Science.gov

Sample records for advanced ionospheric sounder

  1. Topside sounders as mobile ionospheric heaters

    NASA Technical Reports Server (NTRS)

    Benson, R. F.

    2006-01-01

    There is evidence that satellite-borne RF sounders can act as mobile ionospheric heaters in addition to performing topside sounding. The main objective of topside sounding is to use sounder-generated electromagnetic (em) waves to obtain ionospheric topside vertical electron-density (N(sub e) profiles. These profiles are obtained from mathematical inversions of the frequency vs. delay-time ionospheric reflection traces. In addition to these em reflection traces, a number of narrowband intense signals are observed starting at zero delay times after the transmitted pulses. Some of these signals, termed plasma resonances, appear at characteristic frequencies of the ambient medium such as at the electron cyclotron frequency f(sub ce), the harmonics nf(sub ce), the electron plasma frequency f(sub pe) and the upper-hybrid frequency f(sub uh), where (f(sub uh))(exp 2) = (f(sub ce))(exp 2) + (f(sub pe))(exp 2) . These signals have been attributed to the oblique echoes of sounder-generated electrostatic (es) waves. These resonances provide accurate in situ f(sub pe) and f(sub ce) values which, in turn, lead to accurate N(sub e) and [B] values where B is the ambient magnetic field. Resonances are also observed between the nf(sub ce) harmonics both above and below f(sub uh). The former, known as the Qn plasma resonances, are mainly attributed to the matching of the wave group velocity of sounder-generated (Bernstein-mode) es waves to the satellite velocity. The frequency spectrum of these waves in the magnetosphere can be used to detect non-Maxwellian electron velocity-distributions. In addition, these resonances also exhibit components that appear to be the result of plasma emissions stimulated by the sounder pulses. The plasma resonances observed between the nf(sub ce) harmonics and below f(sub uh), known as the Dn plasma resonances, are entirely attributed to such sounder-stimulated plasma emissions. There are other sounder-stimulated plasma phenomena that also fall into

  2. Results of the international ionospheric Doppler sounder network

    NASA Astrophysics Data System (ADS)

    Lastovicka, Jan; Chum, Jaroslav

    2016-07-01

    This paper summarizes main recent results reached by the Czech-lead international network of ionospheric Doppler sounders. The network consists of Doppler sounders in the western half of Czechia (5 measuring paths, 3 frequencies with central receivers in Prague), northern Taiwan (3 transmitters, two separated receivers, 1 frequency), and three similar systems (3 measuring paths with 1 receiver and 1 frequency) in Tucuman (north-western Argentina), Hermanus (the southernmost South Africa) and Luisville (northern South Africa). Three main areas of research have been (1) statistical properties of gravity waves, (2) ionospheric effects of earthquakes, and (3) low latitude/equatorial phenomena. Some results: (1) the theoretically expected dominance of gravity wave propagation against wind has been confirmed; (2) impact of the Tohoku 2001 M9.0 earthquake was registered in the ionosphere over the Czech Republic as long-period infrasound on the distance of about 9000 km from epicenter; analysis of ionospheric infrasound excited by the Nepal 2015 M7.8 earthquake observed by the Czech and Taiwan Doppler sounders showed that the intensity of ionospheric signal is significantly height dependent and that the Doppler shift depends not only on the advection (up and down motion) of the reflecting layer but also on the compression/rarefaction of the electron gas; (3) spread F structures observed by Doppler sounders in Tucuman and Taiwan (both under the crest of equatorial ionization anomaly) provide results consistent with S4 scintillation data and with previous optical, GPS and satellite measurements.

  3. The DST group ionospheric sounder replacement for JORN

    NASA Astrophysics Data System (ADS)

    Harris, T. J.; Quinn, A. D.; Pederick, L. H.

    2016-06-01

    The Jindalee Over-the-horizon Radar Network (JORN) is an integral part of Australia's national defense capability. JORN uses a real-time ionospheric model as part of its operations. The primary source of data for this model is a set of 13 vertical-incidence sounders (VIS) scattered around the Australian coast and inland locations. These sounders are a mix of Lowell digisonde portable sounder (DPS)-1 and DPS-4. Both of these sounders, the DPS-1 in particular, are near the end of their maintainable life. A replacement for these aging sounders was required as part of the ongoing sustainment program for JORN. Over the last few years the High-Frequency Radar Branch (HFRB) of the Defence Science and Technology (DST) Group, Australian Department of Defence, has been developing its own sounders based on its successful radar hardware technology. The DST Group VIS solution known as PRIME (Portable Remote Ionospheric Monitoring Equipment) is a 100% duty cycle, continuous wave system that receives the returned ionospheric signal while it is still transmitting and operates the receiver in the near field of the transmitter. Of considerable importance to a successful VIS is the autoscaling software, which takes the ionogram data and produces an ionogram trace (group delay as a function of frequency), and from that produces a set of ionospheric parameters that represent the (bottomside) overhead electron density profile. HFRB has developed its own robust autoscaling software. The performance of DST Group's PRIME under a multitude of challenging ionospheric conditions has been studied. In December 2014, PRIME was trialed at a JORN VIS site collocated with the existing Lowell Digisonde DPS-1. This side-by-side testing determined that PRIME was fit for purpose. A summary of the results of this comparison and example PRIME output will be discussed. Note that this paper compares PRIME with the 25 year old Lowell Digisonde DPS-1, which is planned to be replaced. Our future plans include

  4. Spectral Resolution and Coverage Impact on Advanced Sounder Information Content

    NASA Technical Reports Server (NTRS)

    Larar, Allen M.; Liu, Xu; Zhou, Daniel K.; Smith, William L.

    2010-01-01

    Advanced satellite sensors are tasked with improving global measurements of the Earth s atmosphere, clouds, and surface to enable enhancements in weather prediction, climate monitoring capability, and environmental change detection. Achieving such measurement improvements requires instrument system advancements. This presentation focuses on the impact of spectral resolution and coverage changes on remote sensing system information content, with a specific emphasis on thermodynamic state and trace species variables obtainable from advanced atmospheric sounders such as the Infrared Atmospheric Sounding Interferometer (IASI) and Cross-track Infrared Sounder (CrIS) systems on the MetOp and NPP/NPOESS series of satellites. Key words: remote sensing, advanced sounders, information content, IASI, CrIS

  5. TIDs in the Bottomside Ionospheric F-region Observed Near Jicamarca Using the TIDDBIT HF Doppler Sounder

    NASA Astrophysics Data System (ADS)

    Crowley, G.; Chau, J. L.

    2012-12-01

    The equatorial ionosphere is the site of complex interactions between various geospace drivers, including thermospheric winds, electric fields, and tides propagating from below. Less well known is the effect of gravity waves, and their manifestation as traveling ionospheric disturbances (TIDs). HF Doppler sounders represent a low-cost and low-maintenance solution for monitoring wave activity in the F region ionosphere. Together with modern data analysis techniques, they can provide comprehensive TID characteristics, including both horizontal and vertical TID velocities and wavelengths across the entire spectrum from periods of 1 min to over an hour. In this invited talk, we review some of the previous observations of TIDs at low latitudes, and present new observations from the TIDDBIT HF Doppler Sounder recently developed by Atmospheric and Space Technology Research Associates LLC, and deployed at Jicamarca, Peru. The completeness of the wave information obtained from the TIDDBIT system makes it possible to reconstruct the vertical displacement of isoionic contours over the 200 km horizontal dimension of the sounder array, and movies revealing the detailed shape and motion of isoionic surfaces over Peru will be shown. We demonstrate how the TID characteristics in Peru vary with season and magnetic activity. We discuss their possible impact on triggering of ionospheric bubbles and irregularities. Such information will be relevant for various operational needs involving navigation, communication, and surveillance systems. Crowley G., and F.S. Rodrigues (2012), Characteristics of Traveling Ionospheric Disturbances Observed by the TIDDBIT Sounder, Radio Sci., doi:10.1029/2011RS004959.

  6. Ducted electromagnetic waves in the Martian ionosphere detected by the Mars Advanced Radar for Subsurface and Ionosphere Sounding radar

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenfei; Orosei, Roberto; Huang, Qian; Zhang, Jie

    2016-07-01

    In the data of the Mars Advanced Radar for Subsurface and Ionosphere Sounding on board the European Space Agency (ESA) mission Mars Express (MEX), a distinctive type of signals (called the "epsilon signature"), which is similar to that previously detected during radio sounding of the terrestrial F region ionosphere, is found. The signature is interpreted to originate from multiple reflections of electromagnetic waves propagating along sounder pulse-created, crustal magnetic field-aligned plasma bubbles (waveguides). The signatures have a low (below 0.5%) occurrence rate and apparent cutoff frequencies 3-5 times higher than the theoretical one for an ordinary mode wave. These properties are explained by the influence of the perpendicular ionospheric plasma density gradient and the sounder pulse frequency on the formation of waveguides.

  7. Ionospheric tsunami disturbances probed by HF Doppler sounder, ionosonde and ground-based GPS TEC

    NASA Astrophysics Data System (ADS)

    Chen, Wei-Suan; Liu, Jann-Yenq Tiger; Wu, Tso-Ren; Tsai, Yu-Lin

    2016-04-01

    Tsunami waves induced by the 26 December 2004 Mw 9.3 Sumatra earthquake, the 11 March 2011 Mw 9.0 Tohoku earthquake, and the 16 September 2015 Mw 8.2 Chile earthquake are recorded by tide gauges around Taiwan. In this paper, the tsunami waves are studied by the tide gauge data and Cornell Multi-grid Coupled of Tsunami Model (COMCOT) simulations, while ionospheric tsunami disturbances (ITDs) are probed by the HF Doppler sounder with a sounding frequency of 5.26 MHz, ionosonde, and GPS TEC derived by ground-based GPS receivers in Taiwan. It is found that ITDs tend to lead their associated tsunami by about 30-60 minutes. A comparison between ITDs and tsunami waves will be presented and discussed.

  8. Geophysical Information from Advanced Sounder Infrared Spectral Radiance

    NASA Technical Reports Server (NTRS)

    Larar, Allen M.; Zhou, Daniel K.; Liu, Xu; Smith, William L.

    2012-01-01

    Advanced satellite sensors are tasked with improving global observations of the Earth's atmosphere, clouds, and surface to enable enhancements in weather prediction, climate monitoring capability, and environmental change detection. Satisfying this type of improvement for inferred geophysical information from these observations requires optimal usage of data from current systems as well as enhancements to future sensors. This presentation addresses the information content present in infrared spectral radiance from advanced atmospheric sounders with an emphasis on knowledge of thermodynamic state and trace species. Results of trade-off studies conducted to evaluate the impact of spectral resolution, spectral coverage, instrument noise, and a priori knowledge on remote sensing system information content will be discussed. A focus is placed on information achievable from the Atmospheric InfraRed Sounder (AIRS) on the NASA EOS Aqua satellite in orbit since 2002, the Infrared Atmospheric Sounding Interferometer (IASI) aboard MetOp-A since 2006, and the Cross-track Infrared Sounder (CrIS) instrument aboard the NPP and JPSS series of satellites which began 28 October 2011.

  9. Estimation of the Total Electron Content of the Martian Ionosphere using Radar Sounder Surface Echoes

    NASA Technical Reports Server (NTRS)

    Safaeinili, Ali; Kofman, Wlodek; Mouginot, Jeremie; Gim, Yonggyu; Herique, Alain; Ivanov, Anton B.; Plaut, Jeffrey J.; Picardi, Giovanni

    2007-01-01

    The Martian ionosphere's local total electron content (TEC) and the neutral atmosphere scale height can be derived from radar echoes reflected from the surface of the planet. We report the global distribution of the TEC by analyzing more than 750,000 echoes of the Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS). This is the first direct measurement of the TEC of the Martian ionosphere. The technique used in this paper is a novel 'transmission-mode' sounding of the ionosphere of Mars in contrast to the Active Ionospheric Sounding experiment (AIS) on MARSIS, which generally operates in the reflection mode. This technique yields a global map of the TEC for the Martian ionosphere. The radar transmits a wideband chirp signal that travels through the ionosphere before and after being reflected from the surface. The received waves are attenuated, delayed and dispersed, depending on the electron density in the column directly below the spacecraft. In the process of correcting the radar signal, we are able to estimate the TEC and its global distribution with an unprecedented resolution of about 0.1 deg in latitude (5 km footprint). The mapping of the relative geographical variations in the estimated nightside TEC data reveals an intricate web of high electron density regions that correspond to regions where crustal magnetic field lines are connected to the solar wind. Our data demonstrates that these regions are generally but not exclusively associated with areas that have magnetic field lines perpendicular to the surface of Mars. As a result, the global TEC map provides a high-resolution view of where the Martian crustal magnetic field is connected to the solar wind. We also provide an estimate of the neutral atmospheric scale height near the ionospheric peak and observe temporal fluctuations in peak electron density related to solar activity.

  10. Impact of Measurement System Characteristics on Advanced Sounder Information Content

    NASA Technical Reports Server (NTRS)

    Larar, Allen M.; Liu, Xu; Zhou, Daniel K.

    2011-01-01

    Advanced satellite sensors are tasked with improving global observations of the Earth's atmosphere, clouds, and surface to enable enhancements in weather prediction, climate monitoring capability, and environmental change detection. Achieving such an improvement in geophysical information inferred from these observations requires optimal usage of data from current systems as well as instrument system enhancements for future sensors. This presentation addresses results of tradeoff studies evaluating the impact of spectral resolution, spectral coverage, instrument noise, and a priori knowledge on remote sensing system information content, with a specific emphasis on thermodynamic state and trace species information obtainable from advanced atmospheric sounders. Particular attention will be devoted toward information achievable from the Atmospheric InfraRed Sounder (AIRS) on the NASA EOS Aqua satellite in orbit since 2002, the Infrared Atmospheric Sounding Interferometer (IASI) aboard MetOp-A since 2006, and the Cross-track Infrared Sounder (CrIS) instrument to fly aboard the NPP and JPSS series of satellites expected to begin in late 2011. While all of these systems cover nearly the same infrared spectral extent, they have very different number of channels, instrument line shapes, coverage continuity, and instrument noise. AIRS is a grating spectrometer having 2378 discrete spectral channels ranging from about 0.4 to 2.2/cm resolution; IASI is a Michelson interferometer with 8461 uniformly-spaced spectral channels of 0.5/cm (apodized) resolution; and CrIS is a Michelson interferometer having 1305 spectral channels of 0.625, 1.250, and 2.50/cm (unapodized) spectral resolution, respectively, over its three continuous but non-overlapping bands. Results of tradeoff studies showing information content sensitivity to assumed measurement system characteristics will be presented.

  11. Automatic ionospheric layers detection: Algorithms analysis

    NASA Astrophysics Data System (ADS)

    Molina, María G.; Zuccheretti, Enrico; Cabrera, Miguel A.; Bianchi, Cesidio; Sciacca, Umberto; Baskaradas, James

    2016-03-01

    Vertical sounding is a widely used technique to obtain ionosphere measurements, such as an estimation of virtual height versus frequency scanning. It is performed by high frequency radar for geophysical applications called "ionospheric sounder" (or "ionosonde"). Radar detection depends mainly on targets characteristics. While several targets behavior and correspondent echo detection algorithms have been studied, a survey to address a suitable algorithm for ionospheric sounder has to be carried out. This paper is focused on automatic echo detection algorithms implemented in particular for an ionospheric sounder, target specific characteristics were studied as well. Adaptive threshold detection algorithms are proposed, compared to the current implemented algorithm, and tested using actual data obtained from the Advanced Ionospheric Sounder (AIS-INGV) at Rome Ionospheric Observatory. Different cases of study have been selected according typical ionospheric and detection conditions.

  12. Characteristics of TIDs Observed in the Bottomside Ionospheric F-region Using the TIDDBIT HF Doppler Sounder

    NASA Astrophysics Data System (ADS)

    Crowley, G.

    2012-12-01

    HF Doppler sounders represent a low-cost and low-maintenance solution for monitoring wave activity in the F region ionosphere. HF Doppler sounders together with modern data analysis techniques can provide comprehensive traveling ionospheric disturbance (TID) characteristics, including both horizontal and vertical TID velocities and wavelengths across the entire spectrum from periods of 1 min to over an hour. Atmospheric and Space Technology Research Associates LLC has developed a new system called TIDDBIT (TID Detector Built in Texas), and data will be presented from a TIDDBIT system deployed in Virginia. Details of the analysis are provided by Crowley and Rodrigues [2012]. These results reinforce the relationship between atmospheric gravity waves (AGWs) and TIDs. The TID propagation azimuths rotate through 360 deg in 24 h, mimicking the rotation of the thermospheric winds but with approximately a 90 deg offset. The rotation of TID azimuths and thermospheric winds in Virginia is similar to that observed previously by other Northern Hemisphere systems [Crowley and McCrea, 1988] and opposite from the direction observed in Antarctica [Crowley et al., 1987]. These results illustrate the filtering effects that thermospheric neutral winds can have on the propagation of AGW. The completeness of the wave information obtained from the TIDDBIT system makes it possible to reconstruct the vertical displacement of isoionic contours over the 200 km horizontal dimension of the sounder array, and movies revealing the detailed shape and motion of isoionic surfaces will be shown. They resemble the surface of the ocean. Such information will be relevant for understanding the seeding of irregularities, as well as for several operational needs involving navigation, communication, and surveillance systems. Crowley, G. and I. W. McCrea (1988), A synoptic study of TIDs observed in the UK during the first WAGS campaign, October 10-18, 1985, Radio Sci., 23, 905-917. Crowley G., and F

  13. Fluvial Morphodynamics: advancing understanding using Multibeam Echo Sounders (MBES)

    NASA Astrophysics Data System (ADS)

    Parsons, D. R.; Best, J. L.

    2012-12-01

    Accurately and reliably determining riverbed morphology is key to understanding linkages between flow fields, sediment transport and bed roughness in a range of aquatic environments, including large fluvial channels. Modern shallow-water multibeam echo sounder (MBES) systems are now allowing us to acquire bathymetric data at unprecedented resolutions that are millimetric in precision and centimetric in accuracy. Such systems, and the morphological resolution they can supply, are capable of revealing the complex three-dimensional patterns in riverbed morphology that are facilitating a holistic examination of system morphodynamics, at the field scale, that was unimaginable just a few years ago. This paper presents a range of MBES acquired examples to demonstrate how the methodological developments in this technology are leading to advances in our substantive understanding of large river systems. This includes examples that show linkages across scales, and in particular the morphodynamics of superimposed bedforms and bars revealed by such high-resolution data, which have broad implications for a range of applications, including flood prediction, engineering design and reconstructing ancient sedimentary environments.

  14. Assimilation of thermodynamic information from advanced infrared sounders under partially cloudy skies for regional NWP

    NASA Astrophysics Data System (ADS)

    Wang, Pei; Li, Jun; Goldberg, Mitchell D.; Schmit, Timothy J.; Lim, Agnes H. N.; Li, Zhenglong; Han, Hyojin; Li, Jinlong; Ackerman, Steve A.

    2015-06-01

    Generally, only clear-infrared spectral radiances (not affected by clouds) are assimilated in weather analysis systems. This is due to difficulties in modeling cloudy radiances as well as in observing their vertical structure from space. To take full advantage of the thermodynamic information in advanced infrared (IR) sounder observations requires assimilating radiances from cloud-contaminated regions. An optimal imager/sounder cloud-clearing technique has been developed by the Cooperative Institute for Meteorological Satellite Studies at the University of Wisconsin-Madison. This technique can be used to retrieve clear column radiances through combining collocated multiband imager IR clear radiances and the sounder cloudy radiances; no background information is needed in this method. The imager/sounder cloud-clearing technique is similar to that of the microwave/IR cloud clearing in the derivation of the clear-sky equivalent radiances. However, it retains the original IR sounder resolution, which is critical for regional numerical weather prediction applications. In this study, we have investigated the assimilation of cloud-cleared IR sounder radiances using Atmospheric Infrared Sounder (AIRS)/Moderate Resolution Imaging Spectroradiometer for three hurricanes, Sandy (2012), Irene (2011), and Ike (2008). Results show that assimilating additional cloud-cleared AIRS radiances reduces the 48 and 72 h temperature forecast root-mean-square error by 0.1-0.3 K between 300 and 850 hPa. Substantial improvement in reducing track forecasts errors in the range of 10 km to 50 km was achieved.

  15. Advanced infrared sounder subpixel cloud detection with imagers and its impact on radiance assimilation in NWP

    NASA Astrophysics Data System (ADS)

    Wang, Pei; Li, Jun; Li, Jinlong; Li, Zhenglong; Schmit, Timothy J.; Bai, Wenguang

    2014-03-01

    Accurate cloud detection is very important for infrared (IR) radiance assimilation; improved cloud detection could reduce cloud contamination and hence improve the assimilation. Although operational numerical weather prediction (NWP) centers are using IR sounder radiance data for cloud detection, collocated high spatial resolution imager data could help sounder subpixel cloud detection and characterization. IR sounder radiances with improved cloud detection using Atmospheric Infrared Sounder (AIRS)/Moderate Resolution Imaging Spectroradiometer (MODIS) were assimilated for Hurricane Sandy (2012). Forecast experiments were run with Weather Research and Forecasting (WRF) as the forecast model and the Three-Dimensional Variational Assimilation (3DVAR)-based Gridpoint Statistical Interpolation (GSI) as the analysis system. Results indicate that forecasts of both hurricane track and intensity are substantially improved when the collocated high spatial resolution MODIS cloud mask is used for AIRS subpixel cloud detection for assimilating radiances. This methodology can be applied to process Crosstrack Infrared Sounder (CRIS)/Visible Infrared Imaging Radiometer Suite (VIIRS) onboard Suomi-NPOESS Preparatory Project (NPP)/Joint Polar Satellite System (JPSS) and Infrared Atmospheric Sounding Interferometer (IASI)/Advanced Very High Resolution Radiometer (AVHRR) onboard the Metop series for improved radiance assimilation in NWP.

  16. HIRS-AMTS satellite sounding system test - Theoretical and empirical vertical resolving power. [High resolution Infrared Radiation Sounder - Advanced Moisture and Temperature Sounder

    NASA Technical Reports Server (NTRS)

    Thompson, O. E.

    1982-01-01

    The present investigation is concerned with the vertical resolving power of satellite-borne temperature sounding instruments. Information is presented on the capabilities of the High Resolution Infrared Radiation Sounder (HIRS) and a proposed sounding instrument called the Advanced Moisture and Temperature Sounder (AMTS). Two quite different methods for assessing the vertical resolving power of satellite sounders are discussed. The first is the theoretical method of Conrath (1972) which was patterned after the work of Backus and Gilbert (1968) The Backus-Gilbert-Conrath (BGC) approach includes a formalism for deriving a retrieval algorithm for optimizing the vertical resolving power. However, a retrieval algorithm constructed in the BGC optimal fashion is not necessarily optimal as far as actual temperature retrievals are concerned. Thus, an independent criterion for vertical resolving power is discussed. The criterion is based on actual retrievals of signal structure in the temperature field.

  17. A New Inversion Routine to Produce Vertical Electron-Density Profiles from Ionospheric Topside-Sounder Data

    NASA Technical Reports Server (NTRS)

    Wang, Yongli; Benson, Robert F.

    2011-01-01

    Two software applications have been produced specifically for the analysis of some million digital topside ionograms produced by a recent analog-to-digital conversion effort of selected analog telemetry tapes from the Alouette-2, ISIS-1 and ISIS-2 satellites. One, TOPIST (TOPside Ionogram Scalar with True-height algorithm) from the University of Massachusetts Lowell, is designed for the automatic identification of the topside-ionogram ionospheric-reflection traces and their inversion into vertical electron-density profiles Ne(h). TOPIST also has the capability of manual intervention. The other application, from the Goddard Space Flight Center based on the FORTRAN code of John E. Jackson from the 1960s, is designed as an IDL-based interactive program for the scaling of selected digital topside-sounder ionograms. The Jackson code has also been modified, with some effort, so as to run on modern computers. This modification was motivated by the need to scale selected ionograms from the millions of Alouette/ISIS topside-sounder ionograms that only exist on 35-mm film. During this modification, it became evident that it would be more efficient to design a new code, based on the capabilities of present-day computers, than to continue to modify the old code. Such a new code has been produced and here we will describe its capabilities and compare Ne(h) profiles produced from it with those produced by the Jackson code. The concept of the new code is to assume an initial Ne(h) and derive a final Ne(h) through an iteration process that makes the resulting apparent-height profile fir the scaled values within a certain error range. The new code can be used on the X-, O-, and Z-mode traces. It does not assume any predefined profile shape between two contiguous points, like the exponential rule used in Jackson s program. Instead, Monotone Piecewise Cubic Interpolation is applied in the global profile to keep the monotone nature of the profile, which also ensures better smoothness

  18. Recent Advances in Ionospheric Anomalies detection

    NASA Astrophysics Data System (ADS)

    Titov, Anton; Vyacheslav, Khattatov

    2016-07-01

    The variability of the parameters of the ionosphere and ionospheric anomalies are the subject of intensive research. It is widely known and studied in the literature ionospheric disturbances caused by solar activity, the passage of the terminator, artificial heating of high-latitude ionosphere, as well as seismic events. Each of the above types of anomalies is the subject of study and analysis. Analysis of these anomalies will provide an opportunity to improve our understanding of the mechanisms of ionospheric disturbances. To solve this problem are encouraged to develop a method of modeling the ionosphere, based on the assimilation of large amounts of observational data.

  19. The Advanced Technology Microwave Sounder (ATMS): The First 10 Months On-Orbit

    NASA Technical Reports Server (NTRS)

    Kim, Edward; Lyu, C-H Joseph; Blackwell, Willaim; Leslie, R. Vince; Baker, Neal; Mo, Tsan; Sun, Ninghai; Bi, Li; Anderson, Kent; Landrum, Mike; DeAmici, Giovanni; Gu, Degui; Foo, Alex; Ibrahim, Wael; Robinson, Kris; Chidester, Lynn; Shiue, James

    2012-01-01

    The Advanced Technology Microwave Sounder (ATMS) is a new satellite microwave sounding sensor designed to provide operational weather agencies with atmospheric temperature and moisture profile information for global weather forecasting and climate applications. A TMS will continue the microwave sounding capabilities first provided by its predecessors, the Microwave Sounding Unit (MSU) and Advanced Microwave Sounding Unit (AMSU). The first ATMS was launched October 28, 2011 on board the NPOESS Preparatory Project (NPP) satellite. Microwave soundings by themselves are the highest-impact input data used by Numerical Weather Prediction (NWP) models, especially under cloudy sky conditions. ATMS has 22 channels spanning 23-183 GHz, closely following the channel set of the MSU, AMSU-A1/2, AMSU-B, Microwave Humidity Sounder (MHS), and Humidity Sounder for Brazil (HSB). All this is accomplished with approximately 1/4 the volume, 1/2 the mass, and 1/2 the power of the three AMSUs. A description of ATMS cal/val activities will be presented followed by examples of its performance after its first 10 months on orbit.

  20. Development of the Advanced Technology Microwave Sounder (ATMS) for NPOESS C1

    NASA Astrophysics Data System (ADS)

    Brann, C.; Kunkee, D.

    2008-12-01

    The National Polar-orbiting Operational Environmental Satellite System's Advanced Technology Microwave Sounder (ATMS) is planned for flight on the first NPOESS mission (C1) in 2013. The C1 ATMS will be the second instrument of the ATMS series and will provide along with the companion Cross-track Infrared Sounder (CrIS), atmospheric temperature and moisture profiles for NPOESS. The first flight of the ATMS is scheduled in 2010 on the NPOESS Preparatory Project (NPP) satellite, which is an early instrument risk reduction component of the NPOESS mission. This poster will focus on the development of the ATMS for C1 including aspects of the sensor calibration, antenna beam and RF characteristics and scanning. New design aspects of the C1 ATMS, required primarily by parts obsolescence, will also be addressed in this poster.

  1. The Advanced Technology Microwave Sounder (ATMS): First Year On-Orbit

    NASA Astrophysics Data System (ADS)

    Kim, E. J.; Lyu, C.; Blackwell, W. J.; Leslie, V.; Baker, N.; Mo, T.; Sun, N.; Bi, L.; Anderson, K.; Landrum, M.; De Amici, G.; Gu, D.; Foo, A.; Ibrahim, W.; Robinson, K.

    2012-12-01

    The Advanced Technology Microwave Sounder (ATMS) is a new satellite microwave sounding sensor designed to provide operational weather agencies with atmospheric temperature and moisture profile information for global weather forecasting and climate applications. ATMS will continue the microwave sounding capabilities first provided by its predecessors, the Microwave Sounding Unit (MSU) and Advanced Microwave Sounding Unit (AMSU). The first ATMS was launched October 28, 2011 on board the Suomi-NPOESS Preparatory Project (S-NPP) satellite and has just finished its first year on orbit. Microwave soundings by themselves are the highest-impact input data used by Numerical Weather Prediction (NWP) models; and ATMS, when combined with the Cross-track Infrared Sounder (CrIS), forms the Cross-track Infrared and Microwave Sounding Suite (CrIMSS). The microwave soundings help meet NWP sounding requirements under cloudy sky conditions and provide key profile information near the surface. Designed & built by Aerojet Corporation in Azusa, California, (now Northrop Grumman Electronic Systems), ATMS has 22 channels spanning 23—183 GHz, closely following the channel set of the MSU, AMSU-A1 and A2, AMSU-B, Microwave Humidity Sounder (MHS), and Humidity Sounder for Brazil (HSB). It continues their cross-track scanning geometry, but for the first time, provides Nyquist sample spacing. All this is accomplished with approximately one quarter the volume, one half the mass, and one half the power of the three AMSUs. A summary description of the ATMS design will be presented. Post-launch calibration/validation activities include geolocation determination, radiometric calibration using the on-board warm targets and cold space views, simultaneous observations by microwave sounders on other satellites, comparison vs. pre-launch thermovacuum test performance; observations vs. atmospheric model predicted radiances, and comparisons of soundings vs. radiosondes. Brief descriptions of these

  2. Ionospheric physics

    SciTech Connect

    Sojka, J.J. )

    1991-01-01

    Advances in all areas of ionospheric research are reviewed for the 1987-1990 time period. Consideration is given to the equatorial ionosphere, the midlatitude ionosphere and plasmasphere, the auroral ionosphere, the polar ionosphere and polar wind, ionospheric electrodynamic inputs, plasma waves and irregularities, active experiments, ionospheric forecasting, and coupling the ionosphere with other regions.

  3. Vensis: Venus Advanced Radar For Subsurface And Ionosphere Sounding

    NASA Astrophysics Data System (ADS)

    Biccari, D.; Gurnett, D.; Jordan, R.; Huff, R.; Marinangeli, L.; Nielsen, E.; Ori, G. G.; Picardi, G.; Plaut, J.; Provvedi, F.; Seu, R.; Zampolini, E.

    Due to optically opaque atmosphere of Venus radar is the best way to observe the surface of the planet from orbit. Magellan has obtained global SAR imaging, as well as altimetry and emissivity. As a subsurface sounder, working at low frequency and preferably in the night time, VENSIS would obtain fundamentally different kinds of geologic information than Magellan, mapping of interfaces of geologic units (e.g. tessera, plains, lava flows, impact debris) could in fact be extended into the third di- mension. A subsurface investigation of the first 1-2 Km will show the internal defor- mations of the Venusian surface and will depict the structural styles of old crust which are essential to define the crust dynamics, an improved understanding of the evolu- tion of complex Venusian features is a key to define the geological evolution of the planet. Furthermore in standard subsurface sounding mode VENSIS will be able to transmit four different bandwidth, so the possibility of multi frequency observations will allow the estimate of the material attenuation in the crust and will give significant indications on the dielectric properties of the detected interfaces. Thus the Primary Scientific Objectives of VENSIS are the following: 1-Characterize surface roughness, composition and electrical properties at long wavelengths (orders of magnitude longer than Magellan) 2-Probe the subsurface of Venus (to few km depth) to detect and map geologic materials and large scale structures at planetary level VENSIS sounder, using active sounding in a frequency range of 100 kHz to 7 MHz, would also allow detailed characterization of the Venus ionosphere while in passive mode it can be used to detect lightning, the presence of which remains both controversial and critical to understand the behavior of the atmosphere and the possibility of present day volcanism. Therefore a secondary objective is to Probe the ionosphere to characterize interactions between the solar wind and the Venusian

  4. The Advanced Technology Microwave Sounder (ATMS): First Year On-Orbit

    NASA Technical Reports Server (NTRS)

    Kim, Edward J.

    2012-01-01

    The Advanced Technology Microwave Sounder (ATMS) is a new satellite microwave sounding sensor designed to provide operational weather agencies with atmospheric temperature and moisture profile information for global weather forecasting and climate applications. A TMS will continue the microwave sounding capabilities first provided by its predecessors, the Microwave Sounding Unit (MSU) and Advanced Microwave Sounding Unit (AMSU). The first flight unit was launched a year ago in October, 2011 aboard the Suomi-National Polar-Orbiting Partnership (S-NPP) satellite, part of the new Joint Polar-Orbiting Satellite System (JPSS). Microwave soundings by themselves are the highest-impact input data used by Numerical Weather Prediction models; and A TMS, when combined with the Cross-track Infrared Sounder (CrIS), forms the Cross-track Infrared and Microwave Sounding Suite (CrIMSS). The microwave soundings help meet sounding requirements under cloudy sky conditions and provide key profile information near the surface. ATMS was designed & built by Aerojet Corporation in Azusa, California, (now Northrop Grumman Electronic Systems). It has 22 channels spanning 23-183 GHz, closely following the channel set of the MSU, AMSU-AI/2, AMSU-B, Microwave Humidity Sounder (MHS), and Humidity Sounder for Brazil (HSB). It continues their cross-track scanning geometry, but for the first time, provides Nyquist sample spacing. All this is accomplished with approximately V. the volume, Y, the mass, and Y, the power of the three AMSUs. A description will be given of its performance from its first year of operation as determined by post-launch calibration activities. These activities include radiometric calibration using the on-board warm targets and cold space views, and geolocation determination. Example imagery and zooms of specific weather events will be shown. The second ATMS flight model is currently under construction and planned for launch on the "Jl" satellite of the JPSS program in

  5. Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) after nine years of operation: A summary

    NASA Astrophysics Data System (ADS)

    Orosei, R.; Jordan, R. L.; Morgan, D. D.; Cartacci, M.; Cicchetti, A.; Duru, F.; Gurnett, D. A.; Heggy, E.; Kirchner, D. L.; Noschese, R.; Kofman, W.; Masdea, A.; Plaut, J. J.; Seu, R.; Watters, T. R.; Picardi, G.

    2015-07-01

    Mars Express, the first European interplanetary mission, carries the Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) to search for ice and water in the Martian subsurface. Developed by an Italian-US team, MARSIS transmits low-frequency, wide-band radio pulses penetrating below the surface and reflected by dielectric discontinuities linked to structural or compositional changes. MARSIS is also a topside ionosphere sounder, transmitting a burst of short, narrow-band pulses at different frequencies that are reflected by plasma with varying densities at different altitudes. The radar operates since July 2005, after the successful deployment of its 40 m antenna, acquiring data at altitudes lower than 1200 km. Subsurface sounding (SS) data are processed on board by stacking together a batch of echoes acquired at the same frequency. On ground, SS data are further processed by correlating the received echo with the transmitted waveform and compensating de-focusing caused by the dispersive ionosphere. Ground processing of active ionospheric sounding (AIS) data consists in the reconstruction of the electron density profile as a function of altitude. MARSIS observed the internal structure of Planum Boreum outlining the Basal Unit, an icy deposit lying beneath the North Polar Layered Deposits thought to have formed in an epoch in which climate was markedly different from the current one. The total volume of ice in polar layered deposits could be estimated, and parts of the Southern residual ice cap were revealed to consist of ≈ 10 m of CO2 ice. Radar properties of the Vastitas Borealis Formation point to the presence of large quantities of ice buried beneath the surface. Observations of the ionosphere revealed the complex interplay between plasma, crustal magnetic field and solar wind, contributing to space weather studies at Mars. The presence of three-dimensional plasma structures in the ionosphere was revealed for the first time. MARSIS could

  6. The Advanced Technology Microwave Sounder (ATMS): A New Operational Sensor Series

    NASA Technical Reports Server (NTRS)

    Kim, Edward; Lyu, Cheng-H Joseph; Leslie, R. Vince; Baker, Neal; Mo, Tsan; Sun, Ninghai; Bi, Li; Anderson, Mike; Landrum, Mike; DeAmici, Giovanni; Gu, Degui; Foo, Alex; Ibrahim, Wael; Robinson, Kris; Chidester, Lynn; Shiue, James

    2012-01-01

    ATMS is a new satellite microwave sounding sensor designed to provide operational weather agencies with atmospheric temperature and moisture profile information for global weather forecasting and climate applications. ATMS will continue the microwave sounding capabilities first provided by its predecessors, the Microwave Sounding Unit (MSU) and Advanced Microwave Sounding Unit (AMSU). The first ATMS was launched October 28, 2011 on board the Suomi National Polar-orbiting Partnership (S-NPP) satellite. Microwave soundings by themselves are the highest-impact input data used by Numerical Weather Prediction (NWP) models; and ATMS, when combined with the Cross-track Infrared Sounder (CrIS), forms the Cross-track Infrared and Microwave Sounding Suite (CrIMSS). The microwave soundings help meet NWP sounding requirements under cloudy sky conditions and provide key profile information near the surface

  7. Toric offset three-reflector antenna for an advanced microwave limb sounder

    NASA Astrophysics Data System (ADS)

    Cofield, Richard E.; Cwik, Thomas A.; Raouf, Nasrat A.

    2002-12-01

    An advanced Microwave Limb Sounder (MLS), now in concept development for a potential future mission, is a space-borne heterodyne instrument to measure pressure, temperature, and atmospheric constituents from thermal emission between 120 and 2400 GHz. Previous MLS instruments used pencil-beam antennas sized to resolve ~1 vertical scale height. Current atmospheric models need better horizontal resolution than orbit spacing provides. To meet these needs, a new antenna concept combines the wide scan range of the parabolic torus with unblocked offset Cassegrain optics. The resulting system is diffraction-limited in the vertical plane but extremely astigmatic, with beamwidths 0.13×2.5°. Nadir axis symmetry ensures that this Beam Aspect Ratio (BAR) is invariant over +/-33 degrees of azimuth. The antenna can feed either an array of receivers or multiplexed low-noise receivers whose FOVs are swept by a small scanning mirror. We describe 3 stages of antenna design: First, using a paraxial-optics method, we choose conic profiles given vertical resolution orbit geometry, then develop the surfaces by nadir axis rotation, matching axisymmetric feeds to the BAR. A ray-trace program validates the design and generates alignment and deformation tolerances. Finally, a physical optics analysis verifies reflector surface currents and radiation patterns.

  8. Simultaneous middle and upper atmosphere radar and ionospheric sounder observations of midlatitude E region irregularities and sporadic E layer

    NASA Astrophysics Data System (ADS)

    Ogawa, T.; Takahashi, O.; Otsuka, Y.; Nozaki, K.; Yamamoto, M.; Kita, K.

    2002-10-01

    We made middle and upper atmosphere (MU) radar observations of midlatitude E region field-aligned irregularities (FAIs) in the summer of 1999 and 2000. Sporadic E (Es) layer was monitored with a routine ionosonde, and its altitude was measured with an FM-CW sounder (FCS). In this paper we draw attention to two findings. First, we show that quasiperiodic (QP) radar echoes appearing before 0200 LT are more enhanced with increasing foEs - fbEs, which means that the FAI generation is closely related to localized density gradients within Es, and extend from 100 to 130 km in altitude, while Es altitudes determined from the FCS soundings are between 100 and 110 km. The latter fact suggests that existing models for the QP echo generation, which require a deep modulation of Es altitude, are not applicable to our observational results. We propose a new working model for generating QP echoes in which polarization electric fields originated from high-density plasma clouds within Es are mapped upward along the geomagnetic field to produce relatively weak irregularities above the Es layer. Second, we show new findings obtained from the current observations, namely, two types of QP echoes that occur below 100 km in the morning: one is the morning QP (MQP) echoes with periods of 4-8 min, and the other is the QP echoes with periods of ˜1 min. The latter type can be categorized as low-altitude QP echoes that were found from previous nighttime MU radar observations. Until now the MU radar QP echoes have been believed to occur above 100 km for the period from sunset to midnight. Although we do not know the generation mechanisms of the low-altitude MQP echoes, we suppose that these echoes might be caused by a weak Es that exists below 100 km.

  9. Characterization of geolocation accuracy of Suomi NPP Advanced Technology Microwave Sounder measurements

    NASA Astrophysics Data System (ADS)

    Han, Yang; Weng, Fuzhong; Zou, Xiaolei; Yang, Hu; Scott, Deron

    2016-05-01

    The Advanced Technology Microwave Sounder (ATMS) onboard Suomi National Polar-orbiting Partnership satellite has 22 channels at frequencies ranging from 23 to 183 GHz for probing the atmospheric temperature and moisture under all weather conditions. As part of the ATMS calibration and validation activities, the geolocation accuracy of ATMS data must be well characterized and documented. In this study, the coastline crossing method (CCM) and the land-sea fraction method (LFM) are utilized to characterize and quantify the ATMS geolocation accuracy. The CCM is based on the inflection points of the ATMS window channel measurements across the coastlines, whereas the LFM collocates the ATMS window channel data with high-resolution land-sea mask data sets. Since the ATMS measurements provide five pairs of latitude and longitude data for K, Ka, V, W, and G bands, respectively, the window channels 1, 2, 3, 16, and 17 from each of these five bands are chosen for assessing the overall geolocation accuracy. ATMS geolocation errors estimated from both methods are generally consistent from 40 cases in June 2014. The ATMS along-track (cross-track) errors at nadir are within ±4.2 km (±1.2 km) for K/Ka, ±2.6 km (±2.7 km) for V bands, and ±1.2 km (±0.6 km) at W and G bands, respectively. At the W band, the geolocation errors derived from both algorithms are probably less reliable due to a reduced contrast of brightness temperatures in coastal areas. These estimated ATMS along-track and cross-track geolocation errors are well within the uncertainty requirements for all bands.

  10. Biases in Total Precipitable Water Vapor Climatologies from Atmospheric Infrared Sounder and Advanced Microwave Scanning Radiometer

    NASA Technical Reports Server (NTRS)

    Fetzer, Eric J.; Lambrigtsen, Bjorn H.; Eldering, Annmarie; Aumann, Hartmut H.; Chahine, Moustafa T.

    2006-01-01

    We examine differences in total precipitable water vapor (PWV) from the Atmospheric Infrared Sounder (AIRS) and the Advanced Microwave Scanning Radiometer (AMSR-E) experiments sharing the Aqua spacecraft platform. Both systems provide estimates of PWV over water surfaces. We compare AIRS and AMSR-E PWV to constrain AIRS retrieval uncertainties as functions of AIRS retrieved infrared cloud fraction. PWV differences between the two instruments vary only weakly with infrared cloud fraction up to about 70%. Maps of AIRS-AMSR-E PWV differences vary with location and season. Observational biases, when both instruments observe identical scenes, are generally less than 5%. Exceptions are in cold air outbreaks where AIRS is biased moist by 10-20% or 10-60% (depending on retrieval processing) and at high latitudes in winter where AIRS is dry by 5-10%. Sampling biases, from different sampling characteristics of AIRS and AMSR-E, vary in sign and magnitude. AIRS sampling is dry by up to 30% in most high-latitude regions but moist by 5-15% in subtropical stratus cloud belts. Over the northwest Pacific, AIRS samples conditions more moist than AMSR-E by a much as 60%. We hypothesize that both wet and dry sampling biases are due to the effects of clouds on the AIRS retrieval methodology. The sign and magnitude of these biases depend upon the types of cloud present and on the relationship between clouds and PWV. These results for PWV imply that climatologies of height-resolved water vapor from AIRS must take into consideration local meteorological processes affecting AIRS sampling.

  11. Impact of advanced technology microwave sounder data in the NCMRWF 4D-VAR data assimilation system

    NASA Astrophysics Data System (ADS)

    Rani, S. Indira; Srinivas, D.; Mallick, Swapan; George, John P.

    2016-05-01

    This study demonstrates the added benefits of assimilating the Advanced Technology Microwave Sounder (ATMS) radiances from the Suomi-NPP satellite in the NCMRWF Unified Model (NCUM). ATMS is a cross-track scanning microwave radiometer inherited the legacy of two very successful instrument namely, Advanced Microwave Sounding Unit-A (AMSU-A) and Microwave Humidity Sounder (MHS). ATMS has 22 channels: 11 temperature sounding channels around 50-60 GHz oxygen band and 6 moisture sounding channels around the 183GHz water vapour band in addition to 5 channels sensitive to the surface in clear conditions, or to water vapour, rain, and cloud when conditions are not clear (at 23, 31, 50, 51 and 89 GHz). Before operational assimilation of any new observation by NWP centres it is standard practice to assess data quality with respect to NWP model background (short-forecast) fields. Quality of all channels is estimated against the model background and the biases are computed and compared against that from the similar observations. The impact of the ATMS data on global analyses and forecasts is tested by adding the ATMS data in the NCUM Observation Processing system (OPS) and 4D-Var variational assimilation (VAR) system. This paper also discusses the pre-operational numerical experiments conducted to assess the impact of ATMS radiances in the NCUM assimilation system. It is noted that the performance of ATMS is stable and it contributes to the performance of the model, complimenting observations from other instruments.

  12. Requirements for an Advanced Low Earth Orbit (LEO) Sounder (ALS) for Improved Regional Weather Prediction and Monitoring of Greenhouse Gases

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Chahine, Moustafa T.; Susskind, Joel

    2008-01-01

    Hyperspectral infrared atmospheric sounders (e.g., the Atmospheric Infrared Sounder (AIRS) on Aqua and the Infrared Atmospheric Sounding Interferometer (IASI) on Met Op) provide highly accurate temperature and water vapor profiles in the lower to upper troposphere. These systems are vital operational components of our National Weather Prediction system and the AIRS has demonstrated over 6 hrs of forecast improvement on the 5 day operational forecast. Despite the success in the mid troposphere to lower stratosphere, a reduction in sensitivity and accuracy has been seen in these systems in the boundary layer over land. In this paper we demonstrate the potential improvement associated with higher spatial resolution (1 km vs currently 13.5 km) on the accuracy of boundary layer products with an added consequence of higher yield of cloud free scenes. This latter feature is related to the number of samples that can be assimilated and has also shown to have a significant impact on improving forecast accuracy. We also present a set of frequencies and resolutions that will improve vertical resolution of temperature and water vapor and trace gas species throughout the atmosphere. Development of an Advanced Low Earth Orbit (LEO) Sounder (ALS) with these improvements will improve weather forecast at the regional scale and of tropical storms and hurricanes. Improvements are also expected in the accuracy of the water vapor and cloud properties products, enhancing process studies and providing a better match to the resolution of future climate models. The improvements of technology required for the ALS are consistent with the current state of technology as demonstrated in NASA Instrument Incubator Program and NOAA's Hyperspectral Environmental Suite (HES) formulation phase development programs.

  13. Advanced Ionospheric Sensing using GROUP-C and LITES aboard the ISS

    NASA Astrophysics Data System (ADS)

    Budzien, S. A.; Stephan, A. W.; Chakrabarti, S.; Finn, S. C.; Cook, T.; Powell, S. P.; O'Hanlon, B.; Bishop, R. L.

    2015-12-01

    The GPS Radio Occultation and Ultraviolet Photometer Co-located (GROUP-C) and Limb-imaging Ionospheric and Thermospheric Extreme-ultraviolet Spectrograph (LITES) experiments are manifested for flight aboard the International Space Station (ISS) in 2016 as part of the Space Test Program Houston #5 payload. The two experiments provide technical development and risk-reduction for future DoD space weather sensors suitable for ionospheric specification, space situational awareness, and data products for global ionosphere assimilative models. In addition, the combined instrument complement of these two experiments offers a unique opportunity to study structures of the nighttime ionosphere. GROUP-C includes an advanced GPS receiver providing ionospheric electron density profiles and scintillation measurements and a high-sensitivity far-ultraviolet photometer measuring horizontal ionospheric gradients. LITES is an imaging spectrograph that spans 60-140 nm and will obtain high-cadence limb profiles of the ionosphere and thermosphere from 150-350 km altitude. In the nighttime ionosphere, recombination of O+ and electrons produces optically thin emissions at 91.1 and 135.6 nm that can be used to tomographically reconstruct the two-dimensional plasma distribution in the orbital plane below ISS altitudes. Ionospheric irregularities, such as plasma bubbles and blobs, are transient features of the low and middle latitude ionosphere with important implications for operational systems. Irregularity structures have been studied primarily using ground-based systems, though some spaced-based remote and in-situ sensing has been performed. An ionospheric observatory aboard the ISS would provide new capability to study low- and mid-latitude ionospheric structures on a global scale. By combining for the first time high-sensitivity in-track photometry, vertical ionospheric airglow spectrographic imagery, and recent advancements in UV tomography, high-fidelity tomographic reconstruction of

  14. Recent Advances in Ionospheric Modeling Using the USU GAIM Data Assimilation Models

    NASA Astrophysics Data System (ADS)

    Scherliess, L.; Thompson, D. C.; Schunk, R. W.

    2009-12-01

    The ionospheric plasma distribution at low and mid latitudes has been shown to display both a background state (climatology) and a disturbed state (weather). Ionospheric climatology has been successfully modeled, but ionospheric weather has been much more difficult to model because the ionosphere can vary significantly on an hour-by-hour basis. Unfortunately, ionospheric weather can have detrimental effects on several human activities and systems, including high-frequency communications, over-the-horizon radars, and survey and navigation systems using Global Positioning System (GPS) satellites. As shown by meteorologists and oceanographers, the most reliable weather models are physics-based, data-driven models that use Kalman filter or other data assimilation techniques. Since the state of a medium (ocean, lower atmosphere, ionosphere) is driven by complex and frequently nonlinear internal and external processes, it is not possible to accurately specify all of the drivers and initial conditions of the medium. Therefore physics-based models alone cannot provide reliable specifications and forecasts. In an effort to better understand the ionosphere and to mitigate its adverse effects on military and civilian operations, specification and forecast models are being developed that use state-of-the-art data assimilation techniques. Over the past decade, Utah State University (USU) has developed two data assimilation models for the ionosphere as part of the USU Global Assimilation of Ionospheric Measurements (GAIM) program and one of these models has been implemented at the Air Force Weather Agency for operational use. The USU-GAIM models are also being used for scientific studies, and this should lead to a dramatic advance in our understanding of ionospheric physics; similar to what occurred in meteorology and oceanography after the introduction of data assimilation models in those fields. Both USU-GAIM models are capable of assimilating data from a variety of data

  15. Lessons Learned from Previous Space-Borne Sounders as a Guide to Future Sounder Development

    NASA Technical Reports Server (NTRS)

    Benson, Robert F.; Deshpande, Manohar D.; Farrell,William M.; Fung, Shing F.; Osherovich, Vladimir A.; Pfaff, Rovert E.; Rowland, Douglas E.; Adrian, Mark L.

    2008-01-01

    Space-borne radio sounding is considered to be the gold standard for electron-density (N(sub e)) measurements compared to other techniques even under low-density conditions, such as N(sub e) < 1/cu cm, when other techniques are known to experience difficulties. These reliable measurements are not restricted to in-situ N(sub e) determinations since a spaceborne sounder can provide vertical N(sub e) profiles (N(sub e)(h)) from the spacecraft altitude to the altitude of maximum N(sub e). Near-conjunction studies involving the International Satellites for Ionospheric Studies (ISIS) satellites in the topside ionosphere and Dynamics Explorer 2 (DE 2) near the altitude of the F-region peak density have verified that, even at the greatest distance from the sounder, the ISIS-derived N(sub e)(h) profiles agree with the DE-2 Langmuir-probe measurements to within about 30% over a density range of more than two decades. Space-borne sounders can also provide N(sub e) profiles along the magnetic-field B, by inverting echoes that are ducted along field-aligned irregularities (FAI), and can provide information about the terrain beneath the satellite by examining surface reflections in the frequency range above the ionospheric penetration frequency. Many nations have launched rocket and satellite radio sounders in geospace over more than 4 decades and there have been sounders on space-probes and in orbit around other planets. Here we will summarize some of the lessons learned from these accomplishments by analyzing data from radio sounders on the Alouette and ISIS satellites and the OEDIPUS and other rockets in the terrestrial ionosphere, the IMAGE satellite in the terrestrial magnetosphere, the Ulysses space probe in Jupiter's 10 plasma torus and the MARSIS satellite in orbit around Mars. The emphasis will be on information deduced concerning (1) fundamental plasma processes and gradients in N, and B in the vicinity of the sounders from sounder-stimulated plasma resonances and

  16. Transient subsurface features in Mars Express radar data: An explanation based on ionospheric holes

    NASA Astrophysics Data System (ADS)

    Kane, Mark Vinton

    2012-01-01

    This study was motivated by the discovery of semi-circular subsurface craters, or basins, at multiple locations on Mars by the MARSIS (Mars Advanced Radar for Subsurface and Ionospheric Sounding) radar sounder on board the Mars Express spacecraft. The nature of these subsurface structures was called into question when it was realized that some of the radar observations were not repeatable on subsequent passes over the same region. If they were true geological structures, such as ancient craters buried by dust, one would expect to always see them when the spacecraft passes over these regions. The transient nature of the observations led to the suggestion that these structures were actually of ionospheric origin. In this paper we will provide evidence, including a proof-of-concept result, that these features are produced by holes in the ionosphere, and not by subsurface structures. We discuss the possibility that the ionospheric holes are caused by an interaction of the ionosphere with local crustal magnetic fields. We introduce the ionospheric model which we used to simulate the MARSIS sounder moving and pulsing radio waves through the Martian ionosphere, and show that the results of ray tracing through this density profile are consistent with data seen in the MARSIS radargrams.

  17. Pre-Launch Characterization of the Advanced Technology Microwave Sounder (ATMS) on the Joint Polar Satellite System-1 Satellite (JPSS-1)

    NASA Astrophysics Data System (ADS)

    Kim, Edward; Leslie, Vince; Lyu, Joseph; Smith, Craig; McCormick, Lisa; Anderson, Kent

    2016-04-01

    The Advanced Technology Microwave Sounder (ATMS) is the newest generation of microwave sounder in the international fleet of polar-orbiting weather satellites, replacing the Advanced Microwave Sounding Unit (AMSU) which first entered service in 1998. The first ATMS was launched aboard the Suomi NPP (S-NPP) satellite in late 2011. The second ATMS is manifested on the Joint Polar Satellite System-1 Satellite (JPSS-1). ATMS provides 22 channels of temperature and humidity sounding observations over a frequency range from 23 to 183 GHz. These microwave soundings provide the highest impact data ingested by operational Numerical Weather Prediction (NWP) models, and are the most critical of the polar-orbiting satellite observations, particularly because microwave sensing can penetrate clouds. This paper will present performance characterizations from pre-launch calibration measurements of the JPSS-1 ATMS just completed in December, 2015. The measurements were conducted in a thermal vacuum chamber with blackbody targets simulating cold space, ambient, and a variable Earth scene. They represent the best opportunity for calibration characterization of the instrument since the environment can be carefully controlled. We will present characterizations of the sensitivity (NEDT), accuracy, nonlinearity, noise spectral characteristics, gain stability, repeatability, and inter-channel correlation. An estimate of expected "striping" will be presented, and a discussion of reflector emissivity effects will also be provided. Comparisons will be made with the S-NPP flight unit. Finally, we will describe planned on-orbit characterizations - such as pitch and roll maneuvers - that will further improve both the measurement quality and the understanding of various error contributions.

  18. Derivation of Incident Angle and Sweeping Voltage Design on Advanced Ionospheric Probe onboard FORMOSAT-5

    NASA Astrophysics Data System (ADS)

    Lin, Z. W.; Chao, C. K.; Chang, Y. S.

    2014-12-01

    Advanced Ionospheric Probe (AIP) developed by the National Central University (NCU), Taiwan, has been selected to install on FORMOSAT-5 satellite. It is an all-in-one plasma sensor with the sampling rate up to 8,192 Hz to measure ionospheric plasma concentrations, velocities, and temperatures over a wide range of spatial scales. The design of AIP sensor allows it to sequentially perform as a Retarding Potential Analyzer (RPA), an Ion Drift Meter (IDM), an Ion Trap (IT), or a Planer Langmuir Probe (PLP). Unlike the inherited payload IPEI onboard FORMOSAT-1/ROCSAT-1, the entrance opening of IDM of AIP is circular instead of square shape, causes the difference in the geometry calculation of the projection area. New method is present to obtain the incident angle from the incoming plasma beam. Meanwhile, a set of sweeping voltage pattern is defined to get a better result of plasma parameters from RPA function. Upon the requirement of the mission, several sweeping voltage patterns are designed to fit the specified species of plasma to increase the accuracy in the derivation of ram speed and temperature. A simulation is present to show the fitting result in different assumptions and conditions for each sweeping pattern.

  19. Atmospheric infrared sounder

    NASA Technical Reports Server (NTRS)

    Rosenkranz, Philip, W.; Staelin, David, H.

    1995-01-01

    This report summarizes the activities of two Atmospheric Infrared Sounder (AIRS) team members during the first half of 1995. Changes to the microwave first-guess algorithm have separated processing of Advanced Microwave Sounding Unit A (AMSU-A) from AMSU-B data so that the different spatial resolutions of the two instruments may eventually be considered. Two-layer cloud simulation data was processed with this algorithm. The retrieved water vapor column densities and liquid water are compared. The information content of AIRS data was applied to AMSU temperature profile retrievals in clear and cloudy atmospheres. The significance of this study for AIRS/AMSU processing lies in the improvement attributable to spatial averaging and in the good results obtained with a very simple algorithm when all of the channels are used. Uncertainty about the availability of either a Microwave Humidity Sensor (MHS) or AMSU-B for EOS has motivated consideration of possible low-cost alternative designs for a microwave humidity sensor. One possible configuration would have two local oscillators (compared to three for MHS) at 118.75 and 183.31 GHz. Retrieval performances of the two instruments were compared in a memorandum titled 'Comparative Analysis of Alternative MHS Configurations', which is attached.

  20. Coupling and energetics of the equatorial ionosphere-thermosphere system: advances during the STEP period

    NASA Astrophysics Data System (ADS)

    Abdu, M. A.

    1999-01-01

    The equatorial ionosphere-thermosphere system (EITS) investigations during the STEP period (1990-1997) were focused on improving our understanding of the dymanic and electrodynamic-coupling process and energetics that govern the climatology of the system, as well as the variabilities of the system arising from forcing by magnetospheric and high latitude processes and by atmospheric waves from below. Thermosphere dynamics and dynamo electric fields serving as drivers of the coupling process are responsible for the major EITS phenomena and their variabilities at different time scales. Especially, the day-to-day variabilities of the equatorial spread F (ESF) have recieved specific attention because of interest in space application areas as well Significant advances were achieved in our understanding and representation of quiet and disturbed electric fields. The STEP period also marked notable improvement in the experimental diagnostic facilities available in the equatorialregions as well as in theoretical modeling of the interactive process that control the major EITS phenomena. Data from coordinated observational campaigns have contributed to a better understanding of the EITS global responses to magnetospheric disturbances. The advances to be briefly discussed in this paper concern most of the major phenomena and the inherent characteristics of the EITS: the equatorial electric field and its sunset enhancement; thermospheric winds and temperature including the MTM (midnight temperature maximum); peculiar features of the ionosphere in the immediate vicinity of the magnetic equator; equatorial spread F/plasma bubble erregularities, including the energy requirement for large scale field aligned irregularities; equatorial anomalies in ion/neutral densities and temperatures. Also presented briefly is an overview of the results on the disturbance characteristics of the key EITS parameters and driving forces under magnetospheric disturbances and atmospheric wave forcing.

  1. Apollo lunar sounder experiment

    USGS Publications Warehouse

    Phillips, R.J.; Adams, G.F.; Brown, W.E., Jr.; Eggleton, R.E.; Jackson, P.; Jordan, R.; Linlor, W.I.; Peeples, W.J.; Porcello, L.J.; Ryu, J.; Schaber, G.; Sill, W.R.; Thompson, T.W.; Ward, S.H.; Zelenka, J.S.

    1973-01-01

    The scientific objectives of the Apollo lunar sounder experiment (ALSE) are (1) mapping of subsurface electrical conductivity structure to infer geological structure, (2) surface profiling to determine lunar topographic variations, (3) surface imaging, and (4) measuring galactic electromagnetic radiation in the lunar environment. The ALSE was a three-frequency, wide-band, coherent radar system operated from lunar orbit during the Apollo 17 mission.

  2. Investigation of Pickering Crater (Mars) by Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS)

    NASA Astrophysics Data System (ADS)

    Caprarelli, G.; Cartacci, M.; Orosei, R.; Picardi, G.; Plaut, J. J.

    2008-12-01

    The Mars Express (MEX) Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) is a low- frequency (1.8, 3, 4, 5 MHz) radar capable of ground-penetration. The instrument records echoes returning to MEX from Martian interior depths as big as 5 km at nadir, well within the crust. It can thus provide fundamental information for the search and identification of geological structures and rock layering inside the Martian crust, being particularly useful on wide flat expanses such as the vast volcanic fields surrounding the Tharsis Montes. Pickering is an approximately 150 km diameter crater located about 1500 km SW of Arsia Mons, the oldest of the Tharsis volcanoes. The crater has been modified by tectonic activity and it has been infilled, with the most surficial strata consisting of volcanic rocks. To investigate structures deeper in the material filling Pickering Crater, we used data from MARSIS orbits 4192 and 4932. Their parallel tracks run along the eastern side and the central portion of the crater, respectively. After accounting for the effects of high intensity nadir surface reflections and off-nadir clutter, an apparent low angle N-dipping reflector of approximate horizontal length of 10 km was identified at depths 0.5-1 km below the surface in both orbits. Because the orbit tracks do not intersect, no unique structural reconstruction is possible. However, the presence of similar reflections in both orbits, and the geometric constraints provided by the morphology of the crater, are useful in narrowing the field of possible interpretations. Combining the MARSIS evidence with other datasets furthermore constrains plausible tectonic scenarios.

  3. Recent Advances in Studies of Ionospheric Modification Using Rocket Exhaust (Invited)

    NASA Astrophysics Data System (ADS)

    Bernhardt, P. A.

    2009-12-01

    Rocket exhaust interacts with the ionosphere to produce a wide range of disturbances. A ten second burn of the Orbital Maneuver Subsystem (OMS) engines on the Space Shuttle deposits over 1 Giga Joule of energy into the upper atmosphere. The exhaust vapors travel at speeds between 4.7 and 10.7 km/s coupling momentum into the ions by both collisions and charge exchange. Long-lived plasma irregularities are formed by the artificial hypersonic “neutral wind” passing through the ionosphere. Charge exchange between the fast neutrals and the ambient ions yields high-speed ion beams that excite electro-static plasma waves. Ground based radar has been used to detect both field aligned irregularities and electrostatic turbulence driven by the Space Shuttle OMS exhaust. Molecular ions produced by the charge exchange with molecules in the rocket exhaust recombine with a time scale of 10 minutes leaving a residual plasma depression. This ionospheric “hole” fills in by ambipolar diffusion leaving a depleted magnetic flux tube. This large scale reduction in Pedersen conductivity can provide a seed for plasma interchange instabilities. For instance, a rocket firing on the bottom side of the ionosphere near the equator can trigger a Rayleigh-Taylor instability that is naturally seen as equatorial Spread-F. The Naval Research Laboratory has been exploring these phenomena with dedicated burns of the Space Shuttle OMS engines and exhaust releases from rockets. The Shuttle Ionospheric Modification with Pulsed Localized Exhaust (SIMPLEX) series of experiments uses ground radars to probe the ionosphere affected by dedicated burns of the Space Shuttle OMS engines. Radars located at Millstone Hill, Massachusetts; Arecibo, Puerto Rico; Jicamarca, Peru; Kwajalein, Marshall Island; and Alice Springs, Australia have participated in the SIMPLEX program. A companion program called Shuttle Exhaust Ionospheric Turbulence Experiment has or will use satellites to fly through the turbulence

  4. Topside sounder observations of equatorial bubbles

    NASA Technical Reports Server (NTRS)

    Dyson, P. L.; Benson, R. F.

    1978-01-01

    Large scale regions of depleted equatorial ionospheric plasma, called equatorial bubbles, are investigated using topside sounder data. The sounder's unique remote measuring capability enables the magnetic field-aligned nature of the bubbles to be investigated. A search of all available Alouette 2 and ISIS 1 ionograms during nighttime perigee passes near the magnetic equator has revealed a variety of echo signatures associated with bubbles. In addition to a sudden drop in electron density, these signatures usually include in situ spread F and ducted traces. The ducted traces have been used to determine the electron density distribution and to infer changes in ion composition along the magnetic field line within the duct associated with the bubble. In some cases it can be determined that the bubble is asymmetric with respect to the magnetic equator. Even though such features require 3 dimensional models for their explanation, the great field-aligned extent of the bubbles (relative to their cross section) suggests that current theories, which ignore variations along the magnetic field, are still applicable.

  5. Recent Advances in Remote Sensing of Natural Hazards-Induced Atmospheric and Ionospheric Perturbations

    NASA Astrophysics Data System (ADS)

    Yang, Y. M.; Komjathy, A.; Meng, X.; Verkhoglyadova, O. P.; Langley, R. B.; Mannucci, A. J.

    2015-12-01

    Traveling ionospheric disturbances (TIDs) induced by acoustic-gravity waves in the neutral atmosphere have significant impact on trans-ionospheric radio waves such as Global Navigation Satellite System (GNSS, including Global Position System (GPS)) measurements. Natural hazards and solid Earth events, such as earthquakes, tsunamis and volcanic eruptions are actual sources that may trigger acoustic and gravity waves resulting in traveling ionospheric disturbances (TIDs) in the upper atmosphere. Trans-ionospheric radio wave measurements sense the total electron content (TEC) along the signal propagation path. In this research, we introduce a novel GPS-based detection and estimation technique for remote sensing of atmospheric wave-induced TIDs including space weather phenomena induced by major natural hazard events, using TEC time series collected from worldwide ground-based dual-frequency GNSS (including GPS) receiver networks. We demonstrate the ability of using ground- and space-based dual-frequency GPS measurements to detect and monitor tsunami wave propagation from the 2011 Tohoku-Oki earthquake and tsunami. Major wave trains with different propagation speeds and wavelengths were identified through analysis of the GPS remote sensing observations. Dominant physical characteristics of atmospheric wave-induced TIDs are found to be associated with specific tsunami propagations and oceanic Rayleigh waves. In this research, we compared GPS-based observations, corresponding model simulations and tsunami wave propagation. Results are shown to lead to a better understanding of the tsunami-induced ionosphere responses. Based on current distribution of Plate Boundary Observatory GPS stations, the results indicate that tsunami-induced TIDs may be detected about 60 minutes prior to tsunamis arriving at the U.S. west coast. It is expected that this GNSS-based technology will become an integral part of future early-warning systems.

  6. Probing disturbances over canadian ionosphere using advance data analysis of wave decomposition

    NASA Astrophysics Data System (ADS)

    Kherani, Esfhan

    2016-07-01

    Using CHAIN network of GPS receivers, we present disturbances in total electron content (TEC) of the ionosphere on magnetically quiet day of 8 December 2009 and construct travel-time diagram to understand the propagation characteristics of these disturbances. We employ the wave decomposition method to identify the TEC disturbances. We found N-shaped amplified TEC disturbances at higher latitude around 80 N that appear during intensification of ionospheric current at ˜11 UT, suggesting them to be associated with energy input from magnetosphere. These TEC disturbances have spectral peak in between 55-65 minutes, originate in the vicnity of (80N,270W), propagate both southeastward and southwestward with similar velocity ˜80 m/s and arrives at latitude ˜55N around 20 UT. These propagation characteristcs classify them as medium-scale Traveling ionospheric disturbances (MSTIDs) and possibly of gravity wave origin. Noteworthy results of our study are following: (1) presence of dayside MSTIDs whose nightside counterpart is recently reported by Shiokawa et al (2012), (2) long-distance ˜2500 km propagation of dayside MSTIDs that is not reported for the nightside counterpart, (3) dayside MSIDs acquire largest amplitudes in 65-75 during 15-17 UT, similar to the nightside MSTIDs, (4) amplification of amplitudes of MSTIDs in the auroral oval latitudes and (5) identification of driving sources in two latitudes that enable them to propagate long distance.

  7. A Microwave Pressure Sounder

    NASA Technical Reports Server (NTRS)

    Flower, D. A.; Peckham, G. E.

    1978-01-01

    An instrument to measure atmospheric pressure at the earth's surface from an orbiting satellite would be a valuable addition to the expanding inventory of remote sensors. The subject of this report is such an instrument - the Microwave Pressure Sounder (MPS). It is shown that global-ocean coverage is attainable with sufficient accuracy, resolution and observational frequency for meteorological, oceanographic and climate research applications. Surface pressure can be deduced from a measurement of the absorption by an atmospheric column at a frequency in the wing of the oxygen band centered on 60 GHz. An active multifrequency instrument is needed to make this measurement with sufficient accuracy. The selection of optimum operating frequencies is based upon accepted models of surface reflection, oxygen, water vapor and cloud absorption. Numerical simulation using a range of real atmospheres defined by radiosonde observations were used to validate the frequency selection procedure. Analyses are presented of alternative system configurations that define the balance between accuracy and achievable resolution.

  8. Atmospheric infrared sounder on AIRS with emphasis on level 2 products

    NASA Technical Reports Server (NTRS)

    Lee, Sung-Yung; Fetzer, Eric; Granger, Stephanie; Hearty, Thomas; Lambrigtsen, Bjorn; Manning, Evan M.; Olsen, Edward; Pagano, Thomas

    2004-01-01

    The Atmospheric Infrared Sounder (AIRS) was launched aboard EOS Aqua in May of 2002. AIRS is a grating spectrometer with almost 2400 channels covering the 3.74 to 15.40 micron spectral region with a nominal spectral resolution ((nu)/(delta)(nu)) of 1200, with some gaps. In addition, AIRS has 4 channels in the NIR/VIS region. The AIRS operates in conjunction with the microwave sounders Advanced Microwave Sounding Unit (AMSU-A) and Humidity Sounder of Brazil (HSB). The microwave sounders are mainly used for cloud clearing of IR radiances, or to remove the effect of cloud on the IR radiances.

  9. Variability in ionospheric total electron content at Mars

    NASA Astrophysics Data System (ADS)

    Mendillo, Michael; Narvaez, Clara; Withers, Paul; Matta, Majd; Kofman, Wlodek; Mouginot, Jeremie

    2013-09-01

    The Mars Express (MEX) mission includes a multi-purpose radio instrument called the Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS). When used in its ionospheric-penetrating subsurface sounder (SS) radar mode, a by-product of the MARSIS observations is the ray-path-integral of electron densities, called the total electron content (TEC). We have used the initial TEC database of approximately 1.2 million TEC values spanning the period June 2005 to September 2007 to study the basic characteristics of TEC morphology and variability. We find quantitative agreement between the TEC values measured and those computed from model simulations of global diurnal behavior. With the basic photo-chemistry of the martian ionosphere a well understood process, it is the departures from average conditions that need specification and modeling. Here we use MARSIS TEC to do this quantitatively. We explore the specification of variability using different ways to define it: standard deviations from sample averages versus departures from control curves.

  10. Observation of severe weather activities by Doppler sounder array

    NASA Technical Reports Server (NTRS)

    Smith, R. E.; Hung, R. J.

    1975-01-01

    A three-dimensional, nine-element, high-frequency CW Doppler sounder array has been used to detect ionospheric disturbances during periods of severe weather, particularly during periods with severe thunderstorms and tornadoes. One typical disturbance recorded during a period of severe thunderstorm activity and one during a period of tornado activity have been chosen for analysis in this note. The observations indicate that wave-like disturbances possibly generated by the severe weather have wave periods in the range 2-8 min which place them in the infrasonic wave category.

  11. Retrieval of atmospheric temperature and moisture vertical profiles from satellite Advanced Infrared Sounder radiances with a new regularization parameter selecting method

    NASA Astrophysics Data System (ADS)

    Zhang, Kun; Wu, Chunqiang; Li, Jun

    2016-06-01

    Considering the characteristics of nonlinear problems, a new method based on the L-curve method and including the concept of entropy was designed to select the regularization parameter in the one-dimensional variational analysis-based sounding retrieval method. In the first iteration, this method uses an empirical regularization parameter derived by minimizing the entropy of variables. During subsequent iterations, it uses the L-curve method to select the regularization parameter in the vicinity of the regularization parameter selected in the last iteration. The new method was employed to select the regularization parameter in retrieving atmospheric temperature and moisture profiles from Atmospheric Infrared Sounder radiance measurements selected from the first day of each month in 2008. The results show that compared with the original L-curve method, the new method yields 5.5% and 2.5% improvements on temperature and relative humidity profiles, respectively. Compared with the discrepancy principle method, the improvements on temperature and relative humidity profiles are 1.6% and 2.0%, respectively.

  12. Space Electron Density Gradient Studies using a 3D Embedded Reconfigurable Sounder and ESA/NASA CLUSTER Mission

    NASA Astrophysics Data System (ADS)

    Dekoulis, George

    2016-07-01

    This paper provides a direct comparison between data captured by a new embedded reconfigurable digital sounder, different ground-based ionospheric sounders spread around Europe and the ESA/NASA CLUSTER mission. The CLUSTER mission consists of four identical space probes flying in a formation that allows measurements of the electron density gradient in the local magnetic field. Both the ground-based and the spacecraft instrumentations assist in studying the motion, geometry and boundaries of the plasmasphere. The comparison results are in accordance to each other. Some slight deviations among the captured data were expected from the beginning of this investigation. These small discrepancies are reasonable and seriatim analyzed. The results of this research are significant, since the level of the plasma's ionization, which is related to the solar activity, dominates the propagation of electromagnetic waves through it. Similarly, unusually high solar activity presents serious hazards to orbiting satellites, spaceborne instrumentation, satellite communications and infrastructure located on the Earth's surface. Long-term collaborative study of the data is required to continue, in order to identify and determine the enhanced risk in advance. This would allow scientists to propose an immediate cure.

  13. Ionospheric sounding in support of over-the-horizon radar

    NASA Astrophysics Data System (ADS)

    Reinisch, B. W.; Haines, D. M.; Bibl, K.; Galkin, I.; Huang, X.; Kitrosser, D. F.; Sales, G. S.; Scali, J. L.

    1997-07-01

    Precise coordinate registration for HF over-the-horizon (OTH) radar applications requires accurate knowledge of the ionospheric structure. In the mid-1980s Digisonde 256 systems were deployed in the American sector to provide this information from strategically located sites via telephone lines to the user. The mid-1990s saw the development of a new advanced system, the Digisonde portable sounder, or DPS, now being deployed in Australia in support of the Australian OTH radar system. A summary of the new features provided by the DPS is as follows: low radio frequency power (300 W); narrow transmission bandwidth; advanced automatic scaling; and control and data access via the Internet. The availability of real-time electron density profiles as function of time from a network of stations makes it possible to calculate the three-dimensional electron density distribution in the region of interest using Fourier transform techniques. The resulting density maps are the basis for the OTH radar coordinate registration. The DPS uses Doppler interferometry to determine the development of ionospheric irregularities.

  14. Instrument technology for magnetosphere plasma imaging from high Earth orbit. Design of a radio plasma sounder. Final report

    SciTech Connect

    Haines, D.M.; Reinisch, B.W.

    1995-01-01

    The use of radio sounding techniques for the study of the ionospheric plasma dates back to G. Briet and M. A. Tuve in 1926. Ground based swept frequency sounders can monitor the electron number density (N{sub e}) as a function of height (the N{sub e} profile). These early instruments evolved into a global network that produced high-resolution displays of echo time delay vs frequency on 35-mm film. These instruments provided the foundation for the success of the International Geophysical Year. The Alouette and International Satellites for Ionospheric Studies (ISIS) programs pioneered the used of spaceborne, swept frequency sounders to obtain N{sub e} profiles of the topside of the ionosphere, from a position above the electron density maximum. Repeated measurements during the orbit produced an orbital plane contour which routinely provided density measurements to within 10%. The Alouette/ISIS experience also showed that even with a high powered transmitter (compared to the low power sounder possible today) a radio sounder can be compatible with other imaging instruments on the same satellite. Digital technology was used on later spacecraft developed by the Japanese (the EXOS C and D) and the Soviets (Intercosmos 19 and Cosmos 1809). However, a full coherent pulse compression and spectral integrating capability, such as exist today for ground-based sounders (Reinisch et al.), has never been put into space. NASA`s 1990 Space Physics Strategy Implementation Study `The NASA Space Physics Program from 1995 to 2010` suggested using radio sounders to study the plasmasphere and the magnetopause and its boundary layers (Green and Fung). Both the magnetopause and plasmasphere, as well as the cusp and boundary layers, can be observed by a radio sounder in a high-inclination polar orbit with an apogee greater than 6 R{sub e} (Reiff et al.; Calvert et al.).

  15. Space Plasma Slab Studies using a new 3D Embedded Reconfigurable MPSoC Sounder

    NASA Astrophysics Data System (ADS)

    Dekoulis, George

    2016-07-01

    This paper presents recent ionospheric slab thickness measurements using a new mobile digital sounder system. The datasets obtained have been compared to the results of existing sounders in operation. The data validity has been verified. The slab thickness data allow constant monitoring of the lower ionosphere revealing the dynamic trends of the physical processes being involved. The prototype offers a tremendous amount of hardware processing power and a previously unseen response time in servicing the input and output data interfaces. This has been enabled by incorporating the latest three-dimensional Ultrascale+ technologies available commercially from the reconfigurable Field Programmable Gate Array (FPGA) computing industry. Furthermore, a previously developed Network-on-Chip (NoC) design methodology has been incorporated for connecting and controlling the application driven multiprocessor network. The system determines electron distributions, aggregate electromagnetic field gradients and plasma current density.

  16. Challenges and Opportunities for Advancing Ionosphere-Thermosphere Understanding through Remote Sensing from Space (Invited)

    NASA Astrophysics Data System (ADS)

    Meier, R. R.

    2013-12-01

    The ionosphere and thermosphere (IT) system was among the first fields explored at the beginning of the space age. Much progress in understanding the system has been made over the ensuing decades, so much so that the vernacular has evolved from 'IT Exploration' to 'Space Weather'. This evolution is largely a consequence of the recognition that space weather can seriously compromise a host of technological systems in space and on the ground. Societal demands for forecasting space weather place extraordinary requirements on both observational capabilities and detailed understanding. Important challenges remain to be addressed in order to approach a level of capability similar to that of tropospheric weather. These include understanding of the IT response to forcing from solar radiation and solar wind, to forcing from lower altitude processes, understanding of the internal processes that constitute the responses, and identification of the causes of long-term climate change. A systematic approach for meeting many of the challenges has been laid out in the Solar and Space Physics 2012 Decadal Survey. Several space missions have been recommended for implementation in the latter part of the decade. However, near term opportunities to lay the foundation for these missions come with the selection by NASA of ICON and GOLD. Their operational periods are expected to overlap with each other as well as with complementary missions from other agencies, such as SSULI, SSUSI, and COSMIC. Remote sensing instrumentation on these missions fulfills a uniquely important role. From low earth orbit, limb imagers deliver altitude profiles of composition, temperature and winds on local and regional scales. Earth disk imagers from a high altitude perspective not only provide context for local observations, but also column measurements of the O/N2 ratio and temperature. The O/N2 ratio has proven to be an exceptionally useful diagnostic of IT dynamics, especially when paired with independent

  17. Ionization effects due to solar flare on terrestrial ionosphere

    NASA Technical Reports Server (NTRS)

    Wu, S. T.; Tan, A.

    1976-01-01

    Sudden frequency deviation ionospheric disturbances related to the flares of May 18 and 19, 1973 were observed from the NASA/MSFC high frequency Doppler sounder array system in Huntsville, Alabama. The results are compared with those observed at Table Mountain near Boulder, Colorado and at the University of Hawaii.

  18. The multi-instrumental radio diagnostics of the ionosphere for Space Weather Program

    NASA Astrophysics Data System (ADS)

    Krankowski, Andrzej; Rothkaehl, Hanna; Pulinets, Sergey; Cherniak, Iurii; Zakharenkova, Irina

    2015-04-01

    To give a more detailed and complete understanding of physical plasma processes that govern the solar-terrestrial space, and to develop qualitative and quantitative models of the magnetosphere-ionosphere-thermosphere coupling, it is necessary to design and build the next generation of instruments for space diagnostics and monitoring. Novel ground- based wide-area sensor networks, such as the LOFAR (Low Frequency Array) radar facility, comprising wide band, and vector-sensing radio receivers and multi-spacecraft plasma diagnostics should help to solve outstanding problems of space physics and describe long-term environmental changes. The LOw Frequency ARray - LOFAR - is a new fully digital radio telescope designed for frequencies between 30 MHz and 240 MHz located in Europe. The three new LOFAR stations will be installed until summer 2015 in Poland. The LOFAR facilities in Poland will be distributed among three sites: Lazy (East of Krakow), Borowiec near Poznan and Baldy near Olsztyn. Each site will host one LOFAR station (96 high-band+96 low-band antennas). The new digital radio frequency analyzer (RFA) on board the low-orbiting RELEC satellite was designed to monitor and investigate the ionospheric plasma properties. In addition to the in-situ space plasma measurements the topside sounders will be installed onboard the "Ionosphere" spacecrafts to retrieve the vertical distribution of electron concentration in the topside ionosphere. The first two satellites are scheduled for launch at the first half of 2016. These two-point ground-based and topside ionosphere-located space plasma diagnostic can be a useful new tool for monitoring and diagnosing turbulent plasma properties. In order to improve and validate the large scale and small scale ionospheric structures we will also use the GPS observations collected at IGS/EPN: global and regional TEC maps created with high special and temporal resolution, ROTI maps over the Northern Hemisphere and the data retrieved from

  19. THz Limb Sounder (TLS) for Lower Thermospheric Wind, Oxygen Density, and Temperature

    NASA Technical Reports Server (NTRS)

    Wu, Dong L.; Yee, Jeng-Hwa; Schlecht, Erich; Mehdi, Imran; Siles, Jose; Drouin, Brian J.

    2016-01-01

    Neutral winds are one of the most critical measurements in the lower thermosphere and E region ionosphere (LTEI) for understanding complex electrodynamic processes and ion-neutral interactions. We are developing a high-sensitivity, low-power, noncryogenic 2.06 THz Schottky receiver to measure wind profiles at 100-140 km. The new technique, THz limb sounder (TLS), aims to measure LTEI winds by resolving the wind-induced Doppler shift of 2.06 THz atomic oxygen (OI) emissions. As a transition between fine structure levels in the ground electronic state, the OI emission is in local thermodynamic equilibrium(LTE) at altitudes up to 350km. This LTE property, together with day-and-night capability and small line-of-sight gradient, makes the OI limb sounding a very attractive technique for neutral wind observations. In addition to the wind measurement, TLS can also retrieve [OI] density and neutral temperature in the LTEI region. TLS leverages rapid advances in THz receiver technologies including subharmonically pumped (SHP)mixers and Schottky-diode-based power multipliers. Current SHP Schottky receivers have produced good sensitivity for THz frequencies at ambient environment temperatures (120-150 K), which are achievable through passively cooling in spaceflight. As an emerging technique, TLS can fill the critical data gaps in the LTEI neutral wind observations to enable detailed studies on the coupling and dynamo processes between charged and neutral molecules.

  20. THz limb sounder (TLS) for lower thermospheric wind, oxygen density, and temperature

    NASA Astrophysics Data System (ADS)

    Wu, Dong L.; Yee, Jeng-Hwa; Schlecht, Erich; Mehdi, Imran; Siles, Jose; Drouin, Brian J.

    2016-07-01

    Neutral winds are one of the most critical measurements in the lower thermosphere and E region ionosphere (LTEI) for understanding complex electrodynamic processes and ion-neutral interactions. We are developing a high-sensitivity, low-power, noncryogenic 2.06 THz Schottky receiver to measure wind profiles at 100-140 km. The new technique, THz limb sounder (TLS), aims to measure LTEI winds by resolving the wind-induced Doppler shift of 2.06 THz atomic oxygen (OI) emissions. As a transition between fine structure levels in the ground electronic state, the OI emission is in local thermodynamic equilibrium (LTE) at altitudes up to 350 km. This LTE property, together with day-and-night capability and small line-of-sight gradient, makes the OI limb sounding a very attractive technique for neutral wind observations. In addition to the wind measurement, TLS can also retrieve [OI] density and neutral temperature in the LTEI region. TLS leverages rapid advances in THz receiver technologies including subharmonically pumped (SHP) mixers and Schottky-diode-based power multipliers. Current SHP Schottky receivers have produced good sensitivity for THz frequencies at ambient environment temperatures (120-150 K), which are achievable through passively cooling in spaceflight. As an emerging technique, TLS can fill the critical data gaps in the LTEI neutral wind observations to enable detailed studies on the coupling and dynamo processes between charged and neutral molecules.

  1. Instrument technology for magnetosphere plasma imaging from high Earth orbit. Design of a radio plasma sounder

    NASA Technical Reports Server (NTRS)

    Haines, D. Mark; Reinisch, Bodo W.

    1995-01-01

    The use of radio sounding techniques for the study of the ionospheric plasma dates back to G. Briet and M. A. Tuve in 1926. Ground based swept frequency sounders can monitor the electron number density (N(sub e)) as a function of height (the N(sub e) profile). These early instruments evolved into a global network that produced high-resolution displays of echo time delay vs frequency on 35-mm film. These instruments provided the foundation for the success of the International Geophysical Year (1958). The Alouette and International Satellites for Ionospheric Studies (ISIS) programs pioneered the used of spaceborne, swept frequency sounders to obtain N(sub e) profiles of the topside of the ionosphere, from a position above the electron density maximum. Repeated measurements during the orbit produced an orbital plane contour which routinely provided density measurements to within 10%. The Alouette/ISIS experience also showed that even with a high powered transmitter (compared to the low power sounder possible today) a radio sounder can be compatible with other imaging instruments on the same satellite. Digital technology was used on later spacecraft developed by the Japanese (the EXOS C and D) and the Soviets (Intercosmos 19 and Cosmos 1809). However, a full coherent pulse compression and spectral integrating capability, such as exist today for ground-based sounders (Reinisch et al., 1992), has never been put into space. NASA's 1990 Space Physics Strategy Implementation Study "The NASA Space Physics Program from 1995 to 2010" suggested using radio sounders to study the plasmasphere and the magnetopause and its boundary layers (Green and Fung, 1993). Both the magnetopause and plasmasphere, as well as the cusp and boundary layers, can be observed by a radio sounder in a high-inclination polar orbit with an apogee greater than 6 R(sub e) (Reiff et al., 1994; Calvert et al., 1995). Magnetospheric radio sounding from space will provide remote density measurements of

  2. Advanced Ion Mass Spectrometer for Giant Planet Ionospheres, Magnetospheres and Moons

    NASA Astrophysics Data System (ADS)

    Sittler, EC; Cooper, JF; Paschalidis, N.; Jones, SL; Rodriguez, M.; Ali, A.; Coplan, MA; Chornay, DJ; Sturner; Bateman, FB; Andre, N.; Fedorov, A.; Wurz, P.

    2015-10-01

    The Advanced Ion Composition Spectrometer (AIMS) has been under development from various NASA sources (NASA LWSID, NASA ASTID, NASA Goddard IRADs) to measure elemental, isotopic, and simple molecular composition abundances of 1 eV/e to 25 keV/e hot ions with wide field-of-view (FOV) in the 1 - 60 amu mass range at mass resolution M/ΔM ≤ 60 over a wide dynamic range of intensities and penetrating radiation background from the inner magnetospheres of Jupiter and Saturn to the outer magnetospheric boundary regions and the upstream solar wind. This instrument will work for both spinning spacecraft and 3-axis stabilized spacecraft with wide field-of-view capability in both cases. It will measure the ion velocity distribution functions (IVDF) for the individual ion species; ion velocity moments of the IVDF will give the fluid parameters (density, flow velocity and temperature) of the individual ion species. Outer planet mission applications are Io Observer, Jupiter Europa Orbiter/Europa Clipper, Enceladus Orbiter, and Uranus Orbiter as described in the decadal survey, but would also be valuable for inclusion on other missions to outer planet destinations such as Saturn- Titan and Neptune-Triton and for future missions to terrestrial planets, Venus and Mars, the Moon, asteroids, and comets, and of course for geospace applications to the Earth.

  3. Radar soundings of the ionosphere of Mars.

    PubMed

    Gurnett, D A; Kirchner, D L; Huff, R L; Morgan, D D; Persoon, A M; Averkamp, T F; Duru, F; Nielsen, E; Safaeinili, A; Plaut, J J; Picardi, G

    2005-12-23

    We report the first radar soundings of the ionosphere of Mars with the MARSIS (Mars Advanced Radar for Subsurface and Ionosphere Sounding) instrument on board the orbiting Mars Express spacecraft. Several types of ionospheric echoes are observed, ranging from vertical echoes caused by specular reflection from the horizontally stratified ionosphere to a wide variety of oblique and diffuse echoes. The oblique echoes are believed to arise mainly from ionospheric structures associated with the complex crustal magnetic fields of Mars. Echoes at the electron plasma frequency and the cyclotron period also provide measurements of the local electron density and magnetic field strength.

  4. Geostationary-satellite beacon-receiver array for studies of ionospheric irregularities

    SciTech Connect

    Carlos, R.C.; Jacobson, A.R.; Wu, Guanghui

    1992-09-01

    Ionospheric irregularities can be studied by various techniques. These include widely spaced Doppler sounders or ionosondes, Faraday rotation polarimetry, and two-frequency differential Doppler, and radio interferometry. With geostationary satellites, one usually uses Faraday rotation of the beacon signal to measure the ionospheric TEC. With a network of polarimeters, the horizontal wave parameters of Traveling Ionospheric Disturbances (TIDS) can be deduced, but the shortcoming of this technique is its poor sensitivity. This paper describes a geostationary-satellite beacon-receiver array at Los Alamos, New Mexico, which will be employed for the studying of ionospheric irregularities, especially the fine-scale TIDS.

  5. Geostationary-satellite beacon-receiver array for studies of ionospheric irregularities

    SciTech Connect

    Carlos, R.C.; Jacobson, A.R.; Wu, Guanghui.

    1992-01-01

    Ionospheric irregularities can be studied by various techniques. These include widely spaced Doppler sounders or ionosondes, Faraday rotation polarimetry, and two-frequency differential Doppler, and radio interferometry. With geostationary satellites, one usually uses Faraday rotation of the beacon signal to measure the ionospheric TEC. With a network of polarimeters, the horizontal wave parameters of Traveling Ionospheric Disturbances (TIDS) can be deduced, but the shortcoming of this technique is its poor sensitivity. This paper describes a geostationary-satellite beacon-receiver array at Los Alamos, New Mexico, which will be employed for the studying of ionospheric irregularities, especially the fine-scale TIDS.

  6. Co-Investigator Participation in the Mars-94 Mission Studies of the Mars-Solar Wind Interaction: Topside Sounder and Magnetometer

    NASA Technical Reports Server (NTRS)

    Luhmann, Janet G. (Principal Investigator)

    1996-01-01

    The purpose of this investigation has been to provide United States co-investigator support toward the preparation of the Topside Ionospheric Sounder and Magnetometer experiments on the Russian Mars-96 (previously Mars-94) mission. The main role has been to assist in the preparation of software tools for the optimum design of the investigation and the evaluation of mission operational plans and orbits.

  7. Status of the Atmospheric Infrared Sounder (AIRS)

    NASA Astrophysics Data System (ADS)

    Miller, Christopher R.

    1996-12-01

    The Atmospheric Infrared Sounder (AIRS) is being developed for the NASA Earth Observing System (EOS) program with a scheduled launch on the first post meridian platform in the year 2000. AIRS is designed to provide both new and more accurate data about the atmosphere, land, and oceans for application to climate studies and weather prediction. Among the important parameters to be derived from AIRS observations are atmospheric temperature profiles with an average accuracy of 1 K in 1 kilometer layers in the troposphere and surface temperatures with an average accuracy of 0.5 K. The AIRS measurement technique is based on very sensitive passive infrared remote sensing using a precisely calibrated, high resolution grating spectrometer operating in the 3.7 micrometers to 15.4 micrometers region. The instrument concept uses passively cooled multi-aperture eschelle array spectrometer approach in combination with advanced state-of-the-art focal plane and cryogenic refrigerator technology to achieve unparalleled performance capability in a practical long life configuration. AIRS is a key component of NASA's global change research program, and is expected to play an important role in the converged National Polar Orbiting Environmental Satellite System, now under study. This paper provides a brief description of the AIRS instrument design and focuses on the current development status of hardware currently being fabricated for the engineering model. In particular, the paper will address the status and expected performance of the AIRS focal plane assembly, the cryocooler, and components of the optical spectrometer.

  8. Submillimeter Planetary Atmospheric Chemistry Exploration Sounder

    NASA Technical Reports Server (NTRS)

    Schlecht, Erich T.; Allen, Mark A.; Gill, John J.; Choonsup, Lee; Lin, Robert H.; Sin, Seth; Mehdi, Imran; Siegel, Peter H.; Maestrini, Alain

    2013-01-01

    Planetary Atmospheric Chemistry Exploration Sounder (SPACES), a high-sensitivity laboratory breadboard for a spectrometer targeted at orbital planetary atmospheric analysis. The frequency range is 520 to 590 GHz, with a target noise temperature sensitivity of 2,500 K for detecting water, sulfur compounds, carbon compounds, and other atmospheric constituents. SPACES is a prototype for a powerful tool for the exploration of the chemistry and dynamics of any planetary atmosphere. It is fundamentally a single-pixel receiver for spectral signals emitted by the relevant constituents, intended to be fed by a fixed or movable telescope/antenna. Its front-end sensor translates the received signal down to the 100-MHz range where it can be digitized and the data transferred to a spectrum analyzer for processing, spectrum generation, and accumulation. The individual microwave and submillimeter wave components (mixers, LO high-powered amplifiers, and multipliers) of SPACES were developed in cooperation with other programs, although with this type of instrument in mind. Compared to previous planetary and Earth science instruments, its broad bandwidth (approx. =.13%) and rapid tunability (approx. =.10 ms) are new developments only made possible recently by the advancement in submillimeter circuit design and processing at JPL.

  9. Ionospheric specification with analytical profilers: Evidences of non-Chapman electron density distribution in the upper ionosphere

    NASA Astrophysics Data System (ADS)

    Verhulst, T.; Stankov, S. M.

    2015-04-01

    In relation to the development of an operational ionospheric monitoring and imaging system, the most frequently used analytical ionospheric profilers (Chapman, Epstein, Exponential) were investigated in terms of suitability for topside ionosphere modelling. For the purpose, topside sounder measurements onboard Alouette and ISIS satellites have been analysed. We have come to the conclusion that the use of the Chapman profiler should be exercised with precaution as there are evidences that there are conditions when other profilers are better fit for modelling purposes. This is highlighted during ionospheric disturbances (e.g. during geomagnetic storms), when the shape of the topside electron density distribution might be better described by an Epstein profiler rather than a Chapman profiler.

  10. High-order stimulated ionospheric diffuse plasma resonances: Significance for magnetospheric emissions

    SciTech Connect

    Benson, R.F. ); Osherovich, V.A. )

    1992-12-01

    The sequence nature of the diffuse ionospheric resonances D[sub n] stimulated by topside sounders was discovered by Oya (1970) with n ranging from 1 to 4. Osherovich (1987) organized these observations using his earlier theory which predicted a nonequidistant spectrum with frequencies proportional to n[sup [1/2

  11. Assessment of error propagation in ultraspectral sounder data via JPEG2000 compression and turbo coding

    NASA Astrophysics Data System (ADS)

    Olsen, Donald P.; Wang, Charles C.; Sklar, Dean; Huang, Bormin; Ahuja, Alok

    2005-08-01

    Research has been undertaken to examine the robustness of JPEG2000 when corrupted by transmission bit errors in a satellite data stream. Contemporary and future ultraspectral sounders such as Atmospheric Infrared Sounder (AIRS), Cross-track Infrared Sounder (CrIS), Infrared Atmospheric Sounding Interferometer (IASI), Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS), and Hyperspectral Environmental Suite (HES) generate a large volume of three-dimensional data. Hence, compression of ultraspectral sounder data will facilitate data transmission and archiving. There is a need for lossless or near-lossless compression of ultraspectral sounder data to avoid potential retrieval degradation of geophysical parameters due to lossy compression. This paper investigates the simulated error propagation in AIRS ultraspectral sounder data with advanced source and channel coding in a satellite data stream. The source coding is done via JPEG2000, the latest International Organization for Standardization (ISO)/International Telecommunication Union (ITU) standard for image compression. After JPEG2000 compression the AIRS ultraspectral sounder data is then error correction encoded using a rate 0.954 turbo product code (TPC) for channel error control. Experimental results of error patterns on both channel and source decoding are presented. The error propagation effects are curbed via the block-based protection mechanism in the JPEG2000 codec as well as memory characteristics of the forward error correction (FEC) scheme to contain decoding errors within received blocks. A single nonheader bit error in a source code block tends to contaminate the bits until the end of the source code block before the inverse discrete wavelet transform (IDWT), and those erroneous bits propagate even further after the IDWT. Furthermore, a single header bit error may result in the corruption of almost the entire decompressed granule. JPEG2000 appears vulnerable to bit errors in a noisy channel of

  12. Toward the characterization of upper tropospheric clouds using Atmospheric Infrared Sounder and Microwave Limb Sounder observations

    NASA Astrophysics Data System (ADS)

    Kahn, Brian H.; Eldering, Annmarie; Braverman, Amy J.; Fetzer, Eric J.; Jiang, Jonathan H.; Fishbein, Evan; Wu, Dong L.

    2007-03-01

    We estimate the accuracy of cloud top altitude (Z) retrievals from the Atmospheric Infrared Sounder (AIRS) and Advanced Microwave Sounding Unit (AMSU) observing suite (ZA) on board the Earth Observing System Aqua platform. We compare ZA with coincident measurements of Z derived from the micropulse lidar and millimeter wave cloud radar at the Atmospheric Radiation Measurement (ARM) program sites of Nauru and Manus islands (ZARM) and the inferred Z from vertically resolved Microwave Limb Sounder (MLS) ice water content (IWC) retrievals. The mean difference in ZA minus ZARM plus or minus one standard deviation ranges from -2.2 to 1.6 km ± 1.0 to 4.2 km for all cases of AIRS effective cloud fraction (fA) > 0.15 at Manus Island using the cloud radar only. The range of mean values results from using different approaches to determine ZARM, day/night differences, and the magnitude of fA; the variation about the mean decreases for increasing values of fA. Analysis of ZARM from the micropulse lidar at Nauru Island for cases restricted to 0.05 ≤ fA ≤ 0.15 indicates a statistically significant improvement in ZA - ZARM over the cloud radar-derived values at Manus Island. In these cases the ZA - ZARM difference is -1.1 to 2.1 km ± 3.0 to 4.5 km. These results imply that the operational ZA is quantitatively useful for constraining cirrus altitude despite the nominal 45 km horizontal resolution. Mean differences of cloud top pressure (PCLD) inferred from coincident AIRS and MLS ice water content (IWC) retrievals depend upon the method of defining AIRS PCLD (as with the ARM comparisons) over the MLS spatial scale, the peak altitude and maximum value of MLS IWC, and fA. AIRS and MLS yield similar vertical frequency distributions when comparisons are limited to fA > 0.1 and IWC > 1.0 mg m-3. Therefore the agreement depends upon the opacity of the cloud, with decreased agreement for optically tenuous clouds. Further, the mean difference and standard deviation of AIRS and MLS

  13. On spread-F in the ionosphere before earthquakes

    NASA Astrophysics Data System (ADS)

    Liperovskaya, E. V.; Liperovsky, V. A.; Silina, A. S.; Parrot, M.

    2006-01-01

    Occurrence probability of the ionospheric spread-F in connection with earthquakes is analyzed. The F-layer is not close to the Earth (˜400 km), but in situ data could be obtained either by ionospheric sounders or by satellites. Data from the two Japanese ionospheric stations Kokubunji and Akita have been analyzed to find out long-term (a few weeks) variations of spread-F before and after earthquakes. Earthquakes with magnitudes M>5 were taken into account. Only time intervals where geomagnetic variations are weak have been analyzed. It is shown that the probability of spread-F observations starts to decrease approximately 40 days before earthquakes, presents a minimum about 10 days before and then takes 1 month to recover the background level (therefore this increase lasts about 3 weeks after earthquakes). This effect exists if the distance between epicenters and the sounding station is less than 500 km.

  14. ISIS Topside-Sounder Plasma-Wave Investigations as Guides to Desired Virtual Wave Observatory (VWO) Data Search Capabilities

    NASA Technical Reports Server (NTRS)

    Benson, Robert F.; Fung, Shing F.

    2008-01-01

    Many plasma-wave phenomena, observed by space-borne radio sounders, cannot be properly explained in terms of wave propagation in a cold plasma consisting of mobile electrons and infinitely massive positive ions. These phenomena include signals known as plasma resonances. The principal resonances at the harmonics of the electron cyclotron frequency, the plasma frequency, and the upper-hybrid frequency are well explained by the warm-plasma propagation of sounder-generated electrostatic waves, Other resonances have been attributed to sounder-stimulated plasma instability and non-linear effects, eigenmodes of cylindrical electromagnetic plasma oscillations, and plasma memory processes. Data from the topside sounders of the International Satellites for Ionospheric Studies (ISIS) program played a major role in these interpretations. A data transformation and preservation effort at the Goddard Space Flight Center has produced digital ISIS topside ionograms and a metadata search program that has enabled some recent discoveries pertaining to the physics of these plasma resonances. For example, data records were obtained that enabled the long-standing question (several decades) of the origin of the plasma resonance at the fundamental electron cyclotron frequency to be explained [Muldrew, Radio Sci., 2006]. These data-search capabilities, and the science enabled by them, will be presented as a guide to desired data search capabilities to be included in the Virtual Wave Observatory (VWO).

  15. Global Daily Atmospheric State Profiles from the Atmospheric Infrared Sounder

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Aumann, Hartmut H.; Fetzer, Eric J.; Lambrigtsen, Bjorn H.; Chahine, Moustafa T.

    2008-01-01

    The Atmospheric Infrared Sounder (AIRS) is a hyperspectral infrared instrument on the EOS Aqua Spacecraft, launched on May 4, 2002. AIRS has 2378 infrared channels ranging from 3.7 (micro)m to 15.4 (micro)m and a 13.5 km footprint. AIRS, in conjunction with the Advanced Microwave Sounding Unit (AMSU), produces temperature profiles with 1K/km accuracy on a global scale, as well as water vapor profiles, clouds, dust and trace gas amounts for CO2, CO, SO2, O3 and CH4.[1] AIRS data are used for weather forecasting and studies of global climate change. The AIRS is a 'facility' instrument developed by NASA as an experimental demonstration of advanced technology for remote sensing and the benefits of high resolution infrared spectra to science investigations.

  16. A case study of a density structure over a vertical magnetic field region in the Martian ionosphere

    NASA Astrophysics Data System (ADS)

    Duru, F.; Gurnett, D. A.; Diéval, C.; Morgan, D. D.; Pisa, D.; Lundin, R.

    2016-05-01

    One of the discoveries made by the radar sounder on the Mars Express spacecraft is the existence of magnetically controlled structures in the ionosphere of Mars, which result in bulges in the ionospheric electron density contours. These bulges lead in turn to oblique echoes, which show up as hyperbola-shaped features in the echograms. A hyperbola-shaped feature observed over an isolated region of strong crustal magnetic field is associated with a plasma cavity in the upper ionosphere and a corresponding density enhancement in the lower levels of the ionosphere. We suggest that along open magnetic field lines, the solar wind electrons are accelerated downward and the ionospheric ions are accelerated upward in a manner similar to the field line-driven auroral acceleration at Earth. This heating due to precipitating electrons may cause an increase in the scale height and may drive a loss of ionospheric plasma at high altitudes.

  17. LAWS (Laser Atmospheric Wind Sounder) earth observing system

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Wind profiles can be measured from space using current technology. These wind profiles are essential for answering many of the interdisciplinary scientific questions to be addressed by EOS, the Earth Observing System. This report provides guidance for the development of a spaceborne wind sounder, the Laser Atmospheric Wind Sounder (LAWS), discussing the current state of the technology and reviewing the scientific rationale for the instrument. Whether obtained globally from the EOS polar platform or in the tropics and subtropics from the Space Station, wind profiles from space will provide essential information for advancing the skill of numerical weather prediction, furthering knowledge of large-scale atmospheric circulation and climate dynamics, and improving understanding of the global biogeochemical and hydrologic cycles. The LAWS Instrument Panel recommends that it be given high priority for new instrument development because of the pressing scientific need and the availability of the necessary technology. LAWS is to measure wind profiles with an accuracy of a few meters per second and to sample at intervals of 100 km horizontally for layers km thick.

  18. Space weather and HF propagation along different paths of the Russian chirp sounders network

    NASA Astrophysics Data System (ADS)

    Kurkin, V. I.; Litovkin, G. I.; Matyushonok, S. M.; Vertogradov, G. G.; Ivanov, V. A.; Poddelsky, I. N.; Rozanov, S. V.; Uryadov, V. P.

    This paper presents experimental data obtained on long paths (from 2200 km to 5700 km range) of Russian frequency modulated continues wave (chirp) sounders network for the period from 1998 to 2003. Four transmitters (near Magadan, Khabarovsk, Irkutsk, Norilsk) and four receivers (near Irkutsk, Yoshkar-Ola, Nizhny Novgorod, Rostov-on-Don) were combined into single network to investigate a influence of geomagnetic storms and substorms on HF propagation in Asian region of Russia. In this region the geographic latitudes are in greatest excess of magnetic latitudes. As a consequence, elements of the large-scale structure, such as the main ionospheric trough, and the zone of auroral ionization, are produced in the ionosphere at the background of a low electron ionization. Coordinated experiments were carried out using 3-day Solar-Geophysical activity forecast presented by NOAA Space Environment Center in Internet. Sounding operations were conducted in the frequency band 4 -- 30 MHz on a round-the-clock basis at 15-min intervals. Oblique-incidence sounding (OIS) ionograms were recorded during 5-7 days every season for some years. The comparison between experimental data and simulation of OIS ionograms using International Reference Ionospheric model (IRI-2001) allowed to estimate the forecast of HF propagation errors both under quiet condition and during geomagnetic disturbances. Strong deviations from median values of maximum observed frequencies on mid-latitude paths in daytime present a real challenge to ionospheric forecast. Subauroral and mid-latitude chirp-sounding paths run, respectively, near the northward and southward walls of the main ionospheric trough. This make sit possible to study the dynamics of the trough's boundaries under different geophysical conditions and assess the influence of ionization gradients and small-scale turbulence on HF signal characteristics. The signals off-great circle propagation were registered over a wide frequency range and for

  19. A review of ionospheric effects on Earth-space propagation

    NASA Technical Reports Server (NTRS)

    Klobuchar, J. A.

    1984-01-01

    A short description is given of each ionospheric total electron content (TEC) effect upon radio waves, along with a representative value of the magnitude of each of these effects under normal ionospheric conditions. A discussion is given of the important characteristics of average ionospheric TEC behavior and the temporal and spatial variability of TEC. Radio waves undergo several effects when they pass through the Earth's ionosphere. One of the most important of these effects is a retardation, or group delay, on the modulation or information carried on the radio wave that is due to its encounter with the free, thermal electrons in the Earth's ionosphere. Other effects the ionosphere has on radio waves include: radio frequency (RF) carrier phase advance; Doppler shift of the RF carrier of the radio wave; Faraday rotation of the plane of polarization of linearly polarized waves; angular refraction or bending of the radio wave path as it travels through the ionosphere; and amplitude and phase scintillations.

  20. Wave coupling of atmosphere-ionosphere system

    NASA Astrophysics Data System (ADS)

    Goncharenko, L. P.

    2011-12-01

    The dynamic coupling of atmosphere-ionosphere system is a complex interdisciplinary problem. Current thinking suggests that the upward propagation of internal atmospheric waves (planetary waves, tides, gravity waves) from the lower atmosphere is an essential source of energy and momentum for the thermosphere and embedded ionosphere. Studies over the last decade presented fascinating experimental and modeling evidence of global coupling from the troposphere to mesosphere, thermosphere and ionosphere. They were enabled by unprecedented availability of satellite data, in particularly from TIMED, MLS, CHAMP, and GRACE, focused experimental campaigns from ground-based instruments, and major advances in global coupling models. This paper will summarize several developments over the past decade, including non-migrating structures in the ionosphere and thermosphere, advances in studies of gravity waves and planetary waves, and their implications for better understanding of ITM. The paper will also identify questions that need to be answered in the future, and outline promising topics of future development.

  1. Rocket/Nimbus Sounder Comparison (RNSC)

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The experimental results for radiance and temperature differences in the Wallops Island comparisons indicate that the differences between satellite and rocket systems are of the same order of magnitude as the differences among the various satellite and rocket sounders. The Arcasondes produced usable data to about 50 km, while the Datasondes require design modification. The SIRS and IRIS soundings provided usable data to 30 mb; extension of these soundings was also investigated.

  2. VAS demonstration: (VISSR Atmospheric Sounder) description

    NASA Technical Reports Server (NTRS)

    Montgomery, H. E.; Uccellini, L. W.

    1985-01-01

    The VAS Demonstration (VISSR Atmospheric Sounder) is a project designed to evaluate the VAS instrument as a remote sensor of the Earth's atmosphere and surface. This report describes the instrument and ground processing system, the instrument performance, the valiation as a temperature and moisture profiler compared with ground truth and other satellites, and assesses its performance as a valuable meteorological tool. The report also addresses the availability of data for scientific research.

  3. Space View Issues for Hyperspectral Sounders

    NASA Technical Reports Server (NTRS)

    Manning, Evan M.; Aumann, Hartmut H.; Broberg, Steven E.

    2013-01-01

    The expectation for climate quality measurements from hyperspectral sounders is absolute calibration accuracy at the 100 mK level and stability at the < 40 mK/decade level. The Atmospheric InfraRed Sounder (AIRS)1, Cross-track Infrared Sounder (CrIS), and Infrared Atmospheric Sounding Interferometer (IASI) hyperspectral sounders currently in orbit have been shown to agree well over most of their brightness temperature range. Some larger discrepancies are seen, however, at the coldest scene temperatures, such as those seen in Antarctic winter and deep convective clouds. A key limiting factor for the calibrated scene radiance accuracy for cold scenes is how well the effective radiance of the cold space view pertains to the scene views. The space view signal is composed of external sources and instrument thermal emission at about 270 K from the scan mirror, external baffles, etc. Any difference in any of these contributions between space views and scene views will impact the absolute calibration accuracy, and the impact can be critical for cold scenes. Any change over time in these will show up as an apparent trend in calibrated radiances. We use AIRS data to investigate the validity of the space view assumption in view of the 100 mK accuracy and 40 mK/decade trend expectations. We show that the space views used for the cold calibration point for AIRS v5 Level-1B products meet these standards except under special circumstances and that AIRS v6 Level-1B products will meet them under all circumstances. This analysis also shows the value of having multiple distinct space views to give operational redundancy and analytic data, and that reaching climate quality requires continuing monitoring of aging instruments and adjustment of calibration.

  4. Ionospheric and satellite observations for studying the dynamic behavior of typhoons and the detection of severe storms and tsunamis

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Smith, R. E.

    1978-01-01

    Atmospheric acoustic-gravity waves associated with severe thunderstorms, tornadoes, typhoons (hurricanes) and tsunamis can be studied through the coupling between the ionosphere and the troposphere. Reverse ray tracing computations of acoustic-gravity waves observed by an ionospheric Doppler sounder array show that wave sources are in the nearby storm systems and that the waves are excited prior to the storms. Results show that ionospheric observations, together with satellite observations, can contribute to the understanding of the dynamical behavior of typhoons, severe storms and tsunamis.

  5. Physics of planetary ionospheres

    NASA Technical Reports Server (NTRS)

    Bauer, S. J.

    1973-01-01

    The fundamental physical and chemical processes in an idealized planetary ionosphere are considered as a general abstraction, with actual planetary ionospheres representing special cases. After describing the structure of the neutral atmospheres (the barosphere, the thermosphere, and the exosphere) and noting the principal ionizing radiations responsible for the formation of planetary ionospheres, a detailed study is made of the thermal structure of these ionospheres and of the chemical processes and plasma-transport processes occurring in them. The features of equilibrium and realistic models of planetary ionospheres are discussed, and an attempt is made to determine the extent of these ionospheres. Considering the ionosphere as a plasma, a plasma kinetic approach is developed for determining the effects of interactions between individual particles and waves in this plasma. The use of remote-sensing radio techniques and direct measurement or in situ techniques is discussed. Finally, the observed properties of the ionospheres of the Earth, Mars, Venus, and Jupiter are reviewed.

  6. Photochemistry of planetary ionospheres

    NASA Technical Reports Server (NTRS)

    Nagy, Andrew F.

    1987-01-01

    The dominant photochemical reactions taking place in the ionospheres of Venus, Saturn, and Comet P/Halley are presented. It is shown that the differences in the ionospheres of these celestial bodies result from the different chemistry, energetics, and dynamics of the respective atmospheres. The role of photochemistry in the formation of the individual ionospheres is discussed.

  7. The Expected Impacts of NPOESS Microwave and Infrared Sounder Radiances on Operational Numerical Weather Prediction and Data Assimilation Systems

    NASA Astrophysics Data System (ADS)

    Swadley, S. D.; Baker, N.; Derber, J.; Collard, A.; Hilton, F.; Ruston, B.; Bell, W.; Candy, B.; Kleespies, T. J.

    2009-12-01

    The NPOESS atmospheric sounding functionality will be accomplished using two separate sensor suites, the combined infrared (IR) and microwave (MW) sensor suite (CrIMSS), and the Microwave Imager/Sounder (MIS) instrument. CrIMSS consists of the Cross Track Infrared Sounder (CrIS) and the cross track Advanced Technology Microwave Sounder (ATMS), and is scheduled to fly on the NPOESS Preparatory Project (NPP), and NPOESS operational flight units C1 and C3. The MIS is a conical scanning polarimetric imager and sounder patterned after the heritage WindSat, and DMSP Special Sensor Microwave Imagers and Sounders (SSMI and SSMIS), and is scheduled for flight units C2, C3 and C4. ATMS combines the current operational Advanced Microwave Sounding Unit (AMSU) and the Microwave Humidity Sounder (MHS), but with an additional channel in the 51.76 GHz oxygen absorption region and 3 additional channels in the 165.5 and 183 GHz water vapor absorption band. CrIS is a Fourier Transform Spectrometer and will provide 159 shortwave IR channels, 433 mid-range IR channels, and 713 longwave IR channels. The heritage sensors for CrIS are the NASA Advanced Infrared Sounder (AIRS) and the MetOp-A Infrared Atmospheric Sounding Interferometer (IASI). Both AIRS and IASI are high quality, high spectral resolution sounders which represent a significant improvement in the effective vertical resolution over previous IR sounders. This presentation will give an overview of preparations underway for day-1 monitoring of NPP/NPOESS radiances, and subsequent operational radiance assimilation. These preparations capitalize on experience gained during the pre-launch preparations, sensor calibration/validation and operational assimilation for the heritage sensors. One important step is to use pre-flight sensor channel specifications, noise estimates and knowledge of the antenna patterns, to generate and test proxy NPP/NPOESS sensor observations in existing assimilation systems. Other critical factors for

  8. Integrated Verification Experiment data collected as part of the Los Alamos National Laboratory`s Source Region Program. Appendix D: Ionospheric measurements for IVEs

    SciTech Connect

    Fitzgerald, T.J.; Carlos, R.C.; Argo, P.E.

    1993-01-21

    As part of the integrated verification experiment (IVE), we deployed a network of hf ionospheric sounders to detect the effects of acoustic waves generated by surface ground motion following underground nuclear tests at the Nevada Test Site. The network sampled up to four geographic locations in the ionosphere from almost directly overhead of the surface ground zero out to a horizontal range of 60 km. We present sample results for four of the IVEs: Misty Echo, Texarkana, Mineral Quarry, and Bexar.

  9. Coupling of ionosphere and troposphere during the occurrence of isolated tornadoes on November 20, 1973

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Phan, T.; Smith, R. E.

    1979-01-01

    The paper examines the coupling between the ionosphere and the troposphere during time periods with isolated tornadoes on the stormy day of November 20, 1973. Observations are made with a high-frequency CW Doppler array system, in which radio receivers located at a central site monitored signals transmitted from three independent remote sites on three sets of frequencies (4.0125, 4.759, 5.734 MHz) and reflected off the ionosphere approximately halfway between the transmitter and receiver sites. It is shown that the sources of the gravity waves associated with tornadoes are always on the squall lines and near the tornado touchdown locations, and that analyses of ionospheric Doppler sounder observations of medium-scale gravity waves can contribute to the understanding of the coupling between the ionosphere and the troposphere during periods of severe storm activity.

  10. Seasonal and Solar Cycle Variation of the Martian Ionosphere from Nine Years of MARSIS Active Sounding

    NASA Astrophysics Data System (ADS)

    Morgan, David D.; Withers, Paul; Gurnett, Donald; Nemec, Frantisek

    This past June, we celebrated nine years of continuous operation by MARSIS, the radar sounder on the Mars Express spacecraft, in orbit around Mars since Christmas of 2003. The copious data from this instrument in its Active Ionospheric Sounding mode has been used in numerous scientific endeavors to generate empirical models of the Martian ionosphere. The full ionospheric profiles gleaned from analysis of these data are ideal for this kind of effort. Out of more than 170,000 traces collected, we have selected only about 10%, deemed to be of the best quality, and that can be fit to a Chapman layer function. We now have nine years, or 4-3/4 Mars years, worth of ionospheric traces. In addition to sampling nearly five years of seasonal variation, these nine years of data also represent 80% of a normal solar cycle. Therefore, in this work we shall analyze ionospheric traces with the objective of determining variation of atmospheric and ionospheric parameters such as the neutral atmospheric scale height, ionospheric peak altitude, and ionospheric peak density as they vary with the solar cycle and the change in season.

  11. Preliminary validation of the refractivity from the new radio occultation sounder GNOS/FY-3C

    NASA Astrophysics Data System (ADS)

    Liao, Mi; Zhang, Peng; Yang, Guang-Lin; Bi, Yan-Meng; Liu, Yan; Bai, Wei-Hua; Meng, Xiang-Guang; Du, Qi-Fei; Sun, Yue-Qiang

    2016-03-01

    As a new member of the space-based radio occultation sounders, the GNOS (Global Navigation Satellite System Occultation Sounder) mounted on Fengyun-3C (FY-3C) has been carrying out atmospheric sounding since 23 September 2013. GNOS takes approximately 800 daily measurements using GPS (Global Positioning System) and Chinese BDS (BeiDou navigation satellite) signals. In this work, the atmospheric refractivity profiles from GNOS were compared with the ones obtained from the co-located ECMWF (European Centre for Medium-Range Weather Forecasts) reanalysis. The mean bias of the refractivity obtained through GNOS GPS (BDS) was found to be approximately -0.09 % (-0.04 %) from the near surface to up to 46 km. While the average standard deviation was approximately 1.81 % (1.26 %), it was as low as 0.75 % (0.53 %) in the range of 5-25 km, where best sounding results are usually achieved. Further, COSMIC (Constellation Observing System for Meteorology, Ionosphere and Climate) and MetOp/ GRAS (GNSS Receiver for Atmospheric Sounding) radio occultation data were compared with the ECMWF reanalysis; the results thus obtained could be used as reference data for GNOS. Our results showed that GNOS/FY-3C meets the design requirements in terms of accuracy and precision of the sounder. It possesses a sounding capability similar to COSMIC and MetOp/GRAS in the vertical range of 0-30 km, though it needs further improvement above 30 km. Overall, it provides a new data source for the global numerical weather prediction (NWP) community.

  12. Preliminary validation of refractivity from a new radio occultation sounder GNOS/FY-3C

    NASA Astrophysics Data System (ADS)

    Liao, M.; Zhang, P.; Yang, G. L.; Bi, Y. M.; Liu, Y.; Bai, W. H.; Meng, X. G.; Du, Q. F.; Sun, Y. Q.

    2015-09-01

    As a new member of space-based radio occultation sounder, the GNOS (Global Navigation Satellite System Occultation Sounder) mounted on FY-3C has been carrying out the atmospheric sounding since 23 September 2013. GNOS takes a daily measurement up to 800 times with GPS (Global Position System) and Chinese BDS (BeiDou navigation satellite) signals. The refractivity profiles from GNOS are compared with the co-located ECMWF (European Centre for Medium-Range Weather Forecasts) analyses in this paper. Bias and standard deviation have being calculated as the function of altitude. The mean bias is about 0.2 % from the near surface to 35 km. The average standard deviation is within 2 % while it is down to about 1 % in the range 5-30 km where best soundings are usually made. To evaluate the performance of GNOS, COSMIC (Constellation Observing System for Meteorology, Ionosphere and Climate) and GRAS/METOP-A (GNSS Receiver for Atmospheric Sounding) data are also compared to ECMWF analyses as the reference. The results show that GNOS/FY-3C meets the requirements of the design well. It possesses a sounding capability similar to COSMIC and GRAS in the vertical range of 0-30 km, though it needs improvement in higher altitude. Generally, it provides a new data source for global NWP (numerical weather prediction) community.

  13. Representation of the Auroral and Polar Ionosphere in the International Reference Ionosphere (IRI)

    NASA Technical Reports Server (NTRS)

    Bilitza, Dieter; Reinisch, Bodo

    2013-01-01

    This issue of Advances in Space Research presents a selection of papers that document the progress in developing and improving the International Reference Ionosphere (IRI), a widely used standard for the parameters that describe the Earths ionosphere. The core set of papers was presented during the 2010 General Assembly of the Committee on Space Research in Bremen, Germany in a session that focused on the representation of the auroral and polar ionosphere in the IRI model. In addition, papers were solicited and submitted from the scientific community in a general call for appropriate papers.

  14. View to the south with the Two Sounder Antennas on ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View to the south with the Two Sounder Antennas on the left - Over-the-Horizon Backscatter Radar Network, Christmas Valley Radar Site Transmit Sector Four Sounder Antennas, On unnamed road west of Lost Forest Road, Christmas Valley, Lake County, OR

  15. Science Highlights and Lessons Learned from the Atmospheric Infrared Sounder (AIRS)

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Fetzer, Eric J.; Suda, Jarrod; Licata, Steve

    2011-01-01

    The Atmospheric Infrared Sounder (AIRS) and companion instrument, the Advanced Microwave Sounding Unit (AMSU) on the NASA Earth Observing System Aqua spacecraft are facility instruments designed to support measurements of atmospheric temperature, water vapor and a wide range of atmospheric constituents in support of weather forecasting and scientific research in climate and atmospheric chemistry. This paper is an update to the science highlights from a paper by the authors released last year and also looks back at the lessons learned and future needs of the scientific community. These lessons not only include requirements on the measurements, but scientific shortfalls as well. Results from the NASA Science Community Workshop in IR and MW Sounders relating to AIRS and AMSU requirements and concerns are covered and reflect much of what has been learned and what is needed for future atmospheric sounding from Low Earth Orbit.

  16. Ionospheric research opportunity

    NASA Astrophysics Data System (ADS)

    Rickel, Dwight

    1985-05-01

    Ground-based explosions have been exploited successfully in the past as a relatively controlled source for producing ionospheric disturbances. On June 25, the Defense Nuclear Agency will conduct a high explosives test on the northern section of the White Sands Missile Range. Approximately 4,800 tons of ammonium nitrate and fuel oil (ANFO) will be detonated at ground level, producing an acoustic shock wave with a surface pressure change of approximately 20 mbar at a 6 km range. This shock front will have sufficient strength to propagate into the ionosphere with at least a 10% change in the ambient pressure across the disturbance front in the lower F region. Such an ionospheric perturbation will give ionospheric researchers an excellent opportunity to investigate acoustic propagation at ionospheric heights, shock dissipation effect, the ion-neutral coupling process, acoustic-gravity wave (traveling ionospheric disturbance) generation mechanisms, and associated RF phenomena.

  17. Regional Assimilation of NASA Atmospheric Infrared Sounder (AIRS) Data

    NASA Technical Reports Server (NTRS)

    Chou, Shih-Hung; Lapenta, William; Jediovec, Gary J.; McCarty, William; Mecikalski, John R.

    2004-01-01

    The NASA Short-term Prediction Research and Transition (SPORT) Center seeks to accelerate the infusion of NASA Earth Science Enterprise (ESE) observations, data assimilation and modeling research into NW S forecast operations and decision-making. The Atmospheric Infrared Sounder (AIRS), is expected to advance climate research and weather prediction into the 21 st century. It is one of six instruments onboard Aqua, a satellite that is part of NASA s Earth Observing System. AIRS, along with two partner microwave sounding instruments, represents the most advanced atmospheric sounding system ever deployed in space. The system is capable of measuring the atmospheric temperature in the troposphere with radiosonde accuracies of 1 K over 1 km-thick layers under both clear and cloudy conditions, while the accuracy of the derived moisture profiles will exceed that obtained by radiosondes. It is imperative that the scientific community is prepared to take full advantage of next-generation satellite data that will become available within the next decade. The purpose of this paper is to describe a procedure designed to optimally assimilate AIRS data at high spatial resolution over both land and ocean. The assimilation system used in this study is the Local Analysis and Prediction System (LAPS) developed at the Forecast System Laboratory used extensively around the globe. Results will focus on quality control issues associated with AIRS, optimal assimilation strategies, and the impact of the AIRS data on subsequent numerical forecasts at 12 km produced by the next generation Weather Research and Forecast (WRF) model.

  18. Preface: International Reference Ionosphere - Progress in Ionospheric Modelling

    NASA Technical Reports Server (NTRS)

    Bilitza Dieter; Reinisch, Bodo

    2010-01-01

    The international reference ionosphere (lRI) is the internationally recommended empirical model for the specification of ionospheric parameters supported by the Committee on Space Research (COSPAR) and the International Union of Radio Science (URSI) and recognized by the International Standardization Organization (ISO). IRI is being continually improved by a team of international experts as new data become available and better models are being developed. This issue chronicles the latest phase of model updates as reported during two IRI-related meetings. The first was a special session during the Scientific Assembly of the Committee of Space Research (COSPAR) in Montreal, Canada in July 2008 and the second was an IRI Task Force Activity at the US Air Force Academy in Colorado Springs in May 2009. This work led to several improvements and additions of the model which will be included in the next version, IRI-201O. The issue is divided into three sections focusing on the improvements made in the topside ionosphere, the F-peak, and the lower ionosphere, respectively. This issue would not have been possible without the reviewing efforts of many individuals. Each paper was reviewed by two referees. We thankfully acknowledge the contribution to this issue made by the following reviewers: Jacob Adeniyi, David Altadill, Eduardo Araujo, Feza Arikan, Dieter Bilitza, Jilijana Cander, Bela Fejer, Tamara Gulyaeva, Manuel Hermindez-Pajares, Ivan Kutiev, John MacDougal, Leo McNamara, Bruno Nava, Olivier Obrou, Elijah Oyeyemi, Vadym Paznukhov, Bodo Reinisch, John Retterer, Phil Richards, Gary Sales, J.H. Sastri, Ludger Scherliess, Iwona Stanislavska, Stamir Stankov, Shin-Yi Su, Manlian Zhang, Y ongliang Zhang, and Irina Zakharenkova. We are grateful to Peggy Ann Shea for her final review and guidance as the editor-in-chief for special issues of Advances in Space Research. We thank the authors for their timely submission and their quick response to the reviewer comments and humbly

  19. RAWS: The spaceborne radar wind sounder

    NASA Technical Reports Server (NTRS)

    Moore, Richard K.

    1991-01-01

    The concept of the Radar Wind Sounder (RAWS) is discussed. The goals of the RAWS is to estimate the following three qualities: the echo power, to determine rain rate and surface wind velocity; the mean Doppler frequency, to determine the wind velocity in hydrometers; and the spread of the Doppler frequency, to determine the turbulent spread of the wind velocity. Researchers made significant progress during the first year. The feasibility of the concept seems certain. Studies indicate that a reasonably sized system can measure in the presence of ice clouds and dense water clouds. No sensitivity problems exist in rainy environments. More research is needed on the application of the radar to the measurement of rain rates and winds at the sea surface.

  20. Millimeter-Wave Atmospheric Sounder (MAS)

    NASA Technical Reports Server (NTRS)

    Hartmann, G. K.

    1988-01-01

    MAS is a remote sensing instrument for passive sounding (limb sounding) of the earth's atmosphere from the Space Shuttle. The main objective of the MAS is to study the composition and dynamic structure of the stratosphere, mesosphere, and lower thermosphere in the height range 20 to 100 km, the region known as the middle atmosphere. The MAS will be flown on the Atmospheric Laboratory for Applications and Science (ATLAS 1) NASA mission scheduled for late 1990. The Millimeter-Wave Atmospheric Sounder will provide, for the first time, information obtained simultaneously on the temperature and on ozone concentrations in the 20 to 90 km altitude region. The information will cover a large area of the globe, will have high accuracy and high vertical resolution, and will cover both day and night times. Additionally, data on the two important molecules, H2O and ClO, will also be provided.

  1. RAWS: The spaceborne radar wind sounder

    NASA Astrophysics Data System (ADS)

    Moore, Richard K.

    1991-09-01

    The concept of the Radar Wind Sounder (RAWS) is discussed. The goals of the RAWS is to estimate the following three qualities: the echo power, to determine rain rate and surface wind velocity; the mean Doppler frequency, to determine the wind velocity in hydrometers; and the spread of the Doppler frequency, to determine the turbulent spread of the wind velocity. Researchers made significant progress during the first year. The feasibility of the concept seems certain. Studies indicate that a reasonably sized system can measure in the presence of ice clouds and dense water clouds. No sensitivity problems exist in rainy environments. More research is needed on the application of the radar to the measurement of rain rates and winds at the sea surface.

  2. Climate Change and Sounder Radiometric Stability

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Aumann, Hartmut H.; Manning, Evan

    2009-01-01

    Satellite instrument radiometric stability is critical for climate studies. The Atmospheric Infrared Sounder (AIRS) radiances are of sufficient stability and accuracy to serve as a climate data record as evidenced by comparisons with the global network of buoys. In this paper we examine the sensitivity of derived geophysical products to potential instrument radiometric stability issues due to diurnal, orbital and seasonal variations. Our method is to perturb the AIRS radiances and examine the impact to retrieved parameters. Results show that instability in retrieved temperature products will be on the same order of the brightness temperature error in the radiances and follow the same time dependences. AIRS excellent stability makes it ideal for examining impacts of instabilities of future systems on geophysical parameter performance.

  3. Assimilation of the Microwave Limb Sounder Radiances

    NASA Technical Reports Server (NTRS)

    Wargan, K.; Read, W.; Livesey, N.; Wagner, P.; Nguyen. H.; Pawson, S.

    2012-01-01

    It has been shown that the assimilation of limb-sounder data can significantly improve the representation of ozone in NASA's GEOS Data Assimilation Systems (GEOS-DAS), particularly in the stratosphere. The studies conducted so far utilized retrieved data from the MIPAS, POAM, ILAS and EOS Microwave Limb Sounder (EOS MLS) instruments. Direct assimilation of the radiance data can be seen as the natural next step to those studies. The motivation behind working with radiances is twofold. First, retrieval algorithms use a priori data which are either climatological or are obtained from previous analyses. This introduces additional uncertainty and, in some cases, may lead to "self-contamination"- when the a priori is taken from the same assimilation system in which subsequently ingests the retrieved observations. Second, radiances can be available in near real time thus providing an opportunity for operational assimilation, which could help improve the use of infrared radiance instruments from operational satellite instruments. In this presentation we summarize our ongoing work on an implementation of the assimilation of EOS MLS radiances into the GEOS-5 DAS. This work focuses on assimilation of band 7 brightness temperatures which are sensitive to ozone. Our implementation uses the MLS Callable Forward Model developed by the MLS team at NASA JPL as the observation operator. We will describe our approach and recent results which are not yet final. In particular, we will demonstrate that this approach has a potential to improve the vertical structure of ozone in the lower tropical stratosphere as compared with the retrieved MLS product. We will discuss the computational efficiency of this implementation.

  4. Response of the incompressible ionosphere to the compression of the magnetosphere during the geomagnetic sudden commencements

    NASA Astrophysics Data System (ADS)

    Kikuchi, T.; Hashimoto, K. K.; Tomizawa, I.; Ebihara, Y.; Nishimura, Y.; Araki, T.; Shinbori, A.; Veenadhari, B.; Tanaka, T.; Nagatsuma, T.

    2016-02-01

    The ionospheric plasma in midlatitude moves upward/downward during the geomagnetic sudden commencement causing the HF Doppler frequency changes; SCF (+ -) and (- +) on the dayside and nightside, respectively, except for the SCF (+ -) in the evening as found by Kikuchi et al. (1985). Although the preliminary and main frequency deviations (PFD, MFD) of the SCF have been attributed to the dusk-to-dawn and dawn-to-dusk potential electric fields, there still remain questions if the positive PFD can be caused by the compressional magnetohydrodynamic (MHD) wave and what causes the evening anomaly of the SCF. With the HF Doppler sounder, we show that the dayside ionosphere moves upward toward the Sun during the main impulse (MI) of the SC, when the compressional wave is supposed to push the ionosphere downward. The motion of the ionosphere is shown to be correlated with the equatorial electrojet, matching the potential electric field transmitted with the ionospheric currents from the polar ionosphere. We confirmed that the electric field of the compressional wave is severely suppressed by the conducting ionosphere and reproduced the SC electric fields using the global MHD simulation in which the potential solver is employed. The model calculations well reproduced the preliminary impulse and MI electric fields and their evening anomaly. It is suggested that the electric potential is transmitted from the polar ionosphere to the equator by the zeroth-order transverse magnetic (TM0) mode waves in the Earth-ionosphere waveguide. The near-instantaneous transmission of the electric potential leads to instantaneous global response of the incompressible ionosphere.

  5. Characteristics of the GOES I-M Imager and Sounder

    NASA Technical Reports Server (NTRS)

    Ernst, Thomas J.; Koenig, Edward W.

    1990-01-01

    The design and the parameters of the improved thermal-imaging and sounding instruments (the Imager and the Sounder) that will be part of the instrument complements of the next-generation Geostationary Operational Environmental Satellite (GOES I-M) are discussed. The new design incorporates many features that enhance instrumental reliability over the previous GOES radiometric instruments, such as independently functioning Sounder and Imager, redundancy, and more reliable position sensors and lubrication methods. Tables are presented which list the instrument parameters of the GOES I-M Imager and Sounder and the performance characteristics of the two instruments.

  6. Characteristics of the GOES I-M imager and sounder

    NASA Technical Reports Server (NTRS)

    Koenig, Edward W.

    1989-01-01

    The key features and operational characteristics of the thermal imaging and sounding instruments included into the next-generation GOES spacecraft (GOES I-M) are described. The GOES Imager's censor module has five spectral channels, including an eigth-element visible channel, three IR channels, and a water-vapor channel. The GOES Sounder's detector and filter arrangement makes use of four spectral bands: long-wave, mid-wave, short-wave, and visible. Tables of the Imager and the Sounder sensing performance characteristics are presented together with diagrams of the Imager optic parts and the Imager and the Sounder field and scan patterns.

  7. Ionospheric redistribution during geomagnetic storms

    PubMed Central

    Immel, T J; Mannucci, A J

    2013-01-01

    [1]The abundance of plasma in the daytime ionosphere is often seen to grow greatly during geomagnetic storms. Recent reports suggest that the magnitude of the plasma density enhancement depends on the UT of storm onset. This possibility is investigated over a 7year period using global maps of ionospheric total electron content (TEC) produced at the Jet Propulsion Laboratory. The analysis confirms that the American sector exhibits, on average, larger storm time enhancement in ionospheric plasma content, up to 50% in the afternoon middle-latitude region and 30% in the vicinity of the high-latitude auroral cusp, with largest effect in the Southern Hemisphere. We investigate whether this effect is related to the magnitude of the causative magnetic storms. Using the same advanced Dst index employed to sort the TEC maps into quiet and active (Dst<−100 nT) sets, we find variation in storm strength that corresponds closely to the TEC variation but follows it by 3–6h. For this and other reasons detailed in this report, we conclude that the UT-dependent peak in storm time TEC is likely not related to the magnitude of external storm time forcing but more likely attributable to phenomena such as the low magnetic field in the South American region. The large Dst variation suggests a possible system-level effect of the observed variation in ionospheric storm response on the measured strength of the terrestrial ring current, possibly connected through UT-dependent modulation of ion outflow. PMID:26167429

  8. International reference ionosphere 1990

    NASA Technical Reports Server (NTRS)

    Bilitza, Dieter; Rawer, K.; Bossy, L.; Kutiev, I.; Oyama, K.-I.; Leitinger, R.; Kazimirovsky, E.

    1990-01-01

    The International Reference Ionosphere 1990 (IRI-90) is described. IRI described monthly averages of the electron density, electron temperature, ion temperature, and ion composition in the altitude range from 50 to 1000 km for magnetically quiet conditions in the non-auroral ionosphere. The most important improvements and new developments are summarized.

  9. The Atmospheric Infrared Sounder version 6 cloud products

    NASA Astrophysics Data System (ADS)

    Kahn, B. H.; Irion, F. W.; Dang, V. T.; Manning, E. M.; Nasiri, S. L.; Naud, C. M.; Blaisdell, J. M.; Schreier, M. M.; Yue, Q.; Bowman, K. W.; Fetzer, E. J.; Hulley, G. C.; Liou, K. N.; Lubin, D.; Ou, S. C.; Susskind, J.; Takano, Y.; Tian, B.; Worden, J. R.

    2014-01-01

    The version 6 cloud products of the Atmospheric Infrared Sounder (AIRS) and Advanced Microwave Sounding Unit (AMSU) instrument suite are described. The cloud top temperature, pressure, and height and effective cloud fraction are now reported at the AIRS field-of-view (FOV) resolution. Significant improvements in cloud height assignment over version 5 are shown with FOV-scale comparisons to cloud vertical structure observed by the CloudSat 94 GHz radar and the Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP). Cloud thermodynamic phase (ice, liquid, and unknown phase), ice cloud effective diameter (De), and ice cloud optical thickness (τ) are derived using an optimal estimation methodology for AIRS FOVs, and global distributions for 2007 are presented. The largest values of τ are found in the storm tracks and near convection in the tropics, while De is largest on the equatorial side of the midlatitude storm tracks in both hemispheres, and lowest in tropical thin cirrus and the winter polar atmosphere. Over the Maritime Continent the diurnal variability of τ is significantly larger than for the total cloud fraction, ice cloud frequency, and De, and is anchored to the island archipelago morphology. Important differences are described between northern and southern hemispheric midlatitude cyclones using storm center composites. The infrared-based cloud retrievals of AIRS provide unique, decadal-scale and global observations of clouds over portions of the diurnal and annual cycles, and capture variability within the mesoscale and synoptic scales at all latitudes.

  10. The Atmospheric Infrared Sounder Version 6 cloud products

    NASA Astrophysics Data System (ADS)

    Kahn, B. H.; Irion, F. W.; Dang, V. T.; Manning, E. M.; Nasiri, S. L.; Naud, C. M.; Blaisdell, J. M.; Schreier, M. M.; Yue, Q.; Bowman, K. W.; Fetzer, E. J.; Hulley, G. C.; Liou, K. N.; Lubin, D.; Ou, S. C.; Susskind, J.; Takano, Y.; Tian, B.; Worden, J. R.

    2013-06-01

    The Version 6 cloud products of the Atmospheric Infrared Sounder (AIRS) and Advanced Microwave Sounding Unit (AMSU) instrument suite are described. The cloud top temperature, pressure, and height and effective cloud fraction are now reported at the AIRS field of view (FOV) resolution. Significant improvements in cloud height assignment over Version 5 are shown with pixel-scale comparisons to cloud vertical structure observed by the CloudSat 94 GHz radar and the Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP). Cloud thermodynamic phase (ice, liquid, and unknown phase), ice cloud effective diameter (De), and ice cloud optical thickness (τ) are derived using an optimal estimation methodology for AIRS FOVs, and global distributions for January 2007 are presented. The largest values of τ are found in the storm tracks and near convection in the Tropics, while De is largest on the equatorial side of the midlatitude storm tracks in both hemispheres, and lowest in tropical thin cirrus and the winter polar atmosphere. Over the Maritime Continent the diurnal cycle of τ is significantly larger than for the total cloud fraction, ice cloud frequency, and De, and is anchored to the island archipelago morphology. Important differences are described between northern and southern hemispheric midlatitude cyclones using storm center composites. The infrared-based cloud retrievals of AIRS provide unique, decadal-scale and global observations of clouds over the diurnal and annual cycles, and captures variability within the mesoscale and synoptic scales at all latitudes.

  11. Development and test of the Atmospheric Infrared Sounder (AIRS)

    NASA Astrophysics Data System (ADS)

    Morse, Paul G.; Bates, Jerry C.; Miller, Christopher R.; Chahine, Moustafa T.; O'Callaghan, Fred; Aumann, Hartmut H.; Karnik, Avinash R.

    1999-12-01

    The Atmospheric Infrared Sounder (AIRS) has been developed for the NASA Earth Observing System (EOS) program for a scheduled launch on the EOS PM-1 spacecraft in December 2000. AIRS, working in concert with complementary microwave instrumentation on EOS PM-1 is designed to provide both new and more accurate data about the atmosphere, land and oceans for application to NASA climate studies and NOAA and DOD weather prediction. Among the important parameters to be derived from AIRS observations are atmospheric temperature profiles with an average accuracy of 1 K in 1 kilometer (km) layers in the troposphere, humidity profiles to 10% accuracy and surface temperatures with an average accuracy of 0.5 K. The AIRS measurement technique is based on passive IR remote sensing using a precisely calibrated, high spectral resolution grating spectrometer operating in the 3.7 - 15.4 micrometer region. The instrument concept uses a passively cooled multi- aperture echelle array spectrometer approach in combination with advanced state of the art focal plane and cryogenic refrigerator technology to achieve unparalleled performance capability in a practical long life configuration. The AIRS instrument, which has been under development since 1991, has been fully integrated and has completed successfully a comprehensive performance verification program. Performance verification included thermal vacuum testing, environmental qualification and a full range of spatial, spectral and radiometric calibrations, which have demonstrated outstanding spectrometric performance. This paper provides a brief overview of the AIRS mission and instrument design along with key results from the test program.

  12. The Atmospheric Infrared Sounder Version 6 Cloud Products

    NASA Technical Reports Server (NTRS)

    Kahn, B. H.; Irion, F. W.; Dang, V. T.; Manning, E. M.; Nasiri, S. L.; Naud, C. M.; Blaisdell, J. M.; Schreier, M. M..; Yue, Q.; Bowman, K. W.; Fetzer, E. J.; Hulley, G. C.; Liou, K. N.; Lubin, D.; Ou, S. C.; Susskind, J.; Takano, Y.; Tian, B.; Worden, J. R.

    2014-01-01

    The version 6 cloud products of the Atmospheric Infrared Sounder (AIRS) and Advanced Microwave Sounding Unit (AMSU) instrument suite are described. The cloud top temperature, pressure, and height and effective cloud fraction are now reported at the AIRS field-of-view (FOV) resolution. Significant improvements in cloud height assignment over version 5 are shown with FOV-scale comparisons to cloud vertical structure observed by the CloudSat 94 GHz radar and the Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP). Cloud thermodynamic phase (ice, liquid, and unknown phase), ice cloud effective diameter D(sub e), and ice cloud optical thickness (t) are derived using an optimal estimation methodology for AIRS FOVs, and global distributions for 2007 are presented. The largest values of tau are found in the storm tracks and near convection in the tropics, while D(sub e) is largest on the equatorial side of the midlatitude storm tracks in both hemispheres, and lowest in tropical thin cirrus and the winter polar atmosphere. Over the Maritime Continent the diurnal variability of tau is significantly larger than for the total cloud fraction, ice cloud frequency, and D(sub e), and is anchored to the island archipelago morphology. Important differences are described between northern and southern hemispheric midlatitude cyclones using storm center composites. The infrared-based cloud retrievals of AIRS provide unique, decadal-scale and global observations of clouds over portions of the diurnal and annual cycles, and capture variability within the mesoscale and synoptic scales at all latitudes.

  13. Remote detection of the maximum altitude of equatorial ionospheric plasma bubbles

    NASA Technical Reports Server (NTRS)

    Benson, R. F.

    1981-01-01

    Nearly 200 post-sunset low-altitude passes of the Alouette 2 and ISIS 1 satellites near the dip equator are studied in order to find the maximum ionospheric plasma bubble altitudes, which are determined by calculating the apex altitude of the magnetic field line passing through the satellite when it is immersed in a bubble. The calculations are made only upon the observation of conjugate hemisphere ionospheric echoes, which result from ducted HF sounder signals that are guided along field-aligned irregularities within the plasma depletion. The maximum bubble altitudes corresponding to the three longitude sectors centered on zero deg, 75 deg W, and 105 deg E, are found to often exceed 1000 km, but seldom 3000 km. The electron density depletions within these field-aligned bubbles, as measured at the point of satellite encounter with the topside ionosphere, are generally less than a factor of two but may exceed a factor of ten.

  14. Work of PZT ceramics sounder for sound source artificial larynx

    NASA Astrophysics Data System (ADS)

    Sugio, Yuuichi; Kanetake, Ryota; Tanaka, Akimitsu; Ooe, Katsutoshi

    2007-04-01

    We aim to develop the easy-to-use artificial larynx with high tone quality. We focus on using a PZT ceramics sounder as its sound source, because it is small size, low power consumption, and harmless to humans. But conventional PZT ceramics sounder have the problem that it cannot generate an enough sound in the low frequency range, thus they cannot be used for artificial larynx. Then, we aim to develop the PZT ceramics sounder which can generate enough volume in the low frequency range. If we can lower the resonance frequency of the sounder, it can generate low pitch sound easily. Therefore I created the new diaphragm with low resonance frequency. In addition, we could obtain the high amplitude by changing method of driving. This time, we report on the characteristic comparison of this new PZT ceramics sounder and conventional one. Furthermore, for this new one, we analyzed the best alignment of PZT ceramics and the shape of the diaphragm to obtain low resonance frequency and big amplitude. In fact we analyzed the optimization of the structure. The analysis is done by computer simulation of ANSYS and Laser Doppler Vibrometer. In the future, we will add intonation to the generated sound by input wave form which is developed concurrently, and implant the sounder inside of the body by the method of fixing metal to biomolecule which is done too. And so high tone quality and convenient artificial larynx will be completed.

  15. Ionospheric Specifications for SAR Interferometry (ISSI)

    NASA Technical Reports Server (NTRS)

    Pi, Xiaoqing; Chapman, Bruce D; Freeman, Anthony; Szeliga, Walter; Buckley, Sean M.; Rosen, Paul A.; Lavalle, Marco

    2013-01-01

    The ISSI software package is designed to image the ionosphere from space by calibrating and processing polarimetric synthetic aperture radar (PolSAR) data collected from low Earth orbit satellites. Signals transmitted and received by a PolSAR are subject to the Faraday rotation effect as they traverse the magnetized ionosphere. The ISSI algorithms combine the horizontally and vertically polarized (with respect to the radar system) SAR signals to estimate Faraday rotation and ionospheric total electron content (TEC) with spatial resolutions of sub-kilometers to kilometers, and to derive radar system calibration parameters. The ISSI software package has been designed and developed to integrate the algorithms, process PolSAR data, and image as well as visualize the ionospheric measurements. A number of tests have been conducted using ISSI with PolSAR data collected from various latitude regions using the phase array-type L-band synthetic aperture radar (PALSAR) onboard Japan Aerospace Exploration Agency's Advanced Land Observing Satellite mission, and also with Global Positioning System data. These tests have demonstrated and validated SAR-derived ionospheric images and data correction algorithms.

  16. Ionospheric irregularity physics modelling

    SciTech Connect

    Ossakow, S.L.; Keskinen, M.J.; Zalesak, S.T.

    1982-01-01

    Theoretical and numerical simulation techniques have been employed to study ionospheric F region plasma cloud striation phenomena, equatorial spread F phenomena, and high latitude diffuse auroral F region irregularity phenomena. Each of these phenomena can cause scintillation effects. The results and ideas from these studies are state-of-the-art, agree well with experimental observations, and have induced experimentalists to look for theoretically predicted results. One conclusion that can be drawn from these studies is that ionospheric irregularity phenomena can be modelled from a first principles physics point of view. Theoretical and numerical simulation results from the aforementioned ionospheric irregularity areas will be presented.

  17. Modeling and design for a new ionospheric modification experiment

    NASA Astrophysics Data System (ADS)

    Sales, Gary S.; Platt, Ian G.; Haines, D. Mark; Huang, Yuming; Heckscher, John L.

    1990-10-01

    Plans are now underway to carry out new high frequency oblique ionospheric modification experiments with increased radiated power using a new high gain antenna system and a 1 MW transmitter. The output of this large transmitting system will approach 90 dBW. An important part of this program is to determine the existence of threshold for nonlinear effects by varying the transmitter output. For these experiments, a high frequency probe system, a low power oblique sounder, is introduced to be used along the same propagation path as the high power disturbing transmitter. The concept was first used by soviet researchers to insure that this diagnostic signal always passes through the modified region of the ionosphere. The HF probe system will use a low power (150 W) CW signal shifted by approximately 40 kHz from the frequency used by the high power system. The transmitter for the probe system will be at the same location as the multiple antennas to measure the vertical and azimuthal angle of arrival as well as the Doppler frequency shift of the arriving probe signal. The three antenna array will be in an 'L' configuration to measure the phase differences between the antennas. At the midpath point a vertical sounder will provide the ionospheric information necessary for the frequency management of the experiment. Real-time processing will permit the site operators to evaluate the performance of the system and make adjustments during the experiment. A special ray tracing computer will be used to provide real-time frequencies and elevation beam steering during the experiment. A description of the system and the analysis used in the design of the experiment are presented.

  18. The geostationary remote infrared pollution sounder (GRIPS)

    NASA Astrophysics Data System (ADS)

    Bloom, H.; Dickerson, Russell; Schoeberl, M.; Gordley, L. L.; Marshall, B. T.; McHugh, M.; Spackman, R.; Fish, C.; Kim, J.

    2012-11-01

    Climate change and air quality are the most pressing environmental issues of the 21st century. Despite decades of research, the sources and sinks of key greenhouse gases remain highly uncertain [IPCC, 2007] making atmospheric composition predictions difficult. The Geostationary Remote Infrared Pollution Sounder (GRIPS) will measure carbon dioxide (CO2), carbon monoxide (CO), methane (CH4), and nitrous oxide (N2O) with unprecedented precision to reduce substantially this uncertainty. The GRIPS instrument uses gas filter correlation radiometry (GFCR) to detect reflected and thermal IR radiation from geostationary orbit. GRIPS is designed to haves sensitivity down to the Earth's surface at ~8 km nadir resolution. GRIPS can also resolve CO2, CO, and CH4 anomalies in the planetary boundary layer and the free troposphere to quantify lofting, diurnal variations and long-range transport. With repeated measurements throughout the day GRIPS can maximize the number of cloud free measurements determining biogenic and anthropogenic sources, sinks, and fluxes. Finally, the GFCR technique is, to first order, insensitive to aerosols interference. GRIPS is highly complementary to the Orbiting Carbon Observatory, OCO-2, and other existing and planned missions.

  19. GRIPS - The Geostationary Remote Infrared Pollution Sounder

    NASA Astrophysics Data System (ADS)

    Dickerson, R. R.; Schoeberl, M. R.; Gordley, L. L.; McHugh, M. J.; Thompson, A. M.; Burrows, J. P.; Zeng, N.; Marshall, B. T.; Fish, C. S.; Spackman, J. R.; Kim, J.; Park, R.; Warner, J. X.; Bhartia, P. K.; Kollonige, D. E.

    2012-12-01

    Climate change and air quality are the most pressing environmental issues of the 21st century - for America and for the world as a whole. Despite decades of research, the sources and sinks of key greenhouse gases and other pollutants remain highly uncertain making atmospheric composition predictions difficult. The Geostationary Remote Infrared Pollution Sounder (GRIPS) will measure carbon dioxide (CO2), carbon monoxide (CO), and methane (CH4). By using measurements of nitrous oxide (N2O) and the O2 A-band to help correct for clouds and aerosols, GRIPS will achieve unprecedented precision. Together these gases account for about 85% of all climate forcing and they impact atmospheric ozone (O3). GRIPS, employing gas-filter correlation radiometry, uses the target gases themselves in place of dispersive elements to achieve outstanding throughput, sensitivity, and specificity. Because it uses a combination of reflected and thermal IR, GRIPS will detect trace gas concentrations right down to the Earth's surface. When flown in parallel to a UV/VIS sensor such as GEMS on GEO-KOMPSAT-2B over East Asia or the Sentinel 4 on MTG over Europe/Africa, the combination offers powerful finger-printing capabilities to distinguish and quantify diverse pollution sources such as electricity generation, biomass burning, and motor vehicles. From geostationary orbit, GRIPS will be able to focus on important targets to quantify sources, net flux, diurnal cycles, and long-range transport of these key components in the Earth's radiative balance and air quality.

  20. GRIPS - The Geostationary Remote Infrared Pollution Sounder

    NASA Astrophysics Data System (ADS)

    Spackman, Ryan; Dickerson, Russell; Schoeberl, Mark; Bloom, Hal; Gordley, Larry; McHugh, Martin; Thompson, Anne; Burrows, John; Zeng, Ning; Marshall, Tom; Fish, Chad; Kim, Jhoon; Park, Rokjin; Warner, Juying; Bhartia, Pawan; Kollonige, Debra

    2013-04-01

    Climate change and air quality are the most pressing environmental issues of the 21st century for America and for the world as a whole. Despite decades of research, the sources and sinks of key greenhouse gases and other pollutants remain highly uncertain making atmospheric composition predictions difficult. The Geostationary Remote Infrared Pollution Sounder (GRIPS) will measure carbon dioxide (CO2), carbon monoxide (CO), and methane (CH4). By using measurements of nitrous oxide (N2O) and the O2 A-band to help correct for clouds and aerosols, GRIPS will achieve unprecedented precision. Together these gases account for about 85% of all climate forcing and they impact atmospheric ozone (O3). GRIPS, employing gas-filter correlation radiometry, uses the target gases themselves in place of dispersive elements to achieve outstanding throughput, sensitivity, and specificity. Because it uses a combination of reflected and thermal IR, GRIPS will detect trace gas concentrations right down to the Earth's surface. When flown in parallel to a UV/VIS sensor such as GEMS on GEO-KOMPSAT-2B over East Asia or the Sentinel 4 on MTG over Europe/Africa, the combination offers powerful finger-printing capabilities to distinguish and quantify diverse pollution sources such as electricity generation, biomass burning, and motor vehicles. From geostationary orbit, GRIPS will be able to focus on important targets to quantify sources, net flux, diurnal cycles, and long-range transport of these key components in the Earth's radiative balance and air quality.

  1. Planetary protection for Europa radar sounder antenna

    NASA Astrophysics Data System (ADS)

    Aaron, Kim M.; Moussessian, Alina; Newlin, Laura E.; Willis, Paul B.; Chen, Fei; Harcke, Leif J.; Chapin, Elaine; Jun, Insoo; Gim, Yonggyu; McEachen, Michael; Allen, Scotty; Kirchner, Donald; Blankenship, Donald

    2016-05-01

    The potential for habitability puts stringent requirements on planetary protection for a mission to Europa. A long-wavelength radar sounder with a large antenna is one of the proposed instruments for a future Europa mission. The size and construction of radar sounding antennas make the usual methods of meeting planetary protection requirements challenging. This paper discusses a viable planetary protection scheme for an antenna optimized for Europa radar sounding. The preferred methodology for this antenna is exposure to 100 kGy (10 Mrad) in water of gamma radiation using a Cobalt-60 source for both bulk and surface sterilization and exposure to vapor hydrogen peroxide for surface treatment for possible recontamination due to subsequent handling. For the boom-supported antenna design, selected tests were performed to confirm the suitability of these treatment methods. A portion of a coilable boom residual from an earlier mission was irradiated and its deployment repeatability confirmed with no degradation. Elasticity was measured of several fiberglass samples using a four-point bending test to confirm that there was no degradation due to radiation exposure. Vapor hydrogen peroxide treatment was applied to the silver-coated braid used as the antenna radiating element as it was the material most likely to be susceptible to oxidative attack under the treatment conditions. There was no discernable effect. These tests confirm that the radar sounding antenna for a Europa mission should be able tolerate the proposed sterilization methods.

  2. Extremely Low Ionospheric Peak Altitudes in the Polar-Hole Region

    NASA Technical Reports Server (NTRS)

    Benson, Robert F.; Grebowsky, Joseph M.

    1999-01-01

    Vertical electron-density (N (sub e)) profiles, deduced from newly-available ISIS-II digital ionospheric topside-sounder data, are used to investigate the "polar-hole" region within the winter, nighttime polar cap ionosphere during solar minimum. The hole region is located around 0200 MLT near the poleward side of the auroral oval. Earlier investigations had revealed very low N (sub e) values in this region (down to 200/cu cm near 300 km). In the present study, such low N, values (approx. 100/cu cm) were only found near the ISIS (International Satellite for Ionospheric Study)-II altitude of 1400 km. The peak ionospheric concentration below the spacecraft remained fairly constant (approx. 10 (exp 5)/cu cm across the hole region but the altitude of the peak dropped dramatically. This peak dropped, surprisingly, to the vicinity of 100 km. These observations suggest that the earlier satellite in situ measurements, interpreted as deep holes in the ionospheric F-region concentration, could have been made during conditions of an extreme decrease in the altitude of the ionospheric N (sub e) peak. The observations, in combination with other data, indicate that the absence of an F-layer peak may be a frequent occurrence at high latitudes.

  3. Modeling Ionospheric Electrodynamics (Invited)

    NASA Astrophysics Data System (ADS)

    Huba, J. D.

    2009-12-01

    We present modeling results of ionospheric electrodynamics using the 3D NRL ionosphere model SAMI3. Recently, SAMI3 has been upgraded to solve the potential equation that determines the electrostatic potential from the ionospheric conductances (Pedersen and Hall) and drivers: neutral wind, gravity, and parallel current systems. We present results showing the impact of different neutral wind models (e.g., HWM93, HWM07, TIMEGCM) on the dynamics of the low- to mid-latitude ionosphere, as well as the Region 1 and 2 current systems. We point out issues and concerns with obtaining an accurate specification of the global electric field within the context of existing models.(with J. Krall, G. Joyce, S. Slinker, and G. Crowley). Research supported by NASA and ONR

  4. Dayside Ionospheric Superfountain

    NASA Technical Reports Server (NTRS)

    Tsurutani, Bruce T.; Verkhoglyadova, Olga P.; Mannucci, Anthony J.

    2010-01-01

    The Dayside Ionospheric Super-fountain modified SAMI2 code predicts the uplift, given storm-time electric fields, of the dayside near-equatorial ionosphere to heights of over 800 kilometers during magnetic storm intervals. This software is a simple 2D code developed over many years at the Naval Research Laboratory, and has importance relating to accuracy of GPS positioning, and for satellite drag.

  5. Tsunami Ionospheric warning and Ionospheric seismology

    NASA Astrophysics Data System (ADS)

    Lognonne, Philippe; Rolland, Lucie; Rakoto, Virgile; Coisson, Pierdavide; Occhipinti, Giovanni; Larmat, Carene; Walwer, Damien; Astafyeva, Elvira; Hebert, Helene; Okal, Emile; Makela, Jonathan

    2014-05-01

    The last decade demonstrated that seismic waves and tsunamis are coupled to the ionosphere. Observations of Total Electron Content (TEC) and airglow perturbations of unique quality and amplitude were made during the Tohoku, 2011 giant Japan quake, and observations of much lower tsunamis down to a few cm in sea uplift are now routinely done, including for the Kuril 2006, Samoa 2009, Chili 2010, Haida Gwai 2012 tsunamis. This new branch of seismology is now mature enough to tackle the new challenge associated to the inversion of these data, with either the goal to provide from these data maps or profile of the earth surface vertical displacement (and therefore crucial information for tsunami warning system) or inversion, with ground and ionospheric data set, of the various parameters (atmospheric sound speed, viscosity, collision frequencies) controlling the coupling between the surface, lower atmosphere and the ionosphere. We first present the state of the art in the modeling of the tsunami-atmospheric coupling, including in terms of slight perturbation in the tsunami phase and group velocity and dependance of the coupling strength with local time, ocean depth and season. We then show the confrontation of modelled signals with observations. For tsunami, this is made with the different type of measurement having proven ionospheric tsunami detection over the last 5 years (ground and space GPS, Airglow), while we focus on GPS and GOCE observation for seismic waves. These observation systems allowed to track the propagation of the signal from the ground (with GPS and seismometers) to the neutral atmosphere (with infrasound sensors and GOCE drag measurement) to the ionosphere (with GPS TEC and airglow among other ionospheric sounding techniques). Modelling with different techniques (normal modes, spectral element methods, finite differences) are used and shown. While the fits of the waveform are generally very good, we analyse the differences and draw direction of future

  6. Cross-track infrared sounder FPA performance

    NASA Astrophysics Data System (ADS)

    D'Souza, Arvind I.; Dawson, Larry C.; Marsh, Stacy; Willis, Richard W.; Wijewarnasuriya, Priyalal S.; DeWames, Roger E.; Arias, Jose M.; Bajaj, Jagmohan; Hildebrandt, Gernot; Moore, Fergus E.

    2001-10-01

    The National Polar-orbiting Operational Environmental Satellite System (NPOESS) Cross-track Infrared Sounder (CrIS) is an interferometric sensor that measures earth radiances at high spectral resolution, using the data to provide pressure, temperature and moisture profiles of the atmosphere. The pressure, temperature and moisture sounding data are used in weather prediction models that track storms, predict levels of precipitation etc. The CrIS instrument contains SWIR ((λc approximately 5 μm at 98K), MWIR (λc approximately 9 μm at 98K) LWIR (λc approximately 16 μm at 81K) Focal Plane Array (FPA) modules. A critical CrIS design selection was the use of photovoltaic (PV) detectors in all three spectral bands. PV detectors have the important benefits of high sensitivity and linearity. Each FPA modules consists of nine large (1000 μm diameter) photovoltaic detectors with accompanying cold preamplifiers. This paper describes the performance for all the modules forming the CrIS Detector Preamplifier Module (DPM). Molecular Beam Epitaxy (MBE) is used to grow the appropriate bandgap n-type Hg1-xCdxTe on lattice matched CdZnTe. SWIR, MWIR and LWIR 1000 μm diameter detectors have been manufactured using the Lateral Collection Diode (LCD) architecture. Custom pre-amplifiers have been designed to interface with the large SWIR, MWIR and LWIR detectors. The operating temperature is above 78K, permitting the use of passive radiators in spacecraft to cool the detectors. Recently fabricated 1000 micrometers diameter photovoltaic detectors have the measured performance parameters listed in the Table below. Expected D* performance from the detector/pre-amplifier models are also listed in the table. The D* values are calculated at the CrIS program peak wavelength specified for each spectral band.

  7. Vertical characteristics of midlatitude E and F region ionospheric drifts during disturbed conditions..

    NASA Astrophysics Data System (ADS)

    Boska, Josef; Kouba, Daniel; Koucka Knizova, Petra; Potuznikova, Katerina

    2015-04-01

    Modern HF digisonde DPS-4 D (Digisonde Portable Sounder), which is in operation at the Pruhonice observatory of the Institute of Atmospheric Physics, Prague (IAP) from 2004, enables us to carry out standard ionospheric sounding and ionospheric drifts measurements. Using standard mode of automatic drift (autodrift mode) measurements the velocity of the F region drifts is usually determined in the vicinity of the peak of the electron density profile (N(h) profile). Since 2005 we are also measuring ionospheric drifts at the heights of the ionospheric E region. This new experimental arrangement makes possible to study vertical changes and profiles of the ionospheric drift velocity in two different ionospheric regions. From E region within the altitudinal interval of 90-150 km to F region in altitudes from 150 km up to height of the maximum electron density profile N(h). This paper present the results of the analysis of the plasma drifts velocity in two different ionospheric regions observed under quiet geomagnetic and ionospheric conditions and especially during ionospheric spread F conditions. These spread F conditions are often observed in the ionosphere as effect of travelling ionopheric disturbances TIDs. The presence of this TIDS can be detected from the F layer isoelectrondensity contours. The spread F conditions are often present also under moderate-to-intense ionospheric and geomagnetic storm conditions. Our results shows, that behavior of Es layer drifts can be different than drifts in E-layer. During winter geomagnetic storm -more dramatic increasing of all drift velocities components was observed (50 - 100 m/s vertical drift component). Different behaviour ionospheric drifts at the heights intervals 90 - 110 km and 110 - 130 km was observed during winter storm. Significant height changes of the drift velocity height profile in the interval of heights 90 - 130 km during winter event was observed. Our results shows that behavior of Es layer drifts can be

  8. Study of stratospheric-ionospheric coupling during thunderstorms and tornadoes

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Smith, R. E.

    1977-01-01

    A continuous-wave-spectrum high-frequency Doppler sounder array with three transmitters at each of three sites was used to observe the dynamics of the coupling of energy between the stratosphere and the ionosphere. During times of severe weather activity wavelike disturbances have been detected on ground-based ionospheric sounding records as perturbations in electron densities. Infrasonic waves with wave periods of 3-7 min and with horizontal phase velocities of 600-800 m/s were observed when there was thunderstorm activity; gravity waves with wave periods of 10-15 min and horizontal phase velocities of 100-200 m/s were detected when there was tornado activity. Both triangulations from the cross correlation functions of the Doppler records based on an assumption of no background wind shear and ray-tracing computations including an assumed background wind shear indicate that the waves originated in the vicinity of the thunderstorms and tornadoes. A comparison of the wavelengths of the infrasonic and gravity waves observed at ionospheric heights and those in cloud-top pictures from satellites show that they are all of the order of 100-300 km.

  9. Latest developments of geostationary microwave sounder technologies for NOAA's mission

    NASA Astrophysics Data System (ADS)

    Bajpai, Shyam; Madden, Michael; Chu, Donald; Yapur, Martin

    2006-12-01

    The National Oceanic and Atmospheric Administration (NOAA) have been flying microwave sounders since 1975 on Polar Operational Environmental Satellites (POES). Microwave observations have made significant contributions to the understanding of the atmosphere and earth surface. This has helped in improving weather and storm tracking forecasts. However, NOAA's Geostationary Operational Environmental Satellites (GOES) have microwave requirements that can not be met due to the unavailability of proven technologies. Several studies of a Geostationary Microwave Sounder (GMS) have been conducted. Among those, are the Geostationary Microwave Sounder (GEM) that uses a mechanically steered solid dish antenna and the Geostationary Synthetic Thinned Aperture Radiometer (GeoSTAR) that utilizes a sparse aperture array. Both designs take advantage of the latest developments in sensor technology. NASA/Jet Propulsion Lab (JPL) has recently successfully built and tested a prototype ground-based GeoSTAR at 50 GHz frequency with promising test results. Current GOES IR Sounders are limited to cloud top observations. Therefore, a sounding suite of IR and Microwave should be able to provide observations under clear as well as cloudy conditions all the time. This paper presents the results of the Geostationary Microwave Sounder studies, user requirements, frequencies, technologies, limitations, and implementation strategies.

  10. Multi-GNSS for Ionospheric Scintillation Studies

    NASA Astrophysics Data System (ADS)

    Morton, Y.

    2015-12-01

    GNSS have been widely used for ionospheric monitoring. We anticipate over 160 GNSS satellites broadcasting 400 signals by 2023, nearly double the number today. With their well-defined signal structures, high spatial density and spectral diversity, GNSS offers low cost and distributed passive sensing of ionosphere effects. There are, however, many challenges to utilize GNSS resources to characterize and forecast ionospheric scintillation. Originally intended for navigation purposes, GNSS receivers are designed to filter out nuisance effects due to ionosphere effects. GNSS measurements are plagued with errors from multipath, oscillator jitters, processing artifacts, and neutral atmosphere effects. Strong scintillation events are often characterized by turbulent structures in ionosphere, causing simultaneous deep amplitude fading and abrupt carrier phase changes. The combined weak signal and high carrier dynamics imposes conflicting requirements for GNSS receiver design. Therefore, GNSS receivers often experience cycle slips and loss of lock of signals during strong scintillation events. High quality, raw GNSS signals bearing space weather signatures and robust receiver algorithms designed to capture these signatures are needed in order for GNSS to be a reliable and useful agent for scintillation monitoring and forecasting. Our event-driven, reconfigurable data collection system is designed to achieve this purpose. To date, our global network has collected ~150TB of raw GNSS data during space weather events. A suite of novel receiver processing algorithms has been developed by exploitating GNSS spatial, frequency, temporal, and constellation diversity to process signals experiencing challenging scintillation impact. The algorithms and data have advanced our understanding of scintillation impact on GNSS, lead to more robust receiver technologies, and enabled high spatial and temporal resolution depiction of ionosphere responses to solar and geomagnetic conditions. This

  11. Electron Density Profiles of the Topside Ionosphere

    NASA Technical Reports Server (NTRS)

    Huang, Xue-Qin; Reinsch, Bodo W.; Bilitza, Dieter; Benson, Robert F.

    2002-01-01

    The existing uncertainties about the electron density profiles in the topside ionosphere, i.e., in the height region from h,F2 to - 2000 km, require the search for new data sources. The ISIS and Alouette topside sounder satellites from the sixties to the eighties recorded millions of ionograms but most were not analyzed in terms of electron density profiles. In recent years an effort started to digitize the analog recordings to prepare the ionograms for computerized analysis. As of November 2001 about 350000 ionograms have been digitized from the original 7-track analog tapes. These data are available in binary and CDF format from the anonymous ftp site of the National Space Science Data Center. A search site and browse capabilities on CDAWeb assist the scientific usage of these data. All information and access links can be found at http://nssdc.gsfc.nasa.gov/space/isis/isis- status.htm1. This paper describes the ISIS data restoration effort and shows how the digital ionograms are automatically processed into electron density profiles from satellite orbit altitude (1400 km for ISIS-2) down to the F peak. Because of the large volume of data an automated processing algorithm is imperative. The TOPside Ionogram Scaler with True height algorithm TOPIST software developed for this task is successfully scaling - 70% of the ionograms. An <> is available to manually scale the more difficult ionograms. The automated processing of the digitized ISIS ionograms is now underway, producing a much-needed database of topside electron density profiles for ionospheric modeling covering more than one solar cycle.

  12. Incredibly distant ionospheric responses to earthquake

    NASA Astrophysics Data System (ADS)

    Yusupov, Kamil; Akchurin, Adel

    2015-04-01

    area of medium-scale wave (387 km), which ionograms showed F-spread rather than MCS. Obviously, this is due to the vertical structure of the disturbance in the near zone. Another interesting feature associated with the vertical structure is a 1-2 minute advance of the appearance MCS in ionograms in relation to the advent of large-scale TEC disturbance. Naturally, such appearance time comparison can only be in such distances, when there are large-scale TEC disturbances (<1000-1200 km). Only MCS and Doppler shifts are observing at large distances. Look-back analysis of Japanese ionograms showed only eight cases of ionogram MCS observation from 43 strongest earthquakes (magnitude> 8) during the period from 1957-2011. This indirectly explains why it had to wait 50 years to recognize the MCS as a response to the earthquake. Previously performed statistical analyses showed that the MCS appear mainly from 9 to 15 LT and the epicentre distances range is the 800-6000 km. The MCS signatures at distances removing from earthquake epicentre more than 6000 km seen in ionosondes in Kazan, Kaliningrad and Sodankyla. These MCS in Kazan (as well in Kaliningrad, in Sodankyla) observed during the daytime from 9 to 15 LT. At this time, the height electron concentration gradient is significantly reducing in the F1-layer. This leads to the fact that a small disturbance of this gradient distorts some area of electron density profile and it reduces the value of the local gradient to zero (or even negative) values. Observations in our ionosonde first showed that the ionospheric response to the strong earthquakes (magnitude more than 8) could be observing at distances more than 15,000 km. In the daytime such responses appearance distort the form of the electron density profile of the F-layer, which is appearing in the ionograms as a multiple trace stratification of F1-layer.

  13. View to the northeast of the Sounder Antenna OvertheHorizon ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View to the northeast of the Sounder Antenna - Over-the-Horizon Backscatter Radar Network, Christmas Valley Radar Site Transmit Sector Five Sounder Antennas, On unnamed road west of Lost Forest Road, Christmas Valley, Lake County, OR

  14. View to the eastnortheast of the Sounder Antenna OvertheHorizon ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View to the east-northeast of the Sounder Antenna - Over-the-Horizon Backscatter Radar Network, Christmas Valley Radar Site Transmit Sector Five Sounder Antennas, On unnamed road west of Lost Forest Road, Christmas Valley, Lake County, OR

  15. Note on the Effect of Horizontal Gradients for Nadir-Viewing Microwave and Infrared Sounders

    NASA Technical Reports Server (NTRS)

    Joiner, J.; Poli, P.

    2004-01-01

    Passive microwave and infrared nadir sounders such as the Advanced Microwave Sounding Unit A (AMSU-A) and the Atmospheric InfraRed Sounder (AIRS), both flying on NASA s EOS Aqua satellite, provide information about vertical temperature and humidity structure that is used in data assimilation systems for numerical weather prediction and climate applications. These instruments scan cross track so that at the satellite swath edges, the satellite zenith angles can reach approx. 60 deg. The emission path through the atmosphere as observed by the satellite is therefore slanted with respect to the satellite footprint s zenith. Although radiative transfer codes currently in use at operational centers use the appropriate satellite zenith angle to compute brightness temperature, the input atmospheric fields are those from the vertical profile above the center of the satellite footprint. If horizontal gradients are present in the atmospheric fields, the use of a vertical atmospheric profile may produce an error. This note attempts to quantify the effects of horizontal gradients on AIRS and AMSU-A channels by computing brightness temperatures with accurate slanted atmospheric profiles. We use slanted temperature, water vapor, and ozone fields from data assimilation systems. We compare the calculated slanted and vertical brightness temperatures with AIRS and AMSU-A observations. We show that the effects of horizontal gradients on these sounders are generally small and below instrument noise. However, there are cases where the effects are greater than the instrument noise and may produce erroneous increments in an assimilation system. The majority of the affected channels have weighting functions that peak in the upper troposphere (water vapor sensitive channels) and above (temperature sensitive channels) and are unlikely t o significantly impact tropospheric numerical weather prediction. However, the errors could be significant for other applications such as stratospheric

  16. A Campaign to Study Equatorial Ionospheric Phenomena over Guam

    NASA Astrophysics Data System (ADS)

    Habash Krause, L.; Balthazor, R.; Dearborn, M.; Enloe, L.; Lawrence, T.; McHarg, M.; Petrash, D.; Reinisch, B. W.; Stuart, T.

    2007-05-01

    With the development of a series of ground-based and space-based experiments, the United States Air Force Academy (USAFA) is in the process of planning a campaign to investigate the relationship between equatorial ionospheric plasma dynamics and a variety of space weather effects, including: 1) ionospheric plasma turbulence in the F region, and 2) scintillation of radio signals at low latitudes. A Digisonde Portable Sounder DPS-4 will operate from the island of Guam (with a magnetic latitude of 5.6° N) and will provide measurements of ionospheric total electron content (TEC), vertical drifts of the bulk ionospheric plasma, and electron density profiles. Additionally, a dual-frequency GPS TEC/scintillation monitor will be located along the Guam magnetic meridian at a magnetic latitude of approximately 15° N. In campaign mode, we will combine these ground-based observations with those collected from space during USAFA's FalconSAT-3 and FalconSAT-5 low-earth orbit satellite missions, the first of which is scheduled to be active over a period of several months beginning in the 2007 calendar year. The satellite experiments are designed to characterize in situ irregularities in plasma density, and include measurements of bulk ion density and temperature, minority-to- majority ion mixing ratios, small scale (10 cm to 1 m) plasma turbulence, and ion distribution spectra in energy with sufficient resolution for observations of non-thermalized distributions that may be associated with velocity- space instabilities. Specific targets of investigation include: a) a comparison of plasma turbulence observed on- orbit with spread F on ionograms as measured with the Digisonde, b) a correlation between the vertical lifting of the ionospheric layer over Guam and the onset of radio scintillation activity along the Guam meridian at 15° N magnetic latitude, and c) a correlation between on-orbit turbulence and ionospheric scintillation at 15° N magnetic latitude. These relationships

  17. Magnetically Controlled Structures in the Ionosphere of Mars

    NASA Astrophysics Data System (ADS)

    Duru, F.; Gurnett, D. A.; Averkamp, T. F.; Kirchner, D. L.; Huff, R. L.; Persoon, A. M.; Plaut, J. J.; Picardi, G.

    2006-12-01

    The ionospheric sounding data obtained by the MARSIS (Mars Advanced Radar for Subsurface and Ionospheric Sounding) instrument on the Mars Express spacecraft show that the dayside ionosphere has considerable structure over regions of strong crustal magnetic fields. This structure is typically seen as a hyperbola-shaped trace in a display of echo intensity versus apparent altitude and time. The hyperbola shapes are consistent with oblique reflections from regions of enhanced electron density that are fixed with respect to Mars. Comparisons with the Cain et al. [2003] model for the crustal magnetic field of Mars show that the apexes of the hyperbolas, which identify the closest approach to the regions of enhanced electron density, usually coincide with regions where the crustal magnetic field is strong and nearly vertical. The electron density enhancements, which extend as much as 50 km above the surrounding ionosphere, are believed to arise from increases in the scale height of the ionosphere, possibly due to heating of the ionosphere by solar wind electrons that reach the base of the ionosphere along the nearly vertical (open) magnetic field lines. Statistical analyses of the apparent altitudes of the apexes of the hyperbolas, as well as analyses of repeated passes over the same region, indicate that the electron density enhancements usually consist of horizontal cylinder-like structures rather than isolated hemispherical structures. In many cases the axes of the cylindrical density structures are aligned with the symmetry axes of adjacent cylindrical magnetic field structures with opposite polarity.

  18. Magnetically controlled structures in the ionosphere of Mars

    NASA Astrophysics Data System (ADS)

    Duru, F.; Gurnett, D. A.; Averkamp, T. F.; Kirchner, D. L.; Huff, R. L.; Persoon, A. M.; Plaut, J. J.; Picardi, G.

    2006-12-01

    The ionospheric sounding data obtained by the MARSIS (Mars Advanced Radar for Subsurface and Ionospheric Sounding) instrument on the Mars Express spacecraft show that the dayside ionosphere has considerable structure over regions of strong crustal magnetic fields. This structure is typically seen as a hyperbola-shaped trace in a display of echo intensity versus apparent altitude and time. The hyperbola shapes are consistent with oblique reflections from regions of enhanced electron density that are fixed with respect to Mars. Comparisons with the Cain et al. (2003) model for the crustal magnetic field of Mars show that the apexes of the hyperbolas, which identify the closest approach to the regions of enhanced electron density, usually coincide with regions where the crustal magnetic field is strong and nearly vertical. The electron density enhancements, which extend as much as 50 km above the surrounding ionosphere, are believed to arise from increases in the scale height of the ionosphere, possibly due to heating of the ionosphere by solar wind electrons that reach the base of the ionosphere along the nearly vertical (open) magnetic field lines. Statistical analyses of the apparent altitudes of the apexes of the hyperbolas, as well as analyses of repeated passes over the same region, indicate that the electron density enhancements usually consist of horizontal cylinder-like structures rather than isolated hemispherical structures. In many cases the axes of the cylindrical density structures are aligned with the symmetry axes of adjacent cylindrical magnetic field structures with opposite polarity.

  19. Data assimilation techniques in upper atmosphere and ionospheric modelling

    NASA Astrophysics Data System (ADS)

    Stanislawska, Iwona

    Numerous ionospheric-thermospheric models are proposed and implemented for different pur-pose. They range from empirical models describing the large scales and climatological behaviour from historical data to real-time estimator that updated the ionosphere auxiliary parameters like foF2 or TEC by current measurements in the specific region.The models use climatological descriptions for the thermosphere and ionosphere, depend on solar and geomagnetic indices as well as solar wind parameters. However these climatological versions to fulfill more advanced user's needs has been adapted to enable the assimilation of ionospheric observations. By as-similating information, the models are able to reproduce weather variability in the ionosphere. This weather modification to climatological inputs make it possible to reconstruct also the global distributions for the ionospheric drivers included in the specific model. Thus, the proper assimilation of the wealth of ground based and satellite data measurements of different origin appears one of the most challenging topics in ionospheric weather. Different techniques were developed for assimilation of all these data, however, the results might do not meet all require-ments and should not necessarily be regarded as an needed solutions. This presentation aims to describe the works carried out to assess needed accuracy, limitations and area of applications. It shows alternative solutions and the increasing role of different aspects of standardization is pointed out.

  20. Ionospheric storms on Mars

    NASA Astrophysics Data System (ADS)

    Dubinin, E.; Fraenz, M.; Woch, J.; Duru, F.; Gurnett, D.; Modolo, R.; Barabash, S.; Lundin, R.

    2009-04-01

    Measurements made by the ASPERA-3 and MARSIS experiments on Mars Express have shown that space weather effects related to the impact of a dense and high pressure solar wind on Mars cause strong perturbations in the martian induced magnetosphere and ionosphere. The magnetic barrier formed by pile-up of the draped interplanetary magnetic field ceases to be a shield for the incoming solar wind. Large blobs of solar wind plasma penetrate to the magnetosphere and sweep out dense plasma from the ionosphere. The topside martian ionosphere becomes very fragmented consisting of intermittent cold/low energy and energized plasmas. The scavenging effect caused by the intrusions of solar wind plasma clouds enhances significantly the losses of volatile material from Mars.

  1. Sensor System Performance Evaluation and Benefits from the NPOESS Airborne Sounder Testbed-Interferometer (NAST-I)

    NASA Technical Reports Server (NTRS)

    Larar, A.; Zhou, D.; Smith, W.

    2009-01-01

    Advanced satellite sensors are tasked with improving global-scale measurements of the Earth's atmosphere, clouds, and surface to enable enhancements in weather prediction, climate monitoring, and environmental change detection. Validation of the entire measurement system is crucial to achieving this goal and thus maximizing research and operational utility of resultant data. Field campaigns employing satellite under-flights with well-calibrated FTS sensors aboard high-altitude aircraft are an essential part of this validation task. The National Polar-orbiting Operational Environmental Satellite System (NPOESS) Airborne Sounder Testbed-Interferometer (NAST-I) has been a fundamental contributor in this area by providing coincident high spectral/spatial resolution observations of infrared spectral radiances along with independently-retrieved geophysical products for comparison with like products from satellite sensors being validated. This paper focuses on some of the challenges associated with validating advanced atmospheric sounders and the benefits obtained from employing airborne interferometers such as the NAST-I. Select results from underflights of the Aqua Atmospheric InfraRed Sounder (AIRS) and the Infrared Atmospheric Sounding Interferometer (IASI) obtained during recent field campaigns will be presented.

  2. Observations of ULF waves on the ground and ionospheric Doppler shifts during storm sudden commencement

    NASA Astrophysics Data System (ADS)

    Ouyang, Xinyan; Liu, Wenlong; Xiao, Zuo; Hao, Yongqiang

    2016-04-01

    Using data from ground-based magnetometers and HF Doppler sounder, we study ultralow frequency (ULF) waves excited during the storm sudden commencement (SSC) on 8 March 2012 and find possible evidence on the link between ULF waves and ionospheric Doppler shifts. Pc1-Pc2 ULF waves are observed from 11:04 to 11:27 UT after the SSC by ground stations of L shell ranging from 1.06 to 2.31, mapping to the topside ionosphere. There are weak responses in this frequency range in the power spectra of ionospheric Doppler shift. From 11:19 to 11:23 UT, oscillations of magnetic field in a lower frequency range of Pc3-Pc4 are observed and are well correlated with the trace of Doppler shift. It is thus suggested that ionospheric Doppler shift can response to ULF oscillations in magnetic field in various frequency ranges, especially in the frequency range of Pc3-Pc4 and below. This paper demonstrates a new mechanism of magnetosphere-ionosphere coupling.

  3. Characterizing Extreme Ionospheric Storms

    NASA Astrophysics Data System (ADS)

    Sparks, L.; Komjathy, A.; Altshuler, E.

    2011-12-01

    Ionospheric storms consist of disturbances of the upper atmosphere that generate regions of enhanced electron density typically lasting several hours. Depending upon the storm magnitude, gradients in electron density can sometimes become large and highly localized. The existence of such localized, dense irregularities is a major source of positioning error for users of the Global Positioning System (GPS). Consequently, satellite-based augmentation systems have been implemented to improve the accuracy and to ensure the integrity of user position estimates derived from GPS measurements. Large-scale irregularities generally do not pose a serious threat to estimate integrity as they can be readily detected by such systems. Of greater concern, however, are highly localized irregularities that interfere with the propagation of a signal detected by a user measurement but are poorly sampled by the receivers in the system network. The most challenging conditions have been found to arise following disturbances of large magnitude that occur only rarely over the course of a solar cycle. These extremely disturbed conditions exhibit behavior distinct from moderately disturbed conditions and, hence, have been designated "extreme storms". In this paper we examine and compare the behavior of the extreme ionospheric storms of solar cycle 23 (or, more precisely, extreme storms occurring between January 1, 2000, and December 31, 2008), as represented in maps of vertical total electron content. To identify these storms, we present a robust means of quantifying the regional magnitude of an ionospheric storm. Ionospheric storms are observed frequently to occur in conjunction with magnetic storms, i.e., periods of geophysical activity as measured by magnetometers. While various geomagnetic indices, such as the disturbance storm time (Dst) and the planetary Kp index, have long been used to rank the magnitudes of distinct magnetic storms, no comparable, generally recognized index exists for

  4. Suomi NPP/JPSS Cross-track Infrared Sounder (CrIS): Calibration Validation With The Aircraft Based Scanning High-resolution Interferometer Sounder (S-HIS)

    NASA Astrophysics Data System (ADS)

    Taylor, J. K.; Revercomb, H. E.; Tobin, D.; Knuteson, R. O.; Best, F. A.; Adler, D. A.; Pettersen, C.; Garcia, R. K.; Gero, P.

    2013-12-01

    To better accommodate climate change monitoring and improved weather forecasting, there is an established need for higher accuracy and more refined error characterization of radiance measurements from space and the corresponding geophysical products. This need has led to emphasizing direct tests of on-orbit performance, referred to as validation. Currently, validation typically involves (1) collecting high quality reference data from airborne and/or ground-based instruments during the satellite overpass, and (2) a detailed comparison between the satellite-based radiance measurements and the corresponding high quality reference data. Additionally, for future missions technology advancements at the University of Wisconsin Space Science and Engineering Center (UW-SSEC) have led to the development of an on-orbit absolute radiance reference utilizing miniature phase change cells to provide direct on-orbit traceability to International Standards (SI). The detailed comparison between the satellite-based radiance measurements and the corresponding measurements made from a high-altitude aircraft must account for instrument noise and scene variations, as well as differences in instrument observation altitudes, view angles, spatial footprints, and spectral response. Most importantly, for the calibration validation process to be both accurate and repeatable the reference data instrument must be extremely well characterized and understood, carefully maintained, and accurately calibrated, with traceability to absolute standards. The Scanning High-resolution Interferometer Sounder (S-HIS) meets and exceeds these requirements and has proven to do so on multiple airborne platforms, each with significantly different instrument operating environments. The Cross-track Infrared Sounder (CrIS) on Suomi NPP, launched 28 October 2011, is designed to give scientists more refined information about Earth's atmosphere and improve weather forecasts and our understanding of climate. CrIS is an

  5. Ionospheric S-shaped Doppler fluctuations produced by the tornadoes

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Rao, G. L.; Smith, R. E.

    1974-01-01

    A three-dimensional nine element HF-CW Doppler sounder array has been used to detect ionospheric disturbances which may be due to tornadoes. The typical events chosen in the present study occurred on November 20 and 27, 1973. Both events are apparently associated with tornadoes sighted in the Huntsville, Alabama area. The Doppler records show S-shaped waves rather than the quasi-sinusoidal waves observed in conjunction with and apparently due to thunderstorms. The wave-periods are in the range of 6 to 8 minutes instead of the 3 to 5 minute periods associated with thunderstorms. Dissipation of waves is mostly due to the evanescent effect and they cannot propagate very far from the path of the tornado center. A theory is presented which is in good agreement with the observations.

  6. Ionospheric reaction on sudden stratospheric warming events in Russiás Asia region

    NASA Astrophysics Data System (ADS)

    Polyakova, Anna; Perevalova, Natalya; Chernigovskaya, Marina

    2015-12-01

    The response of the ionosphere to sudden stratospheric warmings (SSWs) in the Asian region of Russia is studied. Two SSW events observed in 2008-2009 and 2012-2013 winter periods of extreme solar minimum and moderate solar maximum are considered. To detect the ionospheric effects caused by SSWs, we carried out a joint analysis of global ionospheric maps (GIM) of the total electron content (TEC), MLS (Microwave Limb Sounder, EOS Aura) measurements of temperature vertical profiles, as well as NCEP/NCAR and UKMO Reanalysis data. For the first time, it was found that during strong SSWs, in the mid-latitude ionosphere the amplitude of diurnal TEC variation decreases nearly half compared to quiet days. At the same time, the intensity of TEC deviations from the background level increases. It was also found that at SSW peak the midday TEC maximum decreases, and night/morning TEC values increase compared to quiet days. It was shown that during SSWs, TEC dynamics was identical for different geophysical conditions.The response of the ionosphere to sudden stratospheric warmings (SSWs) in the Asian region of Russia is studied. Two SSW events observed in 2008-2009 and 2012-2013 winter periods of extreme solar minimum and moderate solar maximum are considered. To detect the ionospheric effects caused by SSWs, we carried out a joint analysis of global ionospheric maps (GIM) of the total electron content (TEC), MLS (Microwave Limb Sounder, EOS Aura) measurements of temperature vertical profiles, as well as NCEP/NCAR and UKMO Reanalysis data. For the first time, it was found that during strong SSWs, in the mid-latitude ionosphere the amplitude of diurnal TEC variation decreases nearly half compared to quiet days. At the same time, the intensity of TEC deviations from the background level increases. It was also found that at SSW peak the midday TEC maximum decreases, and night/morning TEC values increase compared to quiet days. It was shown that during SSWs, TEC dynamics was

  7. Film handling procedures for Apollo 17 lunar sounder

    NASA Technical Reports Server (NTRS)

    Weinstein, M. S.

    1972-01-01

    Film handling procedures for the Apollo 17 Lunar Sounder are itemized, including purchase of flight film, establishment of processing standards, transportation of flight films, flight film certification, application of pre- and post-sensitometry, film loading and downloading, film processing, titling, and duplication.

  8. Design and testing of hardware improvements of an acoustic sounder

    NASA Astrophysics Data System (ADS)

    Richards, W. L.

    1985-06-01

    The application of lasers in military communications and weapons systems accentuate the need for instruments capable of measuring the fine dynamic structure of the atmosphere. One of the most useful tools available for the probing of the atmosphere is the acoustic sounder. Commercial grade acoustic sounders, such as the Aeroviroment model number 300 cannot collect atmospheric data with the quality needed for laser propagation research. The usable range of the Aerovironment model 300 acoustic sounder is less than 500 meters. Many laser systems need atmospheric information at altitudes of 1 to 2 kilometers and higher. The objective of this thesis was to upgrade an existing acoustic sounder to increase the range and improve the quality of the receiver-processor. A serious deficiency of the Aerovironment model number 300 is the poor coupling of the acoustic transducer to the feedhorn. This thesis involved a complete redesign and experimental test of the transducer feedhorn using two different horn styles as well as making the horn removable and easily changeable.

  9. Laser Atmospheric Wind Sounder (LAWS) phase 1. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The laser atmospheric wind sounder (LAWS) will provide a new space based capability for the direct measurement of atmospheric winds in the troposphere. LAWS will make a major contribution toward advancing the understanding and prediction of the total Earth system and NASA's Earth Observing System (EOS) Program. LAWS is designed to measure a fundamental atmospheric parameter required to advance weather forecasting accuracies and investigate global climatic change. LAWS has a potential added benefit of providing (global) concentration profiles of large aerosols including visible and subvisible cirrus clouds, volcanic dust, smoke, and other pollutants. The objective of this Phase One study was to develop a LAWS concept and configuration. The instrument design is outlined in this first volume of three.

  10. Saturn's ionosphere and plasmasphere

    NASA Astrophysics Data System (ADS)

    Moore, Luke Edward

    2008-01-01

    A number of puzzling phenomena were revealed when the Voyager spacecraft flew past Saturn in 1981 to measure the ionized portions (ionosphere) of its upper atmosphere (thermosphere). Most of these issues have remained unexplained in the intervening 25 years due to a lack of conclusive observational data. With the arrival of Cassini at Saturn in July 2004, however, a new era of observations began, providing the promise of fresh evidence and demanding the development of a contemporary theoretical framework in order to re-examine old mysteries and understand new discoveries. This dissertation presents studies of Saturn's ionosphere and inner plasmasphere based on new time-dependent photochemical and diffusive transport models that solve the ion equations of continuity in one dimension. Calculations are conducted within the overall framework of a self-consistent, three-dimensional general circulation model (GCM) of Saturn's thermosphere, and the results of these studies are combined with GCM results to provide the building blocks of a new comprehensive model, the Saturn-Thermosphere- Ionosphere-Model (STIM). The one-dimensional model calculations are used to constrain and investigate a number of unresolved issues and to make testable predictions based on those investigations. Five primary topics are addressed: (1) the additional loss processes required to bring predicted electron densities into agreement with observations, (2) the discrepancy between theory and observations regarding the diurnal variation of peak electron density, (3) the effects of shadowing by Saturn's rings on its ionosphere, (4) the yet unknown electron and ion temperatures at Saturn, and (5) the ionospheric contribution to Saturn's plasmasphere. The models show that a steady influx of water into Saturn's atmosphere--from its rings or icy satellites--is required to explain observed electron densities. Additionally, the time-variability of the water source may be the cause of frequently observed

  11. Development of a campaign to study equatorial ionospheric phenomena over Guam

    NASA Astrophysics Data System (ADS)

    Habash Krause, L.; Balthazor, R.; McHarg, M. G.; Reinisch, B. W.

    2008-08-01

    The United States Air Force Academy (USAFA) is in the process of developing a series of ground-based and space-based experiments to investigate the equatorial ionosphere over Guam and the southern crest of the Equatorial Appleton Anomaly over New Guinea. On the ground the Digital Ionospheric Sounder (University of Massachusetts, Lowell DPS-4 unit) and a dual-frequency GPS TEC/scintillation monitor will be used to investigate ionospheric phenomena in both campaign and long-term survey modes. In campaign mode, we will combine these observations with those collected from space during USAFA's FalconSAT-3 and FalconSAT-5 low Earth orbit satellite missions, which will be active over a period of several years beginning in the first quarter of the 2007 calendar year. Additionally, we will investigate the long-term morphology of key ionospheric characteristics useful for driving the International Reference Ionosphere, such as critical frequencies (f oE, f oF1, f oF2, etc.), the M(3000) F2 parameter (the maximum useable frequency for a signal refracted within the F2 layer and received on the ground at a distance of 3000 km away), and a variety of other characteristics. Specific targets of investigation include: (a) a comparison of TEC observed by the GPS receiver with those calculated by IRI driven by DPS-4 observations, (b) a comparison of plasma turbulence observed on-orbit with ionospheric conditions as measured from the ground, and (c) a comparison between topside ionospheric satellite in situ measurements of plasma density during an overpass of a Digisonde versus the calculated value based on extrapolation of the electron density profiles using Digisonde data and a topside α-Chapman function. This last area of investigation is discussed in detail in this paper.

  12. Ionospheric Scintillation Explorer (ISX)

    NASA Astrophysics Data System (ADS)

    Iuliano, J.; Bahcivan, H.

    2015-12-01

    NSF has recently selected Ionospheric Scintillation Explorer (ISX), a 3U Cubesat mission to explore the three-dimensional structure of scintillation-scale ionospheric irregularities associated with Equatorial Spread F (ESF). ISX is a collaborative effort between SRI International and Cal Poly. This project addresses the science question: To what distance along a flux tube does an irregularity of certain transverse-scale extend? It has been difficult to measure the magnetic field-alignment of scintillation-scale turbulent structures because of the difficulty of sampling a flux tube at multiple locations within a short time. This measurement is now possible due to the worldwide transition to DTV, which presents unique signals of opportunity for remote sensing of ionospheric irregularities from numerous vantage points. DTV spectra, in various formats, contain phase-stable, narrowband pilot carrier components that are transmitted simultaneously. A 4-channel radar receiver will simultaneously record up to 4 spatially separated transmissions from the ground. Correlations of amplitude and phase scintillation patterns corresponding to multiple points on the same flux tube will be a measure of the spatial extent of the structures along the magnetic field. A subset of geometries where two or more transmitters are aligned with the orbital path will be used to infer the temporal development of the structures. ISX has the following broad impact. Scintillation of space-based radio signals is a space weather problem that is intensively studied. ISX is a step toward a CubeSat constellation to monitor worldwide TEC variations and radio wave distortions on thousands of ionospheric paths. Furthermore, the rapid sampling along spacecraft orbits provides a unique dataset to deterministically reconstruct ionospheric irregularities at scintillation-scale resolution using diffraction radio tomography, a technique that enables prediction of scintillations at other radio frequencies, and

  13. NPOESS Preparatory Project Validation Program for the Cross-track Infrared Sounder

    NASA Astrophysics Data System (ADS)

    Barnet, C.; Gu, D.; Nalli, N. R.

    2009-12-01

    The National Polar-orbiting Operational Environmental Satellite System (NPOESS) Program, in partnership with National Aeronautical Space Administration (NASA), will launch the NPOESS Preparatory Project (NPP), a risk reduction and data continuity mission, prior to the first operational NPOESS launch. The NPOESS Program, in partnership with Northrop Grumman Aerospace Systems, will execute the NPP Calibration and Validation (Cal/Val) program to ensure the data products comply with the requirements of the sponsoring agencies. The Cross-track Infrared Sounder (CrIS) and the Advanced Technology Microwave Sounder (ATMS) are two of the instruments that make up the suite of sensors on NPP. Together, CrIS and ATMS will produce three Environmental Data Records (EDRs) including the Atmospheric Vertical Temperature Profile (AVTP), Atmospheric Vertical Moisture Profile (AVMP), and the Atmospheric Vertical Pressure Profile (AVPP). The AVTP and the AVMP are both NPOESS Key Performance Parameters (KPPs). The validation plans establish science and user community leadership and participation, and demonstrated, cost-effective Cal/Val approaches. This presentation will provide an overview of the collaborative data, techniques, and schedule for the validation of the NPP CrIS and ATMS environmental data products.

  14. Changes in the ionosphere prior to weak earthquakes in the Irkutsk region

    NASA Astrophysics Data System (ADS)

    Korsunova, L. P.; Chistuakova, L. V.; Khegai, V. V.

    2016-07-01

    Data from 15-minute measurements at the vertical ionospheric sounding station in Irkutsk during the summer months of 2008-2011 are analyzed in order to detect in the ionosphere effects of preparation of weak earthquakes of the K = 10-12 energy class. The method of revealing disturbances in ionospheric parameters by simultaneous observations of the sporadic E layer and regular F2 layer, which was previously applied by the authors in the case of stronger earthquakes, was used. The efficiency of using this method to detect ionospheric disturbances preceding earthquakes also in the case of weak earthquakes is demonstrated. Possible ionospheric precursors of the selected series of earthquakes are identified. For them, an empirical dependence relating the time of advance of the shock moment by the probable ionospheric precursor on the energy class of the earthquake and the epicenter distance to the observation point is found.

  15. Martian ionosphere response to solar wind variability during solar minimum

    NASA Astrophysics Data System (ADS)

    Sanchez-Cano, Beatriz; Lester, Mark; Witasse, Olivier; Mays, M. Leila; Hall, Benjamin E. S.; Milan, Stephen E.; Cartacci, Marco; Blelly, Pierre-Louis; Andrews, David; Opgenoorth, Hermann; Odstrcil, Dusan

    2016-04-01

    Solar cycle variations in solar radiation create notable density changes in the Martian ionosphere. In addition to this long-term variability, there are numerous short-term and non-recurrent solar events that hit Mars which need to be considered, such as Interplanetary Coronal Mass Ejections (ICMEs), Co-Rotation Interaction Regions (CIRs), solar flares, or solar wind high speed streams. The response of the Martian plasma system to each of these events is often unusual, especially during the long period of extreme low solar activity in 2008 and 2009. This work shows the long-term solar cycle impact on the ionosphere of Mars using data from The Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS), and The Analyzer of Space Plasma and Energetic Atoms (ASPERA-3), and with empirical and numerical models on Mars Express. Particular attention is given to the different ionospheric responses observed during the last, extended solar minimum. Mars' ionospheric response followed a similar pattern to the response observed in the Earth's ionosphere, despite the large differences related to the inner-origin of the magnetic field of both planets. The ionospheric temperature was cooler, the topside scale height was smaller and almost constant with altitude, the secondary ionospheric layer practically disappeared and the whole atmospheric total electron content (TEC) suffered an extreme reduction of about 30-40%, not predicted before by models. Moreover, there is a larger probability for the induced magnetic field to be present in the ionosphere, than in other phases of the solar cycle. The short-term variability is also addressed with the study of an ICME followed by a fast stream that hit Mars in March 2008, where solar wind data are provided by ACE and STEREO-B and supported by simulations using the WSA-ENLIL Model. The solar wind conditions lead to the formation of a CIR centred on the interface of the fast and the slow solar wind streams. Mars' system reacted to

  16. Chemistry in the Thermosphere and Ionosphere.

    ERIC Educational Resources Information Center

    Roble, Raymond G.

    1986-01-01

    An informative review which summarizes information about chemical reactions in the thermosphere and ionosphere. Topics include thermal structure, ultraviolet radiation, ionospheric photochemistry, thermospheric photochemistry, chemical heating, thermospheric circulation, auroral processes and ionospheric interactions. Provides suggested followup…

  17. A regional adaptive and assimilative three-dimensional ionospheric model

    NASA Astrophysics Data System (ADS)

    Sabbagh, Dario; Scotto, Carlo; Sgrigna, Vittorio

    2016-03-01

    A regional adaptive and assimilative three-dimensional (3D) ionospheric model is proposed. It is able to ingest real-time data from different ionosondes, providing the ionospheric bottomside plasma frequency fp over the Italian area. The model is constructed on the basis of empirical values for a set of ionospheric parameters Pi[base] over the considered region, some of which have an assigned variation ΔPi. The values for the ionospheric parameters actually observed at a given time at a given site will thus be Pi = Pi[base] + ΔPi. These Pi values are used as input for an electron density N(h) profiler. The latter is derived from the Advanced Ionospheric Profiler (AIP), which is software used by Autoscala as part of the process of automatic inversion of ionogram traces. The 3D model ingests ionosonde data by minimizing the root-mean-square deviation between the observed and modeled values of fp(h) profiles obtained from the associated N(h) values at the points where observations are available. The ΔPi values are obtained from this minimization procedure. The 3D model is tested using data collected at the ionospheric stations of Rome (41.8N, 12.5E) and Gibilmanna (37.9N, 14.0E), and then comparing the results against data from the ionospheric station of San Vito dei Normanni (40.6N, 18.0E). The software developed is able to produce maps of the critical frequencies foF2 and foF1, and of fp at a fixed altitude, with transverse and longitudinal cross-sections of the bottomside ionosphere in a color scale. fp(h) and associated simulated ordinary ionogram traces can easily be produced for any geographic location within the Italian region. fp values within the volume in question can also be provided.

  18. Modelling ionospheric density structures

    NASA Technical Reports Server (NTRS)

    Schunk, R. W.; Sojka, J. J.

    1989-01-01

    Large-scale density structures are a common feature in the high-latitude ionsphere. The structures were observed in the dayside cusp, polar cap, and nocturnal auroral region over a range of altitudes, including the E-region, F-region and topside ionosphere. The origins, lifetimes and transport characteristics of large-scale density structures were studied with the aid of a three-dimensional, time-dependent ionospheric model. Blob creation due to particle precipitation, the effect that structured electric fields have on the ionosphere, and the lifetimes and transport characteristics of density structures for different seasonal, solar cycle, and interplanetary magnetic field (IMF) conditions were studied. The main conclusions drawn are: (1) the observed precipitation energy fluxes are sufficient for blob creation if the plasma is exposed to the precipitation for 5 to 10 minutes; (2) structured electric fields produce structured electron densities, ion temperatures, and ion composition; (3) the lifetime of an F-region density structure depends on several factors, including the initial location where it was formed, the magnitude of the perturbation, season, solar cycle and IMF; and (4) depending on the IMF, horizontal plasma convection can cause an initial structure to break up into multiple structures of various sizes, remain as a single distorted structure, or become stretched into elongated segments.

  19. Ionospheric disturbance dynamo

    SciTech Connect

    Blanc, M.; Richmond, A.D.

    1980-04-01

    A numerical simulation study of the thermospheric winds produced by auroral heating during magnetic storms, and of their global dynamo effects, establishes the main features of the ionospheric disturbanc dynamo. Driven by auroral heating, a Hadley cell is created with equatorward winds blowing above about 120 km at mid-latitudes. The transport of angular momentum by these winds produces a subrotation of the midlatitude thermosphere, or westward motion with respect to the earth. The westward winds in turn drive equatorward Pedersen currents which accumulate charge toward the equator, resulting in the generation of a poleward electric field, a westward E x B drift, and an eastward current. When realistic local time conductivity variations are simulated, the eastward mid-latitude current is found to close partly via lower latitudes, resulting in an 'anti-Sq' type of current vortex. Both electric field and current at low latitudes thus vary in opposition to their normal quiet-day behavior. This total pattern of distrubance winds, electric fields, and currents is superimposed upon the background quiet-day pattern. When the neutral winds are artificially confined on the nightside, the basic pattern of predominantly westward E x B plasma drifts still prevails on the nightside but no longer extends into the dayside. Considerable observational evidence exists, suggesting that the ionospheric disturbance dynamo has an appreciable influence on storm-time ionospheric electric fields at middle and low latitudes.

  20. Ionospheric variability over Japan

    NASA Astrophysics Data System (ADS)

    Ezquer, R. G.; Mosert, M.; Corbella, R.; Erazu, M.; de La Zerda, L.

    The understanding of ionospheric variability is important for the user of ionospheric models. A satellite designer or operator needs to know not only monthly average conditions but also the expected deviations from these mean values. In order to contribute to the studies on ionospheric variability, in this paper values of critical frequencies of F2, F1 and E regions and M(3000)F2 factor measured at 4 Japanese stations are used. Data correspond to equinoxes, solstices, high and low solar activity. Quartiles and median values are used to specify variability, because they have the advantage of being less affected by large deviations that can occur during magnetic storms. The results are similar for the considered stations and show that the highest variability correspond to foF2. For March high solar activity the variability of fof2 decreases during hours of maximum ionisation. The M3000F2 factor, in general, shown low variability. Akita (39.72° N, 140.13° E) showed the highest variability for the three frequencies. Moreover, it can be seen that quartiles are not equidistant from the median value.

  1. Next Generation Grating Spectrometer Sounders for LEO and GEO

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.

    2011-01-01

    AIRS and MODIS are widely used for weather, climate, composition, carbon cycle, cross-calibration, and applications. The community asking for new capability in the 2020 timeframe, capabilities desired: (1) Hyperspectral UV to LWIR, High Spatial ?1km IFOV (2) Maximize Synergies of Solar Reflected and IR. Synergies with OCO-2. We expect more users and applications of next gen LEO IR Sounder than GEO. These include: weather, climate, GHG monitoring, aviation, disaster response. There is a new direction for imagers and sounders: (1) Separate Vis/NIR/SWIR from MWIR/LWIR instruments reduces technology risk and complexity. (2) Expect Costs to be lower than CrIS & VIIRS Some additional ideas to reduce costs include: (1) minimum set of requirements (2) mini-grating spectrometers. supports constellation for higher revisit (3) new technology to reduce instrument size (large format fpa's) (4) hosted payloads

  2. On Cirrus Cloud Fields Measured by the Atmospheric Infrared Sounder

    NASA Technical Reports Server (NTRS)

    Kahn, Brian H.; Eldering, Annmarie; Liou, Kuo Nan

    2006-01-01

    A viewgraph presentation showing trends in clouds measured by the Atmospheric Infrared Sounder (AIRS) is given. The topics include: 1) Trends in clouds measured by AIRS: Are they reasonable? 2) Single and multilayered cloud trends; 3) Retrievals of thin cirrus D(sub e) and tau: Single-layered cloud only; 4) Relationships between ECF, D(sub e), tau, and T(sub CLD); and 5) MODIS vs. AIRS retrievals.

  3. High resolution microwave spectrometer sounder (HIMSS), volume 1, book 2

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The following topics are presented with respect to the high resolution microwave spectrometer sounder (HIMSS) that is to be used as an instrument for NASA's Earth Observing System (EOS): (1) preliminary program plans; (2) contract end item (CEI) specification; and (3) the instrument interface description document. Under the preliminary program plans section, plans dealing with the following subject areas are discussed: spares, performance assurance, configuration management, software implementation, contamination, calibration management, and verification.

  4. Submillimeter Wave Sounder for the Japanese Mars Mission (MELOS)

    NASA Astrophysics Data System (ADS)

    Kuroda, T.; Kasai, Y.; Sagawa, H.; Hartogh, P.; Murtagh, D. P.; Manabe, T.; Mendrok, J.; Nishibori, T.; Ochiai, S.; Aoyama, Y.

    2009-12-01

    The Submillimeter wave (SMM) sounder is proposed as an instrument onboard the meteorological orbiter of the next Japanese Mars exploration mission (MELOS). Characteristics of the SMM sounder are the observations of wind, temperature, CO, water vapor and its isotopes, minor radical species such as H2O2 and HO2. Many potential contributions to the Martian science are expected from the measurements: for example, the understanding of the Martian atmospheric circulation regime, the water cycle and variable hygropause, isotopic fractionation including HDO/H2O, photochemistry in the middle atmosphere, and thermophysical properties of the surface layer. By employing both limb and nadir observations from the elliptic orbit, the SMM sounder will achieve high vertical resolution in the wind, temperature and water vapor observations by pointing to several tangential heights in the limb observing geometry, as well as the horizontal mapping with temporal variation of minor molecules. Since the dust and ice cloud are almost transparent at submillimeter wavelengths, the SMM sounder can provide observational data without being affected by the dust distribution. The draft design of the instrument is dual frequency receivers of 500 and 600 or 800 GHz in order to observe at least two water vapor lines, including the ground state 110 - 101 transition at 556.9 GHz, with different line strengths. Combination of the observations of weak and strong opacity lines enables us to measure the H2O abundance in a wide range of the altitudes: from the surface to more than 100 km. This study will optimize the instrumental design by examining its scientific performance with the observation simulations. We also discuss the scientific significances of the planned observations in collaboration with the studies using general circulation models (GCMs) for the Martian atmosphere.

  5. High resolution microwave spectrometer sounder (HIMSS), volume 1, book 1

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The following topics are presented with respect to the high resolution microwave spectrometer sounder (HIMSS) that is to be used as an instrument for NASA's Earth Observing System (EOS): (1) an instrument overview; (2) an instrument description; (3) the instrument's conceptual design; (4) technical risks and offsets; (5) instrument reliability; (6) commands and telemetry; (7) mass and power budgets; (8) integration and test program; (9) program implementation; and (10) phase CD schedule.

  6. The Apollo 17 Lunar Sounder. [lunar orbit coherent radar experiment

    NASA Technical Reports Server (NTRS)

    Phillips, R. J.; Brown, W. E., Jr.; Jordan, R.; Adams, G. F.; Jackson, P.; Peeples, W. J.; Porcello, L. J.; Ryu, J.; Eggleton, R. E.; Schaber, G.

    1973-01-01

    The Apollo Lunar Sounder Experiment, a coherent radar operated from lunar orbit during the Apollo 17 mission, has scientific objectives of mapping lunar subsurface structure, surface profiling, surface imaging, and galactic noise measurement. Representative results from each of the four disciplines are presented. Subsurface reflections have been interpreted in both optically and digitally processed data. Images and profiles yield detailed selenomorphological information. The preliminary galactic noise results are consistent with earlier measurements by other workers.

  7. An antenna system for the microwave limb sounder

    NASA Technical Reports Server (NTRS)

    Gustincic, J. J.

    1976-01-01

    The results of an initial design study to determine a suitable antenna system for the Microwave Limb Sounder experiment are presented. The resulting antenna system consisting of a parabolic cylinder fed by a number of Gregorian subreflectors is described and estimates of achievable antenna beamwidths and beam efficiencies are made. A short analysis is presented which yields expressions for the subreflector coordinates which can be implemented into existing programs for future antenna design and evaluation.

  8. Sonic depth sounder for laboratory and field use

    USGS Publications Warehouse

    Richardson, E.V.; Simons, Daryl B.; Posakony, G.J.

    1961-01-01

    The laboratory investigation of roughness in alluvial channels has led to the development of a special electronic device capable of mapping the streambed configuration under dynamic conditions. This electronic device employs an ultrasonic pulse-echo principle, similar to that of a fathometer, that utilizes microsecond techniques to give high accuracy in shallow depths. This instrument is known as the sonic depth sounder and was designed to cover a depth range of 0 to 4 feet with an accuracy of ? 0.5 percent. The sonic depth sounder is capable of operation at frequencies of 500, 1,000 and 2,000 kilocycles. The ultrasonic beam generated at the transducer is designed to give a minimum-diameter interrogating signal over the extended depth range. The information obtained from a sonic depth sounder is recorded on a strip-chart recorder. This permanent record allows an analysis to be made of the streambed configuration under different dynamic conditions. The model 1024 sonic depth sounder was designed principally as a research instrument to meet laboratory needs. As such, it is somewhat limited in its application as a field instrument on large streams and rivers. The principles employed in this instrument, however, have many potentials for field applications such as the indirect measurement of bed load when the bed roughness is ripples and (or) dunes, depth measurement, determination of bed configuration, and determination of depth of scour around bridge piers and abutments. For field application a modification of the present system into a battery-operated lightweight instrument designed to operate at a depth range of 0 to 30 feet is possible and desirable.

  9. Ionospheric forecasts for the European region for space weather applications

    NASA Astrophysics Data System (ADS)

    Tsagouri, Ioanna; Belehaki, Anna

    2015-04-01

    This paper discusses recent advances in the implementation and validation of the Solar Wind driven autoregression model for Ionospheric short-term Forecast (SWIF) that is running in the European Digital upper Atmosphere Server (DIAS) to release ionospheric forecasting products for the European region. The upgraded implementation plan expands SWIF's capabilities in the high latitude ionosphere while the extensive validation tests in the two solar cycles 23 and 24 allow the comprehensive analysis of the model's performance in all terms. Focusing on disturbed conditions, the results demonstrate that SWIF's alert detection algorithm forecasts the occurrence of ionospheric storm time disturbances with probability of detection up to 98% under intense geomagnetic storm conditions and up to 63% when storms of moderate intensity are also considered. The forecasts show relative improvement over climatology of about 30% in middle-to-low and high latitudes and 40% in middle-to-high latitudes. This indicates that SWIF is able to capture on average more than one third (35%) of the storm-associated ionospheric disturbances. Regarding the accuracy, the averaged mean relative error during storm conditions usually ranges around 20% in middle-to-low and high latitudes and 24% in the middle-to-high latitudes. Our analysis shows clearly that SWIF alert criteria were designed to effectively anticipate the ionospheric storm time effects that occurred under specific interplanetary conditions, e.g., cloud Interplanetary Coronal Mass Ejections (ICMEs) and/or associated sheaths. The results provide valuable input in advancing our ability in predicting the space weather effects in the ionosphere for future developments, and further work is proposed to enhance the model forecasting efficiency to support operational applications.

  10. Satellite Sounder Data Assimilation for Improving Alaska Region Weather Forecast

    NASA Technical Reports Server (NTRS)

    Zhu, Jiang; Stevens, E.; Zhang, X.; Zavodsky, B. T.; Heinrichs, T.; Broderson, D.

    2014-01-01

    A case study and monthly statistical analysis using sounder data assimilation to improve the Alaska regional weather forecast model are presented. Weather forecast in Alaska faces challenges as well as opportunities. Alaska has a large land with multiple types of topography and coastal area. Weather forecast models must be finely tuned in order to accurately predict weather in Alaska. Being in the high-latitudes provides Alaska greater coverage of polar orbiting satellites for integration into forecasting models than the lower 48. Forecasting marine low stratus clouds is critical to the Alaska aviation and oil industry and is the current focus of the case study. NASA AIRS/CrIS sounder profiles data are used to do data assimilation for the Alaska regional weather forecast model to improve Arctic marine stratus clouds forecast. Choosing physical options for the WRF model is discussed. Preprocess of AIRS/CrIS sounder data for data assimilation is described. Local observation data, satellite data, and global data assimilation data are used to verify and/or evaluate the forecast results by the MET tools Model Evaluation Tools (MET).

  11. GEO/SAMS - The Geostationary Synthetic Aperture Microwave Sounder

    NASA Technical Reports Server (NTRS)

    Lambrigtsen, Bjorn H.

    2008-01-01

    The National Oceanic and Atmospheric Administration (NOAA) has for many years operated two weather satellite systems, the Polar-orbiting Operational Environmental Satellite system (POES), using low-earth orbiting (LEO) satellites, and the Geostationary Operational Environmental Satellite system (GOES), using geostationary earth orbiting (GEO) satellites. (Similar systems are also operated by other nations.) The POES satellites have been equipped with both infrared (IR) and microwave (MW) atmospheric sounders, which makes it possible to determine the vertical distribution of temperature and humidity in the troposphere even under cloudy conditions. Such satellite observations have had a significant impact on weather forecasting accuracy, especially in regions where in situ observations are sparse. In contrast, the GOES satellites have only been equipped with IR sounders, since it has not been feasible to build a large enough antenna to achieve sufficient spatial resolution for a MW sounder in GEO. As a result, GOES soundings can only be obtained in cloud free areas and in the less important upper atmosphere, above the cloud tops. This has hindered the effective use of GOES data in numerical weather prediction. Full sounding capabilities with the GOES system is highly desirable because of the advantageous spatial and temporal coverage that is possible from GEO. While POES satellites provide coverage in relatively narrow swaths, and with a revisit time of 12-24 hours or more, GOES satellites can provide continuous hemispheric coverage, making it possible to monitor highly dynamic phenomena such as hurricanes.

  12. Efficient simultaneous image deconvolution and upsampling algorithm for low-resolution microwave sounder data

    NASA Astrophysics Data System (ADS)

    Qin, Jing; Yanovsky, Igor; Yin, Wotao

    2015-01-01

    Microwave imaging has been widely used in the prediction and tracking of hurricanes, typhoons, and tropical storms. Due to the limitations of sensors, the acquired remote sensing data are usually blurry and have relatively low resolution, which calls for the development of fast algorithms for deblurring and enhancing the resolution. We propose an efficient algorithm for simultaneous image deconvolution and upsampling for low-resolution microwave hurricane data. Our model involves convolution, downsampling, and the total variation regularization. After reformulating the model, we are able to apply the alternating direction method of multipliers and obtain three subproblems, each of which has a closed-form solution. We also extend the framework to the multichannel case with the multichannel total variation regularization. A variety of numerical experiments on synthetic and real Advanced Microwave Sounding Unit and Microwave Humidity Sounder data were conducted. The results demonstrate the outstanding performance of the proposed method.

  13. Characteristics of Water Vapor Under Partially Cloudy Conditions: Observations by the Atmospheric Infrared Sounder (AIRS)

    NASA Astrophysics Data System (ADS)

    Fishbein, E.

    2003-12-01

    The variability and quality of tropical water vapor derived from the Atmospheric Infrared Sounder (AIRS) are characterized. Profiles of water vapor, temperature and surface characteristics (states) are derived from coincident Advance Microwave Sounding Unit (AMSU) and 3x3 sets of AIRS footprints. States are obtained under partially cloudy conditions by estimating the radiances emitted from the clear portions of the AIRS footprints. This procedure, referred to as cloud clearing, amplifies the measurement noise, and the amplification increases with cloud amount and uniformity. Cumulus and stratus cloud amount are related to the water vapor saturation, and noise amplification and water vapor amount may be partially correlated. The correlations between the uncertainty of retrieved water vapor, cloudiness and noise amplification are characterized. Retrieved water vapor is generally good when the amplification is less than three. Water vapor profiles are compared with correlative data, such as radiosondes and numerical weather center analyses and are in relatively good agreement in the lower troposphere

  14. Relating OGO-5 H+ Plasmapause Transitions to Mid-Latitude Topside-Ionospheric Signatures

    NASA Astrophysics Data System (ADS)

    Truhlik, V.; Benson, R. F.; Bilitza, D.; Grebowsky, J. M.; Wang, Y.

    2009-12-01

    Plasmapause transitions, as seen in the H+ and He+ density gradients measured by the Orbiting Geophysical Observatory 5 (OGO 5) ion spectrometer [Sharp, IEE Trans. in Geosci. Elect., 1969], have been investigated in an attempt to relate them to their topside ionospheric signatures as seen in the Alouette-1 & 2 and ISIS-1 data. The satellite data were obtained from the National Space Science Data Center (NSSDC). A search of the OGO-5 data revealed 54 sharp plasmapause crossings as evaluated from the H+ density. The ionospheric footprints (at 1400 km altitude) of the magnetic-field lines through the locations of these plasmapause crossings were then used to search for topside ionospheric electron-density profiles from the NSSDC. No profiles corresponding to these projections were identified. A similar search of the topside-sounder 35-mm ionogram-film database, however, identified 17 cases of candidate "conjunctions" involving Alouette1 & 2 and ISIS 1. We will present samples of the plasmapause OGO-5 ion transitions and the related topside ionospheric signatures and discuss the observations in relation to the recent similar study based on Explorer-45 and ISIS-2 data [Grebowsky et al., JASTP, 2009].

  15. Relating OGO-5 H(+) Plasmapause Transitions to Mid-Latitude Topside-Ionospheric Signatures

    NASA Technical Reports Server (NTRS)

    Truhlik, Vladimir; Benson, Robert F.; Bilitza, Dieter; Grebowsky, Joseph M.; Wang, Yongli

    2009-01-01

    Plasmapause transitions, as seen in the H + and He+ density gradients measured by the Orbiting Geophysical Observatory 5 (OGO 5) ion spectrometer [Sharp, IEE Trans. in Geosci. Elect., 1969], have been investigated in an attempt to relate them to their topside ionospheric signatures as seen in the Alouette-1 & 2 and ISIS-1 data. The satellite data were obtained from the National Space Science Data Center (NSSDC). A search of the OGO-5 data revealed 54 sharp plasmapause crossings as evaluated from the H+ density. The ionospheric footprints (at 1400 km altitude) of the magnetic-field lines through the locations of these plasmapause crossings were then used to search for topside ionospheric electron-density profiles from the NSSDC. No profiles corresponding to these projections were identified. A similar search of the topside-sounder 35-mm ionogram-film database, however, identified 17 cases of candidate "conjunctions" involving Alouette l & 2 and ISIS 1. We will present samples of the plasmapause OGO-5 ion transitions and the related topside ionospheric signatures and discuss the observations in relation to the recent similar study based on Explorer-45 and ISIS-2 data [Grebowsky et al., JASTP, 2009].

  16. Carbon Monoxide Distribution over Peninsular Malaysia from the Atmospheric Infrared Sounder (AIRS)

    NASA Astrophysics Data System (ADS)

    Rajab, Jaso M.; MatJafri, M. Z.; Lim, H. S.; Abdullah, K.

    2009-07-01

    The Atmospheric Infrared Sounder (AIRS) onboard NASA's Aqua satellite. It daily coverage of ˜70% of the planet represents a significant evolutionary advance in satellite traces gas remote sensing. AIRS, the part of a large international investment to upgrade the operational meteorological satellite systems, is first of the new generation of meteorological advanced sounders for operational and research use, Providing New Insights into Weather and Climate for the 21st Century. Carbon monoxide (CO) is a ubiquitous, an indoor and outdoor air pollutant, is not a significant greenhouse gas as it absorbs little infrared radiation from the Earth. However, it does have an influence on oxidization in the atmosphere through interaction with hydroxyl radicals (OH), which also react with methane, halocarbons and tropospheric ozone. It produced by the incomplete combustion of fossil fuels and biomass burning, and that it has a role as a smog. The aim of this investigation is to study the (CO) carbon monoxide distribution over Peninsular Malaysia. The land use map of the Peninsular Malaysia was conducted by using CO total column amount, obtained from AIRS data, the map & data was processed and analyzed by using Photoshop & SigmaPlot 11.0 programs and compared for timing of various (day time) (28 August 2005 & 29 August 2007) for both direct comparison and the comparison using the same a priori profile, the CO concentrations in 28/8/2005 higher. The CO maps were generated using Kriging Interpolation technique. This interpolation technique produced high correlation coefficient, R2 and low root mean square error, RMS for CO. This study provided useful information for influence change of CO concentration on varies temperature.

  17. Introducing a disturbance ionosphere index

    NASA Astrophysics Data System (ADS)

    Jakowski, N.; Borries, C.; Wilken, V.

    2012-01-01

    Although ionospheric perturbations such as traveling ionospheric disturbances have a strong impact on Global Navigation Satellite Systems (GNSS) and other space-based radio systems, the description of individual perturbations is difficult. To overcome this problem, it is suggested to use a disturbance ionosphere index (DIX) that describes the perturbation degree of the ionosphere in a less specific form as a proxy. Although such an index does not describe the exact propagation conditions at the measurement site, the estimated index number indicates the probability of a potential impact on radio systems used in communication, navigation, and remote sensing. The definition of such a DIX must take into account the following major requirements: relevance to practical needs, objective measure of ionospheric conditions, easy and reproducible computation, and availability of a reliable database. Since the total electron content has been shown in many publications to act as an outstanding parameter for quantifying the range error and also the strength of ionospheric perturbations, we propose a DIX that is based on GNSS measurements. To illustrate the use of the index, recent storms monitored in 2011 and the Halloween storm are discussed. The proposed index is a robust and objective measure of the ionospheric state, applicable to radio systems which are impacted by a highly variable perturbed ionosphere.

  18. Atmospheric Radiation Measurement site atmospheric state best estimates for Atmospheric Infrared Sounder temperature and water vapor retrieval validation

    NASA Astrophysics Data System (ADS)

    Tobin, David C.; Revercomb, Henry E.; Knuteson, Robert O.; Lesht, Barry M.; Strow, L. Larrabee; Hannon, Scott E.; Feltz, Wayne F.; Moy, Leslie A.; Fetzer, Eric J.; Cress, Ted S.

    2006-05-01

    The Atmospheric Infrared Sounder (AIRS) is the first of a new generation of advanced satellite-based atmospheric sounders with the capability of obtaining high-vertical resolution profiles of temperature and water vapor. The high-accuracy retrieval goals of AIRS (e.g., 1 K RMS in 1 km layers below 100 mbar for air temperature, 10% RMS in 2 km layers below 100 mbar for water vapor concentration), combined with the large temporal and spatial variability of the atmosphere and difficulties in making accurate measurements of the atmospheric state, necessitate careful and detailed validation using well-characterized ground-based sites. As part of ongoing AIRS Science Team efforts and a collaborative effort between the NASA Earth Observing System (EOS) project and the Department of Energy Atmospheric Radiation Measurement (ARM) program, data from various ARM and other observations are used to create best estimates of the atmospheric state at the Aqua overpass times. The resulting validation data set is an ensemble of temperature and water vapor profiles created from radiosondes launched at the approximate Aqua overpass times, interpolated to the exact overpass time using time continuous ground-based profiles, adjusted to account for spatial gradients within the Advanced Microwave Sounding Unit (AMSU) footprints, and supplemented with limited cloud observations. Estimates of the spectral surface infrared emissivity and local skin temperatures are also constructed. Relying on the developed ARM infrastructure and previous and ongoing characterization studies of the ARM measurements, the data set provides a good combination of statistics and accuracy which is essential for assessment of the advanced sounder products. Combined with the collocated AIRS observations, the products are being used to study observed minus calculated AIRS spectra, aimed at evaluation of the AIRS forward radiative transfer model, AIRS observed radiances, and temperature and water vapor profile

  19. Ionospheric wave spectrum measurements

    NASA Technical Reports Server (NTRS)

    Harker, K. J.; Ilic, D. B.; Crawford, F. W.

    1979-01-01

    The local spectrum S(k, omega) of either potential or electron-density fluctuations can be used to determine macroscopic-plasma characteristics such as the local density and temperature, transport coefficients, and drift current. This local spectrum can be determined by measuring the cross-power spectrum. The paper examines the practicality of using the cross-power spectrum analyzer on the Space Shuttle to measure ionospheric parameters. Particular attention is given to investigating the integration time required to measure the cross-power spectral density to a desired accuracy.

  20. Ionospheric and magnetospheric plasmapauses'

    NASA Technical Reports Server (NTRS)

    Grebowsky, J. M.; Hoffman, J. H.; Maynard, N. C.

    1977-01-01

    During August 1972, Explorer 45 orbiting near the equatorial plane with an apogee of about 5.2 R sub e traversed magnetic field lines in close proximity to those simultaneously traversed by the topside ionospheric satellite ISIS 2 near dusk in the L range 2-5.4. The locations of the Explorer 45 plasmapause crossings during this month were compared to the latitudinal decreases of the H(+) density observed on ISIS 2 near the same magnetic field lines. The equatorially determined plasmapause field lines typically passed through or poleward of the minimum of the ionospheric light ion trough, with coincident satellite passes occurring for which the L separation between the plasmapause and trough field lines was between 1 and 2. Vertical flows of the H(+) ions in the light ion trough as detected by the magnetic ion mass spectrometer on ISIS were directed upward with velocities between 1 and 2 kilometers/sec near dusk on these passes. These velocities decreased to lower values on the low latitude side of the H(+) trough but did not show any noticeable change across the field lines corresponding to the magnetospheric plasmapause.

  1. Formation and ascent of nonisothermal ionospheric and chromospheric bubbles

    SciTech Connect

    Genkin, L.G.; Erukhimov, L.M.; Myasnikov, E.N.; Shvarts, M.M.

    1987-11-01

    The influences of nonisothermicity on the dynamics of ionospheric and chromospheric bubbles is discussed. The possibility of the existence in the ionosphere of a recombination-thermal instability, arising from the temperature dependence of the coefficient of charge exchange between molecules and atomic ions, is shown, and its influence on the formation and evolution of equatorial bubbles is analyzed. It is shown that the formation and dynamics of bubbles may depend on recombination processes and gravity, while plasma heating (predominantly by vertical electric fields) leads to the deepening and preservation of bubbles as they move to greater altitudes. The hypothesis is advanced that the formation of bubbles may be connected with the ascent of clumps of molecules in ionospheric tornados.

  2. All Ionospheres are not Alike: Reports from other Planets

    NASA Technical Reports Server (NTRS)

    Nagy, Andrew F.; Cravens, Thomas E.; Waite, H. J., Jr.

    1995-01-01

    Our understanding of planetary ionospheres made some progress during the last four years. Most of this progress was due to new and/or improved theoretical models, although some new data were also obtained by direct and remote sensing observations. The very basic processes such as ionization, chemical transformations and diffusive as well as convective transports are analogous in all ionospheres; the major differences are the result of factors such as different neutral atmospheres, intrinsic magnetic field strength, distance from the Sun, etc. Improving our understanding of any of the ionospheres in our solar system helps in elucidating the controlling physical and chemical processes in all of them. New measurements are needed to provide new impetus, as well as guidance, in advancing our understanding and we look forward to such information in the years ahead.

  3. Multiorder etalon sounder (MOES) development and test for balloon experiment

    NASA Technical Reports Server (NTRS)

    Hays, Paul B.; Wnag, Jinxue; Wu, Jian

    1993-01-01

    The Fabry-Perot interferometer (FPI), with its high throughput and high spectral resolution has been used in the remote-sensing measurements of the earth's atmospheric composition, winds, and temperatures. The most recent satellite instruments include the Fabry-Perot interferometer flown on the Dynamics Explorer-2 (DE-2), the High Resolution Doppler Imager (HRDI), and the Cryogenic Limb Array Etalon Spectrometer (CLAES) flown on the Upper Atmosphere Research Satellite (UARS). These instruments measure the Doppler line profiles of the emission and absorption of certain atmospheric species (such as atomic oxygen) in the visible and infrared spectral region. The successful space flight of DE-FPI, HRDI, and CLAES on UARS demonstrated the extremely high spectral resolution and ruggedness of the etalon system for the remote sensing of earth and planetary atmospheres. Recently, an innovative FPI focal plane detection technique called the Circle-to-Line Interferometer Optical (CLIO) system was invented at the Space Physics Research Laboratory. The CLIO simplifies the FPI focal plane detection process by converting the circular rings or fringes into a linear pattern similar to that produced by a conventional spectrometer, while retaining the throughput advantage of the etalon interferometer. The combination of FPI and CLIO allows the development of more sensitive Fabry-Perot interferometers in the infrared for the remote sensing of the lower atmospheres of Earth and possibly other planets. The Multiorder Etalon Sounder (MOES), a combination of the rugged etalon and the CLIO, compares very favorably to other space-borne optical instruments in terms of performance versus complexity. The new instrument is expected to be rugged, compact, and very suitable for an operational temperature and moisture sounder. With this technique, the contamination of radiance measurements by emissions of other gases is also minimized. At the Space Physics Research Laboratory (SPRL), the MOES

  4. Broadband infrared beam splitter for spaceborne interferometric infrared sounder.

    PubMed

    Yu, Tianyan; Liu, Dingquan; Qin, Yang

    2014-10-01

    A broadband infrared beam splitter (BS) on ZnSe substrate used for the spaceborne interferometric infrared sounder (SIIRS) is studied in the spectral range of 4.44-15 μm. Both broadband antireflection coating and broadband beam-splitter coating in this BS are designed and tested. To optimize the optical properties and the stability of the BS, suitable infrared materials were selected, and improved deposition techniques were applied. The designed structures matched experimental data well, and the properties of the BS met the application specification of SIIRS. PMID:25322240

  5. Observations of Gravity Waves with the UARS Microwave Limb Sounder

    NASA Technical Reports Server (NTRS)

    Wu, D. L.; Waters, J. W.

    1996-01-01

    From Introduction: Observations (of gravity waves-GW) from radar, lidar, balloon and rocket yield good temporal and vertical resolutions usually at one geographical location while aircraft observations provide good horizontal resolution but for a short period of time. It is difficult in general for space-borne sensors to obtain the same resolutions, but observations of GWs at somewhat larger scales are feasible, for example using saturated radiances from the Upper Atmosphere Research Satellite (UARS) Microwave Limb Sounder (MLS)[Wu and Waters, 1996].

  6. Total ionospheric electron content calibration using SERIES GPS satellite data

    NASA Technical Reports Server (NTRS)

    Lanyi, G.

    1986-01-01

    The current status of the Deep Space Network advanced systems research into ionospheric calibration techniques, based on Global Positioning System (GPS) data is described. A GPS-based calibration system is planned to replace the currently used Faraday rotation method by 1989. The SERIES receiver system determines the differential group delay of signals transmitted at two different carrier frequencies. This differential delay includes an ionospheric component and a GPS transmitter offset. The transmitter offsets are different for each GPS satellite. Tests were conducted to assess the effect of the offsets on the ionospheric calibration accuracy. From the obtained data, the total electron content and GPS transmitter offsets are calculated by a least squares estimation method employing a local model of total ionospheric electron content. The end product is an estimation of the total ionospheric content for an arbitrary line-of-sight direction. For the presented polynomial fitting technique, the systematic error due to mismodeling is estimated to be approximately 6 x 10 to the 16th power el/sq m, while the formal error is approximately 2 x 10 to the 16th power el/sq m. The final goal is an error of 3 x 10 to the 16th power el/sq m (approximately 0.7 ns at 2.3 GHz).

  7. Scale Height variations with solar cycle in the ionosphere of Mars

    NASA Astrophysics Data System (ADS)

    Sanchez-Cano, Beatriz; Lester, Mark; Witasse, Olivier; Milan, Stephen E.; Hall, Benjamin E. S.; Cartacci, Marco; Radicella, Sandro M.; Blelly, Pierre-Louis

    2015-04-01

    The Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) on board the Mars Express spacecraft has been probing the topside of the ionosphere of Mars since June 2005, covering currently almost one solar cycle. A good knowledge of the behaviour of the ionospheric variability for a whole solar period is essential since the ionosphere is strongly dependent on solar activity. Using part of this dataset, covering the years 2005 - 2012, differences in the shape of the topside electron density profiles have been observed. These variations seem to be linked to changes in the ionospheric temperature due to the solar cycle variation. In particular, Mars' ionospheric response to the extreme solar minimum between end-2007 and end-2009 followed a similar pattern to the response observed in the Earth's ionosphere, despite the large differences related to internal origin of the magnetic field between both planets. Plasma parameters such as the scale height as a function of altitude, the main peak characteristics (altitude, density), the total electron content (TEC), the temperatures, and the ionospheric thermal pressures show variations related to the solar cycle. The main changes in the topside ionosphere are detected during the period of very low solar minimum, when ionospheric cooling occurs. The effect on the scale height is analysed in detail. In contrast, a clear increase of the scale height is observed during the high solar activity period due to enhanced ionospheric heating. The scale height variation during the solar cycle has been empirically modelled. The results have been compared with other datasets such as radio-occultation and retarding potential analyser data from old missions, especially in low solar activity periods (e.g. Mariner 4, Viking 1 and 2 landers), as well as with numerical modelling.

  8. Investigations of atmospheric dynamics using a CW Doppler sounder array

    NASA Technical Reports Server (NTRS)

    Rao, G. L.

    1974-01-01

    A three-dimensional CW Doppler sounding system currently under operation at the NASA-Marshall Space Flight Center, Alabama is described. The properties of the neutral atmosphere are discussed along with the theory of Doppler sounding technique. Methods of data analyses used to investigate the dynamical phenomena at the ionospheric heights are presented and suggestions for future investigations provided.

  9. The use of multibeam and split-beam echo sounders for assessing biomass and distribution of spring-spawning Atlantic cod in the Gulf of Maine

    NASA Astrophysics Data System (ADS)

    Gurshin, Christopher William Damon

    This research focused on advancing the application of split-beam and multibeam echo sounding to remotely locate and describe spatial distribution, and to provide a relative measure of abundance of the spring-spawning Atlantic cod (Gadus morhua) in the western Gulf of Maine. Specifically, the main objectives of this research were 1) to test the feasibility of a multibeam echo sounder to detect changes in volume backscatter proportional to incrementally decreasing quantities of cod held in a submerged cage, and to compare results to a split-beam echo sounder; 2) to describe the spatio-temporal distribution and estimate biomass of spring-spawning cod in the Gulf of Maine cod spawning protection area (GOMCSPA) by repeated acoustic and trawl surveys; and 3) to determine a predictive relation between target strength and length for 38-kHz and 120-kHz split-beam echo sounders and a 300-kHz multibeam echo sounder, and characterize other factors affecting backscattering of sound. The multibeam echo sounder detected a small and large reduction in volume backscatter proportional to reductions in stocking density of caged cod, while the split-beam echo sounder only detected a large reduction in stocking density. The spatial information from the multibeam echo sounder helped interpret and explain results from the split-beam echo sounder. Repeated acoustic and trawl surveys showed cod were relatively widespread in the survey area in May, but congregated at higher densities in areas adjacent to two elevated bathymetric features. Most cod converged to a single location in June, and were at a higher concentration than observations in May. This congregation decreased in size and density in July. Survey estimates of cod biomass ranged 184-494 mt in May, 138-617 mt in June, and 39-135 mt in July, depending on the estimation method. Based on echo classification and extrapolation, cod biomass to the GOMCSPA ranged 260-466 mt in May, 196-513 mt in June, and 91-198 mt in July. The biomass

  10. Improving Regional Forecast by Assimilating Atmospheric InfraRed Sounder (AIRS) Profiles into WRF Model

    NASA Technical Reports Server (NTRS)

    Chou, Shih-Hung; Zavodsky, Brad; Jedlovec, Gary J.

    2009-01-01

    In data sparse regions, remotely-sensed observations can be used to improve analyses and produce improved forecasts. One such source comes from the Atmospheric InfraRed Sounder (AIRS), which together with the Advanced Microwave Sounding Unit (AMSU), represents one of the most advanced space-based atmospheric sounding systems. The purpose of this paper is to describe a procedure to optimally assimilate high resolution AIRS profile data into a regional configuration of the Advanced Research WRF (ARW) version 2.2 using WRF-Var. The paper focuses on development of background error covariances for the regional domain and background type, and an optimal methodology for ingesting AIRS temperature and moisture profiles as separate overland and overwater retrievals with different error characteristics. The AIRS thermodynamic profiles are derived from the version 5.0 Earth Observing System (EOS) science team retrieval algorithm and contain information about the quality of each temperature layer. The quality indicators were used to select the highest quality temperature and moisture data for each profile location and pressure level. The analyses were then used to conduct a month-long series of regional forecasts over the continental U.S. The long-term impacts of AIRS profiles on forecast were assessed against verifying NAM analyses and stage IV precipitation data.

  11. The Behm Acoustic Sounder for Airplanes with Reference to Its Accuracy

    NASA Technical Reports Server (NTRS)

    Schreiber, Ernest

    1930-01-01

    Relative altimetry is of great importance for increasing the safety in aerial transportation, because it makes possible safe flying at night, by poor visibility, and when landing. Among the instruments of this type is the Behm sounder, which operates on an acoustic principle. Acoustic altimetry in general and the Behn sounder, in particular, are covered in this report.

  12. Channel alignment and radiometry in hyperspectral atmospheric infrared sounders

    NASA Technical Reports Server (NTRS)

    Elliott, Denis A.; Aumanna, H. H.; Pagano, Thomas S.; Overoye, Kenneth R.; Schindler, Rudolf A.

    2005-01-01

    The Atmospheric Infrared Sounder (AIRS) is a hyper-spectral infrared sounder which covers the 3.7 to 15,4 micron region with 2378 spectral channels. The AIRS instrument specification called for spatial co-registration of all channels to better than 2% of the field of view. Pre-launch testing confirmed that this requirement was met, since the standard deviations in the centroids was about 1% of the 13.5 km IFOV in scan and 3% in track. Detailed analysis of global AIRS data show that the typical scene gradient in 10 micron window channels is about I .3K/km rms. The way these gradients, which are predominantly caused by clouds, manifest themselves in the data depends on the details of the instrument design and the way the spectral channels are used in the data analysis, AIRS temperature and moisture retrievals use 328 of the 2378 channels from 17 independent arrays. As a result, the effect of the boresight misalignment averages to zero mean. Any increase in the effective noise is less than 0.2K. Also, there is no discernable performance degradation of products at the 45 km spatial resolution in the presence of partially cloudy scenes with up to 80% cloudiness. Single pixel radiometric differences between channels with boresight alignment differences can be appreciable and can affect scientific investigations on a single 15km footprint scale, particularly near coastlines, thunderstorms and surface emissivity inhomogeneities.

  13. Requirements for a Moderate-Resolution Infrared Imaging Sounder (MIRIS)

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Aumann, Hartmut H.; Gerber, Andrew J.; Kuai, Le; Gontijo, I.; DeLeon, Berta; Susskind, Joel; Iredell, Lena; Bajpai, Shyam

    2013-01-01

    The high cost of imaging and sounding from space warrants exploration of new methods for obtaining the required information, including changing the spectral band sets, employing new technologies and merging instruments. In some cases we must consider relaxation of the current capability. In others, we expect higher performance. In general our goal is to meet the VIIRS and CrIS requirements while providing the enhanced next generation capabilities: 1) Hyperspectral Imaging in the Vis/NIR bands, 2) High Spatial Resolution Sounding in the Infrared bands. The former will improve the accuracy of ocean color products, aerosols and water vapor, surface vegetation and geology. The latter will enable the high-impact achieved by the current suite of hyperspectral infrared sounders to be achieved by the next generation high resolution forecast models. We examine the spectral, spatial and radiometric requirements for a next generation system and technologies that can be applied from the available inventory within government and industry. A two-band grating spectrometer instrument called the Moderate-resolution Infrared Imaging Sounder (MIRIS) is conceived that, when used with the planned NASA PACE Ocean Color Instrument (OCI) will meet the vast majority of CrIS and VIIRS requirements in the all bands and provide the next generation capabilities desired. MIRIS resource requirements are modest and the Technology Readiness Level is high leading to the expectation that the cost and risk of MIRIS will be reasonable.

  14. Ionospheric scintillation studies

    NASA Technical Reports Server (NTRS)

    Rino, C. L.; Freemouw, E. J.

    1973-01-01

    The diffracted field of a monochromatic plane wave was characterized by two complex correlation functions. For a Gaussian complex field, these quantities suffice to completely define the statistics of the field. Thus, one can in principle calculate the statistics of any measurable quantity in terms of the model parameters. The best data fits were achieved for intensity statistics derived under the Gaussian statistics hypothesis. The signal structure that achieved the best fit was nearly invariant with scintillation level and irregularity source (ionosphere or solar wind). It was characterized by the fact that more than 80% of the scattered signal power is in phase quadrature with the undeviated or coherent signal component. Thus, the Gaussian-statistics hypothesis is both convenient and accurate for channel modeling work.

  15. Models of Titan's Ionosphere

    NASA Astrophysics Data System (ADS)

    Robertson, I. P.; Cravens, T. E.; Waite, J. H.; Wahlund, J.; Yelle, R. V.; Vuitton, V.; Coates, A.; Magee, B.; Gell, D. A.

    2007-12-01

    During the TA and T18 encounters with Titan, in situ measurements were made of Titan's atmosphere and ionosphere by several instruments on board the Cassini Orbiter, including the Ion and Neutral Mass Spectrometer (INMS), the Langmuir probe on the Cassini Radio and Plasma Wave Experiment (RPWS), and the Cassini Plasma Spectrometer Subsystem (CAPS). Both of these encounters were on the day as well as the night side of Titan. The model uses neutral densities measured by the INMS instrument and the electron temperature was measured by the RPWS instrument. The model also includes energetic electron fluxes measured by the CAPS instrument, which act as an important source of ionization on the night side. The modeled ion densities are compared with densities measured by INMS in its Open Source mode.

  16. Ionospheric plasma drift and structure studies at high and mid-latitudes. Volume 1. Final report, October 1990-October 1993

    SciTech Connect

    Reinisch, B.W.; Scali, J.L.; Dozois, C.; Crowley, G.

    1993-12-01

    Ground-based observations of the high latitude ionosphere with Digisonde sounders at Quaanaaq, Sondrestrom, Goose Bay, Argentina and Millstone Hill provide a description of the patch structure and the convection pattern in the polar cap. Correlation analysis of observed F-region plasma drifts with the orientation of the interplanetary magnetic field (measured by IMP8) lead to a new technique of deducing the signs of Bz and By from the measured drifts. Real time calculation of the plasma drift was successfully introduced at one of the Digisonde stations (Sondrestrom) providing the possibility of determining the IMF components in real time. Analysis of mid-latitude trough observation shows large westward velocities in the trough region. Digisonde data from Quaanaaq and DMSP F8 and F9 satellite data showed the development of the ionospheric polar hole.

  17. TEC disturbances during major Sudden Stratospheric Warmings in the mid-latitude ionosphere.

    NASA Astrophysics Data System (ADS)

    Polyakova, Anna; Voeykov, Sergey; Chernigovskaya, Marina; Perevalova, Natalia

    Using total electron content (TEC) global ionospheric maps, dual-frequency GPS receivers TEC data and MLS (Microwave Limb Sounder, EOS Aura) atmospheric temperature data the ionospheric disturbances during the strong sudden stratospheric warmings (SSWs) of 2008/2009 and 2012/2013 winters are investigated in Russia's Asia region. It is established that during the SSW maximum the midday TEC decrease and the night/morning TEC increase compared to quiet days are observed in the mid-latitude ionosphere. As a result it caused the decrease of the diurnal TEC variations amplitude of about two times in comparison with the undisturbed level. The analysis of TEC deviations from the background level during the SSWs has shown that deviations dynamics vary depending on the observation point position. Negative deviations of TEC are registered in the ionosphere above the region of maximum stratosphere heating (the region of the stratospheric circulation change) as well as above the anticyclone. On the contrary, TEC values increase compared to the quiet day's values above the stratosphere cyclone. It is shown that during maximum phase of a warming, and within several days after it the amplification of wave TEC variations intensity with periods of up to 60 min is registered in ionosphere. The indicated effects may be attributed to the vertical transfer of molecular gas from a stratospheric heating region to the thermosphere as well as to the increase in activity of planetary and gravity waves which is usually observed during strong SSWs. The study is supported by the RF President Grant of Public Support for RF Leading Scientific Schools (NSh-2942.2014.5), the RF President Grant No. MK-3771.2012.5 and RFBR Grant No. 12-05-00865_а.

  18. The International Reference Ionosphere: Model Update 2016

    NASA Astrophysics Data System (ADS)

    Bilitza, Dieter; Altadill, David; Reinisch, Bodo; Galkin, Ivan; Shubin, Valentin; Truhlik, Vladimir

    2016-04-01

    The International Reference Ionosphere (IRI) is recognized as the official standard for the ionosphere (COSPAR, URSI, ISO) and is widely used for a multitude of different applications as evidenced by the many papers in science and engineering journals that acknowledge the use of IRI (e.g., about 11% of all Radio Science papers each year). One of the shortcomings of the model has been the dependence of the F2 peak height modeling on the propagation factor M(3000)F2. With the 2016 version of IRI, two new models will be introduced for hmF2 that were developed directly based on hmF2 measurements by ionosondes [Altadill et al., 2013] and by COSMIC radio occultation [Shubin, 2015], respectively. In addition IRI-2016 will include an improved representation of the ionosphere during the very low solar activities that were reached during the last solar minimum in 2008/2009. This presentation will review these and other improvements that are being implemented with the 2016 version of the IRI model. We will also discuss recent IRI workshops and their findings and results. One of the most exciting new projects is the development of the Real-Time IRI [Galkin et al., 2012]. We will discuss the current status and plans for the future. Altadill, D., S. Magdaleno, J.M. Torta, E. Blanch (2013), Global empirical models of the density peak height and of the equivalent scale height for quiet conditions, Advances in Space Research 52, 1756-1769, doi:10.1016/j.asr.2012.11.018. Galkin, I.A., B.W. Reinisch, X. Huang, and D. Bilitza (2012), Assimilation of GIRO Data into a Real-Time IRI, Radio Science, 47, RS0L07, doi:10.1029/2011RS004952. Shubin V.N. (2015), Global median model of the F2-layer peak height based on ionospheric radio-occultation and ground-based Digisonde observations, Advances in Space Research 56, 916-928, doi:10.1016/j.asr.2015.05.029.

  19. The worldwide ionospheric data base

    NASA Technical Reports Server (NTRS)

    Bilitza, Dieter

    1989-01-01

    The worldwide ionospheric data base is scattered over the entire globe. Different data sets are held at different institutions in the U.S., U.S.S.R., Australia, Europe, and Asia. The World Data Centers on the different continents archive and distribute part of the huge data base; the scope and cross section of the individual data holdings depend on the regional and special interest of the center. An attempt is made to pull together all the strings that point toward different ionospheric data holdings. Requesters are provided with the information about what is available and where to get it. An attempt is also made to evaluate the reliability and compatibility of the different data sets based on the consensus in the ionospheric research community. The status and accuracy of the standard ionospheric models are also discussed because they may facilitate first order assessment of ionospheric effects. This is a first step toward an ionospheric data directory within the framework of NSSDC's master directory.

  20. Evidence of Convective Redistribution of Carbon Monoxide in Aura Tropospheric Emission Sounder (TES) and Microwave Limb Sounder (MLS) Observations

    NASA Technical Reports Server (NTRS)

    Manyin, Michael; Douglass, Anne; Schoeberl, Mark

    2010-01-01

    Vertical convective transport is a key element of the tropospheric circulation. Convection lofts air from the boundary layer into the free troposphere, allowing surface emissions to travel much further, and altering the rate of chemical processes such as ozone production. This study uses satellite observations to focus on the convective transport of CO from the boundary layer to the mid and upper troposphere. Our hypothesis is that strong convection associated with high rain rate regions leads to a correlation between mid level and upper level CO amounts. We first test this hypothesis using the Global Modeling Initiative (GMI) chemistry and transport model. We find the correlation is robust and increases as the precipitation rate (the strength of convection) increases. We next examine three years of CO profiles from the Tropospheric Emission Sounder (TES) and Microwave Limb Sounder (MLS) instruments aboard EOS Aura. Rain rates are taken from the Tropical Rainfall Measuring Mission (TRMM) 3B-42 multi-satellite product. Again we find a correlation between mid-level and upper tropospheric CO, which increases with rain rate. Our result shows the critical importance of tropical convection in coupling vertical levels of the troposphere in the transport of trace gases. The effect is seen most clearly in strong convective regions such as the Inter-tropical Convergence Zone.

  1. Altitude Variation of the Plasmapause Signature in the Main Ionospheric Trough

    NASA Technical Reports Server (NTRS)

    Grebowsky, Joseph M.; Benson, Robert F.; Webb, Phillip A.; Truhlik, Vladimir; Bilitza, Dieter

    2009-01-01

    The projection of the plasmapause magnetic-field lines to low altitudes, where the light-ion chemistry is dominated by O(+), tends to occur near the minimum electron density in the main (midlatitude) electron density trough at night. With increasing attitude in the trough, where H(+) emerges as the dominant iota on the low-latitude boundary, we have found cases where the plasmapause field lines are located on the sharp low-Latitude side of the trough as expected if this topside ionosphere H(+) distribution varies in step with the plasmapause gradient in the distant plasmasphere. These conclusions are based on near-equatorial crossings of the plasmapause (corresponding to the steep gradient in the dominant species H(+) by the Explorer-45 satellite as determined from electric-field measurements by Maynard and Cauffman in the early 1970s and ISIS-2 ionospheric topside-sounder measurements. The former data have now been converted to digital form and made available at http://nssdcftp.gsfc.nasa.gov. The latter provide samples of nearly coincident observations of ionospheric main trough crossings near the same magnetic-field lines of the Explorer 45-determined equatorial plasmapause. The ISIS-2 vertical electron density profiles are used to infer where the F-region transitions from an O(+) to a H(+) dominated plasma through the main trough boundaries.

  2. Acoustic disturbance at ionospheric heights caused by the MILL RACE explosion

    SciTech Connect

    Rickel, D.G.; Simons, D.J.

    1982-01-01

    The principal objective of the Los Alamos National Laboratory in the MILL RACE experiment was to measure the over-head ionospheric response due to the MILL RACE explosion. Such a measurement enables one to test computer models designed to quantitatively predict ionospheric disturbances caused by known sources. The emphasis of the models has been directed at calculating effects on rf propagation associated with the predicted ionospheric disturbances. Consequently vertical incidence phase sounding measurements of a well-characterized source provide a direct and sensitive test of the computer models and, for this reason, a vertical incidence phase sounder was located 3300 meters to the west of the MILL RACE ground zero. Another area of interest is the development of an understanding of the atmospheric response to known sources at distances where the acoustic response no longer dominates. Such an undertaking requires measurements at these remote points. Deployment of a bistatic sounding network enabled the investigation of this area of interest. Results are reported.

  3. Geo-STAR: A Geostationary Microwave Sounder for the Future

    NASA Technical Reports Server (NTRS)

    Lambrigtsen, Bjorn H.; Brown, S. T.; Dinardo, S. J.; Gaier, T. C.; Kangaslahti, P. P.; Tanner, A. B.

    2007-01-01

    The Geostationary Synthetic Thinned Aperture Radiometer (GeoSTAR) is a new Earth remote sensing instrument concept that has been under development at the Jet Propulsion Laboratory. First conceived in 1998 as a NASA New Millennium Program mission and subsequently developed in 2003-2006 as a proof-of-concept prototype under the NASA Instrument Incubator Program, it is intended to fill a serious gap in our Earth remote sensing capabilities - namely the lack of a microwave atmospheric sounder in geostationary orbit. The importance of such observations have been recognized by the National Academy of Sciences National Research Council, which recently released its report on a 'Decadal Survey' of NASA Earth Science activities1. One of the recommended missions for the next decade is a geostationary microwave sounder. GeoSTAR is well positioned to meet the requirements of such a mission, and because of the substantial investment NASA has already made in GeoSTAR technology development, this concept is fast approaching the necessary maturity for implementation in the next decade. NOAA is also keenly interested in GeoSTAR as a potential payload on its next series of geostationary weather satellites, the GOES-R series. GeoSTAR, with its ability to map out the three-dimensional structure of temperature, water vapor, clouds, precipitation and convective parameters on a continual basis, will significantly enhance our ability to observe hurricanes and other severe storms. In addition, with performance matching that of current and next generation of low-earth-orbiting microwave sounders, GeoSTAR will also provide observations important to the study of the hydrologic cycle, atmospheric processes and climate variability and trends. In particular, with GeoSTAR it will be possible to fully resolve the diurnal cycle. We discuss the GeoSTAR concept and basic design, the performance of the prototype, and a number of science applications that will be possible with GeoSTAR. The work reported

  4. GeoSTAR: a geostationary microwave sounder for the future

    NASA Astrophysics Data System (ADS)

    Lambrigtsen, B. H.; Brown, S. T.; Dinardo, S. J.; Gaier, T. C.; Kangaslahti, P. P.; Tanner, A. B.

    2007-09-01

    The Geostationary Synthetic Thinned Aperture Radiometer (GeoSTAR) is a new Earth remote sensing instrument concept that has been under development at the Jet Propulsion Laboratory. First conceived in 1998 as a NASA New Millennium Program mission and subsequently developed in 2003-2006 as a proof-of-concept prototype under the NASA Instrument Incubator Program, it is intended to fill a serious gap in our Earth remote sensing capabilities - namely the lack of a microwave atmospheric sounder in geostationary orbit. The importance of such observations have been recognized by the National Academy of Sciences National Research Council, which recently released its report on a "Decadal Survey" of NASA Earth Science activities. One of the recommended missions for the next decade is a geostationary microwave sounder. GeoSTAR is well positioned to meet the requirements of such a mission, and because of the substantial investment NASA has already made in GeoSTAR technology development, this concept is fast approaching the necessary maturity for implementation in the next decade. NOAA is also keenly interested in GeoSTAR as a potential payload on its next series of geostationary weather satellites, the GOES-R series. GeoSTAR, with its ability to map out the three-dimensional structure of temperature, water vapor, clouds, precipitation and convective parameters on a continual basis, will significantly enhance our ability to observe hurricanes and other severe storms. In addition, with performance matching that of current and next generation of low-earth-orbiting microwave sounders, GeoSTAR will also provide observations important to the study of the hydrologic cycle, atmospheric processes and climate variability and trends. In particular, with GeoSTAR it will be possible to fully resolve the diurnal cycle. We discuss the GeoSTAR concept and basic design, the performance of the prototype, and a number of science applications that will be possible with GeoSTAR. The work reported

  5. Satellite Sounder Data Assimilation for Improving Alaska Region Weather Forecast

    NASA Technical Reports Server (NTRS)

    Zhu, Jiang; Stevens, E.; Zavodsky, B. T.; Zhang, X.; Heinrichs, T.; Broderson, D.

    2014-01-01

    Data assimilation has been demonstrated very useful in improving both global and regional numerical weather prediction. Alaska has very coarser surface observation sites. On the other hand, it gets much more satellite overpass than lower 48 states. How to utilize satellite data to improve numerical prediction is one of hot topics among weather forecast community in Alaska. The Geographic Information Network of Alaska (GINA) at University of Alaska is conducting study on satellite data assimilation for WRF model. AIRS/CRIS sounder profile data are used to assimilate the initial condition for the customized regional WRF model (GINA-WRF model). Normalized standard deviation, RMSE, and correlation statistic analysis methods are applied to analyze one case of 48 hours forecasts and one month of 24-hour forecasts in order to evaluate the improvement of regional numerical model from Data assimilation. The final goal of the research is to provide improved real-time short-time forecast for Alaska regions.

  6. Stratospheric CH3CN from the UARS Microwave Limb Sounder

    NASA Astrophysics Data System (ADS)

    Livesey, Nathaniel J.; Waters, Joe W.; Khosravi, Rashid; Brasseur, Guy P.; Tyndall, Geoffrey S.; Read, William G.

    CH3CN in the stratosphere has been measured by the Microwave Limb Sounder (MLS) on the Upper Atmosphere Research Satellite (UARS), providing the first global CH3CN dataset. The MLS observations are in broad agreement with past high and midlatitude observations of CH3CN, although concentrations are a little larger than previously observed. In the tropics, where CH3CN has not up to now been measured, a persistent ‘peak’ in the profiles is seen around 22 hPa, which may be evidence of a tropical stratospheric CH3CN source. Comparisons are made with the NCAR SOCRATES model, including runs having an artificial tropical stratospheric CH3CN source.

  7. Determination of cloud parameters from infrared sounder data

    NASA Technical Reports Server (NTRS)

    Yeh, H.-Y. M.

    1984-01-01

    The World Climate Research Programme (WCRP) plan is concerned with the need to develop a uniform global cloud climatology as part of a broad research program on climate processes. The International Satellite Cloud Climatology Project (ISCCP) has been approved as the first project of the WCRP. The ISCCP has the basic objective to collect and analyze satellite radiance data to infer the global distribution of cloud radiative properties in order to improve the modeling of cloud effects on climate. Research is conducted to explore an algorithm for retrieving cloud properties by utilizing the available infrared sounder data from polar-orbiting satellites. A numerical method is developed for computing cloud top heights, amount, and emissivity on the basis of a parameterized infrared radiative transfer equation for cloudy atmospheres. Theoretical studies were carried out by considering a synthetic atmosphere.

  8. Mechanical Description of the Mars Climate Sounder Instrument

    NASA Technical Reports Server (NTRS)

    Jau, Bruno M.

    2008-01-01

    This paper introduces the Mars Climate Sounder (MCS) Instrument of the Mars Reconnaissance Orbiter (MRO) spacecraft. The instrument scans the Martian atmosphere almost continuously to systematically acquire weather and climate observations over time. Its primary components are an optical bench that houses dual telescopes with a total of nine channels for visible and infrared sensing, and a two axis gimbal that provides pointing capabilities. Both rotating joints consist of an integrated actuator with a hybrid planetary/harmonic transmission and a twist cap section that enables the electrical wiring to pass through the rotating joint. Micro stepping is used to reduce spacecraft disturbance torques to acceptable levels while driving the stepper motors. To ensure survivability over its four year life span, suitable mechanical components, lubrication, and an active temperature control system were incorporated. Some life test results and lessons learned are provided to serve as design guidelines for actuator parts and flex cables.

  9. Forecasting the Ionosphere Driven by Solar, Geomagnetic, and Lower Atmosphere Disturbances

    NASA Astrophysics Data System (ADS)

    Fuller-Rowell, T. J.; Codrescu, M.; Fang, T. W.; Wang, H.; Akmaev, R. A.; Wu, F.; Fedrizzi, M.; Fontenla, J. M.; Retterer, J. M.

    2014-12-01

    Ionospheric forecasting has traditionally focused upon, and been limited by, our ability to forecast magnetospheric drivers one to two days in advance of a geomagnetic storm. The advances in this area are significant as physics-based solar wind propagation models have been transitioned to operations, and provide the time of arrival of a solar disturbance. Although predicting the magnetic field orientation and strength is still a challenge, once the solar wind drivers are forecast, the accuracy of the ionospheric predictions are dependent on the ability of thermosphere-ionosphere models to correctly capture the physical processes in the upper atmosphere response to magnetospheric energy and momentum dissipation. Many of the storm-time thermosphere responses impacting the ionosphere can be modeled reasonably well, such as changes in winds, gravity waves, temperature, density, and composition. However, some of the electric field effects driving storm enhanced plasma density and the disturbance dynamo are still a challenge. Under quieter geomagnetic conditions, forecasting solar extreme ultraviolet radiation becomes more important, as does the impact of forcing from the lower atmosphere. These two new research thrusts are also showing promise to provide the drivers of ionospheric prediction several days in advance. There is also a possibility that whole atmosphere models could provide the background conditions for forecasting ionospheric irregularities.

  10. How Strong is the Case for Geostationary Hyperspectral Sounders?

    NASA Astrophysics Data System (ADS)

    Kirk-Davidoff, D. B.; Liu, Z.; Jensen, S.; Housley, E.

    2014-12-01

    The NASA GIFTS program designed and constructed a flight-ready hyperspectral infrared sounder for geostationary orbit. Efforts are now underway to launch a constellation of similar instruments. Salient characteristics included 4 km spatial resolution at nadir and 0.6 cm-1 spectral resolution in two infrared bands. Observing system experiments have demonstrated the success of assimilated hyperspectral infrared radiances from IASI and AIRS in improving weather forecast skill. These results provide circumstantial evidence that additional observations at higher spatial and temporal resolution would likely improve forecast skill further. However, there is only limited work investigating the magnitude of this skill improvement in the literature. Here we present a systematic program to quantify the additional skill of a constellation of geostationary hyperspectral sounders through observing system simulation experiments (OSSEs) using the WRF model and the WRFDA data assimilation system. The OSSEs will focus first on high-impact events, such as the forecast for Typhoon Haiyun, but will also address quotidian synoptic forecast skill. The focus will be on short-term forecast skill (<24 hours lead time), in accord with WRF's mesoscale design, and with the view that high time frequency observations are likely to make the biggest impact on the skill of short-range forecasts. The experiments will use as their starting point the full existing observational suite, so that additionality can be addressed, but will also consider contingencies, such as the loss of particular elements of the existing system, as well as the degree to which a stand-alone system of hyperspectral sounds would be able to successfully initialize a regional forecast model. A variety of settings, tropical and extratropical, marine and continental will be considered.

  11. Alternative cloud clearing methodologies for the atmospheric infrared sounder (AIRS)

    NASA Astrophysics Data System (ADS)

    Barnet, C. D.; Goldberg, M.; King, Thomas; Nalli, Nicholas; Wolf, Walter; Zhou, Lihang; Wei, Jennifer

    2005-08-01

    Traditional cloud clearing methods utilize a clear estimate of the atmosphere inferred from a microwave sounder to extrapolate cloud cleared radiances (CCR's) from a spatial interpolation of multiple cloudy infrared footprints. Unfortunately, sounders have low information content in the lower atmosphere due to broad weighting functions, interference from surface radiance and the microwave radiances can also suffer from uncorrected side-lobe contamination. Therefore, scenes with low altitude clouds can produce errant CCR's that, in-turn, produce errant sounding products. Radiances computed from the corrupted products can agree with the measurements within the error budget making detection and removal of the errant scenes impractical; typically, a large volume of high quality retrievals are rejected in order to remove a few errant scenes. In this paper we compare and contrast the yield and accuracy of the traditional approach with alternative methods of obtaining CCR's. The goal of this research is three-fold: (1) to have a viable approach if the microwave instruments fail on the EOS-AQUA platform; (2) to improve the accuracy and reliability of infrared products derived from CCR's; and (3) to investigate infrared approaches for geosynchronous platforms where microwave sounding is difficult. The methods discussed are (a) use of assimilation products, (b) use of a statistical regression trained on cloudy radiances, (c) an infrared multi-spectral approach exploiting the non-linearity of the Planck function, and (d) use of clear MODIS measurements in the AIRS sub-pixel space. These approaches can be used independently of the microwave measurements; however, they also enhance the traditional approach in the context of quality control, increased spatial resolution, and increased information content.

  12. Earthquake-Ionosphere Coupling Processes

    NASA Astrophysics Data System (ADS)

    Kamogawa, Masashi

    After a giant earthquake (EQ), acoustic and gravity waves are excited by the displacement of land and sea surface, propagate through atmosphere, and then reach thermosphere, which causes ionospheric disturbances. This phenomenon was detected first by ionosonde and by HF Doppler sounderin the 1964 M9.2 Great Alaskan EQ. Developing Global Positioning System (GPS), seismogenic ionospheric disturbance detected by total electron content (TEC) measurement has been reported. A value of TEC is estimated by the phase difference between two different carrier frequencies through the propagation in the dispersive ionospheric plasma. The variation of TEC is mostly similar to that of F-region plasma. Acoustic-gravity waves triggered by an earthquake [Heki and Ping, EPSL, 2005; Liu et al., JGR, 2010] and a tsunami [Artu et al., GJI, 2005; Liu et al., JGR, 2006; Rolland, GRL, 2010] disturb the ionosphere and travel in the ionosphere. Besides the traveling ionospheric disturbances, ionospheric disturbances excited by Rayleigh waves [Ducic et al, GRL, 2003; Liu et al., GRL, 2006] as well as post-seismic 4-minute monoperiodic atmospheric resonances [Choosakul et al., JGR, 2009] have been observed after the large earthquakes. Since GPS Earth Observation Network System (GEONET) with more than 1200 GPS receiving points in Japan is a dense GPS network, seismogenic ionospheric disturbance is spatially observed. In particular, the seismogenic ionospheric disturbance caused by the M9.0 off the Pacific coast of Tohoku EQ (henceforth the Tohoku EQ) on 11 March 2011 was clearly observed. Approximately 9 minutes after the mainshock, acoustic waves which propagated radially emitted from the tsunami source area were observed through the TEC measurement (e. g., Liu et al. [JGR, 2011]). Moreover, there was a depression of TEC lasting for several tens of minutes after a huge earthquake, which was a large-scale phenomenon extending to a radius of a few hundred kilometers. This TEC depression may be

  13. Ionospheric observations in southern Norway

    NASA Astrophysics Data System (ADS)

    Kjørsvik, N.; Øvstedal, O.; Pettersen, B. R.; Svendsen, J. G. G.

    2003-04-01

    A permanent GPS reference receiver is established in station AK06 at the campus of NLH, Norway. The monumentation, hardware, software and network connection is according to IGS practice. In this poster the first application of dual frequency GPS observations from this station is presented. Carrier phase and pseudorange observations at 1 Hz are used to monitor ionospheric TEC values. The processing is carried out in near real time. Observation files containing one hour of observations are added to moving observation files containing 24 hours of data. Differential Code Biases (DCB) in the satellites are taken from the IONEX (IONosphere Exchange format) computed by the ionosphere working group of the International GPS Services. The IGS estimate daily Global Ionospheric Models with DCBs and ionospheric Total Electron Content (TEC) parameters. Daily estimates for the receiver DCB are estimated using dual frequency pseudorange observations and satellite DCBs and TEC values from IGS. Final TEC values are estimated using undifferenced carrier phase observations leveled to pseudorange. Hourly snap shots as well as animations are presented on a web-page. GPS-observations from other stations will be added in order to extend the area of coverage.

  14. The International Reference Ionosphere - Climatological Standard for the Ionosphere

    NASA Technical Reports Server (NTRS)

    Bilitza, Dieter

    2006-01-01

    The International Reference Ionosphere (IRI) a joint project of URSI and COSPAR is the defacto standard for a climatological specification of ionospheric parameters. IRI is based on a wide range of ground and space data and has been steadily improved since its inception in 1969 with the ever-increasing volume of ionospheric data and with better mathematical descriptions of the observed global and temporal variation patterns. The IRI model has been validated with a large amount of data including data from the most recent ionospheric satellites (KOMPSAT, ROCSAT and TIMED) and data from global network of ionosondes. Several IRI teams are working on specific aspects of the IRI modeling effort including an improved representation of the topside ionosphere with a seamless transition to the plasmasphere, a new effort to represent the global variation of F2 peak parameters using the Neural Network (NN) technique, and the inclusion of several additional parameters in IRI, e.g., spread-F probability and ionospheric variability. Annual IRI workshops are the forum for discussions of these efforts and for all science activities related to IRI as well as applications of the IRI model in engineering and education. In this paper I will present a status report about the IRI effort with special emphasis on the presentations and results from the most recent IRI Workshops (Paris, 2004; Tortosa, 2005) and on the most important ongoing IRI activities. I will discuss the latest version of the IRI model, IRI-2006, highlighting the most recent changes and additions. Finally, the talk will review some of the applications of the IRI model with special emphasis on the use for radiowave propagation studies and communication purposes.

  15. Low-latitude ionospheric effects on SBAS

    NASA Astrophysics Data System (ADS)

    Arenas, J.; Sardón, E.; Sainz, A.; Ochoa, B.; Magdaleno, S.

    2016-06-01

    Satellite-based augmentation systems (SBAS) provide augmentation to Global Navigation Satellite Systems (GNSS) users in three areas: (1) broadcasting accurate corrections to GNSS satellite ephemeris, (2) providing a real-time empirical ionospheric model in the service area, and (3) providing integrity information in the form of estimates of the confidence of the ephemeris corrections and ionospheric delays. Ionospheric effects on SBAS are twofold: (a) the input data used by the SBAS will be affected by ionospheric effects, and (b) the more perturbed the ionosphere is, the more difficult it will be to provide accurate and reliable ionospheric information to the users. The ionosphere at low latitudes presents larger variability and more intense phenomena than at midlatitudes. Therefore, SBAS providing service to low-latitude regions will be more affected than those at other latitudes. From the different low-latitude ionospheric effects, this paper will focus on those having the largest impact on SBAS, which are total electron content temporal and spatial gradients, ionospheric scintillations, and depletions. This paper will present the impact of these effects on EGNOS (European Global Navigation Overlay System), the European SBAS. Although EGNOS can be considered as a midlatitude SBAS, it has to provide coverage down to rather low latitudes, so sometimes low-latitude ionospheric effects are observed in the EGNOS data. It will be shown how EGNOS performs under nominal conditions and how its performance is degraded when low-latitude ionospheric phenomena occur. Real EGNOS data affected by low-latitude ionospheric phenomena will be used.

  16. Evidence of scale height variations in the Martian ionosphere over the solar cycle

    NASA Astrophysics Data System (ADS)

    Sánchez-Cano, B.; Lester, M.; Witasse, O.; Milan, S. E.; Hall, B. E. S.; Blelly, P.-L.; Radicella, S. M.; Morgan, D. D.

    2015-12-01

    Solar cycle variations in solar radiation create density changes in any planetary ionosphere, which are well established in the Earth's case. At Mars, however, the ionospheric response to such changes is not well understood. We show the solar cycle impact on the topside ionosphere of Mars, using data from the Mars Advance Radar for Subsurface and Ionospheric Sounding (MARSIS) on board Mars Express. Topside ionospheric variability during the solar cycle is analyzed through neutral scale height behavior. For moderate and high solar activity phases, the topside electron density profile is reproduced with an altitude-variable scale height. However, for the period of extremely low solar activity in 2008 and 2009, the topside was smaller in density than in the other phases of the solar cycle, and there is evidence that it could be reproduced with either a constant scale height or a height-variable scale height with lower electron density. Moreover, the ionosphere during this time did not show any apparent dependence on the EUV flux. This singular behavior during low solar activity may respond to the presence of an induced magnetic field which can penetrate to lower ionospheric altitudes than in other phases of the solar cycle due to the reduced thermal pressure. Numerical simulations of possible scenarios for two different solar cycle phases indicate that this hypothesis is consistent with the observations.

  17. Joule Heating as a Signature of Magnetosphere-Ionosphere-Thermosphere Coupling

    NASA Astrophysics Data System (ADS)

    Ceren Kalafatoglu Eyiguler, Emine; Kaymaz, Zerefsan

    2016-07-01

    Since its first proposal by Birkeland in the early 1900s, the link between magnetosphere and ionosphere (M-I) has been immensely studied but there are still great variety of unsolved problems ranging from how to correctly balance the field aligned current (FAC) closure in the ionosphere to the resulting interactions between ions and neutrals in the ionosphere, and how the ionospheric conductivity and neutral wind control the M-I feedback to the mapping of the ionospheric regions to the magnetotail. It is now well known that during magnetically disturbed periods, the energy deposited to the magnetosphere by the solar wind is partitioned mainly between three domains: the ring current, ionosphere (via auroral particle precipitation and Joule heating) and the plasmoid release in the magnetotail. It is previously found that large part of this transferred energy is in the form of Joule heating which is the increase in ion-neutral collisions due to the increased energy input. However, Joule heating is also affected by the enhanced neutral wind motion during geomagnetic storms and substorms. Thus, it is one of the key manifestations of the M-I-T coupling. In this talk, we first give a through review of the present studies and recent advancements in the M-I-T research area then show the link between the magnetosphere and ionosphere by investigating the activity-time Joule heating variations as well as paying special attention to the neutral wind effects on Joule heating.

  18. Assimilative modeling of ionospheric dynamics for nowcasting of HF propagation channels in the presence of TIDs

    NASA Astrophysics Data System (ADS)

    Nickisch, L. J.; Fridman, Sergey; Hausman, Mark; Kraut, Shawn; Zunich, George

    2016-03-01

    The ionospheric data assimilation algorithm called GPS Ionospheric Inversion (GPSII; pronounced "gypsy") has been extended and employed to model the dynamic ionosphere, including medium-scale traveling ionospheric disturbances (MS-TIDs). MS-TIDs are characterized by periods of 10-30 min. GPSII can assimilate many forms of ionospheric-related data, including ionogram data and GPS L1/L2 beacon data. For this present effort, GPSII was extended to assimilate propagation time delay, integrated Doppler shift, and angle-of-arrival (AoA) measurements of HF transmissions from known reference points (KRPs). GPSII applies a regularization technique that constrains the solver to find the smoothest 3-D ionosphere model that still reproduces the input data to within their respective errors of measurement. A companion paper documents the development of the assimilation capability for KRPs. In this paper we show test results of the model's performance in reproducing measured AoA variations in the presence of medium-scale traveling ionospheric disturbances (MS-TIDs) using near vertical incidence skywave data collected at White Sands Missile Range by the Intelligence Advanced Research Projects Activity HFGeo Program Government team. We find that using three KRPs within approximately 50 km of reference/check/nonassimilated transmitters, we can reproduce the measured AoAs of the nonassimilated transmitters to within 1.9° with 90% confidence even in the presence of highly dynamic MS-TIDs.

  19. Space-time integrity of improved stratospheric and mesospheric sounder and microwave limb sounder temperature fields at Kelvin wave scales

    NASA Astrophysics Data System (ADS)

    Stone, E. M.; Stanford, J. L.; Ziemke, J. R.; Allen, D. R.; Taylor, F. W.; Rodgers, C. D.; Lawrence, B. N.; Fishbein, E. F.; Elson, L. S.; Waters, J. W.

    1995-07-01

    Space-time analyses, which are sensitive to details of retrieval and gridding processes not seen in zonal and time means, are used to investigate the integrity of version 8 gridded retrieved temperatures from the improved stratospheric and mesospheric sounder (ISAMS) on the upper atmosphere research satellite (UARS). This note presents results of such analyses applied to ISAMS tropical data. Comparisons are made with microwave limb sounder (MLS), also on UARS, temperatures. Prominent zonal wave number 1 features are observed with characteristics similar to those expected for Kelvin waves. Time versus longitude plots reveal quasi-regular eastward phase progression from November 1991 to mid-January 1992. The perturbations extend throughout the upper stratosphere and lower mesosphere (altitudes of 32-64 km), exhibiting peak-to-peak amplitudes of up to 2°-3° K and periods from ˜ 2 weeks in midstratosphere to ˜ 1 week at higher altitudes. Faster Kelvin waves with periods of 3-5 days are also found in the lower mesosphere. Height versus time plots reveal downward phase and upward group velocities, consistent with forcing from below. Vertical wavelengths are ˜ 20 km for the slower mode and about twice this scale for the faster 3 to 5-day mode. The features are trapped within ±10°-15° of the equator. Kelvin wave signatures in ISAMS and MLS temperatures are compared at 10 and 1 hPa. Good agreement is found, illustrating the internal consistency and ability of both ISAMS and MLS temperature grids to capture relatively small amplitude features with space-time scales of fast, zonally asymmetric equatorial modes.

  20. Metrology and ionospheric observation standards

    NASA Astrophysics Data System (ADS)

    Panshin, Evgeniy; Minligareev, Vladimir; Pronin, Anton

    Accuracy and ionospheric observation validity are urgent trends nowadays. WMO, URSI and national metrological and standardisation services bring forward requirements and descriptions of the ionospheric observation means. Researches in the sphere of metrological and standardisation observation moved to the next level in the Russian Federation. Fedorov Institute of Applied Geophysics (IAG) is in charge of ionospheric observation in the Russian Federation and the National Technical Committee, TC-101 , which was set up on the base of IAG- of the standardisation in the sphere. TC-101 can be the platform for initiation of the core international committee in the network of ISO The new type of the ionosounde “Parus-A” is engineered, which is up to the national requirements. “Parus-A” calibration and test were conducted by National metrological Institute (NMI) -D.I. Mendeleyev Institute for Metrology (VNIIM), signed CIMP MRA in 1991. VNIIM is a basic NMI in the sphere of Space weather (including ionospheric observations), the founder of which was celebrated chemist and metrologist Dmitriy I. Mendeleyev. Tests and calibration were carried out for the 1st time throughout 50-year-history of ionosonde exploitation in Russia. The following metrological characteristics were tested: -measurement range of radiofrequency time delay 0.5-10 ms; -time measurement inaccuracy of radio- frequency pulse ±12mcs; -frequency range of radio impulse 1-20 MHz ; -measurement inaccuracy of radio impulse carrier frequency± 5KHz. For example, the sound impulse simulator that was built-in in the ionosounde was used for measurement range of radiofrequency time delay testing. The number of standards on different levels is developed. - “Ionospheric observation guidance”; - “The Earth ionosphere. Terms and definitions”.

  1. Distribution functions and statistical parameters that may be used to characterize limb sounders gravity wave climatologies in the stratosphere

    NASA Astrophysics Data System (ADS)

    Alexander, P.; Luna, D.; de la Torre, A.; Schmidt, T.

    2015-08-01

    The number of gravity wave (GW) activity climatologies in the stratosphere started to increase more than 10 years ago since the appearance of large amounts of limb and nadir satellite sounders data. There have been very few discussions regarding the adequate statistical description of GW activity in terms of a distribution function and its parameters. We put forward the question whether a general statistical functional representation adaptable to the characteristics of GW activity in diverse geographic regions and seasons exists. Here we approach this issue for two different types of limb sounders and in particular we try to find out which parameters may represent at best the climatological features. We study results for a region close to the Patagonian Andes and their prolongation in the Antarctic Peninsula, which is well-known for the generation by topography of intense stratospheric GW, specially during winter and spring. Global Positioning System (GPS) radio occultation (RO) records presently provide over 2000 profiles per day. We used 5 years of COSMIC (Constellation Observing System for Meteorology, Ionosphere and Climate) mission GPS RO data, which supplied almost 150,000 retrievals for our study. Three different distribution functions have been approached to describe the GW activity climatologies: gaussian, log-normal and gamma. The latter function has not been used in previous work. It has been shown here that it is a competitive option to the log-normal distribution. In addition, its use allows not only to quantify the GW activity level of each climatology in the stratosphere, but also to find out the number of significant modes that essentially determine it. Alternative parameters to the mean like the median may be used to characterize the climatologies. The use of the median may exhibit advantages in cases where the presence of spurious large GW activity measurements are suspected in GPS RO data. The mean is equally suitable to establish GW activity

  2. Vertical and oblique ionospheric soundings over the long haul HF link between Antarctica and Spain

    NASA Astrophysics Data System (ADS)

    Ads, A. G.; Bergadà, P.; Regué, J. R.; Alsina-Pagès, R. M.; Pijoan, J. L.; Altadill, D.; Badia, D.; Graells, S.

    2015-09-01

    This paper presents a comparative study between the oblique sounding results, the International Telecommunication Union Rec533 HF prediction model, and the vertical sounding results of a transequatorial long haul link. The long haul link is a 12,760 km link between the Spanish Antarctic Station, SAS, located in the Livingston Island and the Ebro Observatory (OE) in Spain. The data were collected during three consecutive surveys (2009/2010, 2010/2011, and 2011/2012). The ionospheric channel from the SAS to the OE is studied in terms of frequency availability as function of time using the measurements of an oblique incidence sounder (OIS) and measurements of several vertical incidence sounding stations (VIS) placed near the estimated radiopropagation path. The results obtained show promising correlations between VIS and OIS measurements and led us to think that the frequency of largest availability for this particular long haul radio link can be estimated from the VIS sounding measurements.

  3. Remote Sensing of Atmospheric Climate Parameters from the Atmospheric Infrared Sounder

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Chahine, Moustafa T.; Aumann, Hartmut H.; Tian, Baijun; Lee, Sung-Yung; Olsen, Ed; Lambrigtsen, Bjorn; Fetzer, Eric; Irion, F. W.; McMillan, Wallace; Strow, Larrabee; Fu, Xiouhua; Barnet, Chris; Goldberg, Mitch; Susskind, Joel; Blaisdell, John

    2006-01-01

    This paper presents the standard and research products from Atmospheric Infrared Sounder (AIRS) and their current accuracies as demonstrated through validation efforts. It also summarizes ongoing research using AIRS data for weather prediction and improving climate models.

  4. The Geostationary Remote Infrared Pollution Sounder (GRIPS): measurement of the carbon gases from space

    NASA Astrophysics Data System (ADS)

    Schoeberl, M.; Dickerson, R.; Marshall, B. T.; McHugh, M.; Fish, C.; Bloom, H.

    2013-09-01

    Climate change and air quality are the most pressing environmental issues of the 21st century. Despite decades of research, the sources and sinks of key greenhouse gases remain highly uncertain [IPCC1] making quantitative predictions of atmospheric composition and their impacts. The Geostationary Remote Infrared Pollution Sounder (GRIPS) is a multi-purpose instrument designed to reduce uncertainty associated with atmospheric radiative forcing. GRIPS will measure will measure greenhouse gases and aerosols - two of the most important elements in the earth's radiation budget. GRIPS will observe carbon dioxide (CO2), carbon monoxide (CO), methane (CH4), - the carbon gases, nitrous oxide (N2O), water vapor and aerosols with unprecedented precision through the atmosphere. The GRIPS instrument uses gas filter correlation radiometry (GFCR) to detect reflected and thermal IR radiation to detect the gases and the reflected solar radiation in the visible and short-wave infrared bands for aerosols. GRIPS is designed to have sensitivity down to the Earth's surface at ~2-8km nadir resolution. GRIPS can resolve CO2, CO, and CH4 anomalies in the planetary boundary layer and the free troposphere to quantify lofting, diurnal variations and longrange transport. With repeated measurements throughout the day GRIPS can maximize the number of cloud free measurements determining biogenic and anthropogenic sources, sinks, and fluxes. GRIPS is highly complementary to the Orbiting Carbon Observatory, OCO-2, the geostationary Tropospheric Emissions: Monitoring of Pollution (TEMPO) and Advanced Baseline Imager (ABI) and other existing and planned missions.

  5. Data Assimilation and Regional Forecasts Using Atmospheric InfraRed Sounder (AIRS) Profiles

    NASA Technical Reports Server (NTRS)

    Chou, Shih-Hung; Zavodsky, Bradley; Jedlovec, Gary

    2009-01-01

    In data sparse regions, remotely-sensed observations can be used to improve analyses, which in turn should lead to better forecasts. One such source comes from the Atmospheric Infrared Sounder (AIRS), which together with the Advanced Microwave Sounding Unit (AMSU), provides temperature and moisture profiles with an accuracy comparable to that of radiosondes. The purpose of this paper is to describe a procedure to optimally assimilate AIRS thermodynamic profiles--obtained from the version 5.0 Earth Observing System (EOS) science team retrieval algorithm-into a regional configuration of the Weather Research and Forecasting (WRF) model using WRF-Var. The paper focuses on development of background error covariances for the regional domain and background field type, a methodology for ingesting AIRS profiles as separate over-land and over-water retrievals with different error characteristics, and utilization of level-by-level quality indicators to select only the highest quality data. The assessment of the impact of the AIRS profiles on WRF-Var analyses will focus on intelligent use of the quality indicators, optimized tuning of the WRF-Var, and comparison of analysis soundings to radiosondes. The analyses will be used to conduct a month-long series of regional forecasts over the continental U.S. The long-tern1 impact of AIRS profiles on forecast will be assessed against verifying radiosonde and stage IV precipitation data.

  6. Candidate future atmospheric sounder for the converged U.S. meteorological system

    NASA Astrophysics Data System (ADS)

    Morse, Paul G.; Miller, Christopher R.; Chahine, Moustafa T.; O'Callaghan, Fred; Aumann, Hartmut H.; Karnik, Avinash R.

    1995-09-01

    The atmospheric infrared sounder (AIRS) is being developed for the NASA Earth Observing System (EOS) program with a scheduled launch on the first post meridian (PM) platform in the year 2000. AIRS is designed to provide both new and more accurate data about the atmosphere, land, and oceans for applications to climate studies and weather prediction. Among the important parameters to be derived from AIRS observations are atmospheric temperature profiles with an average accuracy of 1K in 1 kilometer (km) layers in the troposphere and surface temperatures with an average accuracy of 0.5 K. The AIRS measurement technique is based on very sensitive passive IR remote sensing using a precisely calibrated, high spectral resolution grating spectrometer operating in the 3.7 micrometers to 15.4 micrometers region. The instrument concept utilizes a passively cooled multiaperture echelle array spectrometer approach in combination with advanced state of the art focal plane and cryogenic refrigerator technology to achieve unparalleled performance capability in a practical long life configuration. AIRS is a key component of NASA's Global Change Research Program and is expected to play an important role in fulfilling the needs of the converged National Polar- Orbiting Operating Environment Satellite System (NPOESS) now under study. This paper provides a brief overview of the mission followed by a description of the instrument design and current development status.

  7. Development and test of the Atmospheric Infrared Sounder (AIRS) for the NASA Earth Observing System (EOS)

    NASA Astrophysics Data System (ADS)

    Morse, Paul G.; Bates, Jerry C.; Miller, Christopher R.; Chahine, Moustafa T.; O'Callaghan, Fred; Aumann, Hartmut H.; Karnik, Avinash R.

    1999-12-01

    The Atmospheric Infrared Sounder (AIRS) has been developed for the NASA Earth Observing System (EOS) program for a scheduled launch on the EOS PM-1 spacecraft in December 2000. AIRS, working in concert with complementary microwave instrumentation on EOS PM-1, is designed to provide both new and more accurate data about the atmosphere, land and oceans for application to climate studies and weather prediction. Among the important parameters to be derived from AIRS observations are atmospheric temperature profiles with an average accuracy of 1 K in 1 kilometer (km) layers in the troposphere, humidity profiles to 10% accuracy and surface temperatures with an average accuracy of 0.5 K. The AIRS measurement technique is based on passive IR remote sensing using a precisely calibrated grating spectrometer operating in the 3.7 - 15.4 micrometer region. The instrument concept uses a passively cooled array spectrometer approach in combination with advanced state of the art focal plan and cryogenic refrigerator technology to achieve high performance in a practical long life configuration. The AIRS instrument has successfully completed a comprehensive performance verification program conducted at the Lockheed Martin IR Imaging Systems (LMIRIS) AIRS Test and Calibration Facility (ATCF), which was specially designed for precise spectroradiometric testing of space instrumentation. This paper provides a brief overview of the AIRS mission and instrument design, ATCF test capabilities, along with key results.

  8. Airborne Deployment and Calibration of Microwave Atmospheric Sounder on 6U CubeSat

    NASA Astrophysics Data System (ADS)

    Padmanabhan, S.; Brown, S. T.; Lim, B.; Kangaslahti, P.; Russell, D.; Stachnik, R. A.

    2015-12-01

    To accurately predict how the distribution of extreme events may change in the future we need to understand the mechanisms that influence such events in our current climate. Our current observing system is not well-suited for observing extreme events globally due to the sparse sampling and in-homogeneity of ground-based in-situ observations and the infrequent revisit time of satellite observations. Observations of weather extremes, such as extreme precipitation events, temperature extremes, tropical and extra-tropical cyclones among others, with temporal resolution on the order of minutes and spatial resolution on the order of few kms (<10 kms), are required for improved forecasting of extreme weather events. We envision a suite of low-cost passive microwave sounding and imaging sensors on CubeSats that would work in concert with traditional flagship observational systems, such as those manifested on large environmental satellites (i.e. JPSS,WSF,GCOM-W), to monitor weather extremes. A 118/183 GHz sensor would enable observations of temperature and precipitation extremes over land and ocean as well as tropical and extra-tropical cyclones. This proposed project would enable low cost, compact radiometer instrumentation at 118 and 183 GHz that would fit in a 6U Cubesat with the objective of mass-producing this design to enable a suite of small satellites to image the key geophysical parameters needed to improve prediction of extreme weather events. We take advantage of past and current technology developments at JPL viz. HAMSR (High Altitude Microwave Scanning Radiometer), Advanced Component Technology (ACT'08) to enable low-mass, low-power high frequency airborne radiometers. In this paper, we will describe the design and implementation of the 118 GHz temperature sounder and 183 GHz humidity sounder on the 6U CubeSat. In addition, we will discuss the maiden airborne deployment of the instrument during the Plain Elevated Convection at Night (PECAN) experiment. The

  9. Wave activity in the Thermosphere-Ionosphere system as determined from Dynasonde data

    NASA Astrophysics Data System (ADS)

    Negrea, C.; Zabotin, N. A.; Bullett, T. W.; Godin, O. A.

    2013-12-01

    Unique capabilities of the Dynasonde technique of ionospheric radio sounding allow measuring echo ranges and angles of arrival with high precision. The inversion algorithm NeXtYZ, which is a part of the Dynasonde data analysis package, uses this information to restore parameters of a three-dimensional plasma density distribution over the sounder location, including its vertical cross-section (vertical profile) and tilts of constant electron density surfaces as functions of the true altitude. Using results obtained during several campaigns performed at Wallops Island, VA and San Juan, Puerto Rico, we demonstrate how results of this analysis can be used to study temporal spectral characteristics of the wave disturbances at a wide range of thermospheric altitudes. Our method allows for wave activity to be studied at all altitudes where the plasma frequency exceeds the minimum frequency used by the sounder, typically 1.8 MHz, and below the peak 'foF2' frequency. This allows us to survey altitude ranges much higher than those available to most instruments used for gravity wave research. The wave amplitudes and horizontal wavenumbers are determined directly from the data, along with signatures of tidal effects on the ionospheric plasma. No 'by eye' methods are required, all determined quantities are instantaneous and local and the result of automated procedures. The use of autonomous software procedures and the ability of dynasonde stations to operate continuously allow us to process vast amounts of data and obtain results that are truly representative for the local wave activity. High amplitude, low frequency activity is diagnosed using high resolution spectra computed over extended time periods. Also, the time evolution of high-frequency (up to 4 mHz) components is studied using a short (~2 hours) sliding window spectral calculation technique. The procedure has a relatively high sensitivity level and an estimate of it is provided. The observed activity differs

  10. HF Radio Wave Production of Artificial Ionospheres

    NASA Astrophysics Data System (ADS)

    Carlson, Herbert

    In 1993 it was predicted that artificial ionospheres would be produced by high power HF radio waves, once HF transmitters approached a GWatt ERP. When that threshold was very recently achieved, such production was indeed detected and published at two high latitude high power HF facilities. Here we review: the first-principles logic behind that prediction, which aspects of such production are critically dependent on magnetic latitude, and which aspects of such production depend only on physical parameters independent of latitude. These distinctions follow directly from decomposition of the problem of ionization production into its components of: radio-wave propagation, wave-particle interactions, electron transport, and quantitative elastic/inelastic cross-sections. We outline this analysis to show that, within the context of early observations, the production of ionization is inevitable, and only a question of competing instability thresholds, and scale of ionization production. This illustrates complimentary aeronomy and plasma physics to advance understanding of both.

  11. Investigation of ionospheric effects on SAR Interferometry (InSAR): A case study of Hong Kong

    NASA Astrophysics Data System (ADS)

    Zhu, Wu; Ding, Xiao-Li; Jung, Hyung-Sup; Zhang, Qin; Zhang, Bo-Chen; Qu, Wei

    2016-08-01

    Synthetic Aperture Radar Interferometry (InSAR) has demonstrated its potential for high-density spatial mapping of ground displacement associated with earthquakes, volcanoes, and other geologic processes. However, this technique may be affected by the ionosphere, which can result in the distortions of Synthetic Aperture Radar (SAR) images, phases, and polarization. Moreover, ionospheric effect has become and is becoming further significant with the increasing interest in low-frequency SAR systems, limiting the further development of InSAR technique. Although some research has been carried out, thorough analysis of ionospheric influence on true SAR imagery is still limited. Based on this background, this study performs a thorough investigation of ionospheric effect on InSAR through processing L-band ALOS-1/PALSAR-1 images and dual-frequency Global Positioning System (GPS) data over Hong Kong, where the phenomenon of ionospheric irregularities often occurs. The result shows that the small-scale ionospheric irregularities can cause the azimuth pixel shifts and phase advance errors on interferograms. Meanwhile, it is found that these two effects result in the stripe-shaped features in InSAR images. The direction of the stripe-shaped effects keep approximately constant in space for our InSAR dataset. Moreover, the GPS-derived rate of total electron content change index (ROTI), an index to reflect the level of ionospheric disturbances, may be a useful indicator for predicting the ionospheric effect for SAR images. This finding can help us evaluate the quality of SAR images when considering the ionospheric effect.

  12. Hyperspectral Microwave Atmospheric Sounder (HyMAS) architecture and design accommodations

    NASA Astrophysics Data System (ADS)

    Hilliard, L.; Racette, P.; Blackwell, W.; Galbraith, C.; Thompson, E.

    The Hyperspectral Microwave Atmospheric Sounder (HyMAS) is being developed at Lincoln Laboratories and accommodated by the Goddard Space Flight Center for a flight opportunity on a NASA research aircraft. The term “ hyperspectral microwave” is used to indicate an all-weather sounding that performs equivalent to hyperspectral infrared sounders in clear air with vertical resolution of approximately 1 km. Deploying the HyMAS equipped scanhead with the existing Conical Scanning Microwave Imaging Radiometer (CoSMIR) shortens the path to a flight demonstration. Hyperspectral microwave is achieved through the use of independent RF antennas that sample the volume of the Earth's atmosphere through various levels of frequencies, thereby producing a set of dense, spaced vertical weighting functions. The simulations proposed for HyMAS 118/183-GHz system should yield surface precipitation rate and water path retrievals for small hail, soft hail, or snow pellets, snow, rainwater, etc. with accuracies comparable to those of the Advanced Technology Microwave Sounder. Further improvements in retrieval methodology (for example, polarization exploitation) are expected. The CoSMIR instrument is a packaging concept re-used on HyMAS to ease the integration features of the scanhead. The HyMAS scanhead will include an ultra-compact Intermediate Frequency Processor (IFP) module that is mounted inside the door to improve thermal management. The IFP is fabricated with materials made of Low-Temperature Co-fired Ceramic (LTCC) technology integrated with detectors, amplifiers, A/D conversion and data aggregation. The IFP will put out 52 channels of 16 bit data comprised of 4 - 9 channel data streams for temperature profiles and 2-8 channel streams for water vapor. With the limited volume of the existing CoSMIR scanhead and new HyMAS front end components, the HyMAS team at Goddard began preliminary layout work inside the new drum. Importing and re-using models of the shell, the s- an head

  13. Hyperspectral Microwave Atmospheric Sounder (HyMAS) Architecture and Design Accommodations

    NASA Technical Reports Server (NTRS)

    Hilliard, Lawrence; Racette, Paul; Blackwell, William; Galbraith, Christopher; Thompson, Erik

    2013-01-01

    The Hyperspectral Microwave Atmospheric Sounder (HyMAS) is being developed at Lincoln Laboratories and accommodated by the Goddard Space Flight Center for a flight opportunity on a NASA research aircraft. The term "hyperspectral microwave" is used to indicate an all-weather sounding that performs equivalent to hyperspectral infrared sounders in clear air with vertical resolution of approximately 1 km. Deploying the HyMAS equipped scanhead with the existing Conical Scanning Microwave Imaging Radiometer (CoSMIR) shortens the path to a flight demonstration. Hyperspectral microwave is achieved through the use of independent RF antennas that sample the volume of the Earth s atmosphere through various levels of frequencies, thereby producing a set of dense, spaced vertical weighting functions. The simulations proposed for HyMAS 118/183-GHz system should yield surface precipitation rate and water path retrievals for small hail, soft hail, or snow pellets, snow, rainwater, etc. with accuracies comparable to those of the Advanced Technology Microwave Sounder. Further improvements in retrieval methodology (for example, polarization exploitation) are expected. The CoSMIR instrument is a packaging concept re-used on HyMAS to ease the integration features of the scanhead. The HyMAS scanhead will include an ultra-compact Intermediate Frequency Processor (IFP) module that is mounted inside the door to improve thermal management. The IFP is fabricated with materials made of Low-Temperature Co-fired Ceramic (LTCC) technology integrated with detectors, amplifiers, A/D conversion and data aggregation. The IFP will put out 52 channels of 16 bit data comprised of 4-9 channel data streams for temperature profiles and 2-8 channel streams for water vapor. With the limited volume of the existing CoSMIR scanhead and new HyMAS front end components, the HyMAS team at Goddard began preliminary layout work inside the new drum. Importing and re-using models of the shell, the scan head computer

  14. Recent microwave sounder observations from aircraft during the HS3 field campaign

    NASA Astrophysics Data System (ADS)

    Lambrigtsen, B.; Brown, S. E.

    2014-12-01

    The High Altitude MMIC Sounding Radiometer (HAMSR) is a microwave sounder similar to but more capable and accurate than current satellite microwave sounders. Since 2010 it has operated on NASA's Global Hawk UAVs and has been participating in the multiyear Hurricane and Severe Storm Sentinel (HS3) hurricane campaign. We present recent results from HS3, including analysis of the thermodynamic and precipitation structure in and around tropical storm systems sampled during HS3. Copyright 2014 California Institute of Technology. Government sponsorship acknowledged.

  15. Validation of the Radiometric Stability of the Atmospheric Infrared Sounder

    NASA Technical Reports Server (NTRS)

    Aumann, H. H.; Elliott, D.; Strow, L. L.

    2012-01-01

    It has been widely accepted that an infrared sounder in low polar orbit is capable of producing climate quality data, if the spectral brightness temperatures have instrumental trends of less than 10 mK/yr. Achieving measurement stability at this level is not only very demanding of the design of the instrument, it is also pushes the state of art of measuring on orbit what stability is actually achieved. We discuss this using Atmospheric Infrared Sounder (AIRS) L1B data collected between 2002 and 2011. We compare the L1B brightness temperature observed in cloud filtered night tropical ocean spectra (obs) to the brightness temperature calculated based on the known surface emissivity, temperature and water vapor profiles from the ECMWF ReAnalysis (ERA) and the growth rates of CO2, N2O and Ozone. The trend in (obs-calc) is a powerful tool for the evaluation of the stability of the 2378 AIRS channels. We divided the channels into seven classes: All channels which sound in the stratosphere (at pressure levels below 150 hPa), 14 micron CO2 sounding, 4 micron CO2 P-branch sounding, 4 micron CO2 R-branch sounding, water vapor sounding, shortwave surface sounding and longwave surface sounding. The peak in the weighting function at 1050 hPa separates sounding and surface channels. The boundary between shortwave and longwave is 5 microns. Except for the stratosphere sounding channels, the remaining six groups have (obs-calc) trends of less than 20 mK/yr. The longwave surface channels have trends of 2 mK/yr, significantly less than the 8 mK/yr trend seem in the shortwave window channels. Based on the design of the instrument, trends within a group of channels should be the same. While the longwave and shortwave trends are less than the canonical 10 mK/yr, the larger trend in the shortwave channels could be an artifact of using the pre-launch determined calibration coefficients. This is currently under evaluation. The trend in (obs-calc) for the non-surface sounding channels, in

  16. Limits of Precipitation Detection from Microwave Radiometers and Sounders

    NASA Astrophysics Data System (ADS)

    Munchak, S. J.; Skofronick-Jackson, G.; Johnson, B. T.

    2012-04-01

    The Global Precipitation Measurement (GPM) mission will unify and draw from numerous microwave conical scanning imaging radiometers and cross-track sounders, many of which already in operation, to provide near real-time precipitation estimates worldwide at 3-hour intervals. Some of these instruments were designed for primary purposes unrelated to precipitation remote sensing. Therefore it is worthwhile to evaluate the strengths and weaknesses of each set of channels with respect to precipitation detection to fully understand their role in the GPM constellation. The GPM radiometer algorithm will use an observationally-based Bayesian retrieval with common databases of precipitation profiles for all sensors. Since these databases are still under development and will not be truly complete until the GPM core satellite has completed at least one year of dual-frequency radar observations, a screening method based upon retrieval of non-precipitation parameters related to the surface and atmospheric state is used in this study. A cost function representing the departure of modeled radiances from their observed values plus the departure of surface and atmospheric parameters from the TELSEM emissivity atlas and MERRA reanalysis is used as an indicator of precipitation. Using this method, two datasets are used to evaluate precipitation detection: One year of matched AMSR-E and AMSU-B/MHS overpasses with CloudSat used as validation globally; and SSMIS overpasses over the United States using the National Mosaic and QPE (NMQ) as validation. The Heidke Skill Score (HSS) is used as a metric to evaluate detection skill over different surfaces, seasons, and across different sensors. Non-frozen oceans give the highest HSS for all sensors, followed by bare land and coasts, then snow-covered land and sea ice. Negligible skill is present over ice sheets. Sounders tend to have higher skill than imagers over complex surfaces (coast, snow, and sea ice), whereas imagers have higher skill

  17. GeoSTAR: a microwave sounder for geostationary applications

    NASA Astrophysics Data System (ADS)

    Lambrigtsen, B. H.; Brown, S. T.; Dinardo, S. J.; Gaier, T. C.; Kangaslahti, P. P.; Tanner, A. B.; Piepmeier, J. R.; Ruf, C. S.; Gross, S. M.; Musko, S.; Rogacki, S.

    2006-09-01

    The Geostationary Synthetic Thinned Aperture Radiometer, GeoSTAR, is a new concept for a microwave atmospheric sounder intended for geostationary satellites such as the GOES weather satellites operated by NOAA. A small but fully functional prototype has recently been developed at the Jet Propulsion Laboratory to demonstrate the feasibility of using aperture synthesis in lieu of the large solid parabolic dish antenna that is required with the conventional approach. Spatial resolution requirements dictate such a large aperture in GEO that the conventional approach has not been feasible, and it is only now, with the GeoSTAR approach, that a GEO microwave sounder can be contemplated. Others have proposed GEO microwave radiometers that would operate at sub-millimeter wavelengths to circumvent the large-aperture problem, but GeoSTAR is the only viable approach that can provide full sounding capabilities equal to or exceeding those of the AMSU systems now operating on LEO weather satellites and which have had tremendous impact on numerical weather forecasting. GeoSTAR will satisfy a number of important measurement objectives, many of them identified by NOAA as unmet needs in their GOES-R pre-planned product improvements (P3I) lists and others by NASA in their research roadmaps and as discussed in a white paper submitted to the NRC Decadal Survey. The performance of the prototype has been outstanding, and this proof of concept represents a major breakthrough in remote sensing capabilities. The GeoSTAR concept is now at a stage of development where an infusion into space systems can be initiated, either on a NASA sponsored research mission or on a NOAA sponsored operational mission. GeoSTAR is an ideal candidate for a joint "research to operations" mission, and that may be the most likely scenario. Additional GeoSTAR related technology development and other risk reduction activities are under way, and a GeoSTAR mission is feasible in the GOES-R/S time frame, 2012-2014.

  18. Validation of the radiometric stability of the Atmospheric Infrared Sounder

    NASA Astrophysics Data System (ADS)

    Aumann, H. H.; Elliott, D.; Strow, L. L.

    2012-09-01

    It has been widely accepted that an infrared sounder in low polar orbit is capable of producing climate quality data, if the spectral brightness temperatures have instrumental trends of less than 10 mK/yr. Achieving measurement stability at this level is not only very demanding of the design of the instrument, it is also pushes the state of art of measuring on orbit what stability is actually achieved. We discuss this using Atmospheric Infrared Sounder (AIRS) L1B data collected between 2002 and 2011. We compare the L1B brightness temperature observed in cloud filtered night tropical ocean spectra (obs) to the brightness temperature calculated based on the known surface emissivity, temperature and water vapor profiles from the ECMWF ReAnalysis (ERA) and the growth rates of CO2 , N2O and Ozone. The trend in (obscalc) is a powerful tool for the evaluation of the stability of the 2378 AIRS channels. We divided the channels into seven classes: All channels which sound in the stratosphere (at pressure levels below 150 hPa), 14 um CO2 sounding, 4 um CO2 P-branch sounding, 4um CO2 R-branch sounding, water vapor sounding, shortwave surface sounding and longwave surface sounding. The peak in the weighting function at 1050 hPa separates sounding and surface channels. The boundary between shortwave and longwave is 5 μm. Except for the stratosphere sounding channels, the remaining six groups have (obs-calc) trends of less than 20 mK/yr. The longwave surface channels have trends of 2 mK/yr, significantly less than the 8 mK/yr trend seem in the shortwave window channels. Based on the design of the instrument, trends within a group of channels should be the same. While the longwave and shortwave trends are less than the canonical 10 mK/yr, the larger trend in the shortwave channels could be an artifact of using the pre-launch determined calibration coefficients. This is currently under evaluation. The trend in (obs-calc) for the non-surface sounding channels, in particular for

  19. The Ionospheric Focused Heating experiment

    NASA Astrophysics Data System (ADS)

    Bernhardt, P. A.; Siefring, C. L.; Rodriguez, P.; Haas, D. G.; Baumback, M. M.; Romero, H. A.; Solin, D. A.; Djuth, F. T.; Duncan, L. M.; Hunton, D. E.; Pollock, C. J.; Sulzer, M. P.; Tepley, C. A.; Wagner, L. S.; Goldstein, J. A.

    1995-09-01

    The Ionospheric Focused Heating rocket was launched on May 30, 1992. The sounding rocket carried an instrument and chemical payload along a trajectory that crossed the intersection of the beams from the 430-MHz incoherent scatter radar and the 5.1-MHz high-power radio wave facility near Arecibo. The release of 30 kg of CF3Br into the F region at 285 km altitude produced an ionospheric hole that acted like a convergent lens to focus the HF transmissions. The power density inside the radio beam was raised by 12 dB immediately after the release. A wide range of new processes were recorded by in situ and ground-based instruments. Measurements by instruments flying through the modified ionosphere show small-scale microcavities (<1 m) and downshifted electron plasma (Langmuir) waves inside the artificial cavity, electron density spikes at the edge of the cavity, and Langmuir waves coincident with ion gyroradius (4 m) cavities near the radio wave reflection altitude. The Arecibo incoherent scatter radar showed 20 dB or greater enhancements in ion acoustic and Langmuir wave turbulence after the 5.1-MHz radio beam was focused by the artificial lens. Enhancements in airglow from chemical reactions and, possibly, electron acceleration were recorded with optical instruments. The Ionospheric Focused Heating experiment verified some of the preflight predictions and demonstrated the value of active experiments that combine high-power radio waves with chemical releases.

  20. Magnetospheric-ionospheric Poynting flux

    NASA Technical Reports Server (NTRS)

    Thayer, Jeffrey P.

    1994-01-01

    Over the past three years of funding SRI, in collaboration with the University of Texas at Dallas, has been involved in determining the total electromagnetic energy flux into the upper atmosphere from DE-B electric and magnetic field measurements and modeling the electromagnetic energy flux at high latitudes, taking into account the coupled magnetosphere-ionosphere system. This effort has been very successful in establishing the DC Poynting flux as a fundamental quantity in describing the coupling of electromagnetic energy between the magnetosphere and ionosphere. The DE-B satellite electric and magnetic field measurements were carefully scrutinized to provide, for the first time, a large data set of DC, field-aligned, Poynting flux measurement. Investigations describing the field-aligned Poynting flux observations from DE-B orbits under specific geomagnetic conditions and from many orbits were conducted to provide a statistical average of the Poynting flux distribution over the polar cap. The theoretical modeling effort has provided insight into the observations by formulating the connection between Poynting's theorem and the electromagnetic energy conversion processes that occur in the ionosphere. Modeling and evaluation of these processes has helped interpret the satellite observations of the DC Poynting flux and improved our understanding of the coupling between the ionosphere and magnetosphere.

  1. Observation and Modeling of Ionospheric Scintillation Associated with Irregularities in the Polar Ionosphere

    NASA Astrophysics Data System (ADS)

    Priyadarshi, S.; Zhang, Q. H.; Ma, Y. Z.; Wang, Y.; Zanyang, X.

    2015-12-01

    It is well understood that Ionospheric scintillation is a consequence of random electron density fluctuations present in the ionosphere. They appear at all local time of the polar regions therefore, it is essential to understand their evolution and dynamics. Using Madrigal database and South Pole Scintillation Receiver data an empirical model of ionospheric scintillation has been proposed for South Pole. Model has been validated and compared with the observations. We have investigated some interesting scintillation patterns associated with polar patches and structured flux of precipitated electrons. Our results illustrate well the irregularity structures causing ionospheric scintillation at the polar ionosphere. Limitations of our modeling approach is discussed. Keywords: Ionospheric irregularities, polar patches, scintillation.

  2. Ionospheric corrections to precise time transfer using GPS

    NASA Technical Reports Server (NTRS)

    Snow, Robert W.; Osborne, Allen W., III; Klobuchar, John A.; Doherty, Patricia H.

    1994-01-01

    The free electrons in the earth's ionosphere can retard the time of reception of GPS signals received at a ground station, compared to their time in free space, by many tens of nanoseconds, thus limiting the accuracy of time transfer by GPS. The amount of the ionospheric time delay is proportional to the total number of electrons encountered by the wave on its path from each GPS satellite to a receiver. This integrated number of electrons is called Total Electron Content, or TEC. Dual frequency GPS receivers designed by Allen Osborne Associates, Inc. (AOA) directly measure both the ionospheric differential group delay and the differential carrier phase advance for the two GPS frequencies and derive from this the TEC between the receiver and each GPS satellite in track. The group delay information is mainly used to provide an absolute calibration to the relative differential carrier phase, which is an extremely precise measure of relative TEC. The AOA Mini-Rogue ICS-4Z and the AOA TurboRogue ICS-4000Z receivers normally operate using the GPS P code, when available, and switch to cross-correlation signal processing when the GPS satellites are in the Anti-Spoofing (A-S) mode and the P code is encrypted. An AOA ICS-Z receiver has been operated continuously for over a year at Hanscom AFB, MA to determine the statistics of the variability of the TEC parameter using signals from up to four different directions simultaneously. The 4-channel ICS-4Z and the 8-channel ICS-4000Z, have proven capabilities to make precise, well calibrated, measurements of the ionosphere in several directions simultaneously. In addition to providing ionospheric corrections for precise time transfer via satellite, this dual frequency design allows full code and automatic codeless operation of both the differential group delay and differential carrier phase for numerous ionospheric experiments being conducted. Statistical results of the data collected from the ICS-4Z during the initial year of

  3. Multiparametric study of polar ionosphere on both hemispheres

    NASA Astrophysics Data System (ADS)

    D'Angelo, Giulia; Alfonsi, Lucilla; Spogli, Luca; Cesaroni, Claudio; Sgrigna, Vittorio

    2016-04-01

    The polar ionosphere is a complex system in which several actors concur to establish the observed medium. Indeed the coupling between the interplanetary magnetic field and the earth magnetic field determines a high degree of complexity of the polar ionosphere, which is directly exposed to the variations of the solar wind. This configuration results in a strong sensitivity of the polar ionosphere to the perturbation phenomena caused by solar events which may result in a wide variety of spatial and temporal dimensions of the plasma electron density irregularities. Polar ionospheric irregularities may seriously jeopardize performance and reliability level of the navigation and positioning technological systems, such as GPS or the nascent Galileo. Therefore, knowledge of the physical state of the upper atmosphere ionized layers becomes essential to predict and mitigate events that may affect the use of modern technology, causing economic damage and, in severe cases, even jeopardizing the safety of human beings. In this context, a careful and thorough investigation that covers a wide range of geospatial different disturbances, observed in circumterrestrial space and on the ground, can provide the necessary basis for a real advance of the current knowledge. In this frame, the aim of this work is to contribute to the study of the effects of perturbation induced by the Sun on the polar ionosphere of both the hemispheres, through the analysis and interpretation of the measures available before, during and after the occurrence of an event of disturbance. We propose a multiparametric approach, that combines the information derived from measurements acquired by ground-based and space-based stations, to have a broad spectrum of information necessary to characterize the ionospheric disturbances on different time scales (from milliseconds to days) and spatial scales (from millimetres to hundreds meters/kilometres). The period chosen for this study is the entire month of March

  4. The energetics of Titan's ionosphere

    NASA Astrophysics Data System (ADS)

    Roboz, A.; Nagy, A. F.

    1994-02-01

    We have developed a comprehensive model to study the dynamics and energetics of the ionosphere of Titan. We solved the one-dimensional, time-dependent, coupled continuity and momentum equations for several ion species, together with single ion and electron energy equations, in order to calculate density, velocity, and temperature profiles. Calculations were carried out for several cases corresponding to different local times and configurations of the Titan-Saturn system. In our model the effects of horizontal magnetic fields were assumed to be negligible, except for their effect on reducing the electron and ion thermal conductivities and inhibiting vertical transport in the subram region. The ionospheric density peak was found to be at an altitude of about 1100 km, in accordance with earlier model calculations. The ionosphere is chemically controlled below an altitude of about 1500 km. Above this level, ion densities differ significantly from their chemical equilibrium values due to strong upward ion velocities. Heat is deposited in a narrow region around the ionospheric peak, resulting in temperature profiles increasing sharply and reaching nearly constant values of 800-1000 deg K for electrons and 300 deg K for ions in the topside, assuming conditions appropriate for the wake region. In the subram region magnetic correction factors make the electron heat conductivities negligible, resulting in electron temperatures increasing strongly with altitude and reaching values in the order of 5000 deg K at our upper boundary located at 2200 km. Ion chemical heating is found to play an important role in shaping the ion energy balance in Titan's ionosphere.

  5. Pioneer Venus Sounder Probe Neutral Gas Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    Hoffman, J. H.; Hodges, R. R., Jr.; Wright, W. W.; Blevins, V. A.; Duerksen, K. D.; Brooks, L. D.

    1980-01-01

    A neutral gas mass spectrometer was flown to Venus as part of the Pioneer Venus Multiprobe to measure the composition of its lower atmosphere. The instrument, mounted in the Sounder Probe, was activated after the probe entered the top of the atmosphere, and it obtained data during the descent from 62 km to the surface. Atmospheric gases were sampled through a pair of microleaks, the effluent from which was pumped by a combination of ion and getter pumping. A pneumatically operated valve, controlled by the ambient atmospheric pressure, maintained the ion source pressure at a nearly constant value during descent while the atmospheric pressure varied by three orders of magnitude. A single focusing magnetic sector field mass spectrometer with mass resolution sufficient to reasonably separate argon from C3H4 at 40 amu provided the mass analysis and relative abundance measurements. A microprocessor controlled the operation of the mass spectrometer through a highly efficient peak-tip stepping routine and data compression algorithm that effected a scan of the mass spectrum from 1 to 208 amu in 64 sec while requiring an information rate of only 40 bits/sec to return the data to earth. A subscale height altitude resolution was thus obtained. Weight, size, and power requirements were minimized to be consistent with interplanetary flight contraints.

  6. Scanning Mechanism of the FY-3 Microwave Humidity Sounder

    NASA Technical Reports Server (NTRS)

    Schmid, Manfred; Jing, Li; Hehr, Christian

    2010-01-01

    Astrium GmbH Germany, developed the scanning equipment for the instrument package of the MicroWave Humidity Sounder (MWHS) flying on the FY-3 meteorological satellite (FY means Feng Yun, Wind and Cloud) in a sun-synchronized orbit of 850-km altitude and at an inclination of 98.8 . The scanning mechanism rotates at variable velocity comprising several acceleration / deceleration phases during each revolution. The Scanning Mechanism contains two output shafts, each rotating a parabolic offset Antenna Reflector. The mechanism is operated in closed loop by means of redundant control electronics. MWHS is a sounding radiometer for measurement of global atmospheric water vapour profiles. An Engineering Qualification Model was developed and qualified and a first Flight Model was launched early 2008. The system is now working for more than two years successful in orbit. A second Flight Model of the Antenna Scanning Mechanism and of its associated control electronics was built and delivered to the customer for application on the follow-on spacecraft that will be launched by the end of 2010.

  7. Validation of UARS Microwave Limb Sounder ClO measurements

    NASA Astrophysics Data System (ADS)

    Waters, J. W.; Read, W. G.; Froidevaux, L.; Lungu, T. A.; Perun, V. S.; Stachnik, R. A.; Jarnot, R. F.; Cofield, R. E.; Fishbein, E. F.; Flower, D. A.; Burke, J. R.; Hardy, J. C.; Nakamura, L. L.; Ridenoure, B. P.; Shippony, Z.; Thurstans, R. P.; Avallone, L. M.; Toohey, D. W.; Dezafra, R. L.; Shindell, D. T.

    1996-04-01

    Validation of stratospheric ClO measurements by the Microwave Limb Sounder (MLS) on the Upper Atmosphere Research Satellite (UARS) is described. Credibility of the measurements is established by (1) the consistency of the measured ClO spectral emission line with the retrieved ClO profiles and (2) comparisons of ClO from MLS with that from correlative measurements by balloon-based, ground-based, and aircraft-based instruments. Values of "noise" (random), "scaling" (multiplicative), and "bias" (additive) uncertainties are determined for the Version 3 data, the first version publicly released, and known artifacts in these data are identified. Comparisons with correlative measurements indicate agreement to within the combined uncertainties expected for MLS and the other measurements being compared. It is concluded that MLS Version 3 ClO data, with proper consideration of the uncertainties and "quality" parameters produced with these data, can be used for scientific analyses at retrieval surfaces between 46 and 1 hPa (approximately 20-50 km in height). Future work is planned to correct known problems in the data and improve their quality.

  8. The TIROS-N high resolution infrared radiation sounder

    NASA Technical Reports Server (NTRS)

    Koenig, E. W.

    1979-01-01

    The high-resolution infrared radiation sounder (HIRS/2) was developed and flown on the Television and Infrared Observation Satellite, N Series (TIROS-N) as one means of obtaining atmospheric vertical profile information. The HIRS/2 receives visible and infrared spectrum radiation through a single telescope and selects 20 narrow spectral channels by means of a rotating filter wheel. A passive radiant cooler provides an operating temperature of 106.7K for the HgCdTe and InSb detectors while the visible detector operates at instrument frame temperature. Low noise amplifiers and digital processing provide 13 bit data for spacecraft data multiplexing and transmission. The qualities of system performance that determine sounding capability are the dynamic range of data collection, the noise equivalent radiance of the system, the registration of the air columns sampled in each channel, and the ability to upgrade the calibration of the instrument to maintain the performance standard throughout life. The basic performance of the instrument in test is described. Early orbital information from the TIROS-N launched on October 13, 1978 are given and some observations on system quality are made.

  9. Coherent launch-site atmospheric wind sounder: theory and experiment.

    PubMed

    Hawley, J G; Targ, R; Henderson, S W; Hale, C P; Kavaya, M J; Moerder, D

    1993-08-20

    The coherent launch-site atmospheric wind sounder (CLAWS) is a lidar atmospheric wind sensor designed to measure the winds above space launch facilities to an altitude of 20 km. In our development studies, lidar sensor requirements are defined, a system to meet those requirements is defined and built, and the concept is evaluated, with recommendations for the most feasible and cost-effective lidar system for use as an input to a guidance and control system for missile or spacecraft launches. The ability of CLAWS to meet NASA goals for increased safety and launch/mission flexibility is evaluated in a field test program at Kennedy Space Center (KSC) in which we investigate maximum detection range, refractive turbulence, and aerosol backscattering efficiency. The Nd:YAG coherent lidar operating at 1.06 µm with 1-J energy per pulse is able to make real-time measurements of the three-dimensional wind field at KSC to an altitude of 26 km, in good agreement with our performance simulations. It also shows the height and thickness of the volcanic layer caused by the volcanic eruption of Mount Pinatubo in the Philippines.

  10. The Mars Climate Sounder In-Flight Positioning Anomaly

    NASA Technical Reports Server (NTRS)

    Jau, Bruno M.; Kass, David

    2008-01-01

    The paper discusses the Mars Climate Sounder (MCS) instrument s in-flight positioning errors and presents background material about it. A short overview of the instrument s science objectives and data acquisition techniques is provided. The brief mechanical description familiarizes the reader with the MCS instrument. Several key items of the flight qualification program, which had a rigorous joint drive test program but some limitations in overall system testing, are discussed. Implications this might have had for the flight anomaly, which began after several months of flawless space operation, are mentioned. The detection, interpretation, and instrument response to the errors is discussed. The anomaly prompted engineering reviews, renewed ground, and some in-flight testing. A summary of these events, including a timeline, is included. Several items of concern were uncovered during the anomaly investigation, the root cause, however, was never found. The instrument is now used with two operational constraints that work around the anomaly. It continues science gathering at an only slightly diminished pace that will yield approximately 90% of the originally intended science.

  11. Microwave Limb Sounder/El Nino Watch - December, 1997

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This image shows differences in atmospheric water vapor relative to a normal (average) year in the Earth's upper troposphere about 10 kilometers (6 miles) above the surface. The measurements were taken by the Microwave Limb Sounder (MLS) instrument aboard NASA's Upper Atmosphere Research Satellite (UARS). These data, collected in late December 1997, show higher than normal levels of water vapor (red) over the central and eastern Pacific which indicates the presence of an El Nino condition. At the same time, the western Pacific (blue) is much drier than normal. The unusually moist air above the central and eastern Pacific is a consequence of the much warmer-than-normal ocean waters which occur during El Nino. Warmer water evaporates at a higher rate and the resulting warm moist air rises and forms tall cloud towers. In the tropics, the warm water and the resulting tall cloud towers typically produce large amounts of rain. These data show significant increases in the amount of atmospheric moisture off the coast of Peru and Ecuador since measurements were made in November 1997. The maximum water temperature in the eastern tropical Pacific, as measured by the National Oceanic and Atmospheric Administration (NOAA), is still higher than normal and these high ocean temperatures are likely responsible for an increase in evaporation and the subsequent rise in humidity.

  12. Infrared atmospheric sounder interferometer radiometric noise assessment from spectral residuals.

    PubMed

    Serio, Carmine; Standfuss, Carsten; Masiello, Guido; Liuzzi, Giuliano; Dufour, Emmanuel; Tournier, Bernard; Stuhlmann, Rolf; Tjemkes, Stephen; Antonelli, Paolo

    2015-07-01

    The problem of characterizing and estimating the radiometric noise of satellite high spectral resolution infrared spectrometers from Earth views is addressed in this paper. A methodology has been devised which is based on the common concept of spectral residuals (Observations-Calculations) obtained after spectral radiance inversion for atmospheric and surface parameters. An in-depth analytical assessment of the statistical covariance matrix of the spectral residuals has been performed which is based on the optimal estimation theory. It has been mathematically demonstrated that the use of spectral residuals to assess instrument noise leads to an effective estimator, which is largely independent of possible departures of the observational covariance matrix from the true covariances. Application to the Infrared Atmospheric Sounder Interferometer has been considered. It is shown that Earth-view-derived observation errors agree with blackbody in-flight calibration. The spectral residuals approach also proved to be effective in characterizing noise features due to mechanical microvibrations of the beam splitter of the IASI instrument.

  13. The Upper Atmosphere Research Satellite microwave limb sounder instrument

    NASA Technical Reports Server (NTRS)

    Barath, F. T.; Chavez, M. C.; Cofield, R. E.; Flower, D. A.; Frerking, M. A.; Gram, M. B.; Harris, W. M.; Holden, J. R.; Jarnot, R. F.; Kloezeman, W. G.

    1993-01-01

    The microwave limb sounder (MLS) on the Upper Atmosphere Research Satellite (UARS) is the first satellite experiment using limb sounding techniques at microwave frequencies. Primary measurement objectives are stratospheric ClO, O3, H2O, temperature, and pressure. Measurements are of thermal emission: all are performed simultaneously and continuously and are not degraded by ice clouds or volcanic aerosols. The instrument has a 1.6-m mechanically scanning antenna system and contains heterodyne radiometers in spectral bands centred near 63, 183, and 205 GHz. The radiometers operate at ambient temperature and use Schottky-diode mixers with local oscillators derived from phase-locked Gunn oscillators. Frequency tripling by varactor multipliers generates the 183- and 205-GHz local oscillators, and quasi-optical techniques inject these into the mixers. Six 15-channel filter banks spectrally resolve stratospheric thermal emission lines and produce an output spectrum every 2 s. Thermal stability is sufficient for 'total power' measurements which do not require fast chopping. Radiometric calibration, consisting of measurements of cold space and an internal target, is performed every 65-s limb scan. Instrument in-orbit performance has been excellent, and all objectives are being met.

  14. Exploiting hyperspectral sounders for volcanic ash remote sensing

    NASA Astrophysics Data System (ADS)

    Western, Luke; Watson, Matthew; Francis, Peter

    2016-04-01

    Assumptions are made when retrieving properties of volcanic ash clouds using passive infrared satellite remote sensing. Assumptions in the retrieval method lead to larger uncertainties in the retrieved volcanic ash cloud properties. It is a general desire to reduce these uncertainties by removing some of the assumptions that must be made. Hyperspectral sounders provide the spectral capabilities to explore many of the physical parameters that describe volcanic ash clouds - the question is, which parameters is it possible to retrieve? We show that using the Infrared Atmospheric Sounding Interferometer (IASI) it is possible to retrieve the mass column loading and cloud top pressure of a volcanic ash cloud, together with the effective radius and spread of the ash particle size distribution, as well as the cloud top pressure of any underlying water cloud using an optimal estimation technique. We discuss the capabilities and shortcomings of the method. The consideration of an underlying water cloud is of importance for improving retrievals, and we place a particular focus on how well the particle size distribution can be described. More specifically, we investigate the viability of using either a lognormal or a gamma distribution to describe the distribution of ash particles, and we show that it is possible to retrieve information about the spread of a lognormal distribution of particles, whereas it is not for a gamma distribution. Some preliminary conclusions on the size distribution of volcanic ash are presented.

  15. Sensitivity Analysis for Atmospheric Infrared Sounder (AIRS) CO2 Retrieval

    NASA Technical Reports Server (NTRS)

    Gat, Ilana

    2012-01-01

    The Atmospheric Infrared Sounder (AIRS) is a thermal infrared sensor able to retrieve the daily atmospheric state globally for clear as well as partially cloudy field-of-views. The AIRS spectrometer has 2378 channels sensing from 15.4 micrometers to 3.7 micrometers, of which a small subset in the 15 micrometers region has been selected, to date, for CO2 retrieval. To improve upon the current retrieval method, we extended the retrieval calculations to include a prior estimate component and developed a channel ranking system to optimize the channels and number of channels used. The channel ranking system uses a mathematical formalism to rapidly process and assess the retrieval potential of large numbers of channels. Implementing this system, we identifed a larger optimized subset of AIRS channels that can decrease retrieval errors and minimize the overall sensitivity to other iridescent contributors, such as water vapor, ozone, and atmospheric temperature. This methodology selects channels globally by accounting for the latitudinal, longitudinal, and seasonal dependencies of the subset. The new methodology increases accuracy in AIRS CO2 as well as other retrievals and enables the extension of retrieved CO2 vertical profiles to altitudes ranging from the lower troposphere to upper stratosphere. The extended retrieval method for CO2 vertical profile estimation using a maximum-likelihood estimation method. We use model data to demonstrate the beneficial impact of the extended retrieval method using the new channel ranking system on CO2 retrieval.

  16. Validation of UARS Microwave Limb Sounder ClO Measurements

    NASA Technical Reports Server (NTRS)

    Waters, J. W.; Read, W. G.; Froidevaux, L.; Lungu, T. A.; Perun, V. S.; Stachnik, R. A.; Jarnot, R. F.; Cofield, R. E.; Fishbein, E. F.; Flower, D. A.; Burke, J. R.; Hardy, J. C.; Nakamura, L. L.; Ridenoure, B. P.; Shippony, Z.; Thurstans, R. P.; Thurstans, R. P.; Avallone, L. M.; Toohey, D. W.; deZafra, R. L.; Shindell, D. T.

    1996-01-01

    Validation of stratospheric ClO measurements by the Microwave Limb Sounder (MLS) on the Upper Atmosphere Research Satellite (UARS) is described. Credibility of the measurements is established by (1) the consistency of the measured ClO spectral emission line with the retrieved ClO profiles and (2) comparisons of ClO from MLS with that from correlative measurements by balloon-based, ground-based, and aircraft-based instruments. Values of "noise" (random), "scaling" (multiplicative), and "bias" (additive) uncertainties are determined for the Version 3 data, in the first version public release of the known artifacts in these data are identified. Comparisons with correlative measurements indicate agreement to within the combined uncertainties expected for MLS and the other measurements being compared. It is concluded that MLS Version 3 ClO data, with proper consideration of the uncertainties and "quality" parameters produced with these data, can be used for scientific analyses at retrieval surfaces between 46 and 1 hPa (approximately 20-50 km in height). Future work is planned to correct known problems in the data and improve their quality.

  17. A Case Study of the Density Structure over a Vertical Magnetic Field Region in the Martian Ionosphere

    NASA Astrophysics Data System (ADS)

    Duru, F.; Gurnett, D. A.; Morgan, D. D.; Dieval, C.; Pisa, D.; Lundin, R. N. A.

    2014-12-01

    One of the discoveries made by Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) on the Mars Express spacecraft is the existence of magnetically controlled structures in the ionosphere of Mars, which result in irregularities in the ionospheric electron density contours. These irregularities lead in turn to oblique echoes, which show up as hyperbola-shaped features on the plots of echo intensity measured by MARSIS as a function of altitude and universal time. The study of a hyperbola-shaped feature observed in a pass over an isolated region of strong crustal magnetic field shows that this kind of feature can be associated with a plasma cavity in the upper ionosphere and a corresponding density enhancement in the lower levels of the ionosphere. At the location where the hyperbola-shaped echo is observed, the electron and ion fluxes measured by ASPERA-3 at the location of the spacescraft are depleted and the local electron density from MARSIS shows a small decrease, as well. However, the peak ionospheric density obtained by MARSIS remote sounding shows a clear increase as Mars Express passes over the same region. We conclude that through the open magnetic field lines, the electrons are accelerated downward and ions are accelerated upward in a manner similar to the field-line driven auroral acceleration at Earth. This heating due to precipitating electrons causes a bulge at the altitude of the main ionosphere, which in turn leads to a hyperbola shaped echo, and loss of ionospheric plasma at high altitudes.

  18. The Impact of Atmospheric InfraRed Sounder (AIRS) Profiles on Short-term Weather Forecasts

    NASA Technical Reports Server (NTRS)

    Chou, Shih-Hung; Zavodsky, Brad; Jedlovec, Gary J.; Lapenta, William

    2007-01-01

    The Atmospheric Infrared Sounder (AIRS), together with the Advanced Microwave Sounding Unit (AMSU), represents one of the most advanced spacebased atmospheric sounding systems. The combined AlRS/AMSU system provides radiance measurements used to retrieve temperature profiles with an accuracy of 1 K over 1 km layers under both clear and partly cloudy conditions, while the accuracy of the derived humidity profiles is 15% in 2 km layers. Critical to the successful use of AIRS profiles for weather and climate studies is the use of profile quality indicators and error estimates provided with each profile Aside form monitoring changes in Earth's climate, one of the objectives of AIRS is to provide sounding information of sufficient accuracy such that the assimilation of the new observations, especially in data sparse region, will lead to an improvement in weather forecasts. The purpose of this paper is to describe a procedure to optimally assimilate highresolution AIRS profile data in a regional analysis/forecast model. The paper will focus on the impact of AIRS profiles on a rapidly developing east coast storm and will also discuss preliminary results for a 30-day forecast period, simulating a quasi-operation environment. Temperature and moisture profiles were obtained from the prototype version 5.0 EOS science team retrieval algorithm which includes explicit error information for each profile. The error profile information was used to select the highest quality temperature and moisture data for every profile location and pressure level for assimilation into the ARPS Data Analysis System (ADAS). The AIRS-enhanced analyses were used as initial fields for the Weather Research and Forecast (WRF) system used by the SPORT project for regional weather forecast studies. The ADASWRF system will be run on CONUS domain with an emphasis on the east coast. The preliminary assessment of the impact of the AIRS profiles will focus on quality control issues associated with AIRS

  19. Impact of Atmospheric Infrared Sounder (AIRS) Thermodynamic Profiles on Regional Weather Forecasting

    NASA Technical Reports Server (NTRS)

    Chou, Shih-Hung; Zavodsky, Bradley T.; Jedlovee, Gary J.

    2010-01-01

    In data sparse regions, remotely-sensed observations can be used to improve analyses and lead to better forecasts. One such source comes from the Atmospheric Infrared Sounder (AIRS), which together with the Advanced Microwave Sounding Unit (AMSU), provides temperature and moisture profiles with accuracy comparable to that of radiosondes. The purpose of this paper is to describe a procedure to assimilate AIRS thermodynamic profile data into a regional configuration of the Advanced Research Weather Research and Forecasting (WRF-ARW) model using its three-dimension variational (3DVAR) analysis component (WRF-Var). Quality indicators are used to select only the highest quality temperature and moisture profiles for assimilation in both clear and partly cloudy regions. Separate error characteristics for land and water profiles are also used in the assimilation process. Assimilation results indicate that AIRS profiles produce an analysis closer to in situ observations than the background field. Forecasts from a 37-day case study period in the winter of 2007 show that AIRS profile data can lead to improvements in 6-h cumulative precipitation forecasts due to instability added in the forecast soundings by the AIRS profiles. Additionally, in a convective heavy rainfall event from February 2007, assimilation of AIRS profiles produces a more unstable boundary layer resulting in enhanced updrafts in the model. These updrafts produce a squall line and precipitation totals that more closely reflect ground-based observations than a no AIRS control forecast. The location of available high-quality AIRS profiles ahead of approaching storm systems is found to be of paramount importance to the amount of impact the observations will have on the resulting forecasts.

  20. Impact of Atmospheric Infrared Sounder (AIRS) Thermodynamic Profiles on Regional Precipitation Forecasting

    NASA Technical Reports Server (NTRS)

    Chou, S.-H.; Zavodsky, B. T.; Jedloved, G. J.

    2010-01-01

    In data sparse regions, remotely-sensed observations can be used to improve analyses and lead to better forecasts. One such source comes from the Atmospheric Infrared Sounder (AIRS), which together with the Advanced Microwave Sounding Unit (AMSU), provides temperature and moisture profiles in clear and cloudy regions with accuracy which approaches that of radiosondes. The purpose of this paper is to describe an approach to assimilate AIRS thermodynamic profile data into a regional configuration of the Advanced Research WRF (ARW) model using WRF-Var. Quality indicators are used to select only the highest quality temperature and moisture profiles for assimilation in clear and partly cloudy regions, and uncontaminated portions of retrievals above clouds in overcast regions. Separate error characteristics for land and water profiles are also used in the assimilation process. Assimilation results indicate that AIRS profiles produce an analysis closer to in situ observations than the background field. Forecasts from a 37-day case study period in the winter of 2007 show that AIRS profile data can lead to improvements in 6-h cumulative precipitation forecasts resulting from improved thermodynamic fields. Additionally, in a convective heavy rainfall event from February 2007, assimilation of AIRS profiles produces a more unstable boundary layer resulting in enhanced updrafts in the model. These updrafts produce a squall line and precipitation totals that more closely reflect ground-based observations than a no AIRS control forecast. The location of available high-quality AIRS profiles ahead of approaching storm systems is found to be of paramount importance to the amount of impact the observations will have on the resulting forecasts.

  1. Interaction of Titan's ionosphere with Saturn's magnetosphere.

    PubMed

    Coates, Andrew J

    2009-02-28

    Titan is the only Moon in the Solar System with a significant permanent atmosphere. Within this nitrogen-methane atmosphere, an ionosphere forms. Titan has no significant magnetic dipole moment, and is usually located inside Saturn's magnetosphere. Atmospheric particles are ionized both by sunlight and by particles from Saturn's magnetosphere, mainly electrons, which reach the top of the atmosphere. So far, the Cassini spacecraft has made over 45 close flybys of Titan, allowing measurements in the ionosphere and the surrounding magnetosphere under different conditions. Here we review how Titan's ionosphere and Saturn's magnetosphere interact, using measurements from Cassini low-energy particle detectors. In particular, we discuss ionization processes and ionospheric photoelectrons, including their effect on ion escape from the ionosphere. We also discuss one of the unexpected discoveries in Titan's ionosphere, the existence of extremely heavy negative ions up to 10000amu at 950km altitude. PMID:19073464

  2. The dynamics of the Venus ionosphere

    NASA Technical Reports Server (NTRS)

    Miller, K. L.

    1988-01-01

    Data from the Pioneer-Venus orbiter has demonstrated the importance of understanding ion dynamics in the Venus ionosphere. The analysis of the data has shown that during solar maximum the topside Venus ionosphere in the dark hemisphere is generated almost entirely on the dayside of the planet during solar maximum, and flows with supersonic velocities across the terminator into the nightside. The flow field in the ionosphere is mainly axially-symmetric about the sun-Venus axis, as are most measured ionospheric quantities. The primary data base used consisted of the ion velocity measurements made by the RPA during three years that periapsis of the orbiter was maintained in the Venus ionosphere. Examples of ion velocities were published and modeled. This research examined the planetary flow patterns measured in the Venus ionosphere, and the physical implications of departures from the mean flow.

  3. Interaction of Titan's ionosphere with Saturn's magnetosphere.

    PubMed

    Coates, Andrew J

    2009-02-28

    Titan is the only Moon in the Solar System with a significant permanent atmosphere. Within this nitrogen-methane atmosphere, an ionosphere forms. Titan has no significant magnetic dipole moment, and is usually located inside Saturn's magnetosphere. Atmospheric particles are ionized both by sunlight and by particles from Saturn's magnetosphere, mainly electrons, which reach the top of the atmosphere. So far, the Cassini spacecraft has made over 45 close flybys of Titan, allowing measurements in the ionosphere and the surrounding magnetosphere under different conditions. Here we review how Titan's ionosphere and Saturn's magnetosphere interact, using measurements from Cassini low-energy particle detectors. In particular, we discuss ionization processes and ionospheric photoelectrons, including their effect on ion escape from the ionosphere. We also discuss one of the unexpected discoveries in Titan's ionosphere, the existence of extremely heavy negative ions up to 10000amu at 950km altitude.

  4. Small particle cirrus observed by the Atmospheric Infrared Sounder

    NASA Astrophysics Data System (ADS)

    Kahn, B. H.; Eldering, A.; Fishbein, E. F.

    2003-04-01

    The high-resolution spectra of the Atmospheric Infrared Sounder (AIRS) have provided an opportunity to globally observe small particle-dominated cirrus clouds. The shape of the radiance spectra in the atmospheric windows is uniquely influenced by small ice crystals with an effective radius (reff) of a few 10s of microns and smaller. In some rare instances, minima in the AIRS brightness temperature (BT) spectra between 800 to 850 cm-1 are seen, consistent with the existence of ice particles with an reff smaller than 3 microns. Much more frequent occurences of small ice particle clouds with reff larger than 3 microns are observed through the large 998 to 811 cm-1 BT differences without minima. The small particle events are occasionally found in orographic cirrus clouds, in and around cumulonimbus towers, and in cirrus bands far removed from convection and orography. Several cases spanning the variety of small particle-dominated cirrus events will be presented. AIRS, located on the EOS-Aqua platform, is a high-resolution grating spectrometer that scans at angles 49.5 degrees on either side of nadir view, at both visible and infrared wavelengths. The surface footprint is 13.5 km at the nadir view, and coverage in the infrared is in three bandpasses (649-1136, 1265-1629, and 2169-2674 cm-1). Comparisons of observed spectra are made with simulated spectra generated by a plane-parallel scattering radiative transfer model using ice particle shapes and sizes calculated by the T-matrix method. These comparisons yield information on small particle cirrus cloud reff and optical depth. Aumann, H.H., and R.J. Pagano, Atmospheric Infrared Sounder on the Earth Observing System. Opt. Eng. 33, 776-784, 1994. Mishchenko, M.I., and L.D. Travis, Capabilities and limitations of a current Fortran implementation of the T-matrix method for randomly oriented, rotationally symmetric scatterers. J. Quant. Spectrosc. Radiat. Transfer, 60, 309-324, 1998. Moncet, J.L., and S.A. Clough

  5. A study on ionospheric TEC forecast using genetic algorithm and neural network

    NASA Astrophysics Data System (ADS)

    Huang, Zhi; Yuan, Hong

    Back propagation artificial neural network (ANN) augmented by genetic algorithm (GA) is introduced to forecast ionospheric TEC with the dual-frequency GPS measurements from the low and high solar activity years in this paper due to ionosphere space characterizing by the highly nonlinear and time-varying with random variations. First, with different number of neurons in the hidden layer, different transfer function and training function, the training performance of network model is analyzed and then optimized network structure is determined. The ionospheric TEC values one hour in advance are forecasted and further the prediction performance of the developed network model is evaluated at the given criterions. The results show that predicted TEC using BP neural network improved by genetic algorithm has good agreement with observed data. In addition, the prediction errors are smaller in middle and high latitudes than in low latitudes, smaller in low solar activity than in high solar activity. Compared with BP Network with three layers structure, Prediction precision of network model optimized by genetic algorithm is further improved. The resolution quality indicate that the proposed algorithm can offer a powerful and reliable alternative to the design of ionospheric TEC forecast technologies, and provide advice for the regional ionospheric TEC maps. Key words: Neural network, Genetic algorithm, Ionospheric TEC, Forecast,

  6. The UARS and EOS Microwave Limb Sounder (MLS) Experiments.

    NASA Astrophysics Data System (ADS)

    Waters, J. W.; Read, W. G.; Froidevaux, L.; Jarnot, R. F.; Cofield, R. E.; Flower, D. A.; Lau, G. K.; Pickett, H. M.; Santee, M. L.; Wu, D. L.; Boyles, M. A.; Burke, J. R.; Lay, R. R.; Loo, M. S.; Livesey, N. J.; Lungu, T. A.; Manney, G. L.; Nakamura, L. L.;  Perun, V. S.;  Ridenoure, B. P.;  Shippony, Z.;  Siegel, P. H.;  Thurstans, R. P.;  Harwood, R. S.;  Pumphrey, H. C.;  Filipiak, M. J.

    1999-01-01

    The Microwave Limb Sounder (MLS) experiments obtain measurements of atmospheric composition, temperature, and pressure by observations of millimeter- and submillimeter-wavelength thermal emission as the instrument field of view is scanned through the atmospheric limb. Features of the measurement technique include the ability to measure many atmospheric gases as well as temperature and pressure, to obtain measurements even in the presence of dense aerosol and cirrus, and to provide near-global coverage on a daily basis at all times of day and night from an orbiting platform. The composition measurements are relatively insensitive to uncertainties in atmospheric temperature. An accurate spectroscopic database is available, and the instrument calibration is also very accurate and stable. The first MLS experiment in space, launched on the (NASA) Upper Atmosphere Research Satellite (UARS) in September 1991, was designed primarily to measure stratospheric profiles of ClO, O3, H2O, and atmospheric pressure as a vertical reference. Global measurement of ClO, the predominant radical in chlorine destruction of ozone, was an especially important objective of UARS MLS. All objectives of UARS MLS have been accomplished and additional geophysical products beyond those for which the experiment was designed have been obtained, including measurement of upper-tropospheric water vapor, which is important for climate change studies. A follow-on MLS experiment is being developed for NASA's Earth Observing System (EOS) and is scheduled to be launched on the EOS CHEMISTRY platform in late 2002. EOS MLS is designed for many stratospheric measurements, including HOx radicals, which could not be measured by UARS because adequate technology was not available, and better and more extensive upper-tropospheric and lower-stratospheric measurements.

  7. Validation of Aura Microwave Limb Sounder HCl Measurements

    NASA Technical Reports Server (NTRS)

    Froidevaux, L.; Jiang, Y. B.; Lambert, A.; Livesey, N. J.; Read, W. G.; Waters, J. W.; Fuller, R. A.; Marcy, T. P.; Popp, P. J.; Gao, R. S.; Fahey, D. W.; Jucks, K. W.; Stachnik, R. A.; Toon, G. C.; Christensen, L. E.; Webster, C. R.; Bernath, P. F.; Boone, C. D.; Walker, K. A.; Pumphrey, H. C.; Harwood, R. S.; Manney, G. L.; Schwartz, M. J.; Daffer, W. H.; Drouin, B. J.

    2008-01-01

    The Earth Observing System (EOS) Microwave Limb Sounder (MLS) aboard the Aura satellite has provided daily global HCl profiles since August 2004. We provide a characterization of the resolution, random and systematic uncertainties, and known issues for the version 2.2 MLS HCl data. The MLS sampling allows for comparisons with many (1500 to more than 3000) closely matched profiles from the Halogen Occultation Experiment (HALOE) and Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS). These data sets provide HCl latitudinal distributions that are, overall, very similar to those from (coincident) MLS profiles, although there are some discrepancies in the upper stratosphere between the MLS and HALOE gradients. As found in previous work, MLS and ACE HCl profiles agree very well (within approximately 5%, on average), but the MLS HCl abundances are generally larger (by 10-20%) than HALOE HCl. The bias versus HALOE is unlikely to arise mostly from MLS, as a similar systematic bias (of order 15%) is not observed between average MLS and balloon-borne measurements of HCl, obtained over Fort Sumner, New Mexico, in 2004 and 2005. At the largest pressure (147 hPa) for MLS HCl, a high bias (approximately 0.2 ppbv) is apparent in analyses of low to midlatitude data versus in situ aircraft chemical ionization mass spectrometry (CIMS) HCl measurements from the Aura Validation Experiment (AVE) campaigns in 2004, 2005, and 2006; this bias is also observed in comparisons of MLS and aircraftHCl/O3 correlations. Good agreement between MLS and CIMS HCl is obtained at 100 to 68 hPa. The recommended pressure range for MLS HCl is from 100 to 0.15 hPa.

  8. Improving of Aura Microwave Limb Sounder Data Products

    NASA Astrophysics Data System (ADS)

    Cuddy, D.; Wagner, P.; Read, W.; Livesey, N. J.; Martinez, E.

    2011-12-01

    The Microwave Limb Sounder (MLS) on NASA's Aura satellite began collecting atmospheric data in August of 2004, and the MLS Science Investigator-led Processing System (SIPS) processes the raw data to calibrated radiances and the 20 different geophysical parameters. Currently, SIPS provides two versions (V2 and V3) of these data products, and Goddard Earth Science Data and Information Service Centers (GES-DISC) archives and provides them to the user community. This paper will describe the current plans by the MLS Science Team (MST) to improve the V2 and V3 algorithms, and at the top of the list are how to ameliorate the issue with oscillations in the upper troposphere/lower stratosphere (UT/LS) ozone and improve behavior of UT/LS species in thick cloud. Other improvements include: removing adverse cloud interactions in some products (e.g. CO) that now occur in V3, ideally better still with the new cloud forward model; work to further reduce biases in 640 GHz species; extend species to lower altitude (including potentially those at 190 GHz); consider joint retrievals spanning multiple radiometers (e.g., joint 190/640 GHZ ClO to get methanol independently); better HCN lower down using a separate phase (q.v. 190 GHz goal above); and gain better understanding of hydrostatic / pressure inconsistency in Band 1. This paper will also discuss usability improvement such as TAI93 at 0Z of granule, day boundary discontinuities, and extending the data format to be compatible with NetCDF (network Common Data Form) that supports a machine-independent format for representing scientific data and is widely used in the community.

  9. Validation of UARS Microwave Limb Sounder temperature and pressure measurements

    NASA Astrophysics Data System (ADS)

    Fishbein, E. F.; Cofield, R. E.; Froidevaux, L.; Jarnot, R. F.; Lungu, T.; Read, W. G.; Shippony, Z.; Waters, J. W.; McDermid, I. S.; McGee, T. J.; Singh, U.; Gross, M.; Hauchecorne, A.; Keckhut, P.; Gelman, M. E.; Nagatani, R. M.

    1996-04-01

    The accuracy and precision of the Upper Atmosphere Research Satellite (UARS) Microwave Limb Sounder (MLS) atmospheric temperature and tangent-point pressure measurements are described. Temperatures and tangent-point pressure (atmospheric pressure at the tangent height of the field of view boresight) are retrieved from a 15-channel 63-GHz radiometer measuring O2 microwave emissions from the stratosphere and mesosphere. The Version 3 data (first public release) contains scientifically useful temperatures from 22 to 0.46 hPa. Accuracy estimates are based on instrument performance, spectroscopic uncertainty and retrieval numerics, and range from 2.1 K at 22 hPa to 4.8 K at 0.46 hPa for temperature and from 200 m (equivalent log pressure) at 10 hPa to 300 m at 0.1 hPa. Temperature accuracy is limited mainly by uncertainty in instrument characterization, and tangent-point pressure accuracy is limited mainly by the accuracy of spectroscopic parameters. Precisions are around 1 K and 100 m. Comparisons are presented among temperatures from MLS, the National Meteorological Center (NMC) stratospheric analysis and lidar stations at Table Mountain, California, Observatory of Haute Provence (OHP), France, and Goddard Spaceflight Center, Maryland. MLS temperatures tend to be 1-2 K lower than NMC and lidar, but MLS is often 5 - 10 K lower than NMC in the winter at high latitudes, especially within the northern hemisphere vortex. Winter MLS and OHP (44°N) lidar temperatures generally agree and tend to be lower than NMC. Problems with Version 3 MLS temperatures and tangent-point pressures are identified, but the high precision of MLS radiances will allow improvements with better algorithms planned for the future.

  10. Validation of UARS Microwave Limb Sounder ozone measurements

    NASA Astrophysics Data System (ADS)

    Froidevaux, L.; Read, W. G.; Lungu, T. A.; Cofield, R. E.; Fishbein, E. F.; Flower, D. A.; Jarnot, R. F.; Ridenoure, B. P.; Shippony, Z.; Waters, J. W.; Margitan, J. J.; McDermid, I. S.; Stachnik, R. A.; Peckham, G. E.; Braathen, G.; Deshler, T.; Fishman, J.; Hofmann, D. J.; Oltmans, S. J.

    1996-04-01

    This paper describes the validation of ozone data from the Upper Atmosphere Research Satellite (UARS) Microwave Limb Sounder (MLS). The MLS ozone retrievals are obtained from the calibrated microwave radiances (emission spectra) in two separate bands, at frequencies near 205 and 183 GHz. Analyses described here focus on the MLS Version 3 data (the first set of files made publicly available). We describe results of simulations performed to assess the quality of the retrieval algorithms, in terms of both mixing ratio and radiance closure. From actual MLS observations, the 205-GHz ozone retrievals give better closure (smaller radiance residuals) than that from the 183-GHz measurements and should be considered more accurate from the calibration aspects. However, the 183-GHz data are less noise limited in the mesosphere and can provide the most useful scientific results in that region. We compare the retrieved 205-GHz ozone profiles in the middle-to lower stratosphere to ozonesonde measurements at a wide range of latitudes and seasons. Ground-based lidar data from Table Mountain, California, provide a good reference for comparisons at higher altitudes. Based on these analyses, comparisons with balloon-borne measurements and others, as well as a detailed budget of estimated uncertainties, MLS results appear to be generally of high quality, with some biases worth mentioning. Results for the lowermost stratosphere (˜50 to 100 hPa) are still in need of improvement. A set of estimated precision and accuracy values is derived for the MLS ozone data sets. We also comment on recent updates in the retrieval algorithms and their impact on ozone values.

  11. Global dust infrared aerosol properties retrieved using hyperspectral sounders

    NASA Astrophysics Data System (ADS)

    Capelle, Virginie; Chédin, alain; Pondrom, Marc; Pierangelo, Clémence; Armante, Raymond; Crevoisier, Cyril; Crépeau, Laurent; Scott, Noëlle

    2015-04-01

    Observations from infrared hyperspectral sounders, here IASI and AIRS, are interpreted in terms of dust aerosol properties (AOD and mean altitude). The method is based on a "Look-Up-Table" (LUT) approach, where all radiative transfer computation is performed once for all and "off-line", for a large selection of atmospheric situations, of observing conditions, of surface characteristics (in particular the surface emissivity and temperature), and different aerosol refractive index models. The inversion scheme follows two main steps: first, determination of the observed atmospheric thermodynamic situation, second, simultaneous retrieval of the 10µm coarse-mode AOD and of the mean altitude. The method is here applied over sea and over land, at daily scale daytime and nighttime, and at the satellite pixel resolution (12 km at nadir). The geographical study area studied includes the northern tropics from west Atlantic to the Arabian peninsula and Indian ocean, and the Mediterranean basin, all of them characterized by strong, regular dust events. A special focus is given to the hourly variation of aerosol properties within a day. In this context, both IASI overpasses are processed, providing two measurements at 9:30AM and 9:30PM (equator local time) each day. First results obtained from AIRS observations, made at 1:30 AM and PM, open the way to the analysis of the aerosol diurnal cycle. For the AOD, comparisons are made with AERONET ground-based data , when available, in order to 1) evaluate our results, and 2) show the importance of a better knowledge of the aerosol diurnal cycle, especially close to the sources. Mean aerosol layer altitude obtained from IASI is compared at local scale with the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP/CALIPSO) aerosol altitude.

  12. Validation of UARS Microwave Limb Sounder Ozone Measurements

    NASA Technical Reports Server (NTRS)

    Froidevaux, L.; Read, W. G.; Lungu, T. A.; Cofield, R. E.; Fishbein, E. F.; Flower, D. A.; Jarnot, R. F.; Ridenoure, B. P.; Shippony, Z.; Waters, J. W.; Margitan, J. J.; McDermid, I. S.; Stachnik, R. A.; Peckham, G. E.; Braathen, G.; Deshler, T.; Fishman, J.; Hofmann, D. J.; Oltmans, S. J.

    1996-01-01

    This paper describes the validation of ozone data from the Upper Atmosphere Research Satellite (UARS) Microwave Limb Sounder (MLS). The MLS ozone retrievals are obtained from the calibrated microwave radiances (emission spectra) in two separate bands, at frequencies near 205 and 183 GHz. Analyses described here focus on the MLS Version 3 data (the first set of files made publicly available). We describe results of simulations performed to assess the quality of the retrieval algorithms, in terms of both mixing ratio and radiance closure. From actual MLS observations, the 205-GHz ozone retrievals give better closure (smaller radiance residuals) than that from the 183-GHz measurements and should be considered more accurate from the calibration aspects. However, the 183-GHz data are less noise limited in the mesosphere and can provide the most useful scientific results in that region. We compare the retrieved 205-GHz ozone profiles in the middle-to lower stratosphere to ozonesonde measurements at a wide range of latitudes and seasons. Ground-based lidar data from Table Mountain, California, provide a good reference for comparisons at higher altitudes. Based on these analyses, comparisons with balloon-borne measurements and others, as well as a detailed budget of estimated uncertainties, MLS results appear to be generally of high quality, with some biases worth mentioning. Results for the lowermost stratosphere (approx. 50 to 100 bPa) are still in need of improvement. A set of estimated precision and accuracy values is derived for the MLS ozone data sets. We also comment on recent updates in the retrieval algorithms and their impact on ozone values.

  13. Laser Atmospheric Wind Sounder (LAWS) phase 1. Volume 2

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This report summarizes and documents the results of the 12-month phase 1 work effort. The objective of phase 1 was to establish the conceptional definition of the laser atmospheric wind sounder (LAWS) sensor system, including accommodations analyses to ensure compatibility with the Space Station Freedom (SSF) and the Earth Observing System (EOS) Polar Orbiting Platform (POP). Various concepts were investigated with trade studies performed to select the configuration to be carried forward to the phase 2 Preliminary Design Definition. A summary of the LAWS system and subsystem trade studies that were performed leading to the baseline design configuration is presented in the appendix. The overall objective of the LAWS Project is to define, design, and implement an operational space based facility, LAWS, for accurate measurement of Earth wind profiles. Phase 1 addressed three major areas: (1) requirements definition; (2) instrument concepts and configurations; and (3) performance analysis. For the LAWS instrument concepts and configurations, the issues which press the technological state of the art are reliable detector lifetime and laser performance and lifetime. Lag angle compensation, pointing accuracy, satellite navigation, and telescope design are significant technical issues, but they are considered to be currently state of the art. The primary issues for performance analysis concern interaction with the atmosphere in terms of backscatter and attenuation, wind variance, and cloud blockage. The phase 1 tasks were formulated to address these significant technical issues and demonstrate the technical feasibility of the LAWS concept. Primary emphasis was placed on analysis/trade and identification of candidate concepts. Promising configurations were evaluated for performance, sensitivities, risks, and budgetary costs. Lockheed's baseline LAWS configuration is presented.

  14. Validation of UARS Microwave Limb Sounder Temperature and Pressure Measurements

    NASA Technical Reports Server (NTRS)

    Fishbein, E. F.; Cofield, R. E.; Froidevaux, L.; Jarnot, R. F.; Lungu, T.; Read, W. G.; Shippony, Z.; Waters, J. W.; McDermid, I. S.; McGee, T. J.; Singh, U.; Gross, M.; Hauchecorne, A.; Keckhut, P.; Gelman, M. E.; Nagatani, R. M.

    1996-01-01

    The accuracy and precision of the Upper Atmosphere Research Satellite (UARS) Microwave Limb Sounder (MLS) atmospheric temperature and tangent-point pressure measurements are described. Temperatures and tangent- point pressure (atmospheric pressure at the tangent height of the field of view boresight) are retrieved from a 15-channel 63-GHz radiometer measuring O2 microwave emissions from the stratosphere and mesosphere. The Version 3 data (first public release) contains scientifically useful temperatures from 22 to 0.46 hPa. Accuracy estimates are based on instrument performance, spectroscopic uncertainty and retrieval numerics, and range from 2.1 K at 22 hPa to 4.8 K at 0.46 hPa for temperature and from 200 m (equivalent log pressure) at 10 hPa to 300 m at 0.1 hPa. Temperature accuracy is limited mainly by uncertainty in instrument characterization, and tangent-point pressure accuracy is limited mainly by the accuracy of spectroscopic parameters. Precisions are around 1 K and 100 m. Comparisons are presented among temperatures from MLS, the National Meteorological Center (NMC) stratospheric analysis and lidar stations at Table Mountain, California, Observatory of Haute Provence (OHP), France, and Goddard Spaceflight Center, Maryland. MLS temperatures tend to be 1-2 K lower than NMC and lidar, but MLS is often 5 - 10 K lower than NMC in the winter at high latitudes, especially within the northern hemisphere vortex. Winter MLS and OHP (44 deg N) lidar temperatures generally agree and tend to be lower than NMC. Problems with Version 3 MLS temperatures and tangent-point pressures are identified, but the high precision of MLS radiances will allow improvements with better algorithms planned for the future.

  15. Studies based on global subsurface radar sounding of the Moon by SELENE (Kaguya) Lunar Radar Sounder (LRS): A summary

    NASA Astrophysics Data System (ADS)

    Kumamoto, A.; Yamaguchi, Y.; Yamaji, A.; Kobayashi, T.; Oshigami, S.; Ishiyama, K.; Nakamura, N.; Goto, Y.

    2015-12-01

    The Lunar Radar Sounder (LRS) onboard the SELENE (Kaguya) spacecraft has successfully performed radar sounder observations of the lunar subsurface structures and passive observations of natural radio and plasma waves from the lunar orbit. After the transfer of the spacecraft into the final lunar orbit and antenna deployment, the operation of LRS started on October 29, 2007. Through the operation until June 10, 2009, 130 million pulses worth of radar sounder data have been obtained [Ono et al., 2010]. Based on the datasets of the first lunar global subsurface radar sounding, Ono et al. [2009] revealed that there are distinct reflectors at a depth of several hundred meters in the nearside maria, which are inferred to be buried regolith layers covered by a basalt layer with a thickness of several hundred meters. Based on the further survey, Pommerol et al. [2010] pointed out the negative correlation of clear subsurface echoes with the maps of ilmenite, and suggested that dense ilmenite attenuates the radar pulse in the basaltic mare lava, and cause the absence of the clear subsurface echoes. That also suggests there are undetected subsurface reflectors especially below the young lava flow units with high ilmenite abundance. Kobayashi et al. [2012] applied synthetic aperture radar (SAR) processing to SELENE LRS data in order to obtain distinct radargram. Taking advantage of analyzing waveform data sent via high data rate telemetry from the Moon, we can perform advanced data analyses on the ground. We started providing the both SAR processed and waveform datasets via SELENE Data Archive (http://l2db.selene.darts.isas.jaxa.jp/index.html.en) since 2015. Oshigami et al. [2014] estimated volumes of basalt units in the ages of 2.7 Ga to 3.8 Ga in the nearside maria. The volume was derived from the depth of subsurface reflectors measured by LRS. The volumes of the geologic units were 103 to 104 km3. The average eruption rates were 10-5 to 10-3 km3 yr-1. The estimated volumes

  16. Ionospheric Change and Solar EUV Irradiance

    NASA Astrophysics Data System (ADS)

    Sojka, J. J.; David, M.; Jensen, J. B.; Schunk, R. W.

    2011-12-01

    The ionosphere has been quantitatively monitored for the past six solar cycles. The past few years of observations are showing trends that differ from the prior cycles! Our good statistical relationships between the solar radio flux index at 10.7 cm, the solar EUV Irradiance, and the ionospheric F-layer peak density are showing indications of divergence! Present day discussion of the Sun-Earth entering a Dalton Minimum would suggest change is occurring in the Sun, as the driver, followed by the Earth, as the receptor. The dayside ionosphere is driven by the solar EUV Irradiance. But different components of this spectrum affect the ionospheric layers differently. For a first time the continuous high cadence EUV spectra from the SDO EVE instrument enable ionospheric scientists the opportunity to evaluate solar EUV variability as a driver of ionospheric variability. A definitive understanding of which spectral components are responsible for the E- and F-layers of the ionosphere will enable assessments of how over 50 years of ionospheric observations, the solar EUV Irradiance has changed. If indeed the evidence suggesting the Sun-Earth system is entering a Dalton Minimum periods is correct, then the comprehensive EVE solar EUV Irradiance data base combined with the ongoing ionospheric data bases will provide a most fortuitous fiduciary reference baseline for Sun-Earth dependencies. Using the EVE EUV Irradiances, a physics based ionospheric model (TDIM), and 50 plus years of ionospheric observation from Wallops Island (Virginia) the above Sun-Earth ionospheric relationship will be reported on.

  17. Midlatitude ionospheric dynamics and disturbances: Introduction

    NASA Astrophysics Data System (ADS)

    Kintner, Paul M., Jr.; Coster, Anthea J.; Fuller-Rowell, Tim; Mannucci, Anthony J.; Mendillo, Michael; Heelis, Roderick

    Recent discoveries have demonstrated that the ionosphere responds over regions extending from the equator to the poles during geomagnetic storms and experiences the most extreme changes at midlatitudes. The midlatitude ionosphere was first studied during the "discovery era" of radio physics and space flight 50 or more years ago, but for the past three decades the polar and tropical ionosphere have dominated scientific activity, resulting in the false impression that the midlatitude ionosphere was an uninteresting region of known morphology and well-understood processes. During the past five years, however, the ability to image the ionosphere and thermosphere with large arrays of ground-based GPS receivers and satellite-borne UV imagers changed this viewpoint dramatically and led to the inception of the Chapman Conference on Mid-Latitude Ionospheric Dynamics and Disturbances (MIDD) and to this monograph. The most dramatic changes in ionospheric content occur at midlatitudes, not at high or equatorial latitudes. The most extreme examples of ionospheric total electron content (TEC) perturbations occur at midlatitudes during geomagnetic storms, where TEC can change by factors of three to ten over the duration of a magnetic storm. The ionosphere responds to magnetic storms over regions extending from the equator to the poles, where huge volumes of plasma are produced and transported polewards. Sharp gradients in ionospheric content, extending thousands of kilometers, are created by unknown factors. These gradients spawn irregularities that together impact users of RF signals, either transiting across or reflecting from the ionosphere. At higher altitudes, dramatic changes in the ionosphere are accompanied by movement and transport of the plasmasphere.

  18. HAARP-Induced Ionospheric Ducts

    SciTech Connect

    Milikh, Gennady; Vartanyan, Aram

    2011-01-04

    It is well known that strong electron heating by a powerful HF-facility can lead to the formation of electron and ion density perturbations that stretch along the magnetic field line. Those density perturbations can serve as ducts for ELF waves, both of natural and artificial origin. This paper presents observations of the plasma density perturbations caused by the HF-heating of the ionosphere by the HAARP facility. The low orbit satellite DEMETER was used as a diagnostic tool to measure the electron and ion temperature and density along the satellite orbit overflying close to the magnetic zenith of the HF-heater. Those observations will be then checked against the theoretical model of duct formation due to HF-heating of the ionosphere. The model is based on the modified SAMI2 code, and is validated by comparison with well documented experiments.

  19. Lithosphere - Atmosphere - Ionosphere Circuit Model

    NASA Astrophysics Data System (ADS)

    Kereselidze, Z.; Kachakhidze, N.; Kachakhidze, M.

    2012-04-01

    There are offered possibilities of original LAI circuit model. The problem concerns of existence of self-generated electromagnetic oscillations in the segment of LAI system, which are results of tectonic stress developing in the focus area of expected earthquake. By this model the main (lowest) frequency of these electromagnetic oscillations frequency spectrum is expressed analytically by following formula: ω = β c l where β(ω) is the coefficient depended on the frequency and geological characteristics of the medium and approximate to one, c-is the speed of light, and l- the length of the fault in the focus of the expected earthquake. On the base of relevant diagnosis of experimental data, the model gives us possibility to discuss the problem about location, time of occurrence and intensity of an expected earthquake with certain accuracy. In addition to it, considered model does not block the fall-unstable model of earthquake preparing and electromagnetic phenomena accompanied earthquake preparing process. On the contrary, the imagination of physical picture may be simplified in the separate stage of earthquakes preparing. Namely, it is possible to reliably separate series of foreshocks and aftershocks. By this point of view, the certain optimism about using of EM emission as earthquake precursor of full value may be expressed. The base of such optimism is developing of various phenomena connected to VLF emission many times fixed in the surroundings of epicentral area and cosmic space (changing of intensity of electro-telluric current, perturbations of geomagnetic field in forms of irregular pulsations or regular short-period pulsations, perturbations of atmospheric electric field, perturbations of ionosphere critical frequency and TEC, variations of height of lower ionosphere, parameters of ionospheric medium: changing of specific dielectric conductivity and spectrum of MGD waves in it, atmospheric-ionospheric discharging and etc.).

  20. Ionospheric very low frequency transmitter

    SciTech Connect

    Kuo, Spencer P.

    2015-02-15

    The theme of this paper is to establish a reliable ionospheric very low frequency (VLF) transmitter, which is also broad band. Two approaches are studied that generate VLF waves in the ionosphere. The first, classic approach employs a ground-based HF heater to directly modulate the high latitude ionospheric, or auroral electrojet. In the classic approach, the intensity-modulated HF heater induces an alternating current in the electrojet, which serves as a virtual antenna to transmit VLF waves. The spatial and temporal variations of the electrojet impact the reliability of the classic approach. The second, beat-wave approach also employs a ground-based HF heater; however, in this approach, the heater operates in a continuous wave mode at two HF frequencies separated by the desired VLF frequency. Theories for both approaches are formulated, calculations performed with numerical model simulations, and the calculations are compared to experimental results. Theory for the classic approach shows that an HF heater wave, intensity-modulated at VLF, modulates the electron temperature dependent electrical conductivity of the ionospheric electrojet, which, in turn, induces an ac electrojet current. Thus, the electrojet becomes a virtual VLF antenna. The numerical results show that the radiation intensity of the modulated electrojet decreases with an increase in VLF radiation frequency. Theory for the beat wave approach shows that the VLF radiation intensity depends upon the HF heater intensity rather than the electrojet strength, and yet this approach can also modulate the electrojet when present. HF heater experiments were conducted for both the intensity modulated and beat wave approaches. VLF radiations were generated and the experimental results confirm the numerical simulations. Theory and experimental results both show that in the absence of the electrojet, VLF radiation from the F-region is generated via the beat wave approach. Additionally, the beat wave approach

  1. Preliminary results of the ultralong-range sounding of ionospheric irregularities using the ducted mode

    NASA Astrophysics Data System (ADS)

    Ponyatov, A. A.; Uryadov, V. P.; Batukhtin, V. I.; Ivanov, V. A.; Ivanov, D. V.; Ryabova, N. V.; Chernov, A. G.; Shumaev, V. V.; Anderson, S. J.

    1999-12-01

    We present preliminary experimental results concerning transequatorial propagation (TEP) of HF waves upon chirp sounding over the 11950-km path alice Springs (Australia)-Yoshkar-Ola (Russia). The measurements were made in August, 1998. Two anomalous signals with delays of 3.0 and 4.5 ms with respect to the main mode were observed during night time (21:30 23:00 UT). The maximum observed frequencies (MOF) of these signals were 2 3 MHz greater than the main-mode MOF. Simulations allowed us to identify these signals as the ducted signals trapped in the FE interlayer duct due to radiowave refraction on a negative gradient of the electron density and that escaped from the duct due to the scattering by small-scale field-aligned irregularities of the subpolar ionosphere. We discuss radiophysical and geophysical aspects concerning localization of the irregularities responsible for scattering and perspectives of using the ducted mode for over-the-horizon diagnostics of the inhomogeneous structure of the ionosphere with a global network of chirp sounders and HF radars.

  2. New method for deriving the topside ionospheric Vary-Chap scale height

    NASA Astrophysics Data System (ADS)

    Wang, Sicheng; Huang, Sixun; Fang, Hanxian

    2015-09-01

    An α-Chapman function with a continuously varying scale height H(h) can be used to describe the topside ionosphere electron density profile that seamlessly connects the ionosphere with the plasmasphere. Huang and Reinisch have derived the analytic expression of the scale height from the Vary-Chap function, which can be applied to the topside F2 region. However, the H(h) is still difficult to obtain because H(h) is a function of the unknown value H(h) at hmF2. In this paper, the maximum entropy method is introduced to solve this ill-posed problem, and the Vary-Chap scale height for each electron density profile is derived. Then the average percentage errors that defined as the differences between the measured electron density profiles and the Vary-Chap profiles obtained from the Vary-Chap scale heights are calculated with the Alouette/ISIS satellites topside sounder database. The results reveal that the average percentage errors are generally less than 5% and the Vary-Chap profiles can well represent the topside electron density profiles. What is more, the local time, seasonal, solar cycle, and latitudinal variations of the Vary-Chap scale height are preliminarily analyzed.

  3. Response of Ionosphere to the Tropospheric disturbances

    NASA Astrophysics Data System (ADS)

    Maurya, A. K.; Dube, A.; Singh, R.; Cohen, M.

    2015-12-01

    The aim of the present work is to find out response of the ionosphere to the various cases of tropical cyclones. The main process involved is suggested through Atmospheric Gravity waves (AGWs) originating from strong convective systems, propagating upward upto the ionospheric heights and perturbing ionospheric parameters (Bishop et al., 2006). We have used ground and satellite data to extract cyclone induced perturbations at different ionospheric heights along with the various parameters of AGWs during cyclones and associated thunderstorm. The initial results suggest that there is increase in total electron content of the ionosphere with wave like signatures in ionosphere. The satellite observation in optical band shows presence of concentric gravity wave pattern associated with troposphere disturbances with horizontal wavelength of ~50-200km and periods ranging from hours to days. The ground based Very Low Frequency (VLF) measurement shows fluctuations in VLF navigational transmitter signal passing over the region of disturbance. The lightning data from GLD360 lightning network shows intense activity associated with cyclones and increase in lightning peak current and energy during main phase of cyclones which seems to be sufficient enough to derive ionospheric disturbances in the ionosphere. This multi-instrument analysis provide detail information of the three dimensional structure of cyclone and their effect at different altitudes of the ionosphere in the Indian subcontinent.

  4. Ionospheric limitations to time transfer by satellite

    NASA Technical Reports Server (NTRS)

    Knowles, S. H.

    1983-01-01

    The ionosphere can contribute appreciable group delay and phase change to radio signals traversing it; this can constitute a fundamental limitation to the accuracy of time and frequency measurements using satellites. Because of the dispersive nature of the ionosphere, the amount of delay is strongly frequency-dependent. Ionospheric compensation is necessary for the most precise time transfer and frequency measurements, with a group delay accuracy better than 10 nanoseconds. A priori modeling is not accurate to better than 25%. The dual-frequency compensation method holds promise, but has not been rigorously experimentally tested. Irregularities in the ionosphere must be included in the compensation process.

  5. Ionospheric research for space weather service support

    NASA Astrophysics Data System (ADS)

    Stanislawska, Iwona; Gulyaeva, Tamara; Dziak-Jankowska, Beata

    2016-07-01

    Knowledge of the behavior of the ionosphere is very important for space weather services. A wide variety of ground based and satellite existing and future systems (communications, radar, surveillance, intelligence gathering, satellite operation, etc) is affected by the ionosphere. There are the needs for reliable and efficient support for such systems against natural hazard and minimalization of the risk failure. The joint research Project on the 'Ionospheric Weather' of IZMIRAN and SRC PAS is aimed to provide on-line the ionospheric parameters characterizing the space weather in the ionosphere. It is devoted to science, techniques and to more application oriented areas of ionospheric investigation in order to support space weather services. The studies based on data mining philosophy increasing the knowledge of ionospheric physical properties, modelling capabilities and gain applications of various procedures in ionospheric monitoring and forecasting were concerned. In the framework of the joint Project the novel techniques for data analysis, the original system of the ionospheric disturbance indices and their implementation for the ionosphere and the ionospheric radio wave propagation are developed since 1997. Data of ionosonde measurements and results of their forecasting for the ionospheric observatories network, the regional maps and global ionospheric maps of total electron content from the navigational satellite system (GNSS) observations, the global maps of the F2 layer peak parameters (foF2, hmF2) and W-index of the ionospheric variability are provided at the web pages of SRC PAS and IZMIRAN. The data processing systems include analysis and forecast of geomagnetic indices ap and kp and new eta index applied for the ionosphere forecasting. For the first time in the world the new products of the W-index maps analysis are provided in Catalogues of the ionospheric storms and sub-storms and their association with the global geomagnetic Dst storms is

  6. How Well Can Infrared Sounders Observe the Atmosphere and Surface Through Clouds?

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Larar, Allen M.; Liu, Xu; Smith, William L.; Strow, L. Larrabee; Yang, Ping

    2010-01-01

    Infrared sounders, such as the Atmospheric Infrared Sounder (AIRS), the Infrared Atmospheric Sounding Interferometer (IASI), and the Cross-track Infrared sounder (CrIS), have a cloud-impenetrable disadvantage in observing the atmosphere and surface under opaque cloudy conditions. However, recent studies indicate that hyperspectral, infrared sounders have the ability to detect cloud effective-optical and microphysical properties and to penetrate optically thin clouds in observing the atmosphere and surface to a certain degree. We have developed a retrieval scheme dealing with atmospheric conditions with cloud presence. This scheme can be used to analyze the retrieval accuracy of atmospheric and surface parameters under clear and cloudy conditions. In this paper, we present the surface emissivity results derived from IASI global measurements under both clear and cloudy conditions. The accuracy of surface emissivity derived under cloudy conditions is statistically estimated in comparison with those derived under clear sky conditions. The retrieval error caused by the clouds is shown as a function of cloud optical depth, which helps us to understand how well infrared sounders can observe the atmosphere and surface through clouds.

  7. Field-aligned electron density irregularities near 500 km Equator to polar cap topside sounder observations

    NASA Technical Reports Server (NTRS)

    Benson, R. F.

    1985-01-01

    In addition to spread F, evidence for field-aligned electron density irregularities is commonly observed on Alouette 2 topside sounder ionograms recorded near perigee (500 km). This evidence is provided by distinctive signal returns from sounder-generated Z mode waves. At low latitudes these waves become guided in wave ducts caused by field-aligned electron density irregularities and give rise to strong long-duration echoes. At high latitudes, extending well into the polar cap, these Z mode waves (and stimulated electrostatic waves at the plasma frequency) produce a series of vertical bars on the ionogram display as the satellite traverses discrete field-aligned density structures. The radio frequency (RF) noise environment to be expected in the 400 to 500 km altitude region from low to high latitudes was examined by analyzing perigee Alouette 2 topside sounder data. All observed noise bands were scaled on nearly 200 topside sounder ionograms recorded near perigee at low, mid, and high latitude telemetry stations. The minimum and maximum frequencies of each noise band were entered into a data base or computer analysis. The signals of primary interest in the perigee study were found to be sounder-generated.

  8. International Reference Ionosphere - Status 2004

    NASA Astrophysics Data System (ADS)

    Bilitza, D.; Reinisch, B.; Triskova, L.; Friedrich, M.

    The International Reference Ionosphere (IRI) is the standard for ionospheric densities and temperatures as recommended by the International Union of Radio Science (URSI) and the Committee on Space Research (COSPAR). A COSPAR/URSI Working Group is in charge of developing and improving the model. It currently consists of 43 members who work on different aspects of the modeling effort. By charter IRI is an empirical model that attempts to represent the combined ionospheric database of ground and space observations as accurately as possible. IRI provides monthly averages of the electron density, total electron content, electron temperature, ion temperature, ion composition (O+, H+, He+, N+, O2+, NO+, Cluster+) and vertical ion drift (at the equator). This paper reports about the most recent activities of the IRI Working Group and about the most recent updates of the IRI model. We review the presentations, discussions, and results of the 2003 IRI Workshop held in Grahamstown, South Africa. Special emphasis will be given to the improvements that are of importance for the IRI model now being proposed as ISO standard

  9. Mechanisms of Ionospheric Mass Escape

    NASA Technical Reports Server (NTRS)

    Moore, T. E.; Khazanov, G. V.

    2010-01-01

    The dependence of ionospheric O+ escape flux on electromagnetic energy flux and electron precipitation into the ionosphere is derived for a hypothetical ambipolar pick-up process, powered the relative motion of plasmas and neutral upper atmosphere, and by electron precipitation, at heights where the ions are magnetized but influenced by photo-ionization, collisions with gas atoms, ambipolar and centrifugal acceleration. Ion pick-up by the convection electric field produces "ring-beam" or toroidal velocity distributions, as inferred from direct plasma measurements, from observations of the associated waves, and from the spectra of incoherent radar echoes. Ring-beams are unstable to plasma wave growth, resulting in rapid relaxation via transverse velocity diffusion, into transversely accelerated ion populations. Ion escape is substantially facilitated by the ambipolar potential, but is only weakly affected by centrifugal acceleration. If, as cited simulations suggest, ion ring beams relax into non-thermal velocity distributions with characteristic speed equal to the local ion-neutral flow speed, a generalized "Jeans escape" calculation shows that the escape flux of ionospheric O+ increases with Poynting flux and with precipitating electron density in rough agreement with observations.

  10. A Network of Direct Broadcast Antenna Systems to Provide Real-Time Infrared and Microwave Sounder Data for Numerical Weather Prediction

    NASA Astrophysics Data System (ADS)

    Gumley, L.

    2013-12-01

    The Space Science and Engineering Center at the University of Wisconsin-Madison is creating a network of direct broadcast satellite data reception stations to acquire and process infrared and microwave sounder data in real-time from polar orbiting meteorological satellites and deliver the resulting products to NOAA with low latency for assimilation in NCEP numerical weather prediction models. The network will include 4 antenna sites that will be operated directly by SSEC, including Madison WI, Honolulu HI, Miami FL, and Mayaguez PR. The network will also include partner antenna sites not directly controlled by SSEC, including Corvallis OR, Monterey CA, Suitland MD, Fairbanks AK, and Guam. All of the antenna sites will have a combined X/L-band reception system capable of receiving data via direct broadcast from polar orbiting satellites including Suomi NPP and JPSS-1, Metop-A/B, POES,Terra, and Aqua. Each site will collect raw data from these satellites locally, process it to Level 1 (SDR) and Level 2 (EDR) products, and transmit the products back to SSEC for delivery to NOAA/NCEP. The primary purpose of the antenna systems is to provide real-time infrared and microwave sounder data from Metop and Suomi-NPP to NOAA to support data assimilation for NOAA/NCEP operational numerical weather prediction models. At present, NOAA/NCEP use of advanced infrared (CrIS, IASI, AIRS) and microwave (ATMS, AMSU) sounder data over North America in NWP data assimilation is limited because of the latency of the products in relation to the cutoff times for assimilation runs. This network will deliver infrared and microwave sounder data to NCEP with the lowest latency possible, via the reception and processing of data received via direct broadcast. CIMSS/SSEC is managing the procurement and installation of the antenna systems at the two new sites, and will operate the stations remotely. NOAA will establish the reception priorities (Metop and SNPP will be at the highest priority) and

  11. The radiative consistency of Atmospheric Infrared Sounder and Moderate Resolution Imaging Spectroradiometer cloud retrievals

    NASA Astrophysics Data System (ADS)

    Kahn, Brian H.; Fishbein, Evan; Nasiri, Shaima L.; Eldering, Annmarie; Fetzer, Eric J.; Garay, Michael J.; Lee, Sung-Yung

    2007-05-01

    The consistency of cloud top temperature (TC) and effective cloud fraction (f) retrieved by the Atmospheric Infrared Sounder (AIRS)/Advanced Microwave Sounding Unit (AMSU) observation suite and the Moderate Resolution Imaging Spectroradiometer (MODIS) on the EOS-Aqua platform are investigated. Collocated AIRS and MODIS TC and f are compared via an "effective scene brightness temperature" (Tb,e). Tb,e is calculated with partial field of view (FOV) contributions from TC and surface temperature (TS), weighted by f and 1-f, respectively. AIRS reports up to two cloud layers while MODIS reports up to one. However, MODIS reports TC, TS, and f at a higher spatial resolution than AIRS. As a result, pixel-scale comparisons of TC and f are difficult to interpret, demonstrating the need for alternatives such as Tb,e. AIRS-MODIS Tb,e differences (ΔTb,e) for identical observing scenes are useful as a diagnostic for cloud quantity comparisons. The smallest values of ΔTb,e are for high and opaque clouds, with increasing scatter in ΔTb,e for clouds of smaller opacity and lower altitude. A persistent positive bias in ΔTb,e is observed in warmer and low-latitude scenes, characterized by a mixture of MODIS CO2 slicing and 11-μm window retrievals. These scenes contain heterogeneous cloud cover, including mixtures of multilayered cloudiness and misplaced MODIS cloud top pressure. The spatial patterns of ΔTb,e are systematic and do not correlate well with collocated AIRS-MODIS radiance differences, which are more random in nature and smaller in magnitude than ΔTb,e. This suggests that the observed inconsistencies in AIRS and MODIS cloud fields are dominated by retrieval algorithm differences, instead of differences in the observed radiances. The results presented here have implications for the validation of cloudy satellite retrieval algorithms, and use of cloud products in quantitative analyses.

  12. The Radiative Consistency of Atmospheric Infrared Sounder and Moderate Resolution Imaging Spectroradiometer Cloud Retrievals

    NASA Technical Reports Server (NTRS)

    Kahn, Brian H.; Fishbein, Evan; Nasiri, Shaima L.; Eldering, Annmarie; Fetzer, Eric J.; Garay, Michael J.; Lee, Sung-Yung

    2007-01-01

    The consistency of cloud top temperature (Tc) and effective cloud fraction (f) retrieved by the Atmospheric Infrared Sounder (AIRS)/Advanced Microwave Sounding Unit (AMSU) observation suite and the Moderate Resolution Imaging Spectroradiometer (MODIS) on the EOS-Aqua platform are investigated. Collocated AIRS and MODIS TC and f are compared via an 'effective scene brightness temperature' (Tb,e). Tb,e is calculated with partial field of view (FOV) contributions from TC and surface temperature (TS), weighted by f and 1-f, respectively. AIRS reports up to two cloud layers while MODIS reports up to one. However, MODIS reports TC, TS, and f at a higher spatial resolution than AIRS. As a result, pixel-scale comparisons of TC and f are difficult to interpret, demonstrating the need for alternatives such as Tb,e. AIRS-MODIS Tb,e differences ((Delta)Tb,e) for identical observing scenes are useful as a diagnostic for cloud quantity comparisons. The smallest values of DTb,e are for high and opaque clouds, with increasing scatter in (Delta)Tb,e for clouds of smaller opacity and lower altitude. A persistent positive bias in DTb,e is observed in warmer and low-latitude scenes, characterized by a mixture of MODIS CO2 slicing and 11-mm window retrievals. These scenes contain heterogeneous cloud cover, including mixtures of multilayered cloudiness and misplaced MODIS cloud top pressure. The spatial patterns of (Delta)Tb,e are systematic and do not correlate well with collocated AIRS-MODIS radiance differences, which are more random in nature and smaller in magnitude than (Delta)Tb,e. This suggests that the observed inconsistencies in AIRS and MODIS cloud fields are dominated by retrieval algorithm differences, instead of differences in the observed radiances. The results presented here have implications for the validation of cloudy satellite retrieval algorithms, and use of cloud products in quantitative analyses.

  13. Detection of ionospheric Alfvén resonator signatures in the equatorial ionosphere

    NASA Astrophysics Data System (ADS)

    Simões, Fernando; Klenzing, Jeffrey; Ivanov, Stoyan; Pfaff, Robert; Freudenreich, Henry; Bilitza, Dieter; Rowland, Douglas; Bromund, Kenneth; Liebrecht, Maria Carmen; Martin, Steven; Schuck, Peter; Uribe, Paulo; Yokoyama, Tatsuhiro

    2012-11-01

    The ionosphere response resulting from minimum solar activity during cycle 23/24 was unusual and offered unique opportunities for investigating space weather in the near-Earth environment. We report ultra low frequency electric field signatures related to the ionospheric Alfvén resonator detected by the Communications/Navigation Outage Forecasting System (C/NOFS) satellite in the equatorial region. These signatures are used to constrain ionospheric empirical models and offer a new approach for monitoring ionosphere dynamics and space weather phenomena, namely aeronomy processes, Alfvén wave propagation, and troposphere-ionosphere-magnetosphere coupling mechanisms.

  14. New Data Source for Studying and Modelling the Topside Ionosphere

    NASA Astrophysics Data System (ADS)

    Huang, X.; Reinisch, B.; Bilitza, D.; Benson, R.

    2001-05-01

    The existing uncertainties about the electron density profiles in the topside ionosphere, i.e., in the height regime from hmF2 to ~2000 km, requires the search for new data sources. Millions of ionograms had been recorded by the ISIS satellites that never were analyzed in terms of electron density profiles. In recent years an effort started to digitize the analog recordings to prepare the ionograms for computerized analysis. To date, approximately 300,000 ISIS-2 topside-sounder ionograms have been digitizd. Computation of electron density profiles from these ionograms requires identifying the echo traces on the ionogram and then applying an inversion algorithm. An automatic topside ionogram scaler with true height algorithm (TOPIST) has been developed that is successfully scaling ~70 % of the ionograms. This paper shows how the digital ionograms are processed and the profiles calculated. The most difficult part of the task is the automatic scaling of the echo traces in the ISIS ionograms to provide R'(f) where R' is the virtual range of the echo at frequency f. Characteristic resonance features seen in the topside ionograms occur at the gyro and plasma frequencies. An elaborate scheme was developed to measure these resonance frequencies in order to determine the local plasma and gyrofrequencies. This information helps in the identification of the O and X traces, and it provides the starting density of the electron density profile from the satellite altitude to hmF2. An 'editing process' is available to manually scale the more difficult ionograms. The electron density data and the TOPIST software will be made available online from NASA's National Space Science Data Center (NSSDC) at http://nssdc.gsfc.nasa.gov/space/isis/isis-status.html. This site provides already access to the digitized ISIS ionogram data and to related software. A search page lets users select data by location, time, and a host of other search criteria. Selected ionogram data can be viewed on

  15. Preface: C/NOFS Results and Equatorial Ionospheric Dynamics

    NASA Technical Reports Server (NTRS)

    Klenzing, J.; de La Beaujardiere, O.; Gentile, L. C.; Retterer, J.; Rodrigues, F. S.; Stoneback, R. A.

    2014-01-01

    The Communication/Navigation Outage Forecasting System (C/NOFS) satellite was launched into orbit in April 2008 as part of an ongoing effort to understand and identify plasma irregularities that adversely impact the propagation of radio waves in the upper atmosphere. Combined with recent improvements in radar, airglow, and ground-based studies, as well as state-of-the-art modeling techniques, the C/NOFS mission has led to new insights into equatorial ionospheric electrodynamics. In order to document these advances, the C/NOFS Results and Equatorial Dynamics Technical Interchange Meeting was held in Albuquerque, New Mexico from 12 to 14 March 2013. The meeting was a great success with 55 talks and 22 posters, and covered topics including the numerical simulations of plasma irregularities, the effects of atmospheric tides, stratospheric phenomena, and magnetic storms on the upper atmosphere, causes and predictions of scintillation-causing ionospheric irregularities, current and future instrumentation efforts in the equatorial region. The talks were broken into the following three topical sessions: A. Ambient Ionosphere and Thermosphere B. Transient Phenomena in the Low-Latitude Ionosphere C. New Missions, New Sensors, New Science and Engineering Issues. The following special issue was planned as a follow-up to the meeting. We would like to thank Mike Pinnock, the editors and staff of Copernicus, and our reviewers for their work in bringing this special issue to the scientific community. Our thanks also go to Patricia Doherty and the meeting organizing committee for arranging the C/NOFS Technical Interchange Meeting.

  16. Investigations of the ionosphere by space techniques

    NASA Technical Reports Server (NTRS)

    Bowhill, S. A.

    1974-01-01

    Much of the impetus to ionosphere research since the International Geophysical Year has come from new types of measurement using space vehicles. The key developments are outlined, together with the contributions that they have made to the understanding of the ionosphere.

  17. Investigations of magnetosphere-ionosphere coupling relevant to operational systems. Final scientific report, 1984-1987

    SciTech Connect

    Meng, C.I.; Newell, P.T.

    1988-02-01

    Important advances were made in understanding the dynamics of the magnetosphere and its coupling to the ionosphere. Significant progress was made in the areas of polar cusp precipitation and dynamics; dayside auroral morphology and auroral boundary dynamics; polar rain; the quiescent polar cap; the physics of impulsive injection phenomena; and problems of global magnetospheric plasma transport.

  18. Effects of a strong ICME on the Martian ionosphere as detected by Mars Express and Mars Odyssey

    NASA Astrophysics Data System (ADS)

    Morgan, D. D.; Diéval, C.; Gurnett, D. A.; Duru, F.; Dubinin, E. M.; Fränz, M.; Andrews, D. J.; Opgenoorth, H. J.; Uluşen, D.; Mitrofanov, I.; Plaut, J. J.

    2014-07-01

    We present evidence of a substantial ionospheric response to a strong interplanetary coronal mass ejection (ICME) detected by the Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) on board the Mars Express (MEX) spacecraft. A powerful ICME impacted the Martian ionosphere beginning on 5 June 2011, peaking on 6 June, and trailing off over about a week. This event caused a strong response in the charged particle detector of the High-Energy Neutron Detector (HEND) on board the Odyssey spacecraft. The ion mass spectrometer of the Analyzer of Space Plasmas and Energetic Atoms instrument on MEX detected an increase in background counts, simultaneous with the increase seen by HEND, due to the flux of solar energetic particles (SEPs) associated with the ICME. Local densities and magnetic field strengths measured by MARSIS and enhancements of 100 eV electrons denote the passing of an intense space weather event. Local density and magnetosheath electron measurements and remote soundings show compression of ionospheric plasma to lower altitudes due to increased solar wind dynamic pressure. MARSIS topside sounding of the ionosphere indicates that it is extended well beyond the terminator, to about 116° solar zenith angle, in a highly disturbed state. This extension may be due to increased ionization due to SEPs and magnetosheath electrons or to plasma transport across the terminator. The surface reflection from both ionospheric sounding and subsurface modes of the MARSIS radar was attenuated, indicating increased electron content in the Mars ionosphere at low altitudes, where the atmosphere is dense.

  19. Ionospheric modification by rocket effluents. Final report

    SciTech Connect

    Bernhardt, P.A.; Price, K.M.; da Rosa, A.V.

    1980-06-01

    This report describes experimental and theoretical studies related to ionospheric disturbances produced by rocket exhaust vapors. The purpose of our research was to estimate the ionospheric effects of the rocket launches which will be required to place the Satellite Power System (SPS) in operation. During the past year, we have developed computational tools for numerical simulation of ionospheric changes produced by the injection of rocket exhaust vapors. The theoretical work has dealt with (1) the limitations imposed by condensation phenomena in rocket exhaust; (2) complete modeling of the ionospheric depletion process including neutral gas dynamics, plasma physics, chemistry and thermal processes; and (3) the influence of the modified ionosphere on radio wave propagation. We are also reporting on electron content measurements made during the launch of HEAO-C on Sept. 20, 1979. We conclude by suggesting future experiments and areas for future research.

  20. Plasma interactions in the Martian Nightside Ionosphere

    NASA Astrophysics Data System (ADS)

    Andersson, L.; Fowler, C. M.; Ergun, R.; Weber, T. D.; Andrews, D. J.; Morooka, M. W.; Delory, G. T.; Eriksson, A. I.; Mitchell, D. L.; McFadden, J. P.; Connerney, J. E. P.

    2015-12-01

    Based on measurements from a number of missions at Mars the nightside ionosphere is patchy. The new mission MAVEN dedicated to observe the upper atmosphere and the plasma interactions provides the first comprehensive observations of the low altitude nightside ionosphere. Observations show that at density gradients the plasma is unstable and significant wave power, heated/accelerated electrons, and heated ions are co-located. Below 300 km, thermal electrons (>3 eV) are observed at the gradients to low density regions. The nightside ionosphere below 180 km is thought to be maintained by electron impact ionization and therefore these regions with thermal electrons may be the primary energy source for the low altitude ionosphere. Outside of the low density regions the plasma is cold. These observations suggest that the wave heating might be the primary process in the Matrian nightside ionosphere. The characteristics of these regions associated with density gradients will be presented and discussed in this presentation.

  1. Charged particles in Titan's ionosphere

    NASA Astrophysics Data System (ADS)

    Tripathi, Sachchida

    2010-05-01

    Charged particles in Titan's ionosphere Marykutty Michael1, Sachchida Nand Tripathi1,2,3, Pratima Arya1 1Indian Institute of Technology Kanpur 2Oak Ridge Associated Universities 3NASA Goddard Space Flight Center Observations by two instruments onboard the Cassini spacecraft, Ion Neutral Mass Spectrometer (INMS) and CAssini Plasma Spectrometer (CAPS), revealed the existence of heavy hydrocarbon and nitrile species with masses of several thousand atomic mass units at altitudes of 950 - 1400 km in the atmosphere of Titan (Waite et al., 2007; Crary et al., 2009). Though these particles were believed to be molecules, they are most likely aerosols formed by the clumping of smaller molecules (Waite et al., 2009). These particles were estimated to have a density of 10-3 kg m-3 and a size of up to 256 nm. The existence of very heavy ions has also been observed by the CAPS components with a mass by charge ratio of up to 10000 (Coates et al., 2007, 2009; Sittler et al., 2009). The goal of this paper is to find out whether the so called heavy ions (or charged particles) are generated by the charge transfer of ions and electrons to the particles. The charging of these particles has been studied by using the charge balance equations that include positive ions, negative ions, electrons, neutral and charged particles. Information on the most abundant ion clusters are obtained from Vuitton et al., (2009) and Wilson and Atreya, (2004). Mass by charge ratio thus calculated will be compared with those observed by Coates et al. (2007). References: Coates AJ, et al., Discovery of heavy negative ions in Titan's ionosphere, Geophys. Res. Lett., 34:L22103, 2007. Coates AJ, et al., Heavy negative ions in titan's ionosphere: altitude and latitude dependence. Planet. Space Sci., doi:10.1016/j.pss.2009.05.009, 2009. Crary F.J., et al., Heavy ions, temperatures and winds in titan's ionosphere: Combined cassini caps and inms observations. Planet. Space Sci., doi:10.1016/j.pss.2009.09.006, 2009

  2. Ionospheric data assimilation and forecasting during storms

    NASA Astrophysics Data System (ADS)

    Chartier, Alex T.; Matsuo, Tomoko; Anderson, Jeffrey L.; Collins, Nancy; Hoar, Timothy J.; Lu, Gang; Mitchell, Cathryn N.; Coster, Anthea J.; Paxton, Larry J.; Bust, Gary S.

    2016-01-01

    Ionospheric storms can have important effects on radio communications and navigation systems. Storm time ionospheric predictions have the potential to form part of effective mitigation strategies to these problems. Ionospheric storms are caused by strong forcing from the solar wind. Electron density enhancements are driven by penetration electric fields, as well as by thermosphere-ionosphere behavior including Traveling Atmospheric Disturbances and Traveling Ionospheric Disturbances and changes to the neutral composition. This study assesses the effect on 1 h predictions of specifying initial ionospheric and thermospheric conditions using total electron content (TEC) observations under a fixed set of solar and high-latitude drivers. Prediction performance is assessed against TEC observations, incoherent scatter radar, and in situ electron density observations. Corotated TEC data provide a benchmark of forecast accuracy. The primary case study is the storm of 10 September 2005, while the anomalous storm of 21 January 2005 provides a secondary comparison. The study uses an ensemble Kalman filter constructed with the Data Assimilation Research Testbed and the Thermosphere Ionosphere Electrodynamics General Circulation Model. Maps of preprocessed, verticalized GPS TEC are assimilated, while high-latitude specifications from the Assimilative Mapping of Ionospheric Electrodynamics and solar flux observations from the Solar Extreme Ultraviolet Experiment are used to drive the model. The filter adjusts ionospheric and thermospheric parameters, making use of time-evolving covariance estimates. The approach is effective in correcting model biases but does not capture all the behavior of the storms. In particular, a ridge-like enhancement over the continental USA is not predicted, indicating the importance of predicting storm time electric field behavior to the problem of ionospheric forecasting.

  3. Atmospheric waves and the ionosphere.

    NASA Technical Reports Server (NTRS)

    Beer, T.

    1972-01-01

    A review of evidence supporting the existence of atmospheric waves is presented, and a simple, theoretical approach for describing them is shown. Suggestions for gravity wave sources include equatorial and auroral electrojet, auroral and polar substorm heating, atmospheric jet streams, and large oceanic tides. There are reviewed previous studies dealing with the interaction between ionization and atmospheric waves believed to exist at ionospheric heights. These waves include acoustic waves, evanescent waves, and internal atmospheric gravity waves. It is explained that mode analysis, often employed when an increased number of layers is used for a more complete profile, is inapplicable for waves very close to a source.

  4. Convergent instability in the ionosphere

    SciTech Connect

    Ponyatov, A.A.

    1994-04-01

    A linear theory of the convergent instability (CI) of ionospheric plasma associated with the nonuniform nature of its regular motion is examined. The conditions under which CI appears in the E- and F-layers for vertical ion motion caused by various physical factors are analyzed. The possibility of small-scale strongly geomagnetic-field-aligned nonuniformities of electron concentration (l{sub min} {approximately} 10-30 m) is demonstrated. The altitude dependence of collision frequency is shown to play a large role in CI.

  5. Aerosol growth in Titan's ionosphere.

    PubMed

    Lavvas, Panayotis; Yelle, Roger V; Koskinen, Tommi; Bazin, Axel; Vuitton, Véronique; Vigren, Erik; Galand, Marina; Wellbrock, Anne; Coates, Andrew J; Wahlund, Jan-Erik; Crary, Frank J; Snowden, Darci

    2013-02-19

    Photochemically produced aerosols are common among the atmospheres of our solar system and beyond. Observations and models have shown that photochemical aerosols have direct consequences on atmospheric properties as well as important astrobiological ramifications, but the mechanisms involved in their formation remain unclear. Here we show that the formation of aerosols in Titan's upper atmosphere is directly related to ion processes, and we provide a complete interpretation of observed mass spectra by the Cassini instruments from small to large masses. Because all planetary atmospheres possess ionospheres, we anticipate that the mechanisms identified here will be efficient in other environments as well, modulated by the chemical complexity of each atmosphere. PMID:23382231

  6. Saturn: atmosphere, ionosphere, and magnetosphere.

    PubMed

    Gombosi, Tamas I; Ingersoll, Andrew P

    2010-03-19

    The Cassini spacecraft has been in orbit around Saturn since 30 June 2004, yielding a wealth of data about the Saturn system. This review focuses on the atmosphere and magnetosphere and briefly outlines the state of our knowledge after the Cassini prime mission. The mission has addressed a host of fundamental questions: What processes control the physics, chemistry, and dynamics of the atmosphere? Where does the magnetospheric plasma come from? What are the physical processes coupling the ionosphere and magnetosphere? And, what are the rotation rates of Saturn's atmosphere and magnetosphere?

  7. Saturn: atmosphere, ionosphere, and magnetosphere.

    PubMed

    Gombosi, Tamas I; Ingersoll, Andrew P

    2010-03-19

    The Cassini spacecraft has been in orbit around Saturn since 30 June 2004, yielding a wealth of data about the Saturn system. This review focuses on the atmosphere and magnetosphere and briefly outlines the state of our knowledge after the Cassini prime mission. The mission has addressed a host of fundamental questions: What processes control the physics, chemistry, and dynamics of the atmosphere? Where does the magnetospheric plasma come from? What are the physical processes coupling the ionosphere and magnetosphere? And, what are the rotation rates of Saturn's atmosphere and magnetosphere? PMID:20299587

  8. Methods of alleviation of ionospheric scintillation effects on digital communications

    NASA Technical Reports Server (NTRS)

    Massey, J. L.

    1974-01-01

    The degradation of the performance of digital communication systems because of ionospheric scintillation effects can be reduced either by diversity techniques or by coding. The effectiveness of traditional space-diversity, frequency-diversity and time-diversity techniques is reviewed and design considerations isolated. Time-diversity signaling is then treated as an extremely simple form of coding. More advanced coding methods, such as diffuse threshold decoding and burst-trapping decoding, which appear attractive in combatting scintillation effects are discussed and design considerations noted. Finally, adaptive coding techniques appropriate when the general state of the channel is known are discussed.

  9. Capabilities and Limitations of Radio Occultation Measurements for Ionosphere Monitoring

    NASA Technical Reports Server (NTRS)

    Hajj, G. A.; Romans, L. J.; Pi, X.; Wang, Chunming

    1999-01-01

    The paper: (1) describes the range of capabilities of GPS radio occultation missions in ionospheric research: (a) ionospheric profiling; (b) ionospheric imaging; (c) ionospheric data assimilation; and (d) measurement of scintillation. (2) Identify strengths and weaknesses of measurements: (a) coverage; (b) resolution; and (c) uniqueness of solution.

  10. Precise Point Positioning with Ionosphere Estimation and application of Regional Ionospheric Maps

    NASA Astrophysics Data System (ADS)

    Galera Monico, J. F.; Marques, H. A.; Rocha, G. D. D. C.

    2015-12-01

    The ionosphere is one of most difficult source of errors to be modelled in the GPS positioning, mainly when applying data collected by single frequency receivers. Considering Precise Point Positioning (PPP) with single frequency data the options available include, for example, the use of Klobuchar model or applying Global Ionosphere Maps (GIM). The GIM contains Vertical Electron Content (VTEC) values that are commonly estimated considering a global network with poor covering in certain regions. For this reason Regional Ionosphere Maps (RIM) have been developed considering local GNSS network, for instance, the La Plata Ionospheric Model (LPIM) developed inside the context of SIRGAS (Geocentric Reference System for Americas). The South American RIM are produced with data from nearly 50 GPS ground receivers and considering these maps are generated for each hour with spatial resolution of one degree it is expected to provide better accuracy in GPS positioning for such region. Another possibility to correct for ionosphere effects in the PPP is to apply the ionosphere estimation technique based on Kalman filter. In this case, the ionosphere can be treated as a stochastic process and a good initial guess is necessary what can be obtained from an ionospheric map. In this paper we present the methodology involved with ionosphere estimation by using Kalman filter and also the application of global and regional ionospheric maps in the PPP as first guess. The ionosphere estimation strategy was implemented in the house software called RT_PPP that is capable of accomplishing PPP either for single or dual frequency data. GPS data from Brazilian station near equatorial region were processed and results with regional maps were compared with those by using global maps. Improvements of the order 15% were observed. In case of ionosphere estimation, the estimated coordinates were compared with ionosphere free solution and after PPP convergence the results reached centimeter accuracy.

  11. Regional Precipitation Forecast with Atmospheric InfraRed Sounder (AIRS) Profile Assimilation

    NASA Technical Reports Server (NTRS)

    Chou, S.-H.; Zavodsky, B. T.; Jedloved, G. J.

    2010-01-01

    Advanced technology in hyperspectral sensors such as the Atmospheric InfraRed Sounder (AIRS; Aumann et al. 2003) on NASA's polar orbiting Aqua satellite retrieve higher vertical resolution thermodynamic profiles than their predecessors due to increased spectral resolution. Although these capabilities do not replace the robust vertical resolution provided by radiosondes, they can serve as a complement to radiosondes in both space and time. These retrieved soundings can have a significant impact on weather forecasts if properly assimilated into prediction models. Several recent studies have evaluated the performance of specific operational weather forecast models when AIRS data are included in the assimilation process. LeMarshall et al. (2006) concluded that AIRS radiances significantly improved 500 hPa anomaly correlations in medium-range forecasts of the Global Forecast System (GFS) model. McCarty et al. (2009) demonstrated similar forecast improvement in 0-48 hour forecasts in an offline version of the operational North American Mesoscale (NAM) model when AIRS radiances were assimilated at the regional scale. Reale et al. (2008) showed improvements to Northern Hemisphere 500 hPa height anomaly correlations in NASA's Goddard Earth Observing System Model, Version 5 (GEOS-5) global system with the inclusion of partly cloudy AIRS temperature profiles. Singh et al. (2008) assimilated AIRS temperature and moisture profiles into a regional modeling system for a study of a heavy rainfall event during the summer monsoon season in Mumbai, India. This paper describes an approach to assimilate AIRS temperature and moisture profiles into a regional configuration of the Advanced Research Weather Research and Forecasting (WRF-ARW) model using its three-dimensional variational (3DVAR) assimilation system (WRF-Var; Barker et al. 2004). Section 2 describes the AIRS instrument and how the quality indicators are used to intelligently select the highest-quality data for assimilation

  12. Laser Sounder Technique for Remotely Measuring Atmospheric CO2 Concentrations

    NASA Astrophysics Data System (ADS)

    Abshire, J. B.; Collatz, G. J.; Sun, X.; Riris, H.; Andrews, A. E.; Krainak, M.

    2001-12-01

    We describe progress in developing a lidar technique for the remote measurement of the tropospheric CO2 concentrations. Our goal is to demonstrate a technique and technology that will permit measurements of the CO2 column abundance in the lower troposphere from aircraft at the few ppm level, with a capability of scaling to permit global CO2 measurements from orbit. Accurate remote sensing measurements of CO2 mixing ratio from aircraft and space appear difficult. Potential error sources include possible interferences from other trace gas species, the effects of clouds and aerosols in the path, and variability in dry air density caused by pressure or topographic changes. Some potential instrumental errors include frequency drifts in the transmitter and sensitivity drifts in the receiver. High signal-to-noise ratios are needed for estimates at the few ppm level. We are developing a laser sounder approach as a candidate for these measurements. It uses 3 laser transmitters to permit simultaneous measurement of CO2 and O2 extinction, and aerosol backscatter at 1064 nm in the same atmospheric path. It directs the co-aligned laser beams from the lidar toward nadir, and measures the energy of the laser backscatter from land and water surfaces. During each measurement period, the two narrow linewidth lasers are rapidly tuned on and off the selected CO2 and O2 absorption lines. The receiver records and averages the energies of the laser echoes. The column extinction and column densities of both CO2 and O2 are estimated via the differential absorption lidar technique. For the on-line wavelength, the side of the gas absorption line is used, which weights its measurements to 0-4 km in the troposphere. Simultaneous measurements of O2 column abundance are made using an identical approach using an O2 line near 770 nm. Atmospheric baskscatter profiles are measured with the 1064 nm channel, which permits identifying and excluding measurements containing clouds or aerosols backscatter

  13. Ionospheric Challenges for GNSS Based Augmentation Systems

    NASA Astrophysics Data System (ADS)

    Doherty, P.; Valladares, C. E.

    2007-12-01

    The ionosphere is a highly dynamic physical phenomenon that presents a variable source of error for Global Navigation Satellite System (GNSS) signals and GNSS based operational systems. The Federal Aviation Administration's (FAA) Wide-Area Augmentation System (WAAS) was designed to enhance the GNSS standard positioning service by providing additional accuracy, availability and integrity that is sufficient for use in commercial aviation. It is the first of a number of planned regional Satellite Based Augmentation Systems (SBAS). Other systems in development include the European EGNOS system, the MSAS system in Japan and the GAGAN system in India. In addition, the South American countries are investigating the feasibility of operating an SBAS system in this region. Much of the WAAS ionospheric research and development focused on defining and mitigating ionospheric challenges characteristic of the mid-latitude regions, where the ionosphere is well studied and relatively quiescent. The EGNOS and MSAS systems will primarily operate under a similarly quiescent mid-latitude ionosphere. SBAS system development in South America, India and other low-latitude regions, however, will have to contend with much more extreme conditions. These conditions include strong spatial and temporal gradients, plasma depletions and scintillation. All of these conditions have a potential to limit SBAS performance in the low latitude regions. This presentation will review the effects that the ionosphere has on the mid-latitude WAAS system. It will present the techniques that are used to mitigate ionospheric disturbances induced on the system during severe geomagnetic activity and it will quantify the effect that this activity has on system performance. The presentation will then present data from the South American Low-latitude Ionospheric Sensor Network (LISN) that can be used to infer the ionospheric effects on SBAS performance in the most challenging low-latitude ionospheric environment

  14. Electric field and ion density anomalies in the mid latitude ionosphere: Possible connection with earthquakes?

    NASA Astrophysics Data System (ADS)

    Gousheva, M. N.; Glavcheva, R. P.; Danov, D. L.; Hristov, P. L.; Kirov, B. B.; Georgieva, K. Y.

    2008-07-01

    The problem of earthquake prediction has stimulated the search for a correlation between seismic activity and ionospherical anomalies. We found observational evidence of possible earthquake effects in the near-equatorial and low latitude ionosphere; these ionospheric anomalies have been proposed by Gousheva et al. [Gousheva, M., Glavcheva, R., Danov, D., Angelov P., Hristov, P., Influence of earthquakes on the electric field disturbances in the ionosphere on board of the Intercosmos-Bulgaria-1300 satellite. Compt. Rend. Acad. Bulg. Sci. 58 (8) 911-916, 2005a; Gousheva, M., Glavcheva, R., Danov, D., Angelov, P., Hristov, P., Kirov, B., Georgieva, K., Observation from the Intercosmos-Bulgaria-1300 satellite of anomalies associated with seismic activity. In: Poster Proceeding of 2nd International Conference on Recent Advances in Space Technologies: Space in the Service of Society, RAST '2005, June 9-11, Istanbul, Turkey, pp. 119-123, 2005b; Gousheva, M., Glavcheva, R., Danov, D., Angelov, P., Hristov, P., Kirov, B., Georgieva, K., Satellite monitoring of anomalous effects in the ionosphere probably related to strong earthquakes. Adv. Space Res. 37 (4), 660-665, 2006]. This paper presents new results from observations of the quasi-static electric field and ion density on board INTERCOSMOS-BULGARIA-1300 satellite in the mid latitude ionosphere above sources of moderate earthquakes. Data from INTERCOSMOS-BULGARIA-1300 satellite and seismic data (World Data Center, Denver, Colorado, USA) for magnetically quiet and medium quiet days are juxtaposed in time-space domain. For satellite's orbits in the time period 15.09-01.10.1981 an increase in the horizontal and vertical components of the quasi-static electric field and fluctuations of the ion density are observed over zones of forthcoming seismic events. Some similar post effects are observed too. The emphasis of this paper is put on the anomalies which specify the mid latitude ionosphere. The obtained results contain

  15. Low and Midlatitude Ionospheric Plasma Density Irregularities and Their Effects on Geomagnetic Field

    NASA Astrophysics Data System (ADS)

    Yokoyama, Tatsuhiro; Stolle, Claudia

    2016-10-01

    Earth's magnetic field results from various internal and external sources. The electric currents in the ionosphere are major external sources of the magnetic field in the daytime. High-resolution magnetometers onboard low-Earth-orbit satellites such as CHAMP and Swarm can detect small-scale currents in the nighttime ionosphere, where plasma density gradients often become unstable and form irregular density structures. The magnetic field variations caused by the ionospheric irregularities are comparable to that of the lithospheric contribution. Two phenomena in the nighttime ionosphere that contribute to the magnetic field variation are presented: equatorial plasma bubble (EPB) and medium-scale traveling ionospheric disturbance (MSTID). EPB is formed by the generalized Rayleigh-Taylor instability over the dip equator and grows nonlinearly to as high as 2000 km apex altitude. It is characterized by deep plasma density depletions along magnetic flux tubes, where the diamagnetic effect produced by a pressure-gradient-driven current enhances the main field intensity. MSTID is a few hundred kilometer-scale disturbance in the midlatitude ionosphere generated by the coupled electrodynamics between the ionospheric E and F regions. The field-aligned currents associated with EPBs and MSTIDs also have significant signatures in the magnetic field perpendicular to the main field direction. The empirical discovery of the variations in the magnetic field due to plasma irregularities has motivated the inclusion of electrodynamics in the physical modeling of these irregularities. Through an effective comparison between the model results and observations, the physical process involved has been largely understood. The prediction of magnetic signatures due to plasma irregularities has been advanced by modeling studies, and will be helpful in interpreting magnetic field observations from satellites.

  16. Application of GPS Measurements for Ionospheric and Tropospheric Modelling

    NASA Astrophysics Data System (ADS)

    Rajendra Prasad, P.; Abdu, M. A.; Furlan, Benedito. M. P.; Koiti Kuga, Hélio

    solar maximum period. In the equatorial region the irregularity structures are highly elongated in the north-south direction and are discrete in the east-west direction with dimensions of several hundred km. With such spatial distribution of irregularities needs to determine how often the GPS receivers fails to provide navigation aid with the available constellation. The effects of scintillation on the performance of GPS navigation systems in the equatorial region can be analyzed through commissioning few ground receivers. Incidentally there are few GPS receivers near these latitudes. Despite the recent advances in the ionosphere and tropospheric delay modeling for geodetic applications of GPS, the models currently used are not very precise. The conventional and operational ionosphere models viz. Klobuchar, Bent, and IRI models have certain limitations in providing very precise accuracies at all latitudes. The troposphere delay modeling also suffers in accuracy. The advances made in both computing power and knowledge of the atmosphere leads to make an effort to upgrade some of these models for improving delay corrections in GPS navigation. The ionospheric group delay corrections for orbit determination can be minimized using duel frequency. However in single frequency measurements the group delay correction is an involved task. In this paper an investigation is carried out to estimate the model coefficients of ionosphere along with precise orbit determination modeling using GPS measurements. The locations of the ground-based receivers near equator are known very exactly. Measurements from these ground stations to a precisely known satellite carrying duel receiver is used for orbit determination. The ionosphere model parameters can be refined corresponding to spatially distributed GPS receivers spread over Brazil. The tropospheric delay effects are not significant for the satellites by choosing appropriate elevation angle. However it needs to be analyzed for user like

  17. Shallow scattering layer in the subarctic pacific ocean: detection by high-frequency echo sounder.

    PubMed

    Barraclough, W E; Lebrasseur, R J; Kennedy, O D

    1969-10-31

    Shallow scattering layers consisting mainly of Calanus cristatus were detected on a trans-Pacific crossing to depths of 60 meters with a high-frequency echo sounder. Biomass estimates of these layers indicate concentrations of zoo-plankton that are greater and more extensive than previously reported in the open ocean. PMID:17778203

  18. Determination of film processing specifications for the Apollo 17 S-209 lunar sounder experiment

    NASA Technical Reports Server (NTRS)

    Weinstein, M. S.

    1972-01-01

    The lunar sounder is described as a radar system operating at carrier frequencies of 5, 15, and 150 MHz. The radar echoes are recorded onto Kodak type S0-394 film through the use of an optical recorder utilizing a cathode ray tube as the exposing device. A processing configuration is determined with regard to linearity, dynamic range, and noise.

  19. High-powered Radar Sounders for the Investigation of Jupiter's Icy Moons

    NASA Technical Reports Server (NTRS)

    Safaeinili, A.; Rodriguez, E.; Edelstein, Wendy

    2003-01-01

    This talk will address the main drivers in the design of a radar sounder for the JIMO mission and provide a potential solution that will optimize the chances of success in the detection of ice/water interface and sub-surface stratigraphy.

  20. High Resolution Infrared Radiation Sounder (HIRS) for the Nimbus F Spacecraft

    NASA Technical Reports Server (NTRS)

    Koenig, E. W.

    1975-01-01

    Flown on Nimbus F in June 1975, the high resolution infrared radiation sounder (HIRS) scans with a geographical resolution of 23KM and samples radiance in seventeen selected spectral channels from visible (.7 micron) to far IR (15 micron). Vertical temperature profiles and atmospheric moisture content can be inferred from the output. System operation and test results are described.

  1. Evolution of satellite imagers and sounders and for low Earth orbit and technology directions at NASA

    NASA Astrophysics Data System (ADS)

    Pagano, Thomas S.; McClain, Charles R.

    2010-09-01

    Imagers and Sounders for Low Earth Orbit (LEO) provide fundamental global daily observations of the Earth System for scientists, researchers, and operational weather agencies. The imager provides the nominal 1-2 km spatial resolution images with global coverage in multiple spectral bands for a wide range of uses including ocean color, vegetation indices, aerosol, snow and cloud properties, and sea surface temperature. The sounder provides vertical profiles of atmospheric temperature, water vapor cloud properties, and trace gases including ozone, carbon monoxide, methane and carbon dioxide. Performance capabilities of these systems has evolved with the optical and sensing technologies of the decade. Individual detectors were incorporated on some of the first imagers and sounders that evolved to linear array technology in the '80's. Signal-to-noise constraints limited these systems to either broad spectral resolution as in the case of the imager, or low spatial resolution as in the case of the sounder. Today's area 2-dimensional large format array technology enables high spatial and high spectral resolution to be incorporated into a single instrument. This places new constraints on the design of these systems and enables new capabilities for scientists to examine the complex processes governing the Earth System.

  2. F-region ionospheric perturbations in the low-latitude ionosphere during the geomagnetic storm of 25-27 August 1987

    NASA Astrophysics Data System (ADS)

    Pavlov, A.; Fukao, S.; Kawamura, S.

    2004-10-01

    We have presented a comparison between the modeled NmF2 and hmF2, and NmF2 and hmF2 which were observed at the equatorial anomaly crest and close to the geomagnetic equator simultaneously by the Akita, Kokubunji, Yamagawa, Okinawa, Manila, Vanimo, and Darwin ionospheric sounders and by the middle and upper atmosphere (MU) radar (34.85° N, 136.10° E) during the 25-27 August 1987 geomagnetically storm-time period at low solar activity near 201°, geomagnetic longitude. A comparison between the electron and ion temperatures measured by the MU radar and those produced by the model of the ionosphere and plasmasphere is presented. The corrections of the storm-time zonal electric field, EΛ, from 16:30 UT to 21:00 UT on 25 August bring the modeled and measured hmF2 into reasonable agreement. In both hemispheres, the meridional neutral wind, W, taken from the HWW90 wind model and the NRLMSISE-00 neutral temperature, Tn, and densities are corrected so that the model results agree with the ionospheric sounders and MU radar observations. The geomagnetic latitude variations in NmF2 on 26 August differ significantly from those on 25 and 27 August. The equatorial plasma fountain undergoes significant inhibition on 26 August. This suppression of the equatorial anomaly on 26 August is not due to a reduction in the meridional component of the plasma drift perpendicular to the geomagnetic field direction, but is due to the action of storm-time changes in neutral winds and densities on the plasma fountain process. The asymmetry in W determines most of the north-south asymmetry in hmF2 and NmF2 on 25 and 27 August between about 01:00-01:30 UT and about 14:00 UT when the equatorial anomaly exists in the ionosphere, while asymmetries in W, Tn, and neutral densities relative to the geomagnetic equator are responsible for the north-south asymmetry in NmF2 and hmF2 on 26 August. A theory of the primary mechanisms causing the morning and evening peaks in the electron temperature, Te, is

  3. Investigating Solar Wind-Magnetosphere-Ionosphere Coupling with SuperDARN and AMPERE

    NASA Astrophysics Data System (ADS)

    Milan, S. E.; Coxon, J.; Imber, S. M.; Clausen, L.; Korth, H.; Anderson, B. J.

    2013-12-01

    The dynamics of the Earth's plasma environment are driven by coupling between the solar wind, with its embedded interplanetary magnetic field, and the magnetosphere through magnetic reconnection occurring at the magnetopause. Terrestrial magnetic field lines which are connected to interplanetary space in this way are subsequently released by magnetic reconnection occurring in the magnetotail. These two processes lead to increases and decreases in the proportion of the terrestrial flux that is open, as observed in changes in the latitude of the auroral zones. A circulation of plasma and magnetic flux is effected, the Dungey cycle, with a sympathetic plasma convection signature in the ionosphere. In this talk we review recent advances of our understanding of the coupling process, provided by measurements of ionospheric convection with the Super Dual Auroral Radar Network (SuperDARN) and the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) which measures the coupling currents that transfer stress from the magnetosphere into the ionosphere.

  4. Challenges for Future UV Imaging of the Earth's Ionosphere and High Latitude Regions

    NASA Technical Reports Server (NTRS)

    Spann, James

    2006-01-01

    Large scale imaging of Geospace has played a significant role in the recent advances in the comprehension of the coupled Solar-Terrestrial System. The Earth's ionospheric far ultraviolet emissions provide a rich tapestry of observations that play a key role in sorting out the dominant mechanisms and phenomena associated with the coupling of the ionosphere and magnetosphere (MI). The MI coupling is an integral part of the Solar-Terrestrial and as such, future observations in this region should focus on understanding the coupling and the impact of solar variability. This talk will focus on the outstanding problems associated with the coupled Solar-Terrestrial system that can be best addressed using far ultraviolet imaging of the Earthls ionosphere. Challenges of global scale imaging and high-resolution imaging will be discussed and how these are driven by unresolved compelling science questions of magnetospheric configuration, and auroral dynamics.

  5. Ion Escape from the Ionosphere of Titan

    NASA Technical Reports Server (NTRS)

    Hartle, R.; Sittler, E.; Lipatov, A.

    2008-01-01

    Ions have been observed to flow away from Titan along its induced magnetic tail by the Plasma Science Instrument (PLS) on Voyager 1 and the Cassini Plasma Spectrometer (CAPS) on Cassini. In both cases, the ions have been inferred to be of ionospheric origin. Recent plasma measurements made at another unmagnetized body, Venus, have also observed similar flow in its magnetic tail. Much earlier, the possibility of such flow was inferred when ionospheric measurements made from the Pioneer Venus Orbiter (PVO) were used to derive upward flow and acceleration of H(+), D(+) and O(+) within the nightside ionosphere of Venus. The measurements revealed that the polarization electric field in the ionosphere produced the principal upward force on these light ions. The resulting vertical flow of H(+) and D(+) was found to be the dominant escape mechanism of hydrogen and deuterium, corresponding to loss rates consistent with large oceans in early Venus. Other electrodynamic forces were unimportant because the plasma beta in the nightside ionosphere of Venus is much greater than one. Although the plasma beta is also greater than one on Titan, ion acceleration is expected to be more complex, especially because the subsolar point and the subflow points can be 180 degrees apart. Following what we learned at Venus, upward acceleration of light ions by the polarization electric field opposing gravity in the ionosphere of Titan will be described. Additional electrodynamic forces resulting from the interaction of Saturn's magnetosphere with Titan's ionosphere will be examined using a recent hybrid model.

  6. A cometary ionosphere model for Io

    NASA Technical Reports Server (NTRS)

    Cloutier, P. A.; Daniell, R. E., Jr.; Dessler, A. J.; Hill, T. W.

    1978-01-01

    A source for the ionosphere of Io is proposed based on the assumption that the satellite is rather moonlike but continuously bombarded by intense fluxes of energetic particles, which makes its surface electrically conducting so that a significant Birkeland current is drawn up along magnetic field lines from Jupiter's ionosphere. It is suggested that the ion current is neutralized upon contact with Io's surface and that subsequent sputtering of this material from the surface supplies the satellite's neutral atmosphere. A model for the generation and maintenance of Io's ionosphere is outlined, according to which the structure of the ionosphere is determined by the impact of energetic trapped electrons from the Jovian magnetosphere and the ram pressure of the corotational magnetospheric wind. The first of these two processes provides the main ionization mechanism, while the second compresses the upstream (or 'nighttime') ionosphere via Alfven's critical-velocity phenomenon. It is concluded that Io's ionosphere is more nearly analogous to the coma and tail of a comet in the solar wind than to the earthlike case of a permanent gravitationally bound ionosphere.

  7. Investigation of Tsunami-Ionospheric Coupling Efficiency

    NASA Astrophysics Data System (ADS)

    Fisher, D. J.; Grawe, M.; Makela, J. J.; Coisson, P.; Rolland, L.; Rakoto, V.; Lognonne, P. H.

    2014-12-01

    Recent studies have shown that coupling exists between ocean tsunamis and the upper atmosphere, opening up the possibility of tsunami monitoring through observing the ionosphere. Several measurement techniques have demonstrated the effects of this coupling in the ionosphere. Here, we present data from two techniques that allow for deducing properties of a tsunami from the ionosphere (e.g., wavelength, orientation, and velocity), namely total electron content (TEC) measurements from dual-frequency GPS receivers and ionospheric imaging through monitoring the airglow layers surrounding the earth. However, a quantitative relationship between the wave amplitudes observed in the ionosphere and the height of the tsunami remains elusive. Ionospheric signatures from two tsunamis in the Pacific Ocean, caused by the 2011 Tohoku and 2012 Haida Gwaii earthquakes, have been observed in airglow imaging systems and a network of dual-frequency GPS receivers located in Hawaii. These two events provide excellent test cases for the study of tsunami-ionospheric coupling efficiency, most notably the effects of the relative orientation between the tsunami-induced gravity waves and the Earth's magnetic field. We present a quantitative comparison of the TEC and airglow intensity variation from these events, including results from tsunami normal mode summation modeling.

  8. Coupling of Earth's Atmosphere and Ionosphere

    NASA Astrophysics Data System (ADS)

    Singh, A. K.

    2012-12-01

    The coupling between the Earth's atmosphere and ionosphere is very complex and many aspects are not well understood till date. Recent measurements show that coupling influences both the electron density and electrical conductivity. The ionosphere reacts to various natural hazards related phenomena such as lightening discharges, thunderstorms, high-power explosion, earthquakes, volcano eruptions, and typhoons through a chain of interconnected processes in the lithosphere-atmosphere-ionosphere interaction system. The precipitation of magnetospheric electrons affects higher latitudes while the radioactive elements emitted during the earthquakes affect electron density and conductivity in the lower atmosphere. Thunderstorms and lightning discharges play a major role in transferring energy from the atmosphere to the ionosphere and in establishing electrical coupling between atmosphere and ionosphere through the global electric circuit (GEC). Electrical processes occurring in the atmosphere couple the atmosphere and ionosphere, because both DC and AC effects operate at the speed of light. The electrostatic and electromagnetic field changes in global electric circuit arise from thunderstorm, lightning discharges, and optical emissions in the mesosphere. In the present paper, our present understanding of how various processes play pivotal role in energy transfer from the lower atmosphere to the ionosphere would be briefly reviewed.

  9. Ionospheric irregularity physics modelling. Memorandum report

    SciTech Connect

    Ossakow, S.L.; Keskinen, M.J.; Zalesak, S.T.

    1982-02-09

    Theoretical and numerical simulation techniques have been employed to study ionospheric F region plasma cloud striation phenomena, equatorial spread F phenomena, and high latitude diffuse auroral F region irregularity phenomena. Each of these phenomena can cause scintillation effects. The results and ideas from these studies are state-of-the-art, agree well with experimental observations, and have induced experimentalists to look for theoretically predicted results. One conclusion that can be drawn from these studies is that ionospheric irregularity phenomena can be modelled from a first principles physics point of view. Theoretical and numerical simulation results from the aforementioned ionospheric irregularity areas will be presented.

  10. Ionosphere of Mars observed by Mars Express.

    NASA Astrophysics Data System (ADS)

    Dubinin, Eduard; Fraenz, Markus; Andrews, Dave; Morgan, Dave

    2016-04-01

    The Martian ionosphere is studied at different solar zenith angles using the local electron number densities and total electron content (TEC) derived from the observations by MARSIS onboard Mars Express. The data are complemented by the ASPERA-3 observations which provide us with the information about upward/downward velocity of the low-energy ions and electron precipitation. We consider the Mars Express observations at different solar cycle intervals. Different factors which influence the ionosphere dynamics are analyzed. The focus is made on a role of the crustal magnetic field on the Martian ionosphere and its influence on ion escape.

  11. Ionospheric calibration for single frequency altimeter measurements

    NASA Astrophysics Data System (ADS)

    Schreiner, William S.; Born, George H.

    1993-08-01

    This report investigates the potential of using Global Positioning System (GPS) data and a model of the ionosphere to supply a measure of the sub-satellite Total Electron Current (TEC) of the required accuracy (10 TECU rms) for the purpose of calibrating single frequency radar altimeter measurements. Since climatological (monthly mean) models are known to be in error by as much as 50 percent, this work focused on the Parameterized Real-Time Ionospheric Specification Model (PRISM) which has the capability to improve model accuracy by ingesting (adjusting to) in situ ionospheric measurements. A set of globally distributed TEC measurements were generated using GPS data and were used as input to improve the accuracy of the PRISM model. The adjusted PRISM TEC values were compared to TOPEX dual frequency TEC measurements (which are considered truth) for a number of TOPEX sub-satellite tracks. The adjusted PRISM values generally compared to the TOPEX measurements within the 10 TECU accuracy requirements when the sub-satellite track passed within 300 to 400 km of the GPS TEC data or when the track passed through a night time ionosphere. However, when the sub-satellite points were greater than 300 to 400 km away from the GPS TEC data or when a local noon ionosphere was sampled, the adjusted PRISM values generally differed by greater than 10 TECU rms with data excursions from the TOPEX TEC measurements of as much as 40 TECU (an 8 cm path delay error at K band). Therefore, it can be concluded from this analysis that an unrealistically large number of GPS stations would be needed to predict sub-satellite TEC at the 10 TECU level in the day time ionosphere using a model such as PRISM. However, a technique currently being studied at the Jet Propulsion Laboratory (JPL) may provide a means of supplying adequate TEC data to meet the 10 TECU ionospheric correction accuracy when using a realistic number of ionospheric stations. This method involves using global GPS TEC data to

  12. Ionospheric calibration for single frequency altimeter measurements

    NASA Technical Reports Server (NTRS)

    Schreiner, William S.; Born, George H.

    1993-01-01

    This report investigates the potential of using Global Positioning System (GPS) data and a model of the ionosphere to supply a measure of the sub-satellite Total Electron Current (TEC) of the required accuracy (10 TECU rms) for the purpose of calibrating single frequency radar altimeter measurements. Since climatological (monthly mean) models are known to be in error by as much as 50 percent, this work focused on the Parameterized Real-Time Ionospheric Specification Model (PRISM) which has the capability to improve model accuracy by ingesting (adjusting to) in situ ionospheric measurements. A set of globally distributed TEC measurements were generated using GPS data and were used as input to improve the accuracy of the PRISM model. The adjusted PRISM TEC values were compared to TOPEX dual frequency TEC measurements (which are considered truth) for a number of TOPEX sub-satellite tracks. The adjusted PRISM values generally compared to the TOPEX measurements within the 10 TECU accuracy requirements when the sub-satellite track passed within 300 to 400 km of the GPS TEC data or when the track passed through a night time ionosphere. However, when the sub-satellite points were greater than 300 to 400 km away from the GPS TEC data or when a local noon ionosphere was sampled, the adjusted PRISM values generally differed by greater than 10 TECU rms with data excursions from the TOPEX TEC measurements of as much as 40 TECU (an 8 cm path delay error at K band). Therefore, it can be concluded from this analysis that an unrealistically large number of GPS stations would be needed to predict sub-satellite TEC at the 10 TECU level in the day time ionosphere using a model such as PRISM. However, a technique currently being studied at the Jet Propulsion Laboratory (JPL) may provide a means of supplying adequate TEC data to meet the 10 TECU ionospheric correction accuracy when using a realistic number of ionospheric stations. This method involves using global GPS TEC data to

  13. The solar wind-magnetosphere-ionosphere system

    PubMed

    Lyon

    2000-06-16

    The solar wind, magnetosphere, and ionosphere form a single system driven by the transfer of energy and momentum from the solar wind to the magnetosphere and ionosphere. Variations in the solar wind can lead to disruptions of space- and ground-based systems caused by enhanced currents flowing into the ionosphere and increased radiation in the near-Earth environment. The coupling between the solar wind and the magnetosphere is mediated and controlled by the magnetic field in the solar wind through the process of magnetic reconnection. Understanding of the global behavior of this system has improved markedly in the recent past from coordinated observations with a constellation of satellite and ground instruments.

  14. Physics of planetary atmospheres and ionospheres

    NASA Technical Reports Server (NTRS)

    Bauer, S. J.

    1981-01-01

    The traditional atmospheric regions, the distinction between homosphere and heterosphere, and changing atmospheric composition are discussed. The validity of the barometric law based on a Maxwell-Boltzmann distribution, for the major part of a planetary atmosphere and its breakdown in the exosphere due to escape of atmospheric particles is considered. The formation and maintenance of photochemical and diffusion-controlled ionospheric layers are treated. Their applicability to planetary ionospheres is dealt with. The spatial extent of magnetic and nonmagnetic planet ionospheres is investigated. Thermal and nonthermal processes responsible for the mass loss of planetary atmospheres are surveyed.

  15. Ionosphere/thermosphere heating determined from dynamic magnetosphere-ionosphere/thermosphere coupling

    NASA Astrophysics Data System (ADS)

    Tu, Jiannan; Song, Paul; Vasyliūnas, Vytenis M.

    2011-09-01

    Ionosphere/thermosphere heating driven by magnetospheric convection is investigated through a three-fluid inductive (including Faraday's law) approach to describing magnetosphere-ionosphere/thermosphere coupling, for a 1-D stratified ionosphere/thermosphere in this initial study. It is shown that the response of the ionosphere/thermosphere and thus the heating is dynamic and height-dependent. The heating is essentially frictional in nature rather than Joule heating as commonly assumed. The heating rate reaches a quasi-steady state after about 25 Alfvén travel times. During the dynamic period, the heating can be enhanced and displays peaks at multiple times due to wave reflections. The dynamic heating rate can be more than twice greater than the quasi-steady state value. The heating is strongest in the E-layer but the heating rate per unit mass is concentrated around the F-layer peak height. This implies a potential mechanism of driving O+ upflow from O+ rich F-layer. It is shown that the ionosphere/thermosphere heating caused by the magnetosphere-ionosphere coupling can be simply evaluated through the relative velocity between the plasma and neutrals without invoking field-aligned currents, ionospheric conductance, and electric field. The present study provides understanding of the dynamic magnetosphere-ionosphere/thermosphere coupling from the ionospheric/thermospheric view in addition to magnetospheric perspectives.

  16. Ionospheric Modelling using GPS to Calibrate the MWA. II: Regional Ionospheric Modelling using GPS and GLONASS to Estimate Ionospheric Gradients

    NASA Astrophysics Data System (ADS)

    Arora, B. S.; Morgan, J.; Ord, S. M.; Tingay, S. J.; Bell, M.; Callingham, J. R.; Dwarakanath, K. S.; For, B.-Q.; Hancock, P.; Hindson, L.; Hurley-Walker, N.; Johnston-Hollitt, M.; Kapińska, A. D.; Lenc, E.; McKinley, B.; Offringa, A. R.; Procopio, P.; Staveley-Smith, L.; Wayth, R. B.; Wu, C.; Zheng, Q.

    2016-07-01

    We estimate spatial gradients in the ionosphere using the Global Positioning System and GLONASS (Russian global navigation system) observations, utilising data from multiple Global Positioning System stations in the vicinity of Murchison Radio-astronomy Observatory. In previous work, the ionosphere was characterised using a single-station to model the ionosphere as a single layer of fixed height and this was compared with ionospheric data derived from radio astronomy observations obtained from the Murchison Widefield Array. Having made improvements to our data quality (via cycle slip detection and repair) and incorporating data from the GLONASS system, we now present a multi-station approach. These two developments significantly improve our modelling of the ionosphere. We also explore the effects of a variable-height model. We conclude that modelling the small-scale features in the ionosphere that have been observed with the MWA will require a much denser network of Global Navigation Satellite System stations than is currently available at the Murchison Radio-astronomy Observatory.

  17. Intercepted signals for ionospheric science

    NASA Astrophysics Data System (ADS)

    Lind, F. D.; Erickson, P. J.; Coster, A. J.; Foster, J. C.; Marchese, J. R.; Berkowitz, Z.; Sahr, J. D.

    2013-05-01

    The ISIS array (Intercepted Signals for Ionospheric Science) is a distributed, coherent software radio array designed for the study of geospace phenomena by observing the scatter of ambient radio frequency (RF) signals. ISIS data acquisition and analysis is performed using the MIDAS-M platform (Millstone Data Acquisition System - Mobile). Observations of RF signals can be performed between HF and L-band using the Array nodes and appropriate antennas. The deployment of the Array focuses on observations of the plasmasphere boundary layer. We discuss the concept of the coherent software radio array, describe the ISIS hardware, and give examples of data from the system for selected applications. In particular, we include the first observations of E region irregularities using the Array. We also present single-site passive radar observations of both meteor trails and E region irregularities using adaptive filtering techniques.

  18. Auroral pulsations from ionospheric winds

    NASA Technical Reports Server (NTRS)

    Nakada, M. P.

    1989-01-01

    The possibility that auroral pulsations are due to oscillatory electrical circuits in the ionosphere that are driven by the negative resistance of jet stream winds is examined. For the condenser plates, the highly conducting surfaces above the edges of the jet stream are postulated. The dielectric constant of the plasma between the plates is quite large. The current that is driven perpendicular to and by the jet stream closes along the plates and through Pedersen currents in the F region above the stream. This closed loop gives the inductance and resistance for the circuit. Periods of oscillation for this circuit appear to be in the range of Pc 1 to Pc 3. In accord with observations, this circuit appears to be able to limit the brightness of pulsations.

  19. Magnetic Earth Ionosphere Resonant Frequencies

    NASA Technical Reports Server (NTRS)

    Spaniol, Craig

    1994-01-01

    The Community College Division is pleased to report progress of NASA funded research at West Virginia State College. During this reporting period, the project research group has continued with activities to develop instrumentation capability designed to monitor resonant cavity frequencies in the atmospheric region between the Earth's surface and the ionosphere. In addition, the project's principal investigator, Dr. Craig Spaniol, and NASA technical officer, Dr. John Sutton, have written and published technical papers intended to expand the scientific and technical framework needed for project research. This research continues to provide an excellent example of government and education working together to provide significant research in the college environment. This cooperative effort has provided many students with technical project work which compliments their education.

  20. Nighttime Cirrus Detection using Atmospheric Infrared Sounder Window Channels and Total Column Water Vapor

    NASA Technical Reports Server (NTRS)

    Kahn, Brian H.; Liou, Kuo Nan; Lee, Sung-Yung; Fishbein, Evan F.; DeSouza-Machado, Sergio; Eldering, Annmarie; Fetzer, Eric J.; Hannon, Scott E.; Strow, L. Larrabee

    2005-01-01

    A method of cirrus detection at nighttime is presented that utilizes 3.8 and 10.4 (micro)m infrared (IR) window brightness temperature differences (dBT) and total column precipitable water (PW) measurements. This technique is applied to the Atmospheric Infrared Sounder (AIRS) and Advanced Microwave Sounding Unit A (AMSU-A) instrument suite on board EOS-Aqua, where dBT is determined from sets of carefully selected AIRS window channels, while PW is derived from the synergistic AIRS and AMSU-A water vapor retrievals. Simulated and observed dBT for a particular value of PW are not constant; several physical factors impact dBT, including the variability in temperature and relative humidity profiles, surface emissivity, instrument noise, and skin/ near-surface air temperature differences. We simulate clear-sky dBT over a realistic range of PWs using 8350 radiosondes that have varying temperature and relative humidity profiles. Thresholds between cloudy and uncertain sky conditions are derived once the scatter in the clear-sky dBT is determined. Simulations of optically thin cirrus indicate that this technique is most sensitive to cirrus optical depth in the 10 (micro)m window of 0.1-0.15 or greater over the tropical and subtropical oceans, where surface emissivity and skin/near-surface air temperature impacts on the IR radiances are minimal. The method at present is generally valid over oceanic regions only, specifically, the tropics and subtropics. The detection of thin cirrus, and other cloud types, is validated using observations at the Atmospheric Radiation Measurement (ARM) program site located at Manus Island in the tropical western Pacific for 89 coincident EOS-Aqua overpasses. Even though the emphasis of this work is on the detection of thin cirrus at nighttime, this technique is sensitive to a broad cloud morphology. The cloud detection technique agrees with ARM-detected clouds 82-84% of the time, which include thin cirrus, as well as other cloud types. Most of

  1. Nighttime cirrus detection using Atmospheric Infrared Sounder window channels and total column water vapor

    NASA Astrophysics Data System (ADS)

    Kahn, Brian H.; Liou, Kuo Nan; Lee, Sung-Yung; Fishbein, Evan F.; Desouza-Machado, Sergio; Eldering, Annmarie; Fetzer, Eric J.; Hannon, Scott E.; Strow, L. Larrabee

    2005-04-01

    A method of cirrus detection at nighttime is presented that utilizes 3.8 and 10.4 μm infrared (IR) window brightness temperature differences (dBT) and total column precipitable water (PW) measurements. This technique is applied to the Atmospheric Infrared Sounder (AIRS) and Advanced Microwave Sounding Unit A (AMSU-A) instrument suite on board EOS-Aqua, where dBT is determined from sets of carefully selected AIRS window channels, while PW is derived from the synergistic AIRS and AMSU-A water vapor retrievals. Simulated and observed dBT for a particular value of PW are not constant; several physical factors impact dBT, including the variability in temperature and relative humidity profiles, surface emissivity, instrument noise, and skin/near-surface air temperature differences. We simulate clear-sky dBT over a realistic range of PWs using 8350 radiosondes that have varying temperature and relative humidity profiles. Thresholds between cloudy and uncertain sky conditions are derived once the scatter in the clear-sky dBT is determined. Simulations of optically thin cirrus indicate that this technique is most sensitive to cirrus optical depth in the 10 μm window of 0.1-0.15 or greater over the tropical and subtropical oceans, where surface emissivity and skin/near-surface air temperature impacts on the IR radiances are minimal. The method at present is generally valid over oceanic regions only, specifically, the tropics and subtropics. The detection of thin cirrus, and other cloud types, is validated using observations at the Atmospheric Radiation Measurement (ARM) program site located at Manus Island in the tropical western Pacific for 89 coincident EOS-Aqua overpasses. Even though the emphasis of this work is on the detection of thin cirrus at nighttime, this technique is sensitive to a broad cloud morphology. The cloud detection technique agrees with ARM-detected clouds 82-84% of the time, which include thin cirrus, as well as other cloud types. Most of the

  2. Development and global oscillations of cometary ionospheres

    SciTech Connect

    Houpis, H.L.F.; Mendis, D.A.

    1981-02-01

    Representing the cometary ionosphere by a single fluid model characterized by an average ionization time scale, we have studied both its development as a comet approaches the sun and its response to sudden changes in the solar wind conditions. Three different nuclear sizes, small average, and very large, as well as three different modes of energy addition to the atmosphere, adiabatic, isothermal, and suprathermal, are considered. The crucial parameter determining both the nature and the size of the ionosphere is the average ionization time scale within the ionosphere. We identify two different ionization time scales: one during ''quiet'' solar wind conditions when photoionization is the principal source of ionization there, and a secod, much shorter time scale, subsequent to the encounter by a comet of a solar wind high-speed stream, when a beam of energetic electrons discharged from the comet's tail into the ionosphere is the main ionizing agent.

  3. Magnetic Fluctuations in the Martian Ionosphere

    NASA Technical Reports Server (NTRS)

    Espley, Jared

    2010-01-01

    The Martian ionosphere is influenced by both the solar wind and the regional magnetic fields present in the Martian crust. Both influences ought to cause time variable changes in the magnetic fields present in the ionosphere. I report observations of these magnetic field fluctuations in the Martian ionosphere. I use data from the Mars Global Surveyor magnetometer instrument. By using data from the aerobraking low altitude passes (approx. 200 km) I find that there are numerous fluctuations both near and far from the strong crustal sources. Using data from the 400 km altitude mapping phase (which is near the topside of the primary ionosphere), I look at the comparative strength of the fluctuations relative to the solar wind and temporal variations. I discuss which wave modes and instabilities could be contributing to these fluctuations. I also discuss the implications of these fluctuations for understanding energy transfer in the Martian system and the effects on atmospheric escape.

  4. Space weather. Ionospheric control of magnetotail reconnection.

    PubMed

    Lotko, William; Smith, Ryan H; Zhang, Binzheng; Ouellette, Jeremy E; Brambles, Oliver J; Lyon, John G

    2014-07-11

    Observed distributions of high-speed plasma flows at distances of 10 to 30 Earth radii (R(E)) in Earth's magnetotail neutral sheet are highly skewed toward the premidnight sector. The flows are a product of the magnetic reconnection process that converts magnetic energy stored in the magnetotail into plasma kinetic and thermal energy. We show, using global numerical simulations, that the electrodynamic interaction between Earth's magnetosphere and ionosphere produces an asymmetry consistent with observed distributions in nightside reconnection and plasmasheet flows and in accompanying ionospheric convection. The primary causal agent is the meridional gradient in the ionospheric Hall conductance which, through the Cowling effect, regulates the distribution of electrical currents flowing within and between the ionosphere and magnetotail. PMID:25013068

  5. Ionospheric Stimulation By High Power Radio Waves

    NASA Astrophysics Data System (ADS)

    Minami, S.; Nishino, M.; Suzuki, Y.; Sato, S.; Tanikawa, T.; Nakamura, Y.; Wong, A. Y.

    1999-01-01

    We have performed an experiment to artificially stimulate the ionosphere using higher power radio waves at the HIPAS (High Power Auroral Stimulation) facility in Alaska. A radio transmission of 2.85 MHz was made at 80 MW (ERP). Diagnostics were made at the other site located 35 km from the transmission site. The results of cross-correlating the excited HF wave and observed with an 8 channel, 30 MHz scanning cosmic radio noise absorption records revealed the excited height of 90 km. Also atmospheric pressure waves observed on the ground show evident propagation of pressure waves which are generated in the ionosphere by the high-power HF wave. The results determine the excitation height of 90 km in the ionosphere and show evidence of the pressure wave coupling between the ionosphere and the lower atmosphere for periods of 10 min

  6. The theory of ionospheric focused heating

    NASA Technical Reports Server (NTRS)

    Bernhardt, P. A.; Duncan, L. M.

    1987-01-01

    Ionospheric modification by high power radio waves and by chemical releases are combined in a theoretical study of ionospheric focused heating. The release of materials which promote electron-ion recombination creates a hole in the bottomside ionosphere. The ionospheric hole focuses high power radio waves from a ground-based transmitter to give a 20 dB or greater enhancement in power density. The intense radio beam excites atomic oxygen by collisions with accelerated electrons. Airglow from the excited oxygen provides a visible trace of the focused beam. The large increase in the intensity of the radio beam stimulates new wave-plasma interactions. Numerical simulations show that the threshold for the two-plasmon decay instability is exceeded. The interaction of the pump electromagnetic wave with the backward plasmon produces a scattered electromagnetic wave at 3/2 the pump frequency. The scattered wave provides a unique signature of the two-plasmon decay process for ground-based detection.

  7. The upper atmosphere and ionosphere of Mars

    NASA Technical Reports Server (NTRS)

    Brace, Larry H.

    1992-01-01

    The topics discussed include the following: the dynamic atmosphere of Mars; possible similarities with Earth and Venus; the atmosphere and ionosphere of Mars; solar wind interactions; future approved missions; and possible future mission.

  8. Pulsating aurora: The importance of the ionosphere

    SciTech Connect

    Stenbaek-Nielsen, H.C.

    1980-05-01

    A number of different, but mainly optical, observations made in pulsating auroras are presented. These observations indicate that active ionospheric processes are likely to play an important role in causing and/or modifying pulsating aurora.

  9. Remote Sensing of Ionosphere by IONOLAB Group

    NASA Astrophysics Data System (ADS)

    Arikan, Feza

    2016-07-01

    Ionosphere is a temporally and spatially varying, dispersive, anisotropic and inhomogeneous medium that is characterized primarily by its electron density distribution. Electron density is a complex function of spatial and temporal variations of solar, geomagnetic, and seismic activities. Ionosphere is the main source of error for navigation and positioning systems and satellite communication. Therefore, characterization and constant monitoring of variability of the ionosphere is of utmost importance for the performance improvement of these systems. Since ionospheric electron density is not a directly measurable quantity, an important derivable parameter is the Total Electron Content (TEC), which is used widely to characterize the ionosphere. TEC is proportional to the total number of electrons on a line crossing the atmosphere. IONOLAB is a research group is formed by Hacettepe University, Bilkent University and Kastamonu University, Turkey gathered to handle the challenges of the ionosphere using state-of-the-art remote sensing and signal processing techniques. IONOLAB group provides unique space weather services of IONOLAB-TEC, International Reference Ionosphere extended to Plasmasphere (IRI-Plas) model based IRI-Plas-MAP, IRI-Plas-STEC and Online IRI-Plas-2015 model at www.ionolab.org. IONOLAB group has been working for imaging and monitoring of ionospheric structure for the last 15 years. TEC is estimated from dual frequency GPS receivers as IONOLAB-TEC using IONOLAB-BIAS. For high spatio-temporal resolution 2-D imaging or mapping, IONOLAB-MAP algorithm is developed that uses automated Universal Kriging or Ordinary Kriging in which the experimental semivariogram is fitted to Matern Function with Particle Swarm Optimization (PSO). For 3-D imaging of ionosphere and 1-D vertical profiles of electron density, state-of-the-art IRI-Plas model based IONOLAB-CIT algorithm is developed for regional reconstruction that employs Kalman Filters for state

  10. A system definition study for the Advanced Meteorological Temperature Sounder (AMTS)

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The functional requirements of Exhibit A (11) were used as the baseline for the conceptual design of a fixed grating out of plane multidetector spectrometer for the Space Shuttle application. Because the grating instrument would be large and the 28 element detector array would be difficult to cool radiatively from a free flying spacecraft and because increasing the spectral resolution of the grating instrument would be difficult in an instrument of reasonable size, a parallel study of a Nichelson interferometer spectrometer was undertaken. This type of instrument offers compact size, fewer detectors to cool, and the possibility of increased spectral resolution. The design and performance parameters of both the grating and interferometer approaches are described. The tradeoffs involved in comparing the two systems for sounding applications are discussed.

  11. The ionospheric signature of flux transfer events

    NASA Technical Reports Server (NTRS)

    Cowley, S. W. H.; Freeman, M. P.; Lockwood, Mike; Smith, M. F.

    1991-01-01

    The effects at ionospheric heights which take place when transient reconnection events (i.e., Flux Tranfer Events (FTEs)) occur at the dayside magnetopause are considered. The nature of the FTE related ionospheric flows, the associated current systems, and the plasma precipitation, are discussed. In particular, the nature of the time dependent cusp precipitation which occurs on this case is outlined and expectations are compared with those based on steady magnetopause reconnection.

  12. Tsunamis warning from space :Ionosphere seismology

    SciTech Connect

    Larmat, Carene

    2012-09-04

    Ionosphere is the layer of the atmosphere from about 85 to 600km containing electrons and electrically charged atoms that are produced by solar radiation. Perturbations - layering affected by day and night, X-rays and high-energy protons from the solar flares, geomagnetic storms, lightning, drivers-from-below. Strategic for radio-wave transmission. This project discusses the inversion of ionosphere signals, tsunami wave amplitude and coupling parameters, which improves tsunami warning systems.

  13. Measurement of middle and upper atmospheric horizontal winds with a submillimeter/THz limb sounder: results from JEM/SMILES and simulation study for SMILES-2

    NASA Astrophysics Data System (ADS)

    Baron, Philippe; Manago, Naohiro; Ozeki, Hiroyuki; Yoshihisa, Irimajiri; Donal, Murtagh; Yoshinori, Uzawa; Satoshi, Ochiai; Masato, Shiotani; Makoto, Suzuki

    2016-04-01

    In a near future, ESA will launch the Atmospheric Dynamics Mission (ADM) equipped with a lidar for measuring tropospheric and lower stratospheric winds. NASA will continue a long-term series of upper atmospheric wind measurements (altitudes >80 km) with the new Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) on the Ionospheric Connection Explorer (ICON) satellite. No mission is planned to observe winds in the middle atmosphere (30-80 km), though they are recognized as essential parameters for understanding atmospheric dynamics and the vertical coupling between atmospheric regions. They are also promising data for improving long-term weather forecast and climate modelling. It has been demonstrated with the Superconducting Submillimeter Wave Limb Emission Sounder (SMILES, Oct 2009 - Apr 2010) that a 4-K cooled microwave radiometer can provide data to fill the altitude gap in the wind measurements. Its possible successor named SMILES-2, is being designed in Japan for the study of the middle and upper atmospheric chemistry and dynamics (O3, H2O, T, atomic O, OH, HO2, ClO, BrO, ...). If realized, the instrument will measure sub-millimeter and THz molecular spectral lines (616-150 μm) with high sensitivity and frequency resolution. The SMILES-2 characteristics are very well suited for horizontal wind observations between 20 km to more than 160 km. The best performances are found between 35-90 km where the retrieval precision is better than 3 m/s for a vertical resolution of 2-3 km [1]. In this presentation, we summarize the results obtained from SMILES and assess the measurement performances of SMILES-2 to measure horizontal winds. [1] P. Baron, N. Manago, H. Ozeki, Y. Irimajiri, D. Murtagh, Y. Uzawa, S. Ochiai, M. Shiotani, M. Suzuki: "Measurement of stratospheric and mesospheric winds with a SubMillimeter wave limb sounder: Results from JEM/SMILES and simulation study for SMILES-2"; Proc. of SPIE Remote sensing, 96390N-96390N-20

  14. Ionospheric Response Due to Seismic Activity

    NASA Astrophysics Data System (ADS)

    Sharma, Dinesh Kumar

    2016-07-01

    Signatures of the seismic activity in the ionospheric F2 region have been studied by analyzing the measurement of electron and ion temperatures during the occurrence of earthquake. The ionospheric electron and ion temperatures data recorded by the RPA payload aboard the Indian SROSS-C2 satellite during the period from January 1995 to December 2000 were used for the altitude range 430-630 km over Indian region. The normal day's electron and ion temperatures have been compared to the temperatures recorded during the seismic activity. The details of seismic events were obtained from USGS earthquake data information website. It has been found that the average electron temperature is enhanced during the occurrence of earthquakes by 1.2 to 1.5 times and this enhancement was for ion temperature ranging from 1.1to 1.3 times over the normal day's average temperatures. The above careful quantitative analysis of ionospheric electron and ion temperatures data shows the consistent enhancement in the ionospheric electron and ion temperatures. It is expected that the seismogenic vertical electrical field propagates up to the ionospheric heights and induces Joule heating that may cause the enhancement in ionospheric temperatures.

  15. The lower ionosphere at high latitudes

    NASA Astrophysics Data System (ADS)

    Schunk, R. W.; Sojka, J. J.

    The lower ionosphere is a particularly difficult region to both observe and model. Although radars and rockets have probed this region for more than two decades, our overall understanding of the interplay between radiative, chemical, dynamical, and electrodynamical processes in the lower ionosphere is relatively poor in comparison to the other regions of the solar-terrestrial system. Part of the problem is that the various radar and rocket campaigns have focused on different scientific issues, have been of limited duration, or have been restricted to specific geographical locations. However, the lower ionosphere is a complex region, being acted upon by magnetospheric processes from above and stratospheric processes from below. Within the lower ionosphere are chemical reactions involving negative, positive, and cluster ions; transport processes that sometimes involve ordinary diffusion, turbulence, and wave-particle interactions due to plasma instabilities; radiative processes that could involve multiple scattering effects; and energetics that could result in non-Maxwellian ion velocity distribution functions. A further complication arises in that the processes acting on and within the lower ionosphere do so on widely different spatial and temporal scales, and these scales are directly reproduced in the medium. An overview of our current knowledge of the lower ionosphere is presented in this brief review, with the emphasis on the high latitude region.

  16. Active plasma antenna in the Earth's ionosphere

    NASA Astrophysics Data System (ADS)

    Chugunov, Yu. V.; Markov, G. A.

    2001-11-01

    We discuss a new method for controlled stimulation of global perturbations in the Earth's ionosphere and magnetosphere and new possibilities of diagnostics of the wave-particle interaction in the ionospheric and magnetospheric plasma. The method is based on the excitation of an RF plasma-wave discharge in the electromagnetic field of a rocket-borne dipole antenna in the lower oblique-resonance frequency band. The evolution of the discharge leads to the creation of strong local disturbances at ionospheric altitudes in the form of magnetic-field-aligned plasma irregularities with controllable properties. The method was verified in 6 rocket flights at middle and polar latitudes. We review the results of these experiments, focusing considerable attention on those which show significant plasma disturbances in the magnetic flux tube where the rocket is located and which demonstrate the diversity of capabilities of this method. In particular, it is shown that a deep (by an order of magnitude) modulation of energetic (>=40keV) precipitating electrons is available. We have demonstrated that a modulated discharge in the ionosphere can operate as an active plasma antenna. A generation of ``echo'' signals at the discharge modulation frequency and an excitation of the ionospheric Alfvén resonator in the PC band have also been observed. Along with numerous scientific advantages, the method has appeared to be energy-effective and low-cost, which makes it very promising for ionospheric and magnetospheric studies as well as for various practical applications.

  17. Local ionospheric corrections derived from GNSS - A case study with TerraSAR-X

    NASA Astrophysics Data System (ADS)

    Gisinger, Christoph; Balss, Ulrich; Cong, Xiao Ying; Steigenberger, Peter; Eineder, Michael; Pail, Roland; Hugentobler, Urs

    2013-04-01

    Germany's synthetic aperture radar (SAR) satellites TerraSAR-X and TanDEM-X belong to the latest generation of radar satellites which have moved radar remote sensing to a new level. Besides being an all weather and all day imaging system, radar remote sensing offers various advanced methods like SAR interferometry or persistent scatterer interferometry that exploit magnitude and phase information of the radar signal. In order to achieve centimeter to millimeter accuracy with these advanced methods, all occurring error contributions (internal signal delay, orbit, troposphere, ionosphere, solid earth tides, loading effects, ...) have to be taken into account by applying appropriate corrections. Within the project DLR@Uni funded by the German Helmholtz Association HGF, an experimental framework at Wettzell station has been set up to perform a detailed analysis of all the corrections required for high resolution radar satellites and to achieve the goal of a 1cm precision level for absolute radar coordinates. This framework involves a 1.5 meter corner reflector (CR), a 1.5 year series of data takes from TerraSAR-X, and it makes use of the multi-sensor environment of Wettzell station. Besides Satellite Laser Ranging (SLR) for orbit assessment and the local geodetic network to control the CR reference coordinates, the Wettzell GNSS receivers are used for generating tropospheric and ionospheric corrections. By comparing the reference radar times (range and azimuth) available from geodetic survey with those from the TerraSAR-X data takes, the quality of the corrections can be investigated. Although often being considered negligible for X-band observations, the conducted experiment has clearly shown the necessity for ionospheric corrections, if the capabilities of current SAR satellites are to be fully exploited. For every TerraSAR-X data take, the ionospheric impact was derived from the geometry-free linear combination of the GNSS measurements and modeled in terms of

  18. Software management and implementation plan for the Microwave Limb Sounder (MLS) carried on a NASA Earth Observing System (EOS) satellite

    NASA Technical Reports Server (NTRS)

    Shaw, H. Y.; Girard, M. A.; Perun, V. S.; Sherif, J. S.

    2003-01-01

    This paper presents a Software Management and Implementation Plan (SIMP) for managing and controlling the development of the Microwave Limb Sounder (MLS) instrument software, and the Instrument Ground Support Equipment (IGSE) software.

  19. Validation of the Atmospheric Infrared Sounder Water Vapor Retrievals Using Global Positioning System: Case Study in South Korea

    NASA Astrophysics Data System (ADS)

    Won, Jihye; Park, Kwan-Dong; Kim, Dusik; Ha, Jihyun

    2011-12-01

    The atmospheric infrared sounder (AIRS) sensor loaded on the Aqua satellite observes the global vertical structure of atmosphere and enables verification of the water vapor distribution over the entire area of South Korea. In this study, we performed a comparative analysis of the accuracy of the total precipitable water (TPW) provided as the AIRS level 2 standard retrieval product by Jet Propulsion Laboratory (JPL) over the South Korean area using the global positioning system (GPS) TPW data. The analysis TPW for the period of one year in 2008 showed that the accuracy of the data produced by the combination of the Advanced Microwave Sounding Unit sensor with the AIRS sensor to correct the effect of clouds (AIRS-X) was higher than that of the AIRS IR-only data (AIRS-I). The annual means of the root mean square error with reference to the GPS data were 5.2 kg/m2 and 4.3 kg/m2 for AIRS-I and AIRS-X, respectively. The accuracy of AIRS-X was higher in summer than in winter while measurement values of AIRS-I and AIRS-X were lower than those of GPS TPW to some extent.

  20. Global and Regional Seasonal Variability of Mid-Tropospheric CO2 as Measured by the Atmospheric Infrared Sounder (AIRS)

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Olsen, Edward T.; Nguyen, Hai

    2012-01-01

    The Atmospheric Infrared Sounder (AIRS) is a hyperspectral infrared instrument on the Earth Observing System (EOS) Aqua Spacecraft, launched on May 4, 2002 into a near polar sun-synchronous orbit. AIRS has 2378 infrared channels ranging from 3.7 ?m to 15.4 ?m and a 13.5 km footprint at nadir. AIRS, in conjunction with the Advanced Microwave Sounding Unit (AMSU), produces temperature profiles with 1K/km accuracy on a global scale, as well as water vapor profiles and trace gas amounts for CO2, CO, SO2, O3 and CH4. AIRS CO2 climatologies have been shown to be useful for identifying anomalies associated with geophysical events such as El Nino-Southern Oscillation or Madden-Julian oscillation. In this study, monthly representations of mid-tropospheric CO2 are constructed from 10 years of AIRS Version 5 monthly Level 3 data. We compare the AIRS mid-tropospheric CO2 representations to ground-based measurements from the Scripps and National Oceanic and Atmospheric Administration Climate Modeling and Diagnostics Laboratory (NOAA CMDL) ground networks to better understand the phase lag of the CO2 seasonal cycle between the surface and middle troposphere. Results show only a small phase lag in the tropics that grows to approximately two months in the northern latitudes.

  1. Testing Ionospheric Faraday Rotation Corrections in CASA

    NASA Astrophysics Data System (ADS)

    Kooi, Jason E.; Moellenbrock, George

    2015-04-01

    The Earth’s ionosphere introduces direction- and time-dependent effects over a range of physical and temporal scales and so is a major source for unmodeled phase offsets for low frequency radioastronomical observations. Ionospheric effects are often the limiting factor to making sensitive radioastronomical measurements to probe the solar corona or coronal mass ejections at low frequencies (< 5 GHz). It has become common practice to use global ionospheric models derived from the Global Positioning System (GPS) to provide a means of externally calibrating low frequency data. We have developed a new calibration algorithm in the Common Astronomy Software Applications (CASA) package. CASA, which was developed to meet the data post-processing needs of next generation telescopes such as the Karl G. Jansky Very Large Array (VLA), did not previously have the capability to mitigate ionospheric effects. This algorithm uses GPS-based global ionosphere maps to mitigate the first and second order ionospheric effects (dispersion delay and Faraday rotation, respectively). We investigated several data centers as potential sources for global ionospheric models and chose the International Global Navigation Satellite System Service data product because data from other sources are generally too sparse to use without additional interpolation schemes. This implementation of ionospheric corrections in CASA has been tested on several sets of VLA observations and all of them showed a significant reduction of the dispersion delay. In order to rigorously test CASA’s ability to mitigate ionospheric Faraday rotation, we made VLA full-polarization observations of the standard VLA phase calibrators J0359+5057 and J0423+4150 in August 2014, using L band (1 - 2 GHz), S band (2 - 4 GHz), and C band (4 - 6 GHz) frequencies in the D array configuration. The observations were 4 hours in duration, beginning near local sunrise. In this paper, we give a general description of how these corrections are

  2. Technology Development for a Hyperspectral Microwave Atmospheric Sounder (HyMAS)

    NASA Technical Reports Server (NTRS)

    Blackwell, W.; Galbraith, C.; Hilliard, L.; Racette, P.; Thompson, E.

    2014-01-01

    The Hyperspectral Microwave Atmospheric Sounder (HyMAS) is being developed at Lincoln Laboratories and accommodated by the Goddard Space Flight Center for a flight opportunity on a NASA research aircraft. The term hyperspectral microwave is used to indicate an all-weather sounding instrument that performs equivalent to hyperspectral infrared sounders in clear air with vertical resolution of approximately 1 km. Deploying the HyMAS equipped scanhead with the existing Conical Scanning Microwave Imaging Radiometer (CoSMIR) shortens the path to a flight demonstration. Hyperspectral microwave is achieved through the use of independent RF antennas that sample the volume of the Earths atmosphere through various levels of frequencies, thereby producing a set of dense, spaced vertical weighting functions.

  3. Underwater Acoustic Transponders Tracking While Mapping With A Multibeam Echo-Sounder

    NASA Astrophysics Data System (ADS)

    de Moustier, C. P.; Franzheim, A.; Testa, W.; Burns, J. M.; Foy, R.

    2010-12-01

    A 160 kHz multibeam echo-sounder was used to interrogate and receive the replies from custom-built miniature underwater acoustic transponders attached to the carapace of king crabs in Womens Bay, Alaska. This new application of multibeam echo-sounders combines acoustic tracking and mapping, thus providing environmental context to the tracking information. Each transponder replies with its own coded sequence that stands out from other echoes received by the sonar. Range and bearing of the replies from multiple transponders can be obtained in a single sonar ping. The king crab experiment was done in 25-35 m of water depth, and the system was successfully tested without animals at 190 m depth. Work supported by NOAA's Undersea Research Program Grant G4768, with field work support from NOAA-NMFS/AFSC/RACE and Electronic Navigation Ltd.

  4. Feasibility of stratosphere temperature sounding with the Multi-Order Etalon Sounder (MOES) in the infrared

    SciTech Connect

    Wang, J.; Hays, P.B.; Moncet, J.L.

    1994-12-31

    Instruments with very high spectral resolution are needed to sound stratospheric temperatures from satellite. Maximizing the contributions of the stratosphere to the upwelling radiance measured by a particular channel can be achieved by using high spectral resolution channels positioned at strong carbon dioxide (CO{sub 2}) line centers. In this paper, the techniques of stratospheric temperature sounding from satellite are briefly reviewed. The feasibility of high resolution stratospheric temperature sounding with the Multi-Order Etalon Sounder (MOES), a high resolution Fabry-Perot array spectrometer, is discussed. The simulation studies indicate that stratospheric temperatures can be derived with a root-mean-square (RMS) error of about 2--3 K with MOES. A scenario to add MOES to the next generation High Resolution Infrared Sounder (HIRS/3) currently under development with minimal cost is suggested. With its compact size and ruggedness, MOES is an ideal candidate as the stratospheric temperature sounding unit for small environmental satellite platforms.

  5. The Stratospheric Wind Ingrared Limb Sounder: Investigation of atmospheric dynamics and transport from Eos

    NASA Technical Reports Server (NTRS)

    Mccleese, D. J.

    1992-01-01

    The Stratospheric Wind Infrared Limb Sounder (SWIRLS) is one of the instruments in the atmospheric sounder package to be flown by NASA on the Earth Observing System (EOS) B platform in the late 1990's. SWIRLS is designed to measure the horizontal vector wind field, atmospheric temperature, and the abundances and distributions of ozone and nitrous oxide in the middle atmosphere. These measurements will constitute a dynamical climatology of the stratosphere covering time scales ranging from diurnal to interannual. In addition, the SWIRLS investigation will quantify the physical mechanisms responsible for the structure and variations of stratospheric circulation and temperature fields, including the transport of species, particularly ozone, heat and momentum. Existing data sets lack the combination of accuracy, global and temporal coverage, spatial resoultion and simultaneity required to distinguish unambiguosly between the roles of dynamical and chemical processes in determining the current distribution of ozone and its evolution in the future. The measurement objectives, measurement approach, and instrumentation of SWIRLS is described.

  6. Electric Field Double Probe Measurements for Ionospheric Space Plasma Experiments

    NASA Technical Reports Server (NTRS)

    Pfaff, R.

    1999-01-01

    Double probes represent a well-proven technique for gathering high quality DC and AC electric field measurements in a variety of space plasma regimes including the magnetosphere, ionosphere, and mesosphere. Such experiments have been successfully flown on a variety of spacecraft including sounding rockets and satellites. Typical instrument designs involve a series of trades, depending on the science objectives, type of platform (e.g., spinning or 3-axis stabilized), expected plasma regime where the measurements will be made, available telemetry, budget, etc. In general, ionospheric DC electric field instruments that achieve accuracies of 0.1 mV/m or better, place spherical sensors at large distances (10m or more) from the spacecraft body in order to extend well beyond the spacecraft wake and sheath and to achieve large signal-to-noise ratios for DC and long wavelength measurements. Additional sets of sensors inboard of the primary, outermost sensors provide useful additional information, both for diagnostics of the plasma contact potentials, which particularly enhance the DC electric field measurements on non-spinning spacecraft, and for wavelength and phase velocity measurements that use the spaced receiver or "interferometer" technique. Accurate attitude knowledge enables B times V contributions to be subtracted from the measured potentials, and permits the measured components to be rotated into meaningful geophysical reference frames. We review the measurement technique for both DC and wave electric field measurements in the ionosphere discussing recent advances involving high resolution burst memories, multiple baseline double probes, new sensor surface materials, biasing techniques, and other considerations.

  7. Solar cycle variations in the ionosphere of Mars as seen by multiple Mars Express data sets

    NASA Astrophysics Data System (ADS)

    Sánchez-Cano, B.; Lester, M.; Witasse, O.; Milan, S. E.; Hall, B. E. S.; Cartacci, M.; Peter, K.; Morgan, D. D.; Blelly, P.-L.; Radicella, S.; Cicchetti, A.; Noschese, R.; Orosei, R.; Pätzold, M.

    2016-03-01

    The response of the Martian ionosphere to solar activity is analyzed by taking into account variations in a range of parameters during four phases of the solar cycle throughout 2005-2012. Multiple Mars Express data sets have been used (such as Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) in Active Ionospheric Sounding, MARSIS subsurface, and MaRS Radio Science), which currently cover more than 10 years of solar activity. The topside of the main ionospheric layer behavior is empirically modeled through the neutral scale height parameter, which describes the density distribution in altitude, and can be used as a dynamic monitor of the solar wind-Martian plasma interaction, as well as of the medium's temperature. The main peak, the total electron content, and the relationship between the solar wind dynamic pressure and the maximum thermal pressure of the ionosphere with the solar cycle are assessed. We conclude that the neutral scale height was different in each phase of the solar cycle, having a large variation with solar zenith angle during the moderate-ascending and high phases, while there is almost no variation during the moderate-descending and low phases. Between end-2007 and end-2009, an almost permanent absence of secondary layer resulted because of the low level of solar X-rays. Also, the ionosphere was more likely to be found in a more continuously magnetized state. The induced magnetic field from the solar wind, even if weak, could be strong enough to penetrate more than at other solar cycle phases.

  8. Theoretical computation of trace gases retrieval random error from measurements of high spectral resolution infrared sounder

    NASA Technical Reports Server (NTRS)

    Huang, Hung-Lung; Smith, William L.; Woolf, Harold M.; Theriault, J. M.

    1991-01-01

    The purpose of this paper is to demonstrate the trace gas profiling capabilities of future passive high spectral resolution (1 cm(exp -1) or better) infrared (600 to 2700 cm(exp -1)) satellite tropospheric sounders. These sounders, such as the grating spectrometer, Atmospheric InfRared Sounders (AIRS) (Chahine et al., 1990) and the interferometer, GOES High Resolution Interferometer Sounder (GHIS), (Smith et al., 1991) can provide these unique infrared spectra which enable us to conduct this analysis. In this calculation only the total random retrieval error component is presented. The systematic error components contributed by the forward and inverse model error are not considered (subject of further studies). The total random errors, which are composed of null space error (vertical resolution component error) and measurement error (instrument noise component error), are computed by assuming one wavenumber spectral resolution with wavenumber span from 1100 cm(exp -1) to 2300 cm(exp -1) (the band 600 cm(exp -1) to 1100 cm(exp -1) is not used since there is no major absorption of our three gases here) and measurement noise of 0.25 degree at reference temperature of 260 degree K. Temperature, water vapor, ozone and mixing ratio profiles of nitrous oxide, carbon monoxide and methane are taken from 1976 US Standard Atmosphere conditions (a FASCODE model). Covariance matrices of the gases are 'subjectively' generated by assuming 50 percent standard deviation of gaussian perturbation with respect to their US Standard model profiles. Minimum information and maximum likelihood retrieval solutions are used.

  9. Level 1B products from the Atmospheric Infrared Sounder (AIRS) on the EOS Aqua Spacecraft

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Aumann, H. H.; Overoye, Ken

    2003-01-01

    The Atmospheric Infrared Sounder (AIRS) was launched May 4, 2002 on the EOS Aqua Spacecraft. A discussion is given of the objectives of the AIRS experiment, including requirements on the data products. We summarize the instrument characteristics, including sensitivity, noise, and spectral response, and preflight calibration results leading to the estimate of the calibration accuracy. The Level 1B calibration algorithm is presented as well as the results of in-flight stability and sensitivity measurements.

  10. The Laser Atmospheric Wind Sounder (LAWS) Phase 2 Preliminary System Design

    NASA Technical Reports Server (NTRS)

    Petheram, John C.; Kenyon, David L.; Wissinger, Alan B.; Lawrence, T. Rhidian

    1992-01-01

    The laser Atmospheric Wind Sounder (LAWS) is intended to measure global wind profiles in the lower and upper troposphere as part of the Earth Observing System (EOS). Global scale wind profiles will lead to a better understanding of large scale circulation processes and climate dynamics, an understanding of mesoscale phenomena, improved numerical weather prediction, and further insights into the coupling of the atmosphere/oceans/biosphere system. Here, details are given of the Phase 2 preliminary design.

  11. Wide Field Collimator 2 (WFC2) for GOES Imager and Sounder

    NASA Technical Reports Server (NTRS)

    Etemad, Shahriar; Bremer, James C.; Zukowski, Barbara J.; Pasquale, Bert A.; zukowski, Tmitri J.; Prince, Robert E.; O'Neill, Patrick A.; Ross, Robert W.

    2004-01-01

    Two of the GOES instruments, the Imager and the Sounder, perform scans of the Earth to provide a full disc picture of the Earth. To verify the entire scan process, an image of a target that covers an 18 deg. circular field-of-view is collimated and projected into the field of regard of each instrument. The Wide Field Collimator 2 (WFC2) has many advantages over its predecessor, WFC1, including lower thermal dissipation higher fir field MTF, smaller package, and a more intuitive (faster) focusing process. The illumination source is an LED array that emits in a narrow spectral band centered at 689 nm, within the visible spectral bands of the Imager and Sounder. The illumination level can be continuously adjusted electronically. Lower thermal dissipation eliminates the need for forced convection cooling and minimizes time to reach thermal stability. The lens system has been optimized for the illumination source spectral output and athernalized to remain in focus during bulk temperature changes within the laboratory environment. The MTF of the lens is higher than that of the WFC1 at the edge of FOV. The target is focused in three orthogonal motions, controlled by an ergonomic system that saves substantial time and produces a sharper focus. Key words: Collimator, GOES, Imager, Sounder, Projector

  12. A new multibeam echo sounder/sonar for fishery research applications

    NASA Astrophysics Data System (ADS)

    Andersen, Lars Nonboe; Berg, Sverre; Stenersen, Erik; Gammelsaeter, Ole Bernt; Lunde, Even Borte

    2003-10-01

    Fisheries scientists have for many years been requesting a calibrated multibeam echo sounder/sonar specially designed for fishery research applications. Simrad AS has, in cooperation with IFREMER, France, agreed on specifications for a multibeam echo sounder and with IMR, Norway for a multibeam sonar, and contracts were signed for development of such systems in January 2003. The systems have 800 transmitting and receiving channels with similar hardware, but different software, and are characterized by narrow beams, low-sidelobe levels, and operate in the frequency range 70-120 kHz. The echo sounder is designed for high operating flexibility, with 1 to 47 beams of approximately 2°, covering a maximum sector of 60°. In addition, normal split beam mode on 70 and 120 kHz with 7° beams for comparison with standard system is available. The sonar will be mounted on a drop keel, looking horizontally, covering a horizontal sector of +/-30°, and a vertical sector of 45°. Total number of beams is 500, 25 beams horizontally with a resolution of ~3°, and 20 beams vertically with a resolution of ~4°. Both systems are designed for accurate fish-stock assessment and fish-behavior studies.

  13. Inter-Comparison of GOES-8 Imager and Sounder Skin Temperature Retrievals

    NASA Technical Reports Server (NTRS)

    Haines, Stephanie L.; Suggs, Ronnie J.; Jedlovec, Gary J.; Arnold, James E. (Technical Monitor)

    2001-01-01

    Skin temperature (ST) retrievals derived from geostationary satellite observations have both high temporal and spatial resolutions and are therefore useful for applications such as assimilation into mesoscale forecast models, nowcasting, and diagnostic studies. Our retrieval method uses a Physical Split Window technique requiring at least two channels within the longwave infrared window. On current GOES satellites, including GOES-11, there are two Imager channels within the required spectral interval. However, beginning with the GOES-M satellite the 12-um channel will be removed, leaving only one longwave channel. The Sounder instrument will continue to have three channels within the longwave window, and therefore ST retrievals will be derived from Sounder measurements. This research compares retrievals from the two instruments and evaluates the effects of the spatial resolution and sensor calibration differences on the retrievals. Both Imager and Sounder retrievals are compared to ground-truth data to evaluate the overall accuracy of the technique. An analysis of GOES-8 and GOES-11 intercomparisons is also presented.

  14. Ionospheric Variability and Storms on Mars

    NASA Technical Reports Server (NTRS)

    Mendillo, Michael

    2004-01-01

    The goal of this grant was to conduct the first-ever study of ionospheric variability on Mars. To do so, we used data from the Radio Science (RS) experiment onboard the Mars Global Surveyor (MGS) satellite. Dr. David Hinson of the RS team at Stanford University was a most helpful and valuable colleague throughout the studies we conducted. For the initial RS datasets available from the MGS mission, there were no severe storms caused by solar wind activity, so we concentrated on day-to-day effects. This turned out to be a wise approach since understanding "normal variability" had to be done before any claim could be made about "space weather" effects. Our approach was three-fold: (1) select a good dataset for characterization of ionosphere variability at Mars, one for which excellent terrestrial data were also available. This turned out to be the period 9-27 March 1999; (2) once the variability at Mars was described, develop and use a new photochemical model of the martian ionosphere to find the extent to which solar variability on those days caused or contributed to the observed patterns; (3) use the results from the above, together with additional datasets from the MGS/RS experiment, to describe some practical consequences that the martian ionosphere would have upon NASA s proposed navigation and communications systems for Mars. The results of these studies showed that: (a) solar variability is the dominant source of ionospheric variability at Mars (during periods of quiet solar wind), (b) that current models do a good job in portraying such effects at the height of the ionospheric peak electron density, and (c) that ionospheric structure on Mars can affect attempts at precise position-fixing at Mars should relatively high (GPS-like) frequencies not be used in a Mars communications and navigation system.

  15. Ionospheric Storms in Equatorial Region: Digisonde Observations

    NASA Astrophysics Data System (ADS)

    Paznukhov, V.; Altadill, D.; Blanch, E.

    2011-12-01

    We present a study of the ionospheric storms observed in the low-latitude and equatorial ionosphere at several digisonde stations: Jicamarca (Geomagnetic Coordinates: 2.0 S, 355.3 E), Kwajalein Island (3.8 N, 238.2 E), Ascension Island (2.5 S, 56.8 E), Fortaleza (4.8 N, 33.7 W), and Ramey (28.6 N, 5.2 E). The strongest geomagnetic storms from years 1995-2009 have been analyzed. The main ionospheric characteristics, hmF2 and foF2 were used in the study, making it possible to investigate the changes in the ionosphere peak density and height during the storms. All digisonde data were manually processed to assure the accuracy of the measurements. Solar wind data, geomagnetic field variations, and auroral activity indices have been used to characterize the geomagnetic environment during the events. It was found in our analysis that the major drivers for the ionospheric storms, electric field and neutral wind have approximately equal importance at the low-latitude and equatorial latitudes. This is noticeably different from the behavior of the ionsphere in the middle latitudes, where the neutral wind is usually a dominant factor. It was found that the auroral index, AE is the best precursor of the ionospheric effects observed during the storms in this region. We analyze the difference between time delays of the storm effects observed at the stations located in different local time sectors. The overall statistics of the time delays of the storms as a function of the local time at the stations is also presented. Several very interesting cases of sudden very strong ionospheric uplifting and their possible relation to the equatorial super fountain effect are investigated in greater details.

  16. Role of Ionospheric Plasmas in Earth's Magnetotail

    NASA Technical Reports Server (NTRS)

    Moore, Thomas E.

    2007-01-01

    This tutorial will summarize observations and theories indicating a prominent role of ionospheric plasma in the Earth's magnetotail. At the Global scale, I will argue that it is ionospheric plasma momentum and dynamic pressure that are responsible for the production of plasmoids, through the action of a transient near-Earth neutral or X-line, which serves to release excessive plasma pressure from the magnetotail field. Ionospheric plasma gains the momentum and energy to produce plasmoids and their related effects through its interaction with the solar wind, beginning at the dayside reconnection region and extending across the polar caps through the magnetotail lobes. This distant neutral line can be depicted as a feature much like that found in cometary magnetospheres, where disconnection limits the amount of IMF hung up on the cometary coma. On the other hand, the near-Earth neutral one can be seen as a feature unique to planets with an intrinsic magnetic field and internal source of plasma, the heating of which produces pressures too large to be restrained. Ionospheric plasmas also have other more local roles to play in the magnetotail. The circulation influences the composition of the plasma sheet, and the resultant wave environment, giving rise to reduced wave propagation speeds. Important heavy ion cyclotron resonances, and enhanced finite gyro-radius effects including non-adiabatic particle acceleration. At minimum, the presence of ionospheric plasma must influence the rate of reconnection via its enhanced mass density. Other non-MHD effects of ionospheric plasma presence are likely to be important but need much more investigation to be well understood. The MMS mission is designed to penetrate the subtle diffusion region physics that is involved, and its ability to observe ionospheric plasma involvement in reconnection will contribute significantly toward that goal.

  17. Atmospheric River Observations with the HAMSR Aircraft Microwave Sounder

    NASA Astrophysics Data System (ADS)

    Lambrigtsen, B.; Brown, S. T.; Schreier, M. M.; Dang, H. V. T.; Behrangi, A.

    2015-12-01

    The High Altitude MMIC Sounding Radiometer (HAMSR) was developed at the Jet Propulsion Laboratory in 2001 to serve as an aircraft based hurricane observatory. It initially flew on the high altitude ER-2 and later on the DC-8. More recently it was modified to fly on the Global Hawk UAV. It uses the most advanced technology and is among the most sensitive instruments of its kind. In addition to a number of NASA hurricane field campaigns - mostly in the North Atlantic, HAMSR has participated in two atmospheric river campaigns off the California coast, one in 2011 (WISPAR) and one in 2015 (CalWater2). We will discuss observations from the 2015 campaign, with particular focus on a flight over an atmsospheric river making landfall in central California in early February, as well as compare with highlights from the 2011 flights. Copyright 2015 California Institute of Technology. Government sponsorship acknowledged.

  18. Version 5 product improvements from the atmospheric infrared sounder (AIRS)

    NASA Astrophysics Data System (ADS)

    Pagano, Thomas S.; Aumann, Hartmut H.; Chahine, Moustafa T.; Manning, Evan; Friedman, Steve; Broberg, Steven E.; Licata, Stephen J.; Elliott, Denis A.; Irion, Fredrick W.; Kahn, Brian H.; Fishbein, Evan; Olsen, Edward; Granger, Stephanie; Susskind, Joel; Keita, Fricky; Blaisdell, John; Strow, Larrabee; DeSouza-Machado, Sergio; Barnet, Chris

    2006-12-01

    The AIRS instrument was launched in May 2002 into a polar sun-synchronous orbit onboard the EOS Aqua Spacecraft. Since then we have released three versions of the AIRS data product to the scientific community. AIRS, in conjunction with the Advanced Microwave Sounding Unit (AMSU), produces temperature profiles with 1K/km accuracy on a global scale, as well as water vapor profiles and trace gas amounts. The first version of software, Version 2.0 was available to scientists shortly after launch with Version 3.0 released to the public in June 2003. Like all AIRS product releases, all products are accessible to the public in order to have the best user feedback on issues that appear in the data. Fortunately the products have had exceptional accuracy and stability. This paper presents the improvement between AIRS Version 4.0 and Version 5.0 products and shows examples of the new products available in Version 5.0.

  19. Ionospheric Scintillation Effects on GPS

    NASA Astrophysics Data System (ADS)

    Steenburgh, R. A.; Smithtro, C.; Groves, K.

    2007-12-01

    . Ionospheric scintillation of Global Positioning System (GPS) signals threatens navigation and military operations by degrading performance or making GPS unavailable. Scintillation is particularly active, although not limited to, a belt encircling the earth within 20 degrees of the geomagnetic equator. As GPS applications and users increases, so does the potential for detrimental impacts from scintillation. We examined amplitude scintillation data spanning seven years from Ascension Island, U.K.; Ancon, Peru; and Antofagasta, Chile in the Atlantic/Americas longitudinal sector at as well as data from Parepare, Indonesia; Marak Parak, Malaysia; Pontianak, Indonesia; Guam; and Diego Garcia, U.K.; in the Pacific longitudinal sector. From these data, we calculate percent probability of occurrence of scintillation at various intensities described by the S4 index. Additionally, we determine Dilution of Precision at one minute resolution. We examine diurnal, seasonal and solar cycle characteristics and make spatial comparisons. In general, activity was greatest during the equinoxes and solar maximum, although scintillation at Antofagasta, Chile was higher during 1998 rather than at solar maximum.

  20. Electric fields in the ionosphere

    NASA Technical Reports Server (NTRS)

    Kirchhoff, V. W. J. H.

    1975-01-01

    F-region drift velocities, measured by incoherent-scatter radar were analyzed in terms of diurnal, seasonal, magnetic activity, and solar cycle effects. A comprehensive electric field model was developed that includes the effects of the E and F-region dynamos, magnetospheric sources, and ionospheric conductivities, for both the local and conjugate regions. The E-region dynamo dominates during the day but at night the F-region and convection are more important. This model provides much better agreement with observations of the F-region drifts than previous models. Results indicate that larger magnitudes occur at night, and that daily variation is dominated by the diurnal mode. Seasonal variations in conductivities and thermospheric winds indicate a reversal in direction in the early morning during winter from south to northward. On magnetic perturbed days and the drifts deviate rather strongly from the quiet days average, especially around 13 L.T. for the northward and 18 L.T. for the westward component.

  1. The Jovian ionospheric E region

    NASA Astrophysics Data System (ADS)

    Kim, Y. H.; Fox, J. L.

    1991-02-01

    A model of the Jovian ionosphere was constructed, that includes direct photoionization of hydrocarbon molecules. A high-resolution solar spectrum was synthesized from Hinteregger's solar maximum spectrum (F79050N), and high-resolution cross sections for photoabsorption by H2 bands in the range 842 to 1116 A were constructed. Two strong solar lines and about 30 percent of the continuum flux between 912 and 1116 A penetrate below the methane homopause despite strong absorption by CH4 and H2. It is found that hydrocarbons (mainly C2H2 are ionized at a maximum rate of 55/cu cm per sec at 320 km above the ammonia cloud tops. The hydrocarbon ions produced are quickly converted to more complex hydrocarbon ions through reactions with CH4, C2H2, C2H6, and C2H4. It is found that a hydrocarbon ion layer is formed near 320 km that is about 50 km wide with a peak density in excess of 10,000/cu cm.

  2. Meteoric Ions in Planetary Ionospheres

    NASA Technical Reports Server (NTRS)

    Pesnell, W. D.; Grebowsky, Joseph M.; Vondrak, Richard R. (Technical Monitor)

    2001-01-01

    Solar system debris, in the form of meteoroids, impacts every planet. The flux, relative composition and speed of the debris at each planet depends on the planet's size and location in the solar system. Ablation in the atmosphere evaporates the meteoric material and leaves behind metal atoms. During the ablation process metallic ions are formed by impact ionization. For small inner solar system planets, including Earth, this source of ionization is typically small compared to either photoionization or charge exchange with ambient molecular ions. For Earth, the atmosphere above the main deposition region absorbs the spectral lines capable of ionizing the major metallic atoms (Fe and Mg) so that charge exchange with ambient ions is the dominant source. Within the carbon dioxide atmosphere of Mars (and possibly Venus), photoionization is important in determining the ion density. For a heavy planet like Jupiter, far from the sun, impact ionization of ablated neutral atoms by impacts with molecules becomes a prominent source of ionization due to the gravitational acceleration to high incident speeds. We will describe the processes and location and extent of metal ion layers for Mars, Earth and Jupiter, concentrating on flagging the uncertainties in the models at the present time. This is an important problem, because low altitude ionosphere layers for the planets, particularly at night, probably consist predominantly of metallic ions. Comparisons with Earth will be used to illustrate the differing processes in the three planetary atmospheres.

  3. Experimental evidence of electromagnetic pollution of ionosphere

    NASA Astrophysics Data System (ADS)

    Pronenko, Vira; Korepanov, Valery; Dudkin, Denis

    The Earth’s ionosphere responds to external perturbations originated mainly in the Sun, which is the primary driver of the space weather (SW). But solar activity influences on the ionosphere and the Earth's atmosphere (i.e., the energy transfer in the direction of the Sun-magnetosphere-ionosphere-atmosphere-surface of the Earth), though important, is not a unique factor affecting its state - there is also a significant impact of the powerful natural and anthropogenic processes, which occur on the Earth’s surface and propagating in opposite direction along the Earth’s surface-atmosphere-ionosphere-magnetosphere chain. Numerous experimental data confirm that the powerful sources and consumers of electrical energy (radio transmitters, power plants, power lines and industrial objects) cause different ionospheric phenomena, for example, changes of the electromagnetic (EM) field and plasma in the ionosphere, and affect on the state of the Earth atmosphere. Anthropogenic EM effects in the ionosphere are already observed by the scientific satellites and the consequences of their impact on the ionosphere are not currently known. Therefore, it is very important and urgent task to conduct the statistically significant research of the ionospheric parameters variations due to the influence of the powerful man-made factors, primarily owing to substantial increase of the EM energy production. Naturally, the satellite monitoring of the ionosphere and magnetosphere in the frequency range from tens of hertz to tens of MHz with wide ground support offers the best opportunity to observe the EM energy release, both in the global and local scales. Parasitic EM radiation from the power supply lines, when entering the ionosphere-magnetosphere system, might have an impact on the electron population in the radiation belt. Its interaction with trapped particles will change their energy and pitch angles; as a result particle precipitations might occur. Observations of EM emission by

  4. Ionospheric calibration for single frequency altimeter measurements

    NASA Astrophysics Data System (ADS)

    Schreiner, William S.; Born, George H.; Markin, Robert E.

    1994-03-01

    This study is a preliminary analysis of the effectiveness (in terms of altimeter calibration accuracy) of various ionosphere models and the Global Positioning System (GPS) to calibrate single frequency altimeter height measurements for ionospheric path delay. In particular, the research focused on ingesting GPS Total Electron Content (TEC) data into the physical Parameterized Real-Time Ionospheric Specification Model (PRISM), which estimates the composition of the ionosphere using independent empirical and physical models and has the capability of adjusting to additional ionospheric measurements. Two types of GPS data were used to adjust the PRISM model: GPS receiver station data mapped from line-of-sight observations to the vertical at the point of interest and a grid map (generated at the Jet Propulsion Laboratory) of GPS derived TEC in a sun-fixed longitude frame. The adjusted PRISM TEC values, as well as predictions by the International Reference Ionosphere (IRI-90), a climatological (monthly mean) model of the ionosphere, were compared to TOPEX dual-frequency TEC measurements (considered as truth) for a number of TOPEX sub-satellite tracks. For a 13.6 GHz altimeter, a Total Electron Content (TEC) of 1 TECU 10(exp 16) electrons/sq m corresponds to approximately 0.218 centimeters of range delay. A maximum expected TEC (at solar maximum or during solar storms) of 10(exp 18) electrons/sq m will create 22 centimeters of range delay. Compared with the TOPEX data, the PRISM predictions were generally accurate within the TECU when the sub-satellite track of interest passed within 300 to 400 km of the GPS TEC data or when the track passed through a night-time ionosphere. If neither was the case, in particular if the track passed through a local noon ionosphere, the PRISM values differed by more than 10 TECU and by as much as 40 TECU. The IRI-90 model, with no current ability to unseat GPS data, predicted TEC to a slightly higher error of 12 TECU. The performance of

  5. Ionospheric calibration for single frequency altimeter measurements

    NASA Technical Reports Server (NTRS)

    Schreiner, William S.; Born, George H.; Markin, Robert E.

    1994-01-01

    This study is a preliminary analysis of the effectiveness (in terms of altimeter calibration accuracy) of various ionosphere models and the Global Positioning System (GPS) to calibrate single frequency altimeter height measurements for ionospheric path delay. In particular, the research focused on ingesting GPS Total Electron Content (TEC) data into the physical Parameterized Real-Time Ionospheric Specification Model (PRISM), which estimates the composition of the ionosphere using independent empirical and physical models and has the capability of adjusting to additional ionospheric measurements. Two types of GPS data were used to adjust the PRISM model: GPS receiver station data mapped from line-of-sight observations to the vertical at the point of interest and a grid map (generated at the Jet Propulsion Laboratory) of GPS derived TEC in a sun-fixed longitude frame. The adjusted PRISM TEC values, as well as predictions by the International Reference Ionosphere (IRI-90), a climatological (monthly mean) model of the ionosphere, were compared to TOPEX dual-frequency TEC measurements (considered as truth) for a number of TOPEX sub-satellite tracks. For a 13.6 GHz altimeter, a Total Electron Content (TEC) of 1 TECU 10(exp 16) electrons/sq m corresponds to approximately 0.218 centimeters of range delay. A maximum expected TEC (at solar maximum or during solar storms) of 10(exp 18) electrons/sq m will create 22 centimeters of range delay. Compared with the TOPEX data, the PRISM predictions were generally accurate within the TECU when the sub-satellite track of interest passed within 300 to 400 km of the GPS TEC data or when the track passed through a night-time ionosphere. If neither was the case, in particular if the track passed through a local noon ionosphere, the PRISM values differed by more than 10 TECU and by as much as 40 TECU. The IRI-90 model, with no current ability to unseat GPS data, predicted TEC to a slightly higher error of 12 TECU. The performance of

  6. Mesoscale ionospheric tomography at the Auroral region

    NASA Astrophysics Data System (ADS)

    Luntama, J.; Kokkatil, G. V.

    2008-12-01

    FMI (Finnish Meteorological Institute) has used observations from the dense GNSS network in Finland for high resolution regional ionospheric tomography. The observation system used in this work is the VRS (Virtual Reference Station) network in Finland operated by Geotrim Ltd. This network contains 86 GNSS ground stations providing two frequency GPS and GLONASS observations with the sampling rate of 1 Hz. The network covers the whole Finland and the sampling of the ionosphere is very good for observing mesoscale ionospheric structures at the Auroral region. The ionospheric tomography software used by FMI is the MIDAS (Multi-Instrument Data Analysis System) algorithm developed and implemented by the University of Bath (Mitchell and Spencer, 2003). MIDAS is a 3-D extension of the 2-D tomography algorithm originally presented by Fremouw et al. (1992). The research at FMI is based on ground based GNSS data collected in December 2006. The impacts of the two geomagnetic storms during the month are clearly visible in the retrieved electron density and TEC maps and they can be correlated with the magnetic field disturbances measured by the IMAGE magnetometer network. This is the first time that mesoscale structures in the ionospheric plasma can be detected from ground based GNSS observations at the Auroral region. The continuous high rate observation data from the Geotrim network allows monitoring of the temporal evolution of these structures throughout the storms. Validation of the high resolution electron density and TEC maps is a challenge as independent reference observations with a similar resolution are not available. FMI has compared the 3-D electron density maps against the 2-D electron density plots retrieved from the observations from the Ionospheric Tomography Chain operated by the Sodankylä Geophysical Observatory (SGO). Additional validation has been performed with intercomparisons with observations from the ground based magnetometer and auroral camera network

  7. Cloud properties and bulk microphysical properties of semi-transparent cirrus from IR Sounders

    NASA Astrophysics Data System (ADS)

    Stubenrauch, Claudia; Feofilov, Artem; Armante, Raymond; Guignard, Anthony

    2013-04-01

    Satellite observations provide a continuous survey of the atmosphere over the whole globe. IR sounders have been observing our planet since 1979. The spectral resolution has improved from TIROS-N Operational Vertical Sounders (TOVS) to the Atmospheric InfraRed Sounder (AIRS), and to the InfraRed Atmospheric Sounding Interferometer (IASI); resolution within the CO2 absorption band makes these passive sounders most sensitive to semi-transparent cirrus (about 30% of all clouds), day and night. The LMD cloud property retrieval method developed for TOVS, has been adapted to the second generation of IR sounders like AIRS and, recently, IASI. It is based on a weighted χ2 method using different channels within the 15 micron CO2 absorption band. Once the cloud physical properties (cloud pressure and IR emissivity) are retrieved, cirrus bulk microphysical properties (De and IWP) are determined from spectral emissivity differences between 8 and 12 μm. The emissivities are determined using the retrieved cloud pressure and are then compared to those simulated by the radiative transfer model. For IASI, we use the latest version of the radiative transfer model 4A (http://4aop.noveltis.com), which has been coupled with the DISORT algorithm to take into account multiple scattering of ice crystals. The code incorporates single scattering properties of column-like or aggregate-like ice crystals provided by MetOffice (Baran et al. (2001); Baran and Francis (2004)). The synergy of AIRS and two active instruments of the A-Train (lidar and radar of the CALIPSO and CloudSat missions), which provide accurate information on vertical cloud structure, allowed the evaluation of cloud properties retrieved by the weighted χ2 method. We present first results for cloud properties obtained with IASI/ Metop-A and compare them with those of AIRS and other cloud climatologies having participated in the GEWEX cloud assessment. The combination of IASI observations at 9:30 AM and 9:30 PM complement

  8. Modeling the global positioning system signal propagation through the ionosphere

    NASA Technical Reports Server (NTRS)

    Bassiri, S.; Hajj, G. A.

    1992-01-01

    Based on realistic modeling of the electron density of the ionosphere and using a dipole moment approximation for the Earth's magnetic field, one is able to estimate the effect of the ionosphere on the Global Positioning System (GPS) signal for a ground user. The lowest order effect, which is on the order of 0.1-100 m of group delay, is subtracted out by forming a linear combination of the dual frequencies of the GPS signal. One is left with second- and third-order effects that are estimated typically to be approximately 0-2 cm and approximately 0-2 mm at zenith, respectively, depending on the geographical location, the time of day, the time of year, the solar cycle, and the relative geometry of the magnetic field and the line of sight. Given the total electron content along a line of sight, the authors derive an approximation to the second-order term which is accurate to approximately 90 percent within the magnetic dipole moment model; this approximation can be used to reduce the second-order term to the millimeter level, thus potentially improving precise positioning in space and on the ground. The induced group delay, or phase advance, due to second- and third-order effects is examined for two ground receivers located at equatorial and mid-latitude regions tracking several GPS satellites.

  9. Charge Balance in the Martian Ionosphere

    NASA Astrophysics Data System (ADS)

    Esman, Teresa; Yelle, Roger V.; Stone, Shane W.; Andersson, Laila; Fowler, Christopher Michael; Benna, Mehdi; Eparvier, Francis; Mahaffy, Paul; Ergun, Bob; Elrod, Meredith K.; MAVEN

    2016-10-01

    We present empirical models of the Martian ionosphere in conjunction with data from the Langmuir Probe and Waves (LPW), Neutral Gas and Ion Mass Spectrometer (NGIMS), and Extreme Ultraviolet Monitor (EUVM) instruments aboard the Mars Atmosphere and Volatile Evolution mission (MAVEN) spacecraft. Among the data provided by MAVEN are electron densities and temperatures, ion and neutral densities, and solar extreme ultraviolet (EUV) flux. We explore a number of contributors to the CO2 photoionization rate, with a specific focus on the role of electron temperatures, which, prior to MAVEN, were not well-known. We compare our results with expectations of the ionospheric structure and behavior to confirm our understanding of the basic structure of the Martian ionosphere in the photochemical region. We show that the ionosphere of Mars is well matched by photochemical equilibrium to within the accuracy of the measurements. These results will aid in the development of more complex ionospheric and escape models and lead to a comprehensive and global scale picture of thermal ion escape on Mars.

  10. Infrasonic troposphere-ionosphere coupling in Hawaii

    NASA Astrophysics Data System (ADS)

    Garces, M. A.

    2011-12-01

    The propagation of infrasonic waves in the ionospheric layers has been considered since the 1960's. It is known that space weather can alter infrasonic propagation below the E layer (~120 km altitude), but it was thought that acoustic attenuation was too severe above this layer to sustain long-range propagation. Although volcanoes, earthquakes and tsunamis (all surface sources) appear to routinely excite perturbations in the ionospheric F layer by the propagation of acoustic and acoustic-gravity waves through the atmosphere, there are few reports of the inverse pathway. This paper discusses some of the routine ground-based infrasonic array observations of ionospheric returns from surface sources. These thermospheric returns generally point back towards the source, with an azimuth deviation that can be corrected using the wind velocity profiles in the mesosphere and lower thermosphere. However, the seismic excitation in the North Pacific by the Tohoku earthquake ensonified the coupled lithosphere-atmosphere-ionosphere waveguide in the 0.01 - 0.1 Hz frequency band, producing anomalous signals observed by infrasound arrays in Hawaii. These infrasonic signals propagated at curiously high velocities, suggesting that some assumptions on ionospheric sound generation and propagation could be revisited.

  11. Ionospheric criticial frequencies and solar cycle effects

    NASA Astrophysics Data System (ADS)

    Kilcik, Ali; Ozguc, Atila; Rozelot, Jean Pierre; Yiǧit, Erdal; Elias, Ana; Donmez, Burcin; Yurchyshyn, Vasyl

    2016-07-01

    The long term solar activity dependencies of ionospheric F1 and F2 regions critical frequencies (foF1 and foF2) are investigated observationally for the last four solar cycles (1976-2015). We here show that the ionospheric F1 and F2 regions have different solar activity dependencies in terms of the sunspot group (SG) numbers: F1 region critical frequency (foF1) peaks at the same time with small SG numbers, while the foF2 reaches its maximum at the same time with the large SG numbers especially during the solar cycle 23. Thus, we may conclude that the sensitivities of ionospheric F1 and F2 region critical frequencies to sunspot group (SG) numbers are associated with different physical processes that are yet to be investigated in detail. Such new results provide further evidence that the two ionospheric regions have different responses to the solar activity. We also analyzed short term oscillatory behavior of ionospheric critical frequencies and found some solar signatures.

  12. Ionospheric response over Europe during the solar eclipse of March 20, 2015

    NASA Astrophysics Data System (ADS)

    Hoque, Mohammed Mainul; Wenzel, Daniela; Jakowski, Norbert; Gerzen, Tatjana; Berdermann, Jens; Wilken, Volker; Kriegel, Martin; Sato, Hiroatsu; Borries, Claudia; Minkwitz, David

    2016-10-01

    function. By modelling TEC depletion and knowing the Sun's obscuration function in advance, Global Navigation Satellite System (GNSS) operators may improve the broadcast ionospheric correction during a solar eclipse day.

  13. The combined study of the middle atmosphere meteorological parameters and lower ionosphere dynamics over Europe by means of remote VLF-LF measurements

    NASA Astrophysics Data System (ADS)

    Zetzer, J. I.; Lyakhov, A.; Yakymenko, K.

    2012-12-01

    The results of comprehensive analysis of long-term records of VLF-LF European transmitters by means of Mikhnevo geophysical observatory (Institute of Geospheres Dynamics), SID station A118 (France) and a number of AWESOM receivers are presented. In the previous study (A.A.Egoshin et al., Izvestiya, Physics of the Solid Earth, 2012, Vol. 48, No. 3, pp. 275-286) the results obtained under the minimum solar activity were presented that have shown the link between the lower ionosphere parameters and meteorological fields of the middle atmosphere. The current study expands the evidence to the increased solar activity level as well as the number of receivers, thus allowing more dense coverage of the Europe by the radio paths. Middle atmosphere data under study were provided by the EOS Aura Microwave Limb Sounder. These asynoptic data, in turn, were processed by the space-time spectral analysis on various pressure levels for various window lengths. The results are presented for the spatial structure of wave-like perturbations in the VLF-LF signal strength, which result from the lower ionosphere disturbances on various radio paths. Special short-windowed space-time study was evaluated for the periods of anomalous temporal behavior of the VLF-LF signals and the results of the altitude-latitude mode structures of the geopotential height, neutral temperature, water and ozone constituents are presented. It is shown that the spatial properties of the lower ionosphere can vary significantly at relatively small scale. Moreover, the altitude-latitude mode structures do not coincide in space as well as in time, thus, complicating the lower ionosphere response to the meteorological variations of the middle atmosphere. The analysis of all assembled data proves two main points. At first, it is possible to evaluate synoptic long-term monitoring of the middle atmosphere via the lower ionosphere perturbations as seen by VLF-LF receivers. At second, the theoretical models of the lower

  14. Ionospheric disturbances during November 30-December 1, 1988. IV - Ionospheric disturbances observed by oblique ionospheric sounding network in Japan

    NASA Astrophysics Data System (ADS)

    Igarashi, Kiyoshi; Takeuchi, Tetsuo

    1992-07-01

    The oblique ionospheric-sounding network of the Communications Research Laboratory (CRL) was used to obtain oblique ionograms every 15 minutes during severe ionospheric disturbances from November 30 through December I, 1988. Vertical-sounding HF signals (l to 25 MHz) from Wakkanai, Akita, Yamagawa, and Okinawa were received at Kokubunji. Oblique ionograms on the night of November 30 exhibit scattered and oblique echoes due to anomalous signal propagation as well as normal echoes. Anomalous propagation occurred when the maximum observable frequency (MOF) largely increased. Furthermore, scattered echoes appeared more frequently and with more intensity on the southernmost path (Okinawa-Kokubunji) than on the northernmost one (Wakkanai-Kokubunji).

  15. Ionosphere-Plasmasphere coupling using the ionosphere-plasmasphere-electrodynamics (IPE) model

    NASA Astrophysics Data System (ADS)

    Maruyama, N.; Richards, P. G.; Fedrizzi, M.; Fuller-Rowell, T. J.; Fang, T. W.; Codrescu, M.; Pierrard, V.; Denton, M.

    2015-12-01

    A close connection between ionospheric SEDs and plasmaspheric plumes has been reported during the main phase of magnetic storms in previous studies. The temporal and spatial variation of the connection has not yet been studied in detail, as the plasmas in ionosphere and plasmasphere get redistributed dynamically during various phases of a storm. Furthermore, how the Ionosphere-Plasmasphere coupling depends on the types of the solar wind driving conditions has not yet been studied. A newly developed global three dimensional ionosphere-plasmasphere-electrodynamics (IPE) model is used to address the coupling between the ionosphere and plasmasphere. IPE model has reproduced the Storm Enhanced Density plume feature in TEC being transported into cusp and over the pole, characterized as the Tongue of Ionization (TOI). Furthermore, the same simulation reveals the plasmaspheric plume like structure in the magnetospheric equatorial plane. Our simulations suggest that neither SAPS nor midlatitude SED bulge is essential in reproducing the SED plume-like features. A term analysis of the ion continuity equations in the IPE model has indicated that the SED plume/TOI feature observed in the ionosphere is produced due primarily to a combination of plasma transport and production/loss, which is supportive of previous studies. However, the plasmaspheric plume responds differently to that of the ionospheric plume depending on the various setting of the numerical experiments. The results indicate a need of a careful examination of the relative importance of the plasma transport between the parallel and perpendicular directions to the magnetic field in both the ionosphere and plasmasphere. In this presentation, we will compare how the ionosphere-plasmasphere coupling depends on the solar wind driving conditions for the selected campaign events.

  16. Imaging the topside ionosphere and plasmasphere with ionospheric tomography using COSMIC GPS TEC

    NASA Astrophysics Data System (ADS)

    Pinto Jayawardena, Talini S.; Chartier, Alex T.; Spencer, Paul; Mitchell, Cathryn N.

    2016-01-01

    GPS-based ionospheric tomography is a well-known technique for imaging the total electron content (TEC) between GPS satellites and receivers. However, as an integral measurement of electron concentration, TEC typically encompasses both the ionosphere and plasmasphere, masking signatures from the topside ionosphere-plasmasphere due to the dominant ionosphere. Imaging these regions requires a technique that isolates TEC in the topside ionosphere-plasmasphere. Multi-Instrument Data Analysis System (MIDAS) employs tomography to image the electron distribution in the ionosphere. Its implementation for regions beyond is yet to be seen due to the different dynamics present above the ionosphere. This paper discusses the extension of MIDAS to image these altitudes using GPS phase-based TEC measurements and follows the work by Spencer and Mitchell (2011). Plasma is constrained to dipole field lines described by Euler potentials, resulting in a distribution symmetrical about the geomagnetic equator. A simulation of an empirical plasmaspheric model by Gallagher et al. (1988) is used to verify the technique by comparing reconstructions of the simulation with the empirical model. The Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) is used as GPS receiver locations. The verification is followed by a validation of the modified MIDAS algorithm, where the regions' TEC is reconstructed from COSMIC GPS phase measurements and qualitatively compared with previous studies using Jason-1 and COSMIC data. Results show that MIDAS can successfully image features/trends of the topside ionosphere-plasmasphere observed in other studies, with deviations in absolute TEC attributed to differences in data set properties and the resolution of the images.

  17. Ionospheric Cubeswarm Concept Study: using low-resource instrumentation for truly multipoint in situ ionospheric observations

    NASA Astrophysics Data System (ADS)

    Hampton, D.; Lynch, K. A.; Earle, G. D.; Mannucci, A. J.; Clayton, R.; Fisher, L. E.; Fernandes, P. A.; Roberts, M.; Zettergren, M. D.

    2015-12-01

    Magnetosphere-ionosphere coupling currents close in the nightside lower ionosphere. These spatially inhomogeneous and time varying volume currents are difficult to capture with in situ observations. Our understanding of M-I coupling systems is limited by our understanding of the actual structure of ionospheric current closure. A path forward includes assimilation of a variety of data sets into increasingly capable ionospheric models. While each data set provides only a piece of the picture, the assimilation process allows optimal use of each piece.An important development for the necessary in situ observations involves making them truly multi-point, and therefore, low-resource. For thermal particle observations, the high densities of the lower ionosphere allow the use of low-gain (current-sensing rather than particle-counting) particle sensors. One observational goal is the definition of the actual structure of ionospheric closure currents. This can be approached with a number of different measurement techniques, in tandem with an ionospheric model, since the closure currents need to follow the rules of electrodynamics and current continuity. Low resource thermal plasma sensors such as retarding potential analyzers and drift meters can provide valuable measurements of plasma parameters, including density and plasma flow, without the need for high voltages or deployable boom systems. These low-resource measurements, which can be reproduced on arrays of in situ observation platforms, used in tandem with proper plasma physics interpretation of their signatures in the disturbed observing environment, and as part of an assimilated data set into an ionospheric model, can allow us to progress in our understanding of ionospheric structuring and its effects on auroral coupling. Now, with increasingly capable multipoint arrays of spacecraft, and quantitative 2D-with-time context from cameras and imagery, we are moving toward truly multipoint studies of the system

  18. An Initial Investigation of Ionospheric Gradients for Detection of Ionospheric Disturbances over Turkey

    NASA Astrophysics Data System (ADS)

    Koroglu, Meltem; Arikan, Feza; Koroglu, Ozan

    2015-04-01

    Ionosphere is an ionized layer of earth's atmosphere which affect the propagation of radio signals due to highly varying electron density structure. Total Electron Content (TEC) and Slant Total Electron Content (STEC) are convenient measures of total electron density along a ray path. STEC model is given by the line integral of the electron density between the receiver and GPS satellite. TEC and STEC can be estimated by observing the difference between the two GPS signal time delays that have different frequencies L1 (1575 MHz) and L2 (1227 MHz). During extreme ionospheric storms ionospheric gradients becomes larger than those of quiet days since time delays of the radio signals becomes anomalous. Ionosphere gradients can be modeled as a linear semi-infinite wave front with constant propagation speed. One way of computing the ionospheric gradients is to compare the STEC values estimated between two neighbouring GPS stations. In this so-called station-pair method, ionospheric gradients are defined by dividing the difference of the time delays of two receivers, that see the same satellite at the same time period. In this study, ionospheric gradients over Turkey are computed using the Turkish National Permanent GPS Network (TNPGN-Active) between May 2009 and September 2012. The GPS receivers are paired in east-west and north-south directions with distances less than 150 km. GPS-STEC for each station are calculated using IONOLAB-TEC and IONOLAB-BIAS softwares (www.ionolab.org). Ionospheric delays are calculated for each paired station for both L1 and L2 frequencies and for each satellite in view with 30 s time resolution. During the investigation period, different types of geomagnetic storms, Travelling Ionospheric Disturbances (TID), Sudden Ionospheric Disturbances (SID) and various earthquakes with magnitudes between 3 to 7.4 have occured. Significant variations in the structure of station-pair gradients have been observed depending on location of station-pairs, the

  19. Ionosphere/microwave beam interaction study

    NASA Technical Reports Server (NTRS)

    Gordon, W. E.; Duncan, L. M.

    1978-01-01

    The microwave beam of the Solar Power Satellite (SPS) is predicted to interact with the ionosphere producing thermal runaway up to an altitude of about 100 kilometers at a power density threshold of 12 mW/cm sq (within a factor of two). The operation of the SPS at two frequencies, 2450 and 5800 MHz, is compared. The ionosphere interaction is less at the higher frequency, but the tropospheric problem scattering from heavy rain and hail is worse at the higher frequency. Microwave signals from communication satellites were observed to scintillate, but there is some concern that the uplink pilot signal may be distorted by the SPS heated ionosphere. The microwave scintillations are only observed in the tropics in the early evenings near the equinoxes. Results indicate that large phase errors in the uplink pilot signal can be reduced.

  20. The ionospheres and plasma tails of comets

    NASA Technical Reports Server (NTRS)

    Mendis, D. A.; Ip, W.-H.

    1977-01-01

    The paper reviews the current state of knowledge about cometary plasma (type I) tails and ionospheres. Observational statistics for type I tails are examined along with spectroscopic observations of plasma tails, identified ion species in such tails, and the morphology of cometary plasma tails and ionospheres. Evidence for a strong interaction between comets and the solar wind is evaluated on the basis of observations of plasma-tail orientations, large accelerations of tail structures, and correlations between disturbances in type I tails and solar-wind or geomagnetic disturbances. The use of comets as solar-wind probes is discussed, the nature of comet-solar-wind interactions is investigated, and ionization sources for cometary gases are considered. Hydrodynamic models of comet-solar-wind interaction are summarized, and the structure and ion chemistry of cometary ionospheres are studied. Observations suggesting that significant magnetic fields are associated with comets are briefly reviewed and interpreted.

  1. Ionospheric effects on modern electronic systems

    NASA Astrophysics Data System (ADS)

    Goodman, John M.; Aarons, Jules

    1990-03-01

    A basic overview of ionospheric phenomenology is provided. Some of the modern electronic systems of interest and the extent to which the ionosphere may place limits on design and operation are discussed. The effects of importance to electronic systems are defined, and the effects are discussed by frequency regime: the ELF (less than 3 kHz), VLF (3-30 kHz), and LF (30-300 kHz) bands. Shortwave and earth-space propagation are considered. Special attention is given to systems for which propagation factors are predominantly deleterious; these include satellite communication and navigation systems that operate in the earth-space regime. Special note is made of the fact that the solar maximum is to be reached in 1990-1991 and that maximum ionospheric effects are anticipated during this period, which is predicted to be one of the most active epochs of the last 200 years.

  2. Rocket studies of the lower ionosphere

    NASA Technical Reports Server (NTRS)

    Bowhill, Sidney A.

    1990-01-01

    The earth's ionosphere in the altitude range of 50 to 200 km was investigated by rocket-borne sensors, supplemented by ground-based measurement. The rocket payloads included mass spectrometers, energetic particle detectors, Langmuir probes and radio propagation experiments. Where possible, rocket flights were included in studies of specific phenomena, and the availability of data from other experiments greatly increased the significance of the results. The principal ionospheric phenomena studied were: winter anomaly in radiowave absorption, ozone and molecular oxygen densities, mid-latitude sporadic-E layers, energetic particle precipitation at middle and low latitudes, ionospheric instabilities and turbulence, and solar eclipse effects in the D and E regions. This document lists personnel who worked on the project, and provides a bibliography of resultant publications.

  3. Development of a regional GPS-based ionospheric TEC model for South Africa

    NASA Astrophysics Data System (ADS)

    Opperman, Ben D. L.; Cilliers, Pierre J.; McKinnell, Lee-Anne; Haggard, Ray

    Advances in South African space physics research and related disciplines require better spatial and time resolution ionospheric information than was previously possible with the existing ionosonde network. A GPS-based, variable degree adjusted spherical harmonic (ASHA) model was developed for near real-time regional ionospheric total electron content (TEC) mapping over South Africa. Slant TEC values along oblique GPS signal paths are quantified from a network of GPS receivers and converted to vertical TEC by means of the single layer mapping function. The ASHA model coefficients and GPS differential biases are estimated from vertical TEC at the ionospheric pierce points and used to interpolate TEC at any location within the region of interest. Diurnal TEC variations with one minute time resolution and time-varying 2D regional TEC maps are constructed. In order to validate the ASHA method, simulations with an IRI ionosphere were performed, while the ASHA results from actual data were compared with two independent GPS-based methodologies and measured ionosonde data.

  4. Impacts of Space Weather Effects on the Ionospheric Vertical Total Electron Content

    NASA Astrophysics Data System (ADS)

    Hinrichs, Johannes; Bothmer, Volker; Mrotzek, Niclas; Venzmer, Malte; Erdogan, Eren; Dettmering, Denise; Limberger, Marco; Schmidt, Michael; Seitz, Florian; Börger, Klaus; Brandert, Sylvia; Görres, Barbara; Kersten, Wilhelm F.

    2016-04-01

    Space weather effects on the terrestrial ionospheric vertical total electron content (VTEC) are caused by solar EUV- and X-Ray emissions, solar wind streams and coronal mass ejections (CMEs), amongst other processes. They can lead to major disturbances of telecommunication and navigation systems. Accurately predicting the global VTEC distribution is thus of utmost importance for our societal infrastructure. Here we present results obtained within the German space situational awareness project OPTIMAP (OPerational Tool for Ionosphere Mapping And Prediction) through analyzing the solar effects on the global and regional distribution as well as on the temporal variation of the ionospheric VTEC. For the state-of-the-art analysis in the OPTIMAP project, key data from the GOES, SDO, ACE, SOHO, Proba2 and STEREO missions are analysed together with ground based parameters such as the F10.7 index. The ionospheric data are taken from global VTEC-maps provided by the International GNSS Service (IGS). The results will be used as input for the development of an improved operational VTEC forecast service providing forecasts up to five days in advance.

  5. Topside ionospheric response to solar EUV variability

    NASA Astrophysics Data System (ADS)

    Anderson, Phillip C.; Hawkins, Jessica M.

    2016-02-01

    We present an analysis of 23 years of thermal plasma measurements in the topside ionosphere from the Defense Meteorological Satellite Program (DMSP) spacecraft. The H+/O+ ratio and density vary dramatically with the solar cycle; cross-correlation coefficients between E10.7 and the daily averaged densities are greater than 0.85. The ionospheric parameters also vary dramatically with season, particularly at latitudes away from the equator where the solar zenith angle varies greatly with season. There are also 27 day solar rotation periodicities in the density, associated with periodicities in the directly measured solar EUV flux. Empirical orthogonal function analysis captures over 95% of the variation in the density in the first two principal components. The first principal component (PC1) is clearly associated with the solar EUV while the second principal component (PC2) is clearly associated with the solar zenith angle variation. The magnitude of the variation of the response of the topside ionosphere to solar EUV variability is shown to be closely related to the ionospheric composition. This is interpreted as the result of the effect of composition on the scale height in the topside ionosphere and the "pivot effect" in which the variation in density near the F2 peak is amplified by a factor of e at an altitude a scale height above the F2 peak. When the topside ionosphere is H+ dominated during solar minimum, DMSP may be much less than a scale height above the F2 peak while during solar maximum, when it is O+ dominated, DMSP may be several scale heights above the F2 peak.

  6. GNSS data filtering optimization for ionospheric observation

    NASA Astrophysics Data System (ADS)

    D'Angelo, G.; Spogli, L.; Cesaroni, C.; Sgrigna, V.; Alfonsi, L.; Aquino, M. H. O.

    2015-12-01

    In the last years, the use of GNSS (Global Navigation Satellite Systems) data has been gradually increasing, for both scientific studies and technological applications. High-rate GNSS data, able to generate and output 50-Hz phase and amplitude samples, are commonly used to study electron density irregularities within the ionosphere. Ionospheric irregularities may cause scintillations, which are rapid and random fluctuations of the phase and the amplitude of the received GNSS signals. For scintillation analysis, usually, GNSS signals observed at an elevation angle lower than an arbitrary threshold (usually 15°, 20° or 30°) are filtered out, to remove the possible error sources due to the local environment where the receiver is deployed. Indeed, the signal scattered by the environment surrounding the receiver could mimic ionospheric scintillation, because buildings, trees, etc. might create diffusion, diffraction and reflection. Although widely adopted, the elevation angle threshold has some downsides, as it may under or overestimate the actual impact of multipath due to local environment. Certainly, an incorrect selection of the field of view spanned by the GNSS antenna may lead to the misidentification of scintillation events at low elevation angles. With the aim to tackle the non-ionospheric effects induced by multipath at ground, in this paper we introduce a filtering technique, termed SOLIDIFY (Standalone OutLiers IDentIfication Filtering analYsis technique), aiming at excluding the multipath sources of non-ionospheric origin to improve the quality of the information obtained by the GNSS signal in a given site. SOLIDIFY is a statistical filtering technique based on the signal quality parameters measured by scintillation receivers. The technique is applied and optimized on the data acquired by a scintillation receiver located at the Istituto Nazionale di Geofisica e Vulcanologia, in Rome. The results of the exercise show that, in the considered case of a noisy

  7. Diurnal variations of Titan's ionosphere

    NASA Astrophysics Data System (ADS)

    Cui, J.; Galand, M.; Yelle, R. V.; Vuitton, V.; Wahlund, J.-E.; Lavvas, P. P.; Müller-Wodarg, I. C. F.; Cravens, T. E.; Kasprzak, W. T.; Waite, J. H.

    2009-06-01

    We present our analysis of the diurnal variations of Titan's ionosphere (between 1000 and 1300 km) based on a sample of Ion Neutral Mass Spectrometer (INMS) measurements in the Open Source Ion (OSI) mode obtained from eight close encounters of the Cassini spacecraft with Titan. Although there is an overall ion depletion well beyond the terminator, the ion content on Titan's nightside is still appreciable, with a density plateau of ˜700 cm-3 below ˜1300 km. Such a plateau is a combined result of significant depletion of light ions and modest depletion of heavy ones on Titan's nightside. We propose that the distinctions between the diurnal variations of light and heavy ions are associated with their different chemical loss pathways, with the former primarily through “fast” ion-neutral chemistry and the latter through “slow” electron dissociative recombination. The strong correlation between the observed night-to-day ion density ratios and the associated ion lifetimes suggests a scenario in which the ions created on Titan's dayside may survive well to the nightside. The observed asymmetry between the dawn and dusk ion density profiles also supports such an interpretation. We construct a time-dependent ion chemistry model to investigate the effect of ion survival associated with solid body rotation alone as well as superrotating horizontal winds. For long-lived ions, the predicted diurnal variations have similar general characteristics to those observed. However, for short-lived ions, the model densities on the nightside are significantly lower than the observed values. This implies that electron precipitation from Saturn's magnetosphere may be an additional and important contributor to the densities of the short-lived ions observed on Titan's nightside.

  8. Ionospheric tomography using the FORTE satellite

    SciTech Connect

    Murphy, T.C.

    1993-08-01

    The possibility of obtaining ionospheric profile data via tomographic techniques has elicited considerable interest in recent years. The input data for the method is a set of total electron content measurements along intersecting lines of sight which form a grid. This can conveniently be provided by a fast-moving satellite with a VHF beacon which will generate the multiple paths needed for effective tomography. Los Alamos and Sandia National Laboratories will launch and operate the FORTE satellite for the US Department of Energy, with launch scheduled in 1995. FORTE will provide such a beacon. Additionally, wideband VHF receivers aboard the satellite will allow corraborative measurements of ionospheric profile parameters in some cases.

  9. Using DORIS measurements for ionosphere modeling

    NASA Astrophysics Data System (ADS)

    Dettmering, Denise; Schmidt, Michael; Limberger, Marco

    2013-04-01

    Nowadays, most of the ionosphere models used in geodesy are based on terrestrial GNSS measurements and describe the Vertical Total Electron Content (VTEC) depending on longitude, latitude, and time. Since modeling the height distribution of the electrons is difficult due to the measurement geometry, the VTEC maps are based on the the assumption of a single-layer ionosphere. Moreover, the accuracy of the VTEC maps is different for different regions of the Earth, because the GNSS stations are unevenly distributed over the globe and some regions (especially the ocean areas) are not very well covered by observations. To overcome the unsatisfying measurement geometry of the terrestrial GNSS measurements and to take advantage of the different sensitivities of other space-geodetic observation techniques, we work on the development of multi-dimensional models of the ionosphere from the combination of modern space-geodetic satellite techniques. Our approach consists of a given background model and an unknown correction part expanded in terms of B-spline functions. Different space-geodetic measurements are used to estimate the unknown model coefficients. In order to take into account the different accuracy levels of the observations, a Variance Component Estimation (VCE) is applied. We already have proven the usefulness of radio occultation data from space-borne GPS receivers and of two-frequency altimetry data. Currently, we test the capability of DORIS observations to derive ionospheric parameters such as VTEC. Although DORIS was primarily designed for precise orbit computation of satellites, it can be used as a tool to study the Earth's ionosphere. The DORIS ground beacons are almost globally distributed and the system is on board of various Low Earth Orbiters (LEO) with different orbit heights, such as Jason-2, Cryosat-2, and HY-2. The last generation of DORIS receivers directly provides phase measurements on two frequencies. In this contribution, we test the DORIS

  10. Ionospheric effects of solar x-rays

    NASA Astrophysics Data System (ADS)

    Danskin, Donald

    2016-07-01

    The ionospheric absorption of radio waves caused by solar x-ray bursts is measured directly by Riometers from the Canada Riometer Array. The absorption is found to be proportional to the square root of the flux intensity of the X-ray burst with time delays of 18-20 seconds between the peak X-ray emission and absorption in the ionosphere. A detailed analysis showed that some X-ray flares during 2011-2014 are more effective at producing absorption than others. Solar longitude of X-ray burst for several X-class flares shows no consistent pattern of enhancement in the absorption.

  11. Nonstationary coupling between the magnetosphere and ionosphere

    NASA Technical Reports Server (NTRS)

    Goertz, C. K.

    1983-01-01

    Resonant coupling of large scale MHD waves to small scale kinetic Alfven waves is described. The small-scale waves drive field-aligned currents tens of micro A/sqm into the ionosphere with accelerated electrons of energies a few keV. Bounce resonant interaction with standing kinetic Alfven waves may precipitate higher energy electrons. East-west aligned arcs should be thinnest and move polewards relative to the plasma at the poleward edge. Downward travelling wave packets trap electrons between the wave front and the ionosphere whose energy is below the peak energy and whose phase-space density should be independent of the peak energy.

  12. Does the Precipitation of Solar Wind Plasma Cause the Ionospheric Upwellings Detected by MARSIS on the Dayside of Mars?

    NASA Astrophysics Data System (ADS)

    Dieval, C.; Morgan, D. D.; Andrews, D. J.; Duru, F.; Gurnett, D. A.

    2014-12-01

    The Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) onboard the Mars Express spacecraft possesses an ionospheric mode, which is used for local and remote sounding measurements of the Martian topside ionosphere. Ideally, the sounding pulse transmitted by MARSIS gives a vertical reflection from the horizontally stratified ionosphere, down to the ionospheric peak. In practice, this is usually the case, however oblique reflections are also detected. These oblique reflections are often found in regions where the remanent crustal magnetic field is nearly vertical and the sources of reflections are often at a higher apparent altitude than the surrounding ionosphere for the same electron density level. There are recurring observations of such ionospheric upwellings during repeated passes of Mars Express above certain regions over time periods of tens of days. An increased ionospheric scale height seems to create these plasma bulges. A possible cause is a localized heating of the neutral atmosphere due to the entrance of solar wind plasma through the magnetic cusps. We test this explanation by using in situ measurements of electron energy distributions made by the Analyzer of Space Plasmas and Energetic Atoms (ASPERA-3) onboard Mars Express. The statistical study considers dayside oblique echoes (solar zenith angle ≤ 90°) with spacecraft altitude ≤1100 km, for orbits with sufficient MARSIS data coverage and corresponding to a criterion of repetitive passes above a given region. We keep only oblique echoes which are no further below than 10 km in apparent altitude compared to the surrounding ionosphere (most of the cases), to ensure the echoes most likely come from near the vertical direction, at the time of closest approach. Finally we take the oblique echoes with simultaneous ASPERA-3 data, with short time intervals (up to 2 minutes) before and after the time of closest approach. This leaves 761 oblique echoes. The intervals are then manually

  13. Ionospheric plasma dynamics and instability causedby upward currents above thunderstorms

    NASA Astrophysics Data System (ADS)

    Kuo, C. L.; Lee, L. C.

    2015-12-01

    Thunderstorms are electric generators, which drive currents upwardly into the ionosphere. In thispaper, we examine the effects of thunderstorm upward current on the ionosphere. We use a thunderstormmodel to calculate the three-dimensional current flows in the atmosphere and to simulate the upward currentabove the thunderstormwith the tripole-charge structure. The upward current flows into the ionosphere, whilethe associated electric field causes the plasma E × B motion. The caused plasma motion redistributes theplasma density, leading to ionospheric density variations. In the nighttime ionosphere, the E × B motion mayalso cause the formation of plasma bubbles.

  14. Atmosphere-Ionosphere coupling -manifestations in the low latitude ionosphere

    NASA Astrophysics Data System (ADS)

    Pant, Tarun; Sumod, S. G.; Vineeth, C.; Thampi, Smitha; Jose, Lijo; Kishore Kumar, K.; Sreeja, V.; Manju, G.; Ravindran, Sudha; Sridharan, R.; Niranjan, K.; Dabas, R. S.; Das, Rupesh; Alex, S.; Tiwari, Diwakar

    As is known, the extent of the impact of the geomagnetic storms on the vertical coupling of the MLTI regions, especially over low latitudes, is not very well understood. To investigate this aspect of the MLTI coupling, a multi-instrument campaign was conducted during March-April 2006, a period when a few moderate geomagnetic storms occurred, in India. During the campaign period, a Multiwavelength dayglow Photometer (MWDPM) was operated along with ionosonde, magnetometer and a meteor radar from Trivandrum (8.5oN, 76.5oE, 0.5oN diplat.), the dip equatorial station in India. The MWDPM provided the optically estimated daytime mesopause temperature while the meteor radar measured the wind and temperature in the lower thermosphere-upper mesosphere region. The MWDPM also provided the near simultaneous measurements on the thermospheric dayglow (O1D 630 nm). GPS satellite based measurements of total electron content (TEC) over a number of locations in India provided the latitudinal distribution of ionization. The new and important observations made during this campaign are the following: (a) The optically measured daytime mesopause temperature shows a prominent decrease in the afternoon hours during the initial and main phases of the geomagnetic storms. This observation, perhaps, is new and unique. (b) Quasi 2 and 5 day oscillations appear to be modulating the mesopause temperature indicating the presence of planetary waves therein. The wind and temperature variability in the lower thermosphere, obtained using the collocated radar further corroborate with these optical measurements and establish the origin of these waves to be in the lower atmosphere. (c) The Equatorial Electrojet (EEJ) induced magnetic field on the ground also exhibit similar variability indicating the presence of these planetary scale oscillations, also in the ionospheric dynamo region. (d) The simultaneously measured thermospheric dayglow (O1D 630 nm) also shows an intensification of a quasi 2-and 5-day

  15. Field-aligned electron density irregularities near 500 km. Equator to polar cap topside sounder Z mode observations

    NASA Technical Reports Server (NTRS)

    Benson, R. F.

    1984-01-01

    In addition to spread F, evidence for field-aligned electron density irregularities is commonly observed on Alouette 2 topside sounder ionograms recorded near perigee (500 km). This evidence is provided by distinctive signal returns from sounder-generated Z mode waves. At low latitudes these waves become guided in wave ducts caused by field-aligned electron density irregularities and give rise to strong long-duration echoes. At high latitudes, extending well into the polar cap, these Z mode waves (and stimulated electrostatic waves at the plasma frequency) produce a series of vertical bars on the ionogram display as the satellite traverses discrete field-aligned density structures. The radio frequency (RF) noise environment to be expected in the 400 to 500 km altitude region from low to high latitudes was examined by analyzing perigee Alouette 2 topside sounder data. All observed noise bands were scaled on nearly 200 topside sounder ionograms recorded near perigee at low, mid, and high latitude telemetry stations. The minimum and maximum frequencies of each noise band were entered into a data base or compuer analysis. The signals of primary interest in the perigee study were found to be sounder-generated.

  16. Results From YOUTHSAT - Indian experiment in earths thermosphere-ionosphere region.

    NASA Astrophysics Data System (ADS)

    Tarun Kumar, Pant

    It is known that the characterization and modeling of the ionosphere/thermosphere necessitates a comprehensive understanding of the various processes prevailing therein. India’s first, indigenous and dedicated aeronomy satellite 'YOUTHSAT' carrying two Indian payloads - RaBIT (Radio Beacon for Ionospheric Tomography), and LiVHySI (Limb Viewing Hyper Spectral Imager) and one Russian payload SOLRAD, was conceived primarily to address to this aspect and launched on April 20, 2011 in an 818 Km polar orbit from SHAR on ISRO launch vehicle PSLV. The payloads RaBIT and LiVHySI were designed specifically to observe the ionised and neutral components of the upper atmosphere respectively. YOUTHSAT is a small satellite quiet advanced in its class having all the functionalities which are normally associated with a bigger satellite. The rising phase of the 23rd solar cycle was considered to be the best window for various observations from onboard YOUTHSAT. As an Indo Russian endeavour, it was launched with an objective of investigating the terrestrial upper atmosphere vis-a-vis the activity on the sun. RaBIT, an ISRO venture, is a radio beacon emitting coherent radio signal at 150 and 400 MHz frequencies. These are received using a chain of five receivers deployed along the ~76oE meridian at Trivandrum, Bangalore, Hyderabad, Bhopal and Delhi. The receivers estimate the Total Electron Content (TEC) of the ionosphere through the relative phase change of the received radio signals. The TECs thus estimated near simultaneously, are used to generate a tomogram, which gives an Altitude-Latitude distribution of the ionospheric electron density. For YOUTHSAT configuration, the tomogram covers the ionosphere from a few degrees (5-6o) south of Trivandrum to about 3-4o north of Delhi depending upon the satellite elevation. The RaBIT tomography network is by far the longest network existing anywhere in the world, and is unique therefore. Through RaBIT, a unique dataset leading to

  17. Ionospheric effects during severe space weather events seen in ionospheric service data products

    NASA Astrophysics Data System (ADS)

    Jakowski, Norbert; Danielides, Michael; Mayer, Christoph; Borries, Claudia

    Space weather effects are closely related to complex perturbation processes in the magnetosphere-ionosphere-thermosphere systems, initiated by enhanced solar energy input. To understand and model complex space weather processes, different views on the same subject are helpful. One of the ionosphere key parameters is the Total Electron Content (TEC) which provides a first or-der approximation of the ionospheric range error in Global Navigation Satellite System (GNSS) applications. Additionally, horizontal gradients and time rate of change of TEC are important for estimating the perturbation degree of the ionosphere. TEC maps can effectively be gener-ated using ground based GNSS measurements from global receiver networks. Whereas ground based GNSS measurements provide good horizontal resolution, space based radio occultation measurements can complete the view by providing information on the vertical plasma density distribution. The combination of ground based TEC and vertical sounding measurements pro-vide essential information on the shape of the vertical electron density profile by computing the equivalent slab thickness at the ionosonde station site. Since radio beacon measurements at 150/400 MHz are well suited to trace the horizontal structure of Travelling Ionospheric Dis-turbances (TIDs), these data products essentially complete GNSS based TEC mapping results. Radio scintillation data products, characterising small scale irregularities in the ionosphere, are useful to estimate the continuity and availability of transionospheric radio signals. The different data products are addressed while discussing severe space weather events in the ionosphere e.g. events in October/November 2003. The complementary view of different near real time service data products is helpful to better understand the complex dynamics of ionospheric perturbation processes and to forecast the development of parameters customers are interested in.

  18. A simplified traveling ionospheric disturbance (TID) specification model based on TID Detector Built In Texas (TIDDBIT) and GPS total electron content (TEC) measurements.

    NASA Astrophysics Data System (ADS)

    Duly, T. M.; Crowley, G.; Azeem, I.

    2015-12-01

    There is currently a great deal of interest in Traveling Ionospheric Disturbances (TIDs) from both an observational and modeling perspective, especially as they apply to operational systems that rely on nowcasting the ionospheric state. ASTRA has developed a new observational system to measure TID characteristics called TIDDBIT (TID Detector Built in Texas). TIDDBIT is a fully digital HF Doppler sounder that uses CW signals across a spaced array. TIDDBIT systems have been deployed in Texas, Virginia, Florida, Hawaii, and Peru. TIDDBIT measures the entire wave packet, including the horizontal and vertical phase propagation speeds as a function of TID period from the acoustic (1-min) to the gravity wave (10-90 min) part of the spectrum. It is desirable to be able to use these data to specify the TID structure not only at the measurement height, but to extend it in 3D to greater and lower heights, and beyond the immediate vicinity of the TIDDBIT system. We present a simplified model to specify TIDs based on the ion continuity equation for plasma density (Hooke 1970). Linearity of the neutral wind perturbations is assumed, and the different spectral components of the measured TID perturbations are added linearly. We use TID observations from the TIDDBIT sounder in Virginia and Peru as input into the model, and develop a 4D regional specification (spanning ~500 x 500 km in the horizontal direction and 90-1000 km altitude range) of both the perturbed electron density and the perturbed neutral wind from the corresponding atmospheric gravity wave (AGW). The model is also applied to TID measurements derived by GPS TEC measurements from the continental United States during the 11 March 2011 Tohoku Earthquake to study the theoretical launch angle of AGWs from the west coast of the United States.

  19. Innovative development and application of models for weakly ionized ionospheric plasmas. Final report, 15 May 1990-30 November 1993

    SciTech Connect

    Eccles, J.V.; Hingst, J.; Armstrong, R.

    1993-11-01

    Artificial modifications of the ionosphere through chemical releases and ionospheric heating experiments are examined with models of chemistry and transport to advance understanding of ion chemistry of the upper atmosphere. The specific releases investigated were the SF6 released of the CRRES-at-Kwajalein rocket campaign and the CO2 releases of the Red Air I program. Both the SF6 and CO2 releases experienced freezing or clustering of the molecules. This must be accounted for in the composition and airglow observations. In addition, HF heating effects in the E and F region were examined through modeling of energy deposition and resulting chemistry. NO sub x production in a HF ionospheric heater beam is estimated and compared with natural sources of NO sub x. Global effects of HF operation are very small but the local effects can be large enough to permit observable modulation to this environment.

  20. IMAGE Observations of Sounder Stimulated and Naturally Occurring Fast Z mode Cavity Noise

    NASA Astrophysics Data System (ADS)

    Sonwalkar, V. S.; Taylor, C.; Reddy, A.

    2015-12-01

    We report first observations of sounder stimulated and naturally occurring fast Z mode (ZM) cavity noise detected by the Radio Plasma Imager (RPI) on the IMAGE satellite. The fast Z mode cavity noise is a banded, structure-less radio emission trapped inside fast Z mode cavities, which are characterized by a minimum (fz,min) in fast Z mode cut-off frequency (fz) along a geomagnetic field line [Gurnett et al., JGR, 1983]. Fast Z mode waves reflect at fz ~ f, where f is the wave frequency. Waves in the frequency range fz,min < f < fz,max, where fz,max is the maximum fz above fz,min altitude, are trapped within the cavity as they bounce back and forth between reflection altitudes (fz ~ f) above and below the fz,min altitude. These trapped waves will be observed by a satellite passing through the cavity. The observed cavity noise lower cutoff is at the local Z mode cut-off frequency (fz,Sat) and the upper cut-off is presumably close to fz,max. The cavity noise is observed typically inside the plasmasphere. Comparison of cavity noise as observed on the plasmagram obtained during active sounding with that observed on the dynamic spectra obtained from the interspersed passive wave measurements indicate that the cavity noise is either stimulated by transmissions from the sounder (RPI) or is of natural origin. The sounder stimulated noise is often accompanied by fast Z mode echoes. The naturally occurring cavity noise is observed on both the plasmagram and the dynamic spectra. We believe the stimulated cavity noise is generated due to scattering from small-scale irregularities of waves transmitted by RPI. One potential candidate for the source of naturally occurring Z mode cavity noise is the ring current electrons that can generate fast ZM waves via higher order cyclotron resonance [Nishimura et al., Earth Planets Space, 2007].

  1. Development of Level 3 (gridded) products for the Atmospheric Infrared Sounder (AIRS)

    NASA Technical Reports Server (NTRS)

    Granger, Stephanie L.; Leroy, Stephen S.; Manning, Evan M.; Fetzer, Eric J.; Oliphant, Robert B.; Braverman, Amy; Lee, Sung-Yung; Lambrigtsen, Bjom H.

    2004-01-01

    The Atmospheric Infrared Sounder (AIRS) sounding system is a suite of infrared and microwave instruments flown as part of NASA's Earth Observing System (EOS) onboard the Aqua platform. The AIRS dataset provides a daily, global view of Earth processes at a finer vertical resolution than ever before. However, analysis of the AIRS data is a daunting task given the sheer volume and complexity of the data. The volume of data produced by the EOS project is unprecedented; the AIRS project alone will produce many terabytes of data over the lifetime of the mission. This paper describes development of AIRS Level 3 data products that will help to alleviate problems of access and usability.

  2. A method for the removal of ray refraction effects in multibeam echo sounder systems

    NASA Astrophysics Data System (ADS)

    Ding, Jisheng; Zhou, Xinghua; Tang, Qiuhua

    2008-05-01

    To a multibeam echo sounder system (MBES), under water sound refraction plays an important role in depth measurement accuracy, and errors in sound velocity profile lead to inaccuracies in the measured depth (especially for outer beams). A method is developed to estimate the sound velocity profile based on the depth measured by vertical beam. Using this depth and other parameters, such as t (sound pulse propagation time), θ (beam inclination angle), etc. We can estimate a simple sound velocity profile with which the depth error has been reduced. This method has been tested with a real dataset acquired in the East China Sea.

  3. Phase Change Material for Temperature Control of Imager or Sounder on GOES Type Satellites in GEO

    NASA Technical Reports Server (NTRS)

    Choi, Michael K.

    2014-01-01

    This paper uses phase change material (PCM) in the scan cavity of an imager or sounder on satellites in geostationary orbit (GEO) to maintain the telescope temperature stable. When sunlight enters the scan aperture, solar heating causes the PCM to melt. When sunlight stops entering the scan aperture, the PCM releases the thermal energy stored to keep the components in the telescope warm. It has no moving parts or bimetallic springs. It reduces heater power required to make up the heat lost by radiation to space through the aperture. It is an attractive thermal control option to a radiator with a louver and a sunshade.

  4. Assimilation of hyperspectral infrared sounder radiances under cloudy skies in a regional NWP model

    NASA Astrophysics Data System (ADS)

    Wang, Pei

    Satellite measurements are an important source of global observations in support of numerical weather prediction (NWP). The assimilation of satellite radiances under clear skies has greatly improved NWP forecast scores. Since most of the data assimilation models are used for the clear radiances assimilation, an important step for satellite radiances assimilation is the clear location detection. Good clear detection could effectively remove the cloud contamination and keep the clear observations for assimilation. In this dissertation, a new detection method uses collocated high spatial resolution imager data onboard the same platform as the satellite sounders to help IR sounders subpixel cloud detection, such as the Atmospheric Infrared Sounder (AIRS) and Moderate Resolution Imaging Spectroradiometer (MODIS), the Crosstrack Infrared Sounder (CrIS) and Visible Infrared Imaging Radiometer Suite (VIIRS). The MODIS cloud mask provides a level of confidence for the observed skies to help AIRS Field-of-View (FOVs) cloud detection. By reducing the cloud contamination, a cold bias in the temperature field and a wet bias in the moisture field are corrected for the atmospheric analysis fields. These less cloud affected analysis fields further improve hurricane track and intensity forecast. The availability of satellite observations that can be assimilated in the model is limited if only the clear radiances are assimilation. An effective way to use the thermodynamic information under partially cloudy regions is to assimilate the "cloud-cleared" radiances (CCRs); CCRs are also called clear equivalent radiances. Because the CCRs are the equivalent clear radiances from the partially cloudy FOVs, they can be directly assimilated into the current data assimilation models without modifications. The AIRS CCRs are assimilated and compared with the AIRS using stand-alone cloud detection and collocated cloud detection. The assimilation of AIRS cloud-cleared radiances directly affects

  5. Comparison of airborne lidar measurements with 420 kHz echo-sounder measurements of zooplankton.

    PubMed

    Churnside, James H; Thorne, Richard E

    2005-09-10

    Airborne lidar has the potential to survey large areas quickly and at a low cost per kilometer along a survey line. For this reason, we investigated the performance of an airborne lidar for surveys of zooplankton. In particular, we compared the lidar returns with echo-sounder measurements of zooplankton in Prince William Sound, Alaska. Data from eight regions of the Sound were compared, and the correlation between the two methods was 0.78. To obtain this level of agreement, a threshold was applied to the lidar return to remove the effects of scattering from phytoplankton. PMID:16161666

  6. LASA (Lidar Atmospheric Sounder and Altimeter) Earth Observing System. Volume 2D: Instrument Panel Report

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The Earth Observing System (Eos) will provide an ideal forum in which the stronly synergistic characteristics of the lidar systems can be used in concert with the characteristics of a number of other sensors to better understand the Earth as a system. Progress in the development of more efficient and long-lasting laser systems will insure their availability in the Eos time frame. The necessary remote-sensing techniques are being developed to convert the Lidar Atmospheric Sounder and Altimeter (LASA) observations into the proper scientific parameters. Each of these activities reinforces the promise that LASA and GLRS will be a reality in the Eos era.

  7. Thermal Tides in the Martian Middle Atmosphere as Seen by the Mars Climate Sounder

    PubMed Central

    Lee, C.; Lawson, W. G.; Richardson, M. I.; Heavens, N. G.; Kleinböhl, A.; Banfield, D.; McCleese, D. J.; Zurek, R.; Kass, D.; Schofield, J. T.; Leovy, C. B.; Taylor, F. W.; Toigo, A. D.

    2016-01-01

    The first systematic observations of the middle atmosphere of Mars (35km–80km) with the Mars Climate Sounder (MCS) show dramatic patterns of diurnal thermal variation, evident in retrievals of temperature and water ice opacity. At the time of writing, the dataset of MCS limb retrievals is sufficient for spectral analysis within a limited range of latitudes and seasons. This analysis shows that these thermal variations are almost exclusively associated with a diurnal thermal tide. Using a Martian General Circulation Model to extend our analysis we show that the diurnal thermal tide dominates these patterns for all latitudes and all seasons. PMID:27630378

  8. Thermal Tides in the Martian Middle Atmosphere as Seen by the Mars Climate Sounder

    PubMed Central

    Lee, C.; Lawson, W. G.; Richardson, M. I.; Heavens, N. G.; Kleinböhl, A.; Banfield, D.; McCleese, D. J.; Zurek, R.; Kass, D.; Schofield, J. T.; Leovy, C. B.; Taylor, F. W.; Toigo, A. D.

    2016-01-01

    The first systematic observations of the middle atmosphere of Mars (35km–80km) with the Mars Climate Sounder (MCS) show dramatic patterns of diurnal thermal variation, evident in retrievals of temperature and water ice opacity. At the time of writing, the dataset of MCS limb retrievals is sufficient for spectral analysis within a limited range of latitudes and seasons. This analysis shows that these thermal variations are almost exclusively associated with a diurnal thermal tide. Using a Martian General Circulation Model to extend our analysis we show that the diurnal thermal tide dominates these patterns for all latitudes and all seasons.

  9. The Atmospheric Infrared Sounder on the Earth Observing System - In-orbit spectral calibration

    NASA Technical Reports Server (NTRS)

    Aumann, H. H.

    1991-01-01

    The Atmospheric Infrared Sounder (AIRS) is a facility instrument on the Earth Observing System (EOS). The ability of AIRS to provide accurate temperature and moisture soundings with high vertical resolution depends critically on a very accurate spectral calibration. The routine in-orbit spectral calibration is accomplished with a Fabry-Perot plate with a fixed spacing of 360 microns. This paper discusses design, Signal-to-Noise, and temperature and alignment stability constraints which have to be met to achieve the required spectral calibration accuracy.

  10. Microwave limb sounder measurement of stratospheric SO[sub 2] from the Mt. Pinatubo Volcano

    SciTech Connect

    Read, W.G.; Froidevaux, L.; Waters, J.W. )

    1993-06-18

    This paper presents measurements of sulfur dioxide densities in the stratosphere made by the microwave limb sounder (MLS) on the upper atmosphere research satellite. The SO[sub 2] came from the eruption of the Mt Pinatubo volcano which injected a massive quantity of gas into the stratosphere. The MLS is able to measure the decay rate of the gas densities based on its extended time and spatial coverage, and from this decay rate infer the OH densities in the stratosphere, since OH is the major reactive species which converts the SO[sub 2] into sulfuric acid.

  11. Ionospheric precursors for crustal earthquakes in Italy

    NASA Astrophysics Data System (ADS)

    Perrone, L.; Korsunova, L. P.; Mikhailov, A. V.

    2010-04-01

    Crustal earthquakes with magnitude 6.0>M≥5.5 observed in Italy for the period 1979-2009 including the last one at L'Aquila on 6 April 2009 were considered to check if the earlier obtained relationships for ionospheric precursors for strong Japanese earthquakes are valid for the Italian moderate earthquakes. The ionospheric precursors are based on the observed variations of the sporadic E-layer parameters (h'Es, fbEs) and foF2 at the ionospheric station Rome. Empirical dependencies for the seismo-ionospheric disturbances relating the earthquake magnitude and the epicenter distance are obtained and they have been shown to be similar to those obtained earlier for Japanese earthquakes. The dependences indicate the process of spreading the disturbance from the epicenter towards periphery during the earthquake preparation process. Large lead times for the precursor occurrence (up to 34 days for M=5.8-5.9) tells about a prolong preparation period. A possibility of using the obtained relationships for the earthquakes prediction is discussed.

  12. The ionosphere and upper atmosphere of Venus

    NASA Technical Reports Server (NTRS)

    Kumar, S.

    1975-01-01

    A summary is presented of current understanding of the upper atmosphere and ionosphere of Venus and its interaction with the solar wind, based on data from the Mariner 5 and Mariner 10 fly-bys and on far UV spectra obtained in rocket experiments. The major constituent of the upper atmosphere is CO2. Minor constituents include H, He, O, C, and CO and probably N2, Cl, and S. Although the thermal escape rate is only about 10,000/sq cm/sec, the H content in the exosphere appears to be highly variable. A prominent peak in the ionosphere profile near 140 km, appearing both on the day and nightside, is identified as an F(1) layer. An E layer and possibly an F(2) layer are present at 125 and 170 km, respectively. The dayside ionosphere may be explained in terms of the absorption of solar radiation by CO2, O, and He. The transport of ions from day to nightside may be important in the formation of the nightside ionosphere; an additional source may be needed to explain the nightside E layer. There is observational evidence that the solar wind interacts directly with the Venusian atmosphere, resulting in the formation of a bow shock. This may in part be explained by a balance at the ionopause between the solar wind ram pressure and the planetary plasma pressure.

  13. Phase perturbation measurements through a heated ionosphere

    NASA Technical Reports Server (NTRS)

    Frey, A.; Gordon, W. E.

    1982-01-01

    High frequency radiowaves incident on an overdense (i.e., HF-frequency penetration frequency) ionosphere produce electron density irregularities. The effect of such ionospheric irregularities on the phase of UHF-radiowaves was determined. For that purpose the phase of radiowaves originating from celestial radio sources was observed with two antennas. The radiosources were chosen such that the line of sight to at least one of the antennas (usually both) passed through the modified volume of the ionosphere. Observations at 430 MHz and at 2380 MHz indicate that natural irregularities have a much stronger effect on the UHF phase fluctuations than the HF-induced irregularities for presently achieved HF-power densities of 20-80 uW/sq m. It is not clear whether some of the effects observed are the result of HF-modification of the ionosphere. Upper limits on the phase perturbations produced by HF-modification are 10 deg at 2380 MHz and 80 deg at 430 MHz.

  14. Ionosphere-thermosphere space weather issues.

    NASA Astrophysics Data System (ADS)

    Schunk, R. W.; Sojka, J. J.

    1996-10-01

    Weather disturbances in the ionosphere-thermosphere system can have a detrimental effect on both ground-based and space-based systems. Because of this impact and because this field has matured, it is now appropriate to develop specification and forecast models, with the aim of eventually predicting the occurrence, duration, and intensity of weather effects. As part of the new National Space Weather Program, the CEDAR community will focus on science issues concerning space weather, and this tutorial/review is an expanded version of a tutorial presentation given at the recent CEDAR annual meeting. The tutorial/review provides a brief discussion of weather disturbances and features, the causes of weather, and the status of weather modeling. The features and disturbances discussed include plasma patches, boundary and auroral blobs, Sun-aligned polar cap arcs, the effects of traveling convection vortices and SAID events, the lifetime of density structures, sporadic-E and intermediate layers, spread F and equatorial plasma bubbles, geomagnetic storms and substorms, traveling ionospheric disturbances (TIDs), and the effects of tides and gravity waves propagating from the lower atmosphere. The tutorial/review is only intended to provide an overview of some of the important scientific issues concerning ionospheric-thermospheric weather, with the emphasis on the ionosphere. Tutorials on thermospheric and magnetospheric weather issues are given in companion papers.

  15. Catalog of ionospheric and atmospheric data

    NASA Technical Reports Server (NTRS)

    Liles, J. N.

    1975-01-01

    Available data from planetary atmospheres and ionospheric physics (aeronomy) are announced. Most of the data sets identified result from individual experiments carried on board various spacecraft. A spacecraft Automated Internal Management File and a Nonsatellite Data File are utilized to maintain information on these data. Photoreduced reports produced by these information files are presented. A variety of user oriented indexes are included.

  16. Representing Ionospheric Variability Near the Magnetic Equator

    NASA Astrophysics Data System (ADS)

    Bilitza, D.; Obrou, O.; Adeniyi, J.

    We examine different parameters for the description of ionospheric variability in the equatorial ionosphere. Our data base for this study are foF2 data from the ionosonde stations in Korhogo, Ivory Coast (Lat.= 9.3N, Long. = 5.4W, Dip = 0.7S) and Ouagadougou, Burkina Faso (Lat.= 12N, Long. = 1.8W, Dip = 5.9N). Three years of hourly observations are examined from each station covering low, moderate, and high levels of solar activity. This work is in support of efforts within the International Reference Ionosphere (IRI) project to include a description of ionospheric variability in the IRI model. The goal is to provide the model user with one or two parameters that fully describe the distribution of data around a monthly mean or median for a specific hour, season, and solar activity. The parameters investigated in this study include the mean, the standard deviation, the median, the quartiles, the deciles, the inter-quartile range, the inter-decile range, and several other parameters that help to characterize a non-normal distribution. We will recommend a set of parameters for use in IRI and will discuss the diurnal, seasonal, and solar cycle variations of these parameters near the magnetic equator.

  17. Magnetospheric and Thermospheric Influence on Ionospheric Outflow

    NASA Astrophysics Data System (ADS)

    Garcia-Sage, K.; Moore, T. E.; Mitchell, E. J.; Olson, D. K.

    2013-12-01

    The Fast Auroral SnapshoT (FAST) small explorer has been used extensively to study ionospheric outflow. Past research has used particle and field data to examine the contemporaneous transfer of electromagnetic energy and particle flow downward from the magnetosphere and upward from the ionosphere. Single event studies published by Strangeway et al. [2005] and Brambles et al. [2011, Supporting Online Material] showed that downward electromagnetic energy and particle flow into the ionosphere are correlated with the upward flow of ions out of the ionosphere. It is expected, however, that this correlation will be affected by circumstances that are unique to each specific event, including but not limited to the outflow location (cusp or nightside), preconditioning due to prior geomagnetic activity, and thermospheric neutral densities. Although knowledge of the thermospheric neutral density is usually unavailable, data from the CHAllenging Minisatellite Payload (CHAMP) is able to provide insight into thermospheric populations at altitudes of about 400 km for a few select events. We expand on the previously-mentioned studies by looking at FAST particle and field data for additional events, and we further examine the influence of thermospheric neutral populations, based on CHAMP data.

  18. Method for Canceling Ionospheric Doppler Effect

    NASA Technical Reports Server (NTRS)

    Vessot, R. F. C.

    1982-01-01

    Unified transponder system with hydrogen-maser oscillators at both stations can compensate for both motional and ionospheric components of Doppler shift. Appropriate choices of frequency shift in output of mixer m3. System exploits proportionality between dispersive component of frequency shift and reciprocal of frequency to achieve cancellation of dispersive component at output.

  19. Importance of Ionospheric Gradients for error Correction

    NASA Astrophysics Data System (ADS)

    Ravula, Ramprasad

    Importance of Ionospheric Gradients for error Correction R. Ram Prasad1, P.Nagasekhar2 1Sai Spurthi Institute of Technology-JNTU Hyderabad,2Sai Spurthi Institute of Technology-JNTU Hyderabad Email ID:rams.ravula@gmail.com In India, Indian Space Research Organization (ISRO) has established with an objective to develop space technology and its application to various national tasks. To cater to the needs of civil aviation applications, GPS Aided Geo Augmented Navigation (GAGAN) system is being jointly implemented along with Airports Authority of India (AAI) over the Indian region. The most predominant parameter affecting the navigation accuracy of GAGAN is ionospheric delay which is a function of total number of electrons present in one square meter cylindrical cross sectional area in the line of site direction between the satellite and the user on the earth i.e. Total Electron Content (TEC).The irregular distribution of electron densities i.e. rate of TEC variation, causes Ionospheric gradients such as spatial gradients (Expressed in TECu/km) and temporal gradients (Expressed in TECu /minute). Among the satellite signals arriving to the earth in multiple directions, the signals which suffer from severe ionospheric gradients can be estimated i.e. Rate of TEC Index (ROTI) and Rate of TEC (ROT). These aspects which contribute to errors can be treated for improving GAGAN positional accuracy.

  20. Global Response to Local Ionospheric Mass Ejection

    NASA Technical Reports Server (NTRS)

    Moore, T. E.; Fok, M.-C.; Delcourt, D. C.; Slinker, S. P.; Fedder, J. A.

    2010-01-01

    We revisit a reported "Ionospheric Mass Ejection" using prior event observations to guide a global simulation of local ionospheric outflows, global magnetospheric circulation, and plasma sheet pressurization, and comparing our results with the observed global response. Our simulation framework is based on test particle motions in the Lyon-Fedder-Mobarry (LFM) global circulation model electromagnetic fields. The inner magnetosphere is simulated with the Comprehensive Ring Current Model (CRCM) of Fok and Wolf, driven by the transpolar potential developed by the LFM magnetosphere, and includes an embedded plasmaspheric simulation. Global circulation is stimulated using the observed solar wind conditions for the period 24-25 Sept 1998. This period begins with the arrival of a Coronal Mass Ejection, initially with northward, but later with southward interplanetary magnetic field. Test particles are launched from the ionosphere with fluxes specified by local empirical relationships of outflow to electrodynamic and particle precipitation imposed by the MIlD simulation. Particles are tracked until they are lost from the system downstream or into the atmosphere, using the full equations of motion. Results are compared with the observed ring current and a simulation of polar and auroral wind outflows driven globally by solar wind dynamic pressure. We find good quantitative agreement with the observed ring current, and reasonable qualitative agreement with earlier simulation results, suggesting that the solar wind driven global simulation generates realistic energy dissipation in the ionosphere and that the Strangeway relations provide a realistic local outflow description.

  1. Global characteristics of the upper transition height derived from the topside Alouette/ISIS topside sounder electron density profiles, the Formosat-3/COSMIC density profiles and the IRI ion composition model

    NASA Astrophysics Data System (ADS)

    Truhlik, Vladimir; Triskova, Ludmila; Benson, Robert; Bilitza, Dieter; Chu, Philip; Richards, Phil G.; Wang, Yongli

    The upper transition height (Ht) (the altitude of the transition from heavy atomic ions to light ions or in the simplest form the transition from O+ to H+) is an important parameter, representing the boundary between the ionosphere and the plasmasphere. Ht is very sensitive to various geophysical parameters, like solar and magnetic activity and strongly depends on latitude and local time. There were numerous studies of this parameter in past decades. In spite of these efforts, no model satisfactorily represents this parameter so far. Moreover, surprising evidence of very low transition heights during the last prolonged solar minimum, of a level never obtained before, have been reported. We investigate the upper transition height on the global scale. We made progress in processing large data sets of Ht deduced from the Alouette/ISIS topside sounder and from the Formosat-3/COSMIC vertical electron-density profiles Ne(h) using the theoretical Global Plasma Ionosphere Density (GPID) model (Webb and Essex, 2004) and a revised non-linear function describing the scale height vs. altitude (Titheridge, 1976) to fit the vertical density profiles to the observed profiles and to determine the upper transition height. Since both methods require the plasma temperatures and their gradients as input, these are calculated using the IRI2012 model. Both methods are verified using a large amount of electron and ion density profiles simulated by the FLIP theoretical model and their accuracy is discussed. We compare the results from Alouette/ISIS and Formosat-3/COSMIC and present a global distribution of the calculated Ht and its dependence on geophysical parameters. Finally we compare it with Ht calculated using the IRI ion composition model. Titheridge, J.E., 1976. Ion Transition Heights from Topside Electron-Density Profiles. Planetary and Space Science 24 (3), 229-245. Webb, P.A., Essex, E.A., 2004. A dynamic global model of the plasmasphere. Journal of Atmospheric and Solar

  2. Probing geomagnetic storm-driven magnetosphere-ionosphere dynamics in D-region ionosphere using VLF signal propagation characteristics

    NASA Astrophysics Data System (ADS)

    Nwankwo, Victor U. J.; Chakrabarti, Sandip Kumar; Ogunmodimu, Olugbenga

    2016-07-01

    When propagating in the Earth-ionosphere waveguide, the amplitude and phase of VLF/LF radio signals are sensitive to changes in the electrical conductivity of the lower ionosphere. This characteristic makes it useful in studying sudden ionospheric disturbances, especially those related to prompt X-ray flux output from solar flares and gamma ray bursts (GRBs). However, strong geomagnetic disturbances and/or storm conditions are known to produce large and global ionospheric disturbances, which can significantly affect VLF radio propagation in the D region ionosphere. Diurnal VLF signature may also convey other important information, especially those related to geomagnetic disturbance/storm induced ionospheric changes. In this paper, using the data of three propagation paths (at latitudes 40-54º), we analyze in detail the trend of anomalies of VLF diurnal signal under varying solar and geomagnetic space environmental conditions to identify possible geomagnetic footprints on the D region ionosphere.

  3. Evolution of high latitude ionospheric convection associated with substorms: Multiple radar observations

    NASA Astrophysics Data System (ADS)

    Zou, Shasha

    The work presented in this dissertation concerns evolution of the high latitude ionospheric convection and the relevant current systems associated with substorms, with emphasize on these features near the nightside Harang reversal region. Three different types of radars, including the Super Dual Auroral Radar Network (SuperDARN) coherent-scatter radars, the new advanced modular incoherent-scatter radar at Poker Flat (PFISR), and the Sondrestrom incoherent-scatter radar (ISR), have been utilized. Observations from those radars, together with those from complementary instruments, including satellites and other ground-based instruments, have revealed fundamental new understand of the ionospheric electrodynamic properties associated with substorms. By using the SuperDARN and the PFISR radars, we found that the auroral activity at substorm onset is located in the center of the Harang reversal, which represents a key region in the magnetospheric and ionospheric convection and is part of the Region 2 system. We have also shown that nightside convection flows exhibit repeatable, distinct variations at different locations relative to the substorm-related auroral activity. Taking advantage of the simultaneous flow and ionization measurements from PFISR, a current closure relation has been found between the Region 2 and the substorm field-aligned current systems. These observations demonstrate a strong coupling between the Region 2 system and the substorm dynamics. This study sheds new light on the substorm-related magnetosphere-ionosphere coupling and contributes to the building of a holistic picture of the substorm dynamics. The third radar has been used to study the dayside ionospheric convection response to the external soar wind and IMF driving and its role in substorm dynamics. The results have been applied to study substorm triggering and in the future could be used to study the relation between the external driving and the formation of the Harang reversal.

  4. IRI, an International Standard for the Ionosphere

    NASA Astrophysics Data System (ADS)

    Bilitza, D.; Reinisch, B.; Triskova, L.; Friedrich, M.

    2003-04-01

    The International Reference Ionosphere (IRI) is a data-based model of the ionosphere that has been steadily improved and updated by a joint working group of the Committee on Space Research and the International Union of Radio Science. We will report about the most recent IRI workshops and the improvements and additions planned for the next version of the model. In particular new models will be included for the D-region electron density (Friedrich et al., 2002), and for the ion densities (Triskova et al., 2003) the latter based on Atmosphere Explorer C, D, E and Intercosmos 24 data. A correction term will be introduced in the topside electron density model to alleviate problems at high solar activities and high altitudes (Bilitza, 2002). A special IRI task groups is working on an occurrence probability model for spread-F (Abdu et al., 2003) for inclusion in IRI. A quantitative description of ionospheric variability (standard deviation from monthly mean) is the goal of a special IRI task force activity at the International Center for Theoretical Physics (Radicella 2002). We will also report about activities to update IRI with actual measurements and thus obtain a more accurate description of the actual ionosphere. A proposal to make the IRI model the ISO standard for the ionosphere is now pending before the International Standardization Organization (ISO). The IRI homepage is at http://nssdc.gsfc.nasa.gov/space/model/ionos/iri.html and a web-interface for computing and plotting IRI parameters can be found at http://nssdc.gsfc.nasa.gov/space/model/models/iri.html . Abdu, M. A., J. R de Souza, I. S. Batista, and J. H. A. Sobral, Equatorial Spread F statistics and their empirical modeling for the IRI: A regional model for the Brazilian longitude sector, Adv. Space Res., in press, 2003. Triskova, L., V. Truhlik and J. Smilauer, An empirical model of ion composition in the outer ionosphere, Adv. Space Res., in press, 2003 Bilitza, D., A Correction for the IRI Topside

  5. Towards Better Understanding of GPS-based Ionospheric TEC Perturbations Caused by Natural Hazards

    NASA Astrophysics Data System (ADS)

    Komjathy, A.; Galvan, D. A.; Butala, M. D.; Stephens, P.; Mannucci, A. J.; Hickey, M. P.

    2011-12-01

    Natural hazards including earthquakes, volcanic eruptions, and tsunamis, have been significant threats to humans throughout recorded history. The Global Positioning System satellites have become primary sensors to measure signatures associated with such natural hazards. These signatures typically include GPS-derived seismic deformation measurements, co-seismic vertical displacements, and real-time GPS-derived ocean buoy positioning estimates. Another way to use GPS observables is to compute the ionospheric total electron content (TEC) to measure and monitor post-seismic ionospheric disturbances caused by earthquakes, volcano eruptions, and tsunamis. Recent advances in GPS data processing have demonstrated that ground-based GPS receivers are capable of detecting ionospheric TEC perturbations generated by surface Rayleigh, acoustic and gravity waves. There have been a number of papers published discussing TEC perturbations immediately following the Tohoku earthquake in Japan on March 11, 2011. Due to the dense GPS network in Japan (GEONET) and high earthquake magnitude, these reports are the clearest observations to date of the effect of a major earthquake and tsunami on the ionosphere near the epicenter. Most investigators have focused on the ionospheric response up to a few hours following the earthquake and tsunami. In our research we investigate the ionospheric TEC perturbations up to a few days before and after the event. We also address the impact of geomagnetic activity during March 11. We compare TEC perturbations on that day with other days showing similar geomagnetic activities. Initial results have revealed that the earthquake and tsunami generated TEC perturbations that were observable and detectable in the GEONET data for up to 24 hours following the Tohoku event. We will investigate optimized GPS processing techniques to derive high-precision TEC perturbations. The primary application involving the ionosphere will be the real-time monitoring of the

  6. GPS, GNSS, and Ionospheric Density Gradients

    NASA Astrophysics Data System (ADS)

    Kintner, P. M.; O'Hanlon, B.; Humphreys, T. E.

    2009-12-01

    Ionospheric density and density gradients affect GNSS signals in two ways. They can introduce ranging errors or irregularities that form on the density gradients producing scintillation. Here we focus on the issue of ranging errors. There are two approaches to mitigating ranging errors produced by ionospheric density gradients which can be 20-30 m during major magnetic storms. The first approach is to use a reference receiver(s) to determine the ionospheric contribution to ranging errors. The ranging error is then transmitted to the user for correction within the mobile receiver. This approach is frequently referred to as differential GPS and, when multiple reference receivers are used, the system is referred to as an augmentation system. This approach is vulnerable to ionospheric gradients depending on the reference receiver spacing(s) and latency in applying the correction within the mobile receiver. The second approach is to transmit navigation signals at two frequencies and then use the relative delay between the two signals to both estimate the ranging error and calculate the correct range. Currently the dual frequency technique is used by US military receivers with an encryption key and some civilian receivers which must be stationary and average over times long compared to those required for navigation. However, the technology of space based radio navigation is changing. GPS will soon be a system with three frequencies and multiple codes. Furthermore Europe, Russia, and China are developing independent systems to complement and compete with GPS while India and Japan are developing local systems to enhance GPS performance in their regions. In this talk we address two questions. How do density gradients affect augmentation systems including the social consequences and will the new GPS/GNSS systems with multiple civilian frequencies be able to remove ionospheric errors. The answers are not at all clear.

  7. GNSS station characterisation for ionospheric scintillation applications

    NASA Astrophysics Data System (ADS)

    Romano, Vincenzo; Spogli, Luca; Aquino, Marcio; Dodson, Alan; Hancock, Craig; Forte, Biagio

    2013-10-01

    Ionospheric scintillations are fluctuations in the phase and amplitude of the signals from GNSS (Global Navigation Satellite Systems) occurring when they cross regions of electron density irregularities in the ionosphere. Such disturbances can cause serious degradation of several aspects of GNSS system performance, including integrity, accuracy and availability. The two indices adopted worldwide to characterise ionospheric scintillations are: the amplitude scintillation index, S4, which is the standard deviation of the received power normalised by its mean value, and the phase scintillation index, σΦ, which is the standard deviation of the de-trended carrier phase. Collaborative work between NGI and INGV supports a permanent network of GISTM (GPS Ionospheric Scintillation and TEC Monitor) receivers that covers a wide range of latitudes in the northern European sector. Data from this network has contributed significantly to several papers during the past few years (see e.g. De Franceschi et al., 2008; Aquino et al., 2009; Spogli et al., 2009, 2010; Alfonsi et al., 2011). In these investigations multipath effects and noise that contaminate the scintillation measurements are largely filtered by applying an elevation angle threshold. A deeper analysis of the data quality and the development of a more complex filtering technique can improve the results obtained so far. The structures in the environment of each receiver in the network which contaminate scintillation measurements should be identified in order to improve the quality of the scintillation and TEC data by removing error sources due to the local environment. The analysis in this paper considers a data set characterised by quiet ionospheric conditions of the mid-latitude station located in Nottingham (UK), followed by a case study of the severe geomagnetic storm, which occurred in late 2003, known generally as the "Halloween Storm".

  8. The effect of the induced magnetic field on the electron density vertical profile of the Mars' ionosphere: A Mars Express MARSIS radar data analysis and interpretation, a case study

    NASA Astrophysics Data System (ADS)

    Ramírez-Nicolás, M.; Sánchez-Cano, B.; Witasse, O.; Blelly, P.-L.; Vázquez, L.; Lester, M.

    2016-07-01

    We report the indirect detection of an induced magnetic field in the ionosphere of Mars and its effects on the electron density behaviour. The observations were made by the Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) aboard Mars Express, in its Active Ionospheric Sounding mode. During several orbits on June 2006, the ionosphere showed an unusual behaviour, characterised by a compression of the plasma above the main ionospheric peak as observed by the topside total electron content, the plasma scale height, and the local plasma in the Mars Express surroundings. The compression was most likely due to an induced magnetic field originating from the solar wind and measured by the MARSIS antennas, which was able to penetrate into the ionosphere. In particular, for several profiles, the density distribution can be clearly defined by two different plasma scale heights, which indicates a transition region between both of them. From the balance of magnetic and thermal plasma pressures and from a comparison with a numerical model of the Martian ionosphere, the hypothesis of a penetrating induced magnetic field down to a transition altitude around 150 km is confirmed. This compressed ionosphere has also been compared with data from other orbits in the same location and at the same time period, i.e. 18.5 days of difference between first and last orbits, where there is no measured induced magnetic field, and the orbits show a clearly different behaviour.

  9. Simulation of the Mars Ionosphere Radio Occultation Experiments

    NASA Astrophysics Data System (ADS)

    Hu, X.; Wu, X. C.; Gong, X. Y.; Wang, X.; Xu, Q. C.

    2009-07-01

    The Mars ionosphere radio occultation experiment between the Chinese YH-1 spacecraft and the Russian Phobos-Grunt spacecraft orbiting Mars will be the first satellite to satellite radio occultation experiment in history, which will achieve high quality ionospheric electron density profiles. The technique used in this experiment is analyzed and introduced. Simulations of the radio occultation have been completed. Forward calculations of the radio wave observable for the ionospheric radio occultation events have been done with the 3D ray tracing method and a simple Chapman ionosphere background model. The backward inversion with the forward calculated radio occultation observation data gives reliable and consistent ionospheric electron density profiles, which show the reliability of the simulation algorithms. With the simulation method, the effects of errors from the radio signal phase measurement and the orbit determination of the satellite on the inversion are analyzed in cases. Results show that phase errors of 5% circle have a negligible effect on the daytime ionosphere radio occultation, and lead to an absolute error of less than 4×;10^8 m3 for nighttime electron density profiles. Orbit errors of the satellite mainly pose a systematic rising or descending to the ionosphere height. The above results show that Sino-Russian cooperative Mars ionosphere radio occultation experiments is expected to achieve high quality Mars ionosphere profiles. Their technique regime can be used for the lunar ionosphere exploring.

  10. Performance of IRI-based ionospheric critical frequency calculations with reference to forecasting

    NASA Astrophysics Data System (ADS)

    Ünal, İbrahim; Şenalp, Erdem Türker; Yeşil, Ali; Tulunay, Ersin; Tulunay, Yurdanur

    2011-01-01

    Ionospheric critical frequency (foF2) is an important ionospheric parameter in telecommunication. Ionospheric processes are highly nonlinear and time varying. Thus, mathematical modeling based on physical principles is extremely difficult if not impossible. The authors forecast foF2 values by using neural networks and, in parallel, they calculate foF2 values based on the IRI model. The foF2 values were forecast 1 h in advance by using the Middle East Technical University Neural Network model (METU-NN) and the work was reported previously. Since then, the METU-NN has been improved. In this paper, 1 h in advance forecast foF2 values and the calculated foF2 values have been compared with the observed values considering the Slough (51.5°N, 0.6°W), Uppsala (59.8°N, 17.6°E), and Rome (41.8°N, 12.5°E) station foF2 data. The authors have considered the models alternative to each other. The performance results of the models are promising. The METU-NN foF2 forecast errors are smaller than the calculated foF2 errors. The models may be used in parallel employing the METU-NN as the primary source for the foF2 forecasting.

  11. Performance of IRI-based ionospheric critical frequency calculations with reference to forecasting

    NASA Astrophysics Data System (ADS)

    ÜNal, Ä.°Brahim; ŞEnalp, Erdem Türker; YeşIl, Ali; Tulunay, Ersin; Tulunay, Yurdanur

    2011-02-01

    Ionospheric critical frequency (foF2) is an important ionospheric parameter in telecommunication. Ionospheric processes are highly nonlinear and time varying. Thus, mathematical modeling based on physical principles is extremely difficult if not impossible. The authors forecast foF2 values by using neural networks and, in parallel, they calculate foF2 values based on the IRI model. The foF2 values were forecast 1 h in advance by using the Middle East Technical University Neural Network model (METU-NN) and the work was reported previously. Since then, the METU-NN has been improved. In this paper, 1 h in advance forecast foF2 values and the calculated foF2 values have been compared with the observed values considering the Slough (51.5°N, 0.6°W), Uppsala (59.8°N, 17.6°E), and Rome (41.8°N, 12.5°E) station foF2 data. The authors have considered the models alternative to each other. The performance results of the models are promising. The METU-NN foF2 forecast errors are smaller than the calculated foF2 errors. The models may be used in parallel employing the METU-NN as the primary source for the foF2 forecasting.

  12. Improved wide-field collimator for dynamic testing of the GOES imager and sounder

    NASA Astrophysics Data System (ADS)

    Bremer, James C.; Etemad, Shahriar; Zukowski, Barbara J.; Pasquale, Bert A.; Zukowski, Tmitri J.; Prince, Robert E.; Holmes, Vincent; Ryskewich, John A.; O'Neill, Patrick; Murphy-Morris, Jeanine E.

    2002-09-01

    The GOES Imager and Sounder instruments each observe the full Earth disk, 17.4° in diameter, from geostationary orbit. Pre-launch, each instrument's dynamic scanning performance is tested using the projection of a test pattern from a wide-field collimator. We are fabricating a second wide-field collimator (WFC2) to augment this test program. The WFC2 has several significant advantages over the existing WFC1. The WFC2 target illumination system uses an array of light-emitting diodes (LEDs) radiating at 680nm, which is within the visible bands of both the Imager and Sounder. The light from the LEDs is projected through a non-Lambertian diffuser plate and the target plate to the pupil of the projection lens. The WFC2's power dissipation is much lower than that of WFC1, decreasing stabilization time and eliminating the need for cooling fans. The WFC2's custom-designed 5-element projection lens has the same effective focal length (EFL) as the WFC1 projection lens. The WFC2 lens is optimized for the LED's narrow spectral band simplifying the design and improving image quality. The target plate is mounted in a frame with a mechanized micro-positioner system that controls three degrees of freedom: tip, tilt, and focus. The tip and tilt axes intersect in the WFC's image plane, and all adjustments are controlled remotely by the operator observing the target plate through an auto-collimating telescope.

  13. Modification and Development of a Control Mechanism for the Scanning Microwave Limb Sounder

    NASA Technical Reports Server (NTRS)

    Greene, Zach

    2011-01-01

    The scanning microwave limb sounder (SMLS) is the latest instrument to probe the Earth's atmosphere to come out of the Microwave Limb Sounder (MLS) team. Once deployed to the upper stratosphere, it will use microwave detection to measure geo-atmospheric variables such as temperature, pressure, and chemical composition. In addition to previous missions that used vertical limb scans to observe altitudinal variations, the SMLS will rotate laterally allowing it to establish two-dimensional variable dependencies with a single run. A program was originated by a previous intern that will automatically control the movement of the two rotational axes along with a switching mirror and chopper once the instrument is in flight. However, it lacked the code essential to control system's ability to function fully and reliably. By modifying and rewriting parts of the code I sought to have a finished ready-for-flight control system that would be easy to navigate. Three of the major alterations I made including instituting a gyroscope, implementing a restart button, and instigating the automatic creation of a file log with each run to record the position and orientation of the SMLS.

  14. Stratospheric and mesospheric HO2 observations from the Aura Microwave Limb Sounder

    NASA Astrophysics Data System (ADS)

    Millán, L.; Wang, S.; Livesey, N.; Kinnison, D.; Sagawa, H.; Kasai, Y.

    2015-03-01

    This study introduces stratospheric and mesospheric hydroperoxyl radical (HO2) estimates from the Aura Microwave Limb Sounder (MLS) using an offline retrieval (i.e. run separately from the standard MLS algorithm). This new data set provides two daily zonal averages, one during daytime from 10 to 0.0032 hPa (using day-minus-night differences between 10 and 1 hPa to ameliorate systematic biases) and one during nighttime from 1 to 0.0032 hPa. The vertical resolution of this new data set varies from about 4 km at 10 hPa to around 14 km at 0.0032 hPa. A description of the methodology and an error analysis are presented. Comparisons against the Whole Atmosphere Community Climate Model (WACCM), the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) and the Far Infrared Spectrometer (FIRS-2) measurements, as well as photochemical simulations, demonstrate the robustness of the retrieval and indicate that the retrieval is sensitive enough to detect mesospheric HO2 layers during both day and night. This new data set is the first long-term HO2 stratospheric and mesospheric satellite record and it provides needed constraints to help resolve the O3 deficit problem and the "HOx dilemma".

  15. Stratospheric and mesospheric HO2 observations from the Aura Microwave Limb Sounder

    NASA Astrophysics Data System (ADS)

    Millán, L.; Wang, S.; Livesey, N.; Kinnison, D.; Sagawa, H.; Kasai, Y.

    2014-09-01

    This study introduces stratospheric and mesospheric hydroperoxyl radical (HO2) estimates from the Aura Microwave Limb Sounder (MLS) using an offline retrieval (i.e. run separately from the standard MLS algorithm). This new dataset provides two daily zonal averages, one during daytime and one during nighttime, with a varying vertical resolution from about 4 km at 10 hPa to around 14 km at 0.0032 hPa. A description of the methodology and an error analysis are presented. Comparisons against the Whole Atmosphere Community Climate Model (WACCM), the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) and the Far Infrared Spectrometer (FIRS-2) measurements, as well as, photochemical simulations demonstrate the robustness of the retrieval and indicate that the retrieval is sensitive enough to detect mesospheric HO2 layers during both day and night. This new dataset is the first long-term HO2 stratospheric and mesospheric satellite record and it provides needed constraints to help resolve the O3 deficit problem and the "HOx dilemma".

  16. Submillimeter limb-emission sounder JEM/SMILES aboard the Space Station

    NASA Astrophysics Data System (ADS)

    Inatani, Junji; Ozeki, Hiroyuki; Satoh, Ryouta; Nishibori, Toshiyuki; Ikeda, Naomi; Fujii, Yasunori; Nakajima, Takashi; Iida, Yukiei; Iida, Teruhito; Kikuchi, Ken'ichi; Miura, Takeshi; Masuko, Harunobu; Manabe, Takeshi; Ochiai, Satoshi; Seta, Masumichi; Irimajiri, Yoshihisa; Kasai, Yasuko; Suzuki, Makoto; Shirai, Tomoko; Tsujimaru, Sho; Shibasaki, Kazuo; Shiotani, Masato

    2000-12-01

    A submillimeter limb-emission sounder, that is to be aboard the Japanese Experiment Module (JEM, dubbed as KIBO) at the International Space Station, has been designed. This payload, Superconducting Submillimeter-wave Limb-emission Sounder (SMILES), is aimed at global mappings of stratospheric trace gases by means of the most sensitive submillimeter receiver ever operated in space. Such sensitivity is ascribed to a Superconductor-Insulator- Superconductor (SIS) mixer, which is operated at 4.5 K in a dedicated cryostat combined with a mechanical cooler. SMILES will observe ozone-depletion-related molecules such as ClO, Hcl, HO2, HNO3, BrO and O3 in the frequency bands at 624.32-626.32 GHz and 649.12-650.32 GHz. A scanning antenna will cover tangent altitudes from 10 to 60 km in every 53 seconds, while tracing the latitudes form 38 S to 65 N along its orbit. This global coverage makes SMILES a useful tool of observing the low- and mid- latitudinal areas as well as the Arctic peripheral region. The molecular emissions will be detected by two units of acousto-optic spectrometers (AOS), each of which has coverage of 1.2 GHz with a resolution of 1.8 MHz. This high-resolution spectroscopy will allow us to detect weak emission lines attributing to less-abundant species.

  17. Ultraspectral sounder data compression using the non-exhaustive Tunstall coding

    NASA Astrophysics Data System (ADS)

    Wei, Shih-Chieh; Huang, Bormin

    2008-08-01

    With its bulky volume, the ultraspectral sounder data might still suffer a few bits of error after channel coding. Therefore it is beneficial to incorporate some mechanism in source coding for error containment. The Tunstall code is a variable-to- fixed length code which can reduce the error propagation encountered in fixed-to-variable length codes like Huffman and arithmetic codes. The original Tunstall code uses an exhaustive parse tree where internal nodes extend every symbol in branching. It might result in assignment of precious codewords to less probable parse strings. Based on an infinitely extended parse tree, a modified Tunstall code is proposed which grows an optimal non-exhaustive parse tree by assigning the complete codewords only to top probability nodes in the infinite tree. Comparison will be made among the original exhaustive Tunstall code, our modified non-exhaustive Tunstall code, the CCSDS Rice code, and JPEG-2000 in terms of compression ratio and percent error rate using the ultraspectral sounder data.

  18. Subsurface sounders

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Airborne or spaceborne electromagnetic systems used to detect subsurface features are discussed. Data are given as a function of resistivity of ground material, magnetic permeability of free space, and angular frequency. It was noted that resistivities vary with the water content and temperature.

  19. Magnetosphere-ionosphere coupling during plasmoid evolution - First results

    NASA Technical Reports Server (NTRS)

    Hesse, Michael; Birn, Joachim

    1991-01-01

    The influence of magnetosphere-ionosphere coupling on the dynamic evolution of the magnetotail is investigated by a three-dimensional resistive MHD code that includes the effects of the closure of field-aligned currents in a simple resistive model ionosphere. Particular emphasis is on the role of this coupling during substorm evolution and the modification of the latter by the convection driven by the ionospheric electric fields. For comparison, results are presented from a simulation which uses an infinitely conducting ionosphere but is otherwise identical. Comparison of the two simulations shows that the major impact of magnetosphere-ionospheric communication is an acceleration of magnetotail evolution. Otherwise, phenomena in the two models are qualitatively similar. It is concluded that ionospheric effects do not significantly affect substorm associated magnetotail dynamics.

  20. Low-Frequency Waves in HF Heating of the Ionosphere

    NASA Astrophysics Data System (ADS)

    Sharma, A. S.; Eliasson, B.; Milikh, G. M.; Najmi, A.; Papadopoulos, K.; Shao, X.; Vartanyan, A.

    2016-02-01

    Ionospheric heating experiments have enabled an exploration of the ionosphere as a large-scale natural laboratory for the study of many plasma processes. These experiments inject high-frequency (HF) radio waves using high-power transmitters and an array of ground- and space-based diagnostics. This chapter discusses the excitation and propagation of low-frequency waves in HF heating of the ionosphere. The theoretical aspects and the associated models and simulations, and the results from experiments, mostly from the HAARP facility, are presented together to provide a comprehensive interpretation of the relevant plasma processes. The chapter presents the plasma model of the ionosphere for describing the physical processes during HF heating, the numerical code, and the simulations of the excitation of low-frequency waves by HF heating. It then gives the simulations of the high-latitude ionosphere and mid-latitude ionosphere. The chapter also briefly discusses the role of kinetic processes associated with wave generation.

  1. A comparison of ionospheric model predictions with MITHRAS observations

    NASA Astrophysics Data System (ADS)

    Schunk, Robert W.

    1987-01-01

    MITHRAS is a coordinated multiradar program to study the interactions between the magnetosphere, ionosphere, and thermosphere, as well as the phenomena that result from these interactions. The program is based on a data set acquired by the Chatanika, Millstone Hill, and Eiscat incoherent scatter radars. A large portion of the data is unique in that it was the only time when the radars, well separated in local and magnetic time, simultaneously probed the high latitude ionosphere. Our effect concerned model data comparisons. Specifically, we compared the predictions of our three-dimensional, time dependent model of the high latitude ionosphere with MITHRAS data sets. Of particular interest were the variations of the ionosphere with altitude, latitude, longitude, universal time, season, and magnetic activity. Model data comparisons enabled us to determine the adequacy of our current understanding of high latitude ionosphere dynamics as well as certain magnetosphere ionosphere atmosphere coupling processes.

  2. Improvement of global ionospheric VTEC maps using the IRI 2012 ionospheric empirical model

    NASA Astrophysics Data System (ADS)

    Wang, Cheng; Shi, Chuang; Zhang, Hongping; Fan, Lei

    2016-08-01

    In this study, vertical total electron content values derived from an ionospheric empirical model (IRI 2012) are applied to global ionospheric modeling. Firstly, a comparison of VTEC maps between IRI 2012 and IGS GIMs during the year 2014 is investigated. The comparison shows that IRI 2012 is capable of representing the TEC at middle and high latitudes. Furthermore, IRI 2012 is applied to provide priori VTEC values as virtual measurements for global ionospheric modeling during the year 2014. The results show that the new approach not only eliminates the non-physical negative VTEC values but also improves the accuracy of VTEC maps. The VTEC RMS maps are improved by 3.67%, 2.95% and 22.16% in the Northern Band, Middle Band and Southern Band of the global ionosphere, respectively. This work also investigates the consistency between VTEC maps from different solutions, IGS final products and GIMs of Ionosphere Associate Analysis Centers (IAACs). The comparisons suggest that there is a slightly better consistency between the improved VTEC maps and the IGS final products. The consistencies of the VTEC maps are improved by 4.58%, 2.76% and 4.77% in the Northern Band, Middle Band and Southern Band, respectively. The annual mean values of the root mean square (RMS) of the differences between the improved VTEC maps and GIMs of IAACs are approximately 4~6 TECU. The results indicate that the new VTEC maps using the IRI 2012 model have better agreement with the IGS final GIMs.

  3. Severe ionosphere disturbances caused by the sudden response of evening subequatorial ionospheres to geomagnetic storms

    SciTech Connect

    Tanaka, T.

    1981-12-01

    By monitoring C band beacon signals from geostationary satellites in Japan, we have observed anomalously strong ionospheric scintillations several times during three years from 1978 to 1980. These severe scinitillations occur associated with geomagnetic storms and accompany sudden and intense ionospheric perturbations in the low-latiude region. Through the analysis of these phenomena we have identified a new type of ionospheric disturbances characterized by intensifications of equatorial anomalies and successive severe ionospheric scintillations that extend to the C band range. The events occur only during a limited local time interval after the sunset, when storm time decreases of midlatitude geomagnetic fields in the same meridan take place during the same time interval. From the viewpoint of ionospheric storms, these disturbances precede the occurrence of midlatitude negative phases and storm time depressions of equatorial anomalies to indicate that the cause of the events is different from distrubed thermospheric circulations. The timing and magnitude of substorms at high-latitudes not always correlate with the events. We have concluded that the phenomena are closely related with penetrations toward low-latitudes of electric fields owing to the partial closure of asymmetrical ring currents.

  4. Ionosphere/thermosphere simulations with the Canadian Atmosphere And Ionosphere Model

    NASA Astrophysics Data System (ADS)

    Martynenko, Oleg; Ward, William E.; Shepherd, Gordon; Cho, Young-Min; Fomichev, Victor; Sinem Ince, Elmas; Pagiatakis, Spiros; McWilliams, Kathryn

    2016-07-01

    The Canadian Ionosphere and Atmosphere Model (C-IAM) is a newly developed whole atmosphere model. It consists of two pre-existing first principles models: the extended Canadian Middle Atmosphere (CMAM) and the ionospheric part of the Upper Atmosphere Model (UAM). Two-way coupling is implemented between the neutral atmosphere and ionosphere throughout the model domain (which extends from the surface to the inner magnetosphere). The C-IAM is a self-consistent, whole atmosphere model that is capable of studying both the impact of the lower atmosphere on the thermosphere and the ionosphere and the impact of geomagnetic conditions on the neutral atmosphere. In addition to the first principles modelling blocks, the C-IAM includes additional empirical models (e.g., MSISE) which can be incorporated for specific studies. To reproduce the response to specific space weather events, the real (observed) high-latitudinal electric field distribution can be used as input to the model simulations. Successful applications include simulating the wave number 4 features observed in the nighttime O ionospheric emission at 135.6 nm, modelling the 732 nm O+ daytime emission and retrieving from it the atomic oxygen concentration, and explaining disturbances measured by the GOCE satellite accelerometers over high latitudes during geomagnetically active days. This paper will introduce the model and describe these successes.

  5. The Unreasonable Success of Magnetosphere-Ionosphere Coupling Theory

    NASA Astrophysics Data System (ADS)

    Vasyliūnas, V. M.

    2002-12-01

    The description of plasma dynamics on the basis of self-consistent coupling between magnetosphere and ionosphere, as first systematized in the early 1970's, is arguably one of the most successful theories in magnetospheric physics. It accounts for the pattern of magnetospheric convection at auroral and low latitudes, the distribution of Birkeland currents, and the dependence on changing orientation of the interplanetary magnetic field. It can incorporate assumed effects, e.g. of particle sources or conductance variations, to almost any degree of complexity at moderate cost in additional computing effort (compare the levels of physics included in advanced versions of the Rice Convection Model and of global MHD simulations, respectively). Such success combined with relative simplicity, however, is possible only because the theory has limited itself in significant ways. It treats the system in effect as doubly two-dimensional: height-integrated ionosphere plus field-line-integrated magnetosphere, with the background magnetic field structure treated as known or derived from some empirical model. It assumes that the system is always in slowly evolving quasi-equilibrium and deals only with time scales long compared to wave propagation times. Hence the theory is not easily applied where genuine 3D aspects (e.g. height and field-line dependence), poorly known or variable magnetic fields (e.g. open field lines), or transient responses e.g. to rapid solar-wind changes are important, and it is intrinsically incapable of describing explosive non-equilibrium developments such as substorm onset. Possible extensions of the theory, comparison with numerical-simulation approaches, and implications for general space plasma physics (E-J vs. B-V) will be discussed.

  6. Does an ionospheric hole appear after an inland earthquake?

    NASA Astrophysics Data System (ADS)

    Kamogawa, Masashi; Kanaya, Tatsuya; Orihara, Yoshiaki; Toyoda, Atsushi; Suzuki, Yuko; Togo, Shoho; Liu, Jann-Yenq

    2015-11-01

    Ionospheric disturbances occurred as a result of the tsunami associated with the 2011 M9.0 off the Pacific Coast of the Tohoku earthquake (EQ). The ionospheric disturbances propagated radially from the tsunami source area, termed the traveling ionospheric disturbance. In addition to the traveling ionospheric disturbance, an ionospheric plasma depression lasting for approximately 1 h occurred above the tsunami source area, called a tsunami ionospheric hole. In this study, we compare the ionospheric disturbances caused by large inland and submarine EQs to investigate whether an ionospheric plasma depression only occurs in association with a tsunami. Note that we term an EQ with a tsunami a submarine EQ. To investigate the presence of a plasma depression, i.e., an ionospheric hole, associated with an inland EQ, data on total electron content between the global positioning system satellite and its receivers were used. Comparison of two inland and two submarine EQ events with similar magnitudes around 7 showed that ionospheric holes were observed only for the submarine EQs. This discrepancy might be attributed to the different excitation amplitudes of the atmospheric acoustic waves between the unidirectional fault displacement and the tsunami uplift/depression, corresponding to quarter and one-period variations. From this hypothesis, we predicted that an ionospheric hole could be observed after a significantly large inland EQ with a sufficiently large vertical ground displacement. In fact, we recognized the ionospheric hole generated by the large inland EQ that recently occurred in the Nepal with the magnitude of 7.8 on 25 April 2015.

  7. Multi-Cone Model for Estimating GPS Ionospheric Delays

    NASA Technical Reports Server (NTRS)

    Sparks, Lawrence; Komjathy, Attila; Mannucci, Anthony

    2009-01-01

    The multi-cone model is a computational model for estimating ionospheric delays of Global Positioning System (GPS) signals. It is a direct descendant of the conical-domain model. A primary motivation for the development of this model is the need to find alternatives for modeling slant delays at low latitudes, where ionospheric behavior poses an acute challenge for GPS signal-delay estimates based upon the thin-shell model of the ionosphere.

  8. Preface: International Reference Ionosphere and Global Navigation Satellite Systems

    NASA Astrophysics Data System (ADS)

    Bilitza, Dieter; Reinisch, Bodo

    2015-04-01

    The International Reference Ionosphere (IRI) is a joint undertaking by the Committee on Space Research (COSPAR) and the International Union of Radio Science (URSI) with the goal of developing and improving an international standard for the specification of Earth's ionosphere. This endeavor was originally triggered by the need for an ionosphere model for the satellite/experiment design and satellite data analysis (COSPAR) and for radio propagation studies (URSI) but has meanwhile found a much broader range of users with space weather concerns.

  9. Trans-Ionospheric High Frequency Signal Ray Tracing

    NASA Astrophysics Data System (ADS)

    Wright, S.; Gillespie, R. J.

    2012-09-01

    All electromagnetic radiation undergoes refraction as it propagates through the atmosphere. Tropospheric refraction is largely governed by interaction of the radiation with bounded electrons; ionospheric refraction is primarily governed by free electron interactions. The latter phenomenon is important for propagation and refraction of High Frequency (HF) through Extremely High Frequency (EHF) signals. The degree to which HF to EHF signals are bent is dependent upon the integrated refractive effect of the ionosphere: a result of the signal's angle of incidence with the boundaries between adjacent ionospheric regions, the magnitude of change in electron density between two regions, as well as the frequency of the signal. In the case of HF signals, the ionosphere may bend the signal so much that it is directed back down towards the Earth, making over-the-horizon HF radio communication possible. Ionospheric refraction is a major challenge for space-based geolocation applications, where the ionosphere is typically the biggest contributor to geolocation error. Accurate geolocation requires an algorithm that accurately reflects the physical process of a signal transiting the ionosphere, and an accurate specification of the ionosphere at the time of the signal transit. Currently implemented solutions are limited by both the algorithm chosen to perform the ray trace and by the accuracy of the ionospheric data used in the calculations. This paper describes a technique for adapting a ray tracing algorithm to run on a General-Purpose Graphics Processing Unit (GPGPU or GPU), and using a physics-based model specifying the ionosphere at the time of signal transit. This technique allows simultaneous geolocation of significantly more signals than an equivalently priced Central Processing Unit (CPU) based system. Additionally, because this technique makes use of the most widely accepted numeric algorithm for ionospheric ray tracing and a timely physics-based model of the ionosphere

  10. Ionospheric Delay Compensation Using a Scale Factor Based on an Altitude of a Receiver

    NASA Technical Reports Server (NTRS)

    Zhao, Hui (Inventor); Savoy, John (Inventor)

    2014-01-01

    In one embodiment, a method for ionospheric delay compensation is provided. The method includes determining an ionospheric delay based on a signal having propagated from the navigation satellite to a location below the ionosphere. A scale factor can be applied to the ionospheric delay, wherein the scale factor corresponds to a ratio of an ionospheric delay in the vertical direction based on an altitude of the satellite navigation system receiver. Compensation can be applied based on the ionospheric delay.

  11. Origin of flux ropes in Venus' ionosphere

    NASA Astrophysics Data System (ADS)

    Cole, Keith D.

    1994-08-01

    The joule dissipation inside flux ropes in Venus' ionosphere is so great that they must be formed near, and maintained at, the place where they are observed. Thus ropes are not formed by a Kelvin-Helmholtz instability of the ionopause. The hypothesis that ropes may be formed by the dynamo action of internal gravity waves in Venus' thermosphere (Luhmann and Elphic, 1985; Cole, 1993) is strengthened by discussion of a magnetic evolution equation which includes neutral air motion. However, the dynamo process would work only at altitudes at which vin is greater than or equal to omegai. At altitudes or parts of a rope where vin is much less than omegai, the process does not work. A solar wind dynamo is therefore examined to account for the ropes. Thereby a major new heat source for ions of the Venus ionosphere associated with the ropes is uncovered.

  12. Database of theoretical thermosphere/ionosphere predictions

    SciTech Connect

    Fesen, C.G.; Roble, R.G. |

    1994-11-01

    The National Center for Atmospheric Research (NCAR) thermosphere-ionosphere general circulation model has performed a series of self-consistent calculations of the thermosphere/ionosphere structure for a variety of geophysical conditions. The model simulates March, June, and December periods for solar cycle minimum and maximum for three levels of geomagnetic activity representing quiet, moderate, and disturbed conditions. The calculations include predictions of N2, O2, O, N(sup 4)S, N(sup 2)D, NO, N2(+), O2(+), O(+), NO(+), and N(+), along with the ion, electron, and neutral temperatures and three components of the neutral winds. The model simulations are available from the authors or through the Coupling, Energetic, and Dynamics of Atmospheric Regions database at NCAR.

  13. ULF Generation by Modulated Ionospheric Heating

    NASA Astrophysics Data System (ADS)

    Chang, C.; Labenski, J.; Wallace, T.; Papadopoulos, K.

    2013-12-01

    Modulated ionospheric heating experiments designed to generate ULF waves using the HAARP heater have been conducted since 2007. Artificial ULF waves in the Pc1 frequency range were observed from space and by ground induction magnetometers located in the vicinity of the heater as well as at long distances. Two distinct generation mechanisms of artificial ULF waves were identified. The first was electroject modulation under geomagnetically disturbed conditions. The second was pressure modulation in the E and F regions of the ionosphere under quiet conditions. Ground detections of ULF waves near the heater included both Shear Alfven waves and Magnetosonic waves generated by electrojet and/or pressure modulations. Distant ULF detections involved Magnetosonic wave propagation in the Alfvenic duct with pressure modulation as the most likely source. Summary of our observations and theoretical interpretations will be presented at the meeting. We would like to acknowledge the support provided by the staff at the HAARP facility during our ULF experiments.

  14. Magnetosphere sawtooth oscillations induced by ionospheric outflow.

    PubMed

    Brambles, O J; Lotko, W; Zhang, B; Wiltberger, M; Lyon, J; Strangeway, R J

    2011-06-01

    The sawtooth mode of convection of Earth's magnetosphere is a 2- to 4-hour planetary-scale oscillation powered by the solar wind-magnetosphere-ionosphere (SW-M-I) interaction. Using global simulations of geospace, we have shown that ionospheric O(+) outflows can generate sawtooth oscillations. As the outflowing ions fill the inner magnetosphere, their pressure distends the nightside magnetic field. When the outflow fluence exceeds a threshold, magnetic field tension cannot confine the accumulating fluid; an O(+)-rich plasmoid is ejected, and the field dipolarizes. Below the threshold, the magnetosphere undergoes quasi-steady convection. Repetition and the sawtooth period are controlled by the strength of the SW-M-I interaction, which regulates the outflow fluence. PMID:21636770

  15. Solar-wind interaction with planetary ionospheres

    NASA Technical Reports Server (NTRS)

    Cloutier, P. A.

    1976-01-01

    Planetary encounters by numerous spacecraft have furnished information concerning the solar wind interaction with the planets Mercury, Venus, Mars, and Jupiter. While direct measurements have indicated a wide range of atmospheric densities and intrinsic magnetic field strengths, the data seem to indicate that the flow pattern around nonmagnetized or weakly magnetized planets with atmospheres optically thick at ionizing wavelengths is basically the same as that around a strongly magnetized planet's magnetosphere, such as the earth's. The planetary ionosphere apparently presents a hard obstacle to the flow, with bow shock formation required in the supersonic, super-Alfvenic flow to slow and direct most of the solar wind plasma around the planetary ionosphere. Various aspects of the interaction are examined in the context of theoretical models in an attempt to explain observed details of the interaction regions of Venus and Mars.

  16. Magnetosphere sawtooth oscillations induced by ionospheric outflow.

    PubMed

    Brambles, O J; Lotko, W; Zhang, B; Wiltberger, M; Lyon, J; Strangeway, R J

    2011-06-01

    The sawtooth mode of convection of Earth's magnetosphere is a 2- to 4-hour planetary-scale oscillation powered by the solar wind-magnetosphere-ionosphere (SW-M-I) interaction. Using global simulations of geospace, we have shown that ionospheric O(+) outflows can generate sawtooth oscillations. As the outflowing ions fill the inner magnetosphere, their pressure distends the nightside magnetic field. When the outflow fluence exceeds a threshold, magnetic field tension cannot confine the accumulating fluid; an O(+)-rich plasmoid is ejected, and the field dipolarizes. Below the threshold, the magnetosphere undergoes quasi-steady convection. Repetition and the sawtooth period are controlled by the strength of the SW-M-I interaction, which regulates the outflow fluence.

  17. Magnetic fields in the ionosphere of Venus

    NASA Astrophysics Data System (ADS)

    Luhmann, J. G.; Cravens, T. E.

    1991-02-01

    Pioneer Venus Orbiter measurements of magnetic fields in the Venusian ionosphere are reviewed, and theoretical models developed to explain them are discussed. Data on the large- and small-scale magnetic-field structures in the dayside and nightside ionosphere, for both low and high solar-wind dynamic pressure, are presented graphically and characterized in detail. For the MHD models, the derivations of the continuity, momentum, one-fluid momentum, and magnetic induction equations and a generalized formulation of Ohm's law are outlined, and model predictions are compared with the measurements in extensive graphs and diagrams. It is shown that one-dimensional multifluid MHD models are successful in reproducing the observed large-scale features of the subsolar region, at least under certain prescribed conditions, whereas the nightside and small-scale features are only poorly predicted.

  18. CubeSat for Natural-Hazard Estimation With Ionospheric Sciences (CNEWS): A Concept Development to Aid Tsunami Early Warning Systems

    NASA Astrophysics Data System (ADS)

    Komjathy, A.; Romero-Wolf, A.; Yang, Y. M.; Langley, R. B.; Foster, J. H.

    2014-12-01

    The Jet Propulsion Laboratory, the University New Brunswick (Canada) and the University of Hawaii have developed a concept to provide open ocean tsunami wave height estimates using very accurate measurements of absolute total electron content (TEC) perturbations. Ionosphere-derived tsunami wave height estimates from our CubeSat for Natural-Hazard Estimation With Ionospheric Sciences (CNEWS) mission will refine the tsunami source energy calculation and improve the tsunami scale calculation for a localized region. As a secondary science objective, transmitting impulsive HF/VHF (10-40 MHz) transmissions through the ionosphere will provide in-situ geomagnetic disturbance measurements, which allow for discrimination between tsunami-induced signatures and space-weather-related fluctuations. NASA has invested several millions of dollars in the development of a tsunami warning system based on geodetic measurements from ground-based GPS stations. Leveraging this investment by simultaneously using ionospheric measurement from this GPS network for the detection of tsunamis represents a significant step forward. GPS ionospheric imaging is limited, however, by the slowly changing satellite geometry and its weak absolute TEC resolution (about 3 TECU). It has also been shown that GPS ionospheric imaging alone cannot distinguish between space weather fluctuations and those due to natural hazards. The very precise ionospheric measurements generated by CNEWS are expected to provide a quasi-static image of tsunami ionospheric signatures that we will use in an advanced model inversion technique to estimate tsunami wave heights at 10 cm (one sigma) uncertainty. The geomagnetic field strength resolution is also a key constraint for discriminating between natural hazards and space weather effects. HF/VHF impulses can resolve absolute TEC measurements at the 0.02 TECU level and geomagnetic field strength may be measured at 50 nT resolution.

  19. Energetics of the dayside ionosphere of Venus

    NASA Technical Reports Server (NTRS)

    Dobe, Zoltan; Nagy, Andrew F.; Brace, Larry H.; Cravens, Thomas E.; Luhmann, Janet G.

    1993-01-01

    A reanalysis of the Pioneer Venus electron temperature data base showed a strong correlation between elevated electron temperatures and induced magnetic fields in the dayside ionosphere above about 200 km. These results suggest, although not conclusively, that the elevated temperatures are the result of reduced vertical conductivities caused by the horizontal, induced fields with a possible contribution from energy deposition by magnetosheath electrons moving along the field from the tail region.

  20. The ionospheric refraction at 38 MHz.

    NASA Astrophysics Data System (ADS)

    Milogradov-Turin, J.

    The investigation of the observed shift of the North Polar Spur (NPS) at the 38 MHz survey of Milogradov-Turin and Smith (1973) in respect to the position of the NPS on the survey at 408 MHz convolved to the same resolution (Haslam and Salter 1977) has shown that there is no dependence of the NPS position on frequency and that the ionospheric refraction should be larger than believed.

  1. ionFR: Ionospheric Faraday rotation

    NASA Astrophysics Data System (ADS)

    Sotomayor-Beltran, C.; Sobey, C.; Hessels, J. W. T.; de Bruyn, G.; Noutsos, A.; Alexov, A.; Anderson, J.; Asgekar, A.; Avruch, I. M.; Beck, R.; Bell, M. E.; Bell, M. R.; Bentum, M. J.; Bernardi, G.; Best, P.; Birzan, L.; Bonafede, A.; Breitling, F.; Broderick, J.; Brouw, W. N.; Brueggen, M.; Ciardi, B.; de Gasperin, F.; Dettmar, R.-J.; van Duin, A.; Duscha, S.; Eisloeffel, J.; Falcke, H.; Fallows, R. A.; Fender, R.; Ferrari, C.; Frieswijk, W.; Garrett, M. A.; Griessmeier, J.; Grit, T.; Gunst, A. W.; Hassall, T. E.; Heald, G.; Hoeft, M.; Horneffer, A.; Iacobelli, M.; Juette, E.; Karastergiou, A.; Keane, E.; Kohler, J.; Kramer, M.; Kondratiev, V. I.; Koopmans, L. V. E.; Kuniyoshi, M.; Kuper, G.; van Leeuwen, J.; Maat, P.; Macario, G.; Markoff, S.; McKean, J. P.; Mulcahy, D. D.; Munk, H.; Orru, E.; Paas, H.; Pandey-Pommier, M.; Pilia, M.; Pizzo, R.; Polatidis, A. G.; Reich, W.; Roettgering, H.; Serylak, M.; Sluman, J.; Stappers, B. W.; Tagger, M.; Tang, Y.; Tasse, C.; ter Veen, S.; Vermeulen, R.; van Weeren, R. J.; Wijers, R. A. M. J.; Wijnholds, S. J.; Wise, M. W.; Wucknitz, O.; Yatawatta, S.; Zarka, P.

    2013-03-01

    ionFR calculates the amount of ionospheric Faraday rotation for a specific epoch, geographic location, and line-of-sight. The code uses a number of publicly available, GPS-derived total electron content maps and the most recent release of the International Geomagnetic Reference Field. ionFR can be used for the calibration of radio polarimetric observations; its accuracy had been demonstrated using LOFAR pulsar observations.

  2. The Ptolemaic Approach to Ionospheric Electrodynamics

    NASA Astrophysics Data System (ADS)

    Vasyliunas, V. M.

    2010-12-01

    The conventional treatment of ionospheric electrodynamics (as expounded in standard textbooks and tutorial publications) consists of a set of equations, plus verbal descriptions of the physical processes supposedly represented by the equations. Key assumptions underlying the equations are: electric field equal to the gradient of a potential, electric current driven by an Ohm's law (with both electric-field and neutral-wind terms), continuity of current then giving a second-order elliptic differential equation for calculating the potential; as a separate assumption, ion and electron bulk flows are determined by ExB drifts plus collision effects. The verbal descriptions are in several respects inconsistent with the equations; furthermore, both the descriptions and the equations are not compatible with the more rigorous physical understanding derived from the complete plasma and Maxwell's equations. The conventional ionospheric equations are applicable under restricted conditions, corresponding to a quasi-steady-state equilibrium limit, and are thus intrinsically incapable of answering questions about causal relations or dynamic developments. Within their limited range of applicability, however, the equations are in most cases adequate to explain the observations, despite the deficient treatment of plasma physics. (A historical precedent that comes to mind is that of astronomical theory at the time of Copernicus and for some decades afterwards, when the Ptolemaic scheme could explain the observations at least as well if not better than the Copernican. Some of the verbal descriptions in conventional ionospheric electrodynamics might be considered Ptolemaic also in the more literal sense of being formulated exclusively in terms of a fixed Earth.) I review the principal differences between the two approaches, point out some questions where the conventional ionospheric theory does not provide unambiguous answers even within its range of validity (e.g., topside and

  3. Ionospheric and Thermospheric Imaging from Geosynchronous Orbit

    NASA Astrophysics Data System (ADS)

    McCoy, R. P.; Wood, K.; Dymond, K. F.; Thonnard, S. E.; Cannon, K.; Makela, J.

    2001-12-01

    The Office of Naval Research is sponsoring the development of an ultraviolet imaging system to test the concept of real-time synoptic observations of the ionosphere and thermosphere from geosynchronous orbit. The observational hardware consists of two ultraviolet telescopes mounted to a two-axis gimbal to measure airglow radiances on the disk and limb of the Earth. A far-ultraviolet telescope will use a filter wheel with filters to image atomic oxygen emission at 130.4 nm, 135.6 nm, and molecular nitrogen emission at 143.0 nm. An extreme-ultraviolet telescope will image the oxygen ion airglow at 83.4 nm. The oxygen emission measurements will be used to infer nightside ionospheric total electron content (TEC) on the disk and electron density profiles on the limb. On the dayside the oxygen ion measurements will be used to determine electron density profiles, and the oxygen and nitrogen measurements will be used to infer thermospheric neutral density profiles on the limb and O/N2 ratios on the disk. The telescope fields of view cover a 1000 km x 1000 km region with 10 km x 10 km resolution. A goal for nightside TEC measurements is to obtain images with 100 second integrations and to be able to track ionospheric irregularities in real time as "weather systems". Ratios of oxygen nightglow measurements will be used to explore the possibility of providing three dimensional measurements of the ionosphere. These telescopes will be mounted aboard an Air Force Space Test Program satellite which will be launched into geosynchronous orbit over the continental U. S. for about year and then moved over the Indian Ocean for an additional seven years.

  4. Solar cycle modulation of Titan's ionosphere

    NASA Astrophysics Data System (ADS)

    Edberg, N. J. T.; Andrews, D. J.; Shebanits, O.; Ågren, K.; Wahlund, J.-E.; Opgenoorth, H. J.; Cravens, T. E.; Girazian, Z.

    2013-08-01

    During the six Cassini Titan flybys T83-T88 (May 2012 to November 2012) the electron density in the ionospheric peak region, as measured by the radio and plasma wave science instrument/Langmuir probe, has increased significantly, by 15-30%, compared to previous average. These measurements suggest that a long‒term change has occurred in the ionosphere of Titan, likely caused by the rise to the new solar maximum with increased EUV fluxes. We compare measurements from TA, TB, and T5, from the declining phase of solar cycle 23 to the recent T83-T88 measurements during cycle 24, since the solar irradiances from those two intervals are comparable. The peak electron densities normalized to a common solar zenith angle Nnorm from those two groups of flybys are comparable but increased compared to the solar minimum flybys (T16-T71). The integrated solar irradiance over the wavelengths 1-80nm, i.e., the solar energy flux, Fe, correlates well with the observed ionospheric peak density values. Chapman layer theory predicts that Nnorm∝Fek, with k=0.5. We find observationally that the exponent k=0.54±0.18. Hence, the observations are in good agreement with theory despite the fact that many assumptions in Chapman theory are violated. This is also in good agreement with a similar study by Girazian and Withers (2013) on the ionosphere of Mars. We use this power law to estimate the peak electron density at the subsolar point of Titan during solar maximum conditions and find it to be about 6500cm-3, i.e., 85-160% more than has been measured during the entire Cassini mission.

  5. New Vary-Chap Profile of the Topside Ionosphere Electron Density Distribution for use with the IRI Model and the GIRO Real-Time Data

    NASA Technical Reports Server (NTRS)

    Nsumei, Patrick; Reinisch, Bodo W.; Huang, Xueqin; Bilitza, Dieter

    2012-01-01

    A new Vary-Chap function is introduced for the empirical modeling of the electron density N(h) profile in the topside ionosphere that uses a shape function S(h) in the generalized Chapman function. The Vary-Chap profile extends the bottomside profile that is specified by the IRI model or measured by the Global Ionospheric Radio Observatory (GIRO) to the altitude of the ISIS-2 satellite. Some 80,000 topside profiles, measured by the topside sounder on the ISIS-2 satellite were analyzed, and the shape function S(h) was calculated for each profile. A parameterized function S*(h), composed of two sub-functions S1(h) and S2(h), is fitted to the measured S(h) profile using three free parameters. At altitudes just above the F2 layer peak height hmF2, the shape function S1 controls S(h), and at greater altitudes S2 controls S(h). The height of the intersection of S1 and S2 is defined as the transition height h(sub T) indicating the transition from an O(+) to an H(+)-dominated profile shape. The observed transition heights range from approx.500 km to 800 km.

  6. Array-based GNSS Ionospheric Sensing: Estimability and Precision Analyses

    NASA Astrophysics Data System (ADS)

    Teunissen, Peter

    2016-04-01

    Array-based GNSS Ionospheric Sensing: Estimability and Precision Analyses PJG Teunissen1,2, A Khodabandeh1 and B Zhang1 1GNSS Research Centre, Curtin University, Perth, Australia 2Geoscience and Remote Sensing, Delft University of Technology, The Netherlands Introduction: The Global Navigation Satellite Systems (GNSS) have proved to be an effective means of measuring the Earth's ionosphere. The well-known geometry-free linear combinations of the GNSS data serve as the input of an external ionospheric model to capture both the spatial and temporal characteristics of the ionosphere. Next to the slant ionospheric delays experienced by the GNSS antennas, the geometry-free combinations also contain additional unknown delays that are caused by the presence of the carrier-phase ambiguous cycles and/or the code instrumental delays. That the geometry-free combinations, without an external ionospheric model, cannot unbiasedly determine the slant ionospheric delays reveals the lack of information content in the GNSS data. Motivation and objectives: With the advent of modernized multi-frequency signals, one is confronted with many different combinations of the GNSS data that are capable of sensing the ionosphere. Owing to such diversity and the lack of information content in the GNSS data, various estimable ionospheric delays of different interpretations (and of different precision) can therefore be formed. How such estimable ionospheric delays should be interpreted and the extent to which they contribute to the precision of the unbiased slant ionosphere are the topics of this contribution. Approach and results: In this contribution, we apply S-system theory to study the estimability and precision of the estimable slant ionospheric delays that are measured by the multi-frequency GNSS data. Two different S-systems are presented, leading to two different estimable parameters of different precision: 1) the phase-driven ionospheric delays and 2) the code-driven ionospheric delays

  7. Ionospheric wave and irregularity measurements using passive radio astronomy techniques

    NASA Technical Reports Server (NTRS)

    Erickson, W. C.; Mahoney, M. J.; Jacobson, A. R.; Knowles, S. H.

    1988-01-01

    The observation of midlatitude structures using passive radio astronomy techniques is discussed, with particular attention being given to the low-frequency radio telescope at the Clark Lake Radio Observatory. The present telescope operates in the 10-125-MHz frequency range. Observations of the ionosphere at separations of a few kilometers to a few hundreds of kilometers by the lines of sight to sources are possible, allowing the determination of the amplitude, wavelength, direction of propagation, and propagation speed of ionospheric waves. Data are considered on large-scale ionospheric gradients and the two-dimensional shapes and sizes of ionospheric irregularities.

  8. Solar-wind control of the extent of planetary ionospheres

    NASA Technical Reports Server (NTRS)

    Bauer, S. J.

    1976-01-01

    In our solar system there are at least four magnetic planets: Earth, Jupiter, Mercury, and Mars; while at least one planet, Venus, appears to be essentially nonmagnetic. The ionospheres of the magnetic planets are imbedded in their magnetosphere and thus shielded from the solar wind, whereas the ionosphere of Venus, at least, interacts directly with the solar wind. However, the solar wind interaction with the planetary environment, in both cases, affects the behavior of their ionospheres. The role the solar wind interaction plays in limiting the extent of the ionospheres of both magnetic and nonmagnetic planets is discussed.

  9. Ionospheric perturbation degree estimates for improving GNSS applications

    NASA Astrophysics Data System (ADS)

    Jakowski, Norbert; Mainul Hoque, M.; Wilken, Volker; Berdermann, Jens; Hlubek, Nikolai

    Ionosphere can adversely affect accuracy, continuity, availability, and integrity of modern Global Navigation Satellite Systems (GNSS) in different ways. Hence, reliable information on key parameters describing the perturbation degree of the ionosphere is helpful for estimating the potential degradation of the performance of these systems. So, to guarantee the required safety level in aviation, Ground Based Augmentation Systems (GBAS) and Satellite Based Augmentation Systems (SBAS) have been established for detecting and mitigating ionospheric threats in particular due to ionospheric gradients. The paper reviews various attempts and capabilities to characterize the perturbation degree of the ionosphere currently being used in precise positioning and safety of life applications. Continuity and availability of signals are mainly impacted by amplitude and phase scintillations characterized by indices such as S4 or phase noise. To characterize medium and large scale ionospheric perturbations that may seriously affect accuracy and integrity of GNSS, the use of an internationally standardized Disturbance Ionosphere Index (DIX) is recommended. The definition of such a DIX must take into account the practical needs, should be an objective measure of ionospheric conditions and easy and reproducible to compute. A preliminary DIX approach is presented and discussed. Such a robust and easy adaptable index should have a great potential for being used in operational ionospheric weather services and GNSS augmentation systems.

  10. Lessons Learned from the Deployment and Integration of a Microwave Sounder Based Tropical Cyclone Intensity and Surface Wind Estimation Algorithm into NOAA/NESDIS Satellite Product Operations

    NASA Astrophysics Data System (ADS)

    Longmore, S. P.; Knaff, J. A.; Schumacher, A.; Dostalek, J.; DeMaria, R.; Chirokova, G.; Demaria, M.; Powell, D. C.; Sigmund, A.; Yu, W.

    2014-12-01

    The Colorado State University (CSU) Cooperative Institute for Research in the Atmosphere (CIRA) has recently deployed a tropical cyclone (TC) intensity and surface wind radii estimation algorithm that utilizes Suomi National Polar-orbiting Partnership (S-NPP) satellite Advanced Technology Microwave Sounder (ATMS) and Advanced Microwave Sounding Unit (AMSU) from the NOAA18, NOAA19 and METOPA polar orbiting satellites for testing, integration and operations for the Product System Development and Implementation (PSDI) projects at NOAA's National Environmental Satellite, Data, and Information Service (NESDIS). This presentation discusses the evolution of the CIRA NPP/AMSU TC algorithms internally at CIRA and its migration and integration into the NOAA Data Exploitation (NDE) development and testing frameworks. The discussion will focus on 1) the development cycle of internal NPP/AMSU TC algorithms components by scientists and software engineers, 2) the exchange of these components into the NPP/AMSU TC software systems using the subversion version control system and other exchange methods, 3) testing, debugging and integration of the NPP/AMSU TC systems both at CIRA/NESDIS and 4) the update cycle of new releases through continuous integration. Lastly, a discussion of the methods that were effective and those that need revision will be detailed for the next iteration of the NPP/AMSU TC system.

  11. Validation of the Atmospheric Infrared Sounder (AIRS) over the Antarctic Plateau: Low Radiance, Low Humidity, and Thin Clouds

    NASA Technical Reports Server (NTRS)

    Tobin, David C.

    2005-01-01

    The main goal of the project has been to use specialized measurements collected at the Antarctic Plateau to provide validation of the Atmospheric InfraRed Sounder (AIRS) spectral radiances and some AIRS Level 2 products. As proposed, efforts conducted at the University of Wisconsin are focused on providing technical information, data, and software in support of the validation studies.

  12. The URSI/COSPAR Standard for the Ionosphere: International Reference Ionosphere

    NASA Astrophysics Data System (ADS)

    Rawer, K.; Bilitza, D.; Reinisch, B.; Triskova, L.; Oyama, K.

    The International Reference Ionosphere (IRI) is the standard for ionospheric densities and temperatures recommended by the International Union of Radio science (URSI) and the Committee on Space Research (COSPAR). The IRI Working Group consists of a team of 43 experts who work on different aspects of the modeling problem. By charter IRI is a data-based (empirical) model that attempts to represent the combined ionospheric data base of ground and space measurements as accurate as possible. IRI provides monthly averages of the electron density, total electron content, electron temperature, ion temperature, ion composition (O+, H+, He+, N+, O2+, NO+, Cluster) and vertical ion drift (at the equator). If measured values are available the IRI profile can be updated with E and F peak densities and heights. IRI shortcomings, improvements, new additions, and applications are discussed during annual workshops. This talk will review the current status of the IRI project and describe the most recent version of the model, IRI-2000.<