Science.gov

Sample records for advanced interactive display

  1. Advanced interactive displays for deployable command and control centers

    NASA Astrophysics Data System (ADS)

    Jedrysik, Peter A.; Parada, Francisco E.; Stedman, Terrance A.; Zhang, Jingyuan

    2003-09-01

    Command and control in today's battlefield environment requires efficient and effective control of massive amounts of constantly changing information from a variety of databases and real-time sensors. Using advanced information technology for presentation and interactive control enables more extensive data fusion and correlation to present an accurate picture of the battlespace to commanders and their staffs. The Interactive DataWall being developed by the Advanced Displays and Intelligent Interfaces (ADII) technology team of the Air Force Research Laboratory's Information Directorate (AFRL/IF) is a strong contender for solving the information management problems facing the 21st century military commander. It provides an ultra high-resolution large screen display with multi-modal, wireless interaction. Commercial off-the-shelf (COTS) technology has been combined with specialized hardware and software developed in-house to provide a unique capability for multimedia data display and control. The technology once isolated to a laboratory environment has been packaged into deployable systems that have been successfully transitioned to support the warfighter in the field.

  2. Advanced Interactive Display Formats for Terminal Area Traffic Control

    NASA Technical Reports Server (NTRS)

    Grunwald, Arthur J.; Shaviv, G. E.

    1999-01-01

    This research project deals with an on-line dynamic method for automated viewing parameter management in perspective displays. Perspective images are optimized such that a human observer will perceive relevant spatial geometrical features with minimal errors. In order to compute the errors at which observers reconstruct spatial features from perspective images, a visual spatial-perception model was formulated. The model was employed as the basis of an optimization scheme aimed at seeking the optimal projection parameter setting. These ideas are implemented in the context of an air traffic control (ATC) application. A concept, referred to as an active display system, was developed. This system uses heuristic rules to identify relevant geometrical features of the three-dimensional air traffic situation. Agile, on-line optimization was achieved by a specially developed and custom-tailored genetic algorithm (GA), which was to deal with the multi-modal characteristics of the objective function and exploit its time-evolving nature.

  3. Advanced interactive display formats for terminal area traffic control

    NASA Technical Reports Server (NTRS)

    Grunwald, Arthur J.

    1995-01-01

    The basic design considerations for perspective Air Traffic Control displays are described. A software framework has been developed for manual viewing parameter setting (MVPS) in preparation for continued, ongoing developments on automated viewing parameter setting (AVPS) schemes. The MVPS system is based on indirect manipulation of the viewing parameters. Requests for changes in viewing parameter setting are entered manually by the operator by moving viewing parameter manipulation pointers on the screen. The motion of these pointers, which are an integral part of the 3-D scene, is limited to the boundaries of screen. This arrangement has been chosen, in order to preserve the correspondence between the new and the old viewing parameter setting, a feature which contributes to preventing spatial disorientation of the operator. For all viewing operations, e.g. rotation, translation and ranging, the actual change is executed automatically by the system, through gradual transitions with an exponentially damped, sinusoidal velocity profile, in this work referred to as 'slewing' motions. The slewing functions, which eliminate discontinuities in the viewing parameter changes, are designed primarily for enhancing the operator's impression that he, or she, is dealing with an actually existing physical system, rather than an abstract computer generated scene. Current, ongoing efforts deal with the development of automated viewing parameter setting schemes. These schemes employ an optimization strategy, aimed at identifying the best possible vantage point, from which the Air Traffic Control scene can be viewed, for a given traffic situation.

  4. Advanced Interactive Display formats for Terminal Area Traffic Control

    NASA Technical Reports Server (NTRS)

    Grunwald, Arthur J.

    1999-01-01

    This report describes the basic design considerations for perspective Air Traffic Control displays. A software framework has been developed for manual viewing parameter setting (MVPS) in preparation for continued, ongoing developments on automated viewing parameter setting (AVPS) schemes. Two distinct modes of MVPS operations are considered, both of which utilize manipulation pointers imbedded in the three-dimensional scene: (1) direct manipulation of the viewing parameters; in this mode the manipulation pointers act like the control-input device, through which the viewing parameter changes are made. Part of the parameters are rate controlled, and part of them position controlled. This mode is intended for making fast, iterative small changes in the parameters. (2) indirect manipulation of the viewing parameters. This mode is intended primarily for introducing large, predetermined changes in the parameters. Requests for changes in viewing parameter setting are entered manually by the operator by moving viewing parameter manipulation pointers on the screen. The motion of these pointers, which are an integral part of the 3-D scene, is limited to the boundaries of screen. This arrangement has been chosen, in order to preserve the correspondence between the spatial lay-outs of the new and the old viewing parameter setting, a feature which contributes to preventing spatial disorientation of the operator. For all viewing operations, e.g. rotation, translation and ranging, the actual change is executed automatically by the system, through gradual transitions with an exponentially damped, sinusoidal velocity profile, in this work referred to as 'slewing' motions. The slewing functions, which eliminate discontinuities in the viewing parameter changes, are designed primarily for enhancing the operator's impression that he, or she, is dealing with an actually existing physical system, rather than an abstract computer-generated scene, The proposed, continued research efforts

  5. Advanced interactive display formats for terminal area traffic control

    NASA Technical Reports Server (NTRS)

    Grunwald, Arthur J.

    1996-01-01

    This report describes the basic design considerations for perspective air traffic control displays. A software framework has been developed for manual viewing parameter setting (MVPS) in preparation for continued, ongoing developments on automated viewing parameter setting (AVPS) schemes. Two distinct modes of MVPS operations are considered, both of which utilize manipulation pointers imbedded in the three-dimensional scene: (1) direct manipulation of the viewing parameters -- in this mode the manipulation pointers act like the control-input device, through which the viewing parameter changes are made. Part of the parameters are rate controlled, and part of them position controlled. This mode is intended for making fast, iterative small changes in the parameters. (2) Indirect manipulation of the viewing parameters -- this mode is intended primarily for introducing large, predetermined changes in the parameters. Requests for changes in viewing parameter setting are entered manually by the operator by moving viewing parameter manipulation pointers on the screen. The motion of these pointers, which are an integral part of the 3-D scene, is limited to the boundaries of the screen. This arrangement has been chosen in order to preserve the correspondence between the spatial lay-outs of the new and the old viewing parameter setting, a feature which contributes to preventing spatial disorientation of the operator. For all viewing operations, e.g. rotation, translation and ranging, the actual change is executed automatically by the system, through gradual transitions with an exponentially damped, sinusoidal velocity profile, in this work referred to as 'slewing' motions. The slewing functions, which eliminate discontinuities in the viewing parameter changes, are designed primarily for enhancing the operator's impression that he, or she, is dealing with an actually existing physical system, rather than an abstract computer-generated scene. The proposed, continued research

  6. Advances in systems for interactive processing and display of meteorological data

    NASA Technical Reports Server (NTRS)

    Hasler, A. F.

    1983-01-01

    Advances in systems for interactive processing and display of meteorological data are reviewed, with particular attention given to developments in hardware and software, meteorological data base, analysis and display, and systems availability. These developments include inexpensive minicomputers which give the user almost instantaneous results for many types of jobs; image terminals with the capability to enhance, quantify, animate, and compare image and graphical data; accessibility of a large meteorological data base and the capability of merging different types of data; and sophisticated analysis and multidimensional display techniques. Critical problems still to be solved include getting quick access to historical and real time data bases from any system and making it easy to transport software from one system to another.

  7. Displaying Composite and Archived Soundings in the Advanced Weather Interactive Processing System

    NASA Technical Reports Server (NTRS)

    Barrett, Joe H., III; Volkmer, Matthew R.; Blottman, Peter F.; Sharp, David W.

    2008-01-01

    This presentation describes work done by the Applied Meteorology Unit (AMU) to add composite soundings to the Advanced Weather Interactive Processing System (AWIPS). This allows National Weather Service (NWS) forecasters to compare the current atmospheric state with climatology. In a previous task, the AMU created composite soundings for four rawinsonde observation stations in Florida, for each of eight flow regimes. The composite soundings were delivered to the NWS Melbourne (MLB) office for display using the NSHARP software program. NWS MLB requested that the AMU make the composite soundings available for display in AWIPS. The AMU first created a procedure to customize AWIPS so composite soundings could be displayed. A unique four-character identifier was created for each of the 32 composite soundings. The AMIU wrote a Tool Command Language/Tool Kit (TclITk) software program to convert the composite soundings from NSHARP to Network Common Data Form (NetCDF) format. The NetCDF files were then displayable by AWIPS.

  8. Displaying Composite and Archived Soundings in the Advanced Weather Interactive Processing System

    NASA Technical Reports Server (NTRS)

    Barrett, Joe H., III; Volkmer, Matthew R.; Blottman, Peter F.; Sharp, David W.

    2008-01-01

    In a previous task, the Applied Meteorology Unit (AMU) developed spatial and temporal climatologies of lightning occurrence based on eight atmospheric flow regimes. The AMU created climatological, or composite, soundings of wind speed and direction, temperature, and dew point temperature at four rawinsonde observation stations at Jacksonville, Tampa, Miami, and Cape Canaveral Air Force Station, for each of the eight flow regimes. The composite soundings were delivered to the National Weather Service (NWS) Melbourne (MLB) office for display using the National version of the Skew-T Hodograph analysis and Research Program (NSHARP) software program. The NWS MLB requested the AMU make the composite soundings available for display in the Advanced Weather Interactive Processing System (AWIPS), so they could be overlaid on current observed soundings. This will allow the forecasters to compare the current state of the atmosphere with climatology. This presentation describes how the AMU converted the composite soundings from NSHARP Archive format to Network Common Data Form (NetCDF) format, so that the soundings could be displayed in AWl PS. The NetCDF is a set of data formats, programming interfaces, and software libraries used to read and write scientific data files. In AWIPS, each meteorological data type, such as soundings or surface observations, has a unique NetCDF format. Each format is described by a NetCDF template file. Although NetCDF files are in binary format, they can be converted to a text format called network Common data form Description Language (CDL). A software utility called ncgen is used to create a NetCDF file from a CDL file, while the ncdump utility is used to create a CDL file from a NetCDF file. An AWIPS receives soundings in Binary Universal Form for the Representation of Meteorological data (BUFR) format (http://dss.ucar.edu/docs/formats/bufr/), and then decodes them into NetCDF format. Only two sounding files are generated in AWIPS per day. One

  9. Interactive holographic display

    NASA Astrophysics Data System (ADS)

    Son, Jung-Young; Lee, Beam-Ryeol; Kim, Jin-Woong; Chernyshov, Oleksii O.; Park, Min-Chul

    2014-06-01

    A holographic display which is capable of displaying floating holographic images is introduced. The display is for user interaction with the image on the display. It consists of two parts; multiplexed holographic image generation and a spherical mirror. The time multiplexed image from 2 X 10 DMD frames appeared on PDLC screen is imaged by the spherical mirror and becomes a floating image. This image is combined spatially with two layered TV images appearing behind. Since the floating holographic image has a real spatial position and depth, it allows a user to interact with the image.

  10. Three dimensional interactive display

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor)

    2005-01-01

    A three-dimensional (3-D) interactive display and method of forming the same, includes a transparent capaciflector (TC) camera formed on a transparent shield layer on the screen surface. A first dielectric layer is formed on the shield layer. A first wire layer is formed on the first dielectric layer. A second dielectric layer is formed on the first wire layer. A second wire layer is formed on the second dielectric layer. Wires on the first wire layer and second wire layer are grouped into groups of parallel wires with a turnaround at one end of each group and a sensor pad at the opposite end. An operational amplifier is connected to each of the sensor pads and the shield pad biases the pads and receives a signal from connected sensor pads in response to intrusion of a probe. The signal is proportional to probe location with respect to the monitor screen.

  11. Advanced poly-LED displays

    NASA Astrophysics Data System (ADS)

    Childs, Mark; Nisato, Giovanni; Fish, D.; Giraldo, Andrea; Jenkins, A. J.; Johnson, Mark T.

    2003-05-01

    Philips have been actively developing polymer OLED (poly-LED) displays as a future display technology. Their emissive nature leads to a very attractive visual appearance, with wide viewing angle, high brightness and fast response speed. Whilst the first generation of poly-LED displays are likely to be passive-matrix driven, power reduction and resolution increase will lead to the use of active-matrix poly-LED displays. Philips Research have designed, fabricated and characterized five different designs of active-matrix polymer-LED display. Each of the five displays makes use of a distinct pixel programming- or pixel drive-technique, including current programming, threshold voltage measurement and photodiode feedback. It will be shown that hte simplest voltage-programmed current-source pixel suffers from potentially unacceptable brightness non-uniformity, and that advanced pixel circuits can provide a solution to this. Optical-feedback pixel circuits will be discussed, showing that they can be used to improve uniformity and compensate for image burn-in due to polymer-LED material degradation, improving display lifetime. Philips research has also been active in developing technologies required to implement poly-LED displays on flexible substrates, including materials, processing and testing methods. The fabrication of flexible passive-matrix poly-LED displays will be presented, as well as the ongoing work to assess the suitability of processing flexible next-generation poly-LED displays.

  12. Unique interactive projection display screen

    SciTech Connect

    Veligdan, J.T.

    1997-11-01

    Projection systems continue to be the best method to produce large (1 meter and larger) displays. However, in order to produce a large display, considerable volume is typically required. The Polyplanar Optic Display (POD) is a novel type of projection display screen, which for the first time, makes it possible to produce a large projection system that is self-contained and only inches thick. In addition, this display screen is matte black in appearance allowing it to be used in high ambient light conditions. This screen is also interactive and can be remotely controlled via an infrared optical pointer resulting in mouse-like control of the display. Furthermore, this display need not be flat since it can be made curved to wrap around a viewer as well as being flexible.

  13. Interactive displays in medical art

    NASA Technical Reports Server (NTRS)

    Mcconathy, Deirdre Alla; Doyle, Michael

    1989-01-01

    Medical illustration is a field of visual communication with a long history. Traditional medical illustrations are static, 2-D, printed images; highly realistic depictions of the gross morphology of anatomical structures. Today medicine requires the visualization of structures and processes that have never before been seen. Complex 3-D spatial relationships require interpretation from 2-D diagnostic imagery. Pictures that move in real time have become clinical and research tools for physicians. Medical illustrators are involved with the development of interactive visual displays for three different, but not discrete, functions: as educational materials, as clinical and research tools, and as data bases of standard imagery used to produce visuals. The production of interactive displays in the medical arts is examined.

  14. Advanced rotorcraft helmet display sighting system optics

    NASA Astrophysics Data System (ADS)

    Raynal, Francois; Chen, Muh-Fa

    2002-08-01

    Kaiser Electronics' Advanced Rotorcraft Helmet Display Sighting System is a Biocular Helmet Mounted Display (HMD) for Rotary Wing Aviators. Advanced Rotorcraft HMDs requires low head supported weight, low center of mass offsets, low peripheral obstructions of the visual field, large exit pupils, large eye relief, wide field of view (FOV), high resolution, low luning, sun light readability with high contrast and low prismatic deviations. Compliance with these safety, user acceptance and optical performance requirements is challenging. The optical design presented in this paper provides an excellent balance of these different and conflicting requirements. The Advanced Rotorcraft HMD optical design is a pupil forming off axis catadioptric system that incorporates a transmissive SXGA Active Matrix liquid Crystal Display (AMLCD), an LED array backlight and a diopter adjustment mechanism.

  15. Alternative display and interaction devices

    NASA Technical Reports Server (NTRS)

    Bolas, M. T.; McDowall, I. E.; Mead, R. X.; Lorimer, E. R.; Hackbush, J. E.; Greuel, C.

    1995-01-01

    While virtual environment systems are typically thought to consist of a head mounted display and a flex-sensing glove, alternative peripheral devices are beginning to be developed in response to application requirements. Three such alternatives are discussed: fingertip sensing gloves, fixed stereoscopic viewers, and counterbalanced head mounted displays. A subset of commercial examples that highlight each alternative is presented as well as a brief discussion of interesting engineering and implementation issues.

  16. Advance in phage display technology for bioanalysis.

    PubMed

    Tan, Yuyu; Tian, Tian; Liu, Wenli; Zhu, Zhi; J Yang, Chaoyong

    2016-06-01

    Phage display technology has emerged as a powerful tool for target gene expression and target-specific ligand selection. It is widely used to screen peptides, proteins and antibodies with the advantages of simplicity, high efficiency and low cost. A variety of targets, including ions, small molecules, inorganic materials, natural and biological polymers, nanostructures, cells, bacteria, and even tissues, have been demonstrated to generate specific binding ligands by phage display. Phages and target-specific ligands screened by phage display have been widely used as affinity reagents in therapeutics, diagnostics and biosensors. In this review, comparisons of different types of phage display systems are first presented. Particularly, microfluidic-based phage display, which enables screening with high throughput, high efficiency and integration, is highlighted. More importantly, we emphasize the advances in biosensors based on phages or phage-derived probes, including nonlytic phages, lytic phages, peptides or proteins screened by phage display, phage assemblies and phage-nanomaterial complexes. However, more efficient and higher throughput phage display methods are still needed to meet an explosion in demand for bioanalysis. Furthermore, screening of cyclic peptides and functional peptides will be the hotspot in bioanalysis. PMID:27061133

  17. Advancements of vertically aligned liquid crystal displays.

    PubMed

    Kumar, Pankaj; Jaggi, Chinky; Sharma, Vandna; Raina, Kuldeep Kumar

    2016-02-01

    This review describes the recent advancements in the field of the vertical aligned (VA) liquid crystal displays. The process and formation of different vertical alignment modes such as conventional VA, patterned VA, multi-domain VA, and polymer stabilised VA etc are widely discussed. Vertical alignment of liquid crystal due to nano particle dispersion in LC host, bifunctional PR-SAM formed by silane coupling reaction to oxide surfaces, azo dye etc., are also highlighted and discussed. Overall, the article highlights the advances in the research of vertical aligned liquid crystal in terms of their scientific and technological aspects. PMID:26800482

  18. Program For Generating Interactive Displays

    NASA Technical Reports Server (NTRS)

    Costenbader, Jay; Moleski, Walt; Szczur, Martha; Howell, David; Engelberg, Norm; Li, Tin P.; Misra, Dharitri; Miller, Philip; Neve, Leif; Wolf, Karl; Sall, Ken; Ide, Nick; Pang, Ted; Budacz, Deborah; Link, Donald; Sugar, Ross; Bleser, Terry; Seamster, Tom; Geomoets, Richard; Harris, Elfrieda

    1991-01-01

    Sun/Unix version of Transportable Applications Environment Plus (TAE+) computer program provides integrated, portable software environment for developing and running interactive window, text, and graphical-object-based application software systems. Enables programmer or nonprogrammer to construct easily custom software interface between user and application program and to move resulting interface program and its application program to different computers. Plus viewed as productivity tool for application developers and application end users, who benefit from resultant consistent and well-designed user interface sheltering them from intricacies of computer. Available in form suitable for following six different groups of computers: DEC VAX station and other VMS VAX computers, Macintosh II computers running AUX, Apollo Domain Series 3000, DEC VAX and reduced-instruction-set-computer workstations running Ultrix, Sun 3- and 4-series workstations running Sun OS and IBM RT/PC and PS/2 compute

  19. Real-Time, Interactive Sonic Boom Display

    NASA Technical Reports Server (NTRS)

    Haering, Jr., Edward A. (Inventor); Plotkin, Kenneth J. (Inventor)

    2012-01-01

    The present invention is an improved real-time, interactive sonic boom display for aircraft. By using physical properties obtained via various sensors and databases, the invention determines, in real-time, sonic boom impacts locations and intensities for aircraft traveling at supersonic speeds. The information is provided to a pilot via a display that lists a selectable set of maneuvers available to the pilot to mitigate sonic boom issues. Upon selection of a maneuver, the information as to the result of the maneuver is displayed and the pilot may proceed with making the maneuver, or provide new data to the system in order to calculate a different maneuver.

  20. Universe Interactive: Static Displays with Active Components

    NASA Astrophysics Data System (ADS)

    Larson, Michelle B.

    2005-01-01

    As the World Year of Physics (WYP) approaches, the AAPT WYP Committee would like to encourage everyone to consider ways to engage those around us in celebrating the science that makes us the proud geeks we are. The geek sentiment is my own, and does not necessarily reflect the views and opinions of the committee. This paper offers simple and inexpensive astronomy-related ideas for a bulletin-board-type display. The particular ideas presented below are hands-on classroom activities that I've adapted for display purposes. The display is static in that once constructed it does not require a personal facilitator, but each component invites interaction. At the end of the paper I revisit the idea of building a sundial1 as a highly visible and artistic way to engage students and communities in physics. The activities presented here are available for use when constructing your own display. In addition, these examples are meant to illustrate how instructional products might be modified for display purposes, and I encourage others to consider their favorite activities for an interactive display.

  1. Advanced and tendencies in the development of display technologies

    NASA Astrophysics Data System (ADS)

    Kompanets, I. N.

    2006-06-01

    Advances and key display applications are discussed. Computer, compact mobile, TV and collective large screen displays are mentioned. Flat panel displays step on CRT devices to leave them behind in 2007. Materials, active matricies and applications of bright radiative field emission and organic LED displays are developing successively and pressing other technologies to be used in photo-cameras, cellular phones, auto-cars and avionics. Progress in flexible screens can substantially extend the display design and application soon. 3D display systems are under intensive development, and laser is an important unit in some vaiants of holographic and volumetric 3D displays. Value forecast of different display markets is presented.

  2. Interaction analysis through proteomic phage display.

    PubMed

    Sundell, Gustav N; Ivarsson, Ylva

    2014-01-01

    Phage display is a powerful technique for profiling specificities of peptide binding domains. The method is suited for the identification of high-affinity ligands with inhibitor potential when using highly diverse combinatorial peptide phage libraries. Such experiments further provide consensus motifs for genome-wide scanning of ligands of potential biological relevance. A complementary but considerably less explored approach is to display expression products of genomic DNA, cDNA, open reading frames (ORFs), or oligonucleotide libraries designed to encode defined regions of a target proteome on phage particles. One of the main applications of such proteomic libraries has been the elucidation of antibody epitopes. This review is focused on the use of proteomic phage display to uncover protein-protein interactions of potential relevance for cellular function. The method is particularly suited for the discovery of interactions between peptide binding domains and their targets. We discuss the largely unexplored potential of this method in the discovery of domain-motif interactions of potential biological relevance. PMID:25295249

  3. Interaction Analysis through Proteomic Phage Display

    PubMed Central

    2014-01-01

    Phage display is a powerful technique for profiling specificities of peptide binding domains. The method is suited for the identification of high-affinity ligands with inhibitor potential when using highly diverse combinatorial peptide phage libraries. Such experiments further provide consensus motifs for genome-wide scanning of ligands of potential biological relevance. A complementary but considerably less explored approach is to display expression products of genomic DNA, cDNA, open reading frames (ORFs), or oligonucleotide libraries designed to encode defined regions of a target proteome on phage particles. One of the main applications of such proteomic libraries has been the elucidation of antibody epitopes. This review is focused on the use of proteomic phage display to uncover protein-protein interactions of potential relevance for cellular function. The method is particularly suited for the discovery of interactions between peptide binding domains and their targets. We discuss the largely unexplored potential of this method in the discovery of domain-motif interactions of potential biological relevance. PMID:25295249

  4. Novel autostereoscopic single-user displays with user interaction

    NASA Astrophysics Data System (ADS)

    Hopf, Klaus; Chojecki, Paul; Neumannn, Frank; Przewozny, David

    2006-10-01

    This paper describes recent advances in the field of autostereoscopic display development and introduces an appropriate integration of a novel user interaction technology. Beside technical aspects of the developed autostereoscopic display technology, the paper includes topics of our video-based interaction technique and introduces promising applications of autostereoscopic single user displays. Based on results of the European ATTEST project, the Fraunhofer Institute for Telecommunications (HHI) has developed the Free2C 3D display technology, which provides free positioning of a single viewer. The optics of the Free2C displays is designed such that extremely low crosstalk, excellent color reproduction and high brightness are achieved. Simple and intuitive interaction is a requirement for multi-modal 3D displays. For this reason, a novel technology has been integrated into the control console that can recognize a persons' hand and its gestures. Displayed 3D objects floating in front of the screen can be rotated by simple gestures and virtual buttons can be pressed by pointing at them (virtual 3D touch screen). Several applications are currently used by customers and have been presented at trade shows, exhibitions and showrooms. Feasible applications are based on computer generated content, live video created by stereoscopic cameras and films stored on hard disk. Immersive media presentations are one promising application for attractive stereoscopic representations. The Free2C Kiosk and the 3D Media Center combine a high-resolution autostereoscopic 3D display with a video-based hand-gesture recognition device for direct manipulation of virtual 3D objects floating in front of the screen.

  5. Advanced manufacturing technologies on color plasma displays

    NASA Astrophysics Data System (ADS)

    Betsui, Keiichi

    2000-06-01

    The mass production of the color plasma display started from 1996. However, since the price of the panel is still expensive, PDPs are not in widespread use at home. It is necessary to develop the new and low-cost manufacturing technologies to reduce the price of the panel. This paper describes some of the features of new fabrication technologies of PDPs.

  6. Advanced Three-Dimensional Display System

    NASA Technical Reports Server (NTRS)

    Geng, Jason

    2005-01-01

    A desktop-scale, computer-controlled display system, initially developed for NASA and now known as the VolumeViewer(TradeMark), generates three-dimensional (3D) images of 3D objects in a display volume. This system differs fundamentally from stereoscopic and holographic display systems: The images generated by this system are truly 3D in that they can be viewed from almost any angle, without the aid of special eyeglasses. It is possible to walk around the system while gazing at its display volume to see a displayed object from a changing perspective, and multiple observers standing at different positions around the display can view the object simultaneously from their individual perspectives, as though the displayed object were a real 3D object. At the time of writing this article, only partial information on the design and principle of operation of the system was available. It is known that the system includes a high-speed, silicon-backplane, ferroelectric-liquid-crystal spatial light modulator (SLM), multiple high-power lasers for projecting images in multiple colors, a rotating helix that serves as a moving screen for displaying voxels [volume cells or volume elements, in analogy to pixels (picture cells or picture elements) in two-dimensional (2D) images], and a host computer. The rotating helix and its motor drive are the only moving parts. Under control by the host computer, a stream of 2D image patterns is generated on the SLM and projected through optics onto the surface of the rotating helix. The system utilizes a parallel pixel/voxel-addressing scheme: All the pixels of the 2D pattern on the SLM are addressed simultaneously by laser beams. This parallel addressing scheme overcomes the difficulty of achieving both high resolution and a high frame rate in a raster scanning or serial addressing scheme. It has been reported that the structure of the system is simple and easy to build, that the optical design and alignment are not difficult, and that the

  7. Interactive Display of Surfaces Using Subdivision Surfaces and Wavelets

    SciTech Connect

    Duchaineau, M A; Bertram, M; Porumbescu, S; Hamann, B; Joy, K I

    2001-10-03

    Complex surfaces and solids are produced by large-scale modeling and simulation activities in a variety of disciplines. Productive interaction with these simulations requires that these surfaces or solids be viewable at interactive rates--yet many of these surfaced solids can contain hundreds of millions of polygondpolyhedra. Interactive display of these objects requires compression techniques to minimize storage, and fast view-dependent triangulation techniques to drive the graphics hardware. In this paper, we review recent advances in subdivision-surface wavelet compression and optimization that can be used to provide a framework for both compression and triangulation. These techniques can be used to produce suitable approximations of complex surfaces of arbitrary topology, and can be used to determine suitable triangulations for display. The techniques can be used in a variety of applications in computer graphics, computer animation and visualization.

  8. Advanced alarm systems: Display and processing issues

    SciTech Connect

    O`Hara, J.M.; Wachtel, J.; Perensky, J.

    1995-05-01

    This paper describes a research program sponsored by the US Nuclear Regulatory Commission to address the human factors engineering (HFE) deficiencies associated with nuclear power plant alarm systems. The overall objective of the study is to develop HFE review guidance for alarm systems. In support of this objective, human performance issues needing additional research were identified. Among the important issues were alarm processing strategies and alarm display techniques. This paper will discuss these issues and briefly describe our current research plan to address them.

  9. Recent advances and product enhancements in reflective cholesteric displays

    NASA Astrophysics Data System (ADS)

    Khan, Asad; Schneider, Tod; Miller, Nick; Marhefka, Duane; Ernst, Todd; Nicholson, Forrest; Doane, Joseph W.

    2005-04-01

    Bistable reflective cholesteric displays are a liquid crystal display technology developed to fill a market need for very low power displays on a low-cost, high resolution passive matrix. Their unique look, high reflectivity, bistability, and simple structure make them an ideal flat panel display choice for handheld or other portable devices where small lightweight batteries with long lifetimes are important. We discuss recent advances in cholesteric display technology at Kent Displays such as progress towards single layer black and white displays, standard products, lower cost display modules, and various interface options for cholesteric display applications. It will be shown that inclusion of radio frequency (rf) control options and serial peripheral interface (spi) can greatly enhance the cholesteric display module market penetration by enabling quick integration into end devices. Finally, some discussion will be on the progress of the development of flexible reflective cholesteric displays. These flexible displays can dramatically change industrial design methods by enabling curved surfaces with displays integrated in them. Additional discussion in the paper will include applications of various display modes including signs, hand held instrumentation, and the electronic book and reader.

  10. Evaluation of advanced displays for engine monitoring and control

    NASA Technical Reports Server (NTRS)

    Summers, L. G.

    1993-01-01

    The relative effectiveness of two advanced display concepts for monitoring engine performance for commercial transport aircraft was studied. The concepts were the Engine Monitoring and Control System (EMACS) display developed by NASA Langley and a display by exception design. Both of these concepts were based on the philosophy of providing information that is directly related to the pilot's task. Both concepts used a normalized thrust display. In addition, EMACS used column deviation indicators; i.e., the difference between the actual parameter value and the value predicted by an engine model, for engine health monitoring; while the Display by Exception displayed the engine parameters if the automated system detected a difference between the actual and the predicted values. The results showed that the advanced display concepts had shorter detection and response times. There were no differences in any of the results between manual and auto throttles. There were no effects upon perceived workload or performance on the primary flight task. The majority of pilots preferred the advanced displays and thought they were operationally acceptable. Certification of these concepts depends on the validation of the engine model. Recommendations are made to improve both the EMACS and the display by exception display formats.

  11. Advanced Technology Display House. Volume 1: Project Summary and Procedures

    NASA Technical Reports Server (NTRS)

    Maund, D. H.

    1981-01-01

    The Advanced Technology Display House (ATDH) project is described. Tasks are defined in the areas of energy demand, water demand, sewage treatment, electric power, plumbing, lighting, heating, and air conditioning. Energy, water, and sewage systems are defined.

  12. Advanced Technology Display House. Volume 2: Energy system design concepts

    NASA Technical Reports Server (NTRS)

    Maund, D. H.

    1981-01-01

    The preliminary design concept for the energy systems in the Advanced Technology Display House is analyzed. Residential energy demand, energy conservation, and energy concepts are included. Photovoltaic arrays and REDOX (reduction oxidation) sizes are discussed.

  13. Advanced electronic displays and their potential in future transport aircraft

    NASA Technical Reports Server (NTRS)

    Hatfield, J. J.

    1981-01-01

    It is pointed out that electronic displays represent one of the keys to continued integration and improvement of the effectiveness of avionic systems in future transport aircraft. An employment of modern electronic display media and generation has become vital in connection with the increases in modes and functions of modern aircraft. Requirements for electronic systems of future transports are examined, and a description is provided of the tools which are available for cockpit integration, taking into account trends in information processing and presentation, trends in integrated display devices, and trends concerning input/output devices. Developments related to display media, display generation, and I/O devices are considered, giving attention to a comparison of CRT and flat-panel display technology, advanced HUD technology and multifunction controls. Integrated display formats are discussed along with integrated systems and cockpit configurations.

  14. Tower Mesonetwork Climatology and Interactive Display Tool

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; Bauman, William H., III

    2004-01-01

    Forecasters at the 45th Weather Squadron and Spaceflight Meteorology Group use data from the tower network over the Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) to evaluate Launch Commit Criteria, and issue and verify forecasts for ground operations. Systematic biases in these parameters could adversely affect an analysis, forecast, or verification. Also, substantial geographical variations in temperature and wind speed can occur under specific wind directions. To address these concerns, the Applied Meteorology Unit (AMU) developed a climatology of temperatures and winds from the tower network, and identified the geographical variation and significant tower biases. The mesoclimate is largely driven by the complex land-water interfaces across KSC/CCAFS. Towers with close proximity to water typically had much warmer nocturnal temperatures and higher wind speeds throughout the year. The strongest nocturnal wind speeds occurred from October to March whereas the strongest mean daytime wind speeds occurred from February to May. These results of this project can be viewed by forecasters through an interactive graphical user interface developed by the AMU. The web-based interface includes graphical and map displays of mean, standard deviation, bias, and data availability for any combination of towers, variables, months, hours, and wind directions.

  15. SES cupola interactive display design environment

    NASA Technical Reports Server (NTRS)

    Vu, Bang Q.; Kirkhoff, Kevin R.

    1989-01-01

    The Systems Engineering Simulator, located at the Lyndon B. Johnson Space Center in Houston, Texas, is tasked with providing a real-time simulator for developing displays and controls targeted for the Space Station Freedom. These displays and controls will exist inside an enclosed workstation located on the space station. The simulation is currently providing the engineering analysis environment for NASA and contractor personnel to design, prototype, and test alternatives for graphical presentation of data to an astronaut while he performs specified tasks. A highly desirable aspect of this environment is to have the capability to rapidly develop and bring on-line a number of different displays for use in determining the best utilization of graphics techniques in achieving maximum efficiency of the test subject fulfilling his task. The Systems Engineering Simulator now has available a tool which assists in the rapid development of displays for these graphic workstations. The Display Builder was developed in-house to provide an environment which allows easy construction and modification of displays within minutes of receiving requirements for specific tests.

  16. E-2D Advanced Hawkeye: primary flight display

    NASA Astrophysics Data System (ADS)

    Paolillo, Paul W.; Saxena, Ragini; Garruba, Jonathan; Tripathi, Sanjay; Blanchard, Randy

    2006-05-01

    This paper is a response to the challenge of providing a large area avionics display for the E-2D AHE aircraft. The resulting display design provides a pilot with high-resolution visual information content covering an image area of almost three square feet (Active Area of Samsung display = 33.792cm x 27.0336 cm = 13.304" x 10.643" = 141.596 square inches = 0.983 sq. ft x 3 = 2.95 sq. ft). The avionics display application, design and performance being described is the Primary Flight Display for the E-2D Advanced Hawkeye aircraft. This cockpit display has a screen diagonal size of 17 inches. Three displays, with minimum bezel width, just fit within the available instrument panel area. The significant design constraints of supporting an upgrade installation have been addressed. These constraints include a display image size that is larger than the mounting opening in the instrument panel. This, therefore, requires that the Electromagnetic Interference (EMI) window, LCD panel and backlight all fit within the limited available bezel depth. High brightness and a wide dimming range are supported with a dual mode Cold Cathode Fluorescent Tube (CCFT) and LED backlight. Packaging constraints dictated the use of multiple U shaped fluorescent lamps in a direct view backlight design for a maximum display brightness of 300 foot-Lamberts. The low intensity backlight levels are provided by remote LEDs coupled through a fiber optic mesh. This architecture generates luminous uniformity within a minimum backlight depth. Cross-cockpit viewing is supported with ultra-wide field-of-view performance including contrast and the color stability of an advanced LCD cell design supports. Display system design tradeoffs directed a priority to high optical efficiency for minimum power and weight.

  17. Advanced Transport Operating System (ATOPS) control display unit software description

    NASA Technical Reports Server (NTRS)

    Slominski, Christopher J.; Parks, Mark A.; Debure, Kelly R.; Heaphy, William J.

    1992-01-01

    The software created for the Control Display Units (CDUs), used for the Advanced Transport Operating Systems (ATOPS) project, on the Transport Systems Research Vehicle (TSRV) is described. Module descriptions are presented in a standardized format which contains module purpose, calling sequence, a detailed description, and global references. The global reference section includes subroutines, functions, and common variables referenced by a particular module. The CDUs, one for the pilot and one for the copilot, are used for flight management purposes. Operations performed with the CDU affects the aircraft's guidance, navigation, and display software.

  18. Display-based communications for advanced transport aircraft

    NASA Technical Reports Server (NTRS)

    Lee, Alfred T.

    1989-01-01

    The next generation of civil transport aircraft will depend increasingly upon ground-air-ground and satellite data link for information critical to safe and efficient air transportation. Previous studies which examined the concept of display-based communications in addition to, or in lieu of, conventional voice transmissions are reviewed. A full-mission flight simulation comparing voice and display-based communication modes in an advanced transport aircraft is also described. The results indicate that a display-based mode of information transfer does not result in significantly increased aircrew workload, but does result in substantially increased message acknowledgment times when compared to conventional voice transmissions. User acceptance of the display-based communication system was generally high, replicating the findings of previous studies. However, most pilots tested expressed concern over the potential loss of information available from frequency monitoring which might result from the introduction of discrete address communications. Concern was expressed by some pilots for the reduced time available to search for conflicting traffic when using the communications display system. The implications of the findings for the design of display-based communications are discussed.

  19. Interactive display/graphics systems for remote sensor data analysis.

    NASA Technical Reports Server (NTRS)

    Eppler, W. G.; Loe, D. L.; Wilson, E. L.; Whitley, S. L.; Sachen, R. J.

    1971-01-01

    Using a color-television display system and interactive graphics equipment on-line to an IBM 360/44 computer, investigators at the Manned Spacecraft Center have developed a variety of interactive displays which aid in analyzing remote sensor data. This paper describes how such interactive displays are used to: (1) analyze data from a multispectral scanner, (2) develop automatic pattern recognition systems based on multispectral scanner measurements, and (3) analyze data from nonimaging sensors such as the infrared radiometer and microwave scatterometer.

  20. Target acquisition with UAVs: vigilance displays and advanced cuing interfaces.

    PubMed

    Gunn, Daniel V; Warm, Joel S; Nelson, W Todd; Bolia, Robert S; Schumsky, Donald A; Corcoran, Kevin J

    2005-01-01

    Vigilance and threat detection are critical human factors considerations in the control of unmanned aerial vehicles (UAVs). Utilizing a vigilance task in which threat detections (critical signals) led observers to perform a subsequent manual target acquisition task, this study provides information that might have important implications for both of these considerations in the design of future UAV systems. A sensory display format resulted in more threat detections, fewer false alarms, and faster target acquisition times and imposed a lighter workload than did a cognitive display format. Additionally, advanced visual, spatial-audio, and haptic cuing interfaces enhanced acquisition performance over no cuing in the target acquisition phase of the task, and they did so to a similar degree. Thus, in terms of potential applications, this research suggests that a sensory format may be the best display format for threat detection by future UAV operators, that advanced cuing interfaces may prove useful in future UAV systems, and that these interfaces are functionally interchangeable. PMID:16435691

  1. Applications of advanced display technology for dismounted combatants (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Huffman, David C.

    2005-05-01

    Current military activity has made great use of small Special Tactics / Special Forces teams operating on the ground in forward areas of battle, directing Battlefield Air Operations (BAO), which include close air support, air traffic control management, and target identification and designation. A recent National Priority has been identified to improve the BAO Kit used by these Special Tactics Groups to reduce errors that may lead to unintended ground casualties. The primary objectives of the upgraded BAO Kit are to 1) improve the range and accuracy of target information; 2) eliminate opportunities for error in weapon delivery; 3) link target coordinate information directly into the weapons computer; and 4) reduce the weight carried by the warfighter by 50%. For these warfighters, L-3 Communications Display Systems and its technology partner, Universal Display Corporation, are utilizing advanced OLED display technology to create a powerful flexible display-based communication device. This will reduce the weight carried by the fighter by combining functions of the present computer, GPS equipment, and radio gear carried into the forward areas of battle. This will give the soldier a larger, higher resolution, increased battery life, and much lighter capability for the viewing of tactical information such as battlefield maps, GIS imaging data, command/control plots, and GPS-assisted navigational maps. Further integration of the device with voice and video messaging options will be explored. Both hand-held roll-up devices and wrist-worn devices are envisioned for the final product.

  2. WIRED — World-Wide Web Interactive Remote Event Display

    NASA Astrophysics Data System (ADS)

    Coperchio, M. C.; Dönszelmann, M.; de Groot, N.; Gunnarsson, P.; Litmaath, M.; McNally, D.; Smirnov, N.

    1998-05-01

    WIRED (World-Wide Web Interactive Remote Event Display) is a framework, written in the Java™ language, for building High Energy Physics event displays. An event display based on the WIRED framework enables users of a HEP collaboration to visualise and analyse events remotely using ordinary WWW browsers, on any type of machine. In addition, event displays using WIRED may provide the general public with access to the research of high energy physics. The recent introduction of the object-oriented Java™ language enables the transfer of machine independent code across the Internet, to be safely executed by a Java enhanced WWW browser. We have employed this technology to create a remote event display in WWW. The combined Java-WWW technology hence assures a world wide availability of such an event display, an always up-to-date program and a platform independent implementation, which is easy to use and to install.

  3. Wired World-Wide Web Interactive Remote Event Display

    SciTech Connect

    De Groot, Nicolo

    2003-05-07

    WIRED (World-Wide Web Interactive Remote Event Display) is a framework, written in the Java{trademark} language, for building High Energy Physics event displays. An event display based on the WIRED framework enables users of a HEP collaboration to visualize and analyze events remotely using ordinary WWW browsers, on any type of machine. In addition, event displays using WIRED may provide the general public with access to the research of high energy physics. The recent introduction of the object-oriented Java{trademark} language enables the transfer of machine independent code across the Internet, to be safely executed by a Java enhanced WWW browser. We have employed this technology to create a remote event display in WWW. The combined Java-WWW technology hence assures a world wide availability of such an event display, an always up-to-date program and a platform independent implementation, which is easy to use and to install.

  4. Techniques for optimizing human-machine information transfer related to real-time interactive display systems

    NASA Technical Reports Server (NTRS)

    Granaas, Michael M.; Rhea, Donald C.

    1989-01-01

    In recent years the needs of ground-based researcher-analysts to access real-time engineering data in the form of processed information has expanded rapidly. Fortunately, the capacity to deliver that information has also expanded. The development of advanced display systems is essential to the success of a research test activity. Those developed at the National Aeronautics and Space Administration (NASA), Western Aeronautical Test Range (WATR), range from simple alphanumerics to interactive mapping and graphics. These unique display systems are designed not only to meet basic information display requirements of the user, but also to take advantage of techniques for optimizing information display. Future ground-based display systems will rely heavily not only on new technologies, but also on interaction with the human user and the associated productivity with that interaction. The psychological abilities and limitations of the user will become even more important in defining the difference between a usable and a useful display system. This paper reviews the requirements for development of real-time displays; the psychological aspects of design such as the layout, color selection, real-time response rate, and interactivity of displays; and an analysis of some existing WATR displays.

  5. Student projects involving novel interaction with large displays.

    PubMed

    Dias, Paulo; Sousa, Tiago; Parracho, Joao; Cardoso, Igor; Monteiro, Andre; Sousa Santos, Beatriz

    2014-01-01

    DETI-Interact is an interactive system that offers information relevant to students in the lobby of the University of Aveiro's Department of Electronics, Telecommunications and Informatics (DETI). The project started in 2009 with a master's thesis addressing interaction with public displays through Android smartphones. Since then, it has evolved considerably; it currently allows gesture interaction based on a Kinect sensor. Meanwhile, it has involved third-year students, master's students, and undergraduate students participating in a research initiation program. PMID:24808202

  6. Smart TV-Smartphone Multiscreen Interactive Middleware for Public Displays.

    PubMed

    Martinez-Pabon, Francisco; Caicedo-Guerrero, Jaime; Ibarra-Samboni, Jhon Jairo; Ramirez-Gonzalez, Gustavo; Hernández-Leo, Davinia

    2015-01-01

    A new generation of public displays demands high interactive and multiscreen features to enrich people's experience in new pervasive environments. Traditionally, research on public display interaction has involved mobile devices as the main characters during the use of personal area network technologies such as Bluetooth or NFC. However, the emergent Smart TV model arises as an interesting alternative for the implementation of a new generation of public displays. This is due to its intrinsic connection capabilities with surrounding devices like smartphones or tablets. Nonetheless, the different approaches proposed by the most important vendors are still underdeveloped to support multiscreen and interaction capabilities for modern public displays, because most of them are intended for domestic environments. This research proposes multiscreen interactive middleware for public displays, which was developed from the principles of a loosely coupled interaction model, simplicity, stability, concurrency, low latency, and the usage of open standards and technologies. Moreover, a validation prototype is proposed in one of the most interesting public display scenarios: the advertising. PMID:25950018

  7. Smart TV-Smartphone Multiscreen Interactive Middleware for Public Displays

    PubMed Central

    Martinez-Pabon, Francisco; Caicedo-Guerrero, Jaime; Ibarra-Samboni, Jhon Jairo; Ramirez-Gonzalez, Gustavo; Hernández-Leo, Davinia

    2015-01-01

    A new generation of public displays demands high interactive and multiscreen features to enrich people's experience in new pervasive environments. Traditionally, research on public display interaction has involved mobile devices as the main characters during the use of personal area network technologies such as Bluetooth or NFC. However, the emergent Smart TV model arises as an interesting alternative for the implementation of a new generation of public displays. This is due to its intrinsic connection capabilities with surrounding devices like smartphones or tablets. Nonetheless, the different approaches proposed by the most important vendors are still underdeveloped to support multiscreen and interaction capabilities for modern public displays, because most of them are intended for domestic environments. This research proposes multiscreen interactive middleware for public displays, which was developed from the principles of a loosely coupled interaction model, simplicity, stability, concurrency, low latency, and the usage of open standards and technologies. Moreover, a validation prototype is proposed in one of the most interesting public display scenarios: the advertising. PMID:25950018

  8. Interactive wire-frame ship hullform generation and display

    NASA Technical Reports Server (NTRS)

    Calkins, D. E.; Garbini, J. L.; Ishimaru, J.

    1984-01-01

    An interactive automated procedure to generate a wire frame graphic image of a ship hullform, which uses a digitizing tablet in conjunction with the hullform lines drawing, was developed. The geometric image created is displayed on an Evans & Sutherland PS-300 graphics terminal for real time interactive viewing or is output as hard copy on an inexpensive dot matrix printer.

  9. Advanced autostereoscopic display for G-7 pilot project

    NASA Astrophysics Data System (ADS)

    Hattori, Tomohiko; Ishigaki, Takeo; Shimamoto, Kazuhiro; Sawaki, Akiko; Ishiguchi, Tsuneo; Kobayashi, Hiromi

    1999-05-01

    An advanced auto-stereoscopic display is described that permits the observation of a stereo pair by several persons simultaneously without the use of special glasses and any kind of head tracking devices for the viewers. The system is composed of a right eye system, a left eye system and a sophisticated head tracking system. In the each eye system, a transparent type color liquid crystal imaging plate is used with a special back light unit. The back light unit consists of a monochrome 2D display and a large format convex lens. The unit distributes the light of the viewers' correct each eye only. The right eye perspective system is combined with a left eye perspective system is combined with a left eye perspective system by a half mirror in order to function as a time-parallel stereoscopic system. The viewer's IR image is taken through and focused by the large format convex lens and feed back to the back light as a modulated binary half face image. The auto-stereoscopic display employs the TTL method as the accurate head tracking. The system was worked as a stereoscopic TV phone between Duke University Department Tele-medicine and Nagoya University School of Medicine Department Radiology using a high-speed digital line of GIBN. The applications are also described in this paper.

  10. Interactive display system having a digital micromirror imaging device

    DOEpatents

    Veligdan, James T.; DeSanto, Leonard; Kaull, Lisa; Brewster, Calvin

    2006-04-11

    A display system includes a waveguide optical panel having an inlet face and an opposite outlet face. A projector cooperates with a digital imaging device, e.g. a digital micromirror imaging device, for projecting an image through the panel for display on the outlet face. The imaging device includes an array of mirrors tiltable between opposite display and divert positions. The display positions reflect an image light beam from the projector through the panel for display on the outlet face. The divert positions divert the image light beam away from the panel, and are additionally used for reflecting a probe light beam through the panel toward the outlet face. Covering a spot on the panel, e.g. with a finger, reflects the probe light beam back through the panel toward the inlet face for detection thereat and providing interactive capability.

  11. DNA display of glycoconjugates to emulate oligomeric interactions of glycans.

    PubMed

    Novoa, Alexandre; Winssinger, Nicolas

    2015-01-01

    Glycans (carbohydrate portion of glycoproteins and glycolipids) frequently exert their function through oligomeric interactions involving multiple carbohydrate units. In efforts to recapitulate the diverse spatial arrangements of the carbohydrate units, assemblies based on hybridization of nucleic acid conjugates have been used to display simplified ligands with tailored interligand distances and valences. The programmability of the assemblies lends itself to a combinatorial display of multiple ligands. Recent efforts in the synthesis and applications of such conjugates are discussed. PMID:26113879

  12. DNA display of glycoconjugates to emulate oligomeric interactions of glycans

    PubMed Central

    2015-01-01

    Summary Glycans (carbohydrate portion of glycoproteins and glycolipids) frequently exert their function through oligomeric interactions involving multiple carbohydrate units. In efforts to recapitulate the diverse spatial arrangements of the carbohydrate units, assemblies based on hybridization of nucleic acid conjugates have been used to display simplified ligands with tailored interligand distances and valences. The programmability of the assemblies lends itself to a combinatorial display of multiple ligands. Recent efforts in the synthesis and applications of such conjugates are discussed. PMID:26113879

  13. Shape Displays: Spatial Interaction with Dynamic Physical Form.

    PubMed

    Leithinger, Daniel; Follmer, Sean; Olwal, Alex; Ishii, Hiroshi

    2015-01-01

    Shape displays are an emerging class of devices that emphasize actuation to enable rich physical interaction, complementing concepts in virtual and augmented reality. The ability to render form introduces new opportunities to touch, grasp, and manipulate dynamic physical content and tangible objects, in both nearby and remote environments. This article presents novel hardware, interaction techniques, and applications, which point to the potential for extending the ways that we traditionally interact with the physical world, empowered by digital computation. PMID:26416359

  14. Graphical User Interface Color Display Animation Interaction Tool

    SciTech Connect

    Snider, Dale M.; Wagnet, Kurt L.; Grush, William H.; Jones, Kenneth R.

    1999-10-05

    The Nuclear Plant Analyzer (NPA) is a highly flexible graphical user interface for displaying the results of a calculation, typically generated by RELAP5 or other code. This display consists of one or more picture, called masks, that mimic the host code input. This mask can be animated to display user-specified code output information mapped as colors, dials, moving arrows, etc., on the mask. The user can also interact with the control systems of the host input file as the execution progresses, thereby controlling aspects of the calculation. The Computer Visual System (CVS) creates, edits, and animates the the masks for use in the NPA.

  15. Interactive display of molecular models using a microcomputer system

    NASA Technical Reports Server (NTRS)

    Egan, J. T.; Macelroy, R. D.

    1980-01-01

    A simple, microcomputer-based, interactive graphics display system has been developed for the presentation of perspective views of wire frame molecular models. The display system is based on a TERAK 8510a graphics computer system with a display unit consisting of microprocessor, television display and keyboard subsystems. The operating system includes a screen editor, file manager, PASCAL and BASIC compilers and command options for linking and executing programs. The graphics program, written in USCD PASCAL, involves the centering of the coordinate system, the transformation of centered model coordinates into homogeneous coordinates, the construction of a viewing transformation matrix to operate on the coordinates, clipping invisible points, perspective transformation and scaling to screen coordinates; commands available include ZOOM, ROTATE, RESET, and CHANGEVIEW. Data file structure was chosen to minimize the amount of disk storage space. Despite the inherent slowness of the system, its low cost and flexibility suggests general applicability.

  16. Design, testing, and delivery of an interactive graphics display subsystem

    NASA Technical Reports Server (NTRS)

    Holmes, B.

    1973-01-01

    An interactive graphics display system was designed to be used in locating components on a printed circuit card and outputting data concerning their thermal values. The manner in which this was accomplished in terms of both hardware and software is described. An analysis of the accuracy of this approach is also included.

  17. Software for Collaborative Use of Large Interactive Displays

    NASA Technical Reports Server (NTRS)

    Trimble, Jay; Shab, Thodore; Wales, Roxana; Vera, Alonso; Tollinger, Irene; McCurdy, Michael; Lyubimov, Dmitriy

    2006-01-01

    The MERBoard Collaborative Workspace, which is currently being deployed to support the Mars Exploration Rover (MER) Missions, is the first instantiation of a new computing architecture designed to support collaborative and group computing using computing devices situated in NASA mission operations room. It is a software system for generation of large-screen interactive displays by multiple users

  18. Information display and interaction in real-time environments

    NASA Technical Reports Server (NTRS)

    Bocast, A. K.

    1983-01-01

    The available information bandwidth as a funcion of system's complexity and time constraints in a real time control environment were examined. Modern interactive graphics techniques provide very high bandwidth data displays. In real time control environments, effective information interaction rates are a function not only of machine data technologies but of human information processing capabilities and the four dimensional resolution of available interaction techniques. The available information bandwidth as a function of system's complexity and time constraints in a real time control environment were examined.

  19. Development and use of interactive displays in real-time ground support research facilities

    NASA Technical Reports Server (NTRS)

    Rhea, Donald C.; Hammons, Kvin R.; Malone, Jacqueline C.; Nesel, Michael C.

    1989-01-01

    The NASA Western Aeronautical Test Range (WATR) is one of the world's most advanced aeronautical research flight test support facilities. A variety of advanced and often unique real-time interactive displays has been developed for use in the mission control centers (MCC) to support research flight and ground testing. These dispalys consist of applications operating on systems described as real-time interactive graphics super workstations and real-time interactive PC/AT compatible workstations. This paper reviews these two types of workstations and the specific applications operating on each display system. The applications provide examples that demonstrate overall system capability applicable for use in other ground-based real-time research/test facilities.

  20. Graphical User Interface Color Display Animation Interaction Tool

    1999-10-05

    The Nuclear Plant Analyzer (NPA) is a highly flexible graphical user interface for displaying the results of a calculation, typically generated by RELAP5 or other code. This display consists of one or more picture, called masks, that mimic the host code input. This mask can be animated to display user-specified code output information mapped as colors, dials, moving arrows, etc., on the mask. The user can also interact with the control systems of the hostmore » input file as the execution progresses, thereby controlling aspects of the calculation. The Computer Visual System (CVS) creates, edits, and animates the the masks for use in the NPA.« less

  1. Advances in display technology V; Proceedings of the Meeting, Los Angeles, CA, January 24, 25, 1985

    NASA Astrophysics Data System (ADS)

    Schlam, E.

    1985-01-01

    Display human factors, and various advanced display systems, including CRT and projection display systems, electroluminescent displays, and passive displays, are discussed. Papers are presented on the selection of the best visual system, the effects of adaptation and display luminance on CRT symbol recognition time, and minimum color differences required to recognize small objects on a color CRT. Consideration is given to such display systems as a 160 megapixels per second 2000 line display, a full color liquid crystal light valve projector, and a thin film electroluminescent display optimized for cockpit application. Papers on passive displays include those on amorphous silicon thin film transistor-driven liquid crystal displays, a display based on switchable zero-order diffraction grating valves, and a liquid crystal display system for mass audience viewing.

  2. WIRED — World Wide Web interactive remote event display

    NASA Astrophysics Data System (ADS)

    Ballaminut, A.; Colonello, C.; Dönszelmann, M.; van Herwijnen, E.; Köper, D.; Korhonen, J.; Litmaath, M.; Perl, J.; Theodorou, A.; Whiteson, D.; Wolff, E.

    2001-10-01

    WIRED ( http://wired.cern.ch/) is a framework, written in Java, to build High Energy Physics event displays that can be used across the network. To guarantee portability across all platforms, WIRED is implemented in the Java language and uses the Swing user interface component set. It can be used as a stand-alone application or as an applet inside a WWW browser. The graphical user interface allows for multiple views and for multiple controls acting on those views. A detector tree control is available to toggle the visibility of parts of the events and detector geometry. XML (Extensible Markup Language), RMI (Remote Method Invocation) and CORBA loaders can be used to load event data as well as geometry data, and to connect to FORTRAN, C, C++ and Java reconstruction programs. Non-linear and non-Cartesian projections (e.g., fisheye, ρ- φ, ρ- Z, φ- Z) provide special views to get a better understanding of events. A special Java interpreter allows physicists to write small scripts to interact with their data and its display. WIRED has grown to be a framework in use and under development in several HEP experiments (ATLAS, CHORUS, DELPHI, LHCb, BaBar, D0 and ZEUS). WIRED event displays have also proven to be useful to explain High Energy Physics to the general public. Both CERN, in its traveling exhibition and MicroCosm, and RAL, during its open days, have displays set up.

  3. Female mice ultrasonically interact with males during courtship displays.

    PubMed

    Neunuebel, Joshua P; Taylor, Adam L; Arthur, Ben J; Egnor, S E Roian

    2015-01-01

    During courtship males attract females with elaborate behaviors. In mice, these displays include ultrasonic vocalizations. Ultrasonic courtship vocalizations were previously attributed to the courting male, despite evidence that both sexes produce virtually indistinguishable vocalizations. Because of this similarity, and the difficulty of assigning vocalizations to individuals, the vocal contribution of each individual during courtship is unknown. To address this question, we developed a microphone array system to localize vocalizations from socially interacting, individual adult mice. With this system, we show that female mice vocally interact with males during courtship. Males and females jointly increased their vocalization rates during chases. Furthermore, a female's participation in these vocal interactions may function as a signal that indicates a state of increased receptivity. Our results reveal a novel form of vocal communication during mouse courtship, and lay the groundwork for a mechanistic dissection of communication during social behavior. PMID:26020291

  4. Female mice ultrasonically interact with males during courtship displays

    PubMed Central

    Neunuebel, Joshua P; Taylor, Adam L; Arthur, Ben J; Egnor, SE Roian

    2015-01-01

    During courtship males attract females with elaborate behaviors. In mice, these displays include ultrasonic vocalizations. Ultrasonic courtship vocalizations were previously attributed to the courting male, despite evidence that both sexes produce virtually indistinguishable vocalizations. Because of this similarity, and the difficulty of assigning vocalizations to individuals, the vocal contribution of each individual during courtship is unknown. To address this question, we developed a microphone array system to localize vocalizations from socially interacting, individual adult mice. With this system, we show that female mice vocally interact with males during courtship. Males and females jointly increased their vocalization rates during chases. Furthermore, a female's participation in these vocal interactions may function as a signal that indicates a state of increased receptivity. Our results reveal a novel form of vocal communication during mouse courtship, and lay the groundwork for a mechanistic dissection of communication during social behavior. DOI: http://dx.doi.org/10.7554/eLife.06203.001 PMID:26020291

  5. Advances in infrastructure support for flat panel display manufacturing

    NASA Astrophysics Data System (ADS)

    Bardsley, James N.; Ciesinski, Michael F.; Pinnel, M. Robert

    1997-07-01

    The success of the US display industry, both in providing high-performance displays for the US Department of Defense at reasonable cost and in capturing a significant share of the global civilian market, depends on maintaining technological leadership and on building efficient manufacturing capabilities. The US Display Consortium (USDC) was set up in 1993 by the US Government and private industry to guide the development of the infrastructure needed to support the manufacturing of flat panel displays. This mainly involves the supply of equipment and materials, but also includes the formation of partnerships and the training of a skilled labor force. Examples are given of successful development projects, some involving USDC participation, others through independent efforts of its member companies. These examples show that US-based companies can achieve leadership positions in this young and rapidly growing global market.

  6. Advanced image manipulation controller for cockpit LCD displays

    NASA Astrophysics Data System (ADS)

    Ramachandran, Gopal

    1998-09-01

    Key features of a family of LSI integrated circuits will be explained. These DSP devices are capable of taking digital inputs of either NTSC/PAL/SECAM video in YCrCb 4:2:2 format, or computer graphics data from a PC in RGB 8:8:8 format, de- interlacing the data (if required), then re-sizing the resolution of the image independently in the horizontal and vertical axes to fit arbitrary display resolutions. The devices use patented digital filter techniques to perform zoom-only or both zoom as well as shrink. The devices also include registers that allow for cropping the active input image, and registers to completely control horizontal and vertical timing parameters for LCD displays. Current members of this family work at clock rates of up to 84 MHz, at resolutions of 1024 X 768, and upcoming members of the family will raise both the target resolution and pixel rates. All these parts generate all timing signals required by the display. Typically, no external memory is required for zooming and shrinking. Cockpit display applications that could benefit from this chip include processing and display of video, FLIR, EFIS/EICAS displays, radar, digital terrain maps, ultrasonic/sonar, computer graphics/symbol generators, etc. The devices are members of the gmZx family of scaling chips, first introduced in April '97.

  7. 8x10 Advanced Multipurpose Display: lessons learned from integrating a large-area display into a fighter aircraft

    NASA Astrophysics Data System (ADS)

    Carter, Rickie V.; Warden, Ron

    2004-09-01

    As part of the Advanced Mission Computer and Displays program, Boeing was tasked with developing and incorporating an 8x10 Active Matrix Liquid Crystal Display (AMLCD) into the Aft Crew Station of the F/A-18 F Aircraft. In order to meet cost and technical requirements, a commercial AMLCD panel was selected and ruggedized to meet the F/A-18 war fighter environment. The 8x10 AMPD was subjected to Military Standard Environmental testing as well as Optical testing to requirements based on lessons learned from previous display activities and has subsequently passed those tests. Developmental Flight Testing of the 8x10 AMPD was an unprecedented success and resulted in numerous compliments from F/A-18F Aircrew. The display is currently transitioning from Engineering, Manufacturing and Development to Low Rate Initial Production.

  8. Advanced crew station concepts, displays, and input/output technology for civil aircraft of the future

    NASA Technical Reports Server (NTRS)

    Hatfield, J. J.; Robertson, J. B.; Batson, V. M.

    1979-01-01

    Current efforts on a new Cockpit Avionics Research program are described. The major thrusts of the program presented include: a comparative analysis of advanced display media and development of promising selected media, development of flight display generation techniques, and identification and development of promising I/O technology. In addition, the advanced integrated display concepts described include a 'tunnel in the sky' display and a traffic situation display with associated keyboard. Finally, the Cockpit Avionics Research program is summarized, future research plans are presented, and the need for an expanded program is discussed.

  9. Dynamic Stereo Display And Interaction With Surfaces Of Medical Objects

    NASA Astrophysics Data System (ADS)

    Herman, Gabor T.

    1986-01-01

    Three-dimensional (3D) surface display is an alternate way of presenting to the physician information that is available in a sequence of two-dimensional CT or MRI scans. The aim is to present organs (or parts of organs) as they would appear if they were removed from the body, possibly cut open, and viewed from user-selected directions. In recent years there have been a number of papers discussing the clinical utility of this approach. In nearly all these papers the presentation of the surface consists of single images of the objects of interest. In these monoscopic images, depth perception is conveyed by the differential shading that is computed as if light were shining on the surface. This is augmented by the silhouette of the external features. Since shading is dependent on the distance from the light source and the angle of the surface to the light rays, these two effects may oppose each other, especially with perception of details in depths of cavities. In addition, the detail inside a cavity cannot be silhouetted at any viewing angle. Since many anatomical surfaces have significant information in the depths of cavities (e.g., orbits, neural foramina, cardiac cavities), the addition of stereoscopic depth perception and motion should be clinically useful. In a recent article, we presented 3D surface displays in stereo, thereby providing an important additional cue for correct 3D depth perception. Here we discuss issues of software and hardware for dynamic stereo display and for 3D interaction with the stereoscopic images.

  10. Integrated multimodal human-computer interface and augmented reality for interactive display applications

    NASA Astrophysics Data System (ADS)

    Vassiliou, Marius S.; Sundareswaran, Venkataraman; Chen, S.; Behringer, Reinhold; Tam, Clement K.; Chan, M.; Bangayan, Phil T.; McGee, Joshua H.

    2000-08-01

    We describe new systems for improved integrated multimodal human-computer interaction and augmented reality for a diverse array of applications, including future advanced cockpits, tactical operations centers, and others. We have developed an integrated display system featuring: speech recognition of multiple concurrent users equipped with both standard air- coupled microphones and novel throat-coupled sensors (developed at Army Research Labs for increased noise immunity); lip reading for improving speech recognition accuracy in noisy environments, three-dimensional spatialized audio for improved display of warnings, alerts, and other information; wireless, coordinated handheld-PC control of a large display; real-time display of data and inferences from wireless integrated networked sensors with on-board signal processing and discrimination; gesture control with disambiguated point-and-speak capability; head- and eye- tracking coupled with speech recognition for 'look-and-speak' interaction; and integrated tetherless augmented reality on a wearable computer. The various interaction modalities (speech recognition, 3D audio, eyetracking, etc.) are implemented a 'modality servers' in an Internet-based client-server architecture. Each modality server encapsulates and exposes commercial and research software packages, presenting a socket network interface that is abstracted to a high-level interface, minimizing both vendor dependencies and required changes on the client side as the server's technology improves.

  11. A device-dependent interface for interactive image display

    NASA Technical Reports Server (NTRS)

    Perkins, D. C.; Szczur, M. R.; Owings, J.; Jamros, R. K.

    1984-01-01

    The structure of the device independent Display Management Subsystem (DMS) and the interface routines that are available to the applications programmer for use in developing a set of portable image display utility programs are described.

  12. Human-display interactions: Context-specific biases

    NASA Technical Reports Server (NTRS)

    Kaiser, Mary Kister; Proffitt, Dennis R.

    1987-01-01

    Recent developments in computer engineering have greatly enhanced the capabilities of display technology. As displays are no longer limited to simple alphanumeric output, they can present a wide variety of graphic information, using either static or dynamic presentation modes. At the same time that interface designers exploit the increased capabilities of these displays, they must be aware of the inherent limitation of these displays. Generally, these limitations can be divided into those that reflect limitations of the medium (e.g., reducing three-dimensional representations onto a two-dimensional projection) and those reflecting the perceptual and conceptual biases of the operator. The advantages and limitations of static and dynamic graphic displays are considered. Rather than enter into the discussion of whether dynamic or static displays are superior, general advantages and limitations are explored which are contextually specific to each type of display.

  13. Interactive displays for trajectory planning and proximity operations

    NASA Astrophysics Data System (ADS)

    Brody, Adam R.; Ellis, Stephen R.; Grunwald, Arthur; Haines, Richard F.

    1993-08-01

    Rendezvous, docking, and other Space Station proximity operations (PROX OPS) will be conducted routinely in space. Real-time interactive visual aids and planning tools will be helpful, if not necessary, for future missions both in preflight training and on orbit. Two such displays, eivaN and Navie, are currently available for examination and human factors testing. A study was conducted in which data were collected from eight test subjects. Solution times for both devices decreased rapidly with experience. Neither fuel usage nor the number of waypoints (burns) decreased with experience. With Navie, medians of solution time and fuel consumption totaled over all subjects peaked at one of two starting points above the V-bar with monotonically decreasing values in both directions. This pattern did not appear with eivaN values. Since the docking tasks were fundamentally different with each device, and because Navie imposed more constraints on the users than eivaN did, the orbital mechanics effects had a more pronounced effect on the Navie results than on the eivaN data.

  14. Advanced Transport Operating System (ATOPS) color displays software description: MicroVAX system

    NASA Technical Reports Server (NTRS)

    Slominski, Christopher J.; Plyler, Valerie E.; Dickson, Richard W.

    1992-01-01

    This document describes the software created for the Display MicroVAX computer used for the Advanced Transport Operating Systems (ATOPS) project on the Transport Systems Research Vehicle (TSRV). The software delivery of February 27, 1991, known as the 'baseline display system', is the one described in this document. Throughout this publication, module descriptions are presented in a standardized format which contains module purpose, calling sequence, detailed description, and global references. The global references section includes subroutines, functions, and common variables referenced by a particular module. The system described supports the Research Flight Deck (RFD) of the TSRV. The RFD contains eight Cathode Ray Tubes (CRTs) which depict a Primary Flight Display, Navigation Display, System Warning Display, Takeoff Performance Monitoring System Display, and Engine Display.

  15. Advanced Transport Operating System (ATOPS) color displays software description microprocessor system

    NASA Technical Reports Server (NTRS)

    Slominski, Christopher J.; Plyler, Valerie E.; Dickson, Richard W.

    1992-01-01

    This document describes the software created for the Sperry Microprocessor Color Display System used for the Advanced Transport Operating Systems (ATOPS) project on the Transport Systems Research Vehicle (TSRV). The software delivery known as the 'baseline display system', is the one described in this document. Throughout this publication, module descriptions are presented in a standardized format which contains module purpose, calling sequence, detailed description, and global references. The global reference section includes procedures and common variables referenced by a particular module. The system described supports the Research Flight Deck (RFD) of the TSRV. The RFD contains eight cathode ray tubes (CRTs) which depict a Primary Flight Display, Navigation Display, System Warning Display, Takeoff Performance Monitoring System Display, and Engine Display.

  16. Face detection for interactive tabletop viewscreen system using olfactory display

    NASA Astrophysics Data System (ADS)

    Sakamoto, Kunio; Kanazawa, Fumihiro

    2009-10-01

    An olfactory display is a device that delivers smells to the nose. It provides us with special effects, for example to emit smell as if you were there or to give a trigger for reminding us of memories. The authors have developed a tabletop display system connected with the olfactory display. For delivering a flavor to user's nose, the system needs to recognition and measure positions of user's face and nose. In this paper, the authors describe an olfactory display which enables to detect the nose position for an effective delivery.

  17. Human interaction with wearable computer systems: a look at glasses-mounted displays

    NASA Astrophysics Data System (ADS)

    Revels, Allen R.; Quill, Laurie L.; Kancler, David E.; Masquelier, Barbara L.

    1998-09-01

    With the advancement of technology and the information explosion, integration of the two into performance aiding systems can have a significant impact on operational and maintenance environments. The Department of Defense and commercial industry have made great strides in digitizing and automating technical manuals and data to be presented on performance aiding systems. These performance aides are computerized interactive systems that provide procedures on how to operate and maintain fielded systems. The idea is to provide the end-user a system which is compatible with their work environment. The purpose of this paper is to show, historically, the progression of wearable computer aiding systems for maintenance environments, and then highlight the work accomplished in the design and development of glasses- mounted displays (GMD). The paper reviews work performed over the last seven years, then highlights, through review of a usability study, the advances made with GMDs. The use of portable computing systems, such as laptop and notebook, computers, does not necessarily increase the accessibility of the displayed information while accomplishing a given task in a hands-busy, mobile work environment. The use of a GMD increases accessibility of the information by placing it in eye sight of the user without obstructing the surrounding environment. Although the potential utility for this type of display is great, hardware and human integration must be refined. Results from the usability study show the usefulness and usability of the GMD in a mobile, hands-free environment.

  18. Comparison of Pilots' Situational Awareness While Monitoring Autoland Approaches Using Conventional and Advanced Flight Display Formats

    NASA Technical Reports Server (NTRS)

    Kramer, Lynda J.; Busquets, Anthony M.

    2000-01-01

    A simulation experiment was performed to assess situation awareness (SA) and workload of pilots while monitoring simulated autoland operations in Instrument Meteorological Conditions with three advanced display concepts: two enhanced electronic flight information system (EFIS)-type display concepts and one totally synthetic, integrated pictorial display concept. Each concept incorporated sensor-derived wireframe runway and iconic depictions of sensor-detected traffic in different locations on the display media. Various scenarios, involving conflicting traffic situation assessments, main display failures, and navigation/autopilot system errors, were used to assess the pilots' SA and workload during autoland approaches with the display concepts. From the results, for each scenario, the integrated pictorial display concept provided the pilots with statistically equivalent or substantially improved SA over the other display concepts. In addition to increased SA, subjective rankings indicated that the pictorial concept offered reductions in overall pilot workload (in both mean ranking and spread) over the two enhanced EFIS-type display concepts. Out of the display concepts flown, the pilots ranked the pictorial concept as the display that was easiest to use to maintain situational awareness, to monitor an autoland approach, to interpret information from the runway and obstacle detecting sensor systems, and to make the decision to go around.

  19. Interactive display system having a matrix optical detector

    DOEpatents

    Veligdan, James T.; DeSanto, Leonard

    2007-01-23

    A display system includes a waveguide optical panel having an inlet face and an opposite outlet face. An image beam is projected across the inlet face laterally and transversely for display on the outlet face. An optical detector including a matrix of detector elements is optically aligned with the inlet face for detecting a corresponding lateral and transverse position of an inbound light spot on the outlet face.

  20. Active and interactive floating image display using holographic 3D images

    NASA Astrophysics Data System (ADS)

    Morii, Tsutomu; Sakamoto, Kunio

    2006-08-01

    We developed a prototype tabletop holographic display system. This system consists of the object recognition system and the spatial imaging system. In this paper, we describe the recognition system using an RFID tag and the 3D display system using a holographic technology. A 3D display system is useful technology for virtual reality, mixed reality and augmented reality. We have researched spatial imaging and interaction system. We have ever proposed 3D displays using the slit as a parallax barrier, the lenticular screen and the holographic optical elements(HOEs) for displaying active image 1,2,3. The purpose of this paper is to propose the interactive system using these 3D imaging technologies. In this paper, the authors describe the interactive tabletop 3D display system. The observer can view virtual images when the user puts the special object on the display table. The key technologies of this system are the object recognition system and the spatial imaging display.

  1. Interactive display system having a scaled virtual target zone

    DOEpatents

    Veligdan, James T.; DeSanto, Leonard

    2006-06-13

    A display system includes a waveguide optical panel having an inlet face and an opposite outlet face. A projector and imaging device cooperate with the panel for projecting a video image thereon. An optical detector bridges at least a portion of the waveguides for detecting a location on the outlet face within a target zone of an inbound light spot. A controller is operatively coupled to the imaging device and detector for displaying a cursor on the outlet face corresponding with the detected location of the spot within the target zone.

  2. Flight investigation of cockpit-displayed traffic information utilizing coded symbology in an advanced operational environment

    NASA Technical Reports Server (NTRS)

    Abbott, T. S.; Moen, G. C.; Person, L. H., Jr.; Keyser, G. L., Jr.; Yenni, K. R.; Garren, J. F., Jr.

    1980-01-01

    Traffic symbology was encoded to provide additional information concerning the traffic, which was displayed on the pilot's electronic horizontal situation indicators (EHSI). A research airplane representing an advanced operational environment was used to assess the benefit of coded traffic symbology in a realistic work-load environment. Traffic scenarios, involving both conflict-free and conflict situations, were employed. Subjective pilot commentary was obtained through the use of a questionnaire and extensive pilot debriefings. These results grouped conveniently under two categories: display factors and task performance. A major item under the display factor category was the problem of display clutter. The primary contributors to clutter were the use of large map-scale factors, the use of traffic data blocks, and the presentation of more than a few airplanes. In terms of task performance, the cockpit-displayed traffic information was found to provide excellent overall situation awareness. Additionally, mile separation prescribed during these tests.

  3. A graphical workstation based part-task flight simulator for preliminary rapid evaluation of advanced displays

    NASA Technical Reports Server (NTRS)

    Wanke, Craig; Kuchar, James; Hahn, Edward; Pritchett, Amy; Hansman, R. J.

    1992-01-01

    Advances in avionics and display technology are significantly changing the cockpit environment in current transport aircraft. The MIT Aeronautical Systems Lab (ASL) has developed a part-task flight simulator specifically to study the effects of these new technologies on flight crew situational awareness and performance. The simulator is based on a commercially-available graphics workstation, and can be rapidly reconfigured to meet the varying demands of experimental studies. The simulator has been successfully used to evaluate graphical microburst alerting displays, electronic instrument approach plates, terrain awareness and alerting displays, and ATC routing amendment delivery through digital datalinks.

  4. A graphical workstation based part-task flight simulator for preliminary rapid evaluation of advanced displays

    NASA Technical Reports Server (NTRS)

    Wanke, Craig; Kuchar, James; Hahn, Edward; Pritchett, A.; Hansman, R. John

    1994-01-01

    Advances in avionics and display technology are significantly changing the cockpit environment in current transport aircraft. The MIT Aeronautical Systems Lab (ASL) developed a part-task flight simulator specifically to study the effects of these new technologies on flight crew situational awareness and performance. The simulator is based on a commercially-available graphics workstation, and can be rapidly reconfigured to meet the varying demands of experimental studies. The simulator was successfully used to evaluate graphical microbursts alerting displays, electronic instrument approach plates, terrain awareness and alerting displays, and ATC routing amendment delivery through digital datalinks.

  5. Techniques for optimizing human-machine information transfer related to real-time interactive display systems

    NASA Technical Reports Server (NTRS)

    Granaas, Michael M.; Rhea, Donald C.

    1989-01-01

    The requirements for the development of real-time displays are reviewed. Of particular interest are the psychological aspects of design such as the layout, color selection, real-time response rate, and the interactivity of displays. Some existing Western Aeronautical Test Range displays are analyzed.

  6. Design, simulation and evaluation of advanced display concepts for the F-16 control configured vehicle

    NASA Technical Reports Server (NTRS)

    Klein, R. W.; Hollister, W. M.

    1982-01-01

    Advanced display concepts to augment the tracking ability of the F-16 Control Configured Vehicle (CCV) were designed, simulated, and evaluated. A fixed-base simulator was modified to represent the F-16 CCV. An isometric sidearm control stick and two-axis CCV thumb button were installed in the cockpit. The forward cockpit CRT was programmed to present an external scene (numbered runway, horizon) and the designed Heads Up Display. The cockpit interior was modified to represent a fighter and the F-16 CCV dynamics and direct lift and side force modes were programmed. Compensatory displays were designed from man-machine considerations. Pilots evaluated the Heads up Display and compensatory displays during simulated descents in the presence of several levels of filtered, zero-mean winds gusts. During a descent from 2500 feet to the runway, the pilots tracked a point on the runway utilizing the basic F-16, F-16 CCV, and F-16 CCV with advanced displays. Substantial tracking improvements resulted utilizing the CCV modes, and the displays were found to even further enhance the tracking ability of the F-16 CCV.

  7. Flight test evaluation of advanced symbology for general aviation approach to landing displays

    NASA Technical Reports Server (NTRS)

    Downing, D. R.; Bryant, W. H.; Yenni, K. R.

    1981-01-01

    This paper describes a set of flight test experiments which were designed to evaluate the relative utility of candidate displays with advanced symbology for General Aviation IFR operations in the terminal area. This symbology was previously evaluated as part of the NASA Langley Research Center's Terminal Configured Vehicle Program for use in commercial airlines. The advanced symbology included vehicle track-angle, flight path angle and a perspective representation of the runway. These symbols were selectively drawn on a CRT display along with the roll attitude, pitch attitude, localizer-deviation and glideslope deviation. In addition to the CRT display, the instrument panel contained standard turn and bank, altimeter, rate of climb, airspeed, heading and engine instruments. The symbology was evaluated using tracking performance and pilot subjective ratings for an ILS capture and tracking task.

  8. POWERWALL: International Workshop on Interactive, Ultra-High-Resolution Displays

    SciTech Connect

    Rooney, Chris; Endert, Alexander; Fekete, Jean-Daniel; Hornbaek, Kasper; North, Chris

    2013-04-27

    Ultra-high-resolution (Powerwall) displays are becoming increasingly popular due to the ever decreasing cost of hardware. As a result they are appearing more frequently in research institutes, and making the jump out of the lab and into industry. Due to the amount of work in this research area that has been published in CHI over the last few years, we felt that this confernece would be the ideal host for the first opportunity for both academics and practitioners in this field to get together.

  9. Bridging the gap: adapting advanced display technologies for use in hybrid control rooms

    SciTech Connect

    Jokstad, Håkon; Boring, Ronald

    2015-02-01

    recently assisted INL in establishing the technical infrastructure for implementation of HSI prototypes from HAMMLAB into the HSSL to demonstrate relevant control room replacement systems in support of the LWRS program. In March, 2014, IFE delivered the first HSI prototype utilizing this infrastructure — a large screen overview display for INL's simulator. The co-operation now continues by developing Procedure Support Displays targeted for operators in hybrid control room settings. These prototypes are being validated with U.S. reactor operators in the HSSL and optimized to enhance their performance. This research serves as a crucial stepping stone toward incorporation of advanced display technologies into conventional main control rooms.

  10. Hologram-like interactive three-dimensional display using LED array type persistence of vision

    NASA Astrophysics Data System (ADS)

    Kim, Youngmin; Hong, Jisoo; Hong, Sunghee; Kim, Sangkyun; Kang, Hoonjong

    2015-03-01

    A three-dimensional display using persistence of vision (POV) has its own benefits for natural image expression. Conventional POV display using light emitting diode (LED) array was connected with a high speed motor, so it could be possible to express curved-type two-dimensional display or volumetric three-dimensional display. However, it is necessary to consider interactive three-dimensional display. For example, this kind of volumetric display is hardly applied on interactive display since light emitting parts are placed in the center of a rotating screen. To provide a complementary effort to this need, we propose here a hologram-like interactive volumetric display using LED array type persistence of vision and a pair of parabolic mirrors. We build the volumetric POV display by using small size LED arrays. This POV display is located below a pair of parabolic mirrors so the mirrors make hologram-like volumetric POV images to be reimaged such as 4f system of lenses. Several preliminary experiments will be provided for our proposed method.

  11. Planning, Imagined Interaction, and the Nonverbal Display of Anxiety.

    ERIC Educational Resources Information Center

    Allen, Terre H.; Honeycutt, James M.

    1997-01-01

    Examines a nonverbal indicator of anxiety--use of object adaptors. Examines effects of planning for an anticipated encounter and level of discrepancy individuals report they have in imagined interactions on use of object adaptors. Discusses findings in terms of spontaneous helplessness, plan efficacy, and accretion of plan strategies in response…

  12. Advances in Proteomics Data Analysis and Display Using an Accurate Mass and Time Tag Approach

    SciTech Connect

    Zimmer, Jennifer S.; Monroe, Matthew E.; Qian, Weijun; Smith, Richard D.

    2006-01-20

    Proteomics, and the larger field of systems biology, have recently demonstrated utility in both the understanding of cellular processes on the molecular level and the identification of potential biomarkers of various disease states. The large amount of data generated by utilizing high mass accuracy mass spectrometry for high-throughput proteomics analyses presents a challenge in data processing, analysis and display. This review focuses on recent advances in nanoLC-FTICR-MS-based proteomics analysis and the accompanying data processing tools that have been developed in order to interpret and display the large volumes of data produced.

  13. Advances in Proteomics Data Analysis and Display Using an Accurate Mass and Time Tag Approach

    PubMed Central

    Zimmer, Jennifer S.D.; Monroe, Matthew E.; Qian, Wei-Jun; Smith, Richard D.

    2007-01-01

    Proteomics has recently demonstrated utility in understanding cellular processes on the molecular level as a component of systems biology approaches and for identifying potential biomarkers of various disease states. The large amount of data generated by utilizing high efficiency (e.g., chromatographic) separations coupled to high mass accuracy mass spectrometry for high-throughput proteomics analyses presents challenges related to data processing, analysis, and display. This review focuses on recent advances in nanoLC-FTICR-MS-based proteomics approaches and the accompanying data processing tools that have been developed to display and interpret the large volumes of data being produced. PMID:16429408

  14. A flexible flight display research system using a ground-based interactive graphics terminal

    NASA Technical Reports Server (NTRS)

    Hatfield, J. J.; Elkins, H. C.; Batson, V. M.; Poole, W. L.

    1975-01-01

    Requirements and research areas for the air transportation system of the 1980 to 1990's were reviewed briefly to establish the need for a flexible flight display generation research tool. Specific display capabilities required by aeronautical researchers are listed and a conceptual system for providing these capabilities is described. The conceptual system uses a ground-based interactive graphics terminal driven by real-time radar and telemetry data to generate dynamic, experimental flight displays. These displays are scan converted to television format, processed, and transmitted to the cockpits of evaluation aircraft. The attendant advantages of a Flight Display Research System (FDRS) designed to employ this concept are presented. The detailed implementation of an FDRS is described. The basic characteristics of the interactive graphics terminal and supporting display electronic subsystems are presented and the resulting system capability is summarized. Finally, the system status and utilization are reviewed.

  15. An assessment of advanced displays and controls technology applicable to future space transportation systems

    NASA Technical Reports Server (NTRS)

    Hatfield, Jack J.; Villarreal, Diana

    1990-01-01

    The topic of advanced display and control technology is addressed along with the major objectives of this technology, the current state of the art, major accomplishments, research programs and facilities, future trends, technology issues, space transportation systems applications and projected technology readiness for those applications. The holes that may exist between the technology needs of the transportation systems versus the research that is currently under way are addressed, and cultural changes that might facilitate the incorporation of these advanced technologies into future space transportation systems are recommended. Some of the objectives are to reduce life cycle costs, improve reliability and fault tolerance, use of standards for the incorporation of advancing technology, and reduction of weight, volume and power. Pilot workload can be reduced and the pilot's situational awareness can be improved, which would result in improved flight safety and operating efficiency. This could be accomplished through the use of integrated, electronic pictorial displays, consolidated controls, artificial intelligence, and human centered automation tools. The Orbiter Glass Cockpit Display is an example examined.

  16. Dynamic affordances in embodied interactive systems: the role of display and mode of locomotion.

    PubMed

    Grechkin, Timofey Y; Plumert, Jodie M; Kearney, Joseph K

    2014-04-01

    We investigated how the properties of interactive virtual reality systems affect user behavior in full-body embodied interactions. Our experiment compared four interactive virtual reality systems using different display types (CAVE vs. HMD) and modes of locomotion (walking vs. joystick). Participants performed a perceptual-motor coordination task, in which they had to choose among a series of opportunities to pass through a gate that cycled open and closed and then board a moving train. Mode of locomotion, but not type of display, affected how participants chose opportunities for action. Both mode of locomotion and display affected performance when participants acted on their choices. We conclude that technological properties of virtual reality system (both display and mode of locomotion) significantly affected opportunities for action available in the environment (affordances) and discuss implications for design and practical applications of immersive interactive systems. PMID:24650987

  17. The display of molecular models with the Ames Interactive Modeling System (AIMS)

    NASA Technical Reports Server (NTRS)

    Egan, J. T.; Hart, J.; Burt, S. K.; Macelroy, R. D.

    1982-01-01

    A visualization of molecular models can lead to a clearer understanding of the models. Sophisticated graphics devices supported by minicomputers make it possible for the chemist to interact with the display of a very large model, altering its structure. In addition to user interaction, the need arises also for other ways of displaying information. These include the production of viewgraphs, film presentation, as well as publication quality prints of various models. To satisfy these needs, the display capability of the Ames Interactive Modeling System (AIMS) has been enhanced to provide a wide range of graphics and plotting capabilities. Attention is given to an overview of the AIMS system, graphics hardware used by the AIMS display subsystem, a comparison of graphics hardware, the representation of molecular models, graphics software used by the AIMS display subsystem, the display of a model obtained from data stored in molecule data base, a graphics feature for obtaining single frame permanent copy displays, and a feature for producing multiple frame displays.

  18. High-density display of protein ligands on self-assembled capsules via noncovalent fluorous interactions.

    PubMed

    Harano, Koji; Yamada, Junya; Mizuno, Shinichiro; Nakamura, Eiichi

    2015-01-01

    Ligand display on self-assembled nanostructures is an important tool in generating bioactive materials. Here, we demonstrate the display of sugar and biotin molecules on sub-100 nm-sized capsules with a high surface coverage, which was achieved by the use of noncovalent fluorous interactions between a fluorous-tagged ligand molecule and a fullerene vesicle covered with fluorous chains. Even after the high-density ligand display and protein binding, the vesicle stably maintains its spherical structure because the fluorous binding of the sugar does not affect the structural integrity of the vesicle that originates from strong fullerene-fullerene interactions. PMID:25404018

  19. Identification of Posttranslational Modification-Dependent Protein Interactions Using Yeast Surface Displayed Human Proteome Libraries.

    PubMed

    Bidlingmaier, Scott; Liu, Bin

    2015-01-01

    The identification of proteins that interact specifically with posttranslational modifications such as phosphorylation is often necessary to understand cellular signaling pathways. Numerous methods for identifying proteins that interact with posttranslational modifications have been utilized, including affinity-based purification and analysis, protein microarrays, phage display, and tethered catalysis. Although these techniques have been used successfully, each has limitations. Recently, yeast surface-displayed human proteome libraries have been utilized to identify protein fragments with affinity for various target molecules, including phosphorylated peptides. When coupled with fluorescently activated cell sorting and high throughput methods for the analysis of selection outputs, yeast surface-displayed human proteome libraries can rapidly and efficiently identify protein fragments with affinity for any soluble ligand that can be fluorescently detected, including posttranslational modifications. In this review we compare the use of yeast surface display libraries to other methods for the identification of interactions between proteins and posttranslational modifications and discuss future applications of the technology. PMID:26060076

  20. Identification of Posttranslational Modification-Dependent Protein Interactions Using Yeast Surface Displayed Human Proteome Libraries

    PubMed Central

    Bidlingmaier, Scott; Liu, Bin

    2016-01-01

    The identification of proteins that interact specifically with posttranslational modifications such as phosphorylation is often necessary to understand cellular signaling pathways. Numerous methods for identifying proteins that interact with posttranslational modifications have been utilized, including affinity-based purification and analysis, protein microarrays, phage display, and tethered catalysis. Although these techniques have been used successfully, each has limitations. Recently, yeast surface-displayed human proteome libraries have been utilized to identify protein fragments with affinity for various target molecules, including phosphorylated peptides. When coupled with fluorescently activated cell sorting and high throughput methods for the analysis of selection outputs, yeast surface-displayed human proteome libraries can rapidly and efficiently identify protein fragments with affinity for any soluble ligand that can be fluorescently detected, including posttranslational modifications. In this review we compare the use of yeast surface display libraries to other methods for the identification of interactions between proteins and posttranslational modifications and discuss future applications of the technology. PMID:26060076

  1. Advanced Pathway Guidance Evaluations on a Synthetic Vision Head-Up Display

    NASA Technical Reports Server (NTRS)

    Kramer, Lynda J.; Prinzel, Lawrence J., III; Arthur, Jarvis J., III; Bailey, Randall E.

    2005-01-01

    NASA's Synthetic Vision Systems (SVS) project is developing technologies with practical applications to potentially eliminate low visibility conditions as a causal factor to civil aircraft accidents while replicating the operational benefits of clear day flight operations, regardless of the actual outside visibility condition. A major thrust of the SVS project involves the development/demonstration of affordable, certifiable display configurations that provide intuitive out-the-window terrain and obstacle information with advanced guidance for commercial and business aircraft. This experiment evaluated the influence of different pathway and guidance display concepts upon pilot situation awareness (SA), mental workload, and flight path tracking performance for Synthetic Vision display concepts using a Head-Up Display (HUD). Two pathway formats (dynamic and minimal tunnel presentations) were evaluated against a baseline condition (no tunnel) during simulated instrument meteorological conditions approaches to Reno-Tahoe International airport. Two guidance cues (tadpole, follow-me aircraft) were also evaluated to assess their influence. Results indicated that the presence of a tunnel on an SVS HUD had no effect on flight path performance but that it did have significant effects on pilot SA and mental workload. The dynamic tunnel concept with the follow-me aircraft guidance symbol produced the lowest workload and provided the highest SA among the tunnel concepts evaluated.

  2. Preservice Biology Teachers' Use of Interactive Display Systems to Support Reforms-Based Science Instruction

    ERIC Educational Resources Information Center

    Schnittka, Christine G.; Bell, Randy L.

    2009-01-01

    The purpose of this study was to explore preservice science teachers' use of an interactive display system (IDS), consisting of a computer, digital projector, interactive white board, and Internet connection, to support science teaching and learning. Participants included 9 preservice biology teachers enrolled in a master of teaching program…

  3. A scalable distributed paradigm for multi-user interaction with tiled rear projection display walls.

    PubMed

    Roman, Pablo; Lazarov, Maxim; Majumder, Aditi

    2010-01-01

    We present the first distributed paradigm for multiple users to interact simultaneously with large tiled rear projection display walls. Unlike earlier works, our paradigm allows easy scalability across different applications, interaction modalities, displays and users. The novelty of the design lies in its distributed nature allowing well-compartmented, application independent, and application specific modules. This enables adapting to different 2D applications and interaction modalities easily by changing a few application specific modules. We demonstrate four challenging 2D applications on a nine projector display to demonstrate the application scalability of our method: map visualization, virtual graffiti, virtual bulletin board and an emergency management system. We demonstrate the scalability of our method to multiple interaction modalities by showing both gesture-based and laser-based user interfaces. Finally, we improve earlier distributed methods to register multiple projectors. Previous works need multiple patterns to identify the neighbors, the configuration of the display and the registration across multiple projectors in logarithmic time with respect to the number of projectors in the display. We propose a new approach that achieves this using a single pattern based on specially augmented QR codes in constant time. Further, previous distributed registration algorithms are prone to large misregistrations. We propose a novel radially cascading geometric registration technique that yields significantly better accuracy. Thus, our improvements allow a significantly more efficient and accurate technique for distributed self-registration of multi-projector display walls. PMID:20975205

  4. Evaluating display fidelity and interaction fidelity in a virtual reality game.

    PubMed

    McMahan, Ryan P; Bowman, Doug A; Zielinski, David J; Brady, Rachael B

    2012-04-01

    In recent years, consumers have witnessed a technological revolution that has delivered more-realistic experiences in their own homes through high-definition, stereoscopic televisions and natural, gesture-based video game consoles. Although these experiences are more realistic, offering higher levels of fidelity, it is not clear how the increased display and interaction aspects of fidelity impact the user experience. Since immersive virtual reality (VR) allows us to achieve very high levels of fidelity, we designed and conducted a study that used a six-sided CAVE to evaluate display fidelity and interaction fidelity independently, at extremely high and low levels, for a VR first-person shooter (FPS) game. Our goal was to gain a better understanding of the effects of fidelity on the user in a complex, performance-intensive context. The results of our study indicate that both display and interaction fidelity significantly affect strategy and performance, as well as subjective judgments of presence, engagement, and usability. In particular, performance results were strongly in favor of two conditions: low-display, low-interaction fidelity (representative of traditional FPS games) and high-display, high-interaction fidelity (similar to the real world). PMID:22402690

  5. Recent Advances in Engineering Polyvalent Biological Interactions

    PubMed Central

    2015-01-01

    Polyvalent interactions, where multiple ligands and receptors interact simultaneously, are ubiquitous in nature. Synthetic polyvalent molecules, therefore, have the ability to affect biological processes ranging from protein–ligand binding to cellular signaling. In this review, we discuss recent advances in polyvalent scaffold design and applications. First, we will describe recent developments in the engineering of polyvalent scaffolds based on biomolecules and novel materials. Then, we will illustrate how polyvalent molecules are finding applications as toxin and pathogen inhibitors, targeting molecules, immune response modulators, and cellular effectors. PMID:25426695

  6. Protein interaction mapping with ribosome-displayed using PLATO ORF libraries

    PubMed Central

    Zhu, Jian; Larman, H. Benjamin; Gao, Geng; Somwar, Romel; Zhang, Zijuan; Laserson, Uri; Ciccia, Alberto; Pavlova, Natalya; Church, George; Zhang, Wei; Kesari, Santosh; Elledge, Stephen J.

    2013-01-01

    Identifying physical interactions between proteins and other molecules is a critical aspect of biological analysis. Here we describe PLATO, an in vitro method for mapping such interactions by affinity enrichment of a library of full-length open reading frames displayed on ribosomes, followed by massively parallel analysis using DNA sequencing. We demonstrate the broad utility of the method by identifying known and new interacting partners of LYN kinase, patient autoantibodies and the small molecules gefitinib and dasatinib. PMID:24336473

  7. INFORM: An interactive data collection and display program with debugging capability

    NASA Technical Reports Server (NTRS)

    Cwynar, D. S.

    1980-01-01

    A computer program was developed to aid ASSEMBLY language programmers of mini and micro computers in solving the man machine communications problems that exist when scaled integers are involved. In addition to producing displays of quasi-steady state values, INFORM provides an interactive mode for debugging programs, making program patches, and modifying the displays. Auxiliary routines SAMPLE and DATAO add dynamic data acquisition and high speed dynamic display capability to the program. Programming information and flow charts to aid in implementing INFORM on various machines together with descriptions of all supportive software are provided. Program modifications to satisfy the individual user's needs are considered.

  8. Exploring Direct 3D Interaction for Full Horizontal Parallax Light Field Displays Using Leap Motion Controller

    PubMed Central

    Adhikarla, Vamsi Kiran; Sodnik, Jaka; Szolgay, Peter; Jakus, Grega

    2015-01-01

    This paper reports on the design and evaluation of direct 3D gesture interaction with a full horizontal parallax light field display. A light field display defines a visual scene using directional light beams emitted from multiple light sources as if they are emitted from scene points. Each scene point is rendered individually resulting in more realistic and accurate 3D visualization compared to other 3D displaying technologies. We propose an interaction setup combining the visualization of objects within the Field Of View (FOV) of a light field display and their selection through freehand gesture tracked by the Leap Motion Controller. The accuracy and usefulness of the proposed interaction setup was also evaluated in a user study with test subjects. The results of the study revealed high user preference for free hand interaction with light field display as well as relatively low cognitive demand of this technique. Further, our results also revealed some limitations and adjustments of the proposed setup to be addressed in future work. PMID:25875189

  9. Exploring direct 3D interaction for full horizontal parallax light field displays using leap motion controller.

    PubMed

    Adhikarla, Vamsi Kiran; Sodnik, Jaka; Szolgay, Peter; Jakus, Grega

    2015-01-01

    This paper reports on the design and evaluation of direct 3D gesture interaction with a full horizontal parallax light field display. A light field display defines a visual scene using directional light beams emitted from multiple light sources as if they are emitted from scene points. Each scene point is rendered individually resulting in more realistic and accurate 3D visualization compared to other 3D displaying technologies. We propose an interaction setup combining the visualization of objects within the Field Of View (FOV) of a light field display and their selection through freehand gesture tracked by the Leap Motion Controller. The accuracy and usefulness of the proposed interaction setup was also evaluated in a user study with test subjects. The results of the study revealed high user preference for free hand interaction with light field display as well as relatively low cognitive demand of this technique. Further, our results also revealed some limitations and adjustments of the proposed setup to be addressed in future work. PMID:25875189

  10. Flight evaluation of advanced control systems and displays on a general aviation airplane

    NASA Technical Reports Server (NTRS)

    Loschke, P. C.; Barber, M. R.; Enevoldson, E. K.; Mcmurtry, T. C.

    1974-01-01

    A flight-test program was conducted to determine the effect of advanced flight control systems and displays on the handling qualities of a light twin-engined airplane. A flight-director display and an attitude-command control system, used separately and in combination, transformed a vehicle with poor handling qualities during ILS approaches in turbulent air into a vehicle with good handling qualities. The attitude-command control system also improved the ride qualities of the airplane. A rate-command control system made only small improvements to the airplane's ILS handling qualities in turbulence. Both the rate- and the attitude-command control systems reduced stall warning in the test airplane, increasing the likelihood of inadvertent stalls. The final approach to the point of flare was improved by both the rate- and the attitude-command control systems. However, the small control wheel deflections necessary to flare were unnatural and tended to cause overcontrolling during flare. Airplane handling qualities are summarized for each control-system and display configuration.

  11. Development of an interactive real-time graphics system for the display of vehicle space positioning

    NASA Technical Reports Server (NTRS)

    Comperini, Robert; Rhea, Donald C.

    1988-01-01

    Outlined is a new approach taken by the NASA Western Aeronautical Test Range to display real-time space positioning data using computer-generated images that produce a graphic representation of an area map integrated with the research flight test aircraft track. This display system supports research flight test requirements of research projects such as the advanced fighter technology integration (AFTI) F-16, F-18 high alpha research vehicle (HARV), AFTI F-111 mission adaptive wing (MAW), F-15, and X-29A forward-swept wing. This paper will discuss the requirements, system configuration and capability, and future system applications.

  12. Development of an interactive real-time graphics system for the display of vehicle space positioning

    NASA Technical Reports Server (NTRS)

    Comperini, Robert; Rhea, Donald C.

    1988-01-01

    This paper will outline a new approach taken by the NASA Western Aeronautical Test Range to display real-time space positioning data using computer-generated images that produce a graphic representation of an area map integrated with the research flight test aircraft track. This display system supports research flight test requirements of research projects such as the advanced fighter technology integration (AFTI) F-16, F-18 high alpha research vehicle (HARV), AFTI F-111 mission adaptive wing (MAW), F-15, and X-29A forward-swept wing. This paper will discuss the requirements, system configuration and capability, and future system applications.

  13. The Effects of Advanced 'Glass Cockpit' Displayed Flight Instrumentation on In-flight Pilot Decision Making

    NASA Astrophysics Data System (ADS)

    Steigerwald, John

    The Cognitive Continuum Theory (CCT) was first proposed 25 years ago to explain the relationship between intuition and analytical decision making processes. In order for aircraft pilots to make these analytical and intuitive decisions, they obtain information from various instruments within the cockpit of the aircraft. Advanced instrumentation is used to provide a broad array of information about the aircraft condition and flight situation to aid the flight crew in making effective decisions. The problem addressed is that advanced instrumentation has not improved the pilot decision making in modern aircraft. Because making a decision is dependent upon the information available, this experimental quantitative study sought to determine how well pilots organize and interpret information obtained from various cockpit instrumentation displays when under time pressure. The population for this study was the students, flight instructors, and aviation faculty at the Middle Georgia State College School of Aviation campus in Eastman, Georgia. The sample was comprised of two groups of 90 individuals (45 in each group) in various stages of pilot licensure from student pilot to airline transport pilot (ATP). The ages ranged from 18 to 55 years old. There was a statistically significant relationship at the p < .05 level in the ability of the participants to organize and interpret information between the advanced glass cockpit instrumentation and the traditional cockpit instrumentation. It is recommended that the industry explore technological solutions toward creating cockpit instrumentation that could match the type of information display to the type of decision making scenario in order to aid pilots in making decisions that will result in better organization of information. Understanding the relationship between the intuitive and analytical decisions that pilots make and the information source they use to make those decisions will aid engineers in the design of instrumentation

  14. Model-based analysis of control/display interaction in the hover task

    NASA Technical Reports Server (NTRS)

    Schmidt, David K.; Garg, Sanjay

    1987-01-01

    The effect of Control/Display interaction in the hover task is analyzed using an optimal control approach to modeling pilot control behavior. The control/display configurations considered are those previously evaluated in a flight research program. The experimental data-base is reviewed and the procedure for modeling the task and the displayed information is presented in detail. All model-based results, time-domain as well as frequency-domain, are found to correlate extremely well with the subjective pilot ratings and comments. Time-domain measures consist of root mean-square errors and control inputs, attention allocation to displayed quantities, and magnitudes of task objective function. Frequency-domain measures include bandwidth, stability margins, and pilot phase compensation. Results are also shown to agree with previous findings on task interference in multi-axis tasks.

  15. ON-LINE INTERACTIVE DISPLAYS IN APPLICATION TO LINGUISTIC ANALYSIS AND INFORMATION PROCESSING AND RETRIEVAL.

    ERIC Educational Resources Information Center

    SIMMONS, R.F.

    AS COMPUTERS ARE USED FOR INCREASINGLY COMPLEX OPERATIONS SUCH AS RETRIEVING DOCUMENTS AND ANALYZING SENTENCES, IT BECOMES APPARENT THAT HUMAN DECISION-MAKING IS STILL AN ESSENTIAL ELEMENT OF THE PROCESS. THE USE OF THE ON-LINE INTERACTIVE CAPABILITY OF TODAY'S THIRD-GENERATION COMPUTERS SUPPORTED BY TYPEWRITER AND DISPLAY SCOPE TERMINALS MAKES…

  16. Baculovirus display for discovery of low-affinity extracellular receptor-ligand interactions using protein microarrays.

    PubMed

    Tom, Irene; Estevez, Alberto; Bowman, Krista; Gonzalez, Lino C

    2015-06-15

    When used in conjunction with multivalent protein probes, protein microarrays offer a robust technology for discovery of low-affinity extracellular protein-protein interactions. Probes for receptor-matching screens generally consist of purified extracellular domains fused to affinity tags. Given that approximately two-thirds of extracellular proteins are transmembrane domain-containing proteins, it would be desirable to develop a system to express and display probe receptors in a native-like membrane environment. Toward this end, we evaluated baculovirus display as a platform for generating multivalent probes for protein microarray screens. Virion particles were generated displaying single-transmembrane domain receptors BTLA, CD200, and EFNB2, representing a range of affinities for their interacting partners. Virions directly labeled with Cy5 fluorophore were screened against a microarray containing more than 600 extracellular proteins, and the results were compared with data derived from soluble Fc protein or probe-coated protein A microbeads. An optimized protocol employing a blocking step with a nonrelated probe-expressing control baculovirus allowed identification of the expected interactions with a signal-to-noise ratio similar to or higher than those obtained with the other formats. Our results demonstrate that baculovirus display is suitable for detection of high- and low-affinity extracellular protein-protein interactions on protein microarrays. This platform eliminates the need for protein purification and provides a native-like lipid environment for membrane-associated receptors. PMID:25797350

  17. Interactive Display of High-Resolution Images on the World Wide Web.

    ERIC Educational Resources Information Center

    Clyde, Stephen W.; Hirschi, Gregory W.

    Viewing high-resolution images on the World Wide Web at a level of detail necessary for collaborative research is still a problem today, given the Internet's current bandwidth limitations and its ever increasing network traffic. ImageEyes is an interactive display tool being developed at Utah State University that addresses this problem by…

  18. Arthroscopic knee surgery using the advanced flat panel high-resolution color head-mounted display

    NASA Astrophysics Data System (ADS)

    Nelson, Scott A.; Jones, D. E. Casey; St. Pierre, Patrick; Sampson, James B.

    1997-06-01

    The first ever deployed arthroscopic knee surgeries have been performed using a high resolution color head-mounted display (HMD) developed under the DARPA Advanced Flat Panel HMD program. THese procedures and several fixed hospital procedures have allowed both the system designers and surgeons to gain new insight into the use of a HMD for medical procedures in both community and combat support hospitals scenarios. The surgeons demonstrated and reported improved head-body orientation and awareness while using the HMD and reported several advantages and disadvantages of the HMD as compared to traditional CRT monitor viewing of the arthroscopic video images. The surgeries, the surgeon's comments, and a human factors overview of HMDs for Army surgical applications are discussed here.

  19. Advanced display object selection methods for enhancing user-computer productivity

    NASA Technical Reports Server (NTRS)

    Osga, Glenn A.

    1993-01-01

    The User-Interface Technology Branch at NCCOSC RDT&E Division has been conducting a series of studies to address the suitability of commercial off-the-shelf (COTS) graphic user-interface (GUI) methods for efficiency and performance in critical naval combat systems. This paper presents an advanced selection algorithm and method developed to increase user performance when making selections on tactical displays. The method has also been applied with considerable success to a variety of cursor and pointing tasks. Typical GUI's allow user selection by: (1) moving a cursor with a pointing device such as a mouse, trackball, joystick, touchscreen; and (2) placing the cursor on the object. Examples of GUI objects are the buttons, icons, folders, scroll bars, etc. used in many personal computer and workstation applications. This paper presents an improved method of selection and the theoretical basis for the significant performance gains achieved with various input devices tested. The method is applicable to all GUI styles and display sizes, and is particularly useful for selections on small screens such as notebook computers. Considering the amount of work-hours spent pointing and clicking across all styles of available graphic user-interfaces, the cost/benefit in applying this method to graphic user-interfaces is substantial, with the potential for increasing productivity across thousands of users and applications.

  20. Research on gaze-based interaction to 3D display system

    NASA Astrophysics Data System (ADS)

    Kwon, Yong-Moo; Jeon, Kyeong-Won; Kim, Sung-Kyu

    2006-10-01

    There have been reported several researches on gaze tracking techniques using monocular camera or stereo camera. The most popular used gaze estimation techniques are based on PCCR (Pupil Center & Cornea Reflection). These techniques are for gaze tracking for 2D screen or images. In this paper, we address the gaze-based 3D interaction to stereo image for 3D virtual space. To the best of our knowledge, our paper first addresses the 3D gaze interaction techniques to 3D display system. Our research goal is the estimation of both of gaze direction and gaze depth. Until now, the most researches are focused on only gaze direction for the application to 2D display system. It should be noted that both of gaze direction and gaze depth should be estimated for the gaze-based interaction in 3D virtual space. In this paper, we address the gaze-based 3D interaction techniques with glassless stereo display. The estimation of gaze direction and gaze depth from both eyes is a new important research topic for gaze-based 3D interaction. We present our approach for the estimation of gaze direction and gaze depth and show experimentation results.

  1. Orion Entry Display Feeder and Interactions with the Entry Monitor System

    NASA Technical Reports Server (NTRS)

    Baird, Darren; Bernatovich, Mike; Gillespie, Ellen; Kadwa, Binaifer; Matthews, Dave; Penny, Wes; Zak, Tim; Grant, Mike; Bihari, Brian

    2010-01-01

    The Orion spacecraft is designed to return astronauts to a landing within 10 km of the intended landing target from low Earth orbit, lunar direct-entry, and lunar skip-entry trajectories. Al pile the landing is nominally controlled autonomously, the crew can fly precision entries manually in the event of an anomaly. The onboard entry displays will be used by the crew to monitor and manually fly the entry, descent, and landing, while the Entry Monitor System (EMS) will be used to monitor the health and status of the onboard guidance and the trajectory. The entry displays are driven by the entry display feeder, part of the Entry Monitor System (EMS). The entry re-targeting module, also part of the EMS, provides all the data required to generate the capability footprint of the vehicle at any point in the trajectory, which is shown on the Primary Flight Display (PFD). It also provides caution and warning data and recommends the safest possible re-designated landing site when the nominal landing site is no longer within the capability of the vehicle. The PFD and the EMS allow the crew to manually fly an entry trajectory profile from entry interface until parachute deploy having the flexibility to manually steer the vehicle to a selected landing site that best satisfies the priorities of the crew. The entry display feeder provides data from the ENIS and other components of the GNC flight software to the displays at the proper rate and in the proper units. It also performs calculations that are specific to the entry displays and which are not made in any other component of the flight software. In some instances, it performs calculations identical to those performed by the onboard primary guidance algorithm to protect against a guidance system failure. These functions and the interactions between the entry display feeder and the other components of the EMS are described.

  2. An interactive editor for definition of touch-sensitive zones for a graphic display

    NASA Technical Reports Server (NTRS)

    Monroe, Burt L., III; Jones, Denise R.

    1987-01-01

    In the continuing effort to develop more efficient man-machine communications methods, touch displays have shown potential as straightforward input systems. The development of software necessary to handle such systems, however, can become tedious. In order to reduce the need for redundant programming, a touch editor has been developed which allows a programmer to interactively define touch-sensitive areas for a graphic display. The information produced during the editing process is written to a data file, which can be accessed easily when needed by an application program. This paper outlines the structure, logic, and use of the editor, as well as the hardware with which it is presently compatible.

  3. Utilizing Yeast Surface Human Proteome Display Libraries to Identify Small Molecule-Protein Interactions

    PubMed Central

    Bidlingmaier, Scott; Liu, Bin

    2016-01-01

    The identification of proteins that interact with small bioactive molecules is a critical but often difficult and time-consuming step in understanding cellular signaling pathways or molecular mechanisms of drug action. Numerous methods for identifying small molecule-interacting proteins have been developed and utilized, including affinity-based purification followed by mass spectrometry analysis, protein microarrays, phage display, and three-hybrid approaches. Although all these methods have been used successfully, there remains a need for additional techniques for analyzing small molecule-protein interactions. A promising method for identifying small molecule-protein interactions is affinity-based selection of yeast surface-displayed human proteome libraries. Large and diverse libraries displaying human protein fragments on the surface of yeast cells have been constructed and subjected to FACS-based enrichment followed by comprehensive exon microarray-based output analysis to identify protein fragments with affinity for small molecule ligands. In a recent example, a proteome-wide search has been successfully carried out to identify cellular proteins binding to the signaling lipids PtdIns(4,5)P2 and PtdIns(3,4,5)P3. Known phosphatidylinositide-binding proteins such as pleckstrin homology domains were identified, as well as many novel interactions. Intriguingly, many novel nuclear phosphatidylinositide-binding proteins were discovered. Although the existence of an independent pool of nuclear phosphatidylinositides has been known about for some time, their functions and mechanism of action remain obscure. Thus, the identification and subsequent study of nuclear phosphatidylinositide-binding proteins is expected to bring new insights to this important biological question. Based on the success with phosphatidylinositides, it is expected that the screening of yeast surface-displayed human proteome libraries will be of general use for the discovery of novel small

  4. Utilizing Yeast Surface Human Proteome Display Libraries to Identify Small Molecule-Protein Interactions.

    PubMed

    Bidlingmaier, Scott; Liu, Bin

    2015-01-01

    The identification of proteins that interact with small bioactive molecules is a critical but often difficult and time-consuming step in understanding cellular signaling pathways or molecular mechanisms of drug action. Numerous methods for identifying small molecule-interacting proteins have been developed and utilized, including affinity-based purification followed by mass spectrometry analysis, protein microarrays, phage display, and three-hybrid approaches. Although all these methods have been used successfully, there remains a need for additional techniques for analyzing small molecule-protein interactions. A promising method for identifying small molecule-protein interactions is affinity-based selection of yeast surface-displayed human proteome libraries. Large and diverse libraries displaying human protein fragments on the surface of yeast cells have been constructed and subjected to FACS-based enrichment followed by comprehensive exon microarray-based output analysis to identify protein fragments with affinity for small molecule ligands. In a recent example, a proteome-wide search has been successfully carried out to identify cellular proteins binding to the signaling lipids PtdIns(4,5)P2 and PtdIns(3,4,5)P3. Known phosphatidylinositide-binding proteins such as pleckstrin homology domains were identified, as well as many novel interactions. Intriguingly, many novel nuclear phosphatidylinositide-binding proteins were discovered. Although the existence of an independent pool of nuclear phosphatidylinositides has been known about for some time, their functions and mechanism of action remain obscure. Thus, the identification and subsequent study of nuclear phosphatidylinositide-binding proteins is expected to bring new insights to this important biological question. Based on the success with phosphatidylinositides, it is expected that the screening of yeast surface-displayed human proteome libraries will be of general use for the discovery of novel small

  5. Depth-tunable three-dimensional display with interactive light field control

    NASA Astrophysics Data System (ADS)

    Xie, Songlin; Wang, Peng; Sang, Xinzhu; Li, Chenyu; Dou, Wenhua; Xiao, Liquan

    2016-07-01

    A software-defined depth-tunable three-dimensional (3D) display with interactive 3D depth control is presented. With the proposed post-processing system, the disparity of the multi-view media can be freely adjusted. Benefiting from a wealth of information inherently contains in dense multi-view images captured with parallel arrangement camera array, the 3D light field is built and the light field structure is controlled to adjust the disparity without additional acquired depth information since the light field structure itself contains depth information. A statistical analysis based on the least square is carried out to extract the depth information inherently exists in the light field structure and the accurate depth information can be used to re-parameterize light fields for the autostereoscopic display, and a smooth motion parallax can be guaranteed. Experimental results show that the system is convenient and effective to adjust the 3D scene performance in the 3D display.

  6. CellWhere: graphical display of interaction networks organized on subcellular localizations.

    PubMed

    Zhu, Lu; Malatras, Apostolos; Thorley, Matthew; Aghoghogbe, Idonnya; Mer, Arvind; Duguez, Stéphanie; Butler-Browne, Gillian; Voit, Thomas; Duddy, William

    2015-07-01

    Given a query list of genes or proteins, CellWhere produces an interactive graphical display that mimics the structure of a cell, showing the local interaction network organized into subcellular locations. This user-friendly tool helps in the formulation of mechanistic hypotheses by enabling the experimental biologist to explore simultaneously two elements of functional context: (i) protein subcellular localization and (ii) protein-protein interactions or gene functional associations. Subcellular localization terms are obtained from public sources (the Gene Ontology and UniProt-together containing several thousand such terms) then mapped onto a smaller number of CellWhere localizations. These localizations include all major cell compartments, but the user may modify the mapping as desired. Protein-protein interaction listings, and their associated evidence strength scores, are obtained from the Mentha interactome server, or power-users may upload a pre-made network produced using some other interactomics tool. The Cytoscape.js JavaScript library is used in producing the graphical display. Importantly, for a protein that has been observed at multiple subcellular locations, users may prioritize the visual display of locations that are of special relevance to their research domain. CellWhere is at http://cellwhere-myology.rhcloud.com. PMID:25883154

  7. Advances in display technology III; Proceedings of the Meeting, Los Angeles, CA, January 18, 19, 1983

    NASA Astrophysics Data System (ADS)

    Schlam, E.

    1983-01-01

    Human factors in visible displays are discussed, taking into account an introduction to color vision, a laser optometric assessment of visual display viewability, the quantification of color contrast, human performance evaluations of digital image quality, visual problems of office video display terminals, and contemporary problems in airborne displays. Other topics considered are related to electroluminescent technology, liquid crystal and related technologies, plasma technology, and display terminal and systems. Attention is given to the application of electroluminescent technology to personal computers, electroluminescent driving techniques, thin film electroluminescent devices with memory, the fabrication of very large electroluminescent displays, the operating properties of thermally addressed dye switching liquid crystal display, light field dichroic liquid crystal displays for very large area displays, and hardening military plasma displays for a nuclear environment.

  8. Heads up display for the Flight Simulator for Advanced Aircraft (FSAA)

    NASA Technical Reports Server (NTRS)

    Brocker, D. H.; Ganzler, B. C.

    1975-01-01

    A heads-up flight director display designed for a V/STOL lift-fan transport simulation study is described. The pilot's visual flight scene had the heads-up display optically superimposed over the usual out-the-window, video flight scene. The flight director display required the development and integration of a flexible, programmable display generator, graphics assembler, display driver, computer interface system, and special collimating optics for the pilot's flight scene. The optical overlay was realistic because both scenes appeared at optical infinity, and the flexibility of this display device establishes its value as a research tool for use in future flight simulation programs.

  9. Effects of Interactive versus Simultaneous Display of Multimedia Glosses on L2 Reading Comprehension and Incidental Vocabulary Learning

    ERIC Educational Resources Information Center

    Türk, Emine; Erçetin, Gülcan

    2014-01-01

    This study examines the effects of interactive versus simultaneous display of visual and verbal multimedia information on incidental vocabulary learning and reading comprehension of learners of English with lower proficiency levels. In the interactive display condition, learners were allowed to select the type of multimedia information whereas the…

  10. Recent advances in electroluminescent displays applicable to future crew-station interfaces

    NASA Technical Reports Server (NTRS)

    Miller, M. R.; Schlam, E.; Robertson, J. B.; Hatfield, J. J.

    1984-01-01

    The operative principles and progress to date on producing thin-film electroluminescent displays (TFEL) are discussed. TFEL displays consist of conductive, insulating and phosphor film layers deposited on a glass substrate. Applying a 200 V potential between the rows and columns in a multiplexed mode causes light to be emitted. Varying the voltage varies the grey level. The panels provide adequate contrast in full sunlight, and have demanded only 4-6 W for 15 sq in. displays. Alphanumeric, graphics, and video images have been generated with a 51 line by 80 character display. The upper limit on the panel size has not yet been defined. Efforts are under way to produce multicolor displays using red and blue phosphors. Trial units are being studied for avionics displays for, e.g., navigation, multipurpose displays, and attitude/direction indicators.

  11. 3D Navigation and Integrated Hazard Display in Advanced Avionics: Workload, Performance, and Situation Awareness

    NASA Technical Reports Server (NTRS)

    Wickens, Christopher D.; Alexander, Amy L.

    2004-01-01

    We examined the ability for pilots to estimate traffic location in an Integrated Hazard Display, and how such estimations should be measured. Twelve pilots viewed static images of traffic scenarios and then estimated the outside world locations of queried traffic represented in one of three display types (2D coplanar, 3D exocentric, and split-screen) and in one of four conditions (display present/blank crossed with outside world present/blank). Overall, the 2D coplanar display best supported both vertical (compared to 3D) and lateral (compared to split-screen) traffic position estimation performance. Costs of the 3D display were associated with perceptual ambiguity. Costs of the split screen display were inferred to result from inappropriate attention allocation. Furthermore, although pilots were faster in estimating traffic locations when relying on memory, accuracy was greatest when the display was available.

  12. The clinical display of radiologic information as an interactive multimedia report.

    PubMed

    Maloney, K; Hamlet, C T

    1999-05-01

    We regard the delivery of radiological information as an interactive multimedia report. We use a multimedia report model based on Extensible Markup Language (XML), rather than a traditional workstation model. Others have suggested a similar document-based approach. This display presentation includes image-related and text-based information and may contain interactive components (e.g., window, level and zoom). Using XML as a foundation for this multimedia presentation, we achieve flexibility and platform independence at a lower cost. XML allows for the separation of content and form. Content information, defined as elements (e.g., images, radiologic reports, and demographic information), is treated as independent information objects. The behavior of the elements can be changed for different users and tasks. In addition, by separating format detail from content, the appearance of the elements within the report can be modified. XML does not replace existing standards (i.e., Digital Imaging and Communications in Medicine [DICOM], Transmission Control Protocol/Internet Protocol [TCP/IP]). Instead, it provides a powerful framework that is used in combination with existing standards to allow system designers to modify display characteristics based on user need. We describe our application of XML to the clinical display of radiologic information. PMID:10342186

  13. Virtual touch 3D interactive system for autostereoscopic display with embedded optical sensor

    NASA Astrophysics Data System (ADS)

    Huang, Yi-Pai; Wang, Guo-Zhen; Ma, Ming-Ching; Tung, Shang-Yu; Huang, Shu-Yi; Tseng, Hung-Wei; Kuo, Chung-Hong; Li, Chun-Huai

    2011-06-01

    The traidational 3D interactive sysetm which uses CCD camera to capture image is difficult to operate on near range for mobile applications.Therefore, 3D interactive display with embedded optical sensor was proposed. Based on optical sensor based system, we proposed four different methods to support differenct functions. T mark algorithm can obtain 5- axis information (x, y, z,θ, and φ)of LED no matter where LED was vertical or inclined to panel and whatever it rotated. Sequential mark algorithm and color filter based algorithm can support mulit-user. Finally, bare finger touch system with sequential illuminator can achieve to interact with auto-stereoscopic images by bare finger. Furthermore, the proposed methods were verified on a 4-inch panel with embedded optical sensors.

  14. A rule-based expert system for generating control displays at the Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Coulter, Karen J.

    1994-12-01

    The integration of a rule-based expert system for generating screen displays for controlling and monitoring instrumentation under the Experimental Physics and Industrial Control System (EPICS) is presented. The expert system is implemented using CLIPS, an expert system shell from the Software Technology Branch at Lyndon B. Johnson Space Center. The user selects the hardware input and output to be displayed and the expert system constructs a graphical control screen appropriate for the data. Such a system provides a method for implementing a common look and feel for displays created by several different users and reduces the amount of time required to create displays for new hardware configurations. Users are able to modify the displays as needed using the EPICS display editor tool.

  15. A rule-based expert system for generating control displays at the Advanced Photon Source

    SciTech Connect

    Coulter, K.J.

    1993-11-01

    The integration of a rule-based expert system for generating screen displays for controlling and monitoring instrumentation under the Experimental Physics and Industrial Control System (EPICS) is presented. The expert system is implemented using CLIPS, an expert system shell from the Software Technology Branch at Lyndon B. Johnson Space Center. The user selects the hardware input and output to be displayed and the expert system constructs a graphical control screen appropriate for the data. Such a system provides a method for implementing a common look and feel for displays created by several different users and reduces the amount of time required to create displays for new hardware configurations. Users are able to modify the displays as needed using the EPICS display editor tool.

  16. Anvil Forecast Tool in the Advanced Weather Interactive Processing System

    NASA Technical Reports Server (NTRS)

    Barrett, Joe H., III; Hood, Doris

    2009-01-01

    Meteorologists from the 45th Weather Squadron (45 WS) and National Weather Service Spaceflight Meteorology Group (SMG) have identified anvil forecasting as one of their most challenging tasks when predicting the probability of violations of the Lightning Launch Commit Criteria and Space Shuttle Flight Rules. As a result, the Applied Meteorology Unit (AMU) was tasked to create a graphical overlay tool for the Meteorological Interactive Data Display System (MIDDS) that indicates the threat of thunderstorm anvil clouds, using either observed or model forecast winds as input. The tool creates a graphic depicting the potential location of thunderstorm anvils one, two, and three hours into the future. The locations are based on the average of the upper level observed or forecasted winds. The graphic includes 10 and 20 n mi standoff circles centered at the location of interest, as well as one-, two-, and three-hour arcs in the upwind direction. The arcs extend outward across a 30 sector width based on a previous AMU study that determined thunderstorm anvils move in a direction plus or minus 15 of the upper-level wind direction. The AMU was then tasked to transition the tool to the Advanced Weather Interactive Processing System (AWIPS). SMG later requested the tool be updated to provide more flexibility and quicker access to model data. This presentation describes the work performed by the AMU to transition the tool into AWIPS, as well as the subsequent improvements made to the tool.

  17. Development of advanced direct perception displays for nuclear power plants to enhance monitoring, control and fault management. Progress report

    SciTech Connect

    Jones, B.; Shaheen, S.; Moray, N.; Sanderson, P.; Reising, D.V.

    1993-05-21

    With recent theoretical and empirical research in basic and applied psychology, human factors, and engineering, it is now sufficient to define an integrated approach to the deign of advanced displays for present and future nuclear power plants. Traditionally, the conventional displays have shown operators the individual variables on gauges, meters, strip charts, etc. This design approach requires the operators to mentally integrate the separately displayed variables and determine the implications for the plant state. This traditional approach has been known as the single-sensor-single-indicator display design and it places an intolerable amount of mental workload on operators during transients and abnormal conditions. This report discusses a new alternative approach which is the use of direct perception interfaces. Direct perception a interfaces display the underlying physical and system constraints of the situation in a directly perceptual way, such that the viewer need not reason about what is seen to identify system states, but can identify the state of the system perceptually. It is expected that displays which show the dynamics of fundamental physical laws should better support operator decisions and diagnoses of plant states. The purpose of this research project is to develop a suite of direct perception displays for PWR nuclear power plant operations.

  18. Design of a new human-computer interactive device for projection display

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Liu, Xiangdong; Meng, Xiao

    2005-02-01

    Projection displays are widely applied as tools for multimedia in conference room presentation, education center, R&D center and more places. To provide a more interactive environment, a new kind of human-computer interactive device is designed and presented. A two-dimensional CCD is the sensor of the unit. Through optical filter, CCD exports full video signal including a series of isolated positive pulse caused by the specific light-spot target generated from a specific light-pen. Through a video sync separator, combinational logic and sequential logic process of the full video signal, the target image's two-dimensional position on the light sensitive layer of CCD can be gained. The specific light-pen also sends the function logic message to the controller part through wireless communication. A microcontroller will combine the position information and function message, and then send it to computer through RS-232 of USB interface. The software in computer will process these messages. The specific light-spot's relative coordinates in the projection screen is gained. With the coordinate and the function message, the software will drive the computer to implement certain functions. With the specific light-pen, one can control the computer, take notes and shape his desire in the screen. Now the device is applied in LCD projection displays and it also can be applied in any large screen display. With the improvement of the system and the software, the function will be more powerful and provide a more interactive human computer interface (HCI).

  19. Mapping protein-protein interactions with phage-displayed combinatorial peptide libraries.

    SciTech Connect

    Kay, B. K.; Castagnoli, L.; Biosciences Division; Univ. of Rome

    2003-01-01

    This unit describes the process and analysis of affinity selecting bacteriophage M13 from libraries displaying combinatorial peptides fused to either a minor or major capsid protein. Direct affinity selection uses target protein bound to a microtiter plate followed by purification of selected phage by ELISA. Alternatively, there is a bead-based affinity selection method. These methods allow one to readily isolate peptide ligands that bind to a protein target of interest and use the consensus sequence to search proteomic databases for putative interacting proteins.

  20. Evaluating the Effects of Dimensionality in Advanced Avionic Display Concepts for Synthetic Vision Systems

    NASA Technical Reports Server (NTRS)

    Alexander, Amy L.; Prinzel, Lawrence J., III; Wickens, Christopher D.; Kramer, Lynda J.; Arthur, Jarvis J.; Bailey, Randall E.

    2007-01-01

    Synthetic vision systems provide an in-cockpit view of terrain and other hazards via a computer-generated display representation. Two experiments examined several display concepts for synthetic vision and evaluated how such displays modulate pilot performance. Experiment 1 (24 general aviation pilots) compared three navigational display (ND) concepts: 2D coplanar, 3D, and split-screen. Experiment 2 (12 commercial airline pilots) evaluated baseline 'blue sky/brown ground' or synthetic vision-enabled primary flight displays (PFDs) and three ND concepts: 2D coplanar with and without synthetic vision and a dynamic multi-mode rotatable exocentric format. In general, the results pointed to an overall advantage for a split-screen format, whether it be stand-alone (Experiment 1) or available via rotatable viewpoints (Experiment 2). Furthermore, Experiment 2 revealed benefits associated with utilizing synthetic vision in both the PFD and ND representations and the value of combined ego- and exocentric presentations.

  1. Mapping protein-protein interactions with phage-displayed combinatorial peptide libraries and alanine scanning.

    PubMed

    Kokoszka, Malgorzata E; Kay, Brian K

    2015-01-01

    One avenue for inferring the function of a protein is to learn what proteins it may bind to in the cell. Among the various methodologies, one way for doing so is to affinity select peptide ligands from a phage-displayed combinatorial peptide library and then to examine if the proteins that carry such peptide sequences interact with the target protein in the cell. With the protocols described in this chapter, a laboratory with skills in microbiology, molecular biology, and protein biochemistry can readily identify peptides in the library that bind selectively, and with micromolar affinity, to a given target protein on the time scale of 2 months. To illustrate this approach, we use a library of bacteriophage M13 particles, which display 12-mer combinatorial peptides, to affinity select different peptide ligands for two different targets, the SH3 domain of the human Lyn protein tyrosine kinase and a segment of the yeast serine/threonine protein kinase Cbk1. The binding properties of the selected peptide ligands are then dissected by sequence alignment, Kunkel mutagenesis, and alanine scanning. Finally, the peptide ligands can be used to predict cellular interacting proteins and serve as the starting point for drug discovery. PMID:25616333

  2. Decomposable decoding and display structure for scalable media visualization over advanced collaborative environments

    NASA Astrophysics Data System (ADS)

    Kim, JaeYoun; Kim, JongWon

    2005-10-01

    In this paper, we propose a scalable visualization system to offer high-resolution visualization on multiparty collaborative environments. The proposed system treats with a coordination technique to employ large-scale high-resolution display system and to display multiple high-quality videos effectively on systems with limited resources. To handle these, the proposed system includes the distributed visualization application under generic structure to enable high-resolution video format, such as DV (digital video) and HDV (high definition video) streaming, and under decomposable decoding and display structure to assign the separated visualization task (decoding/display) to different system resources. The system is based on high-performance local area network and the high-performance network between decoding and display task is utilized as the system bus to transfer the decoded large pixel data. The main focus in this paper is the decoupling technique of decoding and display based on high-performance network to handle multiple high-resolution videos effectively. We explore the possibility of the proposed system by implementing a prototype and evaluating it over a high-performance network. Finally, the experiment results verify the improved scalable display system through the proposed structure.

  3. Integrating multiple HD video services over tiled display for advanced multi-party collaboration

    NASA Astrophysics Data System (ADS)

    Han, Sangwoo; Kim, Jaeyoun; Choi, Kiho; Kim, JongWon

    2006-10-01

    Multi-party collaborative environments based on AG (Access Grid) are extensively utilized for distance learning, e-science, and other distributed global collaboration events. In such environments, A/V media services play an important role in providing QoE (quality of experience) to participants in collaboration sessions. In this paper, in order to support high-quality user experience in the aspect of video services, we design an integration architecture to combine high-quality video services and a high-resolution tiled display service. In detail, the proposed architecture incorporates video services for DV (digital video) and HDV (high-definition digital video) streaming with a display service to provide methods for decomposable decoding/display for a tiled display system. By implementing the proposed architecture on top of AG, we verify that high-quality collaboration among a couple of collaboration sites can be realized over a multicast-enabled network testbed with improved media quality experience.

  4. Advances in the Dynallax solid-state dynamic parallax barrier autostereoscopic visualization display system.

    SciTech Connect

    Peterka, T.; Kooima, R. L.; Sandin, D. J.; Johnson, A.; Leigh, J.; DeFanti, T. A.; Mathematics and Computer Science; Univ. of Illinois at Chicago; Univ. of Calif. at San Diego

    2008-05-01

    A solid-state dynamic parallax barrier autostereoscopic display mitigates some of the restrictions present in static barrier systems such as fixed view-distance range, slow response to head movements, and fixed stereo operating mode. By dynamically varying barrier parameters in real time, viewers may move closer to the display and move faster laterally than with a static barrier system, and the display can switch between 3D and 2D modes by disabling the barrier on a per-pixel basis. Moreover, Dynallax can output four independent eye channels when two viewers are present, and both head-tracked viewers receive an independent pair of left-eye and right-eye perspective views based on their position in 3D space. The display device is constructed by using a dual-stacked LCD monitor where a dynamic barrier is rendered on the front display and a modulated virtual environment composed of two or four channels is rendered on the rear display. Dynallax was recently demonstrated in a small-scale head-tracked prototype system. This paper summarizes the concepts presented earlier, extends the discussion of various topics, and presents recent improvements to the system.

  5. A mathematical representation of an advanced helicopter for piloted simulator investigations of control system and display variations

    NASA Technical Reports Server (NTRS)

    Aiken, E. W.

    1980-01-01

    A mathematical model of an advanced helicopter is described. The model is suitable for use in control/display research involving piloted simulation. The general design approach for the six degree of freedom equations of motion is to use the full set of nonlinear gravitational and inertial terms of the equations and to express the aerodynamic forces and moments as the reference values and first order terms of a Taylor series expansion about a reference trajectory defined as a function of longitudinal airspeed. Provisions for several different specific and generic flight control systems are included in the model. The logic required to drive various flight control and weapon delivery symbols on a pilot's electronic display is also provided. Finally, the model includes a simplified representation of low altitude wind and turbulence effects. This model was used in a piloted simulator investigation of the effects of control system and display variations for an attack helicopter mission.

  6. "Head up and eyes out" advances in head mounted displays capabilities

    NASA Astrophysics Data System (ADS)

    Cameron, Alex

    2013-06-01

    There are a host of helmet and head mounted displays, flooding the market place with displays which provide what is essentially a mobile computer display. What sets aviators HMDs apart is that they provide the user with accurate conformal information embedded in the pilots real world view (see through display) where the information presented is intuitive and easy to use because it overlays the real world (mix of sensor imagery, symbolic information and synthetic imagery) and enables them to stay head up, eyes out, - improving their effectiveness, reducing workload and improving safety. Such systems are an enabling technology in the provision of enhanced Situation Awareness (SA) and reducing user workload in high intensity situations. Safety Is Key; so the addition of these HMD functions cannot detract from the aircrew protection functions of conventional aircrew helmets which also include life support and audio communications. These capabilities are finding much wider application in new types of compact man mounted audio/visual products enabled by the emergence of new families of micro displays, novel optical concepts and ultra-compact low power processing solutions. This papers attempts to capture the key drivers and needs for future head mounted systems for aviation applications.

  7. JuxtaView - A tool for interactive visualization of large imagery on scalable tiled displays

    USGS Publications Warehouse

    Krishnaprasad, N.K.; Vishwanath, V.; Venkataraman, S.; Rao, A.G.; Renambot, L.; Leigh, J.; Johnson, A.E.; Davis, B.

    2004-01-01

    JuxtaView is a cluster-based application for viewing ultra-high-resolution images on scalable tiled displays. We present in JuxtaView, a new parallel computing and distributed memory approach for out-of-core montage visualization, using LambdaRAM, a software-based network-level cache system. The ultimate goal of JuxtaView is to enable a user to interactively roam through potentially terabytes of distributed, spatially referenced image data such as those from electron microscopes, satellites and aerial photographs. In working towards this goal, we describe our first prototype implemented over a local area network, where the image is distributed using LambdaRAM, on the memory of all nodes of a PC cluster driving a tiled display wall. Aggressive pre-fetching schemes employed by LambdaRAM help to reduce latency involved in remote memory access. We compare LambdaRAM with a more traditional memory-mapped file approach for out-of-core visualization. ?? 2004 IEEE.

  8. Profiling lethal factor interacting proteins from human stomach using T7 phage display screening

    PubMed Central

    CARDONA-CORREA, ALBIN; RIOS-VELAZQUEZ, CARLOS

    2016-01-01

    The anthrax lethal factor (LF) is a zinc dependent metalloproteinase that cleaves the majority of mitogen-activated protein kinase kinases and a member of NOD-like receptor proteins, inducing cell apoptosis. Despite efforts to fully understand the Bacillus anthracis toxin components, the gastrointestinal (GI) anthrax mechanisms have not been fully elucidated. Previous studies demonstrated gastric ulceration, and a substantial bacterial growth rate in Peyer's patches. However, the complete molecular pathways of the disease that results in tissue damage by LF proteolytic activity remains unclear. In the present study, to identify the profile of the proteins potentially involved in GI anthrax, protein-protein interactions were investigated using human stomach T7 phage display (T7PD) cDNA libraries. T7PD is a high throughput technique that allows the expression of cloned DNA sequences as peptides on the phage surface, enabling the selection and identification of protein ligands. A wild type and mutant LF (E687A) were used to differentiate interaction sites. A total of 124 clones were identified from 194 interacting-phages, at both the DNA and protein level, by in silico analysis. Databases revealed that the selected candidates were proteins from different families including lipase, peptidase-A1 and cation transport families, among others. Furthermore, individual T7PD candidates were tested against LF in order to detect their specificity to the target molecule, resulting in 10 LF-interacting peptides. With a minimum concentration of LF for interaction at 1 μg/ml, the T7PD isolated pepsin A3 pre-protein (PAP) demonstrated affinity to both types of LF. In addition, PAP was isolated in various lengths for the same protein, exhibiting common regions following PRALINE alignment. These findings will help elucidate and improve the understanding of the molecular pathogenesis of GI anthrax, and aid in the development of potential therapeutic agents. PMID:27035230

  9. Flight tests of advanced 3D-PFD with commercial flat-panel avionics displays and EGPWS system

    NASA Astrophysics Data System (ADS)

    He, Gang; Feyereisen, Thea; Gannon, Aaron; Wilson, Blake; Schmitt, John; Wyatt, Sandy; Engels, Jary

    2005-05-01

    This paper describes flight trials of Honeywell Advanced 3D Primary Flight Display System. The system employs a large-format flat-panel avionics display presently used in Honeywell PRIMUS EPIC flight-deck products and is coupled to an on-board EGPWS system. The heads-down primary flight display consists of dynamic primary-flight attitude information, flight-path and approach symbology similar to Honeywell HUD2020 heads-up displays, and a synthetic 3D perspective-view terrain environment generated with Honeywell"s EGPWS terrain data. Numerous flights are conducted on-board Honeywell Citation V aircraft and significant amount of pilot feedback are collected with portion of the data summarized in this paper. The system development is aimed at leveraging several well-established avionics components (HUD, EGPWS, large-format displays) in order to produce an integrated system that significantly reduces pilot workload, increases overall situation awareness, and is more beneficial to flight operations than achievable with separated systems.

  10. Anvil Tool in the Advanced Weather Interactive Processing System

    NASA Technical Reports Server (NTRS)

    Barrett, Joe, III; Bauman, William, III; Keen, Jeremy

    2007-01-01

    Meteorologists from the 45th Weather Squadron (45 WS) and Spaceflight Meteorology Group (SMG) have identified anvil forecasting as one of their most challenging tasks when predicting the probability of violations of the lightning Launch Commit Criteria and Space Shuttle Flight Rules. As a result, the Applied Meteorology Unit (AMU) created a graphical overlay tool for the Meteorological Interactive Data Display Systems (MIDDS) to indicate the threat of thunderstorm anvil clouds, using either observed or model forecast winds as input. In order for the Anvil Tool to remain available to the meteorologists, the AMU was tasked to transition the tool to the Advanced Weather interactive Processing System (AWIPS). This report describes the work done by the AMU to develop the Anvil Tool for AWIPS to create a graphical overlay depicting the threat from thunderstorm anvil clouds. The AWIPS Anvil Tool is based on the previously deployed AMU MIDDS Anvil Tool. SMG and 45 WS forecasters have used the MIDDS Anvil Tool during launch and landing operations. SMG's primary weather analysis and display system is now AWIPS and the 45 WS has plans to replace MIDDS with AWIPS. The Anvil Tool creates a graphic that users can overlay on satellite or radar imagery to depict the potential location of thunderstorm anvils one, two, and three hours into the future. The locations are based on an average of the upper-level observed or forecasted winds. The graphic includes 10 and 20 nm standoff circles centered at the location of interest, in addition to one-, two-, and three-hour arcs in the upwind direction. The arcs extend outward across a 30 degree sector width based on a previous AMU study which determined thunderstorm anvils move in a direction plus or minus 15 degrees of the upper-level (300- to 150-mb) wind direction. This report briefly describes the history of the MIDDS Anvil Tool and then explains how the initial development of the AWIPS Anvil Tool was carried out. After testing was

  11. Profiling lethal factor interacting proteins from human stomach using T7 phage display screening.

    PubMed

    Cardona-Correa, Albin; Rios-Velazquez, Carlos

    2016-05-01

    The anthrax lethal factor (LF) is a zinc dependent metalloproteinase that cleaves the majority of mitogen-activated protein kinase kinases and a member of NOD-like receptor proteins, inducing cell apoptosis. Despite efforts to fully understand the Bacillus anthracis toxin components, the gastrointestinal (GI) anthrax mechanisms have not been fully elucidated. Previous studies demonstrated gastric ulceration, and a substantial bacterial growth rate in Peyer's patches. However, the complete molecular pathways of the disease that results in tissue damage by LF proteolytic activity remains unclear. In the present study, to identify the profile of the proteins potentially involved in GI anthrax, protein‑protein interactions were investigated using human stomach T7 phage display (T7PD) cDNA libraries. T7PD is a high throughput technique that allows the expression of cloned DNA sequences as peptides on the phage surface, enabling the selection and identification of protein ligands. A wild type and mutant LF (E687A) were used to differentiate interaction sites. A total of 124 clones were identified from 194 interacting‑phages, at both the DNA and protein level, by in silico analysis. Databases revealed that the selected candidates were proteins from different families including lipase, peptidase‑A1 and cation transport families, among others. Furthermore, individual T7PD candidates were tested against LF in order to detect their specificity to the target molecule, resulting in 10 LF‑interacting peptides. With a minimum concentration of LF for interaction at 1 µg/ml, the T7PD isolated pepsin A3 pre‑protein (PAP) demonstrated affinity to both types of LF. In addition, PAP was isolated in various lengths for the same protein, exhibiting common regions following PRALINE alignment. These findings will help elucidate and improve the understanding of the molecular pathogenesis of GI anthrax, and aid in the development of potential therapeutic agents. PMID

  12. Recent advances in yeast cell-surface display technologies for waste biorefineries.

    PubMed

    Liu, Zhuo; Ho, Shih-Hsin; Hasunuma, Tomohisa; Chang, Jo-Shu; Ren, Nan-Qi; Kondo, Akihiko

    2016-09-01

    Waste biorefinery aims to maximize the output of value-added products from various artificial/agricultural wastes by using integrated bioprocesses. To make waste biorefinery economically feasible, it is thus necessary to develop a low-cost, environment-friendly technique to perform simultaneous biodegradation and bioconversion of waste materials. Cell-surface display engineering is a novel, cost-effective technique that can auto-immobilize proteins on the cell exterior of microorganisms, and has been applied for use with waste biofinery. Through tethering different enzymes (e.g., cellulase, lipase, and protease) or metal-binding peptides on cell surfaces, various yeast strains can effectively produce biofuels and biochemicals from sugar/protein-rich waste materials, catalyze waste oils into biodiesels, or retrieve heavy metals from wastewater. This review critically summarizes recent applications of yeast cell-surface display on various types of waste biorefineries, highlighting its potential and future challenges with regard to commercializing this technology. PMID:27039354

  13. A Workstation for Interactive Display and Quantitative Analysis of 3-D and 4-D Biomedical Images

    PubMed Central

    Robb, R.A.; Heffeman, P.B.; Camp, J.J.; Hanson, D.P.

    1986-01-01

    The capability to extract objective and quantitatively accurate information from 3-D radiographic biomedical images has not kept pace with the capabilities to produce the images themselves. This is rather an ironic paradox, since on the one hand the new 3-D and 4-D imaging capabilities promise significant potential for providing greater specificity and sensitivity (i.e., precise objective discrimination and accurate quantitative measurement of body tissue characteristics and function) in clinical diagnostic and basic investigative imaging procedures than ever possible before, but on the other hand, the momentous advances in computer and associated electronic imaging technology which have made these 3-D imaging capabilities possible have not been concomitantly developed for full exploitation of these capabilities. Therefore, we have developed a powerful new microcomputer-based system which permits detailed investigations and evaluation of 3-D and 4-D (dynamic 3-D) biomedical images. The system comprises a special workstation to which all the information in a large 3-D image data base is accessible for rapid display, manipulation, and measurement. The system provides important capabilities for simultaneously representing and analyzing both structural and functional data and their relationships in various organs of the body. This paper provides a detailed description of this system, as well as some of the rationale, background, theoretical concepts, and practical considerations related to system implementation. ImagesFigure 5Figure 7Figure 8Figure 9Figure 10Figure 11Figure 12Figure 13Figure 14Figure 15Figure 16

  14. Interactive visualization to advance earthquake simulation

    USGS Publications Warehouse

    Kellogg, L.H.; Bawden, G.W.; Bernardin, T.; Billen, M.; Cowgill, E.; Hamann, B.; Jadamec, M.; Kreylos, O.; Staadt, O.; Sumner, D.

    2008-01-01

    The geological sciences are challenged to manage and interpret increasing volumes of data as observations and simulations increase in size and complexity. For example, simulations of earthquake-related processes typically generate complex, time-varying data sets in two or more dimensions. To facilitate interpretation and analysis of these data sets, evaluate the underlying models, and to drive future calculations, we have developed methods of interactive visualization with a special focus on using immersive virtual reality (VR) environments to interact with models of Earth's surface and interior. Virtual mapping tools allow virtual "field studies" in inaccessible regions. Interactive tools allow us to manipulate shapes in order to construct models of geological features for geodynamic models, while feature extraction tools support quantitative measurement of structures that emerge from numerical simulation or field observations, thereby enabling us to improve our interpretation of the dynamical processes that drive earthquakes. VR has traditionally been used primarily as a presentation tool, albeit with active navigation through data. Reaping the full intellectual benefits of immersive VR as a tool for scientific analysis requires building on the method's strengths, that is, using both 3D perception and interaction with observed or simulated data. This approach also takes advantage of the specialized skills of geological scientists who are trained to interpret, the often limited, geological and geophysical data available from field observations. ?? Birkhaueser 2008.

  15. Receptor-ligand interactions: Advanced biomedical applications.

    PubMed

    Guryanov, Ivan; Fiorucci, Stefano; Tennikova, Tatiana

    2016-11-01

    Receptor-ligand interactions (RLIs) are at the base of all biological events occurring in living cells. The understanding of interactions between complementary macromolecules in biological systems represents a high-priority research area in bionanotechnology to design the artificial systems mimicking natural processes. This review summarizes and analyzes RLIs in some cutting-edge biomedical fields, in particular, for the preparation of novel stationary phases to separate complex biological mixtures in medical diagnostics, for the design of ultrasensitive biosensors for identification of biomarkers of various diseases at early stages, as well as in the development of innovative biomaterials and approaches for regenerative medicine. All these biotechnological fields are closely related, because their success depends on a proper choice, combination and spatial disposition of the single components of ligand-receptor pairs on the surface of appropriately designed support. PMID:27524092

  16. Advanced helmet vision system (AHVS) integrated night vision helmet mounted display (HMD)

    NASA Astrophysics Data System (ADS)

    Ashcraft, Todd W.; Atac, Robert

    2012-06-01

    Gentex Corporation, under contract to Naval Air Systems Command (AIR 4.0T), designed the Advanced Helmet Vision System to provide aircrew with 24-hour, visor-projected binocular night vision and HMD capability. AHVS integrates numerous key technologies, including high brightness Light Emitting Diode (LED)-based digital light engines, advanced lightweight optical materials and manufacturing processes, and innovations in graphics processing software. This paper reviews the current status of miniaturization and integration with the latest two-part Gentex modular helmet, highlights the lessons learned from previous AHVS phases, and discusses plans for qualification and flight testing.

  17. UZIG USGS research: Advances through interdisciplinary interaction

    USGS Publications Warehouse

    Nimmo, J.R.; Andraski, B.J.; Rafael, M.-C.

    2009-01-01

    Because vadose zone research relates to diverse disciplines, applications, and modes of research, collaboration across traditional operational and topical divisions is especially likely to yield major advances in understanding. The Unsaturated Zone Interest Group (UZIG) is an informal organization sponsored by the USGS to encourage and support interdisciplinary collaboration in vadose or unsaturated zone hydrologic research across organizational boundaries. It includes both USGS and non-USGS scientists. Formed in 1987, the UZIG operates to promote communication, especially through periodic meetings with presentations, discussions, and fi eld trips. The 10th meeting of the UZIG at Los Alamos, NM, in August 2007 was jointly sponsored by the USGS and Los Alamos National Laboratory. Presentations at this meeting served as the initial basis for selecting papers for this special section of Vadose Zone Journal, the purpose of which is to present noteworthy cuting-edge unsaturated zone research promoted by, facilitated by, or presented in connection with the UZIG. ?? Soil Science Society of America.

  18. Strategic Sexual Signals: Women's Display versus Avoidance of the Color Red Depends on the Attractiveness of an Anticipated Interaction Partner

    PubMed Central

    Maner, Jon K.

    2016-01-01

    The color red has special meaning in mating-relevant contexts. Wearing red can enhance perceptions of women’s attractiveness and desirability as a potential romantic partner. Building on recent findings, the present study examined whether women’s (N = 74) choice to display the color red is influenced by the attractiveness of an expected opposite-sex interaction partner. Results indicated that female participants who expected to interact with an attractive man displayed red (on clothing, accessories, and/or makeup) more often than a baseline consisting of women in a natural environment with no induced expectation. In contrast, when women expected to interact with an unattractive man, they eschewed red, displaying it less often than in the baseline condition. Findings are discussed with respect to evolutionary and cultural perspectives on mate evaluation and selection. PMID:26960135

  19. Strategic Sexual Signals: Women's Display versus Avoidance of the Color Red Depends on the Attractiveness of an Anticipated Interaction Partner.

    PubMed

    Niesta Kayser, Daniela; Agthe, Maria; Maner, Jon K

    2016-01-01

    The color red has special meaning in mating-relevant contexts. Wearing red can enhance perceptions of women's attractiveness and desirability as a potential romantic partner. Building on recent findings, the present study examined whether women's (N = 74) choice to display the color red is influenced by the attractiveness of an expected opposite-sex interaction partner. Results indicated that female participants who expected to interact with an attractive man displayed red (on clothing, accessories, and/or makeup) more often than a baseline consisting of women in a natural environment with no induced expectation. In contrast, when women expected to interact with an unattractive man, they eschewed red, displaying it less often than in the baseline condition. Findings are discussed with respect to evolutionary and cultural perspectives on mate evaluation and selection. PMID:26960135

  20. Advances in three-dimensional integral imaging: sensing, display, and applications [Invited].

    PubMed

    Xiao, Xiao; Javidi, Bahram; Martinez-Corral, Manuel; Stern, Adrian

    2013-02-01

    Three-dimensional (3D) sensing and imaging technologies have been extensively researched for many applications in the fields of entertainment, medicine, robotics, manufacturing, industrial inspection, security, surveillance, and defense due to their diverse and significant benefits. Integral imaging is a passive multiperspective imaging technique, which records multiple two-dimensional images of a scene from different perspectives. Unlike holography, it can capture a scene such as outdoor events with incoherent or ambient light. Integral imaging can display a true 3D color image with full parallax and continuous viewing angles by incoherent light; thus it does not suffer from speckle degradation. Because of its unique properties, integral imaging has been revived over the past decade or so as a promising approach for massive 3D commercialization. A series of key articles on this topic have appeared in the OSA journals, including Applied Optics. Thus, it is fitting that this Commemorative Review presents an overview of literature on physical principles and applications of integral imaging. Several data capture configurations, reconstruction, and display methods are overviewed. In addition, applications including 3D underwater imaging, 3D imaging in photon-starved environments, 3D tracking of occluded objects, 3D optical microscopy, and 3D polarimetric imaging are reviewed. PMID:23385893

  1. Interactive multimodality display environment with photographic overlay enhancement for epilepsy surgical planning

    NASA Astrophysics Data System (ADS)

    Wang, An; Mirsattari, Seyed; Gobbi, David G.; Bihari, Frank; Das, Piali; Zhang, Qi; Peters, Terry M.

    2008-03-01

    We describe an interactive multimodality display environment, which combines anatomic CT, MRI, functional MRI images and photographs taken during surgical procedures, to provide comprehensive localization information regarding epilepsy seizure foci and the context of their surroundings. Our environment incorporates several unique features, including GPU-accelerated volume rendering and image fusion, versatile GPU-based clipping of volumetric images, and the ability to enhance the information delivered to the surgeon by fusing a direct (photographic) view of the surgical field with the volumetric image. We employ direct volume rendering for the fusion of multiple volumes using GPU-accelerated ray-casting. In addition, to expose the internal structures during volume fusion, we have developed user interaction tools that enable the surgeon to explore the fused volume using clipping-cube and cutaway clipping schemes. The fusion of intraoperative images onto the image volume allows enhanced visualization of the surgical procedure sites within the surgical planning environment. These techniques have been implemented as Visualization Toolkit (VTK) classes using the OpenGL fragment shading program and Python modules, and have been successfully implemented within our surgical planning environment "EpilepsyViewer". The results and performance of our GPU-based approach are compared with similar techniques in VTK, demonstrating that the use of the GPU can greatly accelerate visualization and enable increased flexibility of the system in the operating room. The result of photographic overlay shows good correspondence between the intraoperative photograph images and the preoperative image model. This environment can also be extended for use in other neurosurgical planning tasks.

  2. Controlling adsorbate interactions for advanced chemical patterning

    NASA Astrophysics Data System (ADS)

    Saavedra Garcia, Hector M.

    Molecules designed to have specific interactions were used to influence the structural, physical, and chemical properties of self-assembled monolayers. In the case of 1-adamantanethiolate monolayers, the molecular structure influences lability, enabling alkanethiol molecules in solution to displace the 1-adamantanethiolate monolayers, ultimately leading to complete molecular exchange. The similar Au-S bond environments measured for both n-alkanethiolate and 1-adamantanethiolate monolayers indicate that displacement is not a result of weakened Au-S bonds. Instead, it was hypothesized that the density differences in the two monolayers provide a substantial enthalpic driver, aided by differences in van der Waals forces, ultimately leading to complete displacement of the 1-adamantenthiol molecules. Additionally, it was discovered that displacement occurs via fast insertion of n-dodecanethiolate at the defects in the original 1-adamantanethiolate monolayer, which nucleates an island growth phase and is followed by slow ordering of the n-dodecanethiolate domains into a denser and more crystalline form. Langmuir-based kinetics, which describe alkanethiolate adsorption on bare Au{111}, fail to model this displacement reaction. Instead, a model of perimeter-dependent island growth yields good agreement with kinetic data over a 100-fold variation in n-dodecanethiol concentration. Rescaling the growth rate at each concentration collapses all the data onto a single universal curve, suggesting that displacement is a scale-free process. Exploiting the knowledge gained by studying 1-adamantethiolate monolayer displacement, a reversible molecular resist was developed, in which displacement is controlled via external stimuli. This methodology for the fabrication of controllably displaceable monolayers relies on carboxyl-functionalized self-assembled monolayers and in-situ Fischer esterification. Using an 11-mercaptoundecanoic acid monolayer as a model system, it was shown that in

  3. Three-Dimensional Imaging and Image Displays: Surgical Application of Advanced Technologies.

    PubMed

    Satava

    1996-09-01

    One of the cornerstones of modern technology that was ushered in by laparoscopic surgery is the use of the video image. The importance of this "virtual representation" of the patient goes well beyond the application to laparoscopic surgery, and lies at the very heart of the revolution of surgery into the Information Age. Real objects, organs and patients can be represented as 2 and 3-dimensional computer generated images and viewed upon displays beyond the simple video monitor which permit a level of clinical practice not possible on the actual patients. These fundamental concepts that form the foundation of the revolution in surgery are placed in a framework for the future of surgery, and illustrate how their implementation can dramatically improve patient care. PMID:10401122

  4. Science on a Sphere: Moon and Mercury Interactive Spherical Display using iclickers

    NASA Astrophysics Data System (ADS)

    Sherman, S. B.; Gillis-Davis, J. J.; Pilger, E.; Au, C.; Platt, N.

    2010-12-01

    Using data from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission to Mercury and data from Clementine, Lunar Orbiter, Lunar Prospector, as well as the Lunar Reconnaissance Orbiter (LRO) mission we are creating multimedia applications for the Magic Planet and Science on a Sphere (hence forth we will use SOS to denote both display types) for Mercury and the Moon, respectively. Presenting the data on this innovative and stimulating medium captures the interest, stimulates curiosity, and inspires scientific learning in children, as well as general audiences. In order to maximize the learning potential of the SOS we are constructing animated, interactive presentations which incorporate audience participation using iclickers. The interactive nature of the presentations accommodates a variety of audiences’ knowledge levels and the presentations can be adapted in real-time accordingly. The focus of the presentations are either geared toward addressing misconceptions, such as why we have seasons and phases of the Moon, or general education, for example, an interactive game where the audience’s iclicker responses control the direction of their own Moon mission while they learn about conditions on the Moon along the way. The iclickers are used as assessment tools as well as a means for the audience to control the direction of the application. As an assessment tool audience members can make predictions and answer questions using the iclicker, such as the time a full moon rises. In this manner we will be able to evaluate learning gains. In addition, the audience can use the iclickers to vote on what they want to do next. Having control over the direction of the application increases the audiences’ involvement. Both uses of the iclickers engage the audience and they become active participants rather than passive observers. An undergraduate from Leeward Community College, and a high school student from Campbell High School, are actively

  5. Flight evaluation of advanced controls and displays for transition and landing on the NASA V/STOL systems research aircraft

    NASA Technical Reports Server (NTRS)

    Franklin, James A.; Stortz, Michael W.; Borchers, Paul F.; Moralez, Ernesto, III

    1996-01-01

    Flight experiments were conducted on Ames Research Center's V/STOL Systems Research Aircraft (VSRA) to assess the influence of advanced control modes and head-up displays (HUD's) on flying qualities for precision approach and landing operations. Evaluations were made for decelerating approaches to hover followed by a vertical landing and for slow landings for four control/display mode combinations: the basic YAV-8B stability augmentation system; attitude command for pitch, roll, and yaw; flightpath/acceleration command with translational rate command in the hover; and height-rate damping with translational-rate command. Head-up displays used in conjunction with these control modes provided flightpath tracking/pursuit guidance and deceleration commands for the decelerating approach and a mixed horizontal and vertical presentation for precision hover and landing. Flying qualities were established and control usage and bandwidth were documented for candidate control modes and displays for the approach and vertical landing. Minimally satisfactory bandwidths were determined for the translational-rate command system. Test pilot and engineer teams from the Naval Air Warfare Center, the Boeing Military Airplane Group, Lockheed Martin, McDonnell Douglas Aerospace, Northrop Grumman, Rolls-Royce, and the British Defense Research Agency participated in the program along with NASA research pilots from the Ames and Lewis Research Centers. The results, in conjunction with related ground-based simulation data, indicate that the flightpath/longitudinal acceleration command response type in conjunction with pursuit tracking and deceleration guidance on the HUD would be essential for operation to instrument minimums significantly lower than the minimums for the AV-8B. It would also be a superior mode for performing slow landings where precise control to an austere landing area such as a narrow road is demanded. The translational-rate command system would reduce pilot workload for

  6. Advanced reactor safety program. Stakeholder interaction and feedback

    SciTech Connect

    Szilard, Ronaldo H.; Smith, Curtis L.

    2014-08-01

    In the Spring of 2013, we began discussions with our industry stakeholders on how to upgrade our safety analysis capabilities. The focus of these improvements would primarily be on advanced safety analysis capabilities that could help the nuclear industry analyze, understand, and better predict complex safety problems. The current environment in the DOE complex is such that recent successes in high performance computer modeling could lead the nuclear industry to benefit from these advances, as long as an effort to translate these advances into realistic applications is made. Upgrading the nuclear industry modeling analysis capabilities is a significant effort that would require substantial participation and coordination from all industry segments: research, engineering, vendors, and operations. We focus here on interactions with industry stakeholders to develop sound advanced safety analysis applications propositions that could have a positive impact on industry long term operation, hence advancing the state of nuclear safety.

  7. Assessment of 3D Viewers for the Display of Interactive Documents in the Learning of Graphic Engineering

    ERIC Educational Resources Information Center

    Barbero, Basilio Ramos; Pedrosa, Carlos Melgosa; Mate, Esteban Garcia

    2012-01-01

    The purpose of this study is to determine which 3D viewers should be used for the display of interactive graphic engineering documents, so that the visualization and manipulation of 3D models provide useful support to students of industrial engineering (mechanical, organizational, electronic engineering, etc). The technical features of 26 3D…

  8. Potential interactions of collision avoidance advisories and cockpit displays of traffic information

    NASA Technical Reports Server (NTRS)

    Palmer, E.; Ellis, S. R.

    1983-01-01

    Future aircraft cockpits may be equipped with both collision avoidance systems and cockpit traffic situation displays. This paper summarizes a series of experiments investigating a pilot's ability to make a variety of traffic related decisions with a traffic display. Some of the key findings were: Pilots were not able to accurately judge the future position of an aircraft unless the display contained predictor symbols. Pilots' subjective judgements of threat were inversely proportional to time to closest approach but generally were not sensitive to small changes of other parameters of the encounter. When pilots were asked to make avoidance maneuvers based solely on the traffic display, they began their maneuvers well before a CAS advisory would have been triggered. Provided sufficient time was available, pilots preferred horizontal avoidance maneuvers.

  9. Interactive computer graphics displays for hierarchical data structures. [Description of THESGRAF, in FORTRAN IV for CDC and IBM computers

    SciTech Connect

    Cahn, D.F.; Murano, C.V.

    1980-05-01

    An interactive computer graphical display program was developed as an aid to user visualization and manipulation of hierarchically structured data systems such as thesauri. In the present configuration, a thesaurus term and its primary and secondary conceptual neighbors are presented to the user in tree graph form on a CRT; the user then designates, via light pen or keyboard, any of the neighbors as the next term of interest and receives a new display centered on this term. By successive specification of broader, narrower, and related terms, the user can course rapidly through the thesaurus space and refine his search file. At any stage, he deals with a term-centered, conceptually meaningful picture of a localized portion of the thesaurus, and is freed from the artificial difficulties of handling the traditional alphabetized thesaurus. Intentional limitation of the associative range of each display frame, and the use of color, case, and interconnecting vectors to encode relationships among terms, enhance interpretability of the display. Facile movement through the term space, provided by interactive computation, allows the display to remain simple, and is an essential element of the system. 3 figures.

  10. Flight evaluations of the effect of advanced control systems and displays on the handling qualities of a general aviation airplane.

    NASA Technical Reports Server (NTRS)

    Loschke, P. C.; Barber, M. R.; Jarvis, C. R.; Enevoldson, E. K.

    1972-01-01

    Flight tests have shown that, by means of improved displays and advanced control systems, it is possible to transform a typical light airplane into a flying machine that borders on being perfect from a handling-qualities standpoint. A flight-director display and an attitude-command control system used in combination transformed a vehicle with poor handling qualities during ILS approaches in turbulent air into a vehicle with extremely good handling qualities. The attitude-command control system also improved the ride qualities of the airplane. A rate-command control system was less beneficial than an attitude-command control system. Although this paper deals primarily with general aviation aircraft, the results presented pertain to other types of aircraft. Short-takeoff-and-landing (STOL) aircraft would be a natural application of the control systems because, as a result of their low speeds, they encounter many of the handling-qualities problems noted on light aircraft. The improved ride qualities should be of interest to all airline operations, and for STOL aircraft in particular, because of their prolonged exposure to low-altitude turbulence.

  11. The Use of Interactive Raster Graphics in the Display and Manipulation of Multidimensional Data

    NASA Technical Reports Server (NTRS)

    Anderson, D. C.

    1981-01-01

    Techniques for the review, display, and manipulation of multidimensional data are developed and described. Multidimensional data is meant in this context to describe scalar data associated with a three dimensional geometry or otherwise too complex to be well represented by traditional graphs. Raster graphics techniques are used to display a shaded image of a three dimensional geometry. The use of color to represent scalar data associated with the geometries in shaded images is explored. Distinct hues are associated with discrete data ranges, thus emulating the traditional representation of data with isarithms, or lines of constant numerical value. Data ranges are alternatively associated with a continuous spectrum of hues to show subtler data trends. The application of raster graphics techniques to the display of bivariate functions is explored.

  12. An interactive NASTRAN preprocessor. [graphic display of undeformed structure using CDC 6000 series computer

    NASA Technical Reports Server (NTRS)

    Smith, W. W.

    1973-01-01

    A Langley Research Center version of NASTRAN Level 15.1.0 designed to provide the analyst with an added tool for debugging massive NASTRAN input data is described. The program checks all NASTRAN input data cards and displays on a CRT the graphic representation of the undeformed structure. In addition, the program permits the display and alteration of input data and allows reexecution without physically resubmitting the job. Core requirements on the CDC 6000 computer are approximately 77,000 octal words of central memory.

  13. Description of a 3D display with motion parallax and direct interaction

    NASA Astrophysics Data System (ADS)

    Tu, J.; Flynn, M. F.

    2014-03-01

    We present a description of a time sequential stereoscopic display which separates the images using a segmented polarization switch and passive eyewear. Additionally, integrated tracking cameras and an SDK on the host PC allow us to implement motion parallax in real time.

  14. Interactive Three-Dimensional Display And Interpretation Of A Complex Physical Model

    NASA Astrophysics Data System (ADS)

    Fisher, David; Gardner, G. H. F.; Nelson, H. R.; Verm, Richard

    1983-04-01

    Seismic data for a three-dimensional (3-D) marine survey were simulated with a scaled physical modeling system and used to illustrate an interpretational procedure based on a vector refresh graphics system. The physical model included stratigraphic and structural features. A 3-D migration of the raw data formed the main data base for interpretation. Interpretation progressed by displaying seismic sections (vertical and horizontal) on a graphics screen in raster format and drawing interpretational lines using a data tablet controlled cursor in a vector format. The accumulated line drawings were displayed as a rotatable, 3-D drawing from which the three-dimensional aspects of the geologic features could be appreciated. Selected drawings and raster displays were produced in real time on an electrostatic plotter; color prints and high resolution sections were output through the host computer as batch jobs. An important element in the procedure was the number of grey levels used for the displays. Using two grey levels (sign-bit sampling) the whole data volume can be scanned rapidly. Using 64 grey levels each image is full of detail, but the cycle time to a new image is long.

  15. Micro-video display with ocular tracking and interactive voice control

    NASA Technical Reports Server (NTRS)

    Miller, James E.

    1993-01-01

    In certain space-restricted environments, many of the benefits resulting from computer technology have been foregone because of the size, weight, inconvenience, and lack of mobility associated with existing computer interface devices. Accordingly, an effort to develop a highly miniaturized and 'wearable' computer display and control interface device, referred to as the Sensory Integrated Data Interface (SIDI), is underway. The system incorporates a micro-video display that provides data display and ocular tracking on a lightweight headset. Software commands are implemented by conjunctive eye movement and voice commands of the operator. In this initial prototyping effort, various 'off-the-shelf' components have been integrated into a desktop computer and with a customized menu-tree software application to demonstrate feasibility and conceptual capabilities. When fully developed as a customized system, the interface device will allow mobile, 'hand-free' operation of portable computer equipment. It will thus allow integration of information technology applications into those restrictive environments, both military and industrial, that have not yet taken advantage of the computer revolution. This effort is Phase 1 of Small Business Innovative Research (SBIR) Topic number N90-331 sponsored by the Naval Undersea Warfare Center Division, Newport. The prime contractor is Foster-Miller, Inc. of Waltham, MA.

  16. Advanced displays for the F/A-18E/F Hornet: application of AMLCD and touch sensing technology in an existing tactical fighter/attack crewstation

    NASA Astrophysics Data System (ADS)

    Hardy, Gregory J.; Wilkins, Donald F.; Wright, R. Nick

    1994-06-01

    This paper examines the role that advanced display technology has in the upgrade of the F/A- 18 Hornet to the E/F configuration. Application of Active-Matrix Liquid Crystal Display (AMLCD) technology improves display performance and reliability and enables increased display processing capability. The paper provides a system-level description of two of the new F/A-18E/F displays, the Multipurpose Color Display and the Touch-Sensitive Up-Front Control Display. A brief comparison of performance and capability to the CRT-based display technology that is being displaced is made in conjunction with a discussion of the key performance characteristics of the new display hardware and graphics generation circuitry. An overview of the challenges of incorporating AMLCD technology into an existing tactical fighter crewstation, including optical and thermal performance is provided, followed by a review of the testing that has been performed to validate AMLCD and Touch Sensing technology use in the F/A-18.

  17. The World at Your Feet: Immersive Interactive Displays Might Have a Bright Future in Education

    ERIC Educational Resources Information Center

    Simkins, Michael

    2006-01-01

    A reactor is an example of an immersive interactive play in which animated images are projected onto the floor. A reactor allows people to walk on images and interact with them using their feet. With reactors, people can stomp on kernels of popcorn, shoot a pool using their big toes, or wade through a shallow surf on pristine beaches. This…

  18. Head-mounted display for interactive inspection of painted free-form surfaces

    NASA Astrophysics Data System (ADS)

    Kammel, Soeren; Puente Leon, Fernando

    2003-09-01

    Defects of painted surfaces have proven to be visually disturbing even when their depth is only a few microns. Most inspection approaches neither enable a reliable classification of small defects nor provide a suitable human-machine interface to identify areas to be refinished. Consequently, in most cases the inspection still takes place manually and visually - an unsatisfactory compromise that lacks both objectivity and reproducibility. Our approach combines the reliability of automated methods with the acceptance and flexibility of human-based techniques. The measurement principle is based on deflectometry, and features a significantly higher sensitivity than triangulation methods. The developed system consists of a light source based on a digital micromirror device (DMD), a screen where defined patterns are projected on, as well as a mobile inspection device equipped with a head-mounted display (HMD) and a video camera. During operation, the camera captures images of different patterns reflected in the surface. By combining several images using one of the two techniques described to enhance surface defects, the resulting feature image is displayed in the HMD. This procedure takes place in real time and is repeated continuously. The system performance is demonstrated with the visual inspection of car doors. Promising results show that our prototype allows a reliable yet cost-efficient inspection of painted surfaces matching the needs of automotive industry.

  19. PSIDD (2): A Prototype Post-Scan Interactive Data Display System for Detailed Analysis of Ultrasonic Scans

    NASA Technical Reports Server (NTRS)

    Cao, Wei; Roth, Don J.

    1997-01-01

    This article presents the description of PSIDD(2), a post-scan interactive data display system for ultrasonic contact scan and single measurement analysis. PSIDD(2) was developed in conjunction with ASTM standards for ultrasonic velocity and attenuation coefficient contact measurements. This system has been upgraded from its original version PSIDD(1) and improvements are described in this article. PSIDD(2) implements a comparison mode where the display of time domain waveforms and ultrasonic properties versus frequency can be shown for up to five scan points on one plot. This allows the rapid contrasting of sample areas exhibiting different ultrasonic properties as initially indicated by the ultrasonic contact scan image. This improvement plus additional features to be described in the article greatly facilitate material microstructural appraisal.

  20. An interactive graphics program to retrieve, display, compare, manipulate, curve fit, difference and cross plot wind tunnel data

    NASA Technical Reports Server (NTRS)

    Elliott, R. D.; Werner, N. M.; Baker, W. M.

    1975-01-01

    The Aerodynamic Data Analysis and Integration System (ADAIS), developed as a highly interactive computer graphics program capable of manipulating large quantities of data such that addressable elements of a data base can be called up for graphic display, compared, curve fit, stored, retrieved, differenced, etc., was described. The general nature of the system is evidenced by the fact that limited usage has already occurred with data bases consisting of thermodynamic, basic loads, and flight dynamics data. Productivity using ADAIS of five times that for conventional manual methods of wind tunnel data analysis is routinely achieved. In wind tunnel data analysis, data from one or more runs of a particular test may be called up and displayed along with data from one or more runs of a different test. Curves may be faired through the data points by any of four methods, including cubic spline and least squares polynomial fit up to seventh order.

  1. Display technology - Human factors concepts

    NASA Astrophysics Data System (ADS)

    Stokes, Alan; Wickens, Christopher; Kite, Kirsten

    1990-03-01

    Recent advances in the design of aircraft cockpit displays are reviewed, with an emphasis on their applicability to automobiles. The fundamental principles of display technology are introduced, and individual chapters are devoted to selective visual attention, command and status displays, foveal and peripheral displays, navigational displays, auditory displays, color and pictorial displays, head-up displays, automated systems, and dual-task performance and pilot workload. Diagrams, drawings, and photographs of typical displays are provided.

  2. Polymer coatings that display specific biological signals while preventing nonspecific interactions.

    PubMed

    Ameringer, Thomas; Fransen, Peter; Bean, Penny; Johnson, Graham; Pereira, Suzanne; Evans, Richard A; Thissen, Helmut; Meagher, Laurence

    2012-02-01

    Control over cell-material surface interactions is the key to many new and improved biomedical devices. It can only be achieved if interactions that are mediated by nonspecifically adsorbed serum proteins are minimized and if cells instead respond to specific ligand molecules presented on the surface. Here, we present a simple yet effective surface modification method that allows for the covalent coupling and presentation of specific biological signals on coatings which have significantly reduced nonspecific biointerfacial interactions. To achieve this we synthesized bottle brush type copolymers consisting of poly(ethylene glycol) methyl ether methacrylate and (meth)acrylates providing activated NHS ester groups as well as different spacer lengths between the NHS groups and the polymer backbone. Copolymers containing different molar ratios of these monomers were grafted to amine functionalized polystyrene cell culture substrates, followed by the covalent immobilization of the cyclic peptides cRGDfK and cRADfK using residual NHS groups. Polymers were characterized by GPC and NMR and surface modification steps were analyzed using XPS. The cellular response was evaluated using HeLa cell attachment experiments. The results showed strong correlations between the effectiveness of the control over biointerfacial interactions and the polymer architecture. They also demonstrate that optimized fully synthetic copolymer coatings, which can be applied to a wide range of substrate materials, provide excellent control over biointerfacial interactions. PMID:22076848

  3. Advanced Accelerating Structures and Their Interaction with Electron Beams

    SciTech Connect

    Gai Wei

    2009-01-22

    In this paper, we give a brief description of several advanced accelerating structures, such as dielectric loaded waveguides, photonic band gap, metamaterials and improved iris-loaded cavities. We describe wakefields generated by passing high current electron beams through these structures, and applications of wakefields to advanced accelerator schemes. One of the keys to success for high gradient wakefield acceleration is to develop high current drive beam sources. As an example, the high current RF photo injector at the Argonne Wakefield Accelerator, passed a {approx}80 nC electron beam through a high gradient dielectric loaded structure to achieve a 100 MV/m gradient. We will summarize recent related experiments on beam-structure interactions and also discuss high current electron beam generation and propagation and their applications to wakefield acceleration.

  4. Advanced accelerating structures and their interaction with electron beams.

    SciTech Connect

    Gai, W.; High Energy Physics

    2008-01-01

    In this paper, we give a brief description of several advanced accelerating structures, such as dielectric loaded waveguides, photonic band gap, metamaterials and improved iris-loaded cavities. We describe wakefields generated by passing high current electron beams through these structures, and applications of wakefields to advanced accelerator schemes. One of the keys to success for high gradient wakefield acceleration is to develop high current drive beam sources. As an example, the high current RF photo injector at the Argonne Wakefield Accelerator, passed a {approx}80 nC electron beam through a high gradient dielectric loaded structure to achieve a 100 MV/m gradient. We will summarize recent related experiments on beam-structure interactions and also discuss high current electron beam generation and propagation and their applications to wakefield acceleration.

  5. Analysis of Peer Interaction in Learning Activities with Personal Handhelds and Shared Displays

    ERIC Educational Resources Information Center

    Liu, Chen-Chung; Chung, Chen-Wei; Chen, Nian-Shing; Liu, Baw-Jhiune

    2009-01-01

    Collaborative learning is extensively applied in classroom activities, but the screens on handheld devices are designed for individual-user mobile applications and may constrain interaction among group learners. The small screen size may lead to fragmented and tete-a-tete communication patterns and frequently obstruct the externalization of the…

  6. Development and Evaluation of an Interactive Mobile Learning Environment with Shared Display Groupware

    ERIC Educational Resources Information Center

    Yang, Jie Chi; Lin, Yi Lung

    2010-01-01

    When using mobile devices in support of learning activities, students gain mobility, but problems arise when group members share information. The small size of the mobile device screen becomes problematic when it is being used by two or more students to share and exchange information. This problem affects interactions among group members. To…

  7. Parent-Child Conversations about Evolution in the Context of an Interactive Museum Display

    ERIC Educational Resources Information Center

    Shtulman, Andrew; Checa, Isabel

    2012-01-01

    The theory of evolution by natural selection has revolutionized the biological sciences yet remains confusing and controversial to the public at large. This study explored how a particular segment of the public--visitors to a natural history museum--reason about evolution in the context of an interactive cladogram, or evolutionary tree. The…

  8. Recognizing User Identity by Touch on Tabletop Displays: An Interactive Authentication Method

    ERIC Educational Resources Information Center

    Torres Peralta, Raquel

    2012-01-01

    Multi-touch tablets allow users to interact with computers through intuitive, natural gestures and direct manipulation of digital objects. One advantage of these devices is that they can offer a large, collaborative space where several users can work on a task at the same time. However the lack of privacy in these situations makes standard…

  9. Phospholipase A2-interacting weak neurotoxins from venom of monocled cobra Naja kaouthia display cell-specific cytotoxicity.

    PubMed

    Mukherjee, Ashis K

    2008-06-15

    The molecular weights of two phospholipase A(2) (PLA(2))-interacting polypeptides (kaouthiotoxins (KTXs)-KTX-A and KTX-B) purified from the venom of monocled cobra Naja kaouthia, were estimated by mass spectrometry as 7722 and 7627Da, respectively. Binary sequence alignment showed that both KTXs share substantial sequence homology with weak neurotoxins from cobra venom and they were devoid of any enzymatic activity. Their pI was determined at pH 8.1 showing basic nature of these proteins. KTXs displayed cell-specific cytotoxicity on mammalian and insect cells. PMID:18456298

  10. On the development of an interactive resource information management system for analysis and display of spatiotemporal data

    NASA Technical Reports Server (NTRS)

    Schell, J. A.

    1974-01-01

    The recent availability of timely synoptic earth imagery from the Earth Resources Technology Satellites (ERTS) provides a wealth of information for the monitoring and management of vital natural resources. Formal language definitions and syntax interpretation algorithms were adapted to provide a flexible, computer information system for the maintenance of resource interpretation of imagery. These techniques are incorporated, together with image analysis functions, into an Interactive Resource Information Management and Analysis System, IRIMAS, which is implemented on a Texas Instruments 980A minicomputer system augmented with a dynamic color display for image presentation. A demonstration of system usage and recommendations for further system development are also included.

  11. Engineering Bacterial Surface Displayed Human Norovirus Capsid Proteins: A Novel System to Explore Interaction Between Norovirus and Ligands

    PubMed Central

    Niu, Mengya; Yu, Qianqian; Tian, Peng; Gao, Zhiyong; Wang, Dapeng; Shi, Xianming

    2015-01-01

    Human noroviruses (HuNoVs) are major contributors to acute nonbacterial gastroenteritis outbreaks. Many aspects of HuNoVs are poorly understood due to both the current inability to culture HuNoVs, and the lack of efficient small animal models. Surrogates for HuNoVs, such as recombinant viral like particles (VLPs) expressed in eukaryotic system or P particles expressed in prokaryotic system, have been used for studies in immunology and interaction between the virus and its receptors. However, it is difficult to use VLPs or P particles to collect or isolate potential ligands binding to these recombinant capsid proteins. In this study, a new strategy was used to collect HuNoVs binding ligands through the use of ice nucleation protein (INP) to display recombinant capsid proteins of HuNoVs on bacterial surfaces. The viral protein-ligand complex could be easily separated by a low speed centrifugation step. This system was also used to explore interaction between recombinant capsid proteins of HuNoVs and their receptors. In this system, the VP1 capsid encoding gene (ORF2) and the protruding domain (P domain) encoding gene (3′ terminal fragment of ORF2) of HuNoVs GI.1 and GII.4 were fused with 5′ terminal fragment of INP encoding gene (inaQn). The results demonstrated that the recombinant VP1 and P domains of HuNoVs were expressed and anchored on the surface of Escherichia coli BL21 cells after the bacteria were transformed with the corresponding plasmids. Both cell surface displayed VP1 and P domains could be recognized by HuNoVs specific antibodies and interact with the viral histo-blood group antigens receptors. In both cases, displayed P domains had better binding abilities than VP1. This new strategy of using displayed HuNoVs capsid proteins on the bacterial surface could be utilized to separate HuNoVs binding components from complex samples, to investigate interaction between the virus and its receptors, as well as to develop an oral vaccine for HuNoVs. PMID

  12. Manual stage acquisition and interactive display of digital slides in histopathology.

    PubMed

    Gherardi, Alessandro; Bevilacqua, Alessandro

    2014-07-01

    More powerful PC architectures, high-resolution cameras working at increasing frame rates, and more and more accurate motorized microscopes have boosted new applications in the field of biomedicine and medical imaging. In histopathology, the use of digital slides (DSs) imaging through dedicated hardware for digital pathology is increasing for several reasons: digital annotation of suspicious lesions, recorded clinical history, and telepathology as a collaborative environment. In this paper, we propose the first method known in the literature for real-time whole slide acquisition and displaying conceived for conventional nonautomated microscopes. Differently from DS scanner, our software enables biologists and histopathologists to build and view the DS in real time while inspecting the sample, as they are accustomed to. In addition, since our approach is compliant with existing common microscope positions, provided with camera and PC, this could contribute to disseminate the whole slide technology in the majority of small labs not endowed with DS hardware facilities. Experiments performed with different histologic specimens (referring to tumor tissues of different body parts as well as to tumor cells), acquired under different setup conditions and devices, prove the effectiveness of our approach both in terms of quality and speed performances. PMID:25014942

  13. Large-scale interaction profiling of PDZ domains through proteomic peptide-phage display using human and viral phage peptidomes.

    PubMed

    Ivarsson, Ylva; Arnold, Roland; McLaughlin, Megan; Nim, Satra; Joshi, Rakesh; Ray, Debashish; Liu, Bernard; Teyra, Joan; Pawson, Tony; Moffat, Jason; Li, Shawn Shun-Cheng; Sidhu, Sachdev S; Kim, Philip M

    2014-02-18

    The human proteome contains a plethora of short linear motifs (SLiMs) that serve as binding interfaces for modular protein domains. Such interactions are crucial for signaling and other cellular processes, but are difficult to detect because of their low to moderate affinities. Here we developed a dedicated approach, proteomic peptide-phage display (ProP-PD), to identify domain-SLiM interactions. Specifically, we generated phage libraries containing all human and viral C-terminal peptides using custom oligonucleotide microarrays. With these libraries we screened the nine PSD-95/Dlg/ZO-1 (PDZ) domains of human Densin-180, Erbin, Scribble, and Disks large homolog 1 for peptide ligands. We identified several known and putative interactions potentially relevant to cellular signaling pathways and confirmed interactions between full-length Scribble and the target proteins β-PIX, plakophilin-4, and guanylate cyclase soluble subunit α-2 using colocalization and coimmunoprecipitation experiments. The affinities of recombinant Scribble PDZ domains and the synthetic peptides representing the C termini of these proteins were in the 1- to 40-μM range. Furthermore, we identified several well-established host-virus protein-protein interactions, and confirmed that PDZ domains of Scribble interact with the C terminus of Tax-1 of human T-cell leukemia virus with micromolar affinity. Previously unknown putative viral protein ligands for the PDZ domains of Scribble and Erbin were also identified. Thus, we demonstrate that our ProP-PD libraries are useful tools for probing PDZ domain interactions. The method can be extended to interrogate all potential eukaryotic, bacterial, and viral SLiMs and we suggest it will be a highly valuable approach for studying cellular and pathogen-host protein-protein interactions. PMID:24550280

  14. Recent advances in ecosystem-atmosphere interactions: an ecological perspective.

    PubMed Central

    Moorcroft, P R

    2003-01-01

    The atmosphere and terrestrial ecosystems are fundamentally coupled on a variety of time-scales. On short time-scales, this bi-directional interaction is dominated by the rapid exchange of CO(2), water and energy between the atmosphere and the land surface; on long time-scales, the interaction involves changes in ecosystem structure and composition in response to changes in climate that feed back through biophysical and biogeochemical mechanisms to influence climate over decades and centuries. After briefly describing some early pioneering work, I focus this review on recent advances in understanding long-term ecosystem-atmosphere interactions through a discussion of three case studies. I then examine how efforts to assess the stability and resilience of ecosystem-atmosphere interactions over these long time-scales using Dynamic Global Vegetation Models are hampered by the presence of important functional diversity and heterogeneity within plant communities. Recent work illustrates how this issue can be addressed through the use of Structured Ecosystem Models that more accurately scale between the short-term physiological responses of individual plants and the long-term, large-scale dynamics of heterogeneous, functionally diverse ecosystems. PMID:12816634

  15. Extracting meaning from complex data: Processing, display, interaction; Proceedings of the Meeting, Santa Clara, CA, Feb. 14-16, 1990

    SciTech Connect

    Farrell, E.J.

    1990-01-01

    The present conference on extracting meaning from complex data emphasizes processing, display, and interaction, and encompasses volume visualization, software systems for data interpretation, interfaces for volumetric interpretation, sound and images for data presentation, multiple variable techniques, applications, and data structures. Specific issues addressed include a level surface cutting-plane program for fluid-flow data, 3D data visualization using DSP meshes, data analysis and visualization tools, a 3D interactive physically based microworld, the auditory presentation of experimental data, and tools for the interpretation of multispectral data. Also addressed are the visualization of processes near a black hole, sphere quadtrees, an integrated image database system on a local area network, and scientific visualization at the Center for the Analysis and Prediction of Storms.

  16. Studies of the Interactions Between Vestibular Function and Tactual Orientation Display Systems

    NASA Technical Reports Server (NTRS)

    Cholewiak, Roger W.; Reschke, Millard F.

    1997-01-01

    When humans experience conditions in which internal vestibular cues to movement or spatial location are challenged or contradicted by external visual information, the result can be spatial disorientation, often leading to motion sickness. Spatial disorientation can occur in any situation in which the individual is passively moved in the environment, but is most common in automotive, aircraft, or undersea travel. Significantly, the incidence of motion sickness in space travel is great: The majority of individuals in Shuttle operations suffer from the syndrome. Even after the space-sickness-producing influences of spatial disorientation dissipate, usually within several days, there are other situations in which, because of the absence of reliable or familiar vestibular cues, individuals in space still experience disorientation, resulting in a reliance on the already preoccupied sense of vision. One possible technique to minimize the deleterious effects of spatial disorientation might be to present attitude information (including orientation, direction, and motion) through another less-used sensory modality - the sense of touch. Data from experiences with deaf and blind persons indicate that this channel can provide useful communication and mobility information on a real-time basis. More recently, technologies have developed to present effective attitude information to pilots in situations in which dangerously ambiguous and conflicting visual and vestibular sensations occur. This summers project at NASA-Johnson Space Center will evaluate the influence of motion-based spatial disorientation on the perception of tactual stimuli representing veridical position and orientation information, presented by new dynamic vibrotactile array display technologies. In addition, the possibility will be explored that tactile presentations of motion and direction from this alternative modality might be useful in mitigating or alleviating spatial disorientation produced by multi

  17. Glycoarrays with engineered phages displaying structurally diverse oligosaccharides enable high-throughput detection of glycan-protein interactions

    PubMed Central

    Çelik, Eda; Ollis, Anne A.; Lasanajak, Yi; Fisher, Adam C.; Gür, Göksu; Smith, David F.; DeLisa, Matthew P.

    2014-01-01

    Glycan microarrays have become a powerful platform to investigate the interactions of carbohydrates with a variety of biomolecules. However, the number and diversity of glycans available for use in such arrays represents a key bottleneck in glycan array fabrication. To address this challenge, we describe a novel glycan array platform based on surface patterning of engineered glycophages that display unique carbohydrate epitopes. Specifically, we show that glycophages are compatible with surface immobilization procedures and that phage-displayed oligosaccharides retain the ability to be recognized by different glycan-binding proteins (e.g., antibodies, lectins) after immobilization. A key advantage of glycophage arrays is that large quantities of glycophages can be produced biosynthetically from recombinant bacteria and isolated directly from bacterial supernatants without laborious purification steps. Taken together, the glycophage array technology described here should help to expand the diversity of glycan libraries and provide a complement to the existing toolkit for high-throughput analysis of glycan-protein interactions. PMID:25263089

  18. Three input concepts for flight crew interaction with information presented on a large-screen electronic cockpit display

    NASA Technical Reports Server (NTRS)

    Jones, Denise R.

    1990-01-01

    A piloted simulation study was conducted comparing three different input methods for interfacing to a large-screen, multiwindow, whole-flight-deck display for management of transport aircraft systems. The thumball concept utilized a miniature trackball embedded in a conventional side-arm controller. The touch screen concept provided data entry through a capacitive touch screen. The voice concept utilized a speech recognition system with input through a head-worn microphone. No single input concept emerged as the most desirable method of interacting with the display. Subjective results, however, indicate that the voice concept was the most preferred method of data entry and had the most potential for future applications. The objective results indicate that, overall, the touch screen concept was the most effective input method. There was also significant differences between the time required to perform specific tasks and the input concept employed, with each concept providing better performance relative to a specific task. These results suggest that a system combining all three input concepts might provide the most effective method of interaction.

  19. An interactive program to display user-generated or file-based maps on a personal computer monitor

    USGS Publications Warehouse

    Langer, W.H.; Stephens, R.W.

    1987-01-01

    PC MAP-MAKER is an ADVANCED BASIC program written to provide users of IBM XT, IBM AT, and compatible computers with a straight-forward, flexible method to display geographical data on a color or monochrome PC (personal computer) monitor. Data can be political boundaries such as State and county boundaries; natural curvilinear features such as rivers, drainage areas, and geological contacts; and points such as well locations and mineral localities. Essentially any point defined by a latitude and longitude and any line defined by a series of latitude and longitude values can be displayed using the program. PC MAP MAKER allows users to view tabular data from U.S. Geological Survey files such as WATSTORE (National Water Data Storage and Retrieval System) in a map format in a time much shorter than required by sending the data to a line plotter. The screen image can be saved to disk for recall at a later date, and hard copies can be printed with a dot matrix printer. The program is user-friendly, using menus or prompts to guide user input. It is fully documented and structured to allow the user to tailor the program to the user 's specific needs. The documentation includes a tutorial designed to introduce users to the capabilities of the program using the State of Colorado as a demonstration map area. (Author 's abstract)

  20. Desmethyl bosentan displays a similar in vitro interaction profile as bosentan.

    PubMed

    Weiss, Johanna; Baumann, Sybille; Theile, Dirk; Haefeli, Walter Emil

    2015-02-01

    The endothelin-1 receptor antagonists bosentan and ambrisentan used for the treatment of pulmonary arterial hypertension remarkably differ in their potential to act as perpetrators in pharmacokinetic drug-drug interactions. So far, it is not clear whether the metabolites of bosentan and ambrisentan contribute to the extent of drug interactions. We therefore investigated the effects of 4-hydroxymethyl ambrisentan, hydroxy bosentan, desmethyl bosentan, and hydroxy desmethyl bosentan on targets which are inhibited or induced by the parent compounds. The hydroxylated metabolites of ambrisentan and bosentan neither induced any of the genes investigated at the mRNA level, nor inhibited P-glycoprotein (P-gp) measured by calcein assay in L-MDR1 cells, and only weakly inhibited organic anion transporting polypeptide (OATP) 1B1 and OATP1B3 measured by 8-fluorescein-cAMP uptake in HEK-OATP1B1 and HEK-OATP1B3 cells. In contrast, desmethyl bosentan induced mRNA expression of cytochrome P450 3A4 (CYP3A4, about 6-fold at 50 μM), ABCB1 (P-gp, about 4.5-fold at 50 μM), and ABCG2 (breast cancer resistance protein, about 2-fold at 50 μM), whereas CYP2C19, ABCB11, and ABCC2 (multidrug resistance-associated protein 2) were not induced in LS180 cells. In a reporter gene assay, desmethyl bosentan activated pregnane X receptor with the highest potency of all metabolites tested. Whereas desmethyl bosentan did not inhibit P-gp, it inhibited OATP1B1 with an IC50 of 3.8 μM (1.9-7.6) (geometric mean, 95% CI) and OATP1B3 with an IC50 of 7.4 μM (2.6-21.52). In conclusion, our data demonstrate that desmethyl bosentan exhibits a similar pharmacokinetic interaction profile as bosentan and might contribute to the inducing effects of the parent compound. PMID:25535031

  1. Investigations and advanced concepts on gyrotron interaction modeling and simulations

    SciTech Connect

    Avramidis, K. A.

    2015-12-15

    In gyrotron theory, the interaction between the electron beam and the high frequency electromagnetic field is commonly modeled using the slow variables approach. The slow variables are quantities that vary slowly in time in comparison to the electron cyclotron frequency. They represent the electron momentum and the high frequency field of the resonant TE modes in the gyrotron cavity. For their definition, some reference frequencies need to be introduced. These include the so-called averaging frequency, used to define the slow variable corresponding to the electron momentum, and the carrier frequencies, used to define the slow variables corresponding to the field envelopes of the modes. From the mathematical point of view, the choice of the reference frequencies is, to some extent, arbitrary. However, from the numerical point of view, there are arguments that point toward specific choices, in the sense that these choices are advantageous in terms of simulation speed and accuracy. In this paper, the typical monochromatic gyrotron operation is considered, and the numerical integration of the interaction equations is performed by the trajectory approach, since it is the fastest, and therefore it is the one that is most commonly used. The influence of the choice of the reference frequencies on the interaction simulations is studied using theoretical arguments, as well as numerical simulations. From these investigations, appropriate choices for the values of the reference frequencies are identified. In addition, novel, advanced concepts for the definitions of these frequencies are addressed, and their benefits are demonstrated numerically.

  2. Investigations and advanced concepts on gyrotron interaction modeling and simulations

    NASA Astrophysics Data System (ADS)

    Avramidis, K. A.

    2015-12-01

    In gyrotron theory, the interaction between the electron beam and the high frequency electromagnetic field is commonly modeled using the slow variables approach. The slow variables are quantities that vary slowly in time in comparison to the electron cyclotron frequency. They represent the electron momentum and the high frequency field of the resonant TE modes in the gyrotron cavity. For their definition, some reference frequencies need to be introduced. These include the so-called averaging frequency, used to define the slow variable corresponding to the electron momentum, and the carrier frequencies, used to define the slow variables corresponding to the field envelopes of the modes. From the mathematical point of view, the choice of the reference frequencies is, to some extent, arbitrary. However, from the numerical point of view, there are arguments that point toward specific choices, in the sense that these choices are advantageous in terms of simulation speed and accuracy. In this paper, the typical monochromatic gyrotron operation is considered, and the numerical integration of the interaction equations is performed by the trajectory approach, since it is the fastest, and therefore it is the one that is most commonly used. The influence of the choice of the reference frequencies on the interaction simulations is studied using theoretical arguments, as well as numerical simulations. From these investigations, appropriate choices for the values of the reference frequencies are identified. In addition, novel, advanced concepts for the definitions of these frequencies are addressed, and their benefits are demonstrated numerically.

  3. An interactive program for computer-aided map design, display, and query: EMAPKGS2

    USGS Publications Warehouse

    Pouch, G.W.

    1997-01-01

    EMAPKGS2 is a user-friendly, PC-based electronic mapping tool for use in hydrogeologic exploration and appraisal. EMAPKGS2 allows the analyst to construct maps interactively from data stored in a relational database, perform point-oriented spatial queries such as locating all wells within a specified radius, perform geographic overlays, and export the data to other programs for further analysis. EMAPKGS2 runs under Microsoft?? Windows??? 3.1 and compatible operating systems. EMAPKGS2 is a public domain program available from the Kansas Geological Survey. EMAPKGS2 is the centerpiece of WHEAT, the Windows-based Hydrogeologic Exploration and Appraisal Toolkit, a suite of user-friendly Microsoft?? Windows??? programs for natural resource exploration and management. The principal goals in development of WHEAT have been ease of use, hardware independence, low cost, and end-user extensibility. WHEAT'S native data format is a Microsoft?? Access?? database. WHEAT stores a feature's geographic coordinates as attributes so they can be accessed easily by the user. The WHEAT programs are designed to be used in conjunction with other Microsoft?? Windows??? software to allow the natural resource scientist to perform work easily and effectively. WHEAT and EMAPKGS have been used at several of Kansas' Groundwater Management Districts and the Kansas Geological Survey on groundwater management operations, groundwater modeling projects, and geologic exploration projects. ?? 1997 Elsevier Science Ltd.

  4. Extracellular matrix interacts with interferon {alpha} protein: Retention and display of cytotoxicity

    SciTech Connect

    Yoshida, Kimiko; Kondoh, Atsushi; Narumi, Kenta; Yoshida, Teruhiko; Aoki, Kazunori

    2008-11-14

    We have been investigating the efficacy of an intratumoral interferon (IFN)-{alpha} gene transfer against solid cancers, and found that when the gene is transduced into the subcutaneous tumors, IFN-{alpha} concentration is markedly increased in the injected tumor but not in the serum. To explain this effective confinement of IFN-{alpha} to target tissues, we hypothesized that the extracellular matrix in the tumors interacts with IFN-{alpha}. In this study, a solid-phase-binding assay and immunoprecipitation demonstrated that the IFN-{alpha} binds directly to matrix proteins. Immunohistochemical staining showed a co-localization of IFN-{alpha} with pericellular fibronectin. In addition, matrix-bound IFN-{alpha} protein transduced intracellular signaling and potentiated its cytotoxic activity, suggesting that the retention of IFN-{alpha} protein on extracellular matrix is likely to play a role in its in vivo biological activity. The data suggest a therapeutic advantage of the intratumoral IFN-{alpha} gene transfer over the conventional parenteral therapy both in the safety and efficacy.

  5. Epistemic asymmetries in psychotherapy interaction: therapists' practices for displaying access to clients' inner experiences.

    PubMed

    Weiste, Elina; Voutilainen, Liisa; Peräkylä, Anssi

    2016-05-01

    The relationship between a psychotherapist and a client involves a specific kind of epistemic asymmetry: in therapy sessions the talk mainly concerns the client's experience, which is unavailable, as such, to the therapist. This epistemic asymmetry is understood in different ways within different psychotherapeutic traditions. Drawing on a corpus of 70 audio-recorded sessions of cognitive psychotherapy and psychoanalysis and using the method of conversation analysis, the interactional practices of therapists for dealing with this epistemic asymmetry are investigated. Two types of epistemic practices were found to be employed by therapists while formulating and interpreting the client's inner experience. In the formulations, the therapists and clients co-described the client's experience, demonstrating that the client's inner experience was somewhat similarly available to both participants. In the interpretations, the therapists constructed an evidential foundation for the interpretation by summarising the client's talk and using the same descriptive terms as the client. Clients held therapists accountable for this epistemic work: if they failed to engage in such work, their right to know the client's inner experience was called into question. PMID:26574238

  6. A tomato strigolactone-impaired mutant displays aberrant shoot morphology and plant interactions.

    PubMed

    Koltai, Hinanit; LekKala, Sivarama P; Bhattacharya, Chaitali; Mayzlish-Gati, Einav; Resnick, Nathalie; Wininger, Smadar; Dor, Evgenya; Yoneyama, Kaori; Yoneyama, Koichi; Hershenhorn, Joseph; Joel, Daniel M; Kapulnik, Yoram

    2010-06-01

    Strigolactones are considered a new group of plant hormones. Their role as modulators of plant growth and signalling molecules for plant interactions first became evident in Arabidopsis, pea, and rice mutants that were flawed in strigolactone production, release, or perception. The first evidence in tomato (Solanum lycopersicon) of strigolactone deficiency is presented here. Sl-ORT1, previously identified as resistant to the parasitic plant Orobanche, had lower levels of arbuscular mycorrhizal fungus (Glomus intraradices) colonization, possibly as a result of its reduced ability to induce mycorrhizal hyphal branching. Biochemical analysis of mutant root extracts suggested that it produces only minute amounts of two of the tomato strigolactones: solanacol and didehydro-orobanchol. Accordingly, the transcription level of a key enzyme (CCD7) putatively involved in strigolactone synthesis in tomato was reduced in Sl-ORT1 compared with the wild type (WT). Sl-ORT1 shoots exhibited increased lateral shoot branching, whereas exogenous application of the synthetic strigolactone GR24 to the mutant restored the WT phenotype by reducing the number of lateral branches. Reduced lateral shoot branching was also evident in grafted plants which included a WT interstock, which was grafted between the mutant rootstock and the scion. In roots of these grafted plants, the CCD7 transcription level was not significantly induced, nor was mycorrhizal sensitivity restored. Hence, WT-interstock grafting, which restores mutant shoot morphology to WT, does not restore mutant root properties to WT. Characterization of the first tomato strigolactone-deficient mutant supports the putative general role of strigolactones as messengers of suppression of lateral shoot branching in a diversity of plant species. PMID:20194924

  7. Advanced interaction media in nuclear power plant control rooms.

    PubMed

    Stephane, Lucas

    2012-01-01

    The shift from analog to digital Instruments (related mainly to information visualization) and Controls in Nuclear Power Plant Main Control Rooms (NPP MCR) is a central current topic of investigation. In NPP MCR, digitalization was implemented gradually, analog and digital systems still coexisting for the two main systems related to safety--Safety Instruments and Control System (SICS) and Process Instruments and Controls System (PICS). My ongoing research focuses on the introduction of Advanced Interaction Media (AIM) such as stereoscopic 3D visualization and multi-touch surfaces in control rooms. This paper proposes a Safety-Centric approach for gathering the Design Rationale needed in the specification of such novel AIM concepts as well as their evaluation through user tests. Beyond methodological research, the final output of the current research is to build an experimental simulator aiming to enhance improvements in Human-Systems Integration (HSI). This paper provides an overview of the topics under consideration. PMID:22317419

  8. Advanced interacting sequential Monte Carlo sampling for inverse scattering

    NASA Astrophysics Data System (ADS)

    Giraud, F.; Minvielle, P.; Del Moral, P.

    2013-09-01

    The following electromagnetism (EM) inverse problem is addressed. It consists in estimating the local radioelectric properties of materials recovering an object from global EM scattering measurements, at various incidences and wave frequencies. This large scale ill-posed inverse problem is explored by an intensive exploitation of an efficient 2D Maxwell solver, distributed on high performance computing machines. Applied to a large training data set, a statistical analysis reduces the problem to a simpler probabilistic metamodel, from which Bayesian inference can be performed. Considering the radioelectric properties as a hidden dynamic stochastic process that evolves according to the frequency, it is shown how advanced Markov chain Monte Carlo methods—called sequential Monte Carlo or interacting particles—can take benefit of the structure and provide local EM property estimates.

  9. An Online Interactive Map Service for Displaying Ground-Water Conditions in Arizona

    USGS Publications Warehouse

    Tillman, Fred D; Leake, Stanley A.; Flynn, Marilyn E.; Cordova, Jeffrey T.; Schonauer, Kurt T.

    2007-01-01

    Monitoring the availability of the nation's ground-water supplies is of critical importance to planners and water managers. The general public also has an interest in understanding the status of ground-water conditions, especially in the semi-arid Southwestern United States where much of the water used by municipalities and agriculture comes from the subsurface. Unlike surface-water indicators such as stage or discharge, ground-water conditions may be more difficult to assess and present. Individual well observations may only represent conditions in a limited area surrounding the well and wells may be screened over single or multiple aquifers, further complicating single-well measurement interpretations. Additionally, changes in ground-water conditions may involve time scales ranging from days to many years, depending on recharge, soil properties and depth to the water table. This lack of an easily identifiable ground-water property indicative of current conditions combined with differing time scales of water-level changes makes the presentation of ground-water conditions a difficult task, particularly on a regional basis. One approach is to spatially present several indicators of ground-water conditions that address different time scales and attributes of the aquifer systems. In this report, we describe a publicly-available online interactive map service that presents several different layers of ground-water-conditions information for the alluvial basins in the Lower Colorado River Basin in Arizona (http://montezuma.wr.usgs.gov/website/azgwconditions/). These data layers include wells experiencing water-level decline, wells experiencing water-level rise, recent trends in ground-water levels, change in water level since predevelopment and change in storage since predevelopment. Recent pumpage totals and projected population numbers are also provided for ground-water basins and counties in the region of the Lower Colorado River in Arizona along with a bibliography

  10. Simulated Interactive Research Experiments as Educational Tools for Advanced Science

    NASA Astrophysics Data System (ADS)

    Tomandl, Mathias; Mieling, Thomas; Losert-Valiente Kroon, Christiane M.; Hopf, Martin; Arndt, Markus

    2015-09-01

    Experimental research has become complex and thus a challenge to science education. Only very few students can typically be trained on advanced scientific equipment. It is therefore important to find new tools that allow all students to acquire laboratory skills individually and independent of where they are located. In a design-based research process we have investigated the feasibility of using a virtual laboratory as a photo-realistic and scientifically valid representation of advanced scientific infrastructure to teach modern experimental science, here, molecular quantum optics. We found a concept based on three educational principles that allows undergraduate students to become acquainted with procedures and concepts of a modern research field. We find a significant increase in student understanding using our Simulated Interactive Research Experiment (SiReX), by evaluating the learning outcomes with semi-structured interviews in a pre/post design. This suggests that this concept of an educational tool can be generalized to disseminate findings in other fields.

  11. Simulated Interactive Research Experiments as Educational Tools for Advanced Science.

    PubMed

    Tomandl, Mathias; Mieling, Thomas; Losert-Valiente Kroon, Christiane M; Hopf, Martin; Arndt, Markus

    2015-01-01

    Experimental research has become complex and thus a challenge to science education. Only very few students can typically be trained on advanced scientific equipment. It is therefore important to find new tools that allow all students to acquire laboratory skills individually and independent of where they are located. In a design-based research process we have investigated the feasibility of using a virtual laboratory as a photo-realistic and scientifically valid representation of advanced scientific infrastructure to teach modern experimental science, here, molecular quantum optics. We found a concept based on three educational principles that allows undergraduate students to become acquainted with procedures and concepts of a modern research field. We find a significant increase in student understanding using our Simulated Interactive Research Experiment (SiReX), by evaluating the learning outcomes with semi-structured interviews in a pre/post design. This suggests that this concept of an educational tool can be generalized to disseminate findings in other fields. PMID:26370627

  12. Simulated Interactive Research Experiments as Educational Tools for Advanced Science

    PubMed Central

    Tomandl, Mathias; Mieling, Thomas; Losert-Valiente Kroon, Christiane M.; Hopf, Martin; Arndt, Markus

    2015-01-01

    Experimental research has become complex and thus a challenge to science education. Only very few students can typically be trained on advanced scientific equipment. It is therefore important to find new tools that allow all students to acquire laboratory skills individually and independent of where they are located. In a design-based research process we have investigated the feasibility of using a virtual laboratory as a photo-realistic and scientifically valid representation of advanced scientific infrastructure to teach modern experimental science, here, molecular quantum optics. We found a concept based on three educational principles that allows undergraduate students to become acquainted with procedures and concepts of a modern research field. We find a significant increase in student understanding using our Simulated Interactive Research Experiment (SiReX), by evaluating the learning outcomes with semi-structured interviews in a pre/post design. This suggests that this concept of an educational tool can be generalized to disseminate findings in other fields. PMID:26370627

  13. Reliability of an interactive computer program for advance care planning.

    PubMed

    Schubart, Jane R; Levi, Benjamin H; Camacho, Fabian; Whitehead, Megan; Farace, Elana; Green, Michael J

    2012-06-01

    Despite widespread efforts to promote advance directives (ADs), completion rates remain low. Making Your Wishes Known: Planning Your Medical Future (MYWK) is an interactive computer program that guides individuals through the process of advance care planning, explaining health conditions and interventions that commonly involve life or death decisions, helps them articulate their values/goals, and translates users' preferences into a detailed AD document. The purpose of this study was to demonstrate that (in the absence of major life changes) the AD generated by MYWK reliably reflects an individual's values/preferences. English speakers ≥30 years old completed MYWK twice, 4 to 6 weeks apart. Reliability indices were assessed for three AD components: General Wishes; Specific Wishes for treatment; and Quality-of-Life values (QoL). Twenty-four participants completed the study. Both the Specific Wishes and QoL scales had high internal consistency in both time periods (Knuder Richardson formula 20 [KR-20]=0.83-0.95, and 0.86-0.89). Test-retest reliability was perfect for General Wishes (κ=1), high for QoL (Pearson's correlation coefficient=0.83), but lower for Specific Wishes (Pearson's correlation coefficient=0.57). MYWK generates an AD where General Wishes and QoL (but not Specific Wishes) statements remain consistent over time. PMID:22512830

  14. Reliability of an Interactive Computer Program for Advance Care Planning

    PubMed Central

    Levi, Benjamin H.; Camacho, Fabian; Whitehead, Megan; Farace, Elana; Green, Michael J

    2012-01-01

    Abstract Despite widespread efforts to promote advance directives (ADs), completion rates remain low. Making Your Wishes Known: Planning Your Medical Future (MYWK) is an interactive computer program that guides individuals through the process of advance care planning, explaining health conditions and interventions that commonly involve life or death decisions, helps them articulate their values/goals, and translates users' preferences into a detailed AD document. The purpose of this study was to demonstrate that (in the absence of major life changes) the AD generated by MYWK reliably reflects an individual's values/preferences. English speakers ≥30 years old completed MYWK twice, 4 to 6 weeks apart. Reliability indices were assessed for three AD components: General Wishes; Specific Wishes for treatment; and Quality-of-Life values (QoL). Twenty-four participants completed the study. Both the Specific Wishes and QoL scales had high internal consistency in both time periods (Knuder Richardson formula 20 [KR-20]=0.83–0.95, and 0.86–0.89). Test-retest reliability was perfect for General Wishes (κ=1), high for QoL (Pearson's correlation coefficient=0.83), but lower for Specific Wishes (Pearson's correlation coefficient=0.57). MYWK generates an AD where General Wishes and QoL (but not Specific Wishes) statements remain consistent over time. PMID:22512830

  15. Out-of-core Interactive Display of Large Meshes Using an Oriented Bounding Box-based Hardware Depth Query

    SciTech Connect

    Ha, H; Gregorski, B; Joy, K I

    2004-06-24

    In this paper we present an occlusion culling method that uses hardware-based depth queries on oriented bounding boxes to cull unseen geometric primitives efficiently. An out-of-core design enables this method to interactively display data sets that are too large to fit into main memory. During a preprocessing phase, a spatial subdivision (such as an octree or BSP tree) of a given data set is constructed where, for each node, an oriented bounding box containing mesh primitives is computed using principal component analysis (PCA). At runtime, the tree indicated by the spatial subdivision is traversed in front-to-back order, and only nodes that are determined to be visible, based on a hardware accelerated depth query, are rendered.

  16. Development of advanced direct perception displays for nuclear power plants to enhance monitoring, control and fault management

    SciTech Connect

    Jones, B.G.; Shaheen, S.; Moray, N.

    1997-08-01

    Traditional Single-Sensor-Single Indicator (SSSI) displays are poorly matched to the cognitive abilities of operators, especially for large and complex systems. It is difficult for operators to monitor very large arrays of displays and controls, and to integrate the information displayed therein. In addition, standard operating procedures (SOPs) are bulky (running to many hundreds of pages) and difficult to use, and operators may become lost. For these reasons, and also because it is becoming increasingly difficult to find replacements for aging hardware components, there is a trend towards computerized graphical interfaces for nuclear power plants (NPPs). There is, however, little rational theory for display design in this domain. This report describes some recent theoretical developments and shows how to develop displays which will greatly reduce the cognitive load on the operator and allow the use of perceptual rather than cognitive mechanisms while using SON and to support state diagnosis and fault management. The report outlines the conceptual framework within which such a new approach could be developed, and provides an example of how the operating procedures for the start-up sequence of a NPP could be realized. A detailed description of a set of displays for a graphical interface for the SON of the feedwater system is provided as an example of how the proposed approach could be realized, and a general account of how it would fit into the overall start-up sequence is given. Examples of {open_quotes}direct perception{close_quotes} or {open_quotes}ecological{close_quotes} configural state space displays to support the use of the proposed direct manipulation SOP interface are provided, and also a critical discussion which identifies some difficulties which may be anticipated should the general approach herein advocated be adopted.

  17. Active Earth Display: Using Real-Time Data, Interactivity, and Storylines to Engage the Public in Polar Awareness

    NASA Astrophysics Data System (ADS)

    Schiffman, C. R.; Carroll, K. P.; Wilson, T. J.

    2008-12-01

    The Polar Earth Observation Network (POLENET) and UNAVCO are collaborating to develop new educational materials for the public focused on polar-based research. Polenet is a consortium that aims to dramatically improve the coverage of many different kinds of geophysical data sets across the polar regions of Earth. The data from Polenet will enable new research into the interaction between the atmosphere, oceans, polar ice-sheets, and the Earth's crust and mantle. It is important that this research is disseminated to the public in an engaging and accurate matter while avoiding oversimplification. The Incorporated Research Institutions for Seismology's (IRIS) Active Earth Display (AED), a touch screen web-based kiosk, was originally designed to highlight real-time seismic data, and therefore provides a useful format for showing real-time data from the poles. The new polar pages for the AED will highlight real-time data from Antarctica and Greenland, and provide a way for the public to learn about POLENET research. The polar AED pages aim to engage users through teaching about the importance of polar-based research using a rich interactive multimedia environment. The pages are organized around four storylines: equipment, ice movement through time, life on the ice, and what ice in Antarctica has to do with you. The pages present complex scientific concepts in a way that is accessible and engaging to the general public by using simplified text, real-time data, videos, interactive games, and a set of coherent storylines. For example, one interactive feature will be an energy game, where users adjust various sources to power a GPS unit through the polar night. Another interactive feature will be a map of Polar Regions with clickable hotspots that will show videos of calving glaciers and collapsing ice sheets from around the world. The AED maintains a constant Internet connection, so the storylines are flexible and can be changed to conform to the location of the kiosk and

  18. Reading on the Computer: A Comparison of Standard and Advanced Computer Display and Hard Copy. CDC Technical Report No. 7.

    ERIC Educational Resources Information Center

    Haas, Christina; Hayes, John R.

    Two experimental studies were conducted to compare two typical reading tasks--critical reading and proofreading--on computer display and on hard copy. Ten college freshmen with less than 10 total hours spent on a computer prior to the experiments were trained on the computer system for approximately three hours in two sessions before beginning the…

  19. Recovery Act: Advanced Interaction, Computation, and Visualization Tools for Sustainable Building Design

    SciTech Connect

    Greenberg, Donald P.; Hencey, Brandon M.

    2013-08-20

    Current building energy simulation technology requires excessive labor, time and expertise to create building energy models, excessive computational time for accurate simulations and difficulties with the interpretation of the results. These deficiencies can be ameliorated using modern graphical user interfaces and algorithms which take advantage of modern computer architectures and display capabilities. To prove this hypothesis, we developed an experimental test bed for building energy simulation. This novel test bed environment offers an easy-to-use interactive graphical interface, provides access to innovative simulation modules that run at accelerated computational speeds, and presents new graphics visualization methods to interpret simulation results. Our system offers the promise of dramatic ease of use in comparison with currently available building energy simulation tools. Its modular structure makes it suitable for early stage building design, as a research platform for the investigation of new simulation methods, and as a tool for teaching concepts of sustainable design. Improvements in the accuracy and execution speed of many of the simulation modules are based on the modification of advanced computer graphics rendering algorithms. Significant performance improvements are demonstrated in several computationally expensive energy simulation modules. The incorporation of these modern graphical techniques should advance the state of the art in the domain of whole building energy analysis and building performance simulation, particularly at the conceptual design stage when decisions have the greatest impact. More importantly, these better simulation tools will enable the transition from prescriptive to performative energy codes, resulting in better, more efficient designs for our future built environment.

  20. Improved eIF4E Binding Peptides by Phage Display Guided Design: Plasticity of Interacting Surfaces Yield Collective Effects

    PubMed Central

    Verma, Chandra S.; Liu, Yun; Lane, David P.; Brown, Christopher J.

    2012-01-01

    Eukaryotic initiation factor (eIF)4E is over-expressed in many types of cancer such as breast, head and neck, and lung. A consequence of increased levels of eIF4E is the preferential translation of pro-tumorigenic proteins (e.g. c-Myc and vascular endothelial growth factor) and as a result is regarded as a potential therapeutic target. In this work a novel phage display peptide has been isolated against eIF4E. From the phage sequence two amino acids were delineated which improved binding when substituted into the eIF4G1 sequence. Neither of these substitutions were involved in direct interactions with eIF4E and acted either via optimization of the helical capping motif or restricting the conformational flexibility of the peptide. In contrast, substitutions of the remaining phage derived amino acids into the eIF4G1 sequence disrupted binding of the peptide to eIF4E. Interestingly when some of these disruptive substitutions were combined with key mutations from the phage peptide, they lead to improved affinities. Atomistic computer simulations revealed that the phage and the eIF4G1 derivative peptide sequences differ subtly in their interaction sites on eIF4E. This raises the issue, especially in the context of planar interaction sites such as those exhibited by eIF4E, that given the intricate plasticity of protein surfaces, the construction of structure-activity relationships should account for the possibility of significant movement in the spatial positioning of the peptide binding interface, including significant librational motions of the peptide. PMID:23094039

  1. Anvil Forecast Tool in the Advanced Weather Interactive Processing System (AWIPS)

    NASA Technical Reports Server (NTRS)

    Barrett, Joe H., III; Hood, Doris

    2009-01-01

    Launch Weather Officers (LWOs) from the 45th Weather Squadron (45 WS) and forecasters from the National Weather Service (NWS) Spaceflight Meteorology Group (SMG) have identified anvil forecasting as one of their most challenging tasks when predicting the probability of violating the Lightning Launch Commit Criteria (LLCC) (Krider et al. 2006; Space Shuttle Flight Rules (FR), NASA/JSC 2004)). As a result, the Applied Meteorology Unit (AMU) developed a tool that creates an anvil threat corridor graphic that can be overlaid on satellite imagery using the Meteorological Interactive Data Display System (MIDDS, Short and Wheeler, 2002). The tool helps forecasters estimate the locations of thunderstorm anvils at one, two, and three hours into the future. It has been used extensively in launch and landing operations by both the 45 WS and SMG. The Advanced Weather Interactive Processing System (AWIPS) is now used along with MIDDS for weather analysis and display at SMG. In Phase I of this task, SMG tasked the AMU to transition the tool from MIDDS to AWIPS (Barrett et aI., 2007). For Phase II, SMG requested the AMU make the Anvil Forecast Tool in AWIPS more configurable by creating the capability to read model gridded data from user-defined model files instead of hard-coded files. An NWS local AWIPS application called AGRID was used to accomplish this. In addition, SMG needed to be able to define the pressure levels for the model data, instead of hard-coding the bottom level as 300 mb and the top level as 150 mb. This paper describes the initial development of the Anvil Forecast Tool for MIDDS, followed by the migration of the tool to AWIPS in Phase I. It then gives a detailed presentation of the Phase II improvements to the AWIPS tool.

  2. XVD Image Display Program

    NASA Technical Reports Server (NTRS)

    Deen, Robert G.; Andres, Paul M.; Mortensen, Helen B.; Parizher, Vadim; McAuley, Myche; Bartholomew, Paul

    2009-01-01

    The XVD [X-Windows VICAR (video image communication and retrieval) Display] computer program offers an interactive display of VICAR and PDS (planetary data systems) images. It is designed to efficiently display multiple-GB images and runs on Solaris, Linux, or Mac OS X systems using X-Windows.

  3. Interactive exploration of the vulnerability of the human infrastructure: an approach using simultaneous display of similar locations

    NASA Astrophysics Data System (ADS)

    Ceré, Raphaël; Kaiser, Christian

    2015-04-01

    Currently, three quarters of the Swiss population is living in urban areas. The total population is still increasing, and urbanized space is increasing event faster. Consequently, the intensity of use has decreased but the exposure of the urban space to natural events has grown along with the cost related to the impact of hazards. In line with this fact, during the 20th century there has been a noticeable increase of natural disasters accompanied by the rapid increase of the world population, leading to higher costs. Additionally to the fact that more people are exposed to natural hazards, the value of goods globally has increased more than proportionally. Consequently, the vulnerability of urban space is, more than ever before, a major issue for socio-economic development. Here, vulnerability is defined as the potential human loss or loss of infrastructure caused by a hazardous event. It encompasses factors of urban infrastructure, population and the environment, which increase the susceptibility of a location to the impact of hazards. This paper describes a novel method for improving the interactive use of exploratory data analysis in the context of minimizing vulnerability and disaster risk by prevention or mitigation. This method is used to assess the similarity between different locations with respect to several characteristics relevant to vulnerability at different scales, allowing for automatic display of multiple locations similar to the one under investigation by an expert. Visualizing vulnerability simultaneously for several locations allows for analyzing and comparing of metric characteristics between multiple places and at different scales. The interactivity aspect is also useful for understanding vulnerability patterns and it facilitates disaster risk management and decisions on global preventive measures in urban spaces. Metrics for vulnerability assessment can be extracted from extensive geospatial datasets such as high-resolution digital elevation

  4. Development of an interactive computer program for advance care planning

    PubMed Central

    Green, Michael J.; Levi, Benjamin H.

    2013-01-01

    Objective To describe the development of an innovative, multimedia decision aid for advance care planning. Background Advance care planning is an important way for people to articulate their wishes for medical care when they are not able to speak for themselves. Living wills and other types of advance directives are the most commonly used tools for advance care planning, but have been criticized for being vague, difficult to interpret, and inconsistent with individuals’ core beliefs and values. Results We developed a multimedia, computer-based decision aid for advance care planning (‘Making Your Wishes Known: Planning Your Medical Future’) to overcome many of the limitations of standard advance directive forms. This computer program guides individuals through the process of advance care planning, and unlike standard advance directives, provides tailored education, values clarification exercises, and a decision-making tool that translates an individual’s values and preferences into a specific medical plan that can be implemented by a health-care team. Pilot testing with 50 adult volunteers recruited from an outpatient primary care clinic showed high levels of satisfaction with the program. Further pilot testing with 34 cancer patients indicated that the program was perceived to be highly accurate at representing patients’ wishes. Conclusions This paper describes the development of an innovative decision aid for advance care planning that was designed to overcome common problems with standard advance directives. Preliminary testing suggests that it is acceptable to users and is accurate. PMID:18823445

  5. Fast interactive elastic registration of 12-bit multi-spectral images with subvoxel accuracy using display hardware

    NASA Astrophysics Data System (ADS)

    Noordmans, Herke Jan; de Roode, Rowland; Verdaasdonk, Rudolf

    2007-03-01

    Multi-spectral images of human tissue taken in-vivo often contain image alignment problems as patients have difficulty in retaining their posture during the acquisition time of 20 seconds. Previously, it has been attempted to correct motion errors with image registration software developed for MR or CT data but these algorithms have been proven to be too slow and erroneous for practical use with multi-spectral images. A new software package has been developed which allows the user to play a decisive role in the registration process as the user can monitor the progress of the registration continuously and force it in the right direction when it starts to fail. The software efficiently exploits videocard hardware to gain speed and to provide a perfect subvoxel correspondence between registration field and display. An 8 bit graphic card was used to efficiently register and resample 12 bit images using the hardware interpolation modes present on the graphic card. To show the feasibility of this new registration process, the software was applied in clinical practice evaluating the dosimetry for psoriasis and KTP laser treatment. The microscopic differences between images of normal skin and skin exposed to UV light proved that an affine registration step including zooming and slanting is critical for a subsequent elastic match to have success. The combination of user interactive registration software with optimal addressing the potentials of PC video card hardware greatly improves the speed of multi spectral image registration.

  6. Current advancements and challenges in soil-root interactions modelling

    NASA Astrophysics Data System (ADS)

    Schnepf, Andrea; Huber, Katrin; Abesha, Betiglu; Meunier, Felicien; Leitner, Daniel; Roose, Tiina; Javaux, Mathieu; Vanderborght, Jan; Vereecken, Harry

    2015-04-01

    Roots change their surrounding soil chemically, physically and biologically. This includes changes in soil moisture and solute concentration, the exudation of organic substances into the rhizosphere, increased growth of soil microorganisms, or changes in soil structure. The fate of water and solutes in the root zone is highly determined by these root-soil interactions. Mathematical models of soil-root systems in combination with non-invasive techniques able to characterize root systems are a promising tool to understand and predict the behaviour of water and solutes in the root zone. With respect to different fields of applications, predictive mathematical models can contribute to the solution of optimal control problems in plant recourse efficiency. This may result in significant gains in productivity, efficiency and environmental sustainability in various land use activities. Major challenges include the coupling of model parameters of the relevant processes with the surrounding environment such as temperature, nutrient concentration or soil water content. A further challenge is the mathematical description of the different spatial and temporal scales involved. This includes in particular the branched structures formed by root systems or the external mycelium of mycorrhizal fungi. Here, reducing complexity as well as bridging between spatial scales is required. Furthermore, the combination of experimental and mathematical techniques may advance the field enormously. Here, the use of root system, soil and rhizosphere models is presented through a number of modelling case studies, including image based modelling of phosphate uptake by a root with hairs, model-based optimization of root architecture for phosphate uptake from soil, upscaling of rhizosphere models, modelling root growth in structured soil, and the effect of root hydraulic architecture on plant water uptake efficiency and drought resistance.

  7. Current Advancements and Challenges in Soil-Root Interactions Modelling

    NASA Astrophysics Data System (ADS)

    Schnepf, A.; Huber, K.; Abesha, B.; Meunier, F.; Leitner, D.; Roose, T.; Javaux, M.; Vanderborght, J.; Vereecken, H.

    2014-12-01

    Roots change their surrounding soil chemically, physically and biologically. This includes changes in soil moisture and solute concentration, the exudation of organic substances into the rhizosphere, increased growth of soil microorganisms, or changes in soil structure. The fate of water and solutes in the root zone is highly determined by these root-soil interactions. Mathematical models of soil-root systems in combination with non-invasive techniques able to characterize root systems are a promising tool to understand and predict the behaviour of water and solutes in the root zone. With respect to different fields of applications, predictive mathematical models can contribute to the solution of optimal control problems in plant recourse efficiency. This may result in significant gains in productivity, efficiency and environmental sustainability in various land use activities. Major challenges include the coupling of model parameters of the relevant processes with the surrounding environment such as temperature, nutrient concentration or soil water content. A further challenge is the mathematical description of the different spatial and temporal scales involved. This includes in particular the branched structures formed by root systems or the external mycelium of mycorrhizal fungi. Here, reducing complexity as well as bridging between spatial scales is required. Furthermore, the combination of experimental and mathematical techniques may advance the field enormously. Here, the use of root system, soil and rhizosphere models is presented through a number of modelling case studies, including image based modelling of phosphate uptake by a root with hairs, model-based optimization of root architecture for phosphate uptake from soil, upscaling of rhizosphere models, modelling root growth in structured soil, and the effect of root hydraulic architecture on plant water uptake efficiency and drought resistance.

  8. Making Advanced Computer Science Topics More Accessible through Interactive Technologies

    ERIC Educational Resources Information Center

    Shao, Kun; Maher, Peter

    2012-01-01

    Purpose: Teaching advanced technical concepts in a computer science program to students of different technical backgrounds presents many challenges. The purpose of this paper is to present a detailed experimental pedagogy in teaching advanced computer science topics, such as computer networking, telecommunications and data structures using…

  9. Display innovations through glass

    NASA Astrophysics Data System (ADS)

    Hamilton, Lori L.

    2016-03-01

    Prevailing trends in thin, lightweight, high-resolution, and added functionality, such as touch sensing, continue to drive innovation in the display market. While display volumes grow, so do consumers’ need for portability, enhanced optical performance, and mechanical reliability. Technical advancements in glass design and process have enabled display innovations in these areas while supporting industry growth. Opportunities for further innovation remain open for glass manufacturers to drive new applications, enhanced functionality, and increased demand.

  10. Interaction Between Object-Based Attention and Pertinence Values Shapes the Attentional Priority Map of a Multielement Display

    PubMed Central

    2016-01-01

    Previous studies have shown that the perceptual organization of the visual scene constrains the deployment of attention. Here we investigated how the organization of multiple elements into larger configurations alters their attentional weight, depending on the “pertinence” or behavioral importance of the elements’ features. We assessed object-based effects on distinct aspects of the attentional priority map: top-down control, reflecting the tendency to encode targets rather than distracters, and the spatial distribution of attention weights across the visual scene, reflecting the tendency to report elements belonging to the same rather than different objects. In 2 experiments participants had to report the letters in briefly presented displays containing 8 letters and digits, in which pairs of characters could be connected with a line. Quantitative estimates of top-down control were obtained using Bundesen’s Theory of Visual Attention (1990). The spatial distribution of attention weights was assessed using the “paired response index” (PRI), indicating responses for within-object pairs of letters. In Experiment 1, grouping along the task-relevant dimension (targets with targets and distracters with distracters) increased top-down control and enhanced the PRI; in contrast, task-irrelevant grouping (targets with distracters) did not affect performance. In Experiment 2, we disentangled the effect of target-target and distracter-distracter grouping: Pairwise grouping of distracters enhanced top-down control whereas pairwise grouping of targets changed the PRI. We conclude that object-based perceptual representations interact with pertinence values (of the elements’ features and location) in the computation of attention weights, thereby creating a widespread pattern of attentional facilitation across the visual scene. PMID:26752732

  11. Interaction between object-based attention and pertinence values shapes the attentional priority map of a multielement display.

    PubMed

    Gillebert, Celine R; Petersen, Anders; Van Meel, Chayenne; Müller, Tanja; McIntyre, Alexandra; Wagemans, Johan; Humphreys, Glyn W

    2016-06-01

    Previous studies have shown that the perceptual organization of the visual scene constrains the deployment of attention. Here we investigated how the organization of multiple elements into larger configurations alters their attentional weight, depending on the "pertinence" or behavioral importance of the elements' features. We assessed object-based effects on distinct aspects of the attentional priority map: top-down control, reflecting the tendency to encode targets rather than distracters, and the spatial distribution of attention weights across the visual scene, reflecting the tendency to report elements belonging to the same rather than different objects. In 2 experiments participants had to report the letters in briefly presented displays containing 8 letters and digits, in which pairs of characters could be connected with a line. Quantitative estimates of top-down control were obtained using Bundesen's Theory of Visual Attention (1990). The spatial distribution of attention weights was assessed using the "paired response index" (PRI), indicating responses for within-object pairs of letters. In Experiment 1, grouping along the task-relevant dimension (targets with targets and distracters with distracters) increased top-down control and enhanced the PRI; in contrast, task-irrelevant grouping (targets with distracters) did not affect performance. In Experiment 2, we disentangled the effect of target-target and distracter-distracter grouping: Pairwise grouping of distracters enhanced top-down control whereas pairwise grouping of targets changed the PRI. We conclude that object-based perceptual representations interact with pertinence values (of the elements' features and location) in the computation of attention weights, thereby creating a widespread pattern of attentional facilitation across the visual scene. (PsycINFO Database Record PMID:26752732

  12. Wheat Blast and Fusarium Head Blight Display Contrasting Interaction Patterns on Ears of Wheat Genotypes Differing in Resistance.

    PubMed

    Ha, Xia; Koopmann, Birger; von Tiedemann, Andreas

    2016-03-01

    The interaction of wheat with two ear pathogens, Magnaporthe wheat blast (MWB) and Fusarium graminearum (Fusarium head blight, FHB), was studied on the phenotypic, histological, and gene expression level. Most of the 27 wheat cultivars inoculated with MWB and F. graminearum displayed inverse disease responses to blast and FHB infection. Two cultivars, Milan and Sumai 3, were selected expressing converse disease phenotypes to blast (Milan, R)/(Sumai 3, S) and FHB (Milan, S)/(Sumai 3, R). Confocal laser scanning microscopy revealed early (12 h postinoculation) colonization of the spikelets by MWB similarly on both cultivars, while F. graminearum infected anthers of the susceptible cultivar earlier. Both pathogens grew much faster in the rachilla of susceptible than resistant cultivars, indicating that resistance is mainly expressed in this part connecting the spikelet with the rachis. In general, O2(-) and H2O2 levels were unrelated to disease expression in the four studied interactions. The differential disease phenotypes, fungal spread in the rachis, and colonization patterns in the spikelets were confirmed by distinct gene expression patterns. Among the eight genes analyzed, seven were more strongly induced by FHB than by blast. Genes for chitinase (Chi2), β-1,3-glucanase (PR2), a plant defensin homolog (PRPI), and peroxidase (Pox2) were strongly upregulated in Milan in response to both pathogens, while PR2 and PR5 (thaumatin-like protein) were transiently triggered by MWB on both cultivars. Upregulation of cinnamoyl-CoA reductase (CCR), cytochrome P450 (CYP709C1), and UDP-glycosyl transferase (UGT) were more prominent in ears infected with F. graminearum, while upregulation of UGT was higher in Sumai 3 when infected with either pathogen. Cultivar resistance to FHB was reflected by clearly higher expression levels of UGT and CYP709C1 in Sumai 3. The differential responses of wheat to the two ear pathogens demonstrated in this study makes it unlikely that common

  13. Development of Improved Graphical Displays for an Advanced Outage Control Center, Employing Human Factors Principles for Outage Schedule Management

    SciTech Connect

    St Germain, Shawn Walter; Farris, Ronald Keith; Thomas, Kenneth David

    2015-09-01

    The long-term viability of existing nuclear power plants in the United States (U.S.) is dependent upon a number of factors, including maintaining high capacity factors, maintaining nuclear safety, and reducing operating costs, particularly those associated with refueling outages. Refueling outages typically take 20-30 days, and for existing light water NPPs in the U.S., the reactor cannot be in operation during the outage. Furthermore, given that many NPPs generate between $1-1.5 million/day in revenue when in operation, there is considerable interest in shortening the length of refueling outages. Yet refueling outages are highly complex operations, involving multiple concurrent and dependent activities that are somewhat challenging to coordinate; therefore, finding ways to improve refueling outage performance, while maintaining nuclear safety has proven to be difficult. The Advanced Outage Control Center (AOCC) project is a research and development (R&D) demonstration activity under the LWRS Program. LWRS is an R&D program that works closely with industry R&D programs to establish technical foundations for the licensing and managing of long-term, safe, and economical operation of current fleet of NPPs. As such, the LWRS Advanced Outage Control Center project has the goal of improving the management of commercial NPP refueling outages. To accomplish this goal, INL is developing an advanced outage control center (OCC) that is specifically designed to maximize the usefulness of communication and collaboration technologies for outage coordination and problem resolution activities. The overall focus is on developing an AOCC with the following capabilities that enables plant and OCC staff to; Collaborate in real-time to address emergent issues; Effectively communicate outage status to all workers involved in the outage; Effectively communicate discovered conditions in the field to the OCC; Provide real-time work status; Provide automatic pending support notifications

  14. Enhancing the ecological validity of tests of lateralization and hemispheric interaction: Evidence from fixated displays of letters or symbols of varying complexity.

    PubMed

    Hughes, Andrew J; Upshaw, Jennifer N; Macaulay, Georgia M; Rutherford, Barbara J

    2016-07-01

    Two experiments expand upon behavioural evidence of interactions among lateralization, hemispheric interaction, and task complexity with findings from an ecologically valid procedure. Target displays of letters or symbols were presented at fixation in go/no-go matching tasks of physical or categorical identity. Simultaneously with the target, a distractor appeared in the left visual field or right visual field to weight processing of the target to the hemisphere ipsilateral to the distractor, or the distractor did not appear at all. Comparison of the respective distractor-present trials with distractor-absent trials measures the relative costs or benefits of hemispheric interaction. Both experiments found that 3-item displays were processed faster and more accurately than displays of 5 items, suggesting they are relatively simple. Accuracy to the simple tasks showed left-hemisphere lateralization in the lexical task, right-hemisphere lateralization in the spatial task, a cost of hemispheric interaction compared to the advantaged hemisphere, and a benefit of hemispheric interaction compared to the less-advantaged hemisphere, suggesting that the contributions of the less-advantaged hemisphere interfere with processing, and that the advantaged hemisphere controls the lion's share. In contrast, 5-item displays for physical match in both experiments showed a significant benefit to accuracy of hemispheric interaction compared to the left hemisphere, an insignificant benefit compared to the right hemisphere, no lateralization, no cost of hemispheric interaction, and a consequence to performance that was more costly to the hemisphere that had been advantaged in simple tasks, suggesting that the advantaged hemisphere relinquishes control as tasks become more complex and complementary processing results from both increased collaboration and decreased lateralization between the hemispheres. The findings expand upon behavioural evidence, converge with imaging evidence, and

  15. Uses of Phage Display in Agriculture: A Review of Food-Related Protein-Protein Interactions Discovered by Biopanning over Diverse Baits

    PubMed Central

    Kushwaha, Rekha; Payne, Christina M.; Downie, A. Bruce

    2013-01-01

    This review highlights discoveries made using phage display that impact the use of agricultural products. The contribution phage display made to our fundamental understanding of how various protective molecules serve to safeguard plants and seeds from herbivores and microbes is discussed. The utility of phage display for directed evolution of enzymes with enhanced capacities to degrade the complex polymers of the cell wall into molecules useful for biofuel production is surveyed. Food allergies are often directed against components of seeds; this review emphasizes how phage display has been employed to determine the seed component(s) contributing most to the allergenic reaction and how it has played a central role in novel approaches to mitigate patient response. Finally, an overview of the use of phage display in identifying the mature seed proteome protection and repair mechanisms is provided. The identification of specific classes of proteins preferentially bound by such protection and repair proteins leads to hypotheses concerning the importance of safeguarding the translational apparatus from damage during seed quiescence and environmental perturbations during germination. These examples, it is hoped, will spur the use of phage display in future plant science examining protein-ligand interactions. PMID:23710253

  16. Simulator comparison of thumball, thumb switch, and touch screen input concepts for interaction with a large screen cockpit display format

    NASA Technical Reports Server (NTRS)

    Jones, Denise R.; Parrish, Russell V.

    1990-01-01

    A piloted simulation study was conducted comparing three different input methods for interfacing to a large screen, multiwindow, whole flight deck display for management of transport aircraft systems. The thumball concept utilized a miniature trackball embedded in a conventional side arm controller. The multifunction control throttle and stick (MCTAS) concept employed a thumb switch located in the throttle handle. The touch screen concept provided data entry through a capacitive touch screen installed on the display surface. The objective and subjective results obtained indicate that, with present implementations, the thumball concept was the most appropriate for interfacing with aircraft systems/subsystems presented on a large screen display. Not unexpectedly, the completion time differences between the three concepts varied with the task being performed, although the thumball implementation consistently outperformed the other two concepts. However, pilot suggestions for improved implementations of the MCTAS and touch screen concepts could reduce some of these differences.

  17. Evaluation of Flying Qualities and Guidance Displays for an Advanced Tilt-Wing STOL Transport Aircraft in Final Approach and Landing

    NASA Technical Reports Server (NTRS)

    Frost, Chad R.; Franklin, James A.; Hardy, Gordon H.

    2002-01-01

    A piloted simulation was performed on the Vertical Motion Simulator at NASA Ames Research Center to evaluate flying qualities of a tilt-wing Short Take-Off and Landing (STOL) transport aircraft during final approach and landing. The experiment was conducted to assess the design s handling qualities, and to evaluate the use of flightpath-centered guidance for the precision approach and landing tasks required to perform STOL operations in instrument meteorological conditions, turbulence, and wind. Pilots rated the handling qualities to be satisfactory for all operations evaluated except those encountering extreme crosswinds and severe windshear; even in these difficult meteorological conditions, adequate handling qualities were maintained. The advanced flight control laws and guidance displays provided consistent performance and precision landings.

  18. Virtual Learning Environment for Interactive Engagement with Advanced Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Pedersen, Mads Kock; Skyum, Birk; Heck, Robert; Müller, Romain; Bason, Mark; Lieberoth, Andreas; Sherson, Jacob F.

    2016-06-01

    A virtual learning environment can engage university students in the learning process in ways that the traditional lectures and lab formats cannot. We present our virtual learning environment StudentResearcher, which incorporates simulations, multiple-choice quizzes, video lectures, and gamification into a learning path for quantum mechanics at the advanced university level. StudentResearcher is built upon the experiences gathered from workshops with the citizen science game Quantum Moves at the high-school and university level, where the games were used extensively to illustrate the basic concepts of quantum mechanics. The first test of this new virtual learning environment was a 2014 course in advanced quantum mechanics at Aarhus University with 47 enrolled students. We found increased learning for the students who were more active on the platform independent of their previous performances.

  19. Display system

    NASA Technical Reports Server (NTRS)

    Story, A. W. (Inventor)

    1973-01-01

    A situational display and a means for creating the display are disclosed. The display comprises a moving line or raster, on a cathode ray tube, which is disposed intermediate of two columns of lamps or intensifications on the cathode ray tube. The raster and lights are controlled in such a manner that pairs of lights define a line which is either tracked or chased by the raster in accordance with the relationship between the optimum and actual values of a monitored parameter.

  20. Advancing Models and Evaluation of Cumulus, Climate and Aerosol Interactions

    SciTech Connect

    Gettelman, Andrew

    2015-10-27

    This project was successfully able to meet its’ goals, but faced some serious challenges due to personnel issues. Nonetheless, it was largely successful. The Project Objectives were as follows: 1. Develop a unified representation of stratifom and cumulus cloud microphysics for NCAR/DOE global community models. 2. Examine the effects of aerosols on clouds and their impact on precipitation in stratiform and cumulus clouds. We will also explore the effects of clouds and precipitation on aerosols. 3. Test these new formulations using advanced evaluation techniques and observations and release

  1. Creating Interactive Graphical Overlays in the Advanced Weather Interactive Processing System Using Shapefiles and DGM Files

    NASA Technical Reports Server (NTRS)

    Barrett, Joe H., III; Lafosse, Richard; Hood, Doris; Hoeth, Brian

    2007-01-01

    Graphical overlays can be created in real-time in the Advanced Weather Interactive Processing System (AWIPS) using shapefiles or Denver AWIPS Risk Reduction and Requirements Evaluation (DARE) Graphics Metafile (DGM) files. This presentation describes how to create graphical overlays on-the-fly for AWIPS, by using two examples of AWIPS applications that were created by the Applied Meteorology Unit (AMU) located at Cape Canaveral Air Force Station (CCAFS), Florida. The first example is the Anvil Threat Corridor Forecast Tool, which produces a shapefile that depicts a graphical threat corridor of the forecast movement of thunderstorm anvil clouds, based on the observed or forecast upper-level winds. This tool is used by the Spaceflight Meteorology Group (SMG) at Johnson Space Center, Texas and 45th Weather Squadron (45 WS) at CCAFS to analyze the threat of natural or space vehicle-triggered lightning over a location. The second example is a launch and landing trajectory tool that produces a DGM file that plots the ground track of space vehicles during launch or landing. The trajectory tool can be used by SMG and the 45 WS forecasters to analyze weather radar imagery along a launch or landing trajectory. The presentation will list the advantages and disadvantages of both file types for creating interactive graphical overlays in future AWIPS applications. Shapefiles are a popular format used extensively in Geographical Information Systems. They are usually used in AWIPS to depict static map backgrounds. A shapefile stores the geometry and attribute information of spatial features in a dataset (ESRI 1998). Shapefiles can contain point, line, and polygon features. Each shapefile contains a main file, index file, and a dBASE table. The main file contains a record for each spatial feature, which describes the feature with a list of its vertices. The index file contains the offset of each record from the beginning of the main file. The dBASE table contains records for each

  2. Display Tactics

    ERIC Educational Resources Information Center

    Tetlow, Linda

    2009-01-01

    Display took a wide variety of forms ranging from students presenting their initial planning and thought processes, to displays of their finished work, and their suggestions for extending the task should they, or others, have time to return to it in the future. A variety of different media were used from traditional posters in many shapes and…

  3. Ubiquitous Displays: A Distributed Network of Active Displays

    NASA Astrophysics Data System (ADS)

    Majumder, Aditi

    In this chapter we present our work-in-progress on developing a new display paradigm where displays are not mere carriers of information, but active members of the workspace interacting with data, user, environment and other displays. The goal is to integrate such active displays seamlessly with the environment making them ubiquitous to multiple users and data. Such ubiquitous display can be a critical component of the future collaborative workspace.

  4. F-22 cockpit display system

    NASA Astrophysics Data System (ADS)

    Bailey, David C.

    1994-06-01

    The F-22 is the first exclusively glass cockpit where all instrumentation has been replaced by displays. The F-22 Engineering and Manufacturing Development Program is implementing the display technology proven during the Advanced Tactical Fighter Demonstration and Validation program. This paper will describe how the F-22 goals have been met and some of the tradeoffs that resulted in the current display design.

  5. Identification of Novel Protein–Ligand Interactions by Exon Microarray Analysis of Yeast Surface Displayed cDNA Library Selection Outputs

    PubMed Central

    Bidlingmaier, Scott; Liu, Bin

    2016-01-01

    Yeast surface display is widely utilized to screen large libraries for proteins or protein fragments with specific binding properties. We have previously constructed and utilized yeast surface displayed human cDNA libraries to identify protein fragments that bind to various target ligands. Conventional approaches employ monoclonal screening and sequencing of polyclonal outputs that have been enriched for binding to a target molecule by several rounds of affinity-based selection. Frequently, a small number of clones will dominate the selection output, making it difficult to comprehensively identify potentially important interactions due to low representation in the selection output. We have developed a novel method to address this problem. By analyzing selection outputs using high-density human exon microarrays, the full potential of selection output diversity can be revealed in one experiment. FACS-based selection using yeast surface displayed human cDNA libraries combined with exon microarray analysis of the selection outputs is a powerful way of rapidly identifying protein fragments with affinity for any soluble ligand that can be fluorescently detected, including small biological molecules and drugs. In this report we present protocols for exon microarray-based analysis of yeast surface display human cDNA library selection outputs. PMID:26060075

  6. Advanced helmet mounted display (AHMD)

    NASA Astrophysics Data System (ADS)

    Sisodia, Ashok; Bayer, Michael; Townley-Smith, Paul; Nash, Brian; Little, Jay; Cassarly, William; Gupta, Anurag

    2007-04-01

    Due to significantly increased U.S. military involvement in deterrent, observer, security, peacekeeping and combat roles around the world, the military expects significant future growth in the demand for deployable virtual reality trainers with networked simulation capability of the battle space visualization process. The use of HMD technology in simulated virtual environments has been initiated by the demand for more effective training tools. The AHMD overlays computer-generated data (symbology, synthetic imagery, enhanced imagery) augmented with actual and simulated visible environment. The AHMD can be used to support deployable reconfigurable training solutions as well as traditional simulation requirements, UAV augmented reality, air traffic control and Command, Control, Communications, Computers, Intelligence, Surveillance, and Reconnaissance (C4ISR) applications. This paper will describe the design improvements implemented for production of the AHMD System.

  7. Four dimensional observations of clouds from geosynchronous orbit using stereo display and measurement techniques on an interactive information processing system

    NASA Technical Reports Server (NTRS)

    Hasler, A. F.; Desjardins, M.; Shenk, W. E.

    1979-01-01

    Simultaneous Geosynchronous Operational Environmental Satellite (GOES) 1 km resolution visible image pairs can provide quantitative three dimensional measurements of clouds. These data have great potential for severe storms research and as a basic parameter measurement source for other areas of meteorology (e.g. climate). These stereo cloud height measurements are not subject to the errors and ambiguities caused by unknown cloud emissivity and temperature profiles that are associated with infrared techniques. This effort describes the display and measurement of stereo data using digital processing techniques.

  8. Advanced Interactive Facades - Critical Elements for Future GreenBuildings?

    SciTech Connect

    Selkowitz, Stephen; Aschehoug, Oyvind; Lee, Eleanor S.

    2003-11-01

    Building designers and owners have always been fascinated with the extensive use of glass in building envelopes. Today the highly glazed facade has almost become an iconic element for a 'green building' that provides daylighting and a visual connection with the natural environment. Even before the current interest in green buildings there was no shortage of highly glazed building designs. But many of these buildings either rejected sunlight, and some associated daylight and view with highly reflective glazings or used highly transmissive glass and encountered serious internal comfort problems that could only be overcome with large HVAC systems, resulting in significant energy, cost and environmental penalties. From the 1960's to the 1990's innovation in glazing made heat absorbing glass, reflective glass and double glazing commonplace, with an associated set of aesthetic features. In the last decade there has been a subtle shift from trying to optimize an ideal, static design solution using these glazings to making the facade responsive, interactive and even intelligent. More sophisticated design approaches and technologies have emerged using new high-performance glazing, improved shading and solar control systems, greater use of automated controls, and integration with other building systems. One relatively new architectural development is the double glass facade that offers a cavity that can provide improved acoustics, better solar control and enhanced ventilation. Taken to its ultimate development, an interactive facade should respond intelligently and reliably to the changing outdoor conditions and internal performance needs. It should exploit available natural energies for lighting, heating and ventilation, should be able to provide large energy savings compared to conventional technologies, and at the same time maintain optimal indoor visual and thermal comfort conditions. As photovoltaic costs decrease in the future, these onsite power systems will be

  9. Projection displays

    NASA Astrophysics Data System (ADS)

    Chiu, George L.; Yang, Kei H.

    1998-08-01

    Projection display in today's market is dominated by cathode ray tubes (CRTs). Further progress in this mature CRT projector technology will be slow and evolutionary. Liquid crystal based projection displays have gained rapid acceptance in the business market. New technologies are being developed on several fronts: (1) active matrix built from polysilicon or single crystal silicon; (2) electro- optic materials using ferroelectric liquid crystal, polymer dispersed liquid crystals or other liquid crystal modes, (3) micromechanical-based transducers such as digital micromirror devices, and grating light valves, (4) high resolution displays to SXGA and beyond, and (5) high brightness. This article reviews the projection displays from a transducer technology perspective along with a discussion of markets and trends.

  10. A Survey on Large High-Resolution Display Technologies, Techniques, and Applications

    SciTech Connect

    Ni, Tao; Schmidt, Greg S.; Staadt, Oliver G.; Livingston, Mark A.; Ball, Robert; May, Richard A.

    2006-03-27

    Continued advances in display hardware, computing power, networking, and rendering algorithms have all converged to dramatically improve large high-resolution display capabilities. We present a survey on prior research with large high-resolution displays. In the hardware configurations section we examine systems including multi-monitor workstations, recon*gurable projector arrays, and others. Rendering and the data pipeline are addressed with an overview of current technologies. We discuss many applications for large high-resolution displays such as automotive design, scientific visualization, control centers, and others. Quantifying the effect of large high-resolution displays on human performance and other aspects is important as we look toward future advances in display technology and how it is applied in different situations. Interacting with these displays brings a different set of challenges for HCI professionals, so an overview of some of this work is provided. Finally, we present our view of the top ten greatest challenges in large high-resolution displays.

  11. Balancing the competing requirements of air-breathing and display behaviour during male-male interactions in Siamese fighting fish Betta splendens.

    PubMed

    Alton, Lesley A; Portugal, Steven J; White, Craig R

    2013-02-01

    Air-breathing fish of the Anabantoidei group meet their metabolic requirements for oxygen through both aerial and aquatic gas exchange. Siamese fighting fish Betta splendens are anabantoids that frequently engage in aggressive male-male interactions which cause significant increases in metabolic rate and oxygen requirements. These interactions involve opercular flaring behaviour that is thought to limit aquatic oxygen uptake, and combines with the increase in metabolic rate to cause an increase in air-breathing behaviour. Air-breathing events interrupt display behaviour and increase risk of predation, raising the question of how Siamese fighting fish manage their oxygen requirements during agonistic encounters. Using open-flow respirometry, we measured rate of oxygen consumption in displaying fish to determine if males increase oxygen uptake per breath to minimise visits to the surface, or increase their reliance on aquatic oxygen uptake. We found that the increased oxygen requirements of Siamese fighting fish during display behaviour were met by increased oxygen uptake from the air with no significant changes in aquatic oxygen uptake. The increased aerial oxygen uptake was achieved almost entirely by an increase in air-breathing frequency. We conclude that limitations imposed by the reduced gill surface area of air-breathing fish restrict the ability of Siamese fighting fish to increase aquatic uptake, and limitations of the air-breathing organ of anabantoids largely restrict their capacity to increase oxygen uptake per breath. The resulting need to increase surfacing frequency during metabolically demanding agonistic encounters has presumably contributed to the evolution of the stereotyped surfacing behaviour seen during male-male interactions, during which one of the fish will lead the other to the surface, and each will take a breath of air. PMID:23178457

  12. Do Handheld Devices Facilitate Face-to-Face Collaboration? Handheld Devices with Large Shared Display Groupware to Facilitate Group Interactions

    ERIC Educational Resources Information Center

    Liu, Chen-Chung; Kao, L.-C.

    2007-01-01

    One-to-one computing environments change and improve classroom dynamics as individual students can bring handheld devices fitted with wireless communication capabilities into the classrooms. However, the screens of handheld devices, being designed for individual-user mobile application, limit promotion of interaction among groups of learners. This…

  13. Anvil Forecast Tool in the Advanced Weather Interactive Processing System, Phase II

    NASA Technical Reports Server (NTRS)

    Barrett, Joe H., III

    2008-01-01

    Meteorologists from the 45th Weather Squadron (45 WS) and Spaceflight Meteorology Group have identified anvil forecasting as one of their most challenging tasks when predicting the probability of violations of the Lightning Launch Commit Criteria and Space Light Rules. As a result, the Applied Meteorology Unit (AMU) created a graphical overlay tool for the Meteorological Interactive Data Display Systems (MIDDS) to indicate the threat of thunderstorm anvil clouds, using either observed or model forecast winds as input.

  14. Proceedings of the topical meeting on advances in human factors research on man/computer interactions

    SciTech Connect

    Not Available

    1990-01-01

    This book discusses the following topics: expert systems and knowledge engineering-I; verification and validation of software; methods for modeling UMAN/computer performance; MAN/computer interaction problems in producing procedures -1-2; progress and problems with automation-1-2; experience with electronic presentation of procedures-2; intelligent displays and monitors; modeling user/computer interface; and computer-based human decision-making aids.

  15. Recent Advances Combining Remote Sensing Data with Advanced Models to Assess Disturbance Related Plant-Climate Interactions.

    NASA Astrophysics Data System (ADS)

    Hurtt, G. C.

    2015-12-01

    Terrestrial ecosystem dynamics are strongly influenced by processes of disturbance and recovery across a range of spatial and temporal scales, from large catastrophic events including tropical cyclones, fires, and pest outbreaks, to fine-scale forest canopy gap dynamics. Natural disturbances episodically alter vegetation structure and create important fluxes of carbon from vegetation to coarse woody debris and litter, and can alter land surface properties important for climate. Similarly, anthropogenic disturbances have the capacity to alter important land surface properties. Recovery following disturbances tends to restore vegetation structure and carbon over longer time scales as vegetation regrows and debris decomposes and land surface properties are restored. The complex spatial pattern from a legacy of past events, together with ongoing and potentially changing future events, presents a challenge not only for understanding, but also for prediction. As many disturbance processes are climate related, being climate driven and/or producing affects on climate through biophysical or biogeochemical alterations of the land surface, disturbance is a critical link in understanding plant-climate interactions. Here we review past progress, current results, and future priorities for utilizing remote sensing data in advanced models to understand of the role of disturbance in plant-climate interactions. Recent advances have helped to quantify the long term impacts of hurricanes on forests, account for recent forest disturbance events, quantify the vulnerability of ecosystems to potential future disturbance rates, and project future vegetation change in response to climate change, and reduce uncertainty through improved initial conditions accounting for the history of past disturbance events. Now, a new generation of land use data are being developed constrained by remote sensing to drive the next generation of Earth system models to estimate the effects of anthropogenic

  16. Hox Proteins Display a Common and Ancestral Ability to Diversify Their Interaction Mode with the PBC Class Cofactors

    PubMed Central

    Hudry, Bruno; Remacle, Sophie; Delfini, Marie-Claire; Rezsohazy, René; Graba, Yacine; Merabet, Samir

    2012-01-01

    Hox transcription factors control a number of developmental processes with the help of the PBC class proteins. In vitro analyses have established that the formation of Hox/PBC complexes relies on a short conserved Hox protein motif called the hexapeptide (HX). This paradigm is at the basis of the vast majority of experimental approaches dedicated to the study of Hox protein function. Here we questioned the unique and general use of the HX for PBC recruitment by using the Bimolecular Fluorescence Complementation (BiFC) assay. This method allows analyzing Hox-PBC interactions in vivo and at a genome-wide scale. We found that the HX is dispensable for PBC recruitment in the majority of investigated Drosophila and mouse Hox proteins. We showed that HX-independent interaction modes are uncovered by the presence of Meis class cofactors, a property which was also observed with Hox proteins of the cnidarian sea anemone Nematostella vectensis. Finally, we revealed that paralog-specific motifs convey major PBC-recruiting functions in Drosophila Hox proteins. Altogether, our results highlight that flexibility in Hox-PBC interactions is an ancestral and evolutionary conserved character, which has strong implications for the understanding of Hox protein functions during normal development and pathologic processes. PMID:22745600

  17. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees

    PubMed Central

    Letunic, Ivica; Bork, Peer

    2016-01-01

    Interactive Tree Of Life (http://itol.embl.de) is a web-based tool for the display, manipulation and annotation of phylogenetic trees. It is freely available and open to everyone. The current version was completely redesigned and rewritten, utilizing current web technologies for speedy and streamlined processing. Numerous new features were introduced and several new data types are now supported. Trees with up to 100,000 leaves can now be efficiently displayed. Full interactive control over precise positioning of various annotation features and an unlimited number of datasets allow the easy creation of complex tree visualizations. iTOL 3 is the first tool which supports direct visualization of the recently proposed phylogenetic placements format. Finally, iTOL's account system has been redesigned to simplify the management of trees in user-defined workspaces and projects, as it is heavily used and currently handles already more than 500,000 trees from more than 10,000 individual users. PMID:27095192

  18. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees.

    PubMed

    Letunic, Ivica; Bork, Peer

    2016-07-01

    Interactive Tree Of Life (http://itol.embl.de) is a web-based tool for the display, manipulation and annotation of phylogenetic trees. It is freely available and open to everyone. The current version was completely redesigned and rewritten, utilizing current web technologies for speedy and streamlined processing. Numerous new features were introduced and several new data types are now supported. Trees with up to 100,000 leaves can now be efficiently displayed. Full interactive control over precise positioning of various annotation features and an unlimited number of datasets allow the easy creation of complex tree visualizations. iTOL 3 is the first tool which supports direct visualization of the recently proposed phylogenetic placements format. Finally, iTOL's account system has been redesigned to simplify the management of trees in user-defined workspaces and projects, as it is heavily used and currently handles already more than 500,000 trees from more than 10,000 individual users. PMID:27095192

  19. Fostering Reflective Writing and Interactive Exchange through Blogging in an Advanced Language Course

    ERIC Educational Resources Information Center

    Lee, Lina

    2010-01-01

    Blog technology is a potential medium for encouraging reflective writing through self-expression and interactive exchange through social networking. This paper reports on a study using blogs as out-of-class assignments for the development of learners' language competence. The study involved seventeen university students at advanced level who kept…

  20. Integrative Advances for OCT-Guided Ophthalmic Surgery and Intraoperative OCT: Microscope Integration, Surgical Instrumentation, and Heads-Up Display Surgeon Feedback

    PubMed Central

    Ehlers, Justis P.; Srivastava, Sunil K.; Feiler, Daniel; Noonan, Amanda I.; Rollins, Andrew M.; Tao, Yuankai K.

    2014-01-01

    Purpose To demonstrate key integrative advances in microscope-integrated intraoperative optical coherence tomography (iOCT) technology that will facilitate adoption and utilization during ophthalmic surgery. Methods We developed a second-generation prototype microscope-integrated iOCT system that interfaces directly with a standard ophthalmic surgical microscope. Novel features for improved design and functionality included improved profile and ergonomics, as well as a tunable lens system for optimized image quality and heads-up display (HUD) system for surgeon feedback. Novel material testing was performed for potential suitability for OCT-compatible instrumentation based on light scattering and transmission characteristics. Prototype surgical instruments were developed based on material testing and tested using the microscope-integrated iOCT system. Several surgical maneuvers were performed and imaged, and surgical motion visualization was evaluated with a unique scanning and image processing protocol. Results High-resolution images were successfully obtained with the microscope-integrated iOCT system with HUD feedback. Six semi-transparent materials were characterized to determine their attenuation coefficients and scatter density with an 830 nm OCT light source. Based on these optical properties, polycarbonate was selected as a material substrate for prototype instrument construction. A surgical pick, retinal forceps, and corneal needle were constructed with semi-transparent materials. Excellent visualization of both the underlying tissues and surgical instrument were achieved on OCT cross-section. Using model eyes, various surgical maneuvers were visualized, including membrane peeling, vessel manipulation, cannulation of the subretinal space, subretinal intraocular foreign body removal, and corneal penetration. Conclusions Significant iterative improvements in integrative technology related to iOCT and ophthalmic surgery are demonstrated. PMID:25141340

  1. Neural correlates of the empathic perceptual processing of realistic social interaction scenarios displayed from a first-order perspective.

    PubMed

    Fehr, T; Achtziger, A; Roth, G; Strüber, D

    2014-10-01

    The neural processing of impulsive behavior is a central topic in various clinical and non-clinical contexts. To investigate neural and behavioral correlates of the empathic processing of complex social scenarios, especially considering ecological validity of the experimental procedure, we developed and investigated a video stimulus inventory. It includes realistic neutral, social-positive, and reactive-aggressive action scenarios. Short video-clips showing these social scenarios from a first-person perspective triggering different emotional states were presented to a non-clinical sample of 20 young adult male participants during fMRI measurements. Both affective interaction conditions (social-positive and reactive-aggressive) were contrasted against a neutral baseline condition and against each other. Behavioral evaluation data largely confirmed the validity of the emotion-inducing stimulus material. Reactive-aggressive and social-positive interaction scenarios produced widely overlapping fMRI activation patterns in hetero-modal association cortices, but also in subcortical regions, such as the peri-aqueductal gray. Reactive-aggressive compared to social-positive scenarios yielded a more anterior distribution of activations in pre-motor and inferior frontal brain regions associated to motor-preparation and inhibitory control processing as well as in the insula associated to pain- and/or aversion-processing. We argue that there are both principally common neural networks recruited for the processing of reactive-aggressive and social-positive scenarios, but also exclusive network parts in particular involved depending on individual socialization. PMID:24814646

  2. unfulfilled Interacting Genes Display Branch-Specific Roles in the Development of Mushroom Body Axons in Drosophila melanogaster

    PubMed Central

    Bates, Karen E.; Sung, Carl; Hilson, Liam; Robinow, Steven

    2014-01-01

    The mushroom body (MB) of Drosophila melanogaster is an organized collection of interneurons that is required for learning and memory. Each of the three subtypes of MB neurons, γ, α´/β´, and α/β, branch at some point during their development, providing an excellent model in which to study the genetic regulation of axon branching. Given the sequential birth order and the unique patterning of MB neurons, it is likely that specific gene cascades are required for the different guidance events that form the characteristic lobes of the MB. The nuclear receptor UNFULFILLED (UNF), a transcription factor, is required for the differentiation of all MB neurons. We have developed and used a classical genetic suppressor screen that takes advantage of the fact that ectopic expression of unf causes lethality to identify candidate genes that act downstream of UNF. We hypothesized that reducing the copy number of unf-interacting genes will suppress the unf-induced lethality. We have identified 19 candidate genes that when mutated suppress the unf-induced lethality. To test whether candidate genes impact MB development, we performed a secondary phenotypic screen in which the morphologies of the MBs in animals heterozygous for unf and a specific candidate gene were analyzed. Medial MB lobes were thin, missing, or misguided dorsally in five double heterozygote combinations (;unf/+;axin/+, unf/+;Fps85D/+, ;unf/+;Tsc1/+, ;unf/+;Rheb/+, ;unf/+;msn/+). Dorsal MB lobes were missing in ;unf/+;DopR2/+ or misprojecting beyond the termination point in ;unf/+;Sytβ double heterozygotes. These data suggest that unf and unf-interacting genes play specific roles in axon development in a branch-specific manner. PMID:24558265

  3. Yeast surface display for protein engineering and characterization.

    PubMed

    Gai, S Annie; Wittrup, K Dane

    2007-08-01

    Yeast surface display is being employed to engineer desirable properties into proteins for a broad variety of applications. Labeling with soluble ligands enables rapid and quantitative analysis of yeast-displayed libraries by flow cytometry, while cell-surface selections allow screening of libraries with insoluble or even as-yet-uncharacterized binding targets. In parallel, the utilization of yeast surface display for protein characterization, including in particular the mapping of functional epitopes mediating protein-protein interactions, represents a significant recent advance. PMID:17870469

  4. BMSCs Interactions with Adventitial Fibroblasts Display Smooth Muscle Cell Lineage Potential in Differentiation and Migration That Contributes to Neointimal Formation.

    PubMed

    Wendan, Y; Changzhu, J; Xuhong, S; Hongjing, C; Hong, S; Dongxia, Y; Fang, X

    2016-01-01

    In this study a model of simulated vascular injury in vitro was used to study the characterization of bone-marrow-derived mesenchymal stem cells (BMSCs) morphology and to investigate the differentiation and migration of BMSCs in the presence of adventitial fibroblasts. BMSCs from rats were indirectly cocultured with adventitial fibroblasts in a transwell chamber apparatus for 7 days, and clonogenic assays demonstrated that BMSCs could be differentiated into smooth muscle-like cells with this process, including smooth muscle α-actin (α-SMA) expression by immunofluorescence staining. Cell morphology of BMSCs was assessed by inverted microscope, while cell proliferation was assessed by MTT assay. The expressions of TGF-β1, MMP-1, and NF-κB were detected by immunofluorescence staining and Smad3 mRNA was measured by reverse transcription PCR. Migration ability of BMSCs with DAPI-labeled nuclei was measured by laser confocal microscopy. Our results demonstrate that indirect interactions with adventitial fibroblasts can induce proliferation, differentiation, and migration of BMSCs that can actively participate in neointimal formation. Our results indicate that the pathogenesis of vascular remodeling might perform via TGF-β1/Smad3 signal transduction pathways. PMID:26880952

  5. A Novel and Intuitive Method of Displaying and Interacting with Mass Difference Information: Application to Oligonucleotide Drug Impurities

    NASA Astrophysics Data System (ADS)

    Roussis, Stilianos G.

    2015-07-01

    A new method is presented for determining relationships between components in complex analytical systems. The method uses the mass differences between peaks in high resolution electrospray ionization (ESI) mass spectra. It relates peaks that share common mass differences. The method is based on the fundamental assumption that peaks in the spectra having the same exact mass difference are related by the same chemical moiety/substructure. Moreover, the presence (or absence/loss) of the same chemical moiety from a series of molecules may reflect similarities in the mechanisms of formation of each molecule. The determined mass differences in the spectra are used to automatically differentiate the types of components in the samples. Contour plots and summary plots of the summed total ion signal as a function of the mass difference are generated, which form powerful tools for the rapid and automated determination of the components in the samples and for comparisons with other samples. For the first time, in this work a unique profile contour plot has been developed that permits the interactive interrogation of the mass range by mass difference data matrix to obtain valuable information about components that share a common mechanism of formation, and all possible mechanisms of formation linked to a selected precursor molecule. The method can be used as an additional and complementary method to the existing analytical methods to determine relationships between components in complex chemical systems.

  6. LVTree Viewer: An Interactive Display for the All-Species Living Tree Incorporating Automatic Comparison with Prokaryotic Systematics.

    PubMed

    Zuo, Guanghong; Zhi, Xiaoyang; Xu, Zhao; Hao, Bailin

    2016-04-01

    We describe an interactive viewer for the All-Species Living Tree (LVTree). The viewer incorporates treeing and lineage information from the ARB-SILVA website. It allows collapsing the tree branches at different taxonomic ranks and expanding the collapsed branches as well, keeping the overall topology of the tree unchanged. It also enables the user to observe the consequence of trial lineage modifications by re-collapsing the tree. The system reports taxon statistics at all ranks automatically after each collapsing and re-collapsing. These features greatly facilitate the comparison of the 16S rRNA sequence phylogeny with prokaryotic taxonomy in a taxon by taxon manner. In view of the fact that the present prokaryotic systematics is largely based on 16S rRNA sequence analysis, the current viewer may help reveal discrepancies between phylogeny and taxonomy. As an application, we show that in the latest release of LVTree, based on 11,939 rRNA sequences, as few as 24 lineage modifications are enough to bring all but two phyla (Proteobacteria and Firmicutes) to monophyletic clusters. PMID:27018315

  7. BMSCs Interactions with Adventitial Fibroblasts Display Smooth Muscle Cell Lineage Potential in Differentiation and Migration That Contributes to Neointimal Formation

    PubMed Central

    Wendan, Y.; Changzhu, J.; Xuhong, S.; Hongjing, C.; Hong, S.; Dongxia, Y.; Fang, X.

    2016-01-01

    In this study a model of simulated vascular injury in vitro was used to study the characterization of bone-marrow-derived mesenchymal stem cells (BMSCs) morphology and to investigate the differentiation and migration of BMSCs in the presence of adventitial fibroblasts. BMSCs from rats were indirectly cocultured with adventitial fibroblasts in a transwell chamber apparatus for 7 days, and clonogenic assays demonstrated that BMSCs could be differentiated into smooth muscle-like cells with this process, including smooth muscle α-actin (α-SMA) expression by immunofluorescence staining. Cell morphology of BMSCs was assessed by inverted microscope, while cell proliferation was assessed by MTT assay. The expressions of TGF-β1, MMP-1, and NF-κB were detected by immunofluorescence staining and Smad3 mRNA was measured by reverse transcription PCR. Migration ability of BMSCs with DAPI-labeled nuclei was measured by laser confocal microscopy. Our results demonstrate that indirect interactions with adventitial fibroblasts can induce proliferation, differentiation, and migration of BMSCs that can actively participate in neointimal formation. Our results indicate that the pathogenesis of vascular remodeling might perform via TGF-β1/Smad3 signal transduction pathways. PMID:26880952

  8. Raster graphics display library

    NASA Technical Reports Server (NTRS)

    Grimsrud, Anders; Stephenson, Michael B.

    1987-01-01

    The Raster Graphics Display Library (RGDL) is a high level subroutine package that give the advanced raster graphics display capabilities needed. The RGDL uses FORTRAN source code routines to build subroutines modular enough to use as stand-alone routines in a black box type of environment. Six examples are presented which will teach the use of RGDL in the fastest, most complete way possible. Routines within the display library that are used to produce raster graphics are presented in alphabetical order, each on a separate page. Each user-callable routine is described by function and calling parameters. All common blocks that are used in the display library are listed and the use of each variable within each common block is discussed. A reference on the include files that are necessary to compile the display library is contained. Each include file and its purpose are listed. The link map for MOVIE.BYU version 6, a general purpose computer graphics display system that uses RGDL software, is also contained.

  9. ActiveSpaces on the grid: The construction of advanced visualization and interaction environments

    SciTech Connect

    Childers, L.; Disz, T.; Hereld, M.; Hudson, R.; Judson, I.; Olson, R.; Papka, M. E.; Paris, J.; Stevens, R.

    2000-07-24

    The Futures Lab group at Argonne National Laboratory and the University of Chicago are designing, building, and evaluating a new type of interactive computing environment that couples in a deep way the concepts of direct manipulation found in virtual reality with the richness and variety of interactive devices found in ubiquitous computing. This environment provides the interactivity and collaboration support of teleimmersive environments with the exibility and availability of desktop collaboration tools. The authors call these environments ActiveSpaces. An ActiveSpace is a physical domain that has been augmented with multiscale multiscreen displays, environment-specific and device-specific sensors, body and object trackers, human-input and instrument-input interfaces, streaming audio and video capture devices, and force feedback devices--and has then been connected to other such spaces via the Grid.

  10. Prototyping user displays using CLIPS

    NASA Technical Reports Server (NTRS)

    Kosta, Charles P.; Miller, Ross; Krolak, Patrick; Vesty, Matt

    1990-01-01

    CLIPS is being used as an integral module of a rapid prototyping system. The prototyping system consists of a display manager for object browsing, a graph program for displaying line and bar charts, and a communications server for routing messages between modules. A CLIPS simulation of a physical model provides dynamic control of the user's display. Currently, a project is well underway to prototype the Advanced Automation System (AAS) for the Federal Aviation Administration.

  11. The MADD-3 LAMMER Kinase Interacts with a p38 MAP Kinase Pathway to Regulate the Display of the EVA-1 Guidance Receptor in Caenorhabditis elegans.

    PubMed

    D'Souza, Serena A; Rajendran, Luckshika; Bagg, Rachel; Barbier, Louis; van Pel, Derek M; Moshiri, Houtan; Roy, Peter J

    2016-04-01

    The proper display of transmembrane receptors on the leading edge of migrating cells and cell extensions is essential for their response to guidance cues. We previously discovered that MADD-4, which is an ADAMTSL secreted by motor neurons in Caenorhabditis elegans, interacts with an UNC-40/EVA-1 co-receptor complex on muscles to attract plasma membrane extensions called muscle arms. In nematodes, the muscle arm termini harbor the post-synaptic elements of the neuromuscular junction. Through a forward genetic screen for mutants with disrupted muscle arm extension, we discovered that a LAMMER kinase, which we call MADD-3, is required for the proper display of the EVA-1 receptor on the muscle's plasma membrane. Without MADD-3, EVA-1 levels decrease concomitantly with a reduction of the late-endosomal marker RAB-7. Through a genetic suppressor screen, we found that the levels of EVA-1 and RAB-7 can be restored in madd-3 mutants by eliminating the function of a p38 MAP kinase pathway. We also found that EVA-1 and RAB-7 will accumulate in madd-3 mutants upon disrupting CUP-5, which is a mucolipin ortholog required for proper lysosome function. Together, our data suggests that the MADD-3 LAMMER kinase antagonizes the p38-mediated endosomal trafficking of EVA-1 to the lysosome. In this way, MADD-3 ensures that sufficient levels of EVA-1 are present to guide muscle arm extension towards the source of the MADD-4 guidance cue. PMID:27123983

  12. The MADD-3 LAMMER Kinase Interacts with a p38 MAP Kinase Pathway to Regulate the Display of the EVA-1 Guidance Receptor in Caenorhabditis elegans

    PubMed Central

    D’Souza, Serena A.; Rajendran, Luckshika; Bagg, Rachel; van Pel, Derek M.; Moshiri, Houtan; Roy, Peter J.

    2016-01-01

    The proper display of transmembrane receptors on the leading edge of migrating cells and cell extensions is essential for their response to guidance cues. We previously discovered that MADD-4, which is an ADAMTSL secreted by motor neurons in Caenorhabditis elegans, interacts with an UNC-40/EVA-1 co-receptor complex on muscles to attract plasma membrane extensions called muscle arms. In nematodes, the muscle arm termini harbor the post-synaptic elements of the neuromuscular junction. Through a forward genetic screen for mutants with disrupted muscle arm extension, we discovered that a LAMMER kinase, which we call MADD-3, is required for the proper display of the EVA-1 receptor on the muscle’s plasma membrane. Without MADD-3, EVA-1 levels decrease concomitantly with a reduction of the late-endosomal marker RAB-7. Through a genetic suppressor screen, we found that the levels of EVA-1 and RAB-7 can be restored in madd-3 mutants by eliminating the function of a p38 MAP kinase pathway. We also found that EVA-1 and RAB-7 will accumulate in madd-3 mutants upon disrupting CUP-5, which is a mucolipin ortholog required for proper lysosome function. Together, our data suggests that the MADD-3 LAMMER kinase antagonizes the p38-mediated endosomal trafficking of EVA-1 to the lysosome. In this way, MADD-3 ensures that sufficient levels of EVA-1 are present to guide muscle arm extension towards the source of the MADD-4 guidance cue. PMID:27123983

  13. Library-based display technologies: where do we stand?

    PubMed

    Galán, Asier; Comor, Lubos; Horvatić, Anita; Kuleš, Josipa; Guillemin, Nicolas; Mrljak, Vladimir; Bhide, Mangesh

    2016-07-19

    Over the past two decades, library-based display technologies have been staggeringly optimized since their appearance in order to mimic the process of natural molecular evolution. Display technologies are essential for the isolation of specific high-affinity binding molecules (proteins, polypeptides, nucleic acids and others) for diagnostic and therapeutic applications in cancer, infectious diseases, autoimmune, neurodegenerative, inflammatory pathologies etc. Applications extend to other fields such as antibody and enzyme engineering, cell-free protein synthesis and the discovery of protein-protein interactions. Phage display technology is the most established of these methods but more recent fully in vitro alternatives, such as ribosome display, mRNA display, cis-activity based (CIS) display and covalent antibody display (CAD), as well as aptamer display and in vitro compartmentalization, offer advantages over phage in library size, speed and the display of unnatural amino acids and nucleotides. Altogether, they have produced several molecules currently approved or in diverse stages of clinical or preclinical testing and have provided researchers with tools to address some of the disadvantages of peptides and nucleotides such as their low affinity, low stability, high immunogenicity and difficulty to cross membranes. In this review we assess the fundamental technological features and point out some recent advances and applications of display technologies. PMID:27306919

  14. Display research: Pilot response with the ""follow-me'' box display

    NASA Technical Reports Server (NTRS)

    Adams, J. J.

    1983-01-01

    A study of display configurations and their effect on pilot-aircraft system response was undertaken. An examination of conventional displays was done to provide a set of data that can be used for comparison with advanced displays. An examination of an advanced display design that includes the use of a digital computer and a cathode ray tube to provide a drawing of a three dimensional box is done. The results show the improvement in system performance that can be obtained with the advanced display. Studies were conducted using the General Aviation Simulator, but verification of the results with the advanced display was also obtained from flight tests.

  15. Recombinantly expressed isoenzymic aminopeptidases from Helicoverpa armigera (American cotton bollworm) midgut display differential interaction with closely related Bacillus thuringiensis insecticidal proteins.

    PubMed Central

    Rajagopal, R; Agrawal, Neema; Selvapandiyan, Angamuthu; Sivakumar, S; Ahmad, Suhail; Bhatnagar, Raj K

    2003-01-01

    Several investigators have independently identified membrane-associated aminopeptidases in the midgut of insect larvae as the initial interacting ligand to the insecticidal crystal proteins of Bacillus thuringiensis. Though several isoenzymes of aminopeptidases have been identified from the midgut of an insect and their corresponding cDNA cloned, only one of the isoform has been expressed heterologously and studied for its binding to Cry toxins. Here we report the cloning and expression of two aminopeptidases N from Helicoverpa armigera (American cotton bollworm) (HaAPNs). The full-length cDNA of H. armigera APN1 (haapn1) is 3205 bp in size and encodes a 1000-amino-acid protein, while H. armigera APN2 (haapn2) is 3116 bp in size and corresponds to a 1012-amino-acid protein. Structurally these proteins show sequence similarity to other insect aminopeptidases and possess characteristic aminopeptidase motifs. Both the genes have been expressed in Trichoplusia ni (cabbage looper) cells using a baculovirus expression vector. The expressed aminopeptidases are membrane-associated, catalytically active and glycosylated. Ligand-blot analysis of both these aminopeptidases with bioactive Cry1Aa, Cry1Ab and Cry1Ac proteins displayed differential interaction. All the three toxins bound to HaAPN1, whereas only Cry1Ac interacted with HaAPN2. This is the first report demonstrating differential Cry-toxin-binding abilities of two different aminopeptidases from a susceptible insect. PMID:12441000

  16. Advanced Characterization of Molecular Interactions in TALSPEAK-like Separations Systems

    SciTech Connect

    Nash, Kenneth; Guelis, Artem; Lumetta, Gregg J.; Sinkov, Sergey

    2015-10-21

    Combining unit operations in advanced aqueous reprocessing schemes brings obvious process compactness advantages, but at the same time greater complexity in process design and operation. Unraveling these interactions requires increasingly sophisticated analytical tools and unique approaches for adequate analysis and characterization that probe molecular scale interactions. Conventional slope analysis methods of solvent extraction are too indirect to provide much insight into such interactions. This project proposed the development and verification of several analytical tools based on studies of TALSPEAK-like aqueous processes. As such, the chemistry of trivalent fission product lanthanides, americium, curium, plutonium, neptunium and uranium figure prominently in these studies. As the project was executed, the primary focus fell upon the chemistry or trivalent lanthanides and actinides. The intent of the investigation was to compare and contrast the results from these various complementary techniques/studies to provide a stronger basis for predicting the performance of extractant/diluent mixtures as media for metal ion separations. As many/most of these techniques require the presence of metal ions at elevated concentrations, it was expected that these studies would take this investigation into the realm of patterns of supramolecular organization of metal complexes and extractants in concentrated aqueous/organic media. We expected to advance knowledge of the processes that enable and limit solvent extraction reactions as a result of the application of fundamental chemical principles to explaining interactions in complex media.

  17. A Germin-Like Protein Gene (CchGLP) of Capsicum chinense Jacq. Is Induced during Incompatible Interactions and Displays Mn-Superoxide Dismutase Activity

    PubMed Central

    León-Galván, Fabiola; de Jesús Joaquín-Ramos, Ahuizolt; Torres-Pacheco, Irineo; Barba de la Rosa, Ana P.; Guevara-Olvera, Lorenzo; González-Chavira, Mario M.; Ocampo-Velazquez, Rosalía V.; Rico-García, Enrique; Guevara-González, Ramón Gerardo

    2011-01-01

    A germin-like gene (CchGLP) cloned from geminivirus-resistant pepper (Capsicum chinense Jacq. Line BG-3821) was characterized and the enzymatic activity of the expressed protein analyzed. The predicted protein consists of 203 amino acids, similar to other germin-like proteins. A highly conserved cupin domain and typical germin boxes, one of them containing three histidines and one glutamate, are also present in CchGLP. A signal peptide was predicted in the first 18 N-terminal amino acids, as well as one putative N-glycosylation site from residues 44–47. CchGLP was expressed in E. coli and the recombinant protein displayed manganese superoxide dismutase (Mn-SOD) activity. Molecular analysis showed that CchGLP is present in one copy in the C. chinense Jacq. genome and was induced in plants by ethylene (Et) and salicylic acid (SA) but not jasmonic acid (JA) applications in the absence of pathogens. Meanwhile, incompatible interactions with either Pepper golden mosaic virus (PepGMV) or Pepper huasteco yellow vein virus (PHYVV) caused local and systemic CchGLP induction in these geminivirus-resistant plants, but not in a susceptible accession. Compatible interactions with PHYVV, PepGMV and oomycete Phytophthora capsici did not induce CchGLP expression. Thus, these results indicate that CchGLP encodes a Mn-SOD, which is induced in the C. chinense geminivirus-resistant line BG-3821, likely using SA and Et signaling pathways during incompatible interactions with geminiviruses PepGMV and PHYVV. PMID:22174599

  18. Human SGT interacts with Bag-6/Bat-3/Scythe and cells with reduced levels of either protein display persistence of few misaligned chromosomes and mitotic arrest

    SciTech Connect

    Winnefeld, Marc; Grewenig, Annabel; Schnoelzer, Martina; Spring, Herbert; Knoch, Tobias A.; Gan, Eugene C.; Rommelaere, Jean; Cziepluch, Celina . E-mail: C.Cziepluch@dkfz.de

    2006-08-01

    The human small glutamine-rich TPR-containing protein (hSGT) is essential for cell division since RNA-interference-mediated strong reduction of hSGT protein levels causes mitotic arrest (M. Winnefeld, J. Rommelaere, and C. Cziepluch, The human small glutamine-rich TPR-containing protein is required for progress through cell division, Exp. Cell Res. 293 (2004), 43-57). Analysis of HeLa cells expressing a histone 2A-YFP fusion protein revealed the continuous presence of few mislocalized chromosomes close to the spindle poles as possible cause for hSGT depletion-dependent prometaphase arrest. Cells unable to rescue these mislocalized chromosomes into the metaphase plate died at this stage through apoptosis. In order to address hSGT function at the molecular level, mass spectrometry analysis of proteins which co-immunoprecipitated with Flag-tagged hSGT was performed. Thereby, Hsp70 and Bag-6/Bat-3/Scythe were identified as novel hSGT interaction partners while interaction with Hsc70 was confirmed. Results obtained with truncated versions of the hSGT protein revealed that Bag-6/Bat-3/Scythe and Hsp70 or Hsc70 were independently able to form complexes with hSGT. Interaction of hSGT with Hsc70, Hsp70 or Bag-6/Bat-3/Scythe was demonstrated in prometaphase, thereby suggesting a possible role for complexes containing hSGT and distinct (co)-chaperones during mitosis. Finally, cells from populations with reduced levels of Bag-6/Bat-3/Scythe also displayed persistence of mislocalized chromosomes and mitotic arrest, which strongly indicated that hSGT-Bag-6/Bat-3/Scythe complexes could be directly or indirectly required for complete chromosome congression.

  19. The potential of protein-nanomaterial interaction for advanced drug delivery.

    PubMed

    Peng, Qiang; Mu, Huiling

    2016-03-10

    Nanomaterials, like nanoparticles, micelles, nano-sheets, nanotubes and quantum dots, have great potentials in biomedical fields. However, their delivery is highly limited by the formation of protein corona upon interaction with endogenous proteins. This new identity, instead of nanomaterial itself, would be the real substance the organs and cells firstly encounter. Consequently, the behavior of nanomaterials in vivo is uncontrollable and some undesired effects may occur, like rapid clearance from blood stream; risk of capillary blockage; loss of targeting capacity; and potential toxicity. Therefore, protein-nanomaterial interaction is a great challenge for nanomaterial systems and should be inhibited. However, this interaction can also be used to functionalize nanomaterials by forming a selected protein corona. Unlike other decoration using exogenous molecules, nanomaterials functionalized by selected protein corona using endogenous proteins would have greater promise for clinical use. In this review, we aim to provide a comprehensive understanding of protein-nanomaterial interaction. Importantly, a discussion about how to use such interaction is launched and some possible applications of such interaction for advanced drug delivery are presented. PMID:26812004

  20. Defense display strategy and roadmaps

    NASA Astrophysics Data System (ADS)

    Hopper, Darrel G.

    2002-08-01

    The Department of Defense (DoD) is developing a new strategy for displays. The new displays science and technology roadmap will incorporate urgent warfighter needs as well as investment opportunities where military advantage is foreseen. Thrusts now ending include the High Definition System (HDS) program and related initiatives, like flexible displays, at the Defense Advanced Research Projects Agency (DARPA). Continuing thrusts include a variety of Serviceled programs to develop micro-displays for virtual image helmet-/rifle-mounted systems for pilots and soldiers, novel displays, materials, and basic research. New thrusts are being formulated for ultra-resolution, true 3D, and intelligent displays (integration of computers and communication functions into screens). The new strategy is Service-led.

  1. Development of Land Analysis System display modules

    NASA Technical Reports Server (NTRS)

    Gordon, Douglas; Hollaren, Douglas; Huewe, Laurie

    1986-01-01

    The Land Analysis System (LAS) display modules were developed to allow a user to interactively display, manipulate, and store image and image related data. To help accomplish this task, these modules utilize the Transportable Applications Executive and the Display Management System software to interact with the user and the display device. The basic characteristics of a display are outlined and some of the major modifications and additions made to the display management software are discussed. Finally, all available LAS display modules are listed along with a short description of each.

  2. Displays: Entering a New Dimension

    ERIC Educational Resources Information Center

    Starkman, Neal

    2007-01-01

    As display technologies prepare to welcome 3-D, the 21st-century classroom will soon bear little resemblance to anything students and teachers have ever seen. In this article, the author presents the latest innovations in the world of digital display technology. These include: (1) Touchlight, an interactive touch screen program that takes a normal…

  3. Characterization of core debris/concrete interactions for the Advanced Neutron Source

    SciTech Connect

    Hyman, C.R.; Taleyarkhan, R.P.

    1992-02-01

    This report provides the results of a recent study conducted to explore the molten core/concrete interaction (MCCI) issue for the Advanced Neutron Source (ANS). The need for such a study arises from the potential threats to reactor system integrity posed by MCCI. These threats include direct attack of the concrete basemat of the containment; generation and release of large quantities of gas that can pressurize the containment; the combustion threat of these gases; and the potential generation, release, and transport of radioactive aerosols to the environment.

  4. [Recent advances in the techniques of protein-protein interaction study].

    PubMed

    Wang, Ming-Qiang; Wu, Jin-Xia; Zhang, Yu-Hong; Han, Ning; Bian, Hong-Wu; Zhu, Mu-Yuan

    2013-11-01

    Protein-protein interactions play key roles in the development of organisms and the response to biotic and abiotic stresses. Several wet-lab methods have been developed to study this challenging area,including yeast two-hybrid system, tandem affinity purification, Co-immunoprecipitation, GST Pull-down, bimolecular fluorescence complementation, fluorescence resonance energy transfer and surface plasmon resonance analysis. In this review, we discuss theoretical principles and relative advantages and disvantages of these techniques,with an emphasis on recent advances to compensate for limitations. PMID:24579310

  5. An Evaluation of Detect and Avoid (DAA) Displays for Unmanned Aircraft Systems: The Effect of Information Level and Display Location on Pilot Performance

    NASA Technical Reports Server (NTRS)

    Fern, Lisa; Rorie, R. Conrad; Pack, Jessica S.; Shively, R. Jay; Draper, Mark H.

    2015-01-01

    A consortium of government, industry and academia is currently working to establish minimum operational performance standards for Detect and Avoid (DAA) and Control and Communications (C2) systems in order to enable broader integration of Unmanned Aircraft Systems (UAS) into the National Airspace System (NAS). One subset of these performance standards will need to address the DAA display requirements that support an acceptable level of pilot performance. From a pilot's perspective, the DAA task is the maintenance of self separation and collision avoidance from other aircraft, utilizing the available information and controls within the Ground Control Station (GCS), including the DAA display. The pilot-in-the-loop DAA task requires the pilot to carry out three major functions: 1) detect a potential threat, 2) determine an appropriate resolution maneuver, and 3) execute that resolution maneuver via the GCS control and navigation interface(s). The purpose of the present study was to examine two main questions with respect to DAA display considerations that could impact pilots' ability to maintain well clear from other aircraft. First, what is the effect of a minimum (or basic) information display compared to an advanced information display on pilot performance? Second, what is the effect of display location on UAS pilot performance? Two levels of information level (basic, advanced) were compared across two levels of display location (standalone, integrated), for a total of four displays. The authors propose an eight-stage pilot-DAA interaction timeline from which several pilot response time metrics can be extracted. These metrics were compared across the four display conditions. The results indicate that the advanced displays had faster overall response times compared to the basic displays, however, there were no significant differences between the standalone and integrated displays. Implications of the findings on understanding pilot performance on the DAA task, the

  6. Interactive Web-based Learning Modules Prior to General Medicine Advanced Pharmacy Practice Experiences

    PubMed Central

    Walton, Alison M.; Nisly, Sarah A.

    2015-01-01

    Objective. To implement and evaluate interactive web-based learning modules prior to advanced pharmacy practice experiences (APPEs) on inpatient general medicine. Design. Three clinical web-based learning modules were developed for use prior to APPEs in 4 health care systems. The aim of the interactive modules was to strengthen baseline clinical knowledge before the APPE to enable the application of learned material through the delivery of patient care. Assessment. For the primary endpoint, postassessment scores increased overall and for each individual module compared to preassessment scores. Postassessment scores were similar among the health care systems. The survey demonstrated positive student perceptions of this learning experience. Conclusion. Prior to inpatient general medicine APPEs, web-based learning enabled the standardization and assessment of baseline student knowledge across 4 health care systems. PMID:25995515

  7. Disruption of CCL20-CCR6 interaction inhibits metastasis of advanced cutaneous T-cell lymphoma

    PubMed Central

    Ito, Mitsugu; Abe, Fumito; Nara, Miho; Watanabe, Atsushi; Takahashi, Naoto; Miyagaki, Tomomitsu; Sugaya, Makoto; Tagawa, Hiroyuki

    2016-01-01

    We recently demonstrated that upregulation of a chemokine receptor CCR6 and its ligand CCL20 led to metastasis of advanced cutaneous T-cell lymphoma (CTCL) cells, suggesting the involvement of CCL20-CCR6 interaction in initiating CTCL cell metastasis. In this study, we determined whether this interaction is functional in metastatic CTCL cells. We first demonstrated increased STAT3 expression during the progression of primary CTCL. STAT3 was spontaneously activated and mediated the transcription of CCL20 in CTCL cell lines. Next, to determine whether the transient knockdown of STAT3, CCL20, or CCR6 or treatment with neutralizing antibody against CCL20 (neutralizing CCL20 antibody) could reduce the migration ability of CTCL cells, we conducted an in vitro migration assay. All treatments reduced the nutrition-dependent migration activity of CTCL cells. Notably, treatment with neutralizing CCL20 antibody reduced the migration ability of the cells without decreasing the expression of CCL20 and CCR6. This demonstrated that the CCL20-CCR6 interaction is actually functional in metastatic CTCL cells. Finally, to examine the in vivo effect of neutralizing CCL20 antibody, we used NOD/Shi-scid IL-2γnul mice inoculated with CTCL cells. These mice were expected to die due to metastasis of CTCL cells into multiple organs. However, administration of neutralizing CCL20 antibody significantly prolonged the survival of the xenografted mice. These findings suggested that automatic activation of the STAT3/CCL20/CCR6 cascade was involved in CTCL lymphomagenesis and that disruption of CCL20-CCR6 interaction could be a key therapeutic strategy against advanced CTCL. PMID:26789110

  8. Stereoscopic displays and applications; Proceedings of the Meeting, Santa Clara, CA, Feb. 12-14, 1990

    NASA Technical Reports Server (NTRS)

    Merritt, John O. (Editor); Fisher, Scott S. (Editor)

    1990-01-01

    The present conference discusses topics in the fields of stereoscopic displays' user interfaces, three-dimensional (TD) visualization, novel TD displays, and applications of stereoscopic displays. Attention is given to TD cockpit displays, novel computational control techniques for stereo TD displays, characterization of higher-dimensional presentation techniques, volume visualization on a stereoscopic display, and stereoscopic displays for terrain-data base visualization. Also discussed are the experimental design of cyberspaces, a volumetric environment for interactive design of three-dimensional objects, videotape recording of TD TV images, remote manipulator tasks rendered possible by stereo TV, TD endoscopy based on alternating-frame technology, and advancements in computer-generated barrier-strip autostereography.

  9. Virtual acoustic displays

    NASA Technical Reports Server (NTRS)

    Wenzel, Elizabeth M.

    1991-01-01

    A 3D auditory display can potentially enhance information transfer by combining directional and iconic information in a quite naturalistic representation of dynamic objects in the interface. Another aspect of auditory spatial clues is that, in conjunction with other modalities, it can act as a potentiator of information in the display. For example, visual and auditory cues together can reinforce the information content of the display and provide a greater sense of presence or realism in a manner not readily achievable by either modality alone. This phenomenon will be particularly useful in telepresence applications, such as advanced teleconferencing environments, shared electronic workspaces, and monitoring telerobotic activities in remote or hazardous situations. Thus, the combination of direct spatial cues with good principles of iconic design could provide an extremely powerful and information-rich display which is also quite easy to use. An alternative approach, recently developed at ARC, generates externalized, 3D sound cues over headphones in realtime using digital signal processing. Here, the synthesis technique involves the digital generation of stimuli using Head-Related Transfer Functions (HRTF's) measured in the two ear-canals of individual subjects. Other similar approaches include an analog system developed by Loomis, et. al., (1990) and digital systems which make use of transforms derived from normative mannikins and simulations of room acoustics. Such an interface also requires the careful psychophysical evaluation of listener's ability to accurately localize the virtual or synthetic sound sources. From an applied standpoint, measurement of each potential listener's HRTF's may not be possible in practice. For experienced listeners, localization performance was only slightly degraded compared to a subject's inherent ability. Alternatively, even inexperienced listeners may be able to adapt to a particular set of HRTF's as long as they provide adequate

  10. DSPOBJ - System for display of multiple sets of three-dimensional data. [Fortran subroutine for computer graphics

    NASA Technical Reports Server (NTRS)

    Ashbaugh, J. B.; Roland, D. P.; Laird, L. F.

    1978-01-01

    DSPOBJ is a FORTRAN subroutine to control the display of three-dimensional line networks on a stand-alone, general-purpose, interactive computer graphics system. The program controls the creation and manipulation of transformation matrices for the display and control of multiple sets of line networks. It provides advanced graphics features such as independent and global scaling, rotation and translation, cross-sectioning, reflection, and simultaneous display of four views.

  11. Advances in interactive supported electrocatalysts for hydrogen and oxygen electrode reactions

    NASA Astrophysics Data System (ADS)

    Krstajic, Nedeljko V.; Vracar, Ljiljana M.; Radmilovic, Velimir R.; Neophytides, Stelios G.; Labou, Miranda; Jaksic, Jelena M.; Tunold, Reidar; Falaras, Polycarpos; Jaksic, Milan M.

    2007-05-01

    Magneli phases [A. Magneli, Acta Chem. Scand. 13 (1959) 5] have been introduced as a unique electron conductive and interactive support for electrocatalysis both in hydrogen (HELR) and oxygen (OELR) electrode reactions in water electrolysis and Low Temperature PEM Fuel Cells (LT PEM FC). The Strong Metal-Support Interaction (SMSI) that imposes the former implies: (i) the hypo-hyper-d-interbonding effect and its catalytic consequences, and (ii) the interactive primary oxide (M-OH) spillover from the hypo-d-oxide support as a dynamic electrocatalytic contribution. The stronger the bonding, the more strained appear d-orbitals, thereby the less strong the intermediate adsorptive strength in the rate determining step (RDS), and consequently, the faster the facilitated catalytic electrode reaction arises. At the same time the primary oxide spillover transferred from the hypo-d-oxide support directly interferes and reacts either individually and directly to contribute to finish the oxygen reduction, or with other interactive species, like CO to contribute to the CO tolerance. In such a respect, the conditions to provide Au to act as the reversible hydrogen electrode have been proved either by its potentiodynamic surface reconstruction in a heavy water solution, or by the nanostructured SMSI Au on anatase titania with characteristic strained d-orbitals in such a hypo-hyper-d-interactive bonding (Au/TiO 2). In the same context, some spontaneous tendency towards monoatomic network dispersion of Pt upon Magneli phases makes it possible to produce an advanced interactive supported electrocatalyst for cathodic oxygen reduction (ORR). The strained hypo-hyper-d-interelectronic and inter-d-orbital metal/hypo-d-oxide support bonding relative to the strength of the latter, has been inferred to be the basis of the synergistic electrocatalytic effect both in the HELR and ORR.

  12. Augmenting digital displays with computation

    NASA Astrophysics Data System (ADS)

    Liu, Jing

    rate for traditional displays is not enough for some computational displays that show complex image patterns. The study focuses on displays with hidden channels, and their application to 3D+2D TV. By taking advantage of the fast growing power of computation and sensors, these four novel display setups - in combination with display algorithms - advance the frontier of computational display research.

  13. Paracoccidioides-host Interaction: An Overview on Recent Advances in the Paracoccidioidomycosis

    PubMed Central

    de Oliveira, Haroldo C.; Assato, Patrícia A.; Marcos, Caroline M.; Scorzoni, Liliana; de Paula E Silva, Ana C. A.; Da Silva, Julhiany De Fátima; Singulani, Junya de Lacorte; Alarcon, Kaila M.; Fusco-Almeida, Ana M.; Mendes-Giannini, Maria J. S.

    2015-01-01

    Paracoccidioides brasiliensis and P. lutzii are etiologic agents of paracoccidioidomycosis (PCM), an important endemic mycosis in Latin America. During its evolution, these fungi have developed characteristics and mechanisms that allow their growth in adverse conditions within their host through which they efficiently cause disease. This process is multi-factorial and involves host–pathogen interactions (adaptation, adhesion, and invasion), as well as fungal virulence and host immune response. In this review, we demonstrated the glycoproteins and polysaccharides network, which composes the cell wall of Paracoccidioides spp. These are important for the change of conidia or mycelial (26°C) to parasitic yeast (37°C). The morphological switch, a mechanism for the pathogen to adapt and thrive inside the host, is obligatory for the establishment of the infection and seems to be related to pathogenicity. For these fungi, one of the most important steps during the interaction with the host is the adhesion. Cell surface proteins called adhesins, responsible for the first contact with host cells, contribute to host colonization and invasion by mediating this process. These fungi also present the capacity to form biofilm and through which they may evade the host’s immune system. During infection, Paracoccidioides spp. can interact with different host cell types and has the ability to modulate the host’s adaptive and/or innate immune response. In addition, it participates and interferes in the coagulation system and phenomena like cytoskeletal rearrangement and apoptosis. In recent years, Paracoccidioides spp. have had their endemic areas expanding in correlation with the expansion of agriculture. In response, several studies were developed to understand the infection using in vitro and in vivo systems, including alternative non-mammal models. Moreover, new advances were made in treating these infections using both well-established and new antifungal agents. These

  14. Modeling Creep-Fatigue-Environment Interactions in Steam Turbine Rotor Materials for Advanced Ultra-supercritical Coal Power Plants

    SciTech Connect

    Shen, Chen

    2014-04-01

    The goal of this project is to model creep-fatigue-environment interactions in steam turbine rotor materials for advanced ultra-supercritical (A-USC) coal power Alloy 282 plants, to develop and demonstrate computational algorithms for alloy property predictions, and to determine and model key mechanisms that contribute to the damages caused by creep-fatigue-environment interactions.

  15. Open control/display system for a telerobotics work station

    NASA Technical Reports Server (NTRS)

    Keslowitz, Saul

    1987-01-01

    A working Advanced Space Cockpit was developed that integrated advanced control and display devices into a state-of-the-art multimicroprocessor hardware configuration, using window graphics and running under an object-oriented, multitasking real-time operating system environment. This Open Control/Display System supports the idea that the operator should be able to interactively monitor, select, control, and display information about many payloads aboard the Space Station using sets of I/O devices with a single, software-reconfigurable workstation. This is done while maintaining system consistency, yet the system is completely open to accept new additions and advances in hardware and software. The Advanced Space Cockpit, linked to Grumman's Hybrid Computing Facility and Large Amplitude Space Simulator (LASS), was used to test the Open Control/Display System via full-scale simulation of the following tasks: telerobotic truss assembly, RCS and thermal bus servicing, CMG changeout, RMS constrained motion and space constructible radiator assembly, HPA coordinated control, and OMV docking and tumbling satellite retrieval. The proposed man-machine interface standard discussed has evolved through many iterations of the tasks, and is based on feedback from NASA and Air Force personnel who performed those tasks in the LASS.

  16. Creating Interactive Graphical Overlays in the Advanced Weather Interactive Processing System (AWIPS) Using Shapefiles and DGM Files

    NASA Technical Reports Server (NTRS)

    Barrett, Joe H., III; Lafosse, Richard; Hood, Doris; Hoeth, Brian

    2007-01-01

    Graphical overlays can be created in real-time in the Advanced Weather Interactive Processing System (AWIPS) using shapefiles or DARE Graphics Metafile (DGM) files. This presentation describes how to create graphical overlays on-the-fly for AWIPS, by using two examples of AWIPS applications that were created by the Applied Meteorology Unit (AMU). The first example is the Anvil Threat Corridor Forecast Tool, which produces a shapefile that depicts a graphical threat corridor of the forecast movement of thunderstorm anvil clouds, based on the observed or forecast upper-level winds. This tool is used by the Spaceflight Meteorology Group (SMG) and 45th Weather Squadron (45 WS) to analyze the threat of natural or space vehicle-triggered lightning over a location. The second example is a launch and landing trajectory tool that produces a DGM file that plots the ground track of space vehicles during launch or landing. The trajectory tool can be used by SMG and the 45 WS forecasters to analyze weather radar imagery along a launch or landing trajectory. Advantages of both file types will be listed.

  17. Calcium-magnesium Aluminosilicate (CMAS) Interactions with Advanced Environmental Barrier Coating Material

    NASA Technical Reports Server (NTRS)

    Wiesner, Valerie L.; Bansal, Narottam P.

    2015-01-01

    Particulates, like sand and volcanic ash, threaten the development of robust environmental barrier coatings (EBCs) that protect next-generation silicon-based ceramic matrix composite (CMC) turbine engine components from harsh combustion environments during service. The siliceous particulates transform into molten glassy deposits of calcium-magnesium aluminosilicate (CMAS) when ingested by an aircraft engine operating at temperatures above 1200C. In this study, a sample of desert sand was melted into CMAS glass to evaluate high-temperature interactions between the sand glass and an advanced EBC material. Desert sand glass was added to the surface of hot-pressed EBC substrates, which were then heated in air at temperatures ranging from 1200C to 1500C. Scanning electron microscopy and X-ray energy-dispersive spectroscopy were used to evaluate microstructure and phase compositions of specimens and the CMASEBC interface after heat treatments.

  18. Advanced Fluid--Structure Interaction Techniques in Application to Horizontal and Vertical Axis Wind Turbines

    NASA Astrophysics Data System (ADS)

    Korobenko, Artem

    During the last several decades engineers and scientists put significant effort into developing reliable and efficient wind turbines. As a wind power production demands grow, the wind energy research and development need to be enhanced with high-precision methods and tools. These include time-dependent, full-scale, complex-geometry advanced computational simulations at large-scale. Those, computational analysis of wind turbines, including fluid-structure interaction simulations (FSI) at full scale is important for accurate and reliable modeling, as well as blade failure prediction and design optimization. In current dissertation the FSI framework is applied to most challenging class of problems, such as large scale horizontal axis wind turbines and vertical axis wind turbines. The governing equations for aerodynamics and structural mechanics together with coupled formulation are explained in details. The simulations are performed for different wind turbine designs, operational conditions and validated against field-test and wind tunnel experimental data.

  19. Characterization of the interactions within fine particle mixtures in highly concentrated suspensions for advanced particle processing.

    PubMed

    Otsuki, Akira; Bryant, Gary

    2015-12-01

    This paper aims to summarize recent investigations into the dispersion of fine particles, and the characterization of their interactions, in concentrated suspensions. This summary will provide a better understanding of the current status of this research, and will provide useful feedback for advanced particle processing. Such processes include the fabrication of functional nanostructures and the sustainable beneficiation of complex ores. For example, there has been increasing demand for complex ore utilization due to the noticeable decrease in the accessibility of high grade and easily extractable ores. In order to maintain the sustainable use of mineral resources, the effective beneficiation of complex ores is urgently required. It can be successfully achieved only with selective particle/mineral dispersion/liberation and the assistance of mineralogical and particle characterization. PMID:26298173

  20. Interaction of Porosity with an Advancing Solid/Liquid Interface: a Real-Time Investigation

    NASA Technical Reports Server (NTRS)

    Sen, S.; Kaukler, W.; Catalina, A.; Stefanescu, D.; Curreri, P.

    1999-01-01

    Problems associated with formation of porosity during solidification continue to have a daily impact on the metal forming industry. Several past investigations have dealt with the nucleation and growth aspects of porosity. However, investigations related to the interaction of porosity with that of a solidification front has been limited mostly to organic analogues. In this paper we report on real time experimental observations of such interactions in metal alloys. Using a state of the art X-Ray Transmission Microscope (XTM) we have been able to observe and record the dynamics of the interaction. This includes distortion of the solid/liquid interface near a poro.sity, solute segr,egation patterns surrounding a porosity and the change in shape of the porosity during interaction with an advancing solid/liquid interface. Results will be presented for different Al alloys and growth conditions. The experimental data will be compared to theory using a recently developed 2D numerical model. The model employs a finite difference approach where the solid/liquid interface is defined through the points at which the interface intersects the grid lines. The transport variables are calculated at these points and the motion of the solidification front is determined by the magnitude of the transport variables. The model accounts for the interplay of the thermal and solutal field and the influence of capilarity to predict the shape of the solid/liquid interface with time in the vicinity of porosity. One can further calculate the perturbation of the solutal field by the presence of porosity in the melt.

  1. Computer display and manipulation of biological molecules

    NASA Technical Reports Server (NTRS)

    Coeckelenbergh, Y.; Macelroy, R. D.; Hart, J.; Rein, R.

    1978-01-01

    This paper describes a computer model that was designed to investigate the conformation of molecules, macromolecules and subsequent complexes. Utilizing an advanced 3-D dynamic computer display system, the model is sufficiently versatile to accommodate a large variety of molecular input and to generate data for multiple purposes such as visual representation of conformational changes, and calculation of conformation and interaction energy. Molecules can be built on the basis of several levels of information. These include the specification of atomic coordinates and connectivities and the grouping of building blocks and duplicated substructures using symmetry rules found in crystals and polymers such as proteins and nucleic acids. Called AIMS (Ames Interactive Molecular modeling System), the model is now being used to study pre-biotic molecular evolution toward life.

  2. EDITORIAL: Van der Waals interactions in advanced materials, in memory of David C Langreth Van der Waals interactions in advanced materials, in memory of David C Langreth

    NASA Astrophysics Data System (ADS)

    Hyldgaard, Per; Rahman, Talat S.

    2012-10-01

    Solid State Commun. 17 1425 [4]Gunnarsson O and Lundqvist B I 1976 Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism Phys. Rev. B 13 4274 [5]Langreth D C and Mehl M J 1981 Beyond the local-density approximation in calculations of ground-state electronic properties Phys. Rev. B 47 446 [6]Dion M, Rydberg H, Schröder E, Langreth D C and Lundqvist B I 2004 Van der Waals density functional for general geometries Phys. Rev. Lett. 92 246401 Thonhauser T, Cooper V R, Li S, Puzder A, Hyldgaard P and Langreth D C 2007 Van der Waals density functional: self-consistent potential and the nature of the van der Waals bond Phys. Rev. B 76 125112 [7]Lee K, Murray E D, Kong L, Lundqvist B I and Langreth D C 2010 A higher-accuracy van der Waals density functional Phys. Rev. B 82 081101 [8]Rapcewicz K and Ashcroft N W 1991 Fluctuation attraction in condensed matter: a nonlocal functional approach Phys. Rev. B 44 4032 Lundqvist B I, Andersson Y, Shao H, Chan S and Langreth D C 1995 Density functional theory including van der Waals forces Int. J. Quant. Chem. 56 247 [9]Langreth D C et al 2009 A density functional for sparse matter J. Phys.: Condens. Matter 21 084203 [10]For example, Kohn W, Meir Y and Makarov D E 1998 The exchange-correlation energy of a metallic surface Phys. Rev. Lett. 80 4153 Kurth S and Perdew J P 1999 Phys. Rev. B 59 10461 Dobson J F and Wang J 1999 Phys. Rev. Lett. 82 2123 Pitarke J M and Perdew J P 2003 Phys. Rev. B 67 045101 Vydrov O A and van Voorhi T 2009 Phys. Rev. Lett. 103 063004 [11]For example, Grimme S 2004 J. Comput. Phys. 25 1463 Tkatchenko A and Scheffler M 2009 Phys. Rev. Lett. 102 073005 Grimme S, Antony J, Ehrlich S and Krieg H 2010 J. Chem. Phys. 132 154004 [12]Burke K 2012 Perspectives on density functional theory J. Chem. Phys. 136 150901 Van der Waals interactions in advanced materials contents Van der Waals interactions in advanced materials, in memory of David C LangrethPer Hyldgaard and Talat S

  3. Phage display of proteins.

    PubMed

    Kościelska, K; Kiczak, L; Kasztura, M; Wesołowska, O; Otlewski, J

    1998-01-01

    In recent years the phage display approach has become an increasingly popular method in protein research. This method enables the presentation of large peptide and protein libraries on the surface of phage particles from which molecules of desired functional property(ies) can be rapidly selected. The great advantage of this method is a direct linkage between an observed phenotype and encapsulated genotype, which allows fast determination of selected sequences. The phage display approach is a powerful tool in generating highly potent biomolecules, including: search for specific antibodies, determining enzyme specificity, exploring protein-protein and protein-DNA interactions, minimizing proteins, introducing new functions into different protein scaffolds, and searching sequence space of protein folding. In this article many examples are given to illustrate that this technique can be used in different fields of protein science. The phage display has a potential of the natural evolution and its possibilities are far beyond rational prediction. Assuming that we can design the selection agents and conditions we should be able to engineer any desired protein function or feature. PMID:9918498

  4. Dynamic assessment of Amyloid oligomers - cell membrane interaction by advanced impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Gheorghiu, M.; David, S.; Polonschii, C.; Bratu, D.; Gheorghiu, E.

    2013-04-01

    The amyloid β (Aβ) peptides are believed to be pivotal in Alzheimer's disease (AD) pathogenesis and onset of vascular dysfunction. Recent studies indicate that Aβ1-42 treatment influences the expression of tight junction protein complexes, stress fibre formation, disruption and aggregation of actin filaments and cellular gap formation. Aiming for functional characterization of model cells upon Aβ1-42 treatment, we deployed an advanced Electric Cell-substrate Impedance Sensing for monitoring cell evolution. A precision Impedance Analyzer with a multiplexing module developed in house was used for recording individual electrode sets in the 40 Hz - 100 KHz frequency range. In a step forward from the classical ECIS assays, we report on a novel data analysis algorithm that enables access to cellular and paracellular electrical parameters and cell surface interaction with fully developed cell monolayers. The evolution of the impedance at selected frequencies provides evidence for a dual effect of Aβ42 exposure, at both paracellular permeability and cell adherence level, with intricate dynamics that open up new perspectives on Aβ1-42 oligomers - cell membrane interaction. Validation of electrical impedance assays of the amyloid fibrils effect on cell membrane structure is achieved by both AFM analysis and Surface Plasmon Resonance studies. The capabilities of this noninvasive, real time platform for cell analysis in a wider applicative context are outlined.

  5. Effective color design for displays

    NASA Astrophysics Data System (ADS)

    MacDonald, Lindsay W.

    2002-06-01

    Visual communication is a key aspect of human-computer interaction, which contributes to the satisfaction of user and application needs. For effective design of presentations on computer displays, color should be used in conjunction with the other visual variables. The general needs of graphic user interfaces are discussed, followed by five specific tasks with differing criteria for display color specification - advertising, text, information, visualization and imaging.

  6. Localization in virtual acoustic displays

    NASA Astrophysics Data System (ADS)

    Wenzel, Elizabeth M.

    This paper discusses the development of a particular spatial display medium, the virtual acoustic display. Although the technology can stand alone, it is envisioned ultimately to be a component of a larger multisensory environment and will no doubt find its greatest utility in that context. A general philosophy of the project has been that the development of advanced computer interfaces should be driven first by an understanding of human perceptual requirements, and secondarily by technological capabilities or constraints. In expanding on this view, the paper addresses why virtual acoustic displays are useful, characterizes the abilities of such displays, reviews some recent approaches to their implementation and application, describes the research project at NASA Ames in some detail, and finally outlines some critical research issues for the future.

  7. Localization in virtual acoustic displays

    NASA Technical Reports Server (NTRS)

    Wenzel, Elizabeth M.

    1992-01-01

    This paper discusses the development of a particular spatial display medium, the virtual acoustic display. Although the technology can stand alone, it is envisioned ultimately to be a component of a larger multisensory environment and will no doubt find its greatest utility in that context. A general philosophy of the project has been that the development of advanced computer interfaces should be driven first by an understanding of human perceptual requirements, and secondarily by technological capabilities or constraints. In expanding on this view, the paper addresses why virtual acoustic displays are useful, characterizes the abilities of such displays, reviews some recent approaches to their implementation and application, describes the research project at NASA Ames in some detail, and finally outlines some critical research issues for the future.

  8. Interactive design center.

    SciTech Connect

    Pomplun, Alan R. (Sandia National Laboratories, Livermore, CA)

    2005-07-01

    Sandia's advanced computing resources provide researchers, engineers and analysts with the ability to develop and render highly detailed large-scale models and simulations. To take full advantage of these multi-million data point visualizations, display systems with comparable pixel counts are needed. The Interactive Design Center (IDC) is a second generation visualization theater designed to meet this need. The main display integrates twenty-seven projectors in a 9-wide by 3-high array with a total display resolution of more than 35 million pixels. Six individual SmartBoard displays offer interactive capabilities that include on-screen annotation and touch panel control of the facility's display systems. This report details the design, implementation and operation of this innovative facility.

  9. Display formats manual

    NASA Technical Reports Server (NTRS)

    Runnels, R. L.

    1973-01-01

    The standards and procedures for the generation of operational display formats to be used in the Mission Control Center (MCC) display control system are presented. The required effort, forms, and fundamentals for the design, specifications, and production of display formats are identified. The principles of display design and system constraints controlling the creation of optimum operational displays for mission control are explained. The basic two types of MCC display systems for presenting information are described.

  10. Display system for imaging scientific telemetric information

    NASA Technical Reports Server (NTRS)

    Zabiyakin, G. I.; Rykovanov, S. N.

    1979-01-01

    A system for imaging scientific telemetric information, based on the M-6000 minicomputer and the SIGD graphic display, is described. Two dimensional graphic display of telemetric information and interaction with the computer, in analysis and processing of telemetric parameters displayed on the screen is provided. The running parameter information output method is presented. User capabilities in the analysis and processing of telemetric information imaged on the display screen and the user language are discussed and illustrated.

  11. Environmental qualification of the MH-53J color multifunction display

    NASA Astrophysics Data System (ADS)

    Malia, Timothy E.

    1996-05-01

    In early 1994, Loral Federal Systems Owego (LFS-O) was awarded the MH-53J Interactive Defensive Avionics System/Multi-Mission Advanced Tactical Terminal (IDAS/MATT) upgrade program as prime contractor. The MH-53J is a USAF special operations helicopter providing infiltration and exfiltration mission capability in a low-slow manner. One element the upgrade was a new digital map system (DMS), which consists of a 2 GB digital memory unit (DMU), a digital map computer (DMC) and a 6' by 8' color multi-function display (CMFD). Although the original specification was written for a CRT, Loral determined that an active matrix liquid crystal display (AMLCD) based solution would better achieve the mission goals. The display upgrade was not intended to be a development program, but LFS-O found that there were very few solutions available near term, and chose to develop the display in Owego, making it their first military AMLCD production program. The CMFD is based on a commercial liquid crystal display manufactured by Display Technologies Incorporated (DTI), a joint venture of IBM and Toshiba. In March of 1995, just nine months after the design started, LFS-O delivered the first CMFD for systems integration. In December 1995, LFS-O successfully completed the environmental qualification of the CMFD. The extensive testing unearthed several initial deficiencies in the thermal, vibration, humidity salt fog and EMI design. This paper discusses these challenges and how they were overcome to achieve compliance with the USAF requirements.

  12. An advanced synthetic eddy method for the computation of aerofoil-turbulence interaction noise

    NASA Astrophysics Data System (ADS)

    Kim, Jae Wook; Haeri, Sina

    2015-04-01

    This paper presents an advanced method to synthetically generate flow turbulence via an inflow boundary condition particularly designed for three-dimensional aeroacoustic simulations. The proposed method is virtually free of spurious noise that might arise from the synthetic turbulence, which enables a direct calculation of propagated sound waves from the source mechanism. The present work stemmed from one of the latest outcomes of synthetic eddy method (SEM) derived from a well-defined vector potential function creating a divergence-free velocity field with correct convection speeds of eddies, which in theory suppresses pressure fluctuations. In this paper, a substantial extension of the SEM is introduced and systematically optimised to create a realistic turbulence field based on von Kármán velocity spectra. The optimised SEM is then combined with a well-established sponge-layer technique to quietly inject the turbulent eddies into the domain from the upstream boundary, which results in a sufficiently clean acoustic field. Major advantages in the present approach are: a) that genuinely three-dimensional turbulence is generated; b) that various ways of parametrisation can be created to control/characterise the randomly distributed eddies; and, c) that its numerical implementation is efficient as the size of domain section through which the turbulent eddies should be passing can be adjusted and minimised. The performance and reliability of the proposed SEM are demonstrated by a three-dimensional simulation of aerofoil-turbulence interaction noise.

  13. Advanced Pellet Cladding Interaction Modeling Using the US DOE CASL Fuel Performance Code: Peregrine

    SciTech Connect

    Jason Hales; Various

    2014-06-01

    The US DOE’s Consortium for Advanced Simulation of LWRs (CASL) program has undertaken an effort to enhance and develop modeling and simulation tools for a virtual reactor application, including high fidelity neutronics, fluid flow/thermal hydraulics, and fuel and material behavior. The fuel performance analysis efforts aim to provide 3-dimensional capabilities for single and multiple rods to assess safety margins and the impact of plant operation and fuel rod design on the fuel thermomechanical- chemical behavior, including Pellet-Cladding Interaction (PCI) failures and CRUD-Induced Localized Corrosion (CILC) failures in PWRs. [1-3] The CASL fuel performance code, Peregrine, is an engineering scale code that is built upon the MOOSE/ELK/FOX computational FEM framework, which is also common to the fuel modeling framework, BISON [4,5]. Peregrine uses both 2-D and 3-D geometric fuel rod representations and contains a materials properties and fuel behavior model library for the UO2 and Zircaloy system common to PWR fuel derived from both open literature sources and the FALCON code [6]. The primary purpose of Peregrine is to accurately calculate the thermal, mechanical, and chemical processes active throughout a single fuel rod during operation in a reactor, for both steady state and off-normal conditions.

  14. Advanced Pellet-Cladding Interaction Modeling using the US DOE CASL Fuel Performance Code: Peregrine

    SciTech Connect

    Montgomery, Robert O.; Capps, Nathan A.; Sunderland, Dion J.; Liu, Wenfeng; Hales, Jason; Stanek, Chris; Wirth, Brian D.

    2014-06-15

    The US DOE’s Consortium for Advanced Simulation of LWRs (CASL) program has undertaken an effort to enhance and develop modeling and simulation tools for a virtual reactor application, including high fidelity neutronics, fluid flow/thermal hydraulics, and fuel and material behavior. The fuel performance analysis efforts aim to provide 3-dimensional capabilities for single and multiple rods to assess safety margins and the impact of plant operation and fuel rod design on the fuel thermo-mechanical-chemical behavior, including Pellet-Cladding Interaction (PCI) failures and CRUD-Induced Localized Corrosion (CILC) failures in PWRs. [1-3] The CASL fuel performance code, Peregrine, is an engineering scale code that is built upon the MOOSE/ELK/FOX computational FEM framework, which is also common to the fuel modeling framework, BISON [4,5]. Peregrine uses both 2-D and 3-D geometric fuel rod representations and contains a materials properties and fuel behavior model library for the UO2 and Zircaloy system common to PWR fuel derived from both open literature sources and the FALCON code [6]. The primary purpose of Peregrine is to accurately calculate the thermal, mechanical, and chemical processes active throughout a single fuel rod during operation in a reactor, for both steady state and off-normal conditions.

  15. Bioremediation of PAHs and VOCs: Advances in clay mineral-microbial interaction.

    PubMed

    Biswas, Bhabananda; Sarkar, Binoy; Rusmin, Ruhaida; Naidu, Ravi

    2015-12-01

    Bioremediation is an effective strategy for cleaning up organic contaminants, such as polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs). Advanced bioremediation implies that biotic agents are more efficient in degrading the contaminants completely. Bioremediation by microbial degradation is often employed and to make this process efficient, natural and cost-effective materials can serve as supportive matrices. Clay/modified clay minerals are effective adsorbents of PAHs/VOCs, and readily available substrate and habitat for microorganisms in the natural soil and sediment. However, the mechanism underpinning clay-mediated biodegradation of organic compounds is often unclear, and this requires critical investigation. This review describes the role of clay/modified clay minerals in hydrocarbon bioremediation through interaction with microbial agents in specific scenarios. The vision is on a faster, more efficient and cost-effective bioremediation technique using clay-based products. This review also proposes future research directions in the field of clay modulated microbial degradation of hydrocarbons. PMID:26408945

  16. Interactive effects of vascular risk burden and advanced age on cerebral blood flow

    PubMed Central

    Bangen, Katherine J.; Nation, Daniel A.; Clark, Lindsay R.; Harmell, Alexandrea L.; Wierenga, Christina E.; Dev, Sheena I.; Delano-Wood, Lisa; Zlatar, Zvinka Z.; Salmon, David P.; Liu, Thomas T.; Bondi, Mark W.

    2014-01-01

    Vascular risk factors and cerebral blood flow (CBF) reduction have been linked to increased risk of cognitive impairment and Alzheimer's disease (AD); however the possible moderating effects of age and vascular risk burden on CBF in late life remain understudied. We examined the relationships among elevated vascular risk burden, age, CBF, and cognition. Seventy-one non-demented older adults completed an arterial spin labeling MR scan, neuropsychological assessment, and medical history interview. Relationships among vascular risk burden, age, and CBF were examined in a priori regions of interest (ROIs) previously implicated in aging and AD. Interaction effects indicated that, among older adults with elevated vascular risk burden (i.e., multiple vascular risk factors), advancing age was significantly associated with reduced cortical CBF whereas there was no such relationship for those with low vascular risk burden (i.e., no or one vascular risk factor). This pattern was observed in cortical ROIs including medial temporal (hippocampus, parahippocampal gyrus, uncus), inferior parietal (supramarginal gyrus, inferior parietal lobule, angular gyrus), and frontal (anterior cingulate, middle frontal gyrus, medial frontal gyrus) cortices. Furthermore, among those with elevated vascular risk, reduced CBF was associated with poorer cognitive performance. Such findings suggest that older adults with elevated vascular risk burden may be particularly vulnerable to cognitive change as a function of CBF reductions. Findings support the use of CBF as a potential biomarker in preclinical AD and suggest that vascular risk burden and regionally-specific CBF changes may contribute to differential age-related cognitive declines. PMID:25071567

  17. The Interactive Impact of Race and Gender on High School Advanced Course Enrollment

    ERIC Educational Resources Information Center

    Corra, Mamadi; Carter, J. Scott; Carter, Shannon K.

    2011-01-01

    Data from the North Carolina Department of Public Instruction archive are used to assess the joint effect of race and gender on advanced academic (advanced placement and honors) course enrollment within a school district with an open enrollment policy. Using student SAT scores; the authors compare expected levels of advanced course enrollment for…

  18. Recent Advances in the Development of Small-Molecular Inhibitors Target HIV Integrase-LEDGF/p75 Interaction.

    PubMed

    Zhao, Yu; Luo, Zaigang

    2015-01-01

    Lens epithelium-derived growth factor (LEDGF/p75) plays an essential role in the HIV-1 replication. It acts by tethering integrase (IN) into the host cellular chromatin. Due to its significance of the IN-LEDGF/p75 interaction affords a novel therapeutic approach for the design of new classes of antiretroviral agents. To date, many small molecules have been found to be the inhibitors of INLEDGF/ p75 interaction. This review summarizes recent advances in the development of potential structure-based IN-LEDGF/p75 interaction inhibitors. The work will be helpful to shed light on the antiretroviral drug development pipeline in the next future. PMID:26156421

  19. Multiple Miniature Avionic Displays

    NASA Technical Reports Server (NTRS)

    Rye, Jeffrey M. (Inventor); Dorneich, Michael C. (Inventor); Gannon, Aaron J. (Inventor)

    2008-01-01

    A display screen for displaying multiple sets of information is provided. In one embodiment, an aviation display screen includes a main window and a plurality of miniature windows. The main window is adapted to illustrate one set of information. Each miniature window is adapted to display a set of avionic information. The avionic display is further adapted to toggle a select set of avionic information in one of the miniature windows into the main window.

  20. System status display information

    NASA Technical Reports Server (NTRS)

    Summers, L. G.; Erickson, J. B.

    1984-01-01

    The system Status Display is an electronic display system which provides the flight crew with enhanced capabilities for monitoring and managing aircraft systems. Guidelines for the design of the electronic system displays were established. The technical approach involved the application of a system engineering approach to the design of candidate displays and the evaluation of a Hernative concepts by part-task simulation. The system engineering and selection of candidate displays are covered.

  1. Recent Advances in the Analysis of Macromolecular Interactions Using the Matrix-Free Method of Sedimentation in the Analytical Ultracentrifuge

    PubMed Central

    Harding, Stephen E.; Gillis, Richard B.; Almutairi, Fahad; Erten, Tayyibe; Kök, M. Şamil; Adams, Gary G.

    2015-01-01

    Sedimentation in the analytical ultracentrifuge is a matrix free solution technique with no immobilisation, columns, or membranes required and can be used to study self-association and complex or “hetero”-interactions, stoichiometry, reversibility and interaction strength of a wide variety of macromolecular types and across a very large dynamic range (dissociation constants from 10−12 M to 10−1 M). We extend an earlier review specifically highlighting advances in sedimentation velocity and sedimentation equilibrium in the analytical ultracentrifuge applied to protein interactions and mucoadhesion and to review recent applications in protein self-association (tetanus toxoid, agrin), protein-like carbohydrate association (aminocelluloses), carbohydrate-protein interactions (polysaccharide-gliadin), nucleic-acid protein (G-duplexes), nucleic acid-carbohydrate (DNA-chitosan) and finally carbohydrate-carbohydrate (xanthan-chitosan and a ternary polysaccharide complex) interactions. PMID:25756246

  2. Investigating Face-to-Face Peer Interaction Patterns in a Collaborative Web Discovery Task: The Bene?ts of a Shared Display

    ERIC Educational Resources Information Center

    Chung, C-W.; Lee, C-C.; Liu, C-C.

    2013-01-01

    Mobile computers are now increasingly applied to facilitate face-to-face collaborative learning. However, the factors affecting face-to-face peer interactions are complex as they involve rich communication media. In particular, non-verbal interactions are necessary to convey critical communication messages in face-to-face communication. Through…

  3. Introduction to the National Information Display Laboratory

    NASA Technical Reports Server (NTRS)

    Carlson, Curtis R.

    1992-01-01

    The goals of the National Information Display Laboratory (NIDL) are described in viewgraph form. The NIDL is a Center of Excellence in softcopy technology with the overall goal to develop new ways to satisfy government information needs through aggressive user support and the development of advanced technology. Government/industry/academia participation, standards development, and various display technologies are addressed.

  4. Interactive Higher Education Instruction to Advance STEM Instruction in the Environmental Sciences - the Brownfield Action Model

    NASA Astrophysics Data System (ADS)

    Liddicoat, J. C.; Bower, P.

    2015-12-01

    The U.S. Environmental Protection Agency estimates that presently there are over half a million brownfields in the United States, but this number only includes sites for which an Environmental Site Assessment has been conducted. The actual number of brownfields is certainly in the millions and constitutes one of the major environmental issues confronting all communities today. Taught in part or entirely online for more than 15 years in environmental science, engineering, and hydrology courses at over a dozen colleges, universities, and high schools in the United States, Brownfield Action (BA) is an interactive, web-based simulation that combines scientific expertise, constructivist education philosophy, and multimedia to advance the teaching of environmental science (Bower et al., 2011, 2014; Liddicoat and Bower, 2015). In the online simulation and classroom, students form geotechnical consulting companies with a peer chosen at random to solve a problem in environmental forensics. The BA model contains interdisciplinary scientific and social information that are integrated within a digital learning environment that encourages students to construct their knowledge as they learn by doing. As such, the approach improves the depth and coherence of students understanding of the course material. Like real-world environmental consultants and professionals, students are required to develop and apply expertise from a wide range of fields, including environmental science and engineering as well as journalism, medicine, public health, law, civics, economics, and business management. The overall objective is for students to gain an unprecedented appreciation of the complexity, ambiguity, and risk involved in any environmental issue, and to acquire STEM knowledge that can be used constructively when confronted with such an issue.

  5. Thin optical display panel

    DOEpatents

    Veligdan, James Thomas

    1997-01-01

    An optical display includes a plurality of optical waveguides each including a cladding bound core for guiding internal display light between first and second opposite ends by total internal reflection. The waveguides are stacked together to define a collective display thickness. Each of the cores includes a heterogeneous portion defining a light scattering site disposed longitudinally between the first and second ends. Adjacent ones of the sites are longitudinally offset from each other for forming a longitudinal internal image display over the display thickness upon scattering of internal display light thereagainst for generating a display image. In a preferred embodiment, the waveguides and scattering sites are transparent for transmitting therethrough an external image in superposition with the display image formed by scattering the internal light off the scattering sites for defining a heads up display.

  6. Seamless tiled display system

    NASA Technical Reports Server (NTRS)

    Dubin, Matthew B. (Inventor); Larson, Brent D. (Inventor); Kolosowsky, Aleksandra (Inventor)

    2006-01-01

    A modular and scalable seamless tiled display apparatus includes multiple display devices, a screen, and multiple lens assemblies. Each display device is subdivided into multiple sections, and each section is configured to display a sectional image. One of the lens assemblies is optically coupled to each of the sections of each of the display devices to project the sectional image displayed on that section onto the screen. The multiple lens assemblies are configured to merge the projected sectional images to form a single tiled image. The projected sectional images may be merged on the screen by magnifying and shifting the images in an appropriate manner. The magnification and shifting of these images eliminates any visual effect on the tiled display that may result from dead-band regions defined between each pair of adjacent sections on each display device, and due to gaps between multiple display devices.

  7. Phage display--a powerful technique for immunotherapy: 1. Introduction and potential of therapeutic applications.

    PubMed

    Bazan, Justyna; Całkosiński, Ireneusz; Gamian, Andrzej

    2012-12-01

    One of the most effective molecular diversity techniques is phage display. This technology is based on a direct linkage between phage phenotype and its encapsulated genotype, which leads to presentation of molecule libraries on the phage surface. Phage display is utilized in studying protein-ligand interactions, receptor binding sites and in improving or modifying the affinity of proteins for their binding partners. Generating monoclonal antibodies and improving their affinity, cloning antibodies from unstable hybridoma cells and identifying epitopes, mimotopes and functional or accessible sites from antigens are also important advantages of this technology. Techniques originating from phage display have been applied to transfusion medicine, neurological disorders, mapping vascular addresses and tissue homing of peptides. Phages have been applicable to immunization therapies, which may lead to development of new tools used for treating autoimmune and cancer diseases. This review describes the phage display technology and presents the recent advancements in therapeutic applications of phage display. PMID:22906939

  8. Phage display--a powerful technique for immunotherapy: 2. Vaccine delivery.

    PubMed

    Bazan, Justyna; Całkosiński, Ireneusz; Gamian, Andrzej

    2012-12-01

    Phage display is a powerful technique in medical and health biotechnology. This technology has led to formation of antibody libraries and has provided techniques for fast and efficient search of these libraries. The phage display technique has been used in studying the protein-protein or protein-ligand interactions, constructing of the antibody and antibody fragments and improving the affinity of proteins to receptors. Recently phage display has been widely used to study immunization process, develop novel vaccines and investigate allergen-antibody interactions. This technology can provide new tools for protection against viral, fungal and bacterial infections. It may become a valuable tool in cancer therapies, abuse and allergies treatment. This review presents the recent advancements in diagnostic and therapeutic applications of phage display. In particular the applicability of this technology to study the immunization process, construction of new vaccines and development of safer and more efficient delivery strategies has been described. PMID:22906938

  9. X-Windows Widget for Image Display

    NASA Technical Reports Server (NTRS)

    Deen, Robert G.

    2011-01-01

    XvicImage is a high-performance XWindows (Motif-compliant) user interface widget for displaying images. It handles all aspects of low-level image display. The fully Motif-compliant image display widget handles the following tasks: (1) Image display, including dithering as needed (2) Zoom (3) Pan (4) Stretch (contrast enhancement, via lookup table) (5) Display of single-band or color data (6) Display of non-byte data (ints, floats) (7) Pseudocolor display (8) Full overlay support (drawing graphics on image) (9) Mouse-based panning (10) Cursor handling, shaping, and planting (disconnecting cursor from mouse) (11) Support for all user interaction events (passed to application) (12) Background loading and display of images (doesn't freeze the GUI) (13) Tiling of images.

  10. Three-dimensional display technologies

    PubMed Central

    Geng, Jason

    2014-01-01

    The physical world around us is three-dimensional (3D), yet traditional display devices can show only two-dimensional (2D) flat images that lack depth (i.e., the third dimension) information. This fundamental restriction greatly limits our ability to perceive and to understand the complexity of real-world objects. Nearly 50% of the capability of the human brain is devoted to processing visual information [Human Anatomy & Physiology (Pearson, 2012)]. Flat images and 2D displays do not harness the brain’s power effectively. With rapid advances in the electronics, optics, laser, and photonics fields, true 3D display technologies are making their way into the marketplace. 3D movies, 3D TV, 3D mobile devices, and 3D games have increasingly demanded true 3D display with no eyeglasses (autostereoscopic). Therefore, it would be very beneficial to readers of this journal to have a systematic review of state-of-the-art 3D display technologies. PMID:25530827

  11. Screens and Displays.

    ERIC Educational Resources Information Center

    Edstrom, Malin

    1987-01-01

    Discusses the characteristics of different computer screen technologies including the possible harmful effects on health of cathode ray tube (CRT) terminals. CRT's are compared to other technologies including liquid crystal displays, plasma displays, electroluminiscence displays, and light emitting diodes. A chart comparing the different…

  12. Refreshable Braille Displays Using EAP Actuators

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph

    2010-01-01

    Refreshable Braille can help visually impaired persons benefit from the growing advances in computer technology. The development of such displays in a full screen form is a great challenge due to the need to pack many actuators in small area without interferences. In recent years, various displays using actuators such as piezoelectric stacks have become available in commercial form but most of them are limited to one line Braille code. Researchers in the field of electroactive polymers (EAP) investigated methods of using these materials to form full screen displays. This manuscript reviews the state of the art of producing refreshable Braille displays using EAP-based actuators..

  13. Large-screen display technology assessment for military applications

    NASA Astrophysics Data System (ADS)

    Blaha, Richard J.

    1990-08-01

    Full-color, large screen display systems can enhance military applications that require group presentation, coordinated decisions, or interaction between decision makers. The technology already plays an important role in operations centers, simulation facilities, conference rooms, and training centers. Some applications display situational, status, or briefing information, while others portray instructional material for procedural training or depict realistic panoramic scenes that are used in simulators. While each specific application requires unique values of luminance, resolution, response time, reliability, and the video interface, suitable performance can be achieved with available commercial large screen displays. Advances in the technology of large screen displays are driven by the commercial applications because the military applications do not provide the significant market share enjoyed by high definition television (HDTV), entertainment, advertisement, training, and industrial applications. This paper reviews the status of full-color, large screen display technologies and includes the performance and cost metrics of available systems. For this discussion, performance data is based upon either measurements made by our personnel or extractions from vendors' data sheets.

  14. An avionics touch screen-based control display concept

    NASA Astrophysics Data System (ADS)

    Mertens, Michael; Damveld, Herman J.; Borst, Clark

    2012-06-01

    In many cockpits, control display units (CDUs) are vital input and information devices. In order to improve the usability of these devices, Barco, in cooperation with TU-Delft, created a touch screen control unit (TSCU), consisting of a high-quality multi-touch screen. The unit fits in the standard dimensions of a conventional CDU and is thus suitable for both retrofit and new installations. The TSCU offers two major advantages. First, the interface can be reconfigured to enable consecutive execution of several tasks on the same display area, allowing for a more efficient usage of the limited display real-estate as well as a potential reduction of cost. Secondly, advanced graphical interface design, in combination with multi-touch gestures, can improve human-machine interaction. To demonstrate the capabilities of this concept, a graphical software application was developed to perform the same operations as a conventional CDU, but now using a direct manipulation interface (DMI) of the displayed graphics. The TSCU can still be used in a legacy CDU mode, displaying a virtual keyboard operated with the touch interface. In addition, the TSCU could be used for a variety of other cockpit functions. The paper concludes with a report of pilot and non-pilot feedback.

  15. Perceptual Fidelity Versus Engineering Compromises in Virtual Acoustic Displays

    NASA Technical Reports Server (NTRS)

    Wenzel, Elizabeth M.; Ellis, Stephen R. (Technical Monitor); Frey, Mary Anne (Technical Monitor); Schneider, Victor S. (Technical Monitor)

    1997-01-01

    Immersive, three-dimensional displays are increasingly becoming a goal of advanced human-machine interfaces. While the technology for achieving truly useful multisensory environments is still being developed, techniques for generating three-dimensional sound are now both sophisticated and practical enough to be applied to acoustic displays. The ultimate goal of virtual acoustics is to simulate the complex acoustic field experienced by a listener freely moving around within an environment. Of course, such complexity, freedom of movement and interactivity is not always possible in a 'true' virtual environment, much less in lower-fidelity multimedia systems. However, many of the perceptual and engineering constraints (and frustrations) that researchers, engineers and listeners have experienced in virtual audio are relevant to multimedia. In fact, some of the problems that have been studied will be even more of an issue for lower fidelity systems that are attempting to address the requirements of a huge, diverse and ultimately unknown audience. Examples include individual differences in head-related transfer functions, A lack of real interactively (head-tracking) in many multimedia displays, and perceptual degradation due to low sampling rates and/or low-bit compression. This paper discusses some of the engineering constraints faced during implementation of virtual acoustic environments and the perceptual consequences of these constraints. Specific examples are given for NASA applications such as telerobotic control, aeronautical displays, and shuttle launch communications. An attempt will also be made to relate these issues to low-fidelity implementations such as the internet.

  16. Perceptual Fidelity vs. Engineering Compromises In Virtual Acoustic Displays

    NASA Technical Reports Server (NTRS)

    Wenzel, Elizabeth M.; Ahumada, Albert (Technical Monitor)

    1997-01-01

    Immersive, three-dimensional displays are increasingly becoming a goal of advanced human-machine interfaces. While the technology for achieving truly useful multisensory environments is still being developed, techniques for generating three-dimensional sound are now both sophisticated and practical enough to be applied to acoustic displays. The ultimate goal of virtual acoustics is to simulate the complex acoustic field experienced by a listener freely moving around within an environment. Of course, such complexity, freedom of movement and interactively is not always possible in a "true" virtual environment, much less in lower-fidelity multimedia systems. However, many of the perceptual and engineering constraints (and frustrations) that researchers, engineers and listeners have experienced in virtual audio are relevant to multimedia. In fact, some of the problems that have been studied will be even more of an issue for lower fidelity systems that are attempting to address the requirements of a huge, diverse and ultimately unknown audience. Examples include individual differences in head-related transfer functions, a lack of real interactively (head-tracking) in many multimedia displays, and perceptual degradation due to low sampling rates and/or low-bit compression. This paper discusses some of the engineering Constraints faced during implementation of virtual acoustic environments and the perceptual consequences of these constraints. Specific examples are given for NASA applications such as telerobotic control, aeronautical displays, and shuttle launch communications. An attempt will also be made to relate these issues to low-fidelity implementations such as the internet.

  17. Seeing and believing: recent advances in imaging cell-cell interactions

    PubMed Central

    Yap, Alpha S.; Michael, Magdalene; Parton, Robert G.

    2015-01-01

    Advances in cell and developmental biology have often been closely linked to advances in our ability to visualize structure and function at many length and time scales. In this review, we discuss how new imaging technologies and new reagents have provided novel insights into the biology of cadherin-based cell-cell junctions. We focus on three developments: the application of super-resolution optical technologies to characterize the nanoscale organization of cadherins at cell-cell contacts, new approaches to interrogate the mechanical forces that act upon junctions, and advances in electron microscopy which have the potential to transform our understanding of cell-cell junctions. PMID:26543555

  18. How Not to Become a Buffoon in Front of a Shop Window: A Solution Allowing Natural Head Movement for Interaction with a Public Display

    NASA Astrophysics Data System (ADS)

    Mubin, Omar; Lashina, Tatiana; van Loenen, Evert

    The user interaction solution described in this paper was developed in the context of an Intelligent Shop Window (ISW) with an aim to offer a user the interaction solution where system response would be triggered by naturally gazing at products. We have analyzed a possibility to realize such a user interaction solution using gaze tracking and concluded that remote calibration free eye tracking is still a subject of academic research, but that head tracking could be used instead. We argue that conventional use of head tracking requires conscious intentional head movements and thus does not fit into the context of applications such as the ISW. We further describe our experiment aimed to explore how head movements relate to eye movements when looking at objects in a shop window context. We show large variability in head movement and that per individual the gaze-head data could well be approximated with a straight line. Based on these results we propose a new solution that enables natural gaze interaction by means of head tracking.

  19. Autostereoscopic displays for visualization of urban environments

    NASA Astrophysics Data System (ADS)

    Markov, Vladimir B.; Kupiec, Stephen A.; Zakhor, Avideh; Hooper, Darrel; Saini, Gurdial S.

    2006-10-01

    Two approaches in designing autostereoscopic displays capable of providing collaborative viewing of real time 3D scenery will be presented and discussed. Both techniques provide multiscopic "look around" capabilities and are applicable for situation rooms or mobile command centers. In particular, we discuss a prospective use of these displays for interactive visualization of detailed three-dimensional models of urban areas, and the specific demands associated with managing and rendering large volumes of highly detailed information. Latest advances in scanning, survey and registration in urban areas have provided a wealth of detailed three-dimensional data and imagery. Recent events have shown a severe need and demand for systems capable in a high-level 3D visualization upon homeland security posed by terrorist actions and natural disasters within urban areas, as well as for military operations in urban terrain (MOUT). The capacity to visualize sightlines, airflow, flooding, and traffic in real time 3D within dense urban environments is increasingly critical for military and civilian authorities, as well as urban planners and city managers. Development of a high-quality 3D imaging systems is critical also for such areas as medical data imaging, gaming industry, mechanical design and rapid prototyping.

  20. Evaluating Peripheral Displays

    NASA Astrophysics Data System (ADS)

    Matthews, Tara; Hsieh, Gary; Mankoff, Jennifer

    Although peripheral displays have been a domain of inquiry for over a decade now, evaluation criteria and techniques for this area are still being created. Peripheral display evaluation is an acknowledged challenge in a field setting. This chapter first describes models and methods that have been tailored specifically to evaluating peripheral displays (measuring how well they achieve their goals). Then, we present evaluation criteria used in past evaluations of peripheral displays, ranging from issues such as learnability to distraction. After explaining how these criteria have been assessed in the past, we present a case study evaluation of two e-mail peripheral displays that demonstrates the pros and cons of various evaluation techniques.

  1. EDITORIAL: Van der Waals interactions in advanced materials, in memory of David C Langreth Van der Waals interactions in advanced materials, in memory of David C Langreth

    NASA Astrophysics Data System (ADS)

    Hyldgaard, Per; Rahman, Talat S.

    2012-10-01

    The past decade has seen a dramatic rise in interest in exploring the role that van der Waals (vdW) or dispersion forces play in materials and in material behavior. Part of this stems from the obvious fact that vdW interactions (and other weak forces, such as Casimir) underpin molecular recognition, i.e., nature's approach to search for a match between genes and anti-genes and hence enable biological function. Less obvious is the recognition that vdW interactions affect a multitude of properties of a vast variety of materials in general, some of which also have strong technological applications. While for two atom- or orbital-sized material fragments the dispersive contributions to binding are small compared to those from the better known forms (ionic, covalent, metallic), those between sparse materials (spread over extended areas) can be of paramount importance. For example, an understanding of binding in graphite cannot arise solely from a study of the graphene layers individually, but also requires insight from inter-sheet graphene vdW bonding. It is the extended-area vdW bonding that provides sufficient cohesion to make graphite a robust, naturally occurring material. In fact, it is the vdW-bonded graphite, and not the all-covalently bonded diamond, that is the preferred form of pure carbon under ambient conditions. Also important is the understanding that vdW attraction can attain a dramatic relevance even if the material fragments, the building blocks, are not necessarily parallel from the outset or smooth when viewed in isolation (such as a graphene sheet or a carbon nanotube). This can happen if the building blocks have some softness and flexibility and allow an internal relative alignment to emerge. The vdW forces can then cause increasingly larger parts of the interacting fragments to line up at sub-nanometer separations and thus beget more areas with a sizable vdW bonding contribution. The gecko can scale a wall because it can bring its flexible hairs

  2. Developing tiled projection display systems

    SciTech Connect

    Hereld, M.; Judson, I. R.; Paris, J.; Stevens, R. L.

    2000-06-08

    Tiled displays are an emerging technology for constructing high-resolution semi-immersive visualization environments capable of presenting high-resolution images from scientific simulation [EVL, PowerWall]. In this way, they complement other technologies such as the CAVE [Cruz-Niera92] or ImmersaDesk, [Czernuszenko97], which by design give up pure resolution in favor of width of view and stereo. However, the largest impact may well be in using large-format tiled displays as one of possibly multiple displays in building ''information'' or ''active'' spaces that surround the user with diverse ways of interacting with data and multimedia information flows [IPSI, Childers00, Raskar98, ROME, Stanford, UNC]. These environments may prove to be the ultimate successor of the desktop metaphor for information technology work.

  3. Status review of field emission displays

    NASA Astrophysics Data System (ADS)

    Ghrayeb, Joseph; Daniels, Reginald

    2001-09-01

    Cathode ray tube (CRT) technology dominates the direct view display market. Mature CRT technology for many designs is still the preferred choice. CRT manufacturers have greatly improved the size and weight of the CRT displays. High performance CRTs continue to be in great demand, however, supply have to contend with the vanishing CRT vendor syndrome. Therefore, the vanishing CRT vendor syndrome fuels the search for an alternate display technology source. Within the past 10 years, field emission display (FED) technology had gained momentum and, at one time, was considered the most viable electronic display technology candidate [to replace the CRT]. The FED community had advocated and promised many advantages over active matrix liquid crystal displays (AMLCD), electro luminescent (EL) or Plasma displays. Some observers, including potential FED manufacturers and the Department of Defense, (especially the Defense Advanced Research Project Agency (DARPA)), consider the FED entry as having leapfrog potential. Despite major investments by US manufacturers as well as Asian manufacturers, reliability and manufacturing difficulties greatly slowed down the advancement of the technology. The FED manufacturing difficulties have caused many would-be FED manufacturing participants to abandon FED research. This paper will examine the trends, which are leading this nascent technology to its downfall. FED technology was once considered to have the potential to leapfrog over AMLCD's dominance in the display industry. At present the FED has suffered severe setbacks and there are very few [FED] manufacturers still pursuing research in the area. These companies have yet to deliver a display beyond the prototype stage.

  4. Cytoplasmic bacteriophage display system

    DOEpatents

    Studier, F.W.; Rosenberg, A.H.

    1998-06-16

    Disclosed are display vectors comprising DNA encoding a portion of a structural protein from a cytoplasmic bacteriophage, joined covalently to a protein or peptide of interest. Exemplified are display vectors wherein the structural protein is the T7 bacteriophage capsid protein. More specifically, in the exemplified display vectors the C-terminal amino acid residue of the portion of the capsid protein is joined to the N-terminal residue of the protein or peptide of interest. The portion of the T7 capsid protein exemplified comprises an N-terminal portion corresponding to form 10B of the T7 capsid protein. The display vectors are useful for high copy number display or lower copy number display (with larger fusion). Compositions of the type described herein are useful in connection with methods for producing a virus displaying a protein or peptide of interest. 1 fig.

  5. Cytoplasmic bacteriophage display system

    DOEpatents

    Studier, F. William; Rosenberg, Alan H.

    1998-06-16

    Disclosed are display vectors comprising DNA encoding a portion of a structural protein from a cytoplasmic bacteriophage, joined covalently to a protein or peptide of interest. Exemplified are display vectors wherein the structural protein is the T7 bacteriophage capsid protein. More specifically, in the exemplified display vectors the C-terminal amino acid residue of the portion of the capsid protein is joined to the N-terminal residue of the protein or peptide of interest. The portion of the T7 capsid protein exemplified comprises an N-terminal portion corresponding to form 10B of the T7 capsid protein. The display vectors are useful for high copy number display or lower copy number display (with larger fusion). Compositions of the type described herein are useful in connection with methods for producing a virus displaying a protein or peptide of interest.

  6. Display format and highlight validity effects on search performance using complex visual displays

    NASA Technical Reports Server (NTRS)

    Donner, Kimberly A.; Mckay, Tim; O'Brien, Kevin M.; Rudisill, Marianne

    1991-01-01

    Display format and highlight validity were shown to affect visual display search performance; however, these studies were conducted on small, artificial displays of alphanumeric stimuli. A study manipulating these variables was conducted using realistic, complex Space Shuttle information displays. A 2x2x3 within-subjects analysis of variance found that search times were faster for items in reformatted displays than for current displays. The significant format by highlight validity interaction showed that there was little difference in response time to both current and reformatted displays when the highlight validity was applied; however, under the non or invalid highlight conditions, search times were faster with reformatted displays. Benefits of highlighting and reformatting displays to enhance search and the necessity to consider highlight validity and format characteristics in tandem for predicting search performance are discussed.

  7. Advancing-side directivity and retreating-side interactions of model rotor blade-vortex interaction noise

    NASA Technical Reports Server (NTRS)

    Martin, R. M.; Splettstoesser, W. R.; Elliott, J. W.; Schultz, K.-J.

    1988-01-01

    Acoustic data are presented from a 40 percent scale model of the four-bladed BO-105 helicopter main rotor, tested in a large aerodynamic wind tunnel. Rotor blade-vortex interaction (BVI) noise data in the low-speed flight range were acquired using a traversing in-flow microphone array. Acoustic results presented are used to assess the acoustic far field of BVI noise, to map the directivity and temporal characteristics of BVI impulsive noise, and to show the existence of retreating-side BVI signals. The characterics of the acoustic radiation patterns, which can often be strongly focused, are found to be very dependent on rotor operating condition. The acoustic signals exhibit multiple blade-vortex interactions per blade with broad impulsive content at lower speeds, while at higher speeds, they exhibit fewer interactions per blade, with much sharper, higher amplitude acoustic signals. Moderate-amplitude BVI acoustic signals measured under the aft retreating quadrant of the rotor are shown to originate from the retreating side of the rotor.

  8. Graphic displays of vector magnetograph data

    NASA Technical Reports Server (NTRS)

    Rabin, D. M.; West, E. A.

    1985-01-01

    Graphic displays that have proved useful in dealing with vector magnetograph data are summarized in three settings: real-time control, analysis, and final presentation. Among the topics discussed are: flexible, implicit data-scaling; geometrical transformations; methods of comparing fields (e.g., transverse vs. longitudinal; observed vs. computed; one time vs. another); displaying the magnitude and direction of the transverse field; minimizing the display time of serial graphics devices; graphic file structure; and graphic interaction with operators and observers.

  9. Automated system for integration and display of physiological response data

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The system analysis approach was applied in a study of physiological systems in both 1-g and weightlessness, for short and long term experiments. A whole body, algorithm developed as the first step in the construction of a total body simulation system is described and an advanced biomedical computer system concept including interactive display/command consoles is discussed. The documentation of the design specifications, design and development studies, and user's instructions (which include program listings) for these delivered end-terms; the reports on the results of many research and feasibility studies; and many subcontract reports are cited in the bibliography.

  10. Common Avionics Display Processor (CADP)

    NASA Astrophysics Data System (ADS)

    Farley, Paul E.

    1995-06-01

    The 1970s saw the start of a trend towards integrated digital avionics. In the 1980s, the Air Force's Pave Pillar initiative defined centralized digital processing as the cost- effective approach to tactical avionics. The avionics systems of the two advanced aircraft presently under development, a fixed-wing tactical fighter and an armed scout/reconnaissance helicopter, were based on this architecture. Both platforms relied upon custom, single-purpose hardware and software to generate images for their advanced multifunctional flat panel cockpit displays. The technology to generate real-time synthetic images with common data and signal processors was not available during the development of the platforms. Harris IR&D investigations have focused on an approach that Harris GASD has named the Common Avionics Display Processor (CADP). This programmable device can generate sophisticated images or perform sensor image manipulation and processing. The Common Avionics Display Processor is a general purpose image synthesizer. It consists of software and hardware components configured at run time by a downloaded program. The CADP offers two advantages over custom, special purpose devices. First, it solves a class of problems, not a single one. It can generate many types of images, from alphanumeric to sensor simulation. Only one module type is required for any of these functions. Second, as program schedules become shorter, traditional hardware design time becomes the delivery limiting task. Because both the software and hardware components are programmable at run time, the CADP can adapt to changing requirements without redesign.

  11. An automated normative-based fluorodeoxyglucose positron emission tomography image-analysis procedure to aid Alzheimer disease diagnosis using statistical parametric mapping and interactive image display

    NASA Astrophysics Data System (ADS)

    Chen, Kewei; Ge, Xiaolin; Yao, Li; Bandy, Dan; Alexander, Gene E.; Prouty, Anita; Burns, Christine; Zhao, Xiaojie; Wen, Xiaotong; Korn, Ronald; Lawson, Michael; Reiman, Eric M.

    2006-03-01

    Having approved fluorodeoxyglucose positron emission tomography (FDG PET) for the diagnosis of Alzheimer's disease (AD) in some patients, the Centers for Medicare and Medicaid Services suggested the need to develop and test analysis techniques to optimize diagnostic accuracy. We developed an automated computer package comparing an individual's FDG PET image to those of a group of normal volunteers. The normal control group includes FDG-PET images from 82 cognitively normal subjects, 61.89+/-5.67 years of age, who were characterized demographically, clinically, neuropsychologically, and by their apolipoprotein E genotype (known to be associated with a differential risk for AD). In addition, AD-affected brain regions functionally defined as based on a previous study (Alexander, et al, Am J Psychiatr, 2002) were also incorporated. Our computer package permits the user to optionally select control subjects, matching the individual patient for gender, age, and educational level. It is fully streamlined to require minimal user intervention. With one mouse click, the program runs automatically, normalizing the individual patient image, setting up a design matrix for comparing the single subject to a group of normal controls, performing the statistics, calculating the glucose reduction overlap index of the patient with the AD-affected brain regions, and displaying the findings in reference to the AD regions. In conclusion, the package automatically contrasts a single patient to a normal subject database using sound statistical procedures. With further validation, this computer package could be a valuable tool to assist physicians in decision making and communicating findings with patients and patient families.

  12. Display integration for ground combat vehicles

    NASA Astrophysics Data System (ADS)

    Busse, David J.

    1998-09-01

    The United States Army's requirement to employ high resolution target acquisition sensors and information warfare to increase its dominance over enemy forces has led to the need to integrate advanced display devices into ground combat vehicle crew stations. The Army's force structure require the integration of advanced displays on both existing and emerging ground combat vehicle systems. The fielding of second generation target acquisition sensors, color digital terrain maps and high volume digital command and control information networks on these platforms define display performance requirements. The greatest challenge facing the system integrator is the development and integration of advanced displays that meet operational, vehicle and human computer interface performance requirements for the ground combat vehicle fleet. The subject of this paper is to address those challenges: operational and vehicle performance, non-soldier centric crew station configurations, display performance limitations related to human computer interfaces and vehicle physical environments, display technology limitations and the Department of Defense (DOD) acquisition reform initiatives. How the ground combat vehicle Program Manager and system integrator are addressing these challenges are discussed through the integration of displays on fielded, current and future close combat vehicle applications.

  13. Polyplanar optic display

    SciTech Connect

    Veligdan, J.; Biscardi, C.; Brewster, C.; DeSanto, L.; Beiser, L.

    1997-07-01

    The Polyplanar Optical Display (POD) is a unique display screen which can be used with any projection source. This display screen is 2 inches thick and has a matte black face which allows for high contrast images. The prototype being developed is a form, fit and functional replacement display for the B-52 aircraft which uses a monochrome ten-inch display. The new display uses a 100 milliwatt green solid state laser (532 nm) as its optical source. In order to produce real-time video, the laser light is being modulated by a Digital Light Processing (DLP{trademark}) chip manufactured by Texas Instruments, Inc. A variable astigmatic focusing system is used to produce a stigmatic image on the viewing face of the POD. In addition to the optical design, the authors discuss the electronic interfacing to the DLP{trademark} chip, the opto-mechanical design and viewing angle characteristics.

  14. Virtual acoustics displays

    NASA Technical Reports Server (NTRS)

    Wenzel, Elizabeth M.; Fisher, Scott S.; Stone, Philip K.; Foster, Scott H.

    1991-01-01

    The real time acoustic display capabilities are described which were developed for the Virtual Environment Workstation (VIEW) Project at NASA-Ames. The acoustic display is capable of generating localized acoustic cues in real time over headphones. An auditory symbology, a related collection of representational auditory 'objects' or 'icons', can be designed using ACE (Auditory Cue Editor), which links both discrete and continuously varying acoustic parameters with information or events in the display. During a given display scenario, the symbology can be dynamically coordinated in real time with 3-D visual objects, speech, and gestural displays. The types of displays feasible with the system range from simple warnings and alarms to the acoustic representation of multidimensional data or events.

  15. The virtual environment display system

    NASA Technical Reports Server (NTRS)

    Mcgreevy, Michael W.

    1991-01-01

    Virtual environment technology is a display and control technology that can surround a person in an interactive computer generated or computer mediated virtual environment. It has evolved at NASA-Ames since 1984 to serve NASA's missions and goals. The exciting potential of this technology, sometimes called Virtual Reality, Artificial Reality, or Cyberspace, has been recognized recently by the popular media, industry, academia, and government organizations. Much research and development will be necessary to bring it to fruition.

  16. Displaying Data As Movies

    NASA Technical Reports Server (NTRS)

    Moore, Judith G.

    1992-01-01

    NMSB Movie computer program displays large sets of data (more than million individual values). Presentation dynamic, rapidly displaying sequential image "frames" in main "movie" window. Any sequence of two-dimensional sets of data scaled between 0 and 255 (1-byte resolution) displayed as movie. Time- or slice-wise progression of data illustrated. Originally written to present data from three-dimensional ultrasonic scans of damaged aerospace composite materials, illustrates data acquired by thermal-analysis systems measuring rates of heating and cooling of various materials. Developed on Macintosh IIx computer with 8-bit color display adapter and 8 megabytes of memory using Symantec Corporation's Think C, version 4.0.

  17. JAVA Stereo Display Toolkit

    NASA Technical Reports Server (NTRS)

    Edmonds, Karina

    2008-01-01

    This toolkit provides a common interface for displaying graphical user interface (GUI) components in stereo using either specialized stereo display hardware (e.g., liquid crystal shutter or polarized glasses) or anaglyph display (red/blue glasses) on standard workstation displays. An application using this toolkit will work without modification in either environment, allowing stereo software to reach a wider audience without sacrificing high-quality display on dedicated hardware. The toolkit is written in Java for use with the Swing GUI Toolkit and has cross-platform compatibility. It hooks into the graphics system, allowing any standard Swing component to be displayed in stereo. It uses the OpenGL graphics library to control the stereo hardware and to perform the rendering. It also supports anaglyph and special stereo hardware using the same API (application-program interface), and has the ability to simulate color stereo in anaglyph mode by combining the red band of the left image with the green/blue bands of the right image. This is a low-level toolkit that accomplishes simply the display of components (including the JadeDisplay image display component). It does not include higher-level functions such as disparity adjustment, 3D cursor, or overlays all of which can be built using this toolkit.

  18. Next Generation Flight Displays Using HTML5

    NASA Technical Reports Server (NTRS)

    Greenwood, Brian

    2016-01-01

    The Human Integrated Vehicles and Environments (HIVE) lab at Johnson Space Center (JSC) is focused on bringing together inter-disciplinary talent to design and integrate innovative human interface technologies for next generation manned spacecraft. As part of this objective, my summer internship project centered on an ongoing investigation in to building flight displays using the HTML5 standard. Specifically, the goals of my project were to build and demo "flight-like" crew and wearable displays as well as create a webserver for live systems being developed by the Advanced Exploration Systems (AES) program. In parallel to my project, a LabVIEW application, called a display server, was created by the HIVE that uses an XTCE (XML (Extensible Markup Language) Telemetry and Command Exchange) parser and CCSDS (Consultative Committee for Space Data System) space packet decoder to translate telemetry items sent by the CFS (Core Flight Software) over User Datagram Protocol (UDP). It was the webserver's job to receive these UDP messages and send them to the displays. To accomplish this functionality, I utilized Node.js and the accompanying Express framework. On the display side, I was responsible for creating the power system (AMPS) displays. I did this by using HTML5, CSS and JavaScript to create web pages that could update and change dynamically based on the data they received from the webserver. At this point, I have not started on the commanding, being able to send back to the CFS, portion of the displays but hope to have this functionality working by the completion of my internship. I also created a way to test the webserver's functionality without the display server by making a JavaScript application that read in a comma-separate values (CSV) file and converted it to XML which was then sent over UDP. One of the major requirements of my project was to build everything using as little preexisting code as possible, which I accomplished by only using a handful of Java

  19. Phage-displayed peptide libraries

    PubMed Central

    Zwick, Michael B; Shen, Juqun; Scott, Jamie K

    2014-01-01

    Over the past year, significant advances have been achieved through the use of phage-displayed peptide libraries. A wide variety of bioactive molecules, including antibodies, receptors and enzymes, have selected high-affinity and/or highly-specific peptide ligands from a number of different types of peptide library. The demonstrated therapeutic potential of some of these peptides, as well as new insights into protein structure and function that peptide ligands have provided, highlight the progress made within this rapidly-expanding field. PMID:9720267

  20. Nucleophosmin integrates within the nucleolus via multi-modal interactions with proteins displaying R-rich linear motifs and rRNA

    PubMed Central

    Mitrea, Diana M; Cika, Jaclyn A; Guy, Clifford S; Ban, David; Banerjee, Priya R; Stanley, Christopher B; Nourse, Amanda; Deniz, Ashok A; Kriwacki, Richard W

    2016-01-01

    The nucleolus is a membrane-less organelle formed through liquid-liquid phase separation of its components from the surrounding nucleoplasm. Here, we show that nucleophosmin (NPM1) integrates within the nucleolus via a multi-modal mechanism involving multivalent interactions with proteins containing arginine-rich linear motifs (R-motifs) and ribosomal RNA (rRNA). Importantly, these R-motifs are found in canonical nucleolar localization signals. Based on a novel combination of biophysical approaches, we propose a model for the molecular organization within liquid-like droplets formed by the N-terminal domain of NPM1 and R-motif peptides, thus providing insights into the structural organization of the nucleolus. We identify multivalency of acidic tracts and folded nucleic acid binding domains, mediated by N-terminal domain oligomerization, as structural features required for phase separation of NPM1 with other nucleolar components in vitro and for localization within mammalian nucleoli. We propose that one mechanism of nucleolar localization involves phase separation of proteins within the nucleolus. DOI: http://dx.doi.org/10.7554/eLife.13571.001 PMID:26836305

  1. Synergistic Interactions of Vancomycin with Different Antibiotics against Escherichia coli: Trimethoprim and Nitrofurantoin Display Strong Synergies with Vancomycin against Wild-Type E. coli

    PubMed Central

    Zhou, Alice; Kang, Tina Manzhu; Yuan, Jessica; Beppler, Casey; Nguyen, Caroline; Mao, Zhiyuan; Nguyen, Minh Quan

    2014-01-01

    Gram-negative bacteria are normally resistant to the antibiotic vancomycin (VAN), which cannot significantly penetrate the outer membrane. We used Escherichia coli mutants that are partially sensitive to VAN to study synergies between VAN and 10 other antibiotics representing six different functional categories. We detected strong synergies with VAN and nitrofurantoin (NTR) and with VAN and trimethoprim (TMP) and moderate synergies with other drugs, such as aminoglycosides. These synergies are powerful enough to show the activity of VAN against wild-type E. coli at concentrations of VAN as low as 6.25 μg/ml. This suggests that a very small percentage of exogenous VAN does enter E. coli but normally has insignificant effects on growth inhibition or cell killing. We used the results of pairwise interactions with VAN and the other 10 antibiotics tested to place VAN into a functional category of its own, as previously defined by Yeh et al. (P. Yeh, A. I. Tschumi, and R. Kishony, Nat Genet 28:489–494, 2006, http://dx.doi.org/10.1038/ng1755). PMID:25348521

  2. Nucleophosmin integrates within the nucleolus via multi-modal interactions with proteins displaying R-rich linear motifs and rRNA.

    PubMed

    Mitrea, Diana M; Cika, Jaclyn A; Guy, Clifford S; Ban, David; Banerjee, Priya R; Stanley, Christopher B; Nourse, Amanda; Deniz, Ashok A; Kriwacki, Richard W

    2016-01-01

    The nucleolus is a membrane-less organelle formed through liquid-liquid phase separation of its components from the surrounding nucleoplasm. Here, we show that nucleophosmin (NPM1) integrates within the nucleolus via a multi-modal mechanism involving multivalent interactions with proteins containing arginine-rich linear motifs (R-motifs) and ribosomal RNA (rRNA). Importantly, these R-motifs are found in canonical nucleolar localization signals. Based on a novel combination of biophysical approaches, we propose a model for the molecular organization within liquid-like droplets formed by the N-terminal domain of NPM1 and R-motif peptides, thus providing insights into the structural organization of the nucleolus. We identify multivalency of acidic tracts and folded nucleic acid binding domains, mediated by N-terminal domain oligomerization, as structural features required for phase separation of NPM1 with other nucleolar components in vitro and for localization within mammalian nucleoli. We propose that one mechanism of nucleolar localization involves phase separation of proteins within the nucleolus. PMID:26836305

  3. Nucleophosmin integrates within the nucleolus via multi-modal interactions with proteins displaying R-rich linear motifs and rRNA

    DOE PAGESBeta

    Mitrea, Diana M.; Cika, Jaclyn A.; Guy, Clifford S.; Ban, David; Banerjee, Priya R.; Stanley, Christopher B.; Nourse, Amanda; Deniz, Ashok A.; Kriwacki, Richard W.

    2016-02-02

    The nucleolus is a membrane-less organelle formed through liquid-liquid phase separation of its components from the surrounding nucleoplasm. Here, we show that nucleophosmin (NPM1) integrates within the nucleolus via a multi-modal mechanism involving multivalent interactions with proteins containing arginine-rich linear motifs (R-motifs) and ribosomal RNA (rRNA). Importantly, these R-motifs are found in canonical nucleolar localization signals. Based on a novel combination of biophysical approaches, we propose a model for the molecular organization within liquid-like droplets formed by the N-terminal domain of NPM1 and R-motif peptides, thus providing insights into the structural organization of the nucleolus. We identify multivalency of acidicmore » tracts and folded nucleic acid binding domains, mediated by N-terminal domain oligomerization, as structural features required for phase separation of NPM1 with other nucleolar components in vitro and for localization within mammalian nucleoli. We propose that one mechanism of nucleolar localization involves phase separation of proteins within the nucleolus.« less

  4. Recent Advances in Computational Models for the Study of Protein-Peptide Interactions.

    PubMed

    Kilburg, D; Gallicchio, E

    2016-01-01

    We review computational models and software tools in current use for the study of protein-peptide interactions. Peptides and peptide derivatives are growing in interest as therapeutic agents to target protein-protein interactions. Protein-protein interactions are pervasive in biological systems and are responsible for the regulation of critical functions within the cell. Mutations or dysregulation of expression can alter the network of interactions among proteins and cause diseases such as cancer. Protein-protein binding interfaces, which are often large, shallow, and relatively feature-less, are difficult to target with small-molecule inhibitors. Peptide derivatives based on the binding motifs present in the target protein complex are increasingly drawing interest as superior alternatives to conventional small-molecule inhibitors. However, the design of peptide-based inhibitors also presents novel challenges. Peptides are more complex and more flexible than standard medicinal compounds. They also tend to form more extended and more complex interactions with their protein targets. Computational modeling is increasingly being employed to supplement synthetic and biochemical work to offer guidance and energetic and structural insights. In this review, we discuss recent in silico structure-based and physics-based approaches currently employed to model protein-peptide interactions with a few examples of their applications. PMID:27567483

  5. Display and Presentation Boards.

    ERIC Educational Resources Information Center

    Midgley, Thomas Keith

    The use of display and presentation boards as tools to help teachers/trainers convey messages more clearly is briefly discussed, and 24 different types of display and presentation boards are described and illustrated; i.e., chalk, paste-up, hook-n-loop, electric, flannel, scroll, communication planning, acetate pocket, slot, pin-tack, preview,…

  6. Polyplanar optical display electronics

    SciTech Connect

    DeSanto, L.; Biscardi, C.

    1997-07-01

    The Polyplanar Optical Display (POD) is a unique display screen which can be used with any projection source. The prototype ten inch display is two inches thick and has a matte black face which allows for high contrast images. The prototype being developed is a form, fit and functional replacement display for the B-52 aircraft which uses a monochrome ten-inch display. In order to achieve a long lifetime, the new display uses a 100 milliwatt green solid-state laser (10,000 hr. life) at 532 nm as its light source. To produce real-time video, the laser light is being modulated by a Digital Light Processing (DLP{trademark}) chip manufactured by Texas Instruments. In order to use the solid-state laser as the light source and also fit within the constraints of the B-52 display, the Digital Micromirror Device (DMD{trademark}) circuit board is removed from the Texas Instruments DLP light engine assembly. Due to the compact architecture of the projection system within the display chassis, the DMD{trademark} chip is operated remotely from the Texas Instruments circuit board. The authors discuss the operation of the DMD{trademark} divorced from the light engine and the interfacing of the DMD{trademark} board with various video formats (CVBS, Y/C or S-video and RGB) including the format specific to the B-52 aircraft. A brief discussion of the electronics required to drive the laser is also presented.

  7. Split image optical display

    DOEpatents

    Veligdan, James T.

    2007-05-29

    A video image is displayed from an optical panel by splitting the image into a plurality of image components, and then projecting the image components through corresponding portions of the panel to collectively form the image. Depth of the display is correspondingly reduced.

  8. Split image optical display

    DOEpatents

    Veligdan, James T.

    2005-05-31

    A video image is displayed from an optical panel by splitting the image into a plurality of image components, and then projecting the image components through corresponding portions of the panel to collectively form the image. Depth of the display is correspondingly reduced.

  9. Effective Monitor Display Design.

    ERIC Educational Resources Information Center

    Harrell, William

    1999-01-01

    Describes some of the factors that affect computer monitor display design and provides suggestions and insights into how screen displays can be designed more effectively. Topics include color, font choices, organizational structure of text, space outline, and general principles. (Author/LRW)

  10. Characterization of core debris/concrete interactions for the Advanced Neutron Source. ANS Severe Accident Analysis Program

    SciTech Connect

    Hyman, C.R.; Taleyarkhan, R.P.

    1992-02-01

    This report provides the results of a recent study conducted to explore the molten core/concrete interaction (MCCI) issue for the Advanced Neutron Source (ANS). The need for such a study arises from the potential threats to reactor system integrity posed by MCCI. These threats include direct attack of the concrete basemat of the containment; generation and release of large quantities of gas that can pressurize the containment; the combustion threat of these gases; and the potential generation, release, and transport of radioactive aerosols to the environment.

  11. System status display evaluation

    NASA Technical Reports Server (NTRS)

    Summers, Leland G.

    1988-01-01

    The System Status Display is an electronic display system which provides the crew with an enhanced capability for monitoring and managing the aircraft systems. A flight simulation in a fixed base cockpit simulator was used to evaluate alternative design concepts for this display system. The alternative concepts included pictorial versus alphanumeric text formats, multifunction versus dedicated controls, and integration of the procedures with the system status information versus paper checklists. Twelve pilots manually flew approach patterns with the different concepts. System malfunctions occurred which required the pilots to respond to the alert by reconfiguring the system. The pictorial display, the multifunction control interfaces collocated with the system display, and the procedures integrated with the status information all had shorter event processing times and lower subjective workloads.

  12. Generating Animated Displays of Spacecraft Orbits

    NASA Technical Reports Server (NTRS)

    Candey, Robert M.; Chimiak, Reine A.; Harris, Bernard T.

    2005-01-01

    Tool for Interactive Plotting, Sonification, and 3D Orbit Display (TIPSOD) is a computer program for generating interactive, animated, four-dimensional (space and time) displays of spacecraft orbits. TIPSOD utilizes the programming interface of the Satellite Situation Center Web (SSCWeb) services to communicate with the SSC logic and database by use of the open protocols of the Internet. TIPSOD is implemented in Java 3D and effects an extension of the preexisting SSCWeb two-dimensional static graphical displays of orbits. Orbits can be displayed in any or all of the following seven reference systems: true-of-date (an inertial system), J2000 (another inertial system), geographic, geomagnetic, geocentric solar ecliptic, geocentric solar magnetospheric, and solar magnetic. In addition to orbits, TIPSOD computes and displays Sibeck's magnetopause and Fairfield's bow-shock surfaces. TIPSOD can be used by the scientific community as a means of projection or interpretation. It also has potential as an educational tool.

  13. Defense display market assessment

    NASA Astrophysics Data System (ADS)

    Desjardins, Daniel D.; Hopper, Darrel G.

    1998-09-01

    This paper addresses the number, function and size of principal military displays and establishes a basis to determine the opportunities for technology insertion in the immediate future and into the next millennium. Principal military displays are defined as those occupying appreciable crewstation real-estate and/or those without which the platform could not carry out its intended mission. DoD 'office' applications are excluded from this study. The military displays market is specified by such parameters as active area and footprint size, and other characteristics such as luminance, gray scale, resolution, angle, color, video capability, and night vision imaging system (NVIS) compatibility. Funded, future acquisitions, planned and predicted crewstation modification kits, and form-fit upgrades are taken into account. This paper provides an overview of the DoD niche market, allowing both government and industry a necessary reference by which to meet DoD requirements for military displays in a timely and cost-effective manner. The aggregate DoD market for direct-view and large-area military displays is presently estimated to be in excess of 242,000. Miniature displays are those which must be magnified to be viewed, involve a significantly different manufacturing paradigm and are used in helmet mounted displays and thermal weapon sight applications. Some 114,000 miniature displays are presently included within Service weapon system acquisition plans. For vendor production planning purposes it is noted that foreign military sales could substantially increase these quantities. The vanishing vendor syndrome (VVS) for older display technologies continues to be a growing, pervasive problem throughout DoD, which consequently must leverage the more modern display technologies being developed for civil- commercial markets.

  14. Visual display principles for C3I system tasks

    NASA Astrophysics Data System (ADS)

    Howell, William C.; Lane, David M.; Laux, Lila F.; Anderson, Loy A.; Holden, Kritina L.

    1993-06-01

    Modern C3I systems are best described as semi-automated data management and decision systems over which human operators exercise supervisory control. The effectiveness of such systems is heavily dependent on the design for human-computer interaction (HCI), an important aspect of which is the visual display interface. Current Department of Defense policy mandates consideration of such human factors issues at an early stage in the design process. Comprehensive guidelines are available for display design applications after the general system parameters have been specified. Some recommendations are general, others are specific. This report offers a set of design principles at an intermediate (conceptual) level of abstraction as a complement to existing guidelines. The purpose is to synthesize current knowledge of human cognition into a form that will be applicable to the earliest stages of display design ('cognitive' functions being the most salient and critical of those remaining for the operator in advanced C3I systems). The principles are derived from a review of the literatures on human cognition, HCI, and display design, some original research, and liberal interpretation by the authors. They are organized according to operations performed on specific categories of information in possible C3I task configurations.

  15. Stereoscopic surround displays using interference filters

    NASA Astrophysics Data System (ADS)

    Peikert, Silvio; Gerhardt, Jérémie

    2012-03-01

    To achieve stereoscopy on surround displays interference filters have some advantages over other techniques. However these filters introduce strong color differences between the projectors, which may reveal that the display is compound by multiple projectors. This article presents methods for a computationally efficient correction of the colorimetric properties of multi-projector surround displays. This correction is based on automated measurements by multiple cameras and a spectrometer. The described methods were validated by applying them to a stereoscopic dome display made up of 16 high definition projectors equipped with Infitec filters. On that display we achieved a significant improvement of the colorimetric properties compared to regular soft-edge blending. Our reference setup shows that the multi-projector approach combined with interference filters allows to build highly immersive stereoscopic surround displays fulfilling today's requirements on spatial resolution, frame rates and interaction latencies.

  16. [Advances in the study of enzymes and transporters-mediated pharmacokinetic mechanism for herb-drug interaction].

    PubMed

    Liu, Qi; Liu, Ke-xin

    2015-04-01

    With the wide application of Chinese herbal medicine, herb-drug interaction (HDI) has become increasingly prominent. Metabolic enzymes and transporters are the main targets of HDI, because the changes in expression and function of enzymes and transporters can influence the disposition of drugs. Metabolic enzymes are responsible for the metabolic clearance of drugs, including cytochrome P450 (CYP), UDP-glucuronyl transferase (UGT) and sulfotransferases (SULT); transporters widely expressed in the intestine, kidney, liver and brain are involved in the oral absorption, distribution and excretion of drugs. Pueraria, ginkgo, ginseng, St. John's wort and other Chinese herbal medicine often induce a HDI because those herbal medicines combined with chemical medicine are widely used in clinic. The components of herb medicines mentioned above are prone to interact with enzymes and transporters, which often induce a HDI. This paper reviews the advances in the study of enzymes and transporters-mediated pharmacokinetic mechanism of HDI. PMID:26223121

  17. Evidence for a resonant cyclotron interaction between runaway electrons and MHD modes in the experimental advanced superconducting tokamak

    SciTech Connect

    Li Erzhong; Zhou Ruijie; Hu Liqun

    2011-09-15

    In the past, the resonant cyclotron interaction between runaway electrons and lower hybrid waves via anomalous Doppler broadening was experimentally investigated, and it was shown to be able to create a barrier to the energy that could be reached by the runaway electrons [E. Li et al., Nucl. Instrum. Methods Phys. Res. A 621, 566 (2010)]. In this paper, to our knowledge for the first time, experimental evidence will be provided for a resonant cyclotron interaction between runaway electrons and magnetohydrodynamics modes in a stochastic magnetic field in the experimental advanced superconducting tokamak (EAST), which has been theoretically proposed as a mechanism able to limit the maximum attainable energy by runaway electrons in tokamak plasmas [J. R. Martin-Solis and R. Sanchez, Phys. Plasmas 15, 112505 (2008)].

  18. Framework for effective use of multiple displays

    NASA Astrophysics Data System (ADS)

    Liu, Qiong; Kimber, Don; Zhao, Frank; Huang, Jeffrey

    2005-10-01

    Meeting environments, such as conference rooms, executive briefing centers, and exhibition spaces, are now commonly equipped with multiple displays, and will become increasingly display-rich in the future. Existing authoring/presentation tools such as PowerPoint, however, provide little support for effective utilization of multiple displays. Even using advanced multi-display enabled multimedia presentation tools, the task of assigning material to displays is tedious and distracts presenters from focusing on content. This paper describes a framework for automatically assigning presentation material to displays, based on a model of the quality of views of audience members. The framework is based on a model of visual fidelity which takes into account presentation content, audience members' locations, the limited resolution of human eyes, and display location, orientation, size, resolution, and frame rate. The model can be used to determine presentation material placement based on average or worst case audience member view quality, and to warn about material that would be illegible. By integrating this framework with a previous system for multi-display presentation [PreAuthor, others], we created a tool that accepts PowerPoint and/or other media input files, and automatically generates a layout of material onto displays for each state of the presentation. The tool also provides an interface allowing the presenter to modify the automatically generated layout before or during the actual presentation. This paper discusses the framework, possible application scenarios, examples of the system behavior, and our experience with system use.

  19. Interactions between Social/ behavioral factors and ADRB2 genotypes may be associated with health at advanced ages in China

    PubMed Central

    2013-01-01

    Background Existing literature indicates that ADRB2 gene is associated with health and longevity, but none of previous studies investigated associations of carrying the ADRB2 minor alleles and interactions between ADRB2 genotypes and social/behavioral factors(GxE) with health outcomes at advanced ages. This study intends to fill in this research gap. Method We conducted an exploratory analysis, using longitudinal survey phenotype/genotype data from 877 oldest-old aged 90+. To estimate association of GxE interactions with health outcome, adjusted for the potential correlation between genotypes and social/behavioral factors and various other potentially confounding factors, we develop and test an innovative three-step procedure which combines logistic regression and structural equation methods. Results Interaction between regular exercise and carrying rs1042718 minor allele is significantly and positively associated with good cognitive function; interaction between regular exercise and carrying rs1042718 or rs1042719 minor allele is significantly and positively associated with self-reported good health; and interaction between social-leisure activities and carrying rs1042719 minor allele is significantly and positively associated with self-reported good health. Carrying rs1042718 or rs1042719 minor alleles is significantly and negatively associated with negative emotion, but the ADRB2 SNPs are not significantly associated with cognitive function and self-reported health. Our structural equation analysis found that, adjusted for the confounding effects of correlation of the ADRB2 SNPs with negative emotion, interaction between negative emotion and carrying rs1042718 or rs1042719 minor allele is significantly and negatively associated with cognitive function. The positive association of regular exercise and social-leisure activities with cognitive function and self-reported health, and negative association of negative emotion with cognitive function, were much stronger

  20. Extraction and Analysis of Display Data

    NASA Technical Reports Server (NTRS)

    Land, Chris; Moye, Kathryn

    2008-01-01

    The Display Audit Suite is an integrated package of software tools that partly automates the detection of Portable Computer System (PCS) Display errors. [PCS is a lap top computer used onboard the International Space Station (ISS).] The need for automation stems from the large quantity of PCS displays (6,000+, with 1,000,000+ lines of command and telemetry data). The Display Audit Suite includes data-extraction tools, automatic error detection tools, and database tools for generating analysis spread sheets. These spread sheets allow engineers to more easily identify many different kinds of possible errors. The Suite supports over 40 independent analyses, 16 NASA Tech Briefs, November 2008 and complements formal testing by being comprehensive (all displays can be checked) and by revealing errors that are difficult to detect via test. In addition, the Suite can be run early in the development cycle to find and correct errors in advance of testing.

  1. Advances in synthetic peptides reagent discovery

    NASA Astrophysics Data System (ADS)

    Adams, Bryn L.; Sarkes, Deborah A.; Finch, Amethist S.; Stratis-Cullum, Dimitra N.

    2013-05-01

    Bacterial display technology offers a number of advantages over competing display technologies (e.g, phage) for the rapid discovery and development of peptides with interaction targeted to materials ranging from biological hazards through inorganic metals. We have previously shown that discovery of synthetic peptide reagents utilizing bacterial display technology is relatively simple and rapid to make laboratory automation possible. This included extensive study of the protective antigen system of Bacillus anthracis, including development of discovery, characterization, and computational biology capabilities for in-silico optimization. Although the benefits towards CBD goals are evident, the impact is far-reaching due to our ability to understand and harness peptide interactions that are ultimately extendable to the hybrid biomaterials of the future. In this paper, we describe advances in peptide discovery including, new target systems (e.g. non-biological materials), advanced library development and clone analysis including integrated reporting.

  2. Microlaser-based displays

    NASA Astrophysics Data System (ADS)

    Bergstedt, Robert; Fink, Charles G.; Flint, Graham W.; Hargis, David E.; Peppler, Philipp W.

    1997-07-01

    Laser Power Corporation has developed a new type of projection display, based upon microlaser technology and a novel scan architecture, which provides the foundation for bright, extremely high resolution images. A review of projection technologies is presented along with the limitations of each and the difficulties they experience in trying to generate high resolution imagery. The design of the microlaser based projector is discussed along with the advantage of this technology. High power red, green, and blue microlasers have been designed and developed specifically for use in projection displays. These sources, in combination with high resolution, high contrast modulator, produce a 24 bit color gamut, capable of supporting the full range of real world colors. The new scan architecture, which reduces the modulation rate and scan speeds required, is described. This scan architecture, along with the inherent brightness of the laser provides the fundamentals necessary to produce a 5120 by 4096 resolution display. The brightness and color uniformity of the display is excellent, allowing for tiling of the displays with far fewer artifacts than those in a traditionally tiled display. Applications for the display include simulators, command and control centers, and electronic cinema.

  3. Three-dimensional display: stereo and beyond

    NASA Astrophysics Data System (ADS)

    Dallas, William J.; Roehrig, Hans; Allen, Daniel J.

    2008-03-01

    With the advent of large, high-quality stereo display monitors and high-volume 3-D image acquisition sources, it is time to revisit the use of 3-D display for diagnostic radiology. Stereo displays may be goggled, or goggleless. Goggleless displays are called autostereographic displays. We concentrate on autostereographic technologies. Commercial LCD flat-screen 3-D autostereographic monitors typically rely on one of two techniques: blocked perspective and integral display. On the acquisition modality side: MRI, CT and 3-D ultrasound provide 3-D data sets. However, helical/spiral CT with multi-row detectors and multiple x-ray sources provides a monsoon of data. Presenting and analyzing this large amount of potentially dynamic data will require advanced presentation techniques. We begin with a very brief review the two stereo-display technologies. These displays are evolving beyond presentation of the traditional pair of views directed to fixed positions of the eyes to multi-perspective displays; at differing head positions, the eyes are presented with the proper perspective pairs corresponding to viewing a 3-D object from that position. In addition, we will look at some of the recent developments in computer-generated holograms or CGH's. CGH technology differs from the other two technologies in that it provides a wave-optically correct reproduction of the object. We then move to examples of stereo-displayed medical images and examine some of the potential strengths and weaknesses of the displays. We have installed a commercial stereo-display in our laboratory and are in the process of generating stereo-pairs of CT data. We are examining, in particular, preprocessing of the perspective data.

  4. Advanced Nonlinear Latent Variable Modeling: Distribution Analytic LMS and QML Estimators of Interaction and Quadratic Effects

    ERIC Educational Resources Information Center

    Kelava, Augustin; Werner, Christina S.; Schermelleh-Engel, Karin; Moosbrugger, Helfried; Zapf, Dieter; Ma, Yue; Cham, Heining; Aiken, Leona S.; West, Stephen G.

    2011-01-01

    Interaction and quadratic effects in latent variable models have to date only rarely been tested in practice. Traditional product indicator approaches need to create product indicators (e.g., x[superscript 2] [subscript 1], x[subscript 1]x[subscript 4]) to serve as indicators of each nonlinear latent construct. These approaches require the use of…

  5. Hazard alerting and situational awareness in advanced air transport cockpits

    NASA Technical Reports Server (NTRS)

    Hansman, R. John; Wanke, Craig; Kuchar, James; Mykityshyn, Mark; Hahn, Edward; Midkiff, Alan

    1993-01-01

    Advances in avionics and display technology have significantly changed the cockpit environment in current 'glass cockpit' aircraft. Recent developments in display technology, on-board processing, data storage, and datalinked communications are likely to further alter the environment in second and third generation 'glass cockpit' aircraft. The interaction of advanced cockpit technology with human cognitive performance has been a major area of activity within the MIT Aeronautical Systems Laboratory. This paper presents an overview of the MIT Advanced Cockpit Simulation Facility. Several recent research projects are briefly reviewed and the most important results are summarized.

  6. Stainless steel display evaluation

    NASA Astrophysics Data System (ADS)

    Hopper, Darrel G.; Meyer, Frederick M.; Longo, Sam J.; Trissell, Terry L.

    2007-04-01

    Active matrix organic light emitting diode (AMOLED) technology is one candidate to become a low power alternative in some applications to the currently dominant, active matrix liquid crystal display (AMLCD), technology. Furthermore, fabrication of the AMOLED on stainless steel (SS) foil rather than the traditional glass substrate, while presenting a set of severe technical challenges, opens up the potential for displays that are both lighter and less breakable. Also, transition to an SS foil substrate may enable rollable displays - large when used but small for stowage within gear already worn or carried or installed. Research has been initiated on AMOLED/SS technology and the first 320 x 240 color pixel 4-in. demonstration device has been evaluated in the AFRL Display Test and Evaluation Laboratory. Results of this evaluation are reported along with a research roadmap.

  7. Map display design

    NASA Technical Reports Server (NTRS)

    Aretz, Anthony J.

    1990-01-01

    This paper presents a cognitive model of a pilot's navigation task and describes an experiment comparing a visual momentum map display to the traditional track-up and north-up approaches. The data show the advantage to a track-up map is its congruence with the ego-centered forward view; however, the development of survey knowledge is hindered by the inconsistency of the rotating display. The stable alignment of a north-up map aids the acquisition of survey knowledge, but there is a cost associated with the mental rotation of the display to a track-up alignment for ego-centered tasks. The results also show that visual momentum can be used to reduce the mental rotation costs of a north-up display.

  8. Military display performance parameters

    NASA Astrophysics Data System (ADS)

    Desjardins, Daniel D.; Meyer, Frederick

    2012-06-01

    The military display market is analyzed in terms of four of its segments: avionics, vetronics, dismounted soldier, and command and control. Requirements are summarized for a number of technology-driving parameters, to include luminance, night vision imaging system compatibility, gray levels, resolution, dimming range, viewing angle, video capability, altitude, temperature, shock and vibration, etc., for direct-view and virtual-view displays in cockpits and crew stations. Technical specifications are discussed for selected programs.

  9. Advanced Response Surface Modeling of Ares I Roll Control Jet Aerodynamic Interactions

    NASA Technical Reports Server (NTRS)

    Favaregh, Noah M.

    2010-01-01

    The Ares I rocket uses roll control jets. These jets have aerodynamic implications as they impinge on the surface and protuberances of the vehicle. The jet interaction on the body can cause an amplification or a reduction of the rolling moment produced by the jet itself, either increasing the jet effectiveness or creating an adverse effect. A design of experiments test was planned and carried out using computation fluid dynamics, and a subsequent response surface analysis ensued on the available data to characterize the jet interaction across the ascent portion of the Ares I flight envelope. Four response surface schemes were compared including a single response surface covering the entire design space, separate sector responses that did not overlap, continuously overlapping surfaces, and recursive weighted response surfaces. These surfaces were evaluated on traditional statistical metrics as well as visual inspection. Validation of the recursive weighted response surface was performed using additionally available data at off-design point locations.

  10. Advances in CFD prediction of shock wave turbulent boundary layer interactions

    NASA Astrophysics Data System (ADS)

    Knight, Doyle; Yan, Hong; Panaras, Argyris G.; Zheltovodov, Alexander

    2003-04-01

    The paper presents a summary of recent computational fluid dynamics (CFD) simulations of shock wave turbulent boundary layer interactions. This survey was prepared as part of the activity of NATO RTO Working Group 10 which was established in December 1998, and considers results obtained subsequent to the previous survey paper on the same topic by Knight and Degrez (“Shock Wave Boundary Layer Interactions in High Mach Number Flows-A Critical Survey of Current CFD Prediction Capabilities”, AGARD Advisory Report AR-319, Volume II, December 1998). Five configurations are considered: 2-D compression corner, 2-D shock impingement, 2-D expansion-compression corner, 3-D single fin and 3-D double fin. Recent direct numerical simulations (DNS), large eddy simulations (LES) and Reynolds-averaged Navier-Stokes (RANS) simulations are compared with experiment. The capabilities and limitations are described, and future research needs identified.

  11. Focusing the EarthScope for a broader audience: Advancing geoscience education with interactive kiosks

    NASA Astrophysics Data System (ADS)

    Smith-Konter, B. R.; Solis, T.

    2012-12-01

    A primary objective of the EarthScope Education and Outreach program is to transform technical science into teachable products for a technologically thriving generation. One of the most challenging milestones of scientific research, however, is often the translation of a technical result into a clear teachable moment that is accessible to a broader audience. As 4D multimedia now dominate most aspects of our social environment, science "teaching" now also requires intervention of visualization technology and animation to portray research results in an inviting and stimulating manner. Following the Incorporated Research Institutions for Seismology (IRIS)'s lead in developing interactive Earth science kiosk multimedia (bundled in a free product called Active Earth), we have made a major effort to construct and install customized EarthScope-themed touch screen kiosks in local communities. These kiosks are helping to educate a broader audience about EarthScope's unique instrumentation and observations using interactive animations, games, and virtual field trips. We are also developing new kiosk content that reflect career stories showcasing the personal journeys of EarthScope scientists. To truly bring the interactive aspect of our EarthScope kiosk media into the classroom, we have collaborated with local teachers to develop a one-page EarthScope TerraMap activity worksheet that guides students through kiosk content. These activities are shaping a new pathway for how teachers teach and students learn about planet Earth and its fantastic EarthScope - one click (and touch) at a time.

  12. Interaction Between the FOXO1A-209 Genotype and Tea Drinking Is Significantly Associated with Reduced Mortality at Advanced Ages.

    PubMed

    Zeng, Yi; Chen, Huashuai; Ni, Ting; Ruan, Rongping; Nie, Chao; Liu, Xiaomin; Feng, Lei; Zhang, Fengyu; Lu, Jiehua; Li, Jianxin; Li, Yang; Tao, Wei; Gregory, Simon G; Gottschalk, William; Lutz, Michael W; Land, Kenneth C; Yashin, Anatoli; Tan, Qihua; Yang, Ze; Bolund, Lars; Ming, Qi; Yang, Huanming; Min, Junxia; Willcox, D Craig; Willcox, Bradley J; Gu, Jun; Hauser, Elizabeth; Tian, Xiao-Li; Vaupel, James W

    2016-06-01

    On the basis of the genotypic/phenotypic data from Chinese Longitudinal Healthy Longevity Survey (CLHLS) and Cox proportional hazard model, the present study demonstrates that interactions between carrying FOXO1A-209 genotypes and tea drinking are significantly associated with lower risk of mortality at advanced ages. Such a significant association is replicated in two independent Han Chinese CLHLS cohorts (p = 0.028-0.048 in the discovery and replication cohorts, and p = 0.003-0.016 in the combined dataset). We found the associations between tea drinking and reduced mortality are much stronger among carriers of the FOXO1A-209 genotype compared to non-carriers, and drinking tea is associated with a reversal of the negative effects of carrying FOXO1A-209 minor alleles, that is, from a substantially increased mortality risk to substantially reduced mortality risk at advanced ages. The impacts are considerably stronger among those who carry two copies of the FOXO1A minor allele than those who carry one copy. On the basis of previously reported experiments on human cell models concerning FOXO1A-by-tea-compounds interactions, we speculate that results in the present study indicate that tea drinking may inhibit FOXO1A-209 gene expression and its biological functions, which reduces the negative impacts of FOXO1A-209 gene on longevity (as reported in the literature) and offers protection against mortality risk at oldest-old ages. Our empirical findings imply that the health outcomes of particular nutritional interventions, including tea drinking, may, in part, depend upon individual genetic profiles, and the research on the effects of nutrigenomics interactions could potentially be useful for rejuvenation therapies in the clinic or associated healthy aging intervention programs. PMID:26414954

  13. Recent advances in plant-virus interaction with emphasis on small interfering RNAs (siRNAs).

    PubMed

    Sharma, Namisha; Sahu, Pranav Pankaj; Puranik, Swati; Prasad, Manoj

    2013-09-01

    Regulation of several biological functions in plants has now been known to involve diverse RNA silencing pathways. These vital pathways involve various components such as dsRNA, Dicer, RNA-dependent RNA polymerase and Argonaute proteins, which lead to the production of several small RNAs (sRNAs) varying in their sizes. These sRNAs have significant role in the regulation of gene expression at transcriptional and translational levels. Among them, small interfering RNAs (siRNAs; majorly 21, 22 and 24 nt) have been shown to play an important role in plants' resistance against many viruses by inhibiting the viral gene expression. Furthermore, it has also been highlighted that siRNA-mediated methylation of viral DNA confers resistance to various plant DNA viruses. In this review, we have outlined the recent advances made using the siRNA-mediated antiviral strategy, along with methylation-based epigenetic defensive mechanisms as a protective measure against diverse plant viruses. PMID:23086491

  14. Advances in high-order interaction region nonlinear optics correction at RHIC

    SciTech Connect

    Zimmer, C.; Binello, S.; Minty, M.; Pilat, F.

    2011-03-28

    A method to indirectly measure and deterministically correct the higher order magnetic errors of the final focusing magnets in the Relativistic Heavy Ion Collider has been in place for several years at BNL. This method yields control over the effects of multi-pole errors through application of closed orbit bumps followed by analysis and correction of the resulting betatron tune shifts using multi-pole correctors. The process has recently been automated in order to provide more efficient and effective corrections. The tune resolution along with the reliability of measurements has also been improved significantly due to advances/upgrades in the betatron tune measurement system employed at RHIC (BBQ). Here we describe the foundation of the IR bump method, followed by recent improvements along with experimental data.

  15. Factors affecting dwell times on digital displaying

    NASA Technical Reports Server (NTRS)

    Williams, A. J.; Harris, R. L., Sr.

    1985-01-01

    A series of exploratory tests were conducted to investigate the effects of advanced display formats and display media on pilot scanning behavior using Langley's oculometer, a desktop flight simulator, a conventional electro-mechanical meter, and various digital displays. The primary task was for the test subject to maintain level flight, on a specific course heading, during moderate turbulence. A secondary task of manually controlling the readout of a display was used to examine the effects of the display format on a subject's scan behavior. Secondary task scan parameters that were evaluated were average dwell time, dwell time histograms, and number of dwells per meter change. The round dial meter demonstrated shorter dwell times and fewer dwells per meter change than the digital displays. The following factors affected digital display scanning behavior: (1) the number of digits; (2) the update rate of the digits; (3) the display media; and (4) the character font. The size of the digits used in these tests (0.28 to 0.50 inches) did not affect scan behavior measures.

  16. Developing three-dimensional display technologies

    NASA Astrophysics Data System (ADS)

    Dallas, William J.; Roehrig, Hans; Allen, Daniel J.

    2008-08-01

    Stereo, multi-perspective, and volumetric display technologies have made several recent gains. We are seeing increased availability of such systems for entertainment, both in theaters and for the home. The concurrent advent of medical imaging modalities that deliver very large data sets such as, spiral CT, high-field MRI, and 3-D ultrasound, makes renewed assessment of 3-D display of medical images attractive. We concentrate on autostereographic displays, those that are viewed without viewing aids such as special eye-glasses or goggles. We begin with a very brief review of a few stereo-display, multi-perspective, and volumetric display technologies. We focus our attention primarily on the integral display (ID) and the computer-generated hologram (CGH). We will examine the boost that ID has gotten from the availability of flat-panel displays with very high pixel counts. We also discuss some recent advances in CGH's included the emergence of rewritable holographic materials. We also look at one, undeveloped 3-D display technology: the Correlelogram.

  17. Advances in Human-Computer Interaction: Graphics and Animation Components for Interface Design

    NASA Astrophysics Data System (ADS)

    Cipolla Ficarra, Francisco V.; Nicol, Emma; Cipolla-Ficarra, Miguel; Richardson, Lucy

    We present an analysis of communicability methodology in graphics and animation components for interface design, called CAN (Communicability, Acceptability and Novelty). This methodology has been under development between 2005 and 2010, obtaining excellent results in cultural heritage, education and microcomputing contexts. In studies where there is a bi-directional interrelation between ergonomics, usability, user-centered design, software quality and the human-computer interaction. We also present the heuristic results about iconography and layout design in blogs and websites of the following countries: Spain, Italy, Portugal and France.

  18. Advances in research on atmospheric energy propagation and the interactions between different latitudes

    NASA Astrophysics Data System (ADS)

    Yang, Song; Deng, Kaiqiang; Ting, Mingfang; Hu, Chundi

    2015-12-01

    Early theoretical analyses indicated that the tropics and extratropics are relatively independent due to the existence of critical latitudes. However, considerable observational evidence has shown that a clear dynamical link exists between the tropics and midlatitudes. To better understand such atmospheric teleconnection, several theories of wave energy propagation are reviewed in this paper: (1) great circle theory, which reveals the characteristics of Rossby waves propagating in the spherical atmosphere; (2) westerly duct theory, which suggests a "corridor" through which the midlatitude disturbances in one hemisphere can propagate into the other hemisphere; (3) energy accumulation-wave emanation theory, which proposes processes through which tropical disturbances can affect the atmospheric motion in higher latitudes; (4) equatorial wave expansion theory, which further explains the physical mechanisms involved in the interaction between the tropics and extratropics; and (5) meridional basic flow theory, which argues that stationary waves can propagate across the tropical easterlies under certain conditions. In addition, the progress made in diagnosing wave-flow interaction, particularly for Rossby waves, inertial-gravity waves, and Kelvin waves, is also reviewed. The meridional propagation of atmospheric energy exhibits significant annual and interannual variations, closely related to ENSO and variation in the westerly jets and tropical upper-tropospheric troughs, amongst others.

  19. Phage and Yeast Display.

    PubMed

    Sheehan, Jared; Marasco, Wayne A

    2015-02-01

    Despite the availability of antimicrobial drugs, the continued development of microbial resistance--established through escape mutations and the emergence of resistant strains--limits their clinical utility. The discovery of novel, therapeutic, monoclonal antibodies (mAbs) offers viable clinical alternatives in the treatment and prophylaxis of infectious diseases. Human mAb-based therapies are typically nontoxic in patients and demonstrate high specificity for the intended microbial target. This specificity prevents negative impacts on the patient microbiome and avoids driving the resistance of nontarget species. The in vitro selection of human antibody fragment libraries displayed on phage or yeast surfaces represents a group of well-established technologies capable of generating human mAbs. The advantage of these forms of microbial display is the large repertoire of human antibody fragments present during a single selection campaign. Furthermore, the in vitro selection environments of microbial surface display allow for the rapid isolation of antibodies--and their encoding genes--against infectious pathogens and their toxins that are impractical within in vivo systems, such as murine hybridomas. This article focuses on the technologies of phage display and yeast display, as these strategies relate to the discovery of human mAbs for the treatment and vaccine development of infectious diseases. PMID:26104550

  20. Effect of advanced nanowire-based targets in nanosecond laser-matter interaction (invited)

    NASA Astrophysics Data System (ADS)

    Lanzalone, G.; Altana, C.; Mascali, D.; Muoio, A.; Malferrari, L.; Odorici, F.; Malandrino, G.; Tudisco, S.

    2016-02-01

    An experimental campaign aiming to investigate the effects of innovative nanostructured targets based on Ag nanowires on laser energy absorption in the ns time domain has been carried out at the Laser Energy for Nuclear Science laboratory of INFN-LNS in Catania. The tested targets were realized at INFN-Bologna by anodizing aluminium sheets in order to obtain layers of porous Al2O3 of different thicknesses, on which nanowires of various metals are grown by electro-deposition with different heights. Targets were then irradiated by using a Nd:YAG laser at different pumping energies. Advanced diagnostic tools were used for characterizing the plasma plume and ion production. As compared with targets of pure Al, a huge enhancement (of almost two order of magnitude) of the X-ray flux emitted by the plasma has been observed when using the nanostructured targets, with a corresponding decrease of the "optical range" signal, pointing out that the energetic content of the laser produced plasma was remarkably increased. This analysis was furthermore confirmed from time-of-flight spectra.

  1. Final LDRD report human interaction with complex systems: advances in hybrid reachability and control.

    SciTech Connect

    Oishi, Meeko M.

    2006-08-01

    This document describes new advances in hybrid reachability techniques accomplished during the course of a one-year Truman Postdoctoral Fellowship. These techniques provide guarantees of safety in complex systems, which is especially important in high-risk, expensive, or safety-critical systems. My work focused on new approaches to two specific problems motivated by real-world issues in complex systems: (1) multi-objective controller synthesis, and (2) control for recovery from error. Regarding the first problem, a novel application of reachability analysis allowed controller synthesis in a single step to achieve (a) safety, (b) stability, and (c) prevent input saturation. By extending the state to include the input parameters, constraints for stability, saturation, and envelope protection are incorporated into a single reachability analysis. Regarding the second problem, a new approach to the problem of recovery provides (a) states from which recovery is possible, and (b) controllers to guide the system during a recovery maneuver from an error state to a safe state in minimal time. Results are computed in both problems on nonlinear models of single longitudinal aircraft dynamics and two-aircraft lateral collision avoidance dynamics.

  2. Effect of advanced nanowire-based targets in nanosecond laser-matter interaction (invited).

    PubMed

    Lanzalone, G; Altana, C; Mascali, D; Muoio, A; Malferrari, L; Odorici, F; Malandrino, G; Tudisco, S

    2016-02-01

    An experimental campaign aiming to investigate the effects of innovative nanostructured targets based on Ag nanowires on laser energy absorption in the ns time domain has been carried out at the Laser Energy for Nuclear Science laboratory of INFN-LNS in Catania. The tested targets were realized at INFN-Bologna by anodizing aluminium sheets in order to obtain layers of porous Al2O3 of different thicknesses, on which nanowires of various metals are grown by electro-deposition with different heights. Targets were then irradiated by using a Nd:YAG laser at different pumping energies. Advanced diagnostic tools were used for characterizing the plasma plume and ion production. As compared with targets of pure Al, a huge enhancement (of almost two order of magnitude) of the X-ray flux emitted by the plasma has been observed when using the nanostructured targets, with a corresponding decrease of the "optical range" signal, pointing out that the energetic content of the laser produced plasma was remarkably increased. This analysis was furthermore confirmed from time-of-flight spectra. PMID:26932052

  3. Flat panel displays in an underwater cockpit

    NASA Astrophysics Data System (ADS)

    Sola, Kenneth E.

    1999-08-01

    This paper reports on a highly unusual application of flat panel displays in a cockpit. The cockpit is found in a mini- submarine of the Advanced SEAL Delivery System (ASDS), a state-of-the-art military platform designed to deliver U.S. Navy SEALs, and other special forces, to their mission locations. For security reasons, the presentation details are intentionally kept minimal.

  4. Secondary Neutron Production from Space Radiation Interactions: Advances in Model and Experimental Data Base Development

    NASA Technical Reports Server (NTRS)

    Heilbronn, Lawrence H.; Townsend, Lawrence W.; Braley, G. Scott; Iwata, Yoshiyuki; Iwase, Hiroshi; Nakamura, Takashi; Ronningen, Reginald M.; Cucinotta, Francis A.

    2003-01-01

    For humans engaged in long-duration missions in deep space or near-Earth orbit, the risk from exposure to galactic and solar cosmic rays is an important factor in the design of spacecraft, spacesuits, and planetary bases. As cosmic rays are transported through shielding materials and human tissue components, a secondary radiation field is produced. Neutrons are an important component of that secondary field, especially in thickly-shielded environments. Calculations predict that 50% of the dose-equivalent in a lunar or Martian base comes from neutrons, and a recent workshop held at the Johnson Space Center concluded that as much as 30% of the dose in the International Space Station may come from secondary neutrons. Accelerator facilities provide a means for measuring the effectiveness of various materials in their ability to limit neutron production, using beams and energies that are present in cosmic radiation. The nearly limitless range of beams, energies, and target materials that are present in space, however, means that accelerator-based experiments will not provide a complete database of cross sections and thick-target yields that are necessary to plan and design long-duration missions. As such, accurate nuclear models of neutron production are needed, as well as data sets that can be used to compare with, and verify, the predictions from such models. Improvements in a model of secondary neutron production from heavy-ion interactions are presented here, along with the results from recent accelerator-based measurements of neutron-production cross sections. An analytical knockout-ablation model capable of predicting neutron production from high-energy hadron-hadron interactions (both nucleon-nucleus and nucleus-nucleus collisions) has been previously developed. In the knockout stage, the collision between two nuclei result in the emission of one or more nucleons from the projectile and/or target. The resulting projectile and target remnants, referred to as

  5. Characterization of debris/concrete interactions for advanced research reactor and commercial BWR severe accidents

    SciTech Connect

    Hyman, C.R.; Taleyarkhan, R.P.; Greene, S.R.

    1991-01-01

    The core concrete interaction (CCI) is an important phase of any severe accident where the reactor vessel has failed and core debris is relocated onto the containment basemat. In recent calculations performed at the Oak Ridge National Laboratory (ORNL), CCI has been studied for severe accidents occurring in a commercial Boiling Water Reactor (BWR) and in a high-power density Department of Energy (DOE) research reactor that is currently in the conceptual design stage. Because of differences in the debris decay heating level, core debris composition and inventory, and containment design, the characteristics of the resulting CCI and containment response are different for the two reactor types. Furthermore, proper selection of the basemat concrete type and the provision of an overlying water pool are found to be significant CCI mitigating factors for the research reactor and thus constitute important design considerations for any future reactor type. 10 refs., 4 figs., 1 tab.

  6. EKG and ultrasonoscope display

    NASA Technical Reports Server (NTRS)

    Lee, Robert D. (Inventor)

    1979-01-01

    A system is disclosed which permits simultaneous display of an EKG waveform in real time in conjunction with a two-dimensional cross-sectional image of the heart, so that the EKG waveform can be directly compared with dimensional changes in the heart. The apparatus of the invention includes an ultrasonoscope for producing a C-scan cross-sectional image of the heart. An EKG monitor circuit along with EKG logic circuitry is combined with the ultrasonoscope circuitry to produce on the same oscilloscope screen a continuous vertical trace showing the EKG waveform simultaneously with the heart image. The logic circuitry controls the oscilloscope display such that the display of both heart and EKG waveforms occurs on a real time basis.

  7. Shaping Watersheds Exhibit: An Interactive, Augmented Reality Sandbox for Advancing Earth Science Education

    NASA Astrophysics Data System (ADS)

    Reed, S. E.; Kreylos, O.; Hsi, S.; Kellogg, L. H.; Schladow, G.; Yikilmaz, M. B.; Segale, H.; Silverman, J.; Yalowitz, S.; Sato, E.

    2014-12-01

    One of the challenges involved in learning earth science is the visualization of processes which occur over large spatial and temporal scales. Shaping Watersheds is an interactive 3D exhibit developed with support from the National Science Foundation by a team of scientists, science educators, exhibit designers, and evaluation professionals, in an effort to improve public understanding and stewardship of freshwater ecosystems. The hands-on augmented reality sandbox allows users to create topographic models by shaping real "kinetic" sand. The exhibit is augmented in real time by the projection of a color elevation map and contour lines which exactly match the sand topography, using a closed loop of a Microsoft Kinect 3D camera, simulation and visualization software, and a data projector. When an object (such as a hand) is sensed at a particular height above the sand surface, virtual rain appears as a blue visualization on the surface and a flow simulation (based on a depth-integrated version of the Navier-Stokes equations) moves the water across the landscape. The blueprints and software to build the sandbox are freely available online (http://3dh2o.org/71/) under the GNU General Public License, together with a facilitator's guide and a public forum (with how-to documents and FAQs). Using these resources, many institutions (20 and counting) have built their own exhibits to teach a wide variety of topics (ranging from watershed stewardship, hydrology, geology, topographic map reading, and planetary science) in a variety of venues (such as traveling science exhibits, K-12 schools, university earth science departments, and museums). Additional exhibit extensions and learning modules are planned such as tsunami modeling and prediction. Moreover, a study is underway at the Lawrence Hall of Science to assess how various aspects of the sandbox (such as visualization color scheme and level of interactivity) affect understanding of earth science concepts.

  8. Anthropology and Geosciences: Training and Collaboration Advancing Interdisciplinary Research of Human-environment Interaction

    NASA Astrophysics Data System (ADS)

    Brondizio, E.; Moran, E.

    2005-05-01

    Over the past thirteen years the Anthropological Center for Training and Research on Global Environmental Change (ACT) at Indiana University has pioneered the use of anthropological and environmental research approaches to address issues of land use change, and population-environment interaction, particularly in the Amazon. Our research and training objectives focus on how particular local populations manage resources and how those activities may be studied by integrating time-tested ethnographic methods, survey instruments, ecological field studies, and the spatial and temporal perspectives of remote sensing and Geographical Information Systems. The globalization of the environment crisis bears the risk of the research and training at universities being purely global or large scale in nature. This would fail to take into account the highly variable local causes of human activities or to discover sustainable solutions to the use, conservation, and restoration of human ecosystems. Our approach combines institutional and international collaboration, formal and hands-on laboratory and field activities developed within an interdisciplinary environment, but based on the strength of disciplinary programs. Over the past years, we have particularly emphasized collaboration between American and Brazilian scholars and students and intense work with local farmers and communities both during data collection and field research, as well as in returning data and results using different formats. In this paper, we address our experience, the challenges and advantages of theoretical and methodological development for students approaching interdisciplinary problems, innovations in linking levels of analysis, and new opportunities for international and collaborative training and research on human-environment interaction.

  9. Comparison of alphabetical versus categorical display format for medication order entry in a simulated touch screen anesthesia information management system: an experiment in clinician-computer interaction in anesthesia

    PubMed Central

    2012-01-01

    Background Anesthesia information management system (AIMS) records should be designed and configured to facilitate the accurate and prompt recording of multiple drugs administered coincidentally or in rapid succession. Methods We proposed two touch-screen display formats for use with our department’s new EPIC touch-screen AIMS. In one format, medication “buttons” were arranged in alphabetical order (i.e. A-C, D-H etc.). In the other, buttons were arranged in categories (Common, Fluids, Cardiovascular, Coagulation etc.). Both formats were modeled on an iPad screen to resemble the AIMS interface. Anesthesia residents, anesthesiologists, and Certified Registered Nurse Anesthetists (n = 60) were then asked to find and touch the correct buttons for a series of medications whose names were displayed to the side of the entry screen. The number of entries made within 2 minutes was recorded. This was done 3 times for each format, with the 1st format chosen randomly. Data were analyzed from the third trials with each format to minimize differences in learning. Results The categorical format had a mean of 5.6 more drugs entered using the categorical method in two minutes than the alphabetical format (95% confidence interval [CI] 4.5 to 6.8, P < 0.0001). The findings were the same regardless of the order of testing (i.e. alphabetical-categorical vs. categorical - alphabetical) and participants’ years of clinical experience. Most anesthesia providers made no (0) errors for most trials (N = 96/120 trials, lower 95% limit 73%, P < 0.0001). There was no difference in error rates between the two formats (P = 0.53). Conclusions The use of touch-screen user interfaces in healthcare is increasingly common. Arrangement of drugs names in a categorical display format in the medication order-entry touch screen of an AIMS can result in faster data entry compared to an alphabetical arrangement of drugs. Results of this quality improvement project were used in our

  10. Integrated display scanner

    DOEpatents

    Veligdan, James T.

    2004-12-21

    A display scanner includes an optical panel having a plurality of stacked optical waveguides. The waveguides define an inlet face at one end and a screen at an opposite end, with each waveguide having a core laminated between cladding. A projector projects a scan beam of light into the panel inlet face for transmission from the screen as a scan line to scan a barcode. A light sensor at the inlet face detects a return beam reflected from the barcode into the screen. A decoder decodes the return beam detected by the sensor for reading the barcode. In an exemplary embodiment, the optical panel also displays a visual image thereon.

  11. Thin display optical projector

    DOEpatents

    Veligdan, James T.

    1999-01-01

    An optical system (20) projects light into a planar optical display (10). The display includes laminated optical waveguides (12) defining an inlet face (14) at one end and an outlet screen (16) at an opposite end. A first mirror (26) collimates light from a light source (18) along a first axis, and distributes the light along a second axis. A second mirror (28) collimates the light from the first mirror along the second axis to illuminate the inlet face and produce an image on the screen.

  12. Tactile displays for enhanced performance and safety

    NASA Astrophysics Data System (ADS)

    Castle, Heidi; Dobbins, Trevor D.

    2004-09-01

    Platform performance and safety are dependent on operator situational awareness. This is traditionally achieved via visual and audio displays but an intuitive alternative is the tactile display. A familiar tactile display is the vibrating alert function of the mobile telephone but more complex tactile display applications have been demonstrated in a number of scenarios, including fixed and rotary wing aircraft, high-speed boats, diving, and assisting the visually impaired. The major applications include orientation, navigation, and communication. A recent NATO Research & Technology Organisation symposium on spatial disorientation (La Coruna, Spain, 2002) stated that; 'The most important advance of recent years with the potential to combat spatial disorientation has been the use of tactile stimuli to give information on spatial orientation'.

  13. Electromagnetic field interactions with micro channels, particles and cells: Application to advanced cytometry

    NASA Astrophysics Data System (ADS)

    Venkatapathi, Murugesan

    This thesis involves a study of the interaction of laser beams with micro channels and micro particles/cells using the electromagnetic field approach. This problem is relevant to the next generation cytometry, in particular to model based design of flow cytometers. The field approach is applied to study light scatter from particles/cells and also internal and scattered fields of cylindrical micro channels that are important for optical interrogation of particles and cells flowing through. Though current flow cytometers use qualitative fluorescence measurements for biological analysis, other viable optical interrogation techniques like light scatter, quantitative fluorescence and Coherent anti-stokes Raman scatter (CARS) are being studied for application to flow cytometry. The light scatter from particles and cells in a flow cytometer has been studied with the objective of extracting useful information about the particles using scatter measurements. First, the correlation between the size of particles and the current forward scatter measurements was both analytically modeled and experimentally determined. These results indicated that integrated scatter measurements currently used in flow cytometry (forward and side scatter) cannot be used to unambiguously estimate size, shape or refractive index of particles for classification. It is shown that multi-angle scatter measurements can be used to classify micro spheres of different sizes/refractive indices and different bacteria species, provided the scatter measurements are designed based on numerical scatter models. The numerical scatter models were then also used to do a preliminary study of correlation of scatter with internal structure of simple cells like stem cells. A few multivariate statistical methods have been applied for the classification of such particles in flow cytometry using scatter and multi-spectral fluorescence measurements. Typically the micro channels used in flow cytometry have square or circular

  14. Recent advances in pillar[n]arenes: synthesis and applications based on host-guest interactions.

    PubMed

    Yang, Kui; Pei, Yuxin; Wen, Jia; Pei, Zhichao

    2016-07-19

    Pillar[n]arenes (n = 5-15) are a novel class of macrocyclic molecules with hydroquinone as the repeating unit linked by methylene bridges at para-positions. Introduced by T. Ogoshi for the first time in 2008, pillararenes have attracted increasing interest and have been widely studied during the last eight years, due to their unique structural advantages as host molecules, such as symmetrical rigid architecture, electron-rich cavities and facile functional modification. In this review, we first describe the syntheses of pillar[n]arenes including cyclooligomerization of pillar[n]arenes and modification of pillar[n]arenes after cyclooligomerization, summarising almost twenty different kinds of guest motifs and dividing them into three types: cationic, neutral and anionic motifs. The main section of this review examines the applications of pillar[n]arenes based on the host-guest interactions in different research fields, including biology, materials science and environmental science. Finally, future research directions and potential for novel applications are discussed. PMID:27332040

  15. Advances in modelling subglacial lakes and their interaction with the Antarctic ice sheet.

    PubMed

    Pattyn, Frank; Carter, Sasha P; Thoma, Malte

    2016-01-28

    Subglacial lakes have long been considered hydraulically isolated water bodies underneath ice sheets. This view changed radically with the advent of repeat-pass satellite altimetry and the discovery of multiple lake discharges and water infill, associated with water transfer over distances of more than 200 km. The presence of subglacial lakes also influences ice dynamics, leading to glacier acceleration. Furthermore, subglacial melting under the Antarctic ice sheet is more widespread than previously thought, and subglacial melt rates may explain the availability for water storage in subglacial lakes and water transport. Modelling of subglacial water discharge in subglacial lakes essentially follows hydraulics of subglacial channels on a hard bed, where ice sheet surface slope is a major control on triggering subglacial lake discharge. Recent evidence also points to the development of channels in deformable sediment in West Antarctica, with significant water exchanges between till and ice. Most active lakes drain over short time scales and respond rapidly to upstream variations. Several Antarctic subglacial lakes exhibit complex interactions with the ice sheet due to water circulation. Subglacial lakes can therefore-from a modelling point of view-be seen as confined small oceans underneath an imbedded ice shelf. PMID:26667909

  16. Drivers license display system

    NASA Astrophysics Data System (ADS)

    Prokoski, Francine J.

    1997-01-01

    Carjackings are only one of a growing class of law enforcement problems associated with increasingly violent crimes and accidents involving automobiles plays weapons, drugs and alcohol. Police traffic stops have become increasingly dangerous, with an officer having no information about a vehicle's potentially armed driver until approaching him. There are 15 million alcoholics in the US and 90 percent of them have drivers licenses. Many of them continue driving even after their licenses have ben revoked or suspended. There are thousands of unlicensed truck drivers in the country, and also thousands who routinely exceed safe operating periods without rest; often using drugs in an attempt to stay alert. MIKOS has developed the Drivers License Display Systems to reduce these and other related risks. Although every state requires the continuous display of vehicle registration information on every vehicle using public roads, no state yet requires the display of driver license information. The technology exists to provide that feature as an add-on to current vehicles for nominal cost. An initial voluntary market is expected to include: municipal, rental, and high value vehicles which are most likely to be mis-appropriated. It is anticipated that state regulations will eventually require such systems in the future, beginning with commercial vehicles, and then extending to high risk drivers and eventually all vehicles. The MIKOS system offers a dual-display approach which can be deployed now, and which will utilize all existing state licenses without requiring standardization.

  17. Document Management on Display.

    ERIC Educational Resources Information Center

    Grimshaw, Anne

    1998-01-01

    Describes some of the products displayed at the United Kingdom's largest document management, imaging and workflow exhibition (Document 97, Birmingham, England, October 7-9, 1997). Includes recognition technologies; document delivery; scanning; document warehousing; document management and retrieval software; workflow systems; Internet software;…

  18. Christmas Light Display

    NASA Astrophysics Data System (ADS)

    Ross, Arthur; Renfro, Timothy

    2012-03-01

    The Digital Electronics class at McMurry University created a Christmas light display that toggles the power of different strands of lights, according to what frequencies are played in a song, as an example of an analog to digital circuit. This was accomplished using a BA3830S IC six-band audio filter and six solid-state relays.

  19. A Plasma Display Terminal.

    ERIC Educational Resources Information Center

    Stifle, Jack

    A graphics terminal designed for use as a remote computer input/output terminal is described. Although the terminal is intended for use in teaching applications, it has several features which make it useful in many other computer terminal applications. These features include: a 10-inch square plasma display panel, permanent storage of information…

  20. Digital holographic display

    NASA Astrophysics Data System (ADS)

    Lee, Cheok Peng; Chia, Yong Poo; Singh, Vijay Raj; Asundi, A.; Khoo, Xuan Jie; Tay, Kiat Long; Zhou, Junxiang

    2009-12-01

    This paper describes how a Digital Holographic Projector is designed and implemented to project two-dimension virtual images onto the volumetric display media. In this research, we focus on the method to create 3D models, diffractive algorithm and the display media. A 3D model is generated based on the 360° view with views at every 10° interval from a 3D perspective view software. The hologram interference fringes are re-producing from the Fraunhofer algorithm. In order to make more flexible and portable, a Compact Vision System is introduced to storage multiply interference fringes. At the same time, the fringes are sent out at 30 Hz frame by frame continually to the digital micro-mirror1. With the presence of Nd: YVO4 green laser and various optical components, the 3D 360° hologram images are dynamically reconstructed and projected onto the high speed rotating diffuser forming a 3D model at any viewing angle on the volumetric display media. Both volumetric display media, wet and dry methods are demonstrated to show their feasibility and convenience. Finally, the dry volumetric technique with vertical projection mounting is adopted and as the result shown that the speckle noise is significance reduced.

  1. Digital holographic display

    NASA Astrophysics Data System (ADS)

    Lee, Cheok Peng; Chia, Yong Poo; Singh, Vijay Raj; Asundi, A.; Khoo, Xuan Jie; Tay, Kiat Long; Zhou, Junxiang

    2010-03-01

    This paper describes how a Digital Holographic Projector is designed and implemented to project two-dimension virtual images onto the volumetric display media. In this research, we focus on the method to create 3D models, diffractive algorithm and the display media. A 3D model is generated based on the 360° view with views at every 10° interval from a 3D perspective view software. The hologram interference fringes are re-producing from the Fraunhofer algorithm. In order to make more flexible and portable, a Compact Vision System is introduced to storage multiply interference fringes. At the same time, the fringes are sent out at 30 Hz frame by frame continually to the digital micro-mirror1. With the presence of Nd: YVO4 green laser and various optical components, the 3D 360° hologram images are dynamically reconstructed and projected onto the high speed rotating diffuser forming a 3D model at any viewing angle on the volumetric display media. Both volumetric display media, wet and dry methods are demonstrated to show their feasibility and convenience. Finally, the dry volumetric technique with vertical projection mounting is adopted and as the result shown that the speckle noise is significance reduced.

  2. Refreshing Refreshable Braille Displays.

    PubMed

    Russomanno, Alexander; O'Modhrain, Sile; Gillespie, R Brent; Rodger, Matthew W M

    2015-01-01

    The increased access to books afforded to blind people via e-publishing has given them long-sought independence for both recreational and educational reading. In most cases, blind readers access materials using speech output. For some content such as highly technical texts, music, and graphics, speech is not an appropriate access modality as it does not promote deep understanding. Therefore blind braille readers often prefer electronic braille displays. But, these are prohibitively expensive. The search is on, therefore, for a low-cost refreshable display that would go beyond current technologies and deliver graphical content as well as text. And many solutions have been proposed, some of which reduce costs by restricting the number of characters that can be displayed, even down to a single braille cell. In this paper, we demonstrate that restricting tactile cues during braille reading leads to poorer performance in a letter recognition task. In particular, we show that lack of sliding contact between the fingertip and the braille reading surface results in more errors and that the number of errors increases as a function of presentation speed. These findings suggest that single cell displays which do not incorporate sliding contact are likely to be less effective for braille reading. PMID:25879973

  3. Creative Display & Environment.

    ERIC Educational Resources Information Center

    Jackson, Margaret

    This book builds a case for the importance of the learning environment as functional, inviting, and enabling for children. Chapter 1, "A pressing need: why display and environment for learning matter," introduces the book, discusses a strategy for staff development, suggests points to consider when surveying the school, and talks about involving…

  4. The Real Time Display Builder (RTDB)

    NASA Technical Reports Server (NTRS)

    Kindred, Erick D.; Bailey, Samuel A., Jr.

    1989-01-01

    The Real Time Display Builder (RTDB) is a prototype interactive graphics tool that builds logic-driven displays. These displays reflect current system status, implement fault detection algorithms in real time, and incorporate the operational knowledge of experienced flight controllers. RTDB utilizes an object-oriented approach that integrates the display symbols with the underlying operational logic. This approach allows the user to specify the screen layout and the driving logic as the display is being built. RTDB is being developed under UNIX in C utilizing the MASSCOMP graphics environment with appropriate functional separation to ease portability to other graphics environments. RTDB grew from the need to develop customized real-time data-driven Space Shuttle systems displays. One display, using initial functionality of the tool, was operational during the orbit phase of STS-26 Discovery. RTDB is being used to produce subsequent displays for the Real Time Data System project currently under development within the Mission Operations Directorate at NASA/JSC. The features of the tool, its current state of development, and its applications are discussed.

  5. Assessment of OLED displays for vision research

    PubMed Central

    Cooper, Emily A.; Jiang, Haomiao; Vildavski, Vladimir; Farrell, Joyce E.; Norcia, Anthony M.

    2013-01-01

    Vision researchers rely on visual display technology for the presentation of stimuli to human and nonhuman observers. Verifying that the desired and displayed visual patterns match along dimensions such as luminance, spectrum, and spatial and temporal frequency is an essential part of developing controlled experiments. With cathode-ray tubes (CRTs) becoming virtually unavailable on the commercial market, it is useful to determine the characteristics of newly available displays based on organic light emitting diode (OLED) panels to determine how well they may serve to produce visual stimuli. This report describes a series of measurements summarizing the properties of images displayed on two commercially available OLED displays: the Sony Trimaster EL BVM-F250 and PVM-2541. The results show that the OLED displays have large contrast ratios, wide color gamuts, and precise, well-behaved temporal responses. Correct adjustment of the settings on both models produced luminance nonlinearities that were well predicted by a power function (“gamma correction”). Both displays have adjustable pixel independence and can be set to have little to no spatial pixel interactions. OLED displays appear to be a suitable, or even preferable, option for many vision research applications. PMID:24155345

  6. Digital Holography Display (2)

    NASA Astrophysics Data System (ADS)

    Lee, Cheok Peng; Asundi, A.; Yu, Yang; Xiao, Zhen Zhong

    This paper describes the extension work from the last Digital Holography Projector System. From the developed works shows that, some unforeseen factors have created the difficulties for the system alignment. Such factors are the DMD frame rate, light source and diffractive zero order. It is really the challenging development works to achieve the virtual 3D model display on the high speed rotation screen. The three most key factors are emphasizing: 1) The display device's frame rate; 2) The light source orientation angle; and 3) The zero order filtering optic. 1) This device's is the digital micro mirror, in short is DMD. It is the high speed switching device has developed by the most recent technology. The switching frame rate can go up as high as 291fps. At first, the 8 bits depth file must be digitalized and stored for DMD onboard Ram. The digitalized data are transmitting from the PC USB to DMD onboard Ram. Instead of the data are downloading directly from the PC to DVI or VGA during display, this downloading method cause slower down the display speed, which is the common frame rate of 30 Hz. Next, the onboard Ram data then transfer to the DMD mirror's for display, at the 8 bits 291 fps speed. At this frame rate, the display 2D image can almost cover for 10 of out of the 360 0 in 1 revolution. 2) This laser light source must be installed such that free for orientated in any arbitrary angle from 220 to 450. Which is normalized to the DMD mirrors and the brief sketch show on figure (a). The purpose of orientated the light source is ensure that multi diffractive order would be reflected straight from the mirrors. (This multi diffractive order is the phenomenon of the digital micro mirror's characteristic). This mean, the reconstruct images would be followed the DMD normalized direction reflected up to fibre conduit. Moreover, this orientated method install of the laser light source is making space for other optical lenses or device driver/controller. Because, all

  7. Interaction of mealtime ad libitum beverage and food intake with meal advancement in healthy young men and women.

    PubMed

    El Khoury, Dalia; Panahi, Shirin; Luhovyy, Bohdan L; Douglas Goff, H; Harvey Anderson, G

    2015-05-01

    The objective of this study was to describe the interaction of beverage and food intake with meal advancement in healthy adults. In a randomized controlled study, 29 men and women consumed to satiation, over 20 min, a pizza meal with one of the five beverages including water, 1% milk, orange juice, regular cola and diet cola. Mealtime food and fluid intake were measured, within each of three 7-min phases of the meal. A progressive decline occurred from phase 1 to 3 in fluid intake and food intake, averaging 59 mL and 268 kcal (P < 0.0001) respectively; however, the relative intake of fluid to food (mL/kcal) increased (P < 0.0001). Beverage type was not a factor. All beverages resulted in similar fluid volume intake compared to water. However, caloric beverages led to higher mealtime total energy intake compared to water (P < 0.001) and diet cola (P < 0.0001). Baseline thirst correlated positively with both fluid (r = 0.28; P < 0.001) and food (r = 0.16; P < 0.05) intakes at the meal, whereas baseline appetite associated positively only with mealtime food intake (r = 0.23; P<0.01). In conclusion, mealtime fluid and food intakes interact, unaffected by beverage characteristics, to increase the ratio of fluid to food intake with meal progression. PMID:25700893

  8. Advanced computational techniques for incompressible/compressible fluid-structure interactions

    NASA Astrophysics Data System (ADS)

    Kumar, Vinod

    2005-07-01

    Fluid-Structure Interaction (FSI) problems are of great importance to many fields of engineering and pose tremendous challenges to numerical analyst. This thesis addresses some of the hurdles faced for both 2D and 3D real life time-dependent FSI problems with particular emphasis on parachute systems. The techniques developed here would help improve the design of parachutes and are of direct relevance to several other FSI problems. The fluid system is solved using the Deforming-Spatial-Domain/Stabilized Space-Time (DSD/SST) finite element formulation for the Navier-Stokes equations of incompressible and compressible flows. The structural dynamics solver is based on a total Lagrangian finite element formulation. Newton-Raphson method is employed to linearize the otherwise nonlinear system resulting from the fluid and structure formulations. The fluid and structural systems are solved in decoupled fashion at each nonlinear iteration. While rigorous coupling methods are desirable for FSI simulations, the decoupled solution techniques provide sufficient convergence in the time-dependent problems considered here. In this thesis, common problems in the FSI simulations of parachutes are discussed and possible remedies for a few of them are presented. Further, the effects of the porosity model on the aerodynamic forces of round parachutes are analyzed. Techniques for solving compressible FSI problems are also discussed. Subsequently, a better stabilization technique is proposed to efficiently capture and accurately predict the shocks in supersonic flows. The numerical examples simulated here require high performance computing. Therefore, numerical tools using distributed memory supercomputers with message passing interface (MPI) libraries were developed.

  9. A Human Factors Framework for Payload Display Design

    NASA Technical Reports Server (NTRS)

    Dunn, Mariea C.; Hutchinson, Sonya L.

    1998-01-01

    During missions to space, one charge of the astronaut crew is to conduct research experiments. These experiments, referred to as payloads, typically are controlled by computers. Crewmembers interact with payload computers by using visual interfaces or displays. To enhance the safety, productivity, and efficiency of crewmember interaction with payload displays, particular attention must be paid to the usability of these displays. Enhancing display usability requires adoption of a design process that incorporates human factors engineering principles at each stage. This paper presents a proposed framework for incorporating human factors engineering principles into the payload display design process.

  10. Effectiveness of beneficial plant-microbe interactions under hypobaric and hypoxic conditions in an advanced life support system

    NASA Astrophysics Data System (ADS)

    MacIntyre, Olathe; Stasiak, Michael; Cottenie, Karl; Trevors, Jack; Dixon, Mike

    An assembled microbial community in the hydroponics solution of an advanced life support system may improve plant performance and productivity in three ways: (1) exclusion of plant pathogens from the initial community, (2) resistance to infection, and (3) plant-growth promotion. However, the plant production area is likely to have a hypobaric (low pressure) and hypoxic (low oxygen) atmosphere to reduce structural mass and atmosphere leakage, and these conditions may alter plant-microbe interactions. Plant performance and productivity of radish (Raphanus sativus L. cv. Cherry Bomb II) grown under hypobaric and hypoxic conditions were investigated at the University of Guelph's Controlled Environment Systems Research Facility. Changes in the microbial communities that routinely colonized the re-circulated nutrient solution, roots, and leaves of radishes in these experiments were quantified in terms of similarity in community composition, abundance of bacteria, and community diversity before and after exposure to hypobaric and hypoxic conditions relative to communities maintained at ambient growth conditions. The microbial succession was affected by extreme hypoxia (2 kPa oxygen partial pressure) while hypobaria as low as 10 kPa total pressure had little effect on microbial ecology. There were no correlations found between the physiological profile of these unintentional microbial communities and radish growth. The effects of hypobaric and hypoxic conditions on specific plant-microbe interactions need to be determined before beneficial gnotobiotic communities can be developed for use in space. The bacterial strains Tal 629 of Bradyrhizobium japonicum and WCS417 of Pseudomonas fluorescens, and the plant pathogen Fusarium oxysporum f. sp. raphani will be used in future experiments. B. japonicum Tal 629 promotes radish growth in hydroponics systems and P. fluorescens WCS417 induces systemic resistance to fusarium wilt (F. oxysporum f. sp. raphani) in radish under ambient

  11. Recent progress in OLED and flexible displays and their potential for application to aerospace and military display systems

    NASA Astrophysics Data System (ADS)

    Sarma, Kalluri

    2015-05-01

    Organic light emitting diode (OLED) display technology has advanced significantly in recent years and it is increasingly being adapted in consumer electronics products with premium performance, such as high resolution smart phones, Tablet PCs and TVs. Even flexible OLED displays are beginning to be commercialized in consumer electronic devices such as smart phones and smart watches. In addition to the advances in OLED emitters, successful development and adoption of OLED displays for premium performance applications relies on the advances in several enabling technologies including TFT backplanes, pixel drive electronics, pixel patterning technologies, encapsulation technologies and system level engineering. In this paper we will discuss the impact of the recent advances in LTPS and AOS TFTs, R, G, B and White OLED with color filter pixel architectures, and encapsulation, on the success of the OLEDs in consumer electronic devices. We will then discuss potential of these advances in addressing the requirements of OLED and flexible displays for the military and avionics applications.

  12. Introduction to building projection-based tiled display systems.

    SciTech Connect

    Hereld, M.; Judson, I. R.; Stevens, R.; Mathematics and Computer Science; Univ. of Chicago

    2000-07-01

    This tutorial introduces the concepts and technologies needed to build projector-based display systems. Tiled displays offer scalability, high resolution, and large formats for various applications. Tiled displays are an emerging technology for constructing semi-immersive visualization environments capable of presenting high-resolution images from scientific simulation. The largest impact may well arise from using large-format tiled displays as one of possibly multiple displays in building information or active spaces that surround the user with diverse ways of interacting with data and multimedia information flows. These environments may prove the ultimate successor to the desktop metaphor for information technology work. Several fundamental technological problems must be addressed to make tiled displays practical. These include: the choice of screen materials and support structures; choice of projectors, projector supports, and optional fine positioners; techniques for integrating image tiles into a seamless whole; interface devices for interaction with applications; display generators and interfaces; and the display software environment.

  13. Applications of yeast surface display for protein engineering

    PubMed Central

    Cherf, Gerald M.; Cochran, Jennifer R.

    2015-01-01

    The method of displaying recombinant proteins on the surface of Saccharomyces cerevisiae via genetic fusion to an abundant cell wall protein, a technology known as yeast surface display, or simply, yeast display, has become a valuable protein engineering tool for a broad spectrum of biotechnology and biomedical applications. This review focuses on the use of yeast display for engineering protein affinity, stability, and enzymatic activity. Strategies and examples for each protein engineering goal are discussed. Additional applications of yeast display are also briefly presented, including protein epitope mapping, identification of protein-protein interactions, and uses of displayed proteins in industry and medicine. PMID:26060074

  14. Transparent 3D display for augmented reality

    NASA Astrophysics Data System (ADS)

    Lee, Byoungho; Hong, Jisoo

    2012-11-01

    Two types of transparent three-dimensional display systems applicable for the augmented reality are demonstrated. One of them is a head-mounted-display-type implementation which utilizes the principle of the system adopting the concave floating lens to the virtual mode integral imaging. Such configuration has an advantage in that the threedimensional image can be displayed at sufficiently far distance resolving the accommodation conflict with the real world scene. Incorporating the convex half mirror, which shows a partial transparency, instead of the concave floating lens, makes it possible to implement the transparent three-dimensional display system. The other type is the projection-type implementation, which is more appropriate for the general use than the head-mounted-display-type implementation. Its imaging principle is based on the well-known reflection-type integral imaging. We realize the feature of transparent display by imposing the partial transparency to the array of concave mirror which is used for the screen of reflection-type integral imaging. Two types of configurations, relying on incoherent and coherent light sources, are both possible. For the incoherent configuration, we introduce the concave half mirror array, whereas the coherent one adopts the holographic optical element which replicates the functionality of the lenslet array. Though the projection-type implementation is beneficial than the head-mounted-display in principle, the present status of the technical advance of the spatial light modulator still does not provide the satisfactory visual quality of the displayed three-dimensional image. Hence we expect that the head-mounted-display-type and projection-type implementations will come up in the market in sequence.

  15. Enhancing Displays by Blurring

    NASA Technical Reports Server (NTRS)

    Tiana, C.; Pavel, M.; Ahumada, Albert J., Jr.; Statler, Irving C. (Technical Monitor)

    1994-01-01

    Some Enhanced Vision cockpit displays consist of synthetic imagery superimposed on a real image. The high spatial frequency components of the synthetic imagery can mislead an operator by masking features of the real image. We demonstrate that blurring the synthetic image prior to superposition reduces its masking effect in high- contrast regions of the real image, while maintaining its enhancing properties in regions of the real image where visibility is low.

  16. Text File Display Program

    NASA Technical Reports Server (NTRS)

    Vavrus, J. L.

    1986-01-01

    LOOK program permits user to examine text file in pseudorandom access manner. Program provides user with way of rapidly examining contents of ASCII text file. LOOK opens text file for input only and accesses it in blockwise fashion. Handles text formatting and displays text lines on screen. User moves forward or backward in file by any number of lines or blocks. Provides ability to "scroll" text at various speeds in forward or backward directions.

  17. Attention-Seeking Displays.

    PubMed

    Számadó, Szabolcs

    2015-01-01

    Animal communication abounds with extravagant displays. These signals are usually interpreted as costly signals of quality. However, there is another important function for these signals: to call the attention of the receiver to the signaller. While there is abundant empirical evidence to show the importance of this stage, it is not yet incorporated into standard signalling theory. Here I investigate a general model of signalling - based on a basic action-response game - that incorporates this searching stage. I show that giving attention-seeking displays and searching for them can be an ESS. This is a very general result and holds regardless whether only the high quality signallers or both high and low types give them. These signals need not be costly at the equilibrium and they need not be honest signals of any quality, as their function is not to signal quality but simply to call the attention of the potential receivers. These kind of displays are probably more common than their current weight in the literature would suggest. PMID:26287489

  18. Microgap flat panel display

    DOEpatents

    Wuest, C.R.

    1998-12-08

    A microgap flat panel display is disclosed which includes a thin gas-filled display tube that utilizes switched X-Y ``pixel`` strips to trigger electron avalanches and activate a phosphor at a given location on a display screen. The panel utilizes the principal of electron multiplication in a gas subjected to a high electric field to provide sufficient electron current to activate standard luminescent phosphors located on an anode. The X-Y conductive strips of a few micron widths may for example, be deposited on opposite sides of a thin insulating substrate, or on one side of the adjacent substrates and function as a cathode. The X-Y strips are separated from the anode by a gap filled with a suitable gas. Electrical bias is selectively switched onto X and Y strips to activate a ``pixel`` in the region where these strips overlap. A small amount of a long-lived radioisotope is used to initiate an electron avalanche in the overlap region when bias is applied. The avalanche travels through the gas filled gap and activates a luminescent phosphor of a selected color. The bias is adjusted to give a proportional electron multiplication to control brightness for given pixel. 6 figs.

  19. Microgap flat panel display

    DOEpatents

    Wuest, Craig R.

    1998-01-01

    A microgap flat panel display which includes a thin gas-filled display tube that utilizes switched X-Y "pixel" strips to trigger electron avalanches and activate a phosphor at a given location on a display screen. The panel utilizes the principal of electron multiplication in a gas subjected to a high electric field to provide sufficient electron current to activate standard luminescent phosphors located on an anode. The X-Y conductive strips of a few micron widths may for example, be deposited on opposite sides of a thin insulating substrate, or on one side of the adjacent substrates and function as a cathode. The X-Y strips are separated from the anode by a gap filled with a suitable gas. Electrical bias is selectively switched onto X and Y strips to activate a "pixel" in the region where these strips overlap. A small amount of a long-lived radioisotope is used to initiate an electron avalanche in the overlap region when bias is applied. The avalanche travels through the gas filled gap and activates a luminescent phosphor of a selected color. The bias is adjusted to give a proportional electron multiplication to control brightness for given pixel.

  20. Engine monitoring display study

    NASA Technical Reports Server (NTRS)

    Hornsby, Mary E.

    1992-01-01

    The current study is part of a larger NASA effort to develop displays for an engine-monitoring system to enable the crew to monitor engine parameter trends more effectively. The objective was to evaluate the operational utility of adding three types of information to the basic Boeing Engine Indicating and Crew Alerting System (EICAS) display formats: alphanumeric alerting messages for engine parameters whose values exceed caution or warning limits; alphanumeric messages to monitor engine parameters that deviate from expected values; and a graphic depiction of the range of expected values for current conditions. Ten training and line pilots each flew 15 simulated flight scenarios with five variants of the basic EICAS format; these variants included different combinations of the added information. The pilots detected engine problems more quickly when engine alerting messages were included in the display; adding a graphic depiction of the range of expected values did not affect detection speed. The pilots rated both types of alphanumeric messages (alert and monitor parameter) as more useful and easier to interpret than the graphic depiction. Integrating engine parameter messages into the EICAS alerting system appears to be both useful and preferred.

  1. Attention-Seeking Displays

    PubMed Central

    Számadó, Szabolcs

    2015-01-01

    Animal communication abounds with extravagant displays. These signals are usually interpreted as costly signals of quality. However, there is another important function for these signals: to call the attention of the receiver to the signaller. While there is abundant empirical evidence to show the importance of this stage, it is not yet incorporated into standard signalling theory. Here I investigate a general model of signalling - based on a basic action-response game - that incorporates this searching stage. I show that giving attention-seeking displays and searching for them can be an ESS. This is a very general result and holds regardless whether only the high quality signallers or both high and low types give them. These signals need not be costly at the equilibrium and they need not be honest signals of any quality, as their function is not to signal quality but simply to call the attention of the potential receivers. These kind of displays are probably more common than their current weight in the literature would suggest. PMID:26287489

  2. The Interaction Between an Insoluble Particle and an Advancing Solid/Liquid Interface: Micro-Gravity Experiments and Theoretical Developments

    NASA Technical Reports Server (NTRS)

    Catalina, Adrian V.; Ssen, Subhayu; Stefanescu, Doru M.

    2003-01-01

    The interaction of an insoluble particle with an advancing solid/liquid interface (SLI) has been a subject of investigation for the past four decades. While the original interest stemmed from geology applications (e.g., frost heaving in soil), researchers soon realized that the complex science associated with such an interaction is relevant to many other scientific fields encompassing metal matrix composites (MMCs), high temperature superconductors, inclusion management in steel, growth of monotectics, and preservation of biological cells. During solidification of a liquid containing an insoluble particle, three distinct interaction phenomena have been experimentally observed: instantaneous engulfment of the particle, continuous pushing, and particle pushing followed by engulfment. It was also observed that for given experimental conditions and particle size there is a critical solidification velocity, V(sub cr), above which a particle is engulfed. During solidification of MMCs pushing leads to particle agglomeration at the grain boundaries and this has detrimental effects on mechanical properties of the casting. Consequently, the process must be designed for instantaneous engulfment to occur. This implies the development of accurate theoretical models to predict V(sub cr), and perform benchmark experiments to test the validity of such models. Although considerable progress has been made in understanding the pushing/engulfment phenomenon (PEP), its quantification in terms of the material and processing parameters remains a focus of research. Since natural convection currents occurring during terrestrial solidification experiments complicate the study of PEP, execution of experiments on the International Space Station (ISS) has been approved and funded by NASA. Extensive terrestrial (1g) experiments and preliminary micro-gravity (mu g) experiments on two space shuttle missions have been conducted in preparation for future experiments on the ISS. The investigated

  3. The ATF (Advanced Toroidal Facility) Status and Control System

    SciTech Connect

    Baylor, L.R.; Devan, W.R.; Sumner, J.N.; Alban, A.M.

    1987-01-01

    The Advanced Toroidal Facility (ATF) Status and Control System (SCS) is a programmable controller-based state monitoring and supervisory control system. This paper describes the SCS implementation and its use of a host computer to run a commercially available software package that provides color graphic interactive displays, alarm logging, and archiving of state data.

  4. Stage Cylindrical Immersive Display

    NASA Technical Reports Server (NTRS)

    Abramyan, Lucy; Norris, Jeffrey S.; Powell, Mark W.; Mittman, David S.; Shams, Khawaja S.

    2011-01-01

    Panoramic images with a wide field of view intend to provide a better understanding of an environment by placing objects of the environment on one seamless image. However, understanding the sizes and relative positions of the objects in a panorama is not intuitive and prone to errors because the field of view is unnatural to human perception. Scientists are often faced with the difficult task of interpreting the sizes and relative positions of objects in an environment when viewing an image of the environment on computer monitors or prints. A panorama can display an object that appears to be to the right of the viewer when it is, in fact, behind the viewer. This misinterpretation can be very costly, especially when the environment is remote and/or only accessible by unmanned vehicles. A 270 cylindrical display has been developed that surrounds the viewer with carefully calibrated panoramic imagery that correctly engages their natural kinesthetic senses and provides a more accurate awareness of the environment. The cylindrical immersive display offers a more natural window to the environment than a standard cubic CAVE (Cave Automatic Virtual Environment), and the geometry allows multiple collocated users to simultaneously view data and share important decision-making tasks. A CAVE is an immersive virtual reality environment that allows one or more users to absorb themselves in a virtual environment. A common CAVE setup is a room-sized cube where the cube sides act as projection planes. By nature, all cubic CAVEs face a problem with edge matching at edges and corners of the display. Modern immersive displays have found ways to minimize seams by creating very tight edges, and rely on the user to ignore the seam. One significant deficiency of flat-walled CAVEs is that the sense of orientation and perspective within the scene is broken across adjacent walls. On any single wall, parallel lines properly converge at their vanishing point as they should, and the sense of

  5. [Odor sensing system and olfactory display].

    PubMed

    Nakamoto, Takamichi

    2014-01-01

    In this review, an odor sensing system and an olfactory display are introduced into people in pharmacy. An odor sensing system consists of an array of sensors with partially overlapping specificities and pattern recognition technique. One of examples of odor sensing systems is a halitosis sensor which quantifies the mixture composition of three volatile sulfide compounds. A halitosis sensor was realized using a preconcentrator to raise sensitivity and an electrochemical sensor array to suppress the influence of humidity. Partial least squares (PLS) method was used to quantify the mixture composition. The experiment reveals that the sufficient accuracy was obtained. Moreover, the olfactory display, which present scents to human noses, is explained. A multi-component olfactory display enables the presentation of a variety of smells. The two types of multi-component olfactory display are described. The first one uses many solenoid valves with high speed switching. The valve ON frequency determines the concentration of the corresponding odor component. The latter one consists of miniaturized liquid pumps and a surface acoustic wave (SAW) atomizer. It enables the wearable olfactory display without smell persistence. Finally, the application of the olfactory display is demonstrated. Virtual ice cream shop with scents was made as a content of interactive art. People can enjoy harmony among vision, audition and olfaction. In conclusion, both odor sensing system and olfactory display can contribute to the field of human health care. PMID:24584010

  6. Real-Time Data Display

    NASA Technical Reports Server (NTRS)

    Pedings, Marc

    2007-01-01

    RT-Display is a MATLAB-based data acquisition environment designed to use a variety of commercial off-the-shelf (COTS) hardware to digitize analog signals to a standard data format usable by other post-acquisition data analysis tools. This software presents the acquired data in real time using a variety of signal-processing algorithms. The acquired data is stored in a standard Operator Interactive Signal Processing Software (OISPS) data-formatted file. RT-Display is primarily configured to use the Agilent VXI (or equivalent) data acquisition boards used in such systems as MIDDAS (Multi-channel Integrated Dynamic Data Acquisition System). The software is generalized and deployable in almost any testing environment, without limitations or proprietary configuration for a specific test program or project. With the Agilent hardware configured and in place, users can start the program and, in one step, immediately begin digitizing multiple channels of data. Once the acquisition is completed, data is converted into a common binary format that also can be translated to specific formats used by external analysis software, such as OISPS and PC-Signal (product of AI Signal Research Inc.). RT-Display at the time of this reporting was certified on Agilent hardware capable of acquisition up to 196,608 samples per second. Data signals are presented to the user on-screen simultaneously for 16 channels. Each channel can be viewed individually, with a maximum capability of 160 signal channels (depending on hardware configuration). Current signal presentations include: time data, fast Fourier transforms (FFT), and power spectral density plots (PSD). Additional processing algorithms can be easily incorporated into this environment.

  7. HDTV and large-screen display

    NASA Astrophysics Data System (ADS)

    Mitsuhashi, Tetsuo

    1990-08-01

    HDTV (known as Hi-Vision in Japan), with its ability to provide through high- definition pictures on a large screen display advanced psychological effects such as sensations of reality and a visual impact unobtainable in conventional television, is the television system of the next generation. In Japan, daily one-hour experimental broadcasting was initiated in June 1989 using the BS-2 broadcast satellite, and regular service is scheduled to begin via the BS-3 satellite to be launched in 1990. To this end, a home-use receiver using VLSIs has already been developed. Moreover, HDTV is currently being applied in such diverse areas as film production, printing and publishing, medicine, and art museums. The HDTV system handles approximately five times the information of conventional television. As a result, a large screen display capable of maintaining stable resolution greater than twice that of conventional displays is essential to the full realization of HDTV's vast potential. This paper will first discuss HDTV's basic parameters, concentrating on the psychovisual effects, and explain some preferable display characteristics from this psychovisual point of view. It will then discuss the technical problems in developing such a display, and final ly describe the current state of HDTV display development.

  8. Enhanced cellular oxidant stress by the interaction of advanced glycation end products with their receptors/binding proteins.

    PubMed

    Yan, S D; Schmidt, A M; Anderson, G M; Zhang, J; Brett, J; Zou, Y S; Pinsky, D; Stern, D

    1994-04-01

    Attack by reactive oxygen intermediates, common to many kinds of cell/tissue injury, has been implicated in the development of diabetic and other vascular diseases. Such oxygen-free radicals can be generated by advanced glycation end products (AGEs), which are nonenzymatically glycated and oxidized proteins. Since cellular interactions of AGEs are mediated by specific cellular binding proteins, receptor for AGE (RAGE) and the lactoferrin-like polypeptide (LF-L), we tested the hypothesis that AGE ligands tethered to the complex of RAGE and LF-L could induce oxidant stress. AGE albumin or AGEs immunoisolated from diabetic plasma resulted in induction of endothelial cell (EC) oxidant stress, including the generation of thiobarbituric acid reactive substances (TBARS) and resulted in the activation of NF-kappa B, each of which was blocked by antibodies to AGE receptor polypeptides and by antioxidants. Infusion of AGE albumin into normal animals led to the appearance of malondialdehyde determinants in the vessel wall and increased TBARS in the tissues, activation of NF-kappa B, and induction of heme oxygenase mRNA. AGE-induced oxidant stress was inhibited by pretreatment of animals with either antibodies to the AGE receptor/binding proteins or antioxidants. These data indicate that interaction of AGEs with cellular targets, such as ECs, leads to oxidant stress resulting in changes in gene expression and other cellular properties, potentially contributing to the development of vascular lesions. Further studies will be required to dissect whether oxidant stress occurs on the cell surface or at an intracellular locus. PMID:8144582

  9. A case of strong metal-support interactions: combining advanced microscopy and model systems to elucidate the atomic structure of interfaces.

    PubMed

    Willinger, Marc G; Zhang, Wei; Bondarchuk, Oleksandr; Shaikhutdinov, Shamil; Freund, Hans-Joachim; Schlögl, Robert

    2014-06-01

    A symbiosis of advanced scanning probe and electron microscopy and a well-defined model system may provide a detailed picture of interfaces on nanostructured catalytic systems. This was demonstrated for Pt nanoparticles supported on iron oxide thin films which undergo encapsulation by supporting oxide as a result of strong metal-support interactions. PMID:24840397

  10. TAIGA: Twente Advanced Interactive Graphic Authoring System. A New Concept in Computer Assisted Learning (CAL) and Educational Research. Doc 88-18.

    ERIC Educational Resources Information Center

    Pilot, A.

    TAIGA (Twente Advanced Interactive Graphic Authoring system) is a system which can be used to develop instructional software. It is written in MS-PASCAL, and runs on computers that support MS-DOS. Designed to support the production of structured software, TAIGA has a hierarchical structure of three layers, each with a specific function, and each…

  11. Modeling the Interaction between Quinolinate and the Receptor for Advanced Glycation End Products (RAGE): Relevance for Early Neuropathological Processes

    PubMed Central

    Serratos, Iris N.; Castellanos, Pilar; Pastor, Nina; Millán-Pacheco, César; Rembao, Daniel; Pérez-Montfort, Ruy; Cabrera, Nallely; Reyes-Espinosa, Francisco; Díaz-Garrido, Paulina; López-Macay, Ambar; Martínez-Flores, Karina; López-Reyes, Alberto; Sánchez-García, Aurora; Cuevas, Elvis; Santamaria, Abel

    2015-01-01

    The receptor for advanced glycation end products (RAGE) is a pattern-recognition receptor involved in neurodegenerative and inflammatory disorders. RAGE induces cellular signaling upon binding to a variety of ligands. Evidence suggests that RAGE up-regulation is involved in quinolinate (QUIN)-induced toxicity. We investigated the QUIN-induced toxic events associated with early noxious responses, which might be linked to signaling cascades leading to cell death. The extent of early cellular damage caused by this receptor in the rat striatum was characterized by image processing methods. To document the direct interaction between QUIN and RAGE, we determined the binding constant (Kb) of RAGE (VC1 domain) with QUIN through a fluorescence assay. We modeled possible binding sites of QUIN to the VC1 domain for both rat and human RAGE. QUIN was found to bind at multiple sites to the VC1 dimer, each leading to particular mechanistic scenarios for the signaling evoked by QUIN binding, some of which directly alter RAGE oligomerization. This work contributes to the understanding of the phenomenon of RAGE-QUIN recognition, leading to the modulation of RAGE function. PMID:25757085

  12. Hierarchthis: An Interactive Interface for Identifying Mission-Relevant Components of the Advanced Multi-Mission Operations System

    NASA Technical Reports Server (NTRS)

    Litomisky, Krystof

    2012-01-01

    Even though NASA's space missions are many and varied, there are some tasks that are common to all of them. For example, all spacecraft need to communicate with other entities, and all spacecraft need to know where they are. These tasks use tools and services that can be inherited and reused between missions, reducing systems engineering effort and therefore reducing cost.The Advanced Multi-Mission Operations System, or AMMOS, is a collection of multimission tools and services, whose development and maintenance are funded by NASA. I created HierarchThis, a plugin designed to provide an interactive interface to help customers identify mission-relevant tools and services. HierarchThis automatically creates diagrams of the AMMOS database, and then allows users to show/hide specific details through a graphical interface. Once customers identify tools and services they want for a specific mission, HierarchThis can automatically generate a contract between the Multimission Ground Systems and Services Office, which manages AMMOS, and the customer. The document contains the selected AMMOS components, along with their capabilities and satisfied requirements. HierarchThis reduces the time needed for the process from service selections to having a mission-specific contract from the order of days to the order of minutes.

  13. Modeling the interaction between quinolinate and the receptor for advanced glycation end products (RAGE): relevance for early neuropathological processes.

    PubMed

    Serratos, Iris N; Castellanos, Pilar; Pastor, Nina; Millán-Pacheco, César; Rembao, Daniel; Pérez-Montfort, Ruy; Cabrera, Nallely; Reyes-Espinosa, Francisco; Díaz-Garrido, Paulina; López-Macay, Ambar; Martínez-Flores, Karina; López-Reyes, Alberto; Sánchez-García, Aurora; Cuevas, Elvis; Santamaria, Abel

    2015-01-01

    The receptor for advanced glycation end products (RAGE) is a pattern-recognition receptor involved in neurodegenerative and inflammatory disorders. RAGE induces cellular signaling upon binding to a variety of ligands. Evidence suggests that RAGE up-regulation is involved in quinolinate (QUIN)-induced toxicity. We investigated the QUIN-induced toxic events associated with early noxious responses, which might be linked to signaling cascades leading to cell death. The extent of early cellular damage caused by this receptor in the rat striatum was characterized by image processing methods. To document the direct interaction between QUIN and RAGE, we determined the binding constant (Kb) of RAGE (VC1 domain) with QUIN through a fluorescence assay. We modeled possible binding sites of QUIN to the VC1 domain for both rat and human RAGE. QUIN was found to bind at multiple sites to the VC1 dimer, each leading to particular mechanistic scenarios for the signaling evoked by QUIN binding, some of which directly alter RAGE oligomerization. This work contributes to the understanding of the phenomenon of RAGE-QUIN recognition, leading to the modulation of RAGE function. PMID:25757085

  14. Multimodality image display station

    NASA Astrophysics Data System (ADS)

    Myers, H. Joseph

    1990-07-01

    The Multi-modality Image Display Station (MIDS) is designed for the use of physicians outside of the radiology department. Connected to a local area network or a host computer, it provides speedy access to digitized radiology images and written diagnostics needed by attending and consulting physicians near the patient bedside. Emphasis has been placed on low cost, high performance and ease of use. The work is being done as a joint study with the University of Texas Southwestern Medical Center at Dallas, and as part of a joint development effort with the Mayo Clinic. MIDS is a prototype, and should not be assumed to be an IBM product.

  15. Looking At Display Technologies

    ERIC Educational Resources Information Center

    Bull, Glen; Bull, Gina

    2005-01-01

    A projection system in a classroom with an Internet connection provides a window on the world. Until recently, projectors were expensive and difficult to maintain. Technological advances have resulted in solid-state projectors that require little maintenance and cost no more than a computer. Adding a second or third computer to a classroom…

  16. Will true 3d display devices aid geologic interpretation. [Mirage

    SciTech Connect

    Nelson, H.R. Jr.

    1982-04-01

    A description is given of true 3D display devices and techniques that are being evaluated in various research laboratories around the world. These advances are closely tied to the expected application of 3D display devices as interpretational tools for explorationists. 34 refs.

  17. The staging system: Display and edit module

    NASA Technical Reports Server (NTRS)

    Edwards, E.; Bernier, L.

    1976-01-01

    The Display and Edit (D and E) Module described is one of six major modules being developed for the STAGING (STructural Analysis through Generalized INteractive Graphics) System. Several remarks are included concerning the computer environment and the architecture of the data base. The utility of this module is emphasized.

  18. Program plan and summary, remote fluvial experimental (REFLEX) series: Research experiments using advanced remote sensing technologies with emphasis on hydrologic transport, and hydrologic-ecologic interactions

    SciTech Connect

    Wobber, F.J.

    1986-10-01

    This document describes research designed to evaluate advanced remote sensing technologies for environmental research. A series of Remote Fluvial Experiments (REFLEX) - stressing new applications of remote sensing systems and use of advanced digital analysis methods - are described. Program strategy, experiments, research areas, and future initiatives are summarized. The goals of REFLEX are: (1) to apply new and developing aerial and satellite remote sensing technologies - including both advanced sensor systems and digital/optical processing - for interdisciplinary scientific experiments in hydrology and to hydrologic/ecologic interactions; (2) to develop new concepts for processing and analyzing remote sensing data for general scientific application; and (3) to demonstrate innovative analytical technologies that advance the state of the art in applying information from remote sensing systems, for example, supercomputer processing and analysis.

  19. Photonic-crystal full-colour displays

    NASA Astrophysics Data System (ADS)

    Arsenault, André C.; Puzzo, Daniel P.; Manners, Ian; Ozin, Geoffrey A.

    2007-08-01

    In our information-rich world, it is becoming increasingly important to develop technologies capable of displaying dynamic and changeable data, for reasons ranging from value-added advertising to environmental sustainability. There is an intense drive at the moment towards paper-like displays, devices having a high reflectivity and contrast to provide viewability in a variety of environments, particularly in sunlight where emissive or backlit devices perform very poorly. The list of possible technologies is extensive, including electrophoretic, cholesteric liquid crystalline, electrochromic, electrodewetting, interferometric and more. Despite tremendous advances, the key drawback of all these existing display options relates to colour. As soon as an RGB (red, green and blue) colour filter or spatially modulated colour scheme is implemented, substantial light losses are inevitable even if the intrinsic reflectivity of the material is very good.

  20. Information Storage and Display.

    ERIC Educational Resources Information Center

    Burns, Christopher

    1981-01-01

    Reviews the state of information technologies involving teletext, viewdata, interactive graphics, videodisc, audio synthesis, and holography, and discusses the current understanding of access schemes and cognitive processing. Sixteen suggested readings and nine references are cited. (FM)

  1. Display of dedication.

    PubMed

    Garner, Lauren

    Florence Nightingale's birthdate this week sees the reopening of the museum dedicated to her work and the nursing profession. It has been completely revamped and now has interactive exhibits. PMID:20527477

  2. Large High Resolution Displays for Co-Located Collaborative Sensemaking: Display Usage and Territoriality

    SciTech Connect

    Bradel, Lauren; Endert, Alexander; Koch, Kristen; Andrews, Christopher; North, Chris

    2013-08-01

    Large, high-resolution vertical displays carry the potential to increase the accuracy of collaborative sensemaking, given correctly designed visual analytics tools. From an exploratory user study using a fictional textual intelligence analysis task, we investigated how users interact with the display to construct spatial schemas and externalize information, as well as how they establish shared and private territories. We investigated the space management strategies of users partitioned by type of tool philosophy followed (visualization- or text-centric). We classified the types of territorial behavior exhibited in terms of how the users interacted with information on the display (integrated or independent workspaces). Next, we examined how territorial behavior impacted the common ground between the pairs of users. Finally, we offer design suggestions for building future co-located collaborative visual analytics tools specifically for use on large, high-resolution vertical displays.

  3. Man-machine interface requirements - advanced technology

    NASA Technical Reports Server (NTRS)

    Remington, R. W.; Wiener, E. L.

    1984-01-01

    Research issues and areas are identified where increased understanding of the human operator and the interaction between the operator and the avionics could lead to improvements in the performance of current and proposed helicopters. Both current and advanced helicopter systems and avionics are considered. Areas critical to man-machine interface requirements include: (1) artificial intelligence; (2) visual displays; (3) voice technology; (4) cockpit integration; and (5) pilot work loads and performance.

  4. Environmental data display

    NASA Technical Reports Server (NTRS)

    Hussey, K. J.; Blackwell, R. J.; Mcrae, G. J.; Seinfeld, J. H.

    1983-01-01

    Methods for using a combination of computer-generated color graphics and image processing techniques to display a large data base of environment information are described. The data source can be either field data or mathematical models, reduced to summary statistics that characterize the data field as a whole. Sharp gradients are plotted into contour plots, which can also feature shades, degree of brightness, and saturation levels for fine-tuning the image. The basic concepts of digital image processing are reviewed, including location of the pixels, intensity mapping operations, pseudocolor enhancements, neighborhood averaging, and smoothing. Sample applications are presented in terms of emissions and air quality distributions over the south coast air basin of southern California.

  5. Black optic display

    DOEpatents

    Veligdan, James T.

    1997-01-01

    An optical display includes a plurality of stacked optical waveguides having first and second opposite ends collectively defining an image input face and an image screen, respectively, with the screen being oblique to the input face. Each of the waveguides includes a transparent core bound by a cladding layer having a lower index of refraction for effecting internal reflection of image light transmitted into the input face to project an image on the screen, with each of the cladding layers including a cladding cap integrally joined thereto at the waveguide second ends. Each of the cores is beveled at the waveguide second end so that the cladding cap is viewable through the transparent core. Each of the cladding caps is black for absorbing external ambient light incident upon the screen for improving contrast of the image projected internally on the screen.

  6. Review of the evolution of display technologies for next-generation aircraft

    NASA Astrophysics Data System (ADS)

    Tchon, Joseph L.; Barnidge, Tracy J.

    2015-05-01

    Advancements in electronic display technologies have provided many benefits for military avionics. The modernization of legacy tanker transport aircraft along with the development of next-generation platforms, such as the KC-46 aerial refueling tanker, offers a timeline of the evolution of avionics display approaches. The adaptation of advanced flight displays from the Boeing 787 for the KC-46 flight deck also provides examples of how avionics display solutions may be leveraged across commercial and military flight decks to realize greater situational awareness and improve overall mission effectiveness. This paper provides a review of the display technology advancements that have led to today's advanced avionics displays for the next-generation KC-46 tanker aircraft. In particular, progress in display operating modes, backlighting, packaging, and ruggedization will be discussed along with display certification considerations across military and civilian platforms.

  7. Performance effects of plan-based displays in commercial aviation

    NASA Technical Reports Server (NTRS)

    Shalin, Valerie L.; Mikesell, Brian G.; Ramamurthy, Maya; Geddes, Norman D.

    1993-01-01

    The experiment reported here examines the performance consequences of alignment between display formats and the methods used during descent. Twelve commercial pilots flew one of nine Standard Terminal Arrival Routes on a stand-alone flight simulator run on a Sparc II workstation. Three different methods for descent (Manual Control, Autopilot and Spoilers) were crossed with three methods according to scope, resolution, and bandwidth properties in the display of critical information. Performance variability in speed control supports our claim that the effectiveness of a display is not an independent property of the display itself, but rather, a function of the interaction of the display and the particular methods used for achieving task goals.

  8. A Framework for Context-Aware Adaptation in Public Displays

    NASA Astrophysics Data System (ADS)

    Cardoso, Jorge C. S.; José, Rui

    Several approaches for context-aware public display systems exist but none has been able to bridge the gap between the myriad of possible interactive features of a display and adaptation rules for its content. In this paper, we propose a framework of digital footprints generated by the interaction with public displays that can be used as a means to dynamically characterise a place. We describe these footprints, how they can be generated and how they can be used by context-aware display systems to adapt to the social environment of a place.

  9. High-performance microlasers enable display applications

    NASA Astrophysics Data System (ADS)

    Takeuchi, Eric B.; Hargis, David E.; Bergstedt, Robert; Dion, Al; Hurtado, Randy; Solone, Paul J.

    1999-08-01

    Recent advances in compact, air-cooled, diode-pumped solid- state visible microlasers have enabled the development of portable laser display systems. In addition to the added benefits of large color gamut, invariant color accuracy, image uniformity, high contrast, and large depth of focus inherent in the microlaser design, the reliability of these all-solid state red-green-blue (RGB) sources make them attractive for display applications. Compact, multi-watt laser modules have been demonstrated for use as a high brightness 'laser light engine' for replacing arc lamps in LCD/DMD type display configurations. Using this 'backlit' approach, a microlaser- based projector has been demonstrated, providing greater than 500 lumens at 1280 X 1024 resolution using reflective AMLCD light valves. Also being developed is an airborne tactical HMD system wherein the laser module is remotely coupled to a subtractive color LCD assembly through an optical fiber to provide a more than 24,000,000 (twenty-four million) cd/m2 luminance for illuminating the LCD assembly. This technology could be applied to a variety of cockpit displays providing sunlight readable illumination for both head-down and head-up backlit display configurations. The advantages of the microlaser technology will enable further applications in other military platforms such as command and control centers, simulators and HMDs. Longer term potential includes high end CAD workstations, entertainment systems, and electronic cinema.

  10. Three-dimensional virtual acoustic displays

    NASA Technical Reports Server (NTRS)

    Wenzel, Elizabeth M.

    1991-01-01

    The development of an alternative medium for displaying information in complex human-machine interfaces is described. The 3-D virtual acoustic display is a means for accurately transferring information to a human operator using the auditory modality; it combines directional and semantic characteristics to form naturalistic representations of dynamic objects and events in remotely sensed or simulated environments. Although the technology can stand alone, it is envisioned as a component of a larger multisensory environment and will no doubt find its greatest utility in that context. The general philosophy in the design of the display has been that the development of advanced computer interfaces should be driven first by an understanding of human perceptual requirements, and later by technological capabilities or constraints. In expanding on this view, current and potential uses are addressed of virtual acoustic displays, such displays are characterized, and recent approaches to their implementation and application are reviewed, the research project at NASA-Ames is described in detail, and finally some critical research issues for the future are outlined.

  11. Secure Display of Space-Exploration Images

    NASA Technical Reports Server (NTRS)

    Cheng, Cecilia; Thornhill, Gillian; McAuley, Michael

    2006-01-01

    Java EDR Display Interface (JEDI) is software for either local display or secure Internet distribution, to authorized clients, of image data acquired from cameras aboard spacecraft engaged in exploration of remote planets. ( EDR signifies experimental data record, which, in effect, signifies image data.) Processed at NASA s Multimission Image Processing Laboratory (MIPL), the data can be from either near-realtime processing streams or stored files. JEDI uses the Java Advanced Imaging application program interface, plus input/output packages that are parts of the Video Image Communication and Retrieval software of the MIPL, to display images. JEDI can be run as either a standalone application program or within a Web browser as a servlet with an applet front end. In either operating mode, JEDI communicates using the HTTP(s) protocol(s). In the Web-browser case, the user must provide a password to gain access. For each user and/or image data type, there is a configuration file, called a "personality file," containing parameters that control the layout of the displays and the information to be included in them. Once JEDI has accepted the user s password, it processes the requested EDR (provided that user is authorized to receive the specific EDR) to create a display according to the user s personality file.

  12. Fluid/Structure Interaction Computational Investigation of Blast-Wave Mitigation Efficacy of the Advanced Combat Helmet

    NASA Astrophysics Data System (ADS)

    Grujicic, M.; Bell, W. C.; Pandurangan, B.; Glomski, P. S.

    2011-08-01

    To combat the problem of traumatic brain injury (TBI), a signature injury of the current military conflicts, there is an urgent need to design head protection systems with superior blast/ballistic impact mitigation capabilities. Toward that end, the blast impact mitigation performance of an advanced combat helmet (ACH) head protection system equipped with polyurea suspension pads and subjected to two different blast peak pressure loadings has been investigated computationally. A fairly detailed (Lagrangian) finite-element model of a helmet/skull/brain assembly is first constructed and placed into an Eulerian air domain through which a single planar blast wave propagates. A combined Eulerian/Lagrangian transient nonlinear dynamics computational fluid/solid interaction analysis is next conducted in order to assess the extent of reduction in intra-cranial shock-wave ingress (responsible for TBI). This was done by comparing temporal evolutions of intra-cranial normal and shear stresses for the cases of an unprotected head and the helmet-protected head and by correlating these quantities with the three most common types of mild traumatic brain injury (mTBI), i.e., axonal damage, contusion, and subdural hemorrhage. The results obtained show that the ACH provides some level of protection against all investigated types of mTBI and that the level of protection increases somewhat with an increase in blast peak pressure. In order to rationalize the aforementioned findings, a shockwave propagation/reflection analysis is carried out for the unprotected head and helmet-protected head cases. The analysis qualitatively corroborated the results pertaining to the blast-mitigation efficacy of an ACH, but also suggested that there are additional shockwave energy dissipation phenomena which play an important role in the mechanical response of the unprotected/protected head to blast impact.

  13. Corridor Displays in Glass Cabinets

    ERIC Educational Resources Information Center

    Matthews, Lee D.

    1976-01-01

    Reports on the increased enthusiasm of college students toward physics following the development of student-activated corridor display units. Includes a listing of displays and comments on student reactions. (CP)

  14. Wind information display system user's manual

    NASA Technical Reports Server (NTRS)

    Roe, J.; Smith, G.

    1977-01-01

    The Wind Information Display System (WINDS) provides flexible control through system-user interaction for collecting wind shear data, processing this data in real time, displaying the processed data, storing raw data on magnetic tapes, and post-processing raw data. The data are received from two asynchronous laser Doppler velocimeters (LDV's) and include position, velocity and intensity information. The raw data is written onto magnetic tape for permanent storage and is also processed in real time to depict wind velocities in a given spacial region.

  15. Advanced cockpit technology for future civil transport aircraft

    NASA Technical Reports Server (NTRS)

    Hatfield, Jack J.; Parrish, Russell V.

    1990-01-01

    A review is presented of advanced cockpit technology for future civil transport aircraft, covering the present state-of-the-art and major technologies, including flat-panel displays, graphics and pictorial displays. Pilot aiding/automation/human-centered design and imaging sensor/flight systems technology (for low-visibility operations) are also presented. NASA Langley Research Center's recent results in pictorial displays and on future developments in large-screen display technologies are discussed. Major characteristics foreseen for the future high-speed civil transport include fault-tolerant digital avionics and controls/displays with extensive human-centered automation, and unusually clean, uncluttered interface with natural crew interaction via touch, voice/tactile means.

  16. Display Factors and Subjective Evaluation of Dynamic Text Display

    NASA Astrophysics Data System (ADS)

    So, Joey C. Y.; Chan, Alan H. S.

    2009-01-01

    Communications technology has exploded in past decades, leading to the question of which display method is the best to deliver electronic text messages. Many of these systems employ cathode ray tubes, liquid crystal displays, gas plasma displays, or light-emitting diodes as the output device. In order to overcome the limitations of screen size of the display units, numerous means of presenting dynamic display on screens have been invented. There are many factors that affect the readability of electronic text. This paper reviews some related empirical studies concerning the various display methods of dynamic text presentation, such as text display type, character type, text display direction, and text/background color combination, highlighting method and validity of highlighting. The subjective evaluation questionnaire is also discussed. According to the readability and preference ratings of the subjects given under different conditions, the best display method and color for comprehending the delivered messages were investigated. General recommendations of displaying dynamic information are made for the large display units which have been widely used for delivering important messages.

  17. Developing Intepretive Soil Education Displays.

    ERIC Educational Resources Information Center

    Hansmeyer, T. L.; Cooper, T. H.

    1993-01-01

    Describes several soil educational displays developed for park and nature center trails. Displays include full-scale soil monoliths displayed along the trails with explanations on why and how the soils are different, and micro-monoliths exhibiting the different soil types. (MDH)

  18. Digital holography display (3)

    NASA Astrophysics Data System (ADS)

    Lee, Cheok Peng; Zheng, Huadong; Chia, Yong Poo; Cheng, Chee Yuen; Yu, Yang; Yu, Yingjie; Asundi, Anand

    2013-06-01

    This paper is to describe a color digital holographic projector and this system is comprised of RGB lasers, 3 units of Digital Micro-Mirror Device (DMD) and high speed rotating diffuser. In this research, we focused on colorings Digital holograms and synchronized RGB digital holograms versus rotated diffuser. To achieve this phenomenon, three of the holograms optical path need to be aligned to pass through a same beam splitter and eventually combined as one colored holograms output While, this colored hologram will be reconstructed on volumetric screen (rotated diffuser) at the floating manner in free space. To obtain these result 3 key factors is investigated: 1. To configured 1 master and 2 slaves digital micro mirror illumination time 2. To reconstructed holograms orientation angle diffuser versus rotating speed. 3. To synchronize rotating diffuser speed versus DMD frame-rate Last but not least, the team built a prototype Color Digital Holography Display but more developments are required to follow up such as, enhance system's reliability, robustness, compactness and 3D realistic images floating in the free air space.

  19. Signal Processing, Analysis, & Display

    SciTech Connect

    Lager, Darrell; Azevado, Stephen

    1986-06-01

    SIG is a general-purpose signal processing, analysis, and display program. Its main purpose is to perform manipulations on time- and frequency-domain signals. However, it has been designed to ultimately accommodate other representations for data such as multiplexed signals and complex matrices. Two user interfaces are provided in SIG - a menu mode for the unfamiliar user and a command mode for more experienced users. In both modes errors are detected as early as possible and are indicated by friendly, meaningful messages. An on-line HELP package is also included. A variety of operations can be performed on time- and frequency-domain signals including operations on the samples of a signal, operations on the entire signal, and operations on two or more signals. Signal processing operations that can be performed are digital filtering (median, Bessel, Butterworth, and Chebychev), ensemble average, resample, auto and cross spectral density, transfer function and impulse response, trend removal, convolution, Fourier transform and inverse window functions (Hamming, Kaiser-Bessel), simulation (ramp, sine, pulsetrain, random), and read/write signals. User definable signal processing algorithms are also featured. SIG has many options including multiple commands per line, command files with arguments,commenting lines, defining commands, and automatic execution for each item in a repeat sequence. Graphical operations on signals and spectra include: x-y plots of time signals; real, imaginary, magnitude, and phase plots of spectra; scaling of spectra for continuous or discrete domain; cursor zoom; families of curves; and multiple viewports.

  20. 128-view autostereoscopic display

    NASA Astrophysics Data System (ADS)

    Huang, Junejei; Wang, Yuchang

    2015-09-01

    A 128-view auto-stereoscopic display using laser-scan and angle-magnifying screen is proposed. On the exit pupil of front projection lens, 8 spots of laser-scanning are provided. The exit pupil of the rear projection lens is doubled by two aperture-relay lenses and 8 spots of laser-scanning are doubled to 16 spots. The angle-magnifying screen comprises the main part of double-lenticular and the attaching part of micro-deflector. With the micro-deflector, angles formed by the laser scanning are deflected into eight angle ranges. With the double-lenticular, eight angle ranges incident into the screen are magnified into a large field of view for the observer. The laser scanning is realized by the vibration of Galvano-mirror that synchronizing with the frame rate of the DMD. For one cycle of vibration by the Galvo-mirror, 16 steps of reflections happen on going and returning paths. For each viewing position, 48 viewing per second are provided. The micro-deflector part comprises the (-4, +4) vertical micro-deflector and the (-1, -1, +1, +3) 45° micro-deflector. Each elements of the micro-deflector are aligned with the images of the pixels that come from the DMD. When a scanning of 16 spots passes different deflecting elements that cover 8 different pixels, the scanning is deflected to eight angle ranges and 128 partitioned viewing zones are formed in the observer plane.

  1. In vitro binding of anthrax protective antigen on bacteriophage T4 capsid surface through Hoc-capsid interactions: A strategy for efficient display of large full-length proteins

    SciTech Connect

    Shivachandra, Sathish B.; Rao, Mangala; Janosi, Laszlo; Sathaliyawala, Taheri; Matyas, Gary R.; Alving, Carl R.; Leppla, Stephen H.; Rao, Venigalla B. . E-mail: rao@cua.edu

    2006-02-05

    An in vitro binding system is described to display large full-length proteins on bacteriophage T4 capsid surface at high density. The phage T4 icosahedral capsid features 155 copies of a nonessential highly antigenic outer capsid protein, Hoc, at the center of each major capsid protein hexon. Gene fusions were engineered to express the 83-kDa protective antigen (PA) from Bacillus anthracis fused to the N-terminus of Hoc and the 130-kDa PA-Hoc protein was expressed in Escherichia coli and purified. The purified PA-Hoc was assembled in vitro on hoc {sup -} phage particles. Binding was specific, stable, and of high affinity. This defined in vitro system allowed manipulation of the copy number of displayed PA and imposed no significant limitation on the size of the displayed antigen. In contrast to in vivo display systems, the in vitro approach allows all the capsid binding sites to be occupied by the 130-kDa PA-Hoc fusion protein. The PA-T4 particles were immunogenic in mice in the absence of an adjuvant, eliciting strong PA-specific antibodies and anthrax lethal toxin neutralizing antibodies. The in vitro display on phage T4 offers a novel platform for potential construction of customized vaccines against anthrax and other infectious diseases.

  2. LED instrument approach instruction display

    NASA Technical Reports Server (NTRS)

    Meredith, B. D.; Kelly, W. L., IV; Crouch, R. K.

    1979-01-01

    A display employing light emitting diodes (LED's) was developed to demonstrate the feasibility of such displays for presenting landing and navigation information to reduce the workload of general aviation pilots during IFR flight. The display consists of a paper tape reader, digital memory, control electronics, digital latches, and LED alphanumeric displays. A presentable digital countdown clock-timer is included as part of the system to provide a convenient means of monitoring time intervals for precise flight navigation. The system is a limited capability prototype assembled to test pilot reaction to such a device under simulated IFR operation. Pilot opinion indicates that the display is helpful in reducing the IFR pilots workload when used with a runway approach plate. However, the development of a compact, low power second generation display was recommended which could present several instructions simultaneously and provide information update capability. A microprocessor-based display could fulfill these requirements.

  3. Designing low cost LED display for the billboard

    NASA Astrophysics Data System (ADS)

    Hong, Yi-Jian; Uang, Chii-Maw; Wang, Ping-Chieh; Ho, Zu-Sheng

    2011-10-01

    With quickly advance of the computer, microelectronics and photonics technologies, LED display panel becomes a new electronic advertising media. It can be used to show any information whatever characters or graphics. Most LED display panels are built of many Light-Emitting Diodes arranged in a matrix form. The display has many advantages such as low power, low cost, long life and high definition. Because the display panel is asked to show rich color, the LED display panel's driving system becomes very complex. The design methodology of LED display panel's driver becomes more and more important to meet the market requirements. Cost is always the most important issue in public market domain. In this paper, we report a design methodology of LED display panel's driver based on the microprocessor control unit (MCU) system and LED display controller IC, HT1632C, to control three colors, RGB, color LED display panel and the modular panel size is 24*16 in matrix form. The HT1632C is a memory mapping LED display controller, it can be used on many applications, such as digital clock, thermometer, counter, voltmeter or other instrumentation readouts. Three pieces of HT1632C are used to drive a 24*16 RGB LED display panel, in our design case. Each HT163C chip is used to control one of the R, G and B color. As the drive mode is driven in DC mode, the RGB display panel can create and totally of seven colors under the control of MCU. The MCU generates the control signal to drive HT1632C. In this study, the software design methodology is adopted with dynamic display principle. When the scan frequency is 60Hz, LED display panel will get the clear picture and be able to display seven colors.

  4. The FAK–Arp2/3 interaction promotes leading edge advance and haptosensing by coupling nascent adhesions to lamellipodia actin

    PubMed Central

    Swaminathan, Vinay; Fischer, R. S.; Waterman, Clare M.

    2016-01-01

    Cell migration is initiated in response to biochemical or physical cues in the environment that promote actin-mediated lamellipodial protrusion followed by the formation of nascent integrin adhesions (NAs) within the protrusion to drive leading edge advance. Although FAK is known to be required for cell migration through effects on focal adhesions, its role in NA formation and lamellipodial dynamics is unclear. Live-cell microscopy of FAK−/− cells with expression of phosphorylation deficient or a FERM-domain mutant deficient in Arp2/3 binding revealed a requirement for FAK in promoting the dense formation, transient stabilization, and timely turnover of NA within lamellipodia to couple actin-driven protrusion to adhesion and advance of the leading edge. Phosphorylation on Y397 of FAK promotes dense NA formation but is dispensable for transient NA stabilization and leading edge advance. In contrast, transient NA stabilization and advance of the cell edge requires FAK–Arp2/3 interaction, which promotes Arp2/3 localization to NA and reduces FAK activity. Haptosensing of extracellular matrix (ECM) concentration during migration requires the interaction between FAK and Arp2/3, whereas FAK phosphorylation modulates mechanosensing of ECM stiffness during spreading. Taken together, our results show that mechanistically separable functions of FAK in NA are required for cells to distinguish distinct properties of their environment during migration. PMID:26842895

  5. Experiments using electronic display information in the NASA terminal configured vehicle

    NASA Technical Reports Server (NTRS)

    Morello, S. A.

    1980-01-01

    The results of research experiments concerning pilot display information requirements and visualization techniques for electronic display systems are presented. Topics deal with display related piloting tasks in flight controls for approach-to-landing, flight management for the descent from cruise, and flight operational procedures considering the display of surrounding air traffic. Planned research of advanced integrated display formats for primary flight control throughout the various phases of flight is also discussed.

  6. Signal Processing, Analysis, & Display

    1986-06-01

    SIG is a general-purpose signal processing, analysis, and display program. Its main purpose is to perform manipulations on time- and frequency-domain signals. However, it has been designed to ultimately accommodate other representations for data such as multiplexed signals and complex matrices. Two user interfaces are provided in SIG - a menu mode for the unfamiliar user and a command mode for more experienced users. In both modes errors are detected as early as possible andmore » are indicated by friendly, meaningful messages. An on-line HELP package is also included. A variety of operations can be performed on time- and frequency-domain signals including operations on the samples of a signal, operations on the entire signal, and operations on two or more signals. Signal processing operations that can be performed are digital filtering (median, Bessel, Butterworth, and Chebychev), ensemble average, resample, auto and cross spectral density, transfer function and impulse response, trend removal, convolution, Fourier transform and inverse window functions (Hamming, Kaiser-Bessel), simulation (ramp, sine, pulsetrain, random), and read/write signals. User definable signal processing algorithms are also featured. SIG has many options including multiple commands per line, command files with arguments,commenting lines, defining commands, and automatic execution for each item in a repeat sequence. Graphical operations on signals and spectra include: x-y plots of time signals; real, imaginary, magnitude, and phase plots of spectra; scaling of spectra for continuous or discrete domain; cursor zoom; families of curves; and multiple viewports.« less

  7. Surgical planning for radical prostatectomies using three-dimensional visualization and a virtual reality display system

    NASA Astrophysics Data System (ADS)

    Kay, Paul A.; Robb, Richard A.; King, Bernard F.; Myers, R. P.; Camp, Jon J.

    1995-04-01

    Thousands of radical prostatectomies for prostate cancer are performed each year. Radical prostatectomy is a challenging procedure due to anatomical variability and the adjacency of critical structures, including the external urinary sphincter and neurovascular bundles that subserve erectile function. Because of this, there are significant risks of urinary incontinence and impotence following this procedure. Preoperative interaction with three-dimensional visualization of the important anatomical structures might allow the surgeon to understand important individual anatomical relationships of patients. Such understanding might decrease the rate of morbidities, especially for surgeons in training. Patient specific anatomic data can be obtained from preoperative 3D MRI diagnostic imaging examinations of the prostate gland utilizing endorectal coils and phased array multicoils. The volumes of the important structures can then be segmented using interactive image editing tools and then displayed using 3-D surface rendering algorithms on standard work stations. Anatomic relationships can be visualized using surface displays and 3-D colorwash and transparency to allow internal visualization of hidden structures. Preoperatively a surgeon and radiologist can interactively manipulate the 3-D visualizations. Important anatomical relationships can better be visualized and used to plan the surgery. Postoperatively the 3-D displays can be compared to actual surgical experience and pathologic data. Patients can then be followed to assess the incidence of morbidities. More advanced approaches to visualize these anatomical structures in support of surgical planning will be implemented on virtual reality (VR) display systems. Such realistic displays are `immersive,' and allow surgeons to simultaneously see and manipulate the anatomy, to plan the procedure and to rehearse it in a realistic way. Ultimately the VR systems will be implemented in the operating room (OR) to assist the

  8. PACS displays: how to select the right display technology.

    PubMed

    Hirschorn, David S; Krupinski, Elizabeth A; Flynn, Michael J

    2014-12-01

    The medical imaging display is a precision instrument with many features not found in commercial-grade displays. The more one understands what these features are and their corresponding clinical value, the better one can make a purchase decision. None of these displays maintain themselves for 5 years or more without some degree of automatic or manual performance testing. Routine calibration conformance checks are beginning to be mandated by the departments of health of many states. Most manufacturers provide mechanisms to perform these checks and keep track of their results, some more easily than others. A consistent display brightness of about 400 cd/m(2) and close conformance to the DICOM curve are the key components of a successful check. Displays are typically characterized by the number of pixels they contain, usually 2, 3, or 5 megapixels, but this is the least useful determinant of image quality. What matters most is the size of the pixels and the size of the whole display, which should be selected on the basis of the typical viewing distance. The farther one's eyes are from the display, the larger the pixels and the overall display size can be while still feeding the eye as much information as it can see. Care should be taken to use the appropriate display in a given setting for the clinical purpose at hand. PMID:25467904

  9. Military display market segment: helicopters

    NASA Astrophysics Data System (ADS)

    Desjardins, Daniel D.; Hopper, Darrel G.

    2004-09-01

    The military display market is analyzed in terms of one of its segments: helicopter displays. Parameters requiring special consideration, to include luminance ranges, contrast ratio, viewing angles, and chromaticity coordinates, are examined. Performance requirements for rotary-wing displays relative to several premier applications are summarized. Display sizes having aggregate defense applications of 5,000 units or greater and having DoD applications across 10 or more platforms, are tabulated. The issue of size commonality is addressed where distribution of active area sizes across helicopter platforms, individually, in groups of two through nine, and ten or greater, is illustrated. Rotary-wing displays are also analyzed by technology, where total quantities of such displays are broken out into CRT, LCD, AMLCD, EM, LED, Incandescent, Plasma and TFEL percentages. Custom, versus Rugged commercial, versus commercial off-the-shelf designs are contrasted. High and low information content designs are identified. Displays for several high-profile military helicopter programs are discussed, to include both technical specifications and program history. The military display market study is summarized with breakouts for the helicopter market segment. Our defense-wide study as of March 2004 has documented 1,015,494 direct view and virtual image displays distributed across 1,181 display sizes and 503 weapon systems. Helicopter displays account for 67,472 displays (just 6.6% of DoD total) and comprise 83 sizes (7.0% of total DoD) in 76 platforms (15.1% of total DoD). Some 47.6% of these rotary-wing applications involve low information content displays comprising just a few characters in one color; however, as per fixed-wing aircraft, the predominant instantiation involves higher information content units capable of showing changeable graphics, color and video.

  10. Simulation and display of macromolecular complexes

    NASA Technical Reports Server (NTRS)

    Nir, S.; Garduno, R.; Rein, R.; Macelroy, R. D.

    1977-01-01

    In association with an investigation of the interaction of proteins with DNA and RNA, an interactive computer program for building, manipulating, and displaying macromolecular complexes has been designed. The system provides perspective, planar, and stereoscopic views on the computer terminal display, as well as views for standard and nonstandard observer locations. The molecule or its parts may be rotated and/or translated in any direction; bond connections may be added or removed by the viewer. Molecular fragments may be juxtaposed in such a way that given bonds are aligned, and given planes and points coincide. Another subroutine provides for the duplication of a given unit such as a DNA or amino-acid base.

  11. Character Size and Reading to Remember from Small Displays

    ERIC Educational Resources Information Center

    Sanchez, Christopher A.; Goolsbee, James Z.

    2010-01-01

    An under-addressed question regarding the usage of small devices is how information gathering from such devices is limited or changed relative to a full-size display? This study explores how factual recall from a text interacts with display size and other text characteristics. In this experiment, participants read several expository texts on…

  12. Data synthesis and display programs for wave distribution function analysis

    NASA Technical Reports Server (NTRS)

    Storey, L. R. O.; Yeh, K. J.

    1992-01-01

    At the National Space Science Data Center (NSSDC) software was written to synthesize and display artificial data for use in developing the methodology of wave distribution analysis. The software comprises two separate interactive programs, one for data synthesis and the other for data display.

  13. Amorphous Silicon: Flexible Backplane and Display Application

    NASA Astrophysics Data System (ADS)

    Sarma, Kalluri R.

    Advances in the science and technology of hydrogenated amorphous silicon (a-Si:H, also referred to as a-Si) and the associated devices including thin-film transistors (TFT) during the past three decades have had a profound impact on the development and commercialization of major applications such as thin-film solar cells, digital image scanners and X-ray imagers and active matrix liquid crystal displays (AMLCDs). Particularly, during approximately the past 15 years, a-Si TFT-based flat panel AMLCDs have been a huge commercial success. a-Si TFT-LCD has enabled the note book PCs, and is now rapidly replacing the venerable CRT in the desktop monitor and home TV applications. a-Si TFT-LCD is now the dominant technology in use for applications ranging from small displays such as in mobile phones to large displays such as in home TV, as well-specialized applications such as industrial and avionics displays.

  14. Demonstration of Data Interactive Publications

    NASA Astrophysics Data System (ADS)

    Domenico, B.; Weber, J.

    2012-04-01

    This is a demonstration version of the talk given in session ESSI2.4 "Full lifecycle of data." For some years now, the authors have developed examples of online documents that allowed the reader to interact directly with datasets, but there were limitations that restricted the interaction to specific desktop analysis and display tools that were not generally available to all readers of the documents. Recent advances in web service technology and related standards are making it possible to develop systems for publishing online documents that enable readers to access, analyze, and display the data discussed in the publication from the perspective and in the manner from which the author wants it to be represented. By clicking on embedded links, the reader accesses not only the usual textual information in a publication, but also data residing on a local or remote web server as well as a set of processing tools for analyzing and displaying the data. With the option of having the analysis and display processing provided on the server (or in the cloud), there are now a broader set of possibilities on the client side where the reader can interact with the data via a thin web client, a rich desktop application, or a mobile platform "app." The presentation will outline the architecture of data interactive publications along with illustrative examples.

  15. Laser illuminated flat panel display

    SciTech Connect

    Veligdan, J.T.

    1995-12-31

    A 10 inch laser illuminated flat panel Planar Optic Display (POD) screen has been constructed and tested. This POD screen technology is an entirely new concept in display technology. Although the initial display is flat and made of glass, this technology lends itself to applications where a plastic display might be wrapped around the viewer. The display screen is comprised of hundreds of planar optical waveguides where each glass waveguide represents a vertical line of resolution. A black cladding layer, having a lower index of refraction, is placed between each waveguide layer. Since the cladding makes the screen surface black, the contrast is high. The prototype display is 9 inches wide by 5 inches high and approximately I inch thick. A 3 milliwatt HeNe laser is used as the illumination source and a vector scanning technique is employed.

  16. OLED displays for military applications

    NASA Astrophysics Data System (ADS)

    Mahon, Janice K.; Brown, Julie J.; Hack, Michael G.; Hewitt, Richard H.; Huffman, David C.

    2000-08-01

    Through the years, there has been a steady evolution of technology to ruggedize displays for harsh military environments. This work has spanned cathode-ray-tubes (CRTs) to present day active matrix liquid crystal displays (AMLCDs). Organic light emitting device (OLED) display technology has the potential to solve many of the inherent limitations of today's AMLCD technology and to provide the military system designer with a more cost effective solution. OLED technology offers bright, colorful emissive light with excellent power efficiency, wide viewing angle and video response rates; it is also demonstrating the requisite environmental robustness for a wide variety of display applications. OLED displays also have a very thin and lightweight form factor. Moreover, in full production, OLEDs are projected to be very cost-effective by comparison to AMLCDs. This paper will examine some of these advantages and the opportunities presented by the rapidly emerging OLED display technology for military applications.

  17. Microspheres in Plasma Display Panels

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Filling small bubbles of molten glass with gases is just as difficult as it sounds, but the technical staff at NASA is not known to shy away from a difficult task. When Microsphere Systems, Inc. (MSI), of Ypsilanti, Michigan, and Imaging Systems Technology, Inc. (IST), of Toledo, Ohio, were trying to push the limits of plasma displays but were having difficulty with the designs, NASA s Glenn Garrett Morgan Commercialization Initiative (GMCI) assembled key personnel at Glenn Research Center and Ohio State University for a brainstorming session to come up with a solution for the companies. They needed a system that could produce hollow, glass micro-sized spheres (microspheres) that could be filled with a variety of gasses. But the extremely high temperature required to force the micro-sized glass bubbles to form at the tip of a metal nozzle resulted in severe discoloration of the microspheres. After countless experiments on various glass-metal combinations, they had turned to the GMCI for help. NASA experts in advanced metals, ceramics, and glass concluded that a new design approach was necessary. The team determined that what was needed was a phosphate glass composition that would remain transparent, and they went to work on a solution. Six weeks later, using the design tips from the NASA team, Tim Henderson, president of MSI, had designed a new system in which all surfaces in contact with the molten glass would be ceramic instead of metal. Meanwhile, IST was able to complete a Phase I Small Business Innovation Research (SBIR) grant supported by the National Science Foundation (NSF) and supply a potential customer with samples of the microspheres for evaluation as filler materials for high-performance insulations.

  18. Flat panel planar optic display

    SciTech Connect

    Veligdan, J.T.

    1994-11-01

    A prototype 10 inch flat panel Planar Optic Display, (POD), screen has been constructed and tested. This display screen is comprised of hundreds of planar optic class sheets bonded together with a cladding layer between each sheet where each glass sheet represents a vertical line of resolution. The display is 9 inches wide by 5 inches high and approximately 1 inch thick. A 3 milliwatt HeNe laser is used as the illumination source and a vector scanning technique is employed.

  19. The development of a visualization tool for displaying analysis and test results

    SciTech Connect

    Uncapher, W.L.; Ammerman, D.J.; Ludwigsen, J.S.; Knight, R.D.; Wix, S.D.

    1995-12-31

    The evaluation and certification of packages for transportation of radioactive materials is performed by analysis, testing, or a combination of both. Within the last few years, many transport packages that were certified have used a combination of analysis and testing. The ability to combine and display both kinds of data with interactive graphical tools allows a faster and more complete understanding of the response of the package to these environments. Sandia National Laboratories has developed an initial version of a visualization tool that allows the comparison and display of test and of analytical data as part of a Department of Energy-sponsored program to support advanced analytical techniques and test methodologies. The capability of the tool extends to both mechanical (structural) and thermal data.

  20. IDIMS/GEOPAK: Users manual for a geophysical data display and analysis system

    NASA Technical Reports Server (NTRS)

    Libert, J. M.

    1982-01-01

    The application of an existing image analysis system to the display and analysis of geophysical data is described, the potential for expanding the capabilities of such a system toward more advanced computer analytic and modeling functions is investigated. The major features of the IDIMS (Interactive Display and Image Manipulation System) and its applicability for image type analysis of geophysical data are described. Development of a basic geophysical data processing system to permit the image representation, coloring, interdisplay and comparison of geophysical data sets using existing IDIMS functions and to provide for the production of hard copies of processed images was described. An instruction manual and documentation for the GEOPAK subsystem was produced. A training course for personnel in the use of the IDIMS/GEOPAK was conducted. The effectiveness of the current IDIMS/GEOPAK system for geophysical data analysis was evaluated.