Science.gov

Sample records for advanced isotope separation

  1. Isotope separation and advanced manufacturing technology

    NASA Astrophysics Data System (ADS)

    Carpenter, J.; Kan, T.

    This is the fourth issue of a semiannual report for the Isotope Separation and Advanced Materials Manufacturing (ISAM) Technology Program at Lawrence Livermore National Laboratory. Primary objectives include: (1) the Uranium Atomic Vapor Laser Isotope Separation (UAVLIS) process, which is being developed and prepared for deployment as an advanced uranium enrichment capability; (2) Advanced manufacturing technologies, which include industrial laser and E-beam material processing and new manufacturing technologies for uranium, plutonium, and other strategically important materials in support of DOE and other national applications. This report features progress in the ISAM Program from October 1993 through March 1994.

  2. Advancement of isotope separation for the production of reference standards

    SciTech Connect

    Jared Horkley; Christopher McGrath; Andrew Edwards; Gaven Knighton; Kevin Carney; Jacob Davies; James Sommers; Jeffrey Giglio

    2012-03-01

    Idaho National Laboratory (INL) operates a mass separator that is currently producing high purity isotopes for use as internal standards for high precision isotope dilution mass spectrometry (IDMS). In 2008, INL began the revival of the vintage 1970’s era instrument. Advancements thus far include the successful upgrading and development of system components such as the vacuum system, power supplies, ion-producing components, and beam detection equipment. Progress has been made in the separation and collection of isotopic species including those of Ar, Kr, Xe, Sr, and Ba. Particular focuses on ion source improvements and developments have proven successful with demonstrated output beam currents of over 10 micro-amps 138Ba and 350nA 134Ba from a natural abundance source charge (approximately 2.4 percent 134Ba). In order to increase production and collection of relatively high quantities (mg levels) of pure isotopes, several advancements have been made in ion source designs, source material introduction, and beam detection and collection. These advancements and future developments will be presented.

  3. Isotope separation

    DOEpatents

    Bartlett, Rodney J.; Morrey, John R.

    1978-01-01

    A method and apparatus is described for separating gas molecules containing one isotope of an element from gas molecules containing other isotopes of the same element in which all of the molecules of the gas are at the same electronic state in their ground state. Gas molecules in a gas stream containing one of the isotopes are selectively excited to a different electronic state while leaving the other gas molecules in their original ground state. Gas molecules containing one of the isotopes are then deflected from the other gas molecules in the stream and thus physically separated.

  4. ISOTOPE SEPARATORS

    DOEpatents

    Bacon, C.G.

    1958-08-26

    An improvement is presented in the structure of an isotope separation apparatus and, in particular, is concerned with a magnetically operated shutter associated with a window which is provided for the purpose of enabling the operator to view the processes going on within the interior of the apparatus. The shutier is mounted to close under the force of gravity in the absence of any other force. By closing an electrical circuit to a coil mouated on the shutter the magnetic field of the isotope separating apparatus coacts with the magnetic field of the coil to force the shutter to the open position.

  5. LLNL medical and industrial laser isotope separation: large volume, low cost production through advanced laser technologies

    SciTech Connect

    Comaskey, B.; Scheibner, K. F.; Shaw, M.; Wilder, J.

    1998-09-02

    The goal of this LDRD project was to demonstrate the technical and economical feasibility of applying laser isotope separation technology to the commercial enrichment (>lkg/y) of stable isotopes. A successful demonstration would well position the laboratory to make a credible case for the creation of an ongoing medical and industrial isotope production and development program at LLNL. Such a program would establish LLNL as a center for advanced medical isotope production, successfully leveraging previous LLNL Research and Development hardware, facilities, and knowledge.

  6. Isotope separation and advanced manufacturing technology. Volume 2, No. 2, Semiannual report, April--September 1993

    SciTech Connect

    Kan, Tehmanu; Carpenter, J.

    1993-12-31

    This is the second issue of a semiannual report for the Isotope Separation and Advanced Manufacturing (ISAM) Technology Program at Lawrence Livermore National Laboratory. Primary objectives of the ISAM Program include: the Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) process, and advanced manufacturing technologies which include industrial laser materials processing and new manufacturing technologies for uranium, plutonium, and other strategically important materials in support of DOE and other national applications. Topics included in this issue are: production plant product system conceptual design, development and operation of a solid-state switch for thyratron replacement, high-performance optical components for high average power laser systems, use of diode laser absorption spectroscopy for control of uranium vaporization rates, a two-dimensional time dependent hydrodynamical ion extraction model, and design of a formaldehyde photodissociation process for carbon and oxygen isotope separation.

  7. Recent Advances in SRS on Hydrogen Isotope Separation Using Thermal Cycling Absorption Process

    DOE PAGES

    Xiao, Xin; Sessions, Henry T.; Heung, L. Kit

    2015-02-01

    The recent Thermal Cycling Absorption Process (TCAP) advances at Savannah River Site (SRS) include compressor-free concept for heating/cooling, push and pull separation using an active inverse column, and compact column design. The new developments allow significantly higher throughput and better reliability from 1/10th of the current production system’s footprint while consuming 60% less energy. Various versions are derived in the meantime for external customers to be used in fusion energy projects and medical isotope production.

  8. Isotope separation by photochromatography

    DOEpatents

    Suslick, K.S.

    1975-10-03

    A photochromatographic method for isotope separation is described. An isotopically mixed molecular species is adsorbed on an adsorptive surface, and the adsorbed molecules are irradiated with radiation of a predetermined wavelength which will selectively excite desired isotopic species. Sufficient energy is transferred to the excited molecules to desorb them from the surface and thus separate them from the undesired isotopic species. The method is particularly applicable to the separation of hydrogen isotopes. (BLM)

  9. Isotope separation by photochromatography

    DOEpatents

    Suslick, Kenneth S.

    1977-01-01

    An isotope separation method which comprises physically adsorbing an isotopically mixed molecular species on an adsorptive surface and irradiating the adsorbed molecules with radiation of a predetermined wavelength which will selectively excite a desired isotopic species. Sufficient energy is transferred to the excited molecules to desorb them from the surface and thereby separate them from the unexcited undesired isotopic species. The method is particularly applicable to the separation of hydrogen isotopes.

  10. Method for separating isotopes

    DOEpatents

    Jepson, B.E.

    1975-10-21

    Isotopes are separated by contacting a feed solution containing the isotopes with a cyclic polyether wherein a complex of one isotope is formed with the cyclic polyether, the cyclic polyether complex is extracted from the feed solution, and the isotope is thereafter separated from the cyclic polyether.

  11. Recent advances in SRS on hydrogen isotope separation using thermal cycling absorption process

    SciTech Connect

    Xiao, X.; Kit Heung, L.; Sessions, H.T.

    2015-03-15

    TCAP (Thermal Cycling Absorption Process) is a gas chromatograph in principle using palladium in the column packing, but it is unique in the fact that the carrier gas, hydrogen, is being isotopically separated and the system is operated in a semi-continuous manner. TCAP units are used to purify tritium. The recent TCAP advances at Savannah River Site (SRS) include compressor-free concept for heating/cooling, push and pull separation using an active inverse column, and compact column design. The new developments allow significantly higher throughput and better reliability from 1/10 of the current production system's footprint while consuming 60% less energy. Various versions are derived in the meantime for external customers to be used in fusion energy projects.

  12. Isotope Separation and Advanced Manufacturing Technology. ISAM semiannual report, Volume 3, Number 1, October 1993--March 1994

    SciTech Connect

    Carpenter, J.; Kan, T.

    1994-10-01

    This is the fourth issue of a semiannual report for the Isotope Separation and Advanced Materials Manufacturing (ISAM) Technology Program at Lawrence Livermore National Laboratory. Primary objectives include: (I) the Uranium Atomic Vapor Laser Isotope Separation (UAVLIS) process, which is being developed and prepared for deployment as an advanced uranium enrichment capability; (II) Advanced manufacturing technologies, which include industrial laser and E-beam material processing and new manufacturing technologies for uranium, plutonium, and other strategically important materials in support of DOE and other national applications. This report features progress in the ISAM Program from October 1993 through March 1994. Selected papers were indexed separately for inclusion in the Energy Science and Technology Database.

  13. Laser isotope separation

    DOEpatents

    Robinson, C.P.; Reed, J.J.; Cotter, T.P.; Boyer, K.; Greiner, N.R.

    1975-11-26

    A process and apparatus for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light is described. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photolysis, photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photolysis, photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium.

  14. Laser isotope separation

    DOEpatents

    Robinson, C. Paul; Jensen, Reed J.; Cotter, Theodore P.; Boyer, Keith; Greiner, Norman R.

    1988-01-01

    A process and apparatus for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photolysis, photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photolysis, photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium.

  15. Photochemical isotope separation

    DOEpatents

    Robinson, C. Paul; Jensen, Reed J.; Cotter, Theodore P.; Greiner, Norman R.; Boyer, Keith

    1987-01-01

    A process for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium and plutonium.

  16. Separation of sulfur isotopes

    DOEpatents

    DeWitt, Robert; Jepson, Bernhart E.; Schwind, Roger A.

    1976-06-22

    Sulfur isotopes are continuously separated and enriched using a closed loop reflux system wherein sulfur dioxide (SO.sub.2) is reacted with sodium hydroxide (NaOH) or the like to form sodium hydrogen sulfite (NaHSO.sub.3). Heavier sulfur isotopes are preferentially attracted to the NaHSO.sub.3, and subsequently reacted with sulfuric acid (H.sub.2 SO.sub.4) forming sodium hydrogen sulfate (NaHSO.sub.4) and SO.sub.2 gas which contains increased concentrations of the heavier sulfur isotopes. This heavy isotope enriched SO.sub.2 gas is subsequently separated and the NaHSO.sub.4 is reacted with NaOH to form sodium sulfate (Na.sub.2 SO.sub.4) which is subsequently decomposed in an electrodialysis unit to form the NaOH and H.sub.2 SO.sub.4 components which are used in the aforesaid reactions thereby effecting sulfur isotope separation and enrichment without objectionable loss of feed materials.

  17. Chromatographic hydrogen isotope separation

    DOEpatents

    Aldridge, Frederick T.

    1981-01-01

    Intermetallic compounds with the CaCu.sub.5 type of crystal structure, particularly LaNiCo.sub.4 and CaNi.sub.5, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation colum. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale mutli-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen can produce large quantities of heavy water at an effective cost for use in heavy water reactors.

  18. Chromatographic hydrogen isotope separation

    DOEpatents

    Aldridge, F.T.

    Intermetallic compounds with the CaCu/sub 5/ type of crystal structure, particularly LaNiCo/sub 4/ and CaNi/sub 5/, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation column. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale multi-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen cn produce large quantities of heavy water at an effective cost for use in heavy water reactors.

  19. Isotope separation apparatus

    DOEpatents

    Arnush, Donald; MacKenzie, Kenneth R.; Wuerker, Ralph F.

    1980-01-01

    Isotope separation apparatus consisting of a plurality of cells disposed adjacent to each other in an evacuated container. A common magnetic field is established extending through all of the cells. A source of energetic electrons at one end of the container generates electrons which pass through the cells along the magnetic field lines. Each cell includes an array of collector plates arranged in parallel or in tandem within a common magnetic field. Sets of collector plates are disposed adjacent to each other in each cell. Means are provided for differentially energizing ions of a desired isotope by applying energy at the cyclotron resonant frequency of the desired isotope. As a result, the energized desired ions are preferentially collected by the collector plates.

  20. ISOTOPE SEPARATING APPARATUS CONTROL

    DOEpatents

    Barnes, S.W.

    1959-08-25

    An improved isotope separating apparatus of the electromagnetic type, commonly referred to as a calutron, is described. Improvements in detecting and maintaining optimum position and focus of the ion beam are given. The calutron collector is provided with an additional electrode insulated from and positioned between the collecting pockets. The ion beams are properly positioned and focused until the deionizing current which flows from ground to this additional electrode ts a minimum.

  1. High Atomic Weight Isotope Separator.

    DTIC Science & Technology

    This patent discusses a method of separating one isotopic species of a given element from a mixture. Collisionless plasma instabilities slow down the ions and oppositely charged electrodes separate the isotopes.

  2. Method for separating boron isotopes

    DOEpatents

    Rockwood, Stephen D.

    1978-01-01

    A method of separating boron isotopes .sup.10 B and .sup.11 B by laser-induced selective excitation and photodissociation of BCl.sub.3 molecules containing a particular boron isotope. The photodissociation products react with an appropriate chemical scavenger and the reaction products may readily be separated from undissociated BCl.sub.3, thus effecting the desired separation of the boron isotopes.

  3. Experimental equipment for an advanced ISOL facility[Isotope Separation On-Line Facility

    SciTech Connect

    Baktash, C.; Lee, I.Y.; Rehm, K.E.

    1999-03-01

    This report summarizes the proceedings and recommendations of the Workshop on the Experimental Equipment for an Advanced ISOL Facility which was held at Lawrence Berkeley National Laboratory on July 22--25, 1998. The purpose of this workshop was to discuss the performance requirements, manpower and cost estimates, as well as a schedule of the experimental equipment needed to fully exploit the new physics which can be studied at an advanced ISOL facility. An overview of the new physics opportunities that would be provided by such a facility has been presented in the White Paper that was issued following the Columbus Meeting. The reactions and experimental techniques discussed in the Columbus White Paper served as a guideline for the formulation of the detector needs at the Berkeley Workshop. As outlined a new ISOL facility with intense, high-quality beams of radioactive nuclei would provide exciting new research opportunities in the areas of: the nature of nucleonic matter; the origin of the elements; and tests of the Standard Model. After an introductory section, the following equipment is discussed: gamma-ray detectors; recoil separators; magnetic spectrographs; particle detectors; targets; and apparatus using non-accelerated beams.

  4. Hybrid isotope separation scheme

    DOEpatents

    Maya, J.

    1991-06-18

    A method is described for yielding selectively a desired enrichment in a specific isotope including the steps of inputting into a spinning chamber a gas from which a scavenger, radiating the gas with a wave length or frequency characteristic of the absorption of a particular isotope of the atomic or molecular gas, thereby inducing a photochemical reaction between the scavenger, and collecting the specific isotope-containing chemical by using a recombination surface or by a scooping apparatus. 2 figures.

  5. Hybrid isotope separation scheme

    DOEpatents

    Maya, Jakob

    1991-01-01

    A method of yielding selectively a desired enrichment in a specific isotope including the steps of inputting into a spinning chamber a gas from which a scavenger, radiating the gas with a wave length or frequency characteristic of the absorption of a particular isotope of the atomic or molecular gas, thereby inducing a photochemical reaction between the scavenger, and collecting the specific isotope-containing chemical by using a recombination surface or by a scooping apparatus.

  6. ISOTOPE SEPARATING APPARATUS

    DOEpatents

    Kudravetz, M.K.; Greene, H.B.

    1958-09-16

    This patent relates to control systems for a calutron and, in particular, describes an electro-mechanical system for interrupting the collection of charged particles when the ratio between the two isotopes being receivcd deviates from a predetermined value. One embodiment of the invention includes means responsive to the ratio between two isotopes being received for opening a normally closed shutter over the receiver entrance when the isotope ratio is the desired value. In another form of the invention the collection operation is interrupted by changing the beam accelerating voltage to deflect the ion beam away from the receiver.

  7. Isotope separation by laser means

    DOEpatents

    Robinson, C. Paul; Jensen, Reed J.; Cotter, Theodore P.; Greiner, Norman R.; Boyer, Keith

    1982-06-15

    A process for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium and plutonium.

  8. Hydrogen isotope separation

    DOEpatents

    Bartlit, J.R.; Denton, W.H.; Sherman, R.H.

    Disclosed is a system of four cryogenic fractional distillation columns interlinked with two equilibrators for separating a DT and hydrogen feed stream into four product streams, consisting of a stream of high purity D/sub 2/, DT, T/sub 2/, and a tritium-free stream of HD for waste disposal.

  9. Hydrogen isotope separation

    DOEpatents

    Bartlit, John R.; Denton, William H.; Sherman, Robert H.

    1982-01-01

    A system of four cryogenic fractional distillation columns interlinked with two equilibrators for separating a DT and hydrogen feed stream into four product streams, consisting of a stream of high purity D.sub.2, DT, T.sub.2, and a tritium-free stream of HD for waste disposal.

  10. The ADvanced SEParation (ADSEP)

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The ADvanced SEParation (ADSEP) commercial payload is making use of major advances in separation technology: The Phase Partitioning Experiment (PPE); the Micorencapsulation experiment; and the Hemoglobin Separation Experiment (HSE). Using ADSEP, commercial researchers will attempt to determine the partition coefficients for model particles in a two-phase system. With this information, researchers can develop a higher resolution, more effective cell isolation procedure that can be used for many different types of research and for improved health care. The advanced separation technology is already being made available for use in ground-based laboratories.

  11. Isotope separation apparatus and method

    DOEpatents

    Feldman, Barry J.

    1985-01-01

    The invention relates to an improved method and apparatus for laser isotope separation by photodeflection. A molecular beam comprising at least two isotopes to be separated intersects, preferably substantially perpendicular to one broad side of the molecular beam, with a laser beam traveling in a first direction. The laser beam is reflected back through the molecular beam, preferably in a second direction essentially opposite to the first direction. Because the molecules in the beam occupy various degenerate energy levels, if the laser beam comprises chirped pulses comprising selected wavelengths, the laser beam will very efficiently excite substantially all unexcited molecules and will cause stimulated emission of substantially all excited molecules of a selected one of the isotopes in the beam which such pulses encounter. Excitation caused by first direction chirped pulses moves molecules of the isotope excited thereby in the first direction. Stimulated emission of excited molecules of the isotope is brought about by returning chirped pulses traveling in the second direction. Stimulated emission moves emitting molecules in a direction opposite to the photon emitted. Because emitted photons travel in the second direction, emitting molecules move in the first direction. Substantial molecular movement of essentially all the molecules containing the one isotope is accomplished by a large number of chirped pulse-molecule interactions. A beam corer collects the molecules in the resulting enriched divergent portions of the beam.

  12. Isotope separation apparatus and method

    DOEpatents

    Cotter, Theodore P.

    1982-12-28

    The invention relates to a method and apparatus for laser isotope separation by photodeflection. A molecular beam comprising at least two isotopes to be separated intersects, preferable substantially perpendicular to one broad side of the molecular beam, with a laser beam traveling in a first direction. The laser beam is reflected back through the molecular beam, preferably in a second direction essentially opposite to the first direction. The laser beam comprises .pi.-pulses of a selected wavelength which excite unexcited molecules, or cause stimulated emission of excited molecules of one of the isotopes. Excitation caused by first direction .pi.-pulses moves molecules of the isotope excited thereby in the first direction. Stimulated emission of excited molecules of the isotope is brought about by returning .pi.-pulses traveling in the second direction. Stimulated emission moves emitting molecules in a direction opposite to the photon emitted. Because emitted photons travel in the second direction, emitting molecules move in the first direction. Substantial molecular movement is accomplished by a large number of .pi.-pulse-molecule interactions. A beam corer collects the molecules in the resulting enriched divergent portions of the beam.

  13. Apparatus and process for separating hydrogen isotopes

    DOEpatents

    Heung, Leung K; Sessions, Henry T; Xiao, Xin

    2013-06-25

    The apparatus and process for separating hydrogen isotopes is provided using dual columns, each column having an opposite hydrogen isotopic effect such that when a hydrogen isotope mixture feedstock is cycled between the two respective columns, two different hydrogen isotopes are separated from the feedstock.

  14. Atomic vapor laser isotope separation

    SciTech Connect

    Stern, R.C.; Paisner, J.A.

    1985-11-08

    Atomic vapor laser isotope separation (AVLIS) is a general and powerful technique. A major present application to the enrichment of uranium for light-water power reactor fuel has been under development for over 10 years. In June 1985 the Department of Energy announced the selection of AVLIS as the technology to meet the nation's future need for the internationally competitive production of uranium separative work. The economic basis for this decision is considered, with an indicated of the constraints placed on the process figures of merit and the process laser system. We then trace an atom through a generic AVLIS separator and give examples of the physical steps encountered, the models used to describe the process physics, the fundamental parameters involved, and the role of diagnostic laser measurements.

  15. The separation of stable isotopes of carbon

    NASA Astrophysics Data System (ADS)

    Oziashvili, E. D.; Egiazarov, A. S.

    1989-04-01

    The present state of work on the separation of carbon isotopes by diffusion, fractional distillation, chemical isotopic exchange, and the selective excitation and dissociation of molecules in electrical discharges or in the field of laser radiation has been examined. The characteristics of new laboratory and industrial assemblies for separating carbon isotopes have been described. Promising directions of study aimed at developing effective technological processes for separating carbon isotopes have been noted. The bibliography contains 148 references.

  16. Advanced Separation Consortium

    SciTech Connect

    2006-01-01

    The Center for Advanced Separation Technologies (CAST) was formed in 2001 under the sponsorship of the US Department of Energy to conduct fundamental research in advanced separation and to develop technologies that can be used to produce coal and minerals in an efficient and environmentally acceptable manner. The CAST consortium consists of seven universities - Virginia Tech, West Virginia University, University of Kentucky, Montana Tech, University of Utah, University of Nevada-Reno, and New Mexico Tech. The consortium brings together a broad range of expertise to solve problems facing the US coal industry and the mining sector in general. At present, a total of 60 research projects are under way. The article outlines some of these, on topics including innovative dewatering technologies, removal of mercury and other impurities, and modelling of the flotation process. 1 photo.

  17. Laser system for isotope separation

    NASA Astrophysics Data System (ADS)

    Shirayama, Shimpey; Mikatsura, Takefumi; Ueda, Hiroaki; Konagai, Chikara

    1990-06-01

    Atomic vapor laser isotope separation (AVLIS) is regarded as the most promising method to obtain srightly enriched economical nuclear fuel for a nuclear power plant. However, achieving a high power laser seems to be the bottle neck in its industrialization. In 1985, after successful development of high power lasers, the U.S. announced that AVLIS would be used for future methods of uranium enrichment. In Japan , Laser Atomic Separation Enrichment Research Associates of Japan (LASER-J), a joint Japanese utility companies research organization, was founded in April, 1987, to push a development program for laser uranium enrichment. Based on research results obtained from Japanese National Labs, and Universities , Laser-J is now constructing an AVLIS experimental facility at Tokai-mura. It is planned to have a 1-ton swu capacity per year in 1991. Previous to the experimental facility construction , Toshiba proceeded with the preliminary testing of an isotope separation system, under contract with Laser-J. Since the copper vapor laser (CVL) and the dye laser (DL) form a good combination , which can obtain high power tunable visible lights ,it is suitable to resonate uranium atoms. The laser system was built and was successfully operated in Toshiba for two years. The system consist of three copper vapor lasers , three dye lasers and appropriate o Atomic vapor laser isotope separation (AVLIS) is regarded as the most promising method to obtain srightly enriched economical nuclear fuel for a nuclear power plant. However, achieving a high power laser seems to be the bottle neck in its industrialization. In 1985, after successful development of high power lasers, the U.S. announced that AVLIS would be used for future methods of uranium enrichment. In Japan , Laser Atomic Separation Enrichment Research Associates of Japan (LASER-J) , a joint Japanese utility companies research organization , was founded in April, 1987, to push a development program for laser uranium enrichment

  18. Laser isotope separation of erbium and other isotopes

    DOEpatents

    Haynam, Christopher A.; Worden, Earl F.

    1995-01-01

    Laser isotope separation is accomplished using at least two photoionization pathways of an isotope simultaneously, where each pathway comprises two or more transition steps. This separation method has been applied to the selective photoionization of erbium isotopes, particularly for the enrichment of .sup.167 Er. The hyperfine structure of .sup.167 Er was used to find two three-step photoionization pathways having a common upper energy level.

  19. Laser isotope separation of erbium and other isotopes

    DOEpatents

    Haynam, C.A.; Worden, E.F.

    1995-08-22

    Laser isotope separation is accomplished using at least two photoionization pathways of an isotope simultaneously, where each pathway comprises two or more transition steps. This separation method has been applied to the selective photoionization of erbium isotopes, particularly for the enrichment of {sup 167}Er. The hyperfine structure of {sup 167}Er was used to find two three-step photoionization pathways having a common upper energy level. 3 figs.

  20. Method of separating boron isotopes

    SciTech Connect

    Jensen, R.J.; Cluff, C.L.; Hayes, J.K.; Thorne, J.M.

    1984-05-08

    A method of boron isotope enrichment involving the isotope preferential photolysis of (2-chloroethenyl)dichloroborane as the feed material. The photolysis can readily be achieved with CO/sub 2/ laser radiation and using fluences significantly below those required to dissociate BCl/sub 3/.

  1. Method of separating boron isotopes

    DOEpatents

    Jensen, R.J.; Thorne, J.M.; Cluff, C.L.

    1981-01-23

    A method of boron isotope enrichment involving the isotope preferential photolysis of (2-chloroethenyl)-dichloroborane as the feed material. The photolysis can readily by achieved with CO/sub 2/ laser radiation and using fluences significantly below those required to dissociate BCl/sub 3/.

  2. Method of separating boron isotopes

    DOEpatents

    Jensen, Reed J.; Thorne, James M.; Cluff, Coran L.; Hayes, John K.

    1984-01-01

    A method of boron isotope enrichment involving the isotope preferential photolysis of (2-chloroethenyl)dichloroborane as the feed material. The photolysis can readily be achieved with CO.sub.2 laser radiation and using fluences significantly below those required to dissociate BCl.sub.3.

  3. Hydrogen isotope separation installation for tritium facility

    SciTech Connect

    Andreev, B.M.; Perevezentsev, A.N.; Selivanenko, I.L.; Tenyaev, B.N.; Vedeneev, A.I.; Golubkov, A.N.

    1995-10-01

    The separation of hydrogen isotopes in the hydrogen-palladium system in sectioned separation columns with the simulation of counter-current isotopic exchange is described. The separation efficiency of sectioned columns is investigated with the experimental installation as a function of various parameters. The separation of deuterium-tritium mixtures with high tritium concentrations is tested with the pilot installation operating at room temperature and atmospheric hydrogen pressure. Due to very high separation efficiency, flexibility and simplicity of operation separation installations with sectioned columns are ideally suitable for tritium laboratories and facilities dealing with separation of hydrogen isotopes. Estimation of applicability of sectioned columns for regeneration of exhaust gas in a fuel cycle of thermonuclear reactors, such as JET and ITER, shows the number of advantages of separation installations with sectioned columns. 12 refs., 3 figs., 2 tabs.

  4. Method for isotope separation by photodeflection

    DOEpatents

    Bernhardt, Anthony F.

    1977-01-01

    In the method of separating isotopes wherein a desired isotope species is selectively deflected out of a beam of mixed isotopes by irradiating the beam with a directed beam of light of narrowly defined frequency which is selectively absorbed by the desired species, the improvement comprising irradiating the deflected beam with light from other light sources whose frequencies are selected to cause the depopulation of any metastable excited states.

  5. Possible application of laser isotope separation

    NASA Technical Reports Server (NTRS)

    Delionback, L. M.

    1975-01-01

    The laser isotope separation process is described and its special economic features discussed. These features are its low cost electric power operation, capital investment costs, and the costs of process materials.

  6. Atomic vapor laser isotope separation process

    DOEpatents

    Wyeth, R.W.; Paisner, J.A.; Story, T.

    1990-08-21

    A laser spectroscopy system is utilized in an atomic vapor laser isotope separation process. The system determines spectral components of an atomic vapor utilizing a laser heterodyne technique. 23 figs.

  7. Isotope separation by photoselective dissociative electron capture

    DOEpatents

    Stevens, Charles G. [Pleasanton, CA

    1978-08-29

    A method of separating isotopes based on photoselective electron capture dissociation of molecules having an electron capture cross section dependence on the vibrational state of the molecule. A molecular isotope source material is irradiated to selectively excite those molecules containing a desired isotope to a predetermined vibrational state having associated therewith an electron capture energy region substantially non-overlapping with the electron capture energy ranges associated with the lowest vibration states of the molecules. The isotope source is also subjected to electrons having an energy corresponding to the non-overlapping electron capture region whereby the selectively excited molecules preferentially capture electrons and dissociate into negative ions and neutrals. The desired isotope may be in the negative ion product or in the neutral product depending upon the mechanism of dissociation of the particular isotope source used. The dissociation product enriched in the desired isotope is then separated from the reaction system by conventional means. Specifically, .sup.235 UF.sub.6 is separated from a UF.sub.6 mixture by selective excitation followed by dissociative electron capture into .sup.235 UF.sub.5 - and F.

  8. Isotope separation by photoselective dissociative electron capture

    DOEpatents

    Stevens, C.G.

    1978-08-29

    Disclosed is a method of separating isotopes based on photoselective electron capture dissociation of molecules having an electron capture cross section dependence on the vibrational state of the molecule. A molecular isotope source material is irradiated to selectively excite those molecules containing a desired isotope to a predetermined vibrational state having associated therewith an electron capture energy region substantially non-overlapping with the electron capture energy ranges associated with the lowest vibration states of the molecules. The isotope source is also subjected to electrons having an energy corresponding to the non-overlapping electron capture region whereby the selectively excited molecules preferentially capture electrons and dissociate into negative ions and neutrals. The desired isotope may be in the negative ion product or in the neutral product depending upon the mechanism of dissociation of the particular isotope source used. The dissociation product enriched in the desired isotope is then separated from the reaction system by conventional means. Specifically, [sup 235]UF[sub 6] is separated from a UF[sub 6] mixture by selective excitation followed by dissociative electron capture into [sup 235]UF[sub 5]- and F. 2 figs.

  9. Hydrogen isotope separation from water

    DOEpatents

    Jensen, R.J.

    1975-09-01

    A process for separating tritium from tritium-containing water or deuterium enrichment from water is described. The process involves selective, laser-induced two-photon excitation and photodissociation of those water molecules containing deuterium or tritium followed by immediate reaction of the photodissociation products with a scavenger gas which does not substantially absorb the laser light. The reaction products are then separated from the undissociated water. (auth)

  10. Laser Isotope Separation Employing Condensation Repression

    SciTech Connect

    Eerkens, Jeff W.; Miller, William H.

    2004-09-15

    Molecular laser isotope separation (MLIS) techniques using condensation repression (CR) harvesting are reviewed and compared with atomic vapor laser isotope separation (AVLIS), gaseous diffusion (DIF), ultracentrifuges (UCF), and electromagnetic separations (EMS). Two different CR-MLIS or CRISLA (Condensation Repression Isotope Separation by Laser Activation) approaches have been under investigation at the University of Missouri (MU), one involving supersonic super-cooled free jets and dimer formation, and the other subsonic cold-wall condensation. Both employ mixtures of an isotopomer (e.g. {sup i}QF{sub 6}) and a carrier gas, operated at low temperatures and pressures. Present theories of VT relaxation, dimerization, and condensation are found to be unsatisfactory to explain/predict experimental CRISLA results. They were replaced by fundamentally new models that allow ab-initio calculation of isotope enrichments and predictions of condensation parameters for laser-excited and non-excited vapors which are in good agreement with experiment. Because of supersonic speeds, throughputs for free-jet CRISLA are a thousand times higher than cold-wall CRISLA schemes, and thus preferred for large-quantity Uranium enrichments. For small-quantity separations of (radioactive) medical isotopes, the simpler coldwall CRISLA method may be adequate.

  11. Device and method for separating oxygen isotopes

    DOEpatents

    Rockwood, Stephen D.; Sander, Robert K.

    1984-01-01

    A device and method for separating oxygen isotopes with an ArF laser which produces coherent radiation at approximately 193 nm. The output of the ArF laser is filtered in natural air and applied to an irradiation cell where it preferentially photodissociates molecules of oxygen gas containing .sup.17 O or .sup.18 O oxygen nuclides. A scavenger such as O.sub.2, CO or ethylene is used to collect the preferentially dissociated oxygen atoms and recycled to produce isotopically enriched molecular oxygen gas. Other embodiments utilize an ArF laser which is narrowly tuned with a prism or diffraction grating to preferentially photodissociate desired isotopes. Similarly, desired mixtures of isotopic gas can be used as a filter to photodissociate enriched preselected isotopes of oxygen.

  12. METHOD OF SEPARATING HYDROGEN ISOTOPES

    DOEpatents

    Salmon, O.N.

    1958-12-01

    The process of separating a gaseous mixture of hydrogen and tritium by contacting finely dlvided palladium with the mixture in order to adsorb the gases, then gradually heating the palladium and collecting the evolved fractlons, is described. The fraction first given off is richer in trltium than later fractions.

  13. METHOD TO TEST ISOTOPIC SEPARATION EFFICIENCY OF PALLADIUM PACKED COLUMNS

    SciTech Connect

    Heung, L; Gregory Staack, G; James Klein, J; William Jacobs, W

    2007-06-27

    The isotopic effect of palladium has been applied in different ways to separate hydrogen isotopes for many years. At Savannah River Site palladium deposited on kieselguhr (Pd/k) is used in a thermal cycling absorption process (TCAP) to purify tritium for over ten years. The need to design columns for different throughputs and the desire to advance the performance of TCAP created the need to evaluate different column designs and packing materials for their separation efficiency. In this work, columns with variations in length, diameter and metal foam use, were tested using an isotope displacement method. A simple computer model was also developed to calculate the number of theoretical separation stages using the test results. The effects of column diameter, metal foam and gas flow rate were identified.

  14. Production of stable isotopes utilizing the plasma separation process

    NASA Astrophysics Data System (ADS)

    Bigelow, T. S.; Tarallo, F. J.; Stevenson, N. R.

    2005-12-01

    A plasma separation process (PSP) is being operated at Theragenics Corporation's®, Oak Ridge, TN, facility for the enrichment of stable isotopes. The PSP utilizes ion cyclotron mass discrimination to separate isotopes on a relatively large scale. With a few exceptions, nearly any metallic element could be processed with PSP. Output isotope enrichment factor depends on natural abundance and mass separation and can be fairly high in some cases. The Theragenics™ PSP facility is believed to be the only such process currently in operation. This system was developed and formerly operated under the US Department of Energy Advanced Isotope Separation program. Theragenics™ also has a laboratory at the PSP site capable of harvesting the isotopes from the process and a mass spectrometer system for analyzing enrichment and product purity. Since becoming operational in 2002, Theragenics™ has utilized the PSP to separate isotopes of several elements including: dysprosium, erbium, gadolinium, molybdenum and nickel. Currently, Theragenics™ is using the PSP for the separation of 102Pd, which is used as precursor for the production of 103Pd. The 103Pd radioisotope is the active ingredient in TheraSeed®, which is used in the treatment of early stage prostate cancer and being investigated for other medical applications. New industrial, medical and research applications are being investigated for isotopes that can be enriched on the PSP. Pre-enrichment of accelerator or reactor targets offers improved radioisotope production. Theragenics operates 14 cyclotrons for proton activation and has access to HFIR at ORNL for neutron activation of radioisotopes.

  15. Beam delivery for stable isotope separation

    NASA Astrophysics Data System (ADS)

    Forbes, Andrew; Strydom, Hendrick J.; Botha, Lourens R.; Ronander, Einar

    2002-10-01

    In the multi-photon dissociation process of Carbon isotope enrichment, IR photons are used to selectively excite a molecule with the given isotopic base element. This enrichment process is very sensitive to the beam's intensity and wavelength. Because the intensity is determined by the propagation of the field, the enrichment factors are also very dependent on the field propagation. In this paper, the influence of the wavelength and intensity of the beam, on the isotope selective dissociation of a CFC compound is investigated both experimentally and theoretically. Consideration is also given to some of the factors that influence the delivery of various beams to the reactor chamber, and their subsequent propagation through the reactor. The results show that suitable beam forming can lead to an improved isotope separation process.

  16. Apparatus for separating and recovering hydrogen isotopes

    DOEpatents

    Heung, Leung K.

    1994-01-01

    An apparatus for recovering hydrogen and separating its isotopes. The apparatus includes a housing bearing at least a fluid inlet and a fluid outlet. A baffle is disposed within the housing, attached thereto by a bracket. A hollow conduit is coiled about the baffle, in spaced relation to the baffle and the housing. The coiled conduit is at least partially filled with a hydride. The hydride can be heated to a high temperature and cooled to a low temperature quickly by circulating a heat transfer fluid in the housing. The spacing between the baffle and the housing maximizes the heat exchange rate between the fluid in the housing and the hydride in the conduit. The apparatus can be used to recover hydrogen isotopes (protium, deuterium and tritium) from gaseous mixtures, or to separate hydrogen isotopes from each other.

  17. Hydrogen isotope separation utilizing bulk getters

    DOEpatents

    Knize, R.J.; Cecchi, J.L.

    1991-08-20

    Tritium and deuterium are separated from a gaseous mixture thereof, derived from a nuclear fusion reactor or some other source, by providing a casing with a bulk getter therein for absorbing the gaseous mixture to produce an initial loading of the getter, partially desorbing the getter to produce a desorbed mixture which is tritium-enriched, pumping the desorbed mixture into a separate container, the remaining gaseous loading in the getter being deuterium-enriched, desorbing the getter to a substantially greater extent to produce a deuterium-enriched gaseous mixture, and removing the deuterium-enriched mixture into another container. The bulk getter may comprise a zirconium-aluminum alloy, or a zirconium-vanadium-iron alloy. The partial desorption may reduce the loading by approximately fifty percent. The basic procedure may be extended to produce a multistage isotope separator, including at least one additional bulk getter into which the tritium-enriched mixture is absorbed. The second getter is then partially desorbed to produce a desorbed mixture which is further tritium-enriched. The last-mentioned mixture is then removed from the container for the second getter, which is then desorbed to a substantially greater extent to produce a desorbed mixture which is deuterium-enriched. The last-mentioned mixture is then removed so that the cycle can be continued and repeated. The method of isotope separation is also applicable to other hydrogen isotopes, in that the method can be employed for separating either deuterium or tritium from normal hydrogen. 4 figures.

  18. Hydrogen isotope separation utilizing bulk getters

    DOEpatents

    Knize, Randall J.; Cecchi, Joseph L.

    1990-01-01

    Tritium and deuterium are separated from a gaseous mixture thereof, derived from a nuclear fusion reactor or some other source, by providing a casing with a bulk getter therein for absorbing the gaseous mixture to produce an initial loading of the getter, partially desorbing the getter to produce a desorbed mixture which is tritium-enriched, pumping the desorbed mixture into a separate container, the remaining gaseous loading in the getter being deuterium-enriched, desorbing the getter to a substantially greater extent to produce a deuterium-enriched gaseous mixture, and removing the deuterium-enriched mixture into another container. The bulk getter may comprise a zirconium-aluminum alloy, or a zirconium-vanadium-iron alloy. The partial desorption may reduce the loading by approximately fifty percent. The basic procedure may be extended to produce a multistage isotope separator, including at least one additional bulk getter into which the tritium-enriched mixture is absorbed. The second getter is then partially desorbed to produce a desorbed mixture which is further tritium-enriched. The last-mentioned mixture is then removed from the container for the second getter, which is then desorbed to a substantially greater extent to produce a desorbed mixture which is deuterium-enriched. The last-mentioned mixture is then removed so that the cycle can be continued and repeated. The method of isotope separation is also applicable to other hydrogen isotopes, in that the method can be employed for separating either deuterium or tritium from normal hydrogen.

  19. Hydrogen isotope separation utilizing bulk getters

    DOEpatents

    Knize, Randall J.; Cecchi, Joseph L.

    1991-01-01

    Tritium and deuterium are separated from a gaseous mixture thereof, derived from a nuclear fusion reactor or some other source, by providing a casing with a bulk getter therein for absorbing the gaseous mixture to produce an initial loading of the getter, partially desorbing the getter to produce a desorbed mixture which is tritium-enriched, pumping the desorbed mixture into a separate container, the remaining gaseous loading in the getter being deuterium-enriched, desorbing the getter to a substantially greater extent to produce a deuterium-enriched gaseous mixture, and removing the deuterium-enriched mixture into another container. The bulk getter may comprise a zirconium-aluminum alloy, or a zirconium-vanadium-iron alloy. The partial desorption may reduce the loading by approximately fifty percent. The basic procedure may be extended to produce a multistage isotope separator, including at least one additional bulk getter into which the tritium-enriched mixture is absorbed. The second getter is then partially desorbed to produce a desorbed mixture which is further tritium-enriched. The last-mentioned mixture is then removed from the container for the second getter, which is then desorbed to a substantially greater extent to produce a desorbed mixture which is deuterium-enriched. The last-mentioned mixture is then removed so that the cycle can be continued and repeated. The method of isotope separation is also applicable to other hydrogen isotopes, in that the method can be employed for separating either deuterium or tritium from normal hydrogen.

  20. Hydrogen isotope separation utilizing bulk getters

    SciTech Connect

    Knize, R.J.; Cecchi, J.L.

    1990-12-11

    This patent describes hydrogen isotope separation utilizing bulk getters. Tritium and deuterium are separated from a gaseous mixture thereof, derived from a nuclear fusion reactor or some other source, by providing a casing with a bulk getter therein for absorbing the gaseous mixture to produce an initial loading of the getter, partially desorbing the getter to produce a desorbed mixture which is tritium-enriched, pumping the desorbed mixture into a separate container, the remaining gaseous loading in the getter being deuterium-enriched, desorbing the getter to a substantially greater extent to produce a deuterium-enriched gaseous mixture, and removing the deuterium-enriched mixture into another container. The bulk getter may comprise a zirconium-aluminum alloy, or a zirconium-vanadium-iron alloy. The partial desorption may reduce the loading by approximately fifty percent. The basic procedure may be extended to produce a multistage isotope separator, including at least one additional bulk getter into which the tritium-enriched mixture is absorbed. The second getter is then partially desorbed to produce a desorbed mixture which is further tritium-enriched. The last mentioned mixture is then removed from the container for the second getter, which is then desorbed to a substantially greater extent to produce a desorbed mixture which is deuterium-enriched. The last-mentioned mixture is then removed so that the cycle can be continued and repeated. The method of isotope separation is also applicable to other hydrogen isotopes, in that the method can be employed for separating either deuterium or tritium from normal hydrogen.

  1. Laser isotope separation by multiple photon absorption

    DOEpatents

    Robinson, C.P.; Rockwood, S.D.; Jensen, R.J.; Lyman, J.L.; Aldridge, J.P. III.

    1987-04-07

    Multiple photon absorption from an intense beam of infrared laser light may be used to induce selective chemical reactions in molecular species which result in isotope separation or enrichment. The molecular species must have a sufficient density of vibrational states in its vibrational manifold that, is the presence of sufficiently intense infrared laser light tuned to selectively excite only those molecules containing a particular isotope, multiple photon absorption can occur. By this technique, for example, intense CO[sub 2] laser light may be used to highly enrich [sup 34]S in natural SF[sub 6] and [sup 11]B in natural BCl[sub 3]. 8 figs.

  2. Laser isotope separation by multiple photon absorption

    DOEpatents

    Robinson, C. Paul; Rockwood, Stephen D.; Jensen, Reed J.; Lyman, John L.; Aldridge, III, Jack P.

    1987-01-01

    Multiple photon absorption from an intense beam of infrared laser light may be used to induce selective chemical reactions in molecular species which result in isotope separation or enrichment. The molecular species must have a sufficient density of vibrational states in its vibrational manifold that, is the presence of sufficiently intense infrared laser light tuned to selectively excite only those molecules containing a particular isotope, multiple photon absorption can occur. By this technique, for example, intense CO.sub.2 laser light may be used to highly enrich .sup.34 S in natural SF.sub.6 and .sup.11 B in natural BCl.sub.3.

  3. Laser isotope separation by multiple photon absorption

    DOEpatents

    Robinson, C. Paul; Rockwood, Stephen D.; Jensen, Reed J.; Lyman, John L.; Aldridge, III, Jack P.

    1977-01-01

    Multiple photon absorption from an intense beam of infrared laser light may be used to induce selective chemical reactions in molecular species which result in isotope separation or enrichment. The molecular species must have a sufficient density of vibrational states in its vibrational manifold that, in the presence of sufficiently intense infrared laser light tuned to selectively excite only those molecules containing a particular isotope, multiple photon absorption can occur. By this technique, for example, intense CO.sub.2 laser light may be used to highly enrich .sup.34 S in natural SF.sub.6 and .sup.11 B in natural BCl.sub.3.

  4. Separation of isotopes by cyclical processes

    DOEpatents

    Hamrin, Jr., Charles E.; Weaver, Kenny

    1976-11-02

    Various isotopes of hydrogen are separated by a cyclic sorption process in which a gas stream containing the isotopes is periodically passed through a high pressure column containing a palladium sorbent. A portion of the product from the high pressure column is passed through a second column at lower pressure to act as a purge. Before the sorbent in the high pressure column becomes saturated, the sequence is reversed with the stream flowing through the former low-pressure column now at high pressure, and a portion of the product purging the former high pressure column now at low pressure. The sequence is continued in cyclic manner with the product being enriched in a particular isotope.

  5. Rotation and instabilities for isotope and mass separation

    NASA Astrophysics Data System (ADS)

    Rax, J.-M.; Gueroult, R.

    2016-10-01

    Rotating plasmas have the potential to offer unique capabilities for isotope and mass separation. Among the various electric and magnetic field configurations offering mass separation capabilities, rotating plasmas produced through static or oscillating fields are shown to be a leading candidate for tackling the unsolved problem of large-scale plasma separation. The successful development and deployment of industrial-scale plasma separation technologies could, among many other applications, provide an innovative path towards advanced sustainable nuclear energy. In this context, the potential and versatility of plasma rotation induced by rotating magnetic fields is uncovered and analysed. Analytical stability diagrams are derived from rotating ion orbits as a function of ion mass. Based on these findings, the basic principles of a rotating field plasma separator are then introduced. In light of these results, challenges associated with this original separation process are underlined, and the main directions for a future research program aimed at this important unsolved problem of applied plasma physics are identified.

  6. Separation of uranium isotopes by chemical exchange

    DOEpatents

    Ogle, P.R. Jr.

    1974-02-26

    A chemical exchange method is provided for separating /sup 235/U from / sup 238/U comprising contacting a first phase containing UF/sub 6/ with a second phase containing a compound selected from the group consisting of NOUF/sub 6/, NOUF/sub 7/, and NO/sub 2/UF/sub 7/ until the U Fsub 6/ in the first phase becomes enriched in the /sup 235/U isotope. (Official Gazette)

  7. Hydrograph separation using stable isotopes: Review and evaluation

    NASA Astrophysics Data System (ADS)

    Klaus, J.; McDonnell, J. J.

    2013-11-01

    We reviewed isotope hydrograph separation studies.We examine methods, applications, and limitations.We summarize factors that control the event/pre-event water contributions.We outline new possible research avenues in isotope hydrograph separation.

  8. Laser-assisted isotope separation of tritium

    DOEpatents

    Herman, Irving P.; Marling, Jack B.

    1983-01-01

    Methods for laser-assisted isotope separation of tritium, using infrared multiple photon dissociation of tritium-bearing products in the gas phase. One such process involves the steps of (1) catalytic exchange of a deuterium-bearing molecule XYD with tritiated water DTO from sources such as a heavy water fission reactor, to produce the tritium-bearing working molecules XYT and (2) photoselective dissociation of XYT to form a tritium-rich product. By an analogous procedure, tritium is separated from tritium-bearing materials that contain predominately hydrogen such as a light water coolant from fission or fusion reactors.

  9. Biomedical research applications of electromagnetically separated enriched stable isotopes

    NASA Astrophysics Data System (ADS)

    Lambrecht, R. M.

    The current and projected annual requirements through 1985 for stable isotopes enriched by electromagnetic separation methods were reviewed for applications in various types of biomedical research: (1) medical radiosiotope production, labeled compounds, and potential radio-pharmaceuticals; (2) nutrition, food science, and pharmacology: (3) metallobiochemistry and environmental toxicology; (4) nuclear magnetic resonance, electron paramagnetic resonance, and moessbauer spectroscopy in biochemical, biophysical, and biomedical research; and (5) miscellaneous advances in radioactive and nonradioactive tracer technology. Radioisotopes available from commercial sources or routinely used in clinical nuclear medicine were excluded. Current requirements for enriched stable isotopes in biomedical research are not being satisfied. Severe shortages exist for Mg 26, Ca 43, Zn 70, Se 76, Se 77, Se 78, Pd 102, Cd 111, Cd 113, and Os 190. Many interesting and potentially important investigations in biomedical research require small quantities of specific elements at high isotopic enrichments.

  10. CONTROL SYSTEM FOR ISOTOPE SEPARATING APPARATUS

    DOEpatents

    Barnes, S.W.

    1960-01-26

    A method is described for controlling the position of the ion beams in a calutron used for isotope separation. The U/sup 238/ beams is centered over the U/sup 235/ receiving pocket, the operator monitoring the beam until a maximum reading is achieved on the meter connected to that pocket. Then both beams are simultaneously shifted by a preselected amount to move the U/sup 235/ beam over the U/sup 235/ pocket. A slotted door is placed over the entrance to that pocket during the U/sup 238/ beam centering to reduce the contamination to the pocket, while allowing enough beam to pass for monitoring purposes.

  11. Center for Advanced Separation Technology

    SciTech Connect

    Honaker, Rick

    2013-09-30

    The U.S. is the largest producer of mining products in the world. In 2011, U.S. mining operations contributed a total of $232 billion to the nation’s GDP plus $138 billion in labor income. Of this the coal mining industry contributed a total of $97.5 billion to GDP plus $53 billion in labor income. Despite these contributions, the industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Originally set up by Virginia Tech and West Virginia University, CAST is now a five-university consortium – Virginia Tech, West Virginia University, University of Kentucky, University of Utah and Montana Tech, - that is supported through U.S. DOE Cooperative Agreement No. DE-FE0000699, Center for Advanced Separation Technology. Much of the research to be conducted with Cooperative Agreement funds will be longer term, high-risk, basic research and will be carried out in two broad areas: Advanced Pre-Combustion Clean Coal Technologies and Gas-Gas Separations. Distribution of funds is handled via competitive solicitation of research proposals through Site Coordinators at the five member universities. These were reviewed and the selected proposals were forwarded these to the DOE/NETL Project Officer for final review and approval. The successful projects are listed below by category, along with abstracts from their final reports.

  12. Photolytic separation of isotopes in cryogenic solution

    DOEpatents

    Freund, S.M.; Maier, W.B. II; Holland, R.F.; Battie, W.H.

    Separation of carbon isotopes by photolysis of CS/sub 2/ in cryogenic solutions of nitrogen, krypton and argon with 206 nm light from an iodine resonance lamp is reported. The spectral distributionn of the ultraviolet absorption depends on solvent. Thus, in liquid nitrogen the photolytic decomposition rate of /sup 13/CS/sub 2/ is greater than that of /sup 12/CS/sub 2/ (because the absorption of 206 nm radiation is greater for /sup 13/CS/sub 2/), whereas in liquid krypton and liquid argon the reverse is true. The shift in ultraviolet spectrum is a general phenomenon readily characterized as a function of solvent polarizability, and exhibits behavior similar to that for vibrational transitions occurring in the infrared.

  13. Photolytic separation of isotopes in cryogenic solution

    DOEpatents

    Freund, Samuel M.; Maier, II, William B.; Holland, Redus F.; Beattie, Willard H.

    1985-01-01

    Separation of carbon isotopes by photolysis of CS.sub.2 in cryogenic solutions of nitrogen, krypton and argon with 206 nm light from an iodine resonance lamp is reported. The spectral distribution of the ultraviolet absorption depends on solvent. Thus, in liquid nitrogen the photolytic decomposition rate of .sup.13 CS.sub.2 is greater than that of .sup.12 CS.sub.2 (because the absorption of 206 nm radiation is greater for .sup.13 CS.sub.2), whereas in liquid krypton and liquid argon the reverse is true. The shift in ultraviolet spectrum is a general phenomenon readily characterized as a function of solvent polarizability, and exhibits behavior similar to that for vibrational transitions occurring in the infrared.

  14. Novel hybrid isotope separation scheme and apparatus

    DOEpatents

    Maya, Jakob

    1991-01-01

    A method of yielding selectively a desired enrichment in a specific isotope including the steps of inputting into a spinning chamber a gas from which the specific isotope is to be isolated, radiating the gas with frequencies characteristic of the absorption of a particular isotope of the atomic or molecular gas, thereby inducing a photoionization reaction of the desired isotope, and collecting the specific isotope ion by suitable ion collection means.

  15. Novel hybrid isotope separation scheme and apparatus

    DOEpatents

    Maya, J.

    1991-06-18

    A method is described for yielding selectively a desired enrichment in a specific isotope including the steps of inputting into a spinning chamber a gas from which the specific isotope is to be isolated, radiating the gas with frequencies characteristic of the absorption of a particular isotope of the atomic or molecular gas, thereby inducing a photoionization reaction of the desired isotope, and collecting the specific isotope ion by suitable ion collection means. 3 figures.

  16. Highly Efficient Quantum Sieving in Porous Graphene-like Carbon Nitride for Light Isotopes Separation

    PubMed Central

    Qu, Yuanyuan; Li, Feng; Zhou, Hongcai; Zhao, Mingwen

    2016-01-01

    Light isotopes separation, such as 3He/4He, H2/D2, H2/T2, etc., is crucial for various advanced technologies including isotope labeling, nuclear weapons, cryogenics and power generation. However, their nearly identical chemical properties made the separation challenging. The low productivity of the present isotopes separation approaches hinders the relevant applications. An efficient membrane with high performance for isotopes separation is quite appealing. Based on first-principles calculations, we theoretically demonstrated that highly efficient light isotopes separation, such as 3He/4He, can be reached in a porous graphene-like carbon nitride material via quantum sieving effect. Under moderate tensile strain, the quantum sieving of the carbon nitride membrane can be effectively tuned in a continuous way, leading to a temperature window with high 3He/4He selectivity and permeance acceptable for efficient isotopes harvest in industrial application. This mechanism also holds for separation of other light isotopes, such as H2/D2, H2/T2. Such tunable quantum sieving opens a promising avenue for light isotopes separation for industrial application. PMID:26813491

  17. Highly Efficient Quantum Sieving in Porous Graphene-like Carbon Nitride for Light Isotopes Separation

    NASA Astrophysics Data System (ADS)

    Qu, Yuanyuan; Li, Feng; Zhou, Hongcai; Zhao, Mingwen

    2016-01-01

    Light isotopes separation, such as 3He/4He, H2/D2, H2/T2, etc., is crucial for various advanced technologies including isotope labeling, nuclear weapons, cryogenics and power generation. However, their nearly identical chemical properties made the separation challenging. The low productivity of the present isotopes separation approaches hinders the relevant applications. An efficient membrane with high performance for isotopes separation is quite appealing. Based on first-principles calculations, we theoretically demonstrated that highly efficient light isotopes separation, such as 3He/4He, can be reached in a porous graphene-like carbon nitride material via quantum sieving effect. Under moderate tensile strain, the quantum sieving of the carbon nitride membrane can be effectively tuned in a continuous way, leading to a temperature window with high 3He/4He selectivity and permeance acceptable for efficient isotopes harvest in industrial application. This mechanism also holds for separation of other light isotopes, such as H2/D2, H2/T2. Such tunable quantum sieving opens a promising avenue for light isotopes separation for industrial application.

  18. Method of isotope separation by chemi-ionization

    DOEpatents

    Wexler, Sol; Young, Charles E.

    1977-05-17

    A method for separating specific isotopes present in an isotopic mixture by aerodynamically accelerating a gaseous compound to form a jet of molecules, and passing the jet through a stream of electron donor atoms whereby an electron transfer takes place, thus forming negative ions of the molecules. The molecular ions are then passed through a radiofrequency quadrupole mass filter to separate the specific isotopes. This method may be used for any compounds having a sufficiently high electron affinity to permit negative ion formation, and is especially useful for the separation of plutonium and uranium isotopes.

  19. Isotope separation by selective photodissociation of glyoxal

    DOEpatents

    Marling, John B.

    1976-01-01

    Dissociation products, mainly formaldehyde and carbon monoxide, enriched in a desired isotope of carbon, oxygen, or hydrogen are obtained by the selective photodissociation of glyoxal wherein glyoxal is subjected to electromagnetic radiation of a predetermined wavelength such that photon absorption excites and induces dissociation of only those molecules of glyoxal containing the desired isotope.

  20. A LINEAR PROGRAMMING MODEL OF THE GASEOUSDIFFUSION ISOTOPE-SEPARATION PROCESS,

    DTIC Science & Technology

    ISOTOPE SEPARATION, LINEAR PROGRAMMING ), (*GASEOUS DIFFUSION SEPARATION, LINEAR PROGRAMMING ), (* LINEAR PROGRAMMING , GASEOUS DIFFUSION SEPARATION), NUCLEAR REACTORS, REACTOR FUELS, URANIUM, PURIFICATION

  1. Cost Estimate for Laser Isotope Separation for RIA

    SciTech Connect

    Scheibner, K

    2004-11-01

    Isotope enrichment of some elements is required in support of the Rare Isotope Accelerator (RIA) in order to obtain the beam intensities, source efficiencies and/or source lifetime required by RIA. The economics of using Atomic Vapor Laser Isotope Separation (AVLIS) technology as well as ElectroMagnetic (EM) separation technology has been evaluated. It is concluded that such an AVLIS would be about 10 times less expensive than a facility based on electromagnetic separation - $17 M versus $170 M. In addition, the AVLIS facility footprint would be about 10 times smaller, and operations would require about 4 years (including 2 years of startup) versus about 11 years for an EM facility.

  2. Isotope separation by photodissociation of Van der Waal's molecules

    DOEpatents

    Lee, Yuan T.

    1977-01-01

    A method of separating isotopes based on the dissociation of a Van der Waal's complex. A beam of molecules of a Van der Waal's complex containing, as one partner of the complex, a molecular species in which an element is present in a plurality of isotopes is subjected to radiation from a source tuned to a frequency which will selectively excite vibrational motion by a vibrational transition or through electronic transition of those complexed molecules of the molecular species which contain a desired isotope. Since the Van der Waal's binding energy is much smaller than the excitational energy of vibrational motion, the thus excited Van der Waal's complex dissociate into molecular components enriched in the desired isotope. The recoil velocity associated with vibrational to translational and rotational relaxation will send the separated molecules away from the beam whereupon the product enriched in the desired isotope can be separated from the constituents of the beam.

  3. Efficient isotope separation by single-photon atomic sorting

    SciTech Connect

    Jerkins, M.; Chavez, I.; Raizen, M. G.; Even, U.

    2010-09-15

    We propose a general and scalable approach to isotope separation. The method is based on an irreversible change of the mass-to-magnetic moment ratio of a particular isotope in an atomic beam, followed by a magnetic multipole whose gradients deflect and guide the atoms. The underlying mechanism is a reduction of the entropy of the beam by the information of a single scattered photon for each atom that is separated. We numerically simulate isotope separation for a range of examples, which demonstrate this technique's general applicability to almost the entire periodic table. The practical importance of the proposed method is that large-scale isotope separation should be possible, using ordinary inexpensive magnets and the existing technologies of supersonic beams and lasers.

  4. VELOCITY SELECTOR METHOD FOR THE SEPARATION OF ISOTOPES

    DOEpatents

    Britten, R.J.

    1957-12-31

    A velocity selector apparatus is described for separating and collecting an enriched fraction of the isotope of a particular element. The invention has the advantage over conventional mass spectrometers in that a magnetic field is not used, doing away with the attendant problems of magnetic field variation. The apparatus separates the isotopes by selectively accelerating the ionized constituents present in a beam of the polyisotopic substance that are of uniform kinetic energy, the acceleration being applied intermittently and at spaced points along the beam and in a direction normal to the direction of the propagation of the uniform energy beam whereby a transverse displacement of the isotopic constituents of different mass is obtained.

  5. Cascades for hydrogen isotope separation using metal hydrides

    SciTech Connect

    Hill, F.B.; Grzetic, V.

    1982-01-01

    Designs are presented for continuous countercurrent hydrogen isotope separation cascades based on the use of metal hydrides. The cascades are made up of pressure swing adsorption (PSA) or temperature swing adsorption (TSA) stages. The designs were evolved from consideration of previously conducted studies of the separation performance of four types of PSA and TSA processes.

  6. Electromagnetic separation of stable isotopes at China Institute of Atomic Energy

    NASA Astrophysics Data System (ADS)

    Meiqin, Xiao; Hongyou, Lu; Shijun, Su; Zhizhou, Lin

    1993-09-01

    Electromagnetic separation of stable isotopes at CIAE is described. The separators, the ion sources used, the isotopes separated and their applications are introduced. The improvement of a 180° production separator is also described.

  7. Atomic vapor laser isotope separation of lead-210 isotope

    DOEpatents

    Scheibner, Karl F.; Haynam, Christopher A.; Johnson, Michael A.; Worden, Earl F.

    1999-01-01

    An isotopically selective laser process and apparatus for removal of Pb-210 from natural lead that involves a one-photon near-resonant, two-photon resonant excitation of one or more Rydberg levels, followed by field ionization and then electrostatic extraction. The wavelength to the near-resonant intermediate state is counter propagated with respect to the second wavelength required to populate the final Rydberg state. This scheme takes advantage of the large first excited state cross section, and only modest laser fluences are required. The non-resonant process helps to avoid two problems: first, stimulated Raman Gain due to the nearby F=3/2 hyperfine component of Pb-207 and, second, direct absorption of the first transition process light by Pb-207.

  8. Atomic vapor laser isotope separation of lead-210 isotope

    SciTech Connect

    Scheibner, K.F.; Haynam, C.A.; Johnson, M.A.; Worden, E.F.

    1999-08-31

    An isotopically selective laser process and apparatus for removal of Pb-210 from natural lead that involves a one-photon near-resonant, two-photon resonant excitation of one or more Rydberg levels, followed by field ionization and then electrostatic extraction. The wavelength to the near-resonant intermediate state is counter propagated with respect to the second wavelength required to populate the final Rydberg state. This scheme takes advantage of the large first excited state cross section, and only modest laser fluences are required. The non-resonant process helps to avoid two problems: first, stimulated Raman Gain due to the nearby F=3/2 hyperfine component of Pb-207 and, second, direct absorption of the first transition process light by Pb-207. 5 figs.

  9. Nitrogen isotopes of the mantle: Insights from mineral separates

    NASA Astrophysics Data System (ADS)

    Fischer, Tobias P.; Takahata, Naoto; Sano, Yuji; Sumino, Hirochika; Hilton, David R.

    2005-06-01

    We present the first nitrogen (N) isotope measurements determined by in-vacuo crushing of mineral separates from arc lavas, OIBs (Ocean Island Basalts), and mantle xenoliths. Measured OIB δ15N values range from ~-8‰ for the northern rift zone in Iceland to +3.1‰ for a dunite nodule from Hawaii. Most arc-related olivines show distinctly positive values - up to +6.2‰ (Cerro Negro, Nicaragua). The measured N isotope values in olivine separates are similar to gas samples collected at the same localities, suggesting that both media (olivines and gases) sample volatiles primarily derived from the magma. This observation also implies that N isotope fractionation does not occur during magma degassing, a notion supported by 4He/40Ar* data. Our results indicate a heterogeneous mantle source region, in terms of N isotopic composition, that may have resulted from surface recycling of N at some localities.

  10. IRiS—Exploring new frontiers in neutron-rich isotopes of the heaviest elements with a new Inelastic Reaction Isotope Separator

    NASA Astrophysics Data System (ADS)

    Dvorak, J.; Block, M.; Düllmann, Ch. E.; Heinz, S.; Herzberg, R.-D.; Schädel, M.

    2011-10-01

    A dedicated Inelastic Reaction Isotope Separator (IRiS) for multi-nucleon transfer products will be designed and installed at GSI. Research at IRiS will focus on the investigation of new neutron-rich isotopes of the heaviest elements, study of which will advance various research fields, such as nuclear chemistry, nuclear and atomic physics, as well as nuclear astrophysics. The scientific motivation for this project and the alternative design options for the separator and its main components are discussed.

  11. Investigation of the Photochemical Method for Uranium Isotope Separation

    DOE R&D Accomplishments Database

    Urey, H. C.

    1943-07-10

    To find a process for successful photochemical separation of isotopes several conditions have to be fulfilled. First, the different isotopes have to show some differences in the spectrum. Secondly, and equally important, this difference must be capable of being exploited in a photochemical process. Parts A and B outline the physical and chemical conditions, and the extent to which one might expect to find them fulfilled. Part C deals with the applicability of the process.

  12. Separation of the isotopes of boron by chemical exchange reactions

    DOEpatents

    McCandless, Frank P.; Herbst, Ronald S.

    1995-01-01

    The isotopes of boron, .sup.10 B and .sup.11 B, are separated by means of a gas-liquid chemical exchange reaction involving the isotopic equilibrium between gaseous BF.sub.3 and a liquid BF.sub.3 . donor molecular addition complex formed between BF.sub.3 gas and a donor chosen from the group consisting of: nitromethane, acetone, methyl isobutyl ketone, or diisobutyl ketone.

  13. Separation of the isotopes of boron by chemical exchange reactions

    DOEpatents

    McCandless, F.P.; Herbst, R.S.

    1995-05-30

    The isotopes of boron, {sup 10}B and {sup 11}B, are separated by means of a gas-liquid chemical exchange reaction involving the isotopic equilibrium between gaseous BF{sub 3} and a liquid BF{sub 3} donor molecular addition complex formed between BF{sub 3} gas and a donor chosen from the group consisting of: nitromethane, acetone, methyl isobutyl ketone, or diisobutyl ketone. 1 Fig.

  14. Pulsed CO laser for isotope separation of uranium

    SciTech Connect

    Baranov, Igor Y.; Koptev, Andrey V.

    2012-07-30

    This article proposes a technical solution for using a CO laser facility for the industrial separation of uranium used in the production of fuel for nuclear power plants, employing a method of laser isotope separation of uranium with condensation repression in a free jet. The laser operation with nanosecond pulse irradiation can provide an acceptable efficiency in the separating unit and a high efficiency of the laser with the wavelength of 5.3 {mu}m. In the present work we also introduce a calculation model and define the parameters of a mode-locked CO laser with a RF discharge in the supersonic stream. The average pulsed CO laser power of 3 kW is sufficient for efficient industrial isotope separation of uranium in one stage.

  15. Chromatographic separation of neodymium isotopes by using chemical exchange process.

    PubMed

    Ismail, I M; Ibrahim, M; Aly, H F; Nomura, M; Fujii, Y

    2011-05-20

    The neodymium isotope effects were investigated in Nd-malate ligand exchange system using the highly porous cation exchange resin SQS-6. The temperature of the chromatographic columns was kept constant at 50°C by temperature controlled water passed through the columns jackets. The separation coefficient of neodymium isotopes, ɛ's, was calculated from the isotopic ratios precisely measured by means of an ICP mass spectrometer equipped with nine collectors as ion detectors. The separation coefficient, ɛ×10(5), were calculated and found to be 1.4, 4.8, 5.4, 10.6, 16.8 and 20.2 for (143)Nd, (144)Nd, (145)Nd, (146)Nd, (148)Nd and (150)Nd, respectively.

  16. Production of rare isotope beams with the NSCL fragment separator

    NASA Astrophysics Data System (ADS)

    Stolz, A.; Baumann, T.; Ginter, T. N.; Morrissey, D. J.; Portillo, M.; Sherrill, B. M.; Steiner, M.; Stetson, J. W.

    2005-12-01

    Rare isotope beams at the National Superconducting Cyclotron Laboratory are produced by projectile fragmentation of medium energy primary beams on beryllium targets. The fragments of interest are selected by the A1900 high-acceptance fragment separator. The A1900 consists of superconducting magnets: four 45° dipoles and eight quadrupole triplets with a maximum magnetic rigidity of 6 Tm. A momentum acceptance of Δp/p = 5% with a solid angle acceptance of ΔΩ = 8 msr makes the A1900 one of the highest-acceptance separators in the world. Detector systems installed within the device allow tracking and unambiguous identification of individual isotopes. During the first three years of operation of the A1900, more than 200 different rare isotope beams approaching both the neutron and proton driplines have been delivered to experiments.

  17. THE SEPARATION OF URANIUM ISOTOPES BY GASEOUS DIFFUSION: A LINEAR PROGRAMMING MODEL,

    DTIC Science & Technology

    URANIUM, ISOTOPE SEPARATION), (*GASEOUS DIFFUSION SEPARATION, LINEAR PROGRAMMING ), (* LINEAR PROGRAMMING , GASEOUS DIFFUSION SEPARATION), MATHEMATICAL MODELS, GAS FLOW, NUCLEAR REACTORS, OPERATIONS RESEARCH

  18. Gas chromatographic separation of hydrogen isotopes using metal hydrides

    SciTech Connect

    Aldridge, F.T.

    1984-05-09

    A study was made of the properties of metal hydrides which may be suitable for use in chromatographic separation of hydrogen isotopes. Sixty-five alloys were measured, with the best having a hydrogen-deuterium separation factor of 1.35 at 60/sup 0/C. Chromatographic columns using these alloys produced deuterium enrichments of up to 3.6 in a single pass, using natural abundance hydrogen as starting material. 25 references, 16 figures, 4 tables.

  19. RECTIFIED ABSORPTION METHOD FOR THE SEPARATION OF HYDROGEN ISOTOPES

    DOEpatents

    Hunt, C.D.; Hanson, D.N.

    1961-10-17

    A method is described for separating and recovering heavy hydrogen isotopes from gaseous mixtures by multiple stage cyclic absorption and rectification from an approximate solvent. In particular, it is useful for recovering such isoteoes from ammonia feedstock streams containing nitrogen solvent. Modifications of the process ranging from isobaric to isothermal are provided. Certain impurities are tolerated, giving advantages over conventional fractional distillation processes. (AEC)

  20. Advanced Aqueous Separation Systems for Actinide Partitioning

    SciTech Connect

    Nash, Kenneth L.; Clark, Sue; Meier, G Patrick; Alexandratos, Spiro; Paine, Robert; Hancock, Robert; Ensor, Dale

    2012-03-21

    One of the most challenging aspects of advanced processing of spent nuclear fuel is the need to isolate transuranium elements from fission product lanthanides. This project expanded the scope of earlier investigations of americium (Am) partitioning from the lanthanides with the synthesis of new separations materials and a centralized focus on radiochemical characterization of the separation systems that could be developed based on these new materials. The primary objective of this program was to explore alternative materials for actinide separations and to link the design of new reagents for actinide separations to characterizations based on actinide chemistry. In the predominant trivalent oxidation state, the chemistry of lanthanides overlaps substantially with that of the trivalent actinides and their mutual separation is quite challenging.

  1. Recent advances in polyethylene separator technology

    NASA Astrophysics Data System (ADS)

    Weighall, M. J.

    The well known technical and production benefits of polyethylene separator materials over other separator materials have prompted a dramatic increase in polyethylene separator usage in recent years. Separator trends in the United States from 1980 to 1996, and in Europe from 1987 to 1992, are shown. The manufacturing process for polyethylene separators is outlined, with particular emphasis on the latest advances in manufacturing technology. These improvements have resulted in a higher quality product, and also benefit the environment because of the sophisticated oil extraction and solvent recovery system. The product quality improvements resulting from the latest manufacturing technology include consistent conformance to dimensional specifications, low electrical resistance, close control of residual oil content, virtual elimination of pinholes, and good running properties on the battery manufacturers' plate enveloping machines. The material can also be manufactured with a very thin backweb to reduce electrical resistance still further.

  2. Atomic vapor laser isotope separation using resonance ionization

    SciTech Connect

    Comaskey, B.; Crane, J.; Erbert, G.; Haynam, C.; Johnson, M.; Morris, J.; Paisner, J.; Solarz, R.; Worden, E.

    1986-09-01

    Atomic vapor laser isotope separation (AVLIS) is a general and powerful technique. A major present application to the enrichment of uranium for light-water power-reactor fuel has been under development for over 10 years. In June 1985, the Department of Energy announced the selection of AVLIS as the technology to meet the nation's future need for enriched uranium. Resonance photoionization is the heart of the AVLIS process. We discuss those fundamental atomic parameters that are necessary for describing isotope-selective resonant multistep photoionization along with the measurement techniques that we use. We illustrate the methodology adopted with examples of other elements that are under study in our program.

  3. An isotope separator for small noble gas samples

    NASA Astrophysics Data System (ADS)

    Lehmann, B. E.; Rauber, D. F.; Thonnard, N.; Willis, R. D.

    1987-11-01

    A Wien filter isotope enrichment system has been combined with a small turbomolecular pump to form a closed isotope separator for small noble gas samples. Atoms which leave the exit aperture of the plasma discharge ion source without being ionized are circulated back into the source through a feedback line. The system can be operated for several hours in a closed mode to collect up to 50% of the total number of atoms of a selected isotope (e.g. 81Kr) out of a small gas sample of only 2 × 10 -3 cm 3 STP. Ions are implanted at 10 kV into an aluminized Kapton foil after a flight distance of 150 cm. A beam stabilization system centers the ion beam in two perpendicular directions onto a target aperture to maintain a high enrichment factor of at least 10 3 over extended periods of time. Calibration of the enrichment process is achieved by isotope dilution. The system is a key part of the sample processing for 81Kr and 85Kr analysis by laser resonance ionization spectroscopy for applications in isotope geophysics.

  4. Development of Halide and Oxy-Halides for Isotopic Separations

    SciTech Connect

    Martin, Leigh R.; Johnson, Aaron T.; Pfeiffer, Jana; Finck, Martha R.

    2014-10-01

    The goal of this project was to synthesize a volatile form of Np for introduction into mass spectrometers at INL. Volatile solids of the 5f elements are typically those of the halides (e.g. UF6), however fluorine is highly corrosive to the sensitive internal components of the mass separator, and the other volatile halides exist as several different stable isotopes in nature. However, iodide is both mono-isotopic and volatile, and as such presents an avenue for creation of a form of Np suitable for introduction into the mass separator. To accomplish this goal, the technical work in the project sought to establish a novel synthetic route for the conversion NpO2+ (dissolved in nitric acid) to NpI3 and NpI4.

  5. NOVEL CONCEPTS FOR ISOTOPIC SEPARATION OF 3HE/4HE

    SciTech Connect

    Roy, L.; Nigg, H.; Watson, H.

    2012-09-04

    The research outlined below established theoretical proof-of-concept using ab initio calculations that {sup 3}He can be separated from {sup 4}He by taking advantage of weak van der Waals interactions with other higher molecular weight rare gases such as xenon. To the best of our knowledge, this is the only suggested method that exploits the physical differences of the isotopes using a chemical interaction.

  6. Uranium isotope separation from 1941 to the present

    NASA Astrophysics Data System (ADS)

    Maier-Komor, Peter

    2010-02-01

    Uranium isotope separation was the key development for the preparation of highly enriched isotopes in general and thus became the seed for target development and preparation for nuclear and applied physics. In 1941 (year of birth of the author) large-scale development for uranium isotope separation was started after the US authorities were warned that NAZI Germany had started its program for enrichment of uranium and might have confiscated all uranium and uranium mines in their sphere of influence. Within the framework of the Manhattan Projects the first electromagnetic mass separators (Calutrons) were installed and further developed for high throughput. The military aim of the Navy Department was to develop nuclear propulsion for submarines with practically unlimited range. Parallel to this the army worked on the development of the atomic bomb. Also in 1941 plutonium was discovered and the production of 239Pu was included into the atomic bomb program. 235U enrichment starting with natural uranium was performed in two steps with different techniques of mass separation in Oak Ridge. The first step was gas diffusion which was limited to low enrichment. The second step for high enrichment was performed with electromagnetic mass spectrometers (Calutrons). The theory for the much more effective enrichment with centrifugal separation was developed also during the Second World War, but technical problems e.g. development of high speed ball and needle bearings could not be solved before the end of the war. Spying accelerated the development of uranium separation in the Soviet Union, but also later in China, India, Pakistan, Iran and Iraq. In this paper, the physical and chemical procedures are outlined which lead to the success of the project. Some security aspects and Non-Proliferation measures are discussed.

  7. Isotopic separation of lithium ions by capillary zone electrophoresis.

    PubMed

    Kamencev, Mikhail; Yakimova, Nina; Moskvin, Leonid; Kuchumova, Irina; Tkach, Kirill; Malinina, Yulia; Tungusov, Oleg

    2015-12-01

    Separation of (6)Li and (7)Li isotopes by CZE was demonstrated. The BGE contained 5 mM 4-aminopyridine, 0.9 mM oxalic acid, 0.25 mM CTAB, and 0.25% w/v Tween 20 (рН = 9.2). The running conditions were +25 kV at 30°C with indirect photometric detection at 261 nm. Under optimal experimental conditions, the analysis time was less than 21 min. Separation of Li preparations with mole fraction of (6)Li ranging from 3.44 up to 90.38% was demonstrated.

  8. Methods for separating medical isotopes using ionic liquids

    DOEpatents

    Luo, Huimin; Boll, Rose Ann; Bell, Jason Richard; Dai, Sheng

    2014-10-21

    A method for extracting a radioisotope from an aqueous solution, the method comprising: a) intimately mixing a non-chelating ionic liquid with the aqueous solution to transfer at least a portion of said radioisotope to said non-chelating ionic liquid; and b) separating the non-chelating ionic liquid from the aqueous solution. In preferred embodiments, the method achieves an extraction efficiency of at least 80%, or a separation factor of at least 1.times.10.sup.4 when more than one radioisotope is included in the aqueous solution. In particular embodiments, the method is applied to the separation of medical isotopes pairs, such as Th from Ac (Th-229/Ac-225, Ac-227/Th-227), or Ra from Ac (Ac-225 and Ra-225, Ac-227 and Ra-223), or Ra from Th (Th-227 and Ra-223, Th-229 and Ra-225).

  9. Advanced Aqueous Separation Systems for Actinide Partitioning

    SciTech Connect

    Nash, Ken; Martin, Leigh; Lumetta, Gregg

    2015-04-02

    One of the most challenging aspects of advanced processing of used nuclear fuel is the separation of transplutonium actinides from fission product lanthanides. This separation is essential if actinide transmutation options are to be pursued in advanced fuel cycles, as lanthanides compete with actinides for neutrons in both thermal and fast reactors, thus limiting efficiency. The separation is difficult because the chemistry of Am3+ and Cm3+ is nearly identical to that of the trivalent lanthanides (Ln3+). The prior literature teaches that two approaches offer the greatest probability of devising a successful group separation process based on aqueous processes: 1) the application of complexing agents containing ligand donor atoms that are softer than oxygen (N, S, Cl-) or 2) changing the oxidation state of Am to the IV, V, or VI state to increase the essential differences between Am and lanthanide chemistry (an approach utilized in the PUREX process to selectively remove Pu4+ and UO22+ from fission products). The latter approach offers the additional benefit of enabling a separation of Am from Cm, as Cm(III) is resistant to oxidation and so can easily be made to follow the lanthanides. The fundamental limitations of these approaches are that 1) the soft(er) donor atoms that interact more strongly with actinide cations than lanthanides form substantially weaker bonds than oxygen atoms, thus necessitating modification of extraction conditions for adequate phase transfer efficiency, 2) soft donor reagents have been seen to suffer slow phase transfer kinetics and hydro-/radiolytic stability limitations and 3) the upper oxidation states of Am are all moderately strong oxidants, hence of only transient stability in media representative of conventional aqueous separations systems. There are examples in the literature of both approaches having been described. However, it is not clear at present that any extant process is sufficiently robust for application at the scale

  10. Advanced Mass Spectrometers for Hydrogen Isotope Analyses

    SciTech Connect

    Chastagner, P.

    2001-08-01

    This report is a summary of the results of a joint Savannah River Laboratory (SRL) - Savannah River Plant (SRP) ''Hydrogen Isotope Mass Spectrometer Evaluation Program''. The program was undertaken to evaluate two prototype hydrogen isotope mass spectrometers and obtain sufficient data to permit SRP personnel to specify the mass spectrometers to replace obsolete instruments.

  11. Stable isotope enrichment techniques and ORNL separation status

    NASA Astrophysics Data System (ADS)

    Tracy, J. G.; Bell, W. A.; Veach, A. M.; Caudill, H. H.; Milton, H. T.

    1987-05-01

    The isotope separation program is described, emphasizing present state-of-the-art techniques utilized to achieve specific isotopic requirements. An interesting problem addressed here is the calutron enrichment of rare-earth isotopes where small quantities of feed (< 5 g) are available, and the unresolved feed is to be recovered and recycled. Conventional ion-source units using graphite and stainless steel deteriorate in the halogenating atmosphere or are permeable to rare-earth compounds, reducing the process efficiency. An ion source has been developed using boron nitride for containing the halogenating agent and rare-earth compounds. Tests have been successfully conducted using Lu 2O 3 and the in situ chlorinating technique with CCl 4. Collectively, 166 mg of 176Lu were recovered from two runs using 2.95 and 1.10 g of 44.5% 176Lu. Process efficiency of 10.5% was achieved, and 1.2 g of the unresolved feed were recovered. Material compatibility of the boron nitride, carbon tetrachloride, and lutetium compounds has been established.

  12. Implications of Plutonium isotopic separation on closed fuel cycles and repository design

    SciTech Connect

    Forsberg, C.

    2013-07-01

    Advances in laser enrichment may enable relatively low-cost plutonium isotopic separation. This would have large impacts on LWR closed fuel cycles and waste management. If Pu-240 is removed before recycling plutonium as mixed oxide (MOX) fuel, it would dramatically reduce the buildup of higher plutonium isotopes, Americium, and Curium. Pu-240 is a fertile material and thus can be replaced by U-238. Eliminating the higher plutonium isotopes in MOX fuel increases the Doppler feedback, simplifies reactor control, and allows infinite recycle of MOX plutonium in LWRs. Eliminating fertile Pu-240 and Pu-242 reduces the plutonium content in MOX fuel and simplifies fabrication. Reducing production of Pu-241 reduces production of Am-241 - the primary heat generator in spent nuclear fuels after several decades. Reducing heat generating Am-241 would reduce repository cost and waste toxicity. Avoiding Am- 241 avoids its decay product Np-237, a nuclide that partly controls long-term oxidizing repository performance. Most of these benefits also apply to LWR plutonium recycled into fast reactors. There are benefits for plutonium isotopic separation in fast reactor fuel cycles (particularly removal of Pu-242) but the benefits are less. (author)

  13. CENTER FOR ADVANCED SEPARATION TECHNOLOGY (CAST) PROGRAM

    SciTech Connect

    Yoon, Roe-Hoan; Hull, Christopher

    2014-09-30

    The U.S. is the largest producer of mining products in the world. In 2011, U.S. mining operations contributed a total of $232 billion to the nation’s GDP plus $138 billion in labor income. Of this the coal mining industry contributed a total of $97.5 billion to GDP plus $53 billion in labor income. Despite these contributions, the industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations.

  14. Laser photochemical lead isotopes separation for harmless nuclear power engineering

    NASA Astrophysics Data System (ADS)

    Bokhan, P. A.; Fateev, N. V.; Kim, V. A.; Zakrevsky, D. E.

    2016-09-01

    The collisional quenching of the metastable 3 P 1,2 and 1 D 2 lead atoms is studied experimentally in the gas flow of the lead atoms, reagent-molecules and a carrier gas Ar. The experimental parameters were similar to the conditions that are required in the operation of the experimental setup for photochemical isotope separation. Excited atoms are generated under electron impact conditions created by a gas glow discharge through the mixture of gases and monitored photoelectrically by attenuation of atomic resonance radiation from hollow cathode 208Pb lamp. The decay of the excited atoms has been studied in the presence various molecules and total cross section data are reported. The flow tube measurements has allowed to separate the physical and chemical quenching channels and measure the rates of the chemical reaction excited lead with N2O, CH2Cl2, SF6 and CuBr molecules. These results are discussed in the prospects of the obtaining isotopically modified lead as a promising coolant in the reactors on the fast-neutron.

  15. University Isotope Separator at Oak Ridge: The UNISOR Consortium.

    PubMed

    Hamilton, J H

    1974-09-06

    The UNISOR cooperative project, envisioned more than 3 years ago, is now successfully working. Research problems that involve a full range of experiments on nuclei far from beta stability are being investigated jointly by groups of scientists from several institutions. Some of the first work reported (16) included the identification, half-lives, and decay schemes of three new isotopes, (186)T1, (188)T1, and (116)I; the first or new decay schemes of (189)T1, (190)T1, (117)Xe, and (117)I; and the results of the perturbed gamma-gamma directional correlation work in (126)Xe. UNISOR is already stimulating international interest. A report (1) on the new research being planned with an isotope separator on-line to ORIC was presented at a Soviet Academy of Sciences meeting on nuclear structure in 1971. At an international nuclear physics conference in Munich in August 1973, Academician G. N. Flerov, director of the heavy-ion laboratory in Dubna, said the UNISOR project had inspired his laboratory to secure funds for a new, much improved isotope separator which is now installed on-line to their heavy-ion cyclotron to be used for detailed studies of nuclei far from stability. The UNISOR model for research has inspired a second such project, the Atomic Physics Consortium at Oak Ridge (APCOR). After an exploratory conference at Oak Ridge, scientists from ten institutions met in November 1973 to form an organizing committee for APCOR. As with UNISOR, the universities and the AEC will each provide a significant portion of the capital and operating costs. Heavy ions have opened up much new research in atomic physics, but such accelerator-based research represents a real "shift from traditional approaches concerning how, where, and on what time scale atomic physics experiments should be done" (17).

  16. INSTRUMENTS AND METHODS OF INVESTIGATION: Plasma isotope separation based on ion cyclotron resonance

    NASA Astrophysics Data System (ADS)

    Dolgolenko, Dmitrii A.; Muromkin, Yurii A.

    2009-04-01

    Experiments that have been conducted in the USA, France, and Russia to investigate isotopically selective ion cyclotron resonance (ICR) as a tool for plasma isotope separation are analyzed. Because this method runs into difficulties at low values of the relative isotope mass difference ΔM/M, for some elements (for gadolinium, as an example) isotope separation still remains a problem. There are ways to solve it, however, as experimental results and theoretical calculations suggest.

  17. Tritium Isotope Separation Using Adsorption-Distillation Column

    SciTech Connect

    Fukada, Satoshi

    2005-07-15

    In order to miniaturize the height of a distillation tower for the detritiation of waste water from fusion reactors, two experiments were conducted: (1) liquid frontal chromatography of tritium water eluting through an adsorption column and (2) water distillation using a column packed with adsorbent particles. The height of the distillation tower depends on the height equivalent to a theoretical plate, HETP, and the equilibrium isotope separation factor, {alpha}{sub H-T}{sup equi}. The adsorption action improved not only HETP but also {alpha}{sub H-T}{sup equi}. Since the adsorption-distillation method proposed here can shorten the tower height with keeping advantages of the distillation, it may bring an excellent way for miniaturizing the distillation tower to detritiate a large amount of waste water from fusion reactors.

  18. Separated isotopes: vital tools for science and medicine

    SciTech Connect

    Not Available

    1982-01-01

    Deliberations and conclusions of a Workshop on Stable Isotopes and Derived Radioisotopes organized by the Subcommittee on Nuclear and Radiochemistry of the National Research Council's Committee on Chemical Sciences at the request of the Department of Energy (DOE) are summarized. The workshop was jointly supported by the National Institutes of Health and DOE's Office of Basic Energy Sciences. An overview with three recommendations resulting from the Workshop is followed by reports of the four Workshop panels. Background papers were prepared by individuals on the Steering Committee and made available to all participants prior to the Workshop. They are reproduced as Appendixes 3 to 8. Short reports on alternate separation techniques were presented at the Workshop and are reproduced in Appendixes 9 to 11.

  19. Laser-induced separation of hydrogen isotopes in the liquid phase

    DOEpatents

    Freund, Samuel M.; Maier, II, William B.; Beattie, Willard H.; Holland, Redus F.

    1980-01-01

    Hydrogen isotope separation is achieved by either (a) dissolving a hydrogen-bearing feedstock compound in a liquid solvent, or (b) liquefying a hydrogen-bearing feedstock compound, the liquid phase thus resulting being kept at a temperature at which spectral features of the feedstock relating to a particular hydrogen isotope are resolved, i.e., a clear-cut isotope shift is delineated, irradiating the liquid phase with monochromatic radiation of a wavelength which at least preferentially excites those molecules of the feedstock containing a first hydrogen isotope, inducing photochemical reaction in the excited molecules, and separating the reaction product containing the first isotope from the liquid phase.

  20. Isotope separation by selective charge conversion and field deflection

    DOEpatents

    Hickman, Robert G.

    1978-01-01

    A deuterium-tritium separation system wherein a source beam comprised of positively ionized deuterium (D.sup.+) and tritium (T.sup.+) is converted at different charge-exchange cell sections of the system to negatively ionized deuterium (D.sup.-) and tritium (T.sup.-). First, energy is added to the beam to accelerate the D.sup.+ ions to the velocity that is optimum for conversion of the D.sup.+ ions to D.sup.- ions in a charge-exchange cell. The T.sup.+ ions are accelerated at the same time, but not to the optimum velocity since they are heavier than the D.sup.+ ions. The T.sup.+ ions are, therefore, not converted to T.sup.- ions when the D.sup.+ ions are converted to D.sup.- ions. This enables effective separation of the beam by deflection of the isotopes with an electrostatic field, the D.sup.- ions being deflected in one direction and the T.sup.+ ions being deflected in the opposite direction. Next, more energy is added to the deflected beam of T.sup.+ ions to bring the T.sup.+ ions to the optimum velocity for their conversion to T.sup.- ions. In a particular use of the invention, the beams of D.sup.- and T.sup.- ions are separately further accelerated and then converted to energetic neutral particles for injection as fuel into a thermonuclear reactor. The reactor exhaust of D.sup.+ and T.sup.+ and the D.sup.+ and T.sup.+ that was not converted in the respective sections is combined with the source beam and recycled through the system to increase the efficiency of the system.

  1. Hydrogen isotope separation installation for the regeneration of tritium from gas mixtures in tritium facilities

    SciTech Connect

    Andrew, B.M.; Perevezentsev, A.N.; Selivanenko, I.L.

    1994-12-31

    The advantages and disadvantages of different methods for hydrogen isotope separation are considered in terms of their applicability for tritium regeneration in a tritium facility. Due to low inventory, simplicity of operation, flexibility, and safety the methods of separation using solid phases are preferable for tritium facility. The detail consideration of the separation processes with a solid phase reveals that highest efficiency of separation should be achieved in a counter-current separation column, which allow multiplying the thermodynamic isotopic effect. Because of difficulties of the organization of a solid phase motion in a separation column this method did not found practical application for separation of hydrogen isotopic mixtures. The main efforts of a few researches groups were devoted to improve the chromatographic separation process and equipment. The detail comparison of the separation in sectioned column with that in chromatographic as well as in cryodistillation columns show that counter-current separation in a sectioned column is more effective and has other advantages when middle throughput is required. Complete regeneration of an isotopic mixture with separation into three practically pure isotopes independently from isotopic composition of feed can be provided using two sectioned separation columns. Separation installation can operate continuously as well as periodically.

  2. UTILITY OF MECHANISTIC MODELS FOR DIRECTING ADVANCED SEPARATIONS RESEARCH & DEVELOPMENT ACTIVITIES: Electrochemically Modulated Separation Example

    SciTech Connect

    Schwantes, Jon M.

    2009-06-01

    The objective for this work was to demonstrate the utility of mechanistic computer models designed to simulate actinide behavior for use in efficiently and effectively directing advanced laboratory R&D activities associated with developing advanced separations methods.

  3. Advances in laser-based isotope ratio measurements: selected applications

    NASA Astrophysics Data System (ADS)

    Kerstel, E.; Gianfrani, L.

    2008-09-01

    Small molecules exhibit characteristic ro-vibrational transitions in the near- and mid-infrared spectral regions, which are strongly influenced by isotopic substitution. This gift of nature has made it possible to use laser spectroscopy for the accurate analysis of the isotopic composition of gaseous samples. Nowadays, laser spectroscopy is clearly recognized as a valid alternative to isotope ratio mass spectrometry. Laser-based instruments are leaving the research laboratory stage and are being used by a growing number of isotope researchers for significant advances in their own field of research. In this review article, we discuss the current status and new frontiers of research on high-sensitivity and high-precision laser spectroscopy for isotope ratio analyses. Although many of our comments will be generally applicable to laser isotope ratio analyses in molecules of environmental importance, this paper concerns itself primarily with water and carbon dioxide, two molecules that were studied extensively in our respective laboratories. A complete coverage of the field is practically not feasible in the space constraints of this issue, and in any case doomed to fail, considering the large body of work that has appeared ever since the review by Kerstel in 2004 ( Handbook of Stable Isotope Analytical Techniques, Chapt. 34, pp. 759-787).

  4. Liquid-phase thermal diffusion isotope separation apparatus and method having tapered column

    DOEpatents

    Rutherford, W.M.

    1985-12-04

    A thermal diffusion counterflow method and apparatus for separating isotopes in solution in which the solution is confined in a long, narrow, vertical slit which tapers from bottom to top. The variation in the width of the slit permits maintenance of a stable concentration distribution with relatively long columns, thus permitting isotopic separation superior to that obtained in the prior art.

  5. Liquid-phase thermal diffusion isotope separation apparatus and method having tapered column

    DOEpatents

    Rutherford, William M.

    1988-05-24

    A thermal diffusion counterflow method and apparatus for separating isotopes in solution in which the solution is confined in a long, narrow, vertical slit which tapers from bottom to top. The variation in the width of the slit permits maintenance of a stable concentration distribution with relatively long columns, thus permitting isotopic separation superior to that obtainable in the prior art.

  6. Method for separating different isotopes in compounds by means of laser radiation

    SciTech Connect

    Meyer-Kretschmer, G.; Jetter, H.; Toennies, P.

    1984-05-29

    A method is claimed for separating isotopes of a compound having molecules in the gaseous state which comprises exciting the gas with laser radiation having a frequency capable of exciting a selected isotope thereof, interacting the excited gas with electrons having an energy sufficient to form position ions therein and separating the ionized molecules from the other molecules in the gas.

  7. Optical spectroscopy using mass-separated beams: Nuclear properties of unstable indium and tin isotopes

    NASA Astrophysics Data System (ADS)

    Kuehl, T.; Kirchner, R.; Klepper, O.; Marx, D.; Dinger, U.; Eberz, J.; Huber, G.; Lochmann, H.; Menges, R.; Ulm, G.

    1987-05-01

    Collinear fast-beam laser-spectroscopy has been used to measure the hyperfine structure and isotope shift of several indium and tin isotopes. The related experimental techniques are described, including the preparation of mass-separated beams of neutron-deficient indium and tin isotopes at the GSI on-line mass separator following fusion-evaporation reactions. The deviation of the observed dependence of the charge radii upon the neutron number from the expected behaviour is briefly discussed.

  8. MixSIAR: advanced stable isotope mixing models in R

    EPA Science Inventory

    Background/Question/Methods The development of stable isotope mixing models has coincided with modeling products (e.g. IsoSource, MixSIR, SIAR), where methodological advances are published in parity with software packages. However, while mixing model theory has recently been ex...

  9. Recent Advances in Microfluidic Cell Separations

    PubMed Central

    Gao, Yan; Li, Wenjie; Pappas, Dimitri

    2013-01-01

    The isolation and sorting of cells has become an increasingly important step in chemical and biological analyses. As a unit operation in more complex analyses, isolating a phenotypically pure cell population from a heterogeneous sample presents unique challenges. Microfluidic systems are ideal platforms for performing cell separations, enabling integration with other techniques and enhancing traditional separation modalities. In recent years there have been several techniques that use surface antigen affinity, physical interactions, or a combination of the two to achieve high separation purity and efficiency. This review discusses methods including magnetophoretic, acoustophoretic, sedimentation, electric, and hydrodynamic methods for physical separations. We also discuss affinity methods, including magnetic sorting, flow sorting, and affinity capture. PMID:23778244

  10. Isotope separation using tuned laser and electron beam

    NASA Technical Reports Server (NTRS)

    Trajmar, Sandor (Inventor)

    1987-01-01

    The apparatus comprises means for producing an atomic beam containing the isotope of interest and other isotopes. Means are provided for producing a magnetic field traversing the path of the atomic beam of an intensity sufficient to broaden the energy domain of the various individual magnetic sublevels of the isotope of interest and having the atomic beam passing therethrough. A laser beam is produced of a frequency and polarization selected to maximize the activation of only individual magnetic sublevels of the isotope of interest with the portion of its broadened energy domain most removed from other isotopes with the stream. The laser beam is directed so as to strike the atomic beam within the magnetic field and traverse the path of the atomic beam whereby only the isotope of interest is activated by the laser beam. The apparatus further includes means for producing a collimated and high intensity beam of electrons of narrow energy distribution within the magnetic field which is aimed so as to strike the atomic beam while the atomic beam is simultaneously struck by the laser beam and at an energy level selected to ionize the activated isotope of interest but not ground state species included therewith. Deflection means are disposed in the usual manner to collect the ions.

  11. Applications of Isotopes in Advancing Structural & Functional Heparanomics

    PubMed Central

    Tran, Vy M.; Nu Nguyen, Thao Kim; Raman, Karthik; Kuberan, Balagurunathan

    2011-01-01

    Heparanomics is the study of all the biologically active oligosaccharide domain structures in the entire heparanome and the nature of interactions among these domains and their protein ligands. Structural elucidation of heparan sulfate and heparin oligosaccharides is a major obstacle in advancing structure-function relationships and the study of heparanomics. There are several factors that exacerbate challenges involved in the structural elucidation of heparin and heparan sulfate. Therefore, there is a great interest in developing novel strategies and analytical tools to overcome the barriers in decoding the enigmatic heparanome. This review article focuses on the applications of isotopes, both radioisotopes and stable isotopes, in the structural elucidation of the complex heparanome at the disaccharide or oligosaccharide level using liquid chromatography, nuclear magnetic resonance spectroscopy and mass spectrometry. This review article also outlines the utility of isotopes in determining the substrate specificity of biosynthetic enzymes that eventually dictate the emergence of biologically active oligosaccharides. PMID:20838780

  12. 10 CFR Appendix N to Part 110 - Illustrative List of Lithium Isotope Separation Facilities, Plants and Equipment Under NRC's...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Illustrative List of Lithium Isotope Separation Facilities... Appendix N to Part 110—Illustrative List of Lithium Isotope Separation Facilities, Plants and Equipment Under NRC's Export Licensing Authority a. Facilities or plants for the separation of lithium isotopes....

  13. 10 CFR Appendix N to Part 110 - Illustrative List of Lithium Isotope Separation Facilities, Plants and Equipment Under NRC's...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Illustrative List of Lithium Isotope Separation Facilities... Appendix N to Part 110—Illustrative List of Lithium Isotope Separation Facilities, Plants and Equipment Under NRC's Export Licensing Authority a. Facilities or plants for the separation of lithium isotopes....

  14. Validation of Electrochemically Modulated Separations Performed On-Line with MC-ICP-MS for Uranium and Plutonium Isotopic Analyses

    SciTech Connect

    Liezers, Martin; Olsen, Khris B.; Mitroshkov, Alexandre V.; Duckworth, Douglas C.

    2010-08-11

    The most time consuming process in uranium or plutonium isotopic analyses is performing the requisite chromatographic separation of the actinides. Filament preparation for thermal ionization (TIMS) adds further delays, but is generally accepted due to the unmatched performance in trace isotopic analyses. Advances in Multi-Collector Inductively Coupled Plasma Mass Spectrometry (MC-ICP-MS) are beginning to rival the performance of TIMS. Methods, such as Electrochemically Modulated Separations (EMS) can efficiently pre-concentrate U or Pu quite selectively from small solution volumes in a matrix of 0.5 M nitric acid. When performed in-line with ICP-MS, the rapid analyte release from the electrode is fast, and large transient analyte signal enhancements of >100 fold can be achieved as compared to more conventional continuous nebulization of the original starting solution. This makes the approach ideal for very low level isotope ratio measurements. In this paper, some aspects of EMS performance are described. These include low level Pu isotope ratio behavior versus concentration by MC-ICP-MS and uranium rejection characteristics that are also important for reliable low level Pu isotope ratio determinations.

  15. Advanced inorganic separators for alkaline batteries

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W. (Inventor)

    1982-01-01

    A flexible, porous battery separator comprising a coating applied to a porous, flexible substrate is described. The coating comprises: (1) a thermoplastic rubber-based resin which is insoluble and unreactive in the alkaline electrolyte; (2) a polar organic plasticizer which is reactive with the alkaline electrolyte to produce a reaction product which contains a hydroxyl group and/or a carboxylic acid group; and (3) a mixture of polar particulate filler materials which are unreactive with the electrolyte, the mixture comprising at least one first filler material having a surface area of greater than 25 meters sq/gram, at least one second filler material having a surface area of 10 to 25 sq meters/gram, wherein the volume of the mixture of filler materials is less than 45% of the total volume of the fillers and the binder, the filler surface area per gram of binder is about 20 to 60 sq meters/gram, and the amount of plasticizer is sufficient to coat each filler particle. A method of forming the battery separator is also described.

  16. Gravitational separation of gases and isotopes in polar ice caps.

    PubMed

    Craig, H; Horibe, Y; Sowers, T

    1988-12-23

    Atmospheric gases trapped in polar ice at the firn to ice transition layer are enriched in heavy isotopes (nitrogen-15 and oxygen-18) and in heavy gases (O(2)/N(2) and Ar/N(2) ratios) relative to the free atmosphere. The maximum enrichments observed follow patterns predicted for gravitational equilibrium at the base of the firn layer, as calculated from the depth to the transition layer and the temperature in the firn. Gas ratios exhibit both positive and negative enrichments relative to air: the negative enrichments of heavy gases are consistent with observed artifacts of vacuum stripping of gases from fractured ice and with the relative values of molecular diameters that govern capillary transport. These two models for isotopic and elemental fractionation provide a basis for understanding the initial enrichments of carbon-13 and oxygen-18 in trapped CO(2), CH(4), and O(2) in ice cores, which must be known in order to decipher ancient atmospheric isotopic ratios.

  17. Influence of liquid structure on diffusive isotope separation in molten silicates and aqueous solutions

    NASA Astrophysics Data System (ADS)

    Watkins, James M.; DePaolo, Donald J.; Ryerson, Frederick J.; Peterson, Brook T.

    2011-06-01

    Molecular diffusion in natural volcanic liquids discriminates between isotopes of major ions (e.g., Fe, Mg, Ca, and Li). Although isotope separation by diffusion is expected on theoretical grounds, the dependence on mass is highly variable for different elements and in different media. Silicate liquid diffusion experiments using simple liquid compositions were carried out to further probe the compositional dependence of diffusive isotopic discrimination and its relationship to liquid structure. Two diffusion couples consisting of the mineral constituents anorthite (CaAl 2Si 2O 8; denoted AN), albite (NaAlSi 3O 8; denoted AB), and diopside (CaMgSi 2O 6; denoted DI) were held at 1450 °C for 2 h and then quenched to ambient pressure and temperature. Major-element as well as Ca and Mg isotope profiles were measured on the recovered quenched glasses. In both experiments, Ca diffuses rapidly with respect to Si. In the AB-AN experiment, D Ca/ D Si ≈ 20 and the efficiency of isotope separation for Ca is much greater than in natural liquid experiments where D Ca/ D Si ≈ 1. In the AB-DI experiment, D Ca/ D Si ≈ 6 and the efficiency of isotope separation is between that of the natural liquid experiments and the AB-AN experiment. In the AB-DI experiment, D Mg/ D Si ≈ 1 and the efficiency of isotope separation for Mg is smaller than it is for Ca yet similar to that observed for Mg in natural liquids. The results from the experiments reported here, in combination with results from natural volcanic liquids, show clearly that the efficiency of diffusive separation of Ca isotopes is systematically related to the solvent-normalized diffusivity - the ratio of the diffusivity of the cation ( D Ca) to the diffusivity of silicon ( D Si). The results on Ca isotopes are consistent with available data on Fe, Li, and Mg isotopes in silicate liquids, when considered in terms of the parameter D cation/ D Si. Cations diffusing in aqueous solutions display a similar relationship

  18. Stable isotope production in the former USSR by electromagnetic separation techniques

    NASA Astrophysics Data System (ADS)

    Kaschejev, N. A.; Polyakov, L. A.; Tunin, V. V.

    1993-09-01

    The present paper gives a brief review of the status of electromagnetic isotope separation techniques in the former USSR. It describes the basic specifications of the equipment as well as the general scheme of the production process, and considers questions relating to the chemical processing of isotopic material and analytical control techniques. Finally, a summary is given of the main separation data obtained during the last ten years, and the prospects of future development and of enhancing the economical effectiveness of isotope production are discussed.

  19. Pooled versus separate measurements of tree-ring stable isotopes.

    PubMed

    Dorado Liñán, Isabel; Gutiérrez, Emilia; Helle, Gerhard; Heinrich, Ingo; Andreu-Hayles, Laia; Planells, Octavi; Leuenberger, Markus; Bürger, Carmen; Schleser, Gerhard

    2011-05-01

    δ(13)C and δ(18)O of tree rings contain time integrated information about the environmental conditions weighted by seasonal growth dynamics and are well established as sources of palaeoclimatic and ecophysiological data. Annually resolved isotope chronologies are frequently produced by pooling dated growth rings from several trees prior to the isotopic analyses. This procedure has the advantage of saving time and resources, but precludes from defining the isotopic error or statistical uncertainty related to the inter-tree variability. Up to now only a few studies have compared isotope series from pooled tree rings with isotopic measurements from individual trees. We tested whether or not the δ(13)C and the δ(18)O chronologies derived from pooled and from individual tree rings display significant differences at two locations from the Iberian Peninsula to assess advantages and constraints of both methodologies. The comparisons along the period 1900-2003 reveal a good agreement between pooled chronologies and the two mean master series which were created by averaging raw individual values (Mean) or by generating a mass calibrated mean (MassC). In most of the cases, pooled chronologies show high synchronicity with averaged individual samples at interannual scale but some differences also show up especially when comparing δ(18)O decadal to multi-decadal variations. Moreover, differences in the first order autocorrelation among individuals may be obscured by pooling strategies. The lack of replication of pooled chronologies prevents detection of a bias due to a higher mass contribution of one sample but uncertainties associated with the analytical process itself, as sample inhomogeneity, seems to account for the observed differences.

  20. Isotopic Effect on Ion Mobility and Separation of Isotopomers by High-Field Ion Mobility Spectrometry

    SciTech Connect

    Shvartsburg, Alexandre A.; Clemmer, David E.; Smith, Richard D.

    2010-10-01

    Since early 1900-s, when vacuum techniques and ion detectors first enabled investigations of gas-phase ions, two approaches to their separation and characterization have emerged - mass spectrometry (MS) and ion mobility spectrometry (IMS).1,2 Though both exploit that distinct charged species move in electric fields differently, MS is performed in vacuum and is based only on the ion mass/charge (m/q) ratio while IMS involves sufficiently dense buffer gases and relies on ion transport properties. The first major discovery enabled by MS was the existence of isotopes by Thomson and Aston,3 and isotopic analyses have since been integral to MS. In particular, the preparative separation of U isotopes using Lawrence’s Calutron was the first industrial application of MS,4 and isotopic labeling is key to MS quantification methods. With IMS, the issue of isotopes was largely ignored as the resolving power (R) was generally too low for their separation. Here, we demonstrate that recently developed high-resolution differential IMS can separate isotopic molecular ions, including nominal isobars with different isotopic content and isotopomers. This capability may enable a new method for isotope separation in a small-scale format at ambient pressure and aid localization of labeled sites in various molecules. Perhaps most importantly, the isotopic shifts depend on the labeled atom position and thus may contain the kind of detailed structural information that is available in solution or solid state using tools such as NMR but has not generally been obtainable for gas-phase ions.

  1. Status of stable isotopes separation at the Electromagnetic Plants of the Russian Research Center, ``Kurchatov Institute''

    NASA Astrophysics Data System (ADS)

    Kouzmine, R. N.; Bondarenko, V. G.; Pigarov, Ju. D.; Staroverov, L. I.; Tchesnokov, V. M.

    1999-12-01

    The four chamber electromagnetic isotope separator was constructed at the Russian Research Center (RRC) "Kurchatov Institute" more than 50 years ago. During this period, the plant was used for the development of ion sources and separation technologies. Isotopes of over 40 different elements have been separated. About 20 years ago, the reconstruction of two chambers was completed. The homogeneous magnetic field in these chambers was replaced with a field which falls-off on the radius ( r) as 1/ r. After reconstruction, the dispersion was increased by a factor of four and the enrichment of the isotopes was increased considerably. Ion beam collection was also facilitated. Many highly enriched isotopes were produced in the new chambers, including Gd, Yb, Zn, Tl, Pd, and others. One of the important problems now, is the reduction of all aspects of production costs for isotopes. A project to perfect the ion-optic scheme (IOS) for two chambers was carried out with the expected result of a dispersion of 44 mm at 1% relative mass difference. As a result of the modified ion source, increased productivity of the separators is expected. Other areas of ion source development in progress include: development of "standard" ion sources for the separators with inhomogeneous fields, development of high-temperature sources for Pd isotopes, and development of an ion source with sputtering supply for Ir, Pt, and other elements.

  2. National uses and needs for separated stable isotopes in physics, chemistry, and geoscience research

    NASA Astrophysics Data System (ADS)

    Zisman, M. S.

    Present uses of separated stable isotopes in the fields of physics, chemistry, and the geosciences were surveyed to identify current supply problems and to determine future needs. Demand for separated isotopes remains strong, with 220 different nuclides having been used in the past three years. The largest needs, in terms of both quantity and variety of isotopes, are found in nuclear physics research. Current problems include a lack of availability of many nuclides, unsatisfactory enrichment of rare species, and prohibitively high costs for certain important isotopes. Demand for separated isotopes is expected to remain roughly at present levels, although a shift toward more requests for highly enriched rare isotopes is predicted. Use of neutron rich nuclides below A = 100 for producing exotic ion beams at various accelerators and use of transition metal nuclei for nuclear magnetic resonance spectroscopy are expected to expand. An increase in the need for calibration standards for techniques of radiological dating, such as Sm/Nd and Lu/Hf is predicted, but in relatively small quantities. Most members of the research community would be willing to pay considerably more than they do now to maintain adequate supplies of stable isotopes.

  3. National uses and needs for separated stable isotopes in physics, chemistry, and geoscience research

    SciTech Connect

    Zisman, M.S.

    1982-01-01

    Present uses of separated stable isotopes in the fields of physics, chemistry, and the geosciences have been surveyed to identify current supply problems and to determine future needs. Demand for separated isotopes remains strong, with 220 different nuclides having been used in the past three years. The largest needs, in terms of both quantity and variety of isotopes, are found in nuclear physics research. Current problems include a lack of availability of many nuclides, unsatisfactory enrichment of rare species, and prohibitively high costs for certain important isotopes. It is expected that demands for separated isotopes will remain roughly at present levels, although there will be a shift toward more requests for highly enriched rare isotopes. Significantly greater use will be made of neutron-rich nuclides below A = 100 for producing exotic ion beams at various accelerators. Use of transition metal nuclei for nuclear magnetic resonance spectroscopy will expand. In addition, calibration standards will be required for the newer techniques of radiological dating, such as the Sm/Nd and Lu/Hf methods, but in relatively small quantities. Most members of the research community would be willing to pay considerably more than they do now to maintain adequate supplies of stable isotopes.

  4. Electromagnetic separation of stable isotopes at the Institute of Atomic Energy, Academia Sinica

    NASA Astrophysics Data System (ADS)

    Ming-da, Hua; Gong-pan, Li; Shi-jun, Su; Nai-feng, Mao; Hung-yung, Lu

    1981-07-01

    For almost 20 years the Institute of Atomic Energy, Academia Sinica has been separating stable isotopes of the elements by electromagnetic separators and supplying these materials to research work in many fields of our country. In this article we shall attempt to outline the growth of the effort and describe the present situation.

  5. Nested reactor chamber and operation for Hg-196 isotope separation process

    DOEpatents

    Grossman, M.W.

    1991-10-08

    The present invention is directed to an apparatus for use in [sup 196]Hg separation and its method of operation. Specifically, the present invention is directed to a nested reactor chamber useful for [sup 196]Hg isotope separation reactions avoiding the photon starved condition commonly encountered in coaxial reactor systems. 6 figures.

  6. Nested reactor chamber and operation for Hg-196 isotope separation process

    DOEpatents

    Grossman, Mark W.

    1991-01-01

    The present invention is directed to an apparatus for use in .sup.196 Hg separation and its method of operation. Specifically, the present invention is directed to a nested reactor chamber useful for .sup.196 Hg isotope separation reactions avoiding the photon starved condition commonly encountered in coaxial reactor systems.

  7. tritium isotope separation by CO 2 laser-induced multiphoton dissociation of CTF 3

    NASA Astrophysics Data System (ADS)

    Makide, Yoshihiro; Hagiwara, Satoru; Tominaga, Takeshi; Takeuchi, Kazuo; Nakane, Ryohei

    1981-08-01

    Isotope separation of tritium at ppm concentration level was achieved by CO 2 laser-induced multiphoton dissociation of CTF 3 in CHF 3 with single-step separation factors exceeding 500. The effects of laser frequency, pulse energy, pulse duration, irradiation geometry, tritium concentration, sample pressure, and buffer gas were investigated.

  8. Separation of selected stable isotopes by liquid-phase thermal diffusion and by chemical exchange

    NASA Astrophysics Data System (ADS)

    Rutherford, W. M.; Jepson, B. E.; Michaels, E. D.

    Useful applications of enriched stable nuclides are unduly restricted by high cost and limited availability. Recent research on liquid phase thermal diffusion (LTD) has resulted in practical processes for separating S34, CL35, and CL37 in significant quantities (100 to 500 g/yr) at costs much lower than those associated with the electromagnetic (Calutron) process. The separation of the isotopes of bromine by LTD is now in progress and BR79 is being produced in relatively simple equivalent at a rate on the order of 0.5 g/day. The results of recent measurements show that the isotopes of Zn can be separated by LTD of zinc alkyls. The isotopes of calcium can be separated by LTD and by chemical exchange. The LTD process is based on the use of aqueous Ca(NO3)2 as a working fluid.

  9. Isotopic effect on ion mobility and separation of isotopomers by high-field ion mobility spectrometry.

    PubMed

    Shvartsburg, Alexandre A; Clemmer, David E; Smith, Richard D

    2010-10-01

    Distinguishing and separating isotopic molecular variants is important across many scientific fields. However, discerning such variants, especially those producing no net mass difference, has been challenging. For example, single-stage mass spectrometry is broadly employed to analyze isotopes but is blind to isotopic isomers (isotopomers) and, except at very high resolution, species of the same nominal mass (isobars). Here, we report separation of isotopic ions, including isotopomers and isobars, using ion mobility spectrometry (IMS), specifically, the field asymmetric waveform IMS (FAIMS). The effect is not based on the different reduced masses of ion-gas molecule pairs previously theorized to cause isotopic separations in conventional IMS, but appears related to the details of energetic ion-molecule collisions in strong electric fields. The observed separation qualitatively depends on the gas composition and may be improved using gas mixtures. Isotopic shifts depend on the position of the labeled site, which allows its localization and contains information about the ion geometry, potentially enabling a new approach to molecular structure characterization.

  10. Anisotropic alpha emission from on-line separated isotopes

    SciTech Connect

    Wouters, J.; Vandeplassche, D.; van Walle, E.; Severijns, N.; Vanneste, L.

    1986-05-05

    A systematic on-line nuclear-orientation study of heavy isotopes using anisotropic ..cap alpha.. emission is reported for the first time. The anisotrophies recorded for /sup 199/At, /sup 201/At, and /sup 203/At are remarkably pronounced and strongly varying. At lower neutron number the ..cap alpha.. particles are more preferentially emitted perpendicularly to the nuclear-spin direction. This may be interpreted in terms of the high sensitivity of the ..cap alpha..-emission probability to changes in the nuclear shape.

  11. Photo-induced cataphoretic isotope separation. Final report, June 15, 1976-June 15, 1981

    SciTech Connect

    Carruthers, J A

    1981-03-01

    The original studies were undertaken to study the feasibility of radiation-induced cataphoretic separation. This part of the work is concerned with laser-induced cataphoretic separation in neon using a He-Ne 6328A laser. The basic concept of radiation-induced caphoretic isotope separation is based on the preferential excitation of one isotope with the result that one isotope is more readily ionized, and relatively more of its ions move toward the cathode in the dc discharge. For the later part of the work a second radiation source was added, a helical Ne/sup 20/ radiation lamp. Radiation-induced cataphoretic isotope separation has not been observed. Selective excitation has been achieved by both the He-Ne/sup 20/ 6328A laser and the Ne/sup 20/ helical radiation lamp in spite of the fact that the isotope shift is comprable with Doppler-broadened linewidths. Collisional excitation exchange between the Ne/sup 20/ and Ne/sup 22/ atoms does not appear to be a problem for the neon partial pressure range involved. The population of the 3S/sub 2/ and 2p/sub 4/ laser levels (6328A) are apparently too low to offer reasonable expectation of inducing observable cataphoretic isotope separation by means of the 6328A laser radiation, even with the high detection sensitivity of the scanning Fabry-Perot spectrometer sytem. The use of the additional radiation source in the form of a helical Ne/sup 20/ radiation lamp has not improved the effectiveness of the laser 6328A laser. It has become clear from these experiments, however, that for isotope separation in neon it is well to concentrate on using radiation sources that interact mainly with the ls population.

  12. Separation and Analysis of Boron Isotope in High Plant by Thermal Ionization Mass Spectrometry

    PubMed Central

    Xu, Qingcai; Dong, Yuliang; Zhu, Huayu; Sun, Aide

    2015-01-01

    Knowledge of boron and its isotope in plants is useful to better understand the transposition and translocation of boron within plant, the geochemical behavior in the interface between soil and plant, and the biogeochemical cycle of boron. It is critical to develop a useful method to separate boron from the plant for the geochemical application of boron and its isotope. A method was developed for the extraction of boron in plant sample, whose isotope was determined by thermal ionization mass spectrometry. The results indicated that this method of dry ashing coupled with two-step ion-exchange chromatography is powerful for the separation of boron in plant sample with large amounts of organic matters completely. The ratios of boron isotope composition in those plant tissue samples ranged from −19.45‰ to +28.13‰ (total range: 47.58‰) with a mean value of 2.61 ± 11.76‰ SD. The stem and root isotopic compositions were lower than those in flower and leaf. The molecular mechanism of boron isotope may be responsible for the observed variation of boron isotopic composition and are considered as a useful tool for the better understanding of boron cycling process in the environment and for the signature of living systems. PMID:26819618

  13. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    SciTech Connect

    Christopher E. Hull

    2006-05-15

    This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

  14. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    SciTech Connect

    Christopher E. Hull

    2005-11-04

    This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

  15. Crosscutting Technology Development at the Center for Advanced Separation Technologies

    SciTech Connect

    Christopher E. Hull

    2006-09-30

    This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

  16. A Reverse Osmosis System for an Advanced Separation Process Laboratory.

    ERIC Educational Resources Information Center

    Slater, C. S.; Paccione, J. D.

    1987-01-01

    Focuses on the development of a pilot unit for use in an advanced separations process laboratory in an effort to develop experiments on such processes as reverse osmosis, ultrafiltration, adsorption, and chromatography. Discusses reverse osmosis principles, the experimental system design, and some experimental studies. (TW)

  17. Electromagnetic Separation of Isotopes at Oak Ridge: An informal account of history, techniques, and accomplishments.

    PubMed

    Love, L O

    1973-10-26

    In 1960 I attended a European conference on isotope separation, after which I visited the Niels Bohr Institute in Copenhagen. A staff member there ventured the opinion that the separation of isotopes will be first on the list of important contributions to the peaceful uses of the atom when the Atomic Energy Commission's memoirs are written in the year 2000. In 1968 the AEC Division of Research contracted with the National Research Council of the National Academy of Sciences to conduct a review of the AEC program for the separation of stable isotopes by electromagnetic and thermal diffusion methods. This ad hoc panel comprised seven scientists from the fields of chemistry, classical physics, geochemistry, geophysics, medicine, and physics. In their final report on national uses and needs for separated stable isotopes (9), they referred to the store of separated isotopes as a "real national asset that attains increasing value as science and technology develop" and recommended "continuation of the program as a national resource of great value to the United States." Later, in a discussion of this report with A. M. Weinberg, J. Koch, himself a pioneer in electromagnetic isotope separation and member of the Danish Atomic Energy Program, said he would correct the statement that the Oak Ridge electromagnetic facility is a "national asset" to read "international asset." From my narrow viewpoint after an extended and complete engrossment with this program for so many years, it is gratifying to learn that such men as those mentioned above share my belief that the work has indeed been worthwhile.

  18. Separative analyses of a chromatographic column packed with a core-shell adsorbent for lithium isotope separation

    SciTech Connect

    Sugiyama, T.; Sugura, K.; Enokida, Y.; Yamamoto, I.

    2015-03-15

    Lithium-6 is used as a blanket material for sufficient tritium production in DT fueled fusion reactors. A core-shell type adsorbent was proposed for lithium isotope separation by chromatography. The mass transfer model in a chromatographic column consisted of 4 steps, such as convection and dispersion in the column, transfer through liquid films, intra-particle diffusion and and adsorption or desorption at the local adsorption sites. A model was developed and concentration profiles and time variation in the column were numerically simulated. It became clear that core-shell type adsorbents with thin porous shell were saturated rapidly relatively to fully porous one and established a sharp edge of adsorption band. This is very important feature because lithium isotope separation requires long-distance development of adsorption band. The values of HETP (Height Equivalent of a Theoretical Plate) for core-shell adsorbent packed column were estimated by statistical moments of the step response curve. The value of HETP decreased with the thickness of the porous shell. A core-shell type adsorbent is, then, useful for lithium isotope separation. (authors)

  19. A Model of Isotope Separation in Cells at the Early Stages of Evolution.

    PubMed

    Melkikh, A V; Bokunyaeva, A O

    2016-03-01

    The separation of the isotopes of certain ions can serve as an important criterion for the presence of life in the early stages of its evolution. A model of the separation of isotopes during their transport through the cell membrane is constructed. The dependence of the selection coefficient on various parameters is found. In particular, it is shown that the maximum efficiency of the transport of ions corresponds to the minimum enrichment coefficient. At the maximum enrichment, the efficiency of the transport system approaches ½. Calculated enrichment coefficients are compared with experimentally obtained values for different types of cells, and the comparison shows a qualitative agreement between these quantities.

  20. Multi-purpose hydrogen isotopes separation plant design

    SciTech Connect

    Boniface, H.A.; Gnanapragasam, N.V.; Ryland, D.K.; Suppiah, S.; Castillo, I.

    2015-03-15

    There is a potential interest at AECL's Chalk River Laboratories to remove tritium from moderately tritiated light water and to reclaim tritiated, downgraded heavy water. With only a few limitations, a single CECE (Combined Electrolysis and Catalytic Exchange) process configuration can be designed to remove tritium from heavy water or light water and upgrade heavy water. Such a design would have some restrictions on the nature of the feed-stock and tritium product, but could produce essentially tritium-free light or heavy water that is chemically pure. The extracted tritium is produced as a small quantity of tritiated heavy water. The overall plant capacity is fixed by the total amount of electrolysis and volume of catalyst. In this proposal, with 60 kA of electrolysis a throughput of 15 kg*h{sup -1} light water for detritiation, about 4 kg*h{sup -1} of heavy water for detritiation and about 27 kg*h{sup -1} of 98% heavy water for upgrading can be processed. Such a plant requires about 1,000 liters of AECL isotope exchange catalyst. The general design features and details of this multi-purpose CECE process are described in this paper, based on some practical choices of design criteria. In addition, we outline the small differences that must be accommodated and some compromises that must be made to make the plant capable of such flexible operation. (authors)

  1. Advancing the scientific basis of trivalent actinide-lanthanide separations

    SciTech Connect

    Nash, K.L.

    2013-07-01

    For advanced fuel cycles designed to support transmutation of transplutonium actinides, several options have been demonstrated for process-scale aqueous separations for U, Np, Pu management and for partitioning of trivalent actinides and fission product lanthanides away from other fission products. The more difficult mutual separation of Am/Cm from La-Tb remains the subject of considerable fundamental and applied research. The chemical separations literature teaches that the most productive alternatives to pursue are those based on ligand donor atoms less electronegative than O, specifically N- and S-containing complexants and chloride ion (Cl{sup -}). These 'soft-donor' atoms have exhibited usable selectivity in their bonding interactions with trivalent actinides relative to lanthanides. In this report, selected features of soft donor reagent design, characterization and application development will be discussed. The roles of thiocyanate, aminopoly-carboxylic acids and lactate in separation processes are detailed. (authors)

  2. Anisotropic. cap alpha. -emission of on-line separated isotopes

    SciTech Connect

    Wouters, J.; Vandeplassche, D.; van Walle, E.; Severijns, N.; Van Haverbeke, J.; Vanneste, L.

    1987-12-10

    The technical realization of particle detection at very low temperatures (4K) has made it possible to study for the first time the anisotropic ..cap alpha..-decay of oriented nuclei which have been produced, separated and implanted on line. The measured ..cap alpha..-angular distributions reveal surprising new results on nuclear aspects as well as in solid state physics. The nuclear structure information from these data questions the older ..cap alpha..-decay theoretical interpretation and urges for a reaxamination of the earliest work on anisotropic ..cap alpha..-decay.

  3. Investigation related to hydrogen isotopes separation by cryogenic distillation

    SciTech Connect

    Bornea, A.; Zamfirache, M.; Stefanescu, I.; Preda, A.; Balteanu, O.; Stefan, I.

    2008-07-15

    Research conducted in the last fifty years has shown that one of the most efficient techniques of removing tritium from the heavy water used as moderator and coolant in CANDU reactors (as that operated at Cernavoda (Romania)) is hydrogen cryogenic distillation. Designing and implementing the concept of cryogenic distillation columns require experiments to be conducted as well as computer simulations. Particularly, computer simulations are of great importance when designing and evaluating the performances of a column or a series of columns. Experimental data collected from laboratory work will be used as input for computer simulations run at larger scale (for The Pilot Plant for Tritium and Deuterium Separation) in order to increase the confidence in the simulated results. Studies carried out were focused on the following: - Quantitative analyses of important parameters such as the number of theoretical plates, inlet area, reflux flow, flow-rates extraction, working pressure, etc. - Columns connected in series in such a way to fulfil the separation requirements. Experiments were carried out on a laboratory-scale installation to investigate the performance of contact elements with continuous packing. The packing was manufactured in our institute. (authors)

  4. A status of progress for the Laser Isotope Separation (LIS) process

    NASA Technical Reports Server (NTRS)

    Delionback, L. M.

    1976-01-01

    An overview of the Laser Isotope Separation (LIS) methodology is given together with illustrations showing a simplified version of the LIS technique, an example of the two-photon photoionization category, and a diagram depicting how the energy levels of various isotope influence the LIS process. Applications were proposed for the LIS system which, in addition to enriching uranium, could in themselves develop into programs of tremendous scope and breadth. These include the treatment of radioactive wastes from light-water nuclear reactors, enriching the deuterium isotope to make heavy-water, and enriching the light isotopes of such elements as titanium for aerospace weight-reducing programs. Economic comparisons of the LIS methodology with the current method of gaseous diffusion indicate an overwhelming advantage; the laser process promises to be 1000 times more efficient. The technique could also be utilized in chemical reactions with the tuned laser serving as a universal catalyst to determine the speed and direction of a chemical reaction.

  5. Influence of liquid structure on diffusive isotope separation in molten silicates and aqueous solutions

    SciTech Connect

    Watkins, J.M.; DePaolo, D.J.; Ryerson, F.J.; Peterson, B.

    2011-03-01

    Molecular diffusion in natural volcanic liquids discriminates between isotopes of major ions (e.g., Fe, Mg, Ca, and Li). Although isotope separation by diffusion is expected on theoretical grounds, the dependence on mass is highly variable for different elements and in different media. Silicate liquid diffusion experiments using simple liquid compositions were carried out to further probe the compositional dependence of diffusive isotopic discrimination and its relationship to liquid structure. Two diffusion couples consisting of the mineral constituents anorthite (CaAl{sub 2}Si{sub 2}O{sub 8}; denoted AN), albite (NaAlSi{sub 3}O{sub 8}; denoted AB), and diopside (CaMgSi{sub 2}O{sub 6}; denoted DI) were held at 1450°C for 2 h and then quenched to ambient pressure and temperature. Major-element as well as Ca and Mg isotope profiles were measured on the recovered quenched glasses. In both experiments, Ca diffuses rapidly with respect to Si. In the AB–AN experiment, D{sub Ca}/D{sub Si} ~ 20 and the efficiency of isotope separation for Ca is much greater than in natural liquid experiments where D{sub Ca}/D{sub Si} ~ 1. In the AB–DI experiment, D{sub Ca}/D{sub Si} ~ 6 and the efficiency of isotope separation is between that of the natural liquid experiments and the AB–AN experiment. In the AB–DI experiment, D{sub Mg}/D{sub Si} ~ 1 and the efficiency of isotope separation for Mg is smaller than it is for Ca yet similar to that observed for Mg in natural liquids. The results from the experiments reported here, in combination with results from natural volcanic liquids, show clearly that the efficiency of diffusive separation of Ca isotopes is systematically related to the solvent-normalized diffusivity—the ratio of the diffusivity of the cation (D{sub Ca}) to the diffusivity of silicon (D{sub Si}). The results on Ca isotopes are consistent with available data on Fe, Li, and Mg isotopes in silicate liquids, when considered in terms of the parameter D{sub cation

  6. A Low Temperature Distillation System for Separating Mixtures of Protium, Deuterium, and Tritium Isotopes

    SciTech Connect

    Embury, Michael, C.; Watkins, Reed A.; Hinckley, Richard; Post, Jr., Arthur H.

    1985-04-30

    A low temperature (24 K) distillation system for separating mixtures of hydrogen isotopes has been designed, fabricated, and delivered for use as the main component of the Hydrogen Isotope Separation System (HISS) at Mound. The HISS will handle feed mixtures of all six isotopic species of hydrogen (H2, HD, HT, D2, DT, T2) and will enrich the tritium while producing a stackable raffinate. Arther D. Little, Inc. (ADL) was the prime contractor for the distillation system. The design and fabrication techniques used for the HISS distillation system are similar to those used for previous stills which were also designed and built by ADL. The distillation system was tested with mixtures of protium and deuterium at the ADL shop. This system, as well as the feed, product, and raffinate handling systems are presently being installed at Mound where integrated testing is scheduled next calendar year.

  7. Establishment of the Center for Advanced Separation Technologies

    SciTech Connect

    Christopher E. Hull

    2006-09-30

    This Final Technical Report covers the eight sub-projects awarded in the first year and the five projects awarded in the second year of Cooperative Agreement DE-FC26-01NT41091: Establishment of the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

  8. ESTABLISHMENT OF THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    SciTech Connect

    Hugh W. Rimmer

    2003-07-01

    Technical Progress Report describes progress made on the eight sub-projects awarded in the first year of Cooperative Agreement DE-FC26-01NT41091: Establishment of the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices. Due to the time taken up by the solicitation/selection process, these cover the initial 6-month period of activity only.

  9. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    SciTech Connect

    Hugh W. Rimmer

    2004-05-12

    This Technical Progress Report describes progress made on the seventeen subprojects awarded in the first year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices. Due to the time taken up by the solicitation/selection process, these cover the initial 6-month period of project activity only. The U.S. is the largest producer of mining products in the world. In 1999, U.S. mining operations produced $66.7 billion worth of raw materials that contributed a total of $533 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Originally set up by Virginia Tech and West Virginia University, this endeavor has been expanded into a seven-university consortium--Virginia Tech, West Virginia University, University of Kentucky, University of Utah, Montana Tech, New Mexico Tech and University of Nevada, Reno--that is supported through U.S. DOE Cooperative Agreement No. DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (1) Solid-solid separation (2) Solid-liquid separation (3) Chemical/Biological Extraction (4) Modeling and Control, and (5) Environmental Control.

  10. Installations for separation of hydrogen isotopes by the method of chemical isotopic exchange in the `water-hydrogen` system

    SciTech Connect

    Andreev, B.M.; Sakharovsky, Y.A.; Rozenkevich, M.B.; Magomedbekov, E.P.; Park, Y.S.; Uborskiy, V.V.; Trenin, V.D.; Alekseev, I.A.; Fedorchenko, O.A.; Karpov, S.P.; Konoplev, K.A.

    1995-10-01

    The paper presents the results of more than a year of running a pilot setup for separation of hydrogen isotopes using catalytic isotopic exchange between hydrogen and liquid water. The setup is 5 m high, has the inner diameter of 28 mm, and is equipped with upper and lower reflux devices. The experimental values of HETP vary from 15 cm at T=333 K to 38 cm at T=293 K. The setup is capable of upgrading diluted heavy water with 85-90% deuterium content up to [D{sub 2}O] > 99.95 at.%, yielding daily 4 kg of the product. We also report on the progress in constructing a similar setup for eliminating tritium and an industrial setup, for which the one reported is a prototype. 10 refs., 1 fig., 3 tabs.

  11. Experimental Confirmation of Isotope Fractionation in Thiomolybdates Using Ion Chromatographic Separation and Detection by Multicollector ICPMS.

    PubMed

    Kerl, Carolin F; Lohmayer, Regina; Bura-Nakić, Elvira; Vance, Derek; Planer-Friedrich, Britta

    2017-03-07

    Molybdenum (98)Mo/(95)Mo isotope ratios are a sediment paleo proxy for the redox state of the ancient ocean. Under sulfidic conditions, no fractionation between seawater and sediment should be observed if molybdate (MoO4(2-)) is quantitatively transformed to tetrathiomolybdate (MoS4(2-)) and precipitated. However, quantum mechanical calculations previously suggested that incomplete sulfidation could be associated with substantial fractionation. To experimentally confirm isotope fractionation in thiomolybdates, a new approach for determination of isotope ratios of individual thiomolybdate species was developed that uses chromatography (HPLC-UV) to separate individual thiomolybdates, collecting each peak and analyzing isotope ratios with multicollector inductively coupled plasma mass spectrometry (MC-ICPMS). Using commercially available MoO4(2-) and MoS4(2-) standards, the method was evaluated and excellent reproducibility and accuracy were obtained. For species with longer retention times, complete chromatographic peaks had to be collected to avoid isotope fractionation within peaks. Isotope fractionation during formation of thiomolybdates could be experimentally proven for the first time in the reaction of MoO4(2-) with 20-fold or 50-fold excess of sulfide. The previously calculated isotope fractionation for MoS4(2-) was confirmed, and the result for MoO2S2(2-) was in the predicted range. Isotopic fractionation during MoS4(2-) transformation with pressurized air was dominated by kinetic fractionation. Further optimization and online-coupling of the HPLC-MC-ICPMS approach for determination of low concentrations in natural samples will greatly help to obtain more accurate species-selective isotope information.

  12. The effect of small scale variablity in isotopic composition of precipitation on hydrograph separation results

    NASA Astrophysics Data System (ADS)

    Fischer, Benjamin; van Meerveld, Ilja; Seibert, Jan

    2016-04-01

    Understanding runoff processes is important for predictions of streamflow quantity and quality. The two-component isotope hydrograph separation (IHS) method is a valuable tool to study how catchments transform rainfall into runoff. IHS allows the stormflow hydrograph to be separated into rainfall (event water) and water that was stored in the catchment before the event (pre-event water). To be able to perform an IHS, water samples of baseflow (pre-event water) and stormflow are collected at the stream outlet. Rainfall is usually collected at one location by hand as an event total or sampled sequentially during the event. It is usually assumed that the spatial variability in rainfall and the isotopic composition of rainfall are negligible for small (<10km2) catchments. However, different studies have shown that precipitation can vary within short distances. Subsequently it remains unclear how the spatio-temproal variability of rainfall and the stable isotope composition of rainfall affect the results of an IHS. In this study, we investigated the effects of the spatio-temporal variability in the isotopic composition of rainfall across a small headwater catchment in Switzerland. Rainfall was measured at eight locations and three streams (catchment area of 0.15, 0.23, and 0.7 km2). The isotopic composition of rainfall and streamflow were sampled for 10 different rain events (P: 5 mm intervals, Q: 12 to 51 samples per events). This dataset was used to perform a two-component isotope hydrograph separation. The results show that for some events the spatial variability in total rainfall, mean and maximum rainfall intensity and stable isotope composition of rainfall was high. There was no relation between the stable isotope composition of rainfall and the rainfall sum, rainfall intensity or altitude. The spatial variability of the isotopic composition of rainfall was for 4 out of the 10 events as large as the temporal variability in the isotopic composition. Different

  13. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    SciTech Connect

    Christopher E. Hull

    2005-01-20

    The U.S. is the largest producer of mining products in the world. In 2003, U.S. mining operations produced $57 billion worth of raw materials that contributed a total of $564 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (1) Solid-solid separation; (2) Solid-liquid separation; (3) Chemical/Biological Extraction; (4) Modeling and Control; and (5) Environmental Control.

  14. Separation of copper, iron, and zinc from complex aqueous solutions for isotopic measurement

    USGS Publications Warehouse

    Borrok, D.M.; Wanty, R.B.; Ridley, W.I.; Wolf, R.; Lamothe, P.J.; Adams, M.

    2007-01-01

    The measurement of Cu, Fe, and Zn isotopes in natural samples may provide valuable information about biogeochemical processes in the environment. However, the widespread application of stable Cu, Fe, and Zn isotope chemistry to natural water systems remains limited by our ability to efficiently separate these trace elements from the greater concentrations of matrix elements. In this study, we present a new method for the isolation of Cu, Fe, and Zn from complex aqueous solutions using a single anion-exchange column with hydrochloric acid media. Using this method we are able to quantitatively separate Cu, Fe, and Zn from each other and from matrix elements in a single column elution. Elution of the elements of interest, as well as all other elements, through the anion-exchange column is a function of the speciation of each element in the various concentrations of HCl. We highlight the column chemistry by comparing our observations with published studies that have investigated the speciation of Cu, Fe, and Zn in chloride solutions. The functionality of the column procedure was tested by measuring Cu, Fe, and Zn isotopes in a variety of stream water samples impacted by acid mine drainage. The accuracy and precision of Zn isotopic measurements was tested by doping Zn-free stream water with the Zn isotopic standard. The reproducibility of the entire column separation process and the overall precision of the isotopic measurements were also evaluated. The isotopic results demonstrate that the Cu, Fe, and Zn column separates from the tested stream waters are of sufficient purity to be analyzed directly using a multicollector inductively coupled plasma mass spectrometer (MC-ICP-MS), and that the measurements are fully-reproducible, accurate, and precise. Although limited in scope, these isotopic measurements reveal significant variations in ??65Cu (- 1.41 to + 0.30???), ??56Fe (- 0.56 to + 0.34???), and ??66Zn (0.31 to 0.49???) among samples collected from different

  15. 10 CFR Appendix N to Part 110 - Illustrative List of Lithium Isotope Separation Facilities, Plants and Equipment Under NRC's...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., Plants and Equipment Under NRC's Export Licensing Authority N Appendix N to Part 110 Energy NUCLEAR... Appendix N to Part 110—Illustrative List of Lithium Isotope Separation Facilities, Plants and Equipment Under NRC's Export Licensing Authority a. Facilities or plants for the separation of lithium isotopes....

  16. 10 CFR Appendix N to Part 110 - Illustrative List of Lithium Isotope Separation Facilities, Plants and Equipment Under NRC's...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., Plants and Equipment Under NRC's Export Licensing Authority N Appendix N to Part 110 Energy NUCLEAR... Appendix N to Part 110—Illustrative List of Lithium Isotope Separation Facilities, Plants and Equipment Under NRC's Export Licensing Authority a. Facilities or plants for the separation of lithium isotopes....

  17. 10 CFR Appendix N to Part 110 - Illustrative List of Lithium Isotope Separation Facilities, Plants and Equipment Under NRC's...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., Plants and Equipment Under NRC's Export Licensing Authority N Appendix N to Part 110 Energy NUCLEAR... Appendix N to Part 110—Illustrative List of Lithium Isotope Separation Facilities, Plants and Equipment Under NRC's Export Licensing Authority a. Facilities or plants for the separation of lithium isotopes....

  18. CO2-laser isotope separation of tritium with pentafluoroethane-T (C2TF5)

    NASA Astrophysics Data System (ADS)

    Makide, Y.; Kato, S.; Tominaga, T.; Takeuchi, K.

    1982-08-01

    Isotope separation of tritium by CO2 laser-induced multiphoton dissociation (MPD) of C2TF5 is reported for the first time. The MPD spectrum obtained for C2TF5 comprised a broad peak at about 940 cm-1 where C2HF5 was nearly transparent. The unimolecular dissociation of C2TF5 was induced with much lower laser fluence than that for CTF3, another working molecule we proposed for laser isotope separation of tritium. The mechanisms and kinetics of the dissociation of C2TF5 and C2HF5 were investigated under various experimental conditions: laser frequency, pulse energy, pulse duration, tritium concentration, sample pressure, buffer gas pressure and irradiation geometry. Single-step separation factors exceeding 500 were achieved with the most efficient P(20) line in 00o 10o0 transition at 944.2 cm-1.

  19. Ion exchange separation of chromium from natural water matrix for stable isotope mass spectrometric analysis

    USGS Publications Warehouse

    Ball, J.W.; Bassett, R.L.

    2000-01-01

    A method has been developed for separating the Cr dissolved in natural water from matrix elements and determination of its stable isotope ratios using solid-source thermal-ionization mass spectrometry (TIMS). The separation method takes advantage of the existence of the oxidized form of Cr as an oxyanion to separate it from interfering cations using anion-exchange chromatography, and of the reduced form of Cr as a positively charged ion to separate it from interfering anions such as sulfate. Subsequent processing of the separated sample eliminates residual organic material for application to a solid source filament. Ratios for 53Cr/52Cr for National Institute of Standards and Technology Standard Reference Material 979 can be measured using the silica gel-boric acid technique with a filament-to-filament standard deviation in the mean 53Cr/52Cr ratio for 50 replicates of 0.00005 or less. (C) 2000 Elsevier Science B.V. All rights reserved.

  20. Crosscutting Technology Development at the Center for Advanced Separation Technologies

    SciTech Connect

    Christopher Hull

    2009-10-31

    The U.S. is the largest producer of mining products in the world. In 2003, U.S. mining operations produced $57 billion worth of raw materials that contributed a total of $564 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Originally set up by Virginia Tech and West Virginia University, this endeavor has been expanded into a seven-university consortium -- Virginia Tech, West Virginia University, University of Kentucky, University of Utah, Montana Tech, New Mexico Tech and University of Nevada, Reno - that is supported through U.S. DOE Cooperative Agreement No. DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (1) Solid-solid separation; (2) Solid-liquid separation; (3) Chemical/biological extraction; (4) Modeling and control; and (5) Environmental control. Distribution of funds is handled via competitive solicitation of research proposals through Site Coordinators at the seven member universities. These were first reviewed and ranked by a group of technical reviewers (selected primarily from industry). Based on these reviews, and an assessment of overall program requirements, the CAST Technical Committee made an initial selection/ranking of proposals and forwarded these to the DOE/NETL Project Officer for final review and approval. The successful projects are listed by category, along with brief abstracts of their aims and objectives.

  1. Advancing the Theory of Nuclear Reactions with Rare Isotopes: From the Laboratory to the Cosmos

    SciTech Connect

    Elster, Charlotte

    2015-06-01

    The mission of the TORUS Topical Collaboration is to develop new methods that will advance nuclear reaction theory for unstable isotopes by using three-body techniques to improve direct-reaction calculations, and, by using a new partial-fusion theory, to integrate descriptions of direct and compound-nucleus reactions. Ohio University concentrates its efforts on the first part of the mission. Since direct measurements are often not feasible, indirect methods, e.g. (d,p) reactions, should be used. Those (d,p) reactions may be viewed as three-body reactions and described with Faddeev techniques. Faddeev equations in momentum space have a long tradition of utilizing separable interactions in order to arrive at sets of coupled integral equations in one variable. While there exist several separable representations for the nucleon-nucleon interaction, the optical potential between a neutron (proton) and a nucleus is not readily available in separable form. For this reason we first embarked in introducing a separable representation for complex phenomenological optical potentials of Woods-Saxon type.

  2. Aspects regarding at 13C isotope separation column control using Petri nets system

    NASA Astrophysics Data System (ADS)

    Boca, M. L.; Ciortea, M. E.

    2015-11-01

    This paper is intended to show that Petri nets can be also applicable in the chemical industry. It used linear programming, modeling underlying Petri nets, especially discrete event systems for isotopic separation, the purpose of considering and control events in real-time through graphical representations. In this paper it is simulate the control of 13C Isotope Separation column using Petri nets. The major problem with 13C comes from the difficulty of obtaining it and raising its natural fraction. Carbon isotopes can be obtained using many methods, one of them being the cryogenic distillation of carbon monoxide. Some few aspects regarding operating conditions and the construction of such cryogenic plants are known today, and even less information are available as far as the separation process modeling and control are concerned. In fact, the efficient control of the carbon monoxide distillation process represents a necessity for large-scale 13C production. Referring to a classic distillation process, some models for carbon isotope separation have been proposed, some based on mass, component and energy balance equations, some on the nonlinear wave theory or the Cohen equations. For modeling the system it was used Petri nets because in this case it is deal with discrete event systems. In use of the non-timed and with auxiliary times Petri model, the transport stream was divided into sections and these sections will be analyzed successively. Because of the complexity of the system and the large amount of calculations required it was not possible to analyze the system as a unitary whole. A first attempt to model the system as a unitary whole led to the blocking of the model during simulation, because of the large processing times.

  3. Hydrogen isotope systematics of phase separation in submarine hydrothermal systems: Experimental calibration and theoretical models

    USGS Publications Warehouse

    Berndt, M.E.; Seal, R.R.; Shanks, Wayne C.; Seyfried, W.E.

    1996-01-01

    Hydrogen isotope fractionation factors were measured for coexisting brines and vapors formed by phase separation of NaCl/H2O fluids at temperatures ranging from 399-450??C and pressures from 277-397 bars. It was found that brines are depleted in D compared to coexisting vapors at all conditions studied. The magnitude of hydrogen isotope fractionation is dependent on the relative amounts of Cl in the two phases and can be empirically correlated to pressure using the following relationship: 1000 ln ??(vap-brine) = 2.54(??0.83) + 2.87(??0.69) x log (??P), where ??(vap-brine) is the fractionation factor and ??P is a pressure term representing distance from the critical curve in the NaCl/H2O system. The effect of phase separation on hydrogen isotope distribution in subseafloor hydrothermal systems depends on a number of factors, including whether phase separation is induced by heating at depth or by decompression of hydrothermal fluids ascending to the seafloor. Phase separation in most subseafloor systems appears to be a simple process driven by heating of seawater to conditions within the two-phase region, followed by segregation and entrainment of brine or vapor into a seawater dominated system. Resulting vent fluids exhibit large ranges in Cl concentration with no measurable effect on ??D. Possible exceptions to this include hydrothermal fluids venting at Axial and 9??N on the East Pacific Rise. High ??D values of low Cl fluids venting at Axial are consistent with phase separation taking place at relatively shallow levels in the oceanic crust while negative ??D values in some low Cl fluids venting at 9??N suggest involvement of a magmatic fluid component or phase separation of D-depleted brines derived during previous hydrothermal activity.

  4. Separation of calcium-48 isotope by crown ether chromatography using ethanol/hydrochloric acid mixed solvent.

    PubMed

    Okumura, Shin; Umehara, Saori; Fujii, Yasuhiko; Nomura, Masao; Kaneshiki, Toshitaka; Ozawa, Masaki; Kishimoto, Tadafumi

    2015-10-09

    Benzo-18-crown-6 ether resin embedded in porous silica beads was synthesized and used as the packing material for chromatographic separation of (48)Ca isotope. The aim of the present work is to develop efficient isotope enrichment process for double β decay nuclide (48)Ca. To this end, ethanol/HCl mixed solvent was selected as the medium for the chromatographic separation. Adsorption of calcium on the resin was studied at different HCl concentrations and different ethanol mixing ratios in batch-wise experiments. A very interesting phenomenon was observed; Ca adsorption is controlled not by the overall HCl concentration of the mixed solvent, but by the initial concentration of added HCl solution. Calcium break-through chromatography experiments were conducted by using 75v/v% ethanol/25v/v% 8M HCl mixed solvent at different flow rates. The isotope separation coefficient between (48)Ca and (40)Ca was determined as 3.8×10(-3), which is larger than that of pure HCl solution system. Discussion is extended to the chromatographic HETP, height equivalent to a theoretical plate.

  5. A Mass Spectrometry Study of Isotope Separation in the Laser Plume

    NASA Astrophysics Data System (ADS)

    Suen, Timothy Wu

    Accurate quantification of isotope ratios is critical for both preventing the development of illicit weapons programs in nuclear safeguards and identifying the source of smuggled material in nuclear forensics. While isotope analysis has traditionally been performed by mass spectrometry, the need for in situ measurements has prompted the development of optical techniques, such as laser-induced breakdown spectroscopy (LIBS) and laser ablation molecular isotopic spectrometry (LAMIS). These optical measurements rely on laser ablation for direct solid sampling, but several past studies have suggested that the distribution of isotopes in the ablation plume is not uniform. This study seeks to characterize isotope separation in the laser plume through the use of orthogonal-acceleration time-of-flight mass spectrometry. A silver foil was ablated with a Nd:YAG at 355 nm at an energy of 50 muJ with a spot size of 71 mum, for a fluence of 1.3 J/cm2 and an irradiance of 250 MW/cm2. Flat-plate repellers were used to sample the plume, and a temporal profile of the ions was obtained by varying the time delay on the high-voltage pulse. A spatial profile along the axis of the plume was generated by changing the position of the sample, which yielded snapshots of the isotopic composition with time. In addition, the reflectron time-of-flight system was used as an energy filter in conjunction with the repellers to sample slices of the laser plasma orthogonal to the plume axis. Mass spectrometry of the plume revealed a fast ion distribution and a slow ion distribution. Measurements taken across the entire plume showed the fast 109Ag ions slightly ahead in both space and time, causing the 107Ag fraction to drop to 0.34 at 3 mus, 4 mm from the sample surface. Although measurements centered on the near side of the plume did not show isotope separation, the slow ions on the far side of the plume included much more 109Ag than 107Ag. In addition to examining the isotope content of the ablation

  6. Preparative separation of underivatized amino acids for compound-specific stable isotope analysis and radiocarbon dating of hydrolyzed bone collagen.

    PubMed

    Tripp, Jennifer A; McCullagh, James S O; Hedges, Robert E M

    2006-01-01

    Analysis of stable and radioactive isotopes from bone collagen provides useful information to archaeologists about the origin and age of bone artifacts. Isolation and analysis of single amino acids from the proteins can provide additional and more accurate information by removing contamination and separating a bulk isotope signal into its constituent parts. In this paper, we report a new method for the separation and isolation of underivatized amino acids from bone collagen, and their analysis by isotope ratio MS and accelerator MS. RP chromatography is used to separate the amino acids with nonpolar side chains, followed by an ion pair separation to isolate the remaining amino acids. The method produces single amino acids with little or no contamination from the separation process and allows for the measurement of accurate stable isotope ratios and pure samples for radiocarbon dating.

  7. DEMONSTRATION OF THE NEXT-GENERATION TCAP HYDROGEN ISOTOPE SEPARATION PROCESS

    SciTech Connect

    Heung, L; Henry Sessions, H; Steve Xiao, S; Heather Mentzer, H

    2009-01-09

    The first generation of TCAP hydrogen isotope separation process has been in service for tritium separation at the Savannah River Site since 1994. To prepare for replacement, a next-generation TCAP process has been developed. This new process simplifies the column design and reduces the equipment requirements of the thermal cycling system. An experimental twelve-meter column was fabricated and installed in the laboratory to demonstrate its performance. This new design and its initial test results were presented at the 8th International Conference on Tritium Science and Technology and published in the proceedings. We have since completed the startup and demonstration the separation of protium and deuterium in the experimental unit. The unit has been operated for more than 200 cycles. A feed of 25% deuterium in protium was separated into two streams each better than 99.7% purity.

  8. Stormflow-hydrograph separation based on isotopes: the thrill is gone--what's next?

    USGS Publications Warehouse

    Burns, Douglas A.

    2002-01-01

    Beginning in the 1970s, the promise of a new method for separatingstormflow hydrographs using18O,2H, and3Hprovedanirresistibletemptation, and was a vast improvement over graphical separationand solute tracer methods that were prevalent at the time. Eventu-ally, hydrologists realized that this new method entailed a plethoraof assumptions about temporal and spatial homogeneity of isotopiccomposition (many of which were commonly violated). Nevertheless,hydrologists forged ahead with dozens of isotope-based hydrograph-separation studies that were published in the 1970s and 1980s.Hortonian overland flow was presumed dead. By the late 1980s,the new isotope-based hydrograph separation technique had movedinto adolescence, accompanied by typical adolescent problems suchas confusion and a search for identity. As experienced hydrologistscontinued to use the isotope technique to study stormflow hydrol-ogy in forested catchments in humid climates, their younger peersfollowed obligingly—again and again. Was Hortonian overland flowreally dead and forgotten, though? What about catchments in whichpeople live and work? And what about catchments in dry climatesand the tropics? How useful were study results when several of theassumptions about the homogeneity of source waters were commonlyviolated? What if two components could not explain the variation ofisotopic composition measured in the stream during stormflow? Andwhat about uncertainty? As with many new tools, once the initialshine wore off, the limitations of the method became a concern—oneof which was that isotope-based hydrograph separations alone couldnot reveal much about the flow paths by which water arrives at astream channel during storms.

  9. Separation Of Uranium And Plutonium Isotopes For Measurement By Multi Collector Inductively Coupled Plasma Mass Spectroscopy

    SciTech Connect

    Martinelli, R E; Hamilton, T F; Williams, R W; Kehl, S R

    2009-03-29

    Uranium (U) and plutonium (Pu) isotopes in coral soils, contaminated by nuclear weapons testing in the northern Marshall Islands, were isolated by ion-exchange chromatography and analyzed by mass spectrometry. The soil samples were spiked with {sup 233}U and {sup 242}Pu tracers, dissolved in minerals acids, and U and Pu isotopes isolated and purified on commercially available ion-exchange columns. The ion-exchange technique employed a TEVA{reg_sign} column coupled to a UTEVA{reg_sign} column. U and Pu isotope fractions were then further isolated using separate elution schemes, and the purified fractions containing U and Pu isotopes analyzed sequentially using multi-collector inductively coupled plasma mass spectrometer (MCICP-MS). High precision measurements of {sup 234}U/{sup 235}U, {sup 238}U/{sup 235}U, {sup 236}U/{sup 235}U, and {sup 240}Pu/{sup 239}Pu in soil samples were attained using the described methodology and instrumentation, and provide a basis for conducting more detailed assessments of the behavior and transfer of uranium and plutonium in the environment.

  10. Isotopic determinations of rhenium and osmium in meteorites by using fusion, distillation and ion-exchange separations

    USGS Publications Warehouse

    Morgan, J.W.; Walker, R.J.

    1989-01-01

    A stable isotope-dilution method using resonance ionization mass spectrometry is suitable for the determination of rhenium and osmium abundances and osmium isotopic composition in carbonaceous chondrites and iron meteorites. The chemical procedure involves sodium peroxide fusion, followed by distillation of osmium from sulfuric acid/hydrogen peroxide and subsequent anion-exchange separation of rhenium from the same solution. ?? 1989.

  11. Modelling aspects regarding the control in 13C isotope separation column

    NASA Astrophysics Data System (ADS)

    Boca, M. L.

    2016-08-01

    Carbon represents the fourth most abundant chemical element in the world, having two stable and one radioactive isotope. The 13Carbon isotopes, with a natural abundance of 1.1%, plays an important role in numerous applications, such as the study of human metabolism changes, molecular structure studies, non-invasive respiratory tests, Alzheimer tests, air pollution and global warming effects on plants [9] A manufacturing control system manages the internal logistics in a production system and determines the routings of product instances, the assignment of workers and components, the starting of the processes on not-yet-finished product instances. Manufacturing control does not control the manufacturing processes themselves, but has to cope with the consequences of the processing results (e.g. the routing of products to a repair station). In this research it was fulfilled some UML (Unified Modelling Language) diagrams for modelling the C13 Isotope Separation column, implement in STARUML program. Being a critical process and needing a good control and supervising, the critical parameters in the column, temperature and pressure was control using some PLC (Programmable logic controller) and it was made some graphic analyze for this to observe some critical situation than can affect the separation process. The main parameters that need to be control are: -The liquid nitrogen (N2) level in the condenser. -The electrical power supplied to the boiler. -The vacuum pressure.

  12. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    SciTech Connect

    Hugh W. Rimmer

    2003-11-15

    The U.S. is the largest producer of mining products in the world. In 1999, U.S. mining operations produced $66.7 billion worth of raw materials that contributed a total of $533 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (a) Solid-solid separation (b) Solid-liquid separation (c) Chemical/Biological Extraction (d) Modeling and Control, and (e) Environmental Control. Distribution of funds is being handled via competitive solicitation of research proposals through Site Coordinators at the seven member universities. The first of these solicitations, referred to as the CAST II-Round 1 RFP, was issued on October 28, 2002. Thirty-eight proposals were received by the December 10, 2002 deadline for this RFP-eleven (11) Solid-Solid Separation, seven (7) Solid-Liquid Separation, ten (10) Chemical/Biological Extraction, six (6) Modeling & Control and four (4) Environmental Control. These were first reviewed and ranked by a group of technical reviewers (selected primarily from industry). Based on these reviews, and an assessment of overall program requirements, the CAST Technical Committee made an initial selection/ranking of proposals and forwarded these to the DOE/NETL Project Officer for final review and approval. This process took some 7 months to complete but 17 projects (one joint) were in place at the constituent universities (three at Virginia Tech, two at West Virginia University, three at University of Kentucky

  13. Photon Scattering from the Stable Even-Mass Mo Isotopes Below the Neutron-Separation Energy

    NASA Astrophysics Data System (ADS)

    Rusev, G.; Hutcheson, A.; Kwan, E.; Tonchev, A. P.; Tornow, W.; Angell, C.; Hammond, S.; Karwowski, H. J.; Kelley, J. H.; Schwengner, R.; Dönau, F.; Wagner, A.

    2008-10-01

    We present results from photon-scattering experiments on the stable even-mass molybdenum isotopes below the neutron-separation energy carried out with bremsstrahlung at the superconducting electron accelerator ELBE at the Research Center Dresden-Rossendorf in Germany, and with monoenergetic photon beams at the HIγS facility at TUNL. We applied statistical methods in order to correct for the branching and cascade transitions and to determine the photoabsorption cross section. The obtained results allowed us to extend the tail of the Giant Dipole Resonance below the (,) threshold down to 4 MeV. The photoabsorption cross sections deduced from the present experiments show that the dipole strength increases with the neutron number of the Mo isotopes. The experimental results are discussed in the frame of Quasiparticle-Random-Phase-Approximation in a deformed basis which describe the increasing strength as a result of the deformation.

  14. Extraction, separation, and intramolecular carbon isotope characterization of athabasca oil sands acids in environmental samples.

    PubMed

    Ahad, Jason M E; Pakdel, Hooshang; Savard, Martine M; Simard, Marie-Christine; Smirnoff, Anna

    2012-12-04

    Here we report a novel approach to extract, isolate, and characterize high molecular weight organic acids found in the Athabasca oil sands region using preparative capillary gas chromatography (PCGC) followed by thermal conversion/elemental analysis-isotope ratio mass spectrometry (TC/EA-IRMS). A number of different "naphthenic acids" surrogate standards were analyzed as were samples from the bitumen-rich unprocessed McMurray Formation, oil sands process water, groundwater from monitoring wells, and surface water from the Athabasca River. The intramolecular carbon isotope signature generated by online pyrolysis (δ(13)C(pyr)) showed little variation (±0.6‰) within any given sample across a large range of mass fractions separated by PCGC. Oil sand, tailings ponds, and deep McMurray Formation groundwater were significantly heavier (up to ∼9‰) compared to surface water and shallow groundwater samples, demonstrating the potential use of this technique in source apportionment studies.

  15. Highly effective hydrogen isotope separation in nanoporous metal-organic frameworks with open metal sites: direct measurement and theoretical analysis.

    PubMed

    Oh, Hyunchul; Savchenko, Ievgeniia; Mavrandonakis, Andreas; Heine, Thomas; Hirscher, Michael

    2014-01-28

    Separating gaseous mixtures that consist of very similar size is one of the critical issues in modern separation technology. Especially, the separation of the isotopes hydrogen and deuterium requires special efforts, even though these isotopes show a very large mass ratio. Conventionally, H/D separation can be realized through cryogenic distillation of the molecular species or the Girdler-sulfide process, which are among the most energy-intensive separation techniques in the chemical industry. However, costs can be significantly reduced by using highly mass-selective nanoporous sorbents. Here, we describe a hydrogen isotope separation strategy exploiting the strongly attractive open metal sites present in nanoporous metal-organic frameworks of the CPO-27 family (also referred to as MOF-74). A theoretical analysis predicts an outstanding hydrogen isotopologue separation at open metal sites due to isotopal effects, which has been directly observed through cryogenic thermal desorption spectroscopy. For H2/D2 separation of an equimolar mixture at 60 K, the selectivity of 12 is the highest value ever measured, and this methodology shows extremely high separation efficiencies even above 77 K. Our theoretical results imply also a high selectivity for HD/H2 separation at similar temperatures, and together with catalytically active sites, we propose a mechanism to produce D2 from HD/H2 mixtures with natural or enriched deuterium content.

  16. Nitrogen Isotopes in Olivine Separates from Volcanic Arcs, Hot Spots and Continental Mantle Xenoliths

    NASA Astrophysics Data System (ADS)

    Fischer, T. P.; Takahata, N.; Sano, Y.; Hilton, D. R.

    2004-12-01

    We report the first nitrogen isotopic data of olivine separates from volcanic arcs (Cerro Negro, Nicaragua; Izalco, El Salvador; Turrialba, Costa Rica; Ichinomegata, Japan). In addition, we report nitrogen isotopic data of olivine separates from ocean islands (Hawaii, Reunion, Iceland) and continental mantle xenoliths (San Carlos, Arizona). Samples were processed by crushing and analyzed using a modified noble gas mass spectrometer (VG3400). N concentrations range from 0.6 to 22 micro ccSTP/g olivine. The 15N/14N ratios (expressed in the δ 15N notation where δ 15N sample = {[(15N/14N)sample/(15N/14N)Air]-1} X 1000) of olivine separates are distinctly different from air (0.0‰ ) and range from lower than mean MORB (- 5 ‰ ) to values characteristic of (subducted) oceanic sediments (+ 7 ‰ ). Positive δ 15N values are found in olivines from volcanic arcs: Cerro Negro 1992 ash (+ 6.2 ± 1.6‰ ), Izalco lava flow (+ 5.1 ± 0.7‰ ), Ichinomengata spinel lherzolite (+ 1.1 ± 0.5 ‰ ) with the exception of Turrialba lava (- 1.7 ± 2.5‰ ). Olivines from hot spots have both positive and negative δ 15N signatures: Iceland, Theistareykir - northern rift zone (- 8± 1.6 ‰ ), Hawaii, dunite from 1801 Kaupulehu flow of Hualuai volcano (+ 3.1 ± 0.3 ‰ ) and Reunion dunite (+ 0.2 ± 0.5‰ ). The San Carlos mantle xenolith has a value of - 1.5 ± 2.5‰ . 40Ar/36Ar ratios of the samples as determined in this study or reported in the literature are significantly higher than air (295.5) in olivines from Ichinomegata, San Carlos, Iceland, Reunion and Hawaii. The olivines from Cerro Negro have a 40Ar/36Ar ratio of 306, close to that of air. The 3He/4He ratios of the samples are higher than the MORB value of 8.0 RA (RA is the 3He/4He of air), the exception being Cerro Negro (6.1 RA). Hawaii, Reunion and Iceland have 3He/4He of 10.3, 12.9 and 12.3 RA, respectively. δ 15N signatures of fumarole gas samples collected at Cerro Negro (+ 4.9 ±0.1 ‰ ), Turrialba (- 1.0 ±0

  17. RAPID SEPARATION METHOD FOR 237NP AND PU ISOTOPES IN LARGE SOIL SAMPLES

    SciTech Connect

    Maxwell, S.; Culligan, B.; Noyes, G.

    2010-07-26

    A new rapid method for the determination of {sup 237}Np and Pu isotopes in soil and sediment samples has been developed at the Savannah River Site Environmental Lab (Aiken, SC, USA) that can be used for large soil samples. The new soil method utilizes an acid leaching method, iron/titanium hydroxide precipitation, a lanthanum fluoride soil matrix removal step, and a rapid column separation process with TEVA Resin. The large soil matrix is removed easily and rapidly using this two simple precipitations with high chemical recoveries and effective removal of interferences. Vacuum box technology and rapid flow rates are used to reduce analytical time.

  18. Advanced membrane separation technology for biosolvents. Final CRADA report.

    SciTech Connect

    Snyder, S. W.; Energy Systems

    2010-02-08

    Argonne and Vertec Biosolvents investigated the stability and perfonnance for a number of membrane systems to drive the 'direct process' for pervaporation-assisted esterification to produce lactate esters. As outlined in Figure 1, the target is to produce ammonium lactate by fennentation. After purification and concentration, ammonium lactate is reacted with ethanol to produce the ester. Esterification is a reversible reaction so to drive the reaction forward, the produced ammonia and water must be rapidly separated from the product. The project focused on selecting pervaporation membranes with (1) acid functionality to facilitate ammonia separation and (2) temperature stability to be able to perform that reaction at as high a temperature as possible (Figure 2). Several classes of commercial membrane materials and functionalized membrane materials were surveyed. The most promising materials were evaluated for scale-up to a pre-commercial application. Over 4 million metric tons per year of solvents are consumed in the U.S. for a wide variety of applications. Worldwide the usage exceeds 10 million metric tons per year. Many of these, such as the chlorinated solvents, are environmentally unfriendly; others, such as the ethylene glycol ethers and N Methyl Pyrrolidone (NMP), are toxic or teratogenic, and many other petroleum-derived solvents are coming under increasing regulatory restrictions. High performance, environmentally friendly solvents derived from renewable biological resources have the potential to replace many of the chlorinated and petrochemical derived solvents. Some of these solvents, such as ethyl lactate; d-limonene, soy methyl esters, and blends ofthese, can give excellent price/perfonnance in addition to the environmental and regulatory compliance benefits. Advancement of membrane technologies, particularly those based on pervaporation and electrodialysis, will lead to very efficient, non-waste producing, and economical manufacturing technologies for

  19. Laser enhanced microwave plasma isotope separation. Final report, September 30, 1992--September 29, 1995

    SciTech Connect

    Brake, M.L.; Gilgenbach, R.M.

    1996-06-01

    The experimental research was to focus on laser excitation of a low abundance isotope and then ionize and separate the isotope of low abundance using a microwave/ECR discharge at 2.45 GHz. A small compact electron cyclotron resonance ion source, which uses permanent magnets, was constructed during this project. The dye laser was purchased and later an excimer laser had to also be purchased because it turned out that the dye laser could not be pumped by our copper laser. It was intended that the dye laser be tuned to a wavelength of 670.8 nm, which would excite {sup 6}Li which would then be preferentially ionized by the ECR source and collected with a charged grid. The degree of enrichment was to be determined using thermal ionization mass spectrometry. The final objective of this project was to assess the feasibility of this system to large-scale production of stable isotopes. However the funding of this project was interrupted and we were not able to achieve all of our goals.

  20. Analogy between mission critical detection in distributed systems and 13C isotope separation column

    NASA Astrophysics Data System (ADS)

    Boca, Maria L.; Secara, Mihai

    2015-02-01

    Carbon represents the fourth most abundant chemical element in the world, having two stable and one radioactive isotope. The 13 Carbon isotopes, with a natural abundance of 1.1%, plays an important role in numerous applications, such as the study of human metabolism changes, molecular structure studies, non-invasive respiratory tests, Alzheimer tests, air pollution and global warming effects on plants [2]. Distributed systems are increasingly being applied in critical real-time applications and their complexity forces programmers to use design methods which guarantee correctness and increase the maintainability of the products. Objectoriented methodologies are widely used to cope with complexity in any kind of system, but most of them lack a formal foundation to allow the analysis and verification of designs, which is one of the main requirements for dealing with concurrent and reactive systems. This research is intended to make an analogy between two tips of industrial processes, one 13C Isotope Separation Column and other one distributed systems. We try to highlight detection of "mission critical "situations for this two processes and show with one is more critical and needs deeply supervisyon [1], [3].

  1. Rapid U separation and its precise isotopic measurements using ICP-QMS

    NASA Astrophysics Data System (ADS)

    Douville, E.; Salle, E.; Gourgiotis, A.; Ayrault, S.; Frank, N.

    2007-12-01

    Here we present a largely simplified analytical separation technique for U from marin carbonates and sediments and U isotopic measurements obtained by inductively coupled plasma-source quadrupole mass spectrometer (ICP-QMS) Xseries II - Thermo Scientific. The separation of U is done from dissolved carbonates and sediments using a single ion exchange column packed with ~500 μg of UTEVA resin from EICHROM industries. The column is pre-cleaned and loaded by several rinses of MilliQ water and 3N HNO3. Then earth alkali, transition metals and lanthanides are eluted quantitatively using 3N HNO3. Pure Th and U solutions are then successively extracted from the column using 3N HCl and 1N HCl at ~100% yield. U solutions at ~25-50 ppb were injected into the ICP-QMS at conventional sample flow rates of approximately 1ml/minute, without particular injection systems such as a desolvator or μ - nebuliser. 30 scans with 180 sweeps and a dwell time of 50 ms per isotope were used to collect 233U, 234U, 235U and 236U on an electron multiplier. Baseline sensitivity was followed on mass 228 with <1cps at ~ 1000cps on mass 234. Then, mass discrimination was corrected using the 233U/236U spike of known isotopic ratio and HU1 reference solutions were used to test the reproducibility and to correct drifts using standard - sample bracketing. Overall ICPMS analyses yield a stunning reproducibility of <0.4 % at 2 σ, which is close to the one obtained by conventional TIMS instruments ~0.2-0.4 %. We have applied this technique to organic rich sediments and marine carbonate samples previously measured by TIMS and found a perfect agreement for both U concentration and its isotopic composition. This rapid and effective chemical purification and isotopic measurement of U allows to process more than 20 samples a day allowing to investigate large numbers of natural samples for weathering, tracer and geochronological studies.

  2. Methods for the separation of rhenium, osmium and molybdenum applicable to isotope geochemistry

    USGS Publications Warehouse

    Morgan, J.W.; Golightly, D.W.; Dorrzapf, A.F.

    1991-01-01

    Effective methods are described for the chemical separation of rhenium, osmium and molybdenum. The methods are based on distillation and anion-exchange chromatography, and have been the basis for rhenium-osmium isotope studies of ore deposits and meteorites. Successful anion-exchange separation of osmium requires both recognition and careful control of the osmium species in solution; thus, distillation of osmium tetroxide from a mixture of sulfuric acid and hydrogen peroxide is preferred to anion-exchange. Distribution coefficients measured for perrhenate in sulfuric acid media are sufficiently high (Kd > 500) for rhenium to be directly loaded onto an ion-exchange column from a distillation residue and subsequently eluted with nitric acid. Polymerization of molybdenum species during elution is prevented by use of a solution that is 1M in hydrochloric acid and 1M in sodium chloride. ?? 1991.

  3. Recent great impact by an Isotope Separator On-Line (ISOL) in nuclear and radiochemistry.

    PubMed

    Sakama, Minoru

    2016-01-01

    On April 9 2015, the Letter article titled "Measurement of the first ionization potential of lawrencium, element 103" is now published at News and Views on Nature (2015) which has been performed by our remarkably Japanese colleagues of nuclear and radiochemistry at JAEA (Japan Atomic Energy Agency). In this review, the author will state that the isotope separator on-line (ISOL) our regularly used, one of mass separation techniques, with a thermal surface ionization makes possible for determining the ionization potential of lawrencium based on the fruitful fundations of developing the ISOL system until now and also ever studying searches for unknown nuclei and these nuclear decay properties around actinide region in the past 20 years.

  4. Stable hydrogen isotopic analysis of nanomolar molecular hydrogen by automatic multi-step gas chromatographic separation.

    PubMed

    Komatsu, Daisuke D; Tsunogai, Urumu; Kamimura, Kanae; Konno, Uta; Ishimura, Toyoho; Nakagawa, Fumiko

    2011-11-15

    We have developed a new automated analytical system that employs a continuous flow isotope ratio mass spectrometer to determine the stable hydrogen isotopic composition (δD) of nanomolar quantities of molecular hydrogen (H(2)) in an air sample. This method improves previous methods to attain simpler and lower-cost analyses, especially by avoiding the use of expensive or special devices, such as a Toepler pump, a cryogenic refrigerator, and a special evacuation system to keep the temperature of a coolant under reduced pressure. Instead, the system allows H(2) purification from the air matrix via automatic multi-step gas chromatographic separation using the coolants of both liquid nitrogen (77 K) and liquid nitrogen + ethanol (158 K) under 1 atm pressure. The analytical precision of the δD determination using the developed method was better than 4‰ for >5 nmol injections (250 mL STP for 500 ppbv air sample) and better than 15‰ for 1 nmol injections, regardless of the δD value, within 1 h for one sample analysis. Using the developed system, the δD values of H(2) can be quantified for atmospheric samples as well as samples of representative sources and sinks including those containing small quantities of H(2) , such as H(2) in soil pores or aqueous environments, for which there is currently little δD data available. As an example of such trace H(2) analyses, we report here the isotope fractionations during H(2) uptake by soils in a static chamber. The δD values of H(2) in these H(2)-depleted environments can be useful in constraining the budgets of atmospheric H(2) by applying an isotope mass balance model.

  5. Isotopic separation of He-3/He-4 from solar wind gases evolved from the lunar regolith

    NASA Astrophysics Data System (ADS)

    Wilkes, William R.; Wittenberg, Layton J.

    The potential benefits of He-3 when utilized in a nuclear fusion reactor to provide clean, safe electricity in the 21st century for the world's inhabitants has been documented. Unfortunately, He is scarce on earth. Large quantities of He-3, perhaps a million tons, are embedded in the lunar regolith, presumably implanted by the solar wind together with other elements, notably He-4, H, C, and N. Several studies have suggested processing the lunar regolith and recovering these valuable solar wind gases. Once released, these gases can be separated for use. The separation of helium isotopes is described in this paper. He-3 constitutes only 400 at. ppm of lunar He, too dilute to separate economically by distillation alone. A 'superfluid' separator is being considered to preconcentrate the He-3. The superfluid separator consists of a porous filter in a tube maintained at a temperature of 2.17 K or less. Although the He-4, which is superfluid below 2.17 K, flows readily through the filter, the He is blocked by the filter, and becomes enriched at the feed end. He can be enriched to about 10 percent in such a system. The enriched product from the superfluid separation serves as a feed to a distillation apparatus operating at a pressure of 9 kPa, with a boiler temperature of 2.4 K, and a condenser temperature of 1.6 K. Under constant flow conditions, a 99.9 percent enriched He product can be produced in this apparatus. The heat rejection load of the refrigeration equipment necessary to cool the separation operations would be conducted during the lunar nights.

  6. Advances and problems in plasma-optical mass-separation

    SciTech Connect

    Bardakov, V. M.; Ivanov, S. D.; Strokin, N. A.

    2014-03-15

    This paper presents a short review of plasma-optical mass-separation and defines the fields for its possible application. During theoretical studies, numerical simulations, and experiments, the effect of the azimuthator finite size and of the vacuum conditions on the mass separator characteristics was revealed, as well as the quality of different-mass ion separation. The problems, solving which may lead to a successful end of the mass-separation plasma-optical technique implementation, were specified.

  7. Comparison of methods for separating small quantities of hydrogen isotopes from an inert gas

    SciTech Connect

    Willms, R.S.; Tuggle, D.; Birdsell, S.; Parkinson, J.; Price, B.; Lohmeir, D.

    1998-03-01

    It is frequent within tritium processing systems that a small amount of hydrogen isotopes (Q{sub 2}) must be separated from an inert gas such as He, Ar and N{sub 2}. Thus, a study of presently available technologies for effecting such a separation was performed. A base case and seven technology alternatives were identified and a simple design of each was prepared. These technologies included oxidation-adsorption-metal bed reduction, oxidation-adsorption-palladium membrane reactor, cryogenic adsorption, cryogenic trapping, cryogenic distillation, hollow fiber membranes, gettering and permeators. It was found that all but the last two methods were unattractive for recovering Q{sub 2} from N{sub 2}. Reasons for technology rejection included (1) the method unnecessarily turns the hydrogen isotopes into water, resulting in a cumbersome and more hazardous operation, (2) the method would not work without further processing, and (3) while the method would work, it would only do so in an impractical way. On the other hand, getters and permeators were found to be attractive methods for this application. Both of these methods would perform the separation in a straightforward, essentially zero-waste, single step operation. The only drawback for permeators was that limited low-partial Q{sub 2} pressure data is available. The drawbacks for getters are their susceptibility to irreversible and exothermic reaction with common species such as oxygen and water, and the lack of long-term operation of such beds. More research is envisioned for both of these methods to mature these attractive technologies.

  8. Breakthrough curve analysis of pressure swing adsorption for hydrogen isotope separation

    SciTech Connect

    Kotoh, K.; Tanaka, M.; Sakamoto, T.; Nakamura, Y.; Asakura, Y.; Uda, T.; Sugiyama, T.

    2008-07-15

    For the purpose of developing an effective system for hydrogen isotope separation, we have been studying the adsorption-desorption dynamic behavior of hydrogen and deuterium in a packed-bed column with synthetic zeolites, aimed at applying the pressure swing adsorption process. The adsorption behavior of molecules in the packed-bed is reflected in the breakthrough curves. To understand the characteristic behaviors of hydrogen isotopes in the packed-bed, we carried out breakthrough experiments in a conventional adsorption process and in a practical process following sequential processes alternating between adsorption and desorption. From the former experiments, the results were obtained that the overall mass transfer was influenced by longitudinal dispersion relating to the superficial velocity and that the process governing the mass transfer within adsorbents was diffusion in the macro-pores of pellets. In the latter experiments, unique profile breakthrough curves were observed. These curves can be described with the numerical simulation assuming the initial distributions in a packed-bed. (authors)

  9. New triple oxygen isotope data of bulk and separated fractions from SNC meteorites: Evidence for mantle homogeneity of Mars

    NASA Astrophysics Data System (ADS)

    Ali, Arshad; Jabeen, Iffat; Gregory, David; Verish, Robert; Banerjee, Neil R.

    2016-05-01

    We report precise triple oxygen isotope data of bulk materials and separated fractions of several Shergotty-Nakhla-Chassigny (SNC) meteorites using enhanced laser-assisted fluorination technique. This study shows that SNCs have remarkably identical Δ17O and a narrow range in δ18O values suggesting that these meteorites have assimilated negligibly small surface materials (<5%), which is undetectable in the oxygen isotope compositions reported here. Also, fractionation factors in coexisting silicate mineral pairs (px-ol and mask-ol) further demonstrate isotopic equilibrium at magmatic temperatures. We present a mass-dependent fractionation line for bulk materials with a slope of 0.526 ± 0.016 (1SE) comparable to the slope obtained in an earlier study (0.526 ± 0.013; Franchi et al. 1999). We also present a new Martian fractionation line for SNCs constructed from separated fractions (i.e., pyroxene, olivine, and maskelynite) with a slope of 0.532 ± 0.009 (1SE). The identical fractionation lines run above and parallel to our terrestrial fractionation line with Δ17O = 0.318 ± 0.016‰ (SD) for bulk materials and 0.316 ± 0.009‰ (SD) for separated fractions. The conformity in slopes and Δ17O between bulk materials and separated fractions confirm oxygen isotope homogeneity in the Martian mantle though recent studies suggest that the Martian lithosphere may potentially have multiple oxygen isotope reservoirs.

  10. Glacier advance during Marine Isotope Stage 11 in the McMurdo Dry Valleys of Antarctica

    PubMed Central

    Swanger, Kate M.; Lamp, Jennifer L.; Winckler, Gisela; Schaefer, Joerg M.; Marchant, David R.

    2017-01-01

    We mapped six distinct glacial moraines alongside Stocking Glacier in the McMurdo Dry Valleys, Antarctica. Stocking Glacier is one of several alpine glaciers in the Dry Valleys fringed by multiple cold-based drop moraines. To determine the age of the outermost moraine, we collected 10 boulders of Ferrar Dolerite along the crest of the moraine and analyzed mineral separates of pyroxene for cosmogenic 3He. On the basis of these measurements, the exposure age for the outermost moraine is 391 ± 35 ka. This represents the first documented advance of alpine glacier ice in the Dry Valleys during Marine Isotope Stage (MIS) 11. At this time, Stocking Glacier was ~20–30% larger than today. The cause of ice expansion is uncertain, but most likely it is related to increased atmospheric temperature and precipitation, associated with reduced ice extent in the nearby Ross Embayment. The data suggest complex local environmental response to warm climates in Antarctica and have implications for glacial response to Holocene warming. The study also demonstrates the potential for using alpine glacier chronologies in the Transantarctic Mountains as proxies for retreat of grounded glacier ice in the Ross Embayment. PMID:28139676

  11. Glacier advance during Marine Isotope Stage 11 in the McMurdo Dry Valleys of Antarctica

    NASA Astrophysics Data System (ADS)

    Swanger, Kate M.; Lamp, Jennifer L.; Winckler, Gisela; Schaefer, Joerg M.; Marchant, David R.

    2017-01-01

    We mapped six distinct glacial moraines alongside Stocking Glacier in the McMurdo Dry Valleys, Antarctica. Stocking Glacier is one of several alpine glaciers in the Dry Valleys fringed by multiple cold-based drop moraines. To determine the age of the outermost moraine, we collected 10 boulders of Ferrar Dolerite along the crest of the moraine and analyzed mineral separates of pyroxene for cosmogenic 3He. On the basis of these measurements, the exposure age for the outermost moraine is 391 ± 35 ka. This represents the first documented advance of alpine glacier ice in the Dry Valleys during Marine Isotope Stage (MIS) 11. At this time, Stocking Glacier was ~20–30% larger than today. The cause of ice expansion is uncertain, but most likely it is related to increased atmospheric temperature and precipitation, associated with reduced ice extent in the nearby Ross Embayment. The data suggest complex local environmental response to warm climates in Antarctica and have implications for glacial response to Holocene warming. The study also demonstrates the potential for using alpine glacier chronologies in the Transantarctic Mountains as proxies for retreat of grounded glacier ice in the Ross Embayment.

  12. Glacier advance during Marine Isotope Stage 11 in the McMurdo Dry Valleys of Antarctica.

    PubMed

    Swanger, Kate M; Lamp, Jennifer L; Winckler, Gisela; Schaefer, Joerg M; Marchant, David R

    2017-01-31

    We mapped six distinct glacial moraines alongside Stocking Glacier in the McMurdo Dry Valleys, Antarctica. Stocking Glacier is one of several alpine glaciers in the Dry Valleys fringed by multiple cold-based drop moraines. To determine the age of the outermost moraine, we collected 10 boulders of Ferrar Dolerite along the crest of the moraine and analyzed mineral separates of pyroxene for cosmogenic (3)He. On the basis of these measurements, the exposure age for the outermost moraine is 391 ± 35 ka. This represents the first documented advance of alpine glacier ice in the Dry Valleys during Marine Isotope Stage (MIS) 11. At this time, Stocking Glacier was ~20-30% larger than today. The cause of ice expansion is uncertain, but most likely it is related to increased atmospheric temperature and precipitation, associated with reduced ice extent in the nearby Ross Embayment. The data suggest complex local environmental response to warm climates in Antarctica and have implications for glacial response to Holocene warming. The study also demonstrates the potential for using alpine glacier chronologies in the Transantarctic Mountains as proxies for retreat of grounded glacier ice in the Ross Embayment.

  13. Identification of new astatine isotopes using the gas-filled magnetic separator, Sassy

    SciTech Connect

    Yashita, S.

    1983-01-01

    A He-filled on-line separator system was built at the SuperHILAC and used to study the fusion products in the reaction /sup 56/Fe + /sup 141/Pr. The new neutron-deficient isotopes /sup 194/At and /sup 195/At were produced in this bombardment as three- and two-neutron-out products, respectively, and were identified by the ..cap alpha..-..cap alpha.. time-correlation technique. The measured ..cap alpha.. energies and half lives are 7.20 +/- 0.02 MeV and 180 +/- 80 msec for /sup 194/At, and 7.12 +/- 0.02 MeV and 200 +/- 100 msec for /sup 195/At.

  14. Identification of new astatine isotopes using the gas-filled magnetic separator, SASSY

    SciTech Connect

    Yashita, S.

    1984-02-01

    A He-filled on-line mass separator system was built at the SuperHILAC and used to study the fusion products in the reaction /sup 56/Fe + /sup 141/Pr. The new neutron-deficient isotopes /sup 194/At and /sup 195/At were produced in this bombardment as three- and two- neutron-out products, respectively, and were identified by the ..cap alpha..-..cap alpha.. time-correlation technique. The measured ..cap alpha.. energies and half lives are 7.20 +- 0.02 MeV and 180 +- 80 msec for /sup 194/At, and 7.12 +- 0.02 MeV and 200 +- 100 msec for /sup 195/At. 66 references.

  15. New Half-lives of r-process Zn and Ga Isotopes Measured with Electromagnetic Separation

    SciTech Connect

    Madurga, M; Surman, Rebecca; Borzov, Ivan N; Grzywacz, R.; Rykaczewski, Krzysztof Piotr; Gross, Carl J; Miller, D; Stracener, Daniel W; Batchelder, Jon Charles; Brewer, N.T.; Cartegni, L.; Hamilton, J. H.; Hwang, J. K.; Liu, S. H.; Ilyushkin, S.; Karny, M.; Korgul, A.; Krolas, W.; Kuzniak, A.; Mazzocchi, C.; Mendez, II, Anthony J; Miernik, K.; Padgett, Stephen; Paulauskas, S.; Ramayya, A. V.; Winger, J. A.; Wolinska-Cichocka, Marzena; Zganjar, E. F.

    2012-01-01

    The {beta} decays of neutron-rich nuclei near the doubly magic {sup 78}Ni were studied at the Holifield Radioactive Ion Beam Facility using an electromagnetic isobar separator. The half-lives of {sup 82}Zn (228 {+-} 10 ms), {sup 83}Zn (117 {+-} 20 ms), and {sup 85}Ga (93 {+-} 7 ms) were determined for the first time. These half-lives were found to be very different from the predictions of the global model used in astrophysical simulations. A new calculation was developed using the density functional model, which properly reproduced the new experimental values. The robustness of the new model in the {sup 78}Ni region allowed us to extrapolate data for more neutron-rich isotopes. The revised analysis of the rapid neutron capture process in low entropy environments with our new set of measured and calculated half-lives shows a significant redistribution of predicted isobaric abundances strengthening the yield of A > 140 nuclei.

  16. RADIATION STABILITY OF NAFION MEMBRANES USED FOR ISOTOPE SEPARATION BY PROTON EXCHANGE MEMBRANE ELECTROLYSIS

    SciTech Connect

    Fox, E

    2009-05-15

    Proton Exchange Membrane Electrolyzers have potential interest for use for hydrogen isotope separation from water. In order for PEME to be fully utilized, more information is needed on the stability of Nafion when exposed to radiation. This work examines Nafion 117 under varying exposure conditions, including dose rate, total dosage and atmospheric condition. Analytical tools, such as FT-IR, ion exchange capacity, DMA and TIC-TOC were used to characterize the exposed membranes. Analysis of the water from saturated membranes can provide important data on the stability of the membranes during radiation exposure. It was found that the dose rate of exposure plays an important role in membrane degradation. Potential mechanisms for membrane degradation include peroxide formation by free radicals.

  17. Advances in high frequency ultrasound separation of particulates from biomass.

    PubMed

    Juliano, Pablo; Augustin, Mary Ann; Xu, Xin-Qing; Mawson, Raymond; Knoerzer, Kai

    2017-03-01

    In recent years the use of high frequency ultrasound standing waves (megasonics) for droplet or cell separation from biomass has emerged beyond the microfluidics scale into the litre to industrial scale applications. The principle for this separation technology relies on the differential positioning of individual droplets or particles across an ultrasonic standing wave field within the reactor and subsequent biomass material predisposition for separation via rapid droplet agglomeration or coalescence into larger entities. Large scale transducers have been characterised with sonochemiluminescence and hydrophones to enable better reactor designs. High frequency enhanced separation technology has been demonstrated at industrial scale for oil recovery in the palm oil industry and at litre scale to assist olive oil, coconut oil and milk fat separation. Other applications include algal cell dewatering and milk fat globule fractionation. Frequency selection depends on the material properties and structure in the biomass mixture. Higher frequencies (1 and 2MHz) have proven preferable for better separation of materials with smaller sized droplets such as milk fat globules. For palm oil and olive oil, separation has been demonstrated within the 400-600kHz region, which has high radical production, without detectable impact on product quality.

  18. Separating the Minor Actinides Through Advances in Selective Coordination Chemistry

    SciTech Connect

    Lumetta, Gregg J.; Braley, Jenifer C.; Sinkov, Sergey I.; Carter, Jennifer C.

    2012-08-22

    This report describes work conducted at the Pacific Northwest National Laboratory (PNNL) in Fiscal Year (FY) 2012 under the auspices of the Sigma Team for Minor Actinide Separation, funded by the U.S. Department of Energy Office of Nuclear Energy. Researchers at PNNL and Argonne National Laboratory (ANL) are investigating a simplified solvent extraction system for providing a single-step process to separate the minor actinide elements from acidic high-level liquid waste (HLW), including separating the minor actinides from the lanthanide fission products.

  19. Carbon isotope separation and molecular formation in laser-induced plasmas by laser ablation molecular isotopic spectrometry.

    PubMed

    Dong, Meirong; Mao, Xianglei; Gonzalez, Jhanis J; Lu, Jidong; Russo, Richard E

    2013-03-05

    Laser ablation molecular isotopic spectrometry (LAMIS) recently was reported for rapid isotopic analysis by measuring molecular emission from laser-induced plasmas at atmospheric pressure. This research utilized the LAMIS approach to study C2 molecular formation from laser ablation of carbon isotopic samples in a neon gas environment at 0.1 MPa. The isotopic shift for the Swan system of the C2 Δν = 1 band was chosen for carbon isotope analysis. Temporal and spatial resolved measurements of (12)C2, (12)C(13)C, and (13)C2 show that C2 forms from recombination reactions in the plasma. A theoretical simulation was used to determine the temperature from the molecular bands and to extract the isotopic ratio of (12)C/(13)C derived from (12)C2, (12)C(13)C, and (13)C2. Our data show that the ratio of (12)C/(13)C varies with time after the laser pulse and with distance above the sample. (12)C/(13)C deviates from the nominal ratio (2:1) at early times and closest to the sample surface. These measurements provide understanding of the chemical processes in the laser plasma and analytical improvement using LAMIS.

  20. Advanced Palladium Membrane Scale-up for Hydrogen Separation

    SciTech Connect

    Emerson, Sean; Magdefrau, Neal; She, Ying; Thibaud-Erkey, Catherine

    2012-10-31

    The main objective of this project was to construct, test, and demonstrate a Pd-Cu metallic tubular membrane micro-channel separator capable of producing 2 lb day{sup -1} H{sub 2} at 95% recovery when operating downstream of an actual coal gasifier. A key milestone for the project was to complete a pilot-scale gasifier test by 1 September 2011 and demonstrate the separation of 2 lb day{sup -1} H{sub 2} to verify progress toward the DOE's goals prior to down-selection for larger-scale (100 lb day{sup -1}) hydrogen separator development. Three different pilot-scale (1.5 ft{sup 2}) separators were evaluated downstream of coal gasifiers during four different tests and the key project milestone was achieved in August 2011, ahead of schedule. During three of those tests, all of the separators demonstrated or exceeded the targeted separation rate of 2 lb day{sup -1} H{sub 2}. The separator design was proved to be leak tight and durable in the presence of gasifier exhaust contaminants at temperatures and pressures up to 500 °C and 500 psia. The contaminants in the coal gasifier syngas for the most part had negligible impact on separator performance, with H{sub 2} partial pressure being the greatest determinant of membrane performance. Carbon monoxide and low levels of H{sub 2}S (<39 ppmv) had no effect on H{sub 2} permeability, in agreement with laboratory experiments. However, higher levels of H{sub 2}S (>100 ppmv) were shown to significantly reduce H{sub 2} separation performance. The presence of trace metals, including mercury and arsenic, appeared to have no effect based on the experimental data. Subscale Pd-Cu coupon tests further quantified the impact of H{sub 2}S on irreversible sulfide formation in the UTRC separators. Conditions that have a thermodynamic driving force to form coke were found to reduce the performance of the separators, presumably by blockage of effective separation area with carbon deposits. However, it was demonstrated that both in situ and ex

  1. Isotopic separation of snowmelt runoff during an artificial rain-on-snow event

    NASA Astrophysics Data System (ADS)

    Juras, Roman; Pavlasek, Jirka; Šanda, Martin; Jankovec, Jakub; Linda, Miloslav

    2013-04-01

    Rain-on-snow events are common phenomenon in the climate conditions of central Europe, mainly during the spring snowmelt period. These events can cause serious floods in areas with seasonal snow. The snowpack hit by rain is able to store a fraction of rain water, but runoff caused by additional snowmelt also increases. Assessment of the rainwater ratio contributing to the outflow from the snowpack is therefore critical for discharge modelling. A rainfall simulator and water enriched by deuterium were used for the study of rainwater behaviour during an artificial rain-on-snow event. An area of 1 m2 of the snow sample, which was 1.2 m deep, consisting of ripped coarse-grained snow, was sprayed during the experiment with deuterium enriched water. The outflow from the snowpack was measured and samples of outflow water were collected. The isotopic content of deuterium was further analyzed from these samples by means of laser spectroscopy for the purpose of hydrograph separation. The concentration of deuterium in snow before and after the experiment was also investigated. The deuterium enriched water above the natural concentration of deuterium in snowpack was detected in the outflow in 7th minute from start of spraying, but the significant increase of deuterium concentration in outflow was observed in 19th minute. The isotopic hydrograph separation estimated, that deuterium enriched rainwater became the major part (> 50% volumetric) of the outflow in 28th minute. The culmination of the outflow (1.23 l min-1) as well as deuterium enriched rainwater fraction (63.5%) in it occurred in 63th minute, i.e. right after the end of spraying. In total, 72.7 l of deuterium enriched water was sprayed on the snowpack in 62 minutes. Total volume of outflow (after 12.3 hours) water was 97.4 l, which contained 48.3 l of deuterium enriched water (i.e. 49.6 %) and 49.1 l (50.4 %) of the melted snowpack. The volume of 24.4 l of deuterium enriched spray-water was stored in the snowpack. The

  2. Advanced Nanostructured Molecular Sieves for Energy Efficient Industrial Separations

    SciTech Connect

    Kunhao Li, Michael Beaver

    2012-01-18

    Due to the very small relative volatility difference between propane and propylene, current propane/propylene separation by distillation requires very tall distillation towers (150-250 theoretical plates) and large reflux ratios (up to 15), which is considered to be the most energy consuming large-scale separation process. Adsorptive separation processes are widely considered to be more energy-efficient alternatives to distillation. However, slow diffusion kinetics/mass transport rate through the adsorbent bed often limits the performance of such processes, so further improvements are possible if intra-particle mass transfer rates can be improved. Rive Technology, Inc. is developing and commercializing its proprietary mesoporous zeolite technology for catalysis and separation. With well-controlled intracrystalline mesoporosity, diffusion kinetics through such mesoporous zeolite based catalysts is much improved relative to conventional zeolites, leading to significantly better product selectivity. This 'proof-of-principle' project (DE-EE0003470) is intended to demonstrate that Rive mesoporous zeolite technology can be extended and applied in adsorptive propane/propylene separation and lead to significant energy saving compared to the current distillation process. In this project, the mesoporous zeolite Y synthesis technology was successfully extended to X and A zeolites that are more relevant to adsorbent applications. Mesoporosity was introduced to zeolite X and A for the first time while maintaining adequate adsorption capacity. Zeolite adsorbents were tested for liquid phase separation performance using a pulse flow test unit and the test results show that the separation selectivity of the mesoporous zeolite adsorbent is much closer to optimal for a Simulated Moving Bed (SMB) separation process and the enhanced mesoporosity lead to >100% increase of overall mass transport rate for propane and propylene. These improvements will significantly improve the

  3. Spatial variability in the isotopic composition of rainfall in a small headwater catchment and its effect on hydrograph separation

    NASA Astrophysics Data System (ADS)

    Fischer, Benjamin M. C.; van Meerveld, H. J. (Ilja); Seibert, Jan

    2017-04-01

    Isotope hydrograph separation (IHS) is a valuable tool to study runoff generation processes. To perform an IHS, samples of baseflow (pre-event water) and streamflow are taken at the catchment outlet. For rainfall (event water) either a bulk sample is collected or it is sampled sequentially during the event. For small headwater catchment studies, event water samples are usually taken at only one sampling location in or near the catchment because the spatial variability in the isotopic composition of rainfall is assumed to be small. However, few studies have tested this assumption. In this study, we investigated the spatiotemporal variability in the isotopic composition of rainfall and its effects on IHS results using detailed measurements from a small pre-alpine headwater catchment in Switzerland. Rainfall was sampled sequentially at eight locations across the 4.3 km2 Zwäckentobel catchment and stream water was collected in three subcatchments (0.15, 0.23, and 0.70 km2) during ten events. The spatial variability in rainfall amount, average and maximum rainfall intensity and the isotopic composition of rainfall was different for each event. There was no significant relation between the isotopic composition of rainfall and total rainfall amount, rainfall intensity or elevation. For eight of the ten studied events the temporal variability in the isotopic composition of rainfall was larger than the spatial variability in the rainfall isotopic composition. The isotope hydrograph separation results, using only one rain sampler, varied considerably depending on which rain sampler was used to represent the isotopic composition of event water. The calculated minimum pre-event water contributions differed up to 60%. The differences were particularly large for events with a large spatial variability in the isotopic composition of rainfall and a small difference between the event and pre-event water isotopic composition. Our results demonstrate that even in small catchments

  4. A modified lead-matrix separation procedure shown for lead isotope analysis in Trojan silver artefacts as an example.

    PubMed

    Vogl, Jochen; Paz, Boaz; Koenig, Maren; Pritzkow, Wolfgang

    2013-03-01

    A modified Pb-matrix separation procedure using NH4HCO3 solution as eluent has been developed and validated for determination of Pb isotope amount ratios by thermal ionization mass spectrometry. The procedure is based on chromatographic separation using the Pb·Spec resin and an in-house-prepared NH4HCO3 solution serving as eluent. The advantages of this eluent are low Pb blanks (<40 pg mL(-1)) and the property that NH4HCO3 can be easily removed by use of a heating step (>60 °C). Pb recovery is >95 % for water samples. For archaeological silver samples, however, the Pb recovery is reduced to approximately 50 %, but causes no bias in the determination of Pb isotope amount ratios. The validated procedure was used to determine lead isotope amount ratios in Trojan silver artefacts with expanded uncertainties (k = 2) <0.09 %.

  5. Advances in Instrumentation for Quantification of Isotopic Nitrous Oxide from ppb levels to 100%

    NASA Astrophysics Data System (ADS)

    Dong, F.; Gupta, M.; Leen, J.; Provencal, R. A.; Owano, T. G.; Baer, D. S.

    2013-12-01

    The isotopic composition of trace gases provides information of their origin and fate that cannot be determined from their concentration measurements alone. Biological source and loss processes, like bacterial production of nitrous oxide, are typically accompanied by isotopic selectivity associated with the kinetics of bond formation and destruction. Of the three important biologically mediated greenhouse gases (CO2, CH4 and N2O), the understanding of nitrous oxide isotopic budget in air lags behind the other two gases primarily due to the relatively low concentration of N2O in ambient air (~320 ppb). Furthermore, the origin of nitrates in rivers, lakes, ocean and other water supplies may be determined from analyses of isotopic nitrous oxide produced via chemical reduction or biological conversion. These processes can produce nitrous oxide at levels considerably greater than those present in ambient air. To date, analyses of isotopic nitrous oxide requires either pre-concentration of samples containing low concentrations or dilution of samples with high concentrations. We report significant advances of instrumentation for real-time measurements of site-specific isotopic nitrogen (δ15Nα, δ15Nβ, δ15N, δ18O) and mixing ratio [N2O] of nitrous oxide over a very wide range of mole fractions in air. Specifically, LGR's Isotopic N2O Analyzer can report site-specific isotopic nitrogen and isotopic oxygen continuously in flows ranging from 0.2 to over 20 ppm (parts per million) nitrous oxide in air (with preconcentration or dilution). Furthermore, for samples of limited volume, a batch technique may be used for similar isotopic measurements in discrete samples containing 0.2 ppm to 100% nitrous oxide (e.g., sample volumes from bacterial digestion can be as little as 1-10 mL). This novel technology, which employs cavity enhanced absorption spectroscopy (Off-Axis ICOS) and a mid-infrared laser (4.56 microns) and does not require any cryogenic components, has been

  6. Advanced Sorbents as a Versatile Platform for Gas Separation

    SciTech Connect

    Neil Stephenson

    2003-09-30

    The program objective was to develop materials and processes for industrial gas separations to reduce energy use and enable waste reduction. The approach chosen combined novel oxygen selective adsorbents and pressure swing adsorption (PSA) processes. Preliminary materials development and process simulation results indicated that oxygen selective adsorbents could provide a versatile platform for industrial gas separations. If fully successful, this new technology offered the potential for reducing the cost of producing nitrogen/oxygen co-products, high purity nitrogen, argon, and possibly oxygen. The potential energy savings for the gas separations are appreciable, but the end users are the main beneficiaries. Lowering the cost of industrial gases expands their use in applications that can employ them for reducing energy consumption and emissions.

  7. Preliminary results from a microvolume, dynamically heated analytical column for preconcentration and separation of simple gases prior to stable isotopic analysis

    NASA Astrophysics Data System (ADS)

    Panetta, Robert James; Seed, Mike

    2016-04-01

    Stable isotope applications that call for preconcentration (i.e., greenhouse gas measurements, small carbonate samples, etc.) universally call for cryogenic fluids such as liquid nitrogen, dry ice slurries, or expensive external recirculation chillers. This adds significant complexity, first and foremost in the requirements to store and handle such dangerous materials. A second layer of complexity is the instrument itself - with mechanisms to physically move either coolant around the trap, or move a trap in or out of the coolant. Not to mention design requirements for hardware that can safely isolate the fluid from other sensitive areas. In an effort to simplify the isotopic analysis of gases requiring preconcentration, we have developed a new separation technology, UltiTrapTM (patent pending), which leverage's the proprietary Advanced Purge & Trap (APT) Technology employed in elemental analysers from Elementar Analysensysteme GmbH products. UltiTrapTM has been specially developed as a micro volume, dynamically heated GC separation column. The introduction of solid-state cooling technology enables sub-zero temperatures without cryogenics or refrigerants, eliminates all moving parts, and increases analytical longevity due to no boiling losses of coolant . This new technology makes it possible for the system to be deployed as both a focussing device and as a gas separation device. Initial data on synthetic gas mixtures (CO2/CH4/N2O in air), and real-world applications including long-term room air and a comparison between carbonated waters of different origins show excellent agreement with previous technologies.

  8. Advanced Separators for Lithium-Ion and Lithium-Sulfur Batteries: A Review of Recent Progress.

    PubMed

    Xiang, Yinyu; Li, Junsheng; Lei, Jiaheng; Liu, Dan; Xie, Zhizhong; Qu, Deyu; Li, Ke; Deng, Tengfei; Tang, Haolin

    2016-11-09

    Li-ion and Li-S batteries find enormous applications in different fields, such as electric vehicles and portable electronics. A separator is an indispensable part of the battery design, which functions as a physical barrier for the electrode as well as an electrolyte reservoir for ionic transport. The properties of the separators directly influence the performance of the batteries. Traditional polyolefin separators showed low thermal stability, poor wettability toward the electrolyte, and inadequate barrier properties to polysulfides. To improve the performance and durability of Li-ion and Li-S batteries, development of advanced separators is required. In this review, we summarize recent progress on the fabrication and application of novel separators, including the functionalized polyolefin separator, polymeric separator, and ceramic separator, for Li-ion and Li-S batteries. The characteristics, advantages, and limitations of these separators are discussed. A brief outlook for the future directions of the research in the separators is also provided.

  9. The importance of snowmelt spatiotemporal variability for isotope-based hydrograph separation in a high-elevation catchment

    NASA Astrophysics Data System (ADS)

    Schmieder, Jan; Hanzer, Florian; Marke, Thomas; Garvelmann, Jakob; Warscher, Michael; Kunstmann, Harald; Strasser, Ulrich

    2016-12-01

    Seasonal snow cover is an important temporary water storage in high-elevation regions. Especially in remote areas, the available data are often insufficient to accurately quantify snowmelt contributions to streamflow. The limited knowledge about the spatiotemporal variability of the snowmelt isotopic composition, as well as pronounced spatial variation in snowmelt rates, leads to high uncertainties in applying the isotope-based hydrograph separation method. The stable isotopic signatures of snowmelt water samples collected during two spring 2014 snowmelt events at a north- and a south-facing slope were volume weighted with snowmelt rates derived from a distributed physics-based snow model in order to transfer the measured plot-scale isotopic composition of snowmelt to the catchment scale. The observed δ18O values and modeled snowmelt rates showed distinct inter- and intra-event variations, as well as marked differences between north- and south-facing slopes. Accounting for these differences, two-component isotopic hydrograph separation revealed snowmelt contributions to streamflow of 35 ± 3 and 75 ± 14 % for the early and peak melt season, respectively. These values differed from those determined by formerly used weighting methods (e.g., using observed plot-scale melt rates) or considering either the north- or south-facing slope by up to 5 and 15 %, respectively.

  10. Optimization and comparison of simultaneous and separate acquisition protocols for dual isotope myocardial perfusion SPECT

    NASA Astrophysics Data System (ADS)

    Ghaly, Michael; Links, Jonathan M.; Frey, Eric C.

    2015-07-01

    Dual-isotope simultaneous-acquisition (DISA) rest-stress myocardial perfusion SPECT (MPS) protocols offer a number of advantages over separate acquisition. However, crosstalk contamination due to scatter in the patient and interactions in the collimator degrade image quality. Compensation can reduce the effects of crosstalk, but does not entirely eliminate image degradations. Optimizing acquisition parameters could further reduce the impact of crosstalk. In this paper we investigate the optimization of the rest Tl-201 energy window width and relative injected activities using the ideal observer (IO), a realistic digital phantom population and Monte Carlo (MC) simulated Tc-99m and Tl-201 projections as a means to improve image quality. We compared performance on a perfusion defect detection task for Tl-201 acquisition energy window widths varying from 4 to 40 keV centered at 72 keV for a camera with a 9% energy resolution. We also investigated 7 different relative injected activities, defined as the ratio of Tc-99m and Tl-201 activities, while keeping the total effective dose constant at 13.5 mSv. For each energy window and relative injected activity, we computed the IO test statistics using a Markov chain Monte Carlo (MCMC) method for an ensemble of 1,620 triplets of fixed and reversible defect-present, and defect-absent noisy images modeling realistic background variations. The volume under the 3-class receiver operating characteristic (ROC) surface (VUS) was estimated and served as the figure of merit. For simultaneous acquisition, the IO suggested that relative Tc-to-Tl injected activity ratios of 2.6-5 and acquisition energy window widths of 16-22% were optimal. For separate acquisition, we observed a broad range of optimal relative injected activities from 2.6 to 12.1 and acquisition energy window of widths 16-22%. A negative correlation between Tl-201 injected activity and the width of the Tl-201 energy window was observed in these ranges. The results

  11. Optimization and comparison of simultaneous and separate acquisition protocols for dual isotope myocardial perfusion SPECT

    PubMed Central

    Ghaly, Michael; Links, Jonathan M; Frey, Eric C

    2015-01-01

    Dual-isotope simultaneous-acquisition (DISA) rest-stress myocardial perfusion SPECT (MPS) protocols offer a number of advantages over separate acquisition. However, crosstalk contamination due to scatter in the patient and interactions in the collimator degrade image quality. Compensation can reduce the effects of crosstalk, but does not entirely eliminate image degradations. Optimizing acquisition parameters could further reduce the impact of crosstalk. In this paper we investigate the optimization of the rest Tl-201 energy window width and relative injected activities using the ideal observer (IO), a realistic digital phantom population and Monte Carlo (MC) simulated Tc-99m and Tl-201 projections as a means to improve image quality. We compared performance on a perfusion defect detection task for Tl-201 acquisition energy window widths varying from 4 to 40 keV centered at 72 keV for a camera with a 9% energy resolution. We also investigated 7 different relative injected activities, defined as the ratio of Tc-99m and Tl-201 activities, while keeping the total effective dose constant at 13.5 mSv. For each energy window and relative injected activity, we computed the IO test statistics using a Markov chain Monte Carlo (MCMC) method for an ensemble of 1,620 triplets of fixed and reversible defect-present, and defect-absent noisy images modeling realistic background variations. The volume under the 3-class receiver operating characteristic (ROC) surface (VUS) was estimated and served as the figure of merit. For simultaneous acquisition, the IO suggested that relative Tc-to-Tl injected activity ratios of 2.6–5 and acquisition energy window widths of 16–22% were optimal. For separate acquisition, we observed a broad range of optimal relative injected activities from 2.6 to 12.1 and acquisition energy window of widths 16–22%. A negative correlation between Tl-201 injected activity and the width of the Tl-201 energy window was observed in these ranges. The results

  12. Modified ion exchange separation for tungsten isotopic measurements from kimberlite samples using multi-collector inductively coupled plasma mass spectrometry.

    PubMed

    Sahoo, Yu Vin; Nakai, Shun'ichi; Ali, Arshad

    2006-03-01

    Tungsten isotope composition of a sample of deep-seated rock can record the influence of core-mantle interaction of the parent magma. Samples of kimberlite, which is known as a carrier of diamond, from the deep mantle might exhibit effects of core-mantle interaction. Although tungsten isotope anomaly was reported for kimberlites from South Africa, a subsequent investigation did not verify the anomaly. The magnesium-rich and calcium-rich chemical composition of kimberlite might engender difficulty during chemical separation of tungsten for isotope analyses. This paper presents a simple, one-step anion exchange technique for precise and accurate determination of tungsten isotopes in kimberlites using multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). Large quantities of Ca and Mg in kimberlite samples were precipitated and removed with aqueous H(2)SO(4). Highly pure fractions of tungsten for isotopic measurements were obtained following an anion exchange chromatographic procedure involving mixed acids. That procedure enabled efficient removal of high field strength elements (HFSE), such as Hf, Zr and Ti, which are small ions that carry strong charges and develop intense electrostatic fields. The tungsten yields were 85%-95%. Advantages of this system include less time and less use of reagents. Precise and accurate isotopic measurements are possible using fractions of tungsten that are obtained using this method. The accuracy and precision of these measurements were confirmed using various silicate standard rock samples, JB-2, JB-3 and AGV-1.

  13. Advances in high-throughput and high-efficiency chiral liquid chromatographic separations.

    PubMed

    Patel, Darshan C; Wahab, M Farooq; Armstrong, Daniel W; Breitbach, Zachary S

    2016-10-07

    The need for improved liquid chromatographic chiral separations has led to the advancement of chiral screening techniques as well as the development of new, high efficiency chiral separation methods and stationary phases. This review covers these advancements, which primarily occurred over the last 15 years. High throughput techniques include multi-column screening units, multiple injection sequences, and fast gradient SFC screening. New separation methods and column technologies that aim at high efficiency chiral separations include the use of achiral UHPLC (i.e. sub-2μm) columns for separating derivatized chiral analytes or using chiral additives in the run buffer, UHPLC chiral stationary phases, and superficially porous particle based chiral stationary phases. Finally, the enhancement of chiral separations through these new technologies requires that certain instrumental considerations be made. Future directions in continuing to improve chiral separations are also discussed.

  14. Hydrograph separation using stable isotopes, silica and electrical conductivity: an alpine example

    NASA Astrophysics Data System (ADS)

    Laudon, Hjalmar; Slaymaker, Olav

    1997-12-01

    Hydrograph separation of runoff events in two nested alpine/subalpine basins in the Coast Mountains of British Columbia was carried out using electrical conductivity, specific concentration of silica and the stable isotopes oxygen-18 and deuterium as hydrological tracers. The methods predicted consistent high pre-storm water contribution for the subalpine site (60-90%) but more variable contribution at the alpine basin outlet (25-90%). The pre-storm water contribution is much larger than had previously been expected. Precipitation is believed to run off as overland flow due to the steep slopes in combination with the hydrophobic soils until it can enter the subsurface environment. The rapid influx of stored water is possibly caused by pressure propagation in the macropore system which could be enhanced by the heavily fractured bedrock and permeable landslide debris acting as efficient hydrological conduits. The study suggests that alternative hydrological tracers such as electrical conductivity and silica concentration can be used under certain hydrological and lithological conditions. These alternative tracers should, however, be verified against more conventional tracers before use, as the behaviour depends on specific characteristics of each basin. At the upper basin outlet, both electrical conductivity (EC) and silica underestimated the pre-storm contribution. At the lower station, silica and EC showed a similar pattern to deuterium and oxygen-18 tracers. The calculated pre-storm component using EC was, however, 10-20% lower than the calculated values from the other three tracers. The advantage of using these alternative tracers is that hydrograph separation results can, a priori, be anticipated.

  15. Preparative separation of arsenate from phosphate by IRA-400 (OH) for oxygen isotopic work.

    PubMed

    Tang, Xiaohui; Berner, Zsolt; Khelashvilli, Pirimze; Norra, Stefan

    2013-02-15

    The paper reports about a series of tests carried out to find out the optimal conditions for the preparative separation of arsenate and phosphate from natural waters, using the anion exchange resin Amberlite IRA-400 (OH). Freundlich isotherms have been constructed on basis of data obtained by stirring different amounts of resin (0.05-1.00 g) with solutions containing 1mg/L As and 10mg/L P in form of arsenate and phosphate and the effect of pH and P/As ratio on adsorption was investigated. It was found that at these concentrations 0.5 g of IRA-400 (OH) can adsorb quantitatively arsenate and phosphate within 1h. In a range of 3.6-11.1, pH seems to have no influence on the adsorption behavior of the resin, but at pH 1.5 the adsorption of both arsenate and phosphate drops to values close to zero. Experiments with solutions with P/As ratios in a range between 1 and 30 have shown that the concentration ratios have also little effect on adsorption. An efficient selective desorption of the anions could be achieved with 2 mol/L HNO3 or HCl, but the use of HCl is impracticable if the separation aims at precipitating arsenate for oxygen isotopic work. The reported adsorption/ desorption properties of the resin are supported also by data obtained by investigating the resin particles with a scanning electron microscope equipped with a fluorescence detection device.

  16. Calculations on Isotope Separation by Laser Induced Photodissociation of Polyatomic Molecules. Final Report

    DOE R&D Accomplishments Database

    Lamb, W. E. Jr.

    1978-11-01

    This report describes research on the theory of isotope separation produced by the illumination of polyatomic molecules by intense infrared laser radiation. Newton`s equations of motion were integrated for the atoms of the SF{sub 6} molecule including the laser field interaction. The first year`s work has been largely dedicated to obtaining a suitable interatomic potential valid for arbitrary configurations of the seven particles. This potential gives the correct symmetry of the molecule, the equilibrium configuration, the frequencies of the six distinct normal modes of oscillation and the correct (or assumed) value of the total potential energy of the molecule. Other conditions can easily be imposed in order to obtain a more refined potential energy function, for example, by making allowance for anharmonicity data. A suitable expression was also obtained for the interaction energy between a laser field and the polyatomic molecule. The electromagnetic field is treated classically, and it would be easily possible to treat the cases of time dependent pulses, frequency modulation and noise.

  17. Grouped actinide separation in advanced nuclear fuel cycles

    SciTech Connect

    Glatz, J.P.; Malmbeck, R.; Ougier, M.; Soucek, P.; Murakamin, T.; Tsukada, T.; Koyama, T.

    2013-07-01

    Aiming at cleaner waste streams (containing only the short-lived fission products) a partitioning and transmutation (P-T) scheme can significantly reduce the quantities of long-lived radionuclides consigned to waste. Many issues and options are being discussed and studied at present in view of selecting the optimal route. The choice is between individual treatment of the relevant elements and a grouped treatment of all actinides together. In the European Collaborative Project ACSEPT (Actinide recycling by Separation and Transmutation), grouped separation options derived from an aqueous extraction or from a dry pyroprocessing route were extensively investigated. Successful demonstration tests for both systems have been carried out in the frame of this project. The aqueous process called GANEX (Grouped Actinide Extraction) is composed of 2 cycles, a first one to recover the major part of U followed by a co-extraction of Np, Pu, Am, and Cm altogether. The pyro-reprocessing primarily applicable to metallic fuels such as the U-Pu-Zr alloy originally developed by the Argonne National Laboratory (US) in the mid 1980s, has also been applied to the METAPHIX fuels containing up to 5% of minor actinides and 5% of lanthanides (e.g. U{sub 60}Pu{sub 20}-Zr{sub 10}Am{sub 2}Nd{sub 3.5}Y{sub 0.5}Ce{sub 0.5}Gd{sub 0.5}). A grouped actinide separation has been successfully carried out by electrorefining on solid Al cathodes. At present the recovery of the actinides from the alloy formed with Al upon electrodeposition is under investigation, because an efficient P-T cycle requires multiple re-fabrication and re-irradiation. (authors)

  18. Advanced Scavenge Systems for an Integrated Engine Inlet Particle Separator

    DTIC Science & Technology

    1977-09-01

    INSTRUMENTAT10N............ .oooo.....& 117 TEST RIG FACILITY INSTALLAT ION ..................... 124 TEST PLA.N OUJTLINE. . ... . .. .. .. .. . ... IZ...CDD 40 - 00 COD 0 cc 0a co 0 im 0 00 0-4 < -i 4L B LA SECT ION I (HUB) I1- SECTION 2 2- SECTION 3 3- SECTION 4 4 SECTION 5 5 STACKING POINT L.o in...based on previous particle seoarator experienc*, the difference in separation ef~iciency from 20-percent scavenge to 25 percent scavenge is mall, and

  19. Advanced separation technology for flue gas cleanup. Topical report

    SciTech Connect

    Bhown, A.S.; Alvarado, D.; Pakala, N.; Ventura, S.

    1995-01-01

    The objective of this work is to develop a novel system for regenerable SO{sub 2} and NO{sub x} scrubbing of flue gas that focuses on (1) a novel method for regenerating spent SO{sub 2} scrubbing liquor and (2) novel chemistry for reversible absorption of NO{sub x}. In addition, high efficiency hollow fiber contactors (HFC) are proposed as the devices for scrubbing the SO{sub 2} and NO{sub x} from the flue gas. The system will be designed to remove more than 95% of the SO{sub 2} and more than 75% of the NO{sub x} from flue gases typical of pulverized coal-fired power plants at a cost that is at least 20% less than combined wet limestone scrubbing of SO{sub x} and selective catalytic reduction of NO{sub x}. The process will generate only marketable by-products. Our approach is to reduce the capital cost by using high-efficiency hollow fiber devices for absorbing and desorbing the SO{sub 2} and NO{sub x}. We will also introduce new process chemistry to minimize traditionally well-known problems with SO{sub 2} and NO{sub x} absorption and desorption. Our novel chemistry for scrubbing NO{sub x} will consist of water-soluble phthalocyanine compounds invented by SRI as well as polymeric forms of Fe{sup ++} complexes similar to traditional NO{sub x} scrubbing media. The final novelty of our approach is the arrangement of the absorbers in cassette (stackable) form so that the NO{sub x} absorber can be on top of the SO{sub x} absorber. This arrangement is possible only because of the high efficiency of the hollow fiber scrubbing devices, as indicated by our preliminary laboratory data. This arrangement makes it possible for the SO{sub 2} and NO{sub x} scrubbing chambers to be separate without incurring the large ducting and gas pressure drop costs necessary if a second conventional absorber vessel were used. Because we have separate scrubbers, we will have separate liquor loops and simplify the chemical complexity of simultaneous SO{sub 2}/NO{sub x} scrubbing.

  20. Advances in affinity ligand-functionalized nanomaterials for biomagnetic separation.

    PubMed

    Fields, Conor; Li, Peng; O'Mahony, James J; Lee, Gil U

    2016-01-01

    The downstream processing of proteins remains the most significant cost in protein production, and is largely attributed to rigorous chromatographic purification protocols, where the stringency of purity for biopharmaceutical products sometimes exceeds 99%. With an ever burgeoning biotechnology market, there is a constant demand for alternative purification methodologies, to ameliorate the dependence on chromatography, while still adhering to regulatory concerns over product purity and safety. In this article, we present an up-to-date view of bioseparation, with emphasis on magnetic separation and its potential application in the field. Additionally, we discuss the economic and performance benefits of synthetic ligands, in the form of peptides and miniaturized antibody fragments, compared to full-length antibodies. We propose that adoption of synthetic affinity ligands coupled with magnetic adsorbents, will play an important role in enabling sustainable bioprocessing in the future.

  1. The direct determination of the masses of unstable atoms with the chalk river on-line isotope separator

    NASA Astrophysics Data System (ADS)

    Sharma, K. S.; Schmeing, H.; Evans, H. C.; Hagberg, E.; Hardy, J. C.; Koslowsky, V. T.

    1989-02-01

    A new technique has been developed to measure the spacing of atomic mass doublets of radioactive isotopes directly with an on-line isotope separator. It relies not on ion detection but on observation of the specific radioactive signature of the isotopes under study. Consequently, line shapes and centroids can be determined, free of interference and with great accuracy, even if the corresponding beams strongly overlap or if they are contaminated by unwanted isobars or isomers. In particular, it is of no consequence if one or both members of the doublet are masked by stable background peaks. Doublets are peak matched as in a conventional mass spectrometer. The technique has been evaluated with beams of radioactive nuclides whose masses are known independently. Based on careful calibrations, two new mass values have been obtained: 72Br, 71 936 340 ± 430 μu and 63Ga, 62 939 570 ± 150 μu.

  2. Advanced Extraction Methods for Actinide/Lanthanide Separations

    SciTech Connect

    Scott, M.J.

    2005-12-01

    The separation of An(III) ions from chemically similar Ln(III) ions is perhaps one of the most difficult problems encountered during the processing of nuclear waste. In the 3+ oxidation states, the metal ions have an identical charge and roughly the same ionic radius. They differ strictly in the relative energies of their f- and d-orbitals, and to separate these metal ions, ligands will need to be developed that take advantage of this small but important distinction. The extraction of uranium and plutonium from nitric acid solution can be performed quantitatively by the extraction with the TBP (tributyl phosphate). Commercially, this process has found wide use in the PUREX (plutonium uranium extraction) reprocessing method. The TRUEX (transuranium extraction) process is further used to coextract the trivalent lanthanides and actinides ions from HLLW generated during PUREX extraction. This method uses CMPO [(N, N-diisobutylcarbamoylmethyl) octylphenylphosphineoxide] intermixed with TBP as a synergistic agent. However, the final separation of trivalent actinides from trivalent lanthanides still remains a challenging task. In TRUEX nitric acid solution, the Am(III) ion is coordinated by three CMPO molecules and three nitrate anions. Taking inspiration from this data and previous work with calix[4]arene systems, researchers on this project have developed a C3-symmetric tris-CMPO ligand system using a triphenoxymethane platform as a base. The triphenoxymethane ligand systems have many advantages for the preparation of complex ligand systems. The compounds are very easy to prepare. The steric and solubility properties can be tuned through an extreme range by the inclusion of different alkoxy and alkyl groups such as methyoxy, ethoxy, t-butoxy, methyl, octyl, t-pentyl, or even t-pentyl at the ortho- and para-positions of the aryl rings. The triphenoxymethane ligand system shows promise as an improved extractant for both tetravalent and trivalent actinide recoveries form

  3. Development of Advanced Membranes Technology Platform for Hydrocarbon Separations

    SciTech Connect

    Kalthod, Dr Dilip

    2010-03-01

    Virtually all natural gas is dehydrated during its production, transmission and storage, mostly by absorption processes. Membranes offer many potential advantages over absorption, including smaller footprints, lighter-weight packages, packaging flexibility, minimal electrical power duty, amenability to expansion due to system modularity, reduced maintenance costs, reduced emissions of heavy hydrocarbons, no liquid waste streams, and amenability to unmanned operation. The latter is particularly valuable because new natural gas sources are generally located in remote onshore and offshore sites. Most commercially-available membranes for natural gas upgrading involve high capital costs, high methane loss and performance degradation from operational upsets – all of which are barriers to their widespread adoption by the industry. The original focus of the project was to develop and demonstrate robust, high-performance membranes for natural gas dehydration. The first task completed was a user needs-and-wants study to 1) clarify the expectations of system fabricators and end users of the new separations equipment, and 2) establish the required technical and commercial targets for the membrane products. Following this, membrane system modeling and membrane development in the lab proceeded in parallel. Membrane module diameter and length, as well as and the fiber outer and inner fiber diameter, were optimized from a mathematical model that accounts for the relevant fluid dynamics and permeation phenomena. Module design was evaluated in the context of overall system design, capital costs and energy consumption, including the process scheme (particularly sweep generation), feed pretreatment, system layout, and process control. This study provided targets for membrane permeation coefficients and membrane geometry in a commercial offering that would be competitive with absorption systems. A commercially-available polymer with good tensile strength and chemical resistance was

  4. On-line experimental results of an argon gas cell-based laser ion source (KEK Isotope Separation System)

    NASA Astrophysics Data System (ADS)

    Hirayama, Y.; Watanabe, Y. X.; Imai, N.; Ishiyama, H.; Jeong, S. C.; Jung, H. S.; Miyatake, H.; Oyaizu, M.; Kimura, S.; Mukai, M.; Kim, Y. H.; Sonoda, T.; Wada, M.; Huyse, M.; Kudryavtsev, Yu.; Van Duppen, P.

    2016-06-01

    KEK Isotope Separation System (KISS) has been developed at RIKEN to produce neutron rich isotopes with N = 126 to study the β -decay properties for application to astrophysics. The KISS is an element-selective mass-separation system which consists of an argon gas cell-based on laser ion source for atomic number selection and an ISOL mass-separation system. The argon gas cell of KISS is a key component to stop and collect the unstable nuclei produced in a multi-nucleon transfer reaction, where the isotopes of interest will be selectively ionized using laser resonance ionization. We have performed off- and on-line experiments to study the basic properties of the gas cell as well as of the KISS. We successfully extracted the laser-ionized stable 56Fe (direct implantation of a 56Fe beam into the gas cell) atoms and 198Pt (emitted from the 198Pt target by elastic scattering with a 136Xe beam) atoms from the KISS during the commissioning on-line experiments. We furthermore extracted laser-ionized unstable 199Pt atoms and confirmed that the measured half-life was in good agreement with the reported value.

  5. Practical-scale tests of cryogenic molecular sieve for separating low-concentration hydrogen isotopes from helium

    NASA Astrophysics Data System (ADS)

    Willms, R. S.; Taylor, D. J.; Enoeda, Mikio; Okuno, Kenji

    1994-04-01

    Earlier bench-scale work at the Tritium Systems Test Assembly (TSTA) at Los Alamos National Laboratory examined a number of adsorbents for their suitability for separating low-concentration hydrogen (no tritium) from helium. One of the effective adsorbents was Linde 5A molecular sieve. Recently, experiments including tritium were conducted using practical-scale adsorbers. These tests used existing cryogenic molecular sieve beds (CMSB's) which each contain about 1.6 kg of Linde 5A molecular sieve. They are part of the TSTA integrated tritium processing system. Gas was fed to each CMSB at about 13 SLPM with a nominal composition of 99% He, 0.98% H2, and 0.02% HT. In all cases, for an extended period of time, the beds allowed no detectable (via Raman spectroscopy) hydrogen isotopes to escape in the bed effluent. Thereafter, the hydrogen isotopes appeared in the bed exit with a relatively sharp breakthrough curve. This work concludes that cryogenic molecular sieve adsorption is a practical and effective means of separating low-concentration hydrogen isotopes from a helium carrier.

  6. Battery Separator Characterization and Evaluation Procedures for NASA's Advanced Lithium-Ion Batteries

    NASA Technical Reports Server (NTRS)

    Baldwin, Richard S.; Bennet, William R.; Wong, Eunice K.; Lewton, MaryBeth R.; Harris, Megan K.

    2010-01-01

    To address the future performance and safety requirements for the electrical energy storage technologies that will enhance and enable future NASA manned aerospace missions, advanced rechargeable, lithium-ion battery technology development is being pursued within the scope of the NASA Exploration Technology Development Program s (ETDP's) Energy Storage Project. A critical cell-level component of a lithium-ion battery which significantly impacts both overall electrochemical performance and safety is the porous separator that is sandwiched between the two active cell electrodes. To support the selection of the optimal cell separator material(s) for the advanced battery technology and chemistries under development, laboratory characterization and screening procedures were established to assess and compare separator material-level attributes and associated separator performance characteristics.

  7. Separating the contributions of vegetation and soil to evapotranspiration using stable isotopes

    NASA Astrophysics Data System (ADS)

    Cuntz, Matthias; Dubbert, Maren; Piayda, Arndt; Correia, Alexandra; Silva, Filipe Costa e.; Kolle, Olaf; Maguás, Cristina; Mosena, Alexander; Pereira, João S.; Rebmann, Corinna; Werner, Christiane

    2015-04-01

    Semi-arid ecosystems contribute about 40% to global net primary productivity, although water-availability limits carbon uptake. Precipitation shows periodical summer droughts and evapotranspiration accounts for up to 95% of water loss of the ecosystem. Thus functional understanding of evapotranspiration and the contributions of evaporation and transpiration from over- and understorey vegetation to water cycling in semi-arid regions is key knowledge in forest management under future climate change. Water isotopes trace water through the compartments of an ecosystem from soil and the vegetation to the atmosphere. They are used to partition evapotranspiration ET into its components evaporation E and transpiration T . The method is, however, sensitive to the knowledge of the isotopic composition of water at the evaporating sites. This led to a discussion recently about the dominance of transpiration in water loss from the terrestrial biosphere, and also how methodological problems could bias these results. Here we present observations from a Portuguese cork-oak woodland. It is a bi-layered system of widely spaced cork-oak trees and a herbaceous layer dominated by native annual forbs and grasses. Water fluxes and their isotopic compositions were measured on bare soil and vegetated plots with a transparent through-flow chamber and a water isotope laser. Soil moisture and temperature were measured in several depths and soil samples were taken for soil water isotope analysis. Based on these observations, we review current strategies of ET partitioning. We highlight pitfalls in the presented strategies and show uncertainty analyses for the different approaches. We show that the isotopic composition of evaporation is very sensitive to the sampling strategy but is described well by a steady-state formulation (Dubbert et al., J Hydrolo 2013). The isotopic composition of transpiration, on the other hand, is not in steady state, most of the time (Dubbert et al., New Phytolo 2014

  8. Gas chromatographic separation of hydrogen isotopes on columns packed with alumina, modified alumina and sol-gel alumina.

    PubMed

    Naik, Y P; Gupta, N K; Pillai, K T; Rao, G A Rama; Venugopal, V

    2012-01-06

    The stationary phase of alumina adsorbents, prepared by different chemical processes, was used to study the separation behaviour of hydrogen isotopes. Three types of alumina, obtained by conventional hydroxide route alumina coated with silicon oxide and alumina prepared by internal gelation process (IGP), were used as packing material to study the separation of HT and T(2) in a mixture at various temperatures. The conventional alumina and silicon oxide coated alumina resolved HT and T(2) at 77K temperature with different retention times. The retention times on SiO(2) coated columns were found to be higher than those of other adsorbents. However, the column filled with IGP alumina was found to be ideal for the separation of HT and T(2) at 240 K. The peaks were well resolved in less than 5 min on this column.

  9. Isotopic anomalies of Ne, Xe, and C in meteorites. I - Separation of carriers by density and chemical resistance

    NASA Technical Reports Server (NTRS)

    Ming, Tang; Lewis, Roy S.; Anders, Edward; Grady, M. M.; Wright, I. P.

    1988-01-01

    The carriers of presolar noble gases were studied by isotopically analyzing 19 separates from the Murray and Murchison C2 chondrites for Ne, Xe, C, and N. It is found that the carriers of Ne-E(H) and Xe-S are resistant to HCl, HF, boiling HClO4, and CrO3-H2SO4, and thus must be either diamond or some resistant carbide or oxide. The carrier of Ne-E(L) may be some form of amorphous carbon with delta C13 of about +340 percent. A new carbon component, C theta, found as 0.2-2-micron inclusions in Murchison spinel, is amorphous and contains little or no noble gas. A new heavy nitrogen component is found which has an abundance of about 1 ppm in the bulk meteorite, combusts at 450-500 C, and may be associated wtih isotopically normal carbon or with C-alpha.

  10. Conventional and Advanced Separations in Mass Spectrometry-Based Metabolomics: Methodologies and Applications

    SciTech Connect

    Heyman, Heino M.; Zhang, Xing; Tang, Keqi; Baker, Erin Shammel; Metz, Thomas O.

    2016-02-16

    Metabolomics is the quantitative analysis of all metabolites in a given sample. Due to the chemical complexity of the metabolome, optimal separations are required for comprehensive identification and quantification of sample constituents. This chapter provides an overview of both conventional and advanced separations methods in practice for reducing the complexity of metabolite extracts delivered to the mass spectrometer detector, and covers gas chromatography (GC), liquid chromatography (LC), capillary electrophoresis (CE), supercritical fluid chromatography (SFC) and ion mobility spectrometry (IMS) separation techniques coupled with mass spectrometry (MS) as both uni-dimensional and as multi-dimensional approaches.

  11. Determination of Plutonium Isotope Ratios at Very Low Levels by ICP-MS using On-Line Electrochemically Modulated Separations

    SciTech Connect

    Liezers, Martin; Lehn, Scott A; Olsen, Khris B; Farmer, Orville T; Duckworth, Douglas C

    2009-10-01

    Electrochemically modulated separations (EMS) are shown to be a rapid and selective means of extracting and concentrating Pu from complex solutions prior to isotopic analysis by inductively coupled plasma mass spectrometry (ICP-MS). This separation is performed in a flow injection mode, on-line with the ICP-MS. A three-electrode, flow-by electrochemical cell is used to accumulate Pu at an anodized glassy carbon electrode by redox conversion of Pu(III) to Pu (IV&VI). The entire process takes place in 2% v/v (0.46M) HNO3. No redox chemicals or acid concentration changes are required. Plutonium accumulation and release is redox dependent and controlled by the applied cell potential. Thus large transient volumetric concentration enhancements can be achieved. Based on more negative U(IV) potentials relative to Pu(IV), separation of Pu from uranium is efficient, thereby eliminating uranium hydride interferences. EMS-ICP-MS isotope ratio measurement performance will be presented for femtogram to attogram level plutonium concentrations.

  12. Plasma centrifuge with vacuum arc discharge applied to the separation of stable isotopes

    NASA Astrophysics Data System (ADS)

    Delbosco, Edson

    1989-09-01

    The results of a vacuum-arc plasma centrifuge experiment are described. A plasma centrifuge is an apparatus where a plasma column is produced due to the interaction of an electric current with an externally applied magnetic field, vector J x vector B. Among the applications of a rotating plasma, this work deals particularly with its utilization in an isotope enrichment device. The main characteristics of the plasma produced in this experiment are presented, with special attention to the plasma column rotation and the isotope enrichment. The analysis of the results is performed using a fluid model for a completely ionized rigid body rotating plasma column in steady state equilibrium. The main results are: (1) rotation frequency of the plasma column in the range 2 x (exp 4) to 3 x 10 (exp 5) rad/s; (2) enrichment of 10 to 30 pct for the magnesium isotopes, and 290 to 490 pct for the carbon-13 isotope; (3) rigid body rotation of the plasma column only for radii smaller than the characteristic radius of the plasma column, r(sub e); (4) linear dependence of the rotation frequency upon the magnetic field strength only for r is less than r(sub e); (5) existence of an optimum value of the magnetic field for maximum enrichment; and (6) dependence of the rotation frequency upon the inverse of the atomic mass.

  13. Golan Heights Groundwater Systems: Separation By REE+Y And Stable Isotopes

    NASA Astrophysics Data System (ADS)

    Siebert, C.; Geyer, S.; Knoeller, K.; Roediger, T.; Weise, S.; Dulski, P.; Moeller, P.; Guttman, J.

    2008-12-01

    In a semi-arid to arid country like Israel, all freshwater resources are under (over-) utilization. Particularly, the Golan Heights rank as one of the most important extraction areas of groundwater of good quality and quantity. Additionally the mountain range feed to a high degree the most important freshwater reservoir of Israel, the Sea of Galilee. Hence, knowing the sources and characters of the Golan Heights groundwater systems is an instantaneous demand regarding sustainable management and protection. Within the "German-Israeli-Jordanian-Palestinian Joint Research Program for the Sustainable Utilisation of Aquifer Systems", hundreds of water samples were taken from all over the Jordan-Dead Sea rift-system to understand groundwater flow-systems and salinisation. For that purpose, each sample was analysed for major and minor ions, rare earth elements including yttrium (REY) and stable isotopes of water (d18O, d2H). The REY distribution in groundwater is established during infiltration by the first water-rock interaction and consequently reflects the leachable components of sediments and rocks of the recharge area. In well- developed flow-systems, REY are adsorbed onto pore surfaces are in equilibrium with the percolating groundwater, even if the lithology changes (e.g. inter-aquifer flow). Thus, groundwater sampled from wells and springs still show the REY distribution pattern established in the recharge area. Since high temperatures do not occur in Golan Heights, d2H and d18O are less controlled by water-rock interaction than by climatic and geomorphological factors at the time of replenishment. Applying the REY signature as a grouping criterion of groundwaters, d18O vs. d2H plots yield a new dimension in interpreting isotope data. The combined use of hydrochemical and isotopic methods enabled us to contain the areas of replenishment and the flow-paths of all investigated groundwater in the Golan Heights. Despite location, salinity or temperature of spring or

  14. Stable isotope analysis of diet confirms niche separation of two sympatric species of Namib Desert lizard.

    PubMed

    Murray, Ian W; Lease, Hilary M; Hetem, Robyn S; Mitchell, Duncan; Fuller, Andrea; Woodborne, Stephan

    2016-01-01

    We used stable isotopes of carbon and nitrogen to study the trophic niche of two species of insectivorous lizards, the Husab sand lizard Pedioplanis husabensis and Bradfield's Namib day gecko living sympatrically in the Namib Desert. We measured the δ(13) C and δ(15) N ratios in lizard blood tissues with different turnover times (whole blood, red blood cells and plasma) to investigate lizard diet in different seasons. We also measured the δ(13) C and δ(15) N ratios in available arthropod prey and plant tissues on the site, to identify the avenues of nutrient movement between lizards and their prey. Through the use of stable isotope mixing models, we found that the two lizard species relied on a largely non-overlapping but seasonally variable array of arthropods: P. husabensis primarily fed on termites, beetles and wasps, while R. bradfieldi fed mainly on ants, wasps and hemipterans. Nutrients originating from C3 plants were proportionally higher for R. bradfieldi than for P. husabensis during autumn and late autumn/early winter, although not summer. Contrary to the few available data estimating the trophic transfer of nutrients in ectotherms in mixed C3 and C4 /crassulacean acid metabolism (CAM) plant landscapes, we found that our lizard species primarily acquired nutrients that originated from C4 /CAM plants. This work adds an important dimension to the general lack of studies using stable isotope analyses to estimate lizard niche partitioning and resource use.

  15. Lead isotope systematics of some Apollo 17 soils and some separated components from 76501

    NASA Technical Reports Server (NTRS)

    Church, S. E.; Tilton, G. R.

    1974-01-01

    Isotopic lead data from bulk samples of Apollo 17 soils were analyzed, and they define a chord in a concordia diagram, showing the presence of a component or components containing excess radiogenic lead with Pb-207/Pb-206 equal to about 1.32. The chord is distinctly different from the cataclysm chord, for which Pb-207/Pb-206 is approximately 1.45. Nitric acid analysis of plagioclase indicates lead ages of around 4.35 AE, in agreement with previous findings. Agglutinates from soil 76501,34 show loss of approximately 15% of lead.

  16. Advanced Multiphysics Thermal-Hydraulics Models for the High Flux Isotope Reactor

    SciTech Connect

    Jain, Prashant K; Freels, James D

    2015-01-01

    Engineering design studies to determine the feasibility of converting the High Flux Isotope Reactor (HFIR) from using highly enriched uranium (HEU) to low-enriched uranium (LEU) fuel are ongoing at Oak Ridge National Laboratory (ORNL). This work is part of an effort sponsored by the US Department of Energy (DOE) Reactor Conversion Program. HFIR is a very high flux pressurized light-water-cooled and moderated flux-trap type research reactor. HFIR s current missions are to support neutron scattering experiments, isotope production, and materials irradiation, including neutron activation analysis. Advanced three-dimensional multiphysics models of HFIR fuel were developed in COMSOL software for safety basis (worst case) operating conditions. Several types of physics including multilayer heat conduction, conjugate heat transfer, turbulent flows (RANS model) and structural mechanics were combined and solved for HFIR s inner and outer fuel elements. Alternate design features of the new LEU fuel were evaluated using these multiphysics models. This work led to a new, preliminary reference LEU design that combines a permanent absorber in the lower unfueled region of all of the fuel plates, a burnable absorber in the inner element side plates, and a relocated and reshaped (but still radially contoured) fuel zone. Preliminary results of estimated thermal safety margins are presented. Fuel design studies and model enhancement continue.

  17. Continuous production of tritium in an isotope-production reactor with a separate circulation system

    DOEpatents

    Cawley, W.E.; Omberg, R.P.

    1982-08-19

    A method is described for producing tritium in a fast breeder reactor cooled with liquid metal. Lithium is allowed to flow through the reactor in separate loops in order to facilitate the production and removal of tritium.

  18. Hydrogen isotope separation in carbon nanotubes: calculation of coupled rotational and translational States at high densities.

    PubMed

    Garberoglio, Giovanni; Johnson, J Karl

    2010-03-23

    The effect of the quantized rotational degrees of freedom of hydrogen on the adsorption and sieving properties in carbon nanotubes is studied using computer simulations. We have developed a highly efficient multiple timestep algorithm for hybrid Monte Carlo sampling of quantized rotor configurations and extended the grand canonical Boltzmann bias method to rigid linear molecules. These new computational tools allow us to calculate accurately the quantum sieving selectivities for cases of extreme two-dimensional confinement as a function of pressure. The para-T2/para-H2 selectivity at 20 K is analyzed as a function of the tube diameter and the density of adsorbed hydrogen. Extraordinarily high selectivities, up to 2.6 x 10(8), are observed in the narrowest nanotube. The quantized nature of the rotational degrees of freedom is found to dramatically affect adsorption and selectivity for hydrogen isotopes adsorbed in very narrow nanotubes. The T2/H2 zero-pressure selectivity increases from 2.4 x 10(4) to 1.7 x 10(8) in the (3,6) nanotube at 20 K when quantum rotations are accounted for. The isotopic selectivity is found to increase with pressure, tending to a constant value at saturation. A simplified mean-field model is used to discuss the origin of this behavior.

  19. [Research advances in identifying nitrate pollution sources of water environment by using nitrogen and oxygen stable isotopes].

    PubMed

    Mao, Wei; Liang, Zhi-wei; Li, Wei; Zhu, Yao; Yanng, Mu-yi; Jia, Chao-jie

    2013-04-01

    Water body' s nitrate pollution has become a common and severe environmental problem. In order to ensure human health and water environment benign evolution, it is of great importance to effectively identify the nitrate pollution sources of water body. Because of the discrepant composition of nitrogen and oxygen stable isotopes in different sources of nitrate in water body, nitrogen and oxygen stable isotopes can be used to identify the nitrate pollution sources of water environment. This paper introduced the fractionation factors of nitrogen and oxygen stable isotopes in the main processes of nitrogen cycling and the composition of these stable isotopes in main nitrate sources, compared the advantages and disadvantages of five pre-treatment methods for analyzing the nitrogen and oxygen isotopes in nitrate, and summarized the research advances in this aspect into three stages, i. e. , using nitrogen stable isotope alone, using nitrogen and oxygen stable isotopes simultaneously, and combining with mathematical models. The future research directions regarding the nitrate pollution sources identification of water environment were also discussed.

  20. Development of a fully automated open-column chemical-separation system—COLUMNSPIDER—and its application to Sr-Nd-Pb isotope analyses of igneous rock samples

    NASA Astrophysics Data System (ADS)

    Miyazaki, Takashi; Vaglarov, Bogdan Stefanov; Takei, Masakazu; Suzuki, Masahiro; Suzuki, Hiroaki; Ohsawa, Kouzou; Chang, Qing; Takahashi, Toshiro; Hirahara, Yuka; Hanyu, Takeshi; Kimura, Jun-Ichi; Tatsumi, Yoshiyuki

    A fully automated open-column resin-bed chemical-separation system, named COLUMNSPIDER, has been developed. The system consists of a programmable micropipetting robot that dispenses chemical reagents and sample solutions into an open-column resin bed for elemental separation. After the initial set up of resin columns, chemical reagents, and beakers for the separated chemical components, all separation procedures are automated. As many as ten samples can be eluted in parallel in a single automated run. Many separation procedures, such as radiogenic isotope ratio analyses for Sr and Nd, involve the use of multiple column separations with different resin columns, chemical reagents, and beakers of various volumes. COLUMNSPIDER completes these separations using multiple runs. Programmable functions, including the positioning of the micropipetter, reagent volume, and elution time, enable flexible operation. Optimized movements for solution take-up and high-efficiency column flushing allow the system to perform as precisely as when carried out manually by a skilled operator. Procedural blanks, examined for COLUMNSPIDER separations of Sr, Nd, and Pb, are low and negligible. The measured Sr, Nd, and Pb isotope ratios for JB-2 and Nd isotope ratios for JB-3 and BCR-2 rock standards all fall within the ranges reported previously in high-accuracy analyses. COLUMNSPIDER is a versatile tool for the efficient elemental separation of igneous rock samples, a process that is both labor intensive and time consuming.

  1. Advancing adsorption and membrane separation processes for the gigaton carbon capture challenge.

    PubMed

    Wilcox, Jennifer; Haghpanah, Reza; Rupp, Erik C; He, Jiajun; Lee, Kyoungjin

    2014-01-01

    Reducing CO2 in the atmosphere and preventing its release from point-source emitters, such as coal and natural gas-fired power plants, is a global challenge measured in gigatons. Capturing CO2 at this scale will require a portfolio of gas-separation technologies to be applied over a range of applications in which the gas mixtures and operating conditions will vary. Chemical scrubbing using absorption is the current state-of-the-art technology. Considerably less attention has been given to other gas-separation technologies, including adsorption and membranes. It will take a range of creative solutions to reduce CO2 at scale, thereby slowing global warming and minimizing its potential negative environmental impacts. This review focuses on the current challenges of adsorption and membrane-separation processes. Technological advancement of these processes will lead to reduced cost, which will enable subsequent adoption for practical scaled-up application.

  2. Recent developments of the ion sources at Tri University Meson Factory/Isotope Separator and ACcelerator Facility.

    PubMed

    Bricault, P G; Ames, F; Dombsky, M; Labrecque, F; Lassen, J; Mjos, A; Minor, G; Tigelhoefer, A

    2012-02-01

    This paper describes the recent progresses concerning the on-line ion source at the Tri University Meson Factory/Isotope Separator and ACcelerator (TRIUMF/ISAC) Radioactive Ion-Beam Facility; description of the new design of the surface-ion-source for improved stability of the beam intensity, description of the transport path to the east target station at ISAC, description of the new brazing techniques that solved recurrent problems with water leaks on the target/ion source assembly in the vacuum system, finally, recent developments concerning the Forced Electron Beam Induced Arc Discharge (FEBIAD) ion source are reported. In particular, a study on the effect of the plasma chamber volume on the ionization efficiency was completed.

  3. Boundary-value problem for a counterrotating electrical discharge in an axial magnetic field. [plasma centrifuge for isotope separation

    NASA Technical Reports Server (NTRS)

    Hong, S. H.; Wilhelm, H. E.

    1978-01-01

    An electrical discharge between two ring electrodes embedded in the mantle of a cylindrical chamber is considered, in which the plasma in the anode and cathode regions rotates in opposite directions under the influence of an external axial magnetic field. The associated boundary-value problem for the coupled partial differential equations describing the azimuthal velocity and radial current-density fields is solved in closed form. The velocity, current density, induced magnetic induction, and electric fields are presented for typical Hartmann numbers, magnetic Reynolds numbers, and geometry parameters. The discharge is shown to produce anodic and cathodic plasma sections rotating at speeds of the order 1,000,000 cm/sec for conventional magnetic field intensities. Possible application of the magnetoactive discharge as a plasma centrifuge for isotope separation is discussed.

  4. Baseflow separation in a premontane transitional rainforest using stable isotope techniques

    NASA Astrophysics Data System (ADS)

    Miller, G. R.; DuMont, A.; Roark, E.; Cahill, A. T.; Brumbelow, J. K.

    2013-12-01

    Hydrologic, geologic, and biologic processes are critical to understanding the ecosystem in the tropical premontane transitional forests of Costa Rica. Precipitation is significantly lower during the dry season, and incoming rainfall can be completely intercepted and re-evaporated by the canopy during light events. These canopy processes can affect the rates of runoff and infiltration by changing the quantity and timing of rainfall reaching the ground surface. However, the resulting partitioning of stream water sources between event-water and baseflow from groundwater is not well quantified due to limited accessibility and complex subsurface conditions. This study focuses on research conducted at the Texas A&M Soltis Center for Education and Research, near San Ramón, Costa Rica. We have monitored a 2.2 ha watershed there, measuring precipitation and transpiration rates for over two years, and groundwater levels and stream flow rates for nearly one year. Precipitation rates for the watershed averaged 4.4 m/yr since 2010. Stream flow (runoff, spring flow, and baseflow) averaged 0.09 m^3/sec during the 2012-2013 wet seasons. At 1.2 mm/day, transpiration was a relatively minor component of the water budget. Over a 40-day span during summer 2013, we collected a combination of daily and rain-event based samples from locations throughout the watershed. Sources included: the main stream and two small tributaries, groundwater from piezometers, pore water from suction lysimeters, throughfall and stemflow from under canopy collection systems, and xylem water from 8 tree species across the watershed. We then measured stable isotope fractions (δ18O and δD) in the water using a Picarro L2120i CRDS. Isotope ratios for all surface water averaged -5.50‰ for δ18O and -28.00‰ for δD, while that measured under baseflow conditions were -5.45‰ for δ18O and -29.18‰ for δD. These results indicate that baseflow is the dominate source of stream water even in the wet season

  5. Separating Continental Mineral Dust from Cosmic Dust using Platinum Group Element Concentrations and Osmium Isotopes in Ancient Polar Ice

    NASA Astrophysics Data System (ADS)

    Seo, J. H.; Jackson, B.; Osterberg, E. C.; Sharma, M.

    2015-12-01

    The platinum group element (PGEs: Pt, Pd, Rh, Ir, Os, and Ru) accumulation in ancient polar archives have been argued to trace cosmic dust and "smoke" from larger meteors but the PGE concentration data lack specificity. For example, the extent to which the terrestrial volcanism/dust has contributed to the PGE inventory of polar ice cannot be readily evaluated. Since the Os isotope compositions (187Os/188Os ratio) of the terrestrial and extraterrestrial sources are distinctly different from each other, the PGE concentrations when combined with Os isotope composition have the potential to untangle contributions from these sources. Platinum group element concentration determinations in polar ice cores are highly challenging due to their extremely low concentrations (down to 10-15 g/g or fg/g). Here, a new procedure is presented that allows PGEs and Os isotope compositions to be determined from a ~50 g sample of polar ice. Decontaminated ice-melt is spiked with 101Ru, 106Pd, 190Os, 191Ir, and 198Pt and frozen at -20 °C in quartz-glass ampoules. A mixture of purified HNO3 and H2O2 is then added and the sample is heated to 300 °C at 128bar using a High Pressure Asher. This allows all spikes to be equilibrated with the sample PGEs and all Os species are oxidized to OsO4. The resulting OsO4 is extracted using distillation, purified, and measured using negative thermal ionization mass spectrometry. PGEs are then separated and purified using two stage column chromatography and their concentrations determined by isotope dilution using a triple quadruople inductively coupled plasma mass spectrometer coupled to an Apex de-solvation nebulizer. The developed method was applied to modern Greenland firn and snow. The PGE concentrations of the firn are 4.0 fg/g for Ir, 20 fg/g for Ru, 590 fg/g for Pt, 38 fg/g for Pd, and 1.3 fg/g for Os, while those of the snow are 3.0 fg/g for Ir, 53 fg/g for Ru, 360 fg/g for Pt, 32 fg/g for Pd, and 0.4 fg/g for Os, respectively. A comparison

  6. Separation of drainage runoff during rainfall-runoff episodes using the stable isotope method and drainage water temperature

    NASA Astrophysics Data System (ADS)

    Zajíček, Antonín; Kvítek, Tomáš; Pomije, Tomáš

    2014-05-01

    Stabile isotopes of 2H 18O and drainage water temperature were used as natural tracers for separation rainfall-runoff event hydrograph on several tile drained catchments located in Bohemian-Moravian Highland, Czech Republic. Small agricultural catchments with drainage systems built in slopes are typical for foothill areas in the Czech and Moravian highland. Often without permanent surface runoff, the drainage systems represent an important portion of runoff and nitrogen leaching out of the catchment. The knowledge of the drainage runoff formation and the origin of its components are prerequisites for formulation of measures leading to improvement of the drainage water quality and reduction of nutrient leaching from the drained catchments. The results have proved presence of event water in the drainage runoff during rainfall-runoff events. The proportion of event water observed in the drainage runoff varied between 15 - 60 % in the summer events and 0 - 50 % in winter events, while the sudden water temperature change was between 0,1 - 4,2 °C (2 - 35 %). The comparison of isotope separation of the drainage runoff and monitoring the drainage water temperature have demonstrated that in all cases of event water detected in the runoff, a rapid change in the drainage water temperature was observed as well. The portion of event water in the runoff grows with the growing change in water temperature. Using component mixing model, it was demonstrated that water temperature can be successfully used at least as a qualitative and with some degree of inaccuracy as a quantitative tracer as well. The drawback of the non-conservative character of this tracer is compensated by both its economic and technical accessibility. The separation results also resemble results of separations at small streams. Together with a similarly high speed of the discharge reaction to beginning of precipitation, it is obvious that the mechanism of surface runoff formation and drainage runoff formation

  7. Compositional and isotopic diversity in MORB crystal cargoes: the differing influence of crustal and mantle processes on separate phase populations

    NASA Astrophysics Data System (ADS)

    Winpenny, B.; Maclennan, J.

    2010-12-01

    trace elements and Sr and O isotope ratios in compositionally zoned crystals. By comparing the known liquid compositions of Krafla and Borgarhraun with feldspar trace element and isotopic data, we aim to determine whether the plagioclase crystals are of a) magmatic or b) hydrothermal origin, and if magmatic, whether the crystals are cognate to the carrier melt or of xenocrystic origin. Preliminary O and Sr isotope data suggest that a sub-population of plagioclase crystals from both flows has undergone direct hydrothermal interaction, with others having crystallised from melts contaminated by altered crustal material. Additionally, some of the aspects of the current plagioclase dataset can be explained by concurrent mixing and crystallisation of variable primary mantle melt compositions, in sympathy with the clinopyroxene and olivine data. The contrasting and possibly diverse origins for the chemical and isotopic heterogeneity in separate crystal phase populations in these basaltic flows highlight the need for careful characterisation of individual crystal phases when making inferences from bulk isotopic or chemical analyses on MORB phenocrysts.

  8. Recent Advances in Stable Isotope Techniques for N2O Source Partitioning in Soils

    NASA Astrophysics Data System (ADS)

    Baggs, E.; Mair, L.; Mahmood, S.

    2007-12-01

    The use of 13C, 15N and 18O enables us to overcome uncertainties associated with soil C and N processes and to assess the links between species diversity and ecosystem function. Recent advances in stable isotope techniques enable determination of process rates, and are fundamental for examining interactions between C and N cycles. Here we will introduce the 15N-, 18O- and 13C-enrichment techniques we have developed to distinguish between different N2O-producing processes in situ in soils, presenting selected results, and will critically assess their potential, alone and in combination with molecular techniques, to help address key research questions for soil biogeochemistry and microbial ecology. We have developed 15N- 18O-enrichment techniques to distinguish between, and to quantify, N2O production during ammonia oxidation, nitrifier denitrification and denitrification. This provides a great advantage over natural abundance approaches as it enables quantification of N2O from each microbial source, which can be coupled with quantification of N2 production, and used to examine interactions between different processes and cycles. These approaches have also provided new insights into the N cycle and how it interacts with the C cycle. For example, we now know that ammonia oxidising bacteria significantly contribute to N2O emissions from soils, both via the traditionally accepted ammonia oxidation pathway, and also via denitrification (nitrifier denitrification) which can proceed even under aerobic conditions. We are also linking emissions from each source to diversity and activity of relevant microbial functional groups, for example through the development and application of a specific nirK primer for the nitrite reductase in ammonia oxidising bacteria. Recently, isotopomers have been proposed as an alternative for source partitioning N2O at natural abundance levels, and offers the potential to investigate N2O production from nitrate ammonification, and overcomes the

  9. Radiogenic Isotopes As Paleoceanographic Tracers in Deep-Sea Corals: Advances in TIMS Measurements of Pb Isotopes and Application to Southern Ocean Corals

    NASA Astrophysics Data System (ADS)

    Wilson, D. J.; van de Flierdt, T.; Bridgestock, L. J.; Paul, M.; Rehkamper, M.; Robinson, L. F.; Adkins, J. F.

    2014-12-01

    Deep-sea corals have emerged as a valuable archive of deep ocean paleoceanographic change, with uranium-series dating providing absolute ages and the potential for centennial resolution. In combination with measurements of radiocarbon, neodymium isotopes and clumped isotopes, this archive has recently been exploited to reconstruct changes in ventilation, water mass sourcing and temperature in relation to millennial climate change. Lead (Pb) isotopes in both corals and seawater have also been used to track anthropogenic inputs through space and time and to trace transport pathways within the oceans. Better understanding of the oceanic Pb cycle is emerging from the GEOTRACES programme. However, while Pb isotopes have been widely used in environmental studies, their full potential as a (pre-anthropogenic) paleoceanographic tracer remains to be exploited. In deep-sea corals, challenges exist from low Pb concentrations in aragonite in comparison to secondary coatings, the potential for contamination, and the efficient elemental separation required for measurement by thermal ionisation mass spectrometry (TIMS). Here we discuss progress in measuring Pb isotopes in coral aragonite using a 207Pb-204Pb double spike on a ThermoFinnigan Triton TIMS. For a 2 ng NIST-981 Pb standard, the long term reproducibility (using 1011 Ω resistors) is ~1000 ppm (2 s.d.) on 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios. We now show that using a new 1012 Ω resistor to measure the small 204Pb beam improves the internal precision on these ratios from ~500 ppm (2 s.e.) to ~250 ppm (2 s.e.) and we envisage a potential improvement in the long term reproducibility as a consequence. We further assess the internal precision and external reproducibility of our method using a BCR-2 rock standard and an in-house coral standard. Preliminary evidence on the application of this method to natural samples is derived from cleaning experiments and replication tests on deep-sea corals from the Southern

  10. Recent advances in nanotechnology-based detection and separation of circulating tumor cells.

    PubMed

    Myung, Ja Hye; Tam, Kevin A; Park, Sin-jung; Cha, Ashley; Hong, Seungpyo

    2016-01-01

    Although circulating tumor cells (CTCs) in blood have been widely investigated as a potential biomarker for diagnosis and prognosis of metastatic cancer, their inherent rarity and heterogeneity bring tremendous challenges to develop a CTC detection method with clinically significant specificity and sensitivity. With advances in nanotechnology, a series of new methods that are highly promising have emerged to enable or enhance detection and separation of CTCs from blood. In this review, we systematically categorize nanomaterials, such as gold nanoparticles, magnetic nanoparticles, quantum dots, graphenes/graphene oxides, and dendrimers and stimuli-responsive polymers, used in the newly developed CTC detection methods. This will provide a comprehensive overview of recent advances in the CTC detection achieved through application of nanotechnology as well as the challenges that these existing technologies must overcome to be directly impactful on human health.

  11. Advances in chiral separations by nonaqueous capillary electrophoresis in pharmaceutical and biomedical analysis.

    PubMed

    Ali, Imran; Sanagi, Mohd Marsin; Aboul-Enein, Hassan Y

    2014-04-01

    NACE is an alternative technique to aqueous CE in the chiral separations of partially soluble racemates. Besides, partially water-soluble or insoluble chiral selectors may be exploited in the enantiomeric resolution in NACE. The high reproducibility due to low Joule heat generation and no change in BGE concentration may make NACE a routine analytical technique. These facts attracted scientists to use NACE for the chiral resolution. The present review describes the advances in the chiral separations by NACE and its application in pharmaceutical and biomedical analysis. The emphasis has been given to discuss the selection of the chiral selectors and organic solvents, applications of NACE, comparison between NACE and aqueous CE, and chiral recognition mechanism. Besides, efforts have also been made to predict the future perspectives of NACE.

  12. The use of safeguards data for process monitoring in the Advanced Test Line for Actinide Separations

    SciTech Connect

    Barnes, J.W.; Yarbro, S.L.

    1987-01-01

    Los Alamos is constructing an integrated process monitoring/materials control and accounting (PM/MC and A) system in the Advanced Testing Line for Actinide Separations (ATLAS) at the Los Alamos Plutonium Facility. The ATLAS will test and demonstrate new methods for aqueous processing of plutonium. The ATLAS will also develop, test, and demonstrate the concepts for integrated process monitoring/materials control and accounting. We describe how this integrated PM/MC and A system will function and provide benefits to both process research and materials accounting personnel.

  13. Recent advances in enrichment and separation strategies for mass spectrometry-based phosphoproteomics

    PubMed Central

    Yang, Chenxi; Zhong, Xuefei; Li, Lingjun

    2016-01-01

    Due to the significance of protein phosphorylation in various biological processes and signaling events, new analytical techniques for enhanced phosphoproteomics have been rapidly introduced in recent years. The combinatorial use of the phospho-specific enrichment techniques and prefractionation methods prior to MS analysis enables comprehensive profiling of the phosphoproteome and facilitates deciphering the critical roles that phosphorylation plays in signaling pathways in various biological systems. This review places special emphasis on the recent five-year (2009–2013) advances for enrichment and separation techniques that have been utilized for phosphopeptides prior to MS analysis. PMID:24687451

  14. Pygmy dipole strength close to particle-separation energies --The case of the Mo isotopes

    NASA Astrophysics Data System (ADS)

    Rusev, G.; Grosse, E.; Erhard, M.; Junghans, A.; Kosev, K.; Schilling, K.-D.; Schwengner, R.; Wagner, A.

    2006-03-01

    The distribution of electromagnetic dipole strength in 92, 98, 100Mo has been investigated by photon scattering using bremsstrahlung from the new ELBE facility. The experimental data for well-separated nuclear resonances indicate a transition from a regular to a chaotic behaviour above 4MeV of excitation energy. As the strength distributions follow a Porter-Thomas distribution much of the dipole strength is found in weak and in unresolved resonances appearing as fluctuating cross section. An analysis of this quasi-continuum --here applied to nuclear resonance fluorescence in a novel way-- delivers dipole strength functions, which are combining smoothly to those obtained from (γ, n) data. Enhancements at 6.5MeV and at ˜ 9MeV are linked to the pygmy dipole resonances postulated to occur in heavy nuclei.

  15. Proceedings of the XVIIth International Conference on Electromagnetic Isotope Separators and Related Topics (EMIS2015), Grand Rapids, MI, U.S.A., 11-15 May 2015

    NASA Astrophysics Data System (ADS)

    Bollen, Georg; Mittig, Wolfgang; Morrissey, Dave; Schwarz, Stefan; Villari, Antonio

    2016-06-01

    The 17th International Conference on Electromagnetic Isotope Separators and Related Topics (EMIS-2015) was held in Grand Rapids, Michigan, in the United States, from May 11th to 15th, 2015. The EMIS-2015 conference was hosted by Michigan State University. The present volume contains the proceedings of the event.

  16. The Precise Determination of Cd Isotope Ratio in Geological Samples by MC-ICP-MS with Ion Exchange Separation

    NASA Astrophysics Data System (ADS)

    Du, C.; Hu, S.; Wang, D.; Jin, L.; Guo, W.

    2014-12-01

    Cadmium (Cd) is a trace element which occurs at μg g-1 level abundances in the crust. Cd isotopes have great prospects in the study of the cosmogony, the trace of anthropogenic sources, the micronutrient cycling and the ocean productivity. This study develops an optimized technique for the precise and accurate determination of Cd isotopic compositions. Cd was separated from the matrix by elution with AG-MP-1 anionic exchange chromatographic resin. The matrix elements (K, Na, Ca, Al, Fe, and Mg etc.), polyatomic interfered elements (Ge, Ga, Zr, Nb, Ru, and Mo), and isobaric interfered elements (In, Pd and most of Sn) were eluted using HCl with gradient descent concentrations (2, 0.3, 0.06, 0.012 and 0.0012 mol L-1). The same elution procedure was repeated to eliminate the residuel Sn (Sn/Cd < 0.018). The collected Cd was analyzed using MC-ICP-MS, in which the instrumental mass fractionation was controlled by a "sample-standard bracketing" technique. The recovery of Cd larger than 96.85%, and the δ114/110Cd are in the range of -1.43~+0.20‰ for ten geological reference materials (GSD-3a, GSD-5a, GSD-7a, GSD-6, GSD-9, GSD-10, GSD-11, GSD-12, GSD-23, and GSS-1). The δ114/110Cd obtained for GSS-1 soil sample relative to the NIST SRM 3108 Cd solution was 0.20, which was coherent with the literature values (0.08±0.23). This method had a precision of 0.001~0.002% (RSD), an error range of 0.06~0.14 (δ114/110Cd, 2σ), and a long-term reproducibility of 0.12 (δ114/110Cd, 2σ).

  17. Application of a Plasma Mass Separator to Advanced LWR Spent Fuel Reprocessing

    SciTech Connect

    Freeman, Richard; Miller, Robert; Papay, Larry; Wagoner, John; Ahlfeld, Charles; Czerwinski, Ken

    2006-07-01

    The US Department of Energy (DOE) is investigating spent fuel reprocessing for the purposes of increasing the effective capacity of a deep geological repository, reducing the radiotoxicity of waste placed in the repository and conserving nuclear fuel resources. DOE is considering hydro-chemical processing of the spent fuel after cutting the fuel cladding and fuel dissolution in nitric acid. The front end process, known as UREX, is largely based on the PUREX process and extracts U, Tc as well as fission product gases. A number of additional processing steps have become known as UREX+. One of the steps includes a further chemical treatment of remove Cs and Sr to reduce repository heat load. Other steps include successive extraction of the actinides from residual fission products, including the lanthanides. The additional UREX+ processing renders the actinides suitable for burning as reactor fuel in an advanced reactor to convert actinides to shorter-lived fission products and to produce power. New methods for separating groups of elements by their atomic mass have been developed and can be exploited to enhance spent fuel reprocessing. These physical processes dry the waste streams so that they can be vaporized and singly ionized in plasma that is contained in longitudinal magnetic and perpendicular electric fields. Proper configuration of the fields causes the plasma to rapidly rotate and expel heavier mass ions at the center of the machine. Lower mass ions form closed orbits within the cylindrical plasma column and are transported to either end of the machine. This plasma mass separator was originally developed to reduce the mass of material that must be immobilized in borosilicate glass from DOE defense waste at former weapons production facilities. The plasma mass separator appears to be well-suited for processing the UREX raffinate and solids streams by exploiting the large atomic mass gap that exists between lanthanides (< {approx}180 amu) and actinides

  18. Advancing the Theory of Nuclear Reactions with Rare Isotopes. From the Laboratory to the Cosmos

    SciTech Connect

    Nunes, Filomena

    2015-06-01

    The mission of the Topical Collaboration on the Theory of Reactions for Unstable iSotopes (TORUS) was to develop new methods to advance nuclear reaction theory for unstable isotopes—particularly the (d,p) reaction in which a deuteron, composed of a proton and a neutron, transfers its neutron to an unstable nucleus. After benchmarking the state-of-the-art theories, the TORUS collaboration found that there were no exact methods to study (d,p) reactions involving heavy targets; the difficulty arising from the long-range nature of the well known, yet subtle, Coulomb force. To overcome this challenge, the TORUS collaboration developed a new theory where the complexity of treating the long-range Coulomb interaction is shifted to the calculation of so-called form-factors. An efficient implementation for the computation of these form factors was a major achievement of the TORUS collaboration. All the new machinery developed are essential ingredients to analyse (d,p) reactions involving heavy nuclei relevant for astrophysics, energy production, and stockpile stewardship.

  19. Evaluation, engineering and development of advanced cyclone processes. Final separating media evaluation and test report (FSMER). Appendices

    SciTech Connect

    1996-05-01

    This report consists of appendices pertaining to the separating media evaluation (calcium nitrate solution) and testing for an advanced cyclone process. Appendices include: materials safety data, aqueous medium regeneration, pH control strategy, and other notes and data.

  20. Tracking millennial-scale Holocene glacial advance and retreat using osmium isotopes: Insights from the Greenland ice sheet

    USGS Publications Warehouse

    Rooney, Alan D.; Selby, David; Llyod, Jeremy M.; Roberts, David H.; Luckge, Andreas; Sageman, Bradley B.; Prouty, Nancy G.

    2016-01-01

    High-resolution Os isotope stratigraphy can aid in reconstructing Pleistocene ice sheet fluctuation and elucidating the role of local and regional weathering fluxes on the marine Os residence time. This paper presents new Os isotope data from ocean cores adjacent to the West Greenland ice sheet that have excellent chronological controls. Cores MSM-520 and DA00-06 represent distal to proximal sites adjacent to two West Greenland ice streams. Core MSM-520 has a steadily decreasing Os signal over the last 10 kyr (187Os/188Os = 1.35–0.81). In contrast, Os isotopes from core DA00-06 (proximal to the calving front of Jakobshavn Isbræ) highlight four stages of ice stream retreat and advance over the past 10 kyr (187Os/188Os = 2.31; 1.68; 2.09; 1.47). Our high-resolution chemostratigraphic records provide vital benchmarks for ice-sheet modelers as we attempt to better constrain the future response of major ice sheets to climate change. Variations in Os isotope composition from sediment and macro-algae (seaweed) sourced from regional and global settings serve to emphasize the overwhelming effect weathering sources have on seawater Os isotope composition. Further, these findings demonstrate that the residence time of Os is shorter than previous estimates of ∼104 yr.

  1. Tracking millennial-scale Holocene glacial advance and retreat using osmium isotopes: Insights from the Greenland ice sheet

    NASA Astrophysics Data System (ADS)

    Rooney, Alan D.; Selby, David; Lloyd, Jeremy M.; Roberts, David H.; Lückge, Andreas; Sageman, Bradley B.; Prouty, Nancy G.

    2016-04-01

    High-resolution Os isotope stratigraphy can aid in reconstructing Pleistocene ice sheet fluctuation and elucidating the role of local and regional weathering fluxes on the marine Os residence time. This paper presents new Os isotope data from ocean cores adjacent to the West Greenland ice sheet that have excellent chronological controls. Cores MSM-520 and DA00-06 represent distal to proximal sites adjacent to two West Greenland ice streams. Core MSM-520 has a steadily decreasing Os signal over the last 10 kyr (187Os/188Os = 1.35-0.81). In contrast, Os isotopes from core DA00-06 (proximal to the calving front of Jakobshavn Isbræ) highlight four stages of ice stream retreat and advance over the past 10 kyr (187Os/188Os = 2.31; 1.68; 2.09; 1.47). Our high-resolution chemostratigraphic records provide vital benchmarks for ice-sheet modelers as we attempt to better constrain the future response of major ice sheets to climate change. Variations in Os isotope composition from sediment and macro-algae (seaweed) sourced from regional and global settings serve to emphasize the overwhelming effect weathering sources have on seawater Os isotope composition. Further, these findings demonstrate that the residence time of Os is shorter than previous estimates of ∼104 yr.

  2. Tracking millennial-scale Holocene glacial advance and retreat using Osmium isotopes: Insights from the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Rooney, Alan; Selby, David; Lloyd, Jeremy; Roberts, David; Lückge, Andreas; Sageman, Bradley; Prouty, Nancy

    2016-04-01

    Using new high-resolution osmium (Os) isotope stratigraphy from cores adjacent to the Greenland ice sheet we highlight the potential for chemostratigraphy to contribute to our understanding of ice sheet dynamics. This study utilizes sediment cores that have excellent chronological controls and demonstrates the role of local and regional weathering fluxes on the marine Os residence time. Distal to the Greenland ice streams core MSM-520 displays a steady lowering of the Os isotope composition during the Holocene. In contrast, proximal to the calving front of Jakobshavn Isbræ (core DA00-06), the Os isotope stratigraphy highlights four stages of ice stream retreat and advance. Our chemostratigraphic records provide vital benchmarks as we attempt to better constrain the future response of major ice sheets to climate change. Variations in Os isotope composition from sediment and macro-algae (seaweed) sourced from both near-field and far-field settings emphasize the overwhelming effect local weathering sources have on seawater Os isotope composition.

  3. Treatment of yellow water by membrane separations and advanced oxidation methods.

    PubMed

    Lazarova, Z; Spendlingwimmer, R

    2008-01-01

    Comparative experimental study is performed on purification of yellow wastewaters separated and collected in solarCity, Linz, Austria. Three membrane methods (micro-, ultra-, and nano-filtration), and two advanced oxidations (gamma radiation and electrochemical oxidation) were applied. Best results concerning the removal of pharmaceuticals and hormones from urine by membrane separation were achieved using the membrane NF-200 (FilmTec). Pharmaceuticals (ibuprofen and diclofenac), and hormones (oestrone, beta-oestradiol, ethenyloestradiol, oestriol) were removed completely from urine. NF-separation also has some disadvantages: losses of urea, and lowering the conductivity in the product (permeate). The retentates (concentrates) received have to be treated further by oxidation to destroy the "problem" compounds. The results showed that electrochemical oxidation is more suitable than gamma radiation. Gamma-radiation with intensities higher than 10 kGy has to be applied for efficiently destroying of ibuprofen, and especially diclofenac. A high quantity of intermediate "problem" substances with oestrone structure was formed during the gamma oxidation of hormone containing urine samples. The electrochemical oxidation can be successfully applied for elimination of pharmaceuticals such as diclofenac, and hormones (oestrone, beta-oestradiol) from yellow wastewater without loss of urea (nitrogen fertiliser).

  4. Long-term fertilization alters chemically-separated soil organic carbon pools: Based on stable C isotope analyses

    NASA Astrophysics Data System (ADS)

    Dou, Xiaolin; He, Ping; Cheng, Xiaoli; Zhou, Wei

    2016-01-01

    Quantification of dynamics of soil organic carbon (SOC) pools under the influence of long-term fertilization is essential for predicting carbon (C) sequestration. We combined soil chemical fractionation with stable C isotope analyses to investigate the C dynamics of the various SOC pools after 25 years of fertilization. Five types of soil samples (0–20, 20–40 cm) including the initial level (CK) and four fertilization treatments (inorganic nitrogen fertilizer, IN; balanced inorganic fertilizer, NPK; inorganic fertilizer plus farmyard manure, MNPK; inorganic fertilizer plus corn straw residue, SNPK) were separated into recalcitrant and labile fractions, and the fractions were analysed for C content, C:N ratios, δ13C values, soil C and N recalcitrance indexes (RIC and RIN). Chemical fractionation showed long-term MNPK fertilization strongly increased the SOC storage in both soil layers (0–20 cm = 1492.4 gC m2 and 20–40 cm = 1770.6 gC m2) because of enhanced recalcitrant C (RC) and labile C (LC). The 25 years of inorganic fertilizer treatment did not increase the SOC storage mainly because of the offsetting effects of enhanced RC and decreased LC, whereas no clear SOC increases under the SNPK fertilization resulted from the fast decay rates of soil C.

  5. Long-term fertilization alters chemically-separated soil organic carbon pools: Based on stable C isotope analyses

    PubMed Central

    Dou, Xiaolin; He, Ping; Cheng, Xiaoli; Zhou, Wei

    2016-01-01

    Quantification of dynamics of soil organic carbon (SOC) pools under the influence of long-term fertilization is essential for predicting carbon (C) sequestration. We combined soil chemical fractionation with stable C isotope analyses to investigate the C dynamics of the various SOC pools after 25 years of fertilization. Five types of soil samples (0–20, 20–40 cm) including the initial level (CK) and four fertilization treatments (inorganic nitrogen fertilizer, IN; balanced inorganic fertilizer, NPK; inorganic fertilizer plus farmyard manure, MNPK; inorganic fertilizer plus corn straw residue, SNPK) were separated into recalcitrant and labile fractions, and the fractions were analysed for C content, C:N ratios, δ13C values, soil C and N recalcitrance indexes (RIC and RIN). Chemical fractionation showed long-term MNPK fertilization strongly increased the SOC storage in both soil layers (0–20 cm = 1492.4 gC m2 and 20–40 cm = 1770.6 gC m2) because of enhanced recalcitrant C (RC) and labile C (LC). The 25 years of inorganic fertilizer treatment did not increase the SOC storage mainly because of the offsetting effects of enhanced RC and decreased LC, whereas no clear SOC increases under the SNPK fertilization resulted from the fast decay rates of soil C. PMID:26750143

  6. Characterization of Diesel Fuel by Chemical Separation Combined with Capillary Gas Chromatography (GC) Isotope Ratio Mass Spectrometry (IRMS)

    SciTech Connect

    Harvey, Scott D.; Jarman, Kristin H.; Moran, James J.; Sorensen, Christina M.; Wright, Bob W.

    2011-09-15

    The purpose of this study was to perform a preliminary investigation of compound-specific isotope analysis (CSIA) of diesel fuels to evaluate whether the technique could distinguish between the diesel samples from different sources/locations. The ability to differentiate or correlate diesel samples could be valuable for detecting fuel tax evasion schemes. Two fractionation techniques were used to isolate the n-alkanes from the fuel. Both δ13C and δD values for the n-alkanes were then determined by CSIA in each sample. Plots of δD versus δ13C with sample n-alkane points connected in order of increasing carbon number gave well separated clusters with characteristic shapes for each sample. Principal components analysis (PCA) with δ13C, δD, or combined δ13C and δD data on the yielded scores plots that could clearly differentiate the samples, thereby demonstrating the potential of this approach for fingerprinting fuel samples using the δ13C and δD values.

  7. ARPS: an Advanced Radio Isotope Power Subsystem for ExoMars Geophysical Package (GEP)

    NASA Astrophysics Data System (ADS)

    Mimoun, D.; Biele, J.; Lenoir, B.; Dauscher, A.; Müller, E.

    2005-12-01

    Within the framework of the ESA Aurora initiative , IPGP, DLR and an international consortium of laboratories launched an initiative aiming at adding on board the ExoMars mission a long life geophysical observatory, called "GEP" (Geophysical package) or "Mars Long Lived Surface Package". The feasibility study of this "geophysical package", carried out with the CNES support, showed the need for studying an alternative source of power to solar panels. Developments related to RTG technologies have been restricted for a long time to the United States and Russian industries. However, the exploration of the remote solar system (in the frame of the ESA Cosmic Vision) as well as long duration planetary missions (such as ExoMars Geophysical Package GEP ) exclude de facto the use of solar panels. A possible solution would be to associate to a radioisotope heat source of Russian origin (of Angel type) a thermo-electrical conversion system of European design. A European consortium of laboratories, including LPM, IPG and DLR (WF and RS) was thus constituted, in order to validate by a study the assumptions on the electric subsystem for the preliminary sizing of the geophysical package. The power of this Advanced radio-isotopic power system (ARPS) should be between 3 and 4 W, and the proposed mass limited to about 3 to 4 kg. This study will be undertaken in collaboration between the LPM, IPGP, DLR-WF and DLR-RS. A preliminary iteration of the GEP power subsystem will be presented, and main trade-off will be considered.

  8. Thermodynamics and Kinetics of Advanced Separations Systems – FY 2010 Summary Report

    SciTech Connect

    Leigh R. Martin; Peter R. Zalupski

    2010-09-01

    This report presents a summary of the work performed in the area of thermodynamics and kinetics of advanced separations systems under the Fuel Cycle Research and Development (FCR&D) program during FY 2010. Thermodynamic investigations into metal extraction dependencies on lactate and HDEHP have been performed. These metal distribution studies indicate a substantial deviation from the expected behavior at conditions that are typical of TALSPEAK process operational platform. These studies also identify that no thermodynamically stable mixed complexes exist in the aqueous solutions and increasing the complexity of the organic medium appears to influence the observed deviations. Following on from this, the first calorimetric measurement of the heat of extraction of americium across a liquid-liquid boundary was performed.

  9. Advanced Characterization of Molecular Interactions in TALSPEAK-like Separations Systems

    SciTech Connect

    Nash, Kenneth; Guelis, Artem; Lumetta, Gregg J.; Sinkov, Sergey

    2015-10-21

    Combining unit operations in advanced aqueous reprocessing schemes brings obvious process compactness advantages, but at the same time greater complexity in process design and operation. Unraveling these interactions requires increasingly sophisticated analytical tools and unique approaches for adequate analysis and characterization that probe molecular scale interactions. Conventional slope analysis methods of solvent extraction are too indirect to provide much insight into such interactions. This project proposed the development and verification of several analytical tools based on studies of TALSPEAK-like aqueous processes. As such, the chemistry of trivalent fission product lanthanides, americium, curium, plutonium, neptunium and uranium figure prominently in these studies. As the project was executed, the primary focus fell upon the chemistry or trivalent lanthanides and actinides. The intent of the investigation was to compare and contrast the results from these various complementary techniques/studies to provide a stronger basis for predicting the performance of extractant/diluent mixtures as media for metal ion separations. As many/most of these techniques require the presence of metal ions at elevated concentrations, it was expected that these studies would take this investigation into the realm of patterns of supramolecular organization of metal complexes and extractants in concentrated aqueous/organic media. We expected to advance knowledge of the processes that enable and limit solvent extraction reactions as a result of the application of fundamental chemical principles to explaining interactions in complex media.

  10. Problem of soot aggregates separation and purification for Carbon isotopic composition analyses - burning experiment and real black layers from speleothems examples

    NASA Astrophysics Data System (ADS)

    Hercman, Helena; Zawidzki, Pawel; Majewska, Agata

    2015-04-01

    Burning products are often used as an indicator of fire or prehistoric men activities. When it consists of macroscopically visible black layer it may be studied by different methods. When it is dispersed within sediment it is necessary to apply method for burning product separation. Soot aggregates as a result of incomplete combustion of organic materials are most reliable indication of burning. Size of soot particles is too small to observe by optical microscopy. There are two main advantages of application of transmission electron microscopy (TEM) for investigations of samples formed as a result of organic materials (like wood) combustion. First, it makes possible to investigate not only morphology but also its interior structure. The carbon layers arrangement is characteristic for particles obtained from combustion processes, and it directly confirm that these particles were formed that way. And second, analysis of chemical composition using of EDS spectroscopy in transmission microscope are precise and it spatial resolution is about a few nanometers. Burning chamber for wood burning experiments was constructed. It allows wood burning with controlling of burning temperature, carbon isotopic composition in carbon dioxide of burning atmosphere and carbon dioxide originated during burning. Burning products are collected on the plates with controlling of plates material, temperature and distance from flame. Two types of samples were studied. The first type of samples consisted the products of recent wood burning. The second type of samples consisted of black layers collected from speleothems. Soot aggregates were chemically separated from other burning products collected on plates. Process of chemical separation and purity of soot material were tested by TEM observations. Isotopic carbon composition at each step of soot separation as well as original wood fragments was analysed at the Isotopic Laboratory for Dating and Palaeoenvironment Studies, Polish Academy of

  11. ELECTROMAGNETIC SEPARATION OF ISOTOPES

    DOEpatents

    Barnes, S.W.; Centrell, C.M.

    1960-02-01

    An improved calutron receiver is described having two entrance slots leading to two electrically isolated pockets. A wall of the pocket intended to receive the heavier ions defines one side of the entrance slot to the other pocket and it is so constructed and arranged that the two sides of the wall are substantially equally exposed to the respective ion beams. Thus the per cent rejection of material entering the two entrance slots is the same for each slot.

  12. Upgrade of the resonance ionization laser ion source at ISOLDE on-line isotope separation facility: New lasers and new ion beamsa)

    NASA Astrophysics Data System (ADS)

    Fedosseev, V. N.; Berg, L.-E.; Fedorov, D. V.; Fink, D.; Launila, O. J.; Losito, R.; Marsh, B. A.; Rossel, R. E.; Rothe, S.; Seliverstov, M. D.; Sjödin, A. M.; Wendt, K. D. A.

    2012-02-01

    The resonance ionization laser ion source (RILIS) produces beams for the majority of experiments at the ISOLDE on-line isotope separator. A substantial improvement in RILIS performance has been achieved through a series of upgrade steps: replacement of the copper vapor lasers by a Nd:YAG laser; replacement of the old homemade dye lasers by new commercial dye lasers; installation of a complementary Ti:Sapphire laser system. The combined dye and Ti:Sapphire laser system with harmonics is capable of generating beams at any wavelength in the range of 210-950 nm. In total, isotopes of 31 different elements have been selectively laser-ionized and separated at ISOLDE, including recently developed beams of samarium, praseodymium, polonium, and astatine.

  13. Determination of plutonium isotopes (238Pu, 239Pu, 240Pu, 241Pu) in environmental samples using radiochemical separation combined with radiometric and mass spectrometric measurements.

    PubMed

    Xu, Yihong; Qiao, Jixin; Hou, Xiaolin; Pan, Shaoming; Roos, Per

    2014-02-01

    This paper reports an analytical method for the determination of plutonium isotopes ((238)Pu, (239)Pu, (240)Pu, (241)Pu) in environmental samples using anion exchange chromatography in combination with extraction chromatography for chemical separation of Pu. Both radiometric methods (liquid scintillation counting and alpha spectrometry) and inductively coupled plasma mass spectrometry (ICP-MS) were applied for the measurement of plutonium isotopes. The decontamination factors for uranium were significantly improved up to 7.5 × 10(5) for 20 g soil compared to the level reported in the literature, this is critical for the measurement of plutonium isotopes using mass spectrometric technique. Although the chemical yield of Pu in the entire procedure is about 55%, the analytical results of IAEA soil 6 and IAEA-367 in this work are in a good agreement with the values reported in the literature or reference values, revealing that the developed method for plutonium determination in environmental samples is reliable. The measurement results of (239+240)Pu by alpha spectrometry agreed very well with the sum of (239)Pu and (240)Pu measured by ICP-MS. ICP-MS can not only measure (239)Pu and (240)Pu separately but also (241)Pu. However, it is impossible to measure (238)Pu using ICP-MS in environmental samples even a decontamination factor as high as 10(6) for uranium was obtained by chemical separation.

  14. Chromatographic Separation of Cd from Plants via Anion-Exchange Resin for an Isotope Determination by Multiple Collector ICP-MS.

    PubMed

    Wei, Rongfei; Guo, Qingjun; Wen, Hanjie; Peters, Marc; Yang, Junxing; Tian, Liyan; Han, Xiaokun

    2017-01-01

    In this study, key factors affecting the chromatographic separation of Cd from plants, such as the resin column, digestion and purification procedures, were experimentally investigated. A technique for separating Cd from plant samples based on single ion-exchange chromatography has been developed, which is suitable for the high-precision analysis of Cd isotopes by multiple-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). The robustness of the technique was assessed by replicate analyses of Cd standard solutions and plant samples. The Cd yields of the whole separation process were higher than 95%, and the (114/110)Cd values of three Cd second standard solutions (Münster Cd, Spex Cd, Spex-1 Cd solutions) relative to the NIST SRM 3108 were measured accurately, which enabled the comparisons of Cd isotope results obtained in other laboratories. Hence, stable Cd isotope analyses represent a powerful tool for fingerprinting specific Cd sources and/or examining biogeochemical reactions in ecological and environmental systems.

  15. The Nuclear Energy Advanced Modeling and Simulation Safeguards and Separations Reprocessing Plant Toolkit

    SciTech Connect

    McCaskey, Alex; Billings, Jay Jay; de Almeida, Valmor F

    2011-08-01

    This report details the progress made in the development of the Reprocessing Plant Toolkit (RPTk) for the DOE Nuclear Energy Advanced Modeling and Simulation (NEAMS) program. RPTk is an ongoing development effort intended to provide users with an extensible, integrated, and scalable software framework for the modeling and simulation of spent nuclear fuel reprocessing plants by enabling the insertion and coupling of user-developed physicochemical modules of variable fidelity. The NEAMS Safeguards and Separations IPSC (SafeSeps) and the Enabling Computational Technologies (ECT) supporting program element have partnered to release an initial version of the RPTk with a focus on software usability and utility. RPTk implements a data flow architecture that is the source of the system's extensibility and scalability. Data flows through physicochemical modules sequentially, with each module importing data, evolving it, and exporting the updated data to the next downstream module. This is accomplished through various architectural abstractions designed to give RPTk true plug-and-play capabilities. A simple application of this architecture, as well as RPTk data flow and evolution, is demonstrated in Section 6 with an application consisting of two coupled physicochemical modules. The remaining sections describe this ongoing work in full, from system vision and design inception to full implementation. Section 3 describes the relevant software development processes used by the RPTk development team. These processes allow the team to manage system complexity and ensure stakeholder satisfaction. This section also details the work done on the RPTk ``black box'' and ``white box'' models, with a special focus on the separation of concerns between the RPTk user interface and application runtime. Section 4 and 5 discuss that application runtime component in more detail, and describe the dependencies, behavior, and rigorous testing of its constituent components.

  16. Advancement and application of gas chromatography isotope ratio mass spectrometry techniques for atmospheric trace gas analysis

    NASA Astrophysics Data System (ADS)

    Giebel, Brian M.

    2011-12-01

    The use of gas chromatography isotope ratio mass spectrometry (GC-IRMS) for compound specific stable isotope analysis is an underutilized technique because of the complexity of the instrumentation and high analytical costs. However stable isotopic data, when coupled with concentration measurements, can provide additional information on a compounds production, transformation, loss, and cycling within the biosphere and atmosphere. A GC-IRMS system was developed to accurately and precisely measure delta13C values for numerous oxygenated volatile organic compounds having natural and anthropogenic sources. The OVOCs include methanol, ethanol, acetone, methyl ethyl ketone, 2-pentanone, and 3-pentanone. Guided by the requirements for analysis of trace components in air, the GC-IRMS system was developed with the goals of increasing sensitivity, reducing dead-volume and peak band broadening, optimizing combustion and water removal, and decreasing the split ratio to the IRMS. The technique relied on a two-stage preconcentration system, a low-volume capillary reactor and water trap, and a balanced reference gas delivery system. Measurements were performed on samples collected from two distinct sources (i.e. biogenic and vehicle emissions) and ambient air collected from downtown Miami and Everglades National Park. However, the instrumentation and the method have the capability to analyze a variety of source and ambient samples. The measured isotopic signatures that were obtained from source and ambient samples provide a new isotopic constraint for atmospheric chemists and can serve as a new way to evaluate their models and budgets for many OVOCs. In almost all cases, OVOCs emitted from fuel combustion were enriched in 13C when compared to the natural emissions of plants. This was particularly true for ethanol gas emitted in vehicle exhaust, which was observed to have a uniquely enriched isotopic signature that was attributed to ethanol's corn origin and use as an alternative

  17. Advances in the measurement of sulfur isotopes using laser ablation MC-ICP- MS

    NASA Astrophysics Data System (ADS)

    Ridley, W. I.; Pribil, M. J.; Koenig, A. E.; Fayek, M.; Slack, J. F.

    2008-05-01

    Although sulfur is poorly ionized in an argon plasma, there are many applications for sulfur isotope analysis using an ICP source. Studies using a desolvation system (DSN) and an aqueous source of sulfur, where the sulfur is complexed with a cation to form a sulfur salt, e.g., calcium or sodium to provide a stable delivery of sulfur through the sample introduction system indicate that precision (~ 0.3 per mil) and accuracy are maintained at sulfur concentrations as low as 1 mg/L. Based on this data, solid sampling of sulfides and sulfates can provide an adequate amount supply of sulfur to an ICP source, even allowing for the relatively poor transport efficiency of laser ablation systems. The main limitations on accuracy and precision are the initial sampling volume, principally a function of spot size and laser fluence and the decreased instrument sensitivity resulting from the pseudo- medium or high resolution mode of analysis required to eliminate polyatomic isobaric interferences. These factors, in turn, determine the minimal grain size necessary for analysis. There are also fit-for-purpose considerations. For instance, many base metal sulfide systems have large variations in sulfur isotope composition, so that precision as poor as one per mil can still provide useful information. Here, we describe the methodology used at the USGS for laser ablation analysis of sulfides and sulfates using a second generation MC-ICP-MS and demonstrate the accuracy of the method based upon a grain-by-grain comparison of laser ablation and ion microprobe sulfur isotope data. A laser ablation MC-ICP-MS study of base metal mineralization at Dry Creek deposit, east-central Alaska demonstrates that the range in sulfur isotope composition of pyrite, sphalerite and galena, based on analysis of individual grains, is almost twice that reported for any other individual VMS deposit. Analysis on the microscopic scale thus provides additional insights into the potential sources of sulfur for

  18. Effective Boson Number- A New Approach for Predicting Separation Energies with the IBM1, Applied to Zr, Kr, Sr isotopes near A = 100

    NASA Astrophysics Data System (ADS)

    Paul, Nancy; van Isacker, Pieter; García Ramos, José Enrique; Aprahamian, Ani

    2011-10-01

    This work uses effective boson numbers in the Interacting Boson Model (IBM1) to predict two neutron separation energies for neutron-rich zirconium, strontium, and krypton isotopes., We determine the functional forms of binding energy and excitation energies as a function of boson number for a given choice of IBM parameters that give a good overall description of the experimental spectra of the isotopic chain. The energy of the first excited 2+ level is then used to extract an effective boson number for a given nucleus, that is in turn used to calculate the separation energies. This method accounts for complex interactions among valence nucleons around magic and semi- magic nuclei and successfully predicts the phase transitional signature in separation energies around A=100 for 92-108Zr, 90-104Sr, and 86-96Kr Supported by the NSF under contract PHY0758100, the Joint Institute for Nuclear Astrophysics grant PHY0822648, University of Notre Dame Nanovic Institute, Glynn Family Honors Program, Center for Undergraduate Scholarly Engagement.

  19. A fully automated system with online sample loading, isotope dimethyl labeling and multidimensional separation for high-throughput quantitative proteome analysis.

    PubMed

    Wang, Fangjun; Chen, Rui; Zhu, Jun; Sun, Deguang; Song, Chunxia; Wu, Yifeng; Ye, Mingliang; Wang, Liming; Zou, Hanfa

    2010-04-01

    Multidimensional separation is often applied for large-scale qualitative and quantitative proteome analysis. A fully automated system with integration of a reversed phase-strong cation exchange (RP-SCX) biphasic trap column into vented sample injection system was developed to realize online sample loading, isotope dimethyl labeling and online multidimensional separation of the proteome samples. Comparing to conventionally manual isotope labeling and off-line fractionation technologies, this system is fully automated and time-saving, which is benefit for improving the quantification reproducibility and accuracy. As phosphate SCX monolith was integrated into the biphasic trap column, high sample injection flow rate and high-resolution stepwise fractionation could be easily achieved. Approximately 1000 proteins could be quantified in approximately 30 h proteome analysis, and the proteome coverage of quantitative analysis can be further greatly improved by prolong the multidimensional separation time. This system was applied to analyze the different protein expression level of HCC and normal human liver tissues. After three times replicated analysis, finally 94 up-regulated and 249 down-regulated (HCC/Normal) proteins were successfully obtained. These significantly regulated proteins are widely validated by both gene and proteins expression studies previously. Such as some enzymes involved in urea cycle, methylation cycle and fatty acids catabolism in liver were all observed down-regulated.

  20. Membrane contactor/separator for an advanced ozone membrane reactor for treatment of recalcitrant organic pollutants in water

    SciTech Connect

    Chan, Wai Kit; Joueet, Justine; Heng, Samuel; Yeung, King Lun; Schrotter, Jean-Christophe

    2012-05-15

    An advanced ozone membrane reactor that synergistically combines membrane distributor for ozone gas, membrane contactor for pollutant adsorption and reaction, and membrane separator for clean water production is described. The membrane reactor represents an order of magnitude improvement over traditional semibatch reactor design and is capable of complete conversion of recalcitrant endocrine disrupting compounds (EDCs) in water at less than three minutes residence time. Coating the membrane contactor with alumina and hydrotalcite (Mg/Al=3) adsorbs and traps the organics in the reaction zone resulting in 30% increase of total organic carbon (TOC) removal. Large surface area coating that diffuses surface charges from adsorbed polar organic molecules is preferred as it reduces membrane polarization that is detrimental to separation. - Graphical abstract: Advanced ozone membrane reactor synergistically combines membrane distributor for ozone, membrane contactor for sorption and reaction and membrane separator for clean water production to achieve an order of magnitude enhancement in treatment performance compared to traditional ozone reactor. Highlights: Black-Right-Pointing-Pointer Novel reactor using membranes for ozone distributor, reaction contactor and water separator. Black-Right-Pointing-Pointer Designed to achieve an order of magnitude enhancement over traditional reactor. Black-Right-Pointing-Pointer Al{sub 2}O{sub 3} and hydrotalcite coatings capture and trap pollutants giving additional 30% TOC removal. Black-Right-Pointing-Pointer High surface area coating prevents polarization and improves membrane separation and life.

  1. FY-2011 Status Report for Thermodynamics and Kinetics of Advanced Separations Systems

    SciTech Connect

    Leigh R. Martin; Peter R. Zalupski; Travis S. Grimes

    2011-09-01

    This report presents a summary of the work performed in the area of thermodynamics and kinetics of advanced separations systems under the Fuel Cycle Research and Development (FCR&D) program during FY 2011 at the INL. On the thermodynamic front, investigations of liquid-liquid distribution of lanthanides at TALSPEAK-related conditions continued in FY11. It has been determined that a classical ion-exchanging phase transfer mechanism, where three HDEHP dimers solvate the metal ion in the organic phase, dominates metal extraction for systems that contain up to 0.1 M free lactate in solution. The correct graphical interpretation of the observed data in those regions relied on incorporating corrections for non-ideal behavior of HDEHP dimer in aliphatic diluents as well as sodium extraction equilibria. When aqueous conditions enter the complex regions of high lactate concentrations, slope analysis is no longer possible. When normalized metal distribution ratios were studied along the increasing concentration of free lactate, a slope of -1 was apparent. Such dependency either indicates aqueous complexing competition from lactate, or, a more likely scenario, a participation of lactate in the extracted metal complex. This finding agrees with our initial assessment of postulated changes in the extraction mechanism as a source of the lactate-mediated loss of extraction efficiency. The observed shape in the lanthanide distribution curve in our studies of TALSPEAK systems was the same for solutions containing no lactate or 2.3 M lactate. As such we may conclude that the mechanism of phase transfer is not altered dramatically and remains similarly sensitive to effective charge density of the metal ion. In addition to these thermodynamics studies, this report also summarizes the first calorimetric determination of heat of extraction of 248Cm in a bi-phasic system. The heat of extraction measured by isothermal titration calorimetry is compared to that determined using van't Hoff

  2. Selective IR multiphoton dissociation of molecules in a pulsed gas-dynamically cooled molecular flow interacting with a solid surface as an alternative to low-energy methods of molecular laser isotope separation

    NASA Astrophysics Data System (ADS)

    Makarov, G. N.; Petin, A. N.

    2016-03-01

    We report the results of studies on the isotope-selective infrared multiphoton dissociation (IR MFD) of SF6 and CF3I molecules in a pulsed, gas-dynamically cooled molecular flow interacting with a solid surface. The productivity of this method in the conditions of a specific experiment (by the example of SF6 molecules) is evaluated. A number of low-energy methods of molecular laser isotope separation based on the use of infrared lasers for selective excitation of molecules are analysed and their productivity is estimated. The methods are compared with those of selective dissociation of molecules in the flow interacting with a surface. The advantages of this method compared to the low-energy methods of molecular laser isotope separation and the IR MPD method in the unperturbed jets and flows are shown. It is concluded that this method could be a promising alternative to the low-energy methods of molecular laser isotope separation.

  3. A First Look at Graphite Grains from Orgueil: Morphology, Carbon, Nitrogen and Neon Isotopic Compositions of Individual, Chemically Separated Grains

    NASA Technical Reports Server (NTRS)

    Pravdivtseva, O.; Zinner, E.; Meshik, A. P.; Hohenberg, C. M.; Walker, R. W.

    2004-01-01

    Presolar graphite in Murchison has been extensively studied. It is characterized by a unique Ne isotopic composition, known as the Ne-E(L) component. According to studies by Huss and Lewis, the concentration of Ne-E(L) in Orgueil is about one order of magnitude higher than in Murchison, when normalized to the matrix. This could be due to a higher presolar graphite abundance in Orgueil, or due to a higher Ne-E concentrations per grain. The Ne isotopic compositions in individual presolar graphite grains from Murchison have been measured before. It was shown, that a third of the grains have detectable excesses in 22Ne, characteristic of the Ne-E(L) component. One grain in a hundred had a Ne-22 concentration two orders of magnitude higher than blank.

  4. Large volume injection in ion chromatography Separation of rubidium and strontium for on-line inductively coupled plasma mass spectrometry determination of strontium isotope ratios.

    PubMed

    García-Ruiz, Silvia; Moldovan, Mariella; García Alonso, J Ignacio

    2007-05-18

    Large volume injection, up to 5 mL, was evaluated and optimised for the on-line ion chromatographic separation of Rb and Sr before ICP-MS measurement of Sr isotope ratios. Flat-topped chromatographic peaks, ideally suited for multicollector ICP-MS isotope ratio measurements, could be obtained when the composition of the mobile phase (nitric acid and 18-crown-6 ether) was identical to the matrix of the sample. Under those conditions rubidium eluted at the dead volume of the column while strontium produced a flat-topped transient signal with several minutes of stable plateau. On-line data acquisition during several minutes at the plateau of Sr signal allowed high precision Sr isotope ratio measurement. The developed procedure was evaluated for Sr isotope ratio measurements on different types of samples, including cider, apples, apple leaves, and soil extracts, in the frame of a long-term project aiming at origin authentication using strontium isotope ratio measurements. It was observed that sample matrix caused broadening of the strontium chromatographic peak and loss of flat-topped peak profile. Under those circumstances the addition of the complexing crown-ether 18-crown-6 both to samples and chromatographic eluent provided two distinct advantages. First, a drastic increase in the retention of strontium was observed which could be modulated by increasing the concentration of nitric acid in the eluent up to 900 mM. This increase in the eluent HNO(3) concentration allowed the application of the method to acid soil digests and other high acidity samples. Second, the matrix of the sample did not affect any more the chromatographic peak profile and similar chromatographic separations could be obtained for samples and standards maintaining the flat-topped Sr peak profile. Sample preparation consisted of a simple 1:10 dilution of the cider or pre-treated solid samples by adding HNO(3) (900 mM) and 18-crown-6 ether (5mM) to obtain similar composition in the sample solution

  5. Solid-state Marx based two-switch voltage modulator for the On-Line Isotope Mass Separator accelerator at the European Organization for Nuclear Research

    SciTech Connect

    Redondo, L. M.; Canacsinh, H.; Ferrao, N.; Mendes, C.; Silva, J. Fernando; Soares, R.; Schipper, J.; Fowler, A.

    2010-07-15

    A new circuit topology is proposed to replace the actual pulse transformer and thyratron based resonant modulator that supplies the 60 kV target potential for the ion acceleration of the On-Line Isotope Mass Separator accelerator, the stability of which is critical for the mass resolution downstream separator, at the European Organization for Nuclear Research. The improved modulator uses two solid-state switches working together, each one based on the Marx generator concept, operating as series and parallel switches, reducing the stress on the series stacked semiconductors, and also as auxiliary pulse generator in order to fulfill the target requirements. Preliminary results of a 10 kV prototype, using 1200 V insulated gate bipolar transistors and capacitors in the solid-state Marx circuits, ten stages each, with an electrical equivalent circuit of the target, are presented, demonstrating both the improved voltage stability and pulse flexibility potential wanted for this new modulator.

  6. Mantle Helium and Carbon Isotopes in Separation Creek Geothermal Springs, Three Sisters Area, Central Oregon: Evidence for Renewed Volcanic Activity or a Long Term Steady State System?

    USGS Publications Warehouse

    Van Soest, M. C.; Kennedy, B.M.; Evans, William C.; Mariner, R.H.

    2002-01-01

    Here we present the helium and carbon isotope results from the initial study of a fluid chemistry-monitoring program started in the summer of 2001 near the South Sister volcano in central Oregon. The Separation Creek area which is several miles due west of the volcano is the locus of strong crustal uplift currently occurring at a rate of 4-5 cm/yr (Wicks, et. al., 2001).Helium [RC/RA = 7.44 and 8.61 RA (RC/R A = (3He/4He)sample-. air corrected/(3He/4He)air))] and carbon (??13C = -11.59 to -9.03??? vs PDB) isotope data and CO2/3He (5 and 9 ?? 109) show that bubbling cold springs in the Separation Creek area near South Sister volcano carry a strong mantle signal, indicating the presence of fresh basaltic magma in the volcanic plumbing system. There is no evidence though, to directly relate this signal to the crustal uplift that is currently taking place in the area, which started in 1998. The geothermal system in the area is apparently much longer lived and shows no significant changes in chemistry compared to data from the early 1990s. Hot springs in the area, which are relatively far removed from the volcanic edifice, do not carry a strong mantle signal in helium isotope ratios (2.79 to 5.08 RA), unlike the cold springs, and also do not show any significant changes in helium isotope ratios compared to literature data for the same springs of over two decades ago. The cold springs of the Separation Creek area form a very diffuse but significant low temperature geothermal system, that should, due to its close vicinity to the center of up uplift, be more sensitive to changes in the deeper volcanic plumbing system than the far removed hot springs and therefore require much more study and consideration when dealing with volcano monitoring in the Cascade range or possibly with geothermal exploration in general.

  7. Using isotopes of dissolved inorganic carbon species and water to separate sources of recharge in a cave spring, northwestern Arkansas, USA Blowing Spring Cave

    USGS Publications Warehouse

    Knierim, Katherine J.; Pollock, Erik; Hays, Phillip D.

    2013-01-01

    Blowing Spring Cave in northwestern Arkansas is representative of cave systems in the karst of the Ozark Plateaus, and stable isotopes of water (δ18O and δ2H) and inorganic carbon (δ13C) were used to quantify soil-water, bedrock-matrix water, and precipitation contributions to cave-spring flow during storm events to understand controls on cave water quality. Water samples from recharge-zone soils and the cave were collected from March to May 2012 to implement a multicomponent hydrograph separation approach using δ18O and δ2H of water and dissolved inorganic carbon (δ13C–DIC). During baseflow, median δ2H and δ18O compositions were –41.6‰ and –6.2‰ for soil water and were –37.2‰ and –5.9‰ for cave water, respectively. Median DIC concentrations for soil and cave waters were 1.8 mg/L and 25.0 mg/L, respectively, and median δ13C–DIC compositions were –19.9‰ and –14.3‰, respectively. During a March storm event, 12.2 cm of precipitation fell over 82 h and discharge increased from 0.01 to 0.59 m3/s. The isotopic composition of precipitation varied throughout the storm event because of rainout, a change of 50‰ and 10‰ for δ2H and δ18O was observed, respectively. Although, at the spring, δ2H and δ18O only changed by approximately 3‰ and 1‰, respectively. The isotopic compositions of precipitation and pre-event (i.e., soil and bedrock matrix) water were isotopically similar and the two-component hydrograph separation was inaccurate, either overestimating (>100%) or underestimating (<0%) the precipitation contribution to the spring. During the storm event, spring DIC and δ13C–DIC decreased to a minimum of 8.6 mg/L and –16.2‰, respectively. If the contribution from precipitation was assumed to be zero, soil water was found to contribute between 23 to 72% of the total volume of discharge. Although the assumption of negligible contributions from precipitation is unrealistic, especially in karst systems where rapid flow

  8. Spatial separation of groundwater flow paths from a multi-flow system by a simple mixing model using stable isotopes of oxygen and hydrogen as natural tracers

    NASA Astrophysics Data System (ADS)

    Nakaya, Shinji; Uesugi, Kenji; Motodate, Yusuke; Ohmiya, Isao; Komiya, Hiroyuki; Masuda, Harue; Kusakabe, Minoru

    2007-09-01

    Stable isotopes of oxygen and hydrogen have the potential to serve as tracers for both source and flow paths in a groundwater system. The ratios of stable isotopes of oxygen (δ18O) and hydrogen (δD) can be used as natural tracer parameters to separate multiflow groundwater paths by applying a simple inversion analysis method to determine the differences between observed and calculated δ18O and δD data in a simple mixing model. The model presented here assumes that the distribution of natural tracers in the steady state is governed by simple mixing between flow paths with a normal distribution of flow rate. When the inversion analysis and simple mixing model were applied to the multiflow system of the Matsumoto Basin, which is surrounded by Japanese alpine ranges, the end-members of the relationship between observed δ18O and δD could be separated spatially into specific groundwater flow paths in the multiflow system of shallow and deep groundwater flow paths.

  9. Growth variability and stable isotope composition of two larval carangid fishes in the East Australian Current: The role of upwelling in the separation zone

    NASA Astrophysics Data System (ADS)

    Syahailatua, Augy; Taylor, Matthew D.; Suthers, Iain M.

    2011-03-01

    The larvae of two carangid fishes, silver trevally ( Pseudocaranx dentex) and yellowtail scad ( Trachurus novaezelandiae), were compared among coastal water masses and the East Australian Current (EAC). Samples followed a north to south gradient including a southern region of upwelling, generated as the EAC separated from the coast. Mean larval carangid densities were greater in the mixed layer (10-30 m) than the surface, but there was no difference between inshore and offshore stations or along latitudinal gradients. Overall, P. dentex recent larval growth over two days pre-capture was faster than T. novaezelandiae, and faster at inshore, coastal stations than in the EAC. Integrated larval growth rate (mm d -1) was usually faster at inshore stations for both species. T. novaezelandiae were enriched in both nitrogen (δ 15N) and carbon (δ 13C) stable isotopes relative to P. dentex. Larvae of both species captured within the upwelling region were enriched in δ 15N and depleted in δ 13C relative to other sites. Recent larval growth had a significant positive relationship with fluorescence (as a proxy of chlorophyll a biomass), and integrated larval growth rate had a significant positive relationship with fluorescence and larval isotope (δ 15N) composition. Recent and integrated growth of larval T. novaezelandiae and P. dentex was enhanced by EAC separation and upwelling, and also in coastal water; stimulated by food availability, and potentially through exploitation of a different trophic niche.

  10. First calibration measurements of an FTIR absorption spectroscopy system for liquid hydrogen isotopologues for the isotope separation system of fusion power plants

    SciTech Connect

    Groessle, R.; Beck, A.; Bornschein, B.; Fischer, S.; Kraus, A.; Mirz, S.; Rupp, S.

    2015-03-15

    Fusion facilities like ITER and DEMO will circulate huge amounts of deuterium and tritium in their fuel cycle with an estimated throughput of kg per hour. One important capability of these fuel cycles is to separate the hydrogen isotopologues (H{sub 2}, D{sub 2}, T{sub 2}, HD, HT, DT). For this purpose the Isotope Separation System (ISS), using cryogenic distillation, as part of the Tritium Enrichment Test Assembly (TRENTA) is under development at Tritium Laboratory Karlsruhe. Fourier transform infrared absorption spectroscopy (FTIR) has been selected to prove its capability for online monitoring of the tritium concentration in the liquid phase at the bottom of the distillation column of the ISS. The actual research-development work is focusing on the calibration of such a system. Two major issues are the identification of appropriate absorption lines and their dependence on the isotopic concentrations and composition. For this purpose the Tritium Absorption IR spectroscopy experiment has been set up as an extension of TRENTA. For calibration a Raman spectroscopy system is used. First measurements, with equilibrated mixtures of H{sub 2}, D{sub 2} and HD demonstrate that FTIR can be used for quantitative analysis of liquid hydro-gen isotopologues and reveal a nonlinear dependence of the integrated absorbance from the D{sub 2} concentration in the second vibrational branch of D{sub 2} FTIR spectra. (authors)

  11. Steam Reforming Solidification of Cesium and Strontium Separations Product from Advanced Aqueous Processing of Spent Nuclear Fuel

    SciTech Connect

    Julia L. Tripp; T. G. Garn; R. D. Boardman; J. D. Law

    2006-02-01

    The Advanced Fuel Cycle Initiative program is conducting research on aqueous separations processes for the nuclear fuel cycle. This research includes development of solvent extraction processes for the separation of cesium and strontium from dissolved spent nuclear fuel solutions to reduce the short-term decay heat load. The cesium/strontium strip solution from candidate separation processes will require treatment and solidification for managed storage. Steam reforming is currently being investigated for stabilization of these streams because it can potentially destroy the nitrates and organics present in these aqueous, nitrate-bearing solutions, while converting the cesium and strontium into leach-resistant aluminosilicate minerals, such as pollucite. These ongoing experimental studies are being conducted to evaluate the effectiveness of steam reforming for this application.

  12. Recent Development of Advanced Materials with Special Wettability for Selective Oil/Water Separation.

    PubMed

    Ma, Qinglang; Cheng, Hongfei; Fane, Anthony G; Wang, Rong; Zhang, Hua

    2016-02-22

    The increasing number of oil spill accidents have a catastrophic impact on our aquatic environment. Recently, special wettable materials used for the oil/water separation have received significant research attention. Due to their opposing affinities towards water and oil, i.e., hydrophobic and oleophilic, or hydrophilic and oleophobic, such materials can be used to remove only one phase from the oil/water mixture, and simultaneously repel the other phase, thus achieving selective oil/water separation. Moreover, the synergistic effect between the surface chemistry and surface architecture can further promote the superwetting behavior, resulting in the improved separation efficiency. Here, recently developed materials with special wettability for selective oil/water separation are summarized and discussed. These materials can be categorized based on their oil/water separating mechanisms, i.e., filtration and absorption. In each section, representative studies will be highlighted, with emphasis on the materials wetting properties and innovative aspects. Finally, challenges and future research directions in this emerging and promising research field will be briefly described.

  13. Recent Development of Advanced Materials with Special Wettability for Selective Oil/Water Separation.

    PubMed

    Ma, Qinglang; Cheng, Hongfei; Fane, Anthony G; Wang, Rong; Zhang, Hua

    2016-04-27

    The increasing number of oil spill accidents have a catastrophic impact on our aquatic environment. Recently, special wettable materials used for the oil/water separation have received significant research attention. Due to their opposing affinities towards water and oil, i.e., hydrophobic and oleophilic, or hydrophilic and oleophobic, such materials can be used to remove only one phase from the oil/water mixture, and simultaneously repel the other phase, thus achieving selective oil/water separation. Moreover, the synergistic effect between the surface chemistry and surface architecture can further promote the superwetting behavior, resulting in the improved separation efficiency. Here, recently developed materials with special wettability for selective oil/water separation are summarized and discussed. These materials can be categorized based on their oil/water separating mechanisms, i.e., filtration and absorption. In each section, representative studies will be highlighted, with emphasis on the materials wetting properties and innovative aspects. Finally, challenges and future research directions in this emerging and promising research field will be briefly described.

  14. Chapter 13 Petrogenesis of the Campanian Ignimbrite: implications for crystal-melt separation and open-system processes from major and trace elements and Th isotopic data

    USGS Publications Warehouse

    Bohrson, W.A.; Spera, F.J.; Fowler, S.J.; Belkin, H.E.; de Vivo, B.; Rolandi, G.

    2006-01-01

    The Campanian Ignimbrite is a large-volume trachytic to phonolitic ignimbrite that was deposited at ???39.3 ka and represents one of a number of highly explosive volcanic events that have occurred in the region near Naples, Italy. Thermodynamic modeling using the MELTS algorithm reveals that major element variations are dominated by crystal-liquid separation at 0.15 GPa. Initial dissolved H2O content in the parental melt is ???3 wt.% and the magmatic system fugacity of oxygen was buffered along QFM+1. Significantly, MELTS results also indicate that the liquid line of descent is marked by a large change in the proportion of melt (from 0.46 to 0.09) at ???884??C, which leads to a discontinuity in melt composition (i.e., a compositional gap) and different thermodynamic and transport properties of melt and magma across the gap. Crystallization of alkali feldspar and plagioclase dominates the phase assemblage at this pseudo-invariant point temperature of ???884??C. Evaluation of the variations in the trace elements Zr, Nb, Th, U, Rb, Sm, and Sr using a mass balance equation that accounts for changing bulk mineral-melt partition coefficients as crystallization occurs indicates that crystal-liquid separation and open-system processes were important. Th isotope data yield an apparent isochron that is ???20 kyr younger than the age of the deposit, and age-corrected Th isotope data indicate that the magma body was an open system at the time of eruption. Because open-system behavior can profoundly change isotopic and elemental characteristics of a magma body, these Th results illustrate that it is critical to understand the contribution that open-system processes make to magmatic systems prior to assigning relevance to age or timescale information derived from such systems. Fluid-magma interaction has been proposed as a mechanism to change isotopic and elemental characteristics of magma bodies, but an evaluation of the mass and thermal constraints on such a process suggests

  15. Advanced Refractory and Anti-Wearing Technology of Cyclone Separator in CFB Boiler

    NASA Astrophysics Data System (ADS)

    Chen, H. P.; Shen, Y. Q.; Wang, X. H.; Dai, X. M.; Xue, H. Y.; Liu, D. C.

    The circulating fluidized bed is playing more and more vital role in the electric power field. Cyclone separator as the heart of the circulating fluidized bed combustion boiler, the technology of fire-resistant anti-wear layer in cyclone separator is the guarantee for the long-life and working safety of CFB unit. Based on the comparison of insulation-cyclone and water-cooled cyclone, a novel technology of Anchor bricks use in the cyclone separator was put forward. The temperature of Anchor brick surface is just 80˜90°C, much lower than conventional technology. The problems caused by conventional Y-shaped hook welding were overcome, such as fire-resistant anti-wear layer burned, fire-resistant anti-wear layer rupture, the high temperature of separator's surface, a large number of heat dissipation and etc. Simultaneously, three types of Anchor brick were designed for the different parts of cyclone. It was applied successfully in Thermal Power Plant in Shaoguan Iron and Steel Company. The life time and the operation cycle of the fire-resistant anti-wear layer of the cyclone were prolonged, and the number of boiler off was reduced greatly. Hence, the continuous operation time of boiler was extended. It played a key role in improving the overall economic efficiency of power plant. It is great for the utilization and development of CFB technology.

  16. Advanced separators based on aromatic polymer for high energy density lithium batteries

    DOEpatents

    Zhang, Zhengcheng; Woo, Jung-Je; Amine, Khalil

    2017-03-21

    A process includes casting a solution including poly(phenylene oxide), inorganic nanoparticles, a solvent, and a non-solvent on a substrate; and removing the solvent to form a porous film; wherein: the porous film is configured for use as a porous separator for a lithium ion battery.

  17. A flexible sulfur-graphene-polypropylene separator integrated electrode for advanced Li-S batteries.

    PubMed

    Zhou, Guangmin; Li, Lu; Wang, Da-Wei; Shan, Xu-Yi; Pei, Songfeng; Li, Feng; Cheng, Hui-Ming

    2015-01-27

    A flexible Li-S battery based on an integrated structure of sulfur and graphene on a separator is developed. The internal graphene current collector offers a continuous conductive pathway, a modified interface with sulfur, and a good barrier to and an effective reservoir for dissolved polysulfides, consequently improving the capacity and cyclic life of the Li-S battery.

  18. Separating Autotrophic and Heterotrophic Contributions to Soil Respiration in Maize-Based Agroecosystems Using Stable Carbon Isotope Ratio Mass Spectrometry.

    NASA Astrophysics Data System (ADS)

    Amos, B.; Walters, D. T.; Madhavan, S.; Arkebauer, T. J.; Scoby, D. L.

    2005-12-01

    Any effort to establish a carbon budget for a growing crop by means of a thorough accounting of all C sources and sinks will require the ability to discriminate between autotrophic and heterotrophic contributions to soil surface CO2 flux. Autotrophic soil respiration (Ra) is defined as combined root respiration and the respiration of soil microorganisms residing in the rhizosphere and using root-derived carbohydrates as an energy source, while heterotrophic respiration (Rh) is defined as the respiration of soil microorganisms and macroorganisms not directly under the influence of the live root system and using SOM as an energy source. We partition soil surface CO2 flux into its autotrophic and heterotrophic components by combining root exclusion with stable carbon isotope techniques in production scale (~65 ha) maize-based agroecosystems. After flux measurements, small chambers are placed on collars in both root excluded shields and in non-root excluded soil, ambient headspace CO2 is removed using a soda lime trap, and soil-respired C is allowed to collect in the chambers. Soil respiration samples are then collected in 12mL evacuated exetainers and analyzed for δ13C by means of a Finnigan Delta-S isotope ratio mass spectrometer interfaced with a Thermo Finnigan GasBench II and a cryogenic trap to increase CO2 concentration. These δ13C measurements were made throughout the 2005 growing season in maize fields representing three agroecosystems: irrigated continuous maize, irrigated maize-soybean rotation, and rainfed maize soybean rotation. Estimates of autotrophic and heterotrophic soil respiration along with other results of this study will be presented.

  19. Membrane contactor/separator for an advanced ozone membrane reactor for treatment of recalcitrant organic pollutants in water

    NASA Astrophysics Data System (ADS)

    Kit Chan, Wai; Jouët, Justine; Heng, Samuel; Lun Yeung, King; Schrotter, Jean-Christophe

    2012-05-01

    An advanced ozone membrane reactor that synergistically combines membrane distributor for ozone gas, membrane contactor for pollutant adsorption and reaction, and membrane separator for clean water production is described. The membrane reactor represents an order of magnitude improvement over traditional semibatch reactor design and is capable of complete conversion of recalcitrant endocrine disrupting compounds (EDCs) in water at less than three minutes residence time. Coating the membrane contactor with alumina and hydrotalcite (Mg/Al=3) adsorbs and traps the organics in the reaction zone resulting in 30% increase of total organic carbon (TOC) removal. Large surface area coating that diffuses surface charges from adsorbed polar organic molecules is preferred as it reduces membrane polarization that is detrimental to separation.

  20. Experimental Demonstration of Advanced Palladium Membrane Separators for Central High Purity Hydrogen Production

    SciTech Connect

    Sean Emerson; Neal Magdefrau; Susanne Opalka; Ying She; Catherine Thibaud-Erkey; Thoman Vanderspurt; Rhonda Willigan

    2010-06-30

    The overall objectives for this project were to: (1) confirm the high stability and resistance of a PdCu trimetallic alloy to carbon and carbide formation and, in addition, resistance to sulfur, halides, and ammonia; (2) develop a sulfur, halide, and ammonia resistant alloy membrane with a projected hydrogen permeance of 25 m{sup 3}m{sup -2}atm{sup -0.5}h{sup -1} at 400 C and capable of operating at pressures of 12.1 MPa ({approx}120 atm, 1750 psia); and (3) construct and experimentally validate the performance of 0.1 kg/day H{sup 2} PdCu trimetallic alloy membrane separators at feed pressures of 2 MPa (290 psia) in the presence of H{sub 2}S, NH{sub 3}, and HCl. This project successfully increased the technology readiness level of palladium-based metallic membranes for hydrogen separation from coal-biomass gasifier exhaust or similar hydrogen-containing gas streams. The reversible tolerance of palladium-copper (PdCu) alloys was demonstrated for H{sub 2}S concentrations varying from 20 ppmv up to 487 ppmv and NH{sub 3} concentrations up to 9 ppmv. In addition, atomistic modeling validated the resistance of PdCu alloys to carbon formation, irreversible sulfur corrosion, and chlorine attack. The experimental program highlighted two key issues which must be addressed as part of future experimental programs: (1) tube defects and (2) non-membrane materials of construction. Four out of five FCC PdCu separators developed leaks during the course of the experimental program because {approx}10% of the alloy tubes contained a single defect that resulted in a thin, weak point in the tube walls. These defects limited operation of the existing tubes to less than 220 psig. For commercial applications of a PdCu alloy hydrogen separator under high sulfur concentrations, it was determined that stainless steel 316 is not suitable for housing or supporting the device. Testing with sulfur concentrations of 487 {+-} 4 ppmv resulted in severe corrosion of the stainless steel components of

  1. Selective IR multiphoton dissociation of molecules in a pulsed gas-dynamically cooled molecular flow interacting with a solid surface as an alternative to low-energy methods of molecular laser isotope separation

    SciTech Connect

    Makarov, G N; Petin, A N

    2016-03-31

    We report the results of studies on the isotope-selective infrared multiphoton dissociation (IR MFD) of SF{sub 6} and CF{sub 3}I molecules in a pulsed, gas-dynamically cooled molecular flow interacting with a solid surface. The productivity of this method in the conditions of a specific experiment (by the example of SF{sub 6} molecules) is evaluated. A number of low-energy methods of molecular laser isotope separation based on the use of infrared lasers for selective excitation of molecules are analysed and their productivity is estimated. The methods are compared with those of selective dissociation of molecules in the flow interacting with a surface. The advantages of this method compared to the low-energy methods of molecular laser isotope separation and the IR MPD method in the unperturbed jets and flows are shown. It is concluded that this method could be a promising alternative to the low-energy methods of molecular laser isotope separation. (laser separation of isotopes)

  2. Carbon dioxide capture and separation techniques for advanced power generation point sources

    SciTech Connect

    Pennline, H.W.; Luebke, D.R.; Morsi, B.I.; Heintz, Y.J.; Jones, K.L.; Ilconich, J.B.

    2006-09-01

    The capture/separation step for carbon dioxide (CO2) from large-point sources is a critical one with respect to the technical feasibility and cost of the overall carbon sequestration scenario. For large-point sources, such as those found in power generation, the carbon dioxide capture techniques being investigated by the in-house research area of the National Energy Technology Laboratory possess the potential for improved efficiency and costs as compared to more conventional technologies. The investigated techniques can have wide applications, but the research has focused on capture/separation of carbon dioxide from flue gas (postcombustion from fossil fuel-fired combustors) and from fuel gas (precombustion, such as integrated gasification combined cycle – IGCC). With respect to fuel gas applications, novel concepts are being developed in wet scrubbing with physical absorption; chemical absorption with solid sorbents; and separation by membranes. In one concept, a wet scrubbing technique is being investigated that uses a physical solvent process to remove CO2 from fuel gas of an IGCC system at elevated temperature and pressure. The need to define an ideal solvent has led to the study of the solubility and mass transfer properties of various solvents. Fabrication techniques and mechanistic studies for hybrid membranes separating CO2 from the fuel gas produced by coal gasification are also being performed. Membranes that consist of CO2-philic silanes incorporated into an alumina support or ionic liquids encapsulated into a polymeric substrate have been investigated for permeability and selectivity. An overview of two novel techniques is presented along with a research progress status of each technology.

  3. Advanced fire-resistant forms of activated carbon and methods of adsorbing and separating gases using same

    SciTech Connect

    Xiong, Yongliang; Wang, Yifeng

    2015-02-03

    Advanced, fire-resistant activated carbon compositions useful in adsorbing gases; and having vastly improved fire resistance are provided, and methods for synthesizing the compositions are also provided. The advanced compositions have high gas adsorption capacities and rapid adsorption kinetics (comparable to commercially-available activated carbon), without having any intrinsic fire hazard. They also have superior performance to Mordenites in both adsorption capacities and kinetics. In addition, the advanced compositions do not pose the fibrous inhalation hazard that exists with use of Mordenites. The fire-resistant compositions combine activated carbon mixed with one or more hydrated and/or carbonate-containing minerals that release H.sub.2O and/or CO.sub.2 when heated. This effect raises the spontaneous ignition temperature to over 500.degree. C. in most examples, and over 800.degree. C. in some examples. Also provided are methods for removing and/or separating target gases, such as Krypton or Argon, from a gas stream by using such advanced activated carbons.

  4. Use of activated sludge biomass as an agent for advanced primary separation.

    PubMed

    Araneda, Michael; Pavez, Javier; Luza, Benjamín; Jeison, David

    2017-05-01

    Conventional primary settling is a physical process of solid-liquid separation, normally presenting low removal efficiencies. Improvement of this separation process would result in energetic advantages: lower aeration requirements and higher biogas production form primary and secondary sludges. Secondary sludge has been proposed as a potential agent promoting an increase in primary separation efficiency. Few processes have been proposed, based on the cultivation of sludge under special conditions. However, one can speculate that regular sludge may have a similar effect. The aim of this research was to study that possibility. Sludges from different activated sludge reactors were tested. Results showed that COD removals were up to 55%, 2 times higher than that for simple settling. Under that condition, COD balances showed that aeration requirements would reduce 40%, and biogas production from primary and secondary sludges would increase 50%. It is inferred then that the application of activated sludge as an external agent represents an interesting alternative that have the potential to significantly improve energetic efficiency of sewage treatment plants.

  5. Evaluation of the Use of Synroc to Solidify the Cesium and Strontium Separations Product from Advanced Aqueous Reprocessing of Spent Nuclear Fuel

    SciTech Connect

    Julia Tripp; Vince Maio

    2006-03-01

    This report is a literature evaluation on the Synroc process for determining the potential for application to solidification of the Cs/Sr strip product from advanced aqueous fuel separations activities.

  6. ADVANCED TECHNOLOGIES FOR THE SIMULTANEOUS SEPARATION OF CESIUM AND STRONTIUM FROM SPENT NUCLEAR FUEL

    SciTech Connect

    Jack D. Law; Terry A. Todd; R. Scott Herbst; David H. Meikrantz; Dean R. Peterman; Catherine L. Riddle; Richard D. Tillotson

    2005-02-01

    Two new solvent extraction technologies have been recently developed to simultaneously separate cesium and strontium from spent nuclear fuel, following dissolution in nitric acid. The first process utilizes a solvent consisting of chlorinated cobalt dicarbollide and polyethylene glycol extractants in a phenyltrifluoromethyl sulfone diluent. Recent improvements to the process include development of a new, non-nitroaromatic diluent and development of new stripping reagents, including a regenerable strip reagent that can be recovered and recycled. This new strip reagent reduces product volume by a factor of 20, over the baseline process. Countercurrent flowsheet tests on simulated spent nuclear fuel feed streams have been performed with both cesium and strontium removal efficiencies of greater than 99 %. The second process developed to simultaneously separate cesium and strontium from spent nuclear fuel is based on two highly-specific extractants: 4',4',(5')-Di-(t-butyldicyclo-hexano)-18-crown-6 (DtBuCH18C6) and Calix[4]arene-bis-(tert-octylbenzo-crown-6) (BOBCalixC6). The DtBuCH18C6 extractant is selective for strontium and the BOBCalixC6 extractant is selective for cesium. A solvent composition has been developed that enables both elements to be removed together and, in fact, a synergistic effect was observed with strontium distributions in the combined solvent that are much higher that in the strontium extraction (SREX) process. Initial laboratory test results of the new combined cesium and strontium extraction process indicate good extraction and stripping performance.

  7. Cosmic ray isotopes

    NASA Technical Reports Server (NTRS)

    Stone, E. C.

    1973-01-01

    The isotopic composition of cosmic rays is studied in order to develop the relationship between cosmic rays and stellar processes. Cross section and model calculations are reported on isotopes of H, He, Be, Al and Fe. Satellite instrument measuring techniques separate only the isotopes of the lighter elements.

  8. Advances in sample preparation in electromigration, chromatographic and mass spectrometric separation methods.

    PubMed

    Gilar, M; Bouvier, E S; Compton, B J

    2001-02-16

    The quality of sample preparation is a key factor in determining the success of analysis. While analysis of pharmaceutically important compounds in biological matrixes has driven forward the development of sample clean-up procedures in last 20 years, today's chemists face an additional challenge: sample preparation and analysis of complex biochemical samples for characterization of genotypic or phenotypic information contained in DNA and proteins. This review focuses on various sample pretreatment methods designed to meet the requirements for the analysis of biopolymers and small drugs in complex matrices. We discuss the advances in development of solid-phase extraction (SPE) sorbents, on-line SPE, membrane-based sample preparation, and sample clean-up of biopolymers prior to their analysis by mass spectrometry.

  9. Virtual charge state separator as an advanced tool coupling measurements and simulations

    NASA Astrophysics Data System (ADS)

    Yaramyshev, S.; Vormann, H.; Adonin, A.; Barth, W.; Dahl, L.; Gerhard, P.; Groening, L.; Hollinger, R.; Maier, M.; Mickat, S.; Orzhekhovskaya, A.

    2015-05-01

    A new low energy beam transport for a multicharge uranium beam will be built at the GSI High Current Injector (HSI). All uranium charge states coming from the new ion source will be injected into GSI heavy ion high current HSI Radio Frequency Quadrupole (RFQ), but only the design ions U4 + will be accelerated to the final RFQ energy. A detailed knowledge about injected beam current and emittance for pure design U4 + ions is necessary for a proper beam line design commissioning and operation, while measurements are possible only for a full beam including all charge states. Detailed measurements of the beam current and emittance are performed behind the first quadrupole triplet of the beam line. A dedicated algorithm, based on a combination of measurements and the results of advanced beam dynamics simulations, provides for an extraction of beam current and emittance values for only the U4 + component of the beam. The proposed methods and obtained results are presented.

  10. Advanced Multidimensional Separations in Mass Spectrometry: Navigating the Big Data Deluge

    NASA Astrophysics Data System (ADS)

    May, Jody C.; McLean, John A.

    2016-06-01

    Hybrid analytical instrumentation constructed around mass spectrometry (MS) is becoming the preferred technique for addressing many grand challenges in science and medicine. From the omics sciences to drug discovery and synthetic biology, multidimensional separations based on MS provide the high peak capacity and high measurement throughput necessary to obtain large-scale measurements used to infer systems-level information. In this article, we describe multidimensional MS configurations as technologies that are big data drivers and review some new and emerging strategies for mining information from large-scale datasets. We discuss the information content that can be obtained from individual dimensions, as well as the unique information that can be derived by comparing different levels of data. Finally, we summarize some emerging data visualization strategies that seek to make highly dimensional datasets both accessible and comprehensible.

  11. Real-Time Volumetric Phase Monitoring: Advancing Chemical Analysis by Countercurrent Separation.

    PubMed

    Pauli, Guido F; Pro, Samuel M; Chadwick, Lucas R; Burdick, Thomas; Pro, Luke; Friedl, Warren; Novak, Nick; Maltby, John; Qiu, Feng; Friesen, J Brent

    2015-07-21

    Countercurrent separation (CCS) utilizes the differential partitioning behavior of analytes between two immiscible liquid phases. We introduce the first platform ("CherryOne") capable of real-time monitoring, metering, and control of the dynamic liquid-liquid CCS process. Automated phase monitoring and volumetrics are made possible with an array of sensors, including the new permittivity-based phase metering apparatus (PMA). Volumetric data for each liquid phase are converted into a dynamic real-time display of stationary phase retention (Sf) and eluent partition coefficients (K), which represent critical parameters of CCS reproducibility. When coupled with the elution-extrusion operational mode (EECCC), automated Sf and K determination empowers untargeted and targeted applications ranging from metabolomic analysis to preparative purifications.

  12. Advanced microinstrumentation for rapid DNA sequencing and large DNA fragment separation

    SciTech Connect

    Balch, J.; Davidson, J.; Brewer, L.; Gingrich, J.; Koo, J.; Mariella, R.; Carrano, A.

    1995-01-25

    Our efforts to develop novel technology for a rapid DNA sequencer and large fragment analysis system based upon gel electrophoresis are described. We are using microfabrication technology to build dense arrays of high speed micro electrophoresis lanes that will ultimately increase the sequencing rate of DNA by at least 100 times the rate of current sequencers. We have demonstrated high resolution DNA fragment separation needed for sequencing in polyacrylamide microgels formed in glass microchannels. We have built prototype arrays of microchannels having up to 48 channels. Significant progress has also been made in developing a sensitive fluorescence detection system based upon a confocal microscope design that will enable the diagnostics and detection of DNA fragments in ultrathin microchannel gels. Development of a rapid DNA sequencer and fragment analysis system will have a major impact on future DNA instrumentation used in clinical, molecular and forensic analysis of DNA fragments.

  13. Process for producing enriched uranium having a {sup 235}U content of at least 4 wt. % via combination of a gaseous diffusion process and an atomic vapor laser isotope separation process to eliminate uranium hexafluoride tails storage

    DOEpatents

    Horton, J.A.; Hayden, H.W. Jr.

    1995-05-30

    An uranium enrichment process capable of producing an enriched uranium, having a {sup 235}U content greater than about 4 wt. %, is disclosed which will consume less energy and produce metallic uranium tails having a lower {sup 235}U content than the tails normally produced in a gaseous diffusion separation process and, therefore, eliminate UF{sub 6} tails storage and sharply reduce fluorine use. The uranium enrichment process comprises feeding metallic uranium into an atomic vapor laser isotope separation process to produce an enriched metallic uranium isotopic mixture having a {sup 235} U content of at least about 2 wt. % and a metallic uranium residue containing from about 0.1 wt. % to about 0.2 wt. % {sup 235} U; fluorinating this enriched metallic uranium isotopic mixture to form UF{sub 6}; processing the resultant isotopic mixture of UF{sub 6} in a gaseous diffusion process to produce a final enriched uranium product having a {sup 235}U content of at least 4 wt. %, and up to 93.5 wt. % or higher, of the total uranium content of the product, and a low {sup 235}U content UF{sub 6} having a {sup 235}U content of about 0.71 wt. % of the total uranium content of the low {sup 235}U content UF{sub 6}; and converting this low {sup 235}U content UF{sub 6} to metallic uranium for recycle to the atomic vapor laser isotope separation process. 4 figs.

  14. Process for producing enriched uranium having a .sup.235 U content of at least 4 wt. % via combination of a gaseous diffusion process and an atomic vapor laser isotope separation process to eliminate uranium hexafluoride tails storage

    DOEpatents

    Horton, James A.; Hayden, Jr., Howard W.

    1995-01-01

    An uranium enrichment process capable of producing an enriched uranium, having a .sup.235 U content greater than about 4 wt. %, is disclosed which will consume less energy and produce metallic uranium tails having a lower .sup.235 U content than the tails normally produced in a gaseous diffusion separation process and, therefore, eliminate UF.sub.6 tails storage and sharply reduce fluorine use. The uranium enrichment process comprises feeding metallic uranium into an atomic vapor laser isotope separation process to produce an enriched metallic uranium isotopic mixture having a .sup.235 U content of at least about 2 wt. % and a metallic uranium residue containing from about 0.1 wt. % to about 0.2 wt. % .sup.235 U; fluorinating this enriched metallic uranium isotopic mixture to form UF.sub.6 ; processing the resultant isotopic mixture of UF.sub.6 in a gaseous diffusion process to produce a final enriched uranium product having a .sup.235 U content of at least 4 wt. %, and up to 93.5 wt. % or higher, of the total uranium content of the product, and a low .sup.235 U content UF.sub.6 having a .sup.235 U content of about 0.71 wt. % of the total uranium content of the low .sup.235 U content UF.sub.6 ; and converting this low .sup.235 U content UF.sub.6 to metallic uranium for recycle to the atomic vapor laser isotope separation process.

  15. Recent advances in the solution of three-dimensional flow over wings with leading edge vortex separation

    NASA Technical Reports Server (NTRS)

    Johnson, F. T.; Tinoco, E. N.; Lu, P.; Epton, M. A.

    1979-01-01

    Recent advances in a panel method for the solution of three-dimensional flow about wing and wing-body combinations with leading-edge vortex separation are presented. These advances were achieved as part of an ultimately successful assault on two shortcomings of the method, namely convergence failures in seemingly random cases, and overprediction of lift coefficient for high aspect-ratio wings. Advances include the implementation of improved panel numerics for the purpose of eliminating the highly non-linear effects of ring vortices around doublet panel edges, and the development of a least squares procedure for damping vortex sheet geometry update instabilities. A variety of cases generated by the computer program implementing the method are presented. These cases are of two types. The first type consists of numerical studies, which verify the underlying mathematical assumptions of the method and moreover show that the results are strongly invariant with respect to such user dependent input as wing panel layout, initial sheet shape, sheet rollup, etc. The second type consists of cases run for the purpose of comparing computed results with experimental data, and these comparisons verify the underlying physical assumptions made by the method.

  16. Advances in Development of the Fission Product Extraction Process for the Separation of Cesium and Strontium from Spent Nuclear Fuel

    SciTech Connect

    JAck D. Law

    2007-09-01

    The Fission Product Extraction (FPEX) Process is being developed as part of the United States Department of Energy Advanced Fuel Cycle Initiative for the simultaneous separation of cesium (Cs) and strontium (Sr) from spent light water reactor (LWR) fuel. Separation of the Cs and Sr will reduce the short-term heat load in a geological repository, and when combined with the separation of americium (Am) and curium (Cm), could increase the capacity of the geological repository by a factor of approximately 100. The FPEX process is based on two highly specific extractants: 4,4',(5')-Di-(t-butyldicyclo-hexano)-18-crown-6 (DtBuCH18C6) and Calix[4]arene-bis-(tert-octylbenzo-crown-6) (BOBCalixC6). The DtBuCH18C6 extractant is selective for strontium and the BOBCalixC6 extractant is selective for cesium. Results of flowsheet testing of the FPEX process with a simulated feed solution in 3.3-cm centrifugal contactors are detailed. Removal efficiencies, distribution coefficient data, coextraction of metals, and process hydrodynamic performance are discussed along with recommendations for future flowsheet testing with actual spent nuclear fuel.

  17. Advanced oxygen-separation membranes. Topical report, April 1989-September 1990

    SciTech Connect

    Wright, J.D.; Copeland, R.J.

    1990-09-01

    The value of oxygen in improving the economics of high-temperature, natural-gas-fired processes is calculated, and the size and characteristics of the markets where oxygen-enhanced combustion could improve natural gas utilization are analyzed. Next, the cost of existing oxygen-separation processes is surveyed. Together, these define an economic target which any new production technology must meet if it is to be accepted. The bulk of the report analyzes three membrane based processes for oxygen production: polymeric membranes, porous ceramic membranes, and oxygen ion conducting membranes. Polymeric membranes are a commercially available technology limited to the production of oxygen-enriched air (OEA). Porous ceramic membranes have higher fluxes, higher costs, and are also limited to the production of OEA. Solid electrolyte, oxygen ion conductors produce pure oxygen, are applicable at both the very small and very large scales, and can potentially be less expensive than current technologies. In order to achieve this, better oxygen ion conductors and/or thinner membranes are required and membrane costs must be reduced. Improved conductors and thinner membranes are a target for fundamental research, while reduced costs will come both from improved materials and the general growth of the high-performance ceramics industry.

  18. Advanced Acid Gas Separation Technology for the Utilization of Low Rank Coals

    SciTech Connect

    Kloosterman, Jeff

    2012-12-31

    Air Products has developed a potentially ground-breaking technology – Sour Pressure Swing Adsorption (PSA) – to replace the solvent-based acid gas removal (AGR) systems currently employed to separate sulfur containing species, along with CO{sub 2} and other impurities, from gasifier syngas streams. The Sour PSA technology is based on adsorption processes that utilize pressure swing or temperature swing regeneration methods. Sour PSA technology has already been shown with higher rank coals to provide a significant reduction in the cost of CO{sub 2} capture for power generation, which should translate to a reduction in cost of electricity (COE), compared to baseline CO{sub 2} capture plant design. The objective of this project is to test the performance and capability of the adsorbents in handling tar and other impurities using a gaseous mixture generated from the gasification of lower rank, lignite coal. The results of this testing are used to generate a high-level pilot process design, and to prepare a techno-economic assessment evaluating the applicability of the technology to plants utilizing these coals.

  19. Advanced inorganic separators for alkaline batteries and method of making the same

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W. (Inventor)

    1983-01-01

    A flexible, porous battery separator includes a coating applied to a porous, flexible substrate. The coating comprises: (1) a thermoplastic rubber-based resin which is insoluble and unreactive in the alkaline electrolyte, (2) a polar organic plasticizer which is reactive with the alkaline electrolyte to produce a reaction product which contains a hydroxyl group and/or a carboxylic acid group, and (3) a mixture of polar particulate filler materials which are unreactive with the electrode. The mixture comprises at least one first filler material having a surface area of greater than 25 sq meters/gram, at last one second filler material having a surface area of 10 to 25 sq meters/gram. The volume of the mixture of filler materials is less than 45% of the total volume of the fillers and the binder. The filler surface area per gram of binder is about 20 to 60 sq meters/gram, and the amount of plasticizer is sufficient to coat each filler particle.

  20. Development of Cellulose/PVDF-HFP Composite Membranes for Advanced Battery Separators

    NASA Astrophysics Data System (ADS)

    Castillo, Alejandro; Agubra, Victor; Alcoutlabi, Mataz; Mao, Yuanbing

    Improvements in battery technology are necessary as Li-ion batteries transition from consumer electronic to vehicular and industrial uses. An important bottle-neck in battery efficiency and safety is the quality of the separators, which prevent electric short-circuits between cathode and anode, while allowing an easy flow of ions between them. In this study, cellulose acetate was dissolved in a mixed solvent with poly(vinylpyrrolidone) (PVP), and the mixture was forcespun in a peudo paper making process to yield nanofibrillated nonwoven mats. The mats were soaked in NaOH/Ethanol to strip PVP and regenerate cellulose from its acetate precursor. The cellulose mats were then dipped in poly(vinylidenefluoride-co-hexafluoropropylene) (PVDF-HFP) to yield the cellulose/PVDF-HFP composte membranes. These membranes were characterized chemically through FTIR spectroscopy and solvent-stability tests, thermally through DSC, physically by stress/strain measurements along with weight-based electrolyte uptake, and electrically by AC-impedance spectroscopy combined with capacitative cycling.

  1. Environmental site description for a Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) production plant at the Portsmouth Gaseous Diffusion Plant site

    SciTech Connect

    Marmer, G.J.; Dunn, C.P.; Filley, T.H.; Moeller, K.L.; Pfingston, J.M.; Policastro, A.J.; Cleland, J.H.

    1991-09-01

    Uranium enrichment in the United States has utilized a diffusion process to preferentially enrich the U-235 isotope in the uranium product. In the 1970s, the US Department of Energy (DOE) began investigating more efficient and cost-effective enrichment technologies. In January 1990, the Secretary of Energy approved a plan for the demonstration and deployment of the Uranium Atomic Vapor Laser isotope Separation (U-AVLIS) technology with the near-term goal to provide the necessary information to make a deployment decision by November 1992. Initial facility operation is anticipated for 1999. A programmatic document for use in screening DOE sites to locate a U-AVLIS production plant was developed and implemented in two parts. The first part consisted of a series of screening analyses, based on exclusionary and other criteria, that identified a reasonable number of candidate sites. The final evaluation, which included sensitivity studies, identified the Oak Ridge Gaseous Diffusion Plant (ORGDP) site, the Paducah Gaseous Diffusion Plant (PGDP) site, and the Portsmouth Gaseous Diffusion Plant (PORTS) site as having significant advantages over the other sites considered. This environmental site description (ESD) provides a detailed description of the PORTS site and vicinity suitable for use in an environmental impact statement (EIS). This report is based on existing literature, data collected at the site, and information collected by Argonne National Laboratory (ANL) staff during site visits. The organization of the ESD is as follows. Topics addressed in Sec. 2 include a general site description and the disciplines of geology, water resources, biotic resources, air resources, noise, cultural resources, land use. Socioeconomics, and waste management. Identification of any additional data that would be required for an EIS is presented in Sec. 3.

  2. METHOD OF ISOTOPE CONCENTRATION

    DOEpatents

    Spevack, J.S.

    1957-04-01

    An isotope concentration process is described which consists of exchanging, at two or more different temperature stages, two isotopes of an element between substances that are physically separate from each other and each of which is capable of containing either of the isotopes, and withdrawing from a point between at least two of the temperatare stages one of the substances containing an increased concentration of the desired isotope.

  3. Preparing for Advanced LIGO: A Star–Galaxy Separation Catalog for the Palomar Transient Factory

    NASA Astrophysics Data System (ADS)

    Miller, A. A.; Kulkarni, M. K.; Cao, Y.; Laher, R. R.; Masci, F. J.; Surace, J. A.

    2017-02-01

    The search for fast optical transients, such as the expected electromagnetic counterparts to binary neutron star mergers, is riddled with false positives (FPs) ranging from asteroids to stellar flares. While moving objects are readily rejected via image pairs separated by ∼1 hr, stellar flares represent a challenging foreground, significantly outnumbering rapidly evolving explosions. Identifying stellar sources close to and fainter than the transient detection limit can eliminate these FPs. Here, we present a method to reliably identify stars in deep co-adds of Palomar Transient Factory (PTF) imaging. Our machine-learning methodology utilizes the random forest (RF) algorithm, which is trained using > 3× {10}6 sources with Sloan Digital Sky Survey (SDSS) spectra. When evaluated on an independent test set, the PTF RF model outperforms the SExtractor star classifier by ∼4%. For faint sources (r\\prime ≥slant 21 mag), which dominate the field population, the PTF RF model produces a ∼19% improvement over SExtractor. To avoid false negatives in the PTF transient-candidate stream, we adopt a conservative stellar classification threshold, corresponding to a galaxy misclassification rate of 0.005. Ultimately, ∼1.70× {10}8 objects are included in our PTF point-source catalog, of which only ∼106 are expected to be galaxies. We demonstrate that the PTF RF catalog reveals transients that otherwise would have been missed. To leverage its superior image quality, we additionally create an SDSS point-source catalog, which is also tuned to have a galaxy misclassification rate of 0.005. These catalogs have been incorporated into the PTF real-time pipelines to automatically reject stellar sources as non-extragalactic transients.

  4. Alcohol fuel use: Implications for atmospheric levels of aldehydes, organic nitrates, pans, and peroxides: Separating sources using carbon isotopes

    SciTech Connect

    Gaffney, J.S.; Tanner, R.L.

    1988-01-01

    We have developed DiNitroPhenylHydrazone (DNPH) derivatization--high performance liquid chromatographic methods for measuring aldehydes in ambient samples with detection limits of approximately 1ppbV. These methods can be used for air or precipitation studies, and have been used for indoor measurements at much higher levels using shorter integration times. We are using gas chromatographs with electron capture detection (GCECD) to measure ambient levels of peroxyacyl nitrates and organic nitrates. Diffusion tubes with synthetically produced organic nitrates in n-tridecane solution are used to calibrate these systems. These compounds are important means of transporting NO/sub x/ over large scales due to their reduced tropospheric reactivity, low water solubilities, photolytic, and thermal stability. Their chemistries are coupled to aldehyde chemistry and are important greenhouse gases as well as phytotoxins. We have completed preliminary studies in Rio de Janeiro examining the atmospheric chemistry consequences of ethanol fuel usage. The urban air mass has been effected by the direct uncontrolled usage of ethanolgasoline and ethanoldiesel mixtures. We are exploring the use of luminol chemiluminescent detection of peroxides using gas chromatography to separate the various organic and inorganic peroxides. These compounds are coupled to the aldehyde chemistry, particularly in remote chemistries down-wind of urban sources. 13 refs.

  5. Advanced separation technology for flue gas cleanup. Quarterly technical report No. 15

    SciTech Connect

    Bhown, A.S.; Pakala, N.; Riggs, T.; Tagg, T.

    1996-02-01

    The objective of this work is to develop a novel system for regenerable SO{sub 2} and NO{sub x} scrubbing of flue gas that focuses on (1) a novel method for regeneration of spent SO{sub 2} scrubbing liquor and (2) novel chemistry for reversible absorption of NO{sub x}. In addition, high efficiency hollow fiber contactors (HFC) are proposed as the devices for scrubbing the SO{sub 2} and NO{sub x} from the flue gas. The system will be designed to remove more than 95% of the SO{sub x} and more than 75% of the NO{sub x} from flue gases typical of pulverized coal-fired power plants at a cost that is at least 20% less than combined wet limestone scrubbing of SO{sub x} and selective catalytic reduction of NO{sub x}. In addition, the process will make only marketable byproducts, if any (no waste streams). Our approach is to reduce the capital cost by using high efficiency hollow fiber devices for absorbing and desorbing the SO{sub 2} and NO{sub x}. We will also introduce new process chemistry to minimize traditionally well-known problems with SO{sub 2} and NO{sub x} absorption and desorption. For example, we will extract the SO{sub 2} from the aqueous scrubbing liquor into an oligomer of dimethylaniline to avoid the problem of organic liquid losses in the regeneration of the organic liquid. Our novel chemistry for scrubbing NO{sub x} will consist of water soluble phthalocyanine compounds invented by SRI and also of polymeric forms of Fe{sup ++} complexes similar to traditional NO{sub x} scrubbing media. Finally, the arrangement of the absorbers is in cassette (stackable) form so that the NO{sub x} absorber can be on top of the SO{sub x} absorber. This cassette (stacked) arrangement makes it possible for the SO{sub 2} and NO{sub x} scrubbing chambers to be separate without incurring the large ducting and gas pressure drop costs necessary if a second conventional absorber vessel were used.

  6. Momentum transport cross-section measurements for potassium and rubidium in rare gases and white light-induced separation of rubidium isotopes

    SciTech Connect

    Mugglin, D.T.

    1993-12-31

    This dissertation is concerned with two light-induced kinetic effects, light-induced diffusive pulling and light-induced drift. We use a light-induced diffusive pulling experiment to measure the ground state velocity-changing collision cross section (related to the momentum transport cross section and the diffusion coefficient) and the relative difference ({Delta}{sigma}/{sigma}) of the excited and ground state cross sections with respect to that of the ground state for potassium mixed with inert buffer gases. The measured excited state cross section is a weighted average of the potassium 4{sup 2}P{sub 1/2} and 4{sup 2}P{sub 3/2} fine structure levels, which are mixed by collisions with inert gas atoms. For the ground state cross sections, we obtain the following experimental results for potassium mixed with He, Ne, Ar, Kr, and Xe, respectively: 52 {+-} 4, 57 {+-} 8, 61 {+-} 5, 43 {+-} 5, and 60 {+-}5 {angstrom}{sup 2}. For {Delta}{sigma}/{sigma}, we obtain the following (in the same order): 0.085 {+-} 0.010, 0.058 {+-} 0.006, 0.41 {+-} 0.03, 0.43 {+-} 0.03, and 0.61 {+-} 0.05. For potassium-Ne and potassium-Ar, we combine these measurements with light-induced drift measurements of the ratio {Delta}{sigma}(J = 3/2) : {Delta}{sigma}(J = 1/2) to obtain absolute transport cross sections for the individual 4{sup 2}S{sub 1/2}, 4{sup 2}P{sub 1/2}, and 4{sup 2}P{sub 3/2} levels. We also use the light-induced diffusive pulling experimental method to measure {Delta}{sigma}/{sigma} for Rb-inert gas mixtures. We obtain values for the ground state diffusion cross section for Rb in several of the inert gases as well. We report the first experimental observation of the separation of two isotopes using broadband light by the process of white light-induced drift. For a light source, we use a broadband laser with an acousto-optic modulator as an output coupler. We verify the separation of the {sup 85}Rb and {sup 87}Rb isotopes.

  7. Mechanistic Determination of Nitrogen Removal By Advanced Soil-Based Wastewater Treatment Systems Using 15n Isotopes

    NASA Astrophysics Data System (ADS)

    Cooper, J.; Loomis, G.; Kalen, D.; Boving, T. B.; Morales, I.; Amador, J.

    2014-12-01

    Current levels of nitrogen removal by onsite wastewater treatment systems (OWTS) are inadequate, with release of N from OWTS contributing to environmental N pollution, especially in coastal zones where aquatic ecosystems are sensitive to eutrophication. Current mechanistic understand of N removal are limited and mainly attributed to denitrification in the drainfield. Loss of N from N2O production during nitrification, a sparsely researched topic, may be a significant mechanism in advanced OWTS systems that enhance O2 diffusion by sand filter pre-treatment, shallow placement of infiltrative areas and timed dosing controls to prevent drainfield saturation. Replicate (n=3) intact soil mesocosms were used with 15N isotope to evaluate the effectiveness and mechanisms of N removal in drainfields with a conventional wastewater delivery (pipe-and-stone, P&S) compared to two advanced types of drainfields, pressurized shallow narrow drainfield (SND) and Geomat (GEO), a variation of a SND drainfield. Over the 11 day experiment, dissolved O2 was 1.6 mg/L for P&S and 3.0 mg/L for SND and GEO. Removal of total N was 13.5% for P&S, 4.8% for SND and 5.4% for GEO. 15NH4 labeled nitrogen inputs to drainfields were transformed primarily to 15NO3 in all outputs. Consistent low 15N2O levels were present in P&S, with increasing levels of N2 peaking 48h after 15NH4 injection, suggesting denitrification dominated N removal. By contrast, SND and GEO 15N2O levels rose quickly, peaking 8h after 15NH4 injection, suggesting N loss by nitrification. When the whole system is considered, including sand filter removal, 26 - 27% of total N was removed by the SND and GEO systems, whereas 14% of total N was removed in the P&S system. Our results suggest the SND and GEO systems as a whole are capable of removing a greater mass of N than the P&S system.

  8. Advanced Membrane Separation Technologies for Energy Recovery from Industrial Process Streams

    SciTech Connect

    Keiser, J. R.; Wang, D.; Bischoff, B.; Ciora,; Radhakrishnan, B.; Gorti, S. B.

    2013-01-14

    Recovery of energy from relatively low-temperature waste streams is a goal that has not been achieved on any large scale. Heat exchangers do not operate efficiently with low-temperature streams and thus require such large heat exchanger surface areas that they are not practical. Condensing economizers offer one option for heat recovery from such streams, but they have not been widely implemented by industry. A promising alternative to these heat exchangers and economizers is a prototype ceramic membrane system using transport membrane technology for separation of water vapor and recovery of heat. This system was successfully tested by the Gas Technology Institute (GTI) on a natural gas fired boiler where the flue gas is relatively clean and free of contaminants. However, since the tubes of the prototype system were constructed of aluminum oxide, the brittle nature of the tubes limited the robustness of the system and even limited the length of tubes that could be used. In order to improve the robustness of the membrane tubes and make the system more suitable for industrial applications, this project was initiated with the objective of developing a system with materials that would permit the system to function successfully on a larger scale and in contaminated and potentially corrosive industrial environments. This required identifying likely industrial environments and the hazards associated with those environments. Based on the hazardous components in these environments, candidate metallic materials were identified that are expected to have sufficient strength, thermal conductivity and corrosion resistance to permit production of longer tubes that could function in the industrial environments identified. Tests were conducted to determine the corrosion resistance of these candidate alloys, and the feasibility of forming these materials into porous substrates was assessed. Once the most promising metallic materials were identified, the ability to form an alumina

  9. Implementing an advanced waste separation step in an MBT plant: assessment of technical, economic and environmental impacts.

    PubMed

    Meirhofer, Martina; Piringer, Gerhard; Rixrath, Doris; Sommer, Manuel; Ragossnig, Arne Michael

    2013-10-01

    Heavy fractions resulting from mechanical treatment stages of mechanical-biological waste treatment plants are posing very specific demands with regard to further treatment (large portions of inert and high-caloric components). Based on the current Austrian legal situation such a waste stream cannot be landfilled and must be thermally treated. The aim of this research was to evaluate if an inert fraction generated from this waste stream with advanced separation technologies, two sensor-based [near-infrared spectroscopy (NIR), X-ray transmission (XRT)] and two mechanical systems (wet and dry) is able to be disposed of. The performance of the treatment options for separation was evaluated by characterizing the resulting product streams with respect to purity and yield. Complementing the technical evaluation of the processing options, an assessment of the economic and global warming effects of the change in waste stream routing was conducted. The separated inert fraction was evaluated with regard to landfilling. The remaining high-caloric product stream was evaluated with regard to thermal utilization. The results show that, in principal, the selected treatment technologies can be used to separate high-caloric from inert components. Limitations were identified with regard to the product qualities achieved, as well as to the economic expedience of the treatment options. One of the sensor-based sorting systems (X-ray) was able to produce the highest amount of disposeable heavy fraction (44.1%), while having the lowest content of organic (2.0% C biogenic per kg waste input) components. None of the high-caloric product streams complied with the requirements for solid recovered fuels as defined in the Austrian Ordinance on Waste Incineration. The economic evaluation illustrates the highest specific treatment costs for the XRT (€ 23.15 per t), followed by the NIR-based sorting system (€ 15.67 per t), and the lowest costs for the air separation system (€ 10.79 per t

  10. A Review of State-of-the-Art Separator Materials for Advanced Lithium-Based Batteries for Future Aerospace Missions

    NASA Technical Reports Server (NTRS)

    Bladwin, Richard S.

    2009-01-01

    As NASA embarks on a renewed human presence in space, safe, human-rated, electrical energy storage and power generation technologies, which will be capable of demonstrating reliable performance in a variety of unique mission environments, will be required. To address the future performance and safety requirements for the energy storage technologies that will enhance and enable future NASA Constellation Program elements and other future aerospace missions, advanced rechargeable, lithium-ion battery technology development is being pursued with an emphasis on addressing performance technology gaps between state-of-the-art capabilities and critical future mission requirements. The material attributes and related performance of a lithium-ion cell's internal separator component are critical for achieving overall optimal performance, safety and reliability. This review provides an overview of the general types, material properties and the performance and safety characteristics of current separator materials employed in lithium-ion batteries, such as those materials that are being assessed and developed for future aerospace missions.

  11. Advances in Methane Isotope Measurements via Direct Absorption Spectroscopy with Applications to Oil and Gas Source Characterization

    NASA Astrophysics Data System (ADS)

    Yacovitch, T. I.; Herndon, S. C.; Roscioli, J. R.; Petron, G.; Shorter, J. H.; Jervis, D.; McManus, J. B.; Nelson, D. D.; Zahniser, M. S.; Kolb, C. E., Jr.

    2015-12-01

    Instrumental developments in the measurement of multiple isotopes of methane (12CH4, 13CH4 and 12CH3D) are presented. A first generation 8-micron instrument quantifies 12CH4 and 13CH4 at a 1-second rate via tunable infrared direct absorption spectroscopy (TILDAS). A second generation instrument uses two 3-micron intraband cascade lasers in an Aerodyne dual laser chassis for simultaneous measurement of 12CH4, 13CH4 and 12CH3D. Sensitivity and noise performance improvements are examined. The isotopic signature of methane provides valuable information for emission source identification of this greenhouse gas. A first generation spectrometer has been deployed in the field on a mobile laboratory along with a sophisticated 4-tank calibration system. Calibrations are done on an agressive schedule, allowing for the correction of measured isotope ratios to an absolute isotope scale. Distinct isotopic signatures are found for a number of emission sources in the Denver-Julesburg Basin: oil and gas gathering stations, compressor stations and processing plants; a municipal landfill, and dairy/cattle operations. The isotopic signatures are compared with measured ethane/methane ratios. These direct absorption measurements have larger uncertainties than samples measured via gas chromatography-mass spectrometry, but have several advantages over canister sampling methods: individual sources of short duration are easier to isolate; calibrated isotope ratio results are available immediately; replicate measurements on a single source are easily performed; and the number of sources sampled is not limited by canister availability and processing time.

  12. SEPARATION OF HYDROGEN AND CARBON DIOXIDE USING A NOVEL MEMBRANE REACTOR IN ADVANCED FOSSIL ENERGY CONVERSION PROCESS

    SciTech Connect

    Shamsuddin Ilias

    2001-06-25

    Inorganic membrane reactors offer the possibility of combining reaction and separation in a single operation at high temperatures to overcome the equilibrium limitations experienced in conventional reactor configurations. Such attractive features can be advantageously utilized in a number of potential commercial opportunities, which include dehydrogenation, hydrogenation, oxidative dehydrogenation, oxidation and catalytic decomposition reactions. However, to be cost effective, significant technological advances and improvements will be required to solve several key issues which include: (a) permselective thin solid film, (b) thermal, chemical and mechanical stability of the film at high temperatures, and (c) reactor engineering and module development in relation to the development of effective seals at high temperature and high pressure. In this project, we are working on the development and application of palladium and palladium-silver alloy thin-film composite membranes in membrane reactor-separator configuration for simultaneous production and separation of hydrogen and carbon dioxide at high temperature. From our research on Pd-composite membrane, we have demonstrated that the new membrane has significantly higher hydrogen flux with very high perm-selectivity than any of the membranes commercially available. The steam reforming of methane by equilibrium shift in Pd-composite membrane reactor is being studied to demonstrate the potential application this new development. To have better understanding of the membrane reactor, during this reporting period, we developed a two-dimensional pseudo-homogeneous reactor model for steam reforming of methane by equilibrium shift in a tubular membrane reactor. In numerical solution of the reactor model equations, numerical difficulties were encountered and we seeking alternative solution techniques to overcome the problem.

  13. Isotope and Nuclear Chemistry Division annual report, FY 1983

    SciTech Connect

    Heiken, J.H.; Lindberg, H.A.

    1984-05-01

    This report describes progress in the major research and development programs carried out in FY 1983 by the Isotope and Nuclear Chemistry Division. It covers radiochemical diagnostics of weapons tests; weapons radiochemical diagnostics research and development; other unclassified weapons research; stable and radioactive isotope production, separation, and applications (including biomedical applications); element and isotope transport and fixation; actinide and transition metal chemistry; structural chemistry, spectroscopy, and applications; nuclear structure and reactions; irradiation facilities; advanced analytical techniques; development and applications; atmospheric chemistry and transport; and earth and planetary processes.

  14. Mantle helium and carbon isotopes in Separation Creek Geothermal Springs, Three Sisters area, Central Oregon: Evidence for renewed volcanic activity or a long term steady state system?

    SciTech Connect

    van Soest, M.C.; Kennedy, B.M.; Evans, W.C.; Mariner, R.H.

    2002-04-30

    Cold bubbling springs in the Separation Creek area, the locus of current uplift at South Sister volcano show strong mantle signatures in helium and carbon isotopes and CO{sub 2}/{sup 3}He. This suggests the presence of fresh basaltic magma in the volcanic plumbing system. Currently there is no evidence to link this system directly to the uplift, which started in 1998. To the contrary, all geochemical evidence suggests that there is a long-lived geothermal system in the Separation Creek area, which has not significantly changed since the early 1990s. There was no archived helium and carbon data, so a definite conclusion regarding the strong mantle signature observed in these tracers cannot yet be drawn. There is a distinct discrepancy between the yearly magma supply required to explain the current uplift (0.006 km{sup 3}/yr) and that required to explain the discharge of CO{sub 2} from the system (0.0005 km{sup 3}/yr). This discrepancy may imply that the chemical signal associated with the increase in magma supply has not reached the surface yet. With respect to this the small changes observed at upper Mesa Creek require further attention, due to the recent volcanic vent in that area it may be the location were the chemical signal related to the uplift can most quickly reach the surface. Occurrence of such strong mantle signals in cold/diffuse geothermal systems suggests that these systems should not be ignored during volcano monitoring or geothermal evaluation studies. Although the surface-expression of these springs in terms of heat is minimal, the chemistry carries important information concerning the size and nature of the underlying high-temperature system and any changes taking place in it.

  15. Single-tube, non-isotopic, multiplex PCR/OLA assay and sequence-coded separation for simultaneous screening of 31 cystic fibrosis mutations

    SciTech Connect

    Brinson, E.C.; Adriano, T.; Bloch, W.

    1994-09-01

    We have developed a rapid, single-tube, non-isotopic assay that screens a patient sample for the presence of 31 cystic fibrosis (CF) mutations. This assay can identify these mutations in a single reaction tube and a single electrophoresis run. Sample preparation is a simple, boil-and-go procedure, completed in less than an hour. The assay is composed of a 15-plex PCR, followed by a 61-plex oligonucleotide ligation assay (OLA), and incorporates a novel detection scheme, Sequence Coded Separation. Initially, the multiplex PCR amplifies 15 relevant segments of the CFTR gene, simultaneously. These PCR amplicons serve as templates for the multiplex OLA, which detects the normal or mutant allele at all loci, simultaneously. Each polymorphic site is interrogated by three oligonucleotide probes, a common probe and two allele-specific probes. Each common probe is tagged with a fluorescent dye, and the competing normal and mutant allelic probes incorporate different, non-nucleotide, mobility modifiers. These modifiers are composed of hexaethylene oxide (HEO) units, incorporated as HEO phosphoramidite monomers during automated DNA synthesis. The OLA is based on both probe hybridization and the ability of DNA ligase to discriminate single base mismatches at the junction between paired probes. Each single tube assay is electrophoresed in a single gel lane of a 4-color fluorescent DNA sequencer (Applied Biosystems, Model 373A). Each of the ligation products is identified by its unique combination of electrophoretic mobility and one of three colors. The fourth color is reserved for the in-lane size standard, used by GENESCAN{sup TM} software (Applied Biosystems) to size the OLA electrophoresis products. The Genotyper{sub TM} software (Applied Biosystems) decodes these Sequence-Coded-Separation data to create a patient summary report for all loci tested.

  16. Determination of Os by isotope dilution-inductively coupled plasma-mass spectrometry with the combination of laser ablation to introduce chemically separated geological samples

    NASA Astrophysics Data System (ADS)

    Sun, Yali; Ren, Minghao; Xia, Xiaoping; Li, Congying; Sun, Weidong

    2015-11-01

    A method was developed for the determination of trace Os in geological samples by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) with the combination of chemical separation and preconcentration. Samples are digested using aqua regia in Carius tubes, and the Os analyte is converted into volatile OsO4, which is distilled and absorbed with HBr. The HBr solution is concentrated for further Os purification using the microdistillation technique. The purified Os is dissolved in 10 μl of 0.02% sucrose-0.005% H3PO4 solution and then evaporated on pieces of perfluoroalkoxy (PFA) film, resulting in the formation of a tiny object (< 3 × 104 μm2 superficial area). Using LA-ICP-MS measurements, the object can give Os signals at least 100 times higher than those provided by routine solution-ICP-MS while successfully avoiding the memory effect. The procedural blank and detection limit in the developed technique are 3.0 pg and 1.8 pg for Os, respectively when 1 g of samples is taken. Reference materials (RM) are analyzed, and their Os concentrations obtained by isotope dilution are comparable to reference or literature values. Based on the individual RM results, the precision is estimated within the range of 0.6 to 9.4% relative standard deviation (RSD), revealing that this method is applicable to the determination of trace Os in geological samples.

  17. Development of an on-line flow injection Sr/matrix separation method for accurate, high-throughput determination of Sr isotope ratios by multiple collector-inductively coupled plasma-mass spectrometry.

    PubMed

    Galler, Patrick; Limbeck, Andreas; Boulyga, Sergei F; Stingeder, Gerhard; Hirata, Takafumi; Prohaska, Thomas

    2007-07-01

    This work introduces a newly developed on-line flow injection (FI) Sr/Rb separation method as an alternative to the common, manual Sr/matrix batch separation procedure, since total analysis time is often limited by sample preparation despite the fast rate of data acquisition possible by inductively coupled plasma-mass spectrometers (ICPMS). Separation columns containing approximately 100 muL of Sr-specific resin were used for on-line FI Sr/matrix separation with subsequent determination of (87)Sr/(86)Sr isotope ratios by multiple collector ICPMS. The occurrence of memory effects exhibited by the Sr-specific resin, a major restriction to the repetitive use of this costly material, could successfully be overcome. The method was fully validated by means of certified reference materials. A set of two biological and six geological Sr- and Rb-bearing samples was successfully characterized for its (87)Sr/(86)Sr isotope ratios with precisions of 0.01-0.04% 2 RSD (n = 5-10). Based on our measurements we suggest (87)Sr/(86)Sr isotope ratios of 0.713 15 +/- 0.000 16 (2 SD) and 0.709 31 +/- 0.000 06 (2 SD) for the NIST SRM 1400 bone ash and the NIST SRM 1486 bone meal, respectively. Measured (87)Sr/(86)Sr isotope ratios for five basalt samples are in excellent agreement with published data with deviations from the published value ranging from 0 to 0.03%. A mica sample with a Rb/Sr ratio of approximately 1 was successfully characterized for its (87)Sr/(86)Sr isotope signature to be 0.718 24 +/- 0.000 29 (2 SD) by the proposed method. Synthetic samples with Rb/Sr ratios of up to 10/1 could successfully be measured without significant interferences on mass 87, which would otherwise bias the accuracy and uncertainty of the obtained data.

  18. Advances in the Metrology of Absolute Value Assignments to Isotopic Reference Materials: Consequences from the Avogadro Project

    NASA Astrophysics Data System (ADS)

    Vocke, Robert; Rabb, Savelas

    2015-04-01

    All isotope amount ratios (hereafter referred to as isotope ratios) produced and measured on any mass spectrometer are biased. This unfortunate situation results mainly from the physical processes in the source area where ions are produced. Because the ionized atoms in poly-isotopic elements have different masses, such processes are typically mass dependent and lead to what is commonly referred to as mass fractionation (for thermal ionization and electron impact sources) and mass bias (for inductively coupled plasma sources.) This biasing process produces a measured isotope ratio that is either larger or smaller than the "true" ratio in the sample. This has led to the development of numerous fractionation "laws" that seek to correct for these effects, many of which are not based on the physical processes giving rise to the biases. The search for tighter and reproducible precisions has led to two isotope ratio measurement systems that exist side-by-side. One still seeks to measure "absolute" isotope ratios while the other utilizes an artifact based measurement system called a delta-scale. The common element between these two measurement systems is the utilization of isotope reference materials (iRMs). These iRMs are used to validate a fractionation "law" in the former case and function as a scale anchor in the latter. Many value assignments of iRMs are based on "best measurements" by the original groups producing the reference material, a not entirely satisfactory approach. Other iRMs, with absolute isotope ratio values, have been produced by calibrated measurements following the Atomic Weight approach (AW) pioneered by NBS nearly 50 years ago. Unfortunately, the AW is not capable of calibrating the new generation of iRMs to sufficient precision. So how do we get iRMs with isotope ratios of sufficient precision and without bias? Such a focus is not to denigrate the extremely precise delta-scale measurements presently being made on non-traditional and tradition

  19. Mechanistic Studies Of Combustion And Structure Formation During Combustion Synthesis Of Advanced Materials: Phase Separation Mechanism For Bio-Alloys

    NASA Technical Reports Server (NTRS)

    Varma, A.; Lau, C.; Mukasyan, A.

    2003-01-01

    Among all implant materials, Co-Cr-Mo alloys demonstrate perhaps the most useful balance of resistance to corrosion, fatigue and wear, along with strength and biocompatibility [1]. Currently, these widely used alloys are produced by conventional furnace technology. Owing to high melting points of the main alloy elements (e.g. Tm.p.(Co) 1768 K), high-temperature furnaces and long process times (several hours) are required. Therefore, attempts to develop more efficient and flexible methods for production of such alloys with superior properties are of great interest. The synthesis of materials using combustion phenomena is an advanced approach in powder metallurgy [2]. The process is characterized by unique conditions involving extremely fast heating rates (up to 10(exp 6 K/s), high temperatures (up to 3500 K), and short reaction times (on the order of seconds). As a result, combustion synthesis (CS) offers several attractive advantages over conventional metallurgical processing and alloy development technologies. The foremost is that solely the heat of chemical reaction (instead of an external source) supplies the energy for the synthesis. Also, simple equipment, rather than energy-intensive high-temperature furnaces, is sufficient. This work was devoted to experiments on CS of Co-based alloys by utilizing thermite (metal oxide-reducing metal) reactions, where phase separation subsequently produces materials with tailored compositions and properties. Owing to high reaction exothermicity, the CS process results in a significant increase of temperature (up to 3000 C), which is higher than melting points of all products. Since the products differ in density, phase separation may be a gravitydriven process: the heavy (metallic phase) settles while the light (slag) phase floats. The goal was to determine if buoyancy is indeed the major mechanism that controls phase segregation.

  20. Generation of Radixenon Isotopes

    SciTech Connect

    McIntyre, Justin I.; Bowyer, Ted W.; Hayes, James C.; Heimbigner, Tom R.; Morris, Scott J.; Panisko, Mark E.; Pitts, W. K.; Pratt, Sharon L.; Reeder, Paul L.; Thomas, Charles W.

    2003-06-30

    Pacific Northwest National Laboratory has developed an automated system for separating Xe from air and can detect the following radioxenon isotopes, 131mXe, 133mXe, 133Xe, and 135Xe. This report details the techniques used to generate the various radioxenon isotopes that are used for the calibration of the detector as well as other isotopes that have the potential to interfere with the fission produced radioxenon isotopes. Fission production is covered first using highly enriched uranium followed by a description and results from an experiment to produce radioxenon isotopes from neutron activation of ambient xenon.

  1. ISOTOPE CONVERSION DEVICE

    DOEpatents

    Wigner, E.P.; Young, G.J.; Ohlinger, L.A.

    1957-12-01

    This patent relates to nuclear reactors of tbe type utilizing a liquid fuel and designed to convert a non-thermally fissionable isotope to a thermally fissionable isotope by neutron absorption. A tank containing a reactive composition of a thermally fissionable isotope dispersed in a liquid moderator is disposed within an outer tank containing a slurry of a non-thermally fissionable isotope convertible to a thermally fissionable isotope by neutron absorption. A control rod is used to control the chain reaction in the reactive composition and means are provided for circulating and cooling the reactive composition and slurry in separate circuits.

  2. Correction of syndactyly using a dorsal separated V-Y advancement flap and a volar triangular flap in adults.

    PubMed

    Yildirim, Cengiz; Sentürk, Sadk; Keklikçi, Kenan; Akmaz, Ibrahim

    2011-10-01

    Skin grafts and local flaps are conventional methods of repair for congenital syndactyly, but the results obtained are not always as functional and aesthetic as desired and frequently leave postoperative scars and residual syndactyly. In this article, we describe a new surgical technique for web reconstruction in the correction of simple, incomplete syndactyly. The technique consists of a dorsal separated V-Y advancement flap and a volar triangular flap to cover the newly created web space, thus avoiding skin graft in this space. In all, 15 web spaces in 10 patients were treated using this method. A follow-up period of 6 months to 2 years showed neither recurrence of the deformity nor web creep of any degree. The technique is rapid, safe, easily performed, and reproducible and requires a single surgical procedure. It uses donor tissue identical in color, texture, and thickness, which renders acceptable cosmesis in cases of simple, incomplete syndactyly, therefore, avoiding the use of skin grafts and resulting postoperative scar contracture in the web space.

  3. Environmental site description for a Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) production plant at the Oak Ridge Gaseous Diffusion Plant Site

    SciTech Connect

    Not Available

    1991-09-01

    In January 1990, the Secretary of Energy approved a plan for the demonstration and deployment of the Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) technology, with the near-term goal to provide the necessary information to make a deployment decision by November 1992. The U-AVLIS process is based on electrostatic extraction of photoionized U-235 atoms from an atomic vapor stream created by electron-beam vaporization of uranium metal alloy. A programmatic document for use in screening DOE sites to locate the U-AVLIS production plant was developed and implemented in two parts (Wolsko et al. 1991). The first part consisted of a series of screening analyses, based on exclusionary and other criteria, that identified a reasonable number of candidate sites. These sites were then subjected to a more rigorous and detailed comparative analysis for the purpose of developing a short list of reasonable alternative sites for later environmental examination. This environmental site description (ESD) provides a detailed description of the ORGDP site and vicinity suitable for use in an environmental impact statement (EIS). The report is based on existing literature, data collected at the site, and information collected by Argonne National Laboratory (ANL) staff during a site visit. The organization of the ESD is as follows. Topics addressed in Sec. 2 include a general site description and the disciplines of geology, water resources, biotic resources, air resources, noise, cultural resources, land use, socioeconomics, and waste management. Identification of any additional data that would be required for an EIS is presented in Sec. 3. Following the site description and additional data requirements, Sec. 4 provides a short, qualitative assessment of potential environmental issues. 37 refs., 20 figs., 18 tabs.

  4. Strong anion exchange liquid chromatographic separation of protein amino acids for natural 13C-abundance determination by isotope ratio mass spectrometry.

    PubMed

    Abaye, Daniel A; Morrison, Douglas J; Preston, Tom

    2011-02-15

    Amino acids are the building blocks of proteins and the analysis of their (13)C abundances is greatly simplified by the use of liquid chromatography (LC) systems coupled with isotope ratio mass spectrometry (IRMS) compared with gas chromatography (GC)-based methods. To date, various cation exchange chromatography columns have been employed for amino acid separation. Here, we report strong anion exchange chromatography (SAX) coupled to IRMS with a Liquiface interface for amino acid δ(13)C determination. Mixtures of underivatised amino acids (0.1-0.5 mM) and hydrolysates of representative proteins (prawns and bovine serum albumin) were resolved by LC/IRMS using a SAX column and inorganic eluents. Background inorganic carbon content was minimised through careful preparation of alkaline reagents and use of a pre-injector on-line carbonate removal device. SAX chromatography completely resolved 11 of the 16 expected protein amino acids following acid hydrolysis in underivatised form. Basic and neutral amino acids were resolved with 35 mM NaOH in isocratic mode. Elution of the aromatic and acidic amino acids required a higher hydroxide concentration (180 mM) and a counterion (NO 3-, 5-25 mM). The total run time was 70 min. The average δ(13)C precision of baseline-resolved peaks was 0.75‰ (range 0.04 to 1.06‰). SAX is a viable alternative to cation chromatography, especially where analysis of basic amino acids is important. The technology shows promise for (13)C amino acid analysis in ecology, archaeology, forensic science, nutrition and protein metabolism.

  5. Onflow liquid chromatography at critical conditions coupled to (1)H and (2)H nuclear magnetic resonance as powerful tools for the separation of poly(methylmethacrylate) according to isotopic composition.

    PubMed

    Hehn, Mathias; Sinha, Pritish; Pasch, Harald; Hiller, Wolf

    2015-03-27

    The present work addresses a major challenge in polymer chromatography by developing a method to separate and analyze polymers with identical molar masses, chemical structures and tacticities that is solely based on differences in isotope composition. For the first time, liquid chromatography at critical conditions (LCCC) was used to separate PMMA regarding the H and D isotopes. At critical conditions of H-PMMA, D-PMMA eluted in the adsorption mode and vice versa. By online onflow LCCC-NMR, both PMMA species were clearly identified. Different from other detectors, NMR can distinguish between H and D. Onflow LCCC-H/NMR and LCCC-D/NMR measurements were carried out and the H/D-blend components were detected. (1)H and (13)C NMR provided the tacticity of protonated PMMA. Double resonance (13)C{H} and triple resonance (13)C{H,D} provided the tacticity of the deuterated samples. Samples with similar tacticities were used to ensure that separation occurs solely regarding the isotope labeling.

  6. SEPARATION OF HYDROGEN AND CARBON DIOXIDE USING A NOVEL MEMBRANE REACTOR IN ADVANCED FOSSIL ENERGY CONVERSION PROCESS

    SciTech Connect

    Shamsuddin Ilias

    2005-02-03

    Inorganic membrane reactors offer the possibility of combining reaction and separation in a single operation at high temperatures to overcome the equilibrium limitations experienced in conventional reactor configurations. Such attractive features can be advantageously utilized in a number of potential commercial opportunities, which include dehydrogenation, hydrogenation, oxidative dehydrogenation, oxidation and catalytic decomposition reactions. However, to be cost effective, significant technological advances and improvements will be required to solve several key issues which include: (a) permselective thin solid film, (b) thermal, chemical and mechanical stability of the film at high temperatures, and (c) reactor engineering and module development in relation to the development of effective seals at high temperature and high pressure. In this project, we are working on the development and application of palladium and palladium-silver alloy thin-film composite membranes in membrane reactor-separator configuration for simultaneous production and separation of hydrogen and carbon dioxide at high temperature. From our research on Pd-composite membrane, we have demonstrated that the new membrane has significantly higher hydrogen flux with very high perm-selectivity than any of the membranes commercially available. The steam reforming of methane by equilibrium shift in Pd-composite membrane reactor is being studied to demonstrate the potential application of this new development. A two-dimensional, pseudo-homogeneous membrane-reactor model was developed to investigate the steam-methane reforming (SMR) reactions in a Pd-based membrane reactor. Radial diffusion was taken into consideration to account for the concentration gradient in the radial direction due to hydrogen permeation through the membrane. With appropriate reaction rate expressions, a set of partial differential equations was derived using the continuity equation for the reaction system. The equations were

  7. Advanced SEM-EDX and Isotope Mapping of a Refractory Grain in a Fine-Grained IDP

    NASA Astrophysics Data System (ADS)

    Starkey, N. A.; Franchi, I. A.; Salge, T.; Brearley, A. J.

    2015-07-01

    We present high spatial resolution SEM-EDX and O isotope mapping to reveal the presence of a melilite-olivine refractory grain in a fine-grained IDP. We use this to discuss transport of material from the inner solar system and formation of comets.

  8. Development of Cesium and Strontium Separation and Immobilization Technologies in Support of an Advanced Nuclear Fuel Cycle

    SciTech Connect

    Jack D. Law; Troy G. Garn; R. Scott Herbst; David H. Meikrantz; Dean R. Peterman; Catherine L. Riddle; Terry A. Todd; Julie L. Tripp

    2006-02-01

    As part of the Advanced Fuel Cycle Initiative, two solvent extraction technologies are being developed at the Idaho National Laboratory to simultaneously separate cesium and strontium from dissolved spent nuclear fuel. The chlorinated cobalt dicarbollide/polyethylene glycol (CCD/PEG) process utilizes a solvent consisting of chlorinated cobalt dicarbollide for the extraction of Cs and polyethylene glycol for the synergistic extraction of Sr in a phenyltrifluoromethyl sulfone diluent. Countercurrent flowsheets have been designed and tested on simulated and actual spent nuclear fuel feed streams with both cesium and strontium removal efficiencies of greater than 99%. The Fission Product Extraction (FPEX) process is based on two highly-specific extractants: 4,4',(5')-Di-(t-butyldicyclo-hexano)-18-crown-6 (DtBuCH18C6) for the extraction of Sr and Calix[4]arene-bis-(tert-octylbenzo-crown-6) (BOBCalixC6) for the extraction of Cs. Laboratory test results of the FPEX process, using simulated feed solution spiked with radiotracers, indicate good Cs and Sr extraction and stripping performance. A preliminary solvent extraction flowsheet for the treatment of spent nuclear fuel with the FPEX process has been developed, and testing of the flowsheet with simulated spent nuclear fuel solutions is planned in the near future. Steam reforming is currently being developed for stabilization of the Cs/Sr product stream because it can produce a solid waste form while retaining the Cs and Sr in the solid, destroy the nitrates and organics present in these aqueous solutions, and convert the Cs and Sr into leach resistant aluminosilicate minerals. A bench-scale steam reforming pilot plant has been operated with several potential feed compositions and steam reformed product has been generated and analyzed.

  9. SEPARATION OF HYDROGEN AND CARBON DIOXIDE USING A NOVEL MEMBRANE REACTOR IN ADVANCED FOSSIL ENERGY CONVERSION PROCESS

    SciTech Connect

    Shamsuddin Ilias

    2004-02-17

    Inorganic membrane reactors offer the possibility of combining reaction and separation in a single operation at high temperatures to overcome the equilibrium limitations experienced in conventional reactor configurations. Such attractive features can be advantageously utilized in a number of potential commercial opportunities, which include dehydrogenation, hydrogenation, oxidative dehydrogenation, oxidation and catalytic decomposition reactions. However, to be cost effective, significant technological advances and improvements will be required to solve several key issues which include: (a) permselective thin solid film, (b) thermal, chemical and mechanical stability of the film at high temperatures, and (c) reactor engineering and module development in relation to the development of effective seals at high temperature and high pressure. In this project, we are working on the development and application of palladium and palladium-silver alloy thin-film composite membranes in membrane reactor-separator configuration for simultaneous production and separation of hydrogen and carbon dioxide at high temperature. From our research on Pd-composite membrane, we have demonstrated that the new membrane has significantly higher hydrogen flux with very high perm-selectivity than any of the membranes commercially available. The steam reforming of methane by equilibrium shift in Pd-composite membrane reactor is being studied to demonstrate the potential application of this new development. A two-dimensional, pseudo-homogeneous membrane-reactor model was developed to investigate the steam-methane reforming (SMR) reactions in a Pd-based membrane reactor. Radial diffusion was taken into consideration to account for the concentration gradient in the radial direction due to hydrogen permeation through the membrane. With appropriate reaction rate expressions, a set of partial differential equations was derived using the continuity equation for the reaction system. The equations were

  10. Five-Year Implementation Plan For Advanced Separations and Waste Forms Capabilities at the Idaho National Laboratory (FY 2011 to FY 2015)

    SciTech Connect

    Not Listed

    2011-03-01

    DOE-NE separations research is focused today on developing a science-based understanding that builds on historical research and focuses on combining a fundamental understanding of separations and waste forms processes with small-scale experimentation coupled with modeling and simulation. The result of this approach is the development of a predictive capability that supports evaluation of separations and waste forms technologies. The specific suite of technologies explored will depend on and must be integrated with the fuel development effort, as well as an understanding of potential waste form requirements. This five-year implementation plan lays out the specific near-term tactical investments in people, equipment and facilities, and customer capture efforts that will be required over the next five years to quickly and safely bring on line the capabilities needed to support the science-based goals and objectives of INL’s Advanced Separations and Waste Forms RD&D Capabilities Strategic Plan.

  11. Understanding Titan's Atmospheric Isotope Inventory through Laboratory Photolysis Experiments using Vacuum Ultraviolet Photons from Advanced Light Source Synchrotron

    NASA Astrophysics Data System (ADS)

    Chakraborty, S.

    2015-12-01

    Titan, Saturn's planet-like moon with a thick atmosphere consists mainly of N2 (98.4 %) and CH4 (1.4%). It is debated whether the N2 is primordial, or the NH3, which later converted to N2 by physic-chemical processes and, if NH3 is primordial, what is the source of that material: Saturnian-subnebula or the comets? N2 is enriched in 15N (14N/15N = 160 compared to 272 for Earth) and in geochemical terminology, d15Nair = 700 ‰ (parts per thousand with respect to ambient air). On the same scale the solar wind and Jupiter's atmosphere are ~ -400 ‰ (depleted in 15N). The comets (NH3 and HCN) and insoluble organic matter in meteorites are also enriched in 15N in the range up to a few thousand ‰. On the contrary, the carbon isotopic ratio in CH4 in Titan is similar to the other solar system bodies (12C/13C~ 89). We have performed extensive low temperature (80 K) photodissociation of N2 and CO (in presence of H2) at VUV wavelengths to measure the isotopic fractionation in the products. The integrated instantaneous fractionation in the product NH3 is about 1000 ‰ over the N2 dissociation regime (80-100 nm), which arise due to quantum mechanical selection rules. CO2 and CH4, the products of CO photodissociation, show contradictory results for two elements. While product O (trapped in CO2) is enriched by few thousand ‰, there is no significant C isotopic enrichment in CH4. These laboratory measurements along with the measurements by Cassini-Huygens spacecraft constrain the origin of volatiles in Titan's atmosphere and indicate that Titan accreted comet-like NH3 and CH4, which are the 1st generation photolysis products (of the remaining materials after the formation of gas giants) in the solar nebula. Later, NH3 converted to N2 in a bulk fashion (within Titan) and retained mostly identical isotopic composition. 15N enrichment measured in HCN in the present day atmosphere (d15Nair > 1500 ‰), is possibly from the 2nd generation N2 photolysis in Titan's modern

  12. Advanced fire-resistant forms of activated carbon and methods of adsorbing and separating gases using same

    SciTech Connect

    Xiong, Yongliang; Wang, Yifeng

    2016-04-19

    A method of removing a target gas from a gas stream is disclosed. The method uses advanced, fire-resistant activated carbon compositions having vastly improved fire resistance. Methods for synthesizing the compositions are also provided. The advanced compositions have high gas adsorption capacities and rapid adsorption kinetics (comparable to commercially-available activated carbon), without having any intrinsic fire hazard.

  13. New insight from noble gas and stable isotopes of geothermal/hydrothermal fluids at Caviahue-Copahue Volcanic Complex: Boiling steam separation and water-rock interaction at shallow depth

    NASA Astrophysics Data System (ADS)

    Roulleau, Emilie; Tardani, Daniele; Sano, Yuji; Takahata, Naoto; Vinet, Nicolas; Bravo, Francisco; Muñoz, Carlos; Sanchez, Juan

    2016-12-01

    We measured noble gas and stable isotopes of the geothermal and hydrothermal fluids of the Caviahue-Copahue Volcanic Complex (CCVC), one of the most important geothermal systems in Argentina/Chile, in order to provide new insights into fluid circulation and origin. With the exception of Anfiteatro and Chancho-co geothermal systems, mantle-derived helium dominates in the CCVC fluids, with measured 3He/4He ratios up to 7.86Ra in 2015. Their positive δ15N is an evidence for subducted sediment-derived nitrogen, which is commonly observed in subduction settings. Both He-N2-Ar composition and positive correlation between δD-H2O and δ18O-H2O suggest that the fluids from Anfiteatro and Chancho-co (and partly from Pucon-Mahuida as well, on the southern flank of Copahue volcano) represent a meteoric water composition with a minor magmatic contribution. The Ne, Kr and Xe isotopic compositions are entirely of atmospheric origin, but processes of boiling and steam separation have led to fractionation of their elemental abundances. We modeled the CCVC fluid evolution using Rayleigh distillation curves, considering an initial air saturated geothermal water (ASGW) end-member at 250 and 300 °C, followed by boiling and steam separation at lower temperatures (from 200 °C to 150 °C). Between 2014 and 2015, the CCVC hydrogen and oxygen isotopes shifted from local meteoric water-dominated to andesitic water-dominated signature. This shift is associated with an increase of δ13C values and Stotal, HCl and He contents. These characteristics are consistent with a change in the gas ascent pathway between 2014 and 2015, which in turn induced higher magmatic-hydrothermal contribution in the fluid signature. The composition of the magmatic source of the CCVC fluids is: 3He/4He = 7.7Ra, δ15N = + 6‰, and δ13C = - 6.5‰. Mixing models between air-corrected He and N suggest the involvement of 0.5% to 5% of subducted sediments in the magmatic source. The magmatic sulfur isotopic

  14. Apparatus for extraction and separation of a preferentially photo-dissociated molecular isotope into positive and negative ions by means of an electric field

    NASA Technical Reports Server (NTRS)

    Wilhelm, H. E. (Inventor)

    1978-01-01

    Molecules of one and the same isotope were preferentially photodissociated by a laser and an ultraviolet source, or by multiphoton absorption of laser radiation. The resultant ions were confined with a magnetic field, moved in opposite directions by an electric field, extracted from the photodissociation region by means of screening and accelerating grids, and collected in ducts.

  15. Oxygen isotope composition of water and snow-ice cover of isolated lakes at various stages of separation from the White Sea

    NASA Astrophysics Data System (ADS)

    Lisitzin, A. P.; Vasil'chuk, Yu. K.; Shevchenko, V. P.; Budantseva, N. A.; Krasnova, E. D.; Pantyulin, A. N.; Filippov, A. S.; Chizhova, Ju. N.

    2013-04-01

    This study aimed to analyze the oxygen isotope composition of water, ice, and snow in water bodies isolated from the White Sea and to identify the structural peculiarities of these pools during the winter period. The studies were performed during early spring in Kandalaksha Bay of the White Sea, in Velikaya Salma Strait and in Rugoserskaya Inlet. The studied water bodies differ in their degree of isolation from the sea. In particular, Ermolinskaya Inlet has normal water exchange with the sea; the Lake on Zelenyi Cape represents the first stage of isolation; i. e., it has permanent water exchange with the sea by the tide. Kislo-Sladkoe Lake receives sea water from time to time. Trekhtsvetnoe Lake is totally isolated from the sea and is a typical meromictic lake. Finally, Nizhnee Ershovskoe Lake exhibits some features of a saline water body. The oxygen isotope profile of the water column in Trekhtsvetnoe Lake allows defining three layers; this lake may be called typically meromictic. The oxygen isotope profile of the water column in Kislo-Sladkoe Lake is even from the surface to the bottom. The variability of δ18O is minor in Lake on Zelenyi Cape. A surface layer (0-1 m) exists in Nizhnee Ershovskoe Lake, and the oxygen isotope variability is well pronounced. Deeper, where the freshwater dominates, the values of ?18Îvary insignificantly disregarding the water depth and temperature. This fresh water lake is not affected by the seawater and is not stratified according to the isotope profile. It is found that applying the values of ?18Î and profiles of temperature and salinity may appear as an effective method in defining the water sources feeding the water bodies isolated from the sea environment.

  16. Advanced subsonic Technology Noise Reduction Element Separate Flow Nozzle Tests for Engine Noise Reduction Sub-Element

    NASA Technical Reports Server (NTRS)

    Saiyed, Naseem H.

    2000-01-01

    Contents of this presentation include: Advanced Subsonic Technology (AST) goals and general information; Nozzle nomenclature; Nozzle schematics; Photograph of all baselines; Configurations tests and types of data acquired; and Engine cycle and plug geometry impact on EPNL.

  17. Method for laser induced isotope enrichment

    DOEpatents

    Pronko, Peter P.; Vanrompay, Paul A.; Zhang, Zhiyu

    2004-09-07

    Methods for separating isotopes or chemical species of an element and causing enrichment of a desired isotope or chemical species of an element utilizing laser ablation plasmas to modify or fabricate a material containing such isotopes or chemical species are provided. This invention may be used for a wide variety of materials which contain elements having different isotopes or chemical species.

  18. Latest advances in large diameter SrI:Eu and CLYC:Ce scintillators for isotope identification

    SciTech Connect

    Hawrami, Rastgo; Hines, C; Abselem, I; Biteman, V; Vaghini, J; Glodo, J.; O’Dougherty, P; Shah, Kanai; Cherepy, Nerine; Payne, Stephen A.; Burger, Arnold; Boatner, Lynn A

    2012-01-01

    Scintillator crystal detectors form the basis for many radiation detection devices. Therefore, a search for high light yield single crystal scintillators with improved energy resolution, large volume, and the potential for low cost, is an ongoing process that has increased in recent years due to a large demand in the area of nuclear isotope identification. Alkaline earth halides, elpasolites and rare earth halides are very interesting because many compositions from these crystal families provide efficient Ce3+/ Eu2+ luminescence, good proportionality and good energy resolution. They also have small band-gap leading to higher light yields. Ce3+and Eu2+ are efficient, and the emission wavelengths in the 350-500 nm region matches well with PMTs and a new generation of Siphotodiodes. In this

  19. Isotope and Nuclear Chemistry Division annual report FY 1986, October 1985-September 1986

    SciTech Connect

    Heiken, J.H.

    1987-06-01

    This report describes progress in the major research and development programs carried out in FY 1986 by the Isotope and Nuclear Chemistry Division. The report includes articles on radiochemical diagnostics and weapons tests; weapons radiochemical diagnostics research and development; other unclassified weapons research; stable and radioactive isotope production and separation; chemical biology and nuclear medicine; element and isotope transport and fixation; actinide and transition metal chemistry; structural chemistry, spectroscopy, and applications; nuclear structure and reactions; irradiation facilities; advanced concepts and technology; and atmospheric chemistry.

  20. Evaluation of carbon isotope flux partitioning theory under simplified and controlled environmental conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Separation of the photosynthetic (Fp) and respiratory (Fr) fluxes of net CO2 exchange (Fn)remains a necessary step toward understanding the biological and physical controls on carbon cycling between the soil, biomass, and atmosphere. Despite recent advancements in stable carbon isotope partitioning ...

  1. Separating the Research Question from the Laboratory Techniques: Advancing High-School Biology Teachers' Ability to Ask Research Questions

    ERIC Educational Resources Information Center

    Hasson, Eilat; Yarden, Anat

    2012-01-01

    Inquiry is essentially a process in which research questions are asked and an attempt is made to find the answers. However, the formulation of operational research questions of the sort used in authentic scientific inquiry is not a trivial task. Here, we set out to explore the possible influence of separating the research question from the…

  2. Battery separators.

    PubMed

    Arora, Pankaj; Zhang, Zhengming John

    2004-10-01

    limiting the life and/or performance of batteries. Consequently, development of new improved separators would be very beneficial for the advanced high capacity batteries.

  3. APPLICATIONS OF ENVIRONMENTAL ISOTOPES FOR WATERSHED INVESTIGATIONS

    EPA Science Inventory

    Environmental isotopes include naturally-occurring nuclides that can be applied as tracers within watersheds (Sidle, 1998). Recent advances in mass spectroscopy may supplant many traditional and costly hydrometric techniques. It is now possible, for example, to utilize isotopes a...

  4. Carbon isotopes of plant biomarkers record past changes in the carbon cycle, but separating signal from noise is key to reducing uncertainties

    NASA Astrophysics Data System (ADS)

    Diefendorf, A. F.; Freeman, K. H.; Wing, S. L.; Currano, E. D.

    2014-12-01

    The carbon isotopic composition of plant biomarkers (δ13C) can provide unique insights into the past carbon cycle perturbations and associated climate change, however local records are influenced by ecological processes, local climate, as well as changes in the carbon isotope composition of the atmosphere. To examine the sources and amounts of geographic variation, we focused on long-term changes in the carbon cycle. We combined modern calibrations, δ13C of biomarkers in sediment, and Monte Carlo analyses to measure and predict the fractionation of carbon isotopes by plants (Δleaf) and to estimate error. We used data from multiple sites of different ages, in the western U.S. For each age and location, Δleaf was calculated from the δ13C of plant biomarkers and atmospheric δ13C values inferred from marine carbonates. Δleaf values calculated from n-alkanes and triterpenoids (angiosperm biomarkers) were found to be the same at each site. Δleaf calculated from diterpenoids (conifer biomarkers) was 2‰ lower. This is consistent with differences in Δleaf between living angiosperms and conifers. Predicted Δleaf values, from modern calibrations and paleoclimate data, were consistently offset (0.7‰) from measured values indicating that modern calibrations are useful for reconciling past changes in plant fractionation and that vegetation and precipitation, like modern plants, were the key controls on Δleaf in ancient vegetation. However, uncertainties in the measured and predicted Δleaf values were very large (>2‰, 1σ). A one-at-a-time sensitivity analysis indicates that 'biological noise' in modern calibrations explains most of this uncertainty. If the full extent of this biological noise were transferred to sediments, then extracting signal from noise would be challenging. However, we speculate that the process of deposition homogenizes variability at the leaf and tree level thereby reducing 'biological noise' observed in modern calibrations.

  5. Environmental site description for a Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) production plant at the Paducah Gaseous Diffusion Plant site

    SciTech Connect

    Marmer, G.J.; Dunn, C.P.; Moeller, K.L.; Pfingston, J.M.; Policastro, A.J.; Yuen, C.R.; Cleland, J.H.

    1991-09-01

    Uranium enrichment in the United States has utilized a diffusion process to preferentially enrich the U-235 isotope in the uranium product. The U-AVLIS process is based on electrostatic extraction of photoionized U-235 atoms from an atomic vapor stream created by electron-beam vaporization of uranium metal alloy. The U-235 atoms are ionized when precisely tuned laser light -- of appropriate power, spectral, and temporal characteristics -- illuminates the uranium vapor and selectively photoionizes the U-235 isotope. A programmatic document for use in screening DOE site to locate a U-AVLIS production plant was developed and implemented in two parts. The first part consisted of a series of screening analyses, based on exclusionary and other criteria, that identified a reasonable number of candidate sites. These sites were subjected to a more rigorous and detailed comparative analysis for the purpose of developing a short list of reasonable alternative sites for later environmental examination. This environmental site description (ESD) provides a detailed description of the PGDP site and vicinity suitable for use in an environmental impact statement (EIS). The report is based on existing literature, data collected at the site, and information collected by Argonne National Laboratory (ANL) staff during a site visit. 65 refs., 15 tabs.

  6. Meteoritic Sulfur Isotopic Analysis

    NASA Technical Reports Server (NTRS)

    Thiemens, Mark H.

    1996-01-01

    Funds were requested to continue our program in meteoritic sulfur isotopic analysis. We have recently detected a potential nucleosynthetic sulfur isotopic anomaly. We will search for potential carriers. The documentation of bulk systematics and the possible relation to nebular chemistry and oxygen isotopes will be explored. Analytical techniques for delta(sup 33), delta(sup 34)S, delta(sup 36)S isotopic analysis were improved. Analysis of sub milligram samples is now possible. A possible relation between sulfur isotopes and oxygen was detected, with similar group systematics noted, particularly in the case of aubrites, ureilites and entstatite chondrites. A possible nucleosynthetic excess S-33 has been noted in bulk ureilites and an oldhamite separate from Norton County. High energy proton (approximately 1 GeV) bombardments of iron foils were done to experimentally determine S-33, S-36 spallogenic yields for quantitation of isotopic measurements in iron meteorites. Techniques for measurement of mineral separates were perfected and an analysis program initiated. The systematic behavior of bulk sulfur isotopes will continue to be explored.

  7. Development of electrolysis-cell separator for 125/sup 0/C operation. Advanced alkaline electrolysis cell development. Final report

    SciTech Connect

    Murray, J N

    1983-03-01

    This report contains the findings of a seven-month contracted effort. The major technical task involved a 125/sup 0/C operating temperature test of the 20 v/o polybenzimidazole (PBI) - 80 v/o potassium titanate (K/sub 2/TiO/sub 3/) separator in combination with the nickel-molybdenum cathode electrocatalyst system dubbed the C-AN cathode using the ARIES test system which was developed previously. The test of the PBI-K/sub 2/TiO/sub 3/ separator was only partially successful. The anticipated 1.85 (75/sup 0/C) and 1.75 volt per cell (100/sup 0/C) input requirement at 550 ma/cm/sup 2/ were surpassed slightly. The test module operated stably for about 550 hr. Although there were some mechanical difficulties with the ARIES test unit, testing at 125/sup 0/C proceeded from 745 hr on test until the test was terminated at 2318 operating hours to allow diagnostic disassembly. The input voltage degraded to a value of 1.82 volt per cell at 125/sup 0/C which is unacceptable. Diagnostic disassembly showed the PBI portion of the separator was no longer present. PBI had been shown to be stable in 123/sup 0/C, 45 w/o KOH solutions in a 1000-hr test. The attack is suggested to be attributable to a peroxide or perchlorate type oxidizer which would be unique to the electrolysis mode and probably not present in alkaline fuel cell applications. Recommendations for further testing include an evaluation of the chemical compatibility of PBI with alkaline/oxidizer solutions and endurance testing the C-AN cathode with new improved anode structures at 125/sup 0/C using asbestos separators in combination with a silicate saturated KOH electrolyte. Demonstration of the stability of this 1.65 volt per cell (90% voltage efficiency) technology at 500 ma/cm/sup 2/ will document an inexpensive and intelligent hydrogen production process which will satisfy the needs of the United States in the 1990s.

  8. Isotopic Biogeochemistry

    NASA Technical Reports Server (NTRS)

    Hayes, J. M.

    1985-01-01

    An overview is provided of the biogeochemical research. The funding, productivity, personnel and facilities are reviewed. Some of the technical areas covered are: carbon isotopic records; isotopic studies of banded iron formations; isotope effects in microbial systems; studies of organic compounds in ancient sediments; and development in isotopic geochemistry and analysis.

  9. Advanced Subsonic Technology (AST) Separate-Flow High-Bypass Ratio Nozzle Noise Reduction Program Test Report

    NASA Technical Reports Server (NTRS)

    Low, John K. C.; Schweiger, Paul S.; Premo, John W.; Barber, Thomas J.; Saiyed, Naseem (Technical Monitor)

    2000-01-01

    NASA s model-scale nozzle noise tests show that it is possible to achieve a 3 EPNdB jet noise reduction with inwardfacing chevrons and flipper-tabs installed on the primary nozzle and fan nozzle chevrons. These chevrons and tabs are simple devices and are easy to be incorporated into existing short duct separate-flow nonmixed nozzle exhaust systems. However, these devices are expected to cause some small amount of thrust loss relative to the axisymmetric baseline nozzle system. Thus, it is important to have these devices further tested in a calibrated nozzle performance test facility to quantify the thrust performances of these devices. The choice of chevrons or tabs for jet noise suppression would most likely be based on the results of thrust loss performance tests to be conducted by Aero System Engineering (ASE) Inc. It is anticipated that the most promising concepts identified from this program will be validated in full scale engine tests at both Pratt & Whitney and Allied-Signal, under funding from NASA s Engine Validation of Noise Reduction Concepts (EVNRC) programs. This will bring the technology readiness level to the point where the jet noise suppression concepts could be incorporated with high confidence into either new or existing turbofan engines having short-duct, separate-flow nacelles.

  10. Refined separation of combined Fe–Hf from rock matrices for isotope analyses using AG-MP-1M and Ln-Spec chromatographic extraction resins

    PubMed Central

    Cheng, Ting; Nebel, Oliver; Sossi, Paolo A.; Chen, Fukun

    2014-01-01

    A combined procedure for separating Fe and Hf from a single rock digestion is presented. In a two-stage chromatographic extraction process, a purified Fe fraction is first quantitatively separated from the rock matrix using AG-MP-1M resin in HCl. Hafnium is subsequently isolated using a modified version of a commonly applied method using Eichrom LN-Spec resin. Our combined method includes:•Purification of Fe from the rock matrix using HCl, ready for mass spectrometric analysis.•Direct loading of the matrix onto the resin that is used for Hf purification.•Collection of a Fe-free Hf fraction. PMID:26150946

  11. Advances in the helium-jet coupled on-line mass separator RAMA. [Recoil Atom Mass Analyzer

    SciTech Connect

    Moltz, D M; Aysto, J; Cable, M D; Parry, R F; Haustein, P E; Wouters, J M; Cerny, J

    1980-01-01

    General improvements to the on-line mass separator RAMA (Recoil Atom Mass Analyzer) have yielded a greater reliability and efficiency for some elements. A new utilitarian helium-jet chamber has been installed to facilitate quick target and degrader foil changes in addition to a new ion source holder. A higher efficiency hollow-cathode, cathode-extraction ion source, for lower melting point elements (< 1200/sup 0/C) has also been designed. Tests with the beta-delayed proton emitter /sup 37/Ca showed a factor of five increase in yield over the old hollow-cathode, anode-extraction source. A differentially-pumped-tape drive system compatible with both ..gamma..-..gamma.. and ..beta..-..gamma.. experiments has been incorporated into the general detection system. All major operating parameters will soon be monitored by a complete stand-alone microprocessor system which will eventually be upgraded to a closed-loop control system.

  12. Unusual isotopic composition of C-CO2 from sterilized soil microcosms: a new way to separate intracellular from extracellular respiratory metabolisms.

    NASA Astrophysics Data System (ADS)

    Kéraval, Benoit; Alvarez, Gaël; Lehours, Anne Catherine; Amblard, Christian; Fontaine, Sebastien

    2015-04-01

    intact cells were observed by microscopy. These "ghost" cells were completely destroyed by the irradiation-autoclaving combination releasing large amount of soluble C. The soil respiration (O2 consumption and CO2 production) was reduced by irradiation and autoclaving but not stopped, suggesting the presence of an EXOMET. The delta 13C of CO2 released in the irradiated-autoclaved soil was strongly depleted (-70‰) indicating that this extracellular metabolism induced a substantial isotopic fractionation. Our findings suggest that two main oxidative metabolisms co-occur in soils: cell respiration and EXOMET. The isotopic fractionation induced by the EXOMET open perspectives for its quantification in non-sterilized living soils.

  13. Microfluidic cell sorting: a review of the advances in the separation of cells from debulking to rare cell isolation.

    PubMed

    Shields, C Wyatt; Reyes, Catherine D; López, Gabriel P

    2015-03-07

    Accurate and high throughput cell sorting is a critical enabling technology in molecular and cellular biology, biotechnology, and medicine. While conventional methods can provide high efficiency sorting in short timescales, advances in microfluidics have enabled the realization of miniaturized devices offering similar capabilities that exploit a variety of physical principles. We classify these technologies as either active or passive. Active systems generally use external fields (e.g., acoustic, electric, magnetic, and optical) to impose forces to displace cells for sorting, whereas passive systems use inertial forces, filters, and adhesion mechanisms to purify cell populations. Cell sorting on microchips provides numerous advantages over conventional methods by reducing the size of necessary equipment, eliminating potentially biohazardous aerosols, and simplifying the complex protocols commonly associated with cell sorting. Additionally, microchip devices are well suited for parallelization, enabling complete lab-on-a-chip devices for cellular isolation, analysis, and experimental processing. In this review, we examine the breadth of microfluidic cell sorting technologies, while focusing on those that offer the greatest potential for translation into clinical and industrial practice and that offer multiple, useful functions. We organize these sorting technologies by the type of cell preparation required (i.e., fluorescent label-based sorting, bead-based sorting, and label-free sorting) as well as by the physical principles underlying each sorting mechanism.

  14. Microfluidic Cell Sorting: A Review of the Advances in the Separation of Cells from Debulking to Rare Cell Isolation

    PubMed Central

    Shields, C. Wyatt; Reyes, Catherine D.; López, Gabriel P.

    2015-01-01

    Accurate and high throughput cell sorting is a critical enabling technology in molecular and cellular biology, biotechnology, and medicine. While conventional methods can provide high efficiency sorting in short timescales, advances in microfluidics have enabled the realization of miniaturized devices offering similar capabilities that exploit a variety of physical principles. We classify these technologies as either active or passive. Active systems generally use external fields (e.g., acoustic, electric, magnetic, and optical) to impose forces to displace cells for sorting, whereas passive systems use inertial forces, filters, and adhesion mechanisms to purify cell populations. Cell sorting on microchips provides numerous advantages over conventional methods by reducing the size of necessary equipment, eliminating potentially biohazardous aerosols, and simplifying the complex protocols commonly associated with cell sorting. Additionally, microchip devices are well suited for parallelization, enabling complete lab-on-a-chip devices for cellular isolation, analysis, and experimental processing. In this review, we examine the breadth of microfluidic cell sorting technologies, while focusing on those that offer the greatest potential for translation into clinical and industrial practice and that offer multiple, useful functions. We organize these sorting technologies by the type of cell preparation required (i.e., fluorescent label-based sorting, bead-based sorting, and label-free sorting) as well as by the physical principles underlying each sorting mechanism. PMID:25598308

  15. Fabrication of Pd/Pd-Alloy Films by Surfactant Induced Electroless Plating for Hydrogen Separation from Advanced Coal Gasification Processes

    SciTech Connect

    Ilias, Shamsuddin; Kumar, Dhananjay

    2012-07-31

    performance and thermal cycling (573 - 723 - 573 K) at 15 psi pressure drop for 1200 hours. Pd membranes showed excellent hydrogen permeability and thermal stability during the operational period. Under thermal cycling (573 K - 873 K - 573 K), Pd-Cu-MPSS membrane was stable and retained hydrogen permeation characteristics for over three months of operation. From this limited study, we conclude that SIEP is viable method for fabrication of defect-free, robust Pd-alloy membranes for high-temperature H{sub 2}-separation applications.

  16. Dry phase reactor for generating medical isotopes

    DOEpatents

    Mackie, Thomas Rockwell; Heltemes, Thad Alexander

    2016-05-03

    An apparatus for generating medical isotopes provides for the irradiation of dry-phase, granular uranium compounds which are then dissolved in a solvent for separation of the medical isotope from the irradiated compound. Once the medical isotope is removed, the dissolved compound may be reconstituted in dry granular form for repeated irradiation.

  17. Technical Considerations for Advanced Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.

    1999-01-01

    This presentation reviews concerns involving advanced propulsion systems. The problems involved with the use of Am-242m, is that it has a high "eta" plus an order of magnitude larger fission cross section than other fissionable materials, and that it is extremely rare. However other americium isotopes are much more common, but extremely effective isotopic separation is required. Deuterium-Tritium fusion is also not attractive for space propulsion applications. Because the pulsed systems cannot breed adequate amounts of tritium and it is difficult and expensive to bring tritium from Earth. The systems that do breed tritium have severely limited performance. However, other fusion processes should still be evaluated. Another problem with advanced propellants is that inefficiencies in converting the total energy generated into propellant energy can lead to tremendous heat rejection requirements. Therefore Many. advanced propulsion concepts benefit greatly from low-mass radiators.

  18. Separation and measurement of Pa, Th, and U isotopes in marine sediments by microwave-assisted digestion and multiple collector inductively coupled plasma mass spectrometry.

    PubMed

    Negre, César; Thomas, Alexander L; Mas, José Luis; Garcia-Orellana, Jordi; Henderson, Gideon M; Masqué, Pere; Zahn, Rainer

    2009-03-01

    This manuscript describes a new protocol for determination of Pa/Th/U in marine sediments. It is based on microwave-assisted digestion and represents an important reduction of working time over conventional hot-plate digestion methods, and the use of HClO(4) is avoided. Although Th and U are completely dissolved with a first microwave step, around 40% of (231)Pa remains undissolved, and a short hot-plate step with reverse aqua regia is required to achieve total digestion and spike equilibration. Next, the method involves a separation of these elements and a further purification of the Pa fraction using Dowex AG1-X8 resin. Separation with Bio-Rad and Sigma-Aldrich resins was compared; although both perform similarly for Th and U, Pa yields are higher with Bio-Rad. Finally, samples are measured using a Nu instruments multiple collector inductively coupled plasma mass spectrometer (MC-ICPMS). Overall chemical yields range around 50% for Pa, 60% for Th, and 70% for U.

  19. Separation and quantification of silver nanoparticles and silver ions using reversed phase high performance liquid chromatography coupled to inductively coupled plasma mass spectrometry in combination with isotope dilution analysis.

    PubMed

    Sötebier, Carina A; Weidner, Steffen M; Jakubowski, Norbert; Panne, Ulrich; Bettmer, Jörg

    2016-10-14

    A reversed phase high performance liquid chromatography coupled to an inductively coupled plasma mass spectrometer (HPLC-ICP-MS) approach in combination with isotope dilution analysis (IDA) for the separation and parallel quantification of nanostructured and ionic silver (Ag) is presented. The main focus of this work was the determination of the ionic Ag concentration. For a sufficient stabilization of the ions without dissolving the nanoparticles (NPs), the eluent had to be initially optimized. The determined Ag ion concentration was in a good agreement with results obtained using ultrafiltration. Further, the mechanism of the NP separation in the HPLC column was investigated. Typical size exclusion effects were found by comparing results from columns with different pore sizes. Since the recovery rates decreased with increasing Ag NP size and large Ag NPs did not elute from the column, additional interactions of the particles with the stationary phase were assumed. Our results reveal that the presented method is not only applicable to Ag NPs, but also to gold and polystyrene NPs. Finally, IDA-HPLC-ICP-MS experiments in single particle mode were performed to determine the particle cut-off size. The comparison with conventional spICP-MS experiments resulted in a similar diameter and particle size distribution.

  20. Recent advances in the application of core-shell structured magnetic materials for the separation and enrichment of proteins and peptides.

    PubMed

    Zhao, Man; Xie, Yiqin; Deng, Chunhui; Zhang, Xiangmin

    2014-08-29

    Many endogenous proteins/peptides and proteins/peptides with post-translational modifications (PTMs) are presented at extremely low abundance, and they usually suffer strong interference with highly abundant proteins/peptides as well as other contaminants, resulting in low ionization efficiency in MS analysis. Therefore, the separation and enrichment of proteins/peptides from complex mixtures is of great importance to the successful identification of them. Core-shell structured magnetic microspheres have been widely used in the enrichment and isolation of proteins/peptides, thanks to unique properties such as strong magnetic responsiveness, outstanding binding capacity, excellent biocompatibility, robust mechanical strength and admirable recoverability. The aim of this review is to update the advances in the application of core-shell structured magnetic materials for proteomics analysis, including the separation and enrichment of low-concentration proteins/peptides, the selective enrichment of phosphoproteins and the selective enrichment of glycoproteins, and to compare the enrichment performance of magnetic microspheres with different kinds of functionalization.

  1. Development of Technologies for the Simultaneous Separation of Cesium and Strontium from Spent Nuclear Fuel as Part of an Advanced Fuel Cycle

    SciTech Connect

    Jack D. Law; R. Scott HErbst; David H. Meikrantz; Dean R. Peterman; Catherine L. Riddle; Richard D. Tillotson; Terry A. Todd

    2005-04-01

    As part of the Advanced Fuel Cycle Initiative, two solvent extraction technologies are being developed to simultaneously separate cesium and strontium from dissolved spent nuclear fuel. The first process utilizes a solvent consisting of chlorinated cobalt dicarbollide and polyethylene glycol extractants in a phenyltrifluoromethyl sulfone diluent. Recent improvements to the process include development of a new, non-nitroaromatic diluent and development of new stripping reagents, including a regenerable strip reagent that can be recovered and recycled. Countercurrent flowsheets have been designed and tested on simulated and actual spent nuclear fuel feed streams with both cesium and strontium removal efficiencies of greater than 99 %. The second process developed to simultaneously separate cesium and strontium from spent nuclear fuel is based on two highly-specific extractants: 4,4',(5')-Di-(t-butyldicyclo-hexano)-18-crown-6 (DtBuCH18C6) and Calix[4]arene-bis-(tert-octylbenzo-crown-6) (BOBCalixC6). The DtBuCH18C6 extractant is selective for strontium and the BOBCalixC6 extractant is selective for cesium. A solvent composition has been developed that enables both elements to be removed together and, in fact, a synergistic effect was observed with strontium distributions in the combined solvent that are much higher that in the strontium extraction (SREX) process. Initial laboratory test results of the new combined cesium and strontium extraction process indicate good extraction and stripping performance. A flowsheet for treatment of spent nuclear fuel is currently being developed.

  2. Separation in Binary Alloys

    NASA Technical Reports Server (NTRS)

    Frazier, D. O.; Facemire, B. R.; Kaukler, W. F.; Witherow, W. K.; Fanning, U.

    1986-01-01

    Studies of monotectic alloys and alloy analogs reviewed. Report surveys research on liquid/liquid and solid/liquid separation in binary monotectic alloys. Emphasizes separation processes in low gravity, such as in outer space or in free fall in drop towers. Advances in methods of controlling separation in experiments highlighted.

  3. Laser Ablation Molecular Isotopic Spectrometry

    NASA Astrophysics Data System (ADS)

    Russo, Richard E.; Bol'shakov, Alexander A.; Mao, Xianglei; McKay, Christopher P.; Perry, Dale L.; Sorkhabi, Osman

    2011-02-01

    A new method of performing optical isotopic analysis of condensed samples in ambient air and at ambient pressure has been developed: Laser Ablation Molecular Isotopic Spectrometry (LAMIS). The technique uses radiative transitions from molecular species either directly vaporized from a sample or formed by associative mechanisms of atoms or ions in a laser ablation plume. This method is an advanced modification of a known atomic emission technique called laser-induced breakdown spectroscopy (LIBS). The new method — LAMIS — can determine not only chemical composition but also isotopic ratios of elements in the sample. Isotopic measurements are enabled by significantly larger isotopic shifts found in molecular spectra relative to atomic spectra. Analysis can be performed from a distance and in real time. No sample preparation or pre-treatment is required. Detection of the isotopes of hydrogen, boron, carbon, and oxygen are discussed to illustrate the technique.

  4. Electrochemically controlled iron isotope fractionation

    NASA Astrophysics Data System (ADS)

    Black, Jay R.; Young, Edward D.; Kavner, Abby

    2010-02-01

    Variations in the stable isotope abundances of transition metals have been observed in the geologic record and trying to understand and reconstruct the physical/environmental conditions that produced these signatures is an area of active research. It is clear that changes in oxidation state lead to large fractionations of the stable isotopes of many transition metals such as iron, suggesting that transition metal stable isotope signatures could be used as a paleo-redox proxy. However, the factors contributing to these observed stable isotope variations are poorly understood. Here we investigate how the kinetics of iron redox electrochemistry generates isotope fractionation. Through a combination of electrodeposition experiments and modeling of electrochemical processes including mass-transport, we show that electron transfer reactions are the cause of a large isotope separation, while mass transport-limited supply of reactant to the electrode attenuates the observed isotopic fractionation. Furthermore, the stable isotope composition of electroplated transition metals can be tuned in the laboratory by controlling parameters such as solution chemistry, reaction overpotential, and solution convection. These methods are potentially useful for generating isotopically-marked metal surfaces for tracking and forensic purposes. In addition, our studies will help interpret stable isotope data in terms of identifying underlying electron transfer processes in laboratory and natural samples.

  5. New design studies for TRIUMF's ARIEL High Resolution Separator

    NASA Astrophysics Data System (ADS)

    Maloney, J. A.; Baartman, R.; Marchetto, M.

    2016-06-01

    As part of its new Advanced Rare IsotopE Laboratory (ARIEL), TRIUMF is designing a novel High Resolution Separator (HRS) (Maloney et al., 2015) to separate rare isotopes. The HRS has a 180° bend, separated into two 90° magnetic dipoles, bend radius 1.2 m, with an electrostatic multipole corrector between them. Second order correction comes mainly from the dipole edge curvatures, but is intended to be fine-tuned with a sextupole component and a small octupole component in the multipole. This combination is designed to achieve 1:20,000 resolution for a 3 μm (horizontal) and 6 μm (vertical) emittance. A design for the HRS dipole magnets achieves both radial and integral flatness goals of <10-5. A review of the optical design for the HRS is presented, including the study of limiting factors affecting separation, matching and aberration correction. Field simulations from the OPERA-3D (OPERA) [2] models of the dipole magnets are used in COSY Infinity (COSY) (Berz and Makino, 2005) [3] to find and optimize the transfer maps to 3rd order and study residual nonlinearities to 8th order.

  6. Research Directed at Developing a Classical Theory to Describe Isotope Separation of Polyatomic Molecules Illuminated by Intense Infrared Radiation. Final Report for period May 7, 1979 to September 30, 1979; Extension December 31, 1997

    DOE R&D Accomplishments Database

    Lamb, W. E. Jr.

    1981-12-01

    This final report describes research on the theory of isotope separation produced by the illumination of polyatomic molecules by intense infrared laser radiation. This process is investigated by treating the molecule, sulfur hexafluoride, as a system of seven classical particles that obey the Newtonian equations of motion. A minicomputer is used to integrate these differential equations. The particles are acted on by interatomic forces, and by the time-dependent electric field of the laser. We have a very satisfactory expression for the interaction of the laser and the molecule which is compatible with infrared absorption and spectroscopic data. The interatomic potential is capable of improvement, and progress on this problem is still being made. We have made several computer runs of the dynamical behavior of the molecule using a reasonably good model for the interatomic force law. For the laser parameters chosen, we find that typically the molecule passes quickly through the resonance region into the quasi-continuum and even well into the real continuum before dissociation actually occurs. When viewed on a display terminal, the motions are exceedingly complex. As an aid to the visualization of the process, we have made a number of 16 mm movies depicting a three-dimensional representation of the motion of the seven particles. These show even more clearly the enormous complexity of the motions, and make clear the desirability of finding ways of characterizing the motion in simple ways without giving all of the numerical detail. One of the ways to do this is to introduce statistical parameters such as a temperature associated with the distribution of kinetic energies of the single particle. We have made such an analysis of our data runs, and have found favorable indications that such methods will prove useful in keeping track of the dynamical histories.

  7. Method and apparatus for separation of heavy and tritiated water

    DOEpatents

    Lee, Myung W.

    2001-01-01

    The present invention is a bi-thermal membrane process for separating and recovering hydrogen isotopes from a fluid containing hydrogen isotopes, such as water and hydrogen gas. The process in accordance with the present invention provides counter-current cold and hot streams of the fluid separated with a thermally insulating and chemically transparent proton exchange membrane (PEM). The two streams exchange hydrogen isotopes through the membrane: the heavier isotopes migrate into the cold stream, while the lighter isotopes migrate into the hot stream. The heavy and light isotopes are continuously withdrawn from the cold and hot streams respectively.

  8. Transuranium isotopes

    SciTech Connect

    Hoffman, D.C.

    1985-12-01

    The needs of the research community for the production of transuranium isotopes, the quantities required, the continuity of production desired, and what a new steady state neutron source would have to provide to satisfy these needs are discussed. Examples of past frontier research which need these isotopes as well as an outline of the proposed Large Einsteinium Activation Program, LEAP, which requires roughly ten times the current production of /sup 254/Es are given. 15 refs., 5 figs., 4 tabs.

  9. Isotopic chirality

    SciTech Connect

    Floss, H.G.

    1994-12-01

    This paper deals with compounds that are chiral-at least in part, due to isotope substitution-and their use in tracing the steric course of enzyme reaction in vitro and in vivo. There are other applications of isotopically chiral compounds (for example, in analyzing the steric course of nonenzymatic reactions and in probing the conformation of biomolecules) that are important but they will not be discussed in this context.

  10. A Synergistic Combination of Advanced Separation and Chemical Scale Inhibitor Technologies for Efficient Use of Imparied Water As Cooling Water in Coal-based Power Plants

    SciTech Connect

    Jasbir Gill

    2010-08-30

    Nalco Company is partnering with Argonne National Laboratory (ANL) in this project to jointly develop advanced scale control technologies that will provide cost-effective solutions for coal-based power plants to operate recirculating cooling water systems at high cycles using impaired waters. The overall approach is to use combinations of novel membrane separations and scale inhibitor technologies that will work synergistically, with membrane separations reducing the scaling potential of the cooling water and scale inhibitors extending the safe operating range of the cooling water system. The project started on March 31, 2006 and ended in August 30, 2010. The project was a multiyear, multi-phase project with laboratory research and development as well as a small pilot-scale field demonstration. In Phase 1 (Technical Targets and Proof of Concept), the objectives were to establish quantitative technical targets and develop calcite and silica scale inhibitor chemistries for high stress conditions. Additional Phase I work included bench-scale testing to determine the feasibility of two membrane separation technologies (electrodialysis ED and electrode-ionization EDI) for scale minimization. In Phase 2 (Technology Development and Integration), the objectives were to develop additional novel scale inhibitor chemistries, develop selected separation processes, and optimize the integration of the technology components at the laboratory scale. Phase 3 (Technology Validation) validated the integrated system's performance with a pilot-scale demonstration. During Phase 1, Initial evaluations of impaired water characteristics focused on produced waters and reclaimed municipal wastewater effluents. Literature and new data were collected and evaluated. Characteristics of produced waters vary significantly from one site to another, whereas reclaimed municipal wastewater effluents have relatively more uniform characteristics. Assessment to date confirmed that calcite and silica

  11. Effects of (18)O isotopic substitution on the rotational spectra and potential splitting in the OH-OH2 complex: improved measurements for (16)OH-(16)OH2 and (18)OH-(18)OH2, new measurements for the mixed isotopic forms, and ab initio calculations of the (2)A'-(2)A" energy separation.

    PubMed

    Brauer, Carolyn S; Sedo, Galen; Dahlke, Erin; Wu, Shenghai; Grumstrup, Erik M; Leopold, Kenneth R; Marshall, Mark D; Leung, Helen O; Truhlar, Donald G

    2008-09-14

    Rotational spectra have been observed for (16)OH-(16)OH(2), (16)OH-(18)OH(2), (18)OH-(16)OH(2), and (18)OH-(18)OH(2) with complete resolution of the nuclear magnetic hyperfine structure from the OH and water protons. Transition frequencies have been analyzed for each isotopic form using the model of Marshall and Lester [J. Chem. Phys. 121, 3019 (2004)], which accounts for partial quenching of the OH orbital angular momentum and the decoupling of the electronic spin from the OH molecular axis. The analysis accounts for both the ground ((2)A(')) and first electronically excited ((2)A(")) states of the system, which correspond roughly to occupancy by the odd electron in the p(y) and p(x) orbitals, respectively (where p(y) is in the mirror plane of the complex and p(x) is perpendicular to p(y) and the OH bond axis). The spectroscopic measurements yield a parameter, rho, which is equal to the vibrationally averaged (2)A(')-(2)A(") energy separation that would be obtained if spin-orbit coupling and rotation were absent. For the parent species, rho = -146.560 27(9) cm(-1). (18)O substitution on the water increases /rho/ by 0.105 29(10) cm(-1), while substitution on the OH decreases /rho/ by 0.068 64(11) cm(-1). In the OH-OH(2) complex, the observed value of rho implies an energy spacing between the rotationless levels of the (2)A(') and (2)A(") states of 203.76 cm(-1). Ab initio calculations have been performed with quadratic configuration interaction with single and double excitations (QCISD), as well as multireference configuration interaction (MRCI), both with and without the inclusion of spin-orbit coupling. The MRCI calculations with spin-orbit coupling perform the best, giving a value of 171 cm(-1) for the (2)A(')-(2)A(") energy spacing at the equilibrium geometry. Calculations along the large-amplitude bending coordinates of the OH and OH(2) moieties within the complex are presented and are shown to be consistent with a vibrational averaging effect as the main

  12. Multiple linear regression for isotopic measurements

    NASA Astrophysics Data System (ADS)

    Garcia Alonso, J. I.

    2012-04-01

    There are two typical applications of isotopic measurements: the detection of natural variations in isotopic systems and the detection man-made variations using enriched isotopes as indicators. For both type of measurements accurate and precise isotope ratio measurements are required. For the so-called non-traditional stable isotopes, multicollector ICP-MS instruments are usually applied. In many cases, chemical separation procedures are required before accurate isotope measurements can be performed. The off-line separation of Rb and Sr or Nd and Sm is the classical procedure employed to eliminate isobaric interferences before multicollector ICP-MS measurement of Sr and Nd isotope ratios. Also, this procedure allows matrix separation for precise and accurate Sr and Nd isotope ratios to be obtained. In our laboratory we have evaluated the separation of Rb-Sr and Nd-Sm isobars by liquid chromatography and on-line multicollector ICP-MS detection. The combination of this chromatographic procedure with multiple linear regression of the raw chromatographic data resulted in Sr and Nd isotope ratios with precisions and accuracies typical of off-line sample preparation procedures. On the other hand, methods for the labelling of individual organisms (such as a given plant, fish or animal) are required for population studies. We have developed a dual isotope labelling procedure which can be unique for a given individual, can be inherited in living organisms and it is stable. The detection of the isotopic signature is based also on multiple linear regression. The labelling of fish and its detection in otoliths by Laser Ablation ICP-MS will be discussed using trout and salmon as examples. As a conclusion, isotope measurement procedures based on multiple linear regression can be a viable alternative in multicollector ICP-MS measurements.

  13. Iron speciation and isotope fractionation during silicate weathering and soil formation in an alpine glacier forefield chronosequence

    NASA Astrophysics Data System (ADS)

    Kiczka, Mirjam; Wiederhold, Jan G.; Frommer, Jakob; Voegelin, Andreas; Kraemer, Stephan M.; Bourdon, Bernard; Kretzschmar, Ruben

    2011-10-01

    The chemical weathering of primary Fe-bearing minerals, such as biotite and chlorite, is a key step of soil formation and an important nutrient source for the establishment of plant and microbial life. The understanding of the relevant processes and the associated Fe isotope fractionation is therefore of major importance for the further development of stable Fe isotopes as a tracer of the biogeochemical Fe cycle in terrestrial environments. We investigated the Fe mineral transformations and associated Fe isotope fractionation in a soil chronosequence of the Swiss Alps covering 150 years of soil formation on granite. For this purpose, we combined for the first time stable Fe isotope analyses with synchrotron-based Fe-EXAFS spectroscopy, which allowed us to interpret changes in Fe isotopic composition of bulk soils, size fractions, and chemically separated Fe pools over time in terms of weathering processes. Bulk soils and rocks exhibited constant isotopic compositions along the chronosequence, whereas soil Fe pools in grain size fractions spanned a range of 0.4‰ in δ 56Fe. The clay fractions (<2 μm), in which newly formed Fe(III)-(hydr)oxides contributed up to 50% of the total Fe, were significantly enriched in light Fe isotopes, whereas the isotopic composition of silt and sand fractions, containing most of the soil Fe, remained in the range described by biotite/chlorite samples and bulk soils. Iron pools separated by a sequential extraction procedure covered a range of 0.8‰ in δ 56Fe. For all soils the lightest isotopic composition was observed in a 1 M NH 2OH-HCl-25% acetic acid extract, targeting poorly-crystalline Fe(III)-(hydr)oxides, compared with easily leachable Fe in primary phyllosilicates (0.5 M HCl extract) and Fe in residual silicates. The combination of the Fe isotope measurements with the speciation data obtained by Fe-EXAFS spectroscopy permitted to quantitatively relate the different isotope pools forming in the soils to the mineral

  14. Oxygen isotope fractionation in the vacuum ultraviolet photodissociation of carbon monoxide: Wavelength, pressure and temperature dependency.

    SciTech Connect

    Chakraborty, Subrata; Davis, Ryan; Ahmed, Musahid; Jackson, Teresa L.; Thiemens, Mark H.

    2012-01-03

    Several absorption bands exist in the VUV region of Carbon monoxide (CO). Emission spectra indicate that these bands are all predissociative. An experimental investigation of CO photodissociation by vacuum ultraviolet photons (90 to 108 nm; ~13 to 11 eV) from the Advanced Light Source Synchrotron and direct measurement of the associated oxygen isotopic composition of the products are presented here. A wavelength dependency of the oxygen isotopic composition in the photodissociation product was observed. Slope values (δ'{sup 18}O/ δ'{sup 17}O) ranging from 0.76 to 1.32 were observed in oxygen three-isotope space (δ'{sup 18}O vs. δ'{sup 17}O) which correlated with increasing synchrotron photon energy, and indicate a dependency of the upper electronic state specific dissociation dynamics (e.g., perturbation and coupling associated with a particular state). An unprecedented magnitude in isotope separation was observed for photodissociation at the 105 and 107 nm synchrotron bands and are found to be associated with accidental predissociation of the vibrational states ({nu} = 0 and 1) of the upper electronic state E{sup 1}Π. For each synchrotron band, a large (few hundred per mil) extent of isotopic fractionation was observed and the range of fractionation is a combination of column density and exposure time. A significant temperature dependency in oxygen isotopic fractionation was observed, indicating a rotational level dependency in the predissociation process.

  15. Separated Shoulder

    MedlinePlus

    Separated shoulder Overview By Mayo Clinic Staff A separated shoulder is an injury to the ligaments that hold your collarbone (clavicle) to your shoulder blade. In a mild separated shoulder, the ligaments ...

  16. Sr isotopic microsampling of magmatic rocks; a review (Invited)

    NASA Astrophysics Data System (ADS)

    Davidson, J. P.

    2010-12-01

    Sr isotopes have been used since the 1960s as powerful tracers of source for igneous rocks. In the past 10 years in-situ isotopic microsampling has afforded us tremendous progress in our capacity to understand magmatic processes. This progress is underpinned by analytical advances particularly in sample extraction through laser or micromill and in multicollector mass spectrometer improvements to sensitivity and precision. Perhaps the biggest surprise was the recognition in the 1990s that young magmatic rocks are commonly isotopically heterogeneous at the component (inter- or intra- crystal) scale. Given that melting and fractionation do not affect 87Sr/86Sr we would not a priori expect isotopic variations within or among crystals in a young igneous rock. This observation alone attests to open system behavior in magmas, and tells us that many of the crystals have been mechanically aggregated and not grown directly from the melt in which they are found solidified (a conclusion that can also commonly be drawn from cursory petrographic examination). This recognition in turn means that we can make use of the crystals as recorders of the isotopic environments in which they crystallise: If a crystal grows progressively from a melt which changes its isotopic composition through processes such as contamination and mixing, then the only record of the melt evolution is in the core-rim compositions of the crystals - analogous to the environmental record of tree rings. Plagioclase crystals in mafic enclaves from Lassen (CA) and Purico-Chascon (Chile), for instance, have isotopic records that reflect origination from the more silicic host. Core-rim records of evolution can also be integrated with textural measurements. At Stromboli we have shown how isotopic zoning correlates with crystal size distribution. The detailed records of single crystals can be complemented by multi crystal core analyses which can be used to distinguish specific populations. This approach was used on

  17. The Most Useful Actinide Isotope: Americium-241.

    ERIC Educational Resources Information Center

    Navratil, James D.; And Others

    1990-01-01

    Reviewed is the discovery, nuclear and chemical properties, and uses of an isotope of Americium (Am-241). Production and separation techniques used in industry are emphasized. Processes are illustrated in flow sheets. (CW)

  18. Microbes: Agents of Isotopic Change

    NASA Astrophysics Data System (ADS)

    Fogel, M. L.

    2012-12-01

    Microbes drive many of the important oxidation and reduction reactions on Earth; digest almost all forms of organic matter; and can serve as both primary and secondary producers. Because of their versatile biochemistry and physiology, they impart unique isotopic signatures to organic and inorganic materials, which have proven to be key measurements for understanding elemental cycling now and throughout Earth's history. Understanding microbial isotope fractionations in laboratory experiments has been important for interpreting isotopic patterns measured in natural settings. In fact, the pairing of simple experiment with natural observation has been the pathway for interpreting the fingerprint of microbial processes in ancient sediments and rocks. Examples of how key experiments have explained stable isotope fractionations by microbes and advanced the field of microbial ecology will be presented. Learning the isotopic signatures of Earth's microbes is a valuable exercise for predicting what isotopic signatures could be displayed by possible extant or extinct extraterrestrial life. Given the potential for discovery on Mars, Enceladus, and other solar system bodies, new methods and techniques for pinpointing what is unique about microbial isotope signatures is particularly relevant.

  19. Selective photoionisation of lutetium isotopes

    SciTech Connect

    D'yachkov, Aleksei B; Kovalevich, S K; Labozin, Valerii P; Mironov, Sergei M; Panchenko, Vladislav Ya; Firsov, Valerii A; Tsvetkov, G O; Shatalova, G G

    2012-10-31

    A three-stage laser photoionisation scheme intended for enriching the {sup 176}Lu isotope from natural lutetium was considered. An investigation was made of the hyperfine structure of the second excited state 5d6s7s {yields} {sup 4}D{sub 3/2} with an energy of 37194 cm{sup -1} and the autoionisation state with an energy of 53375 cm{sup -1} of the {sup 176}Lu and {sup 175}Lu isotopes. The total electron momentum of the autoionisation level and the constant A of hyperfine magnetic interaction were determined. Due to a small value of the isotopic shift between {sup 176}Lu and {sup 175}Lu, appreciable selectivity of their separation may be achieved with individual hyperfine structure components. The first tentative enrichment of the 176Lu isotope was performed to a concentration of 60 % - 70 %. (laser applications and other topics in quantum electronics)

  20. Isotopic Changes During Digestion: Protein

    NASA Astrophysics Data System (ADS)

    Tuross, N.

    2013-12-01

    Nutrient and hydrological inputs traverse a complicated route of pH, enzymatic and cellular processes in digestion in higher animals. The end products of digestion are the starting products for biosynthesis that are often used to interpret past life-ways. Using an artificial gut system, the isotopic changes (dD, d18O, d13C and d15N) of protein are documented. Three separate protein sources are subjected to the conditions, chemical and enzymatic, found in the stomach and upper small intestine with only a small shift in the oxygen isotopic composition of the proteins observed. Middle to lower small intestine parameters produced both greater isotopic effects and significantly lower molecular weight products. The role of the gastric enterocyte and the likely involvement of the internal milieu of this cell in the isotopic composition of amino acids that are transported to the liver are reported.

  1. Compelling Research Opportunities using Isotopes

    SciTech Connect

    2009-04-23

    Isotopes are vital to the science and technology base of the US economy. Isotopes, both stable and radioactive, are essential tools in the growing science, technology, engineering, and health enterprises of the 21st century. The scientific discoveries and associated advances made as a result of the availability of isotopes today span widely from medicine to biology, physics, chemistry, and a broad range of applications in environmental and material sciences. Isotope issues have become crucial aspects of homeland security. Isotopes are utilized in new resource development, in energy from bio-fuels, petrochemical and nuclear fuels, in drug discovery, health care therapies and diagnostics, in nutrition, in agriculture, and in many other areas. The development and production of isotope products unavailable or difficult to get commercially have been most recently the responsibility of the Department of Energy's Nuclear Energy program. The President's FY09 Budget request proposed the transfer of the Isotope Production program to the Department of Energy's Office of Science in Nuclear Physics and to rename it the National Isotope Production and Application program (NIPA). The transfer has now taken place with the signing of the 2009 appropriations bill. In preparation for this, the Nuclear Science Advisory Committee (NSAC) was requested to establish a standing subcommittee, the NSAC Isotope Subcommittee (NSACI), to advise the DOE Office of Nuclear Physics. The request came in the form of two charges: one, on setting research priorities in the short term for the most compelling opportunities from the vast array of disciplines that develop and use isotopes and two, on making a long term strategic plan for the NIPA program. This is the final report to address charge 1. NSACI membership is comprised of experts from the diverse research communities, industry, production, and homeland security. NSACI discussed research opportunities divided into three areas: (1) medicine

  2. Mercury Stable Isotopic Composition of Monomethylmercury in Estuarine Sediments and Pure Cultures of Mercury Methylating Bacteria

    NASA Astrophysics Data System (ADS)

    Janssen, S.; Johnson, M. W.; Barkay, T.; Blum, J. D.; Reinfelder, J. R.

    2014-12-01

    Tracking monomethylmercury (MeHg) from its source in soils and sediments through various environmental compartments and transformations is critical to understanding its accumulation in aquatic and terrestrial food webs. Advances in the field of mercury (Hg) stable isotopes have allowed for the tracking of discrete Hg sources and the examination of photochemical and bacterial transformations. Despite analytical advances, measuring the Hg stable isotopic signature of MeHg in environmental samples or laboratory experiments remains challenging due to difficulties in the quantitative separation of MeHg from complex matrices with high concentrations of inorganic Hg. To address these challenges, we have developed a MeHg isolation method for sediments and bacterial cultures which involves separation by gas chromatography. The MeHg eluting from the GC is passed through a pyrolysis column and purged onto a gold amalgam trap which is then desorbed into a final oxidizing solution. A MeHg reference standard carried through our separation process retained its isotopic composition within 0.02 ‰ for δ202Hg, and for native estuarine sediments, MeHg recoveries were 80% to 100%. For sediment samples from the Hackensack and Passaic Rivers (New Jersey, USA), δ202Hg values for MeHg varied from -1.2 to +0.58 ‰ (relative to SRM 3133) and for individual samples were significantly different from that of total Hg (-0.38 ± 0.06 ‰). No mass independent fractionation was observed in MeHg or total Hg from these sediments. Pure cultures of Geobacter sulfurreducens, grown under fermentative conditions showed preferential enrichment of lighter isotopes (lower δ202Hg) during Hg methylation. The Hg stable isotope signatures of MeHg in sediments and laboratory methylation experiments will be discussed in the context of the formation and degradation of MeHg in the environment and the bioaccumulation of MeHg in estuarine food webs.

  3. Ultracapacitor separator

    DOEpatents

    Wei, Chang; Jerabek, Elihu Calvin; LeBlanc, Jr., Oliver Harris

    2001-03-06

    An ultracapacitor includes two solid, nonporous current collectors, two porous electrodes separating the collectors, a porous separator between the electrodes and an electrolyte occupying the pores in the electrodes and separator. The electrolyte is a polar aprotic organic solvent and a salt. The porous separator comprises a wet laid cellulosic material.

  4. Bayesian stable isotope mixing models

    EPA Science Inventory

    In this paper we review recent advances in Stable Isotope Mixing Models (SIMMs) and place them into an over-arching Bayesian statistical framework which allows for several useful extensions. SIMMs are used to quantify the proportional contributions of various sources to a mixtur...

  5. Laser Isotope Enrichment for Medical and Industrial Applications

    SciTech Connect

    Leonard Bond

    2006-07-01

    Laser Isotope Enrichment for Medical and Industrial Applications by Jeff Eerkens (University of Missouri), Jay Kunze (Idaho State University), and Leonard Bond (Idaho National Laboratory) The principal isotope enrichment business in the world is the enrichment of uranium for commercial power reactor fuels. However, there are a number of other needs for separated isotopes. Some examples are: 1) Pure isotopic targets for irradiation to produce medical radioisotopes. 2) Pure isotopes for semiconductors. 3) Low neutron capture isotopes for various uses in nuclear reactors. 4) Isotopes for industrial tracer/identification applications. Examples of interest to medicine are targets to produce radio-isotopes such as S-33, Mo-98, Mo-100, W-186, Sn-112; while for MRI diagnostics, the non-radioactive Xe-129 isotope is wanted. For super-semiconductor applications some desired industrial isotopes are Si-28, Ga-69, Ge-74, Se-80, Te-128, etc. An example of a low cross section isotope for use in reactors is Zn-68 as a corrosion inhibitor material in nuclear reactor primary systems. Neutron activation of Ar isotopes is of interest in industrial tracer and diagnostic applications (e.g. oil-logging). . In the past few years there has been a sufficient supply of isotopes in common demand, because of huge Russian stockpiles produced with old electromagnetic and centrifuge separators previously used for uranium enrichment. Production of specialized isotopes in the USA has been largely accomplished using old ”calutrons” (electromagnetic separators) at Oak Ridge National Laboratory. These methods of separating isotopes are rather energy inefficient. Use of lasers for isotope separation has been considered for many decades. None of the proposed methods have attained sufficient proof of principal status to be economically attractive to pursue commercially. Some of the authors have succeeded in separating sulfur isotopes using a rather new and different method, known as condensation

  6. Integrating isotopic fingerprinting with petrology: how do igneous rocks evolve?

    NASA Astrophysics Data System (ADS)

    Davidson, J. P.

    2002-12-01

    In the title of his seminal work, N.L. Bowen recognized the fundamental importance of magmatic evolution in producing the spectrum of igneous rocks. Indeed it is difficult to imagine a hot highly reactive fluid passing through c. 100 km of a chemically distinct medium (lithosphere) without evolving through cooling, crystallization and interaction with the wall rocks. The fact that magmas evolve - almost invariably through open system processes - has been largely marginalized in the past 30 years by the desire to use them as probes of mantle source regions. This perspective has been driven principally by advances offered by isotope geochemistry, through which components and sources can be effectively fingerprinted. Two fundamental observations urge caution in ignoring differentiation effects; 1) the scarcity of truly primary magmas according to geochemical criteria (recognized long ago by petrologists), and 2) the common occurrence of petrographic criteria attesting to open system evolution. Recent advances in multicollector mass spectrometry permit integration of the powerful diagnostic tools of isotope geochemistry with petrographic observations through accurate and precise analysis of small samples. Laser ablation and microdrilling enable sampling within and between mineral phases. The results of our microsampling investigations give widespread support for open system evolution of magmas, and provide insights into the mechanisms and timescales over which this occurs. For example; 1) core-rim decreases in 87Sr/86Sr in zoned plagioclase crystals from 1982 lavas of El Chichon volcano, Mexico, argue that the zoning and isotopic changes are in response to magma recharge mixing with an originally contaminated resident magma; 2) Single grain and intra-grain isotopic analyses of mineral phases from Ngauruhoe andesites (New Zealand) are highly variable, arguing that bulk rock data reflect mechanical aggregations of components which have evolved in discrete domains of the

  7. Stable isotope applications in biomolecular structure and mechanisms. A meeting to bring together producers and users of stable-isotope-labeled compounds to assess current and future needs

    SciTech Connect

    Trewhella, J.; Cross, T.A.; Unkefer, C.J.

    1994-12-01

    Knowledge of biomolecular structure is a prerequisite for understanding biomolecular function, and stable isotopes play an increasingly important role in structure determination of biological molecules. The first Conference on Stable Isotope Applications in Biomolecular Structure and Mechanisms was held in Santa Fe, New Mexico, March 27--31, 1994. More than 120 participants from 8 countries and 44 institutions reviewed significant developments, discussed the most promising applications for stable isotopes, and addressed future needs and challenges. Participants focused on applications of stable isotopes for studies of the structure and function of proteins, peptides, RNA, and DNA. Recent advances in NMR techniques neutron scattering, EPR, and vibrational spectroscopy were highlighted in addition to the production and synthesis of labeled compounds. This volume includes invited speaker and poster presentations as well as a set of reports from discussion panels that focused on the needs of the scientific community and the potential roles of private industry, the National Stable Isotope Resource, and the National High Magnetic Field Laboratory in serving those needs. This is the leading abstract. Individual papers are processed separately for the database.

  8. Concrete and Formal Thinking Abilities in High School Biology Students as Measured by Three Separate Instruments. AESOP (Advancement of Education in Science-Oriented Programs) Paper.

    ERIC Educational Resources Information Center

    Lawson, Anton E.; Blake, Anthony J. D.

    The purpose of this investigation was to classify a sample of high school biology students into concrete and formal operational levels using three separate instruments: (1) a battery of Piagetian tasks (the pendulum, bending rods, and the balance beam); (2) a written biology examination consisting of questions requiring concrete and formal…

  9. Isotope fractionation

    NASA Astrophysics Data System (ADS)

    Bell, Peter M.

    A rash of new controversy has emerged around the subject of mass-independent isotope fractionation effects, particularly in the case of the oxygen isotopes. To be sure, the controversy has been around for awhile, but it has been given new impetus by the results of a recent study by Mark H. Thiemens and John E. Heidenreich III of the University of California, San Diego (Science, March 4, 1983).Gustav Arrhenius has been trying to convince the planetary science community that chemical effects in isotope fractionation processes could explain observations in meteorites that appear to be outside of the traditionally understood mass-dependent fractionations (G. Arrhenius, J . L. McCrumb, and N. F. Friedman, Astrophys. Space Sci, 65, 297, 1974). Robert Clayton had made the basic observations of oxygen in carbonaceous chondrites that the slope of the δ17 versus δ18 line was 1 instead of the slope of ½ characteristic of terrestrial rocks and lunar samples (Ann. Rev. Nucl. Part. Sci., 28, 501, 1978). The mass-independent effects were ascribed to the apparent contribution of an ancient presolar system component of O16.

  10. Analysis of advanced glycation endproducts in dairy products by isotope dilution liquid chromatography-electrospray tandem mass spectrometry. The particular case of carboxymethyllysine.

    PubMed

    Delatour, Thierry; Hegele, Jörg; Parisod, Véronique; Richoz, Janique; Maurer, Sarah; Steven, Matthew; Buetler, Timo

    2009-03-20

    A fully validated multiple-transition recording isotope dilution liquid chromatography-electrospray tandem mass spectrometry (LC-MS/MS) method for the simultaneous quantitative determination of N(epsilon)-carboxymethyllysine (CML) and lysine in dairy products is described. Internal standards were [N-1',2'-(13)C(2)]CML and [1,2,3,4,5,6-(13)C(6)-2,6-(15)N(2)]lysine, and the method was validated by evaluating the selectivity, linearity, precision (repeatability and reproducibility) and trueness, using both powder and liquid products. For liquid dairy products, the repeatability and reproducibility was 2.79% and 11.0%, while 4.85% and 4.92% were determined for powder dairy products, respectively. The trueness of the method ranged from -9.6% to -3.6% for powder and from -0.99% to 6.8% for liquid dairy products. The limit of detection for CML was estimated to be 8 ng CML per mg protein while the limit of quantification was 27 ng CML per mg protein. The method encompasses a proteolytic cleavage mediated by enzymatic digestion to reach a complete release of the amino acids prior to a sample cleanup based on solid phase extraction, and followed by LC-MS/MS analysis of CML and lysine residues. To ensure a suitable performance of the enzymatic digestion, CML measurements were compared to values obtained with an acid hydrolysis-mediated proteolysis. Finally, the method was employed for the analysis of CML in various dairy products. The values compare well to the data available in the literature when similar methods were used, even if some discrepancies were observed upon comparison with the results obtained by other techniques such as enzyme-linked immunosorbent assay and GC-MS.

  11. Low-energy process for separating hydrogen and methane in advanced coal-gasification processes. Final report, September 8, 1980-January 7, 1983

    SciTech Connect

    Yang, R.T.; Saunders, J.T.; Byers, S.G.; Wang, S.S.

    1983-01-01

    This report contains the detailed results of the following three-part study: Part I. Adsorption of H/sub 2//CH/sub 4/ from single and mixed gases on activated carbon, coals and chars; Part II. Adsorption of H/sub 2/S and its mixtures with H/sub 2//CH/sub 4/ on activated carbon, coals and chars; and Part III. Separation of H/sub 2//CH/sub 4/ and H/sub 2//CH/sub 4//H/sub 2/S mixtures by a temperature-cycling process. The original scope of the study, as indicated by the title of the report, has been expanded to include H/sub 2/S in the gas mixture. The inclusion of H/sub 2/S was to study the feasibility of combining the H/sub 2//CH/sub 4/ separation step with the H/sub 2/S removal step into a single process. The success of the feasibility study naturally leads to the possibility of separating both CO/sub 2/ and H/sub 2/S from H/sub 2/ and CH/sub 4/ in coal gasification products by the cyclic adsorption/desorption process. The results of the study are presented.

  12. Chiral Separations

    NASA Astrophysics Data System (ADS)

    Stalcup, A. M.

    2010-07-01

    The main goal of this review is to provide a brief overview of chiral separations to researchers who are versed in the area of analytical separations but unfamiliar with chiral separations. To researchers who are not familiar with this area, there is currently a bewildering array of commercially available chiral columns, chiral derivatizing reagents, and chiral selectors for approaches that span the range of analytical separation platforms (e.g., high-performance liquid chromatography, gas chromatography, supercritical-fluid chromatography, and capillary electrophoresis). This review begins with a brief discussion of chirality before examining the general strategies and commonalities among all of the chiral separation techniques. Rather than exhaustively listing all the chiral selectors and applications, this review highlights significant issues and differences between chiral and achiral separations, providing salient examples from specific classes of chiral selectors where appropriate.

  13. Water separator

    NASA Technical Reports Server (NTRS)

    Dunn, W. F.; Austin, I. G. (Inventor)

    1964-01-01

    An apparatus for separating liquids from gases or gaseous fluids is described. Features of the apparatus include: (1) the collection and removal of the moisture in the fluid is not dependent upon, or affected by gravity; (2) all the collected water is cyclically drained from the apparatus irrespective of the attitude of the separator; and (3) a fluid actuator is utilized to remove the collected water from the separator.

  14. [Stable isotopes of carbon and nitrogen in soil ecological studies].

    PubMed

    Tiunov, A V

    2007-01-01

    The development of stable isotope techniques is one of the main methodological advances in ecology of the last decades of the 20th century. Many biogeochemical processes are accompanied by changes in the ratio between stable isotopes of carbon and nitrogen (12C/13C and 14N/15N), which allows different ecosystem components and different ecosystems to be distinguished by their isotopic composition. Analysis of isotopic composition makes it possible to trace matter and energy flows through biological systems and to evaluate the rate of many ecological processes. The main concepts and methods of stable isotope ecology and patterns of stable isotope fractionation during organic matter decomposition are considered with special emphasis on the fractionation of isotopes in food chains and the use of stable isotope studies of trophic relationships between soil animals in the field.

  15. Quantitative Microbial Ecology through Stable Isotope Probing

    PubMed Central

    Mau, Rebecca L.; Schwartz, Egbert; Caporaso, J. Gregory; Dijkstra, Paul; van Gestel, Natasja; Koch, Benjamin J.; Liu, Cindy M.; McHugh, Theresa A.; Marks, Jane C.; Morrissey, Ember M.; Price, Lance B.

    2015-01-01

    Bacteria grow and transform elements at different rates, and as yet, quantifying this variation in the environment is difficult. Determining isotope enrichment with fine taxonomic resolution after exposure to isotope tracers could help, but there are few suitable techniques. We propose a modification to stable isotope probing (SIP) that enables the isotopic composition of DNA from individual bacterial taxa after exposure to isotope tracers to be determined. In our modification, after isopycnic centrifugation, DNA is collected in multiple density fractions, and each fraction is sequenced separately. Taxon-specific density curves are produced for labeled and nonlabeled treatments, from which the shift in density for each individual taxon in response to isotope labeling is calculated. Expressing each taxon's density shift relative to that taxon's density measured without isotope enrichment accounts for the influence of nucleic acid composition on density and isolates the influence of isotope tracer assimilation. The shift in density translates quantitatively to isotopic enrichment. Because this revision to SIP allows quantitative measurements of isotope enrichment, we propose to call it quantitative stable isotope probing (qSIP). We demonstrated qSIP using soil incubations, in which soil bacteria exhibited strong taxonomic variations in 18O and 13C composition after exposure to [18O]water or [13C]glucose. The addition of glucose increased the assimilation of 18O into DNA from [18O]water. However, the increase in 18O assimilation was greater than expected based on utilization of glucose-derived carbon alone, because the addition of glucose indirectly stimulated bacteria to utilize other substrates for growth. This example illustrates the benefit of a quantitative approach to stable isotope probing. PMID:26296731

  16. Nickel isotopes and methanogens

    NASA Astrophysics Data System (ADS)

    Neubeck, A.; Ivarsson, M.

    2013-12-01

    Methanogens require Ni for their growth and as a consequence the microbial fractionation of Ni isotopes can be used as a biomarker for activity of methanogenic communities1. Anaerobic laboratory experiments was performed using methanogens to investigate methanogenic growth in a modified nutrient media2 with olivine Fo91 (5g/l) added as an additional mineral nutrient source and as the only H2 provider. One of the investigated methanogens showed an increased growth in the experiments with added olivine. There were also a close relationship between the mobilized Ni and the growth of the methanogen. Ni is an element that previously has been neglected in the study of fossilized microorganisms and their interaction with mineral substrates and, thus, there are no records or published data of Ni in association with microfossils. However, we have detected enrichments of Ni in fossilized microorganisms and ichno-fossils, respectively, from three separate locations. Ni is not present in the host rock in any of the samples. Thus, Ni is present in association with fossilized microorganisms from environments and more extensive analysis is required to understand the magnitude, uptake, preservation and fractionation of Ni in microfossils. In order to analyze Ni isotope fractionation from microbe-mineral interaction, we plan to use a high-resolution Laser-Ablation Time-of-Flight Mass Spectrometer (LMS)3. In situ profile ablation will provide detailed and localized data on fractionation patterns between microfossils and their host rock. Also, this technique will allow us to identify the change in Ni isotopic fractionation in rock samples caused by abiotic and biogenic processes in a faster and easier way and with less risk for contamination compared to the wet chemistry analyses of Ni isotopes. 1. Cameron, V., Vance, D., Archer, C. & House, C. H. A biomarker based on the stable isotopes of nickel. Proceedings of the National Academy of Sciences 106, 10944-10948 (2009). 2. Schn

  17. Stable isotopes in tree rings

    NASA Astrophysics Data System (ADS)

    McCarroll, Danny; Loader, Neil J.

    2004-04-01

    Stable isotopes in tree rings could provide palaeoclimate reconstructions with perfect annual resolution and statistically defined confidence limits. Recent advances make the approach viable for non-specialist laboratories. The relevant literature is, however, spread across several disciplines, with common problems approached in different ways. Here we provide the first overview of isotope dendroclimatology, explaining the underlying theory and describing the steps taken in building and interpreting isotope chronologies. Stable carbon isotopes record the balance between stomatal conductance and photosynthetic rate, dominated at dry sites by relative humidity and soil water status and at moist sites by summer irradiance and temperature. Stable oxygen and hydrogen isotopic ratios record source water, which contains a temperature signal, and leaf transpiration, controlled dominantly by vapour pressure deficit. Variable exchange with xylem (source) water during wood synthesis determines the relative strength of the source water and leaf enrichment signals. Producing long Holocene chronologies will require a change in emphasis towards processing very large numbers of samples efficiently, whilst retaining analytical precision. A variety of sample preparation and data treatment protocols have been used, some of which have a deleterious effect on the palaeoclimate signal. These are reviewed and suggestions made for a more standardised approach.

  18. Inorganic separator technology program

    NASA Technical Reports Server (NTRS)

    Smatko, J. S.; Weaver, R. D.; Kalhammer, F. R.

    1973-01-01

    Testing and failure analyses of silver zinc cells with largely inorganic separators were performed. The results showed that the wet stand and cycle life objective of the silver-zinc cell development program were essentially accomplished and led to recommendations for cell composition, design, and operation that should yield further improvement in wet and cycle life. A series of advanced inorganic materials was successfully developed and formulated into rigid and semiflexible separator samples. Suitable screening tests for evaluation of largely inorganic separators were selected and modified for application to the separator materials. The results showed that many of these formulations are potentially superior to previously used materials and permitted selection of three promising materials for further evaluation in silver-zinc cells.

  19. Stable isotope customer list and summary of shipments, FY 1986

    SciTech Connect

    Tracy, J.G.

    1987-02-01

    This compilation is published as an aid to those concerned with the separation and sale of stable isotopes. The information is divided into four sections: alphabetical list of domestic and foreign customers, showing the stable isotopes purchased during the fiscal year; alphabetical list of isotopes, cross-referenced to customer numbers and divided into domestic and foreign categories; alphabetical list of states and countries, cross-referenced to customer numbers and indicating geographical concentrations of isotope users; and tabulation of the shipments, quantities, and dollars for domestic, foreign, and project categories for each isotope.

  20. Enhanced nitrogen and phosphorus removal by an advanced simultaneous sludge reduction, inorganic solids separation, phosphorus recovery, and enhanced nutrient removal wastewater treatment process.

    PubMed

    Yan, Peng; Guo, Jin-Song; Wang, Jing; Chen, You-Peng; Ji, Fang-Ying; Dong, Yang; Zhang, Hong; Ouyang, Wen-juan

    2015-05-01

    An advanced wastewater treatment process (SIPER) was developed to simultaneously decrease sludge production, prevent the accumulation of inorganic solids, recover phosphorus, and enhance nutrient removal. The feasibility of simultaneous enhanced nutrient removal along with sludge reduction as well as the potential for enhanced nutrient removal via this process were further evaluated. The results showed that the denitrification potential of the supernatant of alkaline-treated sludge was higher than that of the influent. The system COD and VFA were increased by 23.0% and 68.2%, respectively, after the return of alkaline-treated sludge as an internal C-source, and the internal C-source contributed 24.1% of the total C-source. A total of 74.5% of phosphorus from wastewater was recovered as a usable chemical crystalline product. The nitrogen and phosphorus removal were improved by 19.6% and 23.6%, respectively, after incorporation of the side-stream system. Sludge minimization and excellent nutrient removal were successfully coupled in the SIPER process.

  1. Recent advances in f-element separations based on a new method for the production of pentavalent americium in acidic solution

    SciTech Connect

    Mincher, Bruce J.; Schmitt, Nicholas C.; Schuetz, Brian K.; Shehee, Thomas C.; Hobbs, David T.

    2015-03-11

    The peroxydisulfate anion has long been used for the preparation of hexavalent americium (AmVI) from the normally stable AmIII valence state in mildly acidic solutions. However, there has been no satisfactory means to directly prepare the pentavalent state (AmV) in that medium. Some early literature reports indicated that the peroxydisulfate oxidation was incomplete, and silver ion catalysis in conjunction with peroxydisulfate became accepted as the means to ensure quantitative generation of AmVI. Incomplete oxidation would be expected to leave residual AmIII, or to produce AmV in treated solutions. However, until recently, the use of peroxydisulfate as an AmV reagent has not been reported. Here, parameters influencing the oxidation were investigated, including peroxydisulfate and acid concentration, temperature, duration of oxidative treatment, and the presence of higher concentrations of other redox active metals such as plutonium. Using optimized conditions determined here, quantitative AmV was prepared in an acidic solution and the UV/Vis extinction coefficients of the AmV 513 nm peak were measured over a range of nitric acid concentrations. Furthermore, the utility of AmV for separations from the lanthanides and curium by solvent extraction, organic column chromatography and inorganic ion exchangers was also investigated.

  2. Recent advances in f-element separations based on a new method for the production of pentavalent americium in acidic solution

    DOE PAGES

    Mincher, Bruce J.; Schmitt, Nicholas C.; Schuetz, Brian K.; ...

    2015-03-11

    The peroxydisulfate anion has long been used for the preparation of hexavalent americium (AmVI) from the normally stable AmIII valence state in mildly acidic solutions. However, there has been no satisfactory means to directly prepare the pentavalent state (AmV) in that medium. Some early literature reports indicated that the peroxydisulfate oxidation was incomplete, and silver ion catalysis in conjunction with peroxydisulfate became accepted as the means to ensure quantitative generation of AmVI. Incomplete oxidation would be expected to leave residual AmIII, or to produce AmV in treated solutions. However, until recently, the use of peroxydisulfate as an AmV reagent hasmore » not been reported. Here, parameters influencing the oxidation were investigated, including peroxydisulfate and acid concentration, temperature, duration of oxidative treatment, and the presence of higher concentrations of other redox active metals such as plutonium. Using optimized conditions determined here, quantitative AmV was prepared in an acidic solution and the UV/Vis extinction coefficients of the AmV 513 nm peak were measured over a range of nitric acid concentrations. Furthermore, the utility of AmV for separations from the lanthanides and curium by solvent extraction, organic column chromatography and inorganic ion exchangers was also investigated.« less

  3. Recent advances in f-element separations based on a new method for the production of pentavalent americium in acidic solution.

    SciTech Connect

    Bruce J. Mincher; Nicholas C. Schmitt

    2015-03-01

    The peroxydisulfate anion has long been used for the preparation of hexavalent americium (AmVI) from the normally stable AmIII valence state in mildly acidic solutions. However, there has been no satisfactory means to directly prepare the pentavalent state (AmV) in that medium. Some early literature reports indicated that the peroxydisulfate oxidation was incomplete, and silver ion catalysis in conjunction with peroxydisulfate became accepted as the means to ensure quantitative generation of AmVI. Incomplete oxidation would be expected to leave residual AmIII, or to produce AmV in treated solutions. However, until recently, the use of peroxydisulfate as an AmV reagent has not been reported. Here, parameters influencing the oxidation were investigated, including peroxydisulfate and acid concentration, temperature, duration of oxidative treatment, and the presence of higher concentrations of other redox active metals such as plutonium. Using optimized conditions determined here, quantitative AmV was prepared in an acidic solution and the UV/Vis extinction coefficients of the AmV 513 nm peak were measured over a range of nitric acid concentrations. The utility of AmV for separations from the lanthanides and curium by solvent extraction, organic column chromatography and inorganic ion exchangers was also investigated.

  4. Pilot-scale test of an advanced, integrated wastewater treatment process with sludge reduction, inorganic solids separation, phosphorus recovery, and enhanced nutrient removal (SIPER).

    PubMed

    Yan, Peng; Ji, Fangying; Wang, Jing; Fan, Jianping; Guan, Wei; Chen, Qingkong

    2013-08-01

    Sludge reduction technologies are increasingly important in wastewater treatment, but have some defects. In order to remedy them, a novel, integrated process including sludge reduction, inorganic solids separation, phosphorus recovery, and enhanced nutrient removal was developed. The pilot-scale system was operated steadily at a treatment scale of 10 m(3)/d for 90 days. The results showed excellent nutrient removal, with average removal efficiencies for NH4(+)-N, TN, TP, and COD reaching 98.2 ± 1.34%, 75.5 ± 3.46%, 95.3 ± 1.65%, and 92.7 ± 2.49%, respectively. The ratio of mixed liquor volatile suspended solids (MLVSS) to mixed liquor suspended solids (MLSS) in the system gradually increased, from 0.33 to 0.52. The process effectively prevented the accumulation of inert or inorganic solids in activated sludge. Phosphorus was recovered as a crystalline product with aluminum ion from wastewater. The observed sludge yield Yobs of the system was 0.103 gVSS/g COD, demonstrating that the system's sludge reduction potential is excellent.

  5. Analysis of hydrogen isotope mixtures

    DOEpatents

    Villa-Aleman, Eliel

    1994-01-01

    An apparatus and method for determining the concentrations of hydrogen isotopes in a sample. Hydrogen in the sample is separated from other elements using a filter selectively permeable to hydrogen. Then the hydrogen is condensed onto a cold finger or cryopump. The cold finger is rotated as pulsed laser energy vaporizes a portion of the condensed hydrogen, forming a packet of molecular hydrogen. The desorbed hydrogen is ionized and admitted into a mass spectrometer for analysis.

  6. Linking in-situ Hf isotopes in zircon with in-situ Pb isotopes in plagioclase: a microanalytical approach to characterize Archean anorthosite petrogenesis

    NASA Astrophysics Data System (ADS)

    Souders, K.; Sylvester, P.; Myers, J.

    2011-12-01

    Multiple isotope systems are often used to distinguish petrogenetic processes and determine the age and source of magmatic systems. Advances in laser ablation multi-collector ICPMS instrumentation have allowed Earth scientists to determine accurate and precise isotope ratios of minerals in-situ. Most studies have focused on measuring isotopes that are abundant within a mineral (e.g. Hf in zircon) but the integration of multiple ion counters into the collector configuration of MC-ICPMS instruments has provided the ability to measure isotope ratios of minor elements (e.g. Pb in plagioclase) in-situ. These abilities allow for an alternative approach to igneous petrogenesis. Instead of isotopic analysis of bulk samples, in-situ methods can be utilized to target specific domains preserved in individual minerals. Analysis of co-magmatic minerals in igneous rocks using multiple isotopic systems can be linked to solve a range of petrologic problems. As an example, we present in-situ analyses by LA-MC-ICPMS for Pb isotope compositions of preserved igneous plagioclase megacrysts and Hf isotope compositions of zircon grains from the 2936 Ma Fiskenæsset and 2914 Ma Nunataarsuk anorthosite complexes, southwestern Greenland, two of the best-preserved Archean anorthosites in the world. For both Fiskenæsset and Nunataarsuk, the initial Pb isotope compositions of plagioclase megacrysts and the initial ɛHf compositions of zircon grains extend beyond analytical uncertainty suggesting multiple sources contributed to the parent magma for both anorthosite complexes. Initial ɛHf of zircon grains from both anorthosite complexes fall between depleted mantle and a less radiogenic crustal source with a total range up to 5 ɛHf units. Plagioclase Pb isotope compositions from both anorthosite complexes share a depleted mantle end member yet diverge from this point: Fiskenæsset toward a high-μ, more radiogenic Pb crustal composition and Nunataarsuk toward a low-μ, less radiogenic Pb

  7. Hafnium isotope stratigraphy of ferromanganese crusts

    USGS Publications Warehouse

    Lee, D.-C.; Halliday, A.N.; Hein, J.R.; Burton, K.W.; Christensen, J.N.; Gunther, D.

    1999-01-01

    A Cenozoic record of hafnium isotopic compositions of central Pacific deep water has been obtained from two ferromanganese crusts. The crusts are separated by more than 3000 kilometers but display similar secular variations. Significant fluctuations in hafnium isotopic composition occurred in the Eocene and Oligocene, possibly related to direct advection from the Indian and Atlantic oceans. Hafnium isotopic compositions have remained approximately uniform for the past 20 million years, probably reflecting increased isolation of the central Pacific. The mechanisms responsible for the increase in 87Sr/86Sr in seawater through the Cenozoic apparently had no effect on central Pacific deep-water hafnium.

  8. Stable carbon isotope analysis of coprocessing materials

    SciTech Connect

    Burke, F.P.; Winschel, R.A.; Lancet, M.S.

    1990-05-01

    Consol R D is developing and demonstrating stable carbon isotope analysis as a method quantitatively distinguish coal-derived and petroleum-derived carbon in products from coal/petroleum coprocessing. The approach taken is to develop the method, then demonstrate its application on authentic continuous-unit products. The significance of selective isotopic fractionation is being determined and, if necessary, corrections will be applied to account for it. Activities for this quarter include: method development -- investigation of selective fractionation. Three petroleum atmospheric still bottoms (ASBs) were separated by distillation and solubility fractionation to determine the homogeneity of the carbon isotope ratios of the separated fractions. These same three petroleum ASBs and three geographically distinct coals were pyrolyzed at 800{degree}F for 30 min and hydrogenated over a CoMo catalyst at 750{degree}F for 60 min to determine the effects of these treatments on the isotopic compositions of the produce fractions. Twelve coal liquefaction oils were analyzed for carbon isotope ratios. These oils were derived from subbituminous and bituminous coals from the first- and second-stage reactors in the thermal/catalytic and modes; validation and application, analysis. Carbon isotope analyses of samples from HRI bench unit coprocessing run 238-2 (Taiheiyo coal/Maya VSB) were analyzed. A method to correct for selective isotopic fractionation was developed and applied to the data. Five coprocessing samples were analyzed at the request of SRI International. 12 refs., 15 figs., 24 tabs.

  9. Stereoisomers Separation

    NASA Astrophysics Data System (ADS)

    Wieczorek, Piotr

    The use of capillary electrophoresis for enantiomer separation and optical purity determination is presented. The contents start with basic information about the nature of stereoizomers and the mechanism of enantioseparation using capillary electrophoresis techniques. The molecules to be separated show identical chemical structure and electrochemical behavior. Therefore, the chiral recognition of enantiomers is possible only by bonding to chiral selector and the separation based on very small differences in complexation energies of diastereomer complexes formed. This method is useful for this purpose due to the fact that different compounds can be used as chiral selectors. The mostly used chiral selectors like cyclodextrins, crown ethers, chiral surfactants, macrocyclic antibiotics, transition metal complexes, natural, and synthetic polymers and their application for this purpose is also discussed. Finally, examples of practical applications of electromigration techniques for enantiomers separation and determination are presented.

  10. Mist separator

    SciTech Connect

    Moran, T.M.

    1984-04-17

    An apparatus for the removal of particulates from a flowing gas stream and a process for its use are provided. A perforated screen separator formed as a plate having parallel rows of perforations formed by pushing alternating strips of the plate material forward and backward from the plane of the plate is used. The perforated screen separator may be used alone or with a fiber bed mist eliminator for increased particulate removal.

  11. Product separator

    DOEpatents

    Welsh, Robert A.; Deurbrouck, Albert W.

    1976-01-20

    A secondary light sensitive photoelectric product separator for use with a primary product separator that concentrates a material so that it is visually distinguishable from adjacent materials. The concentrate separation is accomplished first by feeding the material onto a vibratory inclined surface with a liquid flow, such as a wet concentrating table. Vibrations generally perpendicular to the stream direction of flow cause the concentrate to separate from its mixture according to its color. When the concentrate and its surrounding stream reach the recovery end of the table, a detecting device notes the line of color demarcation and triggers a signal if it differs from a normal condition. If no difference is noted nothing moves on the second separator. However, if a difference is detected in the constant monitoring of the color line's location, a product splitter and recovery unit normally positioned near the color line at the recovery end, moves to a new position. In this manner the selected separated concentrate is recovered at a maximum rate regardless of variations in the flow stream or other conditions present.

  12. Advances in inline quantification of co-eluting proteins in chromatography: Process-data-based model calibration and application towards real-life separation issues.

    PubMed

    Brestrich, Nina; Sanden, Adrian; Kraft, Axel; McCann, Karl; Bertolini, Joseph; Hubbuch, Jürgen

    2015-07-01

    Pooling decisions in preparative liquid chromatography for protein purification are usually based on univariate UV absorption measurements that are not able to differentiate between product and co-eluting contaminants. This can result in inconsistent pool purities or yields, if there is a batch-to-batch variability of the feedstock. To overcome this analytical bottleneck, a tool for selective inline quantification of co-eluting model proteins using mid-UV absorption spectra and Partial Least Squares Regression (PLS) was presented in a previous study and applied for real-time pooling decisions. In this paper, a process-data-based method for the PLS model calibration will be introduced that allows the application of the tool towards chromatography steps of real-life processes. The process-data-based calibration method uses recorded inline mid-UV absorption spectra that are correlated with offline fraction analytics to calibrate PLS models. In order to generate average spectra from the inline data, a Visual Basic for Application macro was successfully developed. The process-data-based model calibration was established using a ternary model protein system. Afterwards, it was successfully demonstrated in two case studies that the calibration method is applicable towards real-life separation issues. The calibrated PLS models allowed a successful quantification of the co-eluting species in a cation-exchange-based aggregate and fraction removal during the purification of monoclonal antibodies and of co-eluting serum proteins in an anion-exchange-based purification of Cohn supernatant I. Consequently, the presented process-data-based PLS model calibration in combination with the tool for selective inline quantification has a great potential for the monitoring of future chromatography steps and may contribute to manage batch-to-batch variability by real-time pooling decisions.

  13. Investigation of Gravity Lanthanide Separation Chemistry

    SciTech Connect

    Payne, Rosara F.; Schulte, Shannon M.; Douglas, Matthew; Friese, Judah I.; Farmer, Orville T.; Finn, Erin C.

    2011-03-01

    Lanthanides are common fission products and the ability to separate and quantify these elements is critical to rapid radiochemistry applications. Published lanthanide separations using Eichrom Ln Spec resin utilize an HCl gradient. Here it is shown that the efficacy and resolution of the separation is improved when a nitric acid gradient is used instead. The described method allows parallel processing of many samples in 1.5 hours followed by 60 minute counting for quantification of 9 isotopes of 7 lanthanide elements.

  14. Method and apparatus for tritiated water separation

    DOEpatents

    Nelson, D.A.; Duncan, J.B.; Jensen, G.A.

    1995-09-19

    The present invention is a membrane method and apparatus for separating isotopic water constituents from light water. The method involves providing a supported membrane of an aromatic polyphosphazene and pressurizing the water on one side of the membrane thereby forcing the light water through the supported membrane while isotopic water constituents are retained or vice versa. The apparatus of the present invention includes an aromatic polyphosphazene placed on a porous support and means for pressurizing water through the membrane while certain isotopic water constituents are retained. 1 fig.

  15. Method and apparatus for tritiated water separation

    DOEpatents

    Nelson, David A.; Duncan, James B.; Jensen, George A.

    1995-01-01

    The present invention is a membrane method and apparatus for separating isotopic water constituents from light water. The method involves providing a supported membrane of an aromatic polyphosphazene and pressurizing the water on one side of the membrane thereby forcing the light water through the supported membrane while isotopic water constituents are retained or vice versa. The apparatus of the present invention includes an aromatic polyphosphazene placed on a porous support and means for pressurizing water through the membrane while certain isotopic water constituents are retained.

  16. Sr-O isotope systematics in the Campi Flegrei magma systems

    NASA Astrophysics Data System (ADS)

    Wörner, Gerhard; Iovine, Raffaella; Carmine Mazzeo, Fabio; D'Antonio, Massimo; Arienzo, Ilenia; Civetta, Lucia; Orsi, Giovanni

    2016-04-01

    Combined radiogenic Sr- and stable O-isotopes are a powerful tool to distinguish between (a) contamination of mantle magma sources by fluids and subducted sediment and (b) assimilation of magmas during ascent through the crust. Advance in laser fluorination mass spectrometry permits to measure small samples and single mineral grains. This allows to directly link Sr- and O-isotope measurements practically for the same sample material. Although isotopic heterogeneity remains a problem even at this level, this approach avoids problems of weathering and mineral-melt disequilibria. We analysed mineral separates (feldspar, Fe-cpx, Mg-cpx, magnetite, olivine) from 37 samples covering the stratigraphic sequence of the Campi Flegrei volcanic field: Pre-Campanian Ignimbrite (Pre CI; >39.28 ka), Campanian Ignimbrite (CI; 39.28 ka), Post Campanian Ignimbrite/Pre Neapolitan Yellow Tuff (Post CI/pre NYT; <39.28 and > 14.90 ka), Neapolitan Yellow Tuff (NYT; 14.90 ka), and Post-Neapolitan Yellow Tuff (Post NYT; 12.8 ka-1538 A.D.) deposits. Sr isotopic compositions were determined using standard cation-exchange methods on separated hand-picked feldspar, clinopyroxene and olivine phenocrysts (~300mg) and on whole rocks, in case of not enough amount of crystals. By infrared laser fluorination was, instead, measured the oxygen isotopic composition of ~0.3 mg of hand-picked phenocrysts. Recalculating measured mineral O-isotope values to magmatic values to account for mineral-melt 18O/16O-fractionation at various SiO2-contens of the melt should provide a data set that better constrains magma isotope compositions and magma sources. Sr-isotopes span a range from 0.7069 to 0.7082 that exceed the variations in the bulk rock samples (0.7071-0.7081). However, these ranges vary significantly between eruptive periods. For example the Sr-isotope variation in the Neapolitan Yellow Tuff is only between 0.70750 and 0.70754 for minerals and whole rocks. Similarly, recalculated δ18O-melt values show

  17. Map Separates

    USGS Publications Warehouse

    ,

    2001-01-01

    U.S. Geological Survey (USGS) topographic maps are printed using up to six colors (black, blue, green, red, brown, and purple). To prepare your own maps or artwork based on maps, you can order separate black-and-white film positives or negatives for any color printed on a USGS topographic map, or for one or more of the groups of related features printed in the same color on the map (such as drainage and drainage names from the blue plate.) In this document, examples are shown with appropriate ink color to illustrate the various separates. When purchased, separates are black-and-white film negatives or positives. After you receive a film separate or composite from the USGS, you can crop, enlarge or reduce, and edit to add or remove details to suit your special needs. For example, you can adapt the separates for making regional and local planning maps or for doing many kinds of studies or promotions by using the features you select and then printing them in colors of your choice.

  18. Innovative Separations Technologies

    SciTech Connect

    J. Tripp; N. Soelberg; R. Wigeland

    2011-05-01

    Reprocessing used nuclear fuel (UNF) is a multi-faceted problem involving chemistry, material properties, and engineering. Technology options are available to meet a variety of processing goals. A decision about which reprocessing method is best depends significantly on the process attributes considered to be a priority. New methods of reprocessing that could provide advantages over the aqueous Plutonium Uranium Reduction Extraction (PUREX) and Uranium Extraction + (UREX+) processes, electrochemical, and other approaches are under investigation in the Fuel Cycle Research and Development (FCR&D) Separations Campaign. In an attempt to develop a revolutionary approach to UNF recycle that may have more favorable characteristics than existing technologies, five innovative separations projects have been initiated. These include: (1) Nitrogen Trifluoride for UNF Processing; (2) Reactive Fluoride Gas (SF6) for UNF Processing; (3) Dry Head-end Nitration Processing; (4) Chlorination Processing of UNF; and (5) Enhanced Oxidation/Chlorination Processing of UNF. This report provides a description of the proposed processes, explores how they fit into the Modified Open Cycle (MOC) and Full Recycle (FR) fuel cycles, and identifies performance differences when compared to 'reference' advanced aqueous and fluoride volatility separations cases. To be able to highlight the key changes to the reference case, general background on advanced aqueous solvent extraction, advanced oxidative processes (e.g., volumetric oxidation, or 'voloxidation,' which is high temperature reaction of oxide UNF with oxygen, or modified using other oxidizing and reducing gases), and fluorination and chlorination processes is provided.

  19. Process for recovery of daughter isotopes from a source material

    SciTech Connect

    Tranter, Troy J.; Todd, Terry A.; Lewis, Leroy C.; Henscheid, Joseph P.

    2005-10-04

    The invention includes a method of separating isotopes from a mixture containing at least two isotopes in a solution. A first isotope is precipitated and is collected from the solution. A daughter isotope is generated and collected from the first isotope. The invention includes a method of producing an actinium-225/bismuth-213 product from a material containing thorium-229 and thorium-232. A solution is formed containing nitric acid and the material and iodate is added to form a thorium iodate precipitate. A supernatant is separated from the thorium iodate precipitate and a second volume of nitric acid is added to the precipitate. The precipitate is stored and a decay product comprising actinium-225 and bismuth-213 is generated in the second volume of nitric acid which is then separated from the thorium iodate precipitate, filtered, and treated using at least one chromatographic procedure. The invention also includes a system for producing an actinium-225/bismuth-213 product.

  20. Calcium isotopes in wine

    NASA Astrophysics Data System (ADS)

    Holmden, C. E.

    2011-12-01

    The δ 44/40Ca values of bottled wine vary between -0.76% to -1.55% on the seawater scale and correlate weakly with inverse Ca concentration and Mg/Ca ratio, such that the lowest δ 44/40Ca values have the highest Ca concentrations and lowest Mg/Ca ratios. The correlation is notable in the sense that the measured wines include both whites and reds sampled from different wine growing regions of the world, and cover a wide range of quality. Trends among the data yield clues regarding the cause of the observed isotopic fractionation. White wines, and wines generally perceived to be of lower quality, have lower δ 44/40Ca values compared to red wines and wines of generally perceived higher quality. Quality was assessed qualitatively through sensory evaluation, price, and scores assigned by critics. The relationship between δ 44/40Ca and wine quality was most apparent when comparing wines of one varietal from one producer from the same growing region. In the vineyard, wine quality is related to factors such as the tonnage of the crop and the ripeness of the grapes at the time of harvesting, the thickness of the skins for reds, the age of the vines, as well as the place where the grapes were grown (terroir). Quality is also influenced by winemaking practices such as fermentation temperature, duration of skin contact, and barrel ageing. Accordingly, the relationship between δ 44/40Ca and wine quality may originate during grape ripening in the vineyard or during winemaking in the cellar. We tested the grape ripening hypothesis using Merlot grapes sampled from a vineyard in the Okanagan, British Columbia, using sugar content (degrees Brix) as an indicator of ripeness. The grapes were separated into pulp, skin, and pip fractions and were analyzed separately. Thus far, there is no clear evidence for a systematic change in δ 44/40Ca values associated with progressive ripening of grapes in the vineyard. On the day of harvesting, the δ 44/40Ca value of juice squeezed from

  1. Isotopically Modified Molybdenum: Production for Application in Nuclear Energy

    NASA Astrophysics Data System (ADS)

    Smirnov, A. Yu.; Bonarev, A. K.; Sulaberidze, G. A.; Borisevich, V. D.; Kulikov, G. G.; Shmelev, A. N.

    The possibility to use the isotopically modified molybdenum as a constructive material for the fuel rods of light water and fast reactors is discussed. The calculations demonstrate that the isotopically modified molybdenum with an average neutron absorption cross-section comparable to that of zirconium can be obtained with the reasonable for practice cost by a cascade of gas centrifuges, specially designed for separation of non-uranium isotopes.

  2. SEPARATION PROCESS

    DOEpatents

    Stoughton, R.W.

    1961-10-24

    A process for separating tetravalent plutonium from aqueous solutions and from niobium and zirconium by precipitation on lanthanum oxalate is described. The oxalate ions of the precipitate may be decomposed by heating in the presence of an oxidizing agent, forming a plutonium compound readily soluble in acid. (AEC)

  3. Plasma separation

    NASA Technical Reports Server (NTRS)

    Steurer, Wolfgang

    1992-01-01

    This process employs a thermal plasma for the separation and production of oxygen and metals. It is a continuous process that requires no consumables and relies entirely on space resources. The almost complete absence of waste renders it relatively clean. It can be turned on or off without any undesirable side effects or residues. The prime disadvantage is its high power consumption.

  4. Iron Isotope Fractionation in the Lower Mantle

    NASA Astrophysics Data System (ADS)

    Yang, H.; Lin, J. F.; Dauphas, N.

    2015-12-01

    Knowledge of iron isotopes in the deep Earth is of great importance, for it provides clues for determining the history of planetary differentiation and core formation, as well as the origin of the Earth. However, iron isotope composition of the Earth's interior is rarely known due to lack of samples. Previous theoretical and experimental results are insufficient because they presume the spin state of iron or they are based on relatively low quality experimental data. Here we will use a newly developed technique --NRIXS(Nuclear Resonant Inelastic X-ray Scattering)-- to measure the force constant of lower mantle mineral candidates ferropericlase and pervoskite at relevant pressure. A reliable iron isotope fractionation factor will then be derived using SciPhon, which is a software designed specifically for the isotope fractionation factor derivation from NRIXS data. We report new high pressure 57Fe NRIXS spectra collected at beamline 3 ID-B of the Advanced Photon Source, with the aim to understand the pressure effect on iron isotope fractionation. The experiments were conducted using a 3-fold Diamond Anvil Cell and a >95% 57Fe enriched sample fp25((Fe0.25Mg0.75)O). NRIXS spectra were collected by tuning the x-ray energy range within ± 200meV around the 57Fe resonant energy of 14.4125keV. We will present the force constants and derived iron isotope fractionation factors of ferropericlase. It is expected that pressure will have an effect on the iron isotope fractionation factor and should be taken into account when modeling isotope fractionation of planetary scale and when using iron isotope systems to constrain the planetary differentiation. We will also use first-principle studies and geochemical observations to study the Fe,O,Si isotope system in the deep Earth. Our ultimate goal is to build a self-consistent geophysical and geochemical model that can be used in deciphering the mystery of Earth's history.

  5. Isotope distribution program at the Oak Ridge National Laboratory with emphasis on medical isotopes

    SciTech Connect

    Adair, H.L.

    1987-02-26

    The Isotope Distribution Program (IDP) is a group of individual activities with separate and diverse DOE sponsors which share the common mission of the production and distribution of isotope products and the performance of isotope-related services. Its basic mission is to provide isotope products and associated services to the user community by utilizing government-owned facilities that are excess to the primary mission of the DOE. The IDP is in its 41st year of operation. Initially, the program provided research quantities of radioactive materials, and through the 1950's it was the major supplier of radioisotopes for both research and commercial application. Distribution of enriched stable isotopes began in 1954. This paper discusses the use of radioisotopes in medicine and the role that ORNL plays in this field.

  6. Gas separating

    DOEpatents

    Gollan, Arye Z.

    1990-12-25

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing.

  7. Gas separating

    DOEpatents

    Gollan, Arye

    1988-01-01

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing.

  8. Dust separator

    SciTech Connect

    Borow, H.

    1987-01-27

    This patent describes a gas filter apparatus for separating solids from a gas stream comprising a housing having a top, base, and side walls defining a chamber, a partition wall extending across the chamber and separating the chamber into an upper compartment and a lower compartment. A gas inlet conveyor tube in the chamber passes downwardly of the partition and into the lower compartment, the portion of the conveyor tube passing through the upper compartment being impervious and the portion of the conveyor tube extending downwardly into the lower compartment being provided with exit means including exit apertures at least in the area of the conveyor tube adjacent the partition wall. The partition wall is provided with openings surrounding the conveyor tube and communicates the lower compartment with the upper compartment. A filter means in the form of filter tubes covers each opening in the partition wall and extends downwardly in the lower compartment and parallel to the conveyor tube, at least one gas outlet communicating with the upper compartment. A suction means is associated with the gas outlet to provide a reduced pressure within the chamber. A discharge means at the base of the housing is associated with the lower compartment for discharging solid matter separated from the gas stream. The solid laden gas is conveyed into the lower compartment downwardly by the conveying tube and the gas of the stream is drawn from the conveyor tube immediately past the partition, through the surrounding filter tubes in order to prevent the formation of counter gas flows to the gravity discharge of the solids being separated from the gas stream.

  9. Separation system

    DOEpatents

    Rubin, Leslie S.

    1986-01-01

    A separation system for dewatering radioactive waste materials includes a disposal container, drive structure for receiving the container, and means for releasably attaching the container to the drive structure. Separation structure disposed in the container adjacent the inner surface of the side wall structure retains solids while allowing passage of liquids. Inlet port structure in the container top wall is normally closed by first valve structure that is centrifugally actuated to open the inlet port and discharge port structure at the container periphery receives liquid that passes through the separation structure and is normally closed by second valve structure that is centrifugally actuated to open the discharge ports. The container also includes coupling structure for releasable engagement with the centrifugal drive structure. Centrifugal force produced when the container is driven in rotation by the drive structure opens the valve structures, and radioactive waste material introduced into the container through the open inlet port is dewatered, and the waste is compacted. The ports are automatically closed by the valves when the container drum is not subjected to centrifugal force such that containment effectiveness is enhanced and exposure of personnel to radioactive materials is minimized.

  10. High-accuracy determination of iron in seawater by isotope dilution multiple collector inductively coupled plasma mass spectrometry (ID-MC-ICP-MS) using nitrilotriacetic acid chelating resin for pre-concentration and matrix separation.

    PubMed

    de Jong, Jeroen; Schoemann, Véronique; Lannuzel, Delphine; Tison, Jean-Louis; Mattielli, Nadine

    2008-08-15

    In the present paper we describe a robust and simple method to measure dissolved iron (DFe) concentrations in seawater down to <0.1 nmol L(-1) level, by isotope dilution multiple collector inductively coupled plasma mass spectrometry (ID-MC-ICP-MS) using a (54)Fe spike and measuring the (57)Fe/(54)Fe ratio. The method provides for a pre-concentration step (100:1) by micro-columns filled with the resin NTA Superflow of 50 mL seawater samples acidified to pH 1.9. NTA Superflow is demonstrated to quantitatively extract Fe from acidified seawater samples at this pH. Blanks are kept low (grand mean 0.045+/-0.020 nmol L(-1), n=21, 3 x S.D. limit of detection per session 0.020-0.069 nmol L(-1) range), as no buffer is required to adjust the sample pH for optimal extraction, and no other reagents are needed than ultrapure nitric acid, 12 mM H(2)O(2), and acidified (pH 1.9) ultra-high purity (UHP) water. We measured SAFe (sampling and analysis of Fe) reference seawater samples Surface-1 (0.097+/-0.043 nmol L(-1)) and Deep-2 (0.91+/-0.17 nmol L(-1)) and obtained results that were in excellent agreement with their DFe consensus values: 0.118+/-0.028 nmol L(-1) (n=7) for Surface-1 and 0.932+/-0.059 nmol L(-1) (n=9) for Deep-2. We also present a vertical DFe profile from the western Weddell Sea collected during the Ice Station Polarstern (ISPOL) ice drift experiment (ANT XXII-2, RV Polarstern) in November 2004-January 2005. The profile shows near-surface DFe concentrations of approximately 0.6 nmol L(-1) and bottom water enrichment up to 23 nmol L(-1) DFe.

  11. Stable isotopic characterisation of francolite formation

    NASA Astrophysics Data System (ADS)

    McArthur, J. M.; Benmore, R. A.; Coleman, M. L.; Soldi, C.; Yeh, H.-W.; O'Brien, G. W.

    1986-02-01

    Stable isotopic data are presented for 112 samples of francolite from 18 separate phosphate deposits. Values of δ 13C and δ 34S in most offshore deposits suggest formation within oxic or suboxic environments either by carbonate replacement or direct precipitation of francolite from water of normal marine compositions. The exceptions are concretionary francolite from Namibia, which has an isotopic composition in keeping with its formation within organic-rich sediments, and that from offshore Morocco, which has an isotopic signature of the anoxic/suboxic interface. Onshore deposits from Jordan, Mexico, South Africa and, possibly, the Permian Phosphoria Formation in the western U.S.A., are substantially depleted in 18O: they appear to be too altered for deductions to be made about their environments of formation. In other onshore deposits which are unaltered, or minimally altered, the isotopic composition suggests that some formed within sulphate-reducing sediments (Sedhura, Morocco) whilst francolite from the Georgina Basin of Australia formed at the oxic/anoxic boundary, where oxidation of biogenic H 2S decreases the δ 34S of pore water. In general, pelletal samples show non-oxic isotopic signatures, whilst non-pelletal samples show oxic isotopic signatures, but samples from Namibia, Peru (Ica Plateau) and the Californian and Moroccan margins are exceptions to this rule. Morphology may therefore be a misleading indicator of francolite genesis as no definitive relation exists between phosphorite type and isotopic signature.

  12. Progress in isotope tracer hydrology in Canada

    NASA Astrophysics Data System (ADS)

    Gibson, J. J.; Edwards, T. W. D.; Birks, S. J.; St Amour, N. A.; Buhay, W. M.; McEachern, P.; Wolfe, B. B.; Peters, D. L.

    2005-01-01

    An overview of current research in isotope hydrology, focusing on recent Canadian contributions, is discussed under the headings: precipitation networks, hydrograph separation and groundwater studies, river basin hydrology, lake and catchment water balance, and isotope palaeohydrology from lake sediment records. Tracer-based techniques, relying primarily on the naturally occurring environmental isotopes, have been integrated into a range of hydrological and biogeochemical research programmes, as they effectively complement physical and chemical techniques. A significant geographic focus of Canadian isotope hydrology research has been on the Mackenzie River basin, forming contributions to programmes such as the Global Energy and Water Cycle Experiment. Canadian research has also directly supported international efforts such as the International Atomic Energy Agency's (IAEA) Global Network for Isotopes in Precipitation and IAEAs Coordinated Research Project on Large River Basins. One significant trend in Canadian research is toward sustained long-term monitoring of precipitation and river discharge to enable better characterization of spatial and temporal variability in isotope signatures and their underlying causes. One fundamental conclusion drawn from previous studies in Canada is that combined use of 18O and 2H enables the distinction of precipitation variability from evaporation effects, which offers significant advantages over use of the individual tracers alone. The study of hydrological controls on water chemistry is one emerging research trend that stems from the unique ability to integrate isotope sampling within both water quality and water quantity surveys. Copyright

  13. Separation science and technology

    SciTech Connect

    Smith, B.F.; Sauer, N.; Chamberlin, R.M.; Gottesfeld, S.; Mattes, B.R.; Li, D.Q.; Swanson, B.

    1998-12-31

    The focus of this project is the demonstration and advancement of membrane-based separation and destruction technologies. The authors are exploring development of membrane systems for gas separations, selective metal ion recovery, and for separation or destruction of hazardous organics. They evaluated existing polymers and polymer formulations for recovery of toxic oxyanionic metals such as chromate and arsenate from selected waste streams and developed second-generation water-soluble polymeric systems for highly selective oxyanion removal and recovery. They optimized the simultaneous removal of radioactive strontium and cesium from aqueous solutions using the new nonhazardous separations agents, and developed recyclable, redox-active extractants that permitted recovery of the radioactive ions into a minimal waste volume. They produced hollow fibers and fabricated prototype hollow-fiber membrane modules for applications to gas separations and the liquid-liquid extraction and recovery of actinides and nuclear materials from process streams. They developed and fabricated cyclodextrin-based microporous materials that selectively absorb organic compounds in an aqueous environment; the resultant products gave pure water with organics at less than 0.05 parts per billion. They developed new, more efficient, membrane-based electrochemical reactors for use in organic destruction in process waste treatment. They addressed the need for advanced oxidation technologies based on molecular-level materials designs that selectively remove or destroy target species. They prepared and characterized surface-modified TiO{sub 2} thin films using different linking approaches to attach ruthenium photosensitizers, and they started the measurement of the photo-degradation products generated using surface modified TiO{sub 2} films in reaction with chlorophenol.

  14. Advanced Air Separation Module Performance Evaluation

    DTIC Science & Technology

    1988-07-01

    protected from fire and explosion in several ways: "o Reticulated foam (A-1O, F-15, C-130, F-4, etc.) "o Halcn 1301 inerting (F-16) "o Nitrogen inerting (C... reticulated foam, stored liquid nitrogen or molecular sieves. In addition, this system in most cases will offer the lowest aircraft weight penalties and...I --- , i~~~I1fhd~fJfJ~,WirEiii TABLE 1: Polymer Properties Property Polysulfone Ethyl poly(4methyl -ot Cellulose pentene 1) _m Water Absorption 0.22

  15. Advanced separations at Savannah River Site

    SciTech Connect

    Thompson, M.; McCabe, D.

    1996-10-01

    The Savannah River Site (SRS) has many waste streams that are contaminated with radionuclides and/or hazardous materials that must be treated to remove the radioactivity (cesium, strontium, tritium, actinides) and hazardous components (polychlorinated biphenyls (PCBs), cyanide, metal ions).

  16. Separates. 4-H Textile Science Advanced Project.

    ERIC Educational Resources Information Center

    Scholl, Jan F.

    This booklet, which was developed for use by 4-H club members in Pennsylvania, contains the information required to sew a two-piece nontailored outfit and/or a one-or two-piece dress. The following are among the topics covered: the difference between a fiber and a fabric; properties of different fibers and fabrics; common jacket, neckline, sleeve,…

  17. Advanced separations at Savannah River site

    SciTech Connect

    Thompson, M.C.

    1997-10-01

    The Savannah River Site (SRS) has many waste streams that are contaminated with radionuclides and/or hazardous materials that must be treated to remove the radioactivity (Cs, Sr, tritium, actinides) and hazardous components (poly-chlorinated biphenyls [PCBs], cyanide, metal ions). This task provides testbeds for ESP-developed materials and technology using actual SRS waste streams. The work includes different SRS waste streams: high-level waste (HLW) solutions currently stored in underground tanks onsite, water recycled from the waste vitrification plant, groundwater and other aqueous streams contaminated with metal ions and radionuclides, and reactor basin water in excess facilities. Another part of this task is to provide a report on materials for Cs removal from aqueous solutions for use as a reference.

  18. Separation processes using expulsion from dilute supercritical solutions

    DOEpatents

    Cochran, H.D. Jr.

    1993-04-20

    A process is described for separating isotopes as well as other mixtures by utilizing the behavior of dilute repulsive or weakly attractive elements of the mixtures as the critical point of the solvent is approached.

  19. Separation processes using expulsion from dilute supercritical solutions

    DOEpatents

    Cochran, Jr., Henry D.

    1993-01-01

    A process for separating isotopes as well as other mixtures by utilizing the behavior of dilute repulsive or weakly attractive elements of the mixtures as the critical point of the solvent is approached.

  20. Gas separating

    DOEpatents

    Gollan, A.

    1988-03-29

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing. 3 figs.

  1. Gas separating

    DOEpatents

    Gollan, A.Z.

    1990-12-25

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing. 3 figs.

  2. Metal stable isotopes in low-temperature systems: A primer

    USGS Publications Warehouse

    Bullen, T.D.; Eisenhauer, A.

    2009-01-01

    Recent advances in mass spectrometry have allowed isotope scientists to precisely determine stable isotope variations in the metallic elements. Biologically infl uenced and truly inorganic isotope fractionation processes have been demonstrated over the mass range of metals. This Elements issue provides an overview of the application of metal stable isotopes to low-temperature systems, which extend across the borders of several science disciplines: geology, hydrology, biology, environmental science, and biomedicine. Information on instrumentation, fractionation processes, data-reporting terminology, and reference materials presented here will help the reader to better understand this rapidly evolving field.

  3. Isotope reference materials

    USGS Publications Warehouse

    Coplen, Tyler B.

    2010-01-01

    Measurement of the same isotopically homogeneous sample by any laboratory worldwide should yield the same isotopic composition within analytical uncertainty. International distribution of light element isotopic reference materials by the International Atomic Energy Agency and the U.S. National Institute of Standards and Technology enable laboratories to achieve this goal.

  4. Statistical clumped isotope signatures

    PubMed Central

    Röckmann, T.; Popa, M. E.; Krol, M. C.; Hofmann, M. E. G.

    2016-01-01

    High precision measurements of molecules containing more than one heavy isotope may provide novel constraints on element cycles in nature. These so-called clumped isotope signatures are reported relative to the random (stochastic) distribution of heavy isotopes over all available isotopocules of a molecule, which is the conventional reference. When multiple indistinguishable atoms of the same element are present in a molecule, this reference is calculated from the bulk (≈average) isotopic composition of the involved atoms. We show here that this referencing convention leads to apparent negative clumped isotope anomalies (anti-clumping) when the indistinguishable atoms originate from isotopically different populations. Such statistical clumped isotope anomalies must occur in any system where two or more indistinguishable atoms of the same element, but with different isotopic composition, combine in a molecule. The size of the anti-clumping signal is closely related to the difference of the initial isotope ratios of the indistinguishable atoms that have combined. Therefore, a measured statistical clumped isotope anomaly, relative to an expected (e.g. thermodynamical) clumped isotope composition, may allow assessment of the heterogeneity of the isotopic pools of atoms that are the substrate for formation of molecules. PMID:27535168

  5. Variations of the isotopic composition of sulfur in enstatite and ordinary chondrites

    NASA Technical Reports Server (NTRS)

    Gao, Xia; Thiemens, Mark H.

    1993-01-01

    High-precision sulfur isotopic analyses (delta S-33, delta S-34, and delta S-36) of bulk ordinary and enstatite chondrites demonstrate that systematic variations exist. The average delta S-34 values are -0.26 +/- 0.07, -0.02 +/- 0.06, and 0.49 +/- 0.16 percent for enstatite and ordinary and carbonaceous chondrites, respectively. Isotopic variations of different sample specimens of primitive meteorites, e.g., Qingzhen and Abee, were observed which may be attributed to heterogeneity in the early solar nebula. Sulfur isotopic fractionations in both bulk samples and mineral separates are mass-dependent, and no nuclear isotopic anomalies were detected. The sulfur isotopic compositions of both mineral and density separates were measured. The sulfur isotopic compositions of separated chondrules from Chainpur and Bjurbole are reported. Significant isotopic difference for the chondrules from the bulk meteorite are noted for both meteorites.

  6. Stable Isotope Evidence for Planetary Differentiation

    NASA Astrophysics Data System (ADS)

    Shahar, A.; Mao, W. L.; Schauble, E. A.; Caracas, R.; Reagan, M. M.; Gleason, A. E.

    2015-12-01

    Planetary differentiation occurred at high temperature and varying oxygen fugacity, on bodies with varying compositions and internal pressures. The specific conditions at which bodies differentiated and the chemical fingerprints left by differentiation can be investigated by measuring stable isotope ratios in natural samples. Much can be learned by combining those data with experiments that systematically investigate the chemical and physical conditions within differentiating bodies. In this talk we focus on one variable in particular that has not been well defined with respect to stable isotope fractionation: pressure. We will present new iron isotope data on how pressure affects isotope fractionation factors for a number of iron compounds relative to silicate. The processes governing iron isotope fractionation in igneous rocks have been debated extensively over the past decade. Analyses of natural samples show that iron isotopes are fractionated at both the whole rock and mineral scales. This fractionation has been interpreted to be a result of several processes including a possible signature of high pressure core formation. We have collected new high pressure synchrotron nuclear resonant inelastic x-ray scattering data from Sector 16-ID-D at the Advanced Photon Source on 57Fe enriched Fe, FeO, FeHx and Fe3C. Our data show clear trends with pressure implying that not only does pressure have an effect on the iron isotope beta factors but also a fractionation amongst the alloys. This suggests that depending on the light element in the core, there will be a different resulting signature in the iron isotope record. We will discuss the likelihood of different light elements in the core based on these results, as well as the theoretical predictions for the same phases. Finally, we will present the fractionation expected between metal and silicate at high pressure and high temperature in order to determine if core formation would indeed leave an isotopic signature in

  7. Pb isotopic heterogeneity in basaltic phenocrysts

    SciTech Connect

    Bryce, Julia G.; DePaolo, Donald J.

    2002-06-01

    The Pb isotopic compositions of phenocrystic phases in young basaltic lavas have been investigated using the Getty-DePaolo method (Getty S. J. and DePaolo D. J. [1995] Quaternary geochronology by the U-Th-Pb method. Geochim. Cosmochim. Acta 59, 3267 3272), which allows for the resolution of small isotopic differences. Phenocryst, matrix, and whole rock analyses were made on samples from the 17 Myr-old Imnaha basalts of the Columbia River Group, a zero-age MORB from the Mid-Atlantic Ridge, and a ca. 260 kyr-old tholeiite from Mount Etna. Plagioclase feldspar phenocrysts have low-(U, Th)/Pb, and in each sample the plagioclase has significantly lower 206Pb/207Pb and 208Pb/207Pb values than whole rock, matrix, and magnetite-rich separates. The Pb isotopic contrast between plagioclase and matrix/whole rock is found in three samples with varying grain sizes (0.5 2 cm for the Imnaha basalt and MORB and <1 mm for the Etna sample) from different tectonic settings, suggesting that these results are not unique. The isotopic contrasts are only slightly smaller in magnitude than the variations exhibited by whole rock samples from the region. The Imnaha basalts also have Sr isotopic heterogeneity evident only in plagioclase phenocrysts, but the MORB and Etna lavas do not. The isotopic heterogeneities reflect magma mixing, and indicate that isotopically diverse magmas were mixed together just prior to eruption. The results reinforce indications from melt inclusion studies that magma source region isotopic heterogeneities have large amplitudes at short length scales, and that the isotopic variations imparted to the magmas are not entirely homogenized during segregation and transport processes.

  8. Oxygen Isotopic Compositions of Fulgurites

    NASA Astrophysics Data System (ADS)

    Robert, F.; Javoy, M.

    1992-07-01

    Two occurrences of vitreous rocks (fulgurites) that have resulted from the fusion of Etnean lavas, have been ascribed to the result of lightning striking the basalts and melting fresh volcanic rocks [1]. Rapidly quenched melts appear as tubular cavities that preserve the path of the discharge. Glass droplets (D <= 500 micrometers) are always dispersed around the fused lava tube and show several petrographic similarities with chondrules found in ordinary chondrites (presence of melilite, radiating skeletal fassaite, etc). In this process, high temperatures (T>1800 K) have probably been reached during timescales <=10 sec. Because it has been suggested that lightning discharges may have played an important role in the formation of chondrules [2], we have analyzed the oxygen isotope compositions of these fulgurites (our experimental protocol is described elsewhere [3]). The glass (free from any contamination from the unmelted basalt) is 1.5o/oo depleted in ^18O relative to its measured initial isotopic composition (delta^18O = +5.6o/oo); most of the data define a mass-dependent fractionation relationship (i.e. delta^17O = 0.52 x delta^18O). Therefore the data clearly do not reproduce the oxygen isotope anomaly defined for meteorites, which has a slope of 1 in the diagram delta^17O versus delta^18O (i.e. delta^17O = 1.0 x delta^18O). Nevertheless, it should be noted that some glass samples scatter around this canonical value of 0.52 with minor departures from a purely mass-dependent fractionation. If these results are confirmed by additional determinations (now in progress) on the separated glassy droplets, the following conclusions can be proposed: 1) lightning discharges do not yield oxygen isotope anomalies similar to those measured in chondrules and 2) an isotope exchange between hot chondrules and their parent nebular gas--presumably "anomalous" in its oxygen isotopes-- seems difficult to achieve within the duration of the rapid cooling of the melt. This last point

  9. Search for unknown isotopes using the JAERI-ISOL

    NASA Astrophysics Data System (ADS)

    Ichikawa, S.; Tsukada, K.; Oura, Y.; Iimura, H.; Nishinaka, I.; Hatsukawa, Y.; Nagame, Y.; Asai, M.; Osa, A.; Kojima, Y.; Hirose, T.; Kawade, K.; Ohyama, T.; Sueki, K.

    1996-04-01

    A search for unknown neutron-rich rare-earth isotopes and neutron-deficient americium isotopes was carried out using a gas-jet coupled thermal ion source installed in the JAERI on-line isotope separator (JAERI-ISOL). New isotopes b166Tb and d165Gd produced in the proton-induced fission of 238U were identified. The half-lives were 21+/-6 s for b166Tb and 10.3+/-1.6 s for d.165Gd. Pu KX-rays associated with EC decays of americium isotopes produced in heavy-ion induced reactions were observed in the X/γ-ray spectra for the mass separated fraction of 237 and 236.

  10. Particle separator

    DOEpatents

    Hendricks, Charles D.

    1990-01-01

    Method and apparatus (10) are provided for separating and classifying particles (48,50,56) by dispersing the particles within a fluid (52) that is upwardly flowing within a cone-shaped pipe (12) that has its large end (20) above its small end (18). Particles of similar size and shape (48,50) migrate to individual levels (A,B) within the flowing fluid. As the fluid is deflected by a plate (42) at the top end of the pipe (12), the smallest particles are collected on a shelf-like flange (40). Ever larger particles are collected as the flow rate of the fluid is increased. To prevent particle sticking on the walls (14) of the pipe (12), additional fluid is caused to flow into the pipe (12) through holes (68) that are specifically provided for that purpose. Sticking is further prevented by high frequency vibrators (70) that are positioned on the apparatus (10).

  11. Particle separation

    DOEpatents

    Moosmuller, Hans [Reno, NV; Chakrabarty, Rajan K [Reno, NV; Arnott, W Patrick [Reno, NV

    2011-04-26

    Embodiments of a method for selecting particles, such as based on their morphology, is disclosed. In a particular example, the particles are charged and acquire different amounts of charge, or have different charge distributions, based on their morphology. The particles are then sorted based on their flow properties. In a specific example, the particles are sorted using a differential mobility analyzer, which sorts particles, at least in part, based on their electrical mobility. Given a population of particles with similar electrical mobilities, the disclosed process can be used to sort particles based on the net charge carried by the particle, and thus, given the relationship between charge and morphology, separate the particles based on their morphology.

  12. Particle separation

    NASA Technical Reports Server (NTRS)

    Moosmuller, Hans (Inventor); Chakrabarty, Rajan K. (Inventor); Arnott, W. Patrick (Inventor)

    2011-01-01

    Embodiments of a method for selecting particles, such as based on their morphology, is disclosed. In a particular example, the particles are charged and acquire different amounts of charge, or have different charge distributions, based on their morphology. The particles are then sorted based on their flow properties. In a specific example, the particles are sorted using a differential mobility analyzer, which sorts particles, at least in part, based on their electrical mobility. Given a population of particles with similar electrical mobilities, the disclosed process can be used to sort particles based on the net charge carried by the particle, and thus, given the relationship between charge and morphology, separate the particles based on their morphology.

  13. Analysis of Separation Pay Options

    DTIC Science & Technology

    2004-06-01

    approach to reduce the ranks also has affected senior enlisted sailors, who are finding themselves pushed into early retirement if they don’t advance...historical experience with Voluntary Separation Incentive (VSI), Special Separation Bonus (SSB), Temporary Early Retirement Authority (TERA), and...HYT Years by PaygradeFiscal Year Table 1. High Year Tenure Adjustments by Paygrade (FY 93-43 and 02-03) c. Selective Early Retirement Selective

  14. Isotopic Evidence of Unaccounted for Fe and Cu Erythropoietic Pathways

    NASA Astrophysics Data System (ADS)

    Albarede, F.; Telouk, P.; Lamboux, A.; Jaouen, K.; Balter, V.

    2011-12-01

    Despite its potential importance for understanding perturbations in the Fe-Cu homeostatic pathways, the natural isotopic variability of these metals in the human body remains unexplored. We measured the Fe, Cu, and Zn isotope compositions of total blood, serum, and red blood cells of ~50 young blood donors by multiple-collector ICP-MS after separation and purification by anion exchange chromatography. Zn is on average 0.2 permil heavier in erythrocytes (δ 66Zn=0.44±0.33 permil) with respect to serum but shows much less overall isotopic variability than Fe and Cu, which indicates that isotope fractionation depends more on redox conditions than on ligand coordination. On average, Fe in erythrocytes (δ 56Fe=-2.59±0.47 permil) is isotopically light by 1-2 permil with respect to serum, whereas Cu in erythrocytes (δ 65Cu=0.56±0.50 permil) is 0.8 percent heavier. Fe and Cu isotope compositions clearly separate erythrocytes of men and women. Fe and Cu from B-type men erythrocytes are visibly more fractionated than all the other blood types. Isotope compositions provide an original method for evaluating metal mass balance and homeostasis. Natural isotope variability shows that the current models of Fe and Cu erythropoiesis, which assume that erythropoiesis is restricted to bone marrow, violate mass balance requirements. It unveils unsuspected major pathways for Fe, with erythropoietic production of isotopically heavy ferritin and hemosiderin, and for Cu, with isotopically light Cu being largely channeled into blood and lymphatic circulation rather than into superoxide dismutase-laden erythrocytes. Iron isotopes provide an intrinsic measuring rod of the erythropoietic yield, while Cu isotopes seem to gauge the relative activity of erythropoiesis and lymphatics.

  15. U.S. Department of Energy Isotope Program

    ScienceCinema

    None

    2016-07-12

    The National Isotope Development Center (NIDC) interfaces with the User Community and manages the coordination of isotope production across the facilities and business operations involved in the production, sale, and distribution of isotopes. A virtual center, the NIDC is funded by the Isotope Development and Production for Research and Applications (IDPRA) subprogram of the Office of Nuclear Physics in the U.S. Department of Energy Office of Science. PNNL’s Isotope Program operates in a multi-program category-2 nuclear facility, the Radiochemical Processing Laboratory (RPL), that contains 16 hot cells and 20 gloveboxes. As part of the DOE Isotope Program, the Pacific Northwest National Laboratory dispenses strontium-90, neptunium-237, radium-223, and thorium-227. PNNL’s Isotope Program uses a dedicated hot-cell for strontium-90 dispensing and a dedicated glovebox for radium-223 and thorium-227 dispensing. PNNL’s Isotope Program has access to state of the art analytical equipment in the RPL to support their research and production activities. DOE Isotope Program funded research at PNNL has advanced the application of automated radiochemistry for isotope such as zirconium-89 and astatine-211 in partnership with the University of Washington.

  16. U.S. Department of Energy Isotope Program

    SciTech Connect

    2015-06-23

    The National Isotope Development Center (NIDC) interfaces with the User Community and manages the coordination of isotope production across the facilities and business operations involved in the production, sale, and distribution of isotopes. A virtual center, the NIDC is funded by the Isotope Development and Production for Research and Applications (IDPRA) subprogram of the Office of Nuclear Physics in the U.S. Department of Energy Office of Science. PNNL’s Isotope Program operates in a multi-program category-2 nuclear facility, the Radiochemical Processing Laboratory (RPL), that contains 16 hot cells and 20 gloveboxes. As part of the DOE Isotope Program, the Pacific Northwest National Laboratory dispenses strontium-90, neptunium-237, radium-223, and thorium-227. PNNL’s Isotope Program uses a dedicated hot-cell for strontium-90 dispensing and a dedicated glovebox for radium-223 and thorium-227 dispensing. PNNL’s Isotope Program has access to state of the art analytical equipment in the RPL to support their research and production activities. DOE Isotope Program funded research at PNNL has advanced the application of automated radiochemistry for isotope such as zirconium-89 and astatine-211 in partnership with the University of Washington.

  17. Isotopic Fractionation of Selenium Oxyanions in Wetlands

    NASA Astrophysics Data System (ADS)

    Clark, S. K.; Johnson, T. M.

    2004-05-01

    As oxic surface waters pass through aquatic macrophytes and over anoxic sediments in wetlands and lakes, the dissolved Se load often decreases; and, Se isotope ratio measurements can provide information about the mechanisms involved. Previous work on microbially induced isotopic fractionation of Se oxyanions under nearly natural conditions using wetland sediments shows consistent Se isotopic shifts during reduction of Se(VI) and Se(IV) to insoluble Se(0). However, previous isotopic studies of total dissolved selenium in wetlands found little to no isotopic shift as dissolved selenium concentrations decreased. This suggests that plant/algal uptake, followed by deposition and degradation, is the primary route of Se transfer into sediments. However, it is possible that the effective isotopic fractionation between Se in the surface water and Se deposited into sediments is somehow much less than the fractionation induced by the reduction reaction, or that cycling of organically bound Se is involved. In this study, we report Se isotope data for Se(VI), Se(IV) and total dissolved Se, Se(T), in surface waters from three wetland/lake sites: Sweitzer Lake, CO; 33-Mile Reservoir, WY; and, a small pond adjacent to Benton Lake, MT. We isolated Se(IV) via hydride generation, and Se(VI) via ion exchange. Se(T), including any organic components, was also analyzed. Isotope analysis was performed on an Isoprobe MC-ICPMS, using a method modified from that of Rouxel et al. (2002). We used the 82Se + 74Se double spike approach, and spiked samples before species separation. Our results for all three locations indicate similar trends in concentration changes and isotopic shifts between the inflow and outflow waters. Se(T) concentrations decrease by 45-70%, and Se(VI) concentrations decrease by 60-90%, whereas Se(IV) concentrations increase by 60-150%. Concomitant 80Se/76Se shifts are +0.5-0.8‰ for Se(T); -0.1-0.5‰ for Se(VI); and +0.4-6.5‰ for Se(IV). These data provide greater

  18. Multistage Electrophoretic Separators

    NASA Technical Reports Server (NTRS)

    Thomas, Nathan; Doyle, John F.; Kurk, Andy; Vellinger, John C.; Todd, Paul

    2006-01-01

    A multistage electrophoresis apparatus has been invented for use in the separation of cells, protein molecules, and other particles and solutes in concentrated aqueous solutions and suspensions. The design exploits free electrophoresis but overcomes the deficiencies of prior free-electrophoretic separators by incorporating a combination of published advances in mathematical modeling of convection, sedimentation, electro-osmotic flow, and the sedimentation and aggregation of droplets. In comparison with other electrophoretic separators, these apparatuses are easier to use and are better suited to separation in relatively large quantities characterized in the art as preparative (in contradistinction to smaller quantities characterized in the art as analytical). In a multistage electrophoretic separator according to the invention, an applied vertical steady electric field draws the electrically charged particles of interest from within a cuvette to within a collection cavity that has been moved into position of the cuvette. There are multiple collection cavities arranged in a circle; each is aligned with the cuvette for a prescribed short time. The multistage, short-migration-path character of the invention solves, possibly for the first time, the fluid-instability problems associated with free electrophoresis. The figure shows a prototype multistage electrophoretic separator that includes four sample stations and five collection stages per sample. At each sample station, an aqueous solution or suspension containing charged species to be separated is loaded into a cuvette, which is machined into a top plate. The apparatus includes a lower plate, into which 20 collection cavities have been milled. Each cavity is filled with an electrophoresis buffer solution. For the collection of an electrophoretic fraction, the lower plate is rotated to move a designated collection cavity into alignment with the opening of the cuvette. An electric field is then applied between a non

  19. Isotope shifts in methane near 6000/cm

    NASA Technical Reports Server (NTRS)

    Fox, K.; Halsey, G. W.; Jennings, D. E.

    1976-01-01

    Isotope shifts for cleanly resolved vibrational-rotational absorption lines of CH4-12 and CH4-13 were measured by a 5-m focal length Littrow spectrometer in the 6000/cm range. The methane isotopes were held in separate absorption cells: 20 torr of CH4-13 in a 1-m cell, and 5 torr of CH4-12 in a White cell of 4-m optical path length. Measured shifts for the cleanly resolved singlets R(0), R(1), Q(1) and P(1) are summarized in tabular form.

  20. Method for sequential injection of liquid samples for radioisotope separations

    DOEpatents

    Egorov, Oleg B.; Grate, Jay W.; Bray, Lane A.

    2000-01-01

    The present invention is a method of separating a short-lived daughter isotope from a longer lived parent isotope, with recovery of the parent isotope for further use. Using a system with a bi-directional pump and one or more valves, a solution of the parent isotope is processed to generate two separate solutions, one of which contains the daughter isotope, from which the parent has been removed with a high decontamination factor, and the other solution contains the recovered parent isotope. The process can be repeated on this solution of the parent isotope. The system with the fluid drive and one or more valves is controlled by a program on a microprocessor executing a series of steps to accomplish the operation. In one approach, the cow solution is passed through a separation medium that selectively retains the desired daughter isotope, while the parent isotope and the matrix pass through the medium. After washing this medium, the daughter is released from the separation medium using another solution. With the automated generator of the present invention, all solution handling steps necessary to perform a daughter/parent radionuclide separation, e.g. Bi-213 from Ac-225 "cow" solution, are performed in a consistent, enclosed, and remotely operated format. Operator exposure and spread of contamination are greatly minimized compared to the manual generator procedure described in U.S. patent application Ser. No. 08/789,973, now U.S. Pat. No. 5,749,042, herein incorporated by reference. Using 16 mCi of Ac-225 there was no detectable external contamination of the instrument components.