Science.gov

Sample records for advanced internal combustion

  1. Ignition angle advancer for internal combustion engine

    SciTech Connect

    Yamazaki, T.

    1986-08-19

    This patent describes a throttle and spark advance control system for an internal combustion engine having a spark advance mechanism and a throttle valve comprising an operator controlled element, a throttle control lever supported for pivotal movement about an axis and directly connected to the operator controlled element for rotation under operator control. It also includes means for positively connecting the throttle control lever to the throttle valve for positioning the throttle valve in response to movement of the throttle control lever. A spark advance control lever supported for pivotal movement about an axis is included as well as motion transmitting means for operatively connecting the spark advance control lever to the throttle control lever for pivotal movement of the spark advance control lever about its axis in response to pivotal movement of the throttle control lever about its axis and the spark control lever to the spark advance mechanism for controlling the position of the spark advance mechanism in response to the position of the throttle control lever.

  2. Advanced Combustion

    SciTech Connect

    Holcomb, Gordon R.

    2013-03-11

    The activity reported in this presentation is to provide the mechanical and physical property information needed to allow rational design, development and/or choice of alloys, manufacturing approaches, and environmental exposure and component life models to enable oxy-fuel combustion boilers to operate at Ultra-Supercritical (up to 650{degrees}C & between 22-30 MPa) and/or Advanced Ultra-Supercritical conditions (760{degrees}C & 35 MPa).

  3. Advanced atmospheric fluidized-bed combustion design: internally circulating AFBC. Final report

    SciTech Connect

    Keairns, D.L.; Altiner, H.K.; Hamm, J.R.; Ahmed, M.M.; Weeks, K.D.; Bachovchin, D.M.; Kececioglu, I.; Ulerich, N.H.; Yang, W.C.

    1983-01-01

    This report defines and characterizes an advanced, industrial, fluidized-bed combustion concept - the internally circulating AFBC - having superior performance and cost characteristics. The internally circulating AFBC incorporates four major innovative features (single fuel feed; jet-attrition-controlled sulfur removal; multiple air staging; and high-velocity, single vessel integral design using draft tube circulation) to achieve: high boiler thermal efficiency (approaching 90% through integral design, high combustion efficiency, and low sorbent consumption); fuel flexibility (single coal feed point, coal size up to nominal 2 in, flexible air distribution, capability of feeding and combusting gaseous and liquid fuels); high reliability (simplified fuel feed and solids handling); turndown flexibility (degree and ease of turndown achieved by integral segmented bed, staged air distribution); low sorbent requirements for high SO/sub 2/ control (Ca/S <2 for greater than 90% removal using jet-attrition-controlled sulfur removal); low NO/sub x/ emissions (0.1 lb/10/sup 6/ Btu through multiple stages of air injection and capability of maintaining high carbon content); compact design (single, shop-fabricated, rail-shippable units with capacity up to 150 x 10/sup 6/ Btu/hr for high-velocity operation); and low cost (simplified, integral function design with high efficiency). Westinghouse concludes that the internally circulating AFBC concept has great potential for industrial market acceptance because of its effective performance and high reliability at low steam generation costs. The concept merits further development to evolve its innovative features further and to determine its commercial design configuration and operating conditions.

  4. Advanced Subsonic Combustion Rig

    NASA Technical Reports Server (NTRS)

    Lee, Chi-Ming

    1998-01-01

    Researchers from the NASA Lewis Research Center have obtained the first combustion/emissions data under extreme future engine operating conditions. In Lewis' new world-class 60-atm combustor research facility--the Advanced Subsonic Combustion Rig (ASCR)--a flametube was used to conduct combustion experiments in environments as extreme as 900 psia and 3400 F. The greatest challenge for combustion researchers is the uncertainty of the effects of pressure on the formation of nitrogen oxides (NOx). Consequently, U.S. engine manufacturers are using these data to guide their future combustor designs. The flametube's metal housing has an inside diameter of 12 in. and a length of 10.5 in. The flametube can be used with a variety of different flow paths. Each flow path is lined with a high-temperature, castable refractory material (alumina) to minimize heat loss. Upstream of the flametube is the injector section, which has an inside diameter of 13 in. and a length of 0.5-in. It was designed to provide for quick changeovers. This flametube is being used to provide all U.S. engine manufacturers early assessments of advanced combustion concepts at full power conditions prior to engine production. To date, seven concepts from engine manufacturers have been evaluated and improved. This collaborated development can potentially give U.S. engine manufacturers the competitive advantage of being first in the market with advanced low-emission technologies.

  5. Method and apparatus for advanced staged combustion utilizing forced internal recirculation

    DOEpatents

    Rabovitser, Iosif K.; Knight, Richard A.; Cygan, David F.; Nester, Serguei; Abbasi, Hamid A.

    2003-12-16

    A method and apparatus for combustion of a fuel in which a first-stage fuel and a first-stage oxidant are introduced into a combustion chamber and ignited, forming a primary combustion zone. At least about 5% of the total heat output produced by combustion of the first-stage fuel and the first-stage oxidant is removed from the primary combustion zone, forming cooled first-stage combustion products. A portion of the cooled first-stage combustion products from a downstream region of the primary combustion zone is recirculated to an upstream region of primary combustion zone. A second-stage fuel is introduced into the combustion chamber downstream of the primary combustion zone and ignited, forming a secondary combustion zone. At least about 5% of the heat from the secondary combustion zone is removed. In accordance with one embodiment, a third-stage oxidant is introduced into the combustion chamber downstream of the secondary combustion zone, forming a tertiary combustion zone.

  6. Internal combustion engine

    SciTech Connect

    Beaudsin, N.

    1984-05-22

    An internal combustion engine wherein the rod connecting the piston to the crankshaft has an enlarged portion defining a track which a crankshaft element cooperatingly engages; the track is topologically shaped so that the effect exerted by the crankshaft element on the connecting rod is reduced and/or cancelled for a given travel distance of the crankshaft element in the track.

  7. Symposium (International) on Combustion, 18th, 1980

    SciTech Connect

    Anon

    1980-08-01

    This conference proceedings contains 196 papers. 181 papers are indexed separately. Topics covered include: combustion generated pollution; propellant combustion; fluidized bed combustion; combustion of droplets and spray; premixed flame studies; fire studies; flame stabilization; coal flammability; chemical kinetics; turbulent combustion; soot; coal combustion; modeling of combustion processes; combustion diagnostics; detonations and explosions; ignition; internal combustion engines; combustion studies; and furnaces.

  8. Combustion modeling in internal combustion engines

    NASA Technical Reports Server (NTRS)

    Zeleznik, F. J.

    1976-01-01

    The fundamental assumptions of the Blizard and Keck combustion model for internal combustion engines are examined and a generalization of that model is derived. The most significant feature of the model is that it permits the occurrence of unburned hydrocarbons in the thermodynamic-kinetic modeling of exhaust gases. The general formulas are evaluated in two specific cases that are likely to be significant in the applications of the model.

  9. Low emission internal combustion engine

    DOEpatents

    Karaba, Albert M.

    1979-01-01

    A low emission, internal combustion compression ignition engine having a cylinder, a piston movable in the cylinder and a pre-combustion chamber communicating with the cylinder near the top thereof and in which low emissions of NO.sub.x are achieved by constructing the pre-combustion chamber to have a volume of between 70% and 85% of the combined pre-chamber and main combustion chamber volume when the piston is at top dead center and by variably controlling the initiation of fuel injection into the pre-combustion chamber.

  10. Internal combustion engine

    SciTech Connect

    Evans, H.G.; Speer, S.

    1991-12-31

    This patent describes improvement in a 2-cycle, diesel cycle internal combustion engine comprising a single in-line engine block, internal wall surfaces defining at least one cylinder within the engine block, the central longitudinal axis of each cylinder being within a common plane extending longitudinally of the engine block, the axially extending internal wall surface of each cylinder being closed at one end and having at least one air intake port therethrough, a piston axially and reciprocally movable within each cylinder over a permitted stroke distance, so as to alternately cover and expose each air intake port for a finite time period; an exhaust port at the closed end of the cylinder above the piston, and a mechanically operated valve for opening and closing such exhaust port located immediately adjacent such port, a substantially rigid connecting rod pivotably connected at one end of each piston, and a crankshaft, rotatably connected to the second end of each connecting rod, such that the crankshaft is caused to rotate connecting means between the piston and the connecting rod. The improvement comprises the diameter of the cylinder is greater than the permitted stroke distance of the piston within the cylinder, and the axis of the crankshaft is parallel to and laterally offset from the common plane by a distance sufficient to form an angle alpha between the connecting rod and the axis of the cylinder, when the piston is at top-dead center, of at least about 12 degrees, such that the time during which each air intake port is exposed is increased when the direction of crankshaft rotation is opposite to the direction of the crankshaft offset from the common plane.

  11. Internal combustion engine

    SciTech Connect

    Breckenfeld, P.W.; Broughton, G.L.; Forquer, D.W.

    1990-02-19

    This patent describes a two-stroke internal combustion engine. It comprises: an engine block including an exterior planar surface portion having therein a pair of spaced bearing surfaces and a crankcase-defining cavity which includes a pair of spaced semi-cylindrical surfaces, a crankshaft including a pair of spaced bearing portions and a central part which is located between the bearing portions and which includes a pair of spaced and enlarged cylindrical surfaces, a pair of bearing blocks respectively including bearing surfaces, means fixing the bearing blocks to the exterior planar surface portion with each of the crankshaft bearing portions retained between a respective one of the bearing surfaces of the engine block and a respective one of the bearing surfaces of the bearing blocks and with each of the crankshaft cylindrical surfaces in coplanar relation to a respective one of the semi-cylindrical surfaces of the engine block, a crankcase cover including a mounting surface having therein a crankcase-defining cavity including a pair of spaced semi-cylindrical surfaces, and means fixedly connecting the mounting surface of the crankcase cover to the exterior planar surface portion of block with each of the semi-cylindrical surfaces of the crankcase cover in generally coplanar relation to a respective one of the semi-cylindrical surfaces of the engine block.

  12. Fourth International Microgravity Combustion Workshop

    NASA Technical Reports Server (NTRS)

    Sacksteder, Kurt R. (Compiler)

    1997-01-01

    This Conference Publication contains 84 papers presented at the Fourth International Microgravity Combustion Workshop held in Cleveland, Ohio, from May 19 to 21, 1997. The purpose of the workshop was twofold: to exchange information about the progress and promise of combustion science in microgravity and to provide a forum to discuss which areas in microgravity combustion science need to be expanded profitably and which should be included in upcoming NASA Research Announcements (NRA).

  13. Internal combustion engine

    DOEpatents

    Baker, Quentin A.; Mecredy, Henry E.; O'Neal, Glenn B.

    1991-01-01

    An improved engine is provided that more efficiently consumes difficult fuels such as coal slurries or powdered coal. The engine includes a precombustion chamber having a portion thereof formed by an ignition plug. The precombustion chamber is arranged so that when the piston is proximate the head, the precombustion chamber is sealed from the main cylinder or the main combustion chamber and when the piston is remote from the head, the precombustion chamber and main combustion chamber are in communication. The time for burning of fuel in the precombustion chamber can be regulated by the distance required to move the piston from the top dead center position to the position wherein the precombustion chamber and main combustion chamber are in communication.

  14. Sixth International Microgravity Combustion Workshop

    NASA Technical Reports Server (NTRS)

    Sacksteder, Kurt (Compiler)

    2001-01-01

    This conference proceedings document is a compilation of papers presented orally or as poster displays to the Sixth International Microgravity Combustion Workshop held in Cleveland, Ohio on May 22-24, 2001. The purpose of the workshop is to present and exchange research results from theoretical and experimental work in combustion science using the reduced-gravity environment as a research tool. The results are contributed by researchers funded by NASA throughout the United States at universities, industry and government research agencies, and by researchers from international partner countries that are also participating in the microgravity combustion science research discipline. These research results are intended for use by public and private sector organizations for academic purposes, for the development of technologies needed for Human Exploration and Development of Space, and to improve Earth-bound combustion and fire-safety related technologies.

  15. Fifth International Microgravity Combustion Workshop

    NASA Technical Reports Server (NTRS)

    Sacksteder, Kurt (Compiler)

    1999-01-01

    This conference proceedings document is a compilation of 120 papers presented orally or as poster displays to the Fifth International Microgravity Combustion Workshop held in Cleveland, Ohio on May 18-20, 1999. The purpose of the workshop is to present and exchange research results from theoretical and experimental work in combustion science using the reduced-gravity environment as a research tool. The results are contributed by researchers funded by NASA throughout the United States at universities, industry and government research agencies, and by researchers from at least eight international partner countries that are also participating in the microgravity combustion science research discipline. These research results are intended for use by public and private sector organizations for academic purposes, for the development of technologies needed for the Human Exploration and Development of Space, and to improve Earth-bound combustion and fire-safety related technologies.

  16. Advanced Combustion and Emission Control Technical Team Roadmap

    SciTech Connect

    2013-06-01

    The Advanced Combustion and Emission Control (ACEC) Technical Team is focused on removing technical barriers to the commercialization of advanced, high-efficiency, emission-compliant internal combustion (IC) engines for light-duty vehicle powertrains (i.e., passenger car, minivan, SUV, and pickup trucks).

  17. FY2014 Advanced Combustion Engine Annual Progress Report

    SciTech Connect

    2015-03-01

    The Advanced Combustion Engine research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to commercializing higher efficiency, very low emissions advanced internal combustion engines for passenger and commercial vehicles.

  18. Plasma igniter for internal-combustion engines

    NASA Technical Reports Server (NTRS)

    Breshears, R. R.; Fitzgerald, D. J.

    1978-01-01

    Hot ionized gas (plasma) ignites air/fuel mixture in internal combustion engines more effectively than spark. Electromagnetic forces propel plasma into combustion zone. Combustion rate is not limited by flame-front speed.

  19. Ignition brake for an internal combustion engine

    SciTech Connect

    Kandler, W.C.

    1993-07-06

    In an internal combustion engine powered implement having an engine with a piston disposed in a cylinder, a crankshaft, a flywheel secured to the crankshaft, and a sparking device for igniting fuel in the cylinder, a safety device is described comprising: an ignition circuit operable to produce a spark in the sparking device to combust the fuel, the ignition circuit having means for generating a normally timed sparking voltage to normally combust the fuel, and means for generating an advanced timed sparking voltage to prematurely combust the fuel; a switch device for decoupling one of the generating means from the ignition circuit and connecting the other of the generating means in the ignition circuit; and a dead man mechanism operable to actuate the switch device, the dead man mechanism being operator actuable into a first position wherein the switch device decouples the means for generating an advanced timed sparking voltage from the ignition circuit whereby the engine may normally run, the dead man mechanism normally biased into a second position when released by the operator wherein the switch device decouples the means for generating a normally timed sparking voltage from the ignition circuit and connects the means for generating an advanced sparking voltage to cause the engine to rapidly slow and stop under influence of the prematurely combusted fuel.

  20. Rotary valve internal combustion engine

    SciTech Connect

    Coman, C.R.

    1987-04-21

    A rotary valve internal combustion engine is described which comprises: a cylinder block having a cylindrical recess therein, a cylindrical bore transverse to the cylindrical recess, an exhaust passageway leading from the cylindrical bore, and an intake passageway leading to the cylindrical bore. A cylindrical piston sealably reciprocable in the cylindrical recess wherein the space defined by the piston and the walls of the cylindrical recess forms a combustion chamber. An arcuate passageway in the block between the cylindrical bore and the combustion chamber; a crankshaft connected to the piston; ignition means in communication with the combustion chamber; carburetion means in connection with the intake passageway to provide a fuel-air mixture; a cylindrical valve rotatably received in the cylindrical bore, the cylindrical valve having a hollow cylindrical body, open ends, at least two axially aligned intake ports near one end of the cylindrical body, at least two axially aligned exhaust ports near the opposite end of the cylindrical body, at least four axially aligned arcuate center openings between the exhaust ports and the intake ports, and at least for internal tubes, each tube connecting one of the center openings with one of the intake or exhaust ports; a sprocket wheel extending from one end of the cylindrical valve; and a tooth belt extending between the sprocket wheel and the crankshaft.

  1. Internal combustion engine with multiple combustion chambers

    SciTech Connect

    Gruenwald, D.J.

    1992-05-26

    This patent describes a two-cycle compression ignition engine. It comprises one cylinder, a reciprocable piston moveable in the cylinder, a piston connecting rod, a crankshaft for operation of the piston connecting rod, a cylinder head enclosing the cylinder, the upper surface of the piston and the enclosing surface of the cylinder head defining a cylinder clearance volume, a first combustion chamber and a second combustion chamber located in the cylinder head. This patent describes improvement in means for isolating the combustion process for one full 360{degrees} rotation of the crankshaft; wherein the combustion chambers alternatively provide for expansion of combustion products in the respective chambers into the cylinder volume near top dead center upon each revolution of the crankshaft.

  2. Turbocharger for internal combustion engines

    SciTech Connect

    Kawamura, H.

    1988-09-13

    This patent describes a turbocharger for an internal combustion engine having engine cylinders, comprising: a turbine drivable by the exhaust energy of the internal combustion engine and having an impeller; an air compressor coupled by a shaft to the impeller for charging air into the engine cylinders in response to rotation of the shaft; a motor-generator having a rotor with a substantially I-shaped cross section mounted on the shaft, and stator coils disposed around the rotor. The rotor having an axial length longer than the diameter of the rotor, a magnetic path in the direction of the diameter of the rotor, dummy fillers which fill a part other than the magnetic path of the rotor to define a circular cross-section with the rotor, the magnetic path being fixedly secured to the dummy fillers, and an axially elongate, ring-shaped, rare-earth metal magnet constructed as a portion of the shaft and having a magnetic reluctance in a first direction normal to an axis of the shaft smaller than a magnetic reluctance in a second direction normal to the first direction and to the axis of the shaft, and an outer periphery of which is wound with carbon fibers; disks made of a metal of high tensile strength for holding the opposite ends of the magnet, respectively; and control means for operating the motor-generator as a motor under first operating conditions of the internal combustion engine, and as a generator under second operating conditions of the internal combustion engine, and means for supplying the stator coils with armature current leading a no-lead induced electromotive force by 90.

  3. Hybrid internal combustion reciprocating engine

    SciTech Connect

    Gonzalez, C.

    1988-08-23

    This patent describes a hybrid type reciprocating internal combustion turbine fuel engine with combined spark ignition, torch-assisted to compression ignition modes comprising: a cylinder; a cylinder head mounted on the cylinder having a substantially planar inner surface; exhaust and inlet valves positioned in the head connected to corresponding exhaust and unthrottled inlet passages; a piston reciprocally mounted within the cylinder having a top surface thereon which surface in the top dead center position of the piston is in close proximity with the inner surface of the cylinder head; a substantially spherical precombustion chamber located in the head; a lineal passage tangentially joining the precombustion chamber with the inner surface of the cylinder head; a pilot fuel injector means and an igniter means both located in the precombustion chamber which inject and ignite a precharge; a main fuel injector means in the cylinder head; a bowl-shaped recess comprising the main combustion chamber located in the top surface of the piston in close proximity with the main injector means in the top dead center position with the lineal passage tangentially aligned with the main combustion chamber, whereby the burning gases exiting the precombustion chamber are directed into the main combustion chamber causing ignition therein.

  4. Hybrid internal combustion reciprocating engine

    SciTech Connect

    Gonzales, C.

    1986-06-17

    A hybrid type reciprocating internal combustion engine is described which consists of: a cylinder, a cylinder head mounted on the cylinder having a substantially planar inner surface; exhaust and inlet valves positioned in the head connected to corresponding exhaust and unthrottled inlet passages; a piston reciprocally mounted within the cylinder having a top surface thereon which surface in the top dead center position of the piston is in close proximity with the inner surface of the head; a precombustion chamber located in the head; a lineal passage tangentially joining the precombustion chamber with the inner surface of the cylinder head; a pilot fuel injector means and an igniter means both located in the precombustion chamber which inject and ignite a precharge; a main fuel injector means in the cylinder head; a bowl shaped recess comprising the main combustion chamber non-concentrically located in the top surface of the piston in close proximity with the main injector means in the top dead center position; a first ramp means located in the top surface of the piston tangentially joining the main combustion chamber recess and substantially aligned with the lineal passage, when the piston is approximately at the top dead center position, whereby the burning gases exiting the precombustion chamber are directed into the main combustion recess; and a second ramp means in the top surface of the piston laterally joining the first ramp means.

  5. Modified aspirated internal combustion engine

    SciTech Connect

    Smith, J.E.

    1993-06-01

    An internal combustion engine is described, comprising: an engine block; at least one cylinder; at least one piston, each piston being reciprocally movable in the cylinder; a head connected with the engine block so as to form a combustion chamber above each piston; aspiration means for providing gas entry into and gas exit from the combustion chamber of each cylinder; valves for controlling gas entry and exit; ignition for initiating and timing combustion in each combustion chamber; a crankshaft rotatably mounted to the engine block, the crankshaft having at least one crank arm; connecting rod between each piston and the crank arm for translating reciprocation of each piston into rotation of each crankshaft; mounting means for rotatably mounting crankshaft to the engine block, the mounting means at each mounting location comprising: a crankshaft journal located on the crankshaft, the crankshaft journal having a crankshaft cross-section and an off-set portion, the off-set portion having a maximum which is equal to a predetermined off-set, the maximum off-set being located on a predetermined side of the crankshaft, the off-set portion smoothly decreasing from the maximum to a minimum from each side of the maximum, the minimum being equal to a zero off-set, the minimum off-set being located on the crankshaft opposite maximum off-set; and an engine block bearing connected with the engine block, wherein the crankshaft rotates in relation to the engine block about an eccentric centerline passing axially through the crankshaft journal cross-section, the eccentric centerline being displaced from a true centerline passing axially through said crankshaft cross-section by a distance equal to one-half the off-set, wherein the crank arm has a predetermined radial length centered on the eccentric centerline, and wherein the modified crankshaft has at least one output shaft portion axially aligned with the eccentric centerline.

  6. Hydrogen Internal Combustion Stirling Engine

    NASA Astrophysics Data System (ADS)

    Takahashi, Sanyo; Morita, Hiroyuki; Kurata, Osamu; Yamashita, Iwao

    The hydrogen combustion Stirling engine utilizes internal combustion of a stoichiometric H2 and O2 mixture injected into the working gas as thermal input, and the cyclic operation is completed with the removal of water from the engine after condensation at the cooler. In the prototype engine, a catalytic combustor is substituted for the conventional heater, and the H2-O2 mixture is injected at a constant flow rate from the boundary between the regenerator and the cooler. The engine internal heating characteristics were compared to those on external heating to clarify the internal heating effect on the engine performance. The internal heating performance showed almost the same characteristics as those of external heating, except for the increase of expansion work due to the direct thermal input. The increase of expansion work improved the engine performance, particularly in the region of high engine speed. Furthermore, it was found that the steady injection method was able to suppress the mixture strength to a relatively low level.

  7. Structure of internal combustion engine

    SciTech Connect

    Nakamura, N.; Endo, H.; Oshio, S.; Ebisudani, T.; Ito, M.; Mizukami, T.; Kishimoto, M.

    1988-09-20

    This patent describes a structure of internal combustion engine, comprising a cylinder member formed with a cylinder which demarcates a combustion chamber in cooperation with a piston connected with a crankshaft, a crankcase provided in succession with the lower end of the cylinder member to accommodate the crankshaft, a valve actuating mechanism actuating valves provided in the combustion chamber in response to rotation of the crankshaft, at least a part of the valve actuating mechanism being accommodated in a rocker case provided on the upper end of the cylinder member, an oil return passage constituting means opening at one end into the rocker case, the other end being open into the crankcase at one side which is partitioned by a plane containing the cylinder axis of the cylinder member and the axis of the crankshaft and is occupied by a crank pin of the crankshaft when the piston rises, thereby constituting a passage for leading oil in the rocker case into the crankcase, and a restraining means provided in relation to the oil return passage constituting means so that an air flow around the axis of the crankshaft within the crankcase owing to the rotation of the crankshaft is restrained from entering into the passage through the opening of the other end.

  8. Horizontally opposed internal combustion engine

    SciTech Connect

    Honkanen, E.G.

    1992-07-28

    This patent describes a internal combustion engine. It comprises a base plate coincident with a horizontal plane and generally symmetrical with respect to a central longitudinal axis coincident with a vertical plane extending between fore and aft ends of the base plate, a main power crankshaft suspended below the base plate and extending parallel with the central longitudinal axis, a plurality of open-ended piston cylinders disposed below the base plate arranged in axially aligned pairs, a pair of auxiliary crankshafts detachably journaled below the base plate on opposite sides of the vertical plane; a connecting rod assembly pivotally interconnecting the pair of auxiliary crankshafts with the main power crankshaft; a piston assembly in each of the cylinders operatively connected with the associated auxiliary crankshaft and including a piston having a head, a wrist-pin and a connecting rod connecting the wrist-pin of each piston with the associated auxiliary crankshaft; a fuel induction assembly for admitting a combustible fuel mixture into the cylinders between the opposed heads of the pistons in a controlled sequence correlated to the receding movement of the pistons in the cylinders in a fuel intake stroke; means for igniting the fuel mixture compressed between the juxtaposed heads of the pistons; means for exhausting from the cylinders the products of combustion of the fuel mixture in correlation to the movement of the pistons in an exhaust stroke; and means including an oil pan enclosing the auxiliary crankshafts.

  9. Modeling the internal combustion engine

    NASA Technical Reports Server (NTRS)

    Zeleznik, F. J.; Mcbride, B. J.

    1985-01-01

    A flexible and computationally economical model of the internal combustion engine was developed for use on large digital computer systems. It is based on a system of ordinary differential equations for cylinder-averaged properties. The computer program is capable of multicycle calculations, with some parameters varying from cycle to cycle, and has restart capabilities. It can accommodate a broad spectrum of reactants, permits changes in physical properties, and offers a wide selection of alternative modeling functions without any reprogramming. It readily adapts to the amount of information available in a particular case because the model is in fact a hierarchy of five models. The models range from a simple model requiring only thermodynamic properties to a complex model demanding full combustion kinetics, transport properties, and poppet valve flow characteristics. Among its many features the model includes heat transfer, valve timing, supercharging, motoring, finite burning rates, cycle-to-cycle variations in air-fuel ratio, humid air, residual and recirculated exhaust gas, and full combustion kinetics.

  10. Swing beam internal combustion engines

    SciTech Connect

    Freudenstein, F.

    1989-04-18

    This patent describes an internal combustion engine having a cylinder, a piston displaceable in the cylinder for executing at least two strokes over an engine cycle, namely, a compression stroke and a power stroke, a crankshaft, and a swing beam. It includes a coupling between one end of the swing beam and the piston; a second coupling between the crankshaft and swing beam; means engaging the swing beam for causing the swing beam to rotate about a pivot point; and means responsive to the piston stroke for varying the pivot point, relative to the cylinder, between each compression stroke and each power stroke.

  11. FY2012 Annual Progress Report for Advanced Combustion Engine Research and Development

    SciTech Connect

    none,

    2013-02-01

    Annual report on the work of the the Advanced Combustion Engine R&D subprogram. The Advanced Combustion Engine R&D subprogram supports the Vehicle Technologies Office mission by removing the critical technical barriers to commercialization of advanced internal combustion engines (ICEs) for passenger and commercial vehicles that meet future federal emissions regulations.

  12. Some Factors Affecting Combustion in an Internal-Combustion Engine

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Cohn, Mildred

    1936-01-01

    An investigation of the combustion of gasoline, safety, and diesel fuels was made in the NACA combustion apparatus under conditions of temperature that permitted ignition by spark with direct fuel injection, in spite of the compression ratio of 12.7 employed. The influence of such variables as injection advance angle, jacket temperature, engine speed, and spark position was studied. The most pronounced effect was that an increase in the injection advance angle (beyond a certain minimum value) caused a decrease in the extent and rate of combustion. In almost all cases combustion improved with increased temperature. The results show that at low air temperatures the rates of combustion vary with the volatility of the fuel, but that at high temperatures this relationship does not exist and the rates depend to a greater extent on the chemical nature of the fuel.

  13. Axial cylinder internal combustion engine

    SciTech Connect

    Gonzalez, C.

    1992-03-10

    This patent describes improvement in a barrel type internal combustion engine including an engine block having axial-positioned cylinders with reciprocating pistons arranged in a circular pattern: a drive shaft concentrically positioned within the cylinder block having an offset portion extending outside the cylinder block; a wobble spider rotatably journaled to the offset portion; connecting rods for each cylinder connecting each piston to the wobble spider. The improvement comprising: a first sleeve bearing means supporting the drive shaft in the engine block in a cantilevered manner for radial loads; a second sleeve bearing means rotatably supporting the wobble spider on the offset portion of the drive shaft for radial loads; a first roller bearing means positioned between the offset portion of the drive shaft and the wobble spider carrying thrust loadings only; a second roller bearing means carrying thrust loads only reacting to the first roller bearing located on the opposite end of the driveshaft between the shaft and the engine block.

  14. Injector tip for an internal combustion engine

    DOEpatents

    Shyu, Tsu Pin; Ye, Wen

    2003-05-20

    This invention relates to a the tip structure of a fuel injector as used in a internal combustion engine. Internal combustion engines using Homogeneous Charge Compression Ignition (HCCI) technology require a tip structure that directs fuel spray in a downward direction. This requirement necessitates a tip design that is capable of withstanding mechanical stresses associated with the design.

  15. Adaptive spark timing controller for an internal combustion engine

    SciTech Connect

    Javaherian, H.

    1989-09-19

    This patent describes a system for determining the ignition timing value in an ignition control system for an internal combustion engine having cylinders and an output crankshaft rotated during operation of the engine. The ignition control system initiating combustion in each cylinder of the engine at the determined ignition timing value. The system comprising, combination: means for sensing the end of combustion in a cylinder of the engine, the means for sensing including means for determining when an indicator function is at a peak as the crankshaft rotates; means for determining the magnitude of the crankshaft angle after top dead center of the cylinder at which the end of combustion in the cylinder was sensed; and means for establishing the ignition timing value at a start of combustion angle {theta}inew in advance of top dead center of the cylinders having a predetermined relationship to the determined magnitude of the end of combustion angle.

  16. COSTS FOR ADVANCED COAL COMBUSTION TECHNOLOGIES

    EPA Science Inventory

    The report gives results of an evaluation of the development status of advanced coal combustion technologies and discusses the preparation of performance and economic models for their application to electric utility plants. he technologies addressed were atmospheric fluidized bed...

  17. Carburetor for internal combustion engines

    DOEpatents

    Csonka, John J.; Csonka, Albert B.

    1978-01-01

    A carburetor for internal combustion engines having a housing including a generally discoidal wall and a hub extending axially from the central portion thereof, an air valve having a relatively flat radially extending surface directed toward and concentric with said discoidal wall and with a central conoidal portion having its apex directed toward the interior of said hub portion. The housing wall and the radially extending surface of the valve define an air passage converging radially inwardly to form an annular valving construction and thence diverge into the interior of said hub. The hub includes an annular fuel passage terminating at its upper end in a circumferential series of micro-passages for directing liquid fuel uniformly distributed into said air passage substantially at said valving constriction at right angles to the direction of air flow. The air valve is adjustable axially toward and away from the discoidal wall of the carburetor housing to regulate the volume of air drawn into the engine with which said carburetor is associated. Fuel is delivered under pressure to the fuel metering valve and from there through said micro-passages and controlled cams simultaneously regulate the axial adjustment of said air valve and the rate of delivery of fuel through said micro-passages according to a predetermined ratio pattern. A third jointly controlled cam simultaneously regulates the ignition timing in accordance with various air and fuel supply settings. The air valve, fuel supply and ignition timing settings are all independent of the existing degree of engine vacuum.

  18. Internal combustion engine and method for control

    SciTech Connect

    Brennan, Daniel G

    2013-05-21

    In one exemplary embodiment of the invention an internal combustion engine includes a piston disposed in a cylinder, a valve configured to control flow of air into the cylinder and an actuator coupled to the valve to control a position of the valve. The internal combustion engine also includes a controller coupled to the actuator, wherein the controller is configured to close the valve when an uncontrolled condition for the internal engine is determined.

  19. The Second International Microgravity Combustion Workshop

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This CP contains 40 papers presented at the Second International Microgravity Combustion Workshop held in Cleveland, OH, from September 15 to 17, 1992. The purpose of the workshop was twofold: to exchange information about the progress and promise of combustion science in microgravity and to provide a forum to discuss which areas in microgravity combustion science need to be expanded profitably and which should be included in upcoming NASA Research Announcements (NRA).

  20. The 3rd International Microgravity Combustion Workshop

    NASA Technical Reports Server (NTRS)

    Ross, Howard D. (Compiler)

    1995-01-01

    This Conference Publication contains 71 papers presented at the Third International Microgravity Combustion Workshop held in Cleveland, Ohio, from April 11 to 13, 1995. The purpose of the workshop was twofold: to exchange information about the progress and promise of combustion science in microgravity and to provide a forum to discuss which areas in microgravity combustion science need to be expanded profitably and which should be included in upcoming NASA Research Announcements (NRA).

  1. Renewable Energy Laboratory Development for Biofuels Advanced Combustion Studies

    SciTech Connect

    Soloiu, Valentin A.

    2012-03-31

    The research advanced fundamental science and applied engineering for increasing the efficiency of internal combustion engines and meeting emissions regulations with biofuels. The project developed a laboratory with new experiments and allowed investigation of new fuels and their combustion and emissions. This project supports a sustainable domestic biofuels and automotive industry creating economic opportunities across the nation, reducing the dependence on foreign oil, and enhancing U.S. energy security. The one year period of research developed fundamental knowledge and applied technology in advanced combustion, emissions and biofuels formulation to increase vehicle's efficiency. Biofuels combustion was investigated in a Compression Ignition Direct Injection (DI) to develop idling strategies with biofuels and an Indirect Diesel Injection (IDI) intended for auxiliary power unit.

  2. 8th International symposium on transport phenomena in combustion

    SciTech Connect

    1995-12-31

    The 8th International Symposium on Transport Phenomena in Combustion will be held in San Francisco, California, U.S.A., July 16-20, 1995, under the auspices of the Pacific Center of Thermal-Fluids Engineering. The purpose of the Symposium is to provide a forum for researchers and practitioners from around the world to present new developments and discuss the state of the art and future directions and priorities in the areas of transport phenomena in combustion. The Symposium is the eighth in a series; previous venues were Honolulu 1985, Tokyo 1987, Taipei 1988, Sydney 1991, Beijing 1992, Seoul 1993 and Acapulco 1994, with emphasis on various aspects of transport phenomena. The current Symposium theme is combustion. The Symposium has assembled a balanced program with topics ranging from fundamental research to contemporary applications of combustion theory. Invited keynote lecturers will provide extensive reviews of topics of great interest in combustion. Colloquia will stress recent advances and innovations in fire spread and suppression, and in low NO{sub x} burners, furnaces, boilers, internal combustion engines, and other practical combustion systems. Finally, numerous papers will contribute to the fundamental understanding of complex processes in combustion. This document contains abstracts of papers to be presented at the Symposium.

  3. Advanced technology application for combustion chamber concepts

    NASA Technical Reports Server (NTRS)

    Tygielski, Kathy S.

    1992-01-01

    NASA-Marshall is engaged in the development of an Advanced Main Combustion Chamber under the aegis of the Earth-to-Orbit Propulsion Technology Program. AMCC is to be a robust and highly reliable combustion-chamber prototype costing one-third as much as current designs of comparable performance; it will be associated with a reduction of fabrication time by one-half. Attention is presently given to the three component-manufacturing processes used: single-piece investment casting for the structural jacket and manifolds; vacuum plasma spraying, for the combustion liner, and an alternative, platelet-compounded liner.

  4. Annual Report: Advanced Combustion (30 September 2012)

    SciTech Connect

    Hawk, Jeffrey; Richards, George

    2012-09-30

    The Advanced Combustion Project addresses fundamental issues of fire-side and steam-side corrosion and materials performance in oxy-fuel combustion environments and provides an integrated approach into understanding the environmental and mechanical behavior such that environmental degradation can be ameliorated and long-term microstructural stability, and thus, mechanical performance can lead to longer lasting components and extended power plant life. The technical tasks of this effort are Oxy-combustion Environment Characterization, Alloy Modeling and Life Prediction, and Alloy Manufacturing and Process Development.

  5. Combustion modeling in advanced gas turbine systems

    SciTech Connect

    Smoot, L.D.; Hedman, P.O.; Fletcher, T.H.; Brewster, B.S.; Kramer, S.K.

    1995-12-31

    Goal of DOE`s Advanced Turbine Systems program is to develop and commercialize ultra-high efficiency, environmentally superior, cost competitive gas turbine systems for base-load applications in utility, independent power producer, and industrial markets. Primary objective of the program here is to develop a comprehensive combustion model for advanced gas turbine combustion systems using natural gas (coal gasification or biomass fuels). The efforts included code evaluation (PCGC-3), coherent anti-Stokes Raman spectroscopy, laser Doppler anemometry, and laser-induced fluorescence.

  6. Two phase exhaust for internal combustion engine

    SciTech Connect

    Vuk, Carl T.

    2011-11-29

    An internal combustion engine having a reciprocating multi cylinder internal combustion engine with multiple valves. At least a pair of exhaust valves are provided and each supply a separate power extraction device. The first exhaust valves connect to a power turbine used to provide additional power to the engine either mechanically or electrically. The flow path from these exhaust valves is smaller in area and volume than a second flow path which is used to deliver products of combustion to a turbocharger turbine. The timing of the exhaust valve events is controlled to produce a higher grade of energy to the power turbine and enhance the ability to extract power from the combustion process.

  7. Jet plume injection and combustion system for internal combustion engines

    DOEpatents

    Oppenheim, Antoni K.; Maxson, James A.; Hensinger, David M.

    1993-01-01

    An improved combustion system for an internal combustion engine is disclosed wherein a rich air/fuel mixture is furnished at high pressure to one or more jet plume generator cavities adjacent to a cylinder and then injected through one or more orifices from the cavities into the head space of the cylinder to form one or more turbulent jet plumes in the head space of the cylinder prior to ignition of the rich air/fuel mixture in the cavity of the jet plume generator. The portion of the rich air/fuel mixture remaining in the cavity of the generator is then ignited to provide a secondary jet, comprising incomplete combustion products which are injected into the cylinder to initiate combustion in the already formed turbulent jet plume. Formation of the turbulent jet plume in the head space of the cylinder prior to ignition has been found to yield a higher maximum combustion pressure in the cylinder, as well as shortening the time period to attain such a maximum pressure.

  8. Jet plume injection and combustion system for internal combustion engines

    DOEpatents

    Oppenheim, A.K.; Maxson, J.A.; Hensinger, D.M.

    1993-12-21

    An improved combustion system for an internal combustion engine is disclosed wherein a rich air/fuel mixture is furnished at high pressure to one or more jet plume generator cavities adjacent to a cylinder and then injected through one or more orifices from the cavities into the head space of the cylinder to form one or more turbulent jet plumes in the head space of the cylinder prior to ignition of the rich air/fuel mixture in the cavity of the jet plume generator. The portion of the rich air/fuel mixture remaining in the cavity of the generator is then ignited to provide a secondary jet, comprising incomplete combustion products which are injected into the cylinder to initiate combustion in the already formed turbulent jet plume. Formation of the turbulent jet plume in the head space of the cylinder prior to ignition has been found to yield a higher maximum combustion pressure in the cylinder, as well as shortening the time period to attain such a maximum pressure. 24 figures.

  9. Jet plume injection and combustion system for internal combustion engines

    SciTech Connect

    Oppenheim, A.K.; Maxson, J.A.; Hensinger, D.M.

    1992-12-31

    This invention is comprised of an improved combustion system for an internal combustion engine is disclosed wherein a rich air/fuel mixture is furnished at high pressure to one or more jet plume generator cavities adjacent to a cylinder and then injected through one or more orifices from the cavities into the head space of the cylinder to form one or more turbulent jet plumes in the head space of the cylinder prior to ignition of the rich air/fuel mixture in the cavity of the jet plume generator. The portion of the rich air/fuel mixture remaining in the cavity of the generator is then ignited to provide a secondary jet, comprising incomplete combustion products which are injected into the cylinder to initiate combustion in the already formed turbulent jet plume. Formation of the turbulent jet plume in the head space of the cylinder prior to ignition has been found to yield a higher maximum combustion pressure in the cylinder, as well as shortening the time period to attain such a maximum pressure.

  10. Nitrogen enriched combustion of a natural gas internal combustion engine to reduce NO.sub.x emissions

    DOEpatents

    Biruduganti, Munidhar S.; Gupta, Sreenath Borra; Sekar, R. Raj; McConnell, Steven S.

    2008-11-25

    A method and system for reducing nitrous oxide emissions from an internal combustion engine. An input gas stream of natural gas includes a nitrogen gas enrichment which reduces nitrous oxide emissions. In addition ignition timing for gas combustion is advanced to improve FCE while maintaining lower nitrous oxide emissions.

  11. Internal and surface phenomena in metal combustion

    NASA Technical Reports Server (NTRS)

    Dreizin, Edward L.; Molodetsky, Irina E.; Law, Chung K.

    1995-01-01

    liquid fuel droplet combustion studies. In addition, the internal compositions of rapidly quenched metal particles will be analyzed using SEM technique. Such compositions are similar to those existing during the combustion and provide new insight on metal combustion processes. The results of this experimental work will be used to model the fundamental mechanisms of metal combustion. Preliminary experimental results on Al and Zr particle combustion at normal gravity are discussed here.

  12. FY2011 Annual Progress Report for Advanced Combustion Engine Research and Development

    SciTech Connect

    none,

    2011-12-01

    Annual Progress Report for the Advanced Combustion Engine Research and Development (R&D) subprogram supporting the mission of the Vehicle Technologies Program by removing the critical technical barriers to commercialization of advanced internal combustion engines (ICEs) for passenger and commercial vehicles that meet future federal emissions regulations.

  13. 49 CFR 173.220 - Internal combustion engines, self-propelled vehicles, mechanical equipment containing internal...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... vehicles, mechanical equipment containing internal combustion engines, and battery powered vehicles or... equipment containing internal combustion engines, and battery powered vehicles or equipment. (a... internal combustion engine, or a battery powered vehicle or equipment is subject to the requirements...

  14. ZMOTTO- MODELING THE INTERNAL COMBUSTION ENGINE

    NASA Technical Reports Server (NTRS)

    Zeleznik, F. J.

    1994-01-01

    The ZMOTTO program was developed to model mathematically a spark-ignited internal combustion engine. ZMOTTO is a large, general purpose program whose calculations can be established at five levels of sophistication. These five models range from an ideal cycle requiring only thermodynamic properties, to a very complex representation demanding full combustion kinetics, transport properties, and poppet valve flow characteristics. ZMOTTO is a flexible and computationally economical program based on a system of ordinary differential equations for cylinder-averaged properties. The calculations assume that heat transfer is expressed in terms of a heat transfer coefficient and that the cylinder average of kinetic plus potential energies remains constant. During combustion, the pressures of burned and unburned gases are assumed equal and their heat transfer areas are assumed proportional to their respective mass fractions. Even the simplest ZMOTTO model provides for residual gas effects, spark advance, exhaust gas recirculation, supercharging, and throttling. In the more complex models, 1) finite rate chemistry replaces equilibrium chemistry in descriptions of both the flame and the burned gases, 2) poppet valve formulas represent fluid flow instead of a zero pressure drop flow, and 3) flame propagation is modeled by mass burning equations instead of as an instantaneous process. Input to ZMOTTO is determined by the model chosen. Thermodynamic data is required for all models. Transport properties and chemical kinetics data are required only as the model complexity grows. Other input includes engine geometry, working fluid composition, operating characteristics, and intake/exhaust data. ZMOTTO accommodates a broad spectrum of reactants. The program will calculate many Otto cycle performance parameters for a number of consecutive cycles (a cycle being an interval of 720 crankangle degrees). A typical case will have a number of initial ideal cycles and progress through levels

  15. Power booster internal combustion engine flywheel

    SciTech Connect

    Dingess, B.E.

    1989-08-08

    This patent describes a flywheel apparatus for an internal combustion engine. The engine comprises a crankshaft, a cam shaft, a means of advancing the crankshaft in rotation on the power strokes to that of the flywheel, means of retarding the crankshaft on the compression strokes the flywheel. The apparatus further comprising, a first flywheel, linkage means connecting a flywheel shaft to the crankshaft, a first flywheel housing, bearing means of linking the first flywheel to the flywheel shaft, a plurality of cylinders housed to the first flywheel housing, a plurality of nitrogen charged bladders housed within the cylinders, a plurality of cam action rods housed within the cylinders, a cam housed to the flywheel shaft, linkage means linking the cam action rods to the bladders, second linkage means linking the cam action rods by way of a cam roller to the cam, a freewheeling flywheel housing, bearing means linking the freewheeling flywheel to the flywheel shaft, third linkage means linking a freewheeling clutch between the freewheeling flywheel housing and the flywheel shaft, a shifter apparatus comprising means of locking the first flywheel housing to the freewheeling flywheel housing in a first position, means of connecting the flywheel shaft and the freewheeling flywheel housing by way of the freewheeling clutch in a second position, a front flywheel comprising means of driving the cam shaft at a balanced rotational speed from the crankshaft when the crankshaft is rotating at varying rotational speeds within each revolution of the crankshaft.

  16. Starting apparatus for internal combustion engines

    DOEpatents

    Dyches, G.M.; Dudar, A.M.

    1995-01-01

    This report is a patent description for a system to start an internal combustion engine. Remote starting and starting by hearing impaired persons are addressed. The system monitors the amount of current being drawn by the starter motor to determine when the engine is started. When the engine is started the system automatically deactivates the starter motor. Five figures are included.

  17. Simulation Of The Internal-Combustion Engine

    NASA Technical Reports Server (NTRS)

    Zeleznik, Frank J.; Mcbride, Bonnie J.

    1987-01-01

    Program adapts to available information about particular engine. Mathematical model of internal-combustion engine constructed and implemented as computer program suitable for use on large digital computer systems. ZMOTTO program calculates Otto-cycle performance parameters as well as working-fluid compositions and properties throughout cycle for number of consecutive cycles and for variety of input parameters. Written in standard FORTRAN IV.

  18. Comparing maximum pressures in internal combustion engines

    NASA Technical Reports Server (NTRS)

    Sparrow, Stanwood W; Lee, Stephen M

    1922-01-01

    Thin metal diaphragms form a satisfactory means for comparing maximum pressures in internal combustion engines. The diaphragm is clamped between two metal washers in a spark plug shell and its thickness is chosen such that, when subjected to explosion pressure, the exposed portion will be sheared from the rim in a short time.

  19. Modeling internal ballistics of gas combustion guns.

    PubMed

    Schorge, Volker; Grossjohann, Rico; Schönekess, Holger C; Herbst, Jörg; Bockholdt, Britta; Ekkernkamp, Axel; Frank, Matthias

    2016-05-01

    Potato guns are popular homemade guns which work on the principle of gas combustion. They are usually constructed for recreational rather than criminal purposes. Yet some serious injuries and fatalities due to these guns are reported. As information on the internal ballistics of homemade gas combustion-powered guns is scarce, it is the aim of this work to provide an experimental model of the internal ballistics of these devices and to investigate their basic physical parameters. A gas combustion gun was constructed with a steel tube as the main component. Gas/air mixtures of acetylene, hydrogen, and ethylene were used as propellants for discharging a 46-mm caliber test projectile. Gas pressure in the combustion chamber was captured with a piezoelectric pressure sensor. Projectile velocity was measured with a ballistic speed measurement system. The maximum gas pressure, the maximum rate of pressure rise, the time parameters of the pressure curve, and the velocity and path of the projectile through the barrel as a function of time were determined according to the pressure-time curve. The maximum gas pressure was measured to be between 1.4 bar (ethylene) and 4.5 bar (acetylene). The highest maximum rate of pressure rise was determined for hydrogen at (dp/dt)max = 607 bar/s. The muzzle energy was calculated to be between 67 J (ethylene) and 204 J (acetylene). To conclude, this work provides basic information on the internal ballistics of homemade gas combustion guns. The risk of injury to the operator or bystanders is high, because accidental explosions of the gun due to the high-pressure rise during combustion of the gas/air mixture may occur. PMID:26239103

  20. Plasma igniter for internal combustion engine

    NASA Technical Reports Server (NTRS)

    Fitzgerald, D. J.; Breshears, R. R. (Inventor)

    1978-01-01

    An igniter for the air/fuel mixture used in the cylinders of an internal combustion engine is described. A conventional spark is used to initiate the discharge of a large amount of energy stored in a capacitor. A high current discharge of the energy in the capacitor switched on by a spark discharge produces a plasma and a magnetic field. The resultant combined electromagnetic current and magnetic field force accelerates the plasma deep into the combustion chamber thereby providing an improved ignition of the air/fuel mixture in the chamber.

  1. Combustion modeling in advanced gas turbine systems

    SciTech Connect

    Smoot, L.D.; Hedman, P.O.; Fletcher, T.H.

    1995-10-01

    The goal of the U.S. Department of Energy`s Advanced Turbine Systems (ATS) program is to help develop and commercialize ultra-high efficiency, environmentally superior, and cost competitive gas turbine systems for base-load applications in the utility, independent power producer, and industrial markets. Combustion modeling, including emission characteristics, has been identified as a needed, high-priority technology by key professionals in the gas turbine industry.

  2. Internal combustion engine without connecting rods

    SciTech Connect

    Adams, L.M.

    1989-05-09

    This patent describes a reciprocating, multicylinder, internal combustion engine having an axially rotating power output crankshaft, the combination of: (a) combustion chambers in side-by-side parallel arrangement, each chamber containing first means to admit a combustible fuel/air mixture and to exhaust the fumes of combustion; (b) a separate cylinder having an open end and a closed end forming part of each combustion chamber and a piston working independently in each cylinder and arranged to travel toward the closed end to compress the mixture and be driven in a power stroke toward the open end as a result of the burning of the mixture; (c) a carrier member and means to attach the member to a pair of adjacent pistons for interconnecting them to reciprocate in unison in their respective cylinders; and, (d) a guide member, pivotally attached to an offset throw formed in the output crankshaft connected to the carrier member in sliding engagement therewith to convert the reciprocating motion of the pistons into rotary motion of the crankshaft through motion in a plane lying transverse to the axis of the crankshaft.

  3. Internal combustion engine without connecting rods

    SciTech Connect

    Adams, L.M.

    1989-03-21

    This patent describes a reciprocating, multicylinder, internal combustion engine having an axially rotating power output crankshaft, the combination of: (a) a plurality of combustion chambers in side-by-side parallel arrangement, each chamber containing first means to admit a combustible fuel/air mixture and to exhaust the fumes of combustion; (b) a separate cylinder having an open end and a closed end forming apart of each combustion chamber and a piston working independently in each cylinder and arranged to travel toward the closed end to compress the mixture and be driven in a power stroke toward the open end as a result of the burning of the mixture; (c) a carrier member and means to attach the member in fixed relationship to a pair of adjacent pistons for interconnecting them to reciprocate in unison their respective cylinders; (d) means for absorbing side thrust developed during the rotation of the crankshaft; and, (e) a guide member, pivotally attached to an offset throw formed in the output crankshaft, connected to the carrier member in sliding engagement therewith to convert the reciprocating motion of the pistons into rotary motion of the crankshaft through motion in a plane lying transverse to the axis of the crankshaft.

  4. 30 CFR 56.4103 - Fueling internal combustion engines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Fueling internal combustion engines. 56.4103... Prevention and Control Prohibitions/precautions/housekeeping § 56.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before refueling if the fuel tanks are integral parts...

  5. 30 CFR 77.1105 - Internal combustion engines; fueling.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Internal combustion engines; fueling. 77.1105 Section 77.1105 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE... COAL MINES Fire Protection § 77.1105 Internal combustion engines; fueling. Internal combustion...

  6. 30 CFR 57.4103 - Fueling internal combustion engines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Fueling internal combustion engines. 57.4103... Prevention and Control Prohibitions/precautions/housekeeping § 57.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before refueling if the fuel tanks are integral parts...

  7. 30 CFR 77.1105 - Internal combustion engines; fueling.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Internal combustion engines; fueling. 77.1105 Section 77.1105 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE... COAL MINES Fire Protection § 77.1105 Internal combustion engines; fueling. Internal combustion...

  8. 30 CFR 57.4103 - Fueling internal combustion engines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Fueling internal combustion engines. 57.4103... Prevention and Control Prohibitions/precautions/housekeeping § 57.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before refueling if the fuel tanks are integral parts...

  9. 30 CFR 56.4103 - Fueling internal combustion engines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Fueling internal combustion engines. 56.4103... Prevention and Control Prohibitions/precautions/housekeeping § 56.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before refueling if the fuel tanks are integral parts...

  10. 30 CFR 57.4103 - Fueling internal combustion engines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Fueling internal combustion engines. 57.4103... Prevention and Control Prohibitions/precautions/housekeeping § 57.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before refueling if the fuel tanks are integral parts...

  11. 30 CFR 77.1105 - Internal combustion engines; fueling.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Internal combustion engines; fueling. 77.1105 Section 77.1105 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE... COAL MINES Fire Protection § 77.1105 Internal combustion engines; fueling. Internal combustion...

  12. 30 CFR 77.1105 - Internal combustion engines; fueling.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Internal combustion engines; fueling. 77.1105 Section 77.1105 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE... COAL MINES Fire Protection § 77.1105 Internal combustion engines; fueling. Internal combustion...

  13. 30 CFR 56.4103 - Fueling internal combustion engines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Fueling internal combustion engines. 56.4103... Prevention and Control Prohibitions/precautions/housekeeping § 56.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before refueling if the fuel tanks are integral parts...

  14. 30 CFR 57.4103 - Fueling internal combustion engines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Fueling internal combustion engines. 57.4103... Prevention and Control Prohibitions/precautions/housekeeping § 57.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before refueling if the fuel tanks are integral parts...

  15. 30 CFR 77.1105 - Internal combustion engines; fueling.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Internal combustion engines; fueling. 77.1105 Section 77.1105 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE... COAL MINES Fire Protection § 77.1105 Internal combustion engines; fueling. Internal combustion...

  16. 30 CFR 56.4103 - Fueling internal combustion engines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Fueling internal combustion engines. 56.4103... Prevention and Control Prohibitions/precautions/housekeeping § 56.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before refueling if the fuel tanks are integral parts...

  17. 30 CFR 57.4103 - Fueling internal combustion engines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Prevention and Control Prohibitions/precautions/housekeeping § 57.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before refueling if the fuel tanks are integral parts of... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fueling internal combustion engines....

  18. 30 CFR 56.4103 - Fueling internal combustion engines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Prevention and Control Prohibitions/precautions/housekeeping § 56.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before refueling if the fuel tanks are integral parts of... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fueling internal combustion engines....

  19. Carburetor for internal combustion engine

    SciTech Connect

    Nakamura, S.

    1986-08-26

    A carbureter is described for an internal combusiion engine and made of a soft material, comprising: a body having a first end face to be coupled to a manifold pipe via an elastic sealing member, and a second end face to be coupled to an air cleaner via an elastic sealing member; a suction bore formed through the body between the first end face and the second end face; a throttle valve shaft rotatably supported within the body across the suction bore; a choke valve shaft rotatably supported within the body across the suction bore; a reinforcing member having a high rigidity and having a length greater than the distance between the first end face and the second end face but smaller than the length obtained by adding the distance to thickness of the sealing members of the carbureter body; and arms provided in a zig-zag fashion at intervals relative to each other and located on both sides of axial line of the reinforcing member to nip the reinforcing member elastically in its posture of being placed along the suction bore.

  20. Magneto-generator for internal combustion engine

    SciTech Connect

    Asai, M.; Hikimoto, Y.

    1986-12-16

    This patent describes a magneto-generator for an internal combustion engine having a crankshaft, comprising: an iron cup fixedly mounted on the crankshaft of the internal combustion engine for rotation therewith and having the open end thereof faced outward in a direction away from the crankshaft; a permanent magnet mounted on the outer periphery of the iron cup for rotation therewith; a stator core located opposingly to the permanent magnet; a power-generating coil mounted on the stator core; a signal generator located substantially centrally in the iron cup and having at least one part thereof located in a position opposing the fore end of the crankshaft; and a timing portion provided on the inner periphery of the iron cup in a position opposing the signal generator.

  1. Internal Heterogeneous Processes in Aluminum Combustion

    NASA Technical Reports Server (NTRS)

    Dreizin, E. L.

    1999-01-01

    This paper discusses the aluminum particle combustion mechanism which has been expanded by inclusion of gas dissolution processes and ensuing internal phase transformations. This mechanism is proposed based on recent normal and microgravity experiments with particles formed and ignited in a pulsed micro-arc. Recent experimental findings on the three stages observed in Al particle combustion in air and shows the burning particle radiation, trajectory (streak), smoke cloud shapes, and quenched particle interiors are summarized. During stage I, the radiation trace is smooth and the particle flame is spherically symmetric. The temperature measured using a three-color pyrometer is close to 3000 K. Because it exceeds the aluminum boiling point (2730 K), this temperature most likely characterizes the vapor phase flame zone rather than the aluminum surface. The dissolved oxygen content within particles quenched during stage I was below the detection sensitivity (about 1 atomic %) for Wavelength Dispersive Spectroscopy (WDS). After an increase in the radiation intensity (and simultaneous decrease in the measured color temperature from about 3000 to 2800 K) indicative of the transition to stage II combustion, the internal compositions of the quenched particles change. Both oxygen-rich (approx. 10 atomic %) and oxygen-lean (< 1 %) regions are identified within the particles using back-scattered electron imaging and WDS. During stage II, oscillations are observed in particle radiation and the flame and smoke cloud are distorted from their original spherically-symmetric shape. In stage III, particle radiation continues to exhibit oscillations, but its radiation intensity drops and remains at a nearly constant level. The measured temperature decreases to about 2300 K. Also, larger changes in particle velocities are observed, and oxide caps are found on quenched particle surfaces. While these results showed the correlation between the aluminum particle combustion behavior and the

  2. Multicylinder internal combustion engine with rotation sensor

    SciTech Connect

    Shimada, S.; Otsuka, K.

    1988-01-12

    In a rotation sensor for an internal combustion engine having a crankshaft, a camshaft, a drive pulley on the crankshaft, a driven pulley on the camshaft, and an endless belt trained around the driver and driven pulleys, an improvement is described comprising, rotation sensing means on the driven pulley and engine for sensing the rotational position of the driven pulley relative to the engine during rotation of the driven pulley.

  3. Fuel injection system for internal combustion engine

    SciTech Connect

    Nagao, A.; Yoshioka, S.; Oda, H.; Tokushima, T.

    1988-11-22

    This patent describes a fuel injection system for an internal combustion engine having a crankshaft and a combustion chamber, the system comprising (a) an intake passage for introducing an intake gas into the combustion chamber and provided with an intake valve; (b) a fuel injection valve for injecting fuel into the intake passage in the vicinity of the combustion chamber; (c) operating condition detecting means for detecting the operating condition of the engine and outputting a signal corresponding to the thus detected operating condition; (d) fuel injection amount determining means which receives an output signal of the operating conditions detecting means, thereby determining the amount of fuel to be supplied to the combustion chamber, and outputs a signal corresponding to thus determined amount; (e) crankshaft angle detecting means for detecting the rotation angle of the crankshaft; (f) injection timing control means which receives signals from the fuel injection amount determining means and crankshaft angle detecting means, outputs a start signal for actuating the fuel injection valve and a termination signal for terminating the actuation of the fuel injection valve, and actuates the fuel injection valve for the duration between the start and termination signals, thereby supplying an amount of fuel determined by the fuel injection amount determining means; (g) the start and termination signals being set against the crankshaft angle so that the whole fuel injection from the injection valve to the intake passage under light load operation of the engine reaches the combustion chamber substantially in the latter half of the intake stroke before the intake valve is closed.

  4. Electronic governor for an internal combustion engine

    SciTech Connect

    Nanjyo, H.; Suzuki, H.

    1987-11-24

    An electronic governor for an internal combustion engine provided with a fuel injection pump for supplying fuel to the engine and having a control rack for adjusting fuel injection amount is described comprising, means providing a designated speed signal Vno indicative of the desired rotational speed No of the internal combustion engine, a speed detector detecting the rotational speed N of the internal combustion engine and producing the speed detection signal Vn indicative of the rotational speed N, a rack position detector detecting the position of the rack and producing a rack position detection signal VL indicative of the position of the rack, a speed deviation operation circuit responsive to the speed detection signal Vn for producing a constant speed control signal Vnd for effecting control to maintain the deviation of the actual rotational speed N from the designated rotational speed No within a permissible range, a rack position deviation operation circuit for producing a maximum rack position control signal VLd for effecting control to maintain the deviation of the rack position, a control mode selector and means responsive to the output of the control mode selector for controlling the rack to cause the deviation of the actual rotational speed N from the designated rotational speed No or the rack position from the maximum rack position to be within a certain range.

  5. Natural Gas for Advanced Dual-Fuel Combustion Strategies

    NASA Astrophysics Data System (ADS)

    Walker, Nicholas Ryan

    Natural gas fuels represent the next evolution of low-carbon energy feedstocks powering human activity worldwide. The internal combustion engine, the energy conversion device widely used by society for more than one century, is capable of utilizing advanced combustion strategies in pursuit of ultra-high efficiency and ultra-low emissions. Yet many emerging advanced combustion strategies depend upon traditional petroleum-based fuels for their operation. In this research the use of natural gas, namely methane, is applied to both conventional and advanced dual-fuel combustion strategies. In the first part of this work both computational and experimental studies are undertaken to examine the viability of utilizing methane as the premixed low reactivity fuel in reactivity controlled compression ignition, a leading advanced dual-fuel combustion strategy. As a result, methane is shown to be capable of significantly extending the load limits for dual-fuel reactivity controlled compression ignition in both light- and heavy-duty engines. In the second part of this work heavy-duty single-cylinder engine experiments are performed to research the performance of both conventional dual-fuel (diesel pilot ignition) and advanced dual-fuel (reactivity controlled compression ignition) combustion strategies using methane as the premixed low reactivity fuel. Both strategies are strongly influenced by equivalence ratio; diesel pilot ignition offers best performance at higher equivalence ratios and higher premixed methane ratios, whereas reactivity controlled compression ignition offers superior performance at lower equivalence ratios and lower premixed methane ratios. In the third part of this work experiments are performed in order to determine the dominant mode of heat release for both dual-fuel combustion strategies. By studying the dual-fuel homogeneous charge compression ignition and single-fuel spark ignition, strategies representative of autoignition and flame propagation

  6. 77 FR 60341 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-03

    ... Source Performance Standards for Stationary Internal Combustion Engines'' (77 FR 33812). The June 7, 2012... Reciprocating Internal Combustion Engines; New Source Performance Standards for Stationary Internal Combustion... Emission Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines...

  7. Findings of Hydrogen Internal Combustion Engine Durability

    SciTech Connect

    Garrett Beauregard

    2010-12-31

    Hydrogen Internal Combustion Engine (HICE) technology takes advantage of existing knowledge of combustion engines to provide a means to power passenger vehicle with hydrogen, perhaps as an interim measure while fuel cell technology continues to mature. This project seeks to provide data to determine the reliability of these engines. Data were collected from an engine operated on a dynamometer for 1000 hours of continuous use. Data were also collected from a fleet of eight (8) full-size pickup trucks powered with hydrogen-fueled engines. In this particular application, the data show that HICE technology provided reliable service during the operating period of the project. Analyses of engine components showed little sign of wear or stress except for cylinder head valves and seats. Material analysis showed signs of hydrogen embrittlement in intake valves.

  8. Atmospheric fluidized bed combustion advanced concept system

    SciTech Connect

    Not Available

    1992-05-01

    DONLEE Technologies Inc. is developing with support of the US Department of Energy an advanced circulating fluidized bed technology known as the Vortex{trademark} Fluidized Bed Combustor (VFBC). The unique feature of the VFBC is the injection of a significant portion of the combustion air into the cyclone. Since as much as one-half of the total combustion air is injected into the cyclone, the cross-sectional area of the circulating fluidized bed is considerably smaller than typical circulating fluidized beds. The technology is being developed for two applications: Industrial-scale boilers ranging from 20,000 to 100,000 pounds per hour steam generating capacity; and two-stage combustion in which a substoichiometric Vortex Fluidized Bed Combustor (2VFBC) or precombustor is used to generate a combustible gas for use primarily in boiler retrofit applications. This Level II analysis of these two applications indicates that both have merit. An industrial-scale VFBC boiler (60,000 lb/hr of steam) is projected to be economically attractive with coal prices as high as $40 per ton and gas prices between $4 and $5 per thousand cubic feet. The payback time is between 3 and 4 years. The 2VFBC system was evaluated at three capacities of application: 20,000; 60,000 and 100,000 lb/hr of steam. The payback times for these three capacities are 4.5, 2.1 and 1.55 years, respectively. The 2VFBC has potential applications for retrofit of existing pulverized coal-fired boilers or as a new large (utility) boiler. Pressurized operation of the 2VFBC has considerable potential for combined cycle power generation applications. Experimental development of both applications is presented here to demonstrate the potential of these two technologies.

  9. ENVIRONMENTAL ASSESSMENT OF COMBUSTION MODIFICATION CONTROLS FOR STATIONARY INTERNAL COMBUSTION ENGINES

    EPA Science Inventory

    The report gives results of an environmental assessment of combustion modification techniques for stationary internal combustion engines, with respect to NOx control reduction effectiveness, operational impact, thermal efficiency impact, capital and annualized operating costs, an...

  10. FY2009 Annual Progress Report for Advanced Combustion Engine Research and Development

    SciTech Connect

    none,

    2009-12-01

    Fiscal Year 2009 Annual Progress Report for the Advanced Combustion Engine Research and Development (R&D) subprogram. The Advanced Combustion Engine R&D subprogram supports the mission of the VTP program by removing the critical technical barriers to commercialization of advanced internal combustion engines (ICEs) for passenger and commercial vehicles that meet future Federal emissions regulations. Dramatically improving the efficiency of ICEs and enabling their introduction in conventional as well as hybrid electric vehicles is the most promising and cost-effective approach to increasing vehicle fuel economy over the next 30 years.

  11. History of the internal combustion engine

    SciTech Connect

    Somerscales, E.F.C. ); Zagotta, A.A. )

    1989-01-01

    The study of engineering history by the practioners of engineering is not well-developed. This is unfortunate, because if nothing else, it is the culture of our profession, but even more importantly, it provides us with a proper understanding of current and future engineering. Without an adequate historical background the engineer could, for example, respond incorrectly to problems that might arise in some device or make inappropriate changes in the design. History can also suggest the path that might be followed by a new product, and thereby guide the development and marketing. Because of the fuller appreciation of the art and science of engineering that is provided by an awareness of engineering history, it seems appropriate for the ASME to recognize the role in our profession. The papers in this volume, which deal and various aspects of the history of the internal combustion engine, were presented in a session at the Fall Technical Conference of the ASME Internal Combustion Engine Division held in Dearborn, Michigan on October 17, 1989. The session was jointly sponsored and arranged by the Internal Combustion Engine Division and by the History and Heritage Committee of ASME. It is the first in what the latter hopes will be a regular series of sessions at various Society meetings jointly sponsored with the different divisions of the Society. It is hoped in this way to raise the consciousness of the engineering community to its history and to encourage in particular the preparation of historical papers by engineer-historians, who are involved in the practice of engineering. An approximate chronological order has been chosen for the arrangement of the papers, with the first, by H.O. Hardenberg, being on the gunpowder engines, which were experimented with from the sixteenth century to the middle of the nineteenth century.

  12. Spark ignition systems for internal combustion engines

    SciTech Connect

    Gol, G.; Hill, W.F.

    1980-08-26

    An internal combustion engine spark ignition system is provided which ensures that sparks are inhibited if the engine temperature exceeds a maximum safe level. The ignition circuit includes an input transistor which is switched on and off by an engine shaft transducer. The input transistor controls charging and discharging of a capacitor the voltage on which determines whether switching of the input transistor causes a spark to be produced via an output amplifier and ignition coil. A temperature sensing element determines both the rate at which the capacitor can charge and the final voltage to which it can be charged.

  13. Variable-cycle reciprocating internal combustion engine

    SciTech Connect

    Johnston, R.P.

    1989-08-15

    This patent describes a variable cycle internal combustion engine. It comprises: a block the block having at least one cylinder chamber disposed therein; a pair of opposed pistons mounted in the cylinder chamber; a first rotating crankshaft and a second rotating crankshaft, each crankshaft connected to a different one of the pistons; means for synchronizing the speed and relative phase relationship of the crankshaft, the synchronizing means connected to at least one of the crankshafts; a harmonic gear drive assembly for selectively adjusting the rotation phase relationship between the crankshaft during operation of the engine. The harmonic gear drive assembly being connected to the synchronizing means.

  14. Internal combustion engine using premixed combustion of stratified charges

    DOEpatents

    Marriott, Craig D.; Reitz, Rolf D. (Madison, WI

    2003-12-30

    During a combustion cycle, a first stoichiometrically lean fuel charge is injected well prior to top dead center, preferably during the intake stroke. This first fuel charge is substantially mixed with the combustion chamber air during subsequent motion of the piston towards top dead center. A subsequent fuel charge is then injected prior to top dead center to create a stratified, locally richer mixture (but still leaner than stoichiometric) within the combustion chamber. The locally rich region within the combustion chamber has sufficient fuel density to autoignite, and its self-ignition serves to activate ignition for the lean mixture existing within the remainder of the combustion chamber. Because the mixture within the combustion chamber is overall premixed and relatively lean, NO.sub.x and soot production are significantly diminished.

  15. FY2010 Annual Progress Report for Advanced Combustion Engine Research and Development

    SciTech Connect

    Singh, Gurpreet

    2010-12-01

    The Advanced Combustion Engine R&D subprogram supports the mission of the Vehicle Technologies Program by removing the critical technical barriers to commercialization of advanced internal combustion engines (ICEs) for passenger and commercial vehicles that meet future Federal emissions regulations. Dramatically improving the efficiency of ICEs and enabling their introduction in conventional as well as hybrid electric vehicles is the most promising and cost-effective approach to increasing vehicle fuel economy over the next 30 years.

  16. Surrogate Model Development for Fuels for Advanced Combustion Engines

    SciTech Connect

    Anand, Krishnasamy; Ra, youngchul; Reitz, Rolf; Bunting, Bruce G

    2011-01-01

    The fuels used in internal-combustion engines are complex mixtures of a multitude of different types of hydrocarbon species. Attempting numerical simulations of combustion of real fuels with all of the hydrocarbon species included is highly unrealistic. Thus, a surrogate model approach is generally adopted, which involves choosing a few representative hydrocarbon species whose overall behavior mimics the characteristics of the target fuel. The present study proposes surrogate models for the nine fuels for advanced combustion engines (FACE) that have been developed for studying low-emission, high-efficiency advanced diesel engine concepts. The surrogate compositions for the fuels are arrived at by simulating their distillation profiles to within a maximum absolute error of 4% using a discrete multi-component (DMC) fuel model that has been incorporated in the multi-dimensional computational fluid dynamics (CFD) code, KIVA-ERC-CHEMKIN. The simulated surrogate compositions cover the range and measured concentrations of the various hydrocarbon classes present in the fuels. The fidelity of the surrogate fuel models is judged on the basis of matching their specific gravity, lower heating value, hydrogen/carbon (H/C) ratio, cetane number, and cetane index with the measured data for all nine FACE fuels.

  17. Method for controlling an internal combustion engine

    SciTech Connect

    Krebs, S.; Achleitner, E.

    1993-07-13

    In a method for controlling an internal combustion engine having cylinders operating in cycles and an intake tube for intake air, which includes determining a fuel mass to be injected into each cylinder for each cycle as a function of operating parameters of the internal combustion engine by reading a basic fuel value out of a basic family of characteristics and correcting the basic fuel value as a function of a temperature of the intake air, and multiplying the basic fuel value by a correction factor FK = A/B, wherein the denominator B is a temperature value, the improvement is described which comprises: selecting the variables of the basic family of characteristics as a pressure in the intake tube and an rpm, and reading a correction temperature contained in the temperature value out of a family of temperature characteristics in dependence on a variable dependent on an air flow and of a heating temperature being determinative for heating up the intake air in the intake tube.

  18. Preliminary assessment of combustion modes for internal combustion wave rotors

    NASA Technical Reports Server (NTRS)

    Nalim, M. Razi

    1995-01-01

    Combustion within the channels of a wave rotor is examined as a means of obtaining pressure gain during heat addition in a gas turbine engine. Several modes of combustion are considered and the factors that determine the applicability of three modes are evaluated in detail; premixed autoignition/detonation, premixed deflagration, and non-premixed compression ignition. The last two will require strong turbulence for completion of combustion in a reasonable time in the wave rotor. The compression/autoignition modes will require inlet temperatures in excess of 1500 R for reliable ignition with most hydrocarbon fuels; otherwise, a supplementary ignition method must be provided. Examples of combustion mode selection are presented for two core engine applications that had been previously designed with equivalent 4-port wave rotor topping cycles using external combustion.

  19. The FCF Combustion Integrated Rack: Microgravity Combustion Science Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    OMalley, Terence F.; Weiland, Karen J.

    2002-01-01

    The Combustion Integrated Rack (CIR) is one of three facility payload racks being developed for the International Space Station (ISS) Fluids and Combustion Facility (FCF). Most microgravity combustion experiments will be performed onboard the Space Station in the Combustion Integrated Rack. Experiment-specific equipment will be installed on orbit in the CIR to customize it to perform many different scientific experiments during the ten or more years that it will operate on orbit. This paper provides an overview of the CIR, including a description of its preliminary design and planned accommodations for microgravity combustion science experiments, and descriptions of the combustion science experiments currently planned for the CIR.

  20. Hydrogen cryofuel in internal combustion engines

    SciTech Connect

    Peschka, W.

    1994-12-31

    The main reason to support hydrogen as a fuel lies in the foreseeable problems regarding the CO{sub 2} pollution of the Earth`s atmosphere due to the unrestrained use of fossil energy. While combustion of currently used, or feasible hydrocarbon fuels releases about the same amount of CO{sub 2} per amount of heat produced, even hydrocarbon fuels with a greater hydrogen content do not lead to substantial improvement in this regard. Hydrogen represents the only practical, technically feasible, carbon free fuel. Cryogenic characteristics of hydrogen such as high density and a considerable cooling effect favor the fuel injection, the mixing process and thus the combustion process. In addition to the preferred use of liquid hydrogen due to its range per tank filling and low amount of mass for storage in the vehicle, the cryogenic characteristics of hydrogen provide significant advantages. In addition to engine operation with external mixture formation, considerable success was made with internal mixture formation with injection of cryogenic high pressure hydrogen. Only pressurization of cryogenic hydrogen can be accomplished without investing a considerable amount of engine power. Hybrid mixture formation, a proper combination of external and internal mixture formation with suitably pressurized cryogenic hydrogen, is very attractive with respect to power and torque flow as well as other positive characteristics under steady and intermittent operating conditions. The state of the art technology of liquid hydrogen represents a suitable base for large scale demonstration projects now. Additional aims of more intense R&D work relate to internal mixture formation and improved engine roadability as well as utility vehicle application including trucks and buses. With respect to fuel costs there will be an increased demand in developing hydrogen production free from CO{sub 2} emissions even from fossil energy sources such as crude oil or natural gas.

  1. Centrifugal governor for internal combustion engines

    SciTech Connect

    Ohnishi, M.

    1986-09-23

    A centrifugal governor is described for use with an internal combustion engine which consists of: a control rack for regulating the quantity of fuel to be supplied to the engine; flyweights radially displaceable in response to the rotational speed of the engine; a tension lever pivotable through an angle dependent upon the amount of radial displacement of the flyweights; an idling spring for urging the tension lever against radially outward displacement of the flyweights; a torque cam having a cam surface determining a fuel increment to be applied at the start of the engine; a sensor lever having one end engaged by the control rack, and another end adapted to engage with the cam surface of the torque cam; a cancelling spring interposed between the torque cam and the tension lever; a control lever; a floating lever interlocking with the control lever; and spring force adjusting means arranged at one end of the idling spring.

  2. Starting apparatus for internal combustion engines

    DOEpatents

    Dyches, Gregory M.; Dudar, Aed M.

    1997-01-01

    An internal combustion engine starting apparatus uses a signal from a curt sensor to determine when the engine is energized and the starter motor should be de-energized. One embodiment comprises a transmitter, receiver, computer processing unit, current sensor and relays to energize a starter motor and subsequently de-energize the same when the engine is running. Another embodiment comprises a switch, current transducer, low-pass filter, gain/comparator, relay and a plurality of switches to energize and de-energize a starter motor. Both embodiments contain an indicator lamp or speaker which alerts an operator as to whether a successful engine start has been achieved. Both embodiments also contain circuitry to protect the starter and to de-energize the engine.

  3. Crankcase for an internal combustion engine

    SciTech Connect

    Yasutake, K.

    1986-02-04

    This patent describes a crankcase for an internal combustion engine having a crankshaft and at least one cylinder with an axial centerline intersecting an axial centerline of the crankshaft, the crankcase being split at a plane perpendicular to the axis of the crankshaft. The crankcase consists of: a crankshaft bearing wall having upper and lower portions on opposite sides of a plane perpendicular to the cylinder axial centerline through the axis of the crankshaft; blind holes extending into the crankshaft bearing wall into both the upper and lower portions adjacent and past either side of the bearing hole; threaded bolts disposed in the blind holes extending from a top of the unitary bearing wall to the threaded end portions of the blind holes and screwed together with the holes with the bolts in tension.

  4. Balancer device for internal combustion engines

    SciTech Connect

    Oshiro, N.; Futakuchi, Y.

    1986-10-21

    This patent describes an internal combustion engine having at least two cylinders arranged in the shape of a ''V'' at an included angle other than 90/sup 0/, pistons in the cylinders, a crankshaft supported for rotation, and connecting rods connecting each of the pistons with the crankshaft. The connecting rods are offset in the axial direction of the crankshaft. The improvement described here consists of 1.) a balancer device comprising only one shaft member supported for rotation about an axis parallel to the axis of rotation of the crankshaft and a means for driving the shaft member at the same speed as the crankshaft but in the opposite direction; 2.) a first weight on the shaft member for balancing at least a portion of the force of first order which is generated by the reciprocal movements of the pistons; and 3.) further weights formed on the shaft member for eliminating the force couple generated from the axial offset of the connecting rods.

  5. Lubricating system for an internal combustion engine

    SciTech Connect

    Ishikawa, T.

    1988-12-27

    This patent describes a lubricating system for an internal combustion engine having at least one cylinder, crankcase, a crankshaft, a balancer shaft rotated by the crankshaft through gears, and an oil pump, comprising: a cover secured to the crankcase to form a part of the crankcase, the crankshaft being supported by a first bearing provided in the cover and by a second bearing provided in the crankcase; a first oil passage provided in the crankcase and cover and extending from an opening at a bottom of the crankcase to an inlet of the oil pump; a second oil passage provided in the cover and extending from an outlet of the oil pump to a first opening which opens to a journal of the crankshaft; a third oil passage provided in the crankshaft and extending from a second opening corresponding to the first opening to third openings which open to the first and second bearings and to connecting rods at crankpins of the crankshaft.

  6. Ignition apparatus for internal combustion engine

    SciTech Connect

    Imoto, K.; Katada, H.

    1986-10-07

    An ignition apparatus is described for an internal combustion engine having a crankshaft and a camshaft coupled to the crankshaft to be rotated thereby, comprising: crankshaft position signal generating means for detecting that the crankshaft has rotated to a predetermined angular position and for generating crankshaft position signals in response to the detection; camshaft position signal generating means for detecting that the camshaft has rotated to a predetermined angular position and for generating camshaft position signals in response to the detection; command signal generating means coupled to receive the crankshaft position signals, for generating ignition command signals in response to the crankshaft position signals; and ignition circuit means for generating a high ignition voltage in response to the ignition command signals.

  7. Internal combustion engine with balancing forces

    SciTech Connect

    Fisher, M.A.

    1990-07-10

    This patent describes an internal combustion engine of the opposed cylinder type. It comprises: a crankshaft and at least one set of pistons movably connected thereto. Each piston of the one set is reciprocally mounted within a separate corresponding cylinder and rotatably drive the crankshaft during a power stroke thereof, the one set of pistons including at least a first piston and cylinder assembly mounted on one side of the crankshaft and at least a second and a third piston and cylinder assembly mounted on the other side of the crankshaft in directly opposed relation to the first piston and cylinder assembly, each of the cylinders of the second and third piston and cylinder assemblies comprising one half the displacement volume of the cylinder of the first piston and cylinder assembly, whereby vibration of the engine is substantially reduced at all running speeds.

  8. V-type internal combustion engine

    SciTech Connect

    Tamba, S.; Ueki, N.

    1987-10-06

    A V-type internal combustion engine is described comprising: a crankcase; a crankshaft having a central axis and supported in the crankcase. The governor means are located within the crankcase. Cylinders each include a cylinder skirt portion projecting into the crankcase. The cylinders are arranged in a V-shape and have center axes offset from each other in a direction along the crankshaft central axis and a rotational speed transmission system for transmitting the rotational speed of a governor gear to a governor lever shaft. The rotational speed transmission system engages a rearward side of the cylinder skirt portion of a cylinder spaced forward from a rearmost cylinder as viewed along the crankshaft central axis.

  9. Ignition device for an internal combustion engine

    SciTech Connect

    Tokura, N.; Kawa, H.; Goto, M.; Morino, S.; Soumiya, M.

    1987-10-27

    An ignition device for an internal combustion engine is described comprising: a direct current power source providing a direct current voltage; an ignition coil having first, second and third primary coils and a secondary coil; a first switching element forming a first closed circuit together with the direct current power source and the first primary coil; a second switching element forming a second closed circuit together with the direct current power source and the second primary coil; a reverse current-flow preventive element defining a current-flow direction in one direction in the first and second closed circuits; current detection elements for detecting current-flow in the first and second closed circuits; a third switching element forming a third closed circuit together with the direct current power source and the first and third primary coils; an ignition command signals and a control circuit for causing the first and second switching elements to push-pull operate.

  10. Device for controlling ignition timing in internal combustion engine

    SciTech Connect

    Tanaka, A.

    1988-01-12

    A device for controlling ignition timing in an internal combustion engine is described comprising: a. combustion state detection means disposed in the vicinity of the combustion chamber of each cylinder of an internal combustion engine for detecting the state of combustion in the combustion chamber, b. crankshaft angle detection means disposed in the vicinity of the rotating member of the internal combustion engine for detecting the angular position of a crankshaft of the internal combustion engine, c. maximum cylinder pressure angle calculation means which receives the outputs of the combustion state detection means and the crankshaft angle detection means and calculates the maximum cylinder pressure angle, d. cylinder pressure calculation means which receives the output of the combustion state detection means and calculates the cylinder pressure, e. ignition timing calculation means which receives the outputs of the crankshaft angle detection means, the maximum cylinder pressure angle calculation means and the cylinder pressure calculation means and calculates the ignition timing such that the maximum cylinder pressure angle converges on a target angle, and f. ignition means which receives the output of the ignition timing calculation means and ignites a fuel and air mixture in the combustion chamber, whereby the ignition timing calculation means detecting transient conditions in the engine driving operation on the basis of the output of the cylinder pressure calculation means.

  11. Variable compression ratio device for internal combustion engine

    DOEpatents

    Maloney, Ronald P.; Faletti, James J.

    2004-03-23

    An internal combustion engine, particularly suitable for use in a work machine, is provided with a combustion cylinder, a cylinder head at an end of the combustion cylinder and a primary piston reciprocally disposed within the combustion cylinder. The cylinder head includes a secondary cylinder and a secondary piston reciprocally disposed within the secondary cylinder. An actuator is coupled with the secondary piston for controlling the position of the secondary piston dependent upon the position of the primary piston. A communication port establishes fluid flow communication between the combustion cylinder and the secondary cylinder.

  12. Advanced Control Methodology for Biomass Combustion

    NASA Astrophysics Data System (ADS)

    Bjornsson, Stefan

    This thesis presents a feasibility study for a low cost sensor-based combustion control system using a predictive chemical kinetic model that captures efficiencies and pollution emissions during biomass combustion. Low cost sensor module was developed, the sensors were calibrated to measure carbon monoxide and particulate matter (PM) in combustion exhaust. Major combustion species in the exhaust of a commercial biomass furnace, operating with white oak, were measured. The species concentrations were measured using the low cost sensors and commercially available diagnostics. The low cost sensor outputs compare well with the reference instruments and the sensors can be employed to measure varying concentration of CO and particulate matter in combustion exhaust. A predictive chemical kinetic model was generated to simulate biomass processes. The model uses a four element chemical reactor network (CRN) and successfully simulates smoldering, ignition and flaming combustion events. The model agrees with concentration of CO and particulate matter from experiments. The sensors and CRN model can be integrated in a control system for biomass combustion that can potentially improve combustion efficiency and reduce emissions of particulate matter, CO and unburned hydrocarbons that have been linked to urban and rural air pollution resulting in adverse health effects.

  13. Study of advanced rotary combustion engines for commuter aircraft

    NASA Technical Reports Server (NTRS)

    Berkowitz, M.; Jones, C.; Myers, D.

    1983-01-01

    Performance, weight, size, and maintenance data for advanced rotary aircraft engines suitable for comparative commuter aircraft system evaluation studies of alternate engine candidates are provided. These are turbocharged, turbocompounded, direct injected, stratified charge rotary engines. Hypothetical engines were defined (an RC4-74 at 895 kW and an RC6-87 at 1490 kW) based on the technologies and design approaches used in the highly advanced engine of a study of advanced general aviation rotary engines. The data covers the size range of shaft power from 597 kW (800 hp) to 1865 kW (2500 hp) and is in the form of drawings, tables, curves and written text. These include data on internal geometry and configuration, installation information, turbocharging and turbocompounding arrangements, design features and technologies, engine cooling, fuels, scaling for weight size BSFC and heat rejection for varying horsepower, engine operating and performance data, and TBO and maintenance requirements. The basic combustion system was developed and demonstrated; however the projected power densities and performance efficiencies require increases in engine internal pressures, thermal loading, and rotative speed.

  14. Combustion synthesis of advanced composite materials

    NASA Technical Reports Server (NTRS)

    Moore, John J.

    1993-01-01

    Self-propagating high temperature (combustion) synthesis (SHS), has been investigated as a means of producing both dense and expanded (foamed) ceramic and ceramic-metal composites, ceramic powders and whiskers. Several model exothermic combustion synthesis reactions were used to establish the importance of certain reaction parameters, e.g., stoichiometry, green density, combustion mode, particle size, etc. on the control of the synthesis reaction, product morphology and properties. The use of an in situ liquid infiltration technique and the effect of varying the reactants and their stoichiometry to provide a range of reactant and product species i.e., solids, liquids and gases, with varying physical properties e.g., volatility and thermal conductivity, on the microstructure and morphology of synthesized composite materials is discussed. Conducting the combustion synthesis reaction in a reactive gas environment to take advantage of the synergistic effects of combustion synthesis and vapor phase transport is also examined.

  15. Economics of electron beam and electrical discharge processing for post-combustion NO(x) control in internal combustion engines

    NASA Astrophysics Data System (ADS)

    Penetrante, B. M.

    1993-08-01

    The physics and chemistry of non-thermal plasma processing for post-combustion NO(x) control in internal combustion engines are discussed. A comparison of electron beam and electrical discharge processing is made regarding their power consumption, radical production, NO(x) removal mechanisms, and by-product formation. Pollution control applications present a good opportunity for transferring pulsed power techniques to the commercial sector. However, unless advances are made to drastically reduce the price and power consumption of electron beam sources and pulsed power systems, these plasma techniques will not become commercially competitive with conventional thermal or surface-catalytic methods.

  16. Advanced combustion turbines and cycles: An EPRI perspective

    SciTech Connect

    Touchton, G.; Cohn, A.

    1995-10-01

    EPRI conducts a broad program of research in combustion turbine technology on behalf of its funders which is directed toward improving their competitive positions through lower cost of generation and risk mitigation. The major areas of EPRI interest are: (1) Combustion Turbine Technology Development, Assessment, and Procurement Information and Products. (2) Risk mitigation of emerging combustion turbines through durability surveillance. (3) Existing Fleet Management and Improvement Technology. In the context of the DOE ATS Review, the present paper will address new advanced turbines and cycles and durability surveillance, of emerging combustion turbines. It will touch on existing fleet management and improvement technology as appropriate.

  17. Centrifugal governor for internal combustion engines

    SciTech Connect

    Ohkoshi, M.

    1987-04-14

    This patent describes a centrifugal governor for use with an internal combustion engine, comprising: a control rack for regulating the quantity of fuel to be supplied to the engine; flyweights radially displaceable in response to the rotational speed of the engine; a tension lever pivotable through an angle dependent upon the amount of radial displacement of the flyweights; a torque cam pivotable about and relative to a fulcrum shaft thereof and having a cam surface including a cam surface portion determining a fuel increment to be applied at the start of the engine; a sensor lever having one end engaged by the control rack; the sensor lever having another end disposed to engage with the cam surface portion of the torque cam when the engine is in a starting condition, to permit displacement of the control rack into a fuel increasing position for the start of the engine; and a cancelling spring interposed between the torque cam and the tension lever and urging the torque cam with a force dependent upon the angularity of the tension lever to cause pivoting of the torque cam about the fulcrum shaft thereof in a direction of disengaging the sensor lever from the cam surface portion of the torque cam. The improvement is described comprising biasing means for forcibly pivotally displacing, immediately before operation of a starter of the engine, the torque cam in one direction against the urging force of the cancelling spring to a predetermined position.

  18. Centrifugal governor for internal combustion engines

    SciTech Connect

    Ohnishi, M.

    1986-08-12

    A centrifugal governor is described for use with an internal combustion engine, comprising: a control rack for regulating the quantity of fuel to be supplied to the engine; flyweights radially displaceable in response to the rotational speed of the engine; a tension lever pivotable about a stationary fulcrum in response to the radial displacement of the flyweights; a torque cam having a cam surface determining a fuel increment to be applied at the start of the engine; a sensor lever having one end engaged by the control rack and another end disposed for engagement with the cam surface of the torque cam, the sensor lever being adapted to engage with the cam surface of the torque cam when the engine is in a starting condition, to cause displacement of the control rack into a fuel increasing position for the start of the engine; and spring means interposed between the torque cam and the tension lever and urging the torque cam with a force dependent upon the angularity of the tension lever in a direction of disengaging the sensor lever from the cam surface of the torque cam; the spring means comprising first and second springs, one of the first and second springs being formed of a thermosensitive material having a smaller spring constant at a low temperature below a predetermined value, and a larger spring constant at a temperature above the predetermined value; and the first and second springs of the spring means comprising coiled springs disposed concentrically with each other.

  19. Camshaft driving device for internal combustion engine

    SciTech Connect

    Ebesu, H.

    1988-06-14

    A camshaft driving device for use in a double overhead cam type internal combustion engine having a cylinder block, an upper deck formed at an upper portion of the cylinder block, a cylinder head disposed on the cylinder block, a driving shaft rotatably mounted at a lower portion of the cylinder block, and a pair of camshafts rotatably mounted at an upper portion of the cylinder head, is described comprising: driving force transmitting endless chain members engaging in the reduction gear means for transmitting a driving force from the driving shaft to the pair of camshaft through the reduction gear means. The camshaft driving device further including chain tensioners for tightening the chain, a nozzle means for supplying a lubricating oil to the driving force chain members on the side of the drive shaft and an oil guide wall formed immediately above the sprocket of the transmitting portion of the reduction gear means at a lower end portion of the journal boss and lapping thereover both in the radial direction and in the axial direction of the driving shaft. A mounting boss for mounting the reduction gear means thereon is formed on the upper deck of the cylinder block.

  20. V-type multicylinder internal combustion engine

    SciTech Connect

    Tsuboi, M.

    1986-05-20

    A V-type multicylinder internal combustion engine is described for vehicles comprising front and rear cylinder blocks arrayed in V shape longitudinally of a vehicle body, front and rear cylinder heads fixed on each cylinder block, pistons sliding in the cylinder blocks, a crank and transmission case formed uniformly on the cylinder blocks, a crankshaft extending transversely of the vehicle body borne rotatably on both side walls of the crank and transmission case at journals on both sides, the crankshaft being coupled to the pistons at a crank pin through connecting rods and provided with front and rear driving sprockets, front and rear cam shafts mounted rotatably on the cylinder heads with driven sprockets fixed thereon, a front timing chain laid between the front driving sprocket and the front driven sprocket and constituting together with the front driving and driven sprockets a front cam driving means, a rear timing chain laid between the rear driving sprocket and the rear driven sprocket and constituting together with the rear driving and driven sprockets a rear cam driving means, and a speed change gear coupled to the crankshaft by way of a primary reduction gear and a clutch.

  1. Supplemental air valve for internal combustion engine

    SciTech Connect

    Pankow, C.W.

    1987-12-29

    A valve for attachment in the PCV system of an internal combustion engine for regulating the admission of supplemental air to the crank case blow-by return, comprising: (a) a valve body defining a bore, the body having an inlet and an outlet connection defining a passageway through the valve for the blow-by return, the body further defining a port for air; (b) a valve member reciprocal within the bore having a piston member dividing at least a portion of the bore into two pressure chambers, the pressure chambers having means for connection of each to a source of engine vacuum; (c) the valve member being shiftable from and open position permitting air to enter through the port to the passageway and having a closed position blocking admission of air through the port to the passageway; and (d) resilient means normally urging the valve body to the closed position, the resilient means being selectively adjustable to provide a predetermined biasing force whereby the piston is shiftable to the open position in response to changes in engine vacuum to admit supplemental air to the engine.

  2. Internal combustion engine timing chain cover

    SciTech Connect

    Carvalho, A.

    1991-03-12

    This patent describes an internal combustion engine end and timing chain cover for a multi-cylinder, automotive vehicle type engine having a generally horizontally arranged engine block with a forward end and upper and lower portions, and a generally horizontally extending crankshaft with a forward end portion, and a timing chain mechanism on the block forward end above crankshaft: It comprises: a unitary, a cast metal, dish-like, cover having a forward wall surrounded by an integral edge wall shaped to fit over and mount upon the forward end of the engine block with the cover forming an enclosed cavity at the front end of the engine and with the cover cavity adapted to receive and enclose the engine timing chain mechanism portions located on the engine forward end; the cover having a hole formed in its lower portion in alignment with the engine crankshaft, and with the engine crankshaft forward end portion extending through the hole and being surrounded by a seal; the seal being mounted within the hole in the cover, within an open, rabbit-like groove surrounding the hold and opening forwardly of the cover, so that the seal may be removed in a forward direction relative to the engine and replaced without removing the cover when the cover is mounted upon the block with the crankshaft extending therethrough; and bolt receiving openings formed on the cover edge wall through which mounting bolts may be positioned for fastening the cover upon the engine.

  3. Variable camshaft timing for internal combustion engine

    SciTech Connect

    Butterfield, R.P.; Smith, F.R.; Dembosky, S.K.

    1991-09-10

    This patent describes an internal combustion engine. It comprises a rotatable crankshaft; a camshaft, the camshaft being rotatable about its longitudinal central axis and being subject to a unidirectionally acting torque during the rotation thereof; first means mounted on the camshaft, the first means being oscillatable with respect to the camshaft about the longitudinal central axis of the camshaft at least through a limited arc; second means keyed to the camshaft for rotation therewith; rotary movement transmitting means interconnecting the crankshaft and one of the first means and the second means for transmitting rotary movement from the crankshaft to the camshaft; a first hydraulic cylinder having a body end pivotably attached to one of the first means and the second means and a piston end pivotably attached to the other of the first means and the second means; a second hydraulic cylinder having a body end pivotably attached to the one of the first means and the second means and a piston end pivotably attached to the other of the first means and the second means, the second hydraulic cylinder and the first hydraulic cylinder being disposed to act in opposite directions.

  4. Advanced Combustion and Fuels; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Zigler, Brad

    2015-06-08

    Presented at the U.S. Department of Energy Vehicle Technologies Office 2015 Annual Merit Review and Peer Evaluation Meeting, held June 8-12, 2015, in Arlington, Virginia. It addresses technical barriers of inadequate data and predictive tools for fuel and lubricant effects on advanced combustion engines, with the strategy being through collaboration, develop techniques, tools, and data to quantify critical fuel physico-chemical effects to enable development of advanced combustion engines that use alternative fuels.

  5. Method and device for diagnosing and controlling combustion instabilities in internal combustion engines operating in or transitioning to homogeneous charge combustion ignition mode

    DOEpatents

    Wagner, Robert M [Knoxville, TN; Daw, Charles S [Knoxville, TN; Green, Johney B [Knoxville, TN; Edwards, Kevin D [Knoxville, TN

    2008-10-07

    This invention is a method of achieving stable, optimal mixtures of HCCI and SI in practical gasoline internal combustion engines comprising the steps of: characterizing the combustion process based on combustion process measurements, determining the ratio of conventional and HCCI combustion, determining the trajectory (sequence) of states for consecutive combustion processes, and determining subsequent combustion process modifications using said information to steer the engine combustion toward desired behavior.

  6. Supercharger control system for internal combustion engines

    SciTech Connect

    Nagase, H.; Hirayama, T.

    1986-01-21

    This patent describes a supercharger control system for an internal combustion engine. The system has a throttle valve with a throttle operating lever, an engine air inlet passage, and a venturi-type carburetor. It consists of: a supercharger located in the engine air inlet passage upstream of the throttle valve, the supercharger being driven by the engine, a bypass within the engine inlet passage around the supercharger, a control valve with a control lever located within the bypass to control air flow, a diaphragm device, a first side of the diaphragm device being in communication with the engine inlet passage at the exit of the supercharger, a second side of the diaphragm being in communication with the venturi carburetor, a valve control linkage being constructed and arranged to open the control valve with increased vacuum in the first side of the diaphragm, spring means biasing the diaphragm to open the control valve, an activation lever with a stopper protrustion, the activation lever being pivotally mounted about the throttle valve, a first stop pin in the intake passage wall, a second stop pin on the throttle operating lever to selectively engage the activation lever, a regulation lever pivotally mounted about the control valve, a third stop pin on the control lever to selectively engage the regulating lever, an activation linkage connecting the activation lever and the regulating lever so as to create reciprocating motion, and spring means biasing both the regulating lever against the third stop pin when the control valve is in the fully open position and the stopper protrusion is against the first stop pin.

  7. Supercharging system for an internal combustion engine

    SciTech Connect

    Bucher, J.

    1987-09-29

    This patent describes a supercharging control system for an internal combustion engine (ICE) having an exhaust gas turbine driven by exhaust gases from the ICE; a main air compressor driven by the exhaust gas turbine and providing compressed air to an inlet manifold of the ICE, an auxiliary air compressor driven by rotary power derived from the ICE to provide additional air to the main compressor; a controlled clutch drivingly connected to the auxiliary compressor and the ICE to selectively establish or disconnect rotary drive power between the ICE and the auxiliary compressor; fuel quantity sensing means for sensing quantity of fuel being supplied to the ICE and providing a fuel quantity signal; air pressure sensing means coupled to an air inlet of the ICE for sensing charging air pressure and providing an air pressure signal; and comprising; a memory and controller coupled to control, selectively, establishment and disconnection of the rotary drive power between the ICE and the auxiliary compressor, and wherein the memory and controller is coupled to receive the air pressure signal and the fuel quantity signal and storing the relationship between air supply pressure and fuel quantity for desired performance of the ICE; the memory and controller provides an output signal coupled to and controlling the controlled clutch to obtain the desired performance; and wherein the main compressor comprises a centrifugal compressor including nozzles positioned about the outer circumference of a chamber within which rotary blades of the centrifugal compressor operate. The nozzles receive compressed air from the auxiliary compressor and are oriented to apply additional drive power to the main compressor.

  8. Torque sensor for internal-combustion engine

    SciTech Connect

    Kay, I.W.; Lehrach, R.P.C.

    1987-09-01

    This patent describes an apparatus for providing a measure of the torque of an internal-combustion engine having a rotating crankshaft for connection to a load, the crankshaft undergoing acceleration/deceleration sub-cycles associated with respective firing intervals within an engine cycle. The sensor consists of: means for providing electrical signals indicating occurrence of particular angular positions of the crankshaft in an engine cycle; electronic signal processing means responsive to the signals indicative of a crankshaft angle for providing signals, N/sub i/, indicative of instantaneous sub-cyclic engine speed at each of a plurality of predetermined crankshaft angles in an engine cycle, the plurality of predetermined crankshaft angles including a respective pair of angles for each firing interval, the respective two crankshaft angles of each pair being spaced from one another by an angle corresponding with substantially one-half of a firing interval, for providing in response to the sub-cyclic engine speed signals, N/sub i/, further signals, ..delta..N/sub i/; representative of the average of the difference between instantaneous engine speeds of the two crank angles of each respective pair of crankshaft angles within an engine cycle, for providing signals, N/sub avg/, indicative of average engine speed, and for generating a torque signal, T, as a function of the average engine speed signal N/sub avg/, and the average instantaneous engine speed difference signal, ..delta..N/sub i/, and electrical utilization means having the torque signal, T, operatively connected as an input thereto.

  9. Internal combustion engine having opposed pistons

    SciTech Connect

    Puzio, E.T.

    1993-07-20

    An internal combustion apparatus is described having opposed sets of pistons comprising: (a) an inner crankcase means defining an inner chamber means therein, the inner crankcase means further defining a first connecting arm aperture means and a second connecting arm aperture means therein; (b) a crankshaft means rotatably mounted within the inner chamber means of the inner crankcase means and defining a crankshaft axis means extending axially there through, the crankshaft means defining a driving means peripherally therearound to facilitate distribution of driving power therefrom; (c) a first outer crankcase means defining a first outer chamber means in fluid flow communication with respect to the inner chamber means through the first connecting arm aperture means; (d) a second outer crankcase means defining a second outer chamber means in fluid flow communication with respect to the inner chamber means through the second connecting arm aperture means, the second outer crankcase means defining a second piston bore means extending longitudinally therein; (e) a crank pin means positioned extending through the crank pin aperture in the crankshaft means, the crank pin means being rotatable with respect to the crank pin aperture means; (f) a first connecting arm means fixedly secured with respect to one end of the crank pin means and extending through the first connecting arm aperture means into the first outer crankcase means; (g) a second connecting arm means fixedly secured with respect to the other end of the crank pin means and extending through the second connecting arm aperture means into the second outer crankcase means; (h) a first piston assembly means positioned extending through the first piston bore means to be reciprocally axially movable therein; (i) a second piston assembly means positioned extending through the second piston bore means to be reciprocally axially movable therein.

  10. Chemistry and the Internal Combustion Engine II: Pollution Problems.

    ERIC Educational Resources Information Center

    Hunt, C. B.

    1979-01-01

    Discusses pollution problems which arise from the use of internal combustion (IC) engines in the United Kingdom (UK). The IC engine exhaust emissions, controlling IC engine pollution in the UK, and some future developments are also included. (HM)

  11. Automotive fuels and internal combustion engines: a chemical perspective.

    PubMed

    Wallington, T J; Kaiser, E W; Farrell, J T

    2006-04-01

    Commercial transportation fuels are complex mixtures containing hundreds or thousands of chemical components, whose composition has evolved considerably during the past 100 years. In conjunction with concurrent engine advancements, automotive fuel composition has been fine-tuned to balance efficiency and power demands while minimizing emissions. Pollutant emissions from internal combustion engines (ICE), which arise from non-ideal combustion, have been dramatically reduced in the past four decades. Emissions depend both on the engine operating parameters (e.g. engine temperature, speed, load, A/F ratio, and spark timing) and the fuel. These emissions result from complex processes involving interactions between the fuel and engine parameters. Vehicle emissions are comprised of volatile organic compounds (VOCs), CO, nitrogen oxides (NO(x)), and particulate matter (PM). VOCs and NO(x) form photochemical smog in urban atmospheres, and CO and PM may have adverse health impacts. Engine hardware and operating conditions, after-treatment catalysts, and fuel composition all affect the amount and composition of emissions leaving the vehicle tailpipe. While engine and after-treatment effects are generally larger than fuel effects, engine and after-treatment hardware can require specific fuel properties. Consequently, the best prospects for achieving the highest efficiency and lowest emissions lie with optimizing the entire fuel-engine-after-treatment system. This review provides a chemical perspective on the production, combustion, and environmental aspects of automotive fuels. We hope this review will be of interest to workers in the fields of chemical kinetics, fluid dynamics of reacting flows, atmospheric chemistry, automotive catalysts, fuel science, and governmental regulations. PMID:16565750

  12. Starting procedure for internal combustion vessels

    DOEpatents

    Harris, Harry A.

    1978-09-26

    A vertical vessel, having a low bed of broken material, having included combustible material, is initially ignited by a plurality of ignitors spaced over the surface of the bed, by adding fresh, broken material onto the bed to buildup the bed to its operating depth and then passing a combustible mixture of gas upwardly through the material, at a rate to prevent back-firing of the gas, while air and recycled gas is passed through the bed to thereby heat the material and commence the desired laterally uniform combustion in the bed. The procedure permits precise control of the air and gaseous fuel mixtures and material rates, and permits the use of the process equipment designed for continuous operation of the vessel.

  13. Hydrogen-oxygen powered internal combustion engine

    NASA Technical Reports Server (NTRS)

    Cameron, H.; Morgan, N.

    1970-01-01

    Hydrogen at 300 psi and oxygen at 800 psi are injected sequentially into the combustion chamber to form hydrogen-rich mixture. This mode of injection eliminates difficulties of preignition, detonation, etc., encountered with carburated, spark-ignited, hydrogen-air mixtures. Ignition at startup is by means of a palladium catalyst.

  14. Commercial combustion research aboard the International Space Station

    NASA Astrophysics Data System (ADS)

    Schowengerdt, F. D.

    1999-01-01

    The Center for Commercial Applications of Combustion in Space (CCACS) is planning a number of combustion experiments to be done on the International Space Station (ISS). These experiments will be conducted in two ISS facilities, the SpaceDRUMS™ Acoustic Levitation Furnace (ALF) and the Combustion Integrated Rack (CIR) portion of the Fluids and Combustion Facility (FCF). The experiments are part of ongoing commercial projects involving flame synthesis of ceramic powders, catalytic combustion, water mist fire suppression, glass-ceramics for fiber and other applications and porous ceramics for bone replacements, filters and catalyst supports. Ground- and parabolic aircraft-based experiments are currently underway to verify the scientific bases and to test prototype flight hardware. The projects have strong external support.

  15. Development of next generation 1500C class advanced combustion turbines

    SciTech Connect

    Aoki, S.; Tskuda, Y.; Akita, E.; Tomita, Y.

    1998-07-01

    The full load test run of the 501G combustion turbine has just finished at Takasago combined cycle plant in MHI, Japan. The 501G has power output of 230MW at turbine inlet temperature of 1,500 C and can achieve combined net efficiency of 52%. The NO{sub x} level proved to be less than 25 ppm. The 501G and 701G1 combustion turbines are large heavy-duty single shaft combustion turbines which combine the proven reliability and efficiency of the F series with the latest low NO{sub x} combustion technology and the state-of-the-art cooling technique. As the full load test run has proved, it is a highly advanced designed turbine with documented high temperature, low NO{sub x} and high efficiency. This combined with time proven design concepts has created a new powerful combustion turbine, which will satisfy the large combustion turbine power generation needs for the next decades. The 501G turbine is the 60Hz, 3,600 rpm heavy duty combustion turbine rated at 230MW at a turbine inlet of 1,500 C fired on natural gas fuel. The combined cycle net efficiency is 58%. Verification tests for various components have been conducted through the last 3 years and since February '97 a full scale-full load test is being performed to verify the high performance, reliability and maintainability. The 701G1 is a 3,000 rpm combustion turbine designed for the 50 Hz power generation utilities and industrial service. The first 701G1 gas turbine is expected to begin commercial operation in 1999 in Tohoku Electric Power Co. Higashi Nilgata Power Plant No.4, in Japan. This paper describes the features of the next generation 1,500 C class advanced combustion turbines. Aerodynamic, cooling and mechanical design improvement is discussed along with the evolutionary changes based on time proven design concepts.

  16. 49 CFR 173.220 - Internal combustion engines, self-propelled vehicles, mechanical equipment containing internal...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... vehicles, mechanical equipment containing internal combustion engines, battery-powered equipment or... engines, self-propelled vehicles, mechanical equipment containing internal combustion engines, battery... battery-powered vehicle or equipment, or a fuel cell-powered vehicle or equipment, or any...

  17. 49 CFR 173.220 - Internal combustion engines, self-propelled vehicles, mechanical equipment containing internal...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... vehicles, mechanical equipment containing internal combustion engines, battery-powered equipment or... engines, self-propelled vehicles, mechanical equipment containing internal combustion engines, battery... battery-powered vehicle or equipment, or a fuel cell-powered vehicle or equipment, or any...

  18. 49 CFR 173.220 - Internal combustion engines, self-propelled vehicles, mechanical equipment containing internal...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... vehicles, mechanical equipment containing internal combustion engines, battery-powered equipment or... engines, self-propelled vehicles, mechanical equipment containing internal combustion engines, battery... battery-powered vehicle or equipment, or a fuel cell-powered vehicle or equipment, or any...

  19. 49 CFR 173.220 - Internal combustion engines, self-propelled vehicles, mechanical equipment containing internal...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... vehicles, mechanical equipment containing internal combustion engines, battery-powered equipment or... engines, self-propelled vehicles, mechanical equipment containing internal combustion engines, battery... battery-powered vehicle or equipment, or a fuel cell-powered vehicle or equipment, or any...

  20. Recent Advances in Combustion Technology for Heating Processes

    NASA Astrophysics Data System (ADS)

    Katsuki, Masashi

    Recent advancement in industrial furnaces brought by highly preheated air combustion is reviewed. Highly Preheated Air Combustion in regenerative furnaces has been paid much attention for its accomplishment in not only energy saving but also low nitric oxides emission. Characteristics of combustion with highly preheated air were studied to understand the change of combustion regime and the reason for the compatibility between high performance and low nitric oxides emission. It was found that combustion was sustained even in an extremely low concentration of oxygen if the temperature of oxidizer was higher than the auto-ignition temperature of the fuel. As an application of the principle, we can reduce nitric oxides emission by dilution of combustion air with plenty of recirculated burned gas in the furnace. Dilution makes the oxygen content of the oxidizer low, which decreases temperature fluctuations in flames as well as the mean temperature, hence low nitric oxides emission. Finally, the applicability of highly preheated air combustion to other fields than industrial furnaces has been discussed.

  1. Corrosion performance of materials for advanced combustion systems

    SciTech Connect

    Natesan, K.; Yanez-Herrero, M.; Fornasieri, C.

    1993-12-01

    Conceptual designs of advanced combustion systems that utilize coal as a feedstock require high-temperature furnaces and heat transfer surfaces capable of operating at more elevated temperatures than those prevalent in current coal-fired power plants. The combination of elevated temperatures and hostile combustion environments necessitates development/application of advanced ceramic materials in these designs. This report characterizes the chemistry of coal-fired combustion environments over the wide temperature range that is of interest in these systems and discusses preliminary experimental results on several materials (alumina, Hexoloy, SiC/SiC, SiC/Si{sub 3}N{sub 4}/Si{sub 3}N{sub 4}, ZIRCONIA, INCONEL 677 and 617) with potential for application in these systems.

  2. Solid Fuel Delivery System Developed for Combustion Testing on the International Space Station

    NASA Technical Reports Server (NTRS)

    Frate, David T.

    2004-01-01

    NASA initiated Bioastronautics and Human Research Initiatives in 2001 and 2003, respectively, to enhance the safety and performance of humans in space. The Flow Enclosure Accommodating Novel Investigations in Combustion of Solids (FEANICS) is a multiuser facility being built at the NASA Glenn Research Center to advance these initiatives by studying fire safety and the combustion of solid fuels in the microgravity environment of the International Space Station (ISS). One of the challenges for the FEANICS team was to build a system that allowed for several consecutive combustion tests to be performed with minimal astronaut crew interaction. FEANICS developed a fuel carousel that contains a various number of fuel samples, depending on the fuel width, and introduces them one at a time into a flow tunnel in which the combustion testing takes place. This approach will allow the science team to run the experiments from the ground, while only requiring the crew to change out carousels after several tests have been completed.

  3. Progress in Advanced Spray Combustion Code Integration

    NASA Technical Reports Server (NTRS)

    Liang, Pak-Yan

    1993-01-01

    A multiyear project to assemble a robust, muitiphase spray combustion code is now underway and gradually building up to full speed. The overall effort involves several university and government research teams as well as Rocketdyne. The first part of this paper will give an overview of the respective roles of the different participants involved, the master strategy, the evolutionary milestones, and an assessment of the state-of-the-art of various key components. The second half of this paper will highlight the progress made to date in extending the baseline Navier-Stokes solver to handle multiphase, multispecies, chemically reactive sub- to supersonic flows. The major hurdles to overcome in order to achieve significant speed ups are delineated and the approaches to overcoming them will be discussed.

  4. Materials Challenges for Advanced Combustion and Gasification Fossil Energy Systems

    NASA Astrophysics Data System (ADS)

    Sridhar, S.; Rozzelle, P.; Morreale, B.; Alman, D.

    2011-04-01

    This special section of Metallurgical and Materials Transactions is devoted to materials challenges associated with coal based energy conversion systems. The purpose of this introductory article is to provide a brief outline to the challenges associated with advanced combustion and advanced gasification, which has the potential of providing clean, affordable electricity by improving process efficiency and implementing carbon capture and sequestration. Affordable materials that can meet the demanding performance requirements will be a key enabling technology for these systems.

  5. Adaptive spark timing controller for an internal combustion engine

    SciTech Connect

    Javaherian, H.

    1989-09-19

    This patent describes a system for controlling the ignition timing angle in the ignition control system for an internal combustion engine having cylinders and an output crankshaft rotated during operation of the engine. The ignition control system initiating combustion in each cylinder of the engine at the determined ignition timing value. The system comprising, in combination: means for determining the start of combustion in a cylinder; means for monitoring the value of an indicator function during rotation of the crankshaft after the start of combustion; means for sensing the fpeak value of the indicator function; means for determining the crankshaft angle at which the value of the indicator function is one half the sume of the values of the indicator function at the start of combustion and the peak value occurring at the end of combustion; and means for controlling the ignition timing angle to initiate combustion in the cylinders to establish the crankshaft angle and therefore the cylinder burn establish the crankshaft angle and therefore the cylinder burn center at a predetermined crankshaft angle.

  6. Combustion Velocity of Benzine-Benzol-Air Mixtures in High-Speed Internal-Combustion Engines

    NASA Technical Reports Server (NTRS)

    Schnauffer, Kurt

    1932-01-01

    The present paper describes a device whereby rapid flame movement within an internal-combustion engine cylinder may be recorded and determined. By the aid of a simple cylindrical contact and an oscillograph the rate of combustion within the cylinder of an airplane engine during its normal operation may be measured for gas intake velocities of from 30 to 35 m/s and for velocities within the cylinder of from 20 to 25 m/s. With it the influence of mixture ratios, of turbulence, of compression ratio and kind of fuel on combustion velocity may be determined. Besides the determination of the influence of the above factors on combustion velocity, the degree of turbulence may also be determined. As a unit of reference in estimating the degree of turbulence, the intake velocity of the charge is chosen.

  7. Combustion Synthesis of Advanced Porous Materials in Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Zhang, X.; Moore, J. J.; Schowengerdt, F. D.; Johnson, D. P.

    1999-01-01

    Combustion synthesis, otherwise known as self-propagating high temperature synthesis (SHS), can be used to produce engineered advanced porous material implants which offer the possibility for bone ingrowth as well as a permanent structure framework for the long-term replacement of bone defects. The primary advantage of SHS is based on its rapid kinetics and favorable energetics. The structure and properties of materials produced by SHS are strongly dependent on the combustion reaction conditions. Combustion reaction conditions such as reaction stoichiometry, particle size, green density, the presence and use of diluents or inert reactants, and pre-heating of the reactants, will affect the exothermicity of the reaction. A number of conditions must be satisfied in order to obtain high porosity materials: an optimal amount of liquid, gas and solid phases must be present in the combustion front. Therefore, a balance among these phases at the combustion front must be created by the SHS reaction to successfully engineer a bone replacement material system. Microgravity testing has extended the ability to form porous products. The convective heat transfer mechanisms which operate in normal gravity, 1 g, constrain the combustion synthesis reactions. Gravity also acts to limit the porosity which may be formed as the force of gravity serves to restrict the gas expansion and the liquid movement during reaction. Infiltration of the porous product with other phases can modify both the extent of porosity and the mechanical properties.

  8. High efficiency stoichiometric internal combustion engine system

    DOEpatents

    Winsor, Richard Edward; Chase, Scott Allen

    2009-06-02

    A power system including a stoichiometric compression ignition engine in which a roots blower is positioned in the air intake for the engine to control air flow. Air flow is decreased during part power conditions to maintain the air-fuel ratio in the combustion chamber of the engine at stoichiometric, thus enabling the use of inexpensive three-way catalyst to reduce oxides of nitrogen. The roots blower is connected to a motor generator so that when air flow is reduced, electrical energy is stored which is made available either to the roots blower to temporarily increase air flow or to the system electrical load and thus recapture energy that would otherwise be lost in reducing air flow.

  9. Laser ignition in internal-combustion engines: Sparkless initiation

    NASA Astrophysics Data System (ADS)

    Andronov, A. A.; Gurin, V. A.; Marugin, A. V.; Savikin, A. P.; Svyatoshenko, D. E.; Tukhomirov, A. N.; Utkin, Yu. S.; Khimich, V. L.

    2014-08-01

    Laser ignition has been implemented in a single-cylinder internal combustion engine fueled by gasoline. Indicator diagrams (cylinder pressure versus crank angle) were obtained for laser ignition with nano- and microsecond pulses of an Nd:YAG laser. The maximum power of microsecond pulses was below critical for spark initiation, while the radiation wavelength was outside the spectral range of optical absorption by hydrocarbon fuels. Apparently, the ignition starts due to radiation absorption by the oil residues or carbon deposit in the combustion chamber, so that the ability of engine to operate is retained. This initiation of spark-free ignition shows the possibility of using compact semiconductor quantum-cascade lasers operating at wavelengths of about 3.4 μm (for which the optical absorption by fuel mixtures is high) in ignition systems of internal combustion engines.

  10. Alcohol fuel conversion apparatus for internal combustion engines

    SciTech Connect

    Carroll, B.I.

    1987-01-13

    An alcohol fuel conversion apparatus is described for internal combustion engines comprising: fuel storage means containing an alcohol fuel; primary heat exchanger means in fluid communication with the fuel storage means for transferring heat to pressurized alcohol contained within the heat exchanger means; a heat source for heating the heat exchange means; pressure relief valve means, in closed fluid communication with the primary heat exchange means, operable to release heated pressurized alcohol into an expansion chamber; converter means, including the expansion chamber, in fluid communication with the pressure relief valve means for receiving the heated pressurized alcohol and for the vaporization of the alcohol; carburetor means in fluid communication with the converter means for metering and mixing vaporized alcohol with air for proper combustion and for feeding the mixture to an internal combustion engine; and pump means for pressurized pumping of alcohol from the fuel storage means to the heat exchanger means, converter means, carburetor means, and to the engine.

  11. Advanced Diagnostics for High Pressure Spray Combustion.

    SciTech Connect

    Skeen, Scott A.; Manin, Julien Luc; Pickett, Lyle M.

    2014-06-01

    The development of accurate predictive engine simulations requires experimental data to both inform and validate the models, but very limited information is presently available about the chemical structure of high pressure spray flames under engine- relevant conditions. Probing such flames for chemical information using non- intrusive optical methods or intrusive sampling techniques, however, is challenging because of the physical and optical harshness of the environment. This work details two new diagnostics that have been developed and deployed to obtain quantitative species concentrations and soot volume fractions from a high-pressure combusting spray. A high-speed, high-pressure sampling system was developed to extract gaseous species (including soot precursor species) from within the flame for offline analysis by time-of-flight mass spectrometry. A high-speed multi-wavelength optical extinction diagnostic was also developed to quantify transient and quasi-steady soot processes. High-pressure sampling and offline characterization of gas-phase species formed following the pre-burn event was accomplished as well as characterization of gas-phase species present in the lift-off region of a high-pressure n-dodecane spray flame. For the initial samples discussed in this work several species were identified, including polycyclic aromatic hydrocarbons (PAH); however, quantitative mole fractions were not determined. Nevertheless, the diagnostic developed here does have this capability. Quantitative, time-resolved measurements of soot extinction were also accomplished and the novel use of multiple incident wavelengths proved valuable toward characterizing changes in soot optical properties within different regions of the spray flame.

  12. FY2013 Progress Report for Advanced Combustion Engine Research and Development

    SciTech Connect

    none,

    2013-12-01

    Annual progress report on the work of the the Advanced Combustion Engine Program. The Advanced Combustion Engine Program supports the Vehicle Technologies Office mission by addressing critical technical barriers to commercializing higher efficiency, very low emissions, advanced combustion engines for passenger and commercial vehicles that meet future federal emissions regulations.

  13. A sustained-arc ignition system for internal combustion engines

    NASA Technical Reports Server (NTRS)

    Birchenough, A. G.

    1977-01-01

    A sustained-arc ignition system was developed for internal combustion engines. It produces a very-long-duration ignition pulse with an energy in the order of 100 millijoules. The ignition pulse waveform can be controlled to predetermined actual ignition requirements. The design of the sustained-arc ignition system is presented in the report.

  14. Carbon/Carbon Pistons for Internal Combustion Engines

    NASA Technical Reports Server (NTRS)

    Taylor, A. H.

    1986-01-01

    Carbon/carbon piston performs same function as aluminum pistons in reciprocating internal combustion engines while reducing weight and increasing mechanical and thermal efficiencies of engine. Carbon/carbon piston concept features low piston-to-cylinder wall clearance - so low piston rings and skirts unnecessary. Advantages possible by negligible coefficient of thermal expansion of carbon/carbon.

  15. DOE Project: Optimization of Advanced Diesel Engine Combustion Strategies "University Research in Advanced Combustion and Emissions Control" Office of FreedomCAR and Vehicle Technologies Program

    SciTech Connect

    Reitz, Rolf; Foster, D.; Ghandhi, J.; Rothamer, D.; Rutland, C.; Sanders, S.; Trujillo, M.

    2012-10-26

    The goal of the present technology development was to increase the efficiency of internal combustion engines while minimizing the energy penalty of meeting emissions regulations. This objective was achieved through experimentation and the development of advanced combustion regimes and emission control strategies, coupled with advanced petroleum and non-petroleum fuel formulations. To meet the goals of the project, it was necessary to improve the efficiency of expansion work extraction, and this required optimized combustion phasing and minimized in-cylinder heat transfer losses. To minimize fuel used for diesel particulate filter (DPF) regeneration, soot emissions were also minimized. Because of the complex nature of optimizing production engines for real-world variations in fuels, temperatures and pressures, the project applied high-fidelity computing and high-resolution engine experiments synergistically to create and apply advanced tools (i.e., fast, accurate predictive models) developed for low-emission, fuel-efficient engine designs. The companion experiments were conducted using representative single- and multi-cylinder automotive and truck diesel engines.

  16. Advanced radiant combustion system. Final report, September 1989--September 1996

    SciTech Connect

    Sullivan, J.D.; Carswell, M.G.; Long, F.S.

    1996-09-01

    Results of the Advanced Radiant Combustion System (ARCS) project are presented in this report. This work was performed by Alzeta Corporation as prime contractor under a contract to the U.S. Department of Energy Office of Industrial Technologies as part of a larger DOE program entitled Research Program for Advanced Combustion Systems. The goals of the Alzeta ARCS project were to (a) Improve the high temperature performance characteristics of porous surface ceramic fiber burners, (b) Develop an Advanced Radiant Combustion System (ARCS) that combines combustion controls with an advanced radiant burner, and (c) Demonstrate the advanced burner and controls in an industrial application. Prior to the start of this project, Alzeta had developed and commercialized a porous surface radiant burner, the Pyrocore{trademark} burner. The product had been commercially available for approximately 5 years and had achieved commercial success in a number of applications ranging from small burners for commercial cooking equipment to large burners for low temperature industrial fluid heating applications. The burner was not recommended for use in applications with process temperatures above 1000{degrees}F, which prevented the burner from being used in intermediate to high temperature processes in the chemical and petroleum refining industries. The interest in increasing the maximum use temperature of the burner was motivated in part by a desire to expand the number of applications that could use the Pyrocore product, but also because many of the fluid sensitive heating applications of interest would benefit from the distributed flux characteristic of porous surface burners. Background information on porous surface radiant burners, and a discussion of advantages that would be provided by an improved product, are presented in Section 2.

  17. Fuel Injector Nozzle For An Internal Combustion Engine

    DOEpatents

    Cavanagh, Mark S.; Urven, Jr.; Roger L.; Lawrence, Keith E.

    2006-04-25

    A direct injection fuel injector includes a nozzle tip having a plurality of passages allowing fluid communication between an inner nozzle tip surface portion and an outer nozzle tip surface portion and directly into a combustion chamber of an internal combustion engine. A first group of the passages have inner surface apertures located substantially in a first common plane. A second group of the passages have inner surface apertures located substantially in at least a second common plane substantially parallel to the first common plane. The second group has more passages than the first group.

  18. Fuel injector nozzle for an internal combustion engine

    DOEpatents

    Cavanagh, Mark S.; Urven, Jr., Roger L.; Lawrence, Keith E.

    2008-11-04

    A direct injection fuel injector includes a nozzle tip having a plurality of passages allowing fluid communication between an inner nozzle tip surface portion and an outer nozzle tip surface portion and directly into a combustion chamber of an internal combustion engine. A first group of the passages have inner surface apertures located substantially in a first common plane. A second group of the passages have inner surface apertures located substantially in at least a second common plane substantially parallel to the first common plane. The second group has more passages than the first group.

  19. Fuel injector nozzle for an internal combustion engine

    DOEpatents

    Cavanagh, Mark S.; Urven, Jr., Roger L.; Lawrence, Keith E.

    2007-11-06

    A direct injection fuel injector includes a nozzle tip having a plurality of passages allowing fluid communication between an inner nozzle tip surface portion and an outer nozzle tip surface portion and directly into a combustion chamber of an internal combustion engine. A first group of the passages have inner surface apertures located substantially in a first common plane. A second group of the passages have inner surface apertures located substantially in at least a second common plane substantially parallel to the first common plane. The second group has more passages than the first group.

  20. Fuel injector nozzle for an internal combustion engine

    SciTech Connect

    Cavanagh, Mark S.; Urven, Jr., Roger L.; Lawrence, Keith E.

    2011-03-22

    A direct injection fuel injector includes a nozzle tip having a plurality of passages allowing fluid communication between an inner nozzle tip surface portion and an outer nozzle tip surface portion and directly into a combustion chamber of an internal combustion engine. A first group of the passages have inner surface apertures located substantially in a first common plane. A second group of the passages have inner surface apertures located substantially in at least a second common plane substantially parallel to the first common plane. The second group has more passages than the first group.

  1. Advanced Main Combustion Chamber structural jacket strength analysis

    NASA Technical Reports Server (NTRS)

    Johnston, L. M.; Perkins, L. A.; Denniston, C. L.; Price, J. M.

    1993-01-01

    The structural analysis of the Advanced Main Combustion Chamber (AMCC) is presented. The AMCC is an advanced fabrication concept of the Space Shuttle Main Engine main combustion chamber (MCC). Reduced cost and fabrication time of up to 75 percent were the goals of the AMCC with cast jacket with vacuum plasma sprayed or platelet liner. Since the cast material for the AMCC is much weaker than the wrought material for the MCC, the AMCC is heavier and strength margins much lower in some areas. Proven hand solutions were used to size the manifolds cutout tee areas for combined pressure and applied loads. Detailed finite element strength analyses were used to size the manifolds, longitudinal ribs, and jacket for combined pressure and applied local loads. The design of the gimbal actuator strut attachment lugs were determined by finite element analyses and hand solutions.

  2. 78 FR 14457 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-06

    ... Reciprocating Internal Combustion Engines; New Source Performance Standards for Stationary Internal Combustion Engines Correction In rule document 2013-01288, appearing on pages 6674-6724 in the issue of...

  3. 75 FR 80761 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-23

    ... Reciprocating Internal Combustion Engines AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of... air pollutants for reciprocating internal combustion engines and requesting public comment on one.... List of Subjects in 40 CFR Part 63 Administrative practice and procedure, Air pollution...

  4. Method for determining piston form for an internal combustion engine

    SciTech Connect

    Yagi, T.; Sumida, K.

    1987-04-14

    A method is described for determining a form of a piston for an internal combustion engine. The method comprises: preparing a prototype piston having dimensions slightly smaller than those of a finally processed piston; applying to an outer peripheral surface of the prototype piston, a composite material composed of 25 to 45% by weight of flake aluminum, 2 to 30% by weight of graphite, and a remainder of epoxy resin; heating the prototype piston thus applied with the composite material at temperatures in the range of 90/sup 0/ to 230/sup 0/C. for more than 20 minutes to form a covering layer on the prototype piston; incorporating the prototype piston thus formed with the covering layer into the internal combustion engine, operating the prototype piston for a predetermined period of time, thereby abrading the covering layer of the piston to form an external configuration corresponding to the internal configuration of a cylinder liner of the internal combustion engine; and utilizing the configuration obtained through abrasion of the covering layer in the design of a production piston.

  5. 29 CFR 1915.136 - Internal combustion engines, other than ship's equipment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 7 2012-07-01 2012-07-01 false Internal combustion engines, other than ship's equipment... SHIPYARD EMPLOYMENT Tools and Related Equipment § 1915.136 Internal combustion engines, other than ship's...) When internal combustion engines furnished by the employer are used in a fixed position below...

  6. 46 CFR 32.35-5 - Installation of internal combustion engines-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Installation of internal combustion engines-TB/ALL. 32... EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Main and Auxiliary Machinery § 32.35-5 Installation of internal combustion engines—TB/ALL. Each internal combustion engine located on the weather deck shall be provided...

  7. 29 CFR 1915.136 - Internal combustion engines, other than ship's equipment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 7 2011-07-01 2011-07-01 false Internal combustion engines, other than ship's equipment... SHIPYARD EMPLOYMENT Tools and Related Equipment § 1915.136 Internal combustion engines, other than ship's...) When internal combustion engines furnished by the employer are used in a fixed position below...

  8. 46 CFR 32.35-5 - Installation of internal combustion engines-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Installation of internal combustion engines-TB/ALL. 32... EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Main and Auxiliary Machinery § 32.35-5 Installation of internal combustion engines—TB/ALL. Each internal combustion engine located on the weather deck shall be provided...

  9. 29 CFR 1915.136 - Internal combustion engines, other than ship's equipment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 7 2014-07-01 2014-07-01 false Internal combustion engines, other than ship's equipment... SHIPYARD EMPLOYMENT Tools and Related Equipment § 1915.136 Internal combustion engines, other than ship's...) When internal combustion engines furnished by the employer are used in a fixed position below...

  10. 29 CFR 1915.136 - Internal combustion engines, other than ship's equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Internal combustion engines, other than ship's equipment... SHIPYARD EMPLOYMENT Tools and Related Equipment § 1915.136 Internal combustion engines, other than ship's...) When internal combustion engines furnished by the employer are used in a fixed position below...

  11. 29 CFR 1915.136 - Internal combustion engines, other than ship's equipment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 7 2013-07-01 2013-07-01 false Internal combustion engines, other than ship's equipment... SHIPYARD EMPLOYMENT Tools and Related Equipment § 1915.136 Internal combustion engines, other than ship's...) When internal combustion engines furnished by the employer are used in a fixed position below...

  12. 49 CFR 176.905 - Motor vehicles or mechanical equipment powered by internal combustion engines.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... internal combustion engines. 176.905 Section 176.905 Transportation Other Regulations Relating to... engines. (a) A motor vehicle or any mechanized equipment powered by an internal combustion engine is... met: (1) The motor vehicle or mechanical equipment has an internal combustion engine using liquid...

  13. 46 CFR 32.35-5 - Installation of internal combustion engines-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Installation of internal combustion engines-TB/ALL. 32... EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Main and Auxiliary Machinery § 32.35-5 Installation of internal combustion engines—TB/ALL. Each internal combustion engine located on the weather deck shall be provided...

  14. 46 CFR 32.35-5 - Installation of internal combustion engines-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Installation of internal combustion engines-TB/ALL. 32... EQUIPMENT, MACHINERY, AND HULL REQUIREMENTS Main and Auxiliary Machinery § 32.35-5 Installation of internal combustion engines—TB/ALL. Each internal combustion engine located on the weather deck shall be provided...

  15. Apparatus for photocatalytic destruction of internal combustion engine emissions during cold start

    DOEpatents

    Janata, Jiri; McVay, Gary L.; Peden, Charles H.; Exarhos, Gregory J.

    1998-01-01

    A method and apparatus for the destruction of emissions from an internal combustion engine wherein a substrate coated with TiO.sub.2 is exposed to a light source in the exhaust system of an internal combustion engine thereby catalyzing oxidation/reduction reactions between gaseous hydrocarbons, carbon monoxide, nitrogen oxides and oxygen in the exhaust of the internal combustion engine.

  16. Internal combustion engine and cam drive mechanism therefor

    SciTech Connect

    Ma, T.T.

    1986-03-25

    This patent describes a cam mechanism for driving the camshaft of a four-stroke internal combustion engine having one or more sets of n number of cylinders where n is a positive integer, a piston connected to a crankshaft and reciprocable in each cylinder and is either in phase or out of phase with any other piston in the set to which it belongs by a phase angle A/sup 0/, or an integral multiple thereof. A camshaft carries rotatable cams for actuating inlet and/or exhaust valves for each cylinder in the set. Characterized in the cam drive mechanism consist of means for rotating the camshaft with a rotational movement which is a combination of a circular motion about its axis of rotation which has a predetermined phase relationship with the circular movement of the crankshaft and an oscillatory motion about its axis of rotation to advance and retard the angular position of the cams relative to the valves with which they are associated. The oscillatory motion has a predetermined phase relationship with the crankshaft, and means for varying the amplitude of the oscillatory motion whereby the timing of the opening and closing of the valves may be varied, characterized in that the speed of the circular movement of the camshaft is half the speed of the crankshaft. The frequency of oscillations of the camshaft is f times the frequency of rotation of the crankshaft. The cam drive mechanism consists of a rotatable drive member drivable by the crankshaft. A connection is between the drive member and camshaft for transmitting the rotary motion of the drive member thereto. The connection including a sleeve element rotatable by the drive element and axially slidable relative thereto and having a helically splined connection with the camshaft whereby axial movement of the sleeve element effects a rotation of the camshaft relative to the drive member.

  17. Enhanced efficiency of internal combustion engines by employing spinning gas

    NASA Astrophysics Data System (ADS)

    Geyko, V. I.; Fisch, N. J.

    2014-08-01

    The efficiency of the internal combustion engine might be enhanced by employing spinning gas. A gas spinning at near sonic velocities has an effectively higher heat capacity, which allows practical fuel cycles, which are far from the Carnot efficiency, to approach more closely the Carnot efficiency. A remarkable gain in fuel efficiency is shown to be theoretically possible for the Otto and Diesel cycles. The use of a flywheel, in principle, could produce even greater increases in efficiency.

  18. Enhanced efficiency of internal combustion engines by employing spinning gas.

    PubMed

    Geyko, V I; Fisch, N J

    2014-08-01

    The efficiency of the internal combustion engine might be enhanced by employing spinning gas. A gas spinning at near sonic velocities has an effectively higher heat capacity, which allows practical fuel cycles, which are far from the Carnot efficiency, to approach more closely the Carnot efficiency. A remarkable gain in fuel efficiency is shown to be theoretically possible for the Otto and Diesel cycles. The use of a flywheel, in principle, could produce even greater increases in efficiency. PMID:25215720

  19. Enhanced Efficiency of Internal Combustion Engines By Employing Spinning Gas

    SciTech Connect

    Geyko, Vasily; Fisch, Nathaniel

    2014-02-27

    The efficiency of the internal combustion engine might be enhanced by employing spinning gas. A gas spinning at near sonic velocities has an effectively higher heat capacity, which allows practical fuel cycles, which are far from the Carnot efficiency, to approach more closely the Carnot efficiency. A gain in fuel efficiency of several percent is shown to be theoretically possible for the Otto and Diesel cycles. The use of a flywheel, in principle, could produce even greater increases in the efficiency.

  20. A review of internal combustion engine combustion chamber process studies at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Schock, H. J.

    1984-01-01

    The performance of internal combustion stratified-charge engines is highly dependent on the in-cylinder fuel-air mixing processes occurring in these engines. Current research concerning the in-cylinder airflow characteristics of rotary and piston engines is presented. Results showing the output of multidimensional models, laser velocimetry measurements and the application of a holographic optical element are described. Models which simulate the four-stroke cycle and seal dynamics of rotary engines are also discussed.

  1. Advanced solutions in combustion-based WtE technologies.

    PubMed

    Martin, Johannes J E; Koralewska, Ralf; Wohlleben, Andreas

    2015-03-01

    Thermal treatment of waste by means of combustion in grate-based systems has gained world-wide acceptance as the preferred method for sustainable management and safe disposal of residual waste. In order to maintain this position and to address new challenges and/or priorities, these systems need to be further developed with a view to energy conservation, resource and climate protection and a reduction in the environmental impact in general. MARTIN GmbH has investigated continuously how the implementation of innovative concepts in essential parts of its grate-based Waste-to-Energy (WtE) combustion technology can be used to meet the above-mentioned requirements. As a result of these efforts, new "advanced solutions" were developed, four examples of which are shown in this article. PMID:25305685

  2. The Combination of Internal-Combustion Engine and Gas Turbine

    NASA Technical Reports Server (NTRS)

    Zinner, K.

    1947-01-01

    While the gas turbine by itself has been applied in particular cases for power generation and is in a state of promising development in this field, it has already met with considerable success in two cases when used as an exhaust turbine in connection with a centrifugal compressor, namely, in the supercharging of combustion engines and in the Velox process, which is of particular application for furnaces. In the present paper the most important possibilities of combining a combustion engine with a gas turbine are considered. These "combination engines " are compared with the simple gas turbine on whose state of development a brief review will first be given. The critical evaluation of the possibilities of development and fields of application of the various combustion engine systems, wherever it is not clearly expressed in the publications referred to, represents the opinion of the author. The state of development of the internal-combustion engine is in its main features generally known. It is used predominantly at the present time for the propulsion of aircraft and road vehicles and, except for certain restrictions due to war conditions, has been used to an increasing extent in ships and rail cars and in some fields applied as stationary power generators. In the Diesel engine a most economical heat engine with a useful efficiency of about 40 percent exists and in the Otto aircraft engine a heat engine of greatest power per unit weight of about 0.5 kilogram per horsepower.

  3. Large-Eddy Simulations of Fuel-Air Mixing and Combustion in an Internal Combustion Engine

    NASA Astrophysics Data System (ADS)

    Sone, Kazuo; Menon, Suresh

    2000-11-01

    Past studies of internal combustion (IC) engine steady-state flow field have employed the well-known KIVA code for steady-state predictions. However, it is also well known that this code is incapable of accurately capturing the impact of unsteady fuel-air mixing on the combustion process. Here, the latest KIVA-3V code has been modified to carry out large-eddy simulations (LES). In particular, the RANS k-e model has been replaced by a subgrid kinetic energy model and a fourth-order ENO scheme has been implemented to increase the accuracy of the discretization of the advection term. Finally, a subgrid model to simulate the small-scale turbulent mixing, combustion and heat release is implemented for reacting flows. Simulations using the new version of KIVA3V denoted here as KIVALES of temporal mixing layers and flows past rearward facing step demonstrate the improved accuracy of the LES model. Accuracy of the prediction is demonstrated by comparing with DNS, LES and experimental results obtained in the past. Finally, the new code is employed to simulate fuel-air mixing and combustion in a typical IC engine. Comparison with predictions using the conventional KIVA is used to demonstrate the ability of the new code.

  4. Virtual Instrument for Emissions Measurement of Internal Combustion Engines.

    PubMed

    Pérez, Armando; Ramos, Rogelio; Montero, Gisela; Coronado, Marcos; García, Conrado; Pérez, Rubén

    2016-01-01

    The gases emissions measurement systems in internal combustion engines are strict and expensive nowadays. For this reason, a virtual instrument was developed to measure the combustion emissions from an internal combustion diesel engine, running with diesel-biodiesel mixtures. This software is called virtual instrument for emissions measurement (VIEM), and it was developed in the platform of LabVIEW 2010® virtual programming. VIEM works with sensors connected to a signal conditioning system, and a data acquisition system is used as interface for a computer in order to measure and monitor in real time the emissions of O2, NO, CO, SO2, and CO2 gases. This paper shows the results of the VIEM programming, the integrated circuits diagrams used for the signal conditioning of sensors, and the sensors characterization of O2, NO, CO, SO2, and CO2. VIEM is a low-cost instrument and is simple and easy to use. Besides, it is scalable, making it flexible and defined by the user. PMID:27034893

  5. Virtual Instrument for Emissions Measurement of Internal Combustion Engines

    PubMed Central

    Pérez, Armando; Montero, Gisela; Coronado, Marcos; García, Conrado; Pérez, Rubén

    2016-01-01

    The gases emissions measurement systems in internal combustion engines are strict and expensive nowadays. For this reason, a virtual instrument was developed to measure the combustion emissions from an internal combustion diesel engine, running with diesel-biodiesel mixtures. This software is called virtual instrument for emissions measurement (VIEM), and it was developed in the platform of LabVIEW 2010® virtual programming. VIEM works with sensors connected to a signal conditioning system, and a data acquisition system is used as interface for a computer in order to measure and monitor in real time the emissions of O2, NO, CO, SO2, and CO2 gases. This paper shows the results of the VIEM programming, the integrated circuits diagrams used for the signal conditioning of sensors, and the sensors characterization of O2, NO, CO, SO2, and CO2. VIEM is a low-cost instrument and is simple and easy to use. Besides, it is scalable, making it flexible and defined by the user. PMID:27034893

  6. 46 CFR 32.35-5 - Installation of internal combustion engines-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Installation of internal combustion engines-TB/ALL. 32.35-5 Section 32.35-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS SPECIAL... combustion engines—TB/ALL. Each internal combustion engine located on the weather deck shall be provided...

  7. Port fuel injection and induction system for internal combustion engine

    SciTech Connect

    Bishai, M.N.

    1991-04-23

    This patent describes an engine having a valve cover with a PVC valve to vent a valve chamber so as to eliminate oil and gas fumes there from and an automotive fuel injection system having a port fuel injector connected to a fuel supply and to an air manifold for injecting an air/fuel mixture into the injector for producing a fuel spray pattern at the outlet of an air induction passage form a throttle body assembly and upstream of an inlet valve to the combustion chamber of an internal combustion engine characterized by an integral electric motor driven pump assembly means supplying the injection air to the air manifold; the motor pump assembly means having a pump inlet connected to the PVC valve for providing a lubrication mist to the pump during the operation thereof and the motor pump assembly means having a pump outlet connected to the inlet of the air manifold.

  8. Holographic aids for internal combustion engine flow studies

    NASA Technical Reports Server (NTRS)

    Regan, C.

    1984-01-01

    Worldwide interest in improving the fuel efficiency of internal combustion (I.C.) engines has sparked research efforts designed to learn more about the flow processes of these engines. The flow fields must be understood prior to fuel injection in order to design efficient valves, piston geometries, and fuel injectors. Knowledge of the flow field is also necessary to determine the heat transfer to combustion chamber surfaces. Computational codes can predict velocity and turbulence patterns, but experimental verification is mandatory to justify their basic assumptions. Due to their nonintrusive nature, optical methods are ideally suited to provide the necessary velocity verification data. Optical sytems such as Schlieren photography, laser velocimetry, and illuminated particle visualization are used in I.C. engines, and now their versatility is improved by employing holography. These holographically enhanced optical techniques are described with emphasis on their applications in I.C. engines.

  9. Atmospheric fluidized bed combustion advanced concept system. Final report

    SciTech Connect

    Not Available

    1992-05-01

    DONLEE Technologies Inc. is developing with support of the US Department of Energy an advanced circulating fluidized bed technology known as the Vortex{trademark} Fluidized Bed Combustor (VFBC). The unique feature of the VFBC is the injection of a significant portion of the combustion air into the cyclone. Since as much as one-half of the total combustion air is injected into the cyclone, the cross-sectional area of the circulating fluidized bed is considerably smaller than typical circulating fluidized beds. The technology is being developed for two applications: Industrial-scale boilers ranging from 20,000 to 100,000 pounds per hour steam generating capacity; and two-stage combustion in which a substoichiometric Vortex Fluidized Bed Combustor (2VFBC) or precombustor is used to generate a combustible gas for use primarily in boiler retrofit applications. This Level II analysis of these two applications indicates that both have merit. An industrial-scale VFBC boiler (60,000 lb/hr of steam) is projected to be economically attractive with coal prices as high as $40 per ton and gas prices between $4 and $5 per thousand cubic feet. The payback time is between 3 and 4 years. The 2VFBC system was evaluated at three capacities of application: 20,000; 60,000 and 100,000 lb/hr of steam. The payback times for these three capacities are 4.5, 2.1 and 1.55 years, respectively. The 2VFBC has potential applications for retrofit of existing pulverized coal-fired boilers or as a new large (utility) boiler. Pressurized operation of the 2VFBC has considerable potential for combined cycle power generation applications. Experimental development of both applications is presented here to demonstrate the potential of these two technologies.

  10. Coal combustion science

    SciTech Connect

    Hardesty, D.R.; Baxter, L.L.; Fletcher, T.H.; Mitchell, R.E.

    1990-11-01

    The objective of this activity is to support the Office of Fossil Energy in executing research on coal combustion science. This activity consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center (PETC) Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency (IEA) Coal Combustion Science Project. Specific tasks include: coal devolatilization, coal char combustion, and fate of mineral matter during coal combustion. 91 refs., 40 figs., 9 tabs.

  11. Device for reducing fuel consumption in internal combustion engines

    SciTech Connect

    Sverdlin, A.

    1981-04-21

    An internal combustion engine is provided with a device for automatically preventing thermal and mechanical stress during overload periods, and to power the engine with the most economical fuel consumption rate possible. In a preferred embodiment, the device is associated with the variable speed governor of the main diesel engine of a ship. The device includes a system actuated by significant movements of the governor to regulate the fuel pump or pumps or reduce the engine speed to a more economical and safe level. Means for overriding the system in emergency situations may be provided.

  12. System for improving internal combustion engine fuel efficiency

    SciTech Connect

    Meek, J.S.

    1980-10-28

    A motor vehicle internal combustion engine is described having a pair of heat risers on the exhaust manifold and a plenum chamber positioned about the carburator fuel reservoir. Air from one of the heat risers is directed into the front of the air cleaner assembly. Air from the other heat riser is directed into the plenum where it preheats the fuel in the reservoir, and then exhausts into the air cleaner assembly where it is mixed with the air received from the first heat riser. Significant savings in fuel consumed by the engine have been noted by thus preheating the air and the fuel without vapor lock occurrences.

  13. Fuel injection system for an internal combustion engine

    SciTech Connect

    Freyer, E.; Steinwart, J.; Will, P.

    1981-01-06

    A fuel injection system for an internal combustion engine includes an air suction pipe, a throttle valve located in the pipe, and a member, upstream of the throttle valve, which is actuatable by air flowing through the suction pipe so as to move a piston valve to dose a quantity of fuel to a fuel injection nozzle. The system includes a duct which bypasses the throttle valve, the duct having a valve which closes the duct when the throttle valve is closed and when the engine is above the idling speed. Dosing of fuel is thereby stopped during coasting of a vehicle, leading to decreased fuel consumption.

  14. Connecting rod for internal combustion engine and method of manufacture

    SciTech Connect

    Machida, I.; Sato, Y.; Yamada, Y.

    1989-05-09

    A connecting rod is described for an internal combustion engine having a crankshaft axis and a piston axis the connecting rod comprising: a pair of flanges disposed in parallel relation with a plane including the crankshaft axis and the piston pin axis, each flange having a body and edges, each edge having a lateral rounded projection thereon, such that the edges are thicker than the body; and a web connecting the pair of flanges together, the web and flanges thereby forming a rod portion having a generally I-shaped section.

  15. Timing transmission device for an internal combustion engine

    SciTech Connect

    Inagaki, T.; Okazaki, K.; Ikeda, T.

    1989-06-06

    This patent describes an internal combustion engine comprising: an engine body; a crankshaft rotatably supported on the engine body; a camshaft rotatably supported on the engine body in spaced, parallel relation to the crankshaft; a drive gear on the crankshaft; a driven gear on the crankshaft; a support plate pivotably mounted at one end to one of the crankshaft and the camshaft; the other end of the support plate being loosely secured to the engine body to accommodate thermal expansion thereof; and an idler gear rotatably mounted on the support plate for drivingly connecting the drive gear to the driven gear.

  16. A review of internal combustion engine combustion chamber process studies at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Schock, H. J.

    1984-01-01

    The performance of internal combustion stratified-charge engines is highly dependent on the in-cylinder fuel-air mixing processes occurring in these engines. Current research concerning the in-cylinder airflow characteristics of rotary and piston engines is presented. Results showing the output of multidimensional models, laser velocimetry measurements and the application of a holographic optical element are described. Models which simulate the four-stroke cycle and seal dynamics of rotary engines are also discussed. Previously announced in STAR as N84-24999

  17. Partially-Premixed Flames in Internal Combustion Engines

    SciTech Connect

    Robert W. Pitz; Michael C. Drake; Todd D. Fansler; Volker Sick

    2003-11-05

    This was a joint university-industry research program funded by the Partnerships for the Academic-Industrial Research Program (PAIR). The research examined partially premixed flames in laboratory and internal combustion engine environments at Vanderbilt University, University of Michigan, and General Motors Research and Development. At Vanderbilt University, stretched and curved ''tubular'' premixed flames were measured in a unique optically accessible burner with laser-induced spontaneous Raman scattering. Comparisons of optically measured temperature and species concentration profiles to detailed transport, complex chemistry simulations showed good correspondence at low-stretch conditions in the tubular flame. However, there were significant discrepancies at high-stretch conditions near flame extinction. The tubular flame predictions were found to be very sensitive to the specific hydrogen-air chemical kinetic mechanism and four different mechanisms were compared. In addition, the thermo-diffusive properties of the deficient reactant, H2, strongly affected the tubular flame structure. The poor prediction near extinction is most likely due to deficiencies in the chemical kinetic mechanisms near extinction. At the University of Michigan, an optical direct-injected engine was built up for laser-induced fluorescence imaging experiments on mixing and combustion under stratified charge combustion conditions with the assistance of General Motors. Laser attenuation effects were characterized both experimentally and numerically to improve laser imaging during the initial phase of the gasoline-air mixture development. Toluene was added to the isooctane fuel to image the fuel-air equivalence ratio in an optically accessible direct-injected gasoline engine. Temperature effects on the toluene imaging of fuel-air equivalence ratio were characterized. For the first time, oxygen imaging was accomplished in an internal combustion engine by combination of two fluorescence trackers

  18. Coal-water slurry fuel internal combustion engine and method for operating same

    DOEpatents

    McMillian, Michael H.

    1992-01-01

    An internal combustion engine fueled with a coal-water slurry is described. About 90 percent of the coal-water slurry charge utilized in the power cycle of the engine is directly injected into the main combustion chamber where it is ignited by a hot stream of combustion gases discharged from a pilot combustion chamber of a size less than about 10 percent of the total clearance volume of main combustion chamber with the piston at top dead center. The stream of hot combustion gases is provided by injecting less than about 10 percent of the total coal-water slurry charge into the pilot combustion chamber and using a portion of the air from the main combustion chamber that has been heated by the walls defining the pilot combustion chamber as the ignition source for the coal-water slurry injected into the pilot combustion chamber.

  19. Experimental results with hydrogen fueled internal combustion engines

    NASA Technical Reports Server (NTRS)

    De Boer, P. C. T.; Mclean, W. J.; Homan, H. S.

    1975-01-01

    The paper focuses on the most important experimental findings for hydrogen-fueled internal combustion engines, with particular reference to the application of these findings to the assessment of the potential of hydrogen engines. Emphasis is on the various tradeoffs that can be made, such as between maximum efficiency, maximum power, and minimum NO emissions. The various possibilities for induction and ignition are described. Some projections are made about areas in which hydrogen engines may find their initial application and about optimum ways to design such engines. It is shown that hydrogen-fueled reciprocal internal combustion engines offer important advantages with respect to thermal efficiency and exhaust emissions. Problems arising from preignition can suitably be avoided by restricting the fuel-air equivalence ratio to values below about 0.5. The direct cylinder injection appears to be a very attractive way to operate the engine, because it combines a wide range of possible power outputs with a high thermal efficiency and very low NO emissions at part loads.

  20. Exhaust gas cleaning device of internal combustion engines

    SciTech Connect

    Ikenoya, Y.; Ishida, Y.

    1984-03-06

    An exhaust gas cleaning device of an internal combustion engine, comprising a secondary-air supply system connected to exhaust ports to supply the secondary air for cooling the exhaust gas, and reed valve devices installed in the secondary-air supply system and adapted to be opened and closed by the pulsating pressure generated in the exhaust ports when the engine is in operation. The reed valve devices are mounted on the side surface of the cylinder block, each of which has a reed valve chamber and a reed valve that divides the reed valve chamber into an upstream chamber and a downstream chamber and that is adapted to be opened and closed by the pulsating exhaust gas. The upstream chamber is communicated with the open air via a secondary-air intake pipe, and the downstream chamber is connected to the exhaust port via a secondary-air supply passage. The exhaust gas cleaning device is simply constructed so that its maintenance is easy and the presence of the device does not hinder maintenance operation for the internal combustion engine such as replacement of spark plugs, adjustment of tappets, and the like.

  1. Internal combustion engine for natural gas compressor operation

    DOEpatents

    Hagen, Christopher L.; Babbitt, Guy; Turner, Christopher; Echter, Nick; Weyer-Geigel, Kristina

    2016-04-19

    This application concerns systems and methods for compressing natural gas with an internal combustion engine. In a representative embodiment, a system for compressing a gas comprises a reciprocating internal combustion engine including at least one piston-cylinder assembly comprising a piston configured to travel in a cylinder and to compress gas in the cylinder in multiple compression stages. The system can further comprise a first pressure tank in fluid communication with the piston-cylinder assembly to receive compressed gas from the piston-cylinder assembly until the first pressure tank reaches a predetermined pressure, and a second pressure tank in fluid communication with the piston-cylinder assembly and the first pressure tank. The second pressure tank can be configured to receive compressed gas from the piston-cylinder assembly until the second pressure tank reaches a predetermined pressure. When the first and second pressure tanks have reached the predetermined pressures, the first pressure tank can be configured to supply gas to the piston-cylinder assembly, and the piston can be configured to compress the gas supplied by the first pressure tank such that the compressed gas flows into the second pressure tank.

  2. Comparisons between measurement and analysis of fluid motion in internal combustion engines

    SciTech Connect

    Witze, P.O.

    1981-10-01

    The Engine Combustion Technology Project was created for the purpose of promoting the development of advanced piston engine concepts by the development of techniques to measure, analyze, and understand the combustion process. The technologies emphasized in the project include laser-based measurement techniques and large-scale computer simulations. Considerable progress has already been achieved by project participants in modeling engine air motion, fuel sprays, and engine combustion phenomena. This milestone report covers one part of that progress, summarizing the current capabilities of multi-dimensional computer codes being developed by the project to predict the behavior of turbulent air motion in an engine environment. Computed results are compared directly with experimental data in six different areas of importance to internal combustion engines: (1) Induction-generated ring-vortex structures; (2) Piston-induced vortex roll-up; (3) Behavior of turbulence during compression; (4) Decay of swirling flow during compression; (5) Decay of swirling flow in a constant volume engine simulator; (6) Exhaust-pipe flow. The computational procedures used include vortex dynamics, rapid distortion theory, and finite difference models employing two-equation and subgrid-scale turbulence models. Although the capability does not yet exist to predict the air motion in an engine from its geometric configuration alone, the results presented show that many flowfield sub-processes can be predicted given well-specified initial and boundary conditions.

  3. The problem of carrying out a diagnosis of an internal combustion engine by vibroacoustical parameters

    NASA Technical Reports Server (NTRS)

    Lukanin, V. N.; Sidorov, V. I.

    1973-01-01

    The physics of noise formation in an internal combustion engine is discussed. A dependence of the acoustical radiation on the engine operating process, its construction, and operational parameters, as well as on the degree of wear on its parts, has been established. An example of tests conducted on an internal combustion engine is provided. A system for cybernetic diagnostics for internal combustion engines by vibroacoustical parameters is diagrammed.

  4. Apparatus for photocatalytic destruction of internal combustion engine emissions during cold start

    DOEpatents

    Janata, J.; McVay, G.L.; Peden, C.H.; Exarhos, G.J.

    1998-07-14

    A method and apparatus are disclosed for the destruction of emissions from an internal combustion engine wherein a substrate coated with TiO{sub 2} is exposed to a light source in the exhaust system of an internal combustion engine thereby catalyzing oxidation/reduction reactions between gaseous hydrocarbons, carbon monoxide, nitrogen oxides and oxygen in the exhaust of the internal combustion engine. 4 figs.

  5. Oxy-Combustion Environment Characterization: Fire- and Steam-Side Corrosion in Advanced Combustion

    SciTech Connect

    G. R. Holcomb; J. Tylczak; G. H. Meier; B. S. Lutz; N. M. Yanar; F. S. Pettit; J. Zhu; A. Wise; D. E. Laughlin; S. Sridhar

    2012-09-25

    Oxy-fuel combustion is burning a fuel in oxygen rather than air. The low nitrogen flue gas that results is relatively easy to capture CO{sub 2} from for reuse or sequestration. Corrosion issues associated with the environment change (replacement of much of the N{sub 2} with CO{sub 2} and higher sulfur levels) from air- to oxy-firing were examined. Alloys studied included model Fe-Cr alloys and commercial ferritic steels, austenitic steels, and nickel base superalloys. The corrosion behavior is described in terms of corrosion rates, scale morphologies, and scale/ash interactions for the different environmental conditions. Additionally, the progress towards laboratory oxidation tests in advanced ultra-supercritical steam is updated.

  6. Advanced Materials for Mercury 50 Gas Turbine Combustion System

    SciTech Connect

    Price, Jeffrey

    2008-09-30

    Solar Turbines Incorporated (Solar), under cooperative agreement number DE-FC26-0CH11049, has conducted development activities to improve the durability of the Mercury 50 combustion system to 30,000 hours life and reduced life cycle costs. This project is part of Advanced Materials in the Advanced Industrial Gas Turbines program in DOE's Office of Distributed Energy. The targeted development engine was the Mercury{trademark} 50 gas turbine, which was developed by Solar under the DOE Advanced Turbine Systems program (DOE contract number DE-FC21-95MC31173). As a generator set, the Mercury 50 is used for distributed power and combined heat and power generation and is designed to achieve 38.5% electrical efficiency, reduced cost of electricity, and single digit emissions. The original program goal was 20,000 hours life, however, this goal was increased to be consistent with Solar's standard 30,000 hour time before overhaul for production engines. Through changes to the combustor design to incorporate effusion cooling in the Generation 3 Mercury 50 engine, which resulted in a drop in the combustor wall temperature, the current standard thermal barrier coated liner was predicted to have 18,000 hours life. With the addition of the advanced materials technology being evaluated under this program, the combustor life is predicted to be over 30,000 hours. The ultimate goal of the program was to demonstrate a fully integrated Mercury 50 combustion system, modified with advanced materials technologies, at a host site for a minimum of 4,000 hours. Solar was the Prime Contractor on the program team, which includes participation of other gas turbine manufacturers, various advanced material and coating suppliers, nationally recognized test laboratories, and multiple industrial end-user field demonstration sites. The program focused on a dual path development route to define an optimum mix of technologies for the Mercury 50 and future gas turbine products. For liner and injector

  7. Research Needs and Impacts in Predictive Simulation for Internal Combustion Engines (PreSICE)

    SciTech Connect

    Eckerle, Wayne; Rutland, Chris; Rohlfing, Eric; Singh, Gurpreet; McIlroy, Andrew

    2011-03-03

    This report is based on a SC/EERE Workshop to Identify Research Needs and Impacts in Predictive Simulation for Internal Combustion Engines (PreSICE), held March 3, 2011, to determine strategic focus areas that will accelerate innovation in engine design to meet national goals in transportation efficiency. The U.S. has reached a pivotal moment when pressures of energy security, climate change, and economic competitiveness converge. Oil prices remain volatile and have exceeded $100 per barrel twice in five years. At these prices, the U.S. spends $1 billion per day on imported oil to meet our energy demands. Because the transportation sector accounts for two-thirds of our petroleum use, energy security is deeply entangled with our transportation needs. At the same time, transportation produces one-quarter of the nation’s carbon dioxide output. Increasing the efficiency of internal combustion engines is a technologically proven and cost-effective approach to dramatically improving the fuel economy of the nation’s fleet of vehicles in the near- to mid-term, with the corresponding benefits of reducing our dependence on foreign oil and reducing carbon emissions. Because of their relatively low cost, high performance, and ability to utilize renewable fuels, internal combustion engines—including those in hybrid vehicles—will continue to be critical to our transportation infrastructure for decades. Achievable advances in engine technology can improve the fuel economy of automobiles by over 50% and trucks by over 30%. Achieving these goals will require the transportation sector to compress its product development cycle for cleaner, more efficient engine technologies by 50% while simultaneously exploring innovative design space. Concurrently, fuels will also be evolving, adding another layer of complexity and further highlighting the need for efficient product development cycles. Current design processes, using “build and test” prototype engineering, will not

  8. Center for Advanced Modeling and Simulation Intern

    SciTech Connect

    Gertman, Vanessa

    2010-01-01

    Some interns just copy papers and seal envelopes. Not at INL! Check out how Vanessa Gertman, an INL intern working at the Center for Advanced Modeling and Simulation, spent her summer working with some intense visualization software. Lots more content like this is available at INL's facebook page http://www.facebook.com/idahonationallaboratory.

  9. Center for Advanced Modeling and Simulation Intern

    ScienceCinema

    Gertman, Vanessa

    2013-05-28

    Some interns just copy papers and seal envelopes. Not at INL! Check out how Vanessa Gertman, an INL intern working at the Center for Advanced Modeling and Simulation, spent her summer working with some intense visualization software. Lots more content like this is available at INL's facebook page http://www.facebook.com/idahonationallaboratory.

  10. Precision distributorless ignition control system for internal combustion engines

    SciTech Connect

    Long, A.

    1987-03-17

    An electronic ignition system is described for controlling as a function of a selected engine parameter the ignition instants of an internal combustion engine having at least one cylinder, a piston, and a rotatable crankshaft coupled to the piston to be rotatably driven as combustions within the cylinder occur at the ignition instants. The crankshaft has at least one first reference position defining a positional relationship of the crankshaft to the cylinder, the crankshaft having a second reference position disposed a fixed angular distance before the first reference position considering the rotational direction of the crankshaft. The ignition instant is intended to occur upon the termination of a variable crankshaft arc beginning at the second reference position, the length of the crankshaft arc determined as a function of the selected engine parameter. The electronic ignition system comprises: (a) a rotor coupled to rotate with the crankshaft and having at least one first reference indicium and N second reference indicia thereon for each first reference indicium, the first reference indicium positionally related to the second reference position. The second reference indicia includes at least one second reference indicium aligned with the first reference indicium, the second reference indicia being spaced from each other by substantially equal angles; and (b) first and second signal generating means disposed at a point fixed in relation to the rotation of the crankshaft for providing respectively a first train of signals and a second train of signals.

  11. Engine valve operating system for an internal combustion engine

    SciTech Connect

    Hara, S.; Matsumoto, Y.; Matayoshi, Y.

    1986-02-04

    This patent describes an engine valve operating system for an internal combustion engine. The system consists of: a driving cam rotatable in timed relation to engine revolution; a rocker arm having a first end section drivingly connected to an engine valve and a second end section drivably connected to the driving cam; an elongated lever pivoted at a first end section and disposed in fulcrum contact with the rocker arm; an apparatus for biasing the rocker arm and the lever away from each other; and a hydraulic actuator having a movable end section which is in contact with a second end section of the lever and movable to control the pivotal location of the lever in accordance with an engine operating condition.

  12. Heat storage for a bus petrol internal-combustion engine

    NASA Astrophysics Data System (ADS)

    Vasiliev, Leonard L.; Burak, Victor S.; Kulakov, Andry G.; Mishkinis, Donatas A.; Bohan, Pavel V.

    The heat storage (HS) system for pre-heating a bus petrol internal combustion engine to starting was mathematically modelled and experimentally investigated. The development of such devices is an extremely urgent problem especially for regions with a cold climate. We discuss how HS works on the effect of absorption and rejection of heat energy at a solid-liquid phase change of a HS substance. In the first part of the paper a numerical method to calculate the HS mass-dimensional parameters and their characteristics are described. In the experimental part of the paper results are given of experiments on the pre-heating device aiding to start a carburettor engine under operational conditions and analysis of data received. Practical confirmation of the theoretical development of HS devices for a bus engine for starting by pre-heating is given.

  13. Crankshaft structure of two-cycle internal combustion engine

    SciTech Connect

    Oyama, K.

    1986-11-18

    This patent describes a crankshaft structure in a two-cycle internal combustion engine comprising a crank web and a crank journal rotatably supported in a crank case by a bearing means. The crank web includes a supporting part having a central bore for receiving the crank journal press-fit therein. The supporting part has a reduced outer diameter portion disposed adjacent the bearing means supporting the crank journal and at an axial position overlying a press-fit part of the crank journal in the central bore of the crank web supporting part. The reduced outer diameter portion of the supporting part has a sealing member disposed on the outer periphery thereof.

  14. Crankshaft supporting and lubricating structure for multicylinder internal combustion engines

    SciTech Connect

    Anno, N.

    1987-04-14

    This patent describes a crankshaft supporting and lubricating device in a multicylinder internal combustion engine having bearing caps secured to journal walls of a cylinder block rotatably supporting a crankshaft between the bearing caps and the journal walls with a bridge interconnecting the bearing caps. The improvement described here comprises: the bearing caps and the bridge having branch oil passages defined therein for supplying lubricating oil to bearings of the crankshaft; the branch oil passages being deviated to one side from a cylinder axis passing through the center of the crankshaft; the bridge having a main gallery defined therein in communication with the branch oil passages and also deviated to the one side; and the bridge and one of the bearing caps having an oil passage defined therein on the one side and providing communication between the main gallery and a pressurized oil source.

  15. Air supply system for an internal combustion engine

    SciTech Connect

    Eftink, A.J.

    1991-03-12

    This patent describes a reciprocating piston internal combustion engine having a crankshaft and at least two cylinders, each cylinder having a displacement volume V{sub 1}, the improved means for supplying air to each cylinder. It comprises: a rotary, trochoidal chamber air pump defining at least one pair of pumping chambers, the number of pumping chambers being equal to the number of cylinders in the engine; air intake conduits connecting each pumping chamber to one cylinder of the engine; a rotor rotatable in each pair of pumping chambers, the rotor having three faces such that passage of a face of the rotor through a pumping chamber forces air in the pumping chamber into the associated air intake conduit and, consequently, into the engine cylinder; and means interconnecting the rotor and the crankshaft so as to rotate the rotor approximately one revolution for every three revolutions of the crankshaft.

  16. Ignition timing control system for internal combustion engines

    SciTech Connect

    Suzuki, Y.; Kimura, S.

    1988-05-31

    An ignition timing control system for an internal combustion engine having a crankshaft is described comprising: magnetic pick-up means for magnetically sensing the angular position of the crankshaft and for generating an output signal indictive thereof; and control means for controlling the ignition timing of the engine based on the output signal from the magnetic pick-up means. The control means includes correction means for correcting a basic ignition timing, which is determined in accordance with at least one engine operating parameter, by the use of a correction value, which is determined in accordance with a time delay in the generation of the output signal from the magnetic pick-up means with respect to the angular position of the crankshaft and which increases with a rise in the rotational speed of the engine.

  17. Crankshaft supporting structure for multicylinder internal combustion engines

    SciTech Connect

    Fukuo, K.; Ito, T.; Ichida, K.

    1988-03-08

    A crankshaft supporting structure in a multicylinder internal combustion engine is described including a bearing caps secured respectively to journal walls integral with a crankcase of a cylinder block, a crankshaft rotatably supported between the journal walls and the bearing caps, at least one counterweight on the crankshaft, and a bridge interconnecting the bearing caps. The bridge includes integral baffle plates extending between locations of the bearing caps and curved along a path of outer peripheral surfaces of each counterweight on the crankshaft. The bridge includes an oil supply gallery which extends substantially along a length of the bridge and generally parallel to the crankshaft and branch passages are provided in the bridge and the bearing caps extending from the gallery to a bearing hole defined by each journal wall and bearing cap.

  18. Automatic compression adjusting mechanism for internal combustion engines

    NASA Technical Reports Server (NTRS)

    Akkerman, J. W. (Inventor)

    1983-01-01

    Means for controlling the compression pressure in an internal combustion engine having one or more cylinders and subject to widely varying power output requirements are provided. Received between each crank pin and connecting rod is an eccentric sleeve selectively capable of rotation about the crank pin and/or inside the rod and for latching with the rod to vary the effective length of the connecting rod and thereby the clearance volume of the engine. The eccentric normally rotates inside the connecting rod during the exhaust and intake strokes but a latching pawl carried by the eccentric is movable radially outwardly to latch the rod and eccentric together during the compression and power strokes. A control valve responds to intake manifold pressure to time the supply of hydraulic fluid to move the latch-pawl outwardly, varying the effective rod length to maintain a substantially optimum firing chamber pressure at all intake manifold pressures.

  19. Exhaust gas recirculation system for an internal combustion engine

    SciTech Connect

    Wu, Ko-Jen

    2013-05-21

    An exhaust gas recirculation system for an internal combustion engine comprises an exhaust driven turbocharger having a low pressure turbine outlet in fluid communication with an exhaust gas conduit. The turbocharger also includes a low pressure compressor intake and a high pressure compressor outlet in communication with an intake air conduit. An exhaust gas recirculation conduit fluidly communicates with the exhaust gas conduit to divert a portion of exhaust gas to a low pressure exhaust gas recirculation branch extending between the exhaust gas recirculation conduit and an engine intake system for delivery of exhaust gas thereto. A high pressure exhaust gas recirculation branch extends between the exhaust gas recirculation conduit and the compressor intake and delivers exhaust gas to the compressor for mixing with a compressed intake charge for delivery to the intake system.

  20. Multiple fuel supply system for an internal combustion engine

    DOEpatents

    Crothers, William T.

    1977-01-01

    A multiple fuel supply or an internal combustion engine wherein phase separation of components is deliberately induced. The resulting separation permits the use of a single fuel tank to supply components of either or both phases to the engine. Specifically, phase separation of a gasoline/methanol blend is induced by the addition of a minor amount of water sufficient to guarantee separation into an upper gasoline phase and a lower methanol/water phase. A single fuel tank holds the two-phase liquid with separate fuel pickups and separate level indicators for each phase. Either gasoline or methanol, or both, can be supplied to the engine as required by predetermined parameters. A fuel supply system for a phase-separated multiple fuel supply contained in a single fuel tank is described.

  1. PROCEEDINGS OF THE STATIONARY SOURCE COMBUSTION SYMPOSIUM (2ND) HELD IN NEW ORLEANS, LA. ON AUGUST 29-SEPTEMBER 1, 1977. VOLUME III. STATIONARY ENGINE, INDUSTRIAL PROCESS COMBUSTION SYSTEMS, AND ADVANCED PROCESSES

    EPA Science Inventory

    ;Contents: Application of combustion modifications to industrial combustion equipment; Boiler burner design criteria for retrofit with low-Btu gases; Environmental assessment of afterburner combustion systems; Advanced combustion systems for stationary gas turbine engines; Develo...

  2. Traveling-Wave Thermoacoustic Engines With Internal Combustion

    DOEpatents

    Weiland, Nathan Thomas; Zinn, Ben T.; Swift, Gregory William

    2004-05-11

    Thermoacoustic devices are disclosed wherein, for some embodiments, a combustion zone provides heat to a regenerator using a mean flow of compressible fluid. In other embodiments, burning of a combustible mixture within the combustion zone is pulsed in phase with the acoustic pressure oscillations to increase acoustic power output. In an example embodiment, the combustion zone and the regenerator are thermally insulated from other components within the thermoacoustic device.

  3. 46 CFR 62.35-35 - Starting systems for internal-combustion engines.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Starting systems for internal-combustion engines. 62.35... Starting systems for internal-combustion engines. The starting systems for propulsion engines and for prime...-2/11.11 of the ABS Steel Vessel Rules (incorporated by reference; see 46 CFR 62.05-1)....

  4. 40 CFR Appendix A to Subpart A of... - State Regulation of Nonroad Internal Combustion Engines

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Nonroad Internal Combustion Engines This appendix sets forth the Environmental Protection Agency's (EPA's... 40 Protection of Environment 21 2012-07-01 2012-07-01 false State Regulation of Nonroad Internal Combustion Engines A Appendix A to Subpart A of Part 89 Protection of Environment ENVIRONMENTAL...

  5. 40 CFR Appendix A to Subpart A of... - State Regulation of Nonroad Internal Combustion Engines

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Nonroad Internal Combustion Engines This appendix sets forth the Environmental Protection Agency's (EPA's... 40 Protection of Environment 21 2013-07-01 2013-07-01 false State Regulation of Nonroad Internal Combustion Engines A Appendix A to Subpart A of Part 89 Protection of Environment ENVIRONMENTAL...

  6. 46 CFR 62.35-35 - Starting systems for internal-combustion engines.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Starting systems for internal-combustion engines. 62.35... Starting systems for internal-combustion engines. The starting systems for propulsion engines and for prime...-2/11.11 of the ABS Steel Vessel Rules (incorporated by reference; see 46 CFR 62.05-1)....

  7. 46 CFR 62.35-35 - Starting systems for internal-combustion engines.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Starting systems for internal-combustion engines. 62.35... Starting systems for internal-combustion engines. The starting systems for propulsion engines and for prime...-2/11.11 of the ABS Steel Vessel Rules (incorporated by reference; see 46 CFR 62.05-1)....

  8. 46 CFR 62.35-35 - Starting systems for internal-combustion engines.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Starting systems for internal-combustion engines. 62.35... Starting systems for internal-combustion engines. The starting systems for propulsion engines and for prime...-2/11.11 of the ABS Steel Vessel Rules (incorporated by reference; see 46 CFR 62.05-1)....

  9. 40 CFR Appendix A to Subpart A of... - State Regulation of Nonroad Internal Combustion Engines

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Nonroad Internal Combustion Engines This appendix sets forth the Environmental Protection Agency's (EPA's... 40 Protection of Environment 20 2011-07-01 2011-07-01 false State Regulation of Nonroad Internal Combustion Engines A Appendix A to Subpart A of Part 89 Protection of Environment ENVIRONMENTAL...

  10. 46 CFR 62.35-35 - Starting systems for internal-combustion engines.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Starting systems for internal-combustion engines. 62.35... Starting systems for internal-combustion engines. The starting systems for propulsion engines and for prime...-2/11.11 of the ABS Steel Vessel Rules (incorporated by reference; see 46 CFR 62.05-1)....

  11. 40 CFR Appendix A to Subpart A of... - State Regulation of Nonroad Internal Combustion Engines

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Nonroad Internal Combustion Engines This appendix sets forth the Environmental Protection Agency's (EPA's... 40 Protection of Environment 20 2014-07-01 2013-07-01 true State Regulation of Nonroad Internal Combustion Engines A Appendix A to Subpart A of Part 89 Protection of Environment ENVIRONMENTAL...

  12. 75 FR 75937 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-07

    ... ignition (CI) reciprocating internal combustion engines (RICE) (75 FR 9648). The final NESHAP for... Stationary Spark Ignition Internal Combustion Engines. 75 FR 32612 (June 8, 2010). In that action, EPA... proposed NESHAP for several categories of existing stationary RICE (74 FR 9698). That proposed rule...

  13. 77 FR 37361 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-21

    ....gov/fdsys/pkg/FR-2012-06-07/pdf/2012-13193.pdf and also in the docket identified below. The public... Reciprocating Internal Combustion Engines; New Source Performance Standards for Stationary Internal Combustion... proposed rule, ``National Emission Standards for Hazardous Air Pollutants for Reciprocating...

  14. Mitigating the effect of siloxanes on internal combustion engines using landfill gasses

    SciTech Connect

    Besmann, Theodore M

    2015-01-06

    A waste gas combustion method that includes providing a combustible fuel source, in which the combustible fuel source is composed of at least methane and siloxane gas. A sodium source or magnesium source is mixed with the combustible fuel source. Combustion of the siloxane gas of the combustible fuel source produces a silicon containing product. The sodium source or magnesium source reacts with the silicon containing product to provide a sodium containing glass or sodium containing silicate, or a magnesium containing silicate. By producing the sodium containing glass or sodium containing silicate, or the magnesium containing silicate, or magnesium source for precipitating particulate silica instead of hard coating, the method may reduce or eliminate the formation of silica deposits within the combustion chamber and the exhaust components of the internal combustion engine.

  15. Mitigating the effect of siloxanes on internal combustion engines using landfill gasses

    SciTech Connect

    Besmann, Theodore M

    2014-01-21

    A waste gas combustion method that includes providing a combustible fuel source, in which the combustible fuel source is composed of at least methane and siloxane gas. A sodium source or magnesium source is mixed with the combustible fuel source. Combustion of the siloxane gas of the combustible fuel source produces a silicon containing product. The sodium source or magnesium source reacts with the silicon containing product to provide a sodium containing glass or sodium containing silicate, or a magnesium containing silicate. By producing the sodium containing glass or sodium containing silicate, or the magnesium containing silicate, or magnesium source for precipitating particulate silica instead of hard coating, the method may reduce or eliminate the formation of silica deposits within the combustion chamber and the exhaust components of the internal combustion engine.

  16. Dynamic estimator for determining operating conditions in an internal combustion engine

    DOEpatents

    Hellstrom, Erik; Stefanopoulou, Anna; Jiang, Li; Larimore, Jacob

    2016-01-05

    Methods and systems are provided for estimating engine performance information for a combustion cycle of an internal combustion engine. Estimated performance information for a previous combustion cycle is retrieved from memory. The estimated performance information includes an estimated value of at least one engine performance variable. Actuator settings applied to engine actuators are also received. The performance information for the current combustion cycle is then estimated based, at least in part, on the estimated performance information for the previous combustion cycle and the actuator settings applied during the previous combustion cycle. The estimated performance information for the current combustion cycle is then stored to the memory to be used in estimating performance information for a subsequent combustion cycle.

  17. Towards a detailed soot model for internal combustion engines

    SciTech Connect

    Mosbach, Sebastian; Celnik, Matthew S.; Raj, Abhijeet; Kraft, Markus; Zhang, Hongzhi R.; Kubo, Shuichi; Kim, Kyoung-Oh

    2009-06-15

    In this work, we present a detailed model for the formation of soot in internal combustion engines describing not only bulk quantities such as soot mass, number density, volume fraction, and surface area but also the morphology and chemical composition of soot aggregates. The new model is based on the Stochastic Reactor Model (SRM) engine code, which uses detailed chemistry and takes into account convective heat transfer and turbulent mixing, and the soot formation is accounted for by SWEEP, a population balance solver based on a Monte Carlo method. In order to couple the gas-phase to the particulate phase, a detailed chemical kinetic mechanism describing the combustion of Primary Reference Fuels (PRFs) is extended to include small Polycyclic Aromatic Hydrocarbons (PAHs) such as pyrene, which function as soot precursor species for particle inception in the soot model. Apart from providing averaged quantities as functions of crank angle like soot mass, volume fraction, aggregate diameter, and the number of primary particles per aggregate for example, the integrated model also gives detailed information such as aggregate and primary particle size distribution functions. In addition, specifics about aggregate structure and composition, including C/H ratio and PAH ring count distributions, and images similar to those produced with Transmission Electron Microscopes (TEMs), can be obtained. The new model is applied to simulate an n-heptane fuelled Homogeneous Charge Compression Ignition (HCCI) engine which is operated at an equivalence ratio of 1.93. In-cylinder pressure and heat release predictions show satisfactory agreement with measurements. Furthermore, simulated aggregate size distributions as well as their time evolution are found to qualitatively agree with those obtained experimentally through snatch sampling. It is also observed both in the experiment as well as in the simulation that aggregates in the trapped residual gases play a vital role in the soot

  18. Development of High Efficiency Clean Combustion Engine Designs for Spark-Ignition and Compression-Ignition Internal Combustion Engines

    SciTech Connect

    Marriott, Craig; Gonzalez, Manual; Russell, Durrett

    2011-06-30

    This report summarizes activities related to the revised STATEMENT OF PROJECT OBJECTIVES (SOPO) dated June 2010 for the Development of High-Efficiency Clean Combustion engine Designs for Spark-Ignition and Compression-Ignition Internal Combustion Engines (COOPERATIVE AGREEMENT NUMBER DE-FC26-05NT42415) project. In both the spark- (SI) and compression-ignition (CI) development activities covered in this program, the goal was to develop potential production-viable internal combustion engine system technologies that both reduce fuel consumption and simultaneously met exhaust emission targets. To be production-viable, engine technologies were also evaluated to determine if they would meet customer expectations of refinement in terms of noise, vibration, performance, driveability, etc. in addition to having an attractive business case and value. Prior to this activity, only proprietary theoretical / laboratory knowledge existed on the combustion technologies explored The research reported here expands and develops this knowledge to determine series-production viability. Significant SI and CI engine development occurred during this program within General Motors, LLC over more than five years. In the SI program, several engines were designed and developed that used both a relatively simple multi-lift valve train system and a Fully Flexible Valve Actuation (FFVA) system to enable a Homogeneous Charge Compression Ignition (HCCI) combustion process. Many technical challenges, which were unknown at the start of this program, were identified and systematically resolved through analysis, test and development. This report documents the challenges and solutions for each SOPO deliverable. As a result of the project activities, the production viability of the developed clean combustion technologies has been determined. At this time, HCCI combustion for SI engines is not considered production-viable for several reasons. HCCI combustion is excessively sensitive to control variables

  19. SYMPOSIUM ON TURBULENCE AND COMBUSTION - SPECIAL SYMPOSIUM TO BRING TOGETHER TOP RESEARCHERS IN THE FIELDS OF FLUID TURBULENCE AND COMBUSTION TO PROMOTE ADVANCES IN TURBULENT, REACTING FLOWS

    SciTech Connect

    Caughey, David

    2010-10-08

    A Symposium on Turbulence and Combustion was held at Cornell University on August 3-4, 2009. The overall goal of the Symposium was to promote future advances in the study of turbulence and combustion, through an unique forum intended to foster interactions between leading members of these two research communities. The Symposium program consisted of twelve invited lectures given by world-class experts in these fields, two poster sessions consisting of nearly 50 presentations, an open forum, and other informal activities designed to foster discussion. Topics covered in the lectures included turbulent dispersion, wall-bounded flows, mixing, finite-rate chemistry, and others, using experiment, modeling, and computations, and included perspectives from an international community of leading researchers from academia, national laboratories, and industry.

  20. Combustion research in the Internal Fluid Mechanics Division

    NASA Technical Reports Server (NTRS)

    Mularz, Edward J.

    1986-01-01

    The goal of this research is to bring computational fluid dynamics to a state of practical application for the aircraft engine industry. The approach is to have a strongly integrated computational and experimental program for all the disciplines associated with the gas turbine and other aeropropulsion systems by advancing the understanding of flow physics, heat transfer, and combustion processes. The computational and experimental research is integrated in the following way: the experiments that are performed provide an empirical data set so that physical models can be formulated to describe the processes that are occurring - for example, turbulence or chemical reaction. These experiments also form a data base for those who are doing code development by providing experimental data against which the codes can be verified and assesed. Models are generated as closure to some of the numerical codes, and they also provide physical insight for experiments. At the same time, codes which solve the complete Navier-Stokes equations can be used as a kind of numerical experiment from which far more extensive data can be obtained than ever could be obtained experimentally. This could provide physical insight into the complex processes that are taking place. These codes are also exercised against experimental data to assess the accuracy and applicability of models.

  1. The railplug: Development of a new ignitor for internal combustion engines. Final report

    SciTech Connect

    Matthews, R.D.; Nichols, S.P.; Weldon, W.F.

    1994-11-29

    A three year investigation of a new type of ignitor for internal combustion engines has been performed using funds from the Advanced Energy Projects Program of The Basic Energy Sciences Division of the U.S. Department of Energy and with matching funding from Research Applications, Inc. This project was a spin-off of {open_quotes}Star Wars{close_quotes} defense technology, specifically the railgun. The {open_quotes}railplug{close_quotes} is a miniaturized railgun which produces a high velocity plume of plasma that is injected into the combustion chamber of an engine. Unlike other types of alternative ignitors, such as plasma jet ignitors, electromagnetic forces enhance the acceleration of the plasma generated by a railplug. Thus, for a railplug, the combined effects of electromagnetic and thermodynamic forces drive the plasma into the combustion chamber. Several engine operating conditions or configurations can be identified that traditionally present ignition problems, and might benefit from enhanced ignition systems. One of these is ultra-lean combustion in spark ignition (SI) engines. This concept has the potential for lowering emissions of NOx while simultaneously improving thermal efficiency. Unfortunately, current lean burn engines cannot be operated sufficiently lean before ignition related problems are encountered to offer any benefits. High EGR engines have similar potential for emissions improvement, but also experience similar ignition problems, particularly at idle. Other potential applications include diesel cold start, alcohol and dual fuel engines, and high altitude relight of gas turbines. The railplug may find application for any of the above. This project focused on three of these potential applications: lean burn SI engines, high EGR SI engines, and diesel cold start.

  2. The railplug: Development of a new ignitor for internal combustion engines

    NASA Astrophysics Data System (ADS)

    Matthews, R. D.; Nichols, S. P.; Weldon, W. F.

    1994-11-01

    A three year investigation of a new type of ignitor for internal combustion engines has been performed using funds from the Advanced Energy Projects Program of The Basic Energy Sciences Division of the U.S. Department of Energy and with matching funding from Research Applications, Inc. This project was a spin-off of 'Star Wars' defense technology, specifically the railgun. The 'railplug' is a miniaturized railgun which produces a high velocity plume of plasma that is injected into the combustion chamber of an engine. Unlike other types of alternative ignitors, such as plasma jet ignitors, electromagnetic forces enhance the acceleration of the plasma generated by a railplug. Thus, for a railplug, the combined effects of electromagnetic and thermodynamic forces drive the plasma into the combustion chamber. Several engine operating conditions or configurations can be identified that traditionally present ignition problems, and might benefit from enhanced ignition systems. One of these is ultra-lean combustion in spark ignition (SI) engines. This concept has the potential for lowering emissions of NO(x) while simultaneously improving thermal efficiency. Unfortunately, current lean burn engines cannot be operated sufficiently lean before ignition related problems are encountered to offer any benefits. High EGR engines have similar potential for emissions improvement, but also experience similar ignition problems, particularly at idle. Other potential applications include diesel cold start, alcohol and dual fuel engines, and high altitude relight of gas turbines. The railplug may find application for any of the above. This project focused on three of these potential applications: lean burn SI engines, high EGR SI engines, and diesel cold start.

  3. Centrifugal governor for injection type internal combustion engine

    SciTech Connect

    Takahashi, M

    1989-05-23

    A centrifugal governor for an injection type internal combustion engine, comprising: a housing in which a cam shaft is rotatably supported at its lower section and a fuel injection pump is disposed above the cam shaft; a flyweight disposed at an end of the cam shaft so as to be displaced in accordance with a rotational speed of the engine; a tension lever rotatable upon a driving force of the flyweight with an intermediate fixed shaft as a pivot; a governor spring assembly supported so as not to exert any supporting load between a housing side spring seat and another spring seat provided to the tension lever, and so as to be compressed upon rotation of the tension lever; a guide lever and a floating lever, both rotatable with a pin provided at a lower end of the tension lever as a pivot, and normally connected to each other as an integrated element by a cancellation spring surrounding the pin; the speed lever have a shaped like bell crank, rotatably supported at one end with a shaft connecting the control lever as a pivot, and engaged with an intermediated guide of the guide lever at the other end.

  4. Exhaust gas recirculation method for internal combustion engines

    SciTech Connect

    Kawanabe, T.; Kimura, K.; Asakura, M.; Shiina, T.

    1988-07-19

    This patent describes a method of controlling exhaust gas recirculation in an internal combustion engine having an exhaust passage, an intake passage, an exhaust gas recirculating passage communicating the exhaust passage with the intake passage, and exhaust gas recirculating valve; and a transmission having a shift lever. The valve opening of the exhaust gas recirculating valve is controlled in response to operating conditions of the engine so as to regulate the amount of exhaust gas recirculation to values appropriate to the operating conditions of the engine. The method comprising the steps of (1) determining whether or not the engine is in at least one of a predetermined accelerating condition and a predetermined decelerating condition; (2) varying the valve opening of the exhaust gas recirculating valve by a predetermined value when the engine is determined to be in at least one of the predetermined accelerating condition and the predetermined decelerating condition; (3) detecting a position of the shift lever of the transmission; and (4) correcting the predetermined value in accordance with the detected position of the shift lever so as to increase the valve opening of the exhaust gas recirculating valve as the shift lever of the transmission is set to a higher speed position.

  5. Boost compensator for use with internal combustion engine with supercharger

    SciTech Connect

    Asami, T.

    1988-04-12

    A boost compensator for controlling the position of a control rack of a fuel injection pump to supply fuel to an internal combustion with a supercharger in response to a boost pressure to be applied to the engine is described. The control rack is movable in a first direction increasing an amount of fuel to be supplied by the fuel injection pump to the engine and in a second direction, opposite to the first direction, decreasing the amount of fuel. The boost compensator comprises: a push rod disposed for forward and rearward movement in response to the boost pressure; a main lever disposed for angular movement about a first pivot; an auxiliary lever disposed for angular movement about a second pivot; return spring means associated with the first portion of the auxiliary lever for resiliently biasing same in one direction about the second pivot; and abutment means mounted on the second portion of the auxiliary lever and engageable with the second portion of the main lever.

  6. Emission control system and method for internal combustion engine

    SciTech Connect

    Owens, L.

    1980-06-03

    Fresh air is introduced into the exhaust pipe leading to the muffler for an internal combustion engine, while the air and exhaust gas mixture is cooled, not only in the muffler but also in a circuitous tube which extends from the muffler to the normal discharge or tail pipe and in which a special cooler may be installed. From the outlet of the special cooling tube, which faces forwardly, a portion of the air and exhaust gas mixture, now cooled, is led from a Y-connection to the intake tube of the air filter, so that the air and exhaust gas mixture will be introduced into the intake system prior to the carburetor. A rearwardly slanting arm of the Y-connection connects the front end of the special cooling pipe with the normal tail pipe. The carburetor has one or more air bleed tubes leading into the mixture passage at or below the butterfly valves, so that at idling speeds, a small amount of fresh air is introduced, irrespective of the position of the butterfly valves, to overcome any tendency for the engine, when idling, to cough or sputter due to the introduction of an air and exhaust gas mixture to the air filter intake.

  7. Rotating speed control apparatus for an internal combustion engine

    SciTech Connect

    Umehara, K.

    1987-10-06

    A rotating speed control apparatus is described for controlling the rotating speed of an internal combustion engine, comprising: a capacitive discharge ignition circuit; rotating speed detecting circuit means for monitoring the rotating speed for the engine; overspeed preventing circuit means cooperable with the capacitive discharge ignition circuit and responsive to the rotating speed detecting circuit means; and independently manually actuable cut-off circuit means for disabling the overspeed preventing circuit means so as to prevent the overspeed preventing circuit means from limiting the rotating speed of the engine; wherein the cut-off circuit means includes a reset switch and is actuated in response to manual actuation of the reset switch; wherein the reset switch is a momentary push button switch; wherein following manual actuation of the momentary push button switch the cut-off circuit means remains continuously actuated until the engine is stopped, and wherein at a subsequent restart of the engine the cut-off circuit means is deactuated; wherein the ignition circuit includes a capacitive charging coil, wherein the push button switch has first and second terminals; and wherein the cut-off circuit means includes: a thyristor; a first resistor; a second resistor; a third resistor; a capacitor; first means electrically coupling the capacitive charging coil of the ignition circuit to the first terminal of the push button switch; and second means electrically coupling the anode of the thyristor to the overspeed preventing circuit means.

  8. Supercharger of an internal combustion engine having roots pump

    SciTech Connect

    Nakamura, N.; Ohnaka, H.

    1986-06-17

    A supercharger of an internal combustion engine is described having a Roots-type pump: a pump housing for defining therein a pump chamber having an inner wall and an air inlet and air outlet; a pair of rotor shafts mounted in parallel and each rotatably supported in the housing by means of a pair of bearings, the rotor shafts respectively rigidly carrying rotors in such a manner that small clearances are defined between the pair of rotors, and between the rotors and the inner wall of the housing chamber; means for rotating the pair of rotors synchronously in opposite directions so as to suck air from the air inlet into the pump chamber and discharge the air from the pump chamber through the air outlet; each of the rotors having, at respective axial ends thereof, end faces substantially perpendicular to the rotor shaft; the housing defining annular spaces around the rotor shafts and between the axial end faces of the rotors and the bearings; and air passage means for connecting the annular spaces in the housing to the atmosphere, the passage means having a valve for controlling the air passage means in accordance with the engine driving conditions.

  9. Crank angle detecting system for an internal combustion engine

    SciTech Connect

    Maeda, S.

    1989-05-09

    A crank angle detecting system for an internal combustion engine is described, comprising: means secured to the crankshaft having crankshaft marks, each mark representing a compression top dead center of a cylinder; means provided adjacent to the first decision means for detecting the crankshaft marks for producing a crankshaft signal when each crankshaft mark is detected; means secured to the camshaft having camshaft marks representing the cylinders, respectively; means provided adjacent to the second decision means for detecting the camshaft marks and for producing a cylinder signal when each respective camshaft mark is detected; means for detecting the number of the cylinder detected responsive to the cylinder signal and for producing a corresponding signal corresponding with the number of the cylinder; and means for discriminating a compression top dead center of the detected cylinder responsive to the crankshaft signal occurring after the corresponding signal so as to accurately detect the crank angle corresponding to the number of the cylinder of the plurality of cylinders.

  10. Lever-type two-cycle internal combustion engine

    SciTech Connect

    Wenzel, E.C.; Wenzel, S.T.

    1991-06-25

    This patent describes a lever type internal combustion engine. It comprises power cylinders arranged in side-by-side opposed pairs and disposed in a first horizontal plane, each provided with a piston and a piston rod pivotally connected at an inner end with the piston, a crankshaft supported for rotation about an axis lying in a second horizontal plane disposed in spaced parallel relationship with and below the first horizontal plane, and a lever system whereby the power cylinder pistons drive the crankshaft, the lever system, one for each pair of opposed power cylinders, comprising an elongate level arm pivotally interconnected at a first end with the outer ends of the piston rods, means including guide members disposed below the crankshaft for constraining a second end of the lever arm for up and down movement in a direction perpendicular to the first and second horizontal planes, and means for operatively connecting the lever arm at a point intermediate its first and second ends to the crankshaft, whereby the lever arm functions as a lever of the second class between the piston rods and the crankshaft the constrained second end thereof functioning as the fulcrum therefor.

  11. Internal combustion engine having aluminum alloy cylinder block

    SciTech Connect

    Ogawa, N.

    1987-03-24

    An internal combustion engine is described comprising: a cylinder block formed of aluminium alloy and having main bearing bulkheads each of which is formed with a bearing surface; main bearing caps formed of aluminium alloy and securely connected, respectively, with the bearing bulkheads, the bearing caps being formed with bearing surfaces which are located, respectively, in opposition to the bearing surfaces of the bearing bulkhead; a crankshaft formed of iron alloy and rotatably supported by the bearing bulkheads and the bearing caps. The main journal of the crankshaft is located between the bearing surfaces of the bearing bulkheads and the bearing caps. The surface of the crankshaft main journal is in direct contact with the bearing surfaces of the bearing bulkheads and the bearing caps; and means defining an oil groove on the bearing surface of each bearing bulkhead for supplying engine lubricating oil between the crankshaft main journal and the bearing surfaces of the bearing bulkheads and the bearing caps. The oil groove extends along the periphery of the bearing bulkhead bearing surfaces, the bearing surfaces of the bearing caps being free of oil grooves so as to provide maximum contacting area with the main crankshaft journal to absorb greater explosive force.

  12. Crankshaft supporting structure for multicylinder internal combustion engines

    SciTech Connect

    Fukuo, K.; Chosa, M.

    1988-01-26

    A crankshaft supporting structure for a cylinder block of an internal combustion engine is described, comprising, journal walls extending laterally across the cylinder block and being longitudinally spaced along the crankshaft, a recess formed in each journal wall with inwardly and downwardly facing first mating surfaces at an upper extremity of the recess. The cylinder block has skirt portions extending downwardly from the recesses on each lateral end of the journal walls, a bearing cap mounted in the recess in each journal wall and having means cooperating with the journal wall for rotatably supporting the crankshaft, each bearing cap having outwardly and upwardly facing first mating surfaces for engaging the journal wall first mating surfaces, mating inwardly facing vertical surfaces on each skirt portion and outwardly facing vertical surfaces on each bearing cap, a longitudinally extending bridge, a pair of vertical bolts extending through the bridge and each bearing cap and threadedly engaging the journal wall, horizontal bolts extending through the skirt portions and threadedly engaging each lateral side of each bearing cap, and the bridge having a main oil gallery defined therein for passage of lubricating oil therethrough and communicating with lubricating oil passages formed through the bridge and the bearing caps for communicating oil to the crankshaft.

  13. Recurrence plot for parameters analysing of internal combustion engine

    NASA Astrophysics Data System (ADS)

    Alexa, O.; Ilie, C. O.; Marinescu, M.; Vilau, R.; Grosu, D.

    2015-11-01

    In many technical disciplines modem data analysis techniques has been successfully applied to understand the complexity of the system. The growing volume of theoretical knowledge about systems dynamic's offered researchers the opportunity to look for non-linear dynamics in data whose evolution linear models are unable to explain in a satisfactory manner. One approach in this respect is Recurrence Analysis - RA which is a graphical method designed to locate hidden recurring patterns, nonstationarity and structural changes. RA approach arose in natural sciences like physics and biology but quickly was adopted in economics and engineering. Meanwhile. The fast development of computer resources has provided powerful tools to perform this new and complex model. One free software which was used to perform our analysis is Visual Recurrence Analysis - VRA developed by Eugene Kononov. As is presented in this paper, the recurrence plot investigation for the analyzing of the internal combustion engine shows some of the RPA capabilities in this domain. We chose two specific engine parameters measured in two different tests to perform the RPA. These parameters are injection impulse width and engine angular speed and the tests are I11n and I51n. There were computed graphs for each of them. Graphs were analyzed and compared to obtain a conclusion. This work is an incipient research, being one of the first attempts of using recurrence plot for analyzing automotive dynamics. It opens a wide field of action for future research programs.

  14. Exhaust gas recirculation system for internal combustion engine

    SciTech Connect

    Yoshioka, S.; Nomoto, Y.; Oda, T.; Yokooku, K.

    1984-09-18

    An internal combustion engine is provided with an exhaust gas recirculating passage for communicating the intake passage and the exhaust passage thereof. The recirculating passage is provided with a valve for controlling the amount of recirculated exhaust gas. A fundamental air-fuel ratio control value for regulating the air-fuel ratio of the intake gas to a predetermined value is corrected by an operating condition correction value according to the operating condition of the engine. The operating condition correction value is successively changed to an optimal value by comparing the actually obtained air-fuel ratio with a predetermined value. The operating condition correction value for correcting the fundamental air-fuel ratio control value when the exhaust gas recirculation is carried out is changed independently from the same for correcting the fundamental air-fuel ratio correction value when the exhaust gas recirculation is not carried out. The initial values of the former correction value and the latter correction value are compared with each other, while the present values of the former correction value and the latter correction value are compared with each other. The comparison value of the initial values and the comparison value of the present values are compared with each other to detect clogging of the recirculating passage. When clogging is detected, the valve is controlled to compensate for the clogging.

  15. Exhaust particle removing system for an internal combustion engine

    SciTech Connect

    Shinzawa, M.

    1986-08-05

    An exhaust particle removing system is described for an internal combustion engine, comprising: (a) a filter disposed in an engine exhaust passage for trapping particles suspended in exhaust gas; (b) a burner for burning off the particles deposited on the filter; (c) means for sensing the pressure in the exhaust passage at a point upstream of the filter; (d) means for sensing the pressure in the exhaust passage at a point downstream of the filter; (e) means for determining whether or not the sensed upstream pressure is lower than a preset level; (f) means for, when the sensed upstream pressure is not lower than the preset level, deducing the degree of clogging of the filter on the basis of the sensed upstream and downstream pressures; (g) means for, when the sensed upstream pressure is lower than the preset level, measuring a time elapsed since the moment at which the sensed upstream pressure dropped below the preset level; (h) means for, when the sensed upstream pressure is lower than the preset level, deducing the degree of clogging of the filter on the basis of the time elapsed and the sensed upstream and downstream pressures obtained immediately prior to the moment at which the sensed upstream pressure dropped below the preset level; and (i) means for controlling the burner on the basis of the deduced degree of clogging of the filter.

  16. 40 CFR 60.4239 - What are my compliance requirements if I am a manufacturer of stationary SI internal combustion...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... I am a manufacturer of stationary SI internal combustion engines >19 KW (25 HP) that use gasoline or... manufacturer of stationary SI internal combustion engines >19 KW (25 HP) that use gasoline or a manufacturer of equipment containing such engines? Stationary SI internal combustion engine manufacturers who are subject......

  17. 40 CFR 60.4238 - What are my compliance requirements if I am a manufacturer of stationary SI internal combustion...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... I am a manufacturer of stationary SI internal combustion engines â¤19 KW (25 HP) or a manufacturer... Standards of Performance for Stationary Spark Ignition Internal Combustion Engines Compliance Requirements... SI internal combustion engines ≤19 KW (25 HP) or a manufacturer of equipment containing such...

  18. 40 CFR 60.4241 - What are my compliance requirements if I am a manufacturer of stationary SI internal combustion...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... that Table 5 of 40 CFR 1048.505 applies to high load engines only. Stationary SI internal combustion... containing stationary SI internal combustion engines meeting the provisions of 40 CFR part 1054 must meet the... I am a manufacturer of stationary SI internal combustion engines participating in the...

  19. 40 CFR 60.4239 - What are my compliance requirements if I am a manufacturer of stationary SI internal combustion...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... I am a manufacturer of stationary SI internal combustion engines >19 KW (25 HP) that use gasoline or... manufacturer of stationary SI internal combustion engines >19 KW (25 HP) that use gasoline or a manufacturer of equipment containing such engines? Stationary SI internal combustion engine manufacturers who are subject......

  20. 40 CFR 60.4238 - What are my compliance requirements if I am a manufacturer of stationary SI internal combustion...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... I am a manufacturer of stationary SI internal combustion engines â¤19 KW (25 HP) or a manufacturer... Standards of Performance for Stationary Spark Ignition Internal Combustion Engines Compliance Requirements... SI internal combustion engines ≤19 KW (25 HP) or a manufacturer of equipment containing such...

  1. 40 CFR 60.4240 - What are my compliance requirements if I am a manufacturer of stationary SI internal combustion...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of equipment containing stationary SI internal combustion engines meeting the provisions of 40 CFR... I am a manufacturer of stationary SI internal combustion engines >19 KW (25 HP) that are rich burn... I am a manufacturer of stationary SI internal combustion engines >19 KW (25 HP) that are rich...

  2. 40 CFR 60.4210 - What are my compliance requirements if I am a stationary CI internal combustion engine manufacturer?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... certified to the standards in 40 CFR part 1039. (b) Stationary CI internal combustion engine manufacturers... certified to the emission standards in 40 CFR part 1039. Stationary CI internal combustion engine... labeled according to 40 CFR 1039.20. (2) Stationary CI internal combustion engines manufactured from......

  3. 40 CFR 60.4210 - What are my compliance requirements if I am a stationary CI internal combustion engine manufacturer?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... certified to the standards in 40 CFR part 1039. (b) Stationary CI internal combustion engine manufacturers... certified to the emission standards in 40 CFR part 1039. Stationary CI internal combustion engine... labeled according to 40 CFR 1039.20. (2) Stationary CI internal combustion engines manufactured from......

  4. 40 CFR 60.4240 - What are my compliance requirements if I am a manufacturer of stationary SI internal combustion...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... of equipment containing stationary SI internal combustion engines meeting the provisions of 40 CFR... I am a manufacturer of stationary SI internal combustion engines >19 KW (25 HP) that are rich burn... I am a manufacturer of stationary SI internal combustion engines >19 KW (25 HP) that are rich...

  5. 40 CFR 60.4240 - What are my compliance requirements if I am a manufacturer of stationary SI internal combustion...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of equipment containing stationary SI internal combustion engines meeting the provisions of 40 CFR... I am a manufacturer of stationary SI internal combustion engines >19 KW (25 HP) that are rich burn... I am a manufacturer of stationary SI internal combustion engines >19 KW (25 HP) that are rich...

  6. 40 CFR 60.4241 - What are my compliance requirements if I am a manufacturer of stationary SI internal combustion...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... that Table 3 of 40 CFR 1048.505 applies to high load engines only. Stationary SI internal combustion... containing stationary SI internal combustion engines meeting the provisions of 40 CFR part 1054 must meet the... I am a manufacturer of stationary SI internal combustion engines participating in the...

  7. 40 CFR 60.4238 - What are my compliance requirements if I am a manufacturer of stationary SI internal combustion...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... I am a manufacturer of stationary SI internal combustion engines â¤19 KW (25 HP) or a manufacturer... Standards of Performance for Stationary Spark Ignition Internal Combustion Engines Compliance Requirements... SI internal combustion engines ≤19 KW (25 HP) or a manufacturer of equipment containing such...

  8. 40 CFR 60.4210 - What are my compliance requirements if I am a stationary CI internal combustion engine manufacturer?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... certified to the standards in 40 CFR part 1039. (b) Stationary CI internal combustion engine manufacturers... engines as specified in 40 CFR part 94. (c) Stationary CI internal combustion engine manufacturers must... internal combustion engine manufacturers must meet the corresponding provisions of 40......

  9. 40 CFR 60.4241 - What are my compliance requirements if I am a manufacturer of stationary SI internal combustion...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... that Table 5 of 40 CFR 1048.505 applies to high load engines only. Stationary SI internal combustion... containing stationary SI internal combustion engines meeting the provisions of 40 CFR part 1054 must meet the... I am a manufacturer of stationary SI internal combustion engines participating in the...

  10. 40 CFR 60.4241 - What are my compliance requirements if I am a manufacturer of stationary SI internal combustion...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... that Table 3 of 40 CFR 1048.505 applies to high load engines only. Stationary SI internal combustion... containing stationary SI internal combustion engines meeting the provisions of 40 CFR part 1054 must meet the... I am a manufacturer of stationary SI internal combustion engines participating in the...

  11. 40 CFR 60.4238 - What are my compliance requirements if I am a manufacturer of stationary SI internal combustion...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... I am a manufacturer of stationary SI internal combustion engines â¤19 KW (25 HP) or a manufacturer... Standards of Performance for Stationary Spark Ignition Internal Combustion Engines Compliance Requirements... SI internal combustion engines ≤19 KW (25 HP) or a manufacturer of equipment containing such...

  12. 40 CFR 60.4239 - What are my compliance requirements if I am a manufacturer of stationary SI internal combustion...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... I am a manufacturer of stationary SI internal combustion engines >19 KW (25 HP) that use gasoline or... manufacturer of stationary SI internal combustion engines >19 KW (25 HP) that use gasoline or a manufacturer of equipment containing such engines? Stationary SI internal combustion engine manufacturers who are subject......

  13. 40 CFR 60.4240 - What are my compliance requirements if I am a manufacturer of stationary SI internal combustion...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... of equipment containing stationary SI internal combustion engines meeting the provisions of 40 CFR... I am a manufacturer of stationary SI internal combustion engines >19 KW (25 HP) that are rich burn... I am a manufacturer of stationary SI internal combustion engines >19 KW (25 HP) that are rich...

  14. 40 CFR 60.4239 - What are my compliance requirements if I am a manufacturer of stationary SI internal combustion...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... I am a manufacturer of stationary SI internal combustion engines >19 KW (25 HP) that use gasoline or... manufacturer of stationary SI internal combustion engines >19 KW (25 HP) that use gasoline or a manufacturer of equipment containing such engines? Stationary SI internal combustion engine manufacturers who are subject......

  15. 40 CFR 60.4210 - What are my compliance requirements if I am a stationary CI internal combustion engine manufacturer?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... certified to the standards in 40 CFR part 1039. (b) Stationary CI internal combustion engine manufacturers... engines as specified in 40 CFR part 94. (c) Stationary CI internal combustion engine manufacturers must... internal combustion engine manufacturers must meet the corresponding provisions of 40......

  16. Internal combustion engine cylinder-to-cylinder balancing with balanced air-fuel ratios

    DOEpatents

    Harris, Ralph E.; Bourn, Gary D.; Smalley, Anthony J.

    2006-01-03

    A method of balancing combustion among cylinders of an internal combustion engine. For each cylinder, a normalized peak firing pressure is calculated as the ratio of its peak firing pressure to its combustion pressure. Each cylinder's normalized peak firing pressure is compared to a target value for normalized peak firing pressure. The fuel flow is adjusted to any cylinder whose normalized peak firing pressure is not substantially equal to the target value.

  17. Advanced Combustion Systems for Next Generation Gas Turbines

    SciTech Connect

    Joel Haynes; Jonathan Janssen; Craig Russell; Marcus Huffman

    2006-01-01

    Next generation turbine power plants will require high efficiency gas turbines with higher pressure ratios and turbine inlet temperatures than currently available. These increases in gas turbine cycle conditions will tend to increase NOx emissions. As the desire for higher efficiency drives pressure ratios and turbine inlet temperatures ever higher, gas turbines equipped with both lean premixed combustors and selective catalytic reduction after treatment eventually will be unable to meet the new emission goals of sub-3 ppm NOx. New gas turbine combustors are needed with lower emissions than the current state-of-the-art lean premixed combustors. In this program an advanced combustion system for the next generation of gas turbines is being developed with the goal of reducing combustor NOx emissions by 50% below the state-of-the-art. Dry Low NOx (DLN) technology is the current leader in NOx emission technology, guaranteeing 9 ppm NOx emissions for heavy duty F class gas turbines. This development program is directed at exploring advanced concepts which hold promise for meeting the low emissions targets. The trapped vortex combustor is an advanced concept in combustor design. It has been studied widely for aircraft engine applications because it has demonstrated the ability to maintain a stable flame over a wide range of fuel flow rates. Additionally, it has shown significantly lower NOx emission than a typical aircraft engine combustor and with low CO at the same time. The rapid CO burnout and low NOx production of this combustor made it a strong candidate for investigation. Incremental improvements to the DLN technology have not brought the dramatic improvements that are targeted in this program. A revolutionary combustor design is being explored because it captures many of the critical features needed to significantly reduce emissions. Experimental measurements of the combustor performance at atmospheric conditions were completed in the first phase of the program

  18. "Internal Waves" Advancing along Submarine Canyons.

    PubMed

    Shepard, F P; Marshall, N F; McLoughlin, P A

    1974-01-18

    Patterns of alternating up- and downcanyon currents have been traced along the axes of submarine canyons off California. The patterns arrive later at stations nearer the heads of coastal canyons. Where a canyon heads between two islands, the patterns advance down the axis. The propagation speeds of these patterns were estimated as 25 to 88 centimeters per second. Internal waves are the probable explanation. PMID:17777263

  19. Dual spark plug ignition system for motorcycle internal combustion engine

    SciTech Connect

    Hoeptner, H.W.

    1991-04-02

    This patent describes an ignition system for a motorcycle two cylinder internal combustion engine, the system including magnetically coupled primary and secondary coil means, two spark plugs at each of the cylinders, a source of electrical current, and a single set of contacts controlling electrical current flow to the primary coil means for producing high voltage outputs from the secondary coil means to be delivered to all four of the spark plugs, the secondary coil means including certain secondary coil means operatively connected via the primary coil means with both the of spark plugs at one cylinder, a single cam controlling only the contacts, and a single magnetic core between the primary coil means and both the secondary coil means, and wherein the spark plugs include: two plugs at one cylinder and connected with the certain secondary coil means, two plugs at the second cylinder and connected with the other secondary coil means, the primary coil means including certain primary coil means magnetically coupled to the certain secondary coil means, and other primary coil means magnetically coupled to the other secondary coil means, the certain and other primary coil means being connected in series, electrically, the two spark plugs at one cylinder being electrically connected to opposite ends of the certain secondary coil means, and the two spark plugs at the other cylinder are electrically connected to opposite ends of the other secondary coil means. It comprises the cam driven by the engine for controlling opening of the contacts, the cam rotatable about a first axis, carrier means carrying the contacts, and adjustably rotatable about the axis.

  20. Influence of ethanol on the operating parameters of an internal-combustion engine

    NASA Astrophysics Data System (ADS)

    Assad, M. S.; Kucharchuk, I. G.; Penyazkov, O. G.; Rusetskii, A. M.; Chornyi, A. D.

    2011-11-01

    Distinctive features of the operation of an internal-combustion engine burning ethanol-containing fuels have been studied. It has been shown that the enrichment of gasoline with ethanol tends to diminish the concentrations of CO and NO in combustion products, with the engine's fuel efficiency being inevitably degraded due to the lower volumetric heat of combustion of the blend. The experimentally confirmed technique of blocking the growth in the concentration of NO in the combustion products of hydrogen-containing fuels by enrichment of the blend with ethanol has been proposed; the optimum parameters of the three-fuel composition have been established.

  1. Recent Advances In Science Support For Isolated Droplet Combustion Experiments

    NASA Technical Reports Server (NTRS)

    Dryer, F. L.; Kazakov, A.; Urban, B. D.; Kroenlein, K.

    2003-01-01

    In a joint program involving Prof. F.A. Williams of the University of California, San Diego and Dr. V. Nayagam of the National Center for Microgravity Research, the combustion characteristics of isolated liquid fuel droplets of n-heptane, n-decane, methanol, methanol-water, ethanol and ethanol-water having initial diameters between about 1 mm and 6 mm continues to be investigated. The objectives of the work are to improve fundamental knowledge of droplet combustion dynamics for pure fuels and fuel-water mixtures through microgravity experiments and theoretical analyses. The Princeton contributions support the engineering design, data analysis, and data interpretation requirements for the study of initially single component, spherically symmetric, isolated droplet combustion studies through experiments and numerical modeling. UCSD contributions are described in a companion communication in this conference. The Princeton effort also addresses the analyses of Fiber Supported Droplet Combustion (FSDC) experiments conducted with the above fuels and collaborative work with others who are investigating droplet combustion in the presence of steady convection. A thorough interpretation of droplet burning behavior for n-heptane and n-decane over a relatively wide range of conditions also involves the influences of sooting on the combustion behavior, and this particular aspect on isolated burning of droplets is under consideration in a collaborative program underway with Drexel University. This collaboration is addressed in another communication at this conference. The one-dimensional, time-dependent, numerical modeling approach that we have continued to evolve for analyzing isolated, quiescent droplet combustion data has been further applied to investigate several facets of isolated droplet burning of simple alcohols, n-heptane, and n-decane. Some of the new results are described below.

  2. Internal combustion engine report: Spark ignited ICE GenSet optimization and novel concept development

    SciTech Connect

    Keller, J.; Blarigan, P. Van

    1998-08-01

    In this manuscript the authors report on two projects each of which the goal is to produce cost effective hydrogen utilization technologies. These projects are: (1) the development of an electrical generation system using a conventional four-stroke spark-ignited internal combustion engine generator combination (SI-GenSet) optimized for maximum efficiency and minimum emissions, and (2) the development of a novel internal combustion engine concept. The SI-GenSet will be optimized to run on either hydrogen or hydrogen-blends. The novel concept seeks to develop an engine that optimizes the Otto cycle in a free piston configuration while minimizing all emissions. To this end the authors are developing a rapid combustion homogeneous charge compression ignition (HCCI) engine using a linear alternator for both power take-off and engine control. Targeted applications include stationary electrical power generation, stationary shaft power generation, hybrid vehicles, and nearly any other application now being accomplished with internal combustion engines.

  3. Fish oil as an alternative fuel for internal combustion engines

    SciTech Connect

    Blythe, N.X.

    1996-12-31

    This paper presents the results of combustion studies performed with fish oil and fish oil/diesel fuel blends in a medium speed, two cycle, opposed piston engine. Performance and emissions results with blends from 10% to 100% fish oil in diesel fuel are presented. Combustion cycle analysis data comparisons are made between fish oil and diesel fuel operation. Component inspection results and analysis of deposits found in the engine after the tests are also presented. Finally, comparisons between fish oil and other biodiesel fuels are made.

  4. Disturbing effect of free hydrogen on fuel combustion in internal combustion engines

    NASA Technical Reports Server (NTRS)

    Riedler, A

    1923-01-01

    Experiments with fuel mixtures of varying composition, have recently been conducted by the Motor Vehicle and Airplane Engine Testing Laboratories of the Royal Technical High School in Berlin and at Fort Hahneberg, as well as at numerous private engine works. The behavior of hydrogen during combustion in engines and its harmful effect under certain conditions, on the combustion in the engine cylinder are of general interest. Some of the results of these experiments are given here, in order to elucidate the main facts and explain much that is already a matter of experience with chauffeurs and pilots.

  5. Gasoline Ultra Efficient Fuel Vehicle with Advanced Low Temperature Combustion

    SciTech Connect

    Confer, Keith

    2014-09-30

    The objective of this program was to develop, implement and demonstrate fuel consumption reduction technologies which are focused on reduction of friction and parasitic losses and on the improvement of thermal efficiency from in-cylinder combustion. The program was executed in two phases. The conclusion of each phase was marked by an on-vehicle technology demonstration. Phase I concentrated on short term goals to achieve technologies to reduce friction and parasitic losses. The duration of Phase I was approximately two years and the target fuel economy improvement over the baseline was 20% for the Phase I demonstration. Phase II was focused on the development and demonstration of a breakthrough low temperature combustion process called Gasoline Direct- Injection Compression Ignition (GDCI). The duration of Phase II was approximately four years and the targeted fuel economy improvement was 35% over the baseline for the Phase II demonstration vehicle. The targeted tailpipe emissions for this demonstration were Tier 2 Bin 2 emissions standards.

  6. Instrumentation advances in emissions characterization from propellant/explosive combustion

    SciTech Connect

    Einfeld, W.; Morrison, D.J.; Mullins, S.E.

    1995-12-31

    Results from a chamber study to characterize emissions from combustion of selected pure energetic materials are presented in this paper. The study was carried out as a part of a comprehensive air pathways risk assessment for a propellant and explosive manufacturing facility that engages in open burning methods for manufacturing waste disposal. Materials selected for emissions characterization in this study included both aluminized and non-aluminized composite propellant, a double base propellant and a plastic bonded explosive. Combustion tests in a specialized chamber revealed very low emissions for gaseous products of incomplete combustion such as carbon monoxide and nitrogen oxides. Analysis of gaseous and aerosol emission products for a pre-selected target analyte list that included both volatile and semi-volatile organics revealed either low or non-detectable emissions for the four energetic types tested. Hydrogen chloride was detected as a major emission product from propellants containing ammonium perchlorate. Results from this work reveal that about one-half of the chlorine in the original material is released as hydrogen chloride. Based on earlier work, the balance of the chlorine emissions is expected to be in the form of chlorine gas.

  7. Preliminary tests of an advanced high-temperature combustion system

    NASA Technical Reports Server (NTRS)

    Wear, J. D.; Trout, A. M.; Smith, J. M.; Jacobs, R. E.

    1983-01-01

    A combustion system has been developed to operate efficiently and with good durability at inlet pressures to 4.05 MPa (40 atm), inlet air temperatures to 900 K, and exhaust gas temperatures to 2480 K. A preliminary investigation of this system was conducted at inlet pressures to 0.94 MPa (9 atm), a nominal inlet air temperature of 560 K, and exhaust gas temperatures to 2135 K. A maximum combustion efficiency of 98.5 percent was attained at a fuel-air ratio of 0.033; the combustion efficiency decreased to about 90 percent as the fuel-air ratio was increased to 0.058. An average liner metal temperature of 915 K, 355 kelvins greater than the nominal inlet air temperature, was reached with an average exhaust gas temperature of 2090 K. The maximum local metal temperature at this condition was about 565 kelvins above the nominal inlet air temperature and decreased to 505 kelvins above with increasing combustor pressure. Tests to determine the isothermal total pressure loss of the combustor showed a liner loss of 1.1 percent and a system loss of 6.5 percent.

  8. The dynamic interaction between combustible renewables and waste consumption and international tourism: the case of Tunisia.

    PubMed

    Ben Jebli, Mehdi; Ben Youssef, Slim; Apergis, Nicholas

    2015-08-01

    This paper employs the autoregressive distributed lag (ARDL) bounds methodological approach to investigate the relationship between economic growth, combustible renewables and waste consumption, carbon dioxide (CO2) emissions, and international tourism for the case of Tunisia spanning the period 1990-2010. The results from the Fisher statistic of both the Wald test and the Johansen test confirm the presence of a long-run relationship among the variables under investigation. The stability of estimated parameters has been tested, while Granger causality tests recommend a short-run unidirectional causality running from economic growth and combustible renewables and waste consumption to CO2 emissions, a bidirectional causality between economic growth and combustible renewables and waste consumption and unidirectional causality running from economic growth and combustible renewables and waste consumption to international tourism. In the long-run, the error correction terms confirm the presence of bidirectional causality relationships between economic growth, CO2 emissions, combustible renewables and waste consumption, and international tourism. Our long-run estimates show that combustible renewables and waste consumption increases international tourism, and both renewables and waste consumption and international tourism increase CO2 emissions and output. We recommend that (i) Tunisia should use more combustible renewables and waste energy as this eliminates wastes from touristic zones and increases the number of tourist arrivals, leading to economic growth, and (ii) a fraction of this economic growth generated by the increase in combustible renewables and waste consumption should be invested in clean renewable energy production (i.e., solar, wind, geothermal) and energy efficiency projects. PMID:25874437

  9. Advanced combustion techniques for controlling NO sub x emissions of high altitude cruise aircraft

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.; Reck, G. M.

    1976-01-01

    An array of experiments designed to explore the potential of advanced combustion techniques for controlling the emissions of aircraft into the upper atmosphere was discussed. Of particular concern are the oxides of nitrogen (NOx) emissions into the stratosphere. The experiments utilize a wide variety of approaches varying from advanced combustor concepts to fundamental flame tube experiments. Results are presented which indicate that substantial reductions in cruise NOx emissions should be achievable in future aircraft engines. A major NASA program is described which focuses the many fundamental experiments into a planned evolution and demonstration of the prevaporized-premixed combustion technique in a full-scale engine.

  10. PROCEEDINGS: 1989 INTERNATIONAL CONFERENCE ON MUNICIPAL WASTE COMBUSTION - VOLUME 4: SESSIONS 9, 10, 11, AND 12

    EPA Science Inventory

    The proceedings document presentations at the International Conference on Municipal Waste Combustion (MWC), held on April 11-14, 1989, in Hollywood, Florida. The objective of the Conference was to provide an effective international forum for the exchange and transfer of informati...

  11. PROCEEDINGS: 1989 INTERNATIONAL CONFERENCE ON MUNICIPAL WASTE COMBUSTION - VOLUME 1: SESSIONS 0, 1, 2, AND 3

    EPA Science Inventory

    The proceedings document presentations at the International Conference on Municipal Waste Combustion (MWC), held on April 11-14, 1989, in Hollywood, Florida. The objective of the Conference was to provide an effective international forum for the exchange and transfer of informati...

  12. PROCEEDINGS: 1989 INTERNATIONAL CONFERENCE ON MUNICIPAL WASTE COMBUSTION - VOLUME 3: SESSIONS 7 AND 8

    EPA Science Inventory

    The proceedings document presentations at the International Conference on Municipal Waste Combustion (MWC), held on April 11-14, 1989, in Hollywood, Florida. The objective of the Conference was to provide an effective international forum for the exchange and transfer of informati...

  13. PROCEEDINGS: 1989 INTERNATIONAL CONFERENCE ON MUNICIPAL WASTE COMBUSTION - VOLUME 2: SESSIONS 4, 5, AND 6

    EPA Science Inventory

    The proceedings document presentations at the International Conference on Municipal Waste Combustion (MWC), held on April 11-14, 1989, in Hollywood, Florida. The objective of the Conference was to provide an effective international forum for the exchange and transfer of informati...

  14. PROCEEDINGS: 1989 INTERNATIONAL CONFERENCE ON MUNICIPAL WASTE COMBUSTION - VOLUME 2: SESSIONS 4, 5, AND 6

    EPA Science Inventory

    The proceedings document presentations at the International Conference on Municipal Waste Combustion (MWC), held on April 11-l4, 1989, in Hollywood, Florida. The objective of the Conference was to provide an effective international forum for tile exchange and transfer of informat...

  15. PROCEEDINGS: 1989 INTERNATIONAL CONFERENCE ON MUNICIPAL WASTE COMBUSTION - VOLUME 4: SESSIONS 9, 10, 11, AND 12

    EPA Science Inventory

    The proceedings document presentations at the International Conference on Municipal Waste Combustion (MWC), held on April 11-l4, 1989, in Hollywood, Florida. The objective of the Conference was to provide an effective international forum for tile exchange and transfer of informat...

  16. PROCEEDINGS: 1989 INTERNATIONAL CONFERENCE ON MUNICIPAL WASTE COMBUSTION - VOLUME 1: SESSIONS 0, 1, 2, AND 3

    EPA Science Inventory

    The proceedings document presentations at the International Conference on Municipal Waste Combustion (MWC), held on April 11-l4, 1989, in Hollywood, Florida. The objective of the Conference was to provide an effective international forum for tile exchange and transfer of informat...

  17. PROCEEDINGS: 1989 INTERNATIONAL CONFERENCE ON MUNICIPAL WASTE COMBUSTION - VOLUME 3: SESSIONS 7 AND 8

    EPA Science Inventory

    The proceedings document presentations at the International Conference on Municipal Waste Combustion (MWC), held on April 11-l4, 1989, in Hollywood, Florida. The objective of the Conference was to provide an effective international forum for tile exchange and transfer of informat...

  18. 40 CFR Appendix A to Subpart A of... - State Regulation of Nonroad Internal Combustion Engines

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false State Regulation of Nonroad Internal... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION... Nonroad Internal Combustion Engines This appendix sets forth the Environmental Protection Agency's...

  19. CCSDS - Advancing Spaceflight Technology for International Collaboration

    NASA Technical Reports Server (NTRS)

    Kearney, Mike; Kiely, Aaron; Yeh, Penshu; Gerner, Jean-Luc; Calzolari, Gian-Paolo; Gifford, Kevin; Merri, Mario; Weiss, Howard

    2010-01-01

    The Consultative Committee for Space Data Systems (CCSDS) has been developing data and communications standards since 1982, with the objective of providing interoperability for enabling international collaboration for spaceflight missions. As data and communications technology has advanced, CCSDS has progressed to capitalize on existing products when available and suitable for spaceflight, and to develop innovative new approaches when available products fail. The current scope of the CCSDS architecture spans the end-to-end data architecture of a spaceflight mission, with ongoing efforts to develop and standardize cutting-edge technology. This manuscript describes the overall architecture, the position of CCSDS in the standards and international mission community, and some CCSDS processes. It then highlights in detail several of the most interesting and critical technical areas in work right now, and how they support collaborative missions. Special topics include: Delay/Disruption Tolerant Networking (DTN), Asynchronous Message Service (AMS), Multispectral/Hyperspectral Data Compression (MHDC), Coding and Synchronization, Onboard Wireless, Spacecraft Monitor and Control, Navigation, Security, and Time Synchronization/Correlation. Broad international participation in development of CCSDS standards is encouraged.

  20. Internal combustion engine system with fog injection and heat exchange

    SciTech Connect

    Munk, M.

    1987-10-27

    An improved turbine apparatus is described comprising: a turbine power generator, including a source of input air, and a source of fuel, a compressor which receives the input air, a combustion chamber which receives air from the output of the compressor and fuel from the source of fuel, a turbine which receives exhaust gases from the combustion chamber; and an electrical generator mechanically coupled with the turbine; a fogging device communicating with the input air. The fogging device is adapted to receive a fogger air supply and a fogger water supply, and to generate a fog in the input air, an adjustable heat exchanger for exchanging heat from the exhaust of the turbine to the input air to be fogged; and means for adjusting the level of heat exchange of the heat exchanger in accordance with properties of the input air and the level of fog being generated.

  1. Seventh International Workshop on Microgravity Combustion and Chemically Reacting Systems. Rev. 1

    NASA Technical Reports Server (NTRS)

    Sacksteder, Kurt (Compiler)

    2003-01-01

    The Seventh International Workshop on Microgravity Combustion and Chemically Reacting Systems was planned for June 3-6, 2003, in Cleveland, Ohio, near the NASA John H. Glenn Research Center at Lewis Field. The new name for the workshop is based on the decision to broaden our scope to encompass support for future space exploration through basic and applied research in reacting systems that in some cases may not look like combustion. The workshop has been lengthened to 4 days with focus sessions on spacecraft fire safety and exploration-related research. We believe that the microgravity combustion science community is almost uniquely positioned to make substantial contributions to this new effort.

  2. Biomass downdraft gasifier with internal cyclonic combustion chamber: design, construction, and experimental results.

    PubMed

    Patil, Krushna; Bhoi, Prakash; Huhnke, Raymond; Bellmer, Danielle

    2011-05-01

    An exploratory downdraft gasifier design with unique biomass pyrolysis and tar cracking mechanism is evolved at Oklahoma State University. This design has an internal separate combustion section where turbulent, swirling high-temperature combustion flows are generated. A series of research trials were conducted using wood shavings as the gasifier feedstock. Maximum tar cracking temperatures were above 1100°C. Average volumetric concentration levels of major combustible components in the product gas were 22% CO and 11% H(2). Hot and cold gas efficiencies were 72% and 66%, respectively. PMID:21463935

  3. Advanced combustion system for industrial boilers. Quarterly technical progress report, August 1987--October 1987

    SciTech Connect

    Attig, R.C.; Foote, J.P.; Millard, W.P.; Schulz, R.J.; Wagoner, C.L.

    1987-12-31

    The purpose of this project is to develop an advanced coal-combustion system for industrial boilers. With the new combustion system, coal could be used to replace oil and possibly gas as fuel for many industrial boilers. The advanced combustion system is comprised of several parts: (1) A new burner-design concept for coal fuels, developed from the familiar gas turbine combustor-can designs that have proven efficient, reliable, durable, and safe for the combustion of liquid fuel oils. (2) A coal storage and dense-phase feed system for injecting clean, ultrafine pulverized coal into the burner at a low velocity. (3) An automatic control system based on feedback from low-cost automotive combustion-quality transducers. A cold flow model of an initial phase of the new burner design and the associated laser flow-visualization techniques were developed during this quarter. A series of modifications of the initial cold flow model will be tested to establish details of design for the new burner. Also a 200 hp firetube boiler has been installed and tested using number 2 oil as a fuel. This boiler will be used for future combustion testing with the new burner and ultrafine pulverized coal. Additionally an ultrafine-coal injector has been designed which will be evaluated separately as a replacement for the oil gun in the firetube boiler. Two tons of deep-cleaned, ultrafine coal were received for initial tests with the coal injector.

  4. Advanced combustion technologies for gas turbine power plants

    SciTech Connect

    Vandsburger, U.; Roe, L.A.; Desu, S.B.

    1995-12-31

    Objectives are to develop actuators for enhancing the mixing between gas streams, increase combustion stability, and develop hgih-temperature materials for actuators and sensors in combustors. Turbulent kinetic energy maps of an excited jet with co-flow in a cavity with a partially closed exhaust end are given with and without a longitudinal or a transverse acoustic field. Dielectric constants and piezoelectric coefficients were determined for Sr{sub 2}(Nb{sub x}Ta{sub 1-x}){sub 2}O{sub 7} ceramics.

  5. The Effects of Gravity on Combustion and Structure Formation During Synthesis of Advanced Materials

    NASA Technical Reports Server (NTRS)

    Varma, A.; Pelekh, A.; Mukasyan, A.

    1999-01-01

    Combustion in a variety of heterogeneous systems, leading to the synthesis of advanced materials, is characterized by high temperatures (2000-3500 K) and heating rates (up to 10(exp 6) K/s) at and ahead of the reaction front. These high temperatures generate liquids and gases which are subject to gravity-driven flow. The removal of such gravitational effects is likely to provide increased control of the reaction front, with a consequent improvement in control of the microstructure of the synthesized products. Thus, microgravity experiments can lead to major advances in the understanding of fundamental aspects of combustion and structure formation under the extreme conditions of the combustion synthesis wave. In addition, the specific features of microgravity environment allow one to produce unique materials, which cannot be obtained under terrestrial conditions. The general goals of the current research are: 1) to improve the understanding of fundamental phenomena taking place during combustion of heterogeneous systems, 2) to use low-gravity experiments for insight into the physics and chemistry of materials synthesis processes, and 3) based on the obtained knowledge, to optimize processing conditions for synthesis of advanced materials with desired microstructures and properties. This research follows logically from the results of investigations we have conducted in the framework of our previous grant on gravity influence on combustion synthesis (CS) of gasless systems. Prior work, by others and by us, has clearly demonstrated that gravity plays an important role during combustion synthesis of materials. The immediate tasks for the future are to quantitatively identify the nature of observed effects, and to create accurate local kinetic models of the processes, which can lead to a control of the microstructure and properties of the synthesized materials. In summary, this is the value of the proposed research. Based on our prior work, we focus on the fundamental

  6. International Symposium on Advanced Materials (ISAM 2013)

    NASA Astrophysics Data System (ADS)

    2014-06-01

    This proceeding is a compilation of peer reviewed papers presented at the 13th International Symposium on Advanced Materials (ISAM 2013) held from September 23-27, 2013, at Islamabad, Pakistan. In my capacity as ISAM-2013 Secretary, I feel honoured that the symposium has ended on a positive note. The ever increasing changes and intricacies that characterize modern industry necessitate a growing demand for technical information on advanced materials. ISAM and other similar forums serve to fulfill this need. The five day deliberations of ISAM 2013, consisted of 19 technical sessions and 2 poster sessions. In all, 277 papers were presented, inclusive of 80 contributory, invited and oral presentations. The symposium also hosted panel discussions led by renowned scientists and eminent researchers from foreign as well as local institutes. The ultimate aim of this proceeding is to record in writing the new findings in the field of advanced materials. I hope that the technical data available in this publication proves valuable to young scientists and researchers working in this area of science. At the same time, I wish to acknowledge Institute of Physics (IOP) Publishing UK, for accepting the research papers from ISAM-2013 for publication in the IOP Conference Series: Materials Science and Engineering. The proceeding will be available on the IOP website as an online open access document. I am profoundly thankful to the Symposium Chairman for his steadfast support and valuable guidance without which ISAM 2013 could not have been the mega event that it turned out to be. My gratitude to all our distinguished participants, session chairs/co-chairs, and reviewers for their active role in the symposium. I appreciate the entire organizing committee for the zest and ardor with which each committee fulfilled its obligations to ISAM. Last yet not the least, my thankfulness goes to all our sponsors for wilfully financing the event. Dr. Sara Qaisar Symposium Secretary Further

  7. Researches on direct injection in internal-combustion engines

    NASA Technical Reports Server (NTRS)

    Tuscher, Jean E

    1941-01-01

    These researches present a solution for reducing the fatigue of the Diesel engine by permitting the preservation of its components and, at the same time, raising its specific horsepower to a par with that of carburetor engines, while maintaining for the Diesel engine its perogative of burning heavy fuel under optimum economical conditions. The feeding of Diesel engines by injection pumps actuated by engine compression achieves the required high speeds of injection readily and permits rigorous control of the combustible charge introduced into each cylinder and of the peak pressure in the resultant cycle.

  8. Advanced Laser Based Measurements in Porous Media Combustion

    NASA Technical Reports Server (NTRS)

    Tedder, Sarah A.

    2009-01-01

    We present measurements using dual-pump dual-broadband coherent anti-Stokes Raman scattering spectroscopy (DP-DBB-CARS) inside a porous media burner. This work continues our previous measurements in such combustion systems. The existing setup was significantly modified with the aim of providing improved data quality and data rate, reduction of interferences and additional species information. These changes are presented and discussed in detail. The CARS technique was expanded to a dual-pump dual-broadband CARS system which in principle enables acquisition of temperatures together with relative H2/N2- and O2/N2- species concentrations. Experimental complexity was reduced by the use of a modified spectrometer enabling the detection of both signals, vibrational and rotational CARS, with only one detection system.

  9. Numerical modeling of spray combustion with an advanced VOF method

    NASA Technical Reports Server (NTRS)

    Chen, Yen-Sen; Shang, Huan-Min; Shih, Ming-Hsin; Liaw, Paul

    1995-01-01

    This paper summarizes the technical development and validation of a multiphase computational fluid dynamics (CFD) numerical method using the volume-of-fluid (VOF) model and a Lagrangian tracking model which can be employed to analyze general multiphase flow problems with free surface mechanism. The gas-liquid interface mass, momentum and energy conservation relationships are modeled by continuum surface mechanisms. A new solution method is developed such that the present VOF model can be applied for all-speed flow regimes. The objectives of the present study are to develop and verify the fractional volume-of-fluid cell partitioning approach into a predictor-corrector algorithm and to demonstrate the effectiveness of the present approach by simulating benchmark problems including laminar impinging jets, shear coaxial jet atomization and shear coaxial spray combustion flows.

  10. Laboratory Demonstrations for PDE and Metals Combustion at NASA MSFC's Advanced Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Report provides status reporting on activities under order no. H-30549 for the period December 1 through December 31, 1999. Details the activities of the contract in the coordination of planned conduct of experiments at the MSFC Advanced Propulsion Laboratory in pulse detonation MHD power production and metals combustion.

  11. Development of Kinetic Mechanisms for Next-Generation Fuels and CFD Simulation of Advanced Combustion Engines

    SciTech Connect

    Pitz, William J.; McNenly, Matt J.; Whitesides, Russell; Mehl, Marco; Killingsworth, Nick J.; Westbrook, Charles K.

    2015-12-17

    Predictive chemical kinetic models are needed to represent next-generation fuel components and their mixtures with conventional gasoline and diesel fuels. These kinetic models will allow the prediction of the effect of alternative fuel blends in CFD simulations of advanced spark-ignition and compression-ignition engines. Enabled by kinetic models, CFD simulations can be used to optimize fuel formulations for advanced combustion engines so that maximum engine efficiency, fossil fuel displacement goals, and low pollutant emission goals can be achieved.

  12. Investigation of a Spark Ignition Internal Combustion Engine via IR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sakai, Stephen; White, Allen R.; Gross, Kevin; Devasher, Rebecca B.

    2010-06-01

    Previous work has shown that the automotive fuel components of isopropanoland ethanol can be excited by a 10.2 um and 9.3 um CO2 lasers, respectively. Through the use of a monochromator and an indium antimonide detector, the decay time of the excited molecules was measured and found to be significantly long enough to allow for the possibility of experimentation in an internal combustion (IC) engine. In order to pursue In Situ measurements in an internal combustion engine, a MegaTech Mark III transparent engine was modified with a sapphire combustion chamber. This modification will allow the transmission of infrared radiation for time-resolved spectroscopic measurements by an infrared spectrometer. By using a Telops FIRST-MWE imaging Fourier transform spectrometer, temporally and spatially resolved infrared spectral data can be acquired and compared for combustion in the engine both with and without laser excitation. Measurements performed with system provide insight into the energy transfer vectors that precede combustion as well as provide an in situ measurement of the progress of combustion.

  13. Advanced coal-fueled gas turbine systems: Subscale combustion testing. Topical report, Task 3.1

    SciTech Connect

    Not Available

    1993-05-01

    This is the final report on the Subscale Combustor Testing performed at Textron Defense Systems` (TDS) Haverhill Combustion Laboratories for the Advanced Coal-Fueled Gas Turbine System Program of the Westinghouse Electric Corp. This program was initiated by the Department of Energy in 1986 as an R&D effort to establish the technology base for the commercial application of direct coal-fired gas turbines. The combustion system under consideration incorporates a modular staged, rich-lean-quench, Toroidal Vortex Slogging Combustor (TVC) concept. Fuel-rich conditions in the first stage inhibit NO{sub x} formation from fuel-bound nitrogen; molten coal ash and sulfated sorbent are removed, tapped and quenched from the combustion gases by inertial separation in the second stage. Final oxidation of the fuel-rich gases, and dilution to achieve the desired turbine inlet conditions are accomplished in the third stage, which is maintained sufficiently lean so that here, too, NO{sub x} formation is inhibited. The primary objective of this work was to verify the feasibility of a direct coal-fueled combustion system for combustion turbine applications. This has been accomplished by the design, fabrication, testing and operation of a subscale development-type coal-fired combustor. Because this was a complete departure from present-day turbine combustors and fuels, it was considered necessary to make a thorough evaluation of this design, and its operation in subscale, before applying it in commercial combustion turbine power systems.

  14. Advanced combustion technologies for gas turbine power plants

    SciTech Connect

    Vandsburger, U.; Desu, S.B.; Roe, L.A.

    1995-10-01

    During the second half of fiscal year 1995 progress was made in all three funded subject areas of the project as well as in a new area. Work in the area of mixing and combustion management through flow actuation was transferred into an enclosed facility. Jet mixing in a ducted co-flow was examined. The same jets were also subjected to a strong acoustic field established in the duct. Excitation of the jet with static spatial modes was shown to be effective even in the presence of co-flow and the acoustic field. Only when a wall is placed at the jet exit plane did the acoustic field dominate the jet dispersion (as expected due to reflective boundary conditions and the jet shear layer receptivity). This case is, however, not the most relevant to gas turbine combustors since it precludes co-flow. In the area of combustor testing, the design, fabrication, and assembly of a modular combustor test rig for project has been completed at the University of Arkansas. In the area of high temperature piezoceramic actuator materials development, Sr{sub 2}(Nb{sub x}Ta{sub 1-x}){sub 2}O{sub 7} powders have been synthesized, and bulk samples and thick films sintered. These materials have a curie temperature of about 1400{degrees}C compared with 300{degrees}C for the commercially available PZT. While at room temperature the new materials show a piezoelectric constant (d{sub 33}) which is a factor of 100 lower than PZT, at high temperatures they can exhibit significant action. A new area of non-linear, neural-net based, controllers for mixing and combustion control has been added during the second contract year. This work is not funded by the contract. Significant progress was made in this area. Neural nets with up to 15 neurons in the hidden layer were trained with experimental data and also with data generated using linear stability theory. System ID was performed successfully. The network was then used to predict the behavior of jets excited at other modes not used for the training.

  15. Gravitational Effects on Combustion Synthesis of Advanced Porous Materials

    NASA Technical Reports Server (NTRS)

    Zhang, X.; Moore, J. J.; Schowengerdt, F. D.; Thorne, K.

    2000-01-01

    Combustion Synthesis (self-Propagating high-temperature synthesis-(SHS)) of porous Ti-TiB(x), composite materials has been studied with respect to the sensitivity to the SHS reaction parameters of stoichiometry, green density, gasifying agents, ambient pressure, diluents and gravity. The main objective of this research program is to engineer the required porosity and mechanical properties into the composite materials to meet the requirements of a consumer, such as for the application of bone replacement materials. Gravity serves to restrict the gas expansion and the liquid movement during SHS reaction. As a result, gravitational forces affect the microstructure and properties of the SHS products. Reacting these SHS systems in low gravity in the KC-135 aircraft has extended the ability to form porous products. This paper will emphasize the effects of gravity (low g, 1g and 2g) on the SHS reaction process, and the microstructure and properties of the porous composite. Some of biomedical results are also discussed.

  16. Light Duty Efficient, Clean Combustion

    SciTech Connect

    Stanton, Donald W.

    2011-06-03

    Cummins has successfully completed the Light Duty Efficient Clean Combustion (LDECC) cooperative program with DoE. This program was established in 2007 in support of the Department of Energy’s Vehicles Technologies Advanced Combustion and Emissions Control initiative to remove critical barriers to the commercialization of advanced, high efficiency, emissions compliant internal combustion (IC) engines for light duty vehicles. Work in this area expanded the fundamental knowledge of engine combustion to new regimes and advanced the knowledge of fuel requirements for these diesel engines to realize their full potential. All of our objectives were met with fuel efficiency improvement targets exceeded.

  17. Mechanistic Studies of Combustion and Structure Formation During Synthesis of Advanced Materials

    NASA Technical Reports Server (NTRS)

    Varma, A.; Lau, C.; Mukasyan, A. S.

    2001-01-01

    Combustion in a variety of heterogeneous systems, leading to the synthesis of advanced materials, is characterized by high temperatures (2000-3500 K) and heating rates (up to 10(exp 6) K/s) at and ahead of the reaction front. These high temperatures generate liquids and gases which are subject to gravity-driven flow. The removal of such gravitational effects is likely to provide increased control of the reaction front, with a consequent improvement in control of the microstructure of the synthesized products. Thus, microgravity (mu-g) experiments lead to major advances in the understanding of fundamental aspects of combustion and structure formation under the extreme conditions of the combustion synthesis (CS) wave. In addition, the specific features of microgravity environment allow one to produce unique materials, which cannot be obtained under terrestrial conditions. The current research is a logic continuation of our previous work on investigations of the fundamental phenomena of combustion and structure formation that occur at the high temperatures achieved in a CS wave. Our research is being conducted in three main directions: 1) Microstructural Transformations during Combustion Synthesis of Metal-Ceramic Composites. The studies are devoted to the investigation of particle growth during CS of intermetallic-ceramic composites, synthesized from nickel, aluminum, titanium, and boron metal reactants. To determine the mechanisms of particle growth, the investigation varies the relative amount of components in the initial mixture to yield combustion wave products with different ratios of solid and liquid phases, under 1g and mu-g conditions; 2) Mechanisms of Heat Transfer during Reactions in Heterogeneous Media. Specifically, new phenomena of gasless combustion wave propagation in heterogeneous media with porosity higher than that achievable in normal gravity conditions, are being studied. Two types of mixtures are investigated: clad powders, where contact between

  18. Corrosion and its effect on mechanical properties of materials for advanced combustion systems

    SciTech Connect

    Natesan, K.; Freeman, M.; Mathur, M.

    1996-05-01

    Conceptual designs of advanced combustion systems that utilize coal as a feedstock require high-temperature furnaces and heat transfer surfaces that can operate at temperatures much higher than those prevalent in current coal-fired power plants. The combination of elevated temperatures and hostile combustion environments necessitates development and application of advanced ceramic materials in these designs. The objectives of the present program are to evaluate (a) the chemistry of gaseous and condensed products that arise during combustion of coal; (b) the corrosion behavior of candidate materials in air, slag and salt environments for application in the combustion environments; and (c) the residual mechanical properties of the materials after corrosion. The program emphasizes temperatures in the range of 1000-1400{degrees}C for ceramic materials and 600-1000{degrees}C for metallic alloys. Coal/ash chemistries developed on the basis of thermodynamic/kinetic calculations, together with slags from actual combustors, are used in the program. The materials being evaluated include monolithic silicon carbide from several sources: silicon, nitride, silicon carbide in alumina composites, silicon carbide fibers in a silicon carbide- matrix composite, and some advanced nickel-base alloys. The paper presents results from an ongoing program on corrosion performance of candidate ceramic materials exposed to air, salt and slag environments and their affect on flexural strength and energy absorbed during fracture of these materials.

  19. Automatic choke and starting aid for small two-cycle internal combustion engines

    SciTech Connect

    Scott, W.A.; Hutchinson, M.A.; Baumbarger, G.L.

    1992-04-14

    This patent describes a starting aid for a small internal combustion engine having a carburetor, a carburetor bore operatively associated with the carburetor and defining a longitudinal axis, the bore having one end in communication with a source of combustion air and another end of the bore in communication with a piston cylinder of the internal combustion engine. It comprises: shaft means for selectively restricting flow of intake air into the engine, means for retaining the shaft means ins aid secondary bore, where the shaft means is prohibited from obstructing air intake into the carburetor bore, and the shaft means rotatable to a second position, where the shaft means obstructs air into the carburetor bore.

  20. Improved automated diagnosis of misfire in internal combustion engines based on simulation models

    NASA Astrophysics Data System (ADS)

    Chen, Jian; Bond Randall, Robert

    2015-12-01

    In this paper, a new advance in the application of Artificial Neural Networks (ANNs) to the automated diagnosis of misfires in Internal Combustion engines(IC engines) is detailed. The automated diagnostic system comprises three stages: fault detection, fault localization and fault severity identification. Particularly, in the severity identification stage, separate Multi-Layer Perceptron networks (MLPs) with saturating linear transfer functions were designed for individual speed conditions, so they could achieve finer classification. In order to obtain sufficient data for the network training, numerical simulation was used to simulate different ranges of misfires in the engine. The simulation models need to be updated and evaluated using experimental data, so a series of experiments were first carried out on the engine test rig to capture the vibration signals for both normal condition and with a range of misfires. Two methods were used for the misfire diagnosis: one is based on the torsional vibration signals of the crankshaft and the other on the angular acceleration signals (rotational motion) of the engine block. Following the signal processing of the experimental and simulation signals, the best features were selected as the inputs to ANN networks. The ANN systems were trained using only the simulated data and tested using real experimental cases, indicating that the simulation model can be used for a wider range of faults for which it can still be considered valid. The final results have shown that the diagnostic system based on simulation can efficiently diagnose misfire, including location and severity.

  1. Method and apparatus for controlling spark timing in internal combustion engines

    SciTech Connect

    Sasaki, K.; Tachi, R.; Iwamoto, K.

    1986-04-29

    This patent describes an apparatus for controlling the spark timing of an internal combustion engine having a crankshaft. The apparatus consists of: (a) sensor means for sensing engine operating parameters including engine load and engine rotational speed; (b) means for generating a reference position signal indicating a predetermined engine crankshaft position; (c) means responsive to the reference position signal generating means for generating a reference pulse signal having a leading edge advanced with respect to the predetermined engine crankshaft position as a function of the rotational speed of the engine crankshaft and having a trailing edge substantially coinciding with the predetermined engine crankshaft position; (d) means for deriving a desired ignition timing as a function of the engine operating parameters sensed by the sensor means; (e) means for computing a period of time elapsed from the leading edge of the reference pulse so that the end of the period of time coincides with the desired ignition timing; (f) means for detecting the variation of a period between the leading edge and the trailing edge of the reference pulse in relation to each cylinder of the engine; and (g) correction means including means responsive to the computing means and detecting means for correcting the computed period of time in accordance with the detected variation and means for generating a signal causing an ignition to occur after elapse of the corrected period of time in response to the leading edge of the reference pulse.

  2. Applications of Combustion Research on the International Space Station to Industrial Processes on Earth

    NASA Astrophysics Data System (ADS)

    Schowengerdt, F.

    2002-01-01

    The mission of the Center for Commercial Applications of Combustion in Space (CCACS) at the Colorado School of Mines is to conduct research and educate students in scientific areas related to combustion. The center focuses on those areas where results can be applied to the development of commercial products and processes and where the research can benefit from the unique properties of space. The center is planning combustion-related research aboard the International Space Station (ISS) that will further this mission. The research will be conducted in the two ISS facilities designed for combustion experiments, Space-DRUMSTM and the Combustion Integrated Rack (CIR) of the Fluids and Combustion Facility. Space-DRUMSTM is a containerless processing facility employing dynamic acoustic positioning. Guigne International, Ltd. of St. John's, Newfoundland, a CCACS member, is developing the facility in partnership with Astrium Space- Infrastructure and Teledyne Brown Engineering. This universal processing facility can handle large samples with virtually complete vibration isolation from the space station and no contamination from the experimental processing chamber. The CCACS research to be done in Space-DRUMSTM includes combustion synthesis of glass-ceramics and porous materials, nanoparticle synthesis, catalytic combustion, fluid physics and granular materials. The launch of Space-DRUMSTM to the ISS is currently scheduled for ULF-1 in January of 2003. The CIR is being developed by NASA-Glenn Research Center, and is a general-purpose combustion furnace designed to accommodate a wide range of scientific experiments. The CCACS research to be done in the CIR includes water mist fire suppression, flame synthesis of ceramic powders, nanoparticle synthesis and catalytic combustion. The CIR is currently under development, with an expected launch date in the 2005 timeframe. The applications of this combustion research in manufacturing and processing industries are far

  3. Investigation of Heat Transfer and Combustion in the Advanced Fluidized Bed Combustion.

    SciTech Connect

    Lee, S.W.

    1997-10-01

    This technical report summarizes the research conducted and progress achieved during the period from July 1, 1997 to September 30, 1997. In order to conduct the numerical modeling/simulation on the advanced swirling fluidized bed combustor (hot model), the basic governing equations are formulated based upon the continuity and momentum equations, and energy equations in the cylindrical coordinates. The chemical reaction and radiation heat transfer were considered in this modeling/simulation work. The chemical reaction and the diffusion due to concentration gradients and thermal effects are also included in the modeling for simulation. The flow system was configured in 3-D cylindrical coordinates with the uniform mesh grids. The calculation grid was set of orthogonal lines arranged in the cylindrical coordinates which includes three different directions: tangential direction (I), radial direction (i), and vertical direction (k). There are a total of 24192 grids in the system configuration including 14 slices of the tangential direction (I), 24 slices of the radial direction (j), and 72 slices of the vertical direction. Numerical simulation on the advanced swirling fluidized bed combustor is being conducted using computational fluid dynamics (CFD) code, Fluent. This code is loaded onto the supercomputer, CRAY J916 system of Morgan State University. Numerical modeling/simulation will be continued to determine the hot flow patterns, velocity profiles, static pressure profiles, and temperature profiles in the advanced swirling fluidized combustor.

  4. Task 2: Materials for Advanced Boiler and Oxy-combustion Systems

    SciTech Connect

    Holcolm, Gordon R.; McGhee, Barry

    2009-05-01

    The PowerPoint presentation provides an overview of the tasks for the project: Characterize advanced boiler (oxy-fuel combustion, biomass co-fired) gas compositions and ash deposits; Generate critical data on the effects of environmental conditions; develop a unified test method with a view to future standardization; Generate critical data for coating systems for use in advanced boiler systems; Generate critical data for flue gas recycle piping materials for oxy-fuel systems; and, Compile materials performance data from laboratory and pilot plant exposures of candidate alloys for use in advanced boiler systems.

  5. Apparatus for improving gasoline comsumption, power and reducing emission pollutants of internal combustion engines

    SciTech Connect

    Piedrafita, R.

    1986-02-18

    This patent describes an apparatus for improving performance and reducing fuel comsumption and emission pollutants from an internal combustion gasoline engine. This apparatus consists of: 1.) an internal combustion gasoline engine having, in part, an intake manifold and an exhaust manifold where the exhaust manifold is modified to include a manifold exhaust port; 2.) a modified internal combustion engine carburetor connected to the intake manifold on the engine; 3.) a positive crankcase ventilation valve (PCV) which has an input port conventionally connected to the internal combustion engine and also has a PCV output port; 4.) an automobile fuel pump having an input connected to a conventional fuel tank and having a fuel pump output port; 5.) a thermic reactor; 6.) a thermic reactor air cleaner pneumatically connected to the clean air input port on the thermic reactor; 7.) a catalytic gas injector; 8.) a fuel regulator/restrictor consisting of a solid block having a fuel pump input port and a carburetor output port.

  6. A RESEARCH PLAN TO STUDY EMISSIONS FROM SMALL INTERNAL COMBUSTION ENGINES

    EPA Science Inventory

    The report examines some of the requirements for investigating the environmental status of small internal combustion (IC) engines. These engines range in size from 1.5 to 15 hp and power a variety of equipment operated by homeowners and industry. With EPA's general growing concer...

  7. Side branch absorber for exhaust manifold of two-stroke internal combustion engine

    SciTech Connect

    Harris, Ralph E.; Broerman, III, Eugene L.; Bourn, Gary D.

    2011-01-11

    A method of improving scavenging operation of a two-stroke internal combustion engine. The exhaust pressure of the engine is analyzed to determine if there is a pulsation frequency. Acoustic modeling is used to design an absorber. An appropriately designed side branch absorber may be attached to the exhaust manifold.

  8. Ionization in the Knock Zone of an Internal-combustion Engine

    NASA Technical Reports Server (NTRS)

    Hasting, Charles E

    1940-01-01

    The ionization in the knock zone of an internal-combustion engine was investigated. A suspected correlation between the intensity of knock and the degree of ionization was verified and an oscillation in the degree of ionization corresponding in frequency to the knock vibrations in the cylinder pressure was observed.

  9. CRITERIA POLLUTANT EMISSIONS FROM INTERNAL COMBUSTION ENGINES IN THE NATURAL GAS INDUSTRY VOLUME 1. TECHNICAL REPORT

    EPA Science Inventory

    The report summarizes emission factors for criteria pollutants (NOx, CO, CH4, C2H6, THC, NMHC, and NMEHC) from stationary internal combustion engines and gas turbines used in the natural gas industry. The emission factors were calculated from test results from five test campaigns...

  10. 78 FR 54606 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-05

    ... standards of performance (``NSPS'') for stationary internal combustion engines (ICE) (78 FR 6674). Following... stationary RICE on March 3, 2010, (75 FR 9648) and August 20, 2010 (75 FR 51570). The EPA received petitions... amendments to the RICE NESHAP on January 30, 2013, (78 FR 6674) to address certain issues raised in...

  11. The railplug: A new ignitor for internal combustion engines

    SciTech Connect

    Faidley, R.W.; Darden, M.H.; Weldon, W.F.

    1995-01-01

    A miniaturized railgun, termed the {open_quotes}railplug,{close_quotes} has been developed for use as an ignitor of combustible mixtures in engines. The device drives a plasma armature in a multishot mode with the aim of creating a line-source for ignition rather than the point source provided by traditional spark plugs. Railplugs have been fabricated in both parallel rail and co-axial rail geometries. The railplug differs from most plasma armature railguns in two striking ways: (1) no fuse or pellet is used to initially establish the plasma (the armature is simply the arc created by a high-voltage pulse), and (2) it operates over a range of elevated pressures (up to 500 psi). Consequently, the railplug power supply must provide a high voltage spike to breakdown the gap between the rails followed by a sustaining voltage that supplies current to drive the arc down the rails. Conceptually, this is the equivalent of combining the electrostatic problem of a sparkplug with the electrodynamic one of a railgun. Two power supply options that do this are outlined, as well as details of railplug geometries. Successes to date have demonstrated the firing of plugs for over 10{sup 4} shots at delivered arc energies of 1 J per shot. Rep rates have been demonstrated up to 50 Hz.

  12. Fluid motion within the cylinder of internal combustion engines - The 1986 Freeman Scholar Lecture

    SciTech Connect

    Heywood, J.B.

    1987-03-01

    The flow field within the cylinder of internal combustion engines is the most important factor controlling the combustion process. Thus it has a major impact on engine operation. This paper reviews those aspects of gas motion into, within, and out of the engine cylinder that govern the combustion characteristics and breathing capabilities of spark-ignition engines and compression-ignition or diesel engines. Necessary background information and reciprocating engine operating cycles, the primary effect of piston motion and the spark-ignition and diesel engine combustion processes is first summarized. Then the characteristics of flow through inlet and exhaust valves in four-stroke cycle engines, and through ports in the cylinder liner in two-stroke cycle engines are reviewed. The essential features of common in-cylinder flows - the large scale rotating flows set up by the conical intake jet, the creation and development of swirl about the cylinder axis, the flows produced during compression due to combustion chamber shape called squish, flow during the combustion process, and two-stroke scavenging flows - are then described. The turbulence characteristics of these flows are then defined and discussed. Finally, flow phenomena which occur near the walls, which are important to heat transfer and hydrocarbon emissions phenomena, are reviewed.

  13. Performance of a high efficiency advanced coal combustor. Task 2, Pilot scale combustion tests: Final report

    SciTech Connect

    Toqan, M.A.; Paloposki, T.; Yu, T.; Teare, J.D.; Beer, J.M.

    1989-12-01

    Under contract from DOE-PETC, Combustion Engineering, Inc. undertook the lead-role in a multi-task R&D program aimed at development of a new burner system for coal-based fuels; the goal was that this burner system should be capable of being retrofitted in oil- or gas-fired industrial boilers, or usable in new units. In the first phase of this program a high efficiency advanced coal combustor was designed jointly by CE and MIT. Its burner is of the multiannular design with a fixed shrouded swirler in the center immediately surrounding the atomizer gun to provide the ``primary act,`` and three further annuli for the supply of the ``secondary air.`` The degree of rotation (swirl) in the secondary air is variable. The split of the combustion air into primary and secondary air flows serves the purpose of flame stabilization and combustion staging, the latter to reduce NO{sub x} formation.

  14. New type of microengine using internal combustion of hydrogen and oxygen

    PubMed Central

    Svetovoy, Vitaly B.; Sanders, Remco G. P.; Ma, Kechun; Elwenspoek, Miko C.

    2014-01-01

    Microsystems become part of everyday life but their application is restricted by lack of strong and fast motors (actuators) converting energy into motion. For example, widespread internal combustion engines cannot be scaled down because combustion reactions are quenched in a small space. Here we present an actuator with the dimensions 100 × 100 × 5 μm3 that is using internal combustion of hydrogen and oxygen as part of its working cycle. Water electrolysis driven by short voltage pulses creates an extra pressure of 0.5–4 bar for a time of 100–400 μs in a chamber closed by a flexible membrane. When the pulses are switched off this pressure is released even faster allowing production of mechanical work in short cycles. We provide arguments that this unexpectedly fast pressure decrease is due to spontaneous combustion of the gases in the chamber. This actuator is the first step to truly microscopic combustion engines. PMID:24599052

  15. New type of microengine using internal combustion of hydrogen and oxygen.

    PubMed

    Svetovoy, Vitaly B; Sanders, Remco G P; Ma, Kechun; Elwenspoek, Miko C

    2014-01-01

    Microsystems become part of everyday life but their application is restricted by lack of strong and fast motors (actuators) converting energy into motion. For example, widespread internal combustion engines cannot be scaled down because combustion reactions are quenched in a small space. Here we present an actuator with the dimensions 100 × 100 × 5 μm(3) that is using internal combustion of hydrogen and oxygen as part of its working cycle. Water electrolysis driven by short voltage pulses creates an extra pressure of 0.5-4 bar for a time of 100-400 μs in a chamber closed by a flexible membrane. When the pulses are switched off this pressure is released even faster allowing production of mechanical work in short cycles. We provide arguments that this unexpectedly fast pressure decrease is due to spontaneous combustion of the gases in the chamber. This actuator is the first step to truly microscopic combustion engines. PMID:24599052

  16. Combustion

    NASA Technical Reports Server (NTRS)

    Bulzan, Dan

    2007-01-01

    An overview of the emissions related research being conducted as part of the Fundamental Aeronautics Subsonics Fixed Wing Project is presented. The overview includes project metrics, milestones, and descriptions of major research areas. The overview also includes information on some of the emissions research being conducted under NASA Research Announcements. Objective: Development of comprehensive detailed and reduced kinetic mechanisms of jet fuels for chemically-reacting flow modeling. Scientific Challenges: 1) Developing experimental facilities capable of handling higher hydrocarbons and providing benchmark combustion data. 2) Determining and understanding ignition and combustion characteristics, such as laminar flame speeds, extinction stretch rates, and autoignition delays, of jet fuels and hydrocarbons relevant to jet surrogates. 3) Developing comprehensive kinetic models for jet fuels.

  17. Vacuum Plasma Spray of CuCrNb Alloy for Advanced Liquid - Fuel Combustion Chambers

    NASA Technical Reports Server (NTRS)

    Zimmerman, Frank

    2000-01-01

    The copper-8 atomic percent chromium-4 atomic percent niobium (CuCrNb) alloy was developed by Glenn Research Center (formally Lewis Research Center) as an improved alloy for combustion chamber liners. In comparison to NARloy-Z, the baseline (as in Space Shuttle Main Engine) alloy for such liners, CuCrNb demonstrates mechanical and thermophysical properties equivalent to NARloy-Z, but at temperatures 100 C to 150 C (180 F to 270 F) higher. Anticipated materials related benefits include decreasing the thrust cell liner weight 5% to 20%, increasing the service life at least two fold over current combustion chamber design, and increasing the safety margins available to designers. By adding an oxidation and thermal barrier coating to the liner, the combustion chamber can operate at even higher temperatures. For all these benefits, however, this alloy cannot be formed using conventional casting and forging methods because of the levels of chromium and niobium, which exceed their solubility limit in copper. Until recently, the only forming process that maintains the required microstructure of CrNb intermetallics is powder metallurgy formation of a billet from powder stock, followed by extrusion. This severely limits its usefulness in structural applications, particularly the complex shapes required for combustion chamber liners. Vacuum plasma spray (VPS) has been demonstrated as a method to form structural articles including small combustion chambers from the CuCrNb alloy. In addition, an oxidation and thermal barrier layer can be formed integrally on the hot wall of the liner that improve performance and extend service life. This paper discusses the metallurgy and thermomechanical properties of VPS formed CuCrNb versus the baseline powder metallurgy process, and the manufacturing of small combustion chamber liners at Marshall Space Flight Center using the VPS process. The benefits to advanced propulsion initiatives of using VPS to fabricate combustion chamber liners

  18. Recent advances in large-eddy simulation of spray and coal combustion

    NASA Astrophysics Data System (ADS)

    Zhou, L. X.

    2013-07-01

    Large-eddy simulation (LES) is under its rapid development and is recognized as a possible second generation of CFD methods used in engineering. Spray and coal combustion is widely used in power, transportation, chemical and metallurgical, iron and steel making, aeronautical and astronautical engineering, hence LES of spray and coal two-phase combustion is particularly important for engineering application. LES of two-phase combustion attracts more and more attention; since it can give the detailed instantaneous flow and flame structures and more exact statistical results than those given by the Reynolds averaged modeling (RANS modeling). One of the key problems in LES is to develop sub-grid scale (SGS) models, including SGS stress models and combustion models. Different investigators proposed or adopted various SGS models. In this paper the present author attempts to review the advances in studies on LES of spray and coal combustion, including the studies done by the present author and his colleagues. Different SGS models adopted by different investigators are described, some of their main results are summarized, and finally some research needs are discussed.

  19. An Overview of Combustion Mechanisms and Flame Structures for Advanced Solid Propellants

    NASA Technical Reports Server (NTRS)

    Beckstead, M. W.

    2000-01-01

    Ammonium perchlorate (AP) and cyclotretamethylenetetranitramine (HMX) are two solid ingredients often used in modern solid propellants. Although these two ingredients have very similar burning rates as monopropellants, they lead to significantly different characteristics when combined with binders to form propellants. Part of the purpose of this paper is to relate the observed combustion characteristics to the postulated flame structures and mechanisms for AP and HMX propellants that apparently lead to these similarities and differences. For AP composite, the primary diffusion flame is more energetic than the monopropellant flame, leading to an increase in burning rate over the monopropellant rate. In contrast the HMX primary diffusion flame is less energetic than the HMX monopropellant flame and ultimately leads to a propellant rate significantly less than the monopropellant rate in composite propellants. During the past decade the search for more energetic propellants and more environmentally acceptable propellants is leading to the development of propellants based on ingredients other than AP and HMX. The objective of this paper is to utilize the more familiar combustion characteristics of AP and HMX containing propellants to project the combustion characteristics of propellants made up of more advanced ingredients. The principal conclusion reached is that most advanced ingredients appear to burn by combustion mechanisms similar to HMX containing propellants rather than AP propellants.

  20. Internal combustion engine power. A quarter century in review

    SciTech Connect

    Kane, J.

    1994-04-01

    The advancements have been momentous. A review of the past quarter century of progress - including engine efficiencies, power ratings, fuels, emissions and the technological advances associated with these parameters - draws the real and outstanding developments of the period into perspective. Though the shapes of engines appear to be the same, few of the easy product classifications that existed in 1969 have survived to this day. In addition, the pattern of engine development is becoming similar throughout the world. All diesel engine design work, regardless of the country in which it is being carried out, is related to increasing specific output, from the smaller high-speed diesel, gas and gas turbine engines to the very largest stationary and marine power engines. This is being accomplished for the reciprocating engine by, basically, the same design and research techniques: higher speed, larger engine displacement through larger cylinder sizes, more cylinders with V-type configurations, and higher mean effective pressures through intensive use of turbo-charging and charge-air cooling, along with cylinder-head and injection process modifications. 6 figs.

  1. Fuels for Advanced Combustion Engines Research Diesel Fuels: Analysis of Physical and Chemical Properties

    SciTech Connect

    Gallant, Tom; Franz, Jim; Alnajjar, Mikhail; Storey, John Morse; Lewis Sr, Samuel Arthur; Sluder, Scott; Cannella, William C; Fairbridge, Craig; Hager, Darcy; Dettman, Heather; Luecke, Jon; Ratcliff, Matthew A.; Zigler, Brad

    2009-01-01

    The CRC Fuels for Advanced Combustion Engines working group has worked to identify a matrix of research diesel fuels for use in advanced combustion research applications. Nine fuels were specified and formulated to investigate the effects of cetane number aromatic content and 90% distillation fraction. Standard ASTM analyses were performed on the fuels as well as GC/MS and /u1H//u1/u3C NMR analyses and thermodynamic characterizations. Details of the actual results of the fuel formulations compared with the design values are presented, as well as results from standard analyses, such as heating value, viscosity and density. Cetane number characterizations were accomplished by using both the engine method and the Ignition Quality Tester (IQT/sT) apparatus.

  2. Advanced Combustion Diagnostics and Control for Furnaces, Fired Heaters and Boilers

    SciTech Connect

    Tate, J. D.; Le, Linh D.; Knittel,Trevor; Cowie, Alan

    2010-03-20

    The objective of this project was to develop and apply enabling tools and methods towards advanced combustion diagnostics and control of fired-equipment in large-scale petrochemical manufacturing. There are a number of technology gaps and opportunities for combustion optimization, including technologies involving advanced in-situ measurements, modeling, and thermal imaging. These technologies intersect most of manufacturing and energy systems within the chemical industry. This project leveraged the success of a previous DOE funded project led by Dow, where we co-developed an in-situ tunable diode laser (TDL) analyzer platform (with Analytical Specialties Inc, now owned by Yokogawa Electric Corp.). The TDL platform has been tested and proven in a number of combustion processes within Dow and outside of Dow. The primary focus of this project was on combustion diagnostics and control applied towards furnaces, fired heaters and boilers. Special emphasis was placed on the development and application of in-situ measurements for O2, CO and methane since these combustion gases are key variables in optimizing and controlling combustion processes safely. Current best practice in the industry relies on measurements that suffer from serious performance gaps such as limited sampling volume (point measurements), poor precision and accuracy, and poor reliability. Phase I of the project addressed these gaps by adding improved measurement capabilities such as CO and methane (ppm analysis at combustion zone temperatures) as well as improved optics to maintain alignment over path lengths up to 30 meters. Proof-of-concept was demonstrated on a modern olefins furnace located at Dow Chemical's facility in Freeport TX where the improved measurements were compared side-by-side to accepted best practice techniques (zirconium oxide and catalytic bead or thick film sensors). After developing and installing the improved combustion measurements (O2, CO, and methane), we also demonstrated the

  3. Advanced combustion, emission control, health impacts, and fuels merit review and peer evaluation

    SciTech Connect

    None, None

    2006-10-01

    This report is a summary and analysis of comments from the Advisory Panel at the FY 2006 DOE National Laboratory Advanced Combustion, Emission Control, Health Impacts, and Fuels Merit Review and Peer Evaluation, held May 15-18, 2006 at Argonne National Laboratory. The work evaluated in this document supports the FreedomCAR and Vehicle Technologies Program. The results of this merit review and peer evaluation are major inputs used by DOE in making its funding decisions for the upcoming fiscal year.

  4. High Thermal Conductivity NARloy-Z-Diamond Composite Combustion Chamber Liner For Advanced Rocket Engines

    NASA Technical Reports Server (NTRS)

    Bhat, Biliyar N.; Ellis, David; Singh, Jogender

    2014-01-01

    Advanced high thermal conductivity materials research conducted at NASA Marshall Space Flight Center (MSFC) with state of the art combustion chamber liner material NARloy-Z showed that its thermal conductivity can be increased significantly by adding diamond particles and sintering it at high temperatures. For instance, NARloy-Z containing 40 vol. percent diamond particles, sintered at 975C to full density by using the Field assisted Sintering Technology (FAST) showed 69 percent higher thermal conductivity than baseline NARloy-Z. Furthermore, NARloy-Z-40vol. percent D is 30 percent lighter than NARloy-Z and hence the density normalized thermal conductivity is 140 percent better. These attributes will improve the performance and life of the advanced rocket engines significantly. By one estimate, increased thermal conductivity will directly translate into increased turbopump power up to 2X and increased chamber pressure for improved thrust and ISP, resulting in an expected 20 percent improvement in engine performance. Follow on research is now being conducted to demonstrate the benefits of this high thermal conductivity NARloy-Z-D composite for combustion chamber liner applications in advanced rocket engines. The work consists of a) Optimizing the chemistry and heat treatment for NARloy-Z-D composite, b) Developing design properties (thermal and mechanical) for the optimized NARloy-Z-D, c) Fabrication of net shape subscale combustion chamber liner, and d) Hot fire testing of the liner for performance. FAST is used for consolidating and sintering NARlo-Z-D. The subscale cylindrical liner with built in channels for coolant flow is also fabricated near net shape using the FAST process. The liner will be assembled into a test rig and hot fire tested in the MSFC test facility to determine performance. This paper describes the development of this novel high thermal conductivity NARloy-Z-D composite material, and the advanced net shape technology to fabricate the combustion

  5. Multicylinder internal combustion engine utilizing split block with unitized cylinder head and liner

    SciTech Connect

    Eitel, J.M.

    1988-08-16

    This patent describes an internal combustion engine of the type having at least one cylinder and a crankshaft, as assembly comprised of first and second mating half sections joined in a common plane which passes through and along the axis of the crankshaft, each of the half sections providing crankcase, crankshaft bearing support, and cylinder water jacket portions, a unitized cylinder head and sleeve construction having a combustion chamber with a top surface therein and cooperative securing and sealing means for securing the unitized cylinder head and sleeve construction to the assembly in a location immediately adjacent the top surface of the combustion chamber, the cooperative securing and sealing means encircling each cylinder head and including tie bolts extending through the cylinder water jacket portions.

  6. Proceedings of the sixth international conference on fluidized bed combustion. Volume II. Technical sessions

    SciTech Connect

    1980-08-01

    The Sixth International Conference on Fluidized Bed Combustion was held April 9-11, 1980, at the Atlanta Hilton, Atlanta, Georgia. It was sponsored by the US Department of Energy, the Electric Power Research Institute, the US Environmental Protection Agency, and the Tennessee Valley Authority. The papers covered recent developments in atmospheric and pressurized fluidized-bed combustion, especially the design, operation and control of pilot and demonstration plants. The cleanup of combustion products and the erosion, corrosion and fouling of gas turbines was emphasized also. Fifty-five papers from Volume 2 of the proceedings have been entered individually into EDB and ERA; five papers had been entered previously from other sources. (LTN)

  7. Internal combustion engine system having a power turbine with a broad efficiency range

    SciTech Connect

    Whiting, Todd Mathew; Vuk, Carl Thomas

    2010-04-13

    An engine system incorporating an air breathing, reciprocating internal combustion engine having an inlet for air and an exhaust for products of combustion. A centripetal turbine receives products of the combustion and has a housing in which a turbine wheel is rotatable. The housing has first and second passages leading from the inlet to discrete, approximately 180.degree., portions of the circumference of the turbine wheel. The passages have fixed vanes adjacent the periphery of the turbine wheel and the angle of the vanes in one of the passages is different than those in the other so as to accommodate different power levels providing optimum approach angles between the gases passing the vanes and the blades of the turbine wheel. Flow through the passages is controlled by a flapper valve to direct it to one or the other or both passages depending upon the load factor for the engine.

  8. Report: Combustion Byproducts and Their Health Effects: Summary of the 10th International Congress

    PubMed Central

    Dellinger, Barry; D'Alessio, Antonio; D'Anna, Andrea; Ciajolo, Anna; Gullett, Brian; Henry, Heather; Keener, Mel; Lighty, JoAnn; Lomnicki, Slawomir; Lucas, Donald; Oberdörster, Günter; Pitea, Demetrio; Suk, William; Sarofim, Adel; Smith, Kirk R.; Stoeger, Tobias; Tolbert, Paige; Wyzga, Ron; Zimmermann, Ralf

    2008-01-01

    Abstract The 10th International Congress on Combustion Byproducts and their Health Effects was held in Ischia, Italy, from June 17–20, 2007. It is sponsored by the US NIEHS, NSF, Coalition for Responsible Waste Incineration (CRWI), and Electric Power Research Institute (EPRI). The congress focused on: the origin, characterization, and health impacts of combustion-generated fine and ultrafine particles; emissions of mercury and dioxins, and the development/application of novel analytical/diagnostic tools. The consensus of the discussion was that particle-associated organics, metals, and persistent free radicals (PFRs) produced by combustion sources are the likely source of the observed health impacts of airborne PM rather than simple physical irritation of the particles. Ultrafine particle-induced oxidative stress is a likely progenitor of the observed health impacts, but important biological and chemical details and possible catalytic cycles remain unresolved. Other key conclusions were: (1) In urban settings, 70% of airborne fine particles are a result of combustion emissions and 50% are due to primary emissions from combustion sources, (2) In addition to soot, combustion produces one, possibly two, classes of nanoparticles with mean diameters of ~10 nm and ~1 nm. (3) The most common metrics used to describe particle toxicity, viz. surface area, sulfate concentration, total carbon, and organic carbon, cannot fully explain observed health impacts, (4) Metals contained in combustion-generated ultrafine and fine particles mediate formation of toxic air pollutants such as PCDD/F and PFRs. (5) The combination of metal-containing nanoparticles, organic carbon compounds, and PFRs can lead to a cycle generating oxidative stress in exposed organisms. PMID:22476005

  9. The scaling of performance and losses in miniature internal combustion engines

    NASA Astrophysics Data System (ADS)

    Menon, Shyam Kumar

    Miniature glow ignition internal combustion (IC) piston engines are an off--the--shelf technology that could dramatically increase the endurance of miniature electric power supplies and the range and endurance of small unmanned air vehicles provided their overall thermodynamic efficiencies can be increased to 15% or better. This thesis presents the first comprehensive analysis of small (<500 g) piston engine performance. A unique dynamometer system is developed that is capable of making reliable measurements of engine performance and losses in these small engines. Methodologies are also developed for measuring volumetric, heat transfer, exhaust, mechanical, and combustion losses. These instruments and techniques are used to investigate the performance of seven single-cylinder, two-stroke, glow fueled engines ranging in size from 15 to 450 g (0.16 to 7.5 cm3 displacement). Scaling rules for power output, overall efficiency, and normalized power are developed from the data. These will be useful to developers of micro-air vehicles and miniature power systems. The data show that the minimum length scale of a thermodynamically viable piston engine based on present technology is approximately 3 mm. Incomplete combustion is the most important challenge as it accounts for 60-70% of total energy losses. Combustion losses are followed in order of importance by heat transfer, sensible enthalpy, and friction. A net heat release analysis based on in-cylinder pressure measurements suggest that a two--stage combustion process occurs at low engine speeds and equivalence ratios close to 1. Different theories based on burning mode and reaction kinetics are proposed to explain the observed results. High speed imaging of the combustion chamber suggests that a turbulent premixed flame with its origin in the vicinity of the glow plug is the primary driver of combustion. Placing miniature IC engines on a turbulent combustion regime diagram shows that they operate in the 'flamelet in eddy

  10. Robust Low Cost Liquid Rocket Combustion Chamber by Advanced Vacuum Plasma Process

    NASA Technical Reports Server (NTRS)

    Holmes, Richard; Elam, Sandra; McKechnie, Timothy; Hickman, Robert; Stinson, Thomas N. (Technical Monitor)

    2002-01-01

    Next-generation, regeneratively cooled rocket engines require materials that can meet high temperatures while resisting the corrosive oxidation-reduction reaction of combustion known as blanching, the main cause of engine failure. A project was initiated at NASA-Marshal Space Flight Center (MSFC) to combine three existing technologies to build and demonstrate an advanced liquid rocket engine combustion chamber that would provide a 100 mission life. Technology developed in microgravity research to build cartridges for space furnaces was utilized to vacuum plasma spray (VPS) a functional gradient coating on the hot wall of the combustion liner as one continuous operation, eliminating any bondline between the coating and the liner. The coating was NiCrAlY, developed previously as durable protective coatings on space shuttle high pressure fuel turbopump (HPFTP) turbine blades. A thermal model showed that 0.03 in. NiCrAlY applied to the hot wall of the combustion liner would reduce the hot wall temperature 200 F, a 20% reduction, for longer life. Cu-8Cr-4Nb alloy, which was developed by NASA-Glenn Research Center (GRC), and which possesses excellent high temperature strength, creep resistance, and low cycle fatigue behavior combined with exceptional thermal stability, was utilized as the liner material in place of NARloy-Z. The Cu-8Cr-4Nb material exhibits better mechanical properties at 650 C (1200 F) than NARloy-Z does at 538 C (1000 F). VPS formed Cu-8Cr-4Nb combustion chamber liners with a protective NiCrAlY functional gradient coating have been hot fire tested, successfully demonstrating a durable coating for the first time. Hot fire tests along with tensile and low cycle fatigue properties of the VPS formed combustion chamber liners and witness panel specimens are discussed.

  11. Mechanistic Studies Of Combustion And Structure Formation During Combustion Synthesis Of Advanced Materials: Phase Separation Mechanism For Bio-Alloys

    NASA Technical Reports Server (NTRS)

    Varma, A.; Lau, C.; Mukasyan, A.

    2003-01-01

    Among all implant materials, Co-Cr-Mo alloys demonstrate perhaps the most useful balance of resistance to corrosion, fatigue and wear, along with strength and biocompatibility [1]. Currently, these widely used alloys are produced by conventional furnace technology. Owing to high melting points of the main alloy elements (e.g. Tm.p.(Co) 1768 K), high-temperature furnaces and long process times (several hours) are required. Therefore, attempts to develop more efficient and flexible methods for production of such alloys with superior properties are of great interest. The synthesis of materials using combustion phenomena is an advanced approach in powder metallurgy [2]. The process is characterized by unique conditions involving extremely fast heating rates (up to 10(exp 6 K/s), high temperatures (up to 3500 K), and short reaction times (on the order of seconds). As a result, combustion synthesis (CS) offers several attractive advantages over conventional metallurgical processing and alloy development technologies. The foremost is that solely the heat of chemical reaction (instead of an external source) supplies the energy for the synthesis. Also, simple equipment, rather than energy-intensive high-temperature furnaces, is sufficient. This work was devoted to experiments on CS of Co-based alloys by utilizing thermite (metal oxide-reducing metal) reactions, where phase separation subsequently produces materials with tailored compositions and properties. Owing to high reaction exothermicity, the CS process results in a significant increase of temperature (up to 3000 C), which is higher than melting points of all products. Since the products differ in density, phase separation may be a gravitydriven process: the heavy (metallic phase) settles while the light (slag) phase floats. The goal was to determine if buoyancy is indeed the major mechanism that controls phase segregation.

  12. 40 CFR 60.4231 - What emission standards must I meet if I am a manufacturer of stationary SI internal combustion...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirements for new nonroad SI engines in 40 CFR part 90. Stationary SI internal combustion engine... engines in 40 CFR part 1048. Stationary SI internal combustion engine manufacturers must certify their... CFR part 90 or 1054, as appropriate. (d) Stationary SI internal combustion engine......

  13. 40 CFR 60.4242 - What other requirements must I meet if I am a manufacturer of stationary SI internal combustion...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...? (a) Stationary SI internal combustion engine manufacturers must meet the provisions of 40 CFR part 90... I am a manufacturer of stationary SI internal combustion engines or equipment containing stationary SI internal combustion engines or a manufacturer of equipment containing such engines?...

  14. 40 CFR 60.4242 - What other requirements must I meet if I am a manufacturer of stationary SI internal combustion...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...? (a) Stationary SI internal combustion engine manufacturers must meet the provisions of 40 CFR part 90... I am a manufacturer of stationary SI internal combustion engines or equipment containing stationary SI internal combustion engines or a manufacturer of equipment containing such engines?...

  15. 40 CFR 60.4242 - What other requirements must I meet if I am a manufacturer of stationary SI internal combustion...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...? (a) Stationary SI internal combustion engine manufacturers must meet the provisions of 40 CFR part 90... I am a manufacturer of stationary SI internal combustion engines or equipment containing stationary SI internal combustion engines or a manufacturer of equipment containing such engines?...

  16. 40 CFR 60.4242 - What other requirements must I meet if I am a manufacturer of stationary SI internal combustion...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...? (a) Stationary SI internal combustion engine manufacturers must meet the provisions of 40 CFR part 90... I am a manufacturer of stationary SI internal combustion engines or equipment containing stationary SI internal combustion engines or a manufacturer of equipment containing such engines?...

  17. 40 CFR 60.4231 - What emission standards must I meet if I am a manufacturer of stationary SI internal combustion...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... requirements for new nonroad SI engines in 40 CFR part 90. Stationary SI internal combustion engine... engines in 40 CFR part 1048. Stationary SI internal combustion engine manufacturers must certify their... CFR part 90 or 1054, as appropriate. (d) Stationary SI internal combustion engine......

  18. 46 CFR 32.50-35 - Remote manual shutdown for internal combustion engine driven cargo pump on tank vessels-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Remote manual shutdown for internal combustion engine... for Cargo Handling § 32.50-35 Remote manual shutdown for internal combustion engine driven cargo pump on tank vessels—TB/ALL. (a) Any tank vessel which is equipped with an internal combustion...

  19. 46 CFR 32.50-35 - Remote manual shutdown for internal combustion engine driven cargo pump on tank vessels-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Remote manual shutdown for internal combustion engine... for Cargo Handling § 32.50-35 Remote manual shutdown for internal combustion engine driven cargo pump on tank vessels—TB/ALL. (a) Any tank vessel which is equipped with an internal combustion...

  20. 46 CFR 32.50-35 - Remote manual shutdown for internal combustion engine driven cargo pump on tank vessels-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Remote manual shutdown for internal combustion engine... for Cargo Handling § 32.50-35 Remote manual shutdown for internal combustion engine driven cargo pump on tank vessels—TB/ALL. (a) Any tank vessel which is equipped with an internal combustion...

  1. 46 CFR 32.50-35 - Remote manual shutdown for internal combustion engine driven cargo pump on tank vessels-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Remote manual shutdown for internal combustion engine... for Cargo Handling § 32.50-35 Remote manual shutdown for internal combustion engine driven cargo pump on tank vessels—TB/ALL. (a) Any tank vessel which is equipped with an internal combustion...

  2. 40 CFR 60.4203 - How long must my engines meet the emission standards if I am a stationary CI internal combustion...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... emission standards if I am a stationary CI internal combustion engine manufacturer? 60.4203 Section 60.4203... standards if I am a stationary CI internal combustion engine manufacturer? Engines manufactured by stationary CI internal combustion engine manufacturers must meet the emission standards as required in §§...

  3. 40 CFR 60.4203 - How long must my engines meet the emission standards if I am a stationary CI internal combustion...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... emission standards if I am a stationary CI internal combustion engine manufacturer? 60.4203 Section 60.4203... standards if I am a stationary CI internal combustion engine manufacturer? Engines manufactured by stationary CI internal combustion engine manufacturers must meet the emission standards as required in §§...

  4. International Agreement Will Advance Radio Astronomy

    NASA Astrophysics Data System (ADS)

    2007-12-01

    Two of the world's leading astronomical institutions have formalized an agreement to cooperate on joint efforts for the technical and scientific advancement of radio astronomy. The National Radio Astronomy Observatory (NRAO) in the United States and the Max-Planck Institute for Radioastronomy (MPIfR) in Germany concluded a Memorandum of Understanding outlining planned collaborative efforts to enhance the capabilities of each other's telescopes and to expand their cooperation in scientific research. The VLBA The VLBA CREDIT: NRAO/AUI/NSF In the first project pursued under this agreement, the MPIfR will contribute $299,000 to upgrade the continent-wide Very Long Baseline Array's (VLBA) capability to receive radio emissions at a frequency of 22 GHz. This improvement will enhance the VLBA's scientific productivity and will be particularly important for cutting-edge research in cosmology and enigmatic cosmic objects such as gamma-ray blazars. "This agreement follows many years of cooperation between our institutions and recognizes the importance of international collaboration for the future of astronomical research," said Fred K.Y. Lo, NRAO Director. "Our two institutions have many common research goals, and joining forces to keep all our telescopes at the forefront of technology will be highly beneficial for the science," said Anton Zensus, Director at MPIfR. In addition to the VLBA, the NRAO operates the Very Large Array (VLA) in New Mexico and the Robert C. Byrd Green Bank Telescope (GBT) in West Virginia. The MPIfR operates the 100-meter Effelsberg Radio Telescope in Germany and the 12-meter APEX submillimeter telescope in 5100 m altitude in the Cilean Atacama desert (together with the European Southern Observatory and the Swedish Onsala Space Observatory). With the 100-meter telescope, it is part of the VLBA network in providing transatlantic baselines. Both institutions are members of a global network of telescopes (the Global VLBI Network) that uses simultaneous

  5. Method for reducing peak phase current and decreasing staring time for an internal combustion engine having an induction machine

    DOEpatents

    Amey, David L.; Degner, Michael W.

    2002-01-01

    A method for reducing the starting time and reducing the peak phase currents for an internal combustion engine that is started using an induction machine starter/alternator. The starting time is reduced by pre-fluxing the induction machine and the peak phase currents are reduced by reducing the flux current command after a predetermined period of time has elapsed and concurrent to the application of the torque current command. The method of the present invention also provides a strategy for anticipating the start command for an internal combustion engine and determines a start strategy based on the start command and the operating state of the internal combustion engine.

  6. Proceedings of the sixth international conference on fluidized bed combustion. Volume III. Technical sessions

    SciTech Connect

    1980-08-01

    The Sixth International Conference on Fluidized Bed Combustion was held April 9-11, 1980, at the Atlanta Hilton, Atlanta, Georgia. It was sponsored by the US Department of Energy, the Electric Power Research Institute, the US Environmental Protection Agency, and the Tennessee Valley Authority. Forty-five papers from Vol. III of the proceedings have been entered individually into EDB and ERA. Two papers had been entered previously from other sources. (LTN)

  7. Internal combustion engine with rotary valve assembly having variable intake valve timing

    DOEpatents

    Hansen, Craig N.; Cross, Paul C.

    1995-01-01

    An internal combustion engine has rotary valves associated with movable shutters operable to vary the closing of intake air/fuel port sections to obtain peak volumetric efficiency over the entire range of speed of the engine. The shutters are moved automatically by a control mechanism that is responsive to the RPM of the engine. A foot-operated lever associated with the control mechanism is also used to move the shutters between their open and closed positions.

  8. Reciprocating balance weight mechanism for a piston type internal combustion engine

    SciTech Connect

    Nivi, H.; Field, N.L. III

    1987-08-25

    A balancing mechanism is described for reducing the vibration of a piston type internal combustion engine having a crankshaft and a camshaft, the balancing mechanisms comprising one or more reciprocating balance weights, with each weight comprising an elongate body having a cam follower mounted at either end and with each weight being driven by two rotating cams with at least one of the cams being driven by either the crankshaft or the camshaft.

  9. Control device for controlling the operation of a supercharger in an internal combustion engine

    SciTech Connect

    Horii, K.

    1987-04-28

    An internal combustion engine is described having a crankshaft and a supercharger mechanically driven by and connected to the crankshaft via an electromagentic clutch, a control device for controlling the operation of the supercharger in response to engine operating conditions, comprising, a first sensor means for detecting a temperature of the engine, a second sensor means for detecting racing of the engine, and a control means responsive to outputs from the first and second sensors for causing the electromagnetic clutch to be disengaged.

  10. Method for operating a spark-ignition, direct-injection internal combustion engine

    DOEpatents

    Narayanaswamy, Kushal; Koch, Calvin K.; Najt, Paul M.; Szekely, Jr., Gerald A.; Toner, Joel G.

    2015-06-02

    A spark-ignition, direct-injection internal combustion engine is coupled to an exhaust aftertreatment system including a three-way catalytic converter upstream of an NH3-SCR catalyst. A method for operating the engine includes operating the engine in a fuel cutoff mode and coincidentally executing a second fuel injection control scheme upon detecting an engine load that permits operation in the fuel cutoff mode.

  11. Relation of Hydrogen and Methane to Carbon Monoxide in Exhaust Gases from Internal-Combustion Engines

    NASA Technical Reports Server (NTRS)

    Gerrish, Harold C; Tessmann, Arthur M

    1935-01-01

    The relation of hydrogen and methane to carbon monoxide in the exhaust gases from internal-combustion engines operating on standard-grade aviation gasoline, fighting-grade aviation gasoline, hydrogenated safety fuel, laboratory diesel fuel, and auto diesel fuel was determined by analysis of the exhaust gases. Two liquid-cooled single-cylinder spark-ignition, one 9-cylinder radial air-cooled spark-ignition, and two liquid-cooled single-cylinder compression-ignition engines were used.

  12. Thermodynamic efficiency of present types of internal combustion engines for aircraft

    NASA Technical Reports Server (NTRS)

    Lucke, Charles E

    1917-01-01

    Report presents requirements of internal combustion engines suitable for aircraft. Topics include: (1) service requirements for aeronautic engines - power versus weight, reliability, and adaptability factors, (2) general characteristics of present aero engines, (3) aero engine processes and functions of parts versus power-weight ratio, reliability, and adaptability factors, and (4) general arrangement, form, proportions, and materials of aero parts - power-weight ratio, reliability, and adaptability.

  13. Proceedings of the Sixth International Conference on Fluidized Bed Combustion. Volume 1. Plenary sessions

    SciTech Connect

    1980-08-01

    The Sixth International Conference on Fluidized Bed Combustion was held at the Atlanta Hilton, Atlanta, Georgia, April 9-11, 1980. The papers in this volume involved presentation of the research and development programs of the US (US DOE, TVA, EPRI and US EPA), United Kingdom, Federal Republic of Germany and the People's Republic of China. Eight papers from Vol. 1 (Plenary Sessions) of the proceedings have been entered individually into EDB and ERA. (LTN)

  14. Advancing Space Situational Awareness through International Coordination

    NASA Astrophysics Data System (ADS)

    Onsager, Terrance

    2012-07-01

    The growing interest in Space Situational Awareness and the recognized need for global coordination has led to the involvement of numerous international activities to increase awareness and foster cooperation. These activities are serving to prioritize and to coordinate our efforts and helping to establish a stronger, global Space Situational Awareness enterprise. This coordination is important for our data infrastructure, research developments, and the provision of operational services. Among the organizations that are contributing to this global coordination are: the International Space Environment Service, the World Meteorological Organization, the United Nations Office for Outer Space Affairs, the International Civil Aviation Organization, the Coordination Group for Meteorological Satellites, and the International Committee on GNSS. In this presentation, the contributions of these various organizations to coordinating our Space Situational Awareness efforts will be described, with an emphasis on space weather.

  15. ENVIRONMENTAL ASSESSMENT OF NOX CONTROL ON A SPARK-IGNITED LARGE BORE RECIPROCATING INTERNAL COMBUSTION ENGINE. VOLUME 1. TECHNICAL RESULTS

    EPA Science Inventory

    Volume I of the report gives emission results for a spark-ignited, largebore, reciprocating, internal-combustion engine operating both under baseline (normal) conditions, and with combustion modification controls to reduce NOx emissions to levels below the proposed new source per...

  16. Advances in internal medicine. Volume 33

    SciTech Connect

    Stollerman, G.H.

    1988-01-01

    This book contains 19 chapters. Some of the chapter titles are: B-Lymphoid Neoplasms: Immunoglobulin Genes as Molecular Determinants of Clonality, Lineage, Differentiations, and Translocation; Cytotoxic T-Lymphocytes; Advances in AIDS and HIV Infection; Displacement Bone Marrow Transplantation and Immunoprophylaxis for Genetic Diseases; and When to Treat Hyperlipidemia.

  17. Advances in internal medicine. Volume 30

    SciTech Connect

    Stollerman, G.H.

    1984-01-01

    This book discusses the recent advances made in medicine. Topics discussed are--pathogenesis of T-cell Leukemia Virus; Immunosuppression; Acquired immune deficiency syndrome (AIDS)--organs affected and etiology; molecular biology of bacterial infections; pneumonia; patterns of aspergillosillosis infections; leukotrienes; cardiovascular action of beta-blockers; toxicity of drugs and biological effects of metals; and carcinogenesis of various carcinogens.

  18. Influence of various operating conditions on advanced PFBC with staged combustion

    SciTech Connect

    Moersch, O.; Nagel, H.; Spliethoff, H.; Hein, K.R.G.

    1999-07-01

    The development of PFBC towards advanced or second generation PFBC focuses on an increase of temperature at the gas turbine inlet to bring forth a substantial improvement of the turbine itself and the overall system performance. Most of such advanced systems described in literature include a carbonizer for partial conversion of coal producing a low calorific pressurized syngas and a PFBC burning the remaining char. After hot gas clean-up the syngas and the O{sub 2}-rich fuel gas from the PFBC are led to the combustion chamber of the gas turbine. In the proposed staged combustion concept (PFBC-SC), which also aims at raising the temperatures at the gas turbine inlet, coal is burned substoichiometrically in a pressurized fluidized bed producing a low calorific gas. After hot gas clean-up the gas undergoes post-combustion with pressurized air and enters the gas turbine at approximately 1,450 K. The advantages of PFBC-SC over APFBC as described above are the lower investment costs and the simpler process, because no separate gasifier including hot gas cleaning device is needed. At the IVD's 50 kWth PFBC test facility, experimental investigations were done into substoichiometrical combustion with regard to composition of the produced gas, carbon-conversion and afterburner temperature. The results of the experiments which were carried out at various temperatures (1,073--1,200 K), pressures (1--13 bar), air ratios (0.5--0.9) and with different coals were compared with chemical equilibrium calculations. In contrast to the operating pressure the heating value of the syngas ({ge}CO, H{sub 2}, CH{sub 4}) could be increased significantly with increasing temperatures. Due to the better gasification behavior of subbituminous coal compared with bituminous coal almost equilibrium conditions were achieved. At high pressures and temperatures (13 bar/1,173 K) the carbon conversion rate 97.5% at all air ratios.

  19. Robust Low Cost Liquid Rocket Combustion Chamber by Advanced Vacuum Plasma Process

    NASA Technical Reports Server (NTRS)

    Holmes, Richard; Elam, Sandra; Ellis, David L.; McKechnie, Timothy; Hickman, Robert; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Next-generation, regeneratively cooled rocket engines will require materials that can withstand high temperatures while retaining high thermal conductivity. Fabrication techniques must be cost efficient so that engine components can be manufactured within the constraints of shrinking budgets. Three technologies have been combined to produce an advanced liquid rocket engine combustion chamber at NASA-Marshall Space Flight Center (MSFC) using relatively low-cost, vacuum-plasma-spray (VPS) techniques. Copper alloy NARloy-Z was replaced with a new high performance Cu-8Cr-4Nb alloy developed by NASA-Glenn Research Center (GRC), which possesses excellent high-temperature strength, creep resistance, and low cycle fatigue behavior combined with exceptional thermal stability. Functional gradient technology, developed building composite cartridges for space furnaces was incorporated to add oxidation resistant and thermal barrier coatings as an integral part of the hot wall of the liner during the VPS process. NiCrAlY, utilized to produce durable protective coating for the space shuttle high pressure fuel turbopump (BPFTP) turbine blades, was used as the functional gradient material coating (FGM). The FGM not only serves as a protection from oxidation or blanching, the main cause of engine failure, but also serves as a thermal barrier because of its lower thermal conductivity, reducing the temperature of the combustion liner 200 F, from 1000 F to 800 F producing longer life. The objective of this program was to develop and demonstrate the technology to fabricate high-performance, robust, inexpensive combustion chambers for advanced propulsion systems (such as Lockheed-Martin's VentureStar and NASA's Reusable Launch Vehicle, RLV) using the low-cost VPS process. VPS formed combustion chamber test articles have been formed with the FGM hot wall built in and hot fire tested, demonstrating for the first time a coating that will remain intact through the hot firing test, and with

  20. Performance and operating results from the demonstration of advanced combustion techniques for wall-fired boilers

    SciTech Connect

    Sorge, J.N.; Baldwin, A.L.

    1993-11-01

    This paper discusses the technical progress of a US Department of Energy Innovative Clean Coal Technology project demonstrating advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. The primary objective of the demonstration is to determine the long-term performance of advanced overfire air and low NO{sub x} burners applied in a stepwise fashion to a 500 MW boiler. A 50 percent NO{sub x} reduction target has been established for the project. The focus of this paper is to present the effects of excess oxygen level and burner settings on NO{sub x} emissions and unburned carbon levels and recent results from the phase of the project when low NO{sub x} burners were used in conjunction with advanced overfire air.

  1. Combustion characteristics of spent catalyst and paper sludge in an internally circulating fluidized-bed combustor.

    PubMed

    Roh, Seon Ah; Jung, Dae Sung; Kim, Sang Done; Guy, Christophe

    2005-09-01

    Combustion of spent vacuum residue hydrodesulfurization catalyst and incineration of paper sludge were carried out in thermo-gravimetric analyzer and an internally circulating fluidized-bed (ICFB) reactor. From the thermo-gravimetric analyzer-differential thermo-gravimetric curves, the pre-exponential factors and activation energies are determined at the divided temperature regions, and the thermo-gravimetric analysis patterns can be predicted by the kinetic equations. The effects of bed temperature, gas velocity in the draft tube and annulus, solid circulation rate, and waste feed rate on combustion efficiency of the wastes have been determined in an ICFB from the experiments and the model studies. The ICFB combustor exhibits uniform temperature distribution along the bed height with high combustion efficiency (>90%). The combustion efficiency increases with increasing reaction temperature, gas velocity in the annulus region, and solid circulation rate and decreases with increasing waste feed rate and gas velocity in the draft tube. The simulated data from the kinetic equation and the hydrodynamic models predict the experimental data reasonably well. PMID:16259422

  2. First imaging Fourier-transform spectral measurements of detonation in an internal combustion engine

    NASA Astrophysics Data System (ADS)

    Gross, Kevin C.; Borel, Chris; White, Allen; Sakai, Stephen; DeVasher, Rebecca; Perram, Glen P.

    2010-08-01

    The Telops Hyper-Cam midwave (InSb 1.5-5.5μm) imaging Fourier-transformspectrometer (IFTS) observed repeated detonations in an ethanol-powered internal combustion (IC) engine. The IC engine is aMegatech Corporation MEG 150 with a 1in. bore, 4in. stroke, and a compression ratio of 3 : 1. The IC combustion cylinder is made from sapphire permitting observation in the visible and infrared. From a distance of 3m, the IFTS imaged the combustion cylinder on a 64×32 pixel array with each pixel covering a 0.1×0.1cm2 area. More than 14,000 interferograms were collected at a rate of 16Hz. The maximum optical path difference of the interferograms was 0.017cm corresponding to an unapodized spectral resolution of 36cm-1. Engine speed was varied between 600-1200RPM to de-correlate the observation time scale from the occurrence of detonations. A method is devised to process the ensemble of interferograms which takes advantage of the DC component so that the time history of the combustion spectrum can be recovered at each pixel location. Preliminary results of this analysis will be presented.

  3. A comparison between direct spark ignition and prechamber ignition in an internal combustion engine

    SciTech Connect

    Cloutman, L.D.

    1993-12-03

    We simulated the flow field and flame propagation near top dead center in a generic large-bore internal combustion engine using the COYOTE computer program, which is based on the full Navier-Stokes equations for a fluid mixture. The combustion chamber is a right circular cylinder, and the main charge is uniformly premixed. The calculations are axisymmetric. The results illustrate the differences in flow patterns, flame propagation, and thermal NO production between ignition with a spark plug and with a small prechamber. In the spark-ignited case, the flame propagates away from the spark plug approximately as a segment of a spherical surface, just as expected. With the prechamber, a high speed jet of hot combustion products shoots into the main chamber, quickly producing a large flame sheet that spreads along the piston face. The prechamber run consumes all of the fuel in half the time required by the spark-ignited case. The two cases produce comparable amounts of thermal NO at the end of fuel combustion.

  4. Advanced manufacturing: Technology and international competitiveness

    SciTech Connect

    Tesar, A.

    1995-02-01

    Dramatic changes in the competitiveness of German and Japanese manufacturing have been most evident since 1988. All three countries are now facing similar challenges, and these challenges are clearly observed in human capital issues. Our comparison of human capital issues in German, Japanese, and US manufacturing leads us to the following key judgments: Manufacturing workforces are undergoing significant changes due to advanced manufacturing technologies. As companies are forced to develop and apply these technologies, the constituency of the manufacturing workforce (especially educational requirements, contingent labor, job content, and continuing knowledge development) is being dramatically and irreversibly altered. The new workforce requirements which result due to advanced manufacturing require a higher level of worker sophistication and responsibility.

  5. Circulating fluidized bed tehnology in biomass combustion-performance, advances and experiences

    SciTech Connect

    Mutanen, K.I.

    1995-11-01

    Development of fluidized bed combustion (FBC) was started both in North America and in Europe in the 1960`s. In Europe and especially in Scandinavia the major driving force behind the development was the need to find new more efficient technologies for utilization of low-grade fuels like different biomasses and wastes. Both bubbling fluidized bed (BFB) and circulating fluidized bed (CFB) technologies were under intensive R&D,D efforts and have now advanced to dominating role in industrial and district heating power plant markets in Europe. New advanced CFB designs are now entering the markets. In North America and especially in the US the driving force behind the FBC development was initially the need to utilize different types of coals in a more efficient and environmentally acceptable way. The present and future markets seem to be mainly in biomass and multifuel applications where there is benefit from high combustion efficiency, high fuel flexibility and low emissions such as in the pulp and paper industry. The choice between CFB technology and BFB technology is based on selected fuels, emission requirements, plant size and on technical and economic feasibility. Based on Scandinavian experience there is vast potential in the North American industry to retrofit existing oil fired, pulverized coal fired, chemical recovery or grate fired boilers with FBC systems or to build a new FBC based boiler plant. This paper will present the status of CFB technologies and will compare technical and economic feasibility of CFB technology to CFB technology to BFB and also to other combustion methods. Power plant projects that are using advanced CFB technology e.g. Ahlstrom Pyroflow Compact technology for biomass firing and co-firing of biomass with other fuels will also be introduced.

  6. Development of Computational Capabilities to Predict the Corrosion Wastage of Boiler Tubes in Advanced Combustion Systems

    SciTech Connect

    Kung, Steven; Rapp, Robert

    2014-08-31

    A comprehensive corrosion research project consisting of pilot-scale combustion testing and long-term laboratory corrosion study has been successfully performed. A pilot-scale combustion facility available at Brigham Young University was selected and modified to enable burning of pulverized coals under the operating conditions typical for advanced coal-fired utility boilers. Eight United States (U.S.) coals were selected for this investigation, with the test conditions for all coals set to have the same heat input to the combustor. In addition, the air/fuel stoichiometric ratio was controlled so that staged combustion was established, with the stoichiometric ratio maintained at 0.85 in the burner zone and 1.15 in the burnout zone. The burner zone represented the lower furnace of utility boilers, while the burnout zone mimicked the upper furnace areas adjacent to the superheaters and reheaters. From this staged combustion, approximately 3% excess oxygen was attained in the combustion gas at the furnace outlet. During each of the pilot-scale combustion tests, extensive online measurements of the flue gas compositions were performed. In addition, deposit samples were collected at the same location for chemical analyses. Such extensive gas and deposit analyses enabled detailed characterization of the actual combustion environments existing at the lower furnace walls under reducing conditions and those adjacent to the superheaters and reheaters under oxidizing conditions in advanced U.S. coal-fired utility boilers. The gas and deposit compositions were then carefully simulated in a series of 1000-hour laboratory corrosion tests, in which the corrosion performances of different commercial candidate alloys and weld overlays were evaluated at various temperatures for advanced boiler systems. Results of this laboratory study led to significant improvement in understanding of the corrosion mechanisms operating on the furnace walls as well as superheaters and reheaters in

  7. Internal combustion engines for alcohol motor fuels: a compilation of background technical information

    SciTech Connect

    Blaser, Richard

    1980-11-01

    This compilation, a draft training manual containing technical background information on internal combustion engines and alcohol motor fuel technologies, is presented in 3 parts. The first is a compilation of facts from the state of the art on internal combustion engine fuels and their characteristics and requisites and provides an overview of fuel sources, fuels technology and future projections for availability and alternatives. Part two compiles facts about alcohol chemistry, alcohol identification, production, and use, examines ethanol as spirit and as fuel, and provides an overview of modern evaluation of alcohols as motor fuels and of the characteristics of alcohol fuels. The final section compiles cross references on the handling and combustion of fuels for I.C. engines, presents basic evaluations of events leading to the use of alcohols as motor fuels, reviews current applications of alcohols as motor fuels, describes the formulation of alcohol fuels for engines and engine and fuel handling hardware modifications for using alcohol fuels, and introduces the multifuel engines concept. (LCL)

  8. Role of lubrication oil in particulate emissions from a hydrogen-powered internal combustion engine.

    PubMed

    Miller, Arthur L; Stipe, Christopher B; Habjan, Matthew C; Ahlstrand, Gilbert G

    2007-10-01

    Recent studies suggest that trace metals emitted by internal combustion engines are derived mainly from combustion of lubrication oil. This hypothesis was examined by investigation of the formation of particulate matter emitted from an internal combustion engine in the absence of fuel-derived soot. Emissions from a modified CAT 3304 diesel engine fueled with hydrogen gas were characterized. The role of organic carbon and metals from lubrication oil on particle formation was investigated under selected engine conditions. The engine produced exhaust aerosol with log normal-size distributions and particle concentrations between 10(5) and 10(7) cm(-3) with geometric mean diameters from 18 to 31 nm. The particles contained organic carbon, little or no elemental carbon, and a much larger percentage of metals than particles from diesel engines. The maximum total carbon emission rate was estimated at 1.08 g h(-1), which is much lower than the emission rate of the original diesel engine. There was also evidence that less volatile elements, such as iron, self-nucleated to form nanoparticles, some of which survive the coagulation process. PMID:17969702

  9. Adaptation of the Advanced Spray Combustion Code to Cavitating Flow Problems

    NASA Technical Reports Server (NTRS)

    Liang, Pak-Yan

    1993-01-01

    A very important consideration in turbopump design is the prediction and prevention of cavitation. Thus far conventional CFD codes have not been generally applicable to the treatment of cavitating flows. Taking advantage of its two-phase capability, the Advanced Spray Combustion Code is being modified to handle flows with transient as well as steady-state cavitation bubbles. The volume-of-fluid approach incorporated into the code is extended and augmented with a liquid phase energy equation and a simple evaporation model. The strategy adopted also successfully deals with the cavity closure issue. Simple test cases will be presented and remaining technical challenges will be discussed.

  10. Fuel Effects on Ignition and Their Impact on Advanced Combustion Engines (Poster)

    SciTech Connect

    Taylor, J.; Li, H.; Neill, S.

    2006-08-01

    The objective of this report is to develop a pathway to use easily measured ignition properties as metrics for characterizing fuels in advanced combustion engine research--correlate IQT{trademark} measured parameters with engine data. In HCCL engines, ignition timing depends on the reaction rates throughout compression stroke: need to understand sensitivity to T, P, and [O{sub 2}]; need to rank fuels based on more than one set of conditions; and need to understand how fuel composition (molecular species) affect ignition properties.

  11. Concept Defined for the International Space Station's Fluids and Combustion Facility

    NASA Technical Reports Server (NTRS)

    Winsa, Edward A.

    2000-01-01

    The Fluids and Combustion Facility (FCF) will occupy three powered racks and one stowage rack on the International Space Station (ISS). It will be a permanent modular, multiuser facility to accommodate microgravity science experiments onboard the ISS s U.S. Laboratory Module. FCF will support NASA Human Exploration and Development of Space program objectives requiring sustained, systematic research in the disciplines of fluid physics and combustion science. The two disciplines share racks and mutually necessary hardware within FCF to dramatically reduce costs and effectively use ISS resources. Even with the cost of FCF development included, experimentation using FCF on the space station will cost only half of what it did on the space shuttles.

  12. Apparatus and method for operating internal combustion engines from variable mixtures of gaseous fuels

    DOEpatents

    Heffel, James W.; Scott, Paul B.

    2003-09-02

    An apparatus and method for utilizing any arbitrary mixture ratio of multiple fuel gases having differing combustion characteristics, such as natural gas and hydrogen gas, within an internal combustion engine. The gaseous fuel composition ratio is first sensed, such as by thermal conductivity, infrared signature, sound propagation speed, or equivalent mixture differentiation mechanisms and combinations thereof which are utilized as input(s) to a "multiple map" engine control module which modulates selected operating parameters of the engine, such as fuel injection and ignition timing, in response to the proportions of fuel gases available so that the engine operates correctly and at high efficiency irrespective of the gas mixture ratio being utilized. As a result, an engine configured according to the teachings of the present invention may be fueled from at least two different fuel sources without admixing constraints.

  13. Fast on-line identification of instantaneous mechanical losses in internal combustion engines

    NASA Astrophysics Data System (ADS)

    Cruz-Peragón, F.; Palomar, J. M.; Díaz, F. A.; Jiménez-Espadafor, F. J.

    2010-01-01

    A fast and easy procedure to evaluate instantaneous mechanical losses in internal combustion engines (appropriate to any multi-cylinder engine) has been developed. First, a performance measurement procedure to obtain losses in one cycle is conducted. Subsequently, they must be proportionally divided into all cylinders, even considering those with no combustion. Finally, a non-linear identification procedure is applied to determine the coefficients of the P- ω method for each cylinder. The methodology has been applied to a single-cylinder compression ignition engine, and to a three-cylinder spark ignition engine. The first engine allows the procedure to be validated by comparing results with those obtained using other established methodology. The second engine makes it possible to analyze the robustness of the method when it is applied to a multi-cylinder engine.

  14. Analysis of enclosed internal-combustion-engine operation with water as the working fluid. Technical note

    SciTech Connect

    Rein, C.R.

    1983-09-01

    It is desirable to develop a totally enclosed system that contains an internal combustion engine and all the accessories required to produce at least 480 hp-hr of work. The system must perform underwater without external support and must release nothing but heat to the water. Most prior development has dealt with systems very similar to air breathing engines. Fuel, oxygen and a diluent gas such as nitrogen are ingested through the same kinds of intake devices used in the atmosphere. The intent is to imitate open air operation as much as possible in order to reduce hardware development. The exhaust gases are cleansed primarily of the water and carbon dioxide products of combustion and perhaps secondarily of other components such as unburned hydrocarbons, carbon monoxide, and compounds produced by reactions involving the diluent.

  15. Apparatus and method for operating internal combustion engines from variable mixtures of gaseous fuels

    SciTech Connect

    Heffel, James W.; Scott, Paul B.; Park, Chan Seung

    2011-11-01

    An apparatus and method for utilizing any arbitrary mixture ratio of multiple fuel gases having differing combustion characteristics, such as natural gas and hydrogen gas, within an internal combustion engine. The gaseous fuel composition ratio is first sensed, such as by thermal conductivity, infrared signature, sound propagation speed, or equivalent mixture differentiation mechanisms and combinations thereof which are utilized as input(s) to a "multiple map" engine control module which modulates selected operating parameters of the engine, such as fuel injection and ignition timing, in response to the proportions of fuel gases available so that the engine operates correctly and at high efficiency irrespective of the gas mixture ratio being utilized. As a result, an engine configured according to the teachings of the present invention may be fueled from at least two different fuel sources without admixing constraints.

  16. Computational fluid dynamics applied to flows in an internal combustion engine

    NASA Technical Reports Server (NTRS)

    Griffin, M. D.; Diwakar, R.; Anderson, J. D., Jr.; Jones, E.

    1978-01-01

    The reported investigation is a continuation of studies conducted by Diwakar et al. (1976) and Griffin et al. (1976), who reported the first computational fluid dynamic results for the two-dimensional flowfield for all four strokes of a reciprocating internal combustion (IC) engine cycle. An analysis of rectangular and cylindrical three-dimensional engine models is performed. The working fluid is assumed to be inviscid air of constant specific heats. Calculations are carried out of a four-stroke IC engine flowfield wherein detailed finite-rate chemical combustion of a gasoline-air mixture is included. The calculations remain basically inviscid, except that in some instances thermal conduction is included to allow a more realistic model of the localized sparking of the mixture. All the results of the investigation are obtained by means of an explicity time-dependent finite-difference technique, using a high-speed digital computer.

  17. Advanced Monitoring to Improve Combustion Turbine/Combined Cycle Reliability, Availability & Maintainability

    SciTech Connect

    Leonard Angello

    2005-09-30

    Power generators are concerned with the maintenance costs associated with the advanced turbines that they are purchasing. Since these machines do not have fully established Operation and Maintenance (O&M) track records, power generators face financial risk due to uncertain future maintenance costs. This risk is of particular concern, as the electricity industry transitions to a competitive business environment in which unexpected O&M costs cannot be passed through to consumers. These concerns have accelerated the need for intelligent software-based diagnostic systems that can monitor the health of a combustion turbine in real time and provide valuable information on the machine's performance to its owner/operators. EPRI, Impact Technologies, Boyce Engineering, and Progress Energy have teamed to develop a suite of intelligent software tools integrated with a diagnostic monitoring platform that, in real time, interpret data to assess the 'total health' of combustion turbines. The 'Combustion Turbine Health Management System' (CTHMS) will consist of a series of 'Dynamic Link Library' (DLL) programs residing on a diagnostic monitoring platform that accepts turbine health data from existing monitoring instrumentation. CTHMS interprets sensor and instrument outputs, correlates them to a machine's condition, provide interpretative analyses, project servicing intervals, and estimate remaining component life. In addition, the CTHMS enables real-time anomaly detection and diagnostics of performance and mechanical faults, enabling power producers to more accurately predict critical component remaining useful life and turbine degradation.

  18. Invited papers from the International Symposium on Nonequilibrium Processes, Plasma, Combustion and Atmospheric Phenomena

    NASA Astrophysics Data System (ADS)

    Starik, Alexander M.

    2013-11-01

    The International Symposium on Nonequilibrium Processes, Plasma, Combustion and Atmospheric Phenomena is a forum of international experts in such fundamental areas as physical and chemical kinetics, physics of low temperature and cluster plasmas, physics of shock and detonation waves, physics and chemistry of aerosols and nanoparticles, combustion and atmospheric chemistry, physics and chemistry of high speed flows, plasma and laser chemistry, plasma, laser and combustion assisted technologies. This symposium has already become a notable biannual event attracting a growing attendance of scientists from all over the world. The first symposium was organizing in St Petersburg, Russia, 8-11 July 2003, and was dedicated to the memory of N N Semenov, a founder of the chain-branching reaction theory and a Nobel prizewinner. The second, third and fourth symposia were held in Sochi, Russia, 3-7 October 2005; 25-29 June 2007; and 5-9 October 2009. The last (fifth) symposium was also organized in Sochi, Russia, 1-6 October 2012. Here we present selected proceedings of the last symposium, comprised of four invited papers on the topics of ab initio studies of some elementary processes important for atmospheric plasma and combustion, kinetics of low temperature plasma and physics of clusters. The papers have been written by the symposium participants and are based on their reports at the meeting. They are: 'Thermochemistry of small iodine species' by Šulková et al ; 'Analysis of the reaction and quenching channels in a H + O2(a 1Δg ) system' by Sharipov and Starik; 'Kinetics of plasmachemical processes in the expanding flow of nitrogen plasma' by Kadochnikov et al ; and 'Theoretical study of structure and physical properties of (Al2O3)n clusters' by Sharipov et al.

  19. Diesel engine emissions and combustion predictions using advanced mixing models applicable to fuel sprays

    NASA Astrophysics Data System (ADS)

    Abani, Neerav; Reitz, Rolf D.

    2010-09-01

    An advanced mixing model was applied to study engine emissions and combustion with different injection strategies ranging from multiple injections, early injection and grouped-hole nozzle injection in light and heavy duty diesel engines. The model was implemented in the KIVA-CHEMKIN engine combustion code and simulations were conducted at different mesh resolutions. The model was compared with the standard KIVA spray model that uses the Lagrangian-Drop and Eulerian-Fluid (LDEF) approach, and a Gas Jet spray model that improves predictions of liquid sprays. A Vapor Particle Method (VPM) is introduced that accounts for sub-grid scale mixing of fuel vapor and more accurately and predicts the mixing of fuel-vapor over a range of mesh resolutions. The fuel vapor is transported as particles until a certain distance from nozzle is reached where the local jet half-width is adequately resolved by the local mesh scale. Within this distance the vapor particle is transported while releasing fuel vapor locally, as determined by a weighting factor. The VPM model more accurately predicts fuel-vapor penetrations for early cycle injections and flame lift-off lengths for late cycle injections. Engine combustion computations show that as compared to the standard KIVA and Gas Jet spray models, the VPM spray model improves predictions of in-cylinder pressure, heat released rate and engine emissions of NOx, CO and soot with coarse mesh resolutions. The VPM spray model is thus a good tool for efficiently investigating diesel engine combustion with practical mesh resolutions, thereby saving computer time.

  20. Robust Low Cost Aerospike/RLV Combustion Chamber by Advanced Vacuum Plasma Process

    NASA Technical Reports Server (NTRS)

    Holmes, Richard; Ellis, David; McKechnie

    1999-01-01

    Next-generation, regeneratively cooled rocket engines will require materials that can withstand high temperatures while retaining high thermal conductivity. At the same time, fabrication techniques must be cost efficient so that engine components can be manufactured within the constraints of a shrinking NASA budget. In recent years, combustion chambers of equivalent size to the Aerospike chamber have been fabricated at NASA-Marshall Space Flight Center (MSFC) using innovative, relatively low-cost, vacuum-plasma-spray (VPS) techniques. Typically, such combustion chambers are made of the copper alloy NARloy-Z. However, current research and development conducted by NASA-Lewis Research Center (LeRC) has identified a Cu-8Cr-4Nb alloy which possesses excellent high-temperature strength, creep resistance, and low cycle fatigue behavior combined with exceptional thermal stability. In fact, researchers at NASA-LeRC have demonstrated that powder metallurgy (P/M) Cu-8Cr-4Nb exhibits better mechanical properties at 1,200 F than NARloy-Z does at 1,000 F. The objective of this program was to develop and demonstrate the technology to fabricate high-performance, robust, inexpensive combustion chambers for advanced propulsion systems (such as Lockheed-Martin's VentureStar and NASA's Reusable Launch Vehicle, RLV) using the low-cost, VPS process to deposit Cu-8Cr-4Nb with mechanical properties that match or exceed those of P/M Cu-8Cr-4Nb. In addition, oxidation resistant and thermal barrier coatings can be incorporated as an integral part of the hot wall of the liner during the VPS process. Tensile properties of Cu-8Cr-4Nb material produced by VPS are reviewed and compared to material produced previously by extrusion. VPS formed combustion chamber liners have also been prepared and will be reported on following scheduled hot firing tests at NASA-Lewis.

  1. India advancing as international exploration target

    SciTech Connect

    Not Available

    1994-04-04

    Mighty as it is in terms of sedimentary area, hydrocarbon potential, and sheer market size, India does not occupy a position of like stature on the international oil explorer's chart. Yet Indian government policy initiatives during the past 3 years have thrown the country open to foreign investment upstream and downstream. Strapped for cash, hounded by declining production and reserves, the government is leaving higher cost and higher risk exploration to foreign and domestic private sector companies. Furthermore, India has approved majority capital holdings in the downstream sector, invited bids on field reactivation schemes and speculative seismic surveys, and adopted attractive and flexible production sharing contracts to govern these agreements. A strong tradition upholding sanctity of law provides a solid guarantee that such contracts will not be broken or modified. The paper discusses India's restructuring, the bidding rounds, the growing interest of foreign companies, downstream and gas deals, acreage and terms being offered, and other projects.

  2. New advanced shotcrete admixtures: Internal curing

    SciTech Connect

    Melbye, T.A.

    1995-12-31

    Tunnels and other underground construction projects have one of the worst curing conditions due to the ventilation that blows continuously dry (cold or hot) air into the tunnel. It can be compared with concrete exposed to a windy area. One would think that tunnels have ideal curing conditions with high humidity (water leakage), no wind and no sun exposure. However, this is not the case. MBT has developed a new system for more efficient and secure curing of wet shotcrete, repair mortars as well as concrete. Internal curing means that a special admixture is added to the concrete/mortar during batching as a normal admixture. This admixture produces an internal barrier in the shotcrete/concrete which secures safer hydration and better chemical resistance than the application of conventional curing agents. The benefits resulting from the new technology are impressive: The time consuming application and, in the case of various shotcrete layers, removal of curing agents are no longer necessary; curing is guaranteed from the very beginning of hydration; and there is no negative influence on bonding between layers. As a consequence of th is optimum curing effect, all other shotcrete characteristics are improved: density, final strengths, freeze/thaw and chemical resistances, watertightness, less cracking and shrinkage. In addition, MEYCO TCC 735 also improves pumpability and workability of shotcrete, even with low-grade aggregates. It particularly improves the pumpability of steel fiber reinforced shotcrete mixes. In combination with the MEYCO TCC system it contrives to even increase the beneficial effects of the slump killing system by further improving fiber orientation, reducing fiber rebound and thus raising toughness values.

  3. Proceedings of the 1998 international joint power generation conference (FACT-Vol.22). Volume 1: Fuels and combustion technologies; Gas turbines; Environmental engineering; Nuclear engineering

    SciTech Connect

    Gupta, A.; Natole, R.; Sanyal, A.; Veilleux, J.

    1998-07-01

    Papers are arranged under the following topical sections: Fuels and combustion technologies; Low NOx burner applications; Low cost solutions to utility NOx compliance issues; Coal combustion--Retrofit experiences, low NOx, and efficiency; Highly preheated air combustion; Combustion control and optimization; Advanced technology for gas fuel combustion; Spray combustion and mixing; Efficient power generation using gas turbines; Safety issues in power industry; Efficient and environmentally benign conversion of wastes to energy; Artificial intelligence monitoring, control, and optimization of power plants; Combustion modeling and diagnostics; Advanced combustion technologies and combustion synthesis; Aero and industrial gas turbine presentations IGTI gas turbine division; NOx/SO{sub 2}; Plant cooling water system problems and solutions; Issues affecting plant operations and maintenance; and Costs associated with operating and not operating a nuclear power plant. Papers within scope have been processed separately for inclusion on the database.

  4. Internal combustion engine with a central crankshaft and integral tandem annular pistons

    NASA Astrophysics Data System (ADS)

    Esparbes, Bernard

    1993-08-01

    An internal combustion engine with tandem annular pistons and a central crankshaft is disclosed, based on that found in British patent 11027 of 11 May 1914. The piston block formed by the two pistons presents, at each axial extremity, a double axial skirt fitted with an outer crown forming the head of the piston as such, and an inner crown forming an inlet pump with a holding chamber radially located at the inside of the corresponding annular cylinder, in which the piston head delimits a combustion chamber. Radial fingers, crossing axial openings of the crankcase and radial holes of the piston block, have their inner radial ends engaged within wavy sinusoidal peripheral slots arranged in a bulging central portion of the central crankshaft set into rotation by alternating axial movements of the piston block. The admission of fuel or combustion sustaining gas is ensured axially by the extremities, valves, and openings in the end plates closing the holding chambers in which the inner crowns slide, fitted with valves to act as an inlet pump. The invention is particularly applicable to aircraft engines in view of the ease in which the shaft rotation can be adapted to such a use.

  5. An Analysis of the Impact of Selected Fuel Thermochemical Properties on Internal Combustion Engine Efficiency

    SciTech Connect

    Szybist, James P; Chakravathy, Kalyana; Daw, C Stuart

    2012-01-01

    In this study we model the effects of 23 different fuels on First and Second Law thermodynamic efficiency of an adiabatic internal combustion engine. First Law efficiency is calculated using lower heating value (LHV) while Second Law efficiency is calculated with exergy, which represents the inherent chemical energy available to produce propulsion. We find that First Law efficiency can deviate by as much as nine percentage points between fuels while Second Law efficiency exhibits a much smaller degree of variability. We also find that First and Second Law efficiency can be nearly the same for some fuels (methane and ethane) but differ substantially for other fuels (hydrogen and ethanol). The differences in First and Second Law efficiency are due to differences in LHV and exergy for a given fuel. In order to explain First Law efficiency differences between fuels as well as the differences between LHV and exergy, we introduce a new term: the molar expansion ratio (MER), defined as the ratio of product moles to reactant moles for complete stoichiometric combustion. We find that the MER is a useful expression for providing a physical explanation for fuel-specific efficiency differences as well as differences between First and Second Law efficiency. First and Second Law efficiency are affected by a number of other fuel-specific thermochemical properties, such as the ratio of specific heat and dissociation of combustion products.

  6. Air-fuel ratio control system for an internal combustion engine

    SciTech Connect

    Nishimura, T.; Suzuki, M.

    1981-09-29

    The air-fuel ratio for an internal combustion engine is controlled at the three stages: (A) when the engine temperature is lower than a first predetermined value, the air-fuel ratio is controlled only by a choke valve, (B) when the engine is at a temperature of the first predetermined value to a second predetermined value, the air-fuel ratio is controlled according to the output signals of engine temperature detecting means, and (C) when the engine temperature is higher than the second predetermined value, the air-fuel ratio is controlled according to the signals from air-fuel ratio detecting means.

  7. Catalytic converters for exhaust emission control of commercial equipment powered by internal combustion engines.

    PubMed Central

    Cohn, J G

    1975-01-01

    The development of PTX, monolithic catalytic exhaust purifiers, is outlined, and their first use for exhaust emissions control of commercial equipment is described. The main use of PTX converters is on forklift trucks. The purification achievable with PTX-equipped fork-lift trucks under various operational conditions is discussed, and examples from the field are given. During more than ten years of operation, no adverse health effects have been reported, and PTX-equipped internal combustion engines appear safe for use in confined areas. PMID:50933

  8. Method for controlling the fuel supply of an internal combustion engine

    SciTech Connect

    Yamato, A.

    1987-06-09

    This patent describes a method for controlling the fuel supply of an internal combustion engine having a throttle valve in an intake air system comprising the steps of: detecting that an angular position of a crankshaft of the engine as in coincidence with a predetermined crankshaft angular position; detecting, at each detection of the coincidence, a pressure in an intake air passage downstream of the throttle valve; and an engine rotating speed of the engine or a value in inverse proportion to the engine rotating speed on the basis of an interval between the detections of the predetermined crankshaft angular position.

  9. Carbon Fiber Reinforced Carbon Composites Rotary Valves for Internal Combustion Engines

    NASA Technical Reports Server (NTRS)

    Northam, G. Burton (Inventor); Ransone, Philip O. (Inventor); Rivers, H. Kevin (Inventor)

    1999-01-01

    Carbon fiber reinforced carbon composite rotary, sleeve, and disc valves for internal combustion engines and the like are disclosed. The valves are formed from knitted or braided or warp-locked carbon fiber shapes. Also disclosed are valves fabricated from woven carbon fibers and from molded carbon matrix material. The valves of the present invention with their very low coefficient of thermal expansion and excellent thermal and self-lubrication properties, do not present the sealing and lubrication problems that have prevented rotary, sleeve, and disc valves from operating efficiently and reliably in the past. Also disclosed are a sealing tang to further improve sealing capabilities and anti-oxidation treatments.

  10. A transient tribodynamic approach for the calculation of internal combustion engine piston slap noise

    NASA Astrophysics Data System (ADS)

    Dolatabadi, N.; Littlefair, B.; De la Cruz, M.; Theodossiades, S.; Rothberg, S. J.; Rahnejat, H.

    2015-09-01

    An analytical/numerical methodology is presented to calculate the radiated noise due to internal combustion engine piston impacts on the cylinder liner through a film of lubricant. Both quasi-static and transient dynamic analyses coupled with impact elasto-hydrodynamics are reported. The local impact impedance is calculated, as well as the transferred energy onto the cylinder liner. The simulations are verified against experimental results for different engine operating conditions and for noise levels calculated in the vicinity of the engine block. Continuous wavelet signal processing is performed to identify the occurrence of piston slap noise events and their spectral content, showing good conformance between the predictions and experimentally acquired signals.

  11. A Completely New Type of Actuator -or- This Ain't Your Grandfather's Internal Combustion Engine

    NASA Technical Reports Server (NTRS)

    Gore, Brian W.; Hawkins, Gary F.; Hess, Peter A.; Moore, Teresa A.; Fournier, Eric W.

    2010-01-01

    A completely new type of actuator - one that is proposed for use in a variety of environments from sea to land to air to space - has been designed, patented, built, and tested. The actuator is loosely based on the principle of the internal combustion engine, except that it is a completely closed system, only requiring electrical input, and the working fuel is water. This paper outlines the theory behind the electrolysis- and ignition-based cycle upon which the actuator operates and describes the performance capability test apparatus and results for the actuator. A mechanism application that harnessed the unit s power to twist a scaled rotor blade is also highlighted.

  12. Carbon Fiber Reinforced Carbon Composite Rotary Valve for an Internal Combustion Engine

    NASA Technical Reports Server (NTRS)

    Northam, G.Burton (Inventor); Ransone, Philip O. (Inventor); Rivers, H. Kevin (Inventor)

    2000-01-01

    Carbon fiber reinforced carbon composite rotary sleeve, and disc valves for internal combustion engines and the like are disclosed. The valves are formed from knitted or braided or wrap-locked carbon fiber shapes. Also disclosed are valves fabricated from woven carbon fibers and from molded carbon matrix material. The valves of the present invention with their very low coefficient of thermal expansion and excellent thermal and self-lubrication properties do not present the sealing and lubrication problems that have prevented rotary sleeve and disc valves from operating efficiently and reliably in the past. Also disclosed are a sealing tang to further improve sealing capabilities and anti-oxidation treatments.

  13. Cold flow simulation of an internal combustion engine with vertical valves using layering approach

    NASA Astrophysics Data System (ADS)

    Martinas, G.; Cupsa, O. S.; Stan, L. C.; Arsenie, A.

    2015-11-01

    Complying with emission requirements and fuel consumption efficiency are the points which drive any development of internal combustion engine. Refinement of the process of combustion and mixture formation, together with in-cylinder flow refinement, is a requirement, valves and piston bowl and intake exhaust port design optimization is essential. In order to reduce the time for design optimization cycle it is used Computational Fluid Dynamics (CFD). Being time consuming and highly costly caring out of experiment using flow bench testing this methods start to become less utilized. Air motion inside the intake manifold is one of the important factors, which govern the engine performance and emission of multi-cylinder diesel engines. Any cold flow study on IC is targeting the process of identifying and improving the fluid flow inside the ports and the combustion chamber. This is only the base for an optimization process targeting to increase the volume of air accessing the combustion space and to increase the turbulence of the air at the end of the compression stage. One of the first conclusions will be that the valve diameter is a fine tradeoff between the need for a bigger diameter involving a greater mass of air filling the cylinder, and the need of a smaller diameter in order to reduce the blind zone. Here there is room for optimization studies. The relative pressure indicates a suction effect coming from the moving piston. The more the shape of the inlet port is smoother and the diameter of the piston is bigger, the aerodynamic resistance of the geometry will be smaller so that the difference of inlet port pressure and the pressure near to piston face will be smaller. Here again there is enough room for more optimization studies.

  14. Proceedings of the Third International Workshop on Advances in Electrocorticography

    PubMed Central

    Ritaccio, Anthony; Beauchamp, Michael; Bosman, Conrado; Brunner, Peter; Chang, Edward; Crone, Nathan; Gunduz, Aysegul; Gupta, Disha; Knight, Robert; Leuthardt, Eric; Litt, Brian; Moran, Daniel; Ojemann, Jeffrey; Parvizi, Josef; Ramsey, Nick; Rieger, Jochem; Viventi, Jonathan; Voytek, Bradley; Williams, Justin; Schalk, Gerwin

    2014-01-01

    The Third International Workshop on Advances in Electrocorticography (ECoG) was convened in Washington, DC, on November 10-11, 2011. As in prior meetings, a true multidisciplinary fusion of clinicians, scientists, and engineers from many disciplines gathered to summarize contemporary experiences in brain surface recordings. The proceedings of this meeting serve as evidence of a very robust and transformative field, but will yet again require revision for the advances that the following year will surely bring. PMID:23160096

  15. Advanced Start of Combustion Sensor Phases I and II-A: Feasibility Demonstration, Design and Optimization

    SciTech Connect

    Chad Smutzer

    2010-01-31

    Homogeneous Compressed Charge Ignition (HCCI) has elevated the need for Start of Combustion (SOC) sensors. HCCI engines have been the exciting focus of engine research recently, primarily because HCCI offers higher thermal efficiency than the conventional Spark Ignition (SI) engines and significantly lower NOx and soot emissions than conventional Compression Ignition (CI) engines, and could be fuel neutral. HCCI has the potential to unify all the internal combustion engine technology to achieve the high-efficiency, low-emission goal. However, these advantages do not come easy. It is well known that the problems encountered with HCCI combustion center on the difficulty of controlling the Start of Combustion. TIAX has an SOC sensor under development which has shown promise. In previous work, including a DOE-sponsored SBIR project, TIAX has developed an accelerometer-based method which was able to determine SOC within a few degrees crank angle for a range of operating conditions. A signal processing protocol allows reconstruction of the combustion pressure event signal imbedded in the background engine vibration recorded by the accelerometer. From this reconstructed pressure trace, an algorithm locates the SOC. This SOC sensor approach is nonintrusive, rugged, and is particularly robust when the pressure event is strong relative to background engine vibration (at medium to high engine load). Phase I of this project refined the previously developed technology with an engine-generic and robust algorithm. The objective of the Phase I research was to answer two fundamental questions: Can the accelerometer-based SOC sensor provide adequate SOC event capture to control an HCCI engine in a feedback loop? And, will the sensor system meet cost, durability, and software efficiency (speed) targets? Based upon the results, the answer to both questions was 'YES'. The objective of Phase II-A was to complete the parameter optimization of the SOC sensor prototype in order to reach a

  16. Proceedings of the Fifth International Workshop on Advances in Electrocorticography.

    PubMed

    Ritaccio, Anthony; Brunner, Peter; Gunduz, Aysegul; Hermes, Dora; Hirsch, Lawrence J; Jacobs, Joshua; Kamada, Kyousuke; Kastner, Sabine; Knight, Robert T; Lesser, Ronald P; Miller, Kai; Sejnowski, Terrence; Worrell, Gregory; Schalk, Gerwin

    2014-12-01

    The Fifth International Workshop on Advances in Electrocorticography convened in San Diego, CA, on November 7-8, 2013. Advancements in methodology, implementation, and commercialization across both research and in the interval year since the last workshop were the focus of the gathering. Electrocorticography (ECoG) is now firmly established as a preferred signal source for advanced research in functional, cognitive, and neuroprosthetic domains. Published output in ECoG fields has increased tenfold in the past decade. These proceedings attempt to summarize the state of the art. PMID:25461213

  17. Proceedings of the Fifth International Workshop on Advances in Electrocorticography

    PubMed Central

    Ritaccio, Anthony; Brunner, Peter; Gunduz, Aysegul; Hermes, Dora; Hirsch, Lawrence J.; Jacobs, Joshua; Kamada, Kyousuke; Kastner, Sabine; Knight, Robert T.; Lesser, Ronald P.; Miller, Kai; Sejnowski, Terrence; Worrell, Gregory; Schalk, Gerwin

    2014-01-01

    The Fifth International Workshop on Advances in Electrocorticography convened in San Diego, CA, on November 7–8, 2013. In the interval year since the last workshop, advancements in methodology, implementation, and commercialization across both research and clinical interests were the focus of the gathering. Electrocorticography (ECoG) is now firmly established as a preferred signal source for advanced research in functional, cognitive, and neuroprosthetic domains. Published output in ECoG fields has increased tenfold in the past decade. This proceedings attempts to summarize the state of the art. PMID:25461213

  18. Torsional system parameter identification of internal combustion engines under normal operation

    NASA Astrophysics Data System (ADS)

    Östman, Fredrik; Toivonen, Hannu T.

    2011-05-01

    For internal combustion engines, lumped-mass models of the crankshaft system are frequently used for torque estimation in control and diagnostic applications, such as cylinder balancing and misfire detection. Due to inherent model uncertainties and changing system dynamics it may be necessary to adapt the model parameters from time to time in order to preserve the required model accuracy. In this paper a frequency-domain method for on-line identification of the parameters describing the torsional dynamics of internal combustion engines is presented. In the proposed method, the engine is excited by adjusting the cylinder-wise injected fuel amounts, and the measured responses in torsional vibration frequency components are used for parameter estimation. As the fuel-injection adjustments can be determined in such a way that the net indicated torque is unaffected, the identification can be performed on-line without disturbing normal engine operation. The procedure can be applied to estimate the torsional stiffness and damping parameters of the flexible coupling connecting the engine and the load. In addition, the gains which describe how the cylinder-wise fuel injections affect the amplitudes of relevant torsional vibratory frequency components are obtained. The parameter identification method is successfully evaluated in full-scale engine tests on a 6.6 MW six-cylinder medium-speed common-rail diesel engine.

  19. Design, calibration and error analysis of instrumentation for heat transfer measurements in internal combustion engines

    NASA Technical Reports Server (NTRS)

    Ferguson, C. R.; Tree, D. R.; Dewitt, D. P.; Wahiduzzaman, S. A. H.

    1987-01-01

    The paper reports the methodology and uncertainty analyses of instrumentation for heat transfer measurements in internal combustion engines. Results are presented for determining the local wall heat flux in an internal combustion engine (using a surface thermocouple-type heat flux gage) and the apparent flame-temperature and soot volume fraction path length product in a diesel engine (using two-color pyrometry). It is shown that a surface thermocouple heat transfer gage suitably constructed and calibrated will have an accuracy of 5 to 10 percent. It is also shown that, when applying two-color pyrometry to measure the apparent flame temperature and soot volume fraction-path length, it is important to choose at least one of the two wavelengths to lie in the range of 1.3 to 2.3 micrometers. Carefully calibrated two-color pyrometer can ensure that random errors in the apparent flame temperature and in the soot volume fraction path length will remain small (within about 1 percent and 10-percent, respectively).

  20. Combustion behaviors of a compression-ignition engine fueled with diesel/methanol blends under various fuel delivery advance angles.

    PubMed

    Huang, Zuohua; Lu, Hongbing; Jiang, Deming; Zeng, Ke; Liu, Bing; Zhang, Junqiang; Wang, Xibin

    2004-12-01

    A stabilized diesel/methanol blend was described and the basic combustion behaviors based on the cylinder pressure analysis was conducted in a compression-ignition engine. The study showed that increasing methanol mass fraction of the diesel/methanol blends would increase the heat release rate in the premixed burning phase and shorten the combustion duration of the diffusive burning phase. The ignition delay increased with the advancing of the fuel delivery advance angle for both the diesel fuel and the diesel/methanol blends. For a specific fuel delivery advance angle, the ignition delay increased with the increase of the methanol mass fraction (oxygen mass fraction) in the fuel blends and the behaviors were more obvious at low engine load and/or high engine speed. The rapid burn duration and the total combustion duration increased with the advancing of the fuel delivery advance angle. The centre of the heat release curve was close to the top-dead-centre with the advancing of the fuel delivery advance angle. Maximum cylinder gas pressure increased with the advancing of the fuel delivery advance angle, and the maximum cylinder gas pressure of the diesel/methanol blends gave a higher value than that of the diesel fuel. The maximum mean gas temperature remained almost unchanged or had a slight increase with the advancing of the fuel delivery advance angle, and it only slightly increased for the diesel/methanol blends compared to that of the diesel fuel. The maximum rate of pressure rise and the maximum rate of heat release increased with the advancing of the fuel delivery advance angle of the diesel/methanol blends and the value was highest for the diesel/methanol blends. PMID:15288277

  1. 40 CFR 60.4231 - What emission standards must I meet if I am a manufacturer of stationary SI internal combustion...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... in 40 CFR part 90 or 1054, as appropriate. (c) Stationary SI internal combustion engine manufacturers... other requirements for new nonroad SI engines in 40 CFR part 1048. Stationary SI internal combustion..., and other requirements for new nonroad SI engines in 40 CFR part 90. Stationary SI internal......

  2. 40 CFR 60.4231 - What emission standards must I meet if I am a manufacturer of stationary SI internal combustion...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... in 40 CFR part 90 or 1054, as appropriate. (c) Stationary SI internal combustion engine manufacturers... other requirements for new nonroad SI engines in 40 CFR part 1048. Stationary SI internal combustion..., and other requirements for new nonroad SI engines in 40 CFR part 90. Stationary SI internal......

  3. Large-eddy simulations of turbulent flows in internal combustion engines

    NASA Astrophysics Data System (ADS)

    Banaeizadeh, Araz

    The two-phase compressible scalar filtered mass density function (FMDF) model is further developed and employed for large-eddy simulations (LES) of turbulent spray combustion in internal combustion (IC) engines. In this model, the filtered compressible Navier-Stokes equations are solved in a generalized curvilinear coordinate system with high-order, multi-block, compact differencing schemes for the turbulent velocity and pressure. However, turbulent mixing and combustion are computed with a new two-phase compressible scalar FMDF model. The spray and droplet dispersion/evaporation are modeled with a Lagrangian method. A new Lagrangian-Eulerian-Lagrangian computational method is employed for solving the flow, spray and scalar equation. The pressure effect in the energy equation, as needed in compressible flows, is included in the FMDF formulation. The performance of the new compressible LES/FMDF model is assessed by simulating the flow field and scalar mixing in a rapid compression machine (RCM), in a shock tube and in a supersonic co-axial jet. Consistency of temperatures predicted by the Eulerian finite-difference (FD) and Lagrangian Monte Carlo (MC) parts of the LES/FMDF model are established by including the pressure on the FMDF. It is shown that the LES/FMDF model is able to correctly capture the scalar mixing in both compressible subsonic and supersonic flows. Using the new two-phase LES/FMDF model, fluid dynamics, heat transfer, spray and combustion in the RCM with flat and crevice piston are studied. It is shown that the temperature distribution in the RCM with crevice piston is more uniform than the RCM with flat piston. The fuel spray characteristics and the spray parameters affecting the fuel mixing inside the RCM in reacting and non-reacting flows are also studied. The predicted liquid penetration and flame lift-off lengths for respectively non-reacting and reacting sprays are found to compare well with the available experimental data. Temperatures and

  4. Facilitating Science--The International Space Station Fluids and Combustion Facility

    NASA Technical Reports Server (NTRS)

    Winsa, Edward A.; Schubert, Kathleen E.; Sedlak, Deborah A.

    1997-01-01

    Scientists in many fields would like to perform experiments on the International Space Station (ISS) to take advantage of the unique environment of microgravity (which is the near-absence of gravity). The ISS will provide the opportunity for scientists to perform microgravity tests over much longer time periods than previously available on the space shuttle--months rather than hours or days--providing more data that could lead to new discoveries. Many of the experiments on ISS will be conducted through the use of new microgravity science facilities. A microgravity science facility is a complete system of on-orbit and ground (on-Earth) hardware, software, operations, and plans that have been optimized to perform sustained microgravity research in one or two scientific disciplines. The facility concept includes hardware that remains on-orbit (because of its general usefulness) and a small amount of unique hardware that is developed for each principal investigator. Such unique hardware customizes the facility to perform a given principal investigator's experiment effectively. Many facilities are planned for the ISS to accommodate scientists' needs. While the quality and quantity of scientific data are being improved, per-experiment costs will be lowered relative to other ways of performing such experiments. The NASA Lewis Research Center is developing a Fluids and Combustion Facility (FCF) to perform microgravity fluids and combustion experiments on the ISS. The FCF will be the lowest cost, most resource efficient approach to performing fluid physics and combustion science experiments on the ISS. Experiments performed in the FCF will be 3 to 9 times less expensive than similar Spacelab experiments. Moreover, use of key ISS resources, such as upmass, power, cooling, and astronaut crew time, will be cut by the same factor.

  5. Evaluation of toluene LIF thermometry detection strategies applied in an internal combustion engine

    NASA Astrophysics Data System (ADS)

    Peterson, Brian; Baum, Elias; Böhm, Benjamin; Sick, Volker; Dreizler, Andreas

    2014-10-01

    In the context of toluene laser-induced fluorescence (LIF) thermometry, the two common LIF detection strategies, namely one-color and two-color detection, have been simultaneously applied to compare each strategy's ability to accurately resolve thermal gradients during an engine cycle within an optically accessible internal combustion (IC) engine. Temperature images are obtained from high-speed toluene LIF measurements and are combined with high-speed particle image velocimetry. The combination with flow data and Mie scattering images facilitates the interpretation of differences between the toluene LIF detection strategies. Two-color temperature images are limited in their ability to detect thermal gradients near the end of compression due to larger precision uncertainties. Local regions of cold gases in the two-color images are better identified with the guidance of the one-color images when homogeneous toluene mixtures preside. During expansion, large differences exist between one- and two-color temperature images and likely caused by local mixture fraction heterogeneities that bias the one-color detection strategy. Toluene condensation occurs during the expansion and exhaust stroke and causes local mixture fraction heterogeneities in the combustion chamber. Liquid toluene is in contact with solid surfaces and crevices of the combustion chamber and can evaporate during compression or expansion causing both local temperature and mixture stratification. This work demonstrates the advantage of high-speed imaging and use of multiple image diagnostics to reveal the development of natural temperature and mixture stratification in a motored IC engine. This work also suggests that natural temperature stratification typically regarded from gas-wall heat transfer may also be caused by liquid droplet evaporation on solid surfaces. Such phenomenon, however, is expected to be pertinent for all modern-day engine operating systems.

  6. Invited Review: A review of deterministic effects in cyclic variability of internal combustion engines

    SciTech Connect

    Finney, Charles E.; Kaul, Brian C.; Daw, C. Stuart; Wagner, Robert M.; Edwards, K. Dean; Green, Johney B.

    2015-02-18

    Here we review developments in the understanding of cycle to cycle variability in internal combustion engines, with a focus on spark-ignited and premixed combustion conditions. Much of the research on cyclic variability has focused on stochastic aspects, that is, features that can be modeled as inherently random with no short term predictability. In some cases, models of this type appear to work very well at describing experimental observations, but the lack of predictability limits control options. Also, even when the statistical properties of the stochastic variations are known, it can be very difficult to discern their underlying physical causes and thus mitigate them. Some recent studies have demonstrated that under some conditions, cyclic combustion variations can have a relatively high degree of low dimensional deterministic structure, which implies some degree of predictability and potential for real time control. These deterministic effects are typically more pronounced near critical stability limits (e.g. near tipping points associated with ignition or flame propagation) such during highly dilute fueling or near the onset of homogeneous charge compression ignition. We review recent progress in experimental and analytical characterization of cyclic variability where low dimensional, deterministic effects have been observed. We describe some theories about the sources of these dynamical features and discuss prospects for interactive control and improved engine designs. In conclusion, taken as a whole, the research summarized here implies that the deterministic component of cyclic variability will become a pivotal issue (and potential opportunity) as engine manufacturers strive to meet aggressive emissions and fuel economy regulations in the coming decades.

  7. Invited Review: A review of deterministic effects in cyclic variability of internal combustion engines

    DOE PAGESBeta

    Finney, Charles E.; Kaul, Brian C.; Daw, C. Stuart; Wagner, Robert M.; Edwards, K. Dean; Green, Johney B.

    2015-02-18

    Here we review developments in the understanding of cycle to cycle variability in internal combustion engines, with a focus on spark-ignited and premixed combustion conditions. Much of the research on cyclic variability has focused on stochastic aspects, that is, features that can be modeled as inherently random with no short term predictability. In some cases, models of this type appear to work very well at describing experimental observations, but the lack of predictability limits control options. Also, even when the statistical properties of the stochastic variations are known, it can be very difficult to discern their underlying physical causes andmore » thus mitigate them. Some recent studies have demonstrated that under some conditions, cyclic combustion variations can have a relatively high degree of low dimensional deterministic structure, which implies some degree of predictability and potential for real time control. These deterministic effects are typically more pronounced near critical stability limits (e.g. near tipping points associated with ignition or flame propagation) such during highly dilute fueling or near the onset of homogeneous charge compression ignition. We review recent progress in experimental and analytical characterization of cyclic variability where low dimensional, deterministic effects have been observed. We describe some theories about the sources of these dynamical features and discuss prospects for interactive control and improved engine designs. In conclusion, taken as a whole, the research summarized here implies that the deterministic component of cyclic variability will become a pivotal issue (and potential opportunity) as engine manufacturers strive to meet aggressive emissions and fuel economy regulations in the coming decades.« less

  8. From orbital debris capture systems through internal combustion engines on Mars

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The investigation and conceptualization of an orbital debris collector was the primary area of design. In addition, an alternate structural design for Space Station Freedom and systems supporting resource utilization at Mars and the moon were studied. Hardware for production of oxygen from simulate Mars atmosphere was modified to permit more reliable operation at low pressures (down to 10 mb). An internal combustion engine was altered to study how Mars atmosphere could be used as a diluent to control combustion temperatures and avoid excess Mars propellant production requirements that would result from either methane-rich or oxygen-rich, methane-oxygen combustion. An elastic loop traction system that could be used for lunar construction vehicles was refined to permit testing. A parabolic heat rejection radiator system was designed and built to determine whether it was capable of increasing heat rejection rates during lunar daytime operation. In addition, an alternate space station truss design, utilizing a pre-integrated concept, was studied and found to reduce estimate extravehicular activity (EVA) time and increase the structural integrity when compared to the original Warren truss concept. An orbital-debris-capturing spacecraft design which could be mated with the Orbital Maneuvering Vehicle was studied. The design identified Soviet C-1B boosters as the best targets of opportunity in Earth orbits between an altitude of 900 km and 1100 km and at an inclination of 82.9 deg. A dual robot pallet, which could be spun to match the tumbling rate of the C-1B booster, was developed as the conceptual design.

  9. From orbital debris capture systems through internal combustion engines on Mars

    NASA Astrophysics Data System (ADS)

    The investigation and conceptualization of an orbital debris collector was the primary area of design. In addition, an alternate structural design for Space Station Freedom and systems supporting resource utilization at Mars and the moon were studied. Hardware for production of oxygen from simulate Mars atmosphere was modified to permit more reliable operation at low pressures (down to 10 mb). An internal combustion engine was altered to study how Mars atmosphere could be used as a diluent to control combustion temperatures and avoid excess Mars propellant production requirements that would result from either methane-rich or oxygen-rich, methane-oxygen combustion. An elastic loop traction system that could be used for lunar construction vehicles was refined to permit testing. A parabolic heat rejection radiator system was designed and built to determine whether it was capable of increasing heat rejection rates during lunar daytime operation. In addition, an alternate space station truss design, utilizing a pre-integrated concept, was studied and found to reduce estimate extravehicular activity (EVA) time and increase the structural integrity when compared to the original Warren truss concept. An orbital-debris-capturing spacecraft design which could be mated with the Orbital Maneuvering Vehicle was studied. The design identified Soviet C-1B boosters as the best targets of opportunity in Earth orbits between an altitude of 900 km and 1100 km and at an inclination of 82.9 deg. A dual robot pallet, which could be spun to match the tumbling rate of the C-1B booster, was developed as the conceptual design.

  10. Coal Combustion Science

    SciTech Connect

    Hardesty, D.R.; Fletcher, T.H.; Hurt, R.H.; Baxter, L.L. )

    1991-08-01

    The objective of this activity is to support the Office of Fossil Energy in executing research on coal combustion science. This activity consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency Coal Combustion Science Project. Specific tasks for this activity include: (1) coal devolatilization - the objective of this risk is to characterize the physical and chemical processes that constitute the early devolatilization phase of coal combustion as a function of coal type, heating rate, particle size and temperature, and gas phase temperature and oxidizer concentration; (2) coal char combustion -the objective of this task is to characterize the physical and chemical processes involved during coal char combustion as a function of coal type, particle size and temperature, and gas phase temperature and oxygen concentration; (3) fate of mineral matter during coal combustion - the objective of this task is to establish a quantitative understanding of the mechanisms and rates of transformation, fragmentation, and deposition of mineral matter in coal combustion environments as a function of coal type, particle size and temperature, the initial forms and distribution of mineral species in the unreacted coal, and the local gas temperature and composition.

  11. Construction of combustion models for rapeseed methyl ester bio-diesel fuel for internal combustion engine applications.

    PubMed

    Golovitchev, Valeri I; Yang, Junfeng

    2009-01-01

    Bio-diesel fuels are non-petroleum-based diesel fuels consisting of long chain alkyl esters produced by the transesterification of vegetable oils, that are intended for use (neat or blended with conventional fuels) in unmodified diesel engines. There have been few reports of studies proposing theoretical models for bio-diesel combustion simulations. In this study, we developed combustion models based on ones developed previously. We compiled the liquid fuel properties, and the existing detailed mechanism of methyl butanoate ester (MB, C(5)H(10)O(2)) oxidation was supplemented by sub-mechanisms for two proposed fuel constituent components, C(7)H(16) and C(7)H(8)O (and then, by mp2d, C(4)H(6)O(2) and propyne, C(3)H(4)) to represent the combustion model for rapeseed methyl ester described by the chemical formula, C(19)H(34)O(2) (or C(19)H(36)O(2)). The main fuel vapor thermal properties were taken as those of methyl palmitate C(19)H(36)O(2) in the NASA polynomial form of the Burcat database. The special global reaction was introduced to "crack" the main fuel into its constituent components. This general reaction included 309 species and 1472 reactions, including soot and NO(x) formation processes. The detailed combustion mechanism was validated using shock-tube ignition-delay data under diesel engine conditions. For constant volume and diesel engine (Volvo D12C) combustion modeling, this mechanism could be reduced to 88 species participating in 363 reactions. PMID:19409477

  12. Ignition control system for internal combustion engines with simplified crankshaft sensing and improved coil charging

    SciTech Connect

    Wilens, D.L.; Long, A.

    1988-11-29

    This patent describes an electronic ignition system for controlling as a function of at least one selected engine parameter the ignition instant of an internal combustion engine having at least one cylinder, the cylinder having a piston and a rotatable crankshaft coupled to the piston to be rotatably driven as combustions occur within the cylinder at the ignition instants, the crankshaft having at least one reference position defining a positional relationship of the crankshaft to the cylinder. The electronic ignition system comprising: (a) a rotor affixed to rotate with the crankshaft and having a plurality of reference indicia thereon positionally related with respect to the reference position. The reference indicia being disposed at points equally spaced by a predetermined arc of crankshaft rotation from each other about the rotor, at least one of the points having a missing indicium and disposed in a predetermined relation to the reference position of the crankshaft; (b) a single sensor disposed at a point fixed in relation to the rotation of the crankshaft for providing a train of signals, each signal occurring in time when each of the plurality of reference indicia rotates past the fixed point (c) missing indicium means responsive to each sensor signal of the train for measuring an arc of crankshaft rotation from the corresponding, current indicium and if the measured arc of crankshaft rotation exceeds the predetermined arc of crankshaft rotation, for providing a missing indicium signal.

  13. Multi-point laser spark generation for internal combustion engines using a spatial light modulator

    NASA Astrophysics Data System (ADS)

    Lyon, Elliott; Kuang, Zheng; Cheng, Hua; Page, Vincent; Shenton, Tom; Dearden, Geoff

    2014-11-01

    This paper reports on a technique demonstrating for the first time successful multi-point laser-induced spark generation, which is variable in three dimensions and derived from a single laser beam. Previous work on laser ignition of internal combustion engines found that simultaneously igniting in more than one location resulted in more stable and faster combustion - a key potential advantage over conventional spark ignition. However, previous approaches could only generate secondary foci at fixed locations. The work reported here is an experimental technique for multi-point laser ignition, in which several sparks with arbitrary spatial location in three dimensions are created by variable diffraction of a pulsed single laser beam source and transmission through an optical plug. The diffractive multi-beam arrays and patterns are generated using a spatial light modulator on which computer generated holograms are displayed. A gratings and lenses algorithm is used to accurately modulate the phase of the input laser beam and create multi-beam output. The underpinning theory, experimental arrangement and results obtained are presented and discussed.

  14. Some Effects of Injection Advance Angle, Engine-Jacket Temperature, and Speed on Combustion in a Compression-Ignition Engine

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Waldron, C D

    1936-01-01

    An optical indicator and a high-speed motion-picture camera capable of operating at the rate of 2,000 frames per second were used to record simultaneously the pressure development and the flame formation in the combustion chamber of the NACA combustion apparatus. Tests were made at engine speeds of 570 and 1,500 r.p.m. The engine-jacket temperature was varied from 100 degrees to 300 degrees F. And the injection advance angle from 13 degrees after top center to 120 degrees before top center. The results show that the course of the combustion is largely controlled by the temperature and pressure of the air in the chamber from the time the fuel is injected until the time at which combustion starts and by the ignition lag. The conclusion is presented that in a compression-ignition engine with a quiescent combustion chamber the ignition lag should be the longest that can be used without excessive rates of pressure rise; any further shortening of the ignition lag decreased the effective combustion of the engine.

  15. Throttle control linkage for internal combustion engines and method of set-up

    SciTech Connect

    Hendron, S.S.; Williams, N.E.

    1992-10-06

    This patent describes throttle control linkage for an internal combustion engine having a pivotally-mounted injector lever for movement between a first predetermined position and a second predetermined position to control a fuel injector pump; It comprises: a throttle control lever mounted for movement between a first predetermined position and a second predetermined position; a pivotally-mounted bellcrank having an arcuate slot formed therein; first linkage means operatively connected between the arcuate slot and the pivotally-mounted injector lever; the arcuate slot formed along a predetermined radius from the connection of the second linkage means on the pivotally-mounted injector lever when the throttle control lever and the pivotally-mounted injector lever are positioned in the first predetermined position.

  16. Air intake side secondary air supply system for an internal combustion engine

    SciTech Connect

    Kobayashi, H.; Tomobe, N.

    1987-03-10

    This patent describes an air intake side secondary air supply system for an internal combustion engine having a choke valve and a throttle valve in an intake air passage. The system is adapted to supply an air intake side secondary air into an intake air passage downstream of the throttle valve by a control valve and in response to an operating condition of the engine during a cold operation of the engine. The improvement described here comprises means for detecting a no-load operating state of the engine during the cold operation of the engine in which the choke valve is actuated to close the intake air passage, and means for stopping a supply of the air intake side secondary air upon detection of the non-load operating state so as to enrich an air-fuel mixture supplied to the engine.

  17. Blow-by gas processing arrangement for automotive internal combustion engines

    SciTech Connect

    Anno, N.; Arai, T.

    1987-07-21

    This patent describes a blow-by gas processing arrangement for an internal combustion engine, comprising: a cylinder block having a chamber for collecting a blow-by gas, a blow-by gas passage communicating with the chamber, and spaced journal walls for supporting a crankshaft; a relatively large oil mist separating passage defined in the cylinder block and laterally extending into one of the journal walls beyond the blow-by gas passage. The oil mist separates passage communicating with the blow-by gas passage for preliminary separating an oil mist from the blow-by gas supplied from the chamber; an oil separator communicating with the oil mist separates passage for separating an oil mist from the blow-by gas supplied from the oil mist separating passage; and a PCV valve is connected to the oil mist separator; and an intake manifold connected to the PCV valve.

  18. Crankshaft for a 90 degree V-type eight-cylinder internal combustion engine

    SciTech Connect

    Ito, E

    1989-05-30

    This patent describes a crankshaft for a 90/sup 0/ V-type eight-cylinder internal combustion engine supported by five supports. The crankshaft includes eight balance weights comprising No. 1 through No. 8 balance weights, four pins comprising a No. 1 pin connecting the No. 1 and No. 2 balance weights, a No. 2 pin connecting the No. 3 and No. 4 balance weights, a No. 3 pin connecting the No. 5 and No. 6 balance weights and a No. 4 pin connecting the No. 7 and No. 8 balance weights, and five journals comprising No. 1 through No. 56 journals, the balance weights being arranged in the order of the No. 1 to No. 8 balance weights in a direction from a fore end to a rear end of the crankshaft.

  19. Load detecting apparatus and ignition control apparatus for internal combustion engines

    SciTech Connect

    Yoshida, T.; Katada, H.

    1986-12-09

    An ignition control apparatus is described for an internal combustion engine comprising: a crankshaft reference position detector for detecting a plurality of reference angular positions of a crankshaft of an engine and for producing pulse signals at the reference angular positions; means responsive to the pulse signals from the crankshaft reference position detector for determining the interval rotation speed of the engine for each of the intervals between the pulses; means responsive to the interval rotation speeds from the interval rotation speed determining means for determining a speed pulsation value for each revolution of the crankshaft; means for determining the speed of the engine; and means for controlling the ignition of the engine in accordance with the speed pulsation value from the speed pulsation value determining means and the engine speed from the engine speed determining means.

  20. NREL Showcases Hydrogen Internal Combustion Engine Bus, Helps DOE Set Standards for Outreach (Fact Sheet)

    SciTech Connect

    Not Available

    2010-11-01

    This fact sheet describes the National Renewable Energy Laboratory's (NREL's) accomplishments in showcasing a Ford hydrogen-powered internal combustion engine (H2ICE) bus at The Taste of Colorado festival in Denver. NREL started using its U.S. Department of Energy-funded H2ICE bus in May 2010 as the primary shuttle vehicle for VIP visitors, members of the media, and new employees. In September 2010, NREL featured the bus at The Taste of Colorado. This was the first major outreach event for the bus. NREL's educational brochure, vehicle wrap designs, and outreach efforts serve as a model for other organizations with DOE-funded H2ICE buses. Work was performed by the Hydrogen Education Group and Market Transformation Group in the Hydrogen Technologies and Systems Center.

  1. Lightweight Exhaust Manifold and Exhaust Pipe Ducting for Internal Combustion Engines

    NASA Technical Reports Server (NTRS)

    Northam, G. Burton (Inventor); Ransone, Philip O. (Inventor); Rivers, H. Kevin (Inventor)

    1999-01-01

    An improved exhaust system for an internal combustion gasoline-and/or diesel-fueled engine includes an engine exhaust manifold which has been fabricated from carbon- carbon composite materials in operative association with an exhaust pipe ducting which has been fabricated from carbon-carbon composite materials. When compared to conventional steel. cast iron. or ceramic-lined iron paris. the use of carbon-carbon composite exhaust-gas manifolds and exhaust pipe ducting reduces the overall weight of the engine. which allows for improved acceleration and fuel efficiency: permits operation at higher temperatures without a loss of strength: reduces the "through-the wall" heat loss, which increases engine cycle and turbocharger efficiency and ensures faster "light-off" of catalytic converters: and, with an optional thermal reactor, reduces emission of major pollutants, i.e. hydrocarbons and carbon monoxide.

  2. Modeling of reciprocating internal combustion engines for power generation and heat recovery

    SciTech Connect

    Yun, Kyung Tae; Cho, Heejin; Luck, Rogelio; Mago, Pedro J.

    2013-02-01

    This paper presents a power generation and heat recovery model for reciprocating internal combustion engines (ICEs). The purpose of the proposed model is to provide realistic estimates of performance/efficiency maps for both electrical power output and useful thermal output for various capacities of engines for use in a preliminary CHP design/simulation process. The proposed model will serve as an alternative to constant engine efficiencies or empirical efficiency curves commonly used in the current literature for simulations of CHP systems. The engine performance/efficiency calculation algorithm has been coded to a publicly distributed FORTRAN Dynamic Link Library (DLL), and a user friendly tool has been developed using Visual Basic programming. Simulation results using the proposed model are validated against manufacturer’s technical data.

  3. Schlieren measurements in the round cylinder of an optically accessible internal combustion engine.

    PubMed

    Kaiser, Sebastian Arnold; Salazar, Victor Manuel; Hoops, Alexandra A

    2013-05-10

    This paper describes the design and experimental application of an optical system to perform schlieren measurements in the curved geometry of the cylinder of an optically accessible internal combustion engine. Key features of the system are a pair of cylindrical positive meniscus lenses, which keep the beam collimated while passing through the unmodified, thick-walled optical cylinder, and a pulsed, high-power light-emitting diode with narrow spectral width. In combination with a high-speed CMOS camera, the system is used to visualize the fuel jet after injection of hydrogen fuel directly into the cylinder from a high-pressure injector. Residual aberrations, which limit the system's sensitivity, are characterized experimentally and are compared to the predictions of ray-tracing software. PMID:23669861

  4. Carbon Fiber Reinforced Carbon Composite Valve for an Internal Combustion Engine

    NASA Technical Reports Server (NTRS)

    Rivers, H. Kevin (Inventor); Ransone, Philip O. (Inventor); Northam, G. Burton (Inventor)

    1999-01-01

    A carbon fiber reinforced carbon composite valve for internal combustion engines and the like formed of continuous carbon fibers throughout the valve's stem and head is disclosed. The valve includes braided carbon fiber material over axially aligned unidirectional carbon fibers forming a valve stem; the braided and unidirectional carbon fibers being broomed out at one end of the valve stem forming the shape of the valve head; the valve-shaped structure being densified and rigidized with a matrix of carbon containing discontinuous carbon fibers: and the finished valve being treated to resist oxidation. Also disclosed is a carbon matrix plug containing continuous and discontinuous carbon fibers and forming a net-shape valve head acting as a mandrel over which the unidirectional and braided carbon fibers are formed according to textile processes. Also disclosed are various preform valves and processes for making finished and preform carbon fiber reinforced carbon composite valves.

  5. System and method for conditioning intake air to an internal combustion engine

    SciTech Connect

    Sellnau, Mark C.

    2015-08-04

    A system for conditioning the intake air to an internal combustion engine includes a means to boost the pressure of the intake air to the engine and a liquid cooled charge air cooler disposed between the output of the boost means and the charge air intake of the engine. Valves in the coolant system can be actuated so as to define a first configuration in which engine cooling is performed by coolant circulating in a first coolant loop at one temperature, and charge air cooling is performed by coolant flowing in a second coolant loop at a lower temperature. The valves can be actuated so as to define a second configuration in which coolant that has flowed through the engine can be routed through the charge air cooler. The temperature of intake air to the engine can be controlled over a wide range of engine operation.

  6. Start up system for hydrogen generator used with an internal combustion engine

    NASA Technical Reports Server (NTRS)

    Houseman, J.; Cerini, D. J. (Inventor)

    1977-01-01

    A hydrogen generator provides hydrogen rich product gases which are mixed with the fuel being supplied to an internal combustion engine for the purpose of enabling a very lean mixture of that fuel to be used, whereby nitrous oxides emitted by the engine are minimized. The hydrogen generator contains a catalyst which must be heated to a pre-determined temperature before it can react properly. To simplify the process of heating up the catalyst at start-up time, either some of the energy produced by the engine such as engine exhaust gas, or electrical energy produced by the engine, or the engine exhaust gas may be used to heat up air which is then used to heat the catalyst.

  7. 40 CFR 60.4242 - What other requirements must I meet if I am a manufacturer of stationary SI internal combustion...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false What other requirements must I meet if I am a manufacturer of stationary SI internal combustion engines or equipment containing stationary SI internal combustion engines or a manufacturer of equipment containing such engines? 60.4242 Section 60.4242 Protection of Environment...

  8. 40 CFR 60.4238 - What are my compliance requirements if I am a manufacturer of stationary SI internal combustion...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false What are my compliance requirements if I am a manufacturer of stationary SI internal combustion engines â¤19 KW (25 HP) or a manufacturer of equipment containing such engines? 60.4238 Section 60.4238 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS...

  9. 40 CFR 60.4240 - What are my compliance requirements if I am a manufacturer of stationary SI internal combustion...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false What are my compliance requirements if I am a manufacturer of stationary SI internal combustion engines >19 KW (25 HP) that are rich burn engines that use LPG or a manufacturer of equipment containing such engines? 60.4240 Section 60.4240 Protection of Environment ENVIRONMENTAL...

  10. 40 CFR 60.4239 - What are my compliance requirements if I am a manufacturer of stationary SI internal combustion...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false What are my compliance requirements if I am a manufacturer of stationary SI internal combustion engines >19 KW (25 HP) that use gasoline or a manufacturer of equipment containing such engines? 60.4239 Section 60.4239 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...

  11. 40 CFR 60.4241 - What are my compliance requirements if I am a manufacturer of stationary SI internal combustion...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false What are my compliance requirements if I am a manufacturer of stationary SI internal combustion engines participating in the voluntary certification program or a manufacturer of equipment containing such engines? 60.4241 Section 60.4241 Protection of Environment ENVIRONMENTAL...

  12. 40 CFR 60.4210 - What are my compliance requirements if I am a stationary CI internal combustion engine manufacturer?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false What are my compliance requirements if I am a stationary CI internal combustion engine manufacturer? 60.4210 Section 60.4210 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards...

  13. CRITERIA POLLUTANT EMISSIONS FROM INTERNAL COMBUSTION ENGINES IN THE NATURAL GAS INDUSTRY VOLUME II. APPENDICES A-I

    EPA Science Inventory

    The report summarizes emission factors for criteria pollutants (NOx, CO, CH4, C2H6, THC, NMHC, and NMEHC) from stationary internal combustion engines and gas turbines used in the natural gas industry. The emission factors were calculated from test results from five test campaigns...

  14. Combustion characteristics of paper mill sludge in a lab-scale combustor with internally cycloned circulating fluidized bed.

    PubMed

    Shin, D; Jang, S; Hwang, J

    2005-01-01

    After performing a series of batch type experiments using a lab-scale combustor, consideration was given to the use of an internally cycloned circulating fluidized bed combustor (ICCFBC) for a paper mill sludge. Operation parameters including water content, feeding mass of the sludge, and secondary air injection ratio were varied to understand their effects on combustion performance, which was examined in terms of carbon conversion rate (CCR) and the emission rates of CO, C(x)H(y) and NO(x). The combustion of paper mill sludge in the ICCFBC was compared to the reaction mechanisms of a conventional solid fuel combustion, characterized by kinetics limited reaction zone, diffusion limited reaction zone, and transition zone. The results of the parametric study showed that a 35% water content and 60 g feeding mass generated the best condition for combustion. Meanwhile, areal mass burning rate, which is an important design and operation parameter at an industrial scale plant, was estimated by a conceptual equation. The areal mass burning rate corresponding to the best combustion condition was approximately 400 kg/hm(2) for 35% water content. The secondary air injection generating swirling flow enhanced the mixing between the gas phase components as well as the solid phase components, and improved the combustion efficiency by increasing the carbon conversion rate and reducing pollutant emissions. PMID:16009301

  15. Application of high performance computing for studying cyclic variability in dilute internal combustion engines

    SciTech Connect

    FINNEY, Charles E A; Edwards, Kevin Dean; Stoyanov, Miroslav K; Wagner, Robert M

    2015-01-01

    Combustion instabilities in dilute internal combustion engines are manifest in cyclic variability (CV) in engine performance measures such as integrated heat release or shaft work. Understanding the factors leading to CV is important in model-based control, especially with high dilution where experimental studies have demonstrated that deterministic effects can become more prominent. Observation of enough consecutive engine cycles for significant statistical analysis is standard in experimental studies but is largely wanting in numerical simulations because of the computational time required to compute hundreds or thousands of consecutive cycles. We have proposed and begun implementation of an alternative approach to allow rapid simulation of long series of engine dynamics based on a low-dimensional mapping of ensembles of single-cycle simulations which map input parameters to output engine performance. This paper details the use Titan at the Oak Ridge Leadership Computing Facility to investigate CV in a gasoline direct-injected spark-ignited engine with a moderately high rate of dilution achieved through external exhaust gas recirculation. The CONVERGE CFD software was used to perform single-cycle simulations with imposed variations of operating parameters and boundary conditions selected according to a sparse grid sampling of the parameter space. Using an uncertainty quantification technique, the sampling scheme is chosen similar to a design of experiments grid but uses functions designed to minimize the number of samples required to achieve a desired degree of accuracy. The simulations map input parameters to output metrics of engine performance for a single cycle, and by mapping over a large parameter space, results can be interpolated from within that space. This interpolation scheme forms the basis for a low-dimensional metamodel which can be used to mimic the dynamical behavior of corresponding high-dimensional simulations. Simulations of high-EGR spark

  16. Velocity measurement inside a motored internal combustion engine using three-component laser Doppler anemometry

    NASA Astrophysics Data System (ADS)

    Chan, V. S. S.; Turner, J. T.

    2000-10-01

    A three-component laser Doppler anemometry (LDA) system has been employed to investigate the structure of the flow inside the cylinder of a motored internal combustion engine. This model engine was reasonably representative of a typical, single cylinder, spark ignition engine although it did not permit firing. It was equipped with overhead valve gear and optical access was provided in the top and side walls of the cylinder. A principal objective was to study the influence of the inlet port design on the flow within the cylinder during the induction and compression strokes of the engine. Here, it can be noted that results obtained in an unfired engine are believed to be representative of the flow behaviour before combustion occurs in a fired engine (see P.O. Witze, Measurements of the spatial distribution and engine speed dependence of turbulent air motion in an i.c. engine, SAE Paper No. 770220, 1977; Witze, Sandia Laboratory Energy Report, SAND 79-8685, Sandia Laboratories, USA, 1979). Experimental data presented for an inclined inlet port configuration reveal the complex three-dimensional nature of the flow inside the model engine cylinder. Not surprisingly, the results also show that the inclined inlet port created flow conditions more favourable to mixing in the cylinder. Specifically, the inclined inlet flow was found to generate a region with a relatively high shear and strong recirculation zones in the cylinder. Inclining the inlet port also produced a more nearly homogeneous flow structure at top dead centre during the compression stroke. The paper identifies the special difficulties encountered in making the LDA measurements. The experimental findings are examined and the problems that arise in presenting time-varying three-dimensional data of this type are discussed. Finally, the future potential of this experimental approach is explored.

  17. On the thermodynamics of waste heat recovery from internal combustion engine exhaust gas

    NASA Astrophysics Data System (ADS)

    Meisner, G. P.

    2013-03-01

    The ideal internal combustion (IC) engine (Otto Cycle) efficiency ηIC = 1-(1/r)(γ - 1) is only a function of engine compression ratio r =Vmax/Vmin and exhaust gas specific heat ratio γ = cP/cV. Typically r = 8, γ = 1.4, and ηIC = 56%. Unlike the Carnot Cycle where ηCarnot = 1-(TC/TH) for a heat engine operating between hot and cold heat reservoirs at TH and TC, respectively, ηIC is not a function of the exhaust gas temperature. Instead, the exhaust gas temperature depends only on the intake gas temperature (ambient), r, γ, cV, and the combustion energy. The ejected exhaust gas heat is thermally decoupled from the IC engine and conveyed via the exhaust system (manifold, pipe, muffler, etc.) to ambient, and the exhaust system is simply a heat engine that does no useful work. The maximum fraction of fuel energy that can be extracted from the exhaust gas stream as useful work is (1-ηIC) × ηCarnot = 32% for TH = 850 K (exhaust) and TC = 370 K (coolant). This waste heat can be recovered using a heat engine such as a thermoelectric generator (TEG) with ηTEG> 0 in the exhaust system. A combined IC engine and TEG system can generate net useful work from the exhaust gas waste heat with efficiency ηWH = (1-ηIC) × ηCarnot ×ηTEG , and this will increase the overall fuel efficiency of the total system. Recent improvements in TEGs yield ηTEG values approaching 15% giving a potential total waste heat conversion efficiency of ηWH = 4.6%, which translates into a fuel economy improvement approaching 5%. This work is supported by the US DOE under DE-EE0005432.

  18. Application of advanced laser diagnostics to hypersonic wind tunnels and combustion systems.

    SciTech Connect

    North, Simon W.; Hsu, Andrea G.; Frank, Jonathan H.

    2009-09-01

    This LDRD was a Sandia Fellowship that supported Andrea Hsu's PhD research at Texas A&M University and her work as a visitor at Sandia's Combustion Research Facility. The research project at Texas A&M University is concerned with the experimental characterization of hypersonic (Mach>5) flowfields using experimental diagnostics. This effort is part of a Multidisciplinary University Research Initiative (MURI) and is a collaboration between the Chemistry and Aerospace Engineering departments. Hypersonic flight conditions often lead to a non-thermochemical equilibrium (NTE) state of air, where the timescale of reaching a single (equilibrium) Boltzmann temperature is much longer than the timescale of the flow. Certain molecular modes, such as vibrational modes, may be much more excited than the translational or rotational modes of the molecule, leading to thermal-nonequilibrium. A nontrivial amount of energy is therefore contained within the vibrational mode, and this energy cascades into the flow as thermal energy, affecting flow properties through vibrational-vibrational (V-V) and vibrational-translational (V-T) energy exchanges between the flow species. The research is a fundamental experimental study of these NTE systems and involves the application of advanced laser and optical diagnostics towards hypersonic flowfields. The research is broken down into two main categories: the application and adaptation of existing laser and optical techniques towards characterization of NTE, and the development of new molecular tagging velocimetry techniques which have been demonstrated in an underexpanded jet flowfield, but may be extended towards a variety of flowfields. In addition, Andrea's work at Sandia National Labs involved the application of advanced laser diagnostics to flames and turbulent non-reacting jets. These studies included quench-free planar laser-induced fluorescence measurements of nitric oxide (NO) and mixture fraction measurements via Rayleigh scattering.

  19. Fabrication of High Thermal Conductivity NARloy-Z-Diamond Composite Combustion Chamber Liner for Advanced Rocket Engines

    NASA Technical Reports Server (NTRS)

    Bhat, Biliyar N.; Greene, Sandra E.; Singh, Jogender

    2016-01-01

    NARloy-Z alloy (Cu-3 percent, Ag-0.5 percent, Zr) is a state of the art alloy currently used for fabricating rocket engine combustion chamber liners. Research conducted at NASA-MSFC and Penn State – Applied Research Laboratory has shown that thermal conductivity of NARloy-Z can be increased significantly by adding diamonds to form a composite (NARloy-Z-D). NARloy-Z-D is also lighter than NARloy-Z. These attributes make this advanced composite material an ideal candidate for fabricating combustion chamber liner for an advanced rocket engine. Increased thermal conductivity will directly translate into increased turbopump power and increased chamber pressure for improved thrust and specific impulse. This paper describes the process development for fabricating a subscale high thermal conductivity NARloy-Z-D combustion chamber liner using Field Assisted Sintering Technology (FAST). The FAST process uses a mixture of NARloy-Z and diamond powders which is sintered under pressure at elevated temperatures. Several challenges were encountered, i.e., segregation of diamonds, machining the super hard NARloy-Z-D composite, net shape fabrication and nondestructive examination. The paper describes how these challenges were addressed. Diamonds coated with copper (CuD) appear to give the best results. A near net shape subscale combustion chamber liner is being fabricated by diffusion bonding cylindrical rings of NARloy-Z-CuD using the FAST process.

  20. The development of a combustion system for B&W`s advanced coal-fired low-emission boiler system

    SciTech Connect

    Sivy, J.L.; Kaufman, K.C.; McDonald, D.K.

    1997-07-01

    Babcock & Wilcox has been leading a team in the development of an advanced coal-fired low emission boiler system (LEBS). The project objective is to design a new pulverized coal (PC) powered generating system equipped with improved combustion and heat transfer subsystems and advanced environmental control technologies capable of achieving emissions of NO{sub x}, SO{sub x}, and particulates far below current New Source Performance Standards (NSPS). The objectives of the program are to achieve continuous NO{sub x} emissions below 0.2 lb NO{sub x}/MBtu with a specified design coal, through combustion techniques only, with a further target of 0.1 lb NO{sub x}/MBtu using supplementary advanced flue gas cleanup technologies if necessary. The SO{sub 2} limit for the project has been set at 0.1 lb SO{sub 2}/MBtu, with a particulate emission limit of 0.01 lb particulate/MBtu. The net plant efficiency is specified to be at least 42% (HHV), while overall the cost of electricity must not increase relative to a conventional plant meeting cur-rent NSPS. The B&W LEBS plant uses conventional state-of-the-art equipment along with developing new technologies to meet the program goals. To meet this goal, B&W has coupled advanced environmental control technologies capable of achieving emission of NO{sub x}, SO{sub x}, and particulate far below current NSPS with an advanced boiler equipped with improved combustion and heat transfer subsystems. Phase I of the LEBS program began with a thorough review and assessment of potential advanced technologies and techniques. Through engineering analysis, pilot-scale testing, and numerical modeling in Phases I and II, a near full-scale 100 MBtu/hr advanced NO{sub x} emissions control system was designed, fabricated, and tested. Further experimental testing and numerical modeling has continued to refine the LEBS concept.

  1. Advancing Women in STEM at Florida International University

    NASA Astrophysics Data System (ADS)

    Simpson, Caroline E.

    2015-01-01

    Florida International University (FIU) was awarded an NSF ADVANCE grant in 2011 to fund a partnership with the University of Michigan (UM) in order to improve the advancement of women faculty in STEM fields at FIU. FIU is a Carnegie "High Research Activity" doctoral granting institution, and is the fifth largest university in the country with over 54,000 students and 1,100 full-time faculty. The project at FIU was designed to adapt and implement some of the tools and practices shown to have increased the participation and advancement of women in the sciences at UM. The FIU ADVANCE program was funded from 2011-2014, and resulted in increased awareness of the issues facing women faculty in STEM fields, increased hiring of women into STEM faculty positions at FIU, and improved satisfaction for women in terms of some gender equity issues, pay, and recognition at FIU. I will give an overview of the program structure and components, provide examples and evidence of change, and discuss no-cost changes that can be implemented at other institutions.

  2. Advanced Optical Diagnostic Methods for Describing Fuel Injection and Combustion Flowfield Phenomena

    NASA Technical Reports Server (NTRS)

    Locke, Randy J.; Hicks, Yolanda R.; Anderson, Robert C.

    2004-01-01

    Over the past decade advanced optical diagnostic techniques have evolved and matured to a point where they are now widely applied in the interrogation of high pressure combusting flows. At NASA Glenn Research Center (GRC), imaging techniques have been used successfully in on-going work to develop the next generation of commercial aircraft gas turbine combustors. This work has centered on providing a means by which researchers and designers can obtain direct visual observation and measurements of the fuel injection/mixing/combustion processes and combustor flowfield in two- and three-dimensional views at actual operational conditions. Obtaining a thorough understanding of the chemical and physical processes at the extreme operating conditions of the next generation of combustors is critical to reducing emissions and increasing fuel efficiency. To accomplish this and other tasks, the diagnostic team at GRC has designed and constructed optically accessible, high pressurer high temperature flame tubes and sectar rigs capable of optically probing the 20-60 atm flowfields of these aero-combustors. Among the techniques employed at GRC are planar laser-induced fluorescence (PLIF) for imaging molecular species as well as liquid and gaseous fuel; planar light scattering (PLS) for imaging fuel sprays and droplets; and spontaneous Raman scattering for species and temperature measurement. Using these techniques, optical measurements never before possible have been made in the actual environments of liquid fueled gas turbines. 2-D mapping of such parameters as species (e.g. OH-, NO and kerosene-based jet fuel) distribution, injector spray angle, and fuel/air distribution are just some of the measurements that are now routinely made. Optical imaging has also provided prompt feedback to researchers regarding the effects of changes in the fuel injector configuration on both combustor performance and flowfield character. Several injector design modifications and improvements have

  3. Incorporating advanced combustion models to study power density in diesel engines

    NASA Astrophysics Data System (ADS)

    Lee, Daniel Michael

    A new combustion model is presented that can be used to simulate the diesel combustion process. This combustion process is broken into three phases: low temperature ignition kinetics, premixed burn and high temperature diffusion burn. The low temperature ignition kinetics are modeled using the Shell model. For combustion limited by diffusion, a probability density function (PDF) combustion model is utilized. In this model, the turbulent reacting flow is assumed to be an ensemble of locally laminar flamelets. With this methodology, species mass fractions obtained from the solution of laminar flamelet equations can be conditioned to generate a flamelet library. For kinetically limited (premixed) combustion, an Arrhenius rate is used. To transition between the premixed and diffusion burning modes, a transport equation for premixed fuel was implemented. The ratio of fuel in a computational cell that is premixed is used to determine the contribution of each combustion mode. Results show that this combustion model accurately simulates the diesel combustion process. Furthermore, the simulated results are in agreement with the recent conceptual picture of diesel combustion based upon experimental observations. Large eddy simulation (LES) models for momentum exchange and scalar flux were incorporated into the KIVA solver. In this formulation, the turbulent viscosity, μt, is determined as a function of the sub- grid turbulent kinetic energy, which is in turn determined from a one equation model. The formulation for the scalar transfer coefficient, μs, is similar to that of the turbulent viscosity, yet is made to be consistent with scalar transport. Test cases were run verifying that both momentum and scalar flux can be accurately predicted using LES. Once verified, these LES models were used to simulate the diesel combustion process for a Caterpillar 3400 series engine. Results for the engine simulations were in good agreement with experimental data.

  4. Symposium /International/ on Combustion, 17th, Leeds University, Leeds, England, August 20-25, 1978, Proceedings

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The Symposium focused on deflagration to detonation transition, coal combustion, turbulent-combustion interactions, kinetics, furnace combustion, inhibition and ignition, flame structure and chemistry, combustion studies, measurement techniques, fire and explosion, engine combustion, soot, and propellants and explosives. Papers were presented on numerical modeling of the deflagration-to-detonation transition, the interaction between turbulence and combustion, turbulent flame propagation in premixed gases, spray evaporation in recirculating flow, dissociation of nitric oxide in shock waves, pollutant emissions from partially mixed turbulent flames, energy transfer and quenching rates of laser-pumped electronically excited alkalis in flames, a study of flammability limits using counterflow flames, the unified theory of explosions with fuel consumption, and the dynamics and radiant intensity of large hydrogen flames.

  5. Proceedings of the Fourth International Workshop on Advances in Electrocorticography.

    PubMed

    Ritaccio, Anthony; Brunner, Peter; Crone, Nathan E; Gunduz, Aysegul; Hirsch, Lawrence J; Kanwisher, Nancy; Litt, Brian; Miller, Kai; Moran, Daniel; Parvizi, Josef; Ramsey, Nick; Richner, Thomas J; Tandon, Niton; Williams, Justin; Schalk, Gerwin

    2013-11-01

    The Fourth International Workshop on Advances in Electrocorticography (ECoG) convened in New Orleans, LA, on October 11-12, 2012. The proceedings of the workshop serves as an accurate record of the most contemporary clinical and experimental work on brain surface recording and represents the insights of a unique multidisciplinary ensemble of expert clinicians and scientists. Presentations covered a broad range of topics, including innovations in passive functional mapping, increased understanding of pathologic high-frequency oscillations, evolving sensor technologies, a human trial of ECoG-driven brain-machine interface, as well as fresh insights into brain electrical stimulation. PMID:24034899

  6. Proceedings of the Fourth International Workshop on Advances in Electrocorticography

    PubMed Central

    Ritaccio, Anthony; Brunner, Peter; Crone, Nathan E.; Gunduz, Aysegul; Hirsch, Lawrence J.; Kanwisher, Nancy; Litt, Brian; Miller, Kai; Moran, Daniel; Parvizi, Josef; Ramsey, Nick; Richner, Thomas J.; Tandon, Niton; Williams, Justin; Schalk, Gerwin

    2013-01-01

    The Fourth International Workshop on Advances in Electrocorticography (ECoG) convened in New Orleans, LA, on October 11-12, 2012. The proceedings of the workshop serves as an accurate record of the most contemporary clinical and experimental work on brain surface recording and represents the insights of a unique multidisciplinary ensemble of expert clinicians and scientists. Presentations covered a broad range of topics, including innovations in passive functional mapping, increased understanding of pathologic high-frequency oscillations, evolving sensor technologies, a human trial of ECoG-driven brain-machine interface, as well as fresh insights into brain electrical stimulation. PMID:24034899

  7. Active Combustion Control for Aircraft Gas-Turbine Engines-Experimental Results for an Advanced, Low-Emissions Combustor Prototype

    NASA Technical Reports Server (NTRS)

    DeLaat, John C.; Kopasakis, George; Saus, Joseph R.; Chang, Clarence T.; Wey, Changlie

    2012-01-01

    Lean combustion concepts for aircraft engine combustors are prone to combustion instabilities. Mitigation of instabilities is an enabling technology for these low-emissions combustors. NASA Glenn Research Center s prior activity has demonstrated active control to suppress a high-frequency combustion instability in a combustor rig designed to emulate an actual aircraft engine instability experience with a conventional, rich-front-end combustor. The current effort is developing further understanding of the problem specifically as applied to future lean-burning, very low-emissions combustors. A prototype advanced, low-emissions aircraft engine combustor with a combustion instability has been identified and previous work has characterized the dynamic behavior of that combustor prototype. The combustor exhibits thermoacoustic instabilities that are related to increasing fuel flow and that potentially prevent full-power operation. A simplified, non-linear oscillator model and a more physics-based sectored 1-D dynamic model have been developed to capture the combustor prototype s instability behavior. Utilizing these models, the NASA Adaptive Sliding Phasor Average Control (ASPAC) instability control method has been updated for the low-emissions combustor prototype. Active combustion instability suppression using the ASPAC control method has been demonstrated experimentally with this combustor prototype in a NASA combustion test cell operating at engine pressures, temperatures, and flows. A high-frequency fuel valve was utilized to perturb the combustor fuel flow. Successful instability suppression was shown using a dynamic pressure sensor in the combustor for controller feedback. Instability control was also shown with a pressure feedback sensor in the lower temperature region upstream of the combustor. It was also demonstrated that the controller can prevent the instability from occurring while combustor operation was transitioning from a stable, low-power condition to

  8. Evaluation and silicon nitride internal combustion engine components. Final report, Phase I

    SciTech Connect

    Voldrich, W.

    1992-04-01

    The feasibility of silicon nitride (Si{sub 3}N{sub 4}) use in internal combustion engines was studied by testing three different components for wear resistance and lower reciprocating mass. The information obtained from these preliminary spin rig and engine tests indicates several design changes are necessary to survive high-stress engine applications. The three silicon nitride components tested were valve spring retainers, tappet rollers, and fuel pump push rod ends. Garrett Ceramic Components` gas-pressure sinterable Si{sub 3}N{sub 4} (GS-44) was used to fabricate the above components. Components were final machined from densified blanks that had been green formed by isostatic pressing of GS-44 granules. Spin rig testing of the valve spring retainers indicated that these Si{sub 3}N{sub 4} components could survive at high RPM levels (9,500) when teamed with silicon nitride valves and lower spring tension than standard titanium components. Silicon nitride tappet rollers showed no wear on roller O.D. or I.D. surfaces, steel axles and lifters; however, due to the uncrowned design of these particular rollers the cam lobes indicated wear after spin rig testing. Fuel pump push rod ends were successful at reducing wear on the cam lobe and rod end when tested on spin rigs and in real-world race applications.

  9. Control apparatus for internal combustion engine provided with permanent magnet type starting motor

    SciTech Connect

    Naito, S.; Hasegawa, T.

    1988-03-22

    An apparatus for controlling an internal combustion engine provided with a permanent magnet-type starting motor is described comprising: a magnet switch having a switch contact connected between a power source and the starting motor and coil means including series and shunt coils for actuating the contact, a first electric circuit for supplying an electric current from the power source to the starting motor through a key switch and the series coil, a second electric circuit connecting a junction between the key switch and the series coil to the shunt coil for supplying an electric current from the power source through the key switch to the shunt coil, and start controlling means for controlling a given operation of the engine when the starting motor is actuated to rotate for starting the engine. There are comparator means for comparing a voltage at the junction with a predetermined reference voltage thereby determining whether the starting motor is in a predetermined operating condition or not, and means for actuating the starting controlling means upon detecting that the motor is in the predetermined operating condition.

  10. Flywheel-associated counterweight apparatus for reducing vibration in a single cylinder internal combustion engine

    SciTech Connect

    Bolton, A.M. Jr.

    1989-07-11

    This patent describes a single cylinder internal combustion engine comprising: crankshaft means rotationally drivable about a crankshaft axis; bearing means, engaging the crankshaft means between opposite first and second end portions thereof, for supporting the crankshaft means for driven rotation about the crankshaft axis; piston means reciprocably drivable along a piston axis transverse to the crankshaft axis, the piston means having top dead center and bottom dead center positions; connecting rod means, interconnected between the piston means and the first end portion of the crankshaft means, for causing rotation of the crankshaft means about the crankshaft axis in response to driven reciprocation of the piston means along the piston axis; flywheel means coaxially mounted on the second end portion of the crankshaft means for driven rotation therewith about the crankshaft axis; and counterweight means, connected directly to the second end portion of the crankshaft means, for substantially reducing engine vibration attributable to linear inertial and reactive forces transmitted to the first end portion of the crankshaft means by the piston means and the connected rod means, when during engine operation.

  11. Dynamic compression internal combustion engine with yoke having an offset arcuate slot

    SciTech Connect

    Jayne, M.E.; Anderson, P.D.; Hoffman, J.T.; Gray, R.B.

    1986-04-29

    This patent describes an apparatus for an internal combustion engine having at least one cylinder with a first axis and an attendant crankcase with crankshaft mounted therein for rotation of a throw of the crankshaft. The apparatus consists of: a piston disposed in the cylinder for movement along the first axis, a yoke connected to the piston for movement along the first axis, a sliding block to engage the yoke, the yoke and sliding block comprising means for effecting asymmetrical compression and power stroke time periods having at least a curved surface on the yoke engaging throughout the compression and power stroke time periods a mating surface on the sliding block, the curved and mating surfaces having only a single center of curvature disposed remote from the crankshaft on a side of the crankshaft which faces away from the piston and the curved surface being disposed with respect to the first axis to afford a greater time period for fuel burn during a power stroke than that for a compression stroke, wherein top dead center of the sliding block occurs after that of the piston.

  12. Process for decompression control in internal combustion engine and apparatus therefor

    SciTech Connect

    Matsuki, I.; Kamiya, N.; Ikeda, T.; Takagi, Y.; Iizuka, Y.; Yamaguchi, Y.; Funai, H.; Terasawa; Tasaka, S.

    1986-05-27

    A process is described for use in controlled decompression in internal combustion engine operation used for driving compressors, electric generator, and the like, comprising the steps of starting the engine with the decompression control engaged and the engine operating decompressed, increasing the speed of the engine with the decompression control engaged and the engine operating decompressed until the engine reaches a first predetermined speed, while increasing the engine speed above the first predetermined speed disengaging the decompression control to a first stage of disengagement to operate the engine compressed, while the engine is operating compressed, increasing the engine speed to an operating speed above the first predetermined speed and disengaging the decompression control to a second stage of disengagement while continuing to operate the engine compressed and, after the engine has completed the compressed operation with the decompression control disengaged, reducing the engine speed to a second predetermined speed above the first predetermined speed but below the operating speed, reengaging the decompression control and, with the engine operating decompressed further reducing the speed of the engine until the engine stops.

  13. Cooling system of an internal combustion engine having a turbo-charger

    SciTech Connect

    Hasegawa, M.; Fukuda, T.

    1986-09-02

    A cooling system of an internal combustion engine is described having a turbo-charger, comprising a cooling water circulation passageway filled with cooling water for cooling the engine including at least a cylinder head cooling portion, a cooling water circulation passageway for cooling the turbo-charger including a turbo-charger cooling portion, and means for supplying a part of the engine cooling water to the turbo-charger cooling water ciruclation passageway and returning it from there to the engine cooling water cirulation passageway, characterized in that the turbo-charger cooling portion is positioned at the same level or higher than the cylinder head cooling portion of the engine, the turbo-charger cooling water circulation passageway includes a water volume positioned at a level higher than the turbo-charger cooling portion. The volume is connected to a cooling water reservoir tank via a pressure relief valve which is opened when pressure in the volume exceeds a predetermined value to supply cooling water to the volume.

  14. Dynamic Oil Consumption Measurement of Internal Combustion Engines using Laser Spectroscopy.

    PubMed

    Sellmeier, Stefan; Alonso, Eduardo; Boesl, Ulrich

    2014-01-01

    A new approach has been developed to measure dynamic consumption of lubricant oil in an internal combustion engine. It is based on the already known technique where sulfur is used as a natural tracer of the engine oil. Since ejection of motor oil in gaseous form into the exhaust is by far the main source of engine oil consumption, detection of sulfur in the exhaust emission is a valuable way to measure engine oil consumption in a dynamic way. In earlier approaches, this is done by converting all sulfur containing chemical components into SO2 by thermal pyrolysis in a high temperature furnace at atmospheric pressure. The so-formed SO2 then is detected by broadband-UV-induced fluorescence or mass spectrometric methods. The challenge is to reach the necessary detection limit of 50 ppb. The new approach presented here includes sulfur conversion in a low-pressure discharge cell and laser-induced fluorescence with wavelength and fluorescence lifetime selection. A limit of detection down to 10 ppb at a temporal resolution in the time scale of few seconds is reached. Extensive, promising studies have been performed at a real engine test bench. Future developments of a compact, mobile device based on these improvements are discussed. PMID:24279690

  15. Development of an Organic Rankine Cycle system for exhaust energy recovery in internal combustion engines

    NASA Astrophysics Data System (ADS)

    Cipollone, Roberto; Bianchi, Giuseppe; Gualtieri, Angelo; Di Battista, Davide; Mauriello, Marco; Fatigati, Fabio

    2015-11-01

    Road transportation is currently one of the most influencing sectors for global energy consumptions and CO2 emissions. Nevertheless, more than one third of the fuel energy supplied to internal combustion engines is still rejected to the environment as thermal waste at the exhaust. Therefore, a greater fuel economy might be achieved recovering the energy from exhaust gases and converting it into useful power on board. In the current research activity, an ORC-based energy recovery system was developed and coupled with a diesel engine. The innovative feature of the recovery power unit relies upon the usage of sliding vane rotary machines as pump and expander. After a preliminary exhaust gas mapping, which allowed to assess the magnitude of the thermal power to be recovered, a thermodynamic analysis was carried out to design the ORC system and the sliding vane machines using R236fa as working fluid. An experimental campaign was eventually performed at different operating regimes according to the ESC procedure and investigated the recovery potential of the power unit at design and off-design conditions. Mechanical power recovered ranged from 0.7 kW up to 1.9 kW, with an overall cycle efficiency from 3.8% up to 4.8% respectively. These results candidate sliding vane machines as efficient and reliable devices for waste heat recovery applications.

  16. Raman line imaging for spatially and temporally resolved mole fraction measurements in internal combustion engines.

    PubMed

    Miles, P C

    1999-03-20

    An optical diagnostic system based on line imaging of Raman-scattered light has been developed to study the mixing processes in internal combustion engines. The system permits multipoint, single laser-shot measurements of CO(2), O(2), N(2), C(3)H(8), and H(2)O mole fractions with submillimeter spatial resolution. Selection of appropriate system hardware is discussed, as are subsequent data reduction and analysis procedures. Results are reported for data obtained at multiple crank angles and in two different engine flow fields. Measurements are made at 12 locations simultaneously, each location having measurement volume dimensions of 0.5 mm x 0.5 mm x 0.9 mm. The data are analyzed to obtain statistics of species mole fractions: mean, rms, histograms, and both spatial and cross-species covariance functions. The covariance functions are used to quantify the accuracy of the measured rms mole fraction fluctuations, to determine the integral length scales of the mixture inhomogeneities, and to quantify the cycle-to-cycle fluctuations in bulk mixture composition under well-mixed conditions. PMID:18305796

  17. Regulated and speciated hydrocarbon emissions from a catalyst equipped internal combustion engine

    NASA Astrophysics Data System (ADS)

    Poulopoulos, S. G.; Samaras, D. P.; Philippopoulos, C. J.

    In the present work, the effect of engine operating conditions on its exhaust emissions and on catalytic converter operation is studied. A 4-cylinder OPEL 1.6 l internal combustion engine equipped with a hydraulic brake dynamometer was used in all the experiments. For exhaust emissions treatment a typical three-way catalyst was used. The highest hydrocarbon and carbon monoxide engine-out emissions were observed at engine power 2-4 HP. These emissions were decreased as the engine power was increased up to 20 HP. Among the various compounds detected in exhaust emissions, the following ones were monitored at engine and catalyst outlet: methane, hexane, ethylene, acetaldehyde, acetone, benzene, toluene and acetic acid. The concentration of each compound in the catalytic converter effluent was in the range 45-132, 5-12, 10-125, 15-22, 3-7, 3-12, 2-9, 0-6 ppm, respectively. After the required temperature for catalyst operation had been achieved, carbon monoxide tailpipe emissions were dramatically decreased and the observed hydrocarbon conversions were also high. Methane was the most resistant compound to oxidation while ethylene was the most degradable compound over the catalyst. The order from the easiest to the most resistant to oxidation compound was: Alkene>Aromatic>Aldehyde>Ketone>Alkane.

  18. Regulated and unregulated emissions from an internal combustion engine operating on ethanol-containing fuels

    NASA Astrophysics Data System (ADS)

    Poulopoulos, S. G.; Samaras, D. P.; Philippopoulos, C. J.

    In the present work, the effect of ethanol addition to gasoline on regulated and unregulated emissions is studied. A 4-cylinder OPEL 1.6 L internal combustion engine equipped with a hydraulic brake dynamometer was used in all the experiments. For exhaust emissions treatment a typical three-way catalyst was used. Among the various compounds detected in exhaust emissions, the following ones were monitored at engine and catalyst outlet: methane, hexane, ethylene, acetaldehyde, acetone, benzene, 1,3-butadiene, toluene, acetic acid and ethanol. Addition of ethanol in the fuel up to 10% w/w had as a result an increase in the Reid vapour pressure of the fuel, which indicates indirectly increased evaporative emissions, while carbon monoxide tailpipe emissions were decreased. For ethanol-containing fuels, acetaldehyde emissions were appreciably increased (up to 100%), especially for fuel containing 3% w/w ethanol. In contrast, aromatics emissions were decreased by ethanol addition to gasoline. Methane and ethanol were the most resistant compounds to oxidation while ethylene was the most degradable compound over the catalyst. Ethylene, methane and acetaldehyde were the main compounds present at engine exhaust while methane, acetaldehyde and ethanol were the main compounds in tailpipe emissions for ethanol fuels after the catalyst operation.

  19. Variable oxygen/nitrogen enriched intake air system for internal combustion engine applications

    DOEpatents

    Poola, Ramesh B.; Sekar, Ramanujam R.; Cole, Roger L.

    1997-01-01

    An air supply control system for selectively supplying ambient air, oxygen enriched air and nitrogen enriched air to an intake of an internal combustion engine includes an air mixing chamber that is in fluid communication with the air intake. At least a portion of the ambient air flowing to the mixing chamber is selectively diverted through a secondary path that includes a selectively permeable air separating membrane device due a differential pressure established across the air separating membrane. The permeable membrane device separates a portion of the nitrogen in the ambient air so that oxygen enriched air (permeate) and nitrogen enriched air (retentate) are produced. The oxygen enriched air and the nitrogen enriched air can be selectively supplied to the mixing chamber or expelled to atmosphere. Alternatively, a portion of the nitrogen enriched air can be supplied through another control valve to a monatomic-nitrogen plasma generator device so that atomic nitrogen produced from the nitrogen enriched air can be then injected into the exhaust of the engine. The oxygen enriched air or the nitrogen enriched air becomes mixed with the ambient air in the mixing chamber and then the mixed air is supplied to the intake of the engine. As a result, the air being supplied to the intake of the engine can be regulated with respect to the concentration of oxygen and/or nitrogen.

  20. An emission inventory of agricultural internal combustion engines for California`s San Joaquin Valley

    SciTech Connect

    Coe, D.; Chinkin, L.; Reiss, R.

    1996-12-31

    Previous work concluded that stationary agricultural internal combustion (IC) engines are a substantial source of criteria pollutants the San Joaquin Valley (SJV). However, due to time and resource restrictions, earlier work did not include a rigorous survey of engine users. Instead, emission estimates were based on interviews with a few knowledgeable experts (e.g., Department of Agricultural Engineering at U.C. Davis, the Agriculture Extension office of U.C. Davis, Farm Bureau, and Water District offices) or were extrapolated from data designed for other purposes. The purpose of the current study, which was sponsored by the San Joaquin Valley Unified Air Pollution Control District, was to improve the estimate of emissions from this source category by conducting a more comprehensive inventory of this source type based on data collected via a telephone survey of engine users. These survey data were then used to estimate and seasonally allocate emissions for this source category. The findings of this current work show that these emissions are much lower than previously estimated.

  1. Modeling of ICRF Internal Transport Barrier Control for Advanced Tokamaks

    NASA Astrophysics Data System (ADS)

    Sund, R. S.; Scharer, J. E.

    1998-11-01

    We present an analysis of TFTR ICRF current drive experiments carried out by Majeski et al.(R. Majeski, J. Rodgers, G. Schilling, C. Phillips, J. Hosea and the TFTR Group, private communication.) The influence of deuterium, tritium, minority specie, electron and alpha concentrations, temperatures and beam fractions are considered for the two-ion mode conversion current drive experiments. Direct comparison with experimental data is carried out by means of a nonlocal large gyroradius ICRF code(O. Sauter, Ph.D. thesis, Ecole Polytechnique de Lausanne, Switzerland (1992).) which incorporates 1-D plasma profiles. It is found that substantial beam and alpha particle absorption can occur for some cases. Application of ion cyclotron range of frequencies internal transport barrier control requires further examination of fast wave mode conversion and the interaction of ion Bernstein waves with plasmas in advanced tokamaks. The effects of perpendicular and parallel magnetic gradients on the ion, electron, and alpha particle absorption are examined. A viable internal transport barrier control scheme for a reactor grade advanced tokamak will be discussed.

  2. Twelfth International Symposium on Recent Advances in Environmental Health Research

    PubMed Central

    Tchounwou, Paul B.

    2016-01-01

    During the past century, environmental hazards have become a major concern, not only to public health professionals, but also to the society at large because of their tremendous health, socio-cultural and economic impacts. Various anthropogenic or natural factors have been implicated in the alteration of ecosystem integrity, as well as in the development of a wide variety of acute and/or chronic diseases in humans. It has also been demonstrated that many environmental agents, acting either independently or in combination with other toxins, may induce a wide range of adverse health outcomes. Understanding the role played by the environment in the etiology of human diseases is critical to designing cost-effective control/prevention measures. This special issue of International Journal of Environmental Research and Public Health includes the proceedings of the Twelfth International Symposium on Recent Advances in Environmental Health Research. The Symposium provided an excellent opportunity to discuss the scientific advances in biomedical, environmental, and public health research that addresses global environmental health issues. PMID:27153079

  3. Twelfth International Symposium on Recent Advances in Environmental Health Research.

    PubMed

    Tchounwou, Paul B

    2016-01-01

    During the past century, environmental hazards have become a major concern, not only to public health professionals, but also to the society at large because of their tremendous health, socio-cultural and economic impacts. Various anthropogenic or natural factors have been implicated in the alteration of ecosystem integrity, as well as in the development of a wide variety of acute and/or chronic diseases in humans. It has also been demonstrated that many environmental agents, acting either independently or in combination with other toxins, may induce a wide range of adverse health outcomes. Understanding the role played by the environment in the etiology of human diseases is critical to designing cost-effective control/prevention measures. This special issue of International Journal of Environmental Research and Public Health includes the proceedings of the Twelfth International Symposium on Recent Advances in Environmental Health Research. The Symposium provided an excellent opportunity to discuss the scientific advances in biomedical, environmental, and public health research that addresses global environmental health issues. PMID:27153079

  4. Recent advances in catalytic combustion for ground power gas turbine engines

    SciTech Connect

    Smith, L.L.; Karim, H.; Castaldi, M.; Etemad, S.; Pfefferle, W.C.; Newburry, D.; Bachovchin, D.

    1999-07-01

    Catalytic combustion is one means of meeting increasingly strict emissions requirements for ground-based gas turbine engines for power generation. In conventional homogeneous combustion, high flame temperatures and incomplete combustion lead to emissions of oxides of nitrogen (NO{sub x}) and carbon monoxide (CO), and in lean premixed systems unburned hydrocarbons (UHC). However, catalytic reaction upstream of a lean premixed homogeneous combustion zone can increase the fuel/air mixture reactivity sufficiently to allow low CO/UHC emissions at adiabatic flame temperatures below 1,500 C, with concurrent low NO{sub x} emissions. As a result, catalytic combustion technologies have demonstrated single-digit emissions, and meet DOE-ATS goals (NO{sub x} {lt} 10 ppm, and CO/UHC {lt} 20 ppm) by a wide margin. Precision Combustion, Inc. (PCI) is currently developing catalytic combustion systems for Siemens Westinghouse Power Corporation. For natural gas fuel operation, PCI has demonstrated NO{sub x} {lt} 5 ppm, CO {lt} 1 ppm, and UHC {lt} 1 ppm (all corrected to 15% O2) in a sub-scale atmospheric rig, using a catalytic pre-reactor upstream of the combustion zone. For these tests, gas-phase combustion was stabilized in an 8-inch diameter convection-cooled metal liner at adiabatic flame temperatures from 1,250 C to 1,550 C. In parallel, extensive high pressure reactor component development and testing have been conducted at sub-scale, in preparation for high pressure testing of a full-scale catalytic combustor.

  5. Multispecies in situ monitoring of a static internal combustion engine by near-infrared diode laser sensors.

    PubMed

    Gérard, Yvan; Holdsworth, Robert J; Martin, Philip A

    2007-07-01

    A multispecies near-infrared diode laser spectrometer has been constructed for measurements of carbon monoxide, carbon dioxide, and methane directly in the exhaust of a static internal combustion engine. A wavelength modulation-division multiplexing scheme was implemented for the two distributed feedback diode lasers. Gas concentration variations were observed for changes in operating conditions such as increasing and decreasing the throttle, adjusting the air-fuel ratio, and engine start-up. PMID:17571130

  6. Atmospheric fluidized bed combustion advanced system concepts applicable to small industrial and commercial markets. Topical report, Level 2

    SciTech Connect

    Ake, T.R.; Dixit, V.B.; Mongeon, R.K.

    1992-09-01

    As part of an overall strategy to promote FBC coal combustion and to improve the marketability of the eastern coals, the US Department of Energy`s Morgantown Energy Research Center awarded a three level contract to Riley Stoker Corporation to develop advanced Multi Solids Fluidized Bed (MSFB) boiler designs. The first level of this contract targeted the small package boiler (10,000--50,000 lb/hr steam) and industrial size boiler (75,000--150,000 lb/hr steam) markets. Two representative sizes, 30,000 lb/hr and 110,000 lb/hr of steam, were selected for the two categories for a detailed technical and economic evaluation. Technically, both the designs showed promise, however, the advanced industrial design was favored on economic considerations. It was thus selected for further study in the second level of the contract. Results of this Level-2 effort, presented in this report, consisted of testing the design concept in Riley`s 4.4 MBtu/hr pilot MSFB facility located at Riley Research Center in Worcester, Mass. The design and economics of the proof of concept facility developed in Level-1 of the contract were then revised in accordance with the findings of the pilot test program. A host site for commercial demonstration in Level-3 of the contract was also secured. It was determined that co-firing coal in combination with paper de-inking sludge will broaden the applicability of the design beyond conventional markets. International Paper (IP), the largest paper company in the world, is willing to participate in this part of the program. IP has offered its Hammermill operation at Lockhaven, Pa, site of a future paper de-inking plant, for the proof of concept installation. This plant will go in operation in 1994. It is recommended that METC proceed to the commercial demonstration of the design developed. The approach necessary to satisfy the needs of the customer while meeting the objectives of this program is presented along with a recommended plan of action.

  7. Computational Combustion

    SciTech Connect

    Westbrook, C K; Mizobuchi, Y; Poinsot, T J; Smith, P J; Warnatz, J

    2004-08-26

    Progress in the field of computational combustion over the past 50 years is reviewed. Particular attention is given to those classes of models that are common to most system modeling efforts, including fluid dynamics, chemical kinetics, liquid sprays, and turbulent flame models. The developments in combustion modeling are placed into the time-dependent context of the accompanying exponential growth in computer capabilities and Moore's Law. Superimposed on this steady growth, the occasional sudden advances in modeling capabilities are identified and their impacts are discussed. Integration of submodels into system models for spark ignition, diesel and homogeneous charge, compression ignition engines, surface and catalytic combustion, pulse combustion, and detonations are described. Finally, the current state of combustion modeling is illustrated by descriptions of a very large jet lifted 3D turbulent hydrogen flame with direct numerical simulation and 3D large eddy simulations of practical gas burner combustion devices.

  8. Constant speed control of four-stroke micro internal combustion swing engine

    NASA Astrophysics Data System (ADS)

    Gao, Dedong; Lei, Yong; Zhu, Honghai; Ni, Jun

    2015-09-01

    The increasing demands on safety, emission and fuel consumption require more accurate control models of micro internal combustion swing engine (MICSE). The objective of this paper is to investigate the constant speed control models of four-stroke MICSE. The operation principle of the four-stroke MICSE is presented based on the description of MICSE prototype. A two-level Petri net based hybrid model is proposed to model the four-stroke MICSE engine cycle. The Petri net subsystem at the upper level controls and synchronizes the four Petri net subsystems at the lower level. The continuous sub-models, including breathing dynamics of intake manifold, thermodynamics of the chamber and dynamics of the torque generation, are investigated and integrated with the discrete model in MATLAB Simulink. Through the comparison of experimental data and simulated DC voltage output, it is demonstrated that the hybrid model is valid for the four-stroke MICSE system. A nonlinear model is obtained from the cycle average data via the regression method, and it is linearized around a given nominal equilibrium point for the controller design. The feedback controller of the spark timing and valve duration timing is designed with a sequential loop closing design approach. The simulation of the sequential loop closure control design applied to the hybrid model is implemented in MATLAB. The simulation results show that the system is able to reach its desired operating point within 0.2 s, and the designed controller shows good MICSE engine performance with a constant speed. This paper presents the constant speed control models of four-stroke MICSE and carries out the simulation tests, the models and the simulation results can be used for further study on the precision control of four-stroke MICSE.

  9. On the identification of piston slap events in internal combustion engines using tribodynamic analysis

    NASA Astrophysics Data System (ADS)

    Dolatabadi, N.; Theodossiades, S.; Rothberg, S. J.

    2015-06-01

    Piston slap is a major source of vibration and noise in internal combustion engines. Therefore, better understanding of the conditions favouring piston slap can be beneficial for the reduction of engine Noise, Vibration and Harshness (NVH). Past research has attempted to determine the exact position of piston slap events during the engine cycle and correlate them to the engine block vibration response. Validated numerical/analytical models of the piston assembly can be very useful towards this aim, since extracting the relevant information from experimental measurements can be a tedious and complicated process. In the present work, a coupled simulation of piston dynamics and engine tribology (tribodynamics) has been performed using quasi-static and transient numerical codes. Thus, the inertia and reaction forces developed in the piston are calculated. The occurrence of piston slap events in the engine cycle is monitored by introducing six alternative concepts: (i) the quasi-static lateral force, (ii) the transient lateral force, (iii) the minimum film thickness occurrence, (iv) the maximum energy transfer, (v) the lubricant squeeze velocity and (vi) the piston-impact angular duration. The validation of the proposed methods is achieved using experimental measurements taken from a single cylinder petrol engine in laboratory conditions. The surface acceleration of the engine block is measured at the thrust- and anti-thrust side locations. The correlation between the theoretically predicted events and the measured acceleration signals has been satisfactory in determining piston slap incidents, using the aforementioned concepts. The results also exhibit good repeatability throughout the set of measurements obtained in terms of the number of events occurring and their locations during the engine cycle.

  10. Advances, experiences, and prospects of the International Soil Moisture Network

    NASA Astrophysics Data System (ADS)

    Dorigo, W.; van Oevelen, P. J.; Drusch, M.; Wagner, W.; Scipal, K.; Mecklenburg, S.

    2012-12-01

    In 2009, the International Soil Moisture Network (ISMN; http:www.ipf.tuwien.ac.at) was initiated as a platform to support calibration and validation of soil moisture products from remote sensing and land surface models, and to advance studies on the behavior of soil moisture over space and time. This international initiative is fruit of continuing coordinative efforts of the Global Energy and Water Cycle Experiment (GEWEX) in cooperation with the Group of Earth Observation (GEO) and the Committee on Earth Observation Satellites (CEOS). The decisive financial incentive was given by the European Space Agency (ESA) who considered the establishment of the network critical for optimizing the soil moisture products from the Soil Moisture and Ocean Salinity (SMOS) mission. The ISMN collects and harmonizes ground-based soil moisture data sets from a large variety of individually operating networks and makes them available through a centralized data portal. Meanwhile, almost 6000 soil moisture data sets from over 1300 sites, distributed among 34 networks worldwide, are contained in the database. The steadily increasing number of organizations voluntarily contributing to the ISMN, and the rapidly increasing number of studies based on the network show that the portal has been successful in reaching its primary goal to promote easy data accessibility to a wide variety of users. Recently, several updates of the system were performed to keep up with the increasing data amount and traffic, and to meet the requirements of many advanced users. Many datasets from operational networks (e.g., SCAN, the US Climate Reference Network, COSMOS, and ARM) are now assimilated and processed in the ISMN on a fully automated basis in near-real time. In addition, a new enhanced quality control system is currently being implemented. This presentation gives an overview of these recent developments, presents some examples of important scientific results based on the ISMN, and sketches an outlook for

  11. Droplet Combustion Experiment movie

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Droplet Combustion Experiment (DCE) was designed to investigate the fundamental combustion aspects of single, isolated droplets under different pressures and ambient oxygen concentrations for a range of droplet sizes varying between 2 and 5 mm. The DCE principal investigator was Forman Williams, University of California, San Diego. The experiment was part of the space research investigations conducted during the Microgravity Science Laboratory-1 mission (STS-83, April 4-8 1997; the shortened mission was reflown as MSL-1R on STS-94). Advanced combustion experiments will be a part of investigations plarned for the International Space Station. (1.1 MB, 12-second MPEG, screen 320 x 240 pixels; downlinked video, higher quality not available)A still JPG composite of this movie is available at http://mix.msfc.nasa.gov/ABSTRACTS/MSFC-0300164.html.

  12. Flame imaging studies in a spark-ignition four-stroke internal combustion optical engine

    SciTech Connect

    Bates, S.C.

    1989-01-01

    In this paper the behavior of combustion in a realistic SI Four-Stroke engine with a transparent liner and piston top is studied using stereo gated image-intensified NTSC video cameras to record instantaneous flame position. Flame development is measured by double exposing each frame at different crank angles in a single cycle. The images are digitized and analysed with a PC-based image processing system. A complete cylinder pressure history of the propane fuelled combustion is combined with the flame images to study each cycle at different equivalence ratios, concentrating on lean combustion. Cycle-by-cycle variation is explored at 500 rpm, and a generic lean-limit combustion oscillation caused by changing residual gas is described and explained. The effect of engine swirl on the flame is shown.

  13. Analysis of heat release dynamics in an internal combustion engine using multifractals and wavelets

    SciTech Connect

    Sen, Asok K; Litak, Grzegorz; FINNEY, Charles E A; Daw, C Stuart; Wagner, Robert M

    2010-01-01

    In this paper we analyze data from previously reported experimental measurements of cycle-to-cycle combustion variations in a lean-fueled, multi-cylinder spark-ignition (SI) engine. We characterize the changes in the observed combustion dynamics with as-fed fuel air ratio using conventional histograms and statistical moments, and we further characterize the shifts in combustion complexity in terms of multifractals and wavelet decomposition. Changes in the conventional statistics and multifractal structure indicate trends with fuel air ratio that parallel earlier reported observations. Wavelet decompositions reveal persistent, non-stochastic oscillation modes at higher fuel air ratios that were not obvious in previous analyses. Recognition of these long-time-scale, non-stochastic oscillations is expected to be useful for improving modelling and control of engine combustion variations and multi-cylinder balancing.

  14. Coal combustion science. Quarterly progress report, July--September 1994

    SciTech Connect

    Hardesty, D.R.; Baxter, L.L.; Davis, K.A.; Hurt, R.H.; Yang, N.Y.C.

    1995-09-01

    This document is a quarterly status report of the Coal Combustion Science Project that is being conducted at the Combustion Research Facility, Sandia National Laboratories, Livermore, California. The information reported is for the period July-September 1994. The objective of this work is to support the Office of Fossil Energy in executing research on coal combustion science. This project consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center (PETC) Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency (IEA) Coal Combustion Science Project.

  15. An advanced combustion research facility for validating computational fluid dynamics codes

    NASA Astrophysics Data System (ADS)

    Bullard, J. B.; Hurley, C. D.; Eccles, N. C.

    1991-12-01

    The Sector Combustion Rig (SCR), built to obtain experimental data which could be used to verify computational fluid dynamic programs and to investigate the formation and consumption of combustion products through a combustor, is described. This rig was designed to accommodate sectors of full size engine combustion chambers and to test them at real or simulated engine operating conditions. Changes made to improve the operating, measurement, and data handling capabilities of the rig as a result of experience from several years of operations are described together with some of the features which contribute to the uniqueness of the SCR. The SCR gas analysis system and instrumentation are described. Extracts from some results obtained during a recent program of tests on a Rolls-Royce RB211 combustor are given.

  16. Combustion synthesis of advanced materials. [using in-situ infiltration technique

    NASA Technical Reports Server (NTRS)

    Moore, J. J.; Feng, H. J.; Perkins, N.; Readey, D. W.

    1992-01-01

    The combustion synthesis of ceramic-metal composites using an in-situ liquid infiltration technique is described. The effect of varying the reactants and their stoichiometry to provide a range of reactant and product species i.e. solids, liquids and gases, with varying physical properties e.g. thermal conductivity, on the microstructure and morphology of synthesized products is also described. Alternatively, conducting the combustion synthesis reaction in a reactive gas environment is also discussed, in which advantages can be gained from the synergistic effects of combustion synthesis and vapor phase transport. In each case, the effect of the presence or absence of gravity (density) driven fluid flow and vapor transport is discussed as is the potential for producing new and perhaps unique materials by conducting these SHS reactions under microgravity conditions.

  17. Recent advances in the use of synchrotron radiation for the analysis of coal combustion products

    SciTech Connect

    Manowitz, B.

    1995-11-01

    Two major coal combustion problems are the formation and build-up of slag deposits on heat transfer surfaces and the production and control of toxic species in coal combustion emissions. The use of synchrotron radiation for the analysis of coal combustion products can play a role in the better understanding of both these phenomena. An understanding of the chemical composition of such slags under boiler operating conditions and as a function of the mineral composition of various coals is one ultimate goal of this program. The principal constituents in the ash of many coals are the oxides of Si, Al, Fe, Ca, K, S, and Na. The analytical method required must be able to determine the functional forms of all these elements both in coal and in coal ash at elevated temperatures. One unique way of conducting these analyses is by x-ray spectroscopy.

  18. Application of a high-repetition-rate laser diagnostic system for single-cycle-resolved imaging in internal combustion engines.

    PubMed

    Hult, Johan; Richter, Mattias; Nygren, Jenny; Aldén, Marcus; Hultqvist, Anders; Christensen, Magnus; Johansson, Bengt

    2002-08-20

    High-repetition-rate laser-induced fluorescence measurements of fuel and OH concentrations in internal combustion engines are demonstrated. Series of as many as eight fluorescence images, with a temporal resolution ranging from 10 micros to 1 ms, are acquired within one engine cycle. A multiple-laser system in combination with a multiple-CCD camera is used for cycle-resolved imaging in spark-ignition, direct-injection stratified-charge, and homogeneous-charge compression-ignition engines. The recorded data reveal unique information on cycle-to-cycle variations in fuel transport and combustion. Moreover, the imaging system in combination with a scanning mirror is used to perform instantaneous three-dimensional fuel-concentration measurements. PMID:12206207

  19. ADVANCED MONITORING TO IMPROVE COMBUSTION TURBINE/COMBINED CYCLE CT/(CC) RELIABILITY, AVAILABILITY AND MAINTAINABILITY (RAM)

    SciTech Connect

    Leonard Angello

    2004-09-30

    Power generators are concerned with the maintenance costs associated with the advanced turbines that they are purchasing. Since these machines do not have fully established operation and maintenance (O&M) track records, power generators face financial risk due to uncertain future maintenance costs. This risk is of particular concern, as the electricity industry transitions to a competitive business environment in which unexpected O&M costs cannot be passed through to consumers. These concerns have accelerated the need for intelligent software-based diagnostic systems that can monitor the health of a combustion turbine in real time and provide valuable information on the machine's performance to its owner/operators. EPRI, Impact Technologies, Boyce Engineering, and Progress Energy have teamed to develop a suite of intelligent software tools integrated with a diagnostic monitoring platform that will, in real time, interpret data to assess the ''total health'' of combustion turbines. The Combustion Turbine Health Management System (CTHM) will consist of a series of dynamic link library (DLL) programs residing on a diagnostic monitoring platform that accepts turbine health data from existing monitoring instrumentation. The CTHM system will be a significant improvement over currently available techniques for turbine monitoring and diagnostics. CTHM will interpret sensor and instrument outputs, correlate them to a machine's condition, provide interpretative analyses, project servicing intervals, and estimate remaining component life. In addition, it will enable real-time anomaly detection and diagnostics of performance and mechanical faults, enabling power producers to more accurately predict critical component remaining useful life and turbine degradation.

  20. ADVANCED MONITORING TO IMPROVE COMBUSTION TURBINE/COMBINED CYCLE CT/(CC) RELIABILITY, AVAILABILITY AND MAINTAINABILITY (RAM)

    SciTech Connect

    Leonard Angello

    2004-03-31

    Power generators are concerned with the maintenance costs associated with the advanced turbines that they are purchasing. Since these machines do not have fully established operation and maintenance (O&M) track records, power generators face financial risk due to uncertain future maintenance costs. This risk is of particular concern, as the electricity industry transitions to a competitive business environment in which unexpected O&M costs cannot be passed through to consumers. These concerns have accelerated the need for intelligent software-based diagnostic systems that can monitor the health of a combustion turbine in real time and provide valuable information on the machine's performance to its owner/operators. EPRI, Impact Technologies, Boyce Engineering, and Progress Energy have teamed to develop a suite of intelligent software tools integrated with a diagnostic monitoring platform that will, in real time, interpret data to assess the ''total health'' of combustion turbines. The Combustion Turbine Health Management System (CTHM) will consist of a series of dynamic link library (DLL) programs residing on a diagnostic monitoring platform that accepts turbine health data from existing monitoring instrumentation. The CTHM system will be a significant improvement over currently available techniques for turbine monitoring and diagnostics. CTHM will interpret sensor and instrument outputs, correlate them to a machine's condition, provide interpretative analyses, project servicing intervals, and estimate remaining component life. In addition, it will enable real-time anomaly detection and diagnostics of performance and mechanical faults, enabling power producers to more accurately predict critical component remaining useful life and turbine degradation.