk significance by conventional statistical analysis. Potential clinical and molecular pathways defining the relationship between commonly used asthma medications and renal disease are discussed. The study underscores the need for further epidemiological research to validate this novel hypothesis. Validation will lead to advancement in clinical treatment of asthma & bronchitis, thereby, improving patient outcomes and leading to long term cost savings. In summary, this study demonstrates that application of advanced artificial intelligence methods in healthcare has the potential to enhance the quality of care by discovering non-obvious, clinically relevant relationships and enabling timely care intervention. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Advanced digital signal processing for short-haul and access network

    NASA Astrophysics Data System (ADS)

    Zhang, Junwen; Yu, Jianjun; Chi, Nan

    2016-02-01

    Digital signal processing (DSP) has been proved to be a successful technology recently in high speed and high spectrum-efficiency optical short-haul and access network, which enables high performances based on digital equalizations and compensations. In this paper, we investigate advanced DSP at the transmitter and receiver side for signal pre-equalization and post-equalization in an optical access network. A novel DSP-based digital and optical pre-equalization scheme has been proposed for bandwidth-limited high speed short-distance communication system, which is based on the feedback of receiver-side adaptive equalizers, such as least-mean-squares (LMS) algorithm and constant or multi-modulus algorithms (CMA, MMA). Based on this scheme, we experimentally demonstrate 400GE on a single optical carrier based on the highest ETDM 120-GBaud PDM-PAM-4 signal, using one external modulator and coherent detection. A line rate of 480-Gb/s is achieved, which enables 20% forward-error correction (FEC) overhead to keep the 400-Gb/s net information rate. The performance after fiber transmission shows large margin for both short range and metro/regional networks. We also extend the advanced DSP for short haul optical access networks by using high order QAMs. We propose and demonstrate a high speed multi-band CAP-WDM-PON system on intensity modulation, direct detection and digital equalizations. A hybrid modified cascaded MMA post-equalization schemes are used to equalize the multi-band CAP-mQAM signals. Using this scheme, we successfully demonstrates 550Gb/s high capacity WDMPON system with 11 WDM channels, 55 sub-bands, and 10-Gb/s per user in the downstream over 40-km SMF.

  3. SCAILET: An intelligent assistant for satellite ground terminal operations

    NASA Technical Reports Server (NTRS)

    Shahidi, A. K.; Crapo, J. A.; Schlegelmilch, R. F.; Reinhart, R. C.; Petrik, E. J.; Walters, J. L.; Jones, R. E.

    1993-01-01

    NASA Lewis Research Center has applied artificial intelligence to an advanced ground terminal. This software application is being deployed as an experimenter interface to the link evaluation terminal (LET) and was named Space Communication Artificial Intelligence for the Link Evaluation Terminal (SCAILET). The high-burst-rate (HBR) LET provides 30-GHz-transmitting and 20-GHz-receiving, 220-Mbps capability for wide band communications technology experiments with the Advanced Communication Technology Satellite (ACTS). The HBR-LET terminal consists of seven major subsystems. A minicomputer controls and monitors these subsystems through an IEEE-488 or RS-232 protocol interface. Programming scripts (test procedures defined by design engineers) configure the HBR-LET and permit data acquisition. However, the scripts are difficult to use, require a steep learning curve, are cryptic, and are hard to maintain. This discourages experimenters from utilizing the full capabilities of the HBR-LET system. An intelligent assistant module was developed as part of the SCAILET software. The intelligent assistant addresses critical experimenter needs by solving and resolving problems that are encountered during the configuring of the HBR-LET system. The intelligent assistant is a graphical user interface with an expert system running in the background. In order to further assist and familiarize an experimenter, an on-line hypertext documentation module was developed and included in the SCAILET software.

  4. Analysis in Motion Initiative – Human Machine Intelligence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blaha, Leslie

    As computers and machines become more pervasive in our everyday lives, we are looking for ways for humans and machines to work more intelligently together. How can we help machines understand their users so the team can do smarter things together? The Analysis in Motion Initiative is advancing the science of human machine intelligence — creating human-machine teams that work better together to make correct, useful, and timely interpretations of data.

  5. GLOBECOM '89 - IEEE Global Telecommunications Conference and Exhibition, Dallas, TX, Nov. 27-30, 1989, Conference Record. Volumes 1, 2, & 3

    NASA Astrophysics Data System (ADS)

    The present conference discusses topics in multiwavelength network technology and its applications, advanced digital radio systems in their propagation environment, mobile radio communications, switching programmability, advancements in computer communications, integrated-network management and security, HDTV and image processing in communications, basic exchange communications radio advancements in digital switching, intelligent network evolution, speech coding for telecommunications, and multiple access communications. Also discussed are network designs for quality assurance, recent progress in coherent optical systems, digital radio applications, advanced communications technologies for mobile users, communication software for switching systems, AI and expert systems in network management, intelligent multiplexing nodes, video and image coding, network protocols and performance, system methods in quality and reliability, the design and simulation of lightwave systems, local radio networks, mobile satellite communications systems, fiber networks restoration, packet video networks, human interfaces for future networks, and lightwave networking.

  6. Human evolution in the age of the intelligent machine

    NASA Technical Reports Server (NTRS)

    Mclaughlin, W. I.

    1983-01-01

    A systems analysis of the future evolution of man can be conducted by analyzing the biological material of the galaxy into three subsystems: man, intelligent machines, and intelligent extraterrestrial organisms. A binomial interpretation is applied to this system wherein each of the subsystems is assigned a designation of success or failure. For man the two alternatives are, respectively, 'decline' or 'flourish', for machine they are 'become intelligent' or 'stay dumb', while for extraterrestrial intelligence the dichotomy is that of 'existence' or 'nonexistence'. The choices for each of three subsystems yield a total of eight possible states for the system. The relative lack of integration between brain components makes man a weak evolutionary contestant compared to machines. It is judged that machines should become dominant on earth within 100 years, probably by means of continuing development of existing man-machine systems. Advanced forms of extraterrestrial intelligence may exist but are too difficult to observe. The prospects for communication with extraterrestrial intelligence are reviewed.

  7. Active and intelligent packaging systems for a modern society.

    PubMed

    Realini, Carolina E; Marcos, Begonya

    2014-11-01

    Active and intelligent packaging systems are continuously evolving in response to growing challenges from a modern society. This article reviews: (1) the different categories of active and intelligent packaging concepts and currently available commercial applications, (2) latest packaging research trends and innovations, and (3) the growth perspectives of the active and intelligent packaging market. Active packaging aiming at extending shelf life or improving safety while maintaining quality is progressing towards the incorporation of natural active agents into more sustainable packaging materials. Intelligent packaging systems which monitor the condition of the packed food or its environment are progressing towards more cost-effective, convenient and integrated systems to provide innovative packaging solutions. Market growth is expected for active packaging with leading shares for moisture absorbers, oxygen scavengers, microwave susceptors and antimicrobial packaging. The market for intelligent packaging is also promising with strong gains for time-temperature indicator labels and advancements in the integration of intelligent concepts into packaging materials. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Human evolution in the age of the intelligent machine

    NASA Astrophysics Data System (ADS)

    McLaughlin, W. I.

    A systems analysis of the future evolution of man can be conducted by analyzing the biological material of the galaxy into three subsystems: man, intelligent machines, and intelligent extraterrestrial organisms. A binomial interpretation is applied to this system wherein each of the subsystems is assigned a designation of success or failure. For man the two alternatives are, respectively, 'decline' or 'flourish', for machine they are 'become intelligent' or 'stay dumb', while for extraterrestrial intelligence the dichotomy is that of 'existence' or 'nonexistence'. The choices for each of three subsystems yield a total of eight possible states for the system. The relative lack of integration between brain components makes man a weak evolutionary contestant compared to machines. It is judged that machines should become dominant on earth within 100 years, probably by means of continuing development of existing man-machine systems. Advanced forms of extraterrestrial intelligence may exist but are too difficult to observe. The prospects for communication with extraterrestrial intelligence are reviewed.

  9. Intelligent monitoring and diagnosis systems for the Space Station Freedom ECLSS

    NASA Technical Reports Server (NTRS)

    Dewberry, Brandon S.; Carnes, James R.

    1991-01-01

    Specific activities in NASA's environmental control and life support system (ECLSS) advanced automation project that is designed to minimize the crew and ground manpower needed for operations are discussed. Various analyses and the development of intelligent software for the initial and evolutionary Space Station Freedom (SSF) ECLSS are described. The following are also discussed: (1) intelligent monitoring and diagnostics applications under development for the ECLSS domain; (2) integration into the MSFC ECLSS hardware testbed; and (3) an evolutionary path from the baseline ECLSS automation to the more advanced ECLSS automation processes.

  10. Quantum Enhanced Inference in Markov Logic Networks

    NASA Astrophysics Data System (ADS)

    Wittek, Peter; Gogolin, Christian

    2017-04-01

    Markov logic networks (MLNs) reconcile two opposing schools in machine learning and artificial intelligence: causal networks, which account for uncertainty extremely well, and first-order logic, which allows for formal deduction. An MLN is essentially a first-order logic template to generate Markov networks. Inference in MLNs is probabilistic and it is often performed by approximate methods such as Markov chain Monte Carlo (MCMC) Gibbs sampling. An MLN has many regular, symmetric structures that can be exploited at both first-order level and in the generated Markov network. We analyze the graph structures that are produced by various lifting methods and investigate the extent to which quantum protocols can be used to speed up Gibbs sampling with state preparation and measurement schemes. We review different such approaches, discuss their advantages, theoretical limitations, and their appeal to implementations. We find that a straightforward application of a recent result yields exponential speedup compared to classical heuristics in approximate probabilistic inference, thereby demonstrating another example where advanced quantum resources can potentially prove useful in machine learning.

  11. Quantum Enhanced Inference in Markov Logic Networks.

    PubMed

    Wittek, Peter; Gogolin, Christian

    2017-04-19

    Markov logic networks (MLNs) reconcile two opposing schools in machine learning and artificial intelligence: causal networks, which account for uncertainty extremely well, and first-order logic, which allows for formal deduction. An MLN is essentially a first-order logic template to generate Markov networks. Inference in MLNs is probabilistic and it is often performed by approximate methods such as Markov chain Monte Carlo (MCMC) Gibbs sampling. An MLN has many regular, symmetric structures that can be exploited at both first-order level and in the generated Markov network. We analyze the graph structures that are produced by various lifting methods and investigate the extent to which quantum protocols can be used to speed up Gibbs sampling with state preparation and measurement schemes. We review different such approaches, discuss their advantages, theoretical limitations, and their appeal to implementations. We find that a straightforward application of a recent result yields exponential speedup compared to classical heuristics in approximate probabilistic inference, thereby demonstrating another example where advanced quantum resources can potentially prove useful in machine learning.

  12. Quantum Enhanced Inference in Markov Logic Networks

    PubMed Central

    Wittek, Peter; Gogolin, Christian

    2017-01-01

    Markov logic networks (MLNs) reconcile two opposing schools in machine learning and artificial intelligence: causal networks, which account for uncertainty extremely well, and first-order logic, which allows for formal deduction. An MLN is essentially a first-order logic template to generate Markov networks. Inference in MLNs is probabilistic and it is often performed by approximate methods such as Markov chain Monte Carlo (MCMC) Gibbs sampling. An MLN has many regular, symmetric structures that can be exploited at both first-order level and in the generated Markov network. We analyze the graph structures that are produced by various lifting methods and investigate the extent to which quantum protocols can be used to speed up Gibbs sampling with state preparation and measurement schemes. We review different such approaches, discuss their advantages, theoretical limitations, and their appeal to implementations. We find that a straightforward application of a recent result yields exponential speedup compared to classical heuristics in approximate probabilistic inference, thereby demonstrating another example where advanced quantum resources can potentially prove useful in machine learning. PMID:28422093

  13. Context-Enabled Business Intelligence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Troy Hiltbrand

    To truly understand context and apply it in business intelligence, it is vital to understand what context is and how it can be applied in addressing organizational needs. Context describes the facets of the environment that impact the way that end users interact with the system. Context includes aspects of location, chronology, access method, demographics, social influence/ relationships, end-user attitude/ emotional state, behavior/ past behavior, and presence. To be successful in making Business Intelligence content enabled, it is important to be able to capture the context of use user. With advances in technology, there are a number of ways inmore » which this user based information can be gathered and exposed to enhance the overall end user experience.« less

  14. Entanglement-Gradient Routing for Quantum Networks.

    PubMed

    Gyongyosi, Laszlo; Imre, Sandor

    2017-10-27

    We define the entanglement-gradient routing scheme for quantum repeater networks. The routing framework fuses the fundamentals of swarm intelligence and quantum Shannon theory. Swarm intelligence provides nature-inspired solutions for problem solving. Motivated by models of social insect behavior, the routing is performed using parallel threads to determine the shortest path via the entanglement gradient coefficient, which describes the feasibility of the entangled links and paths of the network. The routing metrics are derived from the characteristics of entanglement transmission and relevant measures of entanglement distribution in quantum networks. The method allows a moderate complexity decentralized routing in quantum repeater networks. The results can be applied in experimental quantum networking, future quantum Internet, and long-distance quantum communications.

  15. Guide to federal intelligent transportation system (ITS) research.

    DOT National Transportation Integrated Search

    2013-01-01

    The U.S. Department of Transportations (USDOT) Intelligent Transportation System (ITS) Program aims to bring connectivity to transportation through the use of advanced wireless technologies powerful technologies that enable transformative chan...

  16. Intelligent On-Board Processing in the Sensor Web

    NASA Astrophysics Data System (ADS)

    Tanner, S.

    2005-12-01

    Most existing sensing systems are designed as passive, independent observers. They are rarely aware of the phenomena they observe, and are even less likely to be aware of what other sensors are observing within the same environment. Increasingly, intelligent processing of sensor data is taking place in real-time, using computing resources on-board the sensor or the platform itself. One can imagine a sensor network consisting of intelligent and autonomous space-borne, airborne, and ground-based sensors. These sensors will act independently of one another, yet each will be capable of both publishing and receiving sensor information, observations, and alerts among other sensors in the network. Furthermore, these sensors will be capable of acting upon this information, perhaps altering acquisition properties of their instruments, changing the location of their platform, or updating processing strategies for their own observations to provide responsive information or additional alerts. Such autonomous and intelligent sensor networking capabilities provide significant benefits for collections of heterogeneous sensors within any environment. They are crucial for multi-sensor observations and surveillance, where real-time communication with external components and users may be inhibited, and the environment may be hostile. In all environments, mission automation and communication capabilities among disparate sensors will enable quicker response to interesting, rare, or unexpected events. Additionally, an intelligent network of heterogeneous sensors provides the advantage that all of the sensors can benefit from the unique capabilities of each sensor in the network. The University of Alabama in Huntsville (UAH) is developing a unique approach to data processing, integration and mining through the use of the Adaptive On-Board Data Processing (AODP) framework. AODP is a key foundation technology for autonomous internetworking capabilities to support situational awareness by

  17. Boolean logic tree of graphene-based chemical system for molecular computation and intelligent molecular search query.

    PubMed

    Huang, Wei Tao; Luo, Hong Qun; Li, Nian Bing

    2014-05-06

    The most serious, and yet unsolved, problem of constructing molecular computing devices consists in connecting all of these molecular events into a usable device. This report demonstrates the use of Boolean logic tree for analyzing the chemical event network based on graphene, organic dye, thrombin aptamer, and Fenton reaction, organizing and connecting these basic chemical events. And this chemical event network can be utilized to implement fluorescent combinatorial logic (including basic logic gates and complex integrated logic circuits) and fuzzy logic computing. On the basis of the Boolean logic tree analysis and logic computing, these basic chemical events can be considered as programmable "words" and chemical interactions as "syntax" logic rules to construct molecular search engine for performing intelligent molecular search query. Our approach is helpful in developing the advanced logic program based on molecules for application in biosensing, nanotechnology, and drug delivery.

  18. Advancing Underwater Acoustic Communication for Autonomous Distributed Networks via Sparse Channel Sensing, Coding, and Navigation Support

    DTIC Science & Technology

    2014-09-30

    underwater acoustic communication technologies for autonomous distributed underwater networks , through innovative signal processing, coding, and...4. TITLE AND SUBTITLE Advancing Underwater Acoustic Communication for Autonomous Distributed Networks via Sparse Channel Sensing, Coding, and...coding: 3) OFDM modulated dynamic coded cooperation in underwater acoustic channels; 3 Localization, Networking , and Testbed: 4) On-demand

  19. Air Quality Forecasting through Different Statistical and Artificial Intelligence Techniques

    NASA Astrophysics Data System (ADS)

    Mishra, D.; Goyal, P.

    2014-12-01

    Urban air pollution forecasting has emerged as an acute problem in recent years because there are sever environmental degradation due to increase in harmful air pollutants in the ambient atmosphere. In this study, there are different types of statistical as well as artificial intelligence techniques are used for forecasting and analysis of air pollution over Delhi urban area. These techniques are principle component analysis (PCA), multiple linear regression (MLR) and artificial neural network (ANN) and the forecasting are observed in good agreement with the observed concentrations through Central Pollution Control Board (CPCB) at different locations in Delhi. But such methods suffers from disadvantages like they provide limited accuracy as they are unable to predict the extreme points i.e. the pollution maximum and minimum cut-offs cannot be determined using such approach. Also, such methods are inefficient approach for better output forecasting. But with the advancement in technology and research, an alternative to the above traditional methods has been proposed i.e. the coupling of statistical techniques with artificial Intelligence (AI) can be used for forecasting purposes. The coupling of PCA, ANN and fuzzy logic is used for forecasting of air pollutant over Delhi urban area. The statistical measures e.g., correlation coefficient (R), normalized mean square error (NMSE), fractional bias (FB) and index of agreement (IOA) of the proposed model are observed in better agreement with the all other models. Hence, the coupling of statistical and artificial intelligence can be use for the forecasting of air pollutant over urban area.

  20. A generic flexible and robust approach for intelligent real-time video-surveillance systems

    NASA Astrophysics Data System (ADS)

    Desurmont, Xavier; Delaigle, Jean-Francois; Bastide, Arnaud; Macq, Benoit

    2004-05-01

    In this article we present a generic, flexible and robust approach for an intelligent real-time video-surveillance system. A previous version of the system was presented in [1]. The goal of these advanced tools is to provide help to operators by detecting events of interest in visual scenes and highlighting alarms and compute statistics. The proposed system is a multi-camera platform able to handle different standards of video inputs (composite, IP, IEEE1394 ) and which can basically compress (MPEG4), store and display them. This platform also integrates advanced video analysis tools, such as motion detection, segmentation, tracking and interpretation. The design of the architecture is optimised to playback, display, and process video flows in an efficient way for video-surveillance application. The implementation is distributed on a scalable computer cluster based on Linux and IP network. It relies on POSIX threads for multitasking scheduling. Data flows are transmitted between the different modules using multicast technology and under control of a TCP-based command network (e.g. for bandwidth occupation control). We report here some results and we show the potential use of such a flexible system in third generation video surveillance system. We illustrate the interest of the system in a real case study, which is the indoor surveillance.

  1. Intelligent robotics can boost America's economic growth

    NASA Technical Reports Server (NTRS)

    Erickson, Jon D.

    1994-01-01

    A case is made for strategic investment in intelligent robotics as a part of the solution to the problem of improved global competitiveness for U.S. manufacturing, a critical industrial sector. Similar cases are made for strategic investments in intelligent robotics for field applications, construction, and service industries such as health care. The scope of the country's problems and needs is beyond the capability of the private sector alone, government alone, or academia alone to solve independently of the others. National cooperative programs in intelligent robotics are needed with the private sector supplying leadership direction and aerospace and non-aerospace industries conducting the development. Some necessary elements of such programs are outlined. The National Aeronautics and Space Administration (NASA) and the Lyndon B. Johnson Space Center (JSC) can be key players in such national cooperative programs in intelligent robotics for several reasons: (1) human space exploration missions require supervised intelligent robotics as enabling tools and, hence must develop supervised intelligent robotic systems; (2) intelligent robotic technology is being developed for space applications at JSC (but has a strong crosscutting or generic flavor) that is advancing the state of the art and is producing both skilled personnel and adaptable developmental infrastructure such as integrated testbeds; and (3) a NASA JSC Technology Investment Program in Robotics has been proposed based on commercial partnerships and collaborations for precompetitive, dual-use developments.

  2. Intelligent software for laboratory automation.

    PubMed

    Whelan, Ken E; King, Ross D

    2004-09-01

    The automation of laboratory techniques has greatly increased the number of experiments that can be carried out in the chemical and biological sciences. Until recently, this automation has focused primarily on improving hardware. Here we argue that future advances will concentrate on intelligent software to integrate physical experimentation and results analysis with hypothesis formulation and experiment planning. To illustrate our thesis, we describe the 'Robot Scientist' - the first physically implemented example of such a closed loop system. In the Robot Scientist, experimentation is performed by a laboratory robot, hypotheses concerning the results are generated by machine learning and experiments are allocated and selected by a combination of techniques derived from artificial intelligence research. The performance of the Robot Scientist has been evaluated by a rediscovery task based on yeast functional genomics. The Robot Scientist is proof that the integration of programmable laboratory hardware and intelligent software can be used to develop increasingly automated laboratories.

  3. On the role of the plasmodial cytoskeleton in facilitating intelligent behavior in slime mold Physarum polycephalum.

    PubMed

    Mayne, Richard; Adamatzky, Andrew; Jones, Jeff

    2015-01-01

    The plasmodium of slime mold Physarum polycephalum behaves as an amorphous reaction-diffusion computing substrate and is capable of apparently 'intelligent' behavior. But how does intelligence emerge in an acellular organism? Through a range of laboratory experiments, we visualize the plasmodial cytoskeleton-a ubiquitous cellular protein scaffold whose functions are manifold and essential to life-and discuss its putative role as a network for transducing, transmitting and structuring data streams within the plasmodium. Through a range of computer modeling techniques, we demonstrate how emergent behavior, and hence computational intelligence, may occur in cytoskeletal communications networks. Specifically, we model the topology of both the actin and tubulin cytoskeletal networks and discuss how computation may occur therein. Furthermore, we present bespoke cellular automata and particle swarm models for the computational process within the cytoskeleton and observe the incidence of emergent patterns in both. Our work grants unique insight into the origins of natural intelligence; the results presented here are therefore readily transferable to the fields of natural computation, cell biology and biomedical science. We conclude by discussing how our results may alter our biological, computational and philosophical understanding of intelligence and consciousness.

  4. Artificial intelligence - NASA. [robotics for Space Station

    NASA Technical Reports Server (NTRS)

    Erickson, J. D.

    1985-01-01

    Artificial Intelligence (AI) represents a vital common space support element needed to enable the civil space program and commercial space program to perform their missions successfully. It is pointed out that advances in AI stimulated by the Space Station Program could benefit the U.S. in many ways. A fundamental challenge for the civil space program is to meet the needs of the customers and users of space with facilities enabling maximum productivity and having low start-up costs, and low annual operating costs. An effective way to meet this challenge may involve a man-machine system in which artificial intelligence, robotics, and advanced automation are integrated into high reliability organizations. Attention is given to the benefits, NASA strategy for AI, candidate space station systems, the Space Station as a stepping stone, and the commercialization of space.

  5. An Examination of Two Policy Networks Involved in Advancing Smokefree Policy Initiatives.

    PubMed

    Moreland-Russell, Sarah; Carothers, Bobbi J

    2015-09-08

    This study examines smokefree policy networks in two cities—Kansas City and St. Louis, Missouri—one that was successful in achieving widespread policy success, and one that was not. Descriptive social network analyses and visual network mapping were used to compare importance and contact relationships among actors involved in the smokefree policy initiatives. In Kansas City, where policy adoption was achieved, there was a higher level of connectivity among members, with network members being in contact with an average of more than five people, compared to just over two people for the St. Louis network. For both cities, despite being recognized as important, politicians were in contact with the fewest number of people. Results highlight the critical need to actively engage a variety of stakeholders when attempting city wide public health policy change. As evident by the success in smokefree policy adoption throughout Kansas City compared to St. Louis, closer linkages and continued communication among stakeholders including the media, coalitions, public health agencies, policymakers, and other partners are essential if we are to advance and broaden the impact of public health policy. Results indicate that the presence of champions, or those that play leadership roles in actively promoting policy by linking individuals and organizations, play an important role in advancing public health policy. Those working in public health should examine their level of engagement with the policy process and implement strategies for improving that engagement through relationship building and ongoing interactions with a variety of stakeholders, including policymakers.

  6. Decade Review (1999-2009): Artificial Intelligence Techniques in Student Modeling

    NASA Astrophysics Data System (ADS)

    Drigas, Athanasios S.; Argyri, Katerina; Vrettaros, John

    Artificial Intelligence applications in educational field are getting more and more popular during the last decade (1999-2009) and that is why much relevant research has been conducted. In this paper, we present the most interesting attempts to apply artificial intelligence methods such as fuzzy logic, neural networks, genetic programming and hybrid approaches such as neuro - fuzzy systems and genetic programming neural networks (GPNN) in student modeling. This latest research trend is a part of every Intelligent Tutoring System and aims at generating and updating a student model in order to modify learning content to fit individual needs or to provide reliable assessment and feedback to student's answers. In this paper, we make a brief presentation of methods used to point out their qualities and then we attempt a navigation to the most representative studies sought in the decade of our interest after classifying them according to the principal aim they attempted to serve.

  7. Vision Guided Intelligent Robot Design And Experiments

    NASA Astrophysics Data System (ADS)

    Slutzky, G. D.; Hall, E. L.

    1988-02-01

    The concept of an intelligent robot is an important topic combining sensors, manipulators, and artificial intelligence to design a useful machine. Vision systems, tactile sensors, proximity switches and other sensors provide the elements necessary for simple game playing as well as industrial applications. These sensors permit adaption to a changing environment. The AI techniques permit advanced forms of decision making, adaptive responses, and learning while the manipulator provides the ability to perform various tasks. Computer languages such as LISP and OPS5, have been utilized to achieve expert systems approaches in solving real world problems. The purpose of this paper is to describe several examples of visually guided intelligent robots including both stationary and mobile robots. Demonstrations will be presented of a system for constructing and solving a popular peg game, a robot lawn mower, and a box stacking robot. The experience gained from these and other systems provide insight into what may be realistically expected from the next generation of intelligent machines.

  8. The Brain as a Distributed Intelligent Processing System: An EEG Study

    PubMed Central

    da Rocha, Armando Freitas; Rocha, Fábio Theoto; Massad, Eduardo

    2011-01-01

    Background Various neuroimaging studies, both structural and functional, have provided support for the proposal that a distributed brain network is likely to be the neural basis of intelligence. The theory of Distributed Intelligent Processing Systems (DIPS), first developed in the field of Artificial Intelligence, was proposed to adequately model distributed neural intelligent processing. In addition, the neural efficiency hypothesis suggests that individuals with higher intelligence display more focused cortical activation during cognitive performance, resulting in lower total brain activation when compared with individuals who have lower intelligence. This may be understood as a property of the DIPS. Methodology and Principal Findings In our study, a new EEG brain mapping technique, based on the neural efficiency hypothesis and the notion of the brain as a Distributed Intelligence Processing System, was used to investigate the correlations between IQ evaluated with WAIS (Whechsler Adult Intelligence Scale) and WISC (Wechsler Intelligence Scale for Children), and the brain activity associated with visual and verbal processing, in order to test the validity of a distributed neural basis for intelligence. Conclusion The present results support these claims and the neural efficiency hypothesis. PMID:21423657

  9. The “Wireless Sensor Networks for City-Wide Ambient Intelligence (WISE-WAI)” Project

    PubMed Central

    Casari, Paolo; Castellani, Angelo P.; Cenedese, Angelo; Lora, Claudio; Rossi, Michele; Schenato, Luca; Zorzi, Michele

    2009-01-01

    This paper gives a detailed technical overview of some of the activities carried out in the context of the “Wireless Sensor networks for city-Wide Ambient Intelligence (WISE-WAI)” project, funded by the Cassa di Risparmio di Padova e Rovigo Foundation, Italy. The main aim of the project is to demonstrate the feasibility of large-scale wireless sensor network deployments, whereby tiny objects integrating one or more environmental sensors (humidity, temperature, light intensity), a microcontroller and a wireless transceiver are deployed over a large area, which in this case involves the buildings of the Department of Information Engineering at the University of Padova. We will describe how the network is organized to provide full-scale automated functions, and which services and applications it is configured to provide. These applications include long-term environmental monitoring, alarm event detection and propagation, single-sensor interrogation, localization and tracking of objects, assisted navigation, as well as fast data dissemination services to be used, e.g., to rapidly re-program all sensors over-the-air. The organization of such a large testbed requires notable efforts in terms of communication protocols and strategies, whose design must pursue scalability, energy efficiency (while sensors are connected through USB cables for logging and debugging purposes, most of them will be battery-operated), as well as the capability to support applications with diverse requirements. These efforts, the description of a subset of the results obtained so far, and of the final objectives to be met are the scope of the present paper. PMID:22408513

  10. Space Communication Artificial Intelligence for Link Evaluation Terminal (SCAILET)

    NASA Technical Reports Server (NTRS)

    Shahidi, Anoosh K.; Schlegelmilch, Richard F.; Petrik, Edward J.; Walters, Jerry L.

    1992-01-01

    A software application to assist end-users of the high burst rate (HBR) link evaluation terminal (LET) for satellite communications is being developed. The HBR LET system developed at NASA Lewis Research Center is an element of the Advanced Communications Technology Satellite (ACTS) Project. The HBR LET is divided into seven major subsystems, each with its own expert. Programming scripts, test procedures defined by design engineers, set up the HBR LET system. These programming scripts are cryptic, hard to maintain and require a steep learning curve. These scripts were developed by the system engineers who will not be available for the end-users of the system. To increase end-user productivity a friendly interface needs to be added to the system. One possible solution is to provide the user with adequate documentation to perform the needed tasks. With the complexity of this system the vast amount of documentation needed would be overwhelming and the information would be hard to retrieve. With limited resources, maintenance is another reason for not using this form of documentation. An advanced form of interaction is being explored using current computer techniques. This application, which incorporates a combination of multimedia and artificial intelligence (AI) techniques to provided end-users with an intelligent interface to the HBR LET system, is comprised of an intelligent assistant, intelligent tutoring, and hypermedia documentation. The intelligent assistant and tutoring systems address the critical programming needs of the end-user.

  11. Advancing Capabilities for Understanding the Earth System Through Intelligent Systems, the NSF Perspective

    NASA Astrophysics Data System (ADS)

    Gil, Y.; Zanzerkia, E. E.; Munoz-Avila, H.

    2015-12-01

    The National Science Foundation (NSF) Directorate for Geosciences (GEO) and Directorate for Computer and Information Science (CISE) acknowledge the significant scientific challenges required to understand the fundamental processes of the Earth system, within the atmospheric and geospace, Earth, ocean and polar sciences, and across those boundaries. A broad view of the opportunities and directions for GEO are described in the report "Dynamic Earth: GEO imperative and Frontiers 2015-2020." Many of the aspects of geosciences research, highlighted both in this document and other community grand challenges, pose novel problems for researchers in intelligent systems. Geosciences research will require solutions for data-intensive science, advanced computational capabilities, and transformative concepts for visualizing, using, analyzing and understanding geo phenomena and data. Opportunities for the scientific community to engage in addressing these challenges are available and being developed through NSF's portfolio of investments and activities. The NSF-wide initiative, Cyberinfrastructure Framework for 21st Century Science and Engineering (CIF21), looks to accelerate research and education through new capabilities in data, computation, software and other aspects of cyberinfrastructure. EarthCube, a joint program between GEO and the Advanced Cyberinfrastructure Division, aims to create a well-connected and facile environment to share data and knowledge in an open, transparent, and inclusive manner, thus accelerating our ability to understand and predict the Earth system. EarthCube's mission opens an opportunity for collaborative research on novel information systems enhancing and supporting geosciences research efforts. NSF encourages true, collaborative partnerships between scientists in computer sciences and the geosciences to meet these challenges.

  12. Artificial vision by multi-layered neural networks: neocognitron and its advances.

    PubMed

    Fukushima, Kunihiko

    2013-01-01

    The neocognitron is a neural network model proposed by Fukushima (1980). Its architecture was suggested by neurophysiological findings on the visual systems of mammals. It is a hierarchical multi-layered network. It acquires the ability to robustly recognize visual patterns through learning. Although the neocognitron has a long history, modifications of the network to improve its performance are still going on. For example, a recent neocognitron uses a new learning rule, named add-if-silent, which makes the learning process much simpler and more stable. Nevertheless, a high recognition rate can be kept with a smaller scale of the network. Referring to the history of the neocognitron, this paper discusses recent advances in the neocognitron. We also show that various new functions can be realized by, for example, introducing top-down connections to the neocognitron: mechanism of selective attention, recognition and completion of partly occluded patterns, restoring occluded contours, and so on. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Comparison of Intelligent Systems in Detecting a Child's Mathematical Gift

    ERIC Educational Resources Information Center

    Pavlekovic, Margita; Zekic-Susac, Marijana; Djurdjevic, Ivana

    2009-01-01

    This paper compares the efficiency of two intelligent methods: expert systems and neural networks, in detecting children's mathematical gift at the fourth grade of elementary school. The input space for the expert system and the neural network model consisted of 60 variables describing five basic components of a child's mathematical gift…

  14. Using the network to achieve energy efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giglio, M.

    1995-12-01

    Novell, the third largest software company in the world, has developed Netware Embedded Systems Technology (NEST). NEST will take the network deeper into non-traditional computing environments and will imbed networking into more intelligent devices. Ultimately, this will lead to energy efficiencies in the office. NEST can make point-of-sale terminals, alarm systems, televisions, traffic controls, printers, lights, fax machines, copiers, HVAC controls, PBX machines, etc., either intelligent or more intelligent than they are currently. The mission statement for this particular group is to integrate over 30 million new intelligent devices into the workplace and the home with Novell networks by 1997.more » Computing trends have progressed from mainframes in the 1960s to keys, security systems, and airplanes in the year 2000. In fact, the new Boeing 777 has NEST in it, and it also has network servers on board. NEST enables the embedded network with the ability to put intelligence into devices. This gives one more control of the devices from wherever one is. For example, the pharmaceutical industry could use NEST to coordinate what the consumer is buying, what is in the warehouse, what the manufacturing plant is tooled for, and so on. Through NEST technology, the pharmaceutical industry now uses a camera that takes pictures of the pills. It can see whether an {open_quotes}overdose{close_quotes} or {open_quotes}underdose{close_quotes} of a particular type of pill is being manufactured. The plant can be shut down and corrections made immediately.« less

  15. The Role of Probability-Based Inference in an Intelligent Tutoring System.

    ERIC Educational Resources Information Center

    Mislevy, Robert J.; Gitomer, Drew H.

    Probability-based inference in complex networks of interdependent variables is an active topic in statistical research, spurred by such diverse applications as forecasting, pedigree analysis, troubleshooting, and medical diagnosis. This paper concerns the role of Bayesian inference networks for updating student models in intelligent tutoring…

  16. The road to NHDPlus — Advancements in digital stream networks and associated catchments

    USGS Publications Warehouse

    Moore, Richard B.; Dewald, Thomas A.

    2016-01-01

    A progression of advancements in Geographic Information Systems techniques for hydrologic network and associated catchment delineation has led to the production of the National Hydrography Dataset Plus (NHDPlus). NHDPlus is a digital stream network for hydrologic modeling with catchments and a suite of related geospatial data. Digital stream networks with associated catchments provide a geospatial framework for linking and integrating water-related data. Advancements in the development of NHDPlus are expected to continue to improve the capabilities of this national geospatial hydrologic framework. NHDPlus is built upon the medium-resolution NHD and, like NHD, was developed by the U.S. Environmental Protection Agency and U.S. Geological Survey to support the estimation of streamflow and stream velocity used in fate-and-transport modeling. Catchments included with NHDPlus were created by integrating vector information from the NHD and from the Watershed Boundary Dataset with the gridded land surface elevation as represented by the National Elevation Dataset. NHDPlus is an actively used and continually improved dataset. Users recognize the importance of a reliable stream network and associated catchments. The NHDPlus spatial features and associated data tables will continue to be improved to support regional water quality and streamflow models and other user-defined applications.

  17. EDITORIAL: Advances in Measurement Technology and Intelligent Instruments for Production Engineering

    NASA Astrophysics Data System (ADS)

    Gao, Wei; Takaya, Yasuhiro; Gao, Yongsheng; Krystek, Michael

    2008-08-01

    . Neuschaefer-Rube et al, also from PTB, present procedures and standards to test tactile and optical microsensors and micro-computed tomography systems, which are similar to the established tests for classical coordinate measuring machines and assess local and global sensor characteristics. The last three papers are related to micro/nano-metrology and intelligent instrumentation. Jiang et al from Tohoku University describe the fabrication of piezoresistive nanocantilevers for ultra-sensitive force detection by using spin-out diffusion, EB lithography and FAB etching, respectively. Y-C Liu et al from National Taiwan University develop an economical and highly sensitive optical accelerometer using a commercial optical pickup head. Michihata et al from Osaka University experimentally investigate the positioning sensing property and accuracy of a laser trapping probe for a nano-coordinate measuring machine. As guest editors, we believe that this special feature presents the newest information on advances in measurement technology and intelligent instruments from basic research to applied systems for Production Engineering. We would like to thank all the authors for their great contributions to this special feature and the referees for their careful reviews of the papers. We would also like to express our thanks and appreciation to Professor P Hauptmann, Editor-in-Chief of MST, for his kind offer to publish selected ISMTII 2007 papers in MST, and to the publishing staff of MST for their dedicated efforts that have made this special feature possible.

  18. The Complexity of Crime Network Data: A Case Study of Its Consequences for Crime Control and the Study of Networks

    PubMed Central

    Rostami, Amir; Mondani, Hernan

    2015-01-01

    The field of social network analysis has received increasing attention during the past decades and has been used to tackle a variety of research questions, from prevention of sexually transmitted diseases to humanitarian relief operations. In particular, social network analyses are becoming an important component in studies of criminal networks and in criminal intelligence analysis. At the same time, intelligence analyses and assessments have become a vital component of modern approaches in policing, with policy implications for crime prevention, especially in the fight against organized crime. In this study, we have a unique opportunity to examine one specific Swedish street gang with three different datasets. These datasets are the most common information sources in studies of criminal networks: intelligence, surveillance and co-offending data. We use the data sources to build networks, and compare them by computing distance, centrality, and clustering measures. This study shows the complexity factor by which different data sources about the same object of study have a fundamental impact on the results. The same individuals have different importance ranking depending on the dataset and measure. Consequently, the data source plays a vital role in grasping the complexity of the phenomenon under study. Researchers, policy makers, and practitioners should therefore pay greater attention to the biases affecting the sources of the analysis, and be cautious when drawing conclusions based on intelligence assessments and limited network data. This study contributes to strengthening social network analysis as a reliable tool for understanding and analyzing criminality and criminal networks. PMID:25775130

  19. The complexity of crime network data: a case study of its consequences for crime control and the study of networks.

    PubMed

    Rostami, Amir; Mondani, Hernan

    2015-01-01

    The field of social network analysis has received increasing attention during the past decades and has been used to tackle a variety of research questions, from prevention of sexually transmitted diseases to humanitarian relief operations. In particular, social network analyses are becoming an important component in studies of criminal networks and in criminal intelligence analysis. At the same time, intelligence analyses and assessments have become a vital component of modern approaches in policing, with policy implications for crime prevention, especially in the fight against organized crime. In this study, we have a unique opportunity to examine one specific Swedish street gang with three different datasets. These datasets are the most common information sources in studies of criminal networks: intelligence, surveillance and co-offending data. We use the data sources to build networks, and compare them by computing distance, centrality, and clustering measures. This study shows the complexity factor by which different data sources about the same object of study have a fundamental impact on the results. The same individuals have different importance ranking depending on the dataset and measure. Consequently, the data source plays a vital role in grasping the complexity of the phenomenon under study. Researchers, policy makers, and practitioners should therefore pay greater attention to the biases affecting the sources of the analysis, and be cautious when drawing conclusions based on intelligence assessments and limited network data. This study contributes to strengthening social network analysis as a reliable tool for understanding and analyzing criminality and criminal networks.

  20. Intelligent model-based diagnostics for vehicle health management

    NASA Astrophysics Data System (ADS)

    Luo, Jianhui; Tu, Fang; Azam, Mohammad S.; Pattipati, Krishna R.; Willett, Peter K.; Qiao, Liu; Kawamoto, Masayuki

    2003-08-01

    The recent advances in sensor technology, remote communication and computational capabilities, and standardized hardware/software interfaces are creating a dramatic shift in the way the health of vehicles is monitored and managed. These advances facilitate remote monitoring, diagnosis and condition-based maintenance of automotive systems. With the increased sophistication of electronic control systems in vehicles, there is a concomitant increased difficulty in the identification of the malfunction phenomena. Consequently, the current rule-based diagnostic systems are difficult to develop, validate and maintain. New intelligent model-based diagnostic methodologies that exploit the advances in sensor, telecommunications, computing and software technologies are needed. In this paper, we will investigate hybrid model-based techniques that seamlessly employ quantitative (analytical) models and graph-based dependency models for intelligent diagnosis. Automotive engineers have found quantitative simulation (e.g. MATLAB/SIMULINK) to be a vital tool in the development of advanced control systems. The hybrid method exploits this capability to improve the diagnostic system's accuracy and consistency, utilizes existing validated knowledge on rule-based methods, enables remote diagnosis, and responds to the challenges of increased system complexity. The solution is generic and has the potential for application in a wide range of systems.

  1. MIMIC II: a massive temporal ICU patient database to support research in intelligent patient monitoring

    NASA Technical Reports Server (NTRS)

    Saeed, M.; Lieu, C.; Raber, G.; Mark, R. G.

    2002-01-01

    Development and evaluation of Intensive Care Unit (ICU) decision-support systems would be greatly facilitated by the availability of a large-scale ICU patient database. Following our previous efforts with the MIMIC (Multi-parameter Intelligent Monitoring for Intensive Care) Database, we have leveraged advances in networking and storage technologies to develop a far more massive temporal database, MIMIC II. MIMIC II is an ongoing effort: data is continuously and prospectively archived from all ICU patients in our hospital. MIMIC II now consists of over 800 ICU patient records including over 120 gigabytes of data and is growing. A customized archiving system was used to store continuously up to four waveforms and 30 different parameters from ICU patient monitors. An integrated user-friendly relational database was developed for browsing of patients' clinical information (lab results, fluid balance, medications, nurses' progress notes). Based upon its unprecedented size and scope, MIMIC II will prove to be an important resource for intelligent patient monitoring research, and will support efforts in medical data mining and knowledge-discovery.

  2. Computational intelligence from AI to BI to NI

    NASA Astrophysics Data System (ADS)

    Werbos, Paul J.

    2015-05-01

    This paper gives highlights of the history of the neural network field, stressing the fundamental ideas which have been in play. Early neural network research was motivated mainly by the goals of artificial intelligence (AI) and of functional neuroscience (biological intelligence, BI), but the field almost died due to frustrations articulated in the famous book Perceptrons by Minsky and Papert. When I found a way to overcome the difficulties by 1974, the community mindset was very resistant to change; it was not until 1987/1988 that the field was reborn in a spectacular way, leading to the organized communities now in place. Even then, it took many more years to establish crossdisciplinary research in the types of mathematical neural networks needed to really understand the kind of intelligence we see in the brain, and to address the most demanding engineering applications. Only through a new (albeit short-lived) funding initiative, funding crossdisciplinary teams of systems engineers and neuroscientists, were we able to fund the critical empirical demonstrations which put our old basic principle of "deep learning" firmly on the map in computer science. Progress has rightly been inhibited at times by legitimate concerns about the "Terminator threat" and other possible abuses of technology. This year, at SPIE, in the quantum computing track, we outline the next stage ahead of us in breaking out of the box, again and again, and rising to fundamental challenges and opportunities still ahead of us.

  3. Compact Microscope Imaging System With Intelligent Controls Improved

    NASA Technical Reports Server (NTRS)

    McDowell, Mark

    2004-01-01

    The Compact Microscope Imaging System (CMIS) with intelligent controls is a diagnostic microscope analysis tool with intelligent controls for use in space, industrial, medical, and security applications. This compact miniature microscope, which can perform tasks usually reserved for conventional microscopes, has unique advantages in the fields of microscopy, biomedical research, inline process inspection, and space science. Its unique approach integrates a machine vision technique with an instrumentation and control technique that provides intelligence via the use of adaptive neural networks. The CMIS system was developed at the NASA Glenn Research Center specifically for interface detection used for colloid hard spheres experiments; biological cell detection for patch clamping, cell movement, and tracking; and detection of anode and cathode defects for laboratory samples using microscope technology.

  4. Personalized E- learning System Based on Intelligent Agent

    NASA Astrophysics Data System (ADS)

    Duo, Sun; Ying, Zhou Cai

    Lack of personalized learning is the key shortcoming of traditional e-Learning system. This paper analyzes the personal characters in e-Learning activity. In order to meet the personalized e-learning, a personalized e-learning system based on intelligent agent was proposed and realized in the paper. The structure of system, work process, the design of intelligent agent and the realization of intelligent agent were introduced in the paper. After the test use of the system by certain network school, we found that the system could improve the learner's initiative participation, which can provide learners with personalized knowledge service. Thus, we thought it might be a practical solution to realize self- learning and self-promotion in the lifelong education age.

  5. US long distance fiber optic networks: Technology, evolution and advanced concepts. Volume 2: Fiber optic technology and long distance networks

    NASA Astrophysics Data System (ADS)

    1986-10-01

    The study projects until 2000 the evolution of long distance fiber optic networks in the U.S. Volume 1 is the Executive Summary. Volume 2 focuses on fiber optic components and systems that are directly related to the operation of long-haul networks. Optimistic, pessimistic and most likely scenarios of technology development are presented. The activities of national and regional companies implementing fiber long haul networks are also highlighted, along with an analysis of the market and regulatory forces affecting network evolution. Volume 3 presents advanced fiber optic network concept definitions. Inter-LATA traffic is quantified and forms the basis for the construction of 11-, 15-, 17-, and 23-node networks. Using the technology projections from Volume 2, a financial model identifies cost drivers and determines circuit mile costs between any two LATAs. A comparison of fiber optics with alternative transmission concludes the report.

  6. US long distance fiber optic networks: Technology, evolution and advanced concepts. Volume 2: Fiber optic technology and long distance networks

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The study projects until 2000 the evolution of long distance fiber optic networks in the U.S. Volume 1 is the Executive Summary. Volume 2 focuses on fiber optic components and systems that are directly related to the operation of long-haul networks. Optimistic, pessimistic and most likely scenarios of technology development are presented. The activities of national and regional companies implementing fiber long haul networks are also highlighted, along with an analysis of the market and regulatory forces affecting network evolution. Volume 3 presents advanced fiber optic network concept definitions. Inter-LATA traffic is quantified and forms the basis for the construction of 11-, 15-, 17-, and 23-node networks. Using the technology projections from Volume 2, a financial model identifies cost drivers and determines circuit mile costs between any two LATAs. A comparison of fiber optics with alternative transmission concludes the report.

  7. An Intelligent Gear Fault Diagnosis Methodology Using a Complex Wavelet Enhanced Convolutional Neural Network.

    PubMed

    Sun, Weifang; Yao, Bin; Zeng, Nianyin; Chen, Binqiang; He, Yuchao; Cao, Xincheng; He, Wangpeng

    2017-07-12

    As a typical example of large and complex mechanical systems, rotating machinery is prone to diversified sorts of mechanical faults. Among these faults, one of the prominent causes of malfunction is generated in gear transmission chains. Although they can be collected via vibration signals, the fault signatures are always submerged in overwhelming interfering contents. Therefore, identifying the critical fault's characteristic signal is far from an easy task. In order to improve the recognition accuracy of a fault's characteristic signal, a novel intelligent fault diagnosis method is presented. In this method, a dual-tree complex wavelet transform (DTCWT) is employed to acquire the multiscale signal's features. In addition, a convolutional neural network (CNN) approach is utilized to automatically recognise a fault feature from the multiscale signal features. The experiment results of the recognition for gear faults show the feasibility and effectiveness of the proposed method, especially in the gear's weak fault features.

  8. Introduction to Advanced Engine Control Concepts

    NASA Technical Reports Server (NTRS)

    Sanjay, Garg

    2007-01-01

    With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet these challenges through the concept of Intelligent Propulsion Systems. The key enabling technologies for an Intelligent Propulsion System are the increased efficiencies of components through active control, advanced diagnostics and prognostics integrated with intelligent engine control to enhance operational reliability and component life, and distributed control with smart sensors and actuators in an adaptive fault tolerant architecture. This presentation describes the current activities of the Controls and Dynamics Branch in the areas of active component control and propulsion system intelligent control, and presents some recent analytical and experimental results in these areas.

  9. Intelligent Diagnosis of Degradation State under Corrosion

    NASA Astrophysics Data System (ADS)

    Isoc, Dorin; Ignat-Coman, Aurelian; Joldiş, Adrian

    2008-06-01

    The work presents an inter- and multi-disciplinary research where the diagnosis is treated by using the artificial intelligence means and the application the degradation state of buildings and urban power networks. A possible model of degradation process caused by the corrosion and the technical achievement manner is given. The notions of micro- and macro-modeling and model granularity are introduced and applied. For resulting model the specification of intelligent processing of information and further the knowledge for suggested model are prepared. As concluding remarks the results are analysed and interpreted and a generalized approach is suggested and argued.

  10. The Intelligent Behavior of Plants.

    PubMed

    van Loon, Leendert C

    2016-04-01

    Plants are as adept as animals and humans in reacting effectively to their ever-changing environment. Of necessity, their sessile nature requires specific adaptations, but their cells possess a network-type communication system with emerging properties at the level of the organ or entire plant. The specific adjustments in growth and development of plants can be taken to represent behavior. Their ability to learn from experience and to memorize previous experiences in order to optimize fitness allows effective acclimation to environmental stresses and can be considered a form of intelligence. Intelligent behavior is exemplified by the exceptional versatility of plants to deal with abiotic stresses as well as microbial and insect attack by balancing appropriate defensive reactions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. SCAILET - An intelligent assistant for satellite ground terminal operations

    NASA Technical Reports Server (NTRS)

    Shahidi, A. K.; Crapo, J. A.; Schlegelmilch, R. F.; Reinhart, R. C.; Petrik, E. J.; Walters, J. L.; Jones, R. E.

    1992-01-01

    Space communication artificial intelligence for the link evaluation terminal (SCAILET) is an experimenter interface to the link evaluation terminal (LET) developed by NASA through the application of artificial intelligence to an advanced ground terminal. The high-burst-rate (HBR) LET provides the required capabilities for wideband communications experiments with the advanced communications technology satellite (ACTS). The HBR-LET terminal consists of seven major subsystems and is controlled and monitored by a minicomputer through an IEEE-488 or RS-232 interface. Programming scripts configure HBR-LET and allow data acquisition but are difficult to use and therefore the full capabilities of the system are not utilized. An intelligent assistant module was developed as part of the SCAILET module and solves problems encountered during configuration of the HBR-LET system. This assistant is a graphical interface with an expert system running in the background and allows users to configure instrumentation, program sequences and reference documentation. The simplicity of use makes SCAILET a superior interface to the ASCII terminal and continuous monitoring allows nearly flawless configuration and execution of HBR-LET experiments.

  12. Intelligent transportation systems impact assessment framework : final report

    DOT National Transportation Integrated Search

    1995-09-30

    One of the most compelling reasons for investment in Intelligent Transportation System : (ITS) services is to realize a reduction in traffic congestion. Volume on Americas : highway network is expected to double by the year 2020 from 1.9 trillion ...

  13. Extraction of advanced geospatial intelligence (AGI) from commercial synthetic aperture radar imagery

    NASA Astrophysics Data System (ADS)

    Kanberoglu, Berkay; Frakes, David

    2017-04-01

    The extraction of objects from advanced geospatial intelligence (AGI) products based on synthetic aperture radar (SAR) imagery is complicated by a number of factors. For example, accurate detection of temporal changes represented in two-color multiview (2CMV) AGI products can be challenging because of speckle noise susceptibility and false positives that result from small orientation differences between objects imaged at different times. These cases of apparent motion can result in 2CMV detection, but they obviously differ greatly in terms of significance. In investigating the state-of-the-art in SAR image processing, we have found that differentiating between these two general cases is a problem that has not been well addressed. We propose a framework of methods to address these problems. For the detection of the temporal changes while reducing the number of false positives, we propose using adaptive object intensity and area thresholding in conjunction with relaxed brightness optical flow algorithms that track the motion of objects across time in small regions of interest. The proposed framework for distinguishing between actual motion and misregistration can lead to more accurate and meaningful change detection and improve object extraction from a SAR AGI product. Results demonstrate the ability of our techniques to reduce false positives up to 60%.

  14. [Advances in sensor node and wireless communication technology of body sensor network].

    PubMed

    Lin, Weibing; Lei, Sheng; Wei, Caihong; Li, Chunxiang; Wang, Cang

    2012-06-01

    With the development of the wireless communication technology, implantable biosensor technology, and embedded system technology, Body Sensor Network (BSN) as one branch of wireless sensor networks and important part of the Internet of things has caught more attention of researchers and enterprises. This paper offers the basic concept of the BSN and analyses the related research. We focus on sensor node and wireless communication technology from perspectives of technology challenges, research advance and development trend in the paper. Besides, we also present a relative overview of domestic and overseas projects for the BSN.

  15. Process-in-Network: A Comprehensive Network Processing Approach

    PubMed Central

    Urzaiz, Gabriel; Villa, David; Villanueva, Felix; Lopez, Juan Carlos

    2012-01-01

    A solid and versatile communications platform is very important in modern Ambient Intelligence (AmI) applications, which usually require the transmission of large amounts of multimedia information over a highly heterogeneous network. This article focuses on the concept of Process-in-Network (PIN), which is defined as the possibility that the network processes information as it is being transmitted, and introduces a more comprehensive approach than current network processing technologies. PIN can take advantage of waiting times in queues of routers, idle processing capacity in intermediate nodes, and the information that passes through the network. PMID:22969390

  16. Computational intelligence techniques in bioinformatics.

    PubMed

    Hassanien, Aboul Ella; Al-Shammari, Eiman Tamah; Ghali, Neveen I

    2013-12-01

    Computational intelligence (CI) is a well-established paradigm with current systems having many of the characteristics of biological computers and capable of performing a variety of tasks that are difficult to do using conventional techniques. It is a methodology involving adaptive mechanisms and/or an ability to learn that facilitate intelligent behavior in complex and changing environments, such that the system is perceived to possess one or more attributes of reason, such as generalization, discovery, association and abstraction. The objective of this article is to present to the CI and bioinformatics research communities some of the state-of-the-art in CI applications to bioinformatics and motivate research in new trend-setting directions. In this article, we present an overview of the CI techniques in bioinformatics. We will show how CI techniques including neural networks, restricted Boltzmann machine, deep belief network, fuzzy logic, rough sets, evolutionary algorithms (EA), genetic algorithms (GA), swarm intelligence, artificial immune systems and support vector machines, could be successfully employed to tackle various problems such as gene expression clustering and classification, protein sequence classification, gene selection, DNA fragment assembly, multiple sequence alignment, and protein function prediction and its structure. We discuss some representative methods to provide inspiring examples to illustrate how CI can be utilized to address these problems and how bioinformatics data can be characterized by CI. Challenges to be addressed and future directions of research are also presented and an extensive bibliography is included. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. REVIEW ARTICLE: Sensor communication technology towards ambient intelligence

    NASA Astrophysics Data System (ADS)

    Delsing, J.; Lindgren, P.

    2005-04-01

    This paper is a review of the fascinating development of sensors and the communication of sensor data. A brief historical introduction is given, followed by a discussion on architectures for sensor networks. Further, realistic specifications on sensor devices suitable for ambient intelligence and ubiquitous computing are given. Based on these specifications, the status and current frontline development are discussed. In total, it is shown that future technology for ambient intelligence based on sensor and actuator devices using standardized Internet communication is within the range of possibilities within five years.

  18. Advances in intelligent diagnosis methods for pulmonary ground-glass opacity nodules.

    PubMed

    Yang, Jing; Wang, Hailin; Geng, Chen; Dai, Yakang; Ji, Jiansong

    2018-02-07

    Pulmonary nodule is one of the important lesions of lung cancer, mainly divided into two categories of solid nodules and ground glass nodules. The improvement of diagnosis of lung cancer has significant clinical significance, which could be realized by machine learning techniques. At present, there have been a lot of researches focusing on solid nodules. But the research on ground glass nodules started late, and lacked research results. This paper summarizes the research progress of the method of intelligent diagnosis for pulmonary nodules since 2014. It is described in details from four aspects: nodular signs, data analysis methods, prediction models and system evaluation. This paper aims to provide the research material for researchers of the clinical diagnosis and intelligent analysis of lung cancer, and further improve the precision of pulmonary ground glass nodule diagnosis.

  19. Artificial intelligence (AI) systems for interpreting complex medical datasets.

    PubMed

    Altman, R B

    2017-05-01

    Advances in machine intelligence have created powerful capabilities in algorithms that find hidden patterns in data, classify objects based on their measured characteristics, and associate similar patients/diseases/drugs based on common features. However, artificial intelligence (AI) applications in medical data have several technical challenges: complex and heterogeneous datasets, noisy medical datasets, and explaining their output to users. There are also social challenges related to intellectual property, data provenance, regulatory issues, economics, and liability. © 2017 ASCPT.

  20. Facts and fiction of learning systems. [decision making intelligent control

    NASA Technical Reports Server (NTRS)

    Saridis, G. N.

    1975-01-01

    The methodology that will provide the updated precision for the hardware control and the advanced decision making and planning in the software control is called learning systems and intelligent control. It was developed theoretically as an alternative for the nonsystematic heuristic approaches of artificial intelligence experiments and the inflexible formulation of modern optimal control methods. Its basic concepts are discussed and some feasibility studies of some practical applications are presented.