Science.gov

Sample records for advanced land surface

  1. Advanced microwave forward model for the land surface data assimilation

    NASA Astrophysics Data System (ADS)

    Park, Chang-Hwan; Pause, Marion; Gayler, Sebastian; Wollschlaeger, Ute; Jackson, Thomas J.; LeDrew, Ellsworth; Behrendt, Andreas; Wulfmeyer, Volker

    2015-04-01

    , a significant improvement by new approach would be expected in monitoring surface runoff and infiltration, managing and improving irrigation system, and mapping and predicting flood events. Finally, the novel dielectric-mixing model is able to successfully integrate the land surface model and the dielectric constant of microwave. Radiative transfer is calculated for the bare soil and the vegetated components of the grid box using a two-stream radiative transfer model. These model characteristics provide all relevant information needed for a simulation of the microwave emission from the land surface with unprecedented realism. Noah-MP is coupled with the Weather Research and Forecasting (WRF) model system. Also, the novel dielectric-mixing model physically links the Noah-MP land surface properties and the microwave effective dielectric constant. Finally, with the existing radiative transfer model the advanced forward model can assimilate microwave brightness temperature into a consistent land-surface-atmosphere system. A case study will be provided to investigate how well the simulation of the forward model matches to the real world. L-band microwave remote-sensing measurements over the Schäfertal region in Germany have been used for this case study.

  2. Advances in Thermal Infrared Remote Sensing for Land Surface Modeling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Over 10 years ago, John Norman and co-authors proposed a thermal-based land surface modeling strategy that treated the energy exchange and kinetic temperatures of the soil and vegetated components in a unique “Two-Source Model” (TSM) approach. The TSM formulation addresses key factors affecting the...

  3. Global scale hydrology - Advances in land surface modeling

    SciTech Connect

    Wood, E.F. )

    1991-01-01

    Research into global scale hydrology is an expanding area that includes researchers from the meteorology, climatology, ecology and hydrology communities. This paper reviews research in this area carried out in the United States during the last IUGG quadrennial period of 1987-1990. The review covers the representation of land-surface hydrologic processes for general circulation models (GCMs), sensitivity analysis of these representations on global hydrologic fields like precipitation, regional studies of climate that have global hydrologic implications, recent field studies and experiments whose aims are the improved understanding of land surface-atmospheric interactions, and the use of remotely sensed data for the further understanding of the spatial variability of surface hydrologic processes that are important at regional and global climate scales. 76 refs.

  4. Role of the advanced IR sounder in land surface remote sensing

    NASA Astrophysics Data System (ADS)

    Knuteson, Robert O.

    2005-09-01

    A new era of Earth remote sensing began with the launch of the NASA EOS Aqua platform with the Atmospheric InfraRed Sounder (AIRS) in May 2002. The EOS AIRS instrument is the first in a series of high spectral resolution infrared spectrometers that will allow improved characterization of the global atmospheric temperature and water vapor structure. Follow-on operational sensors with similar sounding capability include the Cross-track InfraRed Sounder (CrIS) on the NPP/NPOESS satellites and the Infrared Advanced Sounding Interferometer (IASI) on the European METOP series. These so-called advanced infrared sounders will have a vital role to play in the remote sensing of land ecosystems. This paper describes how the use of Advanced IR Sounder data can be used to improve the accuracy of atmospheric corrections in the thermal IR and provide detailed information on the spectral dependence of the infrared land surface emissivity. Radiance observations from AIRS have been obtained over a large, uniform sandy desert region in the Libyan Desert suitable for evaluation of the 15-km footprints of the NASA AIRS advanced sounder. Analysis of this data indicates a spectral contrast of more than 30% between 12 mm and 9 mm in the surface infrared emissivity due to the presence of the mineral quartz with somewhat smaller contrast at 4 mm. Results of a method for separation of infrared surface emissivity and effective surface skin temperature are presented also.

  5. Land Surface Microwave Emissivities Derived from AMSR-E and MODIS Measurements with Advanced Quality Control

    NASA Technical Reports Server (NTRS)

    Moncet, Jean-Luc; Liang, Pan; Galantowicz, John F.; Lipton, Alan E.; Uymin, Gennady; Prigent, Catherine; Grassotti, Christopher

    2011-01-01

    A microwave emissivity database has been developed with data from the Advanced Microwave Scanning Radiometer-EOS (AMSR-E) and with ancillary land surface temperature (LST) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the same Aqua spacecraft. The primary intended application of the database is to provide surface emissivity constraints in atmospheric and surface property retrieval or assimilation. An additional application is to serve as a dynamic indicator of land surface properties relevant to climate change monitoring. The precision of the emissivity data is estimated to be significantly better than in prior databases from other sensors due to the precise collocation with high-quality MODIS LST data and due to the quality control features of our data analysis system. The accuracy of the emissivities in deserts and semi-arid regions is enhanced by applying, in those regions, a version of the emissivity retrieval algorithm that accounts for the penetration of microwave radiation through dry soil with diurnally varying vertical temperature gradients. These results suggest that this penetration effect is more widespread and more significant to interpretation of passive microwave measurements than had been previously established. Emissivity coverage in areas where persistent cloudiness interferes with the availability of MODIS LST data is achieved using a classification-based method to spread emissivity data from less-cloudy areas that have similar microwave surface properties. Evaluations and analyses of the emissivity products over homogeneous snow-free areas are presented, including application to retrieval of soil temperature profiles. Spatial inhomogeneities are the largest in the vicinity of large water bodies due to the large water/land emissivity contrast and give rise to large apparent temporal variability in the retrieved emissivities when satellite footprint locations vary over time. This issue will be dealt with in the future by

  6. Anticipating land surface change

    PubMed Central

    Streeter, Richard; Dugmore, Andrew J.

    2013-01-01

    The interplay of human actions and natural processes over varied spatial and temporal scales can result in abrupt transitions between contrasting land surface states. Understanding these transitions is a key goal of sustainability science because they can represent abrupt losses of natural capital. This paper recognizes flickering between alternate land surface states in advance of threshold change and critical slowing down in advance of both threshold changes and noncritical transformation. The early warning signals we observe are rises in autocorrelation, variance, and skewness within millimeter-resolution thickness measurements of tephra layers deposited in A.D. 2010 and A.D. 2011. These signals reflect changing patterns of surface vegetation, which are known to provide early warning signals of critical transformations. They were observed toward migrating soil erosion fronts, cryoturbation limits, and expanding deflation zones, thus providing potential early warning signals of land surface change. The record of the spatial patterning of vegetation contained in contemporary tephra layers shows how proximity to land surface change could be assessed in the widespread regions affected by shallow layers of volcanic fallout (those that can be subsumed within the existing vegetation cover). This insight shows how we could use tephra layers in the stratigraphic record to identify “near misses,” close encounters with thresholds that did not lead to tipping points, and thus provide additional tools for archaeology, sustainability science, and contemporary land management. PMID:23530230

  7. Recent Advances in Modeling of the Atmospheric Boundary Layer and Land Surface in the Coupled WRF-CMAQ Model

    EPA Science Inventory

    Advances in the land surface model (LSM) and planetary boundary layer (PBL) components of the WRF-CMAQ coupled meteorology and air quality modeling system are described. The aim of these modifications was primarily to improve the modeling of ground level concentrations of trace c...

  8. Maximizing the Use of Satellite Thermal Infrared Data for Advancing Land Surface Temperature Analysis

    NASA Astrophysics Data System (ADS)

    Weng, Q.; Fu, P.; Gao, F.

    2014-12-01

    Land surface temperature (LST) is a crucial parameter in investigating environmental, ecological processes and climate change at various scales, and is also valuable in the studies of evapotranspiration, soil moisture conditions, surface energy balance, and urban heat islands. These studies require thermal infrared (TIR) images at both high temporal and spatial resolution to retrieve LST. However, currently, no single satellite sensors can deliver TIR data at both high temporal and spatial resolution. Thus, various algorithms/models have been developed to enhance the spatial or the temporal resolution of TIR data, but rare of those can enhance both spatial and temporal details. This paper presents a new data fusion algorithm for producing Landsat-like LST data by blending daily MODIS and periodic Landsat TM datasets. The original Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) was improved and modified for predicting thermal radiance and LST data by considering annual temperature cycle (ATC) and urban thermal landscape heterogeneity. The technique of linear spectral mixture analysis was employed to relate the Landsat radiance with the MODIS one, so that the temporal changes in radiance can be incorporated in the fusion model. This paper details the theoretical basis and the implementation procedures of the proposed data fusion algorithm, Spatio-temporal Adaptive Data Fusion Algorithm for Temperature mapping (SADFAT). A case study was conducted that predicted LSTs of five dates in 2005 from July to October in Los Angeles County, California. The results indicate that the prediction accuracy for the whole study area ranged from 1.3 K to 2 K. Like existing spatio-temporal data fusion models, the SADFAT method has a limitation in predicting LST changes that were not recorded in the MODIS and/or Landsat pixels due to the model assumption.

  9. Advances in Land Data Assimilation Systems

    NASA Technical Reports Server (NTRS)

    Houser, Paul R.

    2001-01-01

    Assimilation of remotely sensed land surface observations into regional to global scale numerical models have the potential to significantly advance our ability, to assess, understand, and predict surface water, energy, and carbon cycles. This session seeks to assess the state-of-the-art in data assimilation methods for integrating land surface remote sensing and modeling, with a focus on practical applications and techniques. Assimilated land surface variables of interest include (but are not limited to, soil moisture, surface temperature, snowpack, streamflow, vegetation dynamics, and carbon storage. Contributions describing the development of practical land surface data assimilation methods, multivariate land surface data assimilation strategies, evaluation of the required accuracy and resolution of remote sensing observations, the effects of scale, process complexity, and uncertainty on data assimilation, and the optimal treatment of model and observation errors are encouraged.

  10. Land surface interaction

    NASA Technical Reports Server (NTRS)

    Dickinson, Robert E.

    1992-01-01

    The topics covered include the following: land and climate modeling; sensitivity studies; the process of a land model; model-specific parameterizations; water stress; within-canopy resistances; partial vegetation; canopy temperature; and present experience with a land model coupled to a general circulation model.

  11. Advanced Land Imager Assessment System

    NASA Technical Reports Server (NTRS)

    Chander, Gyanesh; Choate, Mike; Christopherson, Jon; Hollaren, Doug; Morfitt, Ron; Nelson, Jim; Nelson, Shar; Storey, James; Helder, Dennis; Ruggles, Tim; Kaita, Ed; Levy, Raviv; Ong, Lawrence; Markham, Brian; Schweiss, Robert

    2008-01-01

    The Advanced Land Imager Assessment System (ALIAS) supports radiometric and geometric image processing for the Advanced Land Imager (ALI) instrument onboard NASA s Earth Observing-1 (EO-1) satellite. ALIAS consists of two processing subsystems for radiometric and geometric processing of the ALI s multispectral imagery. The radiometric processing subsystem characterizes and corrects, where possible, radiometric qualities including: coherent, impulse; and random noise; signal-to-noise ratios (SNRs); detector operability; gain; bias; saturation levels; striping and banding; and the stability of detector performance. The geometric processing subsystem and analysis capabilities support sensor alignment calibrations, sensor chip assembly (SCA)-to-SCA alignments and band-to-band alignment; and perform geodetic accuracy assessments, modulation transfer function (MTF) characterizations, and image-to-image characterizations. ALIAS also characterizes and corrects band-toband registration, and performs systematic precision and terrain correction of ALI images. This system can geometrically correct, and automatically mosaic, the SCA image strips into a seamless, map-projected image. This system provides a large database, which enables bulk trending for all ALI image data and significant instrument telemetry. Bulk trending consists of two functions: Housekeeping Processing and Bulk Radiometric Processing. The Housekeeping function pulls telemetry and temperature information from the instrument housekeeping files and writes this information to a database for trending. The Bulk Radiometric Processing function writes statistical information from the dark data acquired before and after the Earth imagery and the lamp data to the database for trending. This allows for multi-scene statistical analyses.

  12. Land reclamation: Advances in research technology

    SciTech Connect

    Younos, T.; Diplas, P.; Mostaghimi, S.

    1992-01-01

    Land reclamation encompasses remediation of industrial wasteland, improvement of infertile land for agricultural production, preservation of wetlands, and restoration of disturbed areas. Land reclamation is an integral part of sustainable development which aims to reconcile economic productivity with environmental preservation. During the 1980s, significant progress was achieved in the application of advanced technologies to sustainable development projects. The goal of this international symposium was to serve as a forum to review current research and state-of-the-art technology dealing with various aspects of land reclamation, and provide an opportunity for professional interaction and exchange of information in a multi-disciplinary setting. The scope of the symposium was as broad as the topic itself. The keynote address by Professor John Cairns focused on a systems approach in land restoration projects and challenges facing scientists in global biotic impoverishment. Other topics discussed in ten mechanical sessions included development and applications of computer models, geographic information systems, remote sensing technology, salinity problems, surface and ground water monitoring, reclamation of mine areas, soil amendment methods and impacts, wetland restoration techniques, and land use planning for resource protection.

  13. Recent advances in land data assimilation for remote sensing observations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For a number of decades, remote sensing observations have been used to define static model parameters and/or forcing inputs for a range of land surface models. However, recent advances in remote sensing theory have also enabled the remote retrieval of dynamic land model states (e.g. leaf area inde...

  14. Assimilation of land surface temperature into the land surface model JULES with an ensemble Kalman filter

    NASA Astrophysics Data System (ADS)

    Ghent, D.; Kaduk, J.; Remedios, J.; Ardö, J.; Balzter, H.

    2010-10-01

    Land surface models have uncertainties due to their approximation of physical processes and the heterogeneity of the land surface. These can be compounded when key variables are inadequately represented. Land surface temperature (LST) is critical as it forms an integral component in the surface energy budget, water stress evaluation, fuel moisture derivation, and soil moisture-climate feedbacks. A reduction in the uncertainty of surface energy fluxes, and moisture quantification, is assumed to be achievable by constraining simulations of LST with observation data. This technique is known as data assimilation and involves the adjustment of the model state at observation times with measurements of a predictable uncertainty. In this paper, the validity of LST simulations in a regionalized parameterization of the land surface model Joint UK Land Environment Simulator (JULES) for Africa is assessed by way of a multitemporal intercomparison study with the Moderate Resolution Imaging Spectroradiometer (MODIS), the Advanced Along Track Scanning Radiometer (AATSR), and the Spinning Enhanced Visible and Infrared Imager (SEVIRI) thermal products, with a two-thirds reduction in model bias found when soil properties are reparameterized. A data assimilation experiment of SEVIRI LST into the JULES model via an ensemble Kalman filter shows an improvement in the modeled LST, soil moisture, and latent and sensible heat fluxes. This paper presents the first investigation into reducing the uncertainty in modeling energy and water fluxes with the United Kingdom's most important land surface model, JULES, by means of data assimilation of LST.

  15. Spectroradiometric considerations for advanced land observing systems

    NASA Technical Reports Server (NTRS)

    Slater, P. N.

    1986-01-01

    Research aimed at improving the inflight absolute radiometric calibration of advanced land observing systems was initiated. Emphasis was on the satellite sensor calibration program at White Sands. Topics addressed include: absolute radiometric calibration of advanced remote sensing; atmospheric effects on reflected radiation; inflight radiometric calibration; field radiometric methods for reflectance and atmospheric measurement; and calibration of field relectance radiometers.

  16. Surface Temperature Assimilation in Land Surface Models

    NASA Technical Reports Server (NTRS)

    Lakshmi, Venkataraman

    1999-01-01

    This paper examines the utilization of surface temperature as a variable to be assimilated in offline land surface hydrological models. Comparisons between the model computed and satellite observed surface temperatures have been carried out. The assimilation of surface temperature is carried out twice a day (corresponding to the AM and PM overpass of the NOAA10) over the Red-Arkansas basin in the Southwestern United States (31 degs 50 sec N - 36 degrees N, 94 degrees 30 seconds W - 104 degrees 3 seconds W) for a period of one year (August 1987 to July 1988). The effect of assimilation is to reduce the difference between the surface soil moisture computed for the precipitation and/or shortwave radiation perturbed case and the unperturbed case compared to no assimilation.

  17. Surface Temperature Assimilation in Land Surface Models

    NASA Technical Reports Server (NTRS)

    Lakshmi, Venkataraman

    1997-01-01

    This paper examines the utilization of surface temperature as a variable to be assimilated in offline land surface hydrological models. Comparisons between the model computed and satellite observed surface temperatures have been carried out. The assimilation of surface temperature is carried out twice a day (corresponding to the AM and PM overpass of the NOAA10) over the Red- Arkansas basin in the Southwestern United States (31 deg 50 min N - 36 deg N, 94 deg 30 min W - 104 deg 30 min W) for a period of one year (August 1987 to July 1988). The effect of assimilation is to reduce the difference between the surface soil moisture computed for the precipitation and/or shortwave radiation perturbed case and the unperturbed case compared to no assimilation.

  18. Assimilation of Satellite Remote Sensing Retrievals into Land Surface Models

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For at least two decades, remote sensing observations have been used to define static model parameters and/or forcing inputs for a range of land surface models. However, recent advances in remote sensing theory have also enabled the satellite-based retrieval of dynamic land model states (e.g. leaf ...

  19. Oscillations in land surface hydrological cycle

    NASA Astrophysics Data System (ADS)

    Labat, D.

    2006-02-01

    Hydrological cycle is the perpetual movement of water throughout the various component of the global Earth's system. Focusing on the land surface component of this cycle, the determination of the succession of dry and humid periods is of high importance with respect to water resources management but also with respect to global geochemical cycles. This knowledge requires a specified estimation of recent fluctuations of the land surface cycle at continental and global scales. Our approach leans towards a new estimation of freshwater discharge to oceans from 1875 to 1994 as recently proposed by Labat et al. [Labat, D., Goddéris, Y., Probst, JL, Guyot, JL, 2004. Evidence for global runoff increase related to climate warming. Advances in Water Resources, 631-642]. Wavelet analyses of the annual freshwater discharge time series reveal an intermittent multiannual variability (4- to 8-y, 14- to 16-y and 20- to 25-y fluctuations) and a persistent multidecadal 30- to 40-y variability. Continent by continent, reasonable relationships between land-water cycle oscillations and climate forcing (such as ENSO, NAO or sea surface temperature) are proposed even though if such relationships or correlations remain very complex. The high intermittency of interannual oscillations and the existence of persistent multidecadal fluctuations make prediction difficult for medium-term variability of droughts and high-flows, but lead to a more optimistic diagnostic for long-term fluctuations prediction.

  20. ERA-Interim/Land: A global land surface reanalysis dataset

    NASA Astrophysics Data System (ADS)

    Balsamo, Gianpaolo; Albergel, Clement; Beljaars, Anton; Boussetta, Souhail; Brun, Eric; Cloke, Hannah; Dee, Dick; Dutra, Emanuel; Muñoz-Sabater, Joaquín; Pappenberger, Florian; De Rosnay, Patricia; Stockdale, Tim; Vitart, Frederic

    2015-04-01

    ERA-Interim/Land is a global land-surface reanalysis dataset covering the period 1979-2010 recently made publicly available from ECMWF. It describes the evolution of soil moisture, soil temperature and snowpack. ERA-Interim/Land is the result of a single 32-year simulation with the latest ECMWF land surface model driven by meteorological forcing from the ERA-Interim atmospheric reanalysis and precipitation adjustments based on monthly GPCP v2.1 (Global Precipitation Climatology Project). The horizontal resolution is about 80km and the time frequency is 3-hourly. ERA-Interim/Land includes a number of parameterization improvements in the land surface scheme with respect to the original ERA-Interim dataset, which makes it more suitable for climate studies involving land water resources. The quality of ERA-Interim/Land is assessed by comparing with ground-based and remote sensing observations. In particular, estimates of soil moisture, snow depth, surface albedo, turbulent latent and sensible fluxes, and river discharges are verified against a large number of site measurements. ERA-Interim/Land provides a global integrated and coherent estimate of soil moisture and snow water equivalent, which can also be used for the initialization of numerical weather prediction and climate models. Current plans for the extension and improvements of ERA-Interim/Land in the framework of future reanalyses will be briefly presented. References and dataset download information at: http://www.ecmwf.int/en/research/climate-reanalysis/era-interim/land

  1. Dynamic Land Surface Classifcations using Microwave Frequencies

    NASA Astrophysics Data System (ADS)

    Jackson, H.; Tian, Y.; Peters-Lidard, C. D.; Harrison, K. W.

    2014-12-01

    Land surface emissivity in microwave frequencies is critical to the remote sensing of soil moisture, precipitation, and vegetation. Different land surfaces have different spectral signatures in the microwave portions of the electromagnetic spectrum. Their spatial and temporal behaviors are also highly variable. These properties are yet not well understood in microwave frequencies, despite their capability in detecting water-related variables in the atmosphere and land surface. A classification scheme was developed to stratify the Earth's land surfaces based on their seasonally dynamic microwave signatures. An unsupervised clustering approach was used identify and distinguish data groupings along two microwave based indicies. Land surface data clusters were mapped to determine their spatial relationships to known land cover groupings. Differences in land surface clusters were analyzed in their spatial consistency and their direction and magnitude of land surface change. It was found that vegetation and topography were the predominant contributors to change between seasons. Land surface extremes of sandy desert and closed canopy tropical forest displayed minimal intra-annual variability while transitional zones, such as the Sahel and North American temperate forests, exhibited the most variability. Distinct microwave signatures varied between seasons along a latittudinal gradient. Overall variability in land surface types increased at high lattitudes. This classification will help inform research studies maniputlating the microwave frequencies of the electromagnetic spectrum to better characterize land surface dynamics, and will be very useful in the validation of radiative transfer models and quantification of uncertainty in global precipitation monitoring.

  2. The Land Surface Temperature Impact to Land Cover Types

    NASA Astrophysics Data System (ADS)

    Ibrahim, I.; Abu Samah, A.; Fauzi, R.; Noor, N. M.

    2016-06-01

    Land cover type is an important signature that is usually used to understand the interaction between the ground surfaces with the local temperature. Various land cover types such as high density built up areas, vegetation, bare land and water bodies are areas where heat signature are measured using remote sensing image. The aim of this study is to analyse the impact of land surface temperature on land cover types. The objectives are 1) to analyse the mean temperature for each land cover types and 2) to analyse the relationship of temperature variation within land cover types: built up area, green area, forest, water bodies and bare land. The method used in this research was supervised classification for land cover map and mono window algorithm for land surface temperature (LST) extraction. The statistical analysis of post hoc Tukey test was used on an image captured on five available images. A pixel-based change detection was applied to the temperature and land cover images. The result of post hoc Tukey test for the images showed that these land cover types: built up-green, built up-forest, built up-water bodies have caused significant difference in the temperature variation. However, built up-bare land did not show significant impact at p<0.05. These findings show that green areas appears to have a lower temperature difference, which is between 2° to 3° Celsius compared to urban areas. The findings also show that the average temperature and the built up percentage has a moderate correlation with R2 = 0.53. The environmental implications of these interactions can provide some insights for future land use planning in the region.

  3. Advanced Space Surface Systems Operations

    NASA Technical Reports Server (NTRS)

    Huffaker, Zachary Lynn; Mueller, Robert P.

    2014-01-01

    The importance of advanced surface systems is becoming increasingly relevant in the modern age of space technology. Specifically, projects pursued by the Granular Mechanics and Regolith Operations (GMRO) Lab are unparalleled in the field of planetary resourcefulness. This internship opportunity involved projects that support properly utilizing natural resources from other celestial bodies. Beginning with the tele-robotic workstation, mechanical upgrades were necessary to consider for specific portions of the workstation consoles and successfully designed in concept. This would provide more means for innovation and creativity concerning advanced robotic operations. Project RASSOR is a regolith excavator robot whose primary objective is to mine, store, and dump regolith efficiently on other planetary surfaces. Mechanical adjustments were made to improve this robot's functionality, although there were some minor system changes left to perform before the opportunity ended. On the topic of excavator robots, the notes taken by the GMRO staff during the 2013 and 2014 Robotic Mining Competitions were effectively organized and analyzed for logistical purposes. Lessons learned from these annual competitions at Kennedy Space Center are greatly influential to the GMRO engineers and roboticists. Another project that GMRO staff support is Project Morpheus. Support for this project included successfully producing mathematical models of the eroded landing pad surface for the vertical testbed vehicle to predict a timeline for pad reparation. And finally, the last project this opportunity made contribution to was Project Neo, a project exterior to GMRO Lab projects, which focuses on rocket propulsion systems. Additions were successfully installed to the support structure of an original vertical testbed rocket engine, thus making progress towards futuristic test firings in which data will be analyzed by students affiliated with Rocket University. Each project will be explained in

  4. IMPLEMENTATION AND EXPERIMENTATION ON AN ADVANCED LAND-SURFACE/PBL MODEL IN THE PENN STATE/NCAR MESOSCALE MODEL (MM4)

    EPA Science Inventory

    A more advanced surface/PBL model is implemented in the Penn State/NCAR Mesoscale Model Version 4 (MM4) which is utilized to provide meteorological data to the Regional Acid Deposition Model (RADM). he diurnal evolution of the Planetary Boundary Layer (PBL) and its dynamic charac...

  5. USGS releases comprehensive land surface data

    NASA Astrophysics Data System (ADS)

    Wendel, JoAnna

    2014-04-01

    The U.S. Geological Survey (USGS) has released the latest edition of its National Land Cover Database (NLCD 2011), the nation's most comprehensive look at land surface conditions. The database divides the lower 48 states into 9 billion geographic cells, providing consistent information about land conditions on regional and nationwide scales.

  6. Advancements in medium and high resolution Earth observation for land-surface imaging: Evolutions, future trends and contributions to sustainable development

    NASA Astrophysics Data System (ADS)

    Ouma, Yashon O.

    2016-01-01

    Technologies for imaging the surface of the Earth, through satellite based Earth observations (EO) have enormously evolved over the past 50 years. The trends are likely to evolve further as the user community increases and their awareness and demands for EO data also increases. In this review paper, a development trend on EO imaging systems is presented with the objective of deriving the evolving patterns for the EO user community. From the review and analysis of medium-to-high resolution EO-based land-surface sensor missions, it is observed that there is a predictive pattern in the EO evolution trends such that every 10-15 years, more sophisticated EO imaging systems with application specific capabilities are seen to emerge. Such new systems, as determined in this review, are likely to comprise of agile and small payload-mass EO land surface imaging satellites with the ability for high velocity data transmission and huge volumes of spatial, spectral, temporal and radiometric resolution data. This availability of data will magnify the phenomenon of "Big Data" in Earth observation. Because of the "Big Data" issue, new computing and processing platforms such as telegeoprocessing and grid-computing are expected to be incorporated in EO data processing and distribution networks. In general, it is observed that the demand for EO is growing exponentially as the application and cost-benefits are being recognized in support of resource management.

  7. Complex land surface phenologies of moisture status

    NASA Astrophysics Data System (ADS)

    Henebry, G. M.; Doubkova, M.

    2006-12-01

    Making cross-scale linkages from experimental plots or flux tower footprints to regional and continental extents is made difficult by disparate spatial and temporal scales between process and observation. While exchanges between the vegetated land surface and the atmospheric boundary layer are continual, sampling and observations are typically intermittent in time and limited across space. Remote sensing of reflected sunlight has proven useful to track ecological dynamics. These observations are, however, restricted to daytime and often obscured by cloud cover, necessitating production of multi-date composites. The current generation of passive microwave radiometers can observe the land surface both day and night regardless of cloudiness, albeit at a spatial resolution coarser than typically used in ecological remote sensing. Datastreams from the AMSR-E (Advanced Microwave Scanning Radiometer-EOS) onboard NASA's Aqua platform are processed daily at the National Snow and Ice Data Center (NSIDC) into various products, including global retrievals of surficial soil moisture and vegetation water content based on microwave brightness temperatures observed at multiple frequencies. Due to sensor orbit and swath width, gaps occur at the lower latitudes in daily products. We have further processed the product-streams from the descending (01:30) and ascending (13:30) orbits into separate smoothed daily composites using an 8-day retrospective moving average. Of particular interest for synoptic ecology is the diel difference in vegetation water content. When the difference between the pre-dawn and the early afternoon values is positive, it suggests that the supply of moisture from the root zone is not able to keep pace with evapotranspiration during the day, but the soil and canopy moisture equalize overnight. Time series of the diel difference show rapid changes in moisture status in response to precipitation events and dry spells. What constitutes the appropriate baseline

  8. Advancing Lidar Sensors Technologies for Next Generation Landing Missions

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Hines, Glenn D.; Roback, Vincent E.; Petway, Larry B.; Barnes, Bruce W.; Brewster, Paul F.; Pierrottet, Diego F.; Bulyshev, Alexander

    2015-01-01

    Missions to solar systems bodies must meet increasingly ambitious objectives requiring highly reliable "precision landing", and "hazard avoidance" capabilities. Robotic missions to the Moon and Mars demand landing at pre-designated sites of high scientific value near hazardous terrain features, such as escarpments, craters, slopes, and rocks. Missions aimed at paving the path for colonization of the Moon and human landing on Mars need to execute onboard hazard detection and precision maneuvering to ensure safe landing near previously deployed assets. Asteroid missions require precision rendezvous, identification of the landing or sampling site location, and navigation to the highly dynamic object that may be tumbling at a fast rate. To meet these needs, NASA Langley Research Center (LaRC) has developed a set of advanced lidar sensors under the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project. These lidar sensors can provide precision measurement of vehicle relative proximity, velocity, and orientation, and high resolution elevation maps of the surface during the descent to the targeted body. Recent flights onboard Morpheus free-flyer vehicle have demonstrated the viability of ALHAT lidar sensors for future landing missions to solar system bodies.

  9. Land surface hydrology in the cloud land surface interaction campaign (CLASIC)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A fundamental objective of the Cloud Land Surface Interaction Campaign (CLASIC) was to contribute to our understanding of the interactions between the atmosphere and the land surface. It has been observed that land surface characteristics influence the timing and evolution of cumulus convection. The...

  10. Conceptual Problems in Land Surface Data Assimilation

    NASA Technical Reports Server (NTRS)

    Reichle, Rolf

    2012-01-01

    A land data assimilation system (LDAS) merges observations (or satellite retrievals) of land surface hydrological conditions, including soil moisture, snow, and terrestrial water storage (TWS), into a numerical model of land surface processes. In theory, the output from such a system is superior to estimates based on the observations or the model alone, thereby enhancing our ability to understand, monitor, and predict key elements of the terrestrial water cycle. In practice, however, several conceptual problems can interfere with realizing the potential improvements from data assimilation. Of particular concern is the frequent mismatch between the assimilated observations and the land surface model variables of interest. The seminar will discuss recent research with the ensemble-based NASA GEOS-S LDAS to address various aspects of this mismatch. These aspects include (i) the assimilation of coarse-scale observations into higher-resolution land surface models, (ii) the partitioning of satellite observations (such as TWS retrievals) into their constituent water cycle components, (iii) the forward modeling of microwave brightness temperatures over land for radiance-based land surface data aSSimilation, and (iv) the selection of the most relevant types of observations for the analysis of a specific water cycle variable (such as root zone soil moisture). At its core, the solution to the above challenges involves the careful construction of an observation operator that maps from the land surface model variables of interest to the space of the assimilated observations.

  11. Microwave Brightness Of Land Surfaces From Outer Space

    NASA Technical Reports Server (NTRS)

    Kerr, Yann H.; Njoku, Eni G.

    1991-01-01

    Mathematical model approximates microwave radiation emitted by land surfaces traveling to microwave radiometer in outer space. Applied to measurements made by Scanning Multichannel Microwave Radiometer (SMMR). Developed for interpretation of microwave imagery of Earth to obtain distributions of various chemical, physical, and biological characteristics across its surface. Intended primarily for use in mapping moisture content of soil and fraction of Earth covered by vegetation. Advanced Very-High-Resolution Radiometer (AVHRR), provides additional information on vegetative cover, thereby making possible retrieval of soil-moisture values from SMMR measurements. Possible to monitor changes of land surface during intervals of 5 to 10 years, providing significant data for mathematical models of evolution of climate.

  12. The CEOS constellation for land surface imaging

    NASA Astrophysics Data System (ADS)

    Bailey, G. Bryan; Berger, Michael; Jeanjean, Hervé; Gallo, Kevin P.

    2007-10-01

    A constellation of satellites that routinely and frequently images the Earth's land surface in consistently calibrated wavelengths from the visible through the microwave and in spatial detail that ranges from submeter to hundreds of meters would offer enormous potential benefits to society. A well-designed and effectively operated land surface imaging satellite constellation could have great positive impact not only on the quality of life for citizens of all nations, but also on mankind's very ability to sustain life as we know it on this planet long into the future. The primary objective of the Committee on Earth Observation Satellites (CEOS) Land Surface Imaging (LSI) Constellation is to define standards (or guidelines) that describe optimal future LSI Constellation capabilities, characteristics, and practices. Standards defined for a LSI Constellation will be based on a thorough understanding of user requirements, and they will address at least three fundamental areas of the systems comprising a Land Surface Imaging Constellation: the space segments, the ground segments, and relevant policies and plans. Studies conducted by the LSI Constellation Study Team also will address current and shorter-term problems and issues facing the land remote sensing community today, such as seeking ways to work more cooperatively in the operation of existing land surface imaging systems and helping to accomplish tangible benefits to society through application of land surface image data acquired by existing systems. 2007 LSI Constellation studies are designed to establish initial international agreements, develop preliminary standards for a mid-resolution land surface imaging constellation, and contribute data to a global forest assessment.

  13. The CEOS constellation for land surface imaging

    USGS Publications Warehouse

    Bailey, G.B.; Berger, M.; Jeanjean, H.; Gallo, K.P.

    2007-01-01

    A constellation of satellites that routinely and frequently images the Earth's land surface in consistently calibrated wavelengths from the visible through the microwave and in spatial detail that ranges from sub-meter to hundreds of meters would offer enormous potential benefits to society. A well-designed and effectively operated land surface imaging satellite constellation could have great positive impact not only on the quality of life for citizens of all nations, but also on mankind's very ability to sustain life as we know it on this planet long into the future. The primary objective of the Committee on Earth Observation Satellites (CEOS) Land Surface Imaging (LSI) Constellation is to define standards (or guidelines) that describe optimal future LSI Constellation capabilities, characteristics, and practices. Standards defined for a LSI Constellation will be based on a thorough understanding of user requirements, and they will address at least three fundamental areas of the systems comprising a Land Surface Imaging Constellation: the space segments, the ground segments, and relevant policies and plans. Studies conducted by the LSI Constellation Study Team also will address current and shorter-term problems and issues facing the land remote sensing community today, such as seeking ways to work more cooperatively in the operation of existing land surface imaging systems and helping to accomplish tangible benefits to society through application of land surface image data acquired by existing systems. 2007 LSI Constellation studies are designed to establish initial international agreements, develop preliminary standards for a mid-resolution land surface imaging constellation, and contribute data to a global forest assessment.

  14. Spatial assessment of land surface temperature and land use/land cover in Langkawi Island

    NASA Astrophysics Data System (ADS)

    Abu Bakar, Suzana Binti; Pradhan, Biswajeet; Salihu Lay, Usman; Abdullahi, Saleh

    2016-06-01

    This study investigates the relationship between Land Surface Temperature and Land Use/Land Cover in Langkawi Island by using Normalized Difference Vegetation Index (NDVI), Normalized Difference Build-Up Index (NDBI) and Modified Normalized Difference Water Index (MNDWI) qualitatively by using Landsat 7 ETM+ and Landsat 8 (OLI/TIRS) over the period 2002 and 2015. Pixel-based classifiers Maximum Likelihood (MLC) and Support Vector Machine (SVM), has been performed to prepare the Land Use/ Land Cover map (LU/LC) and the result shows that Support Vector Machine (SVM) achieved maximum accuracy with 90% and 90.46% compared to Maximum Likelihood (MLC) classifier with 86.62% and 86.98% respectively. The result revealed that as the impervious surface (built-up /roads) increases, the surface temperature of the area increased. However, land surface temperature decreased in the vegetated areas. Based from the linear regression between LST and NDVI, NDBI and MNDWI, these indices can be used as an indicator to monitor the impact of Land Use/Land Cover on Land Surface Temperature.

  15. Upscaling and downscaling of land surface fluxes with surface temperature

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land surface temperature (LST) is a key surface boundary condition that is significantly correlated to surface flux partitioning between latent and sensible heat. The spatial and temporal variation in LST is driven by radiation, wind, vegetation cover and roughness as well as soil moisture status ...

  16. Land Surface Hydrology during the Cloud Land Surface Interaction Campaign (CLASIC) in 2007

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fundamental to the objectives of Cloud Land Surface Interaction Campaign (CLASIC) is the understanding of the interactions between the atmosphere and the land surface. In addition, CLASIC observations and monitoring will be used to validate the multiple remote sensing products retrieved during the s...

  17. The Continuing Evolution of Land Surface Parameterizations

    NASA Technical Reports Server (NTRS)

    Koster, Randal; Houser, Paul (Technical Monitor)

    2001-01-01

    Land surface models (LSMs) play a critical role in the simulation of climate, for they determine the character of a large fraction of the atmosphere's lower boundary. The LSM partitions the net radiative energy at the land surface into sensible heat, latent heat, and energy storage, and it partitions incident precipitation water into evaporation, runoff, and water storage. Numerous modeling experiments and the existing (though very scant) observational evidence suggest that variations in these partitionings can feed back on the atmospheric processes that induce them. This land-atmosphere feedback can in turn have a significant impact on the generation of continental precipitation. For this and other reasons (including the role of the land surface in converting various atmospheric quantities, such as precipitation, into quantities of perhaps higher societal relevance, such as runoff), many modeling groups are placing a high emphasis on improving the treatment of land surface processes in their models. LSMs have evolved substantially from the original bucket model of Manabe et al. This evolution, which is still ongoing, has been documented considerably. The present paper also takes a look at the evolution of LSMs. The perspective here, though, is different - the evolution is considered strictly in terms of the 'balance' between the formulations of evaporation and runoff processes. The paper will argue that a proper balance is currently missing, largely due to difficulties in treating subgrid variability in soil moisture and its impact on the generation of runoff.

  18. Economic consequences of land surface subsidence

    SciTech Connect

    Fowler, L.C.

    1981-06-01

    Overdraft in the Santa Clara Valley, Calif., groundwater basin caused land surface subsidence over an area of 63,000 ha with a maximum depression of 3.6 m from 1912-67. Since cessation of overdraft and replenishment of groundwater levels in 1969, there has been no significant land surface subsidence. During the period of active subsidence, water well casings buckled, sewers lost capacity as a result of changes in slope, and roads and railroads had to be raised. These damages are estimated at over $130 million. (1 graph, 1 map, 6 photos, 2 references, 1 table)

  19. Remote sensing of land surface phenology

    USGS Publications Warehouse

    Meier, G.A.; Brown, J.F.

    2014-01-01

    Remote sensing of land-surface phenology is an important method for studying the patterns of plant and animal growth cycles. Phenological events are sensitive to climate variation; therefore phenology data provide important baseline information documenting trends in ecology and detecting the impacts of climate change on multiple scales. The USGS Remote sensing of land surface phenology program produces annually, nine phenology indicator variables at 250 m and 1,000 m resolution for the contiguous U.S. The 12 year archive is available at http://phenology.cr.usgs.gov/index.php.

  20. Soft Landing of Complex Molecules on Surfaces *

    NASA Astrophysics Data System (ADS)

    Johnson, Grant E.; Hu, Qichi; Laskin, Julia

    2011-07-01

    Soft and reactive landing of mass-selected ions onto surfaces has become a topic of substantial interest due to its promising potential for the highly controlled preparation of materials. For example, there are possible applications in the production of peptide and protein microarrays for use in high-throughput screening, protein separation and conformational enrichment of peptides, redox protein characterization, thin-film production, and the preparation of catalysts through deposition of clusters and organometallic complexes. Soft landing overcomes many of the limitations associated with conventional thin-film production techniques and offers unprecedented selectivity and specificity of preparation of deposited species. This review discusses the fundamental aspects of soft and reactive landing of mass-selected ions on surfaces that pertain to applications of these techniques in biomaterials, molecular electronics, catalysis, and interfacial chemistry.

  1. 25 CFR 214.14 - Use of surface lands.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... land to any point of prospecting or mining operations, but such use of the surface shall be permissible... 25 Indians 1 2010-04-01 2010-04-01 false Use of surface lands. 214.14 Section 214.14 Indians... LANDS, OKLAHOMA, FOR MINING, EXCEPT OIL AND GAS § 214.14 Use of surface lands. (a) Lessees may use...

  2. Upscaling and Downscaling of Land Surface Fluxes with Surface Temperature

    NASA Astrophysics Data System (ADS)

    Kustas, W. P.; Anderson, M. C.; Hain, C.; Albertson, J. D.; Gao, F.; Yang, Y.

    2015-12-01

    Land surface temperature (LST) is a key surface boundary condition that is significantly correlated to surface flux partitioning between latent and sensible heat. The spatial and temporal variation in LST is driven by radiation, wind, vegetation cover and roughness as well as soil moisture status in the surface and root zone. Data from airborne and satellite-based platforms provide LST from ~10 km to sub meter resolutions. A land surface scheme called the Two-Source Energy Balance (TSEB) model has been incorporated into a multi-scale regional modeling system ALEXI (Atmosphere Land Exchange Inverse) and a disaggregation scheme (DisALEXI) using higher resolution LST. Results with this modeling system indicates that it can be applied over heterogeneous land surfaces and estimate reliable surface fluxes with minimal in situ information. Consequently, this modeling system allows for scaling energy fluxes from subfield to regional scales in regions with little ground data. In addition, the TSEB scheme has been incorporated into a large Eddy Simulation (LES) model for investigating dynamic interactions between variations in the land surface state reflected in the spatial pattern in LST and the lower atmospheric air properties affecting energy exchange. An overview of research results on scaling of fluxes and interactions with the lower atmosphere from the subfield level to regional scales using the TSEB, ALEX/DisALEX and the LES-TSEB approaches will be presented. Some unresolved issues in the use of LST at different spatial resolutions for estimating surface energy balance and upscaling fluxes, particularly evapotranspiration, will be discussed.

  3. Potential for Landing Gear Noise Reduction on Advanced Aircraft Configurations

    NASA Technical Reports Server (NTRS)

    Thomas, Russell H.; Nickol, Craig L.; Burley, Casey L.; Guo, Yueping

    2016-01-01

    The potential of significantly reducing aircraft landing gear noise is explored for aircraft configurations with engines installed above the wings or the fuselage. An innovative concept is studied that does not alter the main gear assembly itself but does shorten the main strut and integrates the gear in pods whose interior surfaces are treated with acoustic liner. The concept is meant to achieve maximum noise reduction so that main landing gears can be eliminated as a major source of airframe noise. By applying this concept to an aircraft configuration with 2025 entry-into-service technology levels, it is shown that compared to noise levels of current technology, the main gear noise can be reduced by 10 EPNL dB, bringing the main gear noise close to a floor established by other components such as the nose gear. The assessment of the noise reduction potential accounts for design features for the advanced aircraft configuration and includes the effects of local flow velocity in and around the pods, gear noise reflection from the airframe, and reflection and attenuation from acoustic liner treatment on pod surfaces and doors. A technical roadmap for maturing this concept is discussed, and the possible drag increase at cruise due to the addition of the pods is identified as a challenge, which needs to be quantified and minimized possibly with the combination of detailed design and application of drag reduction technologies.

  4. Land surface processes and Sahel climate

    NASA Astrophysics Data System (ADS)

    Nicholson, Sharon

    2000-02-01

    This paper examines the question of land surface-atmosphere interactions in the West African Sahel and their role in the interannual variability of rainfall. In the Sahel, mean rainfall decreased by 25-40% between 1931-1960 and 1968-1997; every year in the 1950s was wet, and nearly every year since 1970 has been anomalously dry. Thus the intensity and multiyear persistence of drought conditions are unusual and perhaps unique features of Sahel climate. This article presents arguments for the role of land surface feedback in producing these features and reviews research relevant to land surface processes in the region, such as results from the 1992 Hydrologic Atmospheric Pilot Experiment (HAPEX)-Sahel experiment and recent studies on aerosols and on the issue of desertification in the region, a factor implicated by some as a cause of the changes in rainfall. Included also is a summary of evidence of feedback on meteorological processes, presented from both model results and observations. The reviewed studies demonstrate numerous ways in which the state of the land surface can influence interactions with the atmosphere. Surface hydrology essentially acts to delay and prolong the effects of meteorological drought. Each evaporative component of the surface water balance has its own timescale, with the presence of vegetation affecting the process both by delaying and prolonging the return of soil moisture to the atmosphere but at the same time accelerating the process through the evaporation of canopy-intercepted water. Hence the vegetation structure, including rooting depth, can modulate the land-atmosphere interaction. Such processes take on particular significance in the Sahel, where there is a high degree of recycling of atmospheric moisture and where the meteorological processes from the scale of boundary layer development to mesoscale disturbance generation are strongly influenced by moisture. Simple models of these feedback processes and their various timescales

  5. Erosion thresholds and land surface morphology

    NASA Astrophysics Data System (ADS)

    Dietrich, William E.; Wilson, Cathy J.; Montgomery, David R.; McKean, James; Bauer, Romy

    1992-08-01

    We propose a graphical technique to analyze the entirety of landforms in a catchment to define quantitatively the spatial variation in the dominance of different erosion processes. High-resolution digital elevation data of a 1.2 km2 hilly area where the channel network had been mapped in the field were used in the digital terrain model, TOPOG, to test threshold theories for erosion. The land surface was divided into ˜20 m2 elements whose shapes were then classified as convergent, planar, or divergent. The entire landscape plotted on a graph of area per unit contour length against surface gradient shows each planform plotting as a separate field. A simple steady-state hydrologic model was used to predict zones of saturation and areas of high pore pressure to mimic the extreme hydrologic events responsible for erosive instability of the land surface. The field observation that saturation overland flow is rare outside convergent zones provided a significant constraint on the hydrologic parameter in the model. This model was used in threshold theories to predict areas of slope instability and areas subject to erosion by saturation overland flow, both of which can contribute to channel initiation. The proportion of convergent elements predicted to exceed the threshold varies greatly with relatively small changes in surface resistance, demonstrating a high sensitivity to land use such as cattle grazing. Overall, the landscape can be divided, using erosion threshold lines, into areas prone to channel instability due to runoff and stable areas where diffusive transport predominates.

  6. Lakes representation in a land surface model

    NASA Astrophysics Data System (ADS)

    Dutra, E.; Stepanenko, V. M.; Balsamo, G.; Viterbo, P.; Miranda, P. M. A.; Mironov, D.

    2009-04-01

    Lakes and other inland water bodies can, in certain areas, compose a large fraction of the land surface. Inland waters have an important role in determining local and regional climates, primarily because of large differences in albedo, heat capacity, roughness, and energy exchange compared to vegetated land surfaces. Despite the radically different physical characteristics of inland waters when compared to their surrounding, most land surface models put more emphasis on the comparatively weaker differences within continental surface types (such as various types of vegetation and bare soil). Thus so far sub-grid lakes have been largely neglected. The present work describes the incorporation of the lake model FLAKE (Mironov 2008, http://lakemodel.net) into the ECMWF land surface scheme HTESSEL (Balsamo 2008). Results from global offline simulations are presented in order to (i) evaluate the model's performance in different climates and (ii) assess the impact of lakes representation in the surface energy balance. The model was forced by new ECMWF reanalysis product ERA-INTERIM (1989-present) near surface meteorology and surface fluxes (radiation and precipitation) for the entire globe. Model validation includes lake surface temperatures (global) and lake ice duration (Northern Hemisphere). Lake surface temperatures, derived from the TERRA-MODIS satellite (http://oceancolor.gsfc.nasa.gov/), are compared against simulations for the period 2001-2008, while lake ice duration is validated using data from the Global Lake and River Ice Phenology (Benson and Magnunson, 2007). The impact of the snow insulator effect on lake ice cover duration is also discussed and compared with frozen soil duration in neighbouring areas. The sensitivity of the present analysis to the lake depth, which is important and often unknown lake parameter, is also addressed. In addition, the implementation of the lake model within the land surface model allows for sub-grid cover variability. The impact

  7. Classification of simulated and actual NOAA-6 AVHRR data for hydrologic land-surface feature definition. [Advanced Very High Resolution Radiometer

    NASA Technical Reports Server (NTRS)

    Ormsby, J. P.

    1982-01-01

    An examination of the possibilities of using Landsat data to simulate NOAA-6 Advanced Very High Resolution Radiometer (AVHRR) data on two channels, as well as using actual NOAA-6 imagery, for large-scale hydrological studies is presented. A running average was obtained of 18 consecutive pixels of 1 km resolution taken by the Landsat scanners were scaled up to 8-bit data and investigated for different gray levels. AVHRR data comprising five channels of 10-bit, band-interleaved information covering 10 deg latitude were analyzed and a suitable pixel grid was chosen for comparison with the Landsat data in a supervised classification format, an unsupervised mode, and with ground truth. Landcover delineation was explored by removing snow, water, and cloud features from the cluster analysis, and resulted in less than 10% difference. Low resolution large-scale data was determined useful for characterizing some landcover features if weekly and/or monthly updates are maintained.

  8. DISAGGREGATION OF GOES LAND SURFACE TEMPERATURES USING SURFACE EMISSIVITY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate temporal and spatial estimation of land surface temperatures (LST) is important for modeling the hydrological cycle at field to global scales because LSTs can improve estimates of soil moisture and evapotranspiration. Using remote sensing satellites, accurate LSTs could be routine, but unfo...

  9. Coupled land surface/hydrologic/atmospheric models

    NASA Technical Reports Server (NTRS)

    Pielke, Roger; Steyaert, Lou; Arritt, Ray; Lahtakia, Mercedes; Smith, Chris; Ziegler, Conrad; Soong, Su Tzai; Avissar, Roni; Wetzel, Peter; Sellers, Piers

    1993-01-01

    The topics covered include the following: prototype land cover characteristics data base for the conterminous United States; surface evapotranspiration effects on cumulus convection and implications for mesoscale models; the use of complex treatment of surface hydrology and thermodynamics within a mesoscale model and some related issues; initialization of soil-water content for regional-scale atmospheric prediction models; impact of surface properties on dryline and MCS evolution; a numerical simulation of heavy precipitation over the complex topography of California; representing mesoscale fluxes induced by landscape discontinuities in global climate models; emphasizing the role of subgrid-scale heterogeneity in surface-air interaction; and problems with modeling and measuring biosphere-atmosphere exchanges of energy, water, and carbon on large scales.

  10. Land Surface Verification Toolkit (LVT) - A Generalized Framework for Land Surface Model Evaluation

    NASA Technical Reports Server (NTRS)

    Kumar, Sujay V.; Peters-Lidard, Christa D.; Santanello, Joseph; Harrison, Ken; Liu, Yuqiong; Shaw, Michael

    2011-01-01

    Model evaluation and verification are key in improving the usage and applicability of simulation models for real-world applications. In this article, the development and capabilities of a formal system for land surface model evaluation called the Land surface Verification Toolkit (LVT) is described. LVT is designed to provide an integrated environment for systematic land model evaluation and facilitates a range of verification approaches and analysis capabilities. LVT operates across multiple temporal and spatial scales and employs a large suite of in-situ, remotely sensed and other model and reanalysis datasets in their native formats. In addition to the traditional accuracy-based measures, LVT also includes uncertainty and ensemble diagnostics, information theory measures, spatial similarity metrics and scale decomposition techniques that provide novel ways for performing diagnostic model evaluations. Though LVT was originally designed to support the land surface modeling and data assimilation framework known as the Land Information System (LIS), it also supports hydrological data products from other, non-LIS environments. In addition, the analysis of diagnostics from various computational subsystems of LIS including data assimilation, optimization and uncertainty estimation are supported within LVT. Together, LIS and LVT provide a robust end-to-end environment for enabling the concepts of model data fusion for hydrological applications. The evolving capabilities of LVT framework are expected to facilitate rapid model evaluation efforts and aid the definition and refinement of formal evaluation procedures for the land surface modeling community.

  11. A blended land emissivity product from the Inter-Comparison of different Land Surface Emissivity Estimates

    NASA Astrophysics Data System (ADS)

    Norouzi, H.; Temimi, M.; Khanbilvardi, R.

    2012-12-01

    Passive microwave observations are routinely used to estimate rain rate, cloud liquid water, and total precipitable water. In order to have accurate estimations from microwave, the contribution of the surface should be accounted for. Over land, due to the complex interaction between the microwave signal and the soil surface, retrieval of land surface emissivity and other surface and subsurface parameters is not straightforward. Several microwave emissivity products from various microwave sensors have been proposed. However, lack of ground truth measurements makes the validation of these products difficult. This study aims to inter-compare several available emissivity products over land and ultimately proposes a unique blended product that overcomes the flaws of each individual product. The selected products are based on observations from the Advanced Microwave Scanning Radiometer for EOS (AMSR-E), the Special Sensor Microwave Imager (SSM/I), the Advanced Microwave Sounding unit (AMSU), and the Special Sensor Microwave Imager/Sounder (SSMIS). In retrieval of emissivities from these sensors different methods and ancillary data have been used. Some inherent discrepancies between the selected products can be introduced by as the difference in geometry in terms of incident angle, spectral response, and the foot print size which can affect the estimations. Moreover, ancillary data especially skin temperature and cloud mask cover can cause significant discrepancies between various estimations. The time series and correlation between emissivity maps are explored to assess the consistency of emissivity variations with geophysical variable such as snow, precipitation and drought. Preliminary results reveal that inconsistency between products varies based on land cover type due to penetration depth effect and ancillary data. Six years of estimations are employed in this research study, and a global blended emissivity estimations based on all product with minimal discrepancies

  12. Determining Land Surface Temperature Relations with Land Use-Land Cover and Air Pollution

    NASA Astrophysics Data System (ADS)

    Kahya, Ceyhan; Bektas Balcik, Filiz; Burak Oztaner, Yasar; Guney, Burcu

    2016-04-01

    Rapid population growth in conjunction with unplanned urbanization, expansion, and encroachment into the limited agricultural fields and green areas have negative impacts on vegetated areas. Land Surface Temperature (LST), Urban Heat Islands (UHI) and air pollution are the most important environmental problems that the extensive part of the world suffers from. The main objective of this research is to investigate the relationship between LST, air pollution and Land Use-Land Cover (LULC) in Istanbul, using Landsat 8 OLI satellite image. Mono-window algorithm is used to compute LST from Landsat 8 TIR data. In order to determine the air pollution, in-situ measurements of particulate matter (PM10) of the same day as the Landsat 8 OLI satellite image are obtained. The results of this data are interpolated using the Inverse Distance Weighted (IDW) method and LULC categories of Istanbul were determined by using remote sensing indices. Error matrix was created for accuracy assessment. The relationship between LST, air pollution and LULC categories are determined by using regression analysis method. Keywords: Land Surface Temperature (LST), air pollution, Land Use-Land Cover (LULC), Istanbul

  13. Timescales of Land Surface Evapotranspiration Response

    NASA Technical Reports Server (NTRS)

    Scott, Russell; Entekhabi, Dara; Koster, Randal; Suarez, Max

    1997-01-01

    Soil and vegetation exert strong control over the evapotranspiration rate, which couples the land surface water and energy balances. A method is presented to quantify the timescale of this surface control using daily general circulation model (GCM) simulation values of evapotranspiration and precipitation. By equating the time history of evaporation efficiency (ratio of actual to potential evapotranspiration) to the convolution of precipitation and a unit kernel (temporal weighting function), response functions are generated that can be used to characterize the timescales of evapotranspiration response for the land surface model (LSM) component of GCMS. The technique is applied to the output of two multiyear simulations of a GCM, one using a Surface-Vegetation-Atmosphere-Transfer (SVAT) scheme and the other a Bucket LSM. The derived response functions show that the Bucket LSM's response is significantly slower than that of the SVAT across the globe. The analysis also shows how the timescales of interception reservoir evaporation, bare soil evaporation, and vegetation transpiration differ within the SVAT LSM.

  14. Mapping land surface emissivity in the Teide volcanic system

    NASA Astrophysics Data System (ADS)

    Barreto, Africa; Arbelo, Manuel; Hernandez-Leal, Pedro A.; Nunez-Casillas, Laia; González-Calvo, Alejandro

    In light the greatly improvement introduced by satellite remote sensing for Earth sciences ap-plications, increasing notably the quality of the surface parameters inferred, climate studies and models developed from them have experienced a significant progress. Even so, it is important to make sure the accuracy of the remote products by means of in situ observations. Although there are some natural surfaces in which a constant emissivity assumption could be assumed, as surfaces highly vegetated, in general, land surface emissivity (LSE) varies sig-nificantly with many factors, as physical constituents, surface moisture content, roughness or particle size. This lack of accurate surface emissivity information makes us to compile a spec-tral emissivity library in a suitable site in the Teide National Park, Tenerife Island (Spain), to be used in land surface temperature validation experiences, as well as to be incorporated in geological and climate studies. The zone is a highly-elevated volcanic site composed of different types of lava formed as a part of the volcanic activity of Tenerife Island. To this end, emissivity measurements of several volcanic rocks from the Teide National Park have been developed using the box method. They include both in situ and laboratory mea-surements. The results have been compared with LSE extracted by means of high spatial resolution information from the Advanced Spaceborne Thermal Emission and Reflectance Ra-diometer (ASTER) sensor and the Temperature and Emissivity Separation algorithm provided by the ASTER Standard Product AST-05.

  15. Offline land surface temperature assimilation in mumerical weather prediction output

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land surface temperature plays an important role in land surface processes, and it is a key input to physically-based retrieval algorithms of important hydrological states and fluxes, such as soil moisture and evaporation. For this reason there are many independent estimates of land surface temperat...

  16. ESTIMATION OF LAND SURFACE BROADBAND ALBEDOS AND LEAF AREA INDEX FROM EO-1 DATA AND VALIDATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Advanced Land Imager (ALI) is a multispectral sensor onboard NASA Earth Observer-1 (EO-1). It has similar spatial resolution to the Landsat-7 Enhanced Thematic Mapper Plus (ETM+), with three additional spectral bands. We developed new algorithms for estimating both land surface broadband albedo...

  17. Land surface phenology and land surface temperature changes along an urban-rural gradient in Yangtze River Delta, china.

    PubMed

    Han, Guifeng; Xu, Jianhua

    2013-07-01

    Using SPOT/VGT NDVI time series images (2002-2009) and MODIS/LST images (2002-2009) smoothed by a Savitzky-Golay filter, the land surface phenology (LSP) and land surface temperature (LST), respectively, are extracted for six cities in the Yangtze River Delta, China, including Shanghai, Hangzhou, Nanjing, Changzhou, Wuxi, and Suzhou. The trends of the averaged LSP and LST are analyzed, and the relationship between these values is revealed along the urban-rural gradient. The results show that urbanization advances the start of the growing season, postpones the end of the growing season, prolongs the growing season length (GSL), and reduces the difference between maximal NDVI and minimal NDVI in a year (NDVIamp). More obvious changes occur in surface vegetation phenology as the urbanized area is approached. The LST drops monotonously and logarithmically along the urban-rural gradient. Urbanization generally affects the LSP of the surrounding vegetation within 6 km to the urban edge. Except for GSL, the difference in the LSP between urban and rural areas has a significant logarithmic relationship with the distance to the urban edge. In addition, there is a very strong linear relationship between the LSP and the LST along the urban-rural gradient, especially within 6 km to the urban edge. The correlations between LSP and gross domestic product and population density reveal that human activities have considerable influence on the land surface vegetation growth. PMID:23740439

  18. Earth Observing-1 Advanced Land Imager: Radiometric Response Calibration

    NASA Technical Reports Server (NTRS)

    Mendenhall, J. A.; Lencioni, D. E.; Evans, J. B.

    2000-01-01

    The Advanced Land Imager (ALI) is one of three instruments to be flown on the first Earth Observing mission (EO-1) under NASA's New Millennium Program (NMP). ALI contains a number of innovative features, including a wide field of view optical design, compact multispectral focal plane arrays, non-cryogenic HgCdTe detectors for the short wave infrared bands, and silicon carbide optics. This document outlines the techniques adopted during ground calibration of the radiometric response of the Advanced Land Imager. Results from system level measurements of the instrument response, signal-to-noise ratio, saturation radiance, and dynamic range for all detectors of every spectral band are also presented.

  19. 25 CFR 226.19 - Use of surface of land.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 1 2014-04-01 2014-04-01 false Use of surface of land. 226.19 Section 226.19 Indians... LANDS FOR OIL AND GAS MINING Operations § 226.19 Use of surface of land. (a) Lessee or his/her authorized representative shall have the right to use so much of the surface of the land within the...

  20. 25 CFR 226.19 - Use of surface of land.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Use of surface of land. 226.19 Section 226.19 Indians... LANDS FOR OIL AND GAS MINING Operations § 226.19 Use of surface of land. (a) Lessee or his/her authorized representative shall have the right to use so much of the surface of the land within the...

  1. 25 CFR 226.19 - Use of surface of land.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 1 2013-04-01 2013-04-01 false Use of surface of land. 226.19 Section 226.19 Indians... LANDS FOR OIL AND GAS MINING Operations § 226.19 Use of surface of land. (a) Lessee or his/her authorized representative shall have the right to use so much of the surface of the land within the...

  2. 25 CFR 226.19 - Use of surface of land.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false Use of surface of land. 226.19 Section 226.19 Indians... LANDS FOR OIL AND GAS MINING Operations § 226.19 Use of surface of land. (a) Lessee or his/her authorized representative shall have the right to use so much of the surface of the land within the...

  3. Toward Transfer Functions for Land Surface Phenologies

    NASA Astrophysics Data System (ADS)

    Henebry, G. M.

    2010-12-01

    A key problem in projecting future landscapes is simulating the associated land surface phenologies (or LSPs). A recent study of land surface models concluded that the representations of crop phenologies among the models diverged sufficiently to impede a useful intercomparison of simulation results from their associated climate models. Grassland phenologies are far more complicated than cropland phenologies due to multiple forcing factors, photosynthetic pathways (C3 vs C4), and spatial heterogeneities in both resource availabilities and land management practices. Furthermore, many tallgrass species (such as switchgrass) are widely distributed across temperature, but not moisture, gradients, resulting in significant ecotypic variation across the species' geographic range. Thus, how feasible is "transplanting" tallgrass LSPs across isotherms—but along isohyets—to simulate a shift in cultivation from maize-soy to switchgrass? Prior work has shown a quadratic model can provide a parsimonious link between a Normalized Difference Vegetation Index (or NDVI) time series and thermal time, measured in terms of accumulated growing degree-days (or AGDD). Moreover, the thermal time to peak NDVI (or TTP) is a simple function of the parameter coefficients of fitted model. I fitted quadratic models to MODIS NDVI and weather station data at multiple sites across the Northern Great Plains over ten growing seasons, 2000-2009. There is a strong latitudinal gradient in TTP that results in part from a quasi-linear gradient in accumulated daylight hours (or ADH) between 30 and 50 degrees north. However, AGDD improves upon ADH by providing sensitivity to the variability of growing season weather. In the quadratic parameter coefficients there is a geographic pattern apparent as a function of TTP, although it is more variable at shorter TTPs. Using these patterns, an LSP transfer function was implemented along a latitudinal transect to simulate switchgrass cultivation in areas now

  4. A new MRI land surface model HAL

    NASA Astrophysics Data System (ADS)

    Hosaka, M.

    2011-12-01

    A land surface model HAL is newly developed for MRI-ESM1. It is used for the CMIP simulations. HAL consists of three submodels: SiByl (vegetation), SNOWA (snow) and SOILA (soil) in the current version. It also contains a land coupler LCUP which connects some submodels and an atmospheric model. The vegetation submodel SiByl has surface vegetation processes similar to JMA/SiB (Sato et al. 1987, Hirai et al. 2007). SiByl has 2 vegetation layers (canopy and grass) and calculates heat, moisture, and momentum fluxes between the land surface and the atmosphere. The snow submodel SNOWA can have any number of snow layers and the maximum value is set to 8 for the CMIP5 experiments. Temperature, SWE, density, grain size and the aerosol deposition contents of each layer are predicted. The snow properties including the grain size are predicted due to snow metamorphism processes (Niwano et al., 2011), and the snow albedo is diagnosed from the aerosol mixing ratio, the snow properties and the temperature (Aoki et al., 2011). The soil submodel SOILA can also have any number of soil layers, and is composed of 14 soil layers in the CMIP5 experiments. The temperature of each layer is predicted by solving heat conduction equations. The soil moisture is predicted by solving the Darcy equation, in which hydraulic conductivity depends on the soil moisture. The land coupler LCUP is designed to enable the complicated constructions of the submidels. HAL can include some competing submodels (precise and detailed ones, and simpler ones), and they can run at the same simulations. LCUP enables a 2-step model validation, in which we compare the results of the detailed submodels with the in-situ observation directly at the 1st step, and follows the comparison between them and those of the simpler ones at the 2nd step. When the performances of the detailed ones are good, we can improve the simpler ones by using the detailed ones as reference models.

  5. ENVISAT Land Surface Processes. Phase 2

    NASA Technical Reports Server (NTRS)

    vandenHurk, B. J. J. M.; Su, Z.; Verhoef, W.; Menenti, M.; Li, Z.-L.; Wan, Z.; Moene, A. F.; Roerink, G.; Jia, I.

    2002-01-01

    This is a progress report of the 2nd phase of the project ENVISAT- Land Surface Processes, which has a 3-year scope. In this project, preparative research is carried out aiming at the retrieval of land surface characteristics from the ENVISAT sensors MERIS and AATSR, for assimilation into a system for Numerical Weather Prediction (NWP). Where in the 1st phase a number of first shot experiments were carried out (aiming at gaining experience with the retrievals and data assimilation procedures), the current 2nd phase has put more emphasis on the assessment and improvement of the quality of the retrieved products. The forthcoming phase will be devoted mainly to the data assimilation experiments and the assessment of the added value of the future ENVISAT products for NWP forecast skill. Referring to the retrieval of albedo, leaf area index and atmospheric corrections, preliminary radiative transfer calculations have been carried out that should enable the retrieval of these parameters once AATSR and MERIS data become available. However, much of this work is still to be carried out. An essential part of work in this area is the design and implementation of software that enables an efficient use of MODTRAN(sub 4) radiative transfer code, and during the current project phase familiarization with these new components has been achieved. Significant progress has been made with the retrieval of component temperatures from directional ATSR-images, and the calculation of surface turbulent heat fluxes from these data. The impact of vegetation cover on the retrieved component temperatures appears manageable, and preliminary comparison of foliage temperature to air temperatures were encouraging. The calculation of surface fluxes using the SEBI concept,which includes a detailed model of the surface roughness ratio, appeared to give results that were in reasonable agreement with local measurements with scintillometer devices. The specification of the atmospheric boundary conditions

  6. Towards Monitoring Satellite Land Surface Temperature Production

    NASA Astrophysics Data System (ADS)

    Yu, P.; Yu, Y.; Liu, Y.; Wang, Z.; Zhang, X.

    2014-12-01

    Land surface temperature (LST) is of fundamental importance to the net radiation budget at the Earth surface and to monitoring the state of crops and vegetation, as well as an important indicator of both the greenhouse effect and the energy flux between the atmosphere and the land. Since its launch on October 28, 2011, the Suomi National Polar-orbiting Partnership (S-NPP) satellite has been continuously providing data for LST production; intensive validation and calibration of the LST data have been conducted since then. To better monitor the performance of the S-NPP LST product and evaluate different retrieval algorithms for potential improvement, a near-real-time monitoring system has been developed and implemented. The system serves as a tool for both the routine monitoring and the deep-dive researches. It currently consists of two major components: the global cross-satellite LST comparisons between S-NPP/VIIRS and MODIS/AQUA, and the LST validation with respect to in-situ observations from SURFRAD network. Results about cross-satellite comparisons, satellite-in situ LST validation, and evaluation of different retrieval algorithms are routinely generated and published through an FTP server of the system ftp. The results indicate that LST from the S-NPP is comparable to that from MODIS. A few case studies using this tool will be analyzed and presented.

  7. Multivariate assimilation of satellite-derived land remote sensing datasets: Advances, gaps and challenges

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Peters-Lidard, C. D.; Mocko, D. M.; Jasinski, M. F.; Reichle, R. H.; Zaitchik, B. F.; Getirana, A.; Rodell, M.; Xia, Y.; Ek, M. B.

    2015-12-01

    Remote sensing advancements in recent years have enabled monitoring of the Earth's land surface with unprecedented scale and frequency. In the past decade, remote sensing observations of the land surface have become available from a number of satellite instruments and platforms including soil moisture (AMSR-E, ASCAT, AMSR2, SMOS, SMAP), snow depth (AMSR-E, AMSR2), snow cover (MODIS, VIIRS), terrestrial water storage (GRACE) and land surface temperature (MODIS, VIIRS, GOES). To support the effective exploitation of the information content of the remote sensing observations, computational tools such as data assimilation are necessary. In this presentation, I will describe the efforts towards the concurrent use of all available remote sensing observations in a multivariate data assimilation configuration in the North American Land Data Assimilation System (NLDAS). Though NLDAS has produced over 34 years (Jan 1979 to present) of hourly land-surface meteorology and surface states using the best-available observations and reanalyses for "off-line" land surface model (LSM) simulations, to-date it has not included the assimilation of relevant hydrological remote sensing datasets. The new phase of NLDAS attempts to bridge this gap by assimilating all land relevant datasets in the NLDAS configuration using the NASA Land Information System (LIS). The results from individually assimilating the soil moisture, snow and terrestrial water storage datasets indicate that improvements can be obtained not only in soil moisture and snow states, but also on evapotranspiration and streamflow estimates. The results from the multivariate, multisensor assimilation of the above-mentioned remote sensing datasets in NLDAS and an evaluation of the resulting improvements and trends in soil moisture, snowpack, evapotranspiration and streamflow will also be presented. Through this talk, I will describe the advances made towards the effective utilization of remote sensing data for hydrologic

  8. Session on coupled land surface/hydrological/atmospheric models

    NASA Technical Reports Server (NTRS)

    Pielke, Roger

    1993-01-01

    The current model capabilities in the context of land surface interactions with the atmosphere include only one-dimensional characteristics of vegetation and soil surface heat, moisture, momentum, and selected other trace gas fluxes (e.g., CO2). The influence of spatially coherent fluxes that result from landscape heterogeneity were not included. Valuable representations of several aspects of the landscape pattern currently exist. These include digital elevation data and measures of the leaf area index (i.e., Normalized Difference Vegetation Index (NDVI) from Advanced Very High Resolution Radiometer (AVHRR) data). A major deficiency, however, is the lack of an ability to sample spatially representative shallow and (especially) deep soil moisture. Numerous mesoscale modeling and observed studies demonstrated the sensitivity of planetary boundary layer structure and deep convection to the magnitude of the surface moisture flux.

  9. Advances in Satellite Microwave Precipitation Retrieval Algorithms Over Land

    NASA Astrophysics Data System (ADS)

    Wang, N. Y.; You, Y.; Ferraro, R. R.

    2015-12-01

    Precipitation plays a key role in the earth's climate system, particularly in the aspect of its water and energy balance. Satellite microwave (MW) observations of precipitation provide a viable mean to achieve global measurement of precipitation with sufficient sampling density and accuracy. However, accurate precipitation information over land from satellite MW is a challenging problem. The Goddard Profiling Algorithm (GPROF) algorithm for the Global Precipitation Measurement (GPM) is built around the Bayesian formulation (Evans et al., 1995; Kummerow et al., 1996). GPROF uses the likelihood function and the prior probability distribution function to calculate the expected value of precipitation rate, given the observed brightness temperatures. It is particularly convenient to draw samples from a prior PDF from a predefined database of observations or models. GPROF algorithm does not search all database entries but only the subset thought to correspond to the actual observation. The GPM GPROF V1 database focuses on stratification by surface emissivity class, land surface temperature and total precipitable water. However, there is much uncertainty as to what is the optimal information needed to subset the database for different conditions. To this end, we conduct a database stratification study of using National Mosaic and Multi-Sensor Quantitative Precipitation Estimation, Special Sensor Microwave Imager/Sounder (SSMIS) and Advanced Technology Microwave Sounder (ATMS) and reanalysis data from Modern-Era Retrospective Analysis for Research and Applications (MERRA). Our database study (You et al., 2015) shows that environmental factors such as surface elevation, relative humidity, and storm vertical structure and height, and ice thickness can help in stratifying a single large database to smaller and more homogeneous subsets, in which the surface condition and precipitation vertical profiles are similar. It is found that the probability of detection (POD) increases

  10. 25 CFR 214.14 - Use of surface lands.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 1 2013-04-01 2013-04-01 false Use of surface lands. 214.14 Section 214.14 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF OSAGE RESERVATION LANDS, OKLAHOMA, FOR MINING, EXCEPT OIL AND GAS § 214.14 Use of surface lands. (a) Lessees may use...

  11. 25 CFR 214.14 - Use of surface lands.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false Use of surface lands. 214.14 Section 214.14 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF OSAGE RESERVATION LANDS, OKLAHOMA, FOR MINING, EXCEPT OIL AND GAS § 214.14 Use of surface lands. (a) Lessees may use...

  12. 25 CFR 214.14 - Use of surface lands.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 1 2014-04-01 2014-04-01 false Use of surface lands. 214.14 Section 214.14 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF OSAGE RESERVATION LANDS, OKLAHOMA, FOR MINING, EXCEPT OIL AND GAS § 214.14 Use of surface lands. (a) Lessees may use...

  13. 25 CFR 214.14 - Use of surface lands.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 1 2012-04-01 2011-04-01 true Use of surface lands. 214.14 Section 214.14 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF OSAGE RESERVATION LANDS, OKLAHOMA, FOR MINING, EXCEPT OIL AND GAS § 214.14 Use of surface lands. (a) Lessees may use so much of...

  14. Cities and Urban Land Use in Advanced Placement Human Geography.

    ERIC Educational Resources Information Center

    Ford, Larry R.

    2000-01-01

    Discusses the cities and urban land use section of the Advanced Placement (AP) human geography course, focusing on the: (1) definitions of urbanism; (2) origin and evolution of cities; (3) functional character of contemporary cities; (4) built environment and social space; and (5) responses to urban growth. (CMK)

  15. 25 CFR 226.19 - Use of surface of land.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... LANDS FOR OIL AND GAS MINING Operations § 226.19 Use of surface of land. (a) Lessee or his/her... originally drilled under the currently lease. A drilling site shall be held to the minimum area essential...

  16. Mapping the global land surface using 1 km AVHRR data

    USGS Publications Warehouse

    Lauer, D.T.; Eidenshink, J.C.

    1998-01-01

    The scientific requirements for mapping the global land surface using 1 km advanced very high resolution radiometer (AVHRR) data have been set forth by the U.S. Global Change Research Program; the International Geosphere Biosphere Programme (IGBP); The United Nations; the National Oceanic and Atmospheric Administration (NOAA); the Committee on Earth Observations Satellites; and the National Aeronautics and Space Administration (NASA) mission to planet Earth (MTPE) program. Mapping the global land surface using 1 km AVHRR data is an international effort to acquire, archive, process, and distribute 1 km AVHRR data to meet the needs of the international science community. A network of AVHRR receiving stations, along with data recorded by NOAA, has been acquiring daily global land coverage since April 1, 1992. A data set of over 70,000 AVHRR images is archived and distributed by the United States Geological Survey (USGS) EROS Data Center, and the European Space Agency. Under the guidance of the IGBP, processing standards have been developed for calibration, atmospheric correction, geometric registration, and the production of global 10-day maximum normalized difference vegetation index (NDVI) composites. The major uses of the composites are for the study of surface vegetation condition, mapping land cover, and deriving biophysical characteristics of terrestrial ecosystems. A time-series of 54 10-day global vegetation index composites for the period of April 1, 1992 through September 1993 has been produced. The production of a time-series of 33 10-day global vegetation index composites using NOAA-14 data for the period of February 1, 1995 through December 31, 1995 is underway. The data products are available from the USGS, in cooperation with NASA's MTPE program and other international organizations.

  17. Land Surface Emission Modeling to Support Physical Precipitation Retrievals

    NASA Technical Reports Server (NTRS)

    Peters-Lidard, Christina D.; Harrison, Kenneth; Kumar, Sujay; Ferraro, Ralph; Skofronick-Jackson, Gail

    2010-01-01

    Land surface modeling and data assimilation can provide dynamic land surface state variables necessary to support physical precipitation retrieval algorithms over land. It is well-known that surface emission, particularly over the range of frequencies to be included in the Global Precipitation Measurement Mission (GPM), is sensitive to land surface states, including soil properties, vegetation type and greenness, soil moisture, surface temperature, and snow cover, density, and grain size. In order to investigate the robustness of both the land surface model states and the microwave emissivity and forward radiative transfer models, we have undertaken a multi-site investigation as part of the NASA Precipitation Measurement Missions (PMM) Land Surface Characterization. Working Group.

  18. Passive microwave retrieval of land surface properties

    NASA Astrophysics Data System (ADS)

    Owe, Manfred; de Jeu, Richard A. M.; Holmes, Thomas R. H.

    2006-05-01

    A methodology for retrieving land surface properties from passive microwave observations is presented. Dual polarization microwave brightness temperature data, together with a simple radiative transfer model are used to derive surface soil moisture and vegetation optical depth simultaneously, in a non linear optimization procedure using a forward modeling approach. Soil temperature is derived off-line with a common heat flow model, driven by high frequency vertical polarization microwave data and remotely sensed observations of net radiation. The methodology does not require any field observations of soil moisture or canopy biophysical properties for calibration purposes and is independent of wavelength. Remote sensing provides an excellent opportunity to monitor and gather environmental data in regions that have little or no instrumentation. Moreover, microwave technology provides a more all-weather capability than is typically afforded with visible and near infrared wavelengths. The model was developed for regional- to global-scale monitoring and related environmental applications such as surface energy balance modelling, numerical weather prediction, flood and drought forecasting, and climate change studies. However, at higher spatial resolutions, which would be possible with aircraft, especially unmanned vehicles, tactical applications may be realized as well. Retrieval results compare well with field observations of soil moisture and satellite-derived vegetation index data from optical sensors.

  19. Assimilation of Surface Temperature in Land Surface Models

    NASA Technical Reports Server (NTRS)

    Lakshmi, Venkataraman

    1998-01-01

    Hydrological models have been calibrated and validated using catchment streamflows. However, using a point measurement does not guarantee correct spatial distribution of model computed heat fluxes, soil moisture and surface temperatures. With the advent of satellites in the late 70s, surface temperature is being measured two to four times a day from various satellite sensors and different platforms. The purpose of this paper is to demonstrate use of satellite surface temperature in (a) validation of model computed surface temperatures and (b) assimilation of satellite surface temperatures into a hydrological model in order to improve the prediction accuracy of soil moistures and heat fluxes. The assimilation is carried out by comparing the satellite and the model produced surface temperatures and setting the "true"temperature midway between the two values. Based on this "true" surface temperature, the physical relationships of water and energy balance are used to reset the other variables. This is a case of nudging the water and energy balance variables so that they are consistent with each other and the true" surface temperature. The potential of this assimilation scheme is demonstrated in the form of various experiments that highlight the various aspects. This study is carried over the Red-Arkansas basin in the southern United States (a 5 deg X 10 deg area) over a time period of a year (August 1987 - July 1988). The land surface hydrological model is run on an hourly time step. The results show that satellite surface temperature assimilation improves the accuracy of the computed surface soil moisture remarkably.

  20. The Effect of Land Use Change on Land Surface Temperature in the Netherlands

    NASA Astrophysics Data System (ADS)

    Youneszadeh, S.; Amiri, N.; Pilesjo, P.

    2015-12-01

    The Netherlands is a small country with a relatively large population which experienced a rapid rate of land use changes from 2000 to 2008 years due to the industrialization and population increase. Land use change is especially related to the urban expansion and open agriculture reduction due to the enhanced economic growth. This research reports an investigation into the application of remote sensing and geographical information system (GIS) in combination with statistical methods to provide a quantitative information on the effect of land use change on the land surface temperature. In this study, remote sensing techniques were used to retrieve the land surface temperature (LST) by using the MODIS Terra (MOD11A2) Satellite imagery product. As land use change alters the thermal environment, the land surface temperature (LST) could be a proper change indicator to show the thermal changes in relation with land use changes. The Geographical information system was further applied to extract the mean yearly land surface temperature (LST) for each land use type and each province in the 2003, 2006 and 2008 years, by using the zonal statistic techniques. The results show that, the inland water and offshore area has the highest night land surface temperature (LST). Furthermore, the Zued (South)-Holland province has the highest night LST value in the 2003, 2006 and 2008 years. The result of this research will be helpful tool for urban planners and environmental scientists by providing the critical information about the land surface temperature.

  1. Quantifying Uncertainties in Land-Surface Microwave Emissivity Retrievals

    NASA Technical Reports Server (NTRS)

    Tian, Yudong; Peters-Lidard, Christa D.; Harrison, Kenneth W.; Prigent, Catherine; Norouzi, Hamidreza; Aires, Filipe; Boukabara, Sid-Ahmed; Furuzawa, Fumie A.; Masunaga, Hirohiko

    2013-01-01

    Uncertainties in the retrievals of microwaveland-surface emissivities are quantified over two types of land surfaces: desert and tropical rainforest. Retrievals from satellite-based microwave imagers, including the Special Sensor Microwave Imager, the Tropical Rainfall Measuring Mission Microwave Imager, and the Advanced Microwave Scanning Radiometer for Earth Observing System, are studied. Our results show that there are considerable differences between the retrievals from different sensors and from different groups over these two land-surface types. In addition, the mean emissivity values show different spectral behavior across the frequencies. With the true emissivity assumed largely constant over both of the two sites throughout the study period, the differences are largely attributed to the systematic and random errors inthe retrievals. Generally, these retrievals tend to agree better at lower frequencies than at higher ones, with systematic differences ranging 1%-4% (3-12 K) over desert and 1%-7% (3-20 K) over rainforest. The random errors within each retrieval dataset are in the range of 0.5%-2% (2-6 K). In particular, at 85.5/89.0 GHz, there are very large differences between the different retrieval datasets, and within each retrieval dataset itself. Further investigation reveals that these differences are most likely caused by rain/cloud contamination, which can lead to random errors up to 10-17 K under the most severe conditions.

  2. Cross comparisons of land surface process descriptions in land surface models using multiple sources of data

    NASA Astrophysics Data System (ADS)

    Park, Gi Hyeon

    2006-12-01

    Land surface-atmospheric interactions influence climate and weather varying spatial scales from local to mesoscale, and even to global. This dissertation deals with several topics: (1) evaluation of various sources of incoming solar radiations, (2) evaluation of land surface process descriptions in the land surface models in both basin-scale and point scale offline model simulations, and (3) inverse estimation of radiation components using net radiation and other meteorological variables. Incoming solar radiations from various sources were evaluated. This study identified the two sources of errors in the North American Data Assimilation system (NLDAS) solar radiation: One is related to bias inherited from the ETA Data Assimilation System (EDAS) during 2001 and 2003, and the other is software error at NESDIS operational system during 2002. Land surface processes are treated quite differently in the land surface models used in this study. Over the state of Oklahoma, Common Land Model 2.1 (CLM2.1) estimates more evaporation but less transpiration than the Variable Infiltration Capacity (VIC3L) model. This is due to the difference in the runoff algorithm, which results in more infiltration down to the soil layer and then providing more available water to plant roots in VIC3L. CLM2.1 overestimates ground heat flux in Point scale simulation. CoLM, which employs two stream radiative transfer scheme, shows better agreements to adjusted ground observations (using Bowen-ration closure method) in offline simulations than CLM2.1. CoLM, in addition, shows various model behaviors depending on vegetation cover types. Inverse radiation estimation methods were developed and evaluated at four AmeriFlux sites. Analysis of observed radiations showed a triangle shape relationship among net radiation, net solar radiation and cloud factor (defined in this study). Clear-sky downward longwave radiation is needed to be calibrated for each site. SCE-UA method was used to calibrate an

  3. Enhancing the Representation of Subgrid Land Surface Characteristics in Land Surface Models

    SciTech Connect

    Ke, Yinghai; Leung, Lai-Yung R.; Huang, Maoyi; Li, Hongyi

    2013-09-27

    Land surface heterogeneity has long been recognized and increasingly incorporated in the land surface modelling. In most existing land surface models, the spatial variability of surface cover is represented as subgrid composition of multiple surface cover types. In this study, we developed a new subgrid classification method (SGC) that accounts for the topographic variability of the vegetation cover. Each model grid cell was represented with a number of elevation classes and each elevation class was further described by a number of vegetation types. The numbers of elevation classes and vegetation types were variable and optimized for each model grid so that the spatial variability of both elevation and vegetation can be reasonably explained given a pre-determined total number of classes. The subgrid structure of the Community Land Model (CLM) was used as an example to illustrate the newly developed method in this study. With similar computational burden as the current subgrid vegetation representation in CLM, the new method is able to explain at least 80% of the total subgrid PFTs and greatly reduced the variations of elevation within each subgrid class compared to the baseline method where a single elevation class is assigned to each subgrid PFT. The new method was also evaluated against two other subgrid methods (SGC1 and SGC2) that assigned fixed numbers of elevation and vegetation classes for each model grid with different perspectives of surface cover classification. Implemented at five model resolutions (0.1°, 0.25°, 0.5°, 1.0° and 2.0°) with three maximum-allowed total number of classes N_class of 24, 18 and 12 representing different computational burdens over the North America (NA) continent, the new method showed variable performances compared to the SGC1 and SGC2 methods. However, the advantage of the SGC method over the other two methods clearly emerged at coarser model resolutions and with moderate computational intensity (N_class = 18) as it

  4. Mycorrhizal fungi and global land surface models?

    NASA Astrophysics Data System (ADS)

    Brzostek, E. R.; Fisher, J. B.; Shi, M.; Phillips, R.

    2013-12-01

    In the current generation of Land Surface Models (LSMs), the representation of coupled carbon (C) and nutrient cycles does not account for allocation of C by plants to mycorrhizal fungi in exchange for limiting nutrients. Given that the amount of C transferred to mycorrhizae can exceed 20% of net primary production (NPP), mycorrhizae can supply over half of the nitrogen (N) needed to support NPP, and that large majority of plants form associations with mycorrhizae; integrating these mechanisms into LSMs may significantly alter our understanding of the role of the terrestrial biosphere in mitigating climate change. Here, we present results from the integration of a mycorrhizal framework into a cutting-edge global plant nitrogen model -- Fixation & Uptake of Nitrogen (FUN; Fisher et al., 2010) -- that can be coupled into existing LSMs. In this mycorrhizal framework, the C cost of N acquisition varies as a function of mycorrhizal type with: (1) plants that support arbuscular mycorrhizae (AM) benefiting when N is plentiful and (2) plants that support ectomycorrhizae (ECM) benefiting when N is limiting. At the plot scale (15 x 15m), the My-FUN model improved predictions of retranslocation, N uptake, and the amount of C transferred into the soil relative to the base model across 45 plots that vary in mycorrhizal type in Indiana, USA. At the ecosystem scale, when we coupled this new framework into the Community Land Model (CLM-CN), the model estimated lower C uptake than the base model and more accurately predicted C uptake at the Morgan Monroe State Forest AmeriFlux site. These results suggest that the inclusion of a mycorrhizal framework into LSMs will enhance our ability to predict feedbacks between global change and the terrestrial biosphere.

  5. Hydrologic Remote Sensing and Land Surface Data Assimilation

    PubMed Central

    Moradkhani, Hamid

    2008-01-01

    Accurate, reliable and skillful forecasting of key environmental variables such as soil moisture and snow are of paramount importance due to their strong influence on many water resources applications including flood control, agricultural production and effective water resources management which collectively control the behavior of the climate system. Soil moisture is a key state variable in land surface–atmosphere interactions affecting surface energy fluxes, runoff and the radiation balance. Snow processes also have a large influence on land-atmosphere energy exchanges due to snow high albedo, low thermal conductivity and considerable spatial and temporal variability resulting in the dramatic change on surface and ground temperature. Measurement of these two variables is possible through variety of methods using ground-based and remote sensing procedures. Remote sensing, however, holds great promise for soil moisture and snow measurements which have considerable spatial and temporal variability. Merging these measurements with hydrologic model outputs in a systematic and effective way results in an improvement of land surface model prediction. Data Assimilation provides a mechanism to combine these two sources of estimation. Much success has been attained in recent years in using data from passive microwave sensors and assimilating them into the models. This paper provides an overview of the remote sensing measurement techniques for soil moisture and snow data and describes the advances in data assimilation techniques through the ensemble filtering, mainly Ensemble Kalman filter (EnKF) and Particle filter (PF), for improving the model prediction and reducing the uncertainties involved in prediction process. It is believed that PF provides a complete representation of the probability distribution of state variables of interests (according to sequential Bayes law) and could be a strong alternative to EnKF which is subject to some limitations including the linear

  6. NASA Lands Car-sized Rover on Martian Surface

    NASA Video Gallery

    NASA's most advanced Mars rover Curiosity has landed on the Red Planet. The one-ton rover, hanging by ropes from a rocket backpack, touched down onto Mars Sunday to end a 36-week flight and begin a...

  7. CARBON SEQUESTRATION ON SURFACE MINE LANDS

    SciTech Connect

    Donald H. Graves; Christopher Barton; Richard Sweigard; Richard Warner

    2003-10-30

    The 2002-2003 Department of Energy plantings amounted to 164 acres containing 111,520 tree seedlings in eastern and western Kentucky. Data gathered on these trees included an inventory to determine survival of all planted species. A sub-sample of seedlings was selected to assess the height and diameter of individual species of seedlings established. Additional efforts involved collection of soil sample and litter samples, analysis of herbaceous ground cover from vegetation clip plots and leaf area on each tree species, and development of tissue collections. All areas were sampled for penetration resistance, penetration depth (or depth to refusal), and bulk density at various depths. Rain fall events and flow rates were recorded. The water quality of runoff samples involved the determination of total and settleable solids and particle size distribution. A study was initiated that will focus on the colonization of small mammals from forest edges to various areas located on reclaimed surface mines. This effort will provide a better understanding of the role small mammals and birds have in the establishment of plant communities on mine lands that will be useful in developing and improving reclamation techniques.

  8. Surface Hydrology in Global River Basins in the Off-Line Land-Surface GEOS Assimilation (OLGA) System

    NASA Technical Reports Server (NTRS)

    Bosilovich, Michael G.; Yang, Runhua; Houser, Paul R.

    1998-01-01

    Land surface hydrology for the Off-line Land-surface GEOS Analysis (OLGA) system and Goddard Earth Observing System (GEOS-1) Data Assimilation System (DAS) has been examined using a river routing model. The GEOS-1 DAS land-surface parameterization is very simple, using an energy balance prediction of surface temperature and prescribed soil water. OLGA uses near-surface atmospheric data from the GEOS-1 DAS to drive a more comprehensive parameterization of the land-surface physics. The two global systems are evaluated using a global river routing model. The river routing model uses climatologic surface runoff from each system to simulate the river discharge from global river basins, which can be compared to climatologic river discharge. Due to the soil hydrology, the OLGA system shows a general improvement in the simulation of river discharge compared to the GEOS-1 DAS. Snowmelt processes included in OLGA also have a positive effect on the annual cycle of river discharge and source runoff. Preliminary tests of a coupled land-atmosphere model indicate improvements to the hydrologic cycle compared to the uncoupled system. The river routing model has provided a useful tool in the evaluation of the GCM hydrologic cycle, and has helped quantify the influence of the more advanced land surface model.

  9. Mars Sample Return without Landing on the Surface

    NASA Technical Reports Server (NTRS)

    Jurewicz, A. J. G.; Jones, Steven M.; Yen, A. S.

    2000-01-01

    Many in the science community want a Mars sample return in the near future, with the expectation that it will provide in-depth information, significantly beyond what we know from remote sensing, limited in-situ measurements, and work with Martian meteorites. Certainly, return of samples from the Moon resulted in major advances in our understanding of both the geologic history of our planetary satellite, and its relationship to Earth. Similar scientific insights would be expected from analyses of samples returned from Mars. Unfortunately, Mars-lander sample-return missions have been delayed, for the reason that NASA needs more time to review the complexities and risks associated with that type of mission. A traditional sample return entails a complex transfer-chain, including landing, collection, launch, rendezvous, and the return to Earth, as well as an evaluation of potential biological hazards involved with bringing pristine Martian organics to Earth. There are, however, means of returning scientifically-rich samples from Mars without landing on the surface. This paper discusses an approach for returning intact samples of surface dust, based on known instrument technology, without using an actual Martian lander.

  10. Ground surface temperature simulation for different land covers

    NASA Astrophysics Data System (ADS)

    Herb, William R.; Janke, Ben; Mohseni, Omid; Stefan, Heinz G.

    2008-07-01

    SummaryA model for predicting temperature time series for dry and wet land surfaces is described, as part of a larger project to assess the impact of urban development on the temperature of surface runoff and coldwater streams. Surface heat transfer processes on impervious and pervious land surfaces were investigated for both dry and wet weather periods. The surface heat transfer equations were combined with a numerical approximation of the 1-D unsteady heat diffusion equation to calculate pavement and soil temperature profiles to a depth of 10 m. Equations to predict the magnitude of the radiative, convective, conductive and evaporative heat fluxes at a dry or wet surface, using standard climate data as input, were developed. A model for the effect of plant canopies on surface heat transfer was included for vegetated land surfaces. Given suitable climate data, the model can simulate the land surface and sub-surface temperatures continuously throughout a six month time period or for a single rainfall event. Land surface temperatures have been successfully simulated for pavements, bare soil, short and tall grass, a forest, and two agricultural crops (corn and soybeans). The simulations were run for three different locations in US, and different years as imposed by the availability of measured soil temperature and climate data. To clarify the effect of land use on surface temperatures, the calibrated coefficients for each land use and the same soil coefficients were used to simulate surface temperatures for a six year climate data set from Albertville, MN. Asphalt and concrete give the highest surface temperatures, as expected, while vegetated surfaces gave the lowest. Bare soil gives surface temperatures that lie between those for pavements and plant-covered surfaces. The soil temperature model predicts hourly surface temperatures of bare soil and pavement with root-mean-square errors (RMSEs) of 1-2 °C, and hourly surface temperatures of vegetation-covered surfaces

  11. Climate and the equilibrium state of land surface hydrology parameterizations

    NASA Technical Reports Server (NTRS)

    Entekhabi, Dara; Eagleson, Peter S.

    1991-01-01

    For given climatic rates of precipitation and potential evaporation, the land surface hydrology parameterizations of atmospheric general circulation models will maintain soil-water storage conditions that balance the moisture input and output. The surface relative soil saturation for such climatic conditions serves as a measure of the land surface parameterization state under a given forcing. The equilibrium value of this variable for alternate parameterizations of land surface hydrology are determined as a function of climate and the sensitivity of the surface to shifts and changes in climatic forcing are estimated.

  12. Land-Use/Land Cover Change as Driver of Earth System Dynamics: past progress, future priorities, and new data and models for advancing the science

    NASA Astrophysics Data System (ADS)

    Hurtt, G. C.; Lawrence, D. M.; Brovkin, V.; Calvin, K. V.; Chini, L. P.; Fisk, J.; Frolking, S. E.; Jones, C.; de Noblet-Ducoudre, N.; Pongratz, J.; Seneviratne, S. I.; Shevliakova, E.

    2014-12-01

    Human land-use activities have resulted in large changes to the biogeochemical and biophysical properties of the Earth surface, with impacts on climate. The activities which alter vegetation cover, biomass, and phenology, directly influence regional to global climate through modification of surface biophysical properties and the surface energy balance. Land-use activities are also impact climate through changes in carbon and nitrogen balances and greenhouse gas emissions. Moreover, land-use activities are likely to expand and/or intensify further to meet future demands for food, feed, fiber, and energy. The fifth phase of the Coupled Model Intercomparison Project (CMIP5) achieved a qualitative scientific advance in studying the effects of land-use on climate, for the first time explicitly accounting for the effects of global gridded land-use changes (past-future) in coupled carbon-climate model projections. Enabling this advance, the first consistent gridded land-use dataset (past-future) was developed, linking historical land-use data to future projections from Integrated Assessment Models, in a standard format required by climate models ("Land-use Harmonization"). Results from climate models indicate that the effects of land-use on climate, while uncertain, are sufficiently large and complex to warrant an expanded treatment of land-use. Here, we review past progress, future priorities, and present on new data and models designed to improve the understanding of the effects of land-use on climate (past-future). The work is organized through the Land Use Model Intercomparison Project (LUMIP) in preparation for CMIP6.

  13. Surface Characterization for Land-Atmosphere Studies of CLASIC

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Cloud and Land Surface Interaction Campaign will focus on interactions between the land surface, convective boundary layer, and cumulus clouds. It will take place in the Southern Great Plains (SGP) area of the U.S, specifically within the US DOE ARM Climate Research Facility. The intensive obser...

  14. A NEW LAND-SURFACE MODEL IN MM5

    EPA Science Inventory

    There has recently been a general realization that more sophisticated modeling of land-surface processes can be important for mesoscale meteorology models. Land-surface models (LSMs) have long been important components in global-scale climate models because of their more compl...

  15. Land Surface Microwave Emissivity Dynamics: Observations, Analysis and Modeling

    NASA Technical Reports Server (NTRS)

    Tian, Yudong; Peters-Lidard, Christa D.; Harrison, Kenneth W.; Kumar, Sujay; Ringerud, Sarah

    2014-01-01

    Land surface microwave emissivity affects remote sensing of both the atmosphere and the land surface. The dynamical behavior of microwave emissivity over a very diverse sample of land surface types is studied. With seven years of satellite measurements from AMSR-E, we identified various dynamical regimes of the land surface emission. In addition, we used two radiative transfer models (RTMs), the Community Radiative Transfer Model (CRTM) and the Community Microwave Emission Modeling Platform (CMEM), to simulate land surface emissivity dynamics. With both CRTM and CMEM coupled to NASA's Land Information System, global-scale land surface microwave emissivities were simulated for five years, and evaluated against AMSR-E observations. It is found that both models have successes and failures over various types of land surfaces. Among them, the desert shows the most consistent underestimates (by approx. 70-80%), due to limitations of the physical models used, and requires a revision in both systems. Other snow-free surface types exhibit various degrees of success and it is expected that parameter tuning can improve their performances.

  16. Carbon Sequestration on Surface Mine Lands

    SciTech Connect

    Donald Graves; Christopher Barton; Richard Sweigard; Richard Warner; Carmen Agouridis

    2006-03-31

    Since the implementation of the federal Surface Mining Control and Reclamation Act of 1977 (SMCRA) in May of 1978, many opportunities have been lost for the reforestation of surface mines in the eastern United States. Research has shown that excessive compaction of spoil material in the backfilling and grading process is the biggest impediment to the establishment of productive forests as a post-mining land use (Ashby, 1998, Burger et al., 1994, Graves et al., 2000). Stability of mine sites was a prominent concern among regulators and mine operators in the years immediately following the implementation of SMCRA. These concerns resulted in the highly compacted, flatly graded, and consequently unproductive spoils of the early post-SMCRA era. However, there is nothing in the regulations that requires mine sites to be overly compacted as long as stability is achieved. It has been cultural barriers and not regulatory barriers that have contributed to the failure of reforestation efforts under the federal law over the past 27 years. Efforts to change the perception that the federal law and regulations impede effective reforestation techniques and interfere with bond release must be implemented. Demonstration of techniques that lead to the successful reforestation of surface mines is one such method that can be used to change perceptions and protect the forest ecosystems that were indigenous to these areas prior to mining. The University of Kentucky initiated a large-scale reforestation effort to address regulatory and cultural impediments to forest reclamation in 2003. During the three years of this project 383,000 trees were planted on over 556 acres in different physiographic areas of Kentucky (Table 1, Figure 1). Species used for the project were similar to those that existed on the sites before mining was initiated (Table 2). A monitoring program was undertaken to evaluate growth and survival of the planted species as a function of spoil characteristics and

  17. Development of high resolution land surface parameters for the Community Land Model

    NASA Astrophysics Data System (ADS)

    Ke, Y.; Leung, L. R.; Huang, M.; Coleman, A. M.; Li, H.; Wigmosta, M. S.

    2012-06-01

    There is a growing need for high-resolution land surface parameters as land surface models are being applied at increasingly higher spatial resolution offline as well as in regional and global models. The default land surface parameters for the most recent version of the Community Land Model (i.e. CLM 4.0) are at 0.5° or coarser resolutions, released with the model from the National Center for Atmospheric Research (NCAR). Plant Functional Types (PFTs), vegetation properties such as Leaf Area Index (LAI), Stem Area Index (SAI), and non-vegetated land covers were developed using remotely-sensed datasets retrieved in late 1990's and the beginning of this century. In this study, we developed new land surface parameters for CLM 4.0, specifically PFTs, LAI, SAI and non-vegetated land cover composition, at 0.05° resolution globally based on the most recent MODIS land cover and improved MODIS LAI products. Compared to the current CLM 4.0 parameters, the new parameters produced a decreased coverage by bare soil and trees, but an increased coverage by shrub, grass, and cropland. The new parameters result in a decrease in global seasonal LAI, with the biggest decrease in boreal forests; however, the new parameters also show a large increase in LAI in tropical forest. Differences between the new and the current parameters are mainly caused by changes in the sources of remotely sensed data and the representation of land cover in the source data. The new high-resolution land surface parameters have been used in a coupled land-atmosphere model (WRF-CLM) applied to the western US to demonstrate their use in high-resolution modeling. Future work will include global offline CLMsimulations to examine the impacts of source data resolution and subsequent land parameter changes on simulated land surface processes.

  18. Human Mars Landing Site and Impacts on Mars Surface Operations

    NASA Technical Reports Server (NTRS)

    Bussey, Ben; Hoffman, Stephen J.

    2016-01-01

    NASA has begun a process to identify and discuss candidate locations where humans could land, live and work on the Martian surface. These locations are referred to as Exploration Zones (EZs). Given current mission concepts, an EZ is a collection of Regions of Interest (ROIs) that are located within approximately 100 kilometers of a centralized landing site. ROIs are areas that are relevant for scientific investigation and/or development/maturation of capabilities and resources necessary for a sustainable human presence. The EZ also contains a landing site and a habitation site that will be used by multiple human crews during missions to explore and utilize the ROIs within the EZ. These candidate EZs will be used by NASA as part of a multi-year process of determining where and how humans could explore Mars. In the near term this process includes: (a) identifying locations that would maximize the potential science return from future human exploration missions, (b) identifying locations with the potential for resources required to support humans, (c) developing concepts and engineering systems needed by future human crews to conduct operations within an EZ, and (d) identifying key characteristics of the proposed candidate EZs that cannot be evaluated using existing data sets, thus helping to define precursor measurements needed in advance of human missions. Existing and future robotic spacecraft will be tasked to gather data from specific Mars surface sites within the representative EZs to support these NASA activities. The proposed paper will describe NASA's initial steps for identifying and evaluating candidate EZs and ROIs. This includes plans for the "First Landing Site/Exploration Zone Workshop for Human Missions to the Surface of Mars" to be held in October 2015 at which proposals for EZs and ROIs will be presented and discussed. It will also include a discussion of how these considerations are (or will be) taken into account as future robotic Mars missions are

  19. Atmospheric and land surface measurements in a prototype hydrologic observatory

    NASA Astrophysics Data System (ADS)

    Scanlon, B.; Krajewski, W.; Famiglietti, J.; Duffy, C.

    2003-12-01

    Quantifying spatial and temporal variability in fluxes across interfaces and storage within reservoirs is critical for understanding the water cycle. The interfaces being considered in this presentation on the Neuse basin prototype hydrologic observatory (HO) include the land surface - atmosphere and land surface - groundwater. Critical fluxes include precipitation, infiltration, evapotranspiration and energy balance, and groundwater recharge; soil water storage in the unsaturated zone is an important determinant of flux partitioning at either interface. A companion presentation in this session (Genereux et al.) focuses on fluxes of water and solutes related to groundwater-surface water interfaces and surface water flow. The proposed measurement approach combines remote sensing and in-situ measurements to cover a wide range in spatial (1 m2 - 10,000 km2) scales. High-resolution precipitation maps will be provided by a combination of NEXRAD data and an enhanced ground-based network of rain gauges, disdrometers, and profilers. Evapotranspiration and energy balance fluxes will be monitored at several locations to characterize spatial patterns and process controls. Measurements of water content and matric potential will be co-located in the unsaturated zone to develop in situ water retention functions and to test existing pedotransfer functions for translating basic soils data to hydraulic parameters for modeling. Subsurface water fluxes in the unsaturated zone will also be estimated using newly developed fluxmeters. Co-located unsaturated and saturated zone instrumentation will be used to measure vertical and horizontal gradients to determine flux direction and to quantify fluxes using modeling. Fluxes in the unsaturated zone below the root zone may be equated to groundwater recharge. In addition, environmental tracers (tritium/helium and chlorofluorocarbons) will be measured in groundwater to estimate recharge rates. Ground-based measurements will be located in

  20. How Water Advances on Superhydrophobic Surfaces.

    PubMed

    Schellenberger, Frank; Encinas, Noemí; Vollmer, Doris; Butt, Hans-Jürgen

    2016-03-01

    Superliquid repellency can be achieved by nano- and microstructuring surfaces in such a way that protrusions entrap air underneath the liquid. It is still not known how the three-phase contact line advances on such structured surfaces. In contrast to a smooth surface, where the contact line can advance continuously, on a superliquid-repellent surface, the contact line has to overcome an air gap between protrusions. Here, we apply laser scanning confocal microscopy to get the first microscopic videos of water drops advancing on a superhydrophobic array of micropillars. In contrast to common belief, the liquid surface gradually bends down until it touches the top face of the next micropillars. The apparent advancing contact angle is 180°. On the receding side, pinning to the top faces of the micropillars determines the apparent receding contact angle. Based on these observations, we propose that the apparent receding contact angle should be used for characterizing superliquid-repellent surfaces rather than the apparent advancing contact angle and hysteresis. PMID:26991185

  1. How Water Advances on Superhydrophobic Surfaces

    NASA Astrophysics Data System (ADS)

    Schellenberger, Frank; Encinas, Noemí; Vollmer, Doris; Butt, Hans-Jürgen

    2016-03-01

    Superliquid repellency can be achieved by nano- and microstructuring surfaces in such a way that protrusions entrap air underneath the liquid. It is still not known how the three-phase contact line advances on such structured surfaces. In contrast to a smooth surface, where the contact line can advance continuously, on a superliquid-repellent surface, the contact line has to overcome an air gap between protrusions. Here, we apply laser scanning confocal microscopy to get the first microscopic videos of water drops advancing on a superhydrophobic array of micropillars. In contrast to common belief, the liquid surface gradually bends down until it touches the top face of the next micropillars. The apparent advancing contact angle is 180°. On the receding side, pinning to the top faces of the micropillars determines the apparent receding contact angle. Based on these observations, we propose that the apparent receding contact angle should be used for characterizing superliquid-repellent surfaces rather than the apparent advancing contact angle and hysteresis.

  2. Precipitation and global land surface hydrology in the MERRA-Land and MERRA-2 reanalysis datasets

    NASA Astrophysics Data System (ADS)

    Reichle, Rolf; Liu, Qing

    2015-04-01

    Multi-decadal reanalysis datasets have been widely used to study the global terrestrial water cycle. Examples include atmospheric reanalysis datasets (e.g., MERRA and ERA-Interim), coupled atmosphere-ocean reanalysis datasets (e.g., CFSR), and land-surface only reanalysis datasets (e.g., MERRA-Land and ERA-Interim/Land). The driving component of the land surface water budget is the incoming precipitation forcing. Traditionally, e.g. in ERA-Interim and MERRA, the reanalysis precipitation over land is generated by the atmospheric general circulation model component of the reanalysis system. By contrast, MERRA-Land, ERA-Interim/Land, CSFR, and the forthcoming MERRA-2 atmospheric reanalysis essentially use precipitation observations from satellites and/or gauges to force the land surface, which typically results in improved estimates of large-scale hydrological conditions. This presentation first reviews the approach by which the precipitation observations are introduced in MERRA-Land and MERRA-2. Precipitation in MERRA-Land relies on a global, daily, 0.5 degree gauge product from the NOAA Climate Prediction Center (CPC). But this product is based on a very limited number of measurements at high latitudes and over Africa. Therefore, MERRA-2 relies on a mix of (i) model-generated precipitation at high-latitudes, (ii) a pentad, 2.5 degree satellite product from CPC over Africa, and (iii) the daily, 0.5 degree gauge-based precipitation product elsewhere. Next, the precipitation climatologies and the resulting land surface hydrological conditions are compared regionally and for the reanalysis time period (1980-present). The more sophisticated approach of MERRA-2 precipitation results in generally improved land surface conditions. But MERRA-2 also suffers from adverse spin-up effects in soil moisture conditions at high latitudes.

  3. GLDAS Land Surface Models based Aridity Indices

    NASA Astrophysics Data System (ADS)

    Pande, S.; Ghazanfari, S.

    2011-12-01

    Identification of dryland areas is crucial to guide policy aimed at intervening in water stressed areas and addressing its perennial livelihood or food insecurity. Aridity indices based on spatially relative soil moisture conditions such as NCEP aridity index allow cross comparison of dry conditions between sites. NCEP aridity index is based on the ratio of annual precipitation (supply) to annual potential evaporation (demand). Such an index ignores subannual scale competition between evaporation and drainage functions well as rainfall and temperature regimes. This determines partitioning of annual supply of precipitation into two competing (but met) evaporation and runoff demands. We here introduce aridity indices based on these additional considerations by using soil moisture time series for the past 3 decades from three Land Surface Models (LSM) models and compare it with NCEP index. We analyze global monthly soil moisture time series (385 months) at 1 x 1 degree spatial resolution as modeled by three GLDAS LSMs - VIC, MOSAIC and NOAH. The first eigen vector from Empirical Orthogonal Function (EOF) analysis, as it is the most dominant spatial template of global soil moisture conditions, is extracted. Frequency of nonexceedences of this dominant soil moisture mode for a location by other locations is calculated and is used as our proposed aridity index. An area is indexed drier (relative to other areas in the world) if its frequency of nonexceedence is lower. The EOF analysis reveals that their first eigen vector explains approximately 32%, 43% and 47% of variance explained by first 385 eigen vectors for VIC, MOSAIC and NOAH respectively. The temporal coefficients associated with it for all three LSMS show seasonality with a jump in trend around the year 1999 for NOAH and MOSAIC. The VIC aridity index displays a pattern most closely resembling that of NCEP though all LSM based indices isolate dominant dryland areas. However, all three LSMs identify some parts of

  4. Improving arable land heterogeneity information in available land cover products for land surface modelling using MERIS NDVI data

    NASA Astrophysics Data System (ADS)

    Zabel, F.; Hank, T. B.; Mauser, W.

    2010-07-01

    Regionalization of physical land surface models requires the supply of detailed land cover information. Numerous global and regional land cover maps already exist, but generally they do not resolve arable land into different crop types. However, the characteristic phenological behaviour of different crops affects the mass and energy fluxes on the land surface and thus its hydrology. The objective of this study is the generation of a land cover map for Central Europe based on CORINE Land Cover 2000, merged with CORINE Switzerland, but distinguishing different crop types. Accordingly, an approach was developed, subdividing the land cover class arable land into the regionally most relevant subclasses for Central Europe using statistical data from EUROSTAT. This database was analysed concerning the acreage of different crop types, taking a multiseasonal series of MERIS Normalized Difference Vegetation Index (NDVI) into account. The satellite data were used for the separation of spring and summer crops. The hydrological impact of the improved land cover map was modelled exemplarily for the Upper Danube catchment.

  5. Translation of Land Surface Model Accuracy and Uncertainty into Coupled Land-Atmosphere Prediction

    NASA Technical Reports Server (NTRS)

    Santanello, Joseph A.; Kumar, Sujay; Peters-Lidard, Christa D.; Harrison, Kenneth W.; Zhou, Shuija

    2012-01-01

    Land-atmosphere (L-A) Interactions playa critical role in determining the diurnal evolution of both planetary boundary layer (PBL) and land surface heat and moisture budgets, as well as controlling feedbacks with clouds and precipitation that lead to the persistence of dry and wet regimes. Recent efforts to quantify the strength of L-A coupling in prediction models have produced diagnostics that integrate across both the land and PBL components of the system. In this study, we examine the impact of improved specification of land surface states, anomalies, and fluxes on coupled WRF forecasts during the summers of extreme dry (2006) and wet (2007) land surface conditions in the U.S. Southern Great Plains. The improved land initialization and surface flux parameterizations are obtained through the use of a new optimization and uncertainty estimation module in NASA's Land Information System (US-OPT/UE), whereby parameter sets are calibrated in the Noah land surface model and classified according to a land cover and soil type mapping of the observation sites to the full model domain. The impact of calibrated parameters on the a) spinup of the land surface used as initial conditions, and b) heat and moisture states and fluxes of the coupled WRF Simulations are then assessed in terms of ambient weather and land-atmosphere coupling along with measures of uncertainty propagation into the forecasts. In addition, the sensitivity of this approach to the period of calibration (dry, wet, average) is investigated. Finally, tradeoffs of computational tractability and scientific validity, and the potential for combining this approach with satellite remote sensing data are also discussed.

  6. Estimation of Arctic Land Surface Conditions and Fluxes via a Suite of Land Surface Models

    NASA Astrophysics Data System (ADS)

    Bohn, T. J.; Slater, A. G.; Lettenmaier, D. P.; Serreze, M. C.

    2004-12-01

    River runoff from the Arctic terrestrial drainage system is thought to exert a significant influence over global climate, contributing to the global thermohaline circulation via its effects on salinity, sea ice, and surface freshening in the North Atlantic. Changes in these freshwater fluxes, as well as other components of the Arctic terrestrial hydrologic cycle such as snow cover and albedo, have the potential to amplify the Arctic's response to global climate change. However, the extent to which the Arctic terrestrial hydrological cycle is changing or may contribute to change through feedback processes is still not well understood, in part due to the sparseness of observations of such variables as stream flow, soil moisture, soil temperature, snow water equivalent, and energy fluxes. The objective of this project is to assemble the best possible time series (covering a 20+ year period) of these and other prognostic variables for the Arctic terrestrial drainage basin. While these variables can be estimated with a single land surface model (LSM), the predictions are often subject to biases and errors in the input atmospheric forcings and limited by the accuracy of the model physics. To reduce these errors, we have implemented an ensemble of five LSMs: VIC, CLM, ECMWF, NOAH and CHASM, all of which have been used previously to simulate Arctic hydrology under the Project for Intercomparison of Land-surface Parameterization Schemes (PILPS) Experiment 2e. Model predictions of land surface state variables (snow water content, soil moisture, permafrost active layer depth) and fluxes (latent, sensible, and ground heat fluxes; runoff) are averaged both across the ensemble and over multiple runs, using the best available atmospheric forcing data with and without added random perturbations. Here we evaluate the multi-model ensemble averages in comparison with individual model simulations of variables including snow water equivalent, evaporation, total runoff, and soil thaw

  7. Understanding land surface evapotranspiration with satellite multispectral measurements

    NASA Technical Reports Server (NTRS)

    Menenti, M.

    1993-01-01

    Quantitative use of remote multispectral measurements to study and map land surface evapotranspiration has been a challenging issue for the past 20 years. Past work is reviewed against process physics. A simple two-layer combination-type model is used which is applicable to both vegetation and bare soil. The theoretic analysis is done to show which land surface properties are implicitly defined by such evaporation models and to assess whether they are measurable as a matter of principle. Conceptual implications of the spatial correlation of land surface properties, as observed by means of remote multispectral measurements, are illustrated with results of work done in arid zones. A normalization of spatial variability of land surface evaporation is proposed by defining a location-dependent potential evaporation and surface temperature range. Examples of the application of remote based estimates of evaporation to hydrological modeling studies in Egypt and Argentina are presented.

  8. Classes of land-surface form in the United States

    USGS Publications Warehouse

    Hammond, Edwin

    1964-01-01

    This digital dataset describes classes of land-surface form in the conterminous United States. The source of the data is the map of land-surface form in the 1970 National Atlas of the United States, pages 62-63, which was adapted from Edwin H. Hammond, "Classes of land surface form in the forty-eight states, U.S.A," Annals of the Assoc. of Am. Geographers, v.54, no. 1, 1964, map supp. no. 1, 1:5,000,000.

  9. Improving arable land heterogeneity information in available land cover products for land surface modelling using MERIS NDVI data

    NASA Astrophysics Data System (ADS)

    Zabel, F.; Hank, T. B.; Mauser, W.

    2010-10-01

    Regionalization of physical land surface models requires the supply of detailed land cover information. Numerous global and regional land cover maps already exist but generally, they do not resolve arable land into different crop types. However, arable land comprises a huge variety of different crops with characteristic phenological behaviour, demonstrated in this paper with Leaf Area Index (LAI) measurements exemplarily for maize and winter wheat. This affects the mass and energy fluxes on the land surface and thus its hydrology. The objective of this study is the generation of a land cover map for central Europe based on CORINE Land Cover (CLC) 2000, merged with CORINE Switzerland, but distinguishing different crop types. Accordingly, an approach was developed, subdividing the land cover class arable land into the regionally most relevant subclasses for central Europe using multiseasonal MERIS Normalized Difference Vegetation Index (NDVI) data. The satellite data were used for the separation of spring and summer crops due to their different phenological behaviour. Subsequently, the generated phenological classes were subdivided following statistical data from EUROSTAT. This database was analysed concerning the acreage of different crop types. The impact of the improved land use/cover map on evapotranspiration was modelled exemplarily for the Upper Danube catchment with the hydrological model PROMET. Simulations based on the newly developed land cover approach showed a more detailed evapotranspiration pattern compared to model results using the traditional CLC map, which is ignorant of most arable subdivisions. Due to the improved temporal behaviour and spatial allocation of evapotranspiration processes in the new land cover approach, the simulated water balance more closely matches the measured gauge.

  10. A Land Surface Data Assimilation Framework Using the Land Information System: Description and Application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Land Information System (LIS) is a hydrologic modeling framework that integrates various community land surface models, ground and satellite-based observations, and high performance computing and data management tools to enable assessment and prediction of hydrologic conditions at various spatia...

  11. Advanced Short Takeoff and Vertical Landing (ASTOVL) Concepts Tested

    NASA Technical Reports Server (NTRS)

    1995-01-01

    In this cooperative program between NASA, Lockheed Corporation, and the Advanced Research and Projects Agency (ARPA), an advanced short takeoff and vertical landing (ASTOVL) model was tested in the 9- by 15-Foot Low-Speed Wind Tunnel at the NASA Lewis Research Center. The 10-percent scaled model was tested over a range of headwind velocities from 25 to 120 kn. This inlet/forebody test was a key part of an important Department of Defense program investigation enabling technologies for future high-performance ASTOVL aircraft. The Lockheed concept is focused on a shaft-coupled lift fan system centered around Pratt & Whitney's F119 power plant. As envisioned, a conventional takeoff and landing version (CTOL) would replace the U.S. Air Force's F-16's. The ASTOVL version would eventually replace Marine and, possibly, British Harrier aircraft. The ASTOVL and CTOL versions are scheduled to begin their manufacturing development phases in 2000. The purpose of this test was to acquire data pertinent to the inlet-forebody model. The test was very successful. Both steady-state and dynamic data were obtained. This small-scale testing, which is directed at reducing risks, may greatly reduce the risks on a full-scale aircraft.

  12. MEaSUREs Land Surface Temperature from GOES satellites

    NASA Astrophysics Data System (ADS)

    Pinker, Rachel T.; Ma, Yingtao; Chen, Wen; Hulley, Glynn; Borbas, Eva; Hain, Chris; Hook, Simon

    2016-04-01

    Information on Land Surface Temperature (LST) can be generated from observations made from satellites in low Earth orbit (LEO) such as MODIS and ASTER and by sensors in geostationary Earth orbit (GEO) such as GOES. Both observations have unique advantages, however, when combined, introduced are challenges related to inhomogeneity of the resulting information. NASA has identified a major need for developing long-term, consistent, and calibrated data and products that are consistent across multiple missions and satellite sensors. Under a project titled: "A Unified and Coherent Land Surface Temperature and Emissivity Earth System Data Record (ESDR) for Earth Science" led by Jet Propulsion Laboratory, such an effort is underway. In this presentation we will describe part of that effort, dealing with the generation of an approach to derive LST information from the GOES satellites from 2000 and onward. Since implementation of the well-established split window approach is not possible after mid-2003 (will be possible again after the launch of GOES-R in October of 2016), there is a need to focus on retrievals from a single thermal channel in order to provide continuity in the LST record. The methodology development requires the generation of consistently calibrated GOES observations, identification of clear sky radiances, and development of retrieval algorithms that benefit from most recent advances in related fields that provide auxiliary information required for driving the inference schemes. Results will be presented from two approaches. One is based on a regression approach that utilizes a wide range of simulations using MODTRAN, SeeBor Version 5.0 global atmospheric profiles and. The second approach uses MERRA-2 reanalysis fields with the RTTOV radiative transfer model approach to derive LST from the LEO satellites, adjusted for the GEO characteristics. The advantage of this latter approach is in the consistency between this retrieval approaches and those used at JPL

  13. Estimation of Surface Air Temperature from MODIS 1km Resolution Land Surface Temperature Over Northern China

    NASA Technical Reports Server (NTRS)

    Shen, Suhung; Leptoukh, Gregory G.; Gerasimov, Irina

    2010-01-01

    Surface air temperature is a critical variable to describe the energy and water cycle of the Earth-atmosphere system and is a key input element for hydrology and land surface models. It is a very important variable in agricultural applications and climate change studies. This is a preliminary study to examine statistical relationships between ground meteorological station measured surface daily maximum/minimum air temperature and satellite remotely sensed land surface temperature from MODIS over the dry and semiarid regions of northern China. Studies were conducted for both MODIS-Terra and MODIS-Aqua by using year 2009 data. Results indicate that the relationships between surface air temperature and remotely sensed land surface temperature are statistically significant. The relationships between the maximum air temperature and daytime land surface temperature depends significantly on land surface types and vegetation index, but the minimum air temperature and nighttime land surface temperature has little dependence on the surface conditions. Based on linear regression relationship between surface air temperature and MODIS land surface temperature, surface maximum and minimum air temperatures are estimated from 1km MODIS land surface temperature under clear sky conditions. The statistical errors (sigma) of the estimated daily maximum (minimum) air temperature is about 3.8 C(3.7 C).

  14. The role of land cover in high latitude land surface temperature heterogeneity

    NASA Astrophysics Data System (ADS)

    Wang, D.; Nagol, J. R.; Morton, D. C.; Masek, J. G.

    2011-12-01

    Near-surface air temperature governs a range of land surface processes, such as photosynthesis, respiration, and evapotranspiration. However, the spatiotemporal patterns of near-surface air temperature are complex. Meteorological stations provide a detailed account of temporal variations in air temperature, but fail to capture spatial heterogeneity in surface temperature, especially over remote regions with sparse station networks. Gridded climate datasets (0.5° - 2.0° spatial resolution) produced from the meteorological station observations therefore inherit these same shortcomings, since current algorithms use only latitude, longitude, and elevation to interpolate between station locations. Here, we explored the use of MODIS-based estimates of land surface temperature (LST) and land cover to estimate fine-scale heterogeneity in land surface temperature during summer months over boreal North America. We combined nighttime MODIS LST with meteorological station and gridded climate data records. Our analysis quantified the contribution from station distance (latitude and longitude) and land cover type for differences between MODIS and station-based estimates of nighttime temperatures. Finally, we estimated the impact of sub-grid cell heterogeneity in LST for ecosystem processes by comparing seasonal respiration fluxes from an ecosystem model driven by gridded climate data and MODIS LST. Our study suggests that downscaling coarse resolution temperature data using MODIS LST and land cover information can improve estimates of spatial variability in surface temperature data and related ecosystem processes.

  15. Using water isotopes in the evaluation of land surface models

    NASA Astrophysics Data System (ADS)

    Guglielmo, Francesca; Risi, Camille; Ottlé, Catherine; Bastrikov, Vladislav; Valdayskikh, Victor; Cattani, Olivier; Jouzel, Jean; Gribanov, Konstantin; Nekrasova, Olga; Zacharov, Vyacheslav; Ogée, Jérôme; Wingate, Lisa; Raz-Yaseef, Naama

    2013-04-01

    Several studies show that uncertainties in the representation of land surface processes contribute significantly to the spread in projections for the hydrological cycle. Improvements in the evaluation of land surface models would therefore translate into more reliable predictions of future changes. The isotopic composition of water is affected by phase transitions and, for this reason, is a good tracer for the hydrological cycle. Particularly relevant for the assessment of land surface processes is the fact that bare soil evaporation and transpiration bear different isotopic signatures. Water isotopic measurement could thus be employed in the evaluation of the land surface hydrological budget. With this objective, isotopes have been implemented in the most recent version of the land surface model ORCHIDEE. This model has undergone considerable development in the past few years. In particular, a newly discretised (11 layers) hydrology aims at a more realistic representation of the soil water budget. In addition, biogeophysical processes, as, for instance, the dynamics of permafrost and of its interaction with snow and vegetation, have been included. This model version will allow us to better resolve vertical profiles of soil water isotopic composition and to more realistically simulate the land surface hydrological and isotopic budget in a broader range of climate zones. Model results have been evaluated against temperature profiles and isotopes measurements in soil and stem water at sites located in semi-arid (Yatir), temperate (Le Bray) and boreal (Labytnangi) regions. Seasonal cycles are reasonably well reproduced. Furthermore, a sensitivity analysis investigates to what extent water isotopic measurements in soil water can help constrain the representation of land surface processes, with a focus on the partitioning between evaporation and transpiration. In turn, improvements in the description of this partitioning may help reduce the uncertainties in the land

  16. Impact of land use changes on surface warming in China

    NASA Astrophysics Data System (ADS)

    Zhang, Jingyong; Dong, Wenjie; Wu, Lingyun; Wei, Jiangfeng; Chen, Peiyan; Lee, Dong-Kyou

    2005-06-01

    Land use changes such as urbanization, agriculture, pasturing, deforestation, desertification and irrigation can change the land surface heat flux directly, and also change the atmospheric circulation indirectly, and therefore affect the local temperature. But it is difficult to separate their effects from climate trends such as greenhouse-gas effects. Comparing the decadal trends of the observation station data with those of the NCEP/NCAR Reanalysis (NNR) data provides a good method to separate the effects because the NNR is insensitive to land surface changes. The effects of urbanization and other land use changes over China are estimated by using the difference between the station and the NNR surface temperature trends. Our results show that urbanization and other land use changes may contribute to the observed 0.12°C (10yr)-1 increase for daily mean surface temperature, and the 0.20°C (10yr)-1 and 0.03°C (10 yr)-1 increases for the daily minimum and maximum surface temperatures, respectively. The urban heat island effect and the effects of other land-use changes may also play an important role in the diurnal temperature range change. The spatial pattern of the differences in trends shows a marked heterogeneity. The land surface degradation such as deforestation and desertification due to human activities over northern China, and rapidly-developed urbanization over southern China, may have mostly contributed to the increases at stations north of about 38°N and in Southeast China, respectively. Furthermore, the vegetation cover increase due to irrigation and fertilization may have contributed to the decreasing trend of surface temperature over the lower Yellow River Basin. The study illustrates the possible impacts of land use changes on surface temperature over China.

  17. Turbulent flow over an interactive alternating land-water surface

    NASA Astrophysics Data System (ADS)

    Van Heerwaarden, C.; Mellado, J. P.

    2014-12-01

    The alternating land-water surface is a challenging surface to represent accurately in weather and climate models, but it is of great importance for the surface energy balance in polar regions. The complexity of this surface lies in the fact that secondary circulations, which form at the boundary of water and land, interact strongly with the surface energy balance. Due to its large heat capacity, the water temperature adapts slowly to the flow, thus the properties of the atmosphere determine the uptake of energy from the water. In order to study this complex system in a simpler way, retaining only the most essential physics, we have simplified the full surface energy balance including radiation. We have derived a boundary condition that mimics the full balance and can be formulated as a so-called Robin boundary condition: a linear combination of Dirichlet (fixed temperature) and Neumann (fixed temperature gradient) ones. By spatially varying the coefficients, we are able to express land and water using this boundary condition. We have done a series of direct numerical simulations in which we generate artificial land-water patterns from noise created from a Gaussian spectrum centered around a dominant wave number. This method creates realistic random patterns, but we are still in control of the length scales. We show that the system can manifest itself in three regimes: micro-, meso- and macro-scale. In the micro-scale, we find perfect mixing of the near-surface atmosphere that results in identical air properties over water and land. In the meso-scale, secondary circulations alter the heat exchange considerably by advecting air between land and water. In addition, they bring the surface temperature of the land closer to that of the air, thereby modulating the energy loss due to outgoing longwave radiation. In the macro-scale regime, the flow over land and water become independent of each other and only the large scale forcings determine the energy balance.

  18. Real Time Land-Surface Hydrologic Modeling Over Continental US

    NASA Technical Reports Server (NTRS)

    Houser, Paul R.

    1998-01-01

    The land surface component of the hydrological cycle is fundamental to the overall functioning of the atmospheric and climate processes. Spatially and temporally variable rainfall and available energy, combined with land surface heterogeneity cause complex variations in all processes related to surface hydrology. The characterization of the spatial and temporal variability of water and energy cycles are critical to improve our understanding of land surface-atmosphere interaction and the impact of land surface processes on climate extremes. Because the accurate knowledge of these processes and their variability is important for climate predictions, most Numerical Weather Prediction (NWP) centers have incorporated land surface schemes in their models. However, errors in the NWP forcing accumulate in the surface and energy stores, leading to incorrect surface water and energy partitioning and related processes. This has motivated the NWP to impose ad hoc corrections to the land surface states to prevent this drift. A proposed methodology is to develop Land Data Assimilation schemes (LDAS), which are uncoupled models forced with observations, and not affected by NWP forcing biases. The proposed research is being implemented as a real time operation using an existing Surface Vegetation Atmosphere Transfer Scheme (SVATS) model at a 40 km degree resolution across the United States to evaluate these critical science questions. The model will be forced with real time output from numerical prediction models, satellite data, and radar precipitation measurements. Model parameters will be derived from the existing GIS vegetation and soil coverages. The model results will be aggregated to various scales to assess water and energy balances and these will be validated with various in-situ observations.

  19. Land surface temperature shaped by urban fractions in megacity region

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoxuan; Hu, Yonghong; Jia, Gensuo; Hou, Meiting; Fan, Yanguo; Sun, Zhongchang; Zhu, Yuxiang

    2015-11-01

    Large areas of cropland and natural vegetation have been replaced by impervious surfaces during the recent rapid urbanization in China, which has resulted in intensified urban heat island effects and modified local or regional warming trends. However, it is unclear how urban expansion contributes to local temperature change. In this study, we investigated the relationship between land surface temperature (LST) change and the increase of urban land signals. The megacity of Tianjin was chosen for the case study because it is representative of the urbanization process in northern China. A combined analysis of LST and urban land information was conducted based on an urban-rural transect derived from Landsat 8 Thermal Infrared Sensor (TIRS), Terra Moderate Resolution Imaging Spectrometer (MODIS), and QuickBird images. The results indicated that the density of urban land signals has intensified within a 1-km2 grid in the urban center with an impervious land fraction >60 %. However, the construction on urban land is quite different with low-/mid-rise buildings outnumbering high-rise buildings in the urban-rural transect. Based on a statistical moving window analysis, positive correlation (R 2 > 0.9) is found between LST and urban land signals. Surface temperature change (ΔLST) increases by 0.062 °C, which was probably caused by the 1 % increase of urbanized land (ΔIF) in this case region.

  20. The ``coming of age'' of land surface climatology

    NASA Astrophysics Data System (ADS)

    Henderson-Sellers, A.

    1990-08-01

    Land surface climates have never been more crucial that at the present. Scenarios of climatic change, say due to greenhouse warming, require successful prediction of the land surface characteristics since this is the locus of mankind's activities. Evaluation of the state-of-the-art land surface parameterization schemes has only just begun. Here we consider the performance of the Biosphere Atmosphere Transfer Scheme (BATS) when coupled to the National Center for Atmospheric Research's Community Climate Model (CCM). The land surface climatology generated by averaging the results of a three year model integration on a monthly basis is evaluated for the continent of Australia by comparison with published descriptions of a wide range of parameters. Proposals are outlined for improved methods of validation and testing the predictions of such complex biospheric submodels at least at continental scale. Future requirements for an interactive vegetation submodel are examined by assessing the generalized life zones predicted by the CCM as compared with the life zone types currently specified in the model and those predicted by the same GCM but using a simpler land-surface scheme. It is concluded that the climate community is now poised for the next crucial step towards a fully interactive land-surface climatic model.

  1. Regolith Advanced Surface Systems Operations Robot Excavator

    NASA Technical Reports Server (NTRS)

    Mueller, Robert P.; Smith, Jonathan D.; Ebert, Thomas; Cox, Rachel; Rahmatian, Laila; Wood, James; Schuler, Jason; Nick, Andrew

    2013-01-01

    The Regolith Advanced Surface Systems Operations Robot (RASSOR) excavator robot is a teleoperated mobility platform with a space regolith excavation capability. This more compact, lightweight design (<50 kg) has counterrotating bucket drums, which results in a net-zero reaction horizontal force due to the self-cancellation of the symmetrical, equal but opposing, digging forces.

  2. COMETARY SCIENCE. The landing(s) of Philae and inferences about comet surface mechanical properties.

    PubMed

    Biele, Jens; Ulamec, Stephan; Maibaum, Michael; Roll, Reinhard; Witte, Lars; Jurado, Eric; Muñoz, Pablo; Arnold, Walter; Auster, Hans-Ulrich; Casas, Carlos; Faber, Claudia; Fantinati, Cinzia; Finke, Felix; Fischer, Hans-Herbert; Geurts, Koen; Güttler, Carsten; Heinisch, Philip; Herique, Alain; Hviid, Stubbe; Kargl, Günter; Knapmeyer, Martin; Knollenberg, Jörg; Kofman, Wlodek; Kömle, Norbert; Kührt, Ekkehard; Lommatsch, Valentina; Mottola, Stefano; Pardo de Santayana, Ramon; Remetean, Emile; Scholten, Frank; Seidensticker, Klaus J; Sierks, Holger; Spohn, Tilman

    2015-07-31

    The Philae lander, part of the Rosetta mission to investigate comet 67P/Churyumov-Gerasimenko, was delivered to the cometary surface in November 2014. Here we report the precise circumstances of the multiple landings of Philae, including the bouncing trajectory and rebound parameters, based on engineering data in conjunction with operational instrument data. These data also provide information on the mechanical properties (strength and layering) of the comet surface. The first touchdown site, Agilkia, appears to have a granular soft surface (with a compressive strength of 1 kilopascal) at least ~20 cm thick, possibly on top of a more rigid layer. The final landing site, Abydos, has a hard surface. PMID:26228158

  3. Development of High Resolution Land Surface Parameters for the Community Land Model

    SciTech Connect

    Ke, Yinghai; Leung, Lai-Yung R.; Huang, Maoyi; Coleman, Andre M.; Li, Hongyi; Wigmosta, Mark S.

    2012-11-06

    There is a growing need for high-resolution land surface parameters as land surface models are being applied at increasingly higher spatial resolution offline as well as in regional and global models. The default land surface parameters for the most recent version of the Community Land Model (i.e. CLM 4.0) are at 0.5° or coarser resolutions, released with the Community Earth System Model (CESM). Plant Functional Types (PFTs), vegetation properties such as Leaf Area Index (LAI), Stem Area Index (SAI), and non-vegetated land covers were developed using remotely sensed datasets retrieved in late 1990’s and the beginning of this century. In this study, we developed new land surface parameters for CLM 4.0, specifically PFTs, LAI, SAI and non-vegetated land cover composition, at 0.05° resolution globally based on the most recent MODIS land cover and improved MODIS LAI products. Compared to the current CLM 4.0 parameters, the new parameters produced a decreased coverage by bare soil and trees, but an increased coverage by shrub, grass, and cropland. The new parameters result in a decrease in global seasonal LAI, with the biggest decrease in boreal forests; however, the new parameters also show a large increase in LAI in tropical forest. Differences between the new and the current parameters are mainly caused by changes in the sources of remotely sensed data and the representation of land cover in the source data. Advantages and disadvantages of each dataset were discussed in order to provide guidance on the use of the data. The new high-resolution land surface parameters have been used in a coupled land-atmosphere model (WRF-CLM) applied to the western U.S. to demonstrate their use in high-resolution modeling. A remapping method from the latitude/longitude grid of the CLM data to the WRF grids with map projection was also demonstrated. Future work will include global offline CLM simulations to examine the impacts of source data resolution and subsequent land parameter

  4. Development of high resolution land surface parameters for the Community Land Model

    NASA Astrophysics Data System (ADS)

    Ke, Y.; Leung, L. R.; Huang, M.; Coleman, A. M.; Li, H.; Wigmosta, M. S.

    2012-11-01

    There is a growing need for high-resolution land surface parameters as land surface models are being applied at increasingly higher spatial resolution offline as well as in regional and global models. The default land surface parameters for the most recent version of the Community Land Model (i.e. CLM 4.0) are at 0.5° or coarser resolutions, released with the Community Earth System Model (CESM). Plant Functional Types (PFTs), vegetation properties such as Leaf Area Index (LAI), Stem Area Index (SAI), and non-vegetated land covers were developed using remotely sensed datasets retrieved in late 1990's and the beginning of this century. In this study, we developed new land surface parameters for CLM 4.0, specifically PFTs, LAI, SAI and non-vegetated land cover composition, at 0.05° resolution globally based on the most recent MODIS land cover and improved MODIS LAI products. Compared to the current CLM 4.0 parameters, the new parameters produced a decreased coverage by bare soil and trees, but an increased coverage by shrub, grass, and cropland. The new parameters result in a decrease in global seasonal LAI, with the biggest decrease in boreal forests; however, the new parameters also show a large increase in LAI in tropical forest. Differences between the new and the current parameters are mainly caused by changes in the sources of remotely sensed data and the representation of land cover in the source data. Advantages and disadvantages of each dataset were discussed in order to provide guidance on the use of the data. The new high-resolution land surface parameters have been used in a coupled land-atmosphere model (WRF-CLM) applied to the western US to demonstrate their use in high-resolution modeling. A remapping method from the latitude/longitude grid of the CLM data to the WRF grids with map projection was also demonstrated. Future work will include global offline CLM simulations to examine the impacts of source data resolution and subsequent land parameter

  5. Aerodynamic performance of conventional and advanced design labyrinth seals with solid-smooth abradable, and honeycomb lands. [gas turbine engines

    NASA Technical Reports Server (NTRS)

    Stocker, H. L.; Cox, D. M.; Holle, G. F.

    1977-01-01

    Labyrinth air seal static and dynamic performance was evaluated using solid, abradable, and honeycomb lands with standard and advanced seal designs. The effects on leakage of land surface roughness, abradable land porosity, rub grooves in abradable lands, and honeycomb land cell size and depth were studied using a standard labyrinth seal. The effects of rotation on the optimum seal knife pitch were also investigated. Selected geometric and aerodynamic parameters for an advanced seal design were evaluated to derive an optimized performance configuration. The rotational energy requirements were also measured to determine the inherent friction and pumping energy absorbed by the various seal knife and land configurations tested in order to properly assess the net seal system performance level. Results indicate that: (1) seal leakage can be significantly affected with honeycomb or abradable lands; (2) rotational energy absorption does not vary significantly with the use of a solid-smooth, an abradable, or a honeycomb land; and (3) optimization of an advanced lab seal design produced a configuration that had leakage 25% below a conventional stepped seal.

  6. CARBON SEQUESTRATION ON SURFACE MINE LANDS

    SciTech Connect

    Donald H. Graves; Christopher Barton; Richard Sweigard; Richard Warner

    2005-06-22

    An area planted in 2004 on Bent Mountain in Pike County was shifted to the Department of Energy project to centralize an area to become a demonstration site. An additional 98.3 acres were planted on Peabody lands in western Kentucky and Bent Mountain to bring the total area under study by this project to 556.5 acres as indicated in Table 2. Major efforts this quarter include the implementation of new plots that will examine the influence of differing geologic material on tree growth and survival, water quality and quantity and carbon sequestration. Normal monitoring and maintenance was conducted and additional instrumentation was installed to monitor the new areas planted.

  7. Assimilating SMOS data into land surface emissivity models

    NASA Astrophysics Data System (ADS)

    Mira, M.; Caselles, V.; Valor, E.; Coll, C.

    2009-04-01

    Surface emissivity is an important parameter for determining the long-wave surface energy balance, which is strongly affected by the difference between the land surface temperature (LST) and the sky brightness temperature. This difference is small outside the atmospheric window region (7-14 μm) and any changes in the emitted radiation by emissivity variability are mostly compensated for changes in the reflected sky brightness. However, the difference is the greatest in the atmospheric window, where it is possible to estimate the broadband land surface emissivity from multi-spectral thermal infrared (TIR) remote sensing. Furthermore, if the emissivity is known, the LST can be accurately estimated from TIR radiance measurements. For this reason, it is necessary to study the factors that influence emissivity, since it must be estimated with the highest possible accuracy. The soil type influence on emissivity is well known from experimental studies. However, the analysis of the variation of TIR emissivity with soil moisture (SM) is one of the pending issues in thermal remote sensing. The SM dependence should be taken into account in emissivity retrievals from satellite data observations, since the SM variation may cause a high systematic error in this parameter, e.g., about +0.1 in emissivity for an increase from 0.04 to 0.10 g/cm3 in SM for sandy soils. This is why a variety of emissivity-soil moisture quadratic relationships have been obtained from a laboratory experiment for a set of bare soils of different texture (see also Mira et al., 2007). The idea behind these relationships is to use them together with soil moisture estimates from remotely sense data in order to improve the TIR emissivity estimations an thus, the LST determination. Therefore, the next step in our analysis is to explore the feasibility of this approach using Soil Moisture and Ocean Salinity (SMOS) data. The main idea is to apply and validate the relationships, as well as to compare the

  8. On The Reproducibility of Seasonal Land-surface Climate

    SciTech Connect

    Phillips, T J

    2004-10-22

    The sensitivity of the continental seasonal climate to initial conditions is estimated from an ensemble of decadal simulations of an atmospheric general circulation model with the same specifications of radiative forcings and monthly ocean boundary conditions, but with different initial states of atmosphere and land. As measures of the ''reproducibility'' of continental climate for different initial conditions, spatio-temporal correlations are computed across paired realizations of eleven model land-surface variables in which the seasonal cycle is either included or excluded--the former case being pertinent to climate simulation, and the latter to seasonal anomaly prediction. It is found that the land-surface variables which include the seasonal cycle are impacted only marginally by changes in initial conditions; moreover, their seasonal climatologies exhibit high spatial reproducibility. In contrast, the reproducibility of a seasonal land-surface anomaly is generally low, although it is substantially higher in the Tropics; its spatial reproducibility also markedly fluctuates in tandem with warm and cold phases of the El Nino/Southern Oscillation. However, the overall degree of reproducibility depends strongly on the particular land-surface anomaly considered. It is also shown that the predictability of a land-surface anomaly implied by its reproducibility statistics is consistent with what is inferred from more conventional predictability metrics. Implications of these results for climate model intercomparison projects and for operational forecasts of seasonal continental climate also are elaborated.

  9. Evapotranspiration and runoff from large land areas: Land surface hydrology for atmospheric general circulation models

    NASA Technical Reports Server (NTRS)

    Famiglietti, J. S.; Wood, Eric F.

    1993-01-01

    A land surface hydrology parameterization for use in atmospheric GCM's is presented. The parameterization incorporates subgrid scale variability in topography, soils, soil moisture and precipitation. The framework of the model is the statistical distribution of a topography-soils index, which controls the local water balance fluxes, and is therefore taken to represent the large land area. Spatially variable water balance fluxes are integrated with respect to the topography-soils index to yield our large topography-soils distribution, and interval responses are weighted by the probability of occurrence of the interval. Grid square averaged land surface fluxes result. The model functions independently as a macroscale water balance model. Runoff ratio and evapotranspiration efficiency parameterizations are derived and are shown to depend on the spatial variability of the above mentioned properties and processes, as well as the dynamics of land surface-atmosphere interactions.

  10. Determination of land surface temperature by using Landsat 8 TIRS: A case study in Erzurum, Turkey

    NASA Astrophysics Data System (ADS)

    Dagliyar, Ayse; Avdan, Ugur; Demircioglu Yildiz, Nalan; Nefeslioglu, Hakan A.

    2015-04-01

    The use of satellite imagery in climate change and environmental studies has increased exponentially in accordance with rapid advancement in satellite technology. Apart from the studies such as determination of potential geothermal zones, volcanology, evaluation of geological structures and lithological units, the research on the effects of urban heat islands is also a crucial topic in climate change studies. Land surface temperature can be calculated by using the thermal bands of satellite images. Landsat 8 satellite launched on February 11th in 2013 carries 2 different sensors which are OLI (Operational Land Imager) and TIRS (Thermal Infrared Sensor) having 12 bit radiometric resolution. In this study, land surface temperature of the urban area and its surrounding in Erzurum was calculated by using the satellite data which was acquired from the Landsat 8 Path/Row 172/32 on July 25th in 2014. Considering the surface emissivity and brightness values, the land surface temperature was evaluated in the study area. In order to validate the predicted land surface temperature values, in-situ land surface temperature measurements which were acquired from the stations of the General Directorate of State Meteorological Service in the city of Erzurum and in the districts Uzundere, İspir, Oltu, Tortum and Hınıs were considered. According to the comparisons, the maximum temperature difference was obtained to be 6.45°C in the Tortum station and the minimum temperature difference was observed to be 1.86°C in the Uzundere station. Additionally, by applying supervised classification on the Landsat 8 imagery, the land-use classes were obtained and the temperature differences observed according to the land-use were also investigated.

  11. CARBON SEQUESTRATION OF SURFACE MINE LANDS

    SciTech Connect

    Donald H. Graves; Christopher Barton; Richard Sweigard; Richard Warner

    2004-05-19

    The January-March 2004 Quarter was dedicated to tree planting activities in two locations in Kentucky. During year one of this project there was no available mine land to plant in the Hazard area so 107 acres were planted in the Martin county mine location. This year 120 acres was planted in the Hazard area to compensate for the prior year and an additional 57 acres was planted on Peabody properties in western Kentucky. An additional set of special plots were established on each of these areas that contained 4800 seedlings each for special carbon sequestration determinations. Plantings were also conducted to continue compaction and water quality studies on two newly established areas as well as confirmed measurements on the first years plantings. Total plantings on this project now amount to 357 acres containing 245,960 tree seedlings.

  12. Surface Characterization for Land-Atmosphere Studies of CLASIC

    NASA Astrophysics Data System (ADS)

    Jackson, T. J.; Kustas, W.; Torn, M. S.; Meyers, T.; Prueger, J.; Fischer, M. L.; Avissar, R.; Yueh, S.; Anderson, M.; Miller, M.

    2006-12-01

    The Cloud and Land Surface Interaction Campaign will focus on interactions between the land surface, convective boundary layer, and cumulus clouds. It will take place in the Southern Great Plains (SGP) area of the U.S, specifically within the US DOE ARM Climate Research Facility. The intensive observing period will be June of 2007, which typically covers the winter wheat harvest in the region. This region has been the focus of several related experiments that include SGP97, SGP99, and SMEX03. For the land surface, some of the specific science questions include 1) how do spatial variations in land cover along this trajectory modulate the cloud structure and the low-level water vapor budget, 2) what are the relationships between land surface characteristics (i.e., soil texture, vegetation type and fractional cover) and states (particularly soil moisture and surface temperature) and the resulting impact of the surface energy balance on boundary layer and cloud structure and dynamics and aerosol loading; and 3) what is the interplay between cumulus cloud development and surface energy balance partitioning between latent and sensible heat, and implications for the carbon flux? Most of these objectives will require flux and state measurements throughout the dominant land covers and distributed over the geographic domain. These observations would allow determining the level of up- scaling/aggregation required in order to understand the impact of landscape changes affecting energy balance/flux partitioning and impact on cloud/atmospheric dynamics. Specific contributions that are planned to be added to CLASIC include continuous tower-based monitoring of surface fluxes for key land cover types prior to, during, and post-IOP, replicate towers to quantify flux variance within each land cover, boundary layer properties and fluxes from a helicopter-based system, airplane- and satellite-based flux products throughout the region, aircraft- and tower-based concentration data for

  13. Results From Global Land-surface Data Assimilation Methods

    NASA Astrophysics Data System (ADS)

    Radakovich, J. D.; Houser, P. R.; da Silva, A.; Bosilovich, M. G.

    2001-05-01

    Realistic representation of the land surface is crucial in global climate modeling (GCM). Recently, the Mosaic land-surface Model (LSM) has been driven off-line using GEOS DAS (Goddard Earth Observing System Data Assimilation System) atmospheric forcing, forming the Off-line Land-surface Global Assimilation (OLGA) system. This system provides a computationally efficient test bed for land surface data assimilation. Here, we validate the OLGA simulation of surface processes and the assimilation of ISCCP surface temperatures. Another component of this study was the incorporation of the Physical-space Statistical Analysis System (PSAS) into OLGA, in order to assimilate surface temperature observations from the International Satellite Cloud Climatology Project (ISCCP). To counteract the subsequent forcing of the analyzed skin temperature back to the initial state following the analysis, incremental bias correction (IBC) was included in the assimilation. The IBC scheme effectively removed the time mean bias, but did not remove bias in the mean diurnal cycle. Therefore, a diurnal bias correction (DBC) scheme was developed, where the time-dependent bias was modeled with a sine wave parameterization. In addition, quality control of the ISCCP data and anisotropic temperature correction were implemented in PSAS. Preliminary results showed a substantial impact from the inclusion of PSAS and DBC that was visible in the surface meteorology fields and energy budget. Also, the monthly mean diurnal cycle from the experiment closely matched the diurnal cycle from the observations.

  14. Results from Global Land-Surface Data Assimilation Methods

    NASA Technical Reports Server (NTRS)

    Radakovich, Jon D.; Houser, Paul R.; daSilva, Arlindo; Bosilovich, Michael G.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Realistic representation of the land surface is crucial in global climate modeling (GCM). Recently, the Mosaic land-surface Model (LSM) has been driven off-line using GEOS DAS (Goddard Earth Observing System Data Assimilation System) atmospheric forcing, forming the Off-line Land-surface Global Assimilation (OLGA) system. This system provides a computationally efficient test bed for land surface data assimilation. Here, we validate the OLGA simulation of surface processes and the assimilation of ISCCP surface temperatures. Another component of this study as the incorporation of the Physical-space Statistical Analysis System (PSAS) into OLGA, in order to assimilate surface temperature observations from the International Satellite Cloud Climatology Project (ISCCP). To counteract the subsequent forcing of the analyzed skin temperature back to the initial state following the analysis. incremental bias correction (IBC) was included in the assimilation. The IBC scheme effectively removed the time mean bias, but did not remove him in the mean diurnal cycle. Therefore, a diurnal him correction (DBC) scheme was developed, where the time-dependent bias was modeled with a sine wave parameterization. In addition, quality control of the ISCCP data and anisotropic temperature correction were implemented in PSAS. Preliminary results showed a substantial impact from the inclusion of PSAS and DBC that was visible in the surface meteorology fields and energy budget. Also, the monthly mean diurnal cycle from the experiment closely matched the diurnal cycle from the observations.

  15. Global Land Cover Classification Using Modis Surface Reflectance Prosucts

    NASA Astrophysics Data System (ADS)

    Fukue, Kiyonari; Shimoda, Haruhisa

    2016-06-01

    The objective of this study is to develop high accuracy land cover classification algorithm for Global scale by using multi-temporal MODIS land reflectance products. In this study, time-domain co-occurrence matrix was introduced as a classification feature which provides time-series signature of land covers. Further, the non-parametric minimum distance classifier was introduced for timedomain co-occurrence matrix, which performs multi-dimensional pattern matching for time-domain co-occurrence matrices of a classification target pixel and each classification classes. The global land cover classification experiments have been conducted by applying the proposed classification method using 46 multi-temporal(in one year) SR(Surface Reflectance) and NBAR(Nadir BRDF-Adjusted Reflectance) products, respectively. IGBP 17 land cover categories were used in our classification experiments. As the results, SR and NBAR products showed similar classification accuracy of 99%.

  16. Advanced oxidation process sanitization of eggshell surfaces.

    PubMed

    Gottselig, Steven M; Dunn-Horrocks, Sadie L; Woodring, Kristy S; Coufal, Craig D; Duong, Tri

    2016-06-01

    The microbial quality of eggs entering the hatchery represents an important critical control point for biosecurity and pathogen reduction programs in integrated poultry production. The development of safe and effective interventions to reduce microbial contamination on the surface of eggs will be important to improve the overall productivity and microbial food safety of poultry and poultry products. The hydrogen peroxide (H2O2) and ultraviolet (UV) light advanced oxidation process is a potentially important alternative to traditional sanitizers and disinfectants for egg sanitation. The H2O2/UV advanced oxidation process was demonstrated previously to be effective in reducing surface microbial contamination on eggs. In this study, we evaluated treatment conditions affecting the efficacy of H2O2/UV advanced oxidation in order to identify operational parameters for the practical application of this technology in egg sanitation. The effect of the number of application cycles, UV intensity, duration of UV exposure, and egg rotation on the recovery of total aerobic bacteria from the surface of eggs was evaluated. Of the conditions evaluated, we determined that reduction of total aerobic bacteria from naturally contaminated eggs was optimized when eggs were sanitized using 2 repeated application cycles with 5 s exposure to 14 mW cm(-2) UV light, and that rotation of the eggs between application cycles was unnecessary. Additionally, using these optimized conditions, the H2O2/UV process reduced Salmonella by greater than 5 log10 cfu egg(-1) on the surface of experimentally contaminated eggs. This study demonstrates the potential for practical application of the H2O2/UV advanced oxidation process in egg sanitation and its effectiveness in reducing Salmonella on eggshell surfaces. PMID:27030693

  17. Carbon Sequestration on Surface Mine Lands

    SciTech Connect

    Donald H. Graves; Christopher Barton; Bon Jun Koo; Richard Sweigard; Richard Warner

    2004-11-30

    The first quarter of 2004 was dedicated to tree planting activities in two locations in Kentucky. During the first year of this project there was not available mine land to plant in the Hazard area, so 107 acres were planted in the Martin County mine location. This year 120 acres were planted in the Hazard area to compensate for the prior year and an additional 57 acres were planted on Peabody properties in western Kentucky. Additional sets of special plots were established on each of these areas that contained 4800 seedlings each for carbon sequestration demonstrations. Plantings were also conducted to continue compaction and water quality studies on the newly established areas as well as continual measurements of the first year's plantings. Total plantings on this project now amount to 357 acres containing 245,960 seedlings. During the second quarter of this year monitoring systems were established for all the new research areas. Weather data pertinent to the research as well as hydrology and water quality monitoring continues to be conducted on all areas. Studies established to assess specific questions pertaining to carbon flux and the invasion of the vegetation by small mammals are being quantified. Experimental practices initiated with this research project will eventually allow for the planting on long steep slopes with loose grading systems and allow mountain top removal areas to be constructed with loose spoil with no grading of the final layers of rooting material when establishing trees for the final land use designation. Monitoring systems have been installed to measure treatment effects on both above and below ground carbon and nitrogen pools in the planting areas. Soil and tissue samples were collected from both years planting and analyses were conducted in the laboratory. Examination of decomposition and heterotropic respiration on carbon cycling in the reforestation plots continued during the reporting period. Entire planted trees were extracted

  18. CARBON SEQUESTRATION ON SURFACE MINE LANDS

    SciTech Connect

    Donald H. Graves; Christopher Barton; Richard Sweigard; Richard Warner

    2001-01-30

    The October-December 2003 Quarter was dedicated to analyzing the first years tree planting activities and evaluation of the results. This included the analyses of the species success at each of the sites and quantifying the baseline data for future year determination of research levels of mixes. The small mammal colonization study of revegetated surface mines was also initiated and sampling systems initiated.

  19. Advanced Materials for Neural Surface Electrodes

    PubMed Central

    Schendel, Amelia A.; Eliceiri, Kevin W.; Williams, Justin C.

    2015-01-01

    Designing electrodes for neural interfacing applications requires deep consideration of a multitude of materials factors. These factors include, but are not limited to, the stiffness, biocompatibility, biostability, dielectric, and conductivity properties of the materials involved. The combination of materials properties chosen not only determines the ability of the device to perform its intended function, but also the extent to which the body reacts to the presence of the device after implantation. Advances in the field of materials science continue to yield new and improved materials with properties well-suited for neural applications. Although many of these materials have been well-established for non-biological applications, their use in medical devices is still relatively novel. The intention of this review is to outline new material advances for neural electrode arrays, in particular those that interface with the surface of the nervous tissue, as well as to propose future directions for neural surface electrode development. PMID:26392802

  20. Improving land surface emissivty parameter for land surface models using portable FTIR and remote sensing observation in Taklimakan Desert

    NASA Astrophysics Data System (ADS)

    Liu, Yongqiang; Mamtimin, Ali; He, Qing

    2014-05-01

    Because land surface emissivity (ɛ) has not been reliably measured, global climate model (GCM) land surface schemes conventionally set this parameter as simply assumption, for example, 1 as in the National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Prediction (NCEP) model, 0.96 for soil and wetland in the Global and Regional Assimilation and Prediction System (GRAPES) Common Land Model (CoLM). This is the so-called emissivity assumption. Accurate broadband emissivity data are needed as model inputs to better simulate the land surface climate. It is demonstrated in this paper that the assumption of the emissivity induces errors in modeling the surface energy budget over Taklimakan Desert where ɛ is far smaller than original value. One feasible solution to this problem is to apply the accurate broadband emissivity into land surface models. The Moderate Resolution Imaging Spectroradiometer (MODIS) instrument has routinely measured spectral emissivities in six thermal infrared bands. The empirical regression equations have been developed in this study to convert these spectral emissivities to broadband emissivity required by land surface models. In order to calibrate the regression equations, using a portable Fourier Transform infrared (FTIR) spectrometer instrument, crossing Taklimakan Desert along with highway from north to south, to measure the accurate broadband emissivity. The observed emissivity data show broadband ɛ around 0.89-0.92. To examine the impact of improved ɛ to radiative energy redistribution, simulation studies were conducted using offline CoLM. The results illustrate that large impacts of surface ɛ occur over desert, with changes up in surface skin temperature, as well as evident changes in sensible heat fluxes. Keywords: Taklimakan Desert, surface broadband emissivity, Fourier Transform infrared spectrometer, MODIS, CoLM

  1. Influence of atmospheric forcing parameters on land surface simulation

    NASA Astrophysics Data System (ADS)

    Nayak, H. P.; Mandal, M.; Bhattacharya, A.

    2015-12-01

    The quality of atmospheric forcing plays important role on land surface simulation using decoupled land surface modeling system. In the present study, the influence of the various atmospheric forcing parameters on land surface simulation is assessed through sensitivity experiments. Numerical experiments are conducted towards preparation of land surface analysis for the period Jan-2011 - Dec-2013 using offline 2D-Noah land surface model (LSM) based land data assimilation system (LDAS) over Indian region (5 - 39N, 60 - 100E) hereafter referred as LDASI. The surface temperature, specific humidity, horizontal winds and pressure as atmospheric forcing parameters are derived from Modern-Era Retrospective Analysis for Research and Applications (MERRA). The downward (solar and thermal) radiation and precipitation is obtained from European Centre for Medium Range Forecast (ECMWF) and Tropical Rainfall Measuring Mission (TRMM) respectively. The sensitivity experiments are conducted by introducing perturbation in one atmospheric forcing parameter at a time keeping the other parameters unchanged. Influence of temperature, specific humidity, downward (shortwave and long wave) radiation, rain-rate and wind speed is investigated by conducted 13 numerical experiments. It is observed that the land surface analysis from LDASI is most sensitive to the downward longwave radiation and least sensitive to wind speed. The analysis is also substantially influenced by the surface air temperature. The annual mean soil moisture at 5 cm is decreased by 12-15% if the downward long-wave radiation is increased by 20% and it is increased by 15% if the downward long-wave radiation is decreased by 20%. The influence is even more in the Himalayan region but the increase in long-wave radiation leads to increase in soil moisture and similar influence on decrease because downward long-wave radiation leads glacier melting. The annual mean soil temperature in the analysis is increased by 2.2 K if surface

  2. Radiative Properties of Smoke and Aerosol Over Land Surfaces

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    2000-01-01

    This talk discusses smoke and aerosol's radiative properties with particular attention to distinguishing the measurement over clear sky from clouds over land, sea, snow, etc. surfaces, using MODIS Airborne Simulator data from (Brazil, arctic sea ice and tundra and southern Africa, west Africa, and other ecosystems. This talk also discusses the surface bidirectional reflectance using Cloud Absorption Radiometer, BRDF measurements of Saudi Arabian desert, Persian Gulf, cerrado and rain forests in Brazil, sea ice, tundra, Atlantic Ocean, Great Dismal Swamp, Kuwait oil fire smoke. Recent upgrades to instrument (new TOMS UVA channels at 340 and 380 planned use in Africa (SAFARI 2000) and possibly for MEIDEX will also be discussed. This talk also plans to discuss the spectral variation of surface reflectance over land and the sensitivity of off-nadir view angles to correlation between visible near-infrared reflectance for use in remote sensing of aerosol over land.

  3. Automation of SimSphere Land Surface Model Use as a Standalone Application and Integration With EO Data for Deriving Key Land Surface Parameters

    NASA Astrophysics Data System (ADS)

    Petropoulos, George P.; Konstas, Ioannis; Carlson, Toby N.

    2013-04-01

    Use of simulation process models has played a key role in extending our abilities to study Earth system processes and enhancing our understanding on how different components of it interplay. Use of such models combined with Earth Observation (EO) data provides a promising direction towards deriving accurately spatiotemporal estimates of key parameters characterising land surface interactions, by combining the horizontal coverage and spectral resolution of remote sensing data with the vertical coverage and fine temporal continuity of those models. SimSphere is such a software toolkit written in Java for simulating the interactions of soil, vegetation and atmosphere layers of the Earth's land surface. Its use is at present continually expanding worldwide both as an educational and as a research tool for scientific investigations. It is being used either as a stand-alone application or synergistically with EO data. Herein we present recent advancements introduced to SimSphere in different aspects of the model aiming to make its use more robust when used both as a standalone application and synergistically with EO data. We have extensively tested and updated the model code, as well as enhanced it with new functionalities. These included for example taking into account the thermal inertia variation in soil moisture, simulating additional parameters characterising land surface interactions, automating the model use when integrating it with EO data via the "triangle" method and developing batch processing operations. Use of these recently introduced to the model functionalities are illustrated herein using a variety of examples. Our work is significant to the users' community of the model and very timely, given the potential use of SimSphere in an EO-based method being under development for deriving operationally regional estimates of energy fluxes and soil moisture from EO data provided by non-commercial vendors. KEYWORDS: land surface interactions, land surface process

  4. Generating daily high spatial land surface temperatures by combining ASTER and MODIS land surface temperature products for environmental process monitoring.

    PubMed

    Wu, Mingquan; Li, Hua; Huang, Wenjiang; Niu, Zheng; Wang, Changyao

    2015-08-01

    There is a shortage of daily high spatial land surface temperature (LST) data for use in high spatial and temporal resolution environmental process monitoring. To address this shortage, this work used the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM), Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM), and the Spatial and Temporal Data Fusion Approach (STDFA) to estimate high spatial and temporal resolution LST by combining Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) LST and Moderate Resolution Imaging Spectroradiometer (MODIS) LST products. The actual ASTER LST products were used to evaluate the precision of the combined LST images using the correlation analysis method. This method was tested and validated in study areas located in Gansu Province, China. The results show that all the models can generate daily synthetic LST image with a high correlation coefficient (r) of 0.92 between the synthetic image and the actual ASTER LST observations. The ESTARFM has the best performance, followed by the STDFA and the STARFM. Those models had better performance in desert areas than in cropland. The STDFA had better noise immunity than the other two models. PMID:26165141

  5. Characterizing Past Variances, Extremes, and Trends in Land Surface Phenology

    NASA Astrophysics Data System (ADS)

    Brown, J. F.; Gallant, A.; Sadinski, W.; Stricherz, B.

    2010-12-01

    Land management agencies need to anticipate potential negative effects of climate change on a host of ecosystem services, such as those related to biodiversity, habitat, and biomass production. Recognizing the differences in effects from climate change versus the typical interannual variability of climate, however, is fundamental to determining management strategies. We integrate data from multiple sources to characterize variances, extremes, and trends in phenological behavior for a set of landscapes. The study landscapes are part of a larger research network to assess: (1) actual and projected impacts of climate/global change on biodiversity-related and other ecosystem services provided by wetland-upland landscape matrices and (2) conservation options for mitigating negative effects. We are applying time-series data on vegetation response, snow timing and duration, and temperature and precipitation to characterize multiple decades of land surface phenology as baseline information. We are characterizing a set of landscapes along a transect extending from 88-100 degrees West longitude and including the North Woods, Mixed Hardwood Forests, and Prairie Potholes ecological regions. With archived satellite sensor data (e.g., Advanced Very High Resolution Radiometer, Moderate Resolution Imaging Spectroradiometer), we quantify metrics of snow cover and vegetation phenology at coarse spatial scales over the past two decades. Preliminary results from these data suggest a cyclical nature to the start of the vegetation growing season that is not paralleled by results for timing and duration of snow cover. The study landscapes along the transect share similar direction of departure from the median date of the start of vegetation green-up in half the years, but exhibit regional or local differences in direction of departure for the remaining years. The study landscapes share much more consistency in direction of departure from the median duration of snow cover across years. To

  6. Regolith Advanced Surface Systems Operations Robot (RASSOR)

    NASA Astrophysics Data System (ADS)

    Mueller, Robert P.; Cox, Rachel E.; Ebert, Tom; Smith, Jonathan D.; Schuler, Jason M.; Nick, Andrew J.

    Regolith is abundant on extra-terrestrial surfaces and is the source of many resources such as oxygen, hydrogen, titanium, aluminum, iron, silica and other valuable materials, which can be used to make rocket propellant, consumables for life support, radiation protection barrier shields, landing pads, blast protection berms, roads, habitats and other structures and devices. Recent data from the Moon also indicates that there are substantial deposits of water ice in permanently shadowed crater regions and possibly under an over burden of regolith. The key to being able to use this regolith and acquire the resources, is being able to manipulate it with robotic excavation and hauling machinery that can survive and operate in these very extreme extra-terrestrial surface environments.

  7. The Evaluation of an Integrated Land Surface - Groundwater Model Through Remote Sensing

    NASA Astrophysics Data System (ADS)

    Parinussa, R.; Liu, Y.; Ajami, H.; Evans, J. P.; McCabe, M. F.; Sharma, A.

    2015-12-01

    Integrated land surface-groundwater models simulate the variability of water dynamics and land surface fluxes in both time and space while explicitly incorporating the role of groundwater dynamics in soil moisture distribution. The ParFlow.CLM modelling platform is an integrated hydrologic model and was used here for simulating land surface and groundwater dynamics over the Baldry sub-catchment in Australia at hourly time intervals. Baldry is located in the central west of New South Wales, has an ephemeral creek and is located in a temperate climate class with hot summers. Here, a multi-criteria evaluation strategy was employed using a range of observed catchment responses, including surface energy fluxes and states of land surface temperature, soil moisture and groundwater level for the period from 2005-2010. Particularly, the use of remotely sensed soil moisture and land surface temperature products obtained from downscaled microwave observations from the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) were explored to test the feasibility of these products for model evaluation at the catchment scale. Results suggest high agreement between the temporal dynamics of the model simulations and remotely sensed surface soil moisture and land surface temperature products, with correlation coefficient values of 0.79 and 0.92 respectively. Model comparisons with observed daily groundwater levels show satisfactory model performance (correlation coefficient > 0.5) considering the simple conceptual geological model developed for the study site. Our analyses indicate that the depth to the water table (DTWT) has an important role in controlling evaporation rates and top layer soil moisture distributions in the catchment. The relationship between evaporation rates and DTWT distribution for the six years of simulations shows increased sensitivity during dryer periods. Our results highlight that soil moisture distributions obtained from a physically

  8. United States Land Cover Land Use Change, Albedo and Surface Radiative Forcing 1973 to 2000

    NASA Astrophysics Data System (ADS)

    Barnes, C. A.; Roy, D. P.

    2007-12-01

    This research responds to the recent recommendations made by the U.S. National Research Council for regional forcing studies to better understand climatic responses to land cover land use change. Surface albedo affects the earth's radiative energy balance, by controlling how much incoming solar radiation is absorbed and reflected. It is well established that Land Cover Land Use (LCLU) change results in changes in the surface albedo which has a radiative forcing effect, however, to date, studies have been limited due to data uncertainties. New spatially explicit satellite derived LCLU change and albedo data for the conterminous U.S. are used to study the impact of LCLU change from 1973 to 2000 on surface albedo and radiative forcing. The methodology and preliminary results for 42% of the U.S. processed to date are presented as spatially explicit maps and summary statistics. The results indicate a negative (cooling) radiative forcing effect due to U.S. LCLU change over the last three decades. Data used include USGS Landsat based decadal land cover maps of the conterminous U.S. located using a stratified sampling methodology across 84 ecoregions, mean 2000-2002 MODIS broadband albedo values extracted in each ecoregion for the 10 mapped LCLU classes, and monthly mean surface incoming solar radiation from the recent European Center for Medium Range Weather Forecast 40 year Reanalysis (ERA40) product.

  9. SGP Cloud and Land Surface Interaction Campaign (CLASIC): Measurement Platforms

    SciTech Connect

    MA Miller; R Avissar; LK Berg; SA Edgerton; ML Fischer; TJ Jackson; B. Kustas; PJ Lamb; G McFarquhar; Q Min; B Schmid; MS Torn; DD Tuner

    2007-06-01

    The Cloud and Land Surface Interaction Campaign (CLASIC) will be conducted from June 8 to June 30, 2007, at the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) Southern Great Plains (SGP) site. Data will be collected using eight aircraft equipped with a variety of specialized sensors, four specially instrumented surface sites, and two prototype surface radar systems. The architecture of CLASIC includes a high-altitude surveillance aircraft and enhanced vertical thermodynamic and wind profile measurements that will characterize the synoptic scale structure of the clouds and the land surface within the ACRF SGP site. Mesoscale and microscale structures will be sampled with a variety of aircraft, surface, and radar observations. An overview of the measurement platforms that will be used during the CLASIC are described in this report. The coordination of measurements, especially as it relates to aircraft flight plans, will be discussed in the CLASIC Implementation Plan.

  10. Validation of Land-Surface Mosaic Heterogeneity in the GEOS DAS

    NASA Technical Reports Server (NTRS)

    Bosilovich, Michael G.; Molod, Andrea; Houser, Paul R.; Schubert, Siegfried

    1999-01-01

    The Mosaic Land-surface Model (LSM) has been included into the current GEOS Data Assimilation System (DAS). The LSM uses a more advanced representation of physical processes than previous versions of the GEOS DAS, including the representation of sub-grid heterogeneity of the land-surface through the Mosaic approach. As a first approximation, Mosaic assumes that all similar surface types within a grid-cell can be lumped together as a single'tile'. Within one GCM grid-cell, there might be 1 - 5 different tiles or surface types. All tiles are subjected to the grid-scale forcing (radiation, air temperature and specific humidity, and precipitation), and the sub-grid variability is a function of the tile characteristics. In this paper, we validate the LSM sub-grid scale variability (tiles) using a variety of surface observing stations from the Southern Great Plains (SGP) site of the Atmospheric Radiation Measurement (ARM) Program. One of the primary goals of SGP ARM is to study the variability of atmospheric radiation within a G,CM grid-cell. Enough surface data has been collected by ARM to extend this goal to sub-grid variability of the land-surface energy and water budgets. The time period of this study is the Summer of 1998 (June I - September 1). The ARM site data consists of surface meteorology, energy flux (eddy correlation and bowen ratio), soil water observations spread over an area similar to the size of a G-CM grid-cell. Various ARM stations are described as wheat and alfalfa crops, pasture and range land. The LSM tiles considered at the grid-space (2 x 2.5) nearest the ARM site include, grassland, deciduous forests, bare soil and dwarf trees. Surface energy and water balances for each tile type are compared with observations. Furthermore, we will discuss the land-surface sub-grid variability of both the ARM observations and the DAS.

  11. CARBON SEQUESTRATION ON SURFACE MINE LANDS

    SciTech Connect

    Donald H. Graves; Christopher Barton; Richard Sweigard; Richard Warner

    2004-08-02

    The April-June 2004 quarter was dedicated to the establishment of monitoring systems for all the new research areas. Hydrology and water quality monitoring continues to be conducted on all areas as does weather data pertinent to the research. Studies assessing specific questions pertaining to carbon flux has been established and the invasion of the vegetation by small mammals is being quantified. The approval of two experimental practices associated with this research by the United States Office of Surface Mining was a major accomplishment during this period of time. These experimental practices will eventually allow for tree planting on long steep slopes with loose grading systems and for the use of loose dumped spoil on mountain top removal areas with no grading in the final layer of rooting material for tree establishment.

  12. A role for AVIRIS in the Landsat and Advanced Land Remote Sensing Systems program

    NASA Technical Reports Server (NTRS)

    Green, Robert O.; Simmonds, John J.

    1993-01-01

    As a calibrated imaging spectrometer flying at a 20 km altitude, AVIRIS may contribute to the Landsat and the Advanced Land Remote Sensing System efforts. These contributions come in the areas of: (1) on-orbit calibration, (2) specification of new spectral bands, (3) validation of algorithms, and (4) investigation of an imaging spectrometer of the Advanced Land Remote Sensing System.

  13. Performance Assessment of New Land-Surface and Planetary Boundary Layer Physics in the WRF-ARW

    EPA Science Inventory

    The Pleim-Xiu land surface model, Pleim surface layer scheme, and Asymmetric Convective Model (version 2) are now options in version 3.0 of the Weather Research and Forecasting model (WRF) Advanced Research WRF (ARW) core. These physics parameterizations were developed for the f...

  14. Tangent linear analysis of the Mosaic land surface model

    NASA Astrophysics Data System (ADS)

    Yang, Runhua; Cohn, Stephen E.; da Silva, Arlindo; Joiner, Joanna; Houser, Paul R.

    2003-01-01

    In this study, a tangent linear eigenanalysis is applied to the Mosaic land surface model (LSM) [, 1992] to examine the impacts of the model internal dynamics and physics on the land surface state variability. The tangent linear model (TLM) of the Mosaic LSM is derived numerically for two sets of basic states and two tile types of land condition, grass and bare soil. An additional TLM, for the soil moisture subsystem of this LSM, is derived analytically for the same cases to obtain explicit expressions for the eigenvalues. An eigenvalue of the TLM determines a characteristic timescale, and the corresponding eigenvector, or mode, describes a particular coupling among the perturbed states. The results show that (1) errors in initial conditions tend to decay with e-folding times given by the characteristic timescales; (2) the LSM exhibits a wide range of internal variability, modes mainly representing surface temperature and surface moisture perturbations exhibit short timescales, whereas modes mainly representing deep soil temperature perturbations and moisture transfer throughout the entire soil column exhibit much longer timescales; (3) the modes of soil moisture tend to be weakly coupled with other perturbed variables, and the mode representing the deep soil temperature perturbation has a consistent e-folding time across the experiments; (4) the key parameters include soil moisture, soil layer depth, and soil hydraulic parameters. The results agree qualitatively with previous findings. However, tangent linear eigenanalysis provides a new approach to the quantitative substantiation of those findings. Also, it reveals the evolution and the coupling of the perturbed land states that are useful for the development of land surface data assimilation schemes. One must be careful when generalizing the quantitative results since they are obtained with respect to two specific basic states and two simple land conditions. Also, the methodology employed here does not apply

  15. Queen Maud Land Traverses: Surface Glaciology (Invited)

    NASA Astrophysics Data System (ADS)

    Cameron, R. L.

    2009-12-01

    One of the main tasks of a glaciologist is to determine the mass budget of a glacier; and snow accumulation is the first part of the equation. To do this, a great number of snow pits must be dug to analyze the stratigraphy. A. P. Crary once said “to be a glaciologist one should first of all love to dig snow pits.” Seventy-five snow pits were dug on the SPQMLT traverses. Several experienced glaciologists had difficulty in interpreting the stratigraphic sequences in these pits. Irregular layering, caused by uneven deposition and subsequent erosion, suggested that some of the layers could be missing. However, the fallout of artificial radioactive nuclides released by the first large thermonuclear bomb test, on March 1, 1954, at Castle Bravo on Bikini Atoll, Marshall Islands, produced a datum horizon over the Antarctic ice sheet. This horizon is the summer of 1954-55 and provides the basis for measuring the average accumulation since 1955. Accumulation varied from 6.7 ± 0.2 g cm-2 yr-1 at South Pole Station to a low of 0.6 ± 0.2 g cm-2 yr-1 in a pit on the second leg of SPQMLT 2. The average accumulation along the entire traverse route was 3.7 g cm-2 yr-1. Temperatures at ten meters (considered an approximate mean annual air temperature) varied from -58.4 degrees Centigrade at Plateau Station (elevation 3620 meters) to -38 degrees Centigrade at the terminus of SPQMLT 3 (elevation 2310 meters). The condition of the ice sheet surface varied considerably. Some surface was quite hard and easy to traverse; while other areas that were smooth and soft were troublesome enough to bog down vehicles and sleds. Sastrugi were sporadic with some as high as a meter. A large crevasse field forced a slight change in course toward the end of the first leg of SPQMLT 2. There the ice thickness changed dramatically from 3060 meters to 1852 meters. At the time the geophysicist said, “The ‘bottom’ came up so fast I thought we would hit a nunatak.”

  16. Carbon Sequestration on Surface Mine Lands

    SciTech Connect

    Donald H. Graves; Christopher Barton; Richard Sweigard; Richard Warner

    2005-10-02

    During this quarter a general forest monitoring program was conducted to measure treatment effects on above ground and below ground carbon C and Nitrogen (N) pools for the tree planting areas. Detailed studies to address specific questions pertaining to Carbon cycling was initiated with the development of plots to examine the influence of mycorrhizae, spoil chemical and mineralogical properties, and use of amendment on forest establishment and carbon sequestration. Efforts continued during this period to examine decomposition and heterotrophic respiration on C cycling in the reforestation plots. Projected climate change resulting from elevated atmospheric carbon dioxide has given rise to various strategies to sequester carbon in various terrestrial ecosystems. Reclaimed surface mine soils present one such potential carbon sink where traditional reclamation objectives can complement carbon sequestration. New plantings required the modification and design and installation on monitoring equipment. Maintenance and data monitoring on past and present installations are a continuing operation. The Department of Mining Engineering continued the collection of penetration resistance, penetration depth, and bulk density on both old and new treatment areas. Data processing and analysis is in process for these variables. Project scientists and graduate students continue to present results at scientific meetings, tours and field days presentations of the research areas are being conducted on a request basis.

  17. Monitoring Land Surface Soil Moisture from Space with in-Situ Sensors Validation: The Huntsville Example

    NASA Technical Reports Server (NTRS)

    Wu, Steve Shih-Tseng

    1997-01-01

    Based on recent advances in microwave remote sensing of soil moisture and in pursuit of research interests in areas of hydrology, soil climatology, and remote sensing, the Center for Hydrology, Soil Climatology, and Remote Sensing (HSCARS) conducted the Huntsville '96 field experiment in Huntsville, Alabama from July 1-14, 1996. We, researchers at the Global Hydrology and Climate Center's MSFC/ES41, are interested in using ground-based microwave sensors, to simulate land surface brightness signatures of those spaceborne sensors that were in operation or to be launched in the near future. The analyses of data collected by the Advanced Microwave Precipitation Radiometer (AMPR) and the C-band radiometer, which together contained five frequencies (6.925,10.7,19.35, 37.1, and 85.5 GHz), and with concurrent in-situ collection of surface cover conditions (surface temperature, surface roughness, vegetation, and surface topology) and soil moisture content, would result in a better understanding of the data acquired over land surfaces by the Special Sensor Microwave Imager (SSM/I), the Tropical Rainfall Measuring Mission Microwave Imager (TMI), and the Advanced Microwave Scanning Radiometer (AMSR), because these spaceborne sensors contained these five frequencies. This paper described the approach taken and the specific objective to be accomplished in the Huntsville '97 field experiment.

  18. Land-surface processes and monsoon climate system

    NASA Astrophysics Data System (ADS)

    Xue, Yongkang; De Sales, Fernando; Lau, William; Boone, Arron; Mechoso, Carlos

    2015-04-01

    Yongkang Xue, F. De Sales, B. Lau, A. Boone, C. R. Mechoso Differential thermal heating of land and ocean and heat release into the atmosphere are important factors that determine the onset, strength, duration and spatial distribution of large-scale monsoons. A global and seasonal assessment of land surface process (LSP) effects on the monsoon system has been made based on general circulation models (GCM) coupled to different benchmark land models, which physically represent either comprehensive, or partial, or minimal LSP representations. Observed precipitation is applied as constrain and differences in simulation error are used to assess the effect of the LSP with different complexity. The AGCM results indicate that the land/atmosphere interaction has substantial impact on global water cycle, while the monsoon regions have had strongest impact at intraseasonal to decadal scales. Among monsoon regions, West Africa, South Asia, East Asia, and Amazon regions have largest impact while some monsoon regions have less impact due to strong air/sea interactions and narrow land mass there. LSP reduces the annual precipitation error by 58% over global monsoon regions, about 35% observed precipitation. The partial LSP effect (excluding soil moisture and vegetation albedo) reduces annual precipitation error over monsoon region that equals to about 13% of observed precipitation. The LSP affects the monsoon evolution through different mechanisms at different scales. It affects the surface energy balance and energy partitioning in latent and sensible heat, the atmospheric heating rate, and general circulation. The LSP effects have also been assessed in the land use land cover change experiment. Based on recently compiled global land-use data from 1948-2005, the GCM simulation results indicate the degradation in Mexico, West Africa, south and East Asia and South America produce substantial precipitation anomalies, some of which are consistent with observed regional precipitation

  19. Experimental and analytical studies of advanced air cushion landing systems

    NASA Technical Reports Server (NTRS)

    Lee, E. G. S.; Boghani, A. B.; Captain, K. M.; Rutishauser, H. J.; Farley, H. L.; Fish, R. B.; Jeffcoat, R. L.

    1981-01-01

    Several concepts are developed for air cushion landing systems (ACLS) which have the potential for improving performance characteristics (roll stiffness, heave damping, and trunk flutter), and reducing fabrication cost and complexity. After an initial screening, the following five concepts were evaluated in detail: damped trunk, filled trunk, compartmented trunk, segmented trunk, and roll feedback control. The evaluation was based on tests performed on scale models. An ACLS dynamic simulation developed earlier is updated so that it can be used to predict the performance of full-scale ACLS incorporating these refinements. The simulation was validated through scale-model tests. A full-scale ACLS based on the segmented trunk concept was fabricated and installed on the NASA ACLS test vehicle, where it is used to support advanced system development. A geometrically-scaled model (one third full scale) of the NASA test vehicle was fabricated and tested. This model, evaluated by means of a series of static and dynamic tests, is used to investigate scaling relationships between reduced and full-scale models. The analytical model developed earlier is applied to simulate both the one third scale and the full scale response.

  20. Radiometric calibration of the EO-1 Advanced Land Imager

    NASA Astrophysics Data System (ADS)

    Mendenhall, Jeffrey A.; Lencioni, Donald E.; Parker, Alexander C.

    1999-09-01

    The radiometric calibration of the Earth Observation 1 Advanced Land Imager (EO-1 ALI) was completed in the Spring of 1999 at Lincoln Laboratory. This calibration was conducted with the ALI as a fully assembled instrument in a thermal vacuum chamber at operation temperatures. The ALI was calibrated radiometrically at the system level from 0 to > 100 percent Earth-equivalent albedo using a combination of internal and external halogen and Xenon lamps attached to a large integrating sphere. Absolute radiometric calibration was achieved by measuring the output of the integrating sphere at each radiance level prior to ALI illumination using a NIST-traceable spectroradiometer. Additional radiometric characterization of this instrument was obtained from data collected using a collimator designed for the spectral calibration of the ALI. In this paper we review the techniques employed during radiometric calibration and present the measured gain, linearity, offset, signal-to- noise ratio and polarization sensitivity of each pixel. The testing result of a novel, in-flight solar calibration technique are also discussed. Finally, the results from a Lincoln Laboratory/Goddard Space Flight Center Landsat transfer radiometric study are presented.

  1. Sharpening advanced land imager multispectral data using a sensor model

    USGS Publications Warehouse

    Lemeshewsky, G.P.

    2005-01-01

    The Advanced Land Imager (ALI) instrument on NASA's Earth Observing One (EO-1) satellite provides for nine spectral bands at 30m ground sample distance (GSD) and a 10m GSD panchromatic band. This report describes an image sharpening technique where the higher spatial resolution information of the panchromatic band is used to increase the spatial resolution of ALI multispectral (MS) data. To preserve the spectral characteristics, this technique combines reported deconvolution deblurring methods for the MS data with highpass filter-based fusion methods for the Pan data. The deblurring process uses the point spread function (PSF) model of the ALI sensor. Information includes calculation of the PSF from pre-launch calibration data. Performance was evaluated using simulated ALI MS data generated by degrading the spatial resolution of high resolution IKONOS satellite MS data. A quantitative measure of performance was the error between sharpened MS data and high resolution reference. This report also compares performance with that of a reported method that includes PSF information. Preliminary results indicate improved sharpening with the method reported here.

  2. Influence of land-surface evapotranspiration on the earth's climate

    NASA Technical Reports Server (NTRS)

    Shukla, J.; Mintz, Y.

    1982-01-01

    Land-surface evapotranspiration is shown to strongly influence global fields of rainfall, temperature and motion by calculations using a numerical model of the atmosphere, confirming the general belief in the importance of evapotranspiration-producing surface vegetation for the earth's climate. The current version of the Goddard Laboratory atmospheric general circulation model is used in the present experiment, in which conservation equations for mass, momentum, moisture and energy are expressed in finite-difference form for a spherical grid to calculate (1) surface pressure field evolution, and (2) the wind, temperature, and water vapor fields at nine levels between the surface and a 20 km height.

  3. Modeling the relationship between land use and surface water quality.

    PubMed

    Tong, Susanna T Y; Chen, Wenli

    2002-12-01

    It is widely known that watershed hydrology is dependent on many factors, including land use, climate, and soil conditions. But the relative impacts of different types of land use on the surface water are yet to be ascertained and quantified. This research attempted to use a comprehensive approach to examine the hydrologic effects of land use at both a regional and a local scale. Statistical and spatial analyses were employed to examine the statistical and spatial relationships of land use and the flow and water quality in receiving waters on a regional scale in the State of Ohio. Besides, a widely accepted watershed-based water quality assessment tool, the Better Assessment Science Integrating Point and Nonpoint Sources (BASINS), was adopted to model the plausible effects of land use on water quality in a local watershed in the East Fork Little Miami River Basin. The results from the statistical analyses revealed that there was a significant relationship between land use and in-stream water quality, especially for nitrogen, phosphorus and Fecal coliform. The geographic information systems (GIS) spatial analyses identified the watersheds that have high levels of contaminants and percentages of agricultural and urban lands. Furthermore, the hydrologic and water quality modeling showed that agricultural and impervious urban lands produced a much higher level of nitrogen and phosphorus than other land surfaces. From this research, it seems that the approach adopted in this study is comprehensive, covering both the regional and local scales. It also reveals that BASINS is a very useful and reliable tool, capable of characterizing the flow and water quality conditions for the study area under different watershed scales. With little modification, these models should be able to adapt to other watersheds or to simulate other contaminants. They also can be used to study the plausible impacts of global environmental change. In addition, the information on the hydrologic

  4. RESUSPENSION OF PLUTONIUM FROM CONTAMINATED LAND SURFACES: METEOROLOGICAL FACTORS

    EPA Science Inventory

    A literature review is presented in a discussion of the relevance of meteorological factors on the resuspension of plutonium from contaminated land surfaces. The physical processes of resuspension based on soil erosion work are described. Some of the models developed to simulate ...

  5. Applications of Land Surface Temperature from Microwave Observations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land surface temperature (LST) is a key input for physically-based retrieval algorithms of hydrological states and fluxes. Yet, it remains a poorly constrained parameter for global scale studies. The main two observational methods to remotely measure T are based on thermal infrared (TIR) observation...

  6. Land-surface influences on weather and climate

    NASA Technical Reports Server (NTRS)

    Baer, F.; Mintz, Y.

    1984-01-01

    Land-surface influences on weather and climate are reviewed. The interrelationship of vegetation, evapotranspiration, atmospheric circulation, and climate is discussed. Global precipitation, soil moisture, the seasonal water cycle, heat transfer, and atmospheric temperature are among the parameters considered in the context of a general biosphere model.

  7. Comparison of adaptive filtering techniques for land surface data assimilation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The accurate specification of modeling and observational error information required by data assimilation algorithms is a major obstacle to the successful application of a land surface data assimilation system. The source and statistical structure of these errors are often unknown and poor assumptio...

  8. DISAGGREGATION OF GOES-LAND SURFACE TEMPERATURES USING MODIS OBSERVATIONS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate temporal and spatial estimation of land surface temperatures (LST) is important for modeling the hydrological cycle at field to global scales because LSTs can improve estimates of soil moisture and evapotranspiration. Using remote sensing satellites, accurate LSTs could be routine, but unfo...

  9. Change and persistence in land surface phenologies of the Don and Dnieper river basins

    NASA Astrophysics Data System (ADS)

    Kovalskyy, V.; Henebry, G. M.

    2009-10-01

    The formal collapse of the Soviet Union at the end of 1991 produced major socio-economic and institutional dislocations across the agricultural sector. The picture of broad scale patterns produced by these transformations continues to be discovered. We examine here the patterns of land surface phenology (LSP) within two key river basins—Don and Dnieper—using AVHRR (Advanced Very High Resolution Radiometer) data from 1982 to 2000 and MODIS (Moderate Resolution Imaging Spectroradiometer) data from 2001 to 2007. We report on the temporal persistence and change of LSPs as summarized by seasonal integration of NDVI (normalized difference vegetation index) time series using accumulated growing degree-days (GDDI NDVI). Three land cover super-classes—forest lands, agricultural lands, and shrub lands—constitute 96% of the land area within the basins. All three in both basins exhibit unidirectional increases in AVHRR GDDI NDVI between the Soviet and post-Soviet epochs. During the MODIS era (2001-2007), different socio-economic trajectories in Ukraine and Russia appear to have led to divergences in the LSPs of the agricultural lands in the two basins. Interannual variation in the shrub lands of the Don river basin has increased since 2000. This is due in part to the better signal-to-noise ratio of the MODIS sensor, but may also be due to a regional drought affecting the Don basin more than the Dnieper basin.

  10. Advanced surface design for logistics analysis

    NASA Astrophysics Data System (ADS)

    Brown, Tim R.; Hansen, Scott D.

    The development of anthropometric arm/hand and tool models and their manipulation in a large system model for maintenance simulation are discussed. The use of Advanced Surface Design and s-fig technology in anthropometrics, and three-dimensional graphics simulation tools, are found to achieve a good balance between model manipulation speed and model accuracy. The present second generation models are shown to be twice as fast to manipulate as the first generation b-surf models, to be easier to manipulate into various configurations, and to more closely approximate human contours.

  11. Determining the Impacts of Land Cover/use Categories on Land Surface Temperature Using LANDSAT8-OLI

    NASA Astrophysics Data System (ADS)

    Bektas Balcik, F.; Ergene, E. M.

    2016-06-01

    Due to unplanned and uncontrolled expansion of urban areas, rural land cover types have been replaced with artificial materials. As a result of these replacements, a wide range of negative environmental impacts seriously impacting human health, natural areas, ecosystems, climate, energy efficiency, and quality of living in town center. In this study, the impact of land surface temperature with respect to land cover and land use categories is investigated and evaluated for Istanbul, Turkey. Land surface temperature data was extracted from 21 October 2014 dated Landsat 8 OLI data using mono-window algorithm. In order to extract land use/cover information from remotely sensed data wetness, greenness and brightness components were derived using Tasseled Cap Transformation. The statistical relationship between land surface temperature and Tasseled Cap Transformation components in Istanbul was analyzed using the regression methods. Correlation between Land Surface Temperature and Meteorological Stations Temperature calculated %74.49.

  12. Monitoring urban land cover change by updating the national land cover database impervious surface products

    USGS Publications Warehouse

    Xian, G.; Homer, C.

    2009-01-01

    The U.S. Geological Survey (USGS) National Land Cover Database (NLCD) 2001 is widely used as a baseline for national land cover and impervious conditions. To ensure timely and relevant data, it is important to update this base to a more recent time period. A prototype method was developed to update the land cover and impervious surface by individual Landsat path and row. This method updates NLCD 2001 to a nominal date of 2006 by using both Landsat imagery and data from NLCD 2001 as the baseline. Pairs of Landsat scenes in the same season from both 2001 and 2006 were acquired according to satellite paths and rows and normalized to allow calculation of change vectors between the two dates. Conservative thresholds based on Anderson Level I land cover classes were used to segregate the change vectors and determine areas of change and no-change. Once change areas had been identified, impervious surface was estimated for areas of change by sampling from NLCD 2001 in unchanged areas. Methods were developed and tested across five Landsat path/row study sites that contain a variety of metropolitan areas. Results from the five study areas show that the vast majority of impervious surface changes associated with urban developments were accurately captured and updated. The approach optimizes mapping efficiency and can provide users a flexible method to generate updated impervious surface at national and regional scales. ?? 2009 IEEE.

  13. Impacts of Climate Change and Land use Changes on Land Surface Radiation and Energy Budgets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land surface radiation and energy budgets are critical to address a variety of scientific and application issues related to climate trends, weather predictions, hydrologic and biogeophysical modeling, and the monitoring of ecosystem health and agricultural crops. This is an introductory paper to t...

  14. Regolith Advanced Surface Systems Operations Robot (RASSOR)

    NASA Technical Reports Server (NTRS)

    Mueller, Robert P.; Smith, Jonathan D.; Cox, Rachel E.; Schuler, Jason M.; Ebert, Tom; Nick, Andrew J.

    2012-01-01

    Regolith is abundant on extra-terrestrial surfaces and is the source of many resources such as oxygen, hydrogen, titanium, aluminum, iron, silica and other valuable materials, which can be used to make rocket propellant, consumables for life support, radiation protection barrier shields, landing pads, blast protection berms, roads, habitats and other structures and devices. Recent data from the Moon also indicates that there are substantial deposits of water ice in permanently shadowed crater regions and possibly under an over burden of regolith. The key to being able to use this regolith and acquire the resources, is being able to manipulate it with robotic excavation and hauling machinery that can survive and operate in these very extreme extra-terrestrial surface environments. In addition, the reduced gravity on the Moon, Mars, comets and asteroids poses a significant challenge in that the necessary reaction force for digging cannot be provided by the robot's weight as is typically done on Earth. Space transportation is expensive and limited in capacity, so small, lightweight payloads are desirable, which means large traditional excavation machines are not a viable option. A novel, compact and lightweight excavation robot prototype for manipulating, excavating, acquiring, hauling and dumping regolith on extra-terrestrial surfaces has been developed and tested. Lessons learned and test results will be presented including digging in a variety of lunar regolith simulant conditions including frozen regolith mixed with water ice.

  15. Interannual Variability of the Mosaic Land-Surface Model

    NASA Technical Reports Server (NTRS)

    Bosilovich, Michael G.; Houser, Paul R.; Schubert, Siegfried

    1999-01-01

    Recently, NASA Goddard Earth Observing System (GEOS-1) reanalysis data has been used to provide forcing for the Koster and Suarez Mosaic Land-surface Model (LSM). The LSM was integrated off-line at all global land points for the period of 1983 - 1995 by the Off-line Land- surface GEOS Assimilation system (OLGA). Here, we compare the interannual variability of OLGA, GEOS-1 and surface observing stations temperature and moisture. Particular attention is given to the United States because of the extreme seasons of 1988 and 1993. Furthermore, the comparison of OLGA is extended to include the analysis of data on the'tiles' (different surface types) in the Mosaic LSM. Results indicate that the GEOS-1 near-surface temperature and moisture reasonably represents the interannual variability in more normal years. However, OLGA also simulates the extreme drought and floods years well. The analysis of the tile information shows that the "Bare soil" surface type is most sensitive to the climate extremes. Off-line testing has provided valuable information on the performance of the Mosaic LSM prior to its incorporation into the new version of the GEOS Data Assimilation System and the integration of a new long reanalysis.

  16. Regional scale hydrology with a new land surface processes model

    NASA Technical Reports Server (NTRS)

    Laymon, Charles; Crosson, William

    1995-01-01

    Through the CaPE Hydrometeorology Project, we have developed an understanding of some of the unique data quality issues involved in assimilating data of disparate types for regional-scale hydrologic modeling within a GIS framework. Among others, the issues addressed here include the development of adequate validation of the surface water budget, implementation of the STATSGO soil data set, and implementation of a remote sensing-derived landcover data set to account for surface heterogeneity. A model of land surface processes has been developed and used in studies of the sensitivity of surface fluxes and runoff to soil and landcover characterization. Results of these experiments have raised many questions about how to treat the scale-dependence of land surface-atmosphere interactions on spatial and temporal variability. In light of these questions, additional modifications are being considered for the Marshall Land Surface Processes Model. It is anticipated that these techniques can be tested and applied in conjunction with GCIP activities over regional scales.

  17. Effect of surface BRDF of various land cover types on geostationary observations of tropospheric NO2

    NASA Astrophysics Data System (ADS)

    Noguchi, K.; Richter, A.; Rozanov, V.; Rozanov, A.; Burrows, J. P.; Irie, H.; Kita, K.

    2014-10-01

    We investigated the effect of surface reflectance anisotropy, bidirectional reflectance distribution function (BRDF), on satellite retrievals of tropospheric NO2. We assume the geometry of geostationary measurements over Tokyo, which is one of the worst air-polluted regions in East Asia. We calculated air mass factors (AMF) and box AMFs (BAMF) for tropospheric NO2 to evaluate the effect of BRDF by using the radiative transfer model SCIATRAN. To model the BRDF effect, we utilized the Moderate Resolution Imaging Spectroradiometer (MODIS) products (MOD43B1 and MOD43B2), which provide three coefficients to express the RossThick-LiSparse reciprocal model, a semi-empirical and kernel-based model of BRDF. Because BRDF depends on the land cover type, we also utilized the High Resolution Land-Use and Land-Cover Map of the Advanced Land Observing Satellite (ALOS)/Advanced Visible and Near Infrared Radiometer type 2 (AVNIR-2), which classifies the ground pixels over Tokyo into six main types: water, urban, paddy, crop, deciduous forest, and evergreen forest. We first develop an empirical model of the three BRDF coefficients for each land cover type over Tokyo and then apply the model to the calculation of land-cover-type-dependent AMFs and BAMFs. Results show that the variability of AMF among the land types is up to several tens of percent, and if we neglect the reflectance anisotropy, the difference with AMFs based on BRDF reaches 10% or more. The evaluation of the BAMFs calculated shows that not considering BRDF will cause large errors if the concentration of NO2 is high close to the surface, although the importance of BRDF for AMFs decreases for large aerosol optical depth (AOD).

  18. Accuracy assessment of NLCD 2006 land cover and impervious surface

    USGS Publications Warehouse

    Wickham, James D.; Stehman, Stephen V.; Gass, Leila; Dewitz, Jon; Fry, Joyce A.; Wade, Timothy G.

    2013-01-01

    Release of NLCD 2006 provides the first wall-to-wall land-cover change database for the conterminous United States from Landsat Thematic Mapper (TM) data. Accuracy assessment of NLCD 2006 focused on four primary products: 2001 land cover, 2006 land cover, land-cover change between 2001 and 2006, and impervious surface change between 2001 and 2006. The accuracy assessment was conducted by selecting a stratified random sample of pixels with the reference classification interpreted from multi-temporal high resolution digital imagery. The NLCD Level II (16 classes) overall accuracies for the 2001 and 2006 land cover were 79% and 78%, respectively, with Level II user's accuracies exceeding 80% for water, high density urban, all upland forest classes, shrubland, and cropland for both dates. Level I (8 classes) accuracies were 85% for NLCD 2001 and 84% for NLCD 2006. The high overall and user's accuracies for the individual dates translated into high user's accuracies for the 2001–2006 change reporting themes water gain and loss, forest loss, urban gain, and the no-change reporting themes for water, urban, forest, and agriculture. The main factor limiting higher accuracies for the change reporting themes appeared to be difficulty in distinguishing the context of grass. We discuss the need for more research on land-cover change accuracy assessment.

  19. The impact of land use on microbial surface water pollution.

    PubMed

    Schreiber, Christiane; Rechenburg, Andrea; Rind, Esther; Kistemann, Thomas

    2015-03-01

    Our knowledge relating to water contamination from point and diffuse sources has increased in recent years and there have been many studies undertaken focusing on effluent from sewage plants or combined sewer overflows. However, there is still only a limited amount of microbial data on non-point sources leading to diffuse pollution of surface waters. In this study, the concentrations of several indicator micro-organisms and pathogens in the upper reaches of a river system were examined over a period of 16 months. In addition to bacteria, diffuse pollution caused by Giardia lamblia and Cryptosporidium spp. was analysed. A single land use type predestined to cause high concentrations of all microbial parameters could not be identified. The influence of different land use types varies between microbial species. The microbial concentration in river water cannot be explained by stable non-point effluent concentrations from different land use types. There is variation in the ranking of the potential of different land use types resulting in surface water contamination with regard to minimum, median and maximum effects. These differences between median and maximum impact indicate that small-scale events like spreading manure substantially influence the general contamination potential of a land use type and may cause increasing micro-organism concentrations in the river water by mobilisation during the next rainfall event. PMID:25456147

  20. Use of Sharpened Land Surface Temperature for Daily Evapotranspiration Estimation over Irrigated Crops in Arid Lands

    NASA Astrophysics Data System (ADS)

    Rosas Aguilar, J.; McCabe, M. F.; Houborg, R.; Gao, F.

    2014-12-01

    Satellite remote sensing provides data on land surface characteristics, useful for mapping land surface energy fluxes and evapotranspiration (ET). Land-surface temperature (LST) derived from thermal infrared (TIR) satellite data has been reliably used as a remote indicator of ET and surface moisture status. However, TIR imagery usually operates at a coarser resolution than that of shortwave sensors on the same satellite platform, making it sometimes unsuitable for monitoring of field-scale crop conditions. This study applies the data mining sharpener (DMS; Gao et al., 2012) technique to data from the Moderate Resolution Imaging Spectroradiometer (MODIS), which sharpens the 1 km thermal data down to the resolution of the optical data (250-500 m) based on functional LST and reflectance relationships established using a flexible regression tree approach. The DMS approach adopted here has been enhanced/refined for application over irrigated farming areas located in harsh desert environments in Saudi Arabia. The sharpened LST data is input to an integrated modeling system that uses the Atmosphere-Land Exchange Inverse (ALEXI) model and associated flux disaggregation scheme (DisALEXI) in conjunction with model reanalysis data and remotely sensed data from polar orbiting (MODIS) and geostationary (MSG; Meteosat Second Generation) satellite platforms to facilitate daily estimates of evapotranspiration. Results are evaluated against available flux tower observations over irrigated maize near Riyadh in Saudi Arabia. Successful monitoring of field-scale changes in surface fluxes are of importance towards an efficient water use in areas where fresh water resources are scarce and poorly monitored. Gao, F.; Kustas, W.P.; Anderson, M.C. A Data Mining Approach for Sharpening Thermal Satellite Imagery over Land. Remote Sens. 2012, 4, 3287-3319.

  1. South American Monsoon and the Land Surface Processes

    NASA Astrophysics Data System (ADS)

    Xue, Y.; de Sales, F. H.; Li, W.; Mechoso, C. R.; Nobre, C. A.; Juang, H. H.

    2002-12-01

    In this numerical modeling study, the NCEP GCM is applied to investigate the interactions between land surface processes and climate, particularly the effects of land processes on the South American monsoon system (SAMS). A model version with spectral triangular 42 truncation (T42) is used. The corresponding Gaussian grid for T42 is 128 by 64, which is roughly equivalent to 2.8 degrees in latitude and longitude. Two land surface parameterizations are used. One is the Simplified Simple Biosphere Model (SSiB), which includes explicit vegetation representation. The other parameterization is a surface model with two-soil layers (SOIL) and no explicit vegetation scheme. Two 12-month long simulations were performed with the two parameterizations from initial conditions corresponding to May 1, 1987 and identical distributions of soil moisture and surface albedo. The simulations will be referred to as NCEP GCM/SOIL and NCEP GCM/SSiB. The simulations, therefore, differ in the land surface parameterizations and land cover conditions: one with vegetation and the other with only soil layers (but monthly mean vegetation albedo). This experiment aims to test the role of explicit description of vegetation process in the climate model and hence the role of vegetation in the South American hydrometeorology. SAMS starts developing in Central America and then moves southeast towards the Amazons in South America. Afterwards, largest precipitation moves northward and eventually retreats northwest. NCEP GCM/SOIL and NCEP GCM/SSiB produce substantially different evolution and spatial distributions of SAMS. In the NCEP GCM/SOIL, the development of SAMS is too fast and too strong with no clear indication of the southward movement. Rainfall magnitudes are much stronger than in the observation. The NCEP/SSiB, on the other hand, correctly simulates SAMS evolution. To understand the mechanisms that contributed to the differences in the simulations, the surface energy and water balances are

  2. Land-surface processes and monsoon climate system

    NASA Astrophysics Data System (ADS)

    Xue, Y.

    2014-12-01

    Differential thermal heating of land and ocean and heat release into the atmosphere are important factors that determine the onset, strength, duration and spatial distribution of large-scale monsoons. A global and seasonal assessment of land surface process (LSP) effects on the monsoon system has been made based on general circulation models (GCM) coupled to different benchmark land models, which physically represent either comprehensive, or partial, or minimal LSP representations. Observed precipitation is applied as constrain and differences in simulation error are used to assess the effect of the LSP with different complexity. The AGCM results indicate that the land/atmosphere interaction has substantial impact on global water cycle, while the monsoon regions have had strongest impact at intraseasonal to decadal scales. Among monsoon regions, West Africa, South Asia, East Asia, and Amazon regions have largest impact while some monsoon regions have less impact due to strong air/sea interactions and narrow land mass. LSP reduces the annual precipitation error by 58% over global monsoon regions, about 35% observed precipitation. The partial LSP effect (excluding soil moisture and vegetation albedo) reduces annual precipitation error over monsoon region that equals to about 13% of observed precipitation. It has also been suggested that LSP contribute to the abrupt jump in latitude of the East Asian monsoon as well as general circulation turning in some monsoon regions in its early stages. The LSP effects have also been assessed in the land use land cover change experiment. Based on recently compiled global land-use data from 1948-2005, the GCM simulation results indicate the degradation in Mexico, West Africa, south and East Asia and South America produce substantial precipitation anomalies, some of which are consistent with observed regional precipitation anomalies. More comprehensive studies with multi-models are imperatively necessary.

  3. Impacts of land use and land cover on surface and air temperature in urban landscapes

    NASA Astrophysics Data System (ADS)

    Crum, S.; Jenerette, D.

    2015-12-01

    Accelerating urbanization affects regional climate as the result of changing land cover and land use (LCLU). Urban land cover composition may provide valuable insight into relationships among urbanization, air, and land-surface temperature (Ta and LST, respectively). Climate may alter these relationships, where hotter climates experience larger LULC effects. To address these hypotheses we examined links between Ta, LST, LCLU, and vegetation across an urban coastal to desert climate gradient in southern California, USA. Using surface temperature radiometers, continuously measuring LST on standardized asphalt, concrete, and turf grass surfaces across the climate gradient, we found a 7.2°C and 4.6°C temperature decrease from asphalt to vegetated cover in the coast and desert, respectively. There is 131% more temporal variation in asphalt than turf grass surfaces, but 37% less temporal variation in concrete than turf grass. For concrete and turf grass surfaces, temporal variation in temperature increased from coast to desert. Using ground-based thermal imagery, measuring LST for 24 h sequences over citrus orchard and industrial use locations, we found a 14.5°C temperature decrease from industrial to orchard land use types (38.4°C and 23.9°C, respectively). Additionally, industrial land use types have 209% more spatial variation than orchard (CV=0.20 and 0.09, respectively). Using a network of 300 Ta (iButton) sensors mounted in city street trees throughout the region and hyperspectral imagery data we found urban vegetation greenness, measured using the normalized difference vegetation index (NDVI), was negatively correlated to Ta at night across the climate gradient. Contrasting previous findings, the closest coupling between NDVI and Ta is at the coast from 0000 h to 0800 h (highest r2 = 0.6, P < 0.05) while relationships at the desert are weaker (highest r2 = 0.38, P < 0.05). These findings indicate that vegetation cover in urbanized regions of southern

  4. Correcting for Atmospheric Spatial Variability When Estimating Surface Fluxes from Remotely Sensed Land Surface Data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Efforts to monitor the terrestrial water cycle require accurate estimates of evapotranspiration over the global land area. Flux towers provide valuable site-level data, but their collective footprints cover only a very small fraction of the land surface. Satellite remote sensing instruments, on th...

  5. Land Surface Processes Simulation Over Thar Desert in Northwest India

    NASA Astrophysics Data System (ADS)

    Raja, P.; Srinivas, C. V.; Hari Prasad, K. B. R. R.; Singh, Nilendu

    2016-06-01

    Land surface processes in data scarce arid northwestern India and their influence on the regional climate including monsoon are now gaining enhanced scientific attention. In this work the seasonal variation of land surface parameters and surface-energy flux components over Lasiurus sindicus grassland system in Thar Desert, western India were simulated using the mesoscale WRF model. The data on surface fluxes from a micrometeorological station, and basic surface level weather data from the Central Arid Zone Research Institute's experimental field station (26o59'41″N; 71o29'10″E), Jaisalmer, were used for comparison. Simulations were made for typical fair weather days in three seasons [12-14 January (peak winter); 29-31 May (peak summer), 19-21 August (monsoon)] during 2012. Sensitivity experiments conducted using a 5-layer soil thermal diffusion (5TD) scheme and a comprehensive land surface physics scheme (Noah) revealed the 5TD scheme gives large biases in surface fluxes and other land surface parameters. Simulations show large variations in surface fluxes and meteorological parameters in different seasons with high friction velocities, sensible heat fluxes, deep boundary layers in summer and monsoon season as compared to winter. The shortwave radiation is underestimated during the monsoon season, and is overestimated in winter and summer. In general, the model simulated a cold bias in soil temperature in summer and monsoon season and a warm bias in winter; the simulated surface fluxes and air temperature followed these trends. These biases could be due to a negative bias in net radiation resulting from a high bias in downward shortwave radiation in various seasons. The Noah LSM simulated various parameters more realistically in all seasons than the 5TD soil scheme due to inclusion of explicit vegetation processes in the former. The differences in the simulated fluxes with the two LSMs are small in winter and large in summer. The deep mixed layers are

  6. Land Surface Processes Simulation Over Thar Desert in Northwest India

    NASA Astrophysics Data System (ADS)

    Raja, P.; Srinivas, C. V.; Hari Prasad, K. B. R. R.; Singh, Nilendu

    2016-02-01

    Land surface processes in data scarce arid northwestern India and their influence on the regional climate including monsoon are now gaining enhanced scientific attention. In this work the seasonal variation of land surface parameters and surface-energy flux components over Lasiurus sindicus grassland system in Thar Desert, western India were simulated using the mesoscale WRF model. The data on surface fluxes from a micrometeorological station, and basic surface level weather data from the Central Arid Zone Research Institute's experimental field station (26o59'41″N; 71o29'10″E), Jaisalmer, were used for comparison. Simulations were made for typical fair weather days in three seasons [12-14 January (peak winter); 29-31 May (peak summer), 19-21 August (monsoon)] during 2012. Sensitivity experiments conducted using a 5-layer soil thermal diffusion (5TD) scheme and a comprehensive land surface physics scheme (Noah) revealed the 5TD scheme gives large biases in surface fluxes and other land surface parameters. Simulations show large variations in surface fluxes and meteorological parameters in different seasons with high friction velocities, sensible heat fluxes, deep boundary layers in summer and monsoon season as compared to winter. The shortwave radiation is underestimated during the monsoon season, and is overestimated in winter and summer. In general, the model simulated a cold bias in soil temperature in summer and monsoon season and a warm bias in winter; the simulated surface fluxes and air temperature followed these trends. These biases could be due to a negative bias in net radiation resulting from a high bias in downward shortwave radiation in various seasons. The Noah LSM simulated various parameters more realistically in all seasons than the 5TD soil scheme due to inclusion of explicit vegetation processes in the former. The differences in the simulated fluxes with the two LSMs are small in winter and large in summer. The deep mixed layers are

  7. Land and ocean surface temperature: data development and modeling

    NASA Astrophysics Data System (ADS)

    Zeng, X.; Wang, A.; Brunke, M.

    2014-12-01

    Surface temperature (ST) plays a critical role in land-atmosphere-ocean interactions, and is one of the fundamental variables for Earth system research. ST includes surface air temperature (SAT), surface skin temperature (Ts), and subsurface water or soil temperature at a given depth [T(z)]. In this presentation, we will review our recent work on land and ocean ST. Over land, we have developed the first global 0.5 deg hourly SAT datasets from 1948-2009 by merging in situ CRU data with reanalysis data. Using these datasets, over high latitudes in winter the monthly averaged diurnal temperature range is found to be much larger than the range of monthly averaged hourly temperature diurnal cycle. The former primarily reflects the movement of synoptic weather systems, while the latter is primarily affected by the diurnal radiative forcing. We have also compared Ts from satellite remote sensing (MODIS) and land modeling (CLM) with in situ measurements. For instance, we have identified five factors contributing to the Ts differences between the model and MODIS. Over ocean, we have developed a prognostic Ts parameterization for modeling and data analysis. For instance, the inclusion of the Ts diurnal cycle affects atmospheric processes at diurnal, intraseasonal, and longer time scales. Furthermore, our parameterization provides the relationship between water temperature T(z) at different depths and Ts, and hence helps to merge temperature data from satellite infrared and microwave sensors and in situ buoy and ship measurements.

  8. Global Land Surface Emissivity Retrieved From Satellite Ultraspectral IR Measurements

    NASA Technical Reports Server (NTRS)

    Zhou, D. K.; Larar, A. M.; Liu, Xu; Smith, W. L.; Strow, L. L.; Yang, Ping; Schlussel, P.; Calbet, X.

    2011-01-01

    Ultraspectral resolution infrared (IR) radiances obtained from nadir observations provide information about the atmosphere, surface, aerosols, and clouds. Surface spectral emissivity (SSE) and surface skin temperature from current and future operational satellites can and will reveal critical information about the Earth s ecosystem and land-surface-type properties, which might be utilized as a means of long-term monitoring of the Earth s environment and global climate change. In this study, fast radiative transfer models applied to the atmosphere under all weather conditions are used for atmospheric profile and surface or cloud parameter retrieval from ultraspectral and/or hyperspectral spaceborne IR soundings. An inversion scheme, dealing with cloudy as well as cloud-free radiances observed with ultraspectral IR sounders, has been developed to simultaneously retrieve atmospheric thermodynamic and surface or cloud microphysical parameters. This inversion scheme has been applied to the Infrared Atmospheric Sounding Interferometer (IASI). Rapidly produced SSE is initially evaluated through quality control checks on the retrievals of other impacted surface and atmospheric parameters. Initial validation of retrieved emissivity spectra is conducted with Namib and Kalahari desert laboratory measurements. Seasonal products of global land SSE and surface skin temperature retrieved with IASI are presented to demonstrate seasonal variation of SSE.

  9. The generation of China land surface datasets for CLM

    NASA Astrophysics Data System (ADS)

    Li, Haiying; Peng, Hongchun; Li, Xin; Veroustraete, Frank

    2005-10-01

    Community land model or common land model (CLM) describes the exchange of the fluxes of energy, mass and momentum between the earth's surface and the planetary boundary layer. This model is used to simulate the environmental changes in China. Hence, it requires a complete parameters field of the land surface. The present paper focuses on making the surface datasets of CLM in China. In the present paper, vegetation was divided into 39 Plant Function Types (PFTs) of China from its classification map. The land surface datasets were created using vegetation type, five land cover types (lake, wetland, glacier, urban and vegetated), monthly maximum Normalized Difference Vegetation Index (NDVI) derived from SPOT_VGT data and soil properties data. The percentages of glacier, lake and wetland were derived from their own vector maps of China. The fractional coverage of PFTs was derived from China vegetation map. Time-independent vegetation biophysical parameters, such as canopy top and bottom heights and other vegetation parameters related to photosynthesis, were based on the values documented in literatures. The soil color dataset was derived from landuse and vegetation data based on their correspondent relationship. The soil texture (clay%, sand% and silt%) came from global dataset. Time-dependent vegetation biophysical parameters, such as leaf area index(LAI) and fractional absorbed photosynthetically active radiation(FPAR), were calculated from one year of NDVI monthly maximum value composites for the China region based on equations given in Sellers et al. (1996a,b) and Los et al. (2000). The resolution of these datasets for CLM is 1km.

  10. On the Potential Predictability of Seasonal Land-Surface Climate

    SciTech Connect

    Phillips, T J

    2001-10-01

    The chaotic behavior of the continental climate of an atmospheric general circulation model is investigated from an ensemble of decadal simulations with common specifications of radiative forcings and monthly ocean boundary conditions, but different initial states of atmosphere and land. The variability structures of key model land-surface processes appear to agree sufficiently with observational estimates to warrant detailed examination of their predictability on seasonal time scales. This predictability is inferred from several novel measures of spatio-temporal reproducibility applied to eleven model variables. The reproducibility statistics are computed for variables in which the seasonal cycle is included or excluded, the former case being most pertinent to climate model simulations, and the latter to predictions of the seasonal anomalies. Because the reproducibility metrics in the latter case are determined in the context of a ''perfectly'' known ocean state, they are properly viewed as estimates of the potential predictability of seasonal climate. Inferences based on these reproducibility metrics are shown to be in general agreement with those derived from more conventional measures of potential predictability. It is found that the land-surface variables which include the seasonal cycle are impacted only marginally by changes in initial conditions; moreover, their seasonal climatologies exhibit high spatial reproducibility. In contrast, the reproducibility of a seasonal land-surface anomaly is generally low, although it is considerably higher in the Tropics; its spatial reproducibility also fluctuates in tandem with warm and cold phases of the El Nino/Southern Oscillation phenomenon. However, the detailed sensitivities to initial conditions depend somewhat on the land-surface process: pressure and temperature anomalies exhibit the highest temporal reproducibilities, while hydrological and turbulent flux anomalies show the highest spatial reproducibilities

  11. Effects of new MODIS land cover map replacement in a regional climate model on surface temperature and humidity

    NASA Astrophysics Data System (ADS)

    Yucel, I.

    This study investigates the extent to which utilizing 1-km new the Moderate-resolution Imaging-Spectroradiometer (MODIS) land use data in the Pennsylvania State University/NCAR's MM5 coupled with Oregon State University (OSU) provides an improved regional diagnosis of near-surface atmospheric state variables as well as characteristics of the planetary boundary layer (PBL). Those variables are strongly influenced by the energy, matter and momentum exchange between the land surface and the atmosphere. MODIS data provides not only a detailed spatial distribution of vegetation, but also a delineation between water bodies and land surface for MM5 high-resolution applications. Advances in remote sensing technology allow MODIS to collect higher-quality data than previous sensors, yielding the most detailed land cover classification maps to date. The new maps are better because the quality of MODIS data is much higher than the National Oceanic and Atmospheric Administration's Advanced Very High Resolution Radiometer (AVHRR). The default 25-category United States Geological Survey (USGS) land cover classification in MM5 was produced using data acquired in from 1992-1993 by AVHRR. Parameter sets of 17-category MODIS land use dataset are determined by making close match between MODIS, USGS and SIB categories to use in OSU land-surface model. 1-km Land-Water Mask (LWM) data is also derived from this new data as an input to MM5. When the MM5 horizontal grid increment is larger than 1-km (4-km and 12-km in current study), the dominant vegetation type in each grid box is selected to represent the ``grid level'' vegetation characteristics. The MODIS data consider the influence of detailed picture of the distribution of Earth's ecosystems in the surface energy and water budget and hence the evolution of the boundary layer. The impact on the near-surface temperature and humidity is given by making comparison between model and observations at selected land surface types.

  12. The Effect of Landing Surface on the Plantar Kinetics of Chinese Paratroopers Using Half-Squat Landing

    PubMed Central

    Li, Yi; Wu, Ji; Zheng, Chao; Huang, Rong Rong; Na, Yuhong; Yang, Fan; Wang, Zengshun; Wu, Di

    2013-01-01

    The objective of the study was to determine the effect of landing surface on plantar kinetics during a half-squat landing. Twenty male elite paratroopers with formal parachute landing training and over 2 years of parachute jumping experience were recruited. The subjects wore parachuting boots in which pressure sensing insoles were placed. Each subject was instructed to jump off a platform with a height of 60 cm, and land on either a hard or soft surface in a half-squat posture. Outcome measures were maximal plantar pressure, time to maximal plantar pressure (T-MPP), and pressure-time integral (PTI) upon landing on 10 plantar regions. Compared to a soft surface, hard surface produced higher maximal plantar pressure in the 1st to 4th metatarsal and mid-foot regions, but lower maximal plantar pressure in the 5th metatarsal region. Shorter T- MPP was found during hard surface landing in the 1st and 2nd metatarsal and medial rear foot. Landing on a hard surface landing resulted in a lower PTI than a soft surface in the 1stphalangeal region. For Chinese paratroopers, specific foot prosthesis should be designed to protect the1st to 4thmetatarsal region for hard surface landing, and the 1stphalangeal and 5thmetatarsal region for soft surface landing. Key Points Understanding plantar kinetics during the half-squat landing used by Chinese paratroopers can assist in the design of protective footwear. Compared to landing on a soft surface, a hard surface produced higher maximal plantar pressure in the 1st to 4th metatarsal and mid-foot regions, but lower maximal plantar pressure in the 5th metatarsal region. A shorter time to maximal plantar pressure was found during a hard surface landing in the 1st and 2nd metatarsals and medial rear foot. Landing on a hard surface resulted in a lower pressure-time integral than landing on a soft surface in the 1st phalangeal region. For Chinese paratroopers, specific foot prosthesis should be designed to protect the 1st to 4th metatarsal

  13. Modeling Near-Surface Temperatures at Martian Landing Sites

    NASA Technical Reports Server (NTRS)

    Martin, T. Z.; Bridges, N. T.; Murphy, J. R.

    2003-01-01

    We have developed a process for deriving near-surface (approx. 1m) temperatures for potential landing sites, based on observational parameters from MGS TES, Odyssey THEMIS, and a boundary layer model developed by Murphy for fitting Pathfinder meteorological measurements. Minimum nighttime temperatures at the MER landing sites can limit power available, and thus mission lifetime. Temperatures are derived based on thermal inertia, albedo, and opacity estimated for the Hematite site in Sinus Meridiani, using predictions of 1-m air temperatures from a one-dimensional atmospheric model. The Hematite site shows 9 % probability of landing at a location with nighttime temperatures below the 97 C value considered to be a practical limit for operations.

  14. Terrestrial Ecosystems - Land Surface Forms of the Conterminous United States

    USGS Publications Warehouse

    Cress, Jill J.; Sayre, Roger G.; Comer, Patrick; Warner, Harumi

    2009-01-01

    As part of an effort to map terrestrial ecosystems, the U.S. Geological Survey has generated land surface form classes to be used in creating maps depicting standardized, terrestrial ecosystem models for the conterminous United States, using an ecosystems classification developed by NatureServe . A biophysical stratification approach, developed for South America and now being implemented globally, was used to model the ecosystem distributions. Since land surface forms strongly influence the differentiation and distribution of terrestrial ecosystems, they are one of the key input layers in this biophysical stratification. After extensive investigation into various land surface form mapping methodologies, the decision was made to use the methodology developed by the Missouri Resource Assessment Partnership (MoRAP). MoRAP made modifications to Hammond's land surface form classification, which allowed the use of 30-meter source data and a 1-km2 window for analyzing the data cell and its surrounding cells (neighborhood analysis). While Hammond's methodology was based on three topographic variables, slope, local relief, and profile type, MoRAP's methodology uses only slope and local relief. Using the MoRAP method, slope is classified as gently sloping when more than 50 percent of the area in a 1-km2 neighborhood has slope less than 8 percent, otherwise the area is considered moderately sloping. Local relief, which is the difference between the maximum and minimum elevation in a neighborhood, is classified into five groups: 0-15 m, 16-30 m, 31-90 m, 91-150 m, and >150 m. The land surface form classes are derived by combining slope and local relief to create eight landform classes: flat plains (gently sloping and local relief = 90 m), low hills (not gently sloping and local relief = 150 m). However, in the USGS application of the MoRAP methodology, an additional local relief group was used (> 400 m) to capture additional local topographic variation. As a result, low

  15. Photosynthesis sensitivity to climate change in land surface models

    NASA Astrophysics Data System (ADS)

    Manrique-Sunen, Andrea; Black, Emily; Verhoef, Anne; Balsamo, Gianpaolo

    2016-04-01

    Accurate representation of vegetation processes within land surface models is key to reproducing surface carbon, water and energy fluxes. Photosynthesis determines the amount of CO2 fixated by plants as well as the water lost in transpiration through the stomata. Photosynthesis is calculated in land surface models using empirical equations based on plant physiological research. It is assumed that CO2 assimilation is either CO2 -limited, radiation -limited ; and in some models export-limited (the speed at which the products of photosynthesis are used by the plant) . Increased levels of atmospheric CO2 concentration tend to enhance photosynthetic activity, but the effectiveness of this fertilization effect is regulated by environmental conditions and the limiting factor in the photosynthesis reaction. The photosynthesis schemes at the 'leaf level' used by land surface models JULES and CTESSEL have been evaluated against field photosynthesis observations. Also, the response of photosynthesis to radiation, atmospheric CO2 and temperature has been analysed for each model, as this is key to understanding the vegetation response that climate models using these schemes are able to reproduce. Particular emphasis is put on the limiting factor as conditions vary. It is found that while at present day CO2 concentrations export-limitation is only relevant at low temperatures, as CO2 levels rise it becomes an increasingly important restriction on photosynthesis.

  16. Characterizing the spatial dynamics of land surface temperature-impervious surface fraction relationship

    NASA Astrophysics Data System (ADS)

    Wang, Jiong; Qingming, Zhan; Guo, Huagui; Jin, Zhicheng

    2016-03-01

    The land surface temperature (LST) pattern is treated as one of the primary indications of environmental impacts of land cover change. Researchers continue to explore the potential contribution of land surface to temperature rising. The LST-land surface relationship is dynamic and varies spatially. Based upon the previous studies, this research assumes that such dynamics is manifested at two levels: (1) the phenomenon level, and (2) its formation mechanism level. The research presents a workflow of exploring such dynamics at both levels. The variogram of the phenomenon and multi-scale analysis of the LST-land surface relationship are mutually interpreted. In the case study of Wuhan, China, the variogram of the LST indicates that the operational scale of the phenomenon is 500-650 m. It suggests the optimal scale to inspect the LST and its cause in the study area. This finding is verified and further inspected through multi-scale analysis of the LST-Impervious Surface Fraction (ISF) relationship at the formation mechanism level. The research also employs the Spatial Autocorrelation model to show how the ISF impacts the LST through scales. A flexible autocorrelation weight matrix is proposed and implemented in the model. The parameters of the model exhibit the thermal sensitivity of land surface and again represent the scale features. The Ordinary Least Square regression is used as the benchmark. Several implications are discussed.

  17. Coupling groundwater and land surface processes: Idealized simulations to identify effects of terrain and subsurface heterogeneity on land surface energy fluxes

    NASA Astrophysics Data System (ADS)

    Rihani, Jehan F.; Maxwell, Reed M.; Chow, Fotini K.

    2010-12-01

    This work investigates the role of terrain and subsurface heterogeneity on the interactions between groundwater dynamics and land surface energy fluxes using idealized simulations. A three-dimensional variably saturated groundwater code (ParFlow) coupled to a land surface model (Common Land Model) is used to account for both vertical and lateral water and pressure movement. This creates a fully integrated approach, coupling overland and subsurface flow while having an explicit representation of the water table and all land surface processes forced by atmospheric data. Because the water table is explicitly represented in these simulations, regions with stronger interaction between water table depth and the land surface energy balance (known as critical zones) can be identified. This study uses simple terrain and geologic configurations to demonstrate the importance of lateral surface and subsurface flows in determining land surface heat and moisture fluxes. Strong correlations are found between the land surface fluxes and water table depth across all cases, including terrain shape, subsurface heterogeneity, vegetation type, and climatological region. Results show that different land forms and subsurface heterogeneities produce very different water table dynamics and land surface flux responses to atmospheric forcing. Subsurface formation and properties have the greatest effect on the coupling between the water table and surface heat and moisture fluxes. Changes in landform and land surface slope also have an effect on these interactions by influencing the fraction of rainfall contributing to overland flow versus infiltration. This directly affects the extent of the critical zone with highest coupling strength along the hillside. Vegetative land cover, as seen in these simulations, has a large effect on the energy balance at the land surface but a small effect on streamflow and water table dynamics and thus a limited impact on the land surface-subsurface interactions

  18. Development of land surface reflectance models based on multiscale simulation

    NASA Astrophysics Data System (ADS)

    Goodenough, Adam A.; Brown, Scott D.

    2015-05-01

    Modeling and simulation of Earth imaging sensors with large spatial coverage necessitates an understanding of how photons interact with individual land surface processes at an aggregate level. For example, the leaf angle distribution of a deciduous forest canopy has a significant impact on the path of a single photon as it is scattered among the leaves and, consequently, a significant impact on the observed bidirectional reflectance distribution function (BRDF) of the canopy as a whole. In particular, simulation of imagery of heterogeneous scenes for many multispectral/hyperspectral applications requires detailed modeling of regions of the spectrum where many orders of scattering are required due to both high reflectance and transmittance. Radiative transfer modeling based on ray tracing, hybrid Monte Carlo techniques and detailed geometric and optical models of land cover means that it is possible to build effective, aggregate optical models with parameters such as species, spatial distribution, and underlying terrain variation. This paper examines the capability of the Digital Image and Remote Sensing Image Generation (DIRSIG) model to generate BRDF data representing land surfaces at large scale from modeling at a much smaller scale. We describe robust methods for generating optical property models effectively in DIRSIG and present new tools for facilitating the process. The methods and results for forest canopies are described relative to the RAdiation transfer Model Intercomparison (RAMI) benchmark scenes, which also forms the basis for an evaluation of the approach. Additional applications and examples are presented, representing different types of land cover.

  19. Impact of land cover and population density on land surface temperature: case study in Wuhan, China

    NASA Astrophysics Data System (ADS)

    Li, Lin; Tan, Yongbin; Ying, Shen; Yu, Zhonghai; Li, Zhen; Lan, Honghao

    2014-01-01

    With the rapid development of urbanization, the standard of living has improved, but changes to the city thermal environment have become more serious. Population urbanization is a driving force of residential expansion, which predominantly influences the land surface temperature (LST). We obtained the land covers and LST maps of Wuhan from Landsat-5 images in 2000, 2002, 2005, and 2009, and discussed the distribution of land use/cover change and LST variation, and we analyzed the correlation between population distribution and LST values in residential regions. The results indicated massive variation of land cover types, which was shown as a reduction in cultivatable land and the expansion of building regions. High-LST regions concentrated on the residential and industrial areas with low vegetation coverage. In the residential region, the population density (PD) had effects on the LST values. Although the area or variation of residential regions was close, lower PD was associated with lower mean LST or LST variation. Thus, decreasing the high-LST regions concentration by reducing the PD may alleviate the urban heat island effect on the residential area. Taken together, these results can provide supports for urban planning projects and studies on city ecological environments.

  20. Utilization of Hydrologic Remote Sensing Data in Land Surface Modeling and Data Assimilation: Current Status and Challenges

    NASA Technical Reports Server (NTRS)

    Kumar, Sujay V.; Peters-Lidard, Christa; Reichl, Rolf; Harrison, Kenneth; Santanello, Joseph

    2010-01-01

    Recent advances in remote sensing technologies have enabled the monitoring and measurement of the Earth's land surface at an unprecedented scale and frequency. The myriad of these land surface observations must be integrated with the state-of-the-art land surface model forecasts using data assimilation to generate spatially and temporally coherent estimates of environmental conditions. These analyses are of critical importance to real-world applications such as agricultural production, water resources management and flood, drought, weather and climate prediction. This need motivated the development of NASA Land Information System (LIS), which is an expert system encapsulating a suite of modeling, computational and data assimilation tools required to address challenging hydrological problems. LIS integrates the use of several community land surface models, use of ground and satellite based observations, data assimilation and uncertainty estimation techniques and high performance computing and data management tools to enable the assessment and prediction of hydrologic conditions at various spatial and temporal scales of interest. This presentation will focus on describing the results, challenges and lessons learned from the use of remote sensing data for improving land surface modeling, within LIS. More specifically, studies related to the improved estimation of soil moisture, snow and land surface temperature conditions through data assimilation will be discussed. The presentation will also address the characterization of uncertainty in the modeling process through Bayesian remote sensing and computational methods.

  1. Analysing the Effects of Different Land Cover Types on Land Surface Temperature Using Satellite Data

    NASA Astrophysics Data System (ADS)

    Şekertekin, A.; Kutoglu, Ş. H.; Kaya, S.; Marangoz, A. M.

    2015-12-01

    Monitoring Land Surface Temperature (LST) via remote sensing images is one of the most important contributions to climatology. LST is an important parameter governing the energy balance on the Earth and it also helps us to understand the behavior of urban heat islands. There are lots of algorithms to obtain LST by remote sensing techniques. The most commonly used algorithms are split-window algorithm, temperature/emissivity separation method, mono-window algorithm and single channel method. In this research, mono window algorithm was implemented to Landsat 5 TM image acquired on 28.08.2011. Besides, meteorological data such as humidity and temperature are used in the algorithm. Moreover, high resolution Geoeye-1 and Worldview-2 images acquired on 29.08.2011 and 12.07.2013 respectively were used to investigate the relationships between LST and land cover type. As a result of the analyses, area with vegetation cover has approximately 5 ºC lower temperatures than the city center and arid land., LST values change about 10 ºC in the city center because of different surface properties such as reinforced concrete construction, green zones and sandbank. The temperature around some places in thermal power plant region (ÇATES and ZETES) Çatalağzı, is about 5 ºC higher than city center. Sandbank and agricultural areas have highest temperature due to the land cover structure.

  2. Analytical simulation and inversion of dynamic urban land surface effects

    NASA Astrophysics Data System (ADS)

    Bayer, P.; Rivera, J.; Blum, P.; Schweizer, D.; Rybach, L.

    2015-12-01

    Long-term thermal changes at the land surface can be backtracked from borehole temperature profiles. The main focus so far has been on past climate changes, assuming perfect coupling of surface air and ground temperature. In many urbanized areas, however, temperature profiles are heavily perturbed. We find a characteristic bending of urban profiles towards shallow depth, which indicates strong heating from the ground surface during recent decades. This phenomenon is generally described as subsurface urban heat island (UHI) effect, which exists beneath many cities worldwide. Major drivers are land use changes and urban structures that act as long-term heat sources that artificially load the top 100 m of the ground. While variability in land use and coverage are critical factors for reliable borehole climatology, temperature profiles can also be inverted to trace back the combined effect of past urbanization and climate. We present an analytical framework based on the superposition of specific Green's functions for simulating transient land use changes and their effects on borehole temperature profiles. By inversion in a Bayesian framework, flexible calibration of unknown spatially distributed parameter values and their correlation is feasible. The procedure is applied to four temperature logs which are around 200-400 m deep from the city and suburbs of Zurich, Switzerland. These were recorded recently by a temperature sensor and data logger introduced in closed borehole heat exchangers before the start of geothermal operation. At the sites, long-term land use changes are well documented for more than the last century. This facilitated focusing on a few unknown parameters, and we selected the contribution by asphalt and by basements of buildings. It is revealed that for three of the four sites, these two factors dominate the subsurface UHI evolution. At one site, additional factors such as buried district heating networks may play a role. It is demonstrated that site

  3. Advanced Bayesian Method for Planetary Surface Navigation

    NASA Technical Reports Server (NTRS)

    Center, Julian

    2015-01-01

    Autonomous Exploration, Inc., has developed an advanced Bayesian statistical inference method that leverages current computing technology to produce a highly accurate surface navigation system. The method combines dense stereo vision and high-speed optical flow to implement visual odometry (VO) to track faster rover movements. The Bayesian VO technique improves performance by using all image information rather than corner features only. The method determines what can be learned from each image pixel and weighs the information accordingly. This capability improves performance in shadowed areas that yield only low-contrast images. The error characteristics of the visual processing are complementary to those of a low-cost inertial measurement unit (IMU), so the combination of the two capabilities provides highly accurate navigation. The method increases NASA mission productivity by enabling faster rover speed and accuracy. On Earth, the technology will permit operation of robots and autonomous vehicles in areas where the Global Positioning System (GPS) is degraded or unavailable.

  4. Identifying and Addressing Land Surface Model Deficiencies with Data Assimilation

    NASA Technical Reports Server (NTRS)

    Rodell, Matthew; Li, Bailing; Beaudoing, Hiroko Kato; Houborg, Rasmus; Zaitchik, Ben; Reichle, Rolf; Kumar, Sujay

    2012-01-01

    Land surface models (LSMs) encapsulate our understanding of terrestrial water and energy cycle physics and provide estimates of land surface states and fluxes when and where measurement gaps exist. Gaps in our understanding of the physics are a different issue. Data assimilation can address that issue both directly, through updating of prognostic model variables, or indirectly, when the simulated world conflicts with observation, necessitating adjustment of the model. Here we will focus on the latter case and present several examples, including (1) depth to bedrock adjustment to accommodate assimilated GRACE terrestrial water storage data; (2) steps to prevent immediate melting of assimilated snow cover; (3) irrigation's contribution to evapotranspiration; (4) lessons learned from soil moisture data assimilation; (5) the potential impact of satellite based runoff observation

  5. Derived Land Surface Emissivity From Suomi NPP CrIS

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Larar, Allen M.; Liu, Xu

    2012-01-01

    Presented here is the land surface IR spectral emissivity retrieved from the Cross-track Infrared Sounder (CrIS) measurements. The CrIS is aboard the Suomi National Polar-orbiting Partnership (NPP) satellite launched on October 28, 2011. We describe the retrieval algorithm, demonstrate the surface emissivity retrieved with CrIS measurements, and inter-comparison with the Infrared Atmospheric Sounding Interferometer (IASI) emissivity. We also demonstrate that surface emissivity from satellite measurements can be used in assistance of monitoring global surface climate change, as a long-term measurement of IASI and CrIS will be provided by the series of EUMETSAT MetOp and US Joint Polar Satellite System (JPSS) satellites. Monthly mean surface properties are produced using last 5-year IASI measurements. A temporal variation indicates seasonal diversity and El Nino/La Nina effects not only shown on the water but also on the land. Surface spectral emissivity and skin temperature from current and future operational satellites can be utilized as a means of long-term monitoring of the Earth's environment. CrIS spectral emissivity are retrieved and compared with IASI. The difference is small and could be within expected retrieval error; however it is under investigation.

  6. Quantifying Uncertainties in Land Surface Microwave Emissivity Retrievals

    NASA Technical Reports Server (NTRS)

    Tian, Yudong; Peters-Lidard, Christa D.; Harrison, Kenneth W.; Prigent, Catherine; Norouzi, Hamidreza; Aires, Filipe; Boukabara, Sid-Ahmed; Furuzawa, Fumie A.; Masunaga, Hirohiko

    2012-01-01

    Uncertainties in the retrievals of microwave land surface emissivities were quantified over two types of land surfaces: desert and tropical rainforest. Retrievals from satellite-based microwave imagers, including SSM/I, TMI and AMSR-E, were studied. Our results show that there are considerable differences between the retrievals from different sensors and from different groups over these two land surface types. In addition, the mean emissivity values show different spectral behavior across the frequencies. With the true emissivity assumed largely constant over both of the two sites throughout the study period, the differences are largely attributed to the systematic and random errors in the retrievals. Generally these retrievals tend to agree better at lower frequencies than at higher ones, with systematic differences ranging 14% (312 K) over desert and 17% (320 K) over rainforest. The random errors within each retrieval dataset are in the range of 0.52% (26 K). In particular, at 85.0/89.0 GHz, there are very large differences between the different retrieval datasets, and within each retrieval dataset itself. Further investigation reveals that these differences are mostly likely caused by rain/cloud contamination, which can lead to random errors up to 1017 K under the most severe conditions.

  7. Linking land use with pesticides in Dutch surface waters.

    PubMed

    Van't, Zelfde M T; Tamis, W L M; Vijver, M G; De Snoo, G R

    2012-01-01

    Compared with other European countries The Netherlands has a relatively high level of pesticide consumption, particularly in agriculture. Many of the compounds concerned end up in surface waters. Surface water quality is routinely monitored and numerous pesticides are found to be present in high concentrations, with various standards being regularly exceeded. Many standards-breaching pesticides exhibit regional patterns that can be traced back to land use. These patterns have been statistically analysed by correlating surface area per land use category with standards exceedance per pesticide, thereby identifying numerous significant correlations with respect to breaches of both the ecotoxicological standard (Maximum Tolerable Risk, MTR) and the drinking water standard. In the case of the MTR, greenhouse horticulture, floriculture and bulb-growing have the highest number as well as percentage of standard-breaching pesticides, despite these market segments being relatively small in terms of area cropped. Cereals, onions, vegetables, perennial border plants and pulses are also associated with many pesticides that exceed the drinking water standard. When a correction is made for cropped acreage, cereals and potatoes also prove to be a major contributor to monitoring sites where the MTR standard is exceeded. Over the period 1998-2006 the land-use categories with the most and highest percentage of standards-exceeding pesticides (greenhouse horticulture, bulb-growing and flower cultivation) showed an increase in the percentage of standards-exceeding compounds. PMID:23885409

  8. Land-surface studies with a directional neutron detector.

    SciTech Connect

    Desilets, Darin; Brennan, James S.; Mascarenhas, Nicholas; Marleau, Peter

    2009-09-01

    Direct measurements of cosmic-ray neutron intensity were recorded with a neutron scatter camera developed at SNL. The instrument used in this work is a prototype originally designed for nuclear non-proliferation work, but in this project it was used to characterize the response of ambient neutrons in the 0.5-10 MeV range to water located on or above the land surface. Ambient neutron intensity near the land surface responds strongly to the presence of water, suggesting the possibility of an indirect method for monitoring soil water content, snow water equivalent depth, or canopy intercepted water. For environmental measurements the major advantage of measuring neutrons with the scatter camera is the limited (60{sup o}) field of view that can be obtained, which allows observations to be conducted at a previously unattainable spatial scales. This work is intended to provide new measurements of directional fluxes which can be used in the design of new instruments for passively and noninvasively observing land-surface water. Through measurements and neutron transport modeling we have demonstrated that such a technique is feasible.

  9. Diurnal Variation of Meteorological Parameters in the Land Surface Interface

    NASA Astrophysics Data System (ADS)

    Pillai, J. S.

    A pilot land surface processes experiment was conducted at Anand, Gujarat, situated in the western part of India, from April to July 1995. The diurnal variation of air and soil temperature with respect to solar radiation was studied in two selected periods, one in summer and the other during monsoon. It was observed that during summer, there was a considerable lag in the temperature maxima with respect to solar radiation, as compared to the monsoon period. Also, in summer, when there was an increase in wind speed from near zero values in the early morning hours, the soil surface as well as the air temperature minima were raised.

  10. Land Surface Data Assimilation and the Northern Gulf Coast Land/Sea Breeze

    NASA Technical Reports Server (NTRS)

    Lapenta, William M.; Blackwell, Keith; Suggs, Ron; McNider, Richard T.; Jedlovec, Gary; Kimball, Sytske; Arnold, James E. (Technical Monitor)

    2002-01-01

    A technique has been developed for assimilating GOES-derived skin temperature tendencies and insolation into the surface energy budget equation of a mesoscale model so that the simulated rate of temperature change closely agrees with the satellite observations. A critical assumption of the technique is that the availability of moisture (either from the soil or vegetation) is the least known term in the model's surface energy budget. Therefore, the simulated latent heat flux, which is a function of surface moisture availability, is adjusted based upon differences between the modeled and satellite observed skin temperature tendencies. An advantage of this technique is that satellite temperature tendencies are assimilated in an energetically consistent manner that avoids energy imbalances and surface stability problems that arise from direct assimilation of surface shelter temperatures. The fact that the rate of change of the satellite skin temperature is used rather than the absolute temperature means that sensor calibration is not as critical. The sea/land breeze is a well-documented mesoscale circulation that affects many coastal areas of the world including the northern Gulf Coast of the United States. The focus of this paper is to examine how the satellite assimilation technique impacts the simulation of a sea breeze circulation observed along the Mississippi/Alabama coast in the spring of 2001. The technique is implemented within the PSU/NCAR MM5 V3-4 and applied on a 4-km domain for this particular application. It is recognized that a 4-km grid spacing is too coarse to explicitly resolve the detailed, mesoscale structure of sea breezes. Nevertheless, the model can forecast certain characteristics of the observed sea breeze including a thermally direct circulation that results from differential low-level heating across the land-sea interface. Our intent is to determine the sensitivity of the circulation to the differential land surface forcing produced via the

  11. Land Surface Modeling and Data Assimilation to Support Physical Precipitation Retrievals for GPM

    NASA Technical Reports Server (NTRS)

    Peters-Lidard, Christa D.; Tian. Yudong; Kumar, Sujay; Geiger, James; Choudhury, Bhaskar

    2010-01-01

    Objective: The objective of this proposal is to provide a routine land surface modeling and data assimilation capability for GPM in order to provide global land surface states that are necessary to support physical precipitation retrieval algorithms over land. It is well-known that surface emission, particularly over the range of frequencies to be included in GPM, is sensitive to land surface states, including soil properties, vegetation type and greenness, soil moisture, surface temperature, and snow cover, density, and grain size. Therefore, providing a robust capability to routinely provide these critical land states is essential to support GPM-era physical retrieval algorithms over land.

  12. Land surface temperature measurements from EOS MODIS data

    NASA Technical Reports Server (NTRS)

    Wan, Zhengming

    1994-01-01

    A generalized split-window method for retrieving land-surface temperature (LST) from AVHRR and MODIS data has been developed. Accurate radiative transfer simulations show that the coefficients in the split-window algorithm for LST must depend on the viewing angle, if we are to achieve a LST accuracy of about 1 K for the whole scan swath range (+/-55.4 deg and +/-55 deg from nadir for AVHRR and MODIS, respectively) and for the ranges of surface temperature and atmospheric conditions over land, which are much wider than those over oceans. We obtain these coefficients from regression analysis of radiative transfer simulations, and we analyze sensitivity and error by using results from systematic radiative transfer simulations over wide ranges of surface temperatures and emissivities, and atmospheric water vapor abundance and temperatures. Simulations indicated that as atmospheric column water vapor increases and viewing angle is larger than 45 deg it is necessary to optimize the split-window method by separating the ranges of the atmospheric column water vapor and lower boundary temperature, and the surface temperature into tractable sub-ranges. The atmospheric lower boundary temperature and (vertical) column water vapor values retrieved from HIRS/2 or MODIS atmospheric sounding channels can be used to determine the range where the optimum coefficients of the split-window method are given. This new LST algorithm not only retrieves LST more accurately but also is less sensitive than viewing-angle independent LST algorithms to the uncertainty in the band emissivities of the land-surface in the split-window and to the instrument noise.

  13. Surface Landing Site Weather Analysis for NASA's Constellation Program

    NASA Technical Reports Server (NTRS)

    Altino, Karen M.; Burns, K. L.

    2008-01-01

    Weather information is an important asset for NASA's Constellation Program in developing the next generation space transportation system to fly to the International Space Station, the Moon and, eventually, to Mars. Weather conditions can affect vehicle safety and performance during multiple mission phases ranging from pre-launch ground processing of the Ares vehicles to landing and recovery operations, including all potential abort scenarios. Meteorological analysis is art important contributor, not only to the development and verification of system design requirements but also to mission planning and active ground operations. Of particular interest are the surface weather conditions at both nominal and abort landing sites for the manned Orion capsule. Weather parameters such as wind, rain, and fog all play critical roles in the safe landing of the vehicle and subsequent crew and vehicle recovery. The Marshall Space Flight Center (MSFC) Natural Environments Branch has been tasked by the Constellation Program with defining the natural environments at potential landing zones. This paper wiI1 describe the methodology used for data collection and quality control, detail the types of analyses performed, and provide a sample of the results that cab be obtained.

  14. Analyzing Land Cover Change in Kazakhstan: Land Surface Phenology, Climatic Variation, and Sensor Artifacts

    NASA Astrophysics Data System (ADS)

    de Beurs, K. M.; Henebry, G. M.

    2003-12-01

    The collapse of the economic and political institutions of the Soviet Union in the early 1990s led to widespread agricultural de-intensification, land abandonment, loss of livestock, and decreased grazing pressure. In semi-arid to arid regions dominated by dryland agriculture and grazing, the quantification of land cover change must distinguish anthropogenic forcings from interannual climatic variation and the peculiarities associated with specific sensor systems. Were the land cover changes that occurred in Kazakhstan following independence in 1991 of sufficient magnitude to alter the land surface phenology at resolutions relevant to climate models? To explore this question it is necessary first to partition the sources of variation in the image archive. We used the standard Pathfinder AVHRR Land (PAL) dataset, which consists of global 10 d maximum NDVI composites from 7/1981 to 9/2001 at 8 km resolution. To what extent are the PAL data affected by sensor artifacts that may mask other kinds of change? We evaluated 19 subsets of 1600 sq km, one for each ecoregion of Kazakhstan as delineated by the World Wildlife Fund. To minimize residual cloud contamination in the PAL data, a modified version of the best index slope extraction algorithm was applied. The method filters distortions without altering the seasonal NDVI pattern. We pursued two complementary aspects of change analysis: (1) detection of trends within each sensor's tenure and (2) detection of trends and discontinuities across the entire observational period. Seasonal polynomial models of NDVI phenology were developed to relate accumulated growing degree-day with NDVI. To test for trends within periods, both the residuals and the filtered data were submitted to seasonal Mann-Kendall tests that were modified to correct for serial correlation. To identify discontinuities, the entire series was tested using the standard normal homogeneity test (SNHT) without trend. The Kruskal-Wallis test with Bonferroni

  15. Conterminous United States Surface Radiative Forcing due to Contemporary Land Cover Land Use Albedo Change

    NASA Astrophysics Data System (ADS)

    Barnes, C. A.; Roy, D. P.

    2012-12-01

    Recently available Landsat land cover land use (LCLU) change information for four epochs, 1973-1980, 1980-1986, 1986-1992 and 1992-2000, and MODerate Resolution Imaging Spectroradiometer (MODIS) albedo and snow cover data are used to estimate LCLU albedo change surface radiative forcing for the conterminous United States (CONUS) for each epoch and for 1973 to 2000. Landsat 10 × 10 km or 20 × 20 km LCLU classification maps for 1973, 1980, 1986, 1992 and 2000 located using a stratified random sampling methodology with respect to 84 contiguous CONUS ecoregions are used to provide ecoregion and CONUS estimates. A CONUS scale warming (0.0037 Wm-2) due to LCLU albedo change from 1973 to 2000 is estimated associated with decreasing agricultural and forested lands and increasing developed and grassland/shrublands. The 1986 to 1992 period had the highest overall CONUS forcing (0.0093 Wm-2) due to agricultural land conversion, attributed primarily to the 1985 Farm Bill that established the Conservation Reserve Program. The radiative forcing for individual ecoregions varied geographically in sign and magnitude, with the most negative forcings (as low as -0.8630 Wm-2) due to forest loss, and the most positive forcings (up to 0.2640 Wm-2) due to the conversion of grasslands/shrublands. These results make an important contribution to quantifying the role of LCLU change on the climate system, and underscore the need for repeat, wall-to-wall, spatially-explicit national LCLU mapping.

  16. Accessing Recent Trend of Land Surface Temperature from Satellite Observations

    NASA Technical Reports Server (NTRS)

    Shen, Suhung; Leptoukh, Gregory G.; Romanov, Peter

    2011-01-01

    Land surface temperature (Ts) is an important element to measure the state of terrestrial ecosystems and to study surface energy budgets. In support of the land cover/land use change-related international program MAIRS (Monsoon Asia Integrated Regional Study), we have collected global monthly Ts measured by MODIS since the beginning of the missions. The MODIS Ts time series have approximately 11 years of data from Terra since 2000 and approximately 9 years of data from Aqua since 2002, which makes possible to study the recent climate, such as trend. In this study, monthly climatology from two platforms are calculated and compared with that from AIRS. The spatial patterns of Ts trends are accessed, focusing on the Eurasia region. Furthermore, MODIS Ts trends are compared with those from AIRS and NASA's atmospheric assimilation model, MERRA (Modern Era Retrospective-analysis for Research and Applications). The preliminary results indicate that the recent 8-year Ts trend shows an oscillation-type spatial variation over Eurasia. The pattern is consistent for data from MODIS, AIRS, and MERRA, with the positive center over Eastern Europe, and the negative center over Central Siberia. The calculated climatology and anomaly of MODIS Ts will be integrated into the online visualization system, Giovanni, at NASA GES DISC for easy use by scientists and general public.

  17. Accessing Recent Trend of Land Surface Temperature from Satellite Observations

    NASA Astrophysics Data System (ADS)

    Shen, S.; Leptoukh, G. G.; Romanov, P.

    2011-12-01

    Land surface temperature (LST) is an important element to measure the state of the terrestrial ecosystems and to study the surface energy budgets. In support of the land cover/land use change related international program MAIRS (Monsoon Asia Integrated Regional Study), we have collected the global monthly LST measured by MODIS since the beginning of the missions. The MODIS LST time series have ~11 years of data from Terra since 2000 and ~9 years of data from Aqua since 2002, which makes possible to study the recent climate, such as trend and variability. In this study, monthly climatology from two satellite platforms are calculated and compared. The spatial patterns of LST trends are accessed, focusing on the Asian Monsoon region. Furthermore, the MODIS LST trends are compared with the skin temperature trend from the NASA's atmospheric assimilation model, MERRA (MODERN ERA RETROSPECTIVE-ANALYSIS FOR RESEARCH AND APPLICATIONS), which has longer data record since 1979. The calculated climatology and anomaly of MODIS LST will be integrated into the online visualization system, Giovanni, at NASA GES DISC for easy access and use by scientists and general public.

  18. Evaluation of Ten Methods for Initializing a Land Surface Model

    NASA Technical Reports Server (NTRS)

    Rodell, M.; Houser, P. R.; Berg, A. A.; Famiglietti, J. S.

    2005-01-01

    Land surface models (LSMs) are computer programs, similar to weather and climate prediction models, which simulate the stocks and fluxes of water (including soil moisture, snow, evaporation, and runoff) and energy (including the temperature of and sensible heat released from the soil) after they arrive on the land surface as precipitation and sunlight. It is not currently possible to measure all of the variables of interest everywhere on Earth with sufficient accuracy and space-time resolution. Hence LSMs have been developed to integrate the available observations with our understanding of the physical processes involved, using powerful computers, in order to map these stocks and fluxes as they change in time. The maps are used to improve weather forecasts, support water resources and agricultural applications, and study the Earth"s water cycle and climate variability. NASA"s Global Land Data Assimilation System (GLDAS) project facilitates testing of several different LSMs with a variety of input datasets (e.g., precipitation, plant type).

  19. CEOS Land Surface Imaging Constellation Mid-Resolution Optical Guidelines

    NASA Technical Reports Server (NTRS)

    Keyes, Jennifer P.; Killough, B.

    2011-01-01

    The LSI community of users is large and varied. To reach all these users as well as potential instrument contributors this document has been organized by measurement parameters of interest such as Leaf Area Index and Land Surface Temperature. These measurement parameters and the data presented in this document are drawn from multiple sources, listed at the end of the document, although the two primary ones are "The Space-Based Global Observing System in 2010 (GOS-2010)" that was compiled for the World Meteorological Organization (WMO) by Bizzarro Bizzarri, and the CEOS Missions, Instruments, and Measurements online database (CEOS MIM). For each measurement parameter the following topics will be discussed: (1) measurement description, (2) applications, (3) measurement spectral bands, and (4) example instruments and mission information. The description of each measurement parameter starts with a definition and includes a graphic displaying the relationships to four general land surface imaging user communities: vegetation, water, earth, and geo-hazards, since the LSI community of users is large and varied. The vegetation community uses LSI data to assess factors related to topics such as agriculture, forest management, crop type, chlorophyll, vegetation land cover, and leaf or canopy differences. The water community analyzes snow and lake cover, water properties such as clarity, and body of water delineation. The earth community focuses on minerals, soils, and sediments. The geo-hazards community is designed to address and aid in emergencies such as volcanic eruptions, forest fires, and large-scale damaging weather-related events.

  20. Surface Ionization and Soft Landing Techniques in Mass Spectrometry

    SciTech Connect

    Futrell, Jean H.; Laskin, Julia

    2010-04-01

    The advent of soft ionization techniques, notably electrospray and laser desorption ionization methods, has extended mass spectrometric methods to large molecules and molecular complexes. This both greatly expands appli¬cations of mass spectrometry and makes the activation and dissociation of complex ions an integral part of large molecule mass spectrometry. A corollary of the much greater number of internal degrees of freedom and high density of states associated with molecular complexity is that internal energies much higher than the dissociation energies for competing fragmentation processes are required for observable fragmentation in time scales sampled by mass spectrometers. This article describes the kinetics of surface-induced dissociation (SID), a particularly efficient activation method for complex ions. Two very important characteristics of SID are very rapid, sub-picosecond activation and precise control of ion internal energy by varying ion collision energy. The nature of the surface plays an important role in SID, determining both efficiency and mechanism of ion activation. Surface composition and morphology strongly influence the relative importance of competing reactions of SID, ion capture (soft-landing), surface reaction and neutralization. The important features of SID and ion soft-landing are described briefly in this review and more fully in the recommended reading list.

  1. Integrated Display System for Low Visibility Landing and Surface Operations

    NASA Technical Reports Server (NTRS)

    Beskenis, Sharon Otero; Green, David F., Jr.; Hyer, Paul V.; Johnson, Edward J., Jr.

    1998-01-01

    This report summarizes the software products and system architectures developed by Lockheed Martin in support of the Low Visibility Landing and Surface Operations (LVLASO) program at NASA Langley Research Center. It presents an overview of the technical aspects, capabilities, and system integration issues associated with an integrated display system (IDS) that collects, processes and presents information to an aircraft flight crew during all phases of landing, roll-out, turn-off, inbound taxi, outbound taxi and takeoff. Communications hardware, drivers, and software provide continuous real-time data at varying rates and from many different sources to the display programs for presentation on a head-down display (HDD) and/or a head-up display (HUD). An electronic moving map of the airport surface is implemented on the HDD which includes the taxi route assigned by air traffic control, a text messaging system, and surface traffic and runway status information. Typical HUD symbology for navigation and control of the aircraft is augmented to provide aircraft deceleration guidance after touchdown to a pilot selected exit and taxi guidance along the route assigned by ATC. HUD displays include scene-linked symbolic runways, runway exits and taxiways that are conformal with the actual locations on the airport surface. Display formats, system architectures, and the various IDS programs are discussed.

  2. Land Surface Phenology from MODIS: Characterization of the Collection 5 Global Land Cover Dynamics Product

    NASA Technical Reports Server (NTRS)

    Ganguly, Sangram; Friedl, Mark A.; Tan, Bin; Zhang, Xiaoyang; Verma, Manish

    2010-01-01

    Information related to land surface phenology is important for a variety of applications. For example, phenology is widely used as a diagnostic of ecosystem response to global change. In addition, phenology influences seasonal scale fluxes of water, energy, and carbon between the land surface and atmosphere. Increasingly, the importance of phenology for studies of habitat and biodiversity is also being recognized. While many data sets related to plant phenology have been collected at specific sites or in networks focused on individual plants or plant species, remote sensing provides the only way to observe and monitor phenology over large scales and at regular intervals. The MODIS Global Land Cover Dynamics Product was developed to support investigations that require regional to global scale information related to spatiotemporal dynamics in land surface phenology. Here we describe the Collection 5 version of this product, which represents a substantial refinement relative to the Collection 4 product. This new version provides information related to land surface phenology at higher spatial resolution than Collection 4 (500-m vs. 1-km), and is based on 8-day instead of 16-day input data. The paper presents a brief overview of the algorithm, followed by an assessment of the product. To this end, we present (1) a comparison of results from Collection 5 versus Collection 4 for selected MODIS tiles that span a range of climate and ecological conditions, (2) a characterization of interannual variation in Collections 4 and 5 data for North America from 2001 to 2006, and (3) a comparison of Collection 5 results against ground observations for two forest sites in the northeastern United States. Results show that the Collection 5 product is qualitatively similar to Collection 4. However, Collection 5 has fewer missing values outside of regions with persistent cloud cover and atmospheric aerosols. Interannual variability in Collection 5 is consistent with expected ranges of

  3. Surface-material maps of Viking landing sites on Mars

    NASA Technical Reports Server (NTRS)

    Moore, H. J.; Keller, J. M.

    1991-01-01

    Researchers mapped the surface materials at the Viking landing sites on Mars to gain a better understanding of the materials and rock populations at the sites and to provide information for future exploration. The maps extent to about 9 m in front of each lander and are about 15 m wide - an area comparable to the area of a pixel in high resolution Viking Orbiter images. The maps are divided into the near and far fields. Data for the near fields are from 1/10 scale maps, umpublished maps, and lander images. Data for the far fields are from 1/20 scale contour maps, contoured lander camera mosaics, and lander images. Rocks are located on these maps using stereometric measurements and the contour maps. Frequency size distribution of rocks and the responses of soil-like materials to erosion by engine exhausts during landings are discussed.

  4. Downscaling Thermal Infrared Radiance for Subpixel Land Surface Temperature Retrieval

    PubMed Central

    Liu, Desheng; Pu, Ruiliang

    2008-01-01

    Land surface temperature (LST) retrieved from satellite thermal sensors often consists of mixed temperature components. Retrieving subpixel LST is therefore needed in various environmental and ecological studies. In this paper, we developed two methods for downscaling coarse resolution thermal infrared (TIR) radiance for the purpose of subpixel temperature retrieval. The first method was developed on the basis of a scale-invariant physical model on TIR radiance. The second method was based on a statistical relationship between TIR radiance and land cover fraction at high spatial resolution. The two methods were applied to downscale simulated 990-m ASTER TIR data to 90-m resolution. When validated against the original 90-m ASTER TIR data, the results revealed that both downscaling methods were successful in capturing the general patterns of the original data and resolving considerable spatial details. Further quantitative assessments indicated a strong agreement between the true values and the estimated values by both methods.

  5. Subsurface Emission Effects in AMSR-E Measurements: Implications for Land Surface Microwave Emissivity Retrieval

    NASA Technical Reports Server (NTRS)

    Galantowicz, John F.; Moncet, Jean-Luc; Liang, Pan; Lipton, Alan E.; Uymin, Gennady; Prigent, Catherine; Grassotti, Christopher

    2011-01-01

    An analysis of land surface microwave emission time series shows that the characteristic diurnal signature associated with subsurface emission in sandy deserts carry over to arid and semi-arid region worldwide. Prior work found that diurnal variation of Special Sensor Microwave/Imager (SSM/I) brightness temperatures in deserts was small relative to International Satellite Cloud Climatology Project land surface temperature (LST) variation and that the difference varied with surface type and was largest in sand sea regions. Here we find more widespread subsurface emission effects in Advanced Microwave Scanning Radiometer-EOS (AMSR-E) measurements. The AMSR-E orbit has equator crossing times near 01:30 and 13 :30 local time, resulting in sampling when near-surface temperature gradients are likely to be large and amplifying the influence of emission depth on effective emitting temperature relative to other factors. AMSR-E measurements are also temporally coincident with Moderate Resolution Imaging Spectroradiometer (MODIS) LST measurements, eliminating time lag as a source of LST uncertainty and reducing LST errors due to undetected clouds. This paper presents monthly global emissivity and emission depth index retrievals for 2003 at 11, 19, 37, and 89 GHz from AMSR-E, MODIS, and SSM/I time series data. Retrieval model fit error, stability, self-consistency, and land surface modeling results provide evidence for the validity of the subsurface emission hypothesis and the retrieval approach. An analysis of emission depth index, emissivity, precipitation, and vegetation index seasonal trends in northern and southern Africa suggests that changes in the emission depth index may be tied to changes in land surface moisture and vegetation conditions

  6. The impacts of heterogeneous land surface fluxes on the diurnal cycle precipitation: A framework for improving the GCM representation of land-atmosphere interactions

    NASA Astrophysics Data System (ADS)

    Wu, Chien-Ming; Lo, Min-Hui; Chen, Wei-Ting; Lu, Chia-Tsung

    2015-05-01

    The present study aims to investigate the modulation of the diurnal cycle precipitation by heterogeneous land surface fluxes. By combining the National Center for Atmospheric Research Community Land Model (CLM) and vector vorticity equation cloud-resolving model (VVM), experiments are designed to understand the responses of diurnal convection to heterogeneous land surface forcings of various spatial scales and intensities. To delineate the land-atmosphere interactions, a two-step off-line approach is adopted. First, the CLM is driven by observational atmospheric forcing with different characteristic length scales and magnitudes. While the surface fluxes from the CLM show no significant difference in the domain-averaged values, their spatial distribution responds significantly to the precipitation heterogeneity. In the second step, the derived CLM surface fluxes are used to drive the VVM. Results show that the timing of precipitation accelerates with increasing magnitude of surface flux perturbation, while the mean and diurnal ranges of precipitation roughly remain the same. The larger perturbation magnitude enhances the boundary layer vertical kinetic energy, which advances the development of the boundary layer. On the other hand, the mean and diurnal ranges of precipitation increase significantly, and the timing of initial precipitation delays with increasing perturbation length scale. The inland breeze induced by the large patches of surface fluxes tends to enhance the mesoscale organization of deep convection, hence the stronger precipitation. The present results highlight the importance of taking heterogeneous land surface fluxes into consideration in future development of general circulation model convection parameterizations associated with land and atmosphere interactions.

  7. Towards an improved land surface scheme for prairie landscapes

    NASA Astrophysics Data System (ADS)

    Mekonnen, M. A.; Wheater, H. S.; Ireson, A. M.; Spence, C.; Davison, B.; Pietroniro, A.

    2014-04-01

    The prairie region of Canada and the United States is characterized by millions of small depressions of glacial origin called prairie potholes. The transfer of surface runoff in this landscape is mainly through a “fill and spill” mechanism among neighboring potholes. While non-contributing areas, that is small internally drained basins, are common on this landscape, during wet periods these areas can become hydrologically connected to larger regional drainage systems. Accurate prediction of prairie surface runoff generation and streamflow thus requires realistic representation of the dynamic threshold-mediated nature of these contributing areas. This paper presents a new prairie surface runoff generation algorithm for land surface schemes and large scale hydrological models that conceptualizes a hydrologic unit as a combination of variable and interacting storage elements. The proposed surface runoff generation algorithm uses a probability density function to represent the spatial variation of pothole storages and assumes a unique relationship between storage and the fractional contributing area for runoff (and hence amount of direct runoff generated) within a grid cell. In this paper the parameters that define this relationship are obtained by calibration against streamflow. The model was compared to an existing hydrology-land surface scheme (HLSS) applied to a typical Canadian prairie catchment, the Assiniboine River. The existing configuration is based on the Canadian Land Surface Scheme (CLASS) and WATROF (a physically-based overland and interflow scheme). The new configuration consists of CLASS coupled with the new PDMROF model. Results showed that the proposed surface runoff generation algorithm performed better at simulating streamflow, and appears to capture the dynamic nature of contributing areas in an effective and parsimonious manner. A pilot evaluation based on 1 m LiDAR data from a small (10 km2) experimental area suggests that the shape of the

  8. Surface Landing Site Weather Analysis for Constellation Program

    NASA Technical Reports Server (NTRS)

    Altino, Karen M.; Burns, K. Lee

    2008-01-01

    Weather information is an important asset for NASA's Constellation Program in developing the next generation space transportation system to fly to the International Space Station, the Moon and, eventually, to Mars. Weather conditions can affect vehicle safety and performance during multiple mission phases ranging from pre-launch ground processing to landing and recovery operations, including all potential abort scenarios. Meteorological analysis is an important contributor, not only to the development and verification of system design requirements but also to mission planning and active ground operations. Of particular interest are the surface atmospheric conditions at both nominal and abort landing sites for the manned Orion capsule. Weather parameters such as wind, rain, and fog all play critical roles in the safe landing of the vehicle and subsequent crew and vehicle recovery. The Marshall Space Flight Center Natural Environments Branch has been tasked by the Constellation Program with defining the natural environments at potential landing zones. Climatological time series of operational surface weather observations are used to calculate probabilities of occurrence of various sets of hypothetical vehicle constraint thresholds, Data are available for numerous geographical locations such that statistical analysis can be performed for single sites as well as multiple-site network configurations. Results provide statistical descriptions of how often certain weather conditions are observed at the site(s) and the percentage that specified criteria thresholds are matched or exceeded. Outputs are tabulated by month and hour of day to show both seasonal and diurnal variation. This paper will describe the methodology used for data collection and quality control, detail the types of analyses performed, and provide a sample of the results that can be obtained,

  9. Linkages between Land Surface Phenology Metrics and Natural and Anthropogenic Events in Drylands (Invited)

    NASA Astrophysics Data System (ADS)

    de Beurs, K.; Brown, M. E.; Ahram, A.; Walker, J.; Henebry, G. M.

    2013-12-01

    Tracking vegetation dynamics across landscapes using remote sensing, or 'land surface phenology,' is a key mechanism that allows us to understand ecosystem changes. Land surface phenology models rely on vegetation information from remote sensing, such as the datasets derived from the Advanced Very High Resolution Radiometer (AVHRR), the newer MODIS sensors on Aqua and Terra, and sometimes the higher spatial resolution Landsat data. Vegetation index data can aid in the assessment of variables such as the start of season, growing season length and overall growing season productivity. In this talk we use Landsat, MODIS and AVHRR data and derive growing season metrics based on land surface phenology models that couple vegetation indices with satellite derived accumulated growing degreeday and evapotranspiration estimates. We calculate the timing and the height of the peak of the growing season and discuss the linkage of these land surface phenology metrics with natural and anthropogenic changes on the ground in dryland ecosystems. First we will discuss how the land surface phenology metrics link with annual and interannual price fluctuations in 229 markets distributed over Africa. Our results show that there is a significant correlation between the peak height of the growing season and price increases for markets in countries such as Nigeria, Somalia and Niger. We then demonstrate how land surface phenology metrics can improve models of post-conflict resolution in global drylands. We link the Uppsala Conflict Data Program's dataset of political, economic and social factors involved in civil war termination with an NDVI derived phenology metric and the Palmer Drought Severity Index (PDSI). An analysis of 89 individual conflicts in 42 dryland countries (totaling 892 individual country-years of data between 1982 and 2005) revealed that, even accounting for economic and political factors, countries that have higher NDVI growth following conflict have a lower risk of

  10. Enhancing model-based land surface temperature estimates using multi-platform microwave remote sensing products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land surface temperature plays an important role in land surface processes, and it is a key input to physically-based retrieval algorithms of important hydrological states and fluxes, such as soil moisture and evaporation. This study presents a framework to use independent estimates of land surface ...

  11. The North American ASTER Land Surface Emissivity Database (NAALSED) V2.0

    NASA Astrophysics Data System (ADS)

    Hulley, G. C.; Hook, S. J.

    2009-12-01

    One of the key Earth Science Data Records identified by NASA is Land Surface Temperature and Emissivity (LST&E). LST&E data are important parameters in global climate change studies that involve climate modeling, ice dynamic analyses, surface-atmosphere interactions and land use, land cover change. Accurate knowledge of the Land Surface Emissivity (LSE) in the Thermal Infrared (TIR: 8-12 um) part of the electromagnetic spectrum is essential to derive accurate Land Surface Temperatures (LSTs) from spaceborne TIR measurements. TIR data are supplied by instruments on several satellite platforms including the Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER), which was launched on NASA's Terra satellite in 1999. ASTER has five bands in the TIR and a spatial resolution of 90 m. A mean seasonal, gridded, LST&E database has been produced at 100 m spatial resolution using all the ASTER scenes acquired for the months of Jan-Mar (winter) and Jul-Sep (summer) over North America. Version 2.0 of the North American ASTER Land Surface Database (NAALSED) (http://emissivity.jpl.nasa.gov) has now been released and includes two key refinements designed to improve the accuracy of LSE's over water bodies and account for the effects of fractional vegetation cover. The water adjustment replaces ASTER LSE values over inland water bodies with a measured library emissivity spectrum of distilled water, and then re-calculates the surface temperatures using a split-window algorithm. The accuracy of ASTER LSE over vegetated surfaces is improved by applying a fractional vegetation cover adjustment (TES_Pv) to the ASTER Temperature Emissivity Separation (TES) calibration curve. The NAALSED LSE product was validated over bare surfaces with laboratory measurements of sand samples collected at nine pseudo-invariant sand dune sites located in the western/southwestern USA. The nine sand dune sites cover a broad range of LSE's in the TIR. Results show that the absolute mean LSE

  12. RASSOR - Regolith Advanced Surface Systems Operations Robot

    NASA Technical Reports Server (NTRS)

    Gill, Tracy R.; Mueller, Rob

    2015-01-01

    The Regolith Advanced Surface Systems Operations Robot (RASSOR) is a lightweight excavator for mining in reduced gravity. RASSOR addresses the need for a lightweight (<100 kg) robot that is able to overcome excavation reaction forces while operating in reduced gravity environments such as the moon or Mars. A nominal mission would send RASSOR to the moon to operate for five years delivering regolith feedstock to a separate chemical plant, which extracts oxygen from the regolith using H2 reduction methods. RASSOR would make 35 trips of 20 kg loads every 24 hours. With four RASSORs operating at one time, the mission would achieve 10 tonnes of oxygen per year (8 t for rocket propellant and 2 t for life support). Accessing craters in space environments may be extremely hard and harsh due to volatile resources - survival is challenging. New technologies and methods are required. RASSOR is a product of KSC Swamp Works which establishes rapid, innovative and cost effective exploration mission solutions by leveraging partnerships across NASA, industry and academia.

  13. Comparison of MISR and MODIS land surface albedos: Methodology

    NASA Astrophysics Data System (ADS)

    Taberner, M.; Pinty, B.; Govaerts, Y.; Liang, S.; Verstraete, M. M.; Gobron, N.; Widlowski, J.-L.

    2010-03-01

    The broadband white sky surface albedo (bihemispherical reflectance) products available from the Moderate Resolution Imaging Spectroradiometer (MODIS) are compared at regional and continental scales with similar products generated from the Multiangle Imaging Spectroradiometer (MISR) land surface bidirectional reflectance factor (BRF) parameters. This paper describes the methodology applied to derive MISR white sky albedos over four spectral broadbands of interest, namely, 0.3-0.7 μm, 0.4-1.1 μm, 0.7-3.0 μm, and 0.3-3.0 μm, as well as an evaluation of the strategy adopted to compare the MODIS and MISR products. The results are very encouraging since the two data sets show very good statistical agreement over large areas and over a full year of measurements, despite the many differences that exist in the suite of algorithms applied to retrieve these surface quantities from each of these instruments separately.

  14. Physically plausible prescription of land surface model soil moisture

    NASA Astrophysics Data System (ADS)

    Hauser, Mathias; Orth, René; Thiery, Wim; Seneviratne, Sonia

    2016-04-01

    Land surface hydrology is an important control of surface weather and climate, especially under extreme dry or wet conditions where it can amplify heat waves or floods, respectively. Prescribing soil moisture in land surface models is a valuable technique to investigate this link between hydrology and climate. It has been used for example to assess the influence of soil moisture on temperature variability, mean and extremes (Seneviratne et al. 2006, 2013, Lorenz et al., 2015). However, perturbing the soil moisture content artificially can lead to a violation of the energy and water balances. Here we present a new method for prescribing soil moisture which ensures water and energy balance closure by using only water from runoff and a reservoir term. If water is available, the method prevents soil moisture decrease below climatological values. Results from simulations with the Community Land Model (CLM) indicate that our new method allows to avoid soil moisture deficits in many regions of the world. We show the influence of the irrigation-supported soil moisture content on mean and extreme temperatures and contrast our findings with that of earlier studies. Additionally, we will assess how long into the 21st century the new method will be able to maintain present-day climatological soil moisture levels for different regions. Lorenz, R., Argüeso, D., Donat, M.G., Pitman, A.J., den Hurk, B.V., Berg, A., Lawrence, D.M., Chéruy, F., Ducharne, A., Hagemann, S. and Meier, A., 2015. Influence of land-atmosphere feedbacks on temperature and precipitation extremes in the GLACE-CMIP5 ensemble. Journal of Geophysical Research: Atmospheres. Seneviratne, S.I., Lüthi, D., Litschi, M. and Schär, C., 2006. Land-atmosphere coupling and climate change in Europe. Nature, 443(7108), pp.205-209. Seneviratne, S.I., Wilhelm, M., Stanelle, T., Hurk, B., Hagemann, S., Berg, A., Cheruy, F., Higgins, M.E., Meier, A., Brovkin, V. and Claussen, M., 2013. Impact of soil moisture

  15. Development of advanced entry, descent, and landing technologies for future Mars Missions

    NASA Technical Reports Server (NTRS)

    Chu, Cheng-Chih (Chester)

    2006-01-01

    Future Mars missions may need the capability to land much closer to a desired target and/or advanced methods of detecting, avoiding, or tolerating landing hazards. Therefore, technologies that enable 'pinpoint landing' (within tens of meters to 1 km of a target site) will be crucial to meet future mission requirements. As part of NASA Research Announcement, NRA 03-OSS-01, NASA solicited proposals for technology development needs of missions to be launched to Mars during or after the 2009 launch opportunity. Six technology areas were identified as of high priority including advanced entry, descent, and landing (EDL) technologies. In May 2004, 11 proposals with PIs from universities, industries, and NASA centers, were awarded in the area of advanced EDL by NASA for further study and development. This paper presents an overview of these developing technologies.

  16. Characterization of land surface energy fluxes at the Salar de Atacama, Northern Chile using ASTER image classification

    NASA Astrophysics Data System (ADS)

    Kampf, S. K.; Tyler, S. W.

    2003-12-01

    Models of land surface energy fluxes often use remotely sensed data to derive surface temperature, albedo, and emissivity, important parameters in energy budget calculations. The ability to determine the spatial distribution of these parameters can lead to improved estimations of the spatial variability of land surface energy fluxes. However, other parameters used in energy flux calculations such as aerodynamic resistance are not directly linked to quantities commonly derived from remotely sensed data. If images can be accurately classified into separate land cover types, empirically determined values of unknown parameters can then be assigned separately to each land cover classification. This study examines several techniques of determining the spatial distribution of land surface energy fluxes at the Salar de Atacama, a large playa in northern Chile. Fluxes are calculated using Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER) Level 2 surface kinetic temperature, surface emissivity, and surface reflectance data in conjunction with ground-based meteorological measurements. Energy fluxes are calculated initially by applying a single value of aerodynamic resistance to the entire image area. Subsequently, the ASTER scene is classified into distinct land cover types, and land surface roughness is characterized using the ratio of ASTER band 3N (nadir-viewing) to band 3B (back-viewing). Separate values of aerodynamic resistance are then assigned to each land cover type, and energy fluxes over the entire Salar de Atacama are calculated using these spatially distributed aerodynamic resistance values. Results of both energy flux calculation techniques are evaluated at several sites on the playa using ground-based energy flux measurements.

  17. Land surface emissivity retrieval from airborne hyperspectral scanner thermal infrared data over urban surfaces

    NASA Astrophysics Data System (ADS)

    Gao, C. X.; Qian, Y. G.; Wang, N.; Ma, L. L.; Jiang, X. G.

    2015-12-01

    Land surface emissivity (LSE) is a key parameter for characterizing the land surface, and is vital for a wide variety of surface-atmosphere studies. This paper retrieved LSEs of land surfaces over the city of Madrid, Spain from airborne hyperspectral scanner (AHS) thermal infrared data using temperature emissivity separation (TES) method. Six different kinds of urban surfaces: asphalt, bare soil, granite, pavement, shrub and grass pavement, were selected to evaluate the performance of the TES method in urban areas. The results demonstrate that the TES method can be successfully applied to retrieve LSEs in urban area. The six urban surfaces have similar curve shape of emissivity spectra, with the lowest emissivity in band 73, and highest in band 78; the LSE for bare soil varies significantly with spectra, approximately from 0.90 in band 72 to 0.98 in band 78, whereas the LSE for grass has the smallest spectral variation, approximately from 0.965 in band 72 to 0.974 in band 78, and the shrub presents higher LSE than other surfaces in bands 72, 73, 75-77, but a little lower in bands 78 and 79. Furthermore, it is worth noting that band 73 is suitable for discriminating different urban surfaces because large LSE differences exist in this channel for different urban surfaces.

  18. A method for assessing the distinguishability of land covers and soils in land surface models: Basic principles and first results.

    NASA Astrophysics Data System (ADS)

    Eckhardt, Klaus

    2015-04-01

    Land surface-atmosphere interactions are shaped by temporally and spatially varying characteristics of land cover and soil. Yet, model parameters representing these characteristics are oftentimes highly uncertain. Against the background of the parameter uncertainty it is questionable if models are actually always able to describe the emulated systems in such detail as is claimed. Taking this into account, honesty demands that models are simplified as far as possible. A further argument for such a simplification is that the parameterisation of a model is generally an expensive task and should be avoided for land covers and soils whose physical effect cannot be distinguished by the model. On the other hand, the simplification must not go too far. Land surface models have to meet certain minimum requirements pertaining to their ability to reproduce land covers and soils in a differentiated manner. In a model which is used for a land cover change study, for example, the respective covers have to distinguished not only formally, but in their acual effect. A method is presented which contributes to answering the following fundamental questions: (1) How far should land surface models be simplified in order not to feign an explanatory power they do not possess? (2) How far can land surface models be simplified without loosing their explanatory power? (3) Which land surface model is appropriate for a given task with respect to its ability to differentiate between the land covers and soils of interest? Where is need for model improvements? Application of the method is exemplified by means of the model Noah-LSM. Ongoing studies aiming at characterising a number of wide-spread land surface models with respect to their ability to distinguish the physical effect of different land covers are outlined.

  19. The role of GMES / Sentinels in Land-Surface Earth System Science

    NASA Astrophysics Data System (ADS)

    Moreno, J.

    2009-04-01

    A general trend in the current status of representation of Land Surface schemes into Earth System models is driven by the parameterisation of "cycles" instead of individual processes. Particular emphasis is made to account for couplings among the individual cycles, as between the carbon and water cycles. Moreover, the current tendency is to use the measured data -time series in most cases- together with models, in a data assimilation scenario where inputs from multiple sources are integrated. Such approach is more and more necessary as land models tend to be more complex, and particularly due to the fact that land surface variability is not just driven by physical and chemical processes, but intricate biological processes also altered by anthropogenic influences. Human influences in the land system (land use changes, urban development, etc.) and the impacts of natural disasters are becoming also part of land models, but critical data in high spatial and temporal resolutions are needed to properly model such processes. Until now, problems with data availability, data inconsistency and lack of adequate temporal sampling have limited the potential usefulness of such observations in modelling land surface processes. The availability of the GMES / Sentinel series of satellites represents a quite unique opportunity for consolidation of current tendencies and development of new science based on the new type of data that soon will become available. The usefulness of the different Sentinel missions for Land science has been recognised. Although the Sentinel satellite series were primarily designed to provide observations for operational services and routine applications, there is a growing interest in the scientific community towards the usage of Sentinel data for more advanced and innovative science. Moreover, the availability of consistent time series covering a period of over 20 years opens possibilities never explored before, such as systematic data assimilation

  20. Land surface temperature measurements from EOS MODIS data

    NASA Technical Reports Server (NTRS)

    Wan, Zhengming

    1995-01-01

    A significant progress has been made in TIR instrumentation which is required to establish the spectral BRDF/emissivity knowledge base of land-surface materials and to validate the land-surface temperature (LST) algorithms. The SIBRE (spectral Infrared Bidirectional Reflectance and Emissivity) system and a TIR system for measuring spectral directional-hemispherical emissivity have been completed and tested successfully. Optical properties and performance features of key components (including spectrometer, and TIR source) of these systems have been characterized by integrated use of local standards (blackbody and reference plates). The stabilization of the spectrometer performance was improved by a custom designed and built liquid cooling system. Methods and procedures for measuring spectral TIR BRDF and directional-hemispheric emissivity with these two systems have been verified in sample measurements. These TIR instruments have been used in the laboratory and the field, giving very promising results. The measured spectral emissivities of water surface are very close to the calculated values based on well established water refractive index values in published papers. Preliminary results show that the TIR instruments can be used for validation of the MODIS LST algorithm in homogeneous test sites. The beta-3 version of the MODIS LST software is being prepared for its delivery scheduled in the early second half of this year.

  1. Predictability in France : atmospheric forcing or land surface initial conditions?

    NASA Astrophysics Data System (ADS)

    Singla, S.; Martin, E.; Céron, J.-P.; Regimbeau, F.

    2010-09-01

    A first study of a hydrological forecasting suite has already been done at seasonal time scales over France (Céron and al., 2010) in a context of adaptation for water resources management. The results showed the feasibility of hydrological seasonal forecasts by forcing the hydrometeorological model Safran-Isba-Modcou (SIM) with seasonal atmospheric forecasts from the DEMETER project. Scores were better for hydrological variables than for atmospheric variables for four river catchments for the spring season. The purpose of the present study is to quantify the sources of predictability of the hydrometeorological system. Two experiences were conducted in order to address this issue. The first experience consisted in testing the impact of the land surface initial conditions. We used realistic land surface initial state produced by the operational SIM model for the specific year and 9 random years of Safran atmospheric analyses (temperature and precipitation) from 1971 to 2001, in a consistent way with the previous study (Céron et al, 2010). The other atmospheric parameters (wind, specific humidity, long wave and short wave radiation and cloudiness) come from the SAFRAN climatology over the same period. The second experience was designed to evaluate the impact of the atmospheric forcing with 9 random years, chosen for the land surface initial state. The atmospheric forcing (temperature and precipitation) comes from the Safran analysis system for the corresponding year. Some results of this study will be presented on soil wetness index (SWI) forecasts and river flows forecasts for all stations in France. We will compare deterministic and probabilistic scores of the two experiences with those of the hydrological forecasting suite built with the seasonal forecasts from the DEMETER project. Perspectives for the downscaling of seasonal forecasts will be discussed in a last part. Céron J-P, Tanguy G, Franchistéguy L, Martin E, Regimbeau F and Vidal J-P, 2010. Hydrological

  2. Daytime sensible heat flux estimation over heterogeneous surfaces using multitemporal land-surface temperature observations

    NASA Astrophysics Data System (ADS)

    Castellví, F.; Cammalleri, C.; Ciraolo, G.; Maltese, A.; Rossi, F.

    2016-05-01

    Equations based on surface renewal (SR) analysis to estimate the sensible heat flux (H) require as input the mean ramp amplitude and period observed in the ramp-like pattern of the air temperature measured at high frequency. A SR-based method to estimate sensible heat flux (HSR-LST) requiring only low-frequency measurements of the air temperature, horizontal mean wind speed, and land-surface temperature as input was derived and tested under unstable conditions over a heterogeneous canopy (olive grove). HSR-LST assumes that the mean ramp amplitude can be inferred from the difference between land-surface temperature and mean air temperature through a linear relationship and that the ramp frequency is related to a wind shear scale characteristic of the canopy flow. The land-surface temperature was retrieved by integrating in situ sensing measures of thermal infrared energy emitted by the surface. The performance of HSR-LST was analyzed against flux tower measurements collected at two heights (close to and well above the canopy top). Crucial parameters involved in HSR-LST, which define the above mentioned linear relationship, were explained using the canopy height and the land surface temperature observed at sunrise and sunset. Although the olive grove can behave as either an isothermal or anisothermal surface, HSR-LST performed close to H measured using the eddy covariance and the Bowen ratio energy balance methods. Root mean square differences between HSR-LST and measured H were of about 55 W m-2. Thus, by using multitemporal thermal acquisitions, HSR-LST appears to bypass inconsistency between land surface temperature and the mean aerodynamic temperature. The one-source bulk transfer formulation for estimating H performed reliable after calibration against the eddy covariance method. After calibration, the latter performed similar to the proposed SR-LST method.

  3. Exploring the Terrestrial Ecosystem Response to Extreme Weather Events using Multiple Land Surface Models

    NASA Astrophysics Data System (ADS)

    Xu, L.; Schlosser, C. A.; Kicklighter, D. W.; Felzer, B. S.; Monier, E.; Paw U, K.

    2012-12-01

    This study investigates the complex terrestrial ecosystems response to extreme weather events using three different land surface models. Previous studies have showed that extreme weather events can have serious and damaging impacts on human and natural systems and they are most evident on regional and local scales. Under climate change, extreme weather events are likely to increase in both magnitude and frequency, making realistic simulation of ecosystems response to extreme events more essential than ever in assessing the potential damaging impacts. Three different land surface models are used to explore the impacts of extreme events on regional to continental ecosystem responses. The Terrestrial Ecosystem Model (TEM) is a process-based ecosystem model that uses spatially referenced information on climate, elevation, soils, vegetation and water availability to make monthly estimates of vegetation and soil carbon and nitrogen fluxes and pool sizes. The Advanced Canopy-Atmosphere-Soil Algorithm (ACASA) is a multi-layered land surface model based on eddy-covariance theory to calculate the biosphere-atmosphere exchanges of carbon dioxide, water, and momentums. The Community Land Model (CLM) is a community-based model widely used in global-scale land data assimilation research. The study focuses on the complex interactions and feedbacks between the terrestrial ecosystem and the atmosphere such as water cycle, carbon and nitrogen budgets, and environmental conditions. The model simulations and performances are evaluated using the biogeophysical and micrometeorological observation data from the AmeriFlux sites across the continental US. This study compares and evaluates the ability of different models and their key components to capture terrestrial response to extreme weather events.

  4. Surface chemical deposition of advanced electronic materials

    NASA Astrophysics Data System (ADS)

    Bjelkevig, Cameron

    The focus of this work was to examine the direct plating of Cu on Ru diffusion barriers for use in interconnect technology and the substrate mediated growth of graphene on boron nitride for use in advanced electronic applications. The electrodeposition of Cu on Ru(0001) and polycrystalline substrates (with and without pretreatment in an iodine containing solution) has been studied by cyclic voltammetry (CV), current--time transient measurements (CTT), in situ electrochemical atomic force microscopy (EC-AFM), and X-ray photoelectron spectroscopy (XPS). The EC-AFM data show that at potentials near the OPD/UPD threshold, Cu crystallites exhibit pronounced growth anisotropy, with lateral dimensions greatly exceeding vertical dimensions. XPS measurements confirmed the presence and stability of adsorbed I on the Ru surface following pre-treatment in a KI/H2SO4 solution and following polarization to at least -200 mV vs. Ag/AgCl. CV data of samples pre-reduced in I-containing electrolyte exhibited a narrow Cu deposition peak in the overpotential region and a UPD peak. The kinetics of the electrodeposited Cu films was investigated by CTT measurements and applied to theoretical models of nucleation. The data indicated that a protective I adlayer may be deposited on an airexposed Ru electrode as the oxide surface is electrochemically reduced, and that this layer will inhibit reformation of an oxide during the Cu electroplating process. A novel method for epitaxial graphene growth directly on a dielectric substrate of systematically variable thickness was studied. Mono/multilayers of BN(111) were grown on Ru(0001) by atomic layer deposition (ALD), exhibiting a flat (non-nanomesh) R30(✓3x✓3) structure. BN(111) was used as a template for growth of graphene by chemical vapor deposition (CVD) of C2H4 at 1000 K. Characterization by LEED, Auger, STM/STS and Raman indicate the graphene is in registry with the BN substrate, and exhibits a HOPG-like 0 eV bandgap density

  5. Land use changes and its impact on land surface temperature of Yancheng City from 2000 to 2009 analysis

    NASA Astrophysics Data System (ADS)

    Wang, Xinghan

    2014-02-01

    In the paper, based on the technology of remote sensing and geographic information system, and according to the Landsat TM images obtained the land use database and land surface temperature of Yancheng city in the year of 2000 and 2009. Five land use types were identified, namely: farmland, building site, forest and grassland, water, and beach wetland. And then analysis of the urban expansion model based on the Defense Meteorological satellite data. The results show that: (1) In the five kinds of land use types, the largest rate of land use change is beach wetland, which is -8.23, followed by water as -5.17, forest and grassland is 3.27, building site is 2.24, farmland is 0.69. (2) During the 2000-2009, the towns of Yancheng city continuous outward expansion. In the old town, the expansion model is similar to the concentric circles spread to the periphery, but in the new district, which mainly concentrated in the northeast and southeast, the expansion model is re-planning, development and construction. (3) The land use structure change, especially the changes of beach wetland have a largest influence on the land surface temperature of Yancheng city. Among them, the average land surface temperature has increased over 8 degrees. However, the farmland change due to the overall land surface temperature decreased. And the increase of building site, making the urban heat island effect has been enhanced, while the town where the land surface temperature increases in value added in 0 to 5 degrees. At the same time, the water changes, this due to the land surface temperature increases and the added value in the range of 5 to 8 degrees.

  6. Impact of Calibrated Land Surface Model Parameters on the Accuracy and Uncertainty of Land-Atmosphere Coupling in WRF Simulations

    NASA Technical Reports Server (NTRS)

    Santanello, Joseph A., Jr.; Kumar, Sujay V.; Peters-Lidard, Christa D.; Harrison, Ken; Zhou, Shujia

    2012-01-01

    Land-atmosphere (L-A) interactions play a critical role in determining the diurnal evolution of both planetary boundary layer (PBL) and land surface temperature and moisture budgets, as well as controlling feedbacks with clouds and precipitation that lead to the persistence of dry and wet regimes. Recent efforts to quantify the strength of L-A coupling in prediction models have produced diagnostics that integrate across both the land and PBL components of the system. In this study, we examine the impact of improved specification of land surface states, anomalies, and fluxes on coupled WRF forecasts during the summers of extreme dry (2006) and wet (2007) land surface conditions in the U.S. Southern Great Plains. The improved land initialization and surface flux parameterizations are obtained through the use of a new optimization and uncertainty estimation module in NASA's Land Information System (LIS-OPT/UE), whereby parameter sets are calibrated in the Noah land surface model and classified according to a land cover and soil type mapping of the observation sites to the full model domain. The impact of calibrated parameters on the a) spinup of the land surface used as initial conditions, and b) heat and moisture states and fluxes of the coupled WRF simulations are then assessed in terms of ambient weather and land-atmosphere coupling along with measures of uncertainty propagation into the forecasts. In addition, the sensitivity of this approach to the period of calibration (dry, wet, average) is investigated. Finally, tradeoffs of computational tractability and scientific validity, and the potential for combining this approach with satellite remote sensing data are also discussed.

  7. Land Surface Modeling Applications for Famine Early Warning

    NASA Astrophysics Data System (ADS)

    McNally, A.; Verdin, J. P.; Peters-Lidard, C. D.; Arsenault, K. R.; Wang, S.; Kumar, S.; Shukla, S.; Funk, C. C.; Pervez, M. S.; Fall, G. M.; Karsten, L. R.

    2015-12-01

    AGU 2015 Fall Meeting Session ID#: 7598 Remote Sensing Applications for Water Resources Management Land Surface Modeling Applications for Famine Early Warning James Verdin, USGS EROS Christa Peters-Lidard, NASA GSFC Amy McNally, NASA GSFC, UMD/ESSIC Kristi Arsenault, NASA GSFC, SAIC Shugong Wang, NASA GSFC, SAIC Sujay Kumar, NASA GSFC, SAIC Shrad Shukla, UCSB Chris Funk, USGS EROS Greg Fall, NOAA Logan Karsten, NOAA, UCAR Famine early warning has traditionally required close monitoring of agro-climatological conditions, putting them in historical context, and projecting them forward to anticipate end-of-season outcomes. In recent years, it has become necessary to factor in the effects of a changing climate as well. There has also been a growing appreciation of the linkage between food security and water availability. In 2009, Famine Early Warning Systems Network (FEWS NET) science partners began developing land surface modeling (LSM) applications to address these needs. With support from the NASA Applied Sciences Program, an instance of the Land Information System (LIS) was developed to specifically support FEWS NET. A simple crop water balance model (GeoWRSI) traditionally used by FEWS NET took its place alongside the Noah land surface model and the latest version of the Variable Infiltration Capacity (VIC) model, and LIS data readers were developed for FEWS NET precipitation forcings (NOAA's RFE and USGS/UCSB's CHIRPS). The resulting system was successfully used to monitor and project soil moisture conditions in the Horn of Africa, foretelling poor crop outcomes in the OND 2013 and MAM 2014 seasons. In parallel, NOAA created another instance of LIS to monitor snow water resources in Afghanistan, which are an early indicator of water availability for irrigation and crop production. These successes have been followed by investment in LSM implementations to track and project water availability in Sub-Saharan Africa and Yemen, work that is now underway. Adoption of

  8. Quantifying and relating land-surface and subsurface variability in permafrost environments using lidar and surface geophsical datasets

    SciTech Connect

    Hubbard, Susan S; Gangodagmage, C; Dafflon, B; Wainwright, H; Peterson, J; Gusmeroli, A; Ulrich, Craig; Wu, Yuxin; Wilson, Cathy; Rowland, J; Tweedie, Craig; Wullschleger, Stan D

    2013-01-01

    The complexity of permafrost dynamics and its critical impact on climate feedbacks warrant continued development of advanced high-latitude terrestrial ecosystem characterization and monitoring approaches. In this study, we explore the value of remote sensing and surface geophysical data for characterizing land surface and subsurface properties and their linkages in an Alaskan Coastal Plain ecosystem. We base our study on data collected at the end of the 2011 growing season in the Barrow Environmental Observatory, where a nested suite of measurements were collected within a polygon-dominated region including: surface ground penetrating radar, electromagnetic, and electrical resistance tomography data; thaw depth, soil temperature and moisture content, soil texture, soil carbon and nitrogen content, and major and trace cations. Previously-collected lidar data were also available for the study. Analysis of the datasets, individually and in combination, revealed the utility of the methods for characterizing critical land-surface and subsurface properties and associated spatial zonation. Lidar analysis was performed to extract geomorphic metrics (such as slope, curvature, and directed distance of polygons), which potentially indicate drainage potential and permafrost deformation state. Cluster analysis of these lidar-obtained attributes suggested that the land surface can be grouped into three spatially coherent zones, each having a dominant geomorphic expression including: a high centered polygon zone, a low centered polygon zone and a transitional zone. Comparison of the geophysical attributes from radar, electrical resistance tomography, and electromagnetic data with point measurements suggests that the surface geophysical data can provide very high-resolution information about subsurface properties that affect ecosystem feedbacks to climate, such as thaw depth and moisture content. Cluster analysis suggested that the geophysical attributes also varied spatially in a

  9. Assessment of Aquarius/SAC-D Soil Moisture and Land Surface Temperature Using SMOS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our objective is to exploit the large amount of land observations and extend the impact of Aquarius to land applications. The L-band observations over land present an unprecedented opportunity to provide a critical hydrologic parameter, land surface soil moisture. This research will expand the impac...

  10. Land use and surface process domains on alpine hillslopes

    NASA Astrophysics Data System (ADS)

    Kuhn, Nikolaus J.; Caviezel, Chatrina; Hunziker, Matthias

    2015-04-01

    Shrubs and trees are generally considered to protect hillslopes from erosion. As a consequence, shrub encroachment on mountain pastures after abandoning grazing is not considered a threat to soils. However, the abandonment of mown or grazed grasslands causes a shift in vegetation composition and thus a change in landscape ecology and geomorphology. On many alpine slopes, current changes in land use and vegetation cover are accompanied by climate change, potentially generating a new geomorphic regime. Most of the debate focuses on the effect of land abandonment on water erosion rates. Generally, an established perennial vegetation cover improves the mechanical anchoring of the soil and the regulation of the soil water budget, including runoff generation and erosion. However, changing vegetation composition affects many other above- and below-ground properties like root density, -diversity and -geometry, soil structure, pore volume and acidity. Each combination of these properties can lead to a distinct scenario of dominating surface processes, often not reflected by common erosion risk assessment procedures. The study of soil properties along a chronosequence of green alder (alnusviridis) encroachment on the Unteralptal in central Switzerland reveals that shrub encroachment changes soil and vegetation properties towards an increase of resistance to run-off related erosion processes, but a decrease of slope stability against shallow landslides. The latter are a particular threat because of the currently increasing frequency of slide-triggering high magnitude rainfalls. The potential change of process domain on alpine pastures highlights the need for a careful use of erosion models when assessing future land use and climate scenarios. In mountains, but also other intensively managed agricultural landscapes, risk assessment without the appropriate reflection on the shifting relevance of surface processes carries the risk of missing future threats to environmental

  11. Simulation of land-atmosphere gaseous exchange using a coupled land surface-biogeochemical model

    NASA Astrophysics Data System (ADS)

    Gu, C.; Riley, W. J.; Perez, T. J.; Pan, L.

    2009-12-01

    It is important to develop and evaluate biogeochemical models that on the one hand represent vegetation and soil dynamics and on the other hand provide energy and water fluxes in a temporal resolution suitable for biogeochemical processes. In this study, we present a consistent coupling between a common land surface model (CLM3.0) and a recently developed biogeochemical model (TOUGHREACT-N). The model TOUGHREACT-N (TR-N) is one of the few process-based models that simulate green house gases fluxes by using an implicit scheme to solve the diffusion equations governing soil heat and water fluxes. By coupling with CLM3.0, we have significantly improved TR-N by including realistic representations of surface water, energy, and momentum exchanges, through the use of improved formulations for soil evaporation, plant transpiration, vegetation growth, and plant nitrogen uptake embedded in CLM3.0. The coupled CLMTR-N model is a first step for a full coupling of land surface and biogeochemical processes. The model is evaluated with measurements of soil temperature, soil water content, and N2O and N2 gaseous emission data from fallow, corn, and forest sites in Venezuela. The results demonstrate that the CLMTR-N model simulates realistic diurnal variation of soil temperature, soil water content, and N gaseous fluxes. For example, mean differences between predicted and observed midday near-surface soil water content were 8, 11, and 4 % in July, August, and September. The sensitivity of the biogeochemical processes and resulting N emissions to variation in environmental drivers is high, which indicates the need to calculate biogeochemical processes in, at least, two hourly time steps using dynamically updated (rather than daily averaged) soil environmental conditions. The development in CLMTR-N of such a complex representation of processes will allow us to characterize relevant processes and simplifications appropriate for regional to global-scale coupled biogeochemical and

  12. An Open and Transparent Databank of Global Land Surface Temperature

    NASA Astrophysics Data System (ADS)

    Rennie, J.; Thorne, P.; Lawrimore, J. H.; Gleason, B.; Menne, M. J.; Williams, C.

    2013-12-01

    The International Surface Temperature Initiative (ISTI) consists of an effort to create an end-to-end process for land surface air temperature analyses. The foundation of this process is the establishment of a global land surface databank. The databank builds upon the groundbreaking efforts of scientists who led efforts to construct global land surface datasets in the 1980's and 1990's. A primary aim of the databank is to improve aspects including data provenance, version control, temporal and spatial coverage, and improved methods for bringing dozens of source data together into an integrated dataset. The databank consists of multiple stages, with each successive stage providing a higher level of processing, quality and integration. Currently more than 50 sources of data have been added to the databank. An automated algorithm has been developed that merges these sources into one complete dataset by removing duplicate station records, identifying two or more station records that can be merged into a single record, and incorporating new and unique stations. The program runs iteratively through all the sources which are ordered based upon criteria established by the ISTI. The highest preferred source, known as the target, runs through all the candidate sources, calculating station comparisons that are acceptable for merging. The process is probabilistic in approach, and the final fate of a candidate station is based upon metadata matching and data equivalence criteria. If there is not enough information, the station is withheld for further investigation. The algorithm has been validated using a pseudo-source of stations with a known time of observation bias, and correct matches have been made nearly 95% of the time. The final product, endorsed and recommended by ISTI, contains over 30,000 stations, however slight changes in the algorithm can perturb results. Subjective decisions, such as the ordering of the sources, or changing metadata and data matching thresholds

  13. The Rhone-Aggregation Land Surface Scheme Intercomparison Project

    NASA Astrophysics Data System (ADS)

    Boone, A. A.; Habets, F.; Noilhan and Working Group, J.

    2002-05-01

    The Rhone-AGGregation (Rhone-AGG) Land Surface Scheme intercomparison project is an initiative within the Global Energy and Water Cycle Experiment (GEWEX) Global Land-Atmosphere System Study (GLASS)/Global Soil Wetness Project (GSWP) panel of the World Climate Research Programme (WCRP). This project makes use of the Rhone modeling system, which was developed in recent years by the French research community in order to study the continental water cycle on a regional scale. Three distinct components comprise this system: an analysis system to determine the near-surface atmospheric forcing, a Land Surface Scheme (LSS) interface and a distributed hydrological model. The coupling between the three components of the system is 1-way. It was created in an attempt to ensure a consistent dialogue between the atmosphere (precipitation, radiative fluxes, state variables) and the hydrological variables (evaporation, soil moisture, runoff, ground water and river flow). The atmospheric data, which have been mapped to an 8 km grid, consist of standard screen level observations at approximately 60 Météo-France weather network sites within the domain, European Centre for Medium-Range Weather Forecasts (ECMWF) analysis, climatological data and total daily precipitation data from over 1500 gauges. The system utilizes high spatial resolution European soil and vegetation databases, but it has been designed such that it is transferable to other regions. The size of the entire Rhone basin (86,996 km 2) is comparable to the area of a typical coarse-resolution Global atmospheric Climate Model (GCM) grid element, so that it is of interest to examine how the simulations from a wide range of LSSs, which are used in GCMs, numerical weather prediction models, mesoscale atmospheric models or hydrological models, are impacted by changing the spatial resolution over the domain from 8 km to approximately 69 km (1 degree). The main issues addressed by the Rhone-AGG project are how various state of

  14. Improved in-situ methods for determining land surface emissivity

    NASA Astrophysics Data System (ADS)

    Göttsche, Frank; Olesen, Folke; Hulley, Glynn

    2014-05-01

    The accurate validation of LST satellite products, such as the operational LST retrieved by the Land Surface Analysis - Satellite Application Facility (LSA-SAF), requires accurate knowledge of emissivity for the areas observed by the ground radiometers as well as for the area observed by the satellite sensor. Especially over arid regions, the relatively high uncertainty in land surface emissivity (LSE) limits the accuracy with which land surface temperature (LST) can be retrieved from thermal infrared (TIR) radiance measurements. LSE uncertainty affects LST obtained from satellite measurements and in-situ radiance measurements alike. Furthermore, direct comparisons between satellite sensors and ground based sensors are complicated by spatial scale mismatch: ground radiometers usually observe some 10 m2, whereas satellite sensors typically observe between 1 km2 and 100 km2. Therefore, validation sites have to be carefully selected and need to be characterised on the scale of the ground radiometer as well as on the scale of the satellite pixel. The permanent stations near Gobabeb (Namibia; hyper-arid desert climate) and Dahra (Senegal; hot-arid steppe-prairie climate) are two of KIT's four dedicated LST validation stations. Gobabeb station is located on vast and flat gravel plains (several 100 km2), which are mainly covered by coarse gravel, sand, and desiccated grass. The gravel plains are highly homogeneous in space and time, which makes them ideal for validating a broad range of satellite-derived products. Dahra station is located in so called 'tiger bush' and is covered by strongly seasonal grass (95%) and sparse, evergreen trees (dominantly acacia trees) with a background of reddish sand. The strong seasonality is caused by a pronounced rainy season, during which LST retrieval is highly challenging. Outside the rainy season, both sites have relatively large fractions of bare ground and desiccated vegetation: therefore, they are particularly prone to be

  15. Human Mars Landing Site and Impacts on Mars Surface Operations

    NASA Technical Reports Server (NTRS)

    Bussey, Ben; Hoffman, Stephen J.

    2016-01-01

    This paper describes NASA's initial steps for identifying and evaluating candidate Exploration Zones (EZs) and Regions of Interests (ROIs) for the first human crews that will explore the surface of Mars. NASA's current effort to define the exploration of this planet by human crews, known as the Evolvable Mars Campaign (EMC), provides the context in which these EZs and ROIs are being considered. The EMC spans all aspects of a human Mars mission including launch from Earth, transit to and from Mars, and operations on the surface of Mars. Studies related to Mars surface operations and related system capabilities have led to the current definition of an EZ as well as ROIs. An EZ is a collection of ROIs that are located within approximately 100 kilometers of a centralized landing site. ROIs are areas that are relevant for scientific investigation and/or development/maturation of capabilities and resources necessary for a sustainable human presence. The EZ also contains one or more landing sites and a habitation site that will be used by multiple human crews during missions to explore and utilize the ROIs within the EZ. With the EMC as a conceptual basis, the EZ model has been refined to a point where specific site selection criteria for scientific exploration and in situ resource utilization can be defined. In 2015 these criteria were distributed to the planetary sciences community and the in situ resource utilization and civil engineering communities as part of a call for EZ proposals. The resulting "First Landing Site/Exploration Zone Workshop for Human Missions to the Surface of Mars" was held in October 2015 during which 47 proposals for EZs and ROIs were presented and discussed. Proposed locations spanned all longitudes and all allowable latitudes (+/- 50 degrees). Proposed justification for selecting one of these EZs also spanned a significant portion of the scientific and resource criteria provided to the community. Workshop results will be used to prepare for

  16. Land Surface Temperature Measurements form EOS MODIS Data

    NASA Technical Reports Server (NTRS)

    Wan, Zhengming

    1996-01-01

    We have developed a physics-based land-surface temperature (LST) algorithm for simultaneously retrieving surface band-averaged emissivities and temperatures from day/night pairs of MODIS (Moderate Resolution Imaging Spectroradiometer) data in seven thermal infrared bands. The set of 14 nonlinear equations in the algorithm is solved with the statistical regression method and the least-squares fit method. This new LST algorithm was tested with simulated MODIS data for 80 sets of band-averaged emissivities calculated from published spectral data of terrestrial materials in wide ranges of atmospheric and surface temperature conditions. Comprehensive sensitivity and error analysis has been made to evaluate the performance of the new LST algorithm and its dependence on variations in surface emissivity and temperature, upon atmospheric conditions, as well as the noise-equivalent temperature difference (NE(Delta)T) and calibration accuracy specifications of the MODIS instrument. In cases with a systematic calibration error of 0.5%, the standard deviations of errors in retrieved surface daytime and nighttime temperatures fall between 0.4-0.5 K over a wide range of surface temperatures for mid-latitude summer conditions. The standard deviations of errors in retrieved emissivities in bands 31 and 32 (in the 10-12.5 micrometer IR spectral window region) are 0.009, and the maximum error in retrieved LST values falls between 2-3 K. Several issues related to the day/night LST algorithm (uncertainties in the day/night registration and in surface emissivity changes caused by dew occurrence, and the cloud cover) have been investigated. The LST algorithms have been validated with MODIS Airborne Simulator (MAS) dada and ground-based measurement data in two field campaigns conducted in Railroad Valley playa, NV in 1995 and 1996. The MODIS LST version 1 software has been delivered.

  17. Evaluating soil moisture constraints on surface fluxes in land surface models globally

    NASA Astrophysics Data System (ADS)

    Harris, Phil; Gallego-Elvira, Belen; Taylor, Christopher; Folwell, Sonja; Ghent, Darren; Veal, Karen; Hagemann, Stefan

    2016-04-01

    Soil moisture availability exerts a strong control over land evaporation in many regions. However, global climate models (GCMs) disagree on when and where evaporation is limited by soil moisture. Evaluation of the relevant modelled processes has suffered from a lack of reliable, global observations of land evaporation at the GCM grid box scale. Satellite observations of land surface temperature (LST) offer spatially extensive but indirect information about the surface energy partition and, under certain conditions, about soil moisture availability on evaporation. Specifically, as soil moisture decreases during rain-free dry spells, evaporation may become limited leading to increases in LST and sensible heat flux. We use MODIS Terra and Aqua observations of LST at 1 km from 2000 to 2012 to assess changes in the surface energy partition during dry spells lasting 10 days or longer. The clear-sky LST data are aggregated to a global 0.5° grid before being composited as a function dry spell day across many events in a particular region and season. These composites are then used to calculate a Relative Warming Rate (RWR) between the land surface and near-surface air. This RWR can diagnose the typical strength of short term changes in surface heat fluxes and, by extension, changes in soil moisture limitation on evaporation. Offline land surface model (LSM) simulations offer a relatively inexpensive way to evaluate the surface processes of GCMs. They have the benefits that multiple models, and versions of models, can be compared on a common grid and using unbiased forcing. Here, we use the RWR diagnostic to assess global, offline simulations of several LSMs (e.g., JULES and JSBACH) driven by the WATCH Forcing Data-ERA Interim. Both the observed RWR and the LSMs use the same 0.5° grid, which allows the observed clear-sky sampling inherent in the underlying MODIS LST to be applied to the model outputs directly. This approach avoids some of the difficulties in analysing free

  18. improved vegetation phenology in the JULES land-surface model

    NASA Astrophysics Data System (ADS)

    Los, S. O.

    2013-12-01

    Sietse Los, Steven Hancock, Peter North, Jose Gomez-Dans Introduction: Land-surface properties such as albedo, soil moisture and vegetation biophysical parameters affect water, energy and carbon fluxes from the land to the atmosphere an this can alter weather patterns. Here we use globally consistent satellite observations to improve modelling of the vegetation seasonal cycle in the JULES land-surface model (LSM) to better represent these fluxes. JULES model: The JULES LSM is the land surface component of the suite of UK MetOffice general circulation models. JULES is used both in operational weather forecasting and for simulations of future climate. Within JULES, seasonal changes in surface albedo are controlled by snow (not covered here) and vegetation dynamics (phenology). Vegetation phenology is controlled by temperature and water availability, with timings and rates set by a number of trigger thresholds and leaf growth/death rates. Satellite data: The ability of JULES to represent vegetation, in terms of its seasonal cycle as well as the interannual variation, was tested on normalised difference vegetation index (NDVI = (near-infrared - red) / (near-infrared + red)) data. JULES uses a 1D radiative transfer model to predict hemispheric surface albedo for a given leaf area whilst satellites measure reflectance from a single view direction and this may not match the hemispheric albedo. To test this, JULES predictions were compared to the FLIGHT (a 3D radiative transfer model) simulations for different view directions. This revealed that either NDVI profiles need to be normalised to allow a direct comparison (as done here) or else the JULES 1D model must be replaced by a full 3D radiative transfer model, which is computationally expensive. Experiments: The original phenology module in JULES was optimised against NDVI observations using a Monte-Carlo Markov chain method. This optimisation was unsuccessful; and we therefore concluded that the JULES phenology cannot

  19. Improved representation of surface-groundwater interactions in land surface models

    NASA Astrophysics Data System (ADS)

    Ganji, Arman; Sushama, Laxmi

    2016-04-01

    Surface-groundwater interactions are important and determine the evolution of hydrologic variables such as soil moisture, evapotranspiration and surface runoff. Despite its importance, groundwater is not explicitly represented in many land surface schemes, used in climate models. In this study, the Canadian Land Surface Scheme (CLASS), which is used in the Canadian regional and global climate models, is modified to include groundwater dynamics. The impact of these modifications on the regional hydrology is assessed by comparing three simulations, performed with the original and modified versions of CLASS, driven by atmospheric forcing data from the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis (ERA-Interim), for the 1980-2011 period, over a northeast Canadian domain. The modified and original versions of CLASS differ in the underlying boundary condition for soil layer hydrology, with one version being based on gravitational drainage from an original version of CLASS and the other one is newly proposed unconfined groundwater at the depth of bedrock layer. Results suggest statistically significant increases in soil moisture, during the spring and summer seasons, for the simulation with the new groundwater scheme, compared to the original version of CLASS, which is also reflected in the increased summer surface runoff and streamflows in this simulation with modified CLASS, over most of the study domain. The streamflows in this simulation is in better agreement to those observed. This study thus demonstrates the importance of groundwater scheme in land surface models for realistic simulation of hydrological processes.

  20. Satellite Derived Land Surface Temperature for Model Assimilation

    NASA Technical Reports Server (NTRS)

    Suggs, Ronnie J.; Jedlovec, Gary J.; Lapenta, William

    1999-01-01

    Studies have shown that land surface temperature (LST) tendencies are sensitive to the surface moisture availability which is a function of soil moisture and vegetation. The assimilation of satellite derived LST tendencies into the surface energy budget of mesoscale models has shown promise in improving the representation of the complex effects of both soil moisture and vegetation within the models for short term simulations. LST derived from geostationary satellites has the potential of providing the temporal and spatial resolution needed for an LST assimilation process. This paper presents an analysis comparing the LST derived from GOES-8 infrared measurements with LST calculated by the MM5 numerical model. The satellite derived LSTs are calculated using a physical split window approach using channels 4 and 5 of GOES-8. The differences in the LST data sets, especially the tendencies, are presented and examined. Quantifying the differences between the data sets provide insight of possible weaknesses in the model parameterizations affecting the surface energy budget calculations and an indication of the potential effectiveness o f assimilating LST into the models.

  1. Investigation of Aerodynamic and Aerodynamic and Radiometric Land Surface Temperatures

    NASA Technical Reports Server (NTRS)

    Crago, Richard D.; Friedl, Mark; Kustas, William; Wang, Ye-Qiao

    2003-01-01

    The overall goal of the project was to reconcile the difference between T(sub s,r) and T(sub aero), while maintaining consistency within models and with theory and data. The project involved collaboration between researchers at Bucknell University, Boston University, University of mode Island, and the USDNARS Hydrology Laboratory. This report focuses on the work done at Bucknell, which used an analytical continuous-source flux model developed by Crago (1998), based on work by Brutsaert and Sugita (1996) to generate fluxes at all levels of the canopy. Named ALARM [Analytical Land- Atmosphere-Radiometer Model] by Suleiman and Crago (2002), the model assumes the foliage has an exponential vertical temperature profile. The same profile is felt by the within-canopy turbulence and 'seen" by a radiometer viewing the surface from any zenith view angle. ALARM converts radiometric surface temperatures taken from any view angle into a clearly-defined version of Taero called the equivalent isothermal surface temperature T(sub s,j), and then calculates the sensible heat flux H using Monin-Obukhov similarity theory. This allows remotely sensed Ts,r measurements to be used to produce high quality sensible and latent heat flux estimates, or to validate or update the surface temperature produced by SVATs in climate or mesoscale models.

  2. 30 CFR 762.13 - Land exempt from designation as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... surface coal mining operations. 762.13 Section 762.13 Mineral Resources OFFICE OF SURFACE MINING... AREAS AS UNSUITABLE FOR SURFACE COAL MINING OPERATIONS § 762.13 Land exempt from designation as unsuitable for surface coal mining operations. The requirements of this part do not apply to— (a) Lands...

  3. 30 CFR 762.13 - Land exempt from designation as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... surface coal mining operations. 762.13 Section 762.13 Mineral Resources OFFICE OF SURFACE MINING... AREAS AS UNSUITABLE FOR SURFACE COAL MINING OPERATIONS § 762.13 Land exempt from designation as unsuitable for surface coal mining operations. The requirements of this part do not apply to— (a) Lands...

  4. 30 CFR 762.13 - Land exempt from designation as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... surface coal mining operations. 762.13 Section 762.13 Mineral Resources OFFICE OF SURFACE MINING... AREAS AS UNSUITABLE FOR SURFACE COAL MINING OPERATIONS § 762.13 Land exempt from designation as unsuitable for surface coal mining operations. The requirements of this part do not apply to— (a) Lands...

  5. 30 CFR 762.13 - Land exempt from designation as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... surface coal mining operations. 762.13 Section 762.13 Mineral Resources OFFICE OF SURFACE MINING... AREAS AS UNSUITABLE FOR SURFACE COAL MINING OPERATIONS § 762.13 Land exempt from designation as unsuitable for surface coal mining operations. The requirements of this part do not apply to— (a) Lands...

  6. 30 CFR 762.13 - Land exempt from designation as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... surface coal mining operations. 762.13 Section 762.13 Mineral Resources OFFICE OF SURFACE MINING... AREAS AS UNSUITABLE FOR SURFACE COAL MINING OPERATIONS § 762.13 Land exempt from designation as unsuitable for surface coal mining operations. The requirements of this part do not apply to— (a) Lands...

  7. NASA Low Visibility Landing and Surface Operations (LVLASO) Atlanta Demonstration: Surveillance Systems Performance Analysis

    NASA Technical Reports Server (NTRS)

    Cassell, Rick; Evers, Carl; Hicok, Dan; Lee, Derrick

    1999-01-01

    NASA conducted a series of flight experiments at Hartsfield Atlanta International Airport as part of the Low Visibility Landing and Surface Operations (LVLASO) Program. LVLASO is one of the subelements of the NASA Terminal Area Productivity (TAP) Program, which is focused on providing technology and operating procedures for achieving clear-weather airport capacity in instrument-weather conditions, while also improving safety. LVLASO is investigating various technologies to be applied to airport surface operations, including advanced flight deck displays and surveillance systems. The purpose of this report is to document the performance of the surveillance systems tested as part of the LVLASO flight experiment. There were three surveillance sensors tested: primary radar using Airport Surface Detection Equipment (ASDE-3) and the Airport Movement Area Safety System (AMASS), Multilateration using the Airport Surface Target Identification System (ATIDS), and Automatic Dependent Surveillance - Broadcast (ADS-B) operating at 1090 MHz. The performance was compared to the draft requirements of the ICAO Advanced Surface Movement Guidance and Control System (A-SMGCS). Performance parameters evaluated included coverage, position accuracy, and update rate. Each of the sensors was evaluated as a stand alone surveillance system.

  8. Assessment of the consistency among global microwave land surface emissivity products

    NASA Astrophysics Data System (ADS)

    Norouzi, H.; Temimi, M.; Prigent, C.; Turk, J.; Khanbilvardi, R.; Tian, Y.; Furuzawa, F.; Masunaga, H.

    2014-09-01

    The goal of this work is to inter-compare a number of global land surface emissivity products over various land-cover conditions to assess their consistency. Ultimately, the discrepancies between the studied emissivity products will help interpreting the divergences among numerical weather prediction models in which land emissivity is a key surface boundary parameter. The intercompared retrieved land emissivity products were generated over five-year period (2003-2007) using observations from the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E), Special Sensor Microwave Imager (SSM/I), The Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) and Windsat. First, all products were reprocessed in the same projection and spatial resolution as they were generated from sensors with various configurations. Then, the mean value and standard deviations of monthly emissivity values were calculated for each product to assess the spatial distribution of the consistencies/inconsistencies among the products across the globe. The emissivity values from four products were also compared to soil moisture estimates and satellite-based vegetation index to assess their sensitivities to the changes in land surface conditions. Results show that systematic differences among products exist and variation of emissivities at each product has similar frequency dependency at any land cover type. Monthly means of emissivity values from AMSR-E in the vertical and horizontal polarizations seem to be systematically lower across various land cover condition which may be attributed to the 1.30 a.m./p.m. overpass time of the sensor and possibly a residual skin temperature effect in the product. The standard deviation of the analysed products was the lowest (less than 0.01) in rain forest regions for all products and the highest in northern latitudes, above 0.04 for AMSR-E and SSM/I and around 0.03 for WindSat. Despite differences in absolute emissivity estimates

  9. Estimation of Surface Air Temperature Over Central and Eastern Eurasia from MODIS Land Surface Temperature

    NASA Technical Reports Server (NTRS)

    Shen, Suhung; Leptoukh, Gregory G.

    2011-01-01

    Surface air temperature (T(sub a)) is a critical variable in the energy and water cycle of the Earth.atmosphere system and is a key input element for hydrology and land surface models. This is a preliminary study to evaluate estimation of T(sub a) from satellite remotely sensed land surface temperature (T(sub s)) by using MODIS-Terra data over two Eurasia regions: northern China and fUSSR. High correlations are observed in both regions between station-measured T(sub a) and MODIS T(sub s). The relationships between the maximum T(sub a) and daytime T(sub s) depend significantly on land cover types, but the minimum T(sub a) and nighttime T(sub s) have little dependence on the land cover types. The largest difference between maximum T(sub a) and daytime T(sub s) appears over the barren and sparsely vegetated area during the summer time. Using a linear regression method, the daily maximum T(sub a) were estimated from 1 km resolution MODIS T(sub s) under clear-sky conditions with coefficients calculated based on land cover types, while the minimum T(sub a) were estimated without considering land cover types. The uncertainty, mean absolute error (MAE), of the estimated maximum T(sub a) varies from 2.4 C over closed shrublands to 3.2 C over grasslands, and the MAE of the estimated minimum Ta is about 3.0 C.

  10. Land Surface Temperature Measurements from EOS MODIS Data

    NASA Technical Reports Server (NTRS)

    Wan, Zheng-Ming

    2004-01-01

    This report summarizes the accomplishments made by the MODIS LST (Land-Surface Temperature) group at University of California, Santa Barbara, under NASA Contract. Version 1 of the MODIS Land-Surface Temperature Algorithm Theoretical Basis Document (ATBD) was reviewed in June 1994, version 2 reviewed in November 1994, version 3.1 in August 1996, and version 3.3 updated in April 1999. Based on the ATBD, two LST algorithms were developed, one is the generalized split-window algorithm and another is the physics-based day/night LST algorithm. These two LST algorithms were implemented into the production generation executive code (PGE 16) for the daily standard MODIS LST products at level-2 (MODII-L2) and level-3 (MODIIA1 at 1 km resolution and MODIIB1 at 5km resolution). PGE codes for 8-day 1 km LST product (MODIIA2) and the daily, 8-day and monthly LST products at 0.05 degree latitude/longitude climate model grids (CMG) were also delivered. Four to six field campaigns were conducted each year since 2000 to validate the daily LST products generated by PGE16 and the calibration accuracies of the MODIS TIR bands used for the LST/emissivity retrieval from versions 2-4 of Terra MODIS data and versions 3-4 of Aqua MODIS data. Validation results from temperature-based and radiance-based methods indicate that the MODIS LST accuracy is better than 1 C in most clear-sky cases in the range from -10 to 58 C. One of the major lessons learn from multi- year temporal analysis of the consistent V4 daily Terra MODIS LST products in 2000-2003 over some selected target areas including lakes, snow/ice fields, and semi-arid sites is that there are variable numbers of cloud-contaminated LSTs in the MODIS LST products depending on surface elevation, land cover types, and atmospheric conditions. A cloud-screen scheme with constraints on spatial and temporal variations in LSTs was developed to remove cloud-contaminated LSTs. The 5km LST product was indirectly validated through comparisons to

  11. LAND SURFACE TEMPERATURE RETRIEVAL AT HIGH SPATIAL AND TEMPORAL RESOLUTIONS OVER THE SOUTHWESTERN UNITED STATES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land surface temperature (LST) and its diurnal variation are important observable characteristics when evaluating climate change, land-atmosphere energy exchange processes and the global hydrological cycle. These characteristics are observable from satellite platforms using thermal infrared, but do...

  12. Advances in POST2 End-to-End Descent and Landing Simulation for the ALHAT Project

    NASA Technical Reports Server (NTRS)

    Davis, Jody L.; Striepe, Scott A.; Maddock, Robert W.; Hines, Glenn D.; Paschall, Stephen, II; Cohanim, Babak E.; Fill, Thomas; Johnson, Michael C.; Bishop, Robert H.; DeMars, Kyle J.; Sostaric, Ronald r.; Johnson, Andrew E.

    2008-01-01

    Program to Optimize Simulated Trajectories II (POST2) is used as a basis for an end-to-end descent and landing trajectory simulation that is essential in determining design and integration capability and system performance of the lunar descent and landing system and environment models for the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project. The POST2 simulation provides a six degree-of-freedom capability necessary to test, design and operate a descent and landing system for successful lunar landing. This paper presents advances in the development and model-implementation of the POST2 simulation, as well as preliminary system performance analysis, used for the testing and evaluation of ALHAT project system models.

  13. Land Surface Temperature Measurements from EOS MODIS Data

    NASA Technical Reports Server (NTRS)

    Wan, Zhengming

    1997-01-01

    We made modifications to the linear kernel bidirectional reflectance distribution function (BRDF) models from Roujean et al. and Wanner et al. that extend the spectral range into the thermal infrared (TIR). With these TIR BRDF models and the IGBP land-cover product, we developed a classification-based emissivity database for the EOS/MODIS land-surface temperature (LST) algorithm and used it in version V2.0 of the MODIS LST code. Two V2.0 LST codes have been delivered to the MODIS SDST, one for the daily L2 and L3 LST products, and another for the 8-day 1km L3 LST product. New TIR thermometers (broadband radiometer with a filter in the 10-13 micron window) and an IR camera have been purchased in order to reduce the uncertainty in LST field measurements due to the temporal and spatial variations in LST. New improvements have been made to the existing TIR spectrometer in order to increase its accuracy to 0.2 C that will be required in the vicarious calibration of the MODIS TIR bands.

  14. Land Surface Temperature Variational Assimilation within the ORCHIDEE Continental Surface model

    NASA Astrophysics Data System (ADS)

    Benavides-Pinjosovsky, H. S.; Ottle, C.; Thiria, S.; Badran, F.; Crepon, M. R.; Maugis, P.; Brajard, J.

    2013-12-01

    Variational data assimilation is applied to the energy and water budgets modules of the ORCHIDEE land surface model. This part of the model called SECHIBA, describes the exchanges of water and energy between the surface and the atmosphere. The adjoint semi-generator software called YAO is used as a framework to implement 4D-Var assimilation. First, sensitivity analysis was performed in order to validate the adjoint and to identify the most influential parameters. Following, the results of twin experiments using synthetic observations, are shown in order to demonstrate the robustness of the assimilation. In addition, assimilation were made using observational meteorology dataset from the Surface Monitoring Of Soil Reservoir EXperiment (SMOSREX). The results obtained when controlling the most sensitive parameters and the initial soil water content, show the flexibility of the assimilation scheme and the potential of land surface temperature variational data assimilation to improve model calibration and reduce prediction errors. Keywords: Sensibility Analysis, Data Assimilation, Model Calibration, Land Surface Temperature

  15. Hyperspectral Observations of Land Surfaces Using Ground-based, Airborne, and Satellite Sensors

    NASA Astrophysics Data System (ADS)

    Knuteson, R. O.; Best, F. A.; Revercomb, H. E.; Tobin, D. C.

    2006-12-01

    European MetOp platform as well as a planned series of Chinese polar orbiting satellites. The detailed understanding of the land surface infrared emission is a crucial step in the effective utilization of these advanced sounder instruments for the extraction of atmospheric composition information (esp. water vapor vertical profile) over land, which is a key goal for numerical weather prediction data assimilation.

  16. Modeling the Behaviour of an Advanced Material Based Smart Landing Gear System for Aerospace Vehicles

    SciTech Connect

    Varughese, Byji; Dayananda, G. N.; Rao, M. Subba

    2008-07-29

    The last two decades have seen a substantial rise in the use of advanced materials such as polymer composites for aerospace structural applications. In more recent years there has been a concerted effort to integrate materials, which mimic biological functions (referred to as smart materials) with polymeric composites. Prominent among smart materials are shape memory alloys, which possess both actuating and sensory functions that can be realized simultaneously. The proper characterization and modeling of advanced and smart materials holds the key to the design and development of efficient smart devices/systems. This paper focuses on the material characterization; modeling and validation of the model in relation to the development of a Shape Memory Alloy (SMA) based smart landing gear (with high energy dissipation features) for a semi rigid radio controlled airship (RC-blimp). The Super Elastic (SE) SMA element is configured in such a way that it is forced into a tensile mode of high elastic deformation. The smart landing gear comprises of a landing beam, an arch and a super elastic Nickel-Titanium (Ni-Ti) SMA element. The landing gear is primarily made of polymer carbon composites, which possess high specific stiffness and high specific strength compared to conventional materials, and are therefore ideally suited for the design and development of an efficient skid landing gear system with good energy dissipation characteristics. The development of the smart landing gear in relation to a conventional metal landing gear design is also dealt with.

  17. Modeling the Behaviour of an Advanced Material Based Smart Landing Gear System for Aerospace Vehicles

    NASA Astrophysics Data System (ADS)

    Varughese, Byji; Dayananda, G. N.; Rao, M. Subba

    2008-07-01

    The last two decades have seen a substantial rise in the use of advanced materials such as polymer composites for aerospace structural applications. In more recent years there has been a concerted effort to integrate materials, which mimic biological functions (referred to as smart materials) with polymeric composites. Prominent among smart materials are shape memory alloys, which possess both actuating and sensory functions that can be realized simultaneously. The proper characterization and modeling of advanced and smart materials holds the key to the design and development of efficient smart devices/systems. This paper focuses on the material characterization; modeling and validation of the model in relation to the development of a Shape Memory Alloy (SMA) based smart landing gear (with high energy dissipation features) for a semi rigid radio controlled airship (RC-blimp). The Super Elastic (SE) SMA element is configured in such a way that it is forced into a tensile mode of high elastic deformation. The smart landing gear comprises of a landing beam, an arch and a super elastic Nickel-Titanium (Ni-Ti) SMA element. The landing gear is primarily made of polymer carbon composites, which possess high specific stiffness and high specific strength compared to conventional materials, and are therefore ideally suited for the design and development of an efficient skid landing gear system with good energy dissipation characteristics. The development of the smart landing gear in relation to a conventional metal landing gear design is also dealt with.

  18. East-Asia land surface emissivity maps generated from Terra/ASTER data archives

    NASA Astrophysics Data System (ADS)

    Tonooka, Hideyuki; Urai, Minoru

    2009-09-01

    The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is a high-spatial-resolution multispectral imager on the Terra satellite launched in December 1999. The ASTER thermal infrared (TIR) subsystem has five spectral bands with a spatial resolution of 90 m in the TIR spectral region, which are used for generation of the standard products of surface temperature and surface spectral emissivity. High-resolution surface emissivity at five spectral bands is unique, and is particularly useful for geological mapping. However, the emissivity product is not always easy to use, because (1) its image size is about 60 km square which is not large enough for regional-scale studies, (2) its imaged area is not fixed to the world reference system (WRS) due to a flexible pointing system, and (3) standard atmospheric correction often fails under humid conditions. Thus, in order to improve the usability of the ASTER emissivity product, we are generating land surface emissivity maps in a regional scale by applying improved retrieval algorithms and stack/mosaic processing to an ASTER orthogonal projection dataset which have been produced from the ASTER data archives by the Advanced Industrial Science and Technology (AIST), Japan. In the present paper, we introduce East-Asia land surface emissivity maps as the first result of this project. A comparison study with MODIS monthly emissivity products (MOD11C3) indicates that the generated maps give more reasonable emissivity spectra with higher spatial resolution than the MODIS emissivity products, though the maps have missing pixels in high latitude areas and humid areas.

  19. Characterizing The Surface Dynamics For Land Cover Mapping: Current Achievements Of The ESA CCI Land Cover

    NASA Astrophysics Data System (ADS)

    Lamarche, Celine; Bontemps, Sophie; Verhegghen, Astrid; Radoux, Jullien; Vanbogaert, Eric; Kalogirou, Vasileios; Seifert, Frank Martin; Arino, Olivier; Defourny, Pierre

    2013-12-01

    Land Cover (LC) was listed as an Essential Climate Variable by the Global Climate Observing System and included the ESA Climate Change Initiative (CCI) that aims at providing global long-term satellite-based products tailored to the need of the climate modelling community. In the framework of the CCI-LC project, the LC concept was revisited in order to reconcile the LC users' divergent needs for both stable/consistent global LC products over time and more dynamic information related to the dynamic processes of the land surface. This paper aims first at describing the three global products generated in response to this need for more dynamic information, namely the condition products. These products characterize globally the green vegetation phenology, the burnt areas and snow occurrences. The main challenge beyond the production of these datasets refers to the spatio/temporal consistency between the stable and dynamic components of the LC. The second objective of this paper is therefore to address the work on-going on the characterization of this consistency.

  20. Land use/land cover water quality nexus: quantifying anthropogenic influences on surface water quality.

    PubMed

    Wilson, Cyril O

    2015-07-01

    Anthropogenic forces widely influence the composition, configuration, and trend of land use and land cover (LULC) changes with potential implications for surface water quality. These changes have the likelihood of generating non-point source pollution with additional environmental implications for terrestrial and aquatic ecosystems. Monitoring the scope and trajectory of LULC change is pivotal for region-wide planning, tracking the sustainability of natural resources, and meeting the information needs of policy makers. A good comprehension of the dynamics of anthropogenic drivers (proximate and underlying) that influence such changes in LULC is important because any potential adverse change in LULC that may be inimical to sustainable water quality might be addressed at the anthropogenic driver level rather than the LULC change stage. Using a dense time stack of Landsat-5 Thematic Mapper images, a hydrologic water quality and socio-geospatial modeling framework, this study quantifies the role of anthropogenic drivers of LULC change on total suspended solids and total phosphorus concentrations in the Lower Chippewa River Watershed, Wisconsin, at three time steps-1990, 2000, and 2010. Results of the study demonstrated that proximate drivers of LULC change accounted for between 32 and 59% of the concentration and spatial distribution of total suspended solids, while the extent of phosphorus impairment attributed to the proximate drivers ranged between 31 and 42%. PMID:26065891

  1. Land surface temperature measurements from EOS MODIS data

    NASA Technical Reports Server (NTRS)

    Wan, Zhengming

    1993-01-01

    The task objectives of this reporting phase included: (1) completing the draft of the LST Algorithms Theoretical Basic Document by July 30, 1993; (2) making a detailed characterization of the thermal infrared measurement system including spectrometer, blackbody, and radiation sources; (3) making TIR spectral measurements of water and snow-cover surfaces with the MIDAC M2401 spectrometer; and (4) making conceptual and engineering design of an accessory system for spectrometric measurements at variable angles. These objectives are based on the requirements by the MODIS Science Team and the unique challenge in the development of MODIS LST algorithms: to acquire accurate spectral emissivity data of land covers in the near-term and to make ground validations of the LST product in the long-term with a TIR measurement system.

  2. Implementation of diverse tree hydraulics in a land surface model

    NASA Astrophysics Data System (ADS)

    Wolf, A.; Shevliakova, E.; Malyshev, S.; Weng, E.; Pacala, S. W.

    2013-12-01

    Increasing attention has been devoted to the occurence of drought kill in forests worldwide. These mortality events are significant disruptions to the terrestrial carbon cycle, but the mechanisms required to represent drought kill are not represented in terrestrial carbon cycle models. In part, this is due to the challenge of representing the diversity of hydraulic strategies, which include stomatal sensitivity to water deficit and woody tissue vulnerability to cavitation at low water potential. In part, this is due to the challenge of representing this boundary value problem numerically, because the hydraulic components determine water potential at the leaf, but the stomatal conductance on the leaf also determines the hydraulic gradients within the plant. This poster will describe the development of a land surface model parameterization of diverse tree hydraulic strategies.

  3. Evolution of Land Surface Modeling over the Last 30 Years

    NASA Astrophysics Data System (ADS)

    Wood, E. F.; Lettenmaier, D. P.

    2001-12-01

    John Schaake has been intimately involved in hydrological modeling and climate studies throughout his career, and initially proposed the Mississippi River basin as the first GEWEX continental scale basin. Land surface modeling has progressed to the point that coupled water-energy-vegetation macroscale models can run at high resolution at continental to global scales. This presentation will review this evolution of macroscale models and use recent results from the authors' Variable Infiltration Capacity (VIC) macroscale SVAT to revisit research quetions that John Schaake has investigated during his career. These results include a 17-year daily, 2-degree resolution global water balance simulation; a 50-year 3-hourly, 1/8-degree resolution U.S. LDAS-domain water-energy balance simulation; and real-time, hourly, 1/8-degree resolution U.S. LDAS-domain water-energy balance simulations.

  4. Evapotranspiration process as the result of land surface - atmosphere interaction.

    NASA Astrophysics Data System (ADS)

    Gellens-Meulenberghs, Françoise; Arboleda, Alirio; Sepulcre Canto, Guadalupe

    2010-05-01

    Since a few years, EUMETSAT (http://www.eumetsat.int) is developing a network of decentralized meteorological satellite data processing centers called ‘Satellite Application Facilities' (SAFs). These centers have both operational and research objectives in view to develop robust products and services. The ‘Land-Surface-Analysis' SAF (LSA-SAF, http://landsaf.meteo.pt/), develops algorithms for the estimation of operational land products using meteorological satellites. The SEVIRI instrument, on-board Meteosat Second Generation (MSG) satellites, is design to provide wide area coverage and is able to monitor quick changing surface variables affected by cloudiness and diurnal cycle. It has a 3 km spatial resolution at sub-satellite point and a high observation repetition rate (15 min). RMI participates to the LSA-SAF to develop the evapotranspiration (ET) product. ET is the combined response of soil and vegetation to environmental conditions provided by the atmosphere and soil. ET cannot be observed directly and is assessed indirectly through modeling. Different approaches exist to compute ET, from simple empirical relationships to semi-empirical and more complex models. Soil-Vegetation-Atmosphere Transfer (SVAT) schemes are conceived to mimic as best as possible the interaction between atmosphere and land surface. The proposed model is based on the SVAT scheme developed at ECMWF and is adapted to accept real-time data from meteorological satellites. In this contribution we test the capability of the algorithm to reproduce locally observed fluxes at ground measurement stations in Europe and Africa. Emphasis is put on highlighting the interaction between atmosphere and land surface. Local observations of the atmospheric variables (radiation fluxes, air temperature and humidity, wind speed, precipitation) are first compared to the input data (from LSA-SAF and ECMWF) used in the model. Resulting ET and related water and energy fluxes are then compared to observations

  5. Advancing contact angles on large structured surfaces

    NASA Astrophysics Data System (ADS)

    Yoshitake, Yumiko; Itakura, Yoshinori; Gobo, Junichi; Takahashi, Tsutomu

    2014-11-01

    To understand wetting phenomena on complex surfaces, simple modeling experiments in two-dimension system would be one of the most efficient approaches. We develop a new experimental method for wetting dynamics using a large pseudo two- dimensional droplet. This method is useful to examine theoretical studies developed in two dimensional systems. In this study, we examine a pinning and depinning phenomena on millimeter-size structured surface to explain the origin of contact angle hysteresis. Contact lines of the droplet are pinned and deppined at the edge of surface texture. The contact lines can move when the contact angle is equal to the Young's contact angle which are determined by the balance of the surface and interfacial tension immediate vicinity of the contact lines, which is different from the Wenzel's low. Our approach enables to realize a macroscopic modelling experiment of wetting on complex surfaces, which opens a path to design functional surfaces with chemical and physical structure.

  6. Satellite-based land use mapping: comparative analysis of Landsat-8, Advanced Land Imager, and big data Hyperion imagery

    NASA Astrophysics Data System (ADS)

    Pervez, Wasim; Uddin, Vali; Khan, Shoab Ahmad; Khan, Junaid Aziz

    2016-04-01

    Until recently, Landsat technology has suffered from low signal-to-noise ratio (SNR) and comparatively poor radiometric resolution, which resulted in limited application for inland water and land use/cover mapping. The new generation of Landsat, the Landsat Data Continuity Mission carrying the Operational Land Imager (OLI), has improved SNR and high radiometric resolution. This study evaluated the utility of orthoimagery from OLI in comparison with the Advanced Land Imager (ALI) and hyperspectral Hyperion (after preprocessing) with respect to spectral profiling of classes, land use/cover classification, classification accuracy assessment, classifier selection, study area selection, and other applications. For each data source, the support vector machine (SVM) model outperformed the spectral angle mapper (SAM) classifier in terms of class discrimination accuracy (i.e., water, built-up area, mixed forest, shrub, and bare soil). Using the SVM classifier, Hyperion hyperspectral orthoimagery achieved higher overall accuracy than OLI and ALI. However, OLI outperformed both hyperspectral Hyperion and multispectral ALI using the SAM classifier, and with the SVM classifier outperformed ALI in terms of overall accuracy and individual classes. The results show that the new generation of Landsat achieved higher accuracies in mapping compared with the previous Landsat multispectral satellite series.

  7. Global Intercomparison of 12 Land Surface Heat Flux Estimates

    NASA Technical Reports Server (NTRS)

    Jimenez, C.; Prigent, C.; Mueller, B.; Seneviratne, S. I.; McCabe, M. F.; Wood, E. F.; Rossow, W. B.; Balsamo, G.; Betts, A. K.; Dirmeyer, P. A.; Fisher, J. B.; Jung, M.; Kanamitsu, M.; Reichle, R. H.; Reichstein, M.; Rodell, M.; Sheffield, J.; Tu, K.; Wang, K.

    2011-01-01

    A global intercomparison of 12 monthly mean land surface heat flux products for the period 1993-1995 is presented. The intercomparison includes some of the first emerging global satellite-based products (developed at Paris Observatory, Max Planck Institute for Biogeochemistry, University of California Berkeley, University of Maryland, and Princeton University) and examples of fluxes produced by reanalyses (ERA-Interim, MERRA, NCEP-DOE) and off-line land surface models (GSWP-2, GLDAS CLM/ Mosaic/Noah). An intercomparison of the global latent heat flux (Q(sub le)) annual means shows a spread of approx 20 W/sq m (all-product global average of approx 45 W/sq m). A similar spread is observed for the sensible (Q(sub h)) and net radiative (R(sub n)) fluxes. In general, the products correlate well with each other, helped by the large seasonal variability and common forcing data for some of the products. Expected spatial distributions related to the major climatic regimes and geographical features are reproduced by all products. Nevertheless, large Q(sub le)and Q(sub h) absolute differences are also observed. The fluxes were spatially averaged for 10 vegetation classes. The larger Q(sub le) differences were observed for the rain forest but, when normalized by mean fluxes, the differences were comparable to other classes. In general, the correlations between Q(sub le) and R(sub n) were higher for the satellite-based products compared with the reanalyses and off-line models. The fluxes were also averaged for 10 selected basins. The seasonality was generally well captured by all products, but large differences in the flux partitioning were observed for some products and basins.

  8. Assimilation of GOES Land Surface Data into a Mesoscale Models

    NASA Technical Reports Server (NTRS)

    Lapenta, William M.; Suggs, Ron; McNider, Richard T.; Jedlovec, Gary; Dembek, Scott; Goodman, H. Michael (Technical Monitor)

    2001-01-01

    A technique has been developed for assimilating Geostationary Operational Environmental Satellite (GOES)-derived skin temperature tendencies and insolation into the surface energy budget equation of a mesoscale model so that the simulated rate of temperature change closely agrees with the satellite observations. A critical assumption of the technique is that the availability of moisture (either from the soil or vegetation) is the least known term in the model's surface energy budget. Therefore, the simulated latent heat flux, which is a function of surface moisture availability, is adjusted based upon differences between the modeled and satellite-observed skin temperature tendencies. An advantage of this technique is that satellite temperature tendencies are assimilated in an energetically consistent manner that avoids energy imbalances and surface stability problems that arise from direct assimilation of surface shelter temperatures. The fact that the rate of change of the satellite skin temperature is used rather than the absolute temperature means that sensor calibration is not as critical. The assimilation technique has been applied to the Oklahoma-Kansas region during the spring-summer 2000 time period when dynamic changes in vegetation cover occur. In April, central Oklahoma is characterized by large NDVI associated with winter wheat while surrounding areas are primarily rangeland with lower NDVI. In July the vegetation pattern reverses as the central wheat area changes to low NDVI due to harvesting and the surrounding rangeland is greener than it was in April. The goal of this study is to determine if assimilating satellite land surface data can improve simulation of the complex spatial distribution of surface energy and water fluxes across this region. The PSU/NCAR NM5 V3 system is used in this study. The grid configuration consists of a 36-km CONUS domain and a 12-km nest over the area of interest. Bulk verification statistics (BIAS and RMSE) of surface

  9. Impact of Optimized land Surface Parameters on the Land-Atmosphere Coupling in WRF Simulations of Dry and Wet Extremes

    NASA Technical Reports Server (NTRS)

    Kumar, Sujay; Santanello, Joseph; Peters-Lidard, Christa; Harrison, Ken

    2011-01-01

    Land-atmosphere (L-A) interactions play a critical role in determining the diurnal evolution of both planetary boundary layer (PBL) and land surface temperature and moisture budgets, as well as controlling feedbacks with clouds and precipitation that lead to the persistence of dry and wet regimes. Recent efforts to quantify the strength of L-A coupling in prediction models have produced diagnostics that integrate across both the land and PBL components of the system. In this study, we examine the impact of improved specification of land surface states, anomalies, and fluxes on coupled WRF forecasts during the summers of extreme dry (2006) and wet (2007) conditions in the U.S. Southern Great Plains. The improved land initialization and surface flux parameterizations are obtained through the use of a new optimization and uncertainty module in NASA's Land Information System (LIS-OPT), whereby parameter sets are calibrated in the Noah land surface model and classified according to the land cover and soil type mapping of the observations and the full domain. The impact of the calibrated parameters on the a) spin up of land surface states used as initial conditions, and b) heat and moisture fluxes of the coupled (LIS-WRF) simulations are then assessed in terms of ambient weather, PBL budgets, and precipitation along with L-A coupling diagnostics. In addition, the sensitivity of this approach to the period of calibration (dry, wet, normal) is investigated. Finally, tradeoffs of computational tractability and scientific validity (e.g.,. relating to the representation of the spatial dependence of parameters) and the feasibility of calibrating to multiple observational datasets are also discussed.

  10. Observations of atmosphere and ocean/land surfaces using UAVs in Ny-Alesund

    NASA Astrophysics Data System (ADS)

    Inoue, J.; Storvold, R.

    2008-12-01

    Using a Norwegian small robotic aircraft called the Cryowing, atmospheric and ocean/land surface observations were made over Ny-Alesund, Svalbard, Norway from 31 July to 17 August 2008. The aircraft has meteorological sensors to observe dynamic and static air pressures, air temperature, and relative humidity, infrared thermometer to observe surface temperature, and digital camera to record the surface characteristics. From the results of surface mapping, the atmosphere responded differently with different types of surface (i.e., grass, crust, glacier, and ocean). The continuous observation at the same region showed that the time change in incoming solar radiation affects the variation of surface temperature due to difference in surface albedo, resulting in spacial distribution of air temperature in the boundary layer. While in the long ocean flight, the strong SST gradient was observed between the warm Atlantic water and melted water of sea ice near the Fram Strait. The air temperature above 150-m level observed by the UAV was clearly high over the warm current. These results demonstrate the utility of recent advances in UAV technology for monitoring and interpreting the spatial variations in cryosphere.

  11. Predicting Future Temperate and Boreal of Growing Season Start With a Land Surface Model

    NASA Astrophysics Data System (ADS)

    Kaduk, J.

    2008-12-01

    Controlled ecological experiments show that temperate and boreal trees require chilling in winter for rapid leaf out in spring. If the amount of chilling falls below a species specific threshold then an exponentially increasing amount of warming is required to initiate leaf out - potentially actually delaying it in a future warmer climate. The boreal areas could be particularly affected as climate predictions indicate strong warming in these regions. Moreover, currently a large part of the land carbon sink is located in temperate and boreal regions and a changing growing season start might have a large impact on this important sink. Warming-chilling models for green-up, which have been calibrated with remotely sensed normalized difference vegetation index from the years 1983-1995, indicate that in future the chilling requirements reduce the rate of advance of the start of the growing season to earlier times compared to advance rates in the last two decades. Climate scenarios with large warming (IPCC A2 scenarios) show lower advance rates of green- up to earlier times than predictions with a smaller warming (B1 scenarios) due to the reduced chilling in high warming scenarios. When incorporated into a coupled land-surface carbon cycle model based on JULES (the Joint-UK-Land Environment Simulator) the chilling requirements lead to a early growing season photosynthetic carbon up that is correspondingly lower than in simulations where the start of the growing season as simply modelled as responding to warming only. Thus the phenological response in effect provides a positive feedback to global warming.

  12. Information-Theoretic Benchmarking of Land Surface Models

    NASA Astrophysics Data System (ADS)

    Nearing, Grey; Mocko, David; Kumar, Sujay; Peters-Lidard, Christa; Xia, Youlong

    2016-04-01

    Benchmarking is a type of model evaluation that compares model performance against a baseline metric that is derived, typically, from a different existing model. Statistical benchmarking was used to qualitatively show that land surface models do not fully utilize information in boundary conditions [1] several years before Gong et al [2] discovered the particular type of benchmark that makes it possible to *quantify* the amount of information lost by an incorrect or imperfect model structure. This theoretical development laid the foundation for a formal theory of model benchmarking [3]. We here extend that theory to separate uncertainty contributions from the three major components of dynamical systems models [4]: model structures, model parameters, and boundary conditions describe time-dependent details of each prediction scenario. The key to this new development is the use of large-sample [5] data sets that span multiple soil types, climates, and biomes, which allows us to segregate uncertainty due to parameters from the two other sources. The benefit of this approach for uncertainty quantification and segregation is that it does not rely on Bayesian priors (although it is strictly coherent with Bayes' theorem and with probability theory), and therefore the partitioning of uncertainty into different components is *not* dependent on any a priori assumptions. We apply this methodology to assess the information use efficiency of the four land surface models that comprise the North American Land Data Assimilation System (Noah, Mosaic, SAC-SMA, and VIC). Specifically, we looked at the ability of these models to estimate soil moisture and latent heat fluxes. We found that in the case of soil moisture, about 25% of net information loss was from boundary conditions, around 45% was from model parameters, and 30-40% was from the model structures. In the case of latent heat flux, boundary conditions contributed about 50% of net uncertainty, and model structures contributed

  13. A framework for global diurnally-resolved observations of Land Surface Temperature

    NASA Astrophysics Data System (ADS)

    Ghent, Darren; Remedios, John

    2014-05-01

    Land surface temperature (LST) is the radiative skin temperature of the land, and is one of the key parameters in the physics of land-surface processes on regional and global scales. Being a key boundary condition in land surface models, which determine the surface to atmosphere fluxes of heat, water and carbon; thus influencing cloud cover, precipitation and atmospheric chemistry predictions within Global models, the requirement for global diurnal observations of LST is well founded. Earth Observation satellites offer an opportunity to obtain global coverage of LST, with the appropriate exploitation of data from multiple instruments providing a capacity to resolve the diurnal cycle on a global scale. Here we present a framework for the production of global, diurnally resolved, data sets for LST which is a key request from users of LST data. We will show how the sampling of both geostationary and low earth orbit data sets could conceptually be employed to build combined, multi-sensor, pole-to-pole data sets. Although global averages already exist for individual instruments and merging of geostationary based LST is already being addressed operationally (Freitas, et al., 2013), there are still a number of important challenges to overcome. In this presentation, we will consider three of the issues still open in LST remote sensing: 1) the consistency amongst retrievals; 2) the clear-sky bias and its quantification; and 3) merging methods and the propagation of uncertainties. For example, the combined use of both geostationary earth orbit (GEO) and low earth orbit (LEO) data, and both infra-red and microwave data are relatively unexplored but are necessary to make the most progress. Hence this study will suggest what is state-of-the-art and how considerable advances can be made, accounting also for recent improvements in techniques and data quality. The GlobTemperature initiative under the Data User Element of ESA's 4th Earth Observation Envelope Programme (2013

  14. A framework for global diurnally-resolved observations of Land Surface Temperature

    NASA Astrophysics Data System (ADS)

    Ghent, D.; Remedios, J.; Pinnock, S.

    2013-12-01

    Land surface temperature (LST) is the radiative skin temperature of the land, and is one of the key parameters in the physics of land-surface processes on regional and global scales. Being a key boundary condition in land surface models, which determine the surface to atmosphere fluxes of heat, water and carbon; thus influencing cloud cover, precipitation and atmospheric chemistry predictions within Global models, the requirement for global diurnal observations of LST is well founded. Earth Observation satellites offer an opportunity to obtain global coverage of LST, with the appropriate exploitation of data from multiple instruments providing a capacity to resolve the diurnal cycle on a global scale. Here we present a framework for the production of global, diurnally resolved, data sets for LST which is a key request from users of LST data. We will show how the sampling of both geostationary and low earth orbit data sets could conceptually be employed to build combined, multi-sensor, pole-to-pole data sets. Although global averages already exist for individual instruments and merging of geostationary based LST is already being addressed operationally (Freitas, et al., 2013), there are still a number of important challenges to overcome. In this presentation, we will consider three of the issues still open in LST remote sensing: 1) the consistency amongst retrievals; 2) the clear-sky bias and its quantification; and 3) merging methods and the propagation of uncertainties. For example, the combined use of both geostationary earth orbit (GEO) and low earth orbit (LEO) data, and both infra-red and microwave data are relatively unexplored but are necessary to make the most progress. Hence this study will suggest what is state-of-the-art and how considerable advances can be made, accounting also for recent improvements in techniques and data quality. The GlobTemperature initiative under the Data User Element of ESA's 4th Earth Observation Envelope Programme (2013

  15. Two Surface Temperature Retrieval Methods Compared Over Agricultural Lands

    NASA Technical Reports Server (NTRS)

    French, Andrew N.; Schmugge, Thomas J.; Jacob, Frederic; Ogawa, Kenta; Houser, Paul R. (Technical Monitor)

    2002-01-01

    Accurate, spatially distributed surface temperatures are required for modeling evapotranspiration (ET) over agricultural fields under wide ranging conditions, including stressed and unstressed vegetation. Modeling approaches that use surface temperature observations, however, have the burden of estimating surface emissivities. Emissivity estimation, the subject of much recent research, is facilitated by observations in multiple thermal infrared bands. But it is nevertheless a difficult task. Using observations from a multiband thermal sensor, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), estimated surface emissivities and temperatures are retrieved in two different ways: the temperature emissivity separation approach (TES) and the normalized emissivity approach (NEM). Both rely upon empirical relationships, but the assumed relationships are different. TES relies upon a relationship between the minimum spectral emissivity and the range of observed emissivities. NEM relies upon an assumption that at least one thermal band has a pre-determined emissivity (close to 1.0). The benefits and consequences of each approach will be demonstrated for two different landscapes: one in central Oklahoma, USA and another in southern New Mexico.

  16. Hyperspectral imagery for disaggregation of land surface temperature with selected regression algorithms over different land use land cover scenes

    NASA Astrophysics Data System (ADS)

    Ghosh, Aniruddha; Joshi, P. K.

    2014-10-01

    Land surface temperature (LST), a key parameter in understanding thermal behavior of various terrestrial processes, changes rapidly and hence mapping and modeling its spatio-temporal evolution requires measurements at frequent intervals and finer resolutions. We designed a series of experiments for disaggregation of LST (DLST) derived from the Landsat ETM + thermal band using narrowband reflectance information derived from the EO1-Hyperion hyperspectral sensor and selected regression algorithms over three geographic locations with different climate and land use land cover (LULC) characteristics. The regression algorithms applied to this end were: partial least square regression (PLS), gradient boosting machine (GBM) and support vector machine (SVM). To understand the scale dependence of regression algorithms for predicting LST, we developed individual models (local models) at four spatial resolutions (480 m, 240 m, 120 m and 60 m) and tested the differences between these using RMSE derived from cross-validated samples. The sharpening capabilities of the models were assessed by predicting LST at finer resolutions using models developed at coarser spatial resolution. The results were also compared with LST produced by DisTrad sharpening model. It was found that scale dependence of the models is a function of the study area characteristics and regression algorithms. Considering the sharpening experiments, both GBM and SVM performed better than PLS which produced noisy LST at finer spatial resolutions. Based on the results, it can be concluded that GBM and SVM are more suitable algorithms for operational implementation of this application. These algorithms outperformed DisTrad model for heterogeneous landscapes with high variation in soil moisture content and photosynthetic activities. The variable importance measure derived from PLS and GBM provided insights about the characteristics of the relevant bands. The results indicate that wavelengths centered around 457, 671

  17. Recent advances on the study of land-atmospheric interaction on the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Ma, Y.

    2009-04-01

    As a unique geological and geographical unit, the Tibetan Plateau dramatically impacts the world's environment and especially controls climatic and environmental changes in China, Asia and even in the Northern Hemisphere. Tibetan Plateau, therefore, provides a field laboratory for studying global change. With support from various agencies in the People's Republic of China, a Tibetan Observation and Research Platform (TORP) is now implementing. Firstly the background of the establishment of the TORP, the establishing and monitoring plan of long-term scale (5-10 years) of the TORP has been introduced. Then the preliminary observational analysis results, such as the characteristics of land surface heat fluxes and CO2 flux partitioning (diurnal variation, inter-monthly variation and vertical variation etc), the characteristics of atmospheric and soil variables, the structure of the Atmospheric Boundary Layer (ABL) and the turbulent characteristics have also been shown in this paper. The study on the regional distribution of land surface heat fluxes of paramount importance over heterogeneous landscape of the Tibetan Plateau. Therefore, here the parameterization methods based on satellite data (NOAA/AVHRR, Landsat-7 ETM, ASTER and MODIS) and Atmospheric Boundary Layer (ABL) observations have been proposed and tested for deriving surface reflectance, surface temperature, NDVI, MSAVI, vegetation coverage, LAI, net radiation flux, soil heat flux, sensible heat flux and latent heat flux over heterogeneous landscape. As cases study, the methods were applied to the experimental area of the CAMP/Tibet (CEOP (Coordinated Enhanced Observing Period) Asia-Australia Monsoon Project (CAMP) on the Tibetan Plateau), which located at the central Tibetan Plateau and the whole Tibetan Plateau area. Five scenes of Landsat-7 ETM data, four scenes of NOAA/AVHRR data, three scenes of ASTER data and four MODIS data were used in this study. To validate the proposed methods, the ground

  18. Development of a continuous multi-satellite land surface temperature product

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land surface temperature plays an obvious and important role in land surface processes. In addition, it is a key input in physically-based retrieval algorithms of important water and energy products, such as surface net radiation, evapotranspiration and soil moisture. To address these needs, satelli...

  19. Spatial validation of large scale land surface models against monthly land surface temperature patterns using innovative performance metrics.

    NASA Astrophysics Data System (ADS)

    Koch, Julian; Siemann, Amanda; Stisen, Simon; Sheffield, Justin

    2016-04-01

    Land surface models (LSMs) are a key tool to enhance process understanding and to provide predictions of the terrestrial hydrosphere and its atmospheric coupling. Distributed LSMs predict hydrological states and fluxes, such as land surface temperature (LST) or actual evapotranspiration (aET), at each grid cell. LST observations are widely available through satellite remote sensing platforms that enable comprehensive spatial validations of LSMs. In spite of the availability of LST data, most validation studies rely on simple cell to cell comparisons and thus do not regard true spatial pattern information. This study features two innovative spatial performance metrics, namely EOF- and connectivity-analysis, to validate predicted LST patterns by three LSMs (Mosaic, Noah, VIC) over the contiguous USA. The LST validation dataset is derived from global High-Resolution-Infrared-Radiometric-Sounder (HIRS) retrievals for a 30 year period. The metrics are bias insensitive, which is an important feature in order to truly validate spatial patterns. The EOF analysis evaluates the spatial variability and pattern seasonality, and attests better performance to VIC in the warm months and to Mosaic and Noah in the cold months. Further, more than 75% of the LST variability can be captured by a single pattern that is strongly driven by air temperature. The connectivity analysis assesses the homogeneity and smoothness of patterns. The LSMs are most reliable at predicting cold LST patterns in the warm months and vice versa. Lastly, the coupling between aET and LST is investigated at flux tower sites and compared against LSMs to explain the identified LST shortcomings.

  20. Afforestation in China cools local land surface temperature.

    PubMed

    Peng, Shu-Shi; Piao, Shilong; Zeng, Zhenzhong; Ciais, Philippe; Zhou, Liming; Li, Laurent Z X; Myneni, Ranga B; Yin, Yi; Zeng, Hui

    2014-02-25

    China has the largest afforested area in the world (∼62 million hectares in 2008), and these forests are carbon sinks. The climatic effect of these new forests depends on how radiant and turbulent energy fluxes over these plantations modify surface temperature. For instance, a lower albedo may cause warming, which negates the climatic benefits of carbon sequestration. Here, we used satellite measurements of land surface temperature (LST) from planted forests and adjacent grasslands or croplands in China to understand how afforestation affects LST. Afforestation is found to decrease daytime LST by about 1.1 ± 0.5 °C (mean ± 1 SD) and to increase nighttime LST by about 0.2 ± 0.5 °C, on average. The observed daytime cooling is a result of increased evapotranspiration. The nighttime warming is found to increase with latitude and decrease with average rainfall. Afforestation in dry regions therefore leads to net warming, as daytime cooling is offset by nighttime warming. Thus, it is necessary to carefully consider where to plant trees to realize potential climatic benefits in future afforestation projects. PMID:24516135

  1. Afforestation in China cools local land surface temperature

    PubMed Central

    Peng, Shu-Shi; Piao, Shilong; Zeng, Zhenzhong; Ciais, Philippe; Zhou, Liming; Li, Laurent Z. X.; Myneni, Ranga B.; Yin, Yi; Zeng, Hui

    2014-01-01

    China has the largest afforested area in the world (∼62 million hectares in 2008), and these forests are carbon sinks. The climatic effect of these new forests depends on how radiant and turbulent energy fluxes over these plantations modify surface temperature. For instance, a lower albedo may cause warming, which negates the climatic benefits of carbon sequestration. Here, we used satellite measurements of land surface temperature (LST) from planted forests and adjacent grasslands or croplands in China to understand how afforestation affects LST. Afforestation is found to decrease daytime LST by about 1.1 ± 0.5 °C (mean ± 1 SD) and to increase nighttime LST by about 0.2 ± 0.5 °C, on average. The observed daytime cooling is a result of increased evapotranspiration. The nighttime warming is found to increase with latitude and decrease with average rainfall. Afforestation in dry regions therefore leads to net warming, as daytime cooling is offset by nighttime warming. Thus, it is necessary to carefully consider where to plant trees to realize potential climatic benefits in future afforestation projects. PMID:24516135

  2. Human Mars Landing Site and Impacts on Mars Surface Operations

    NASA Technical Reports Server (NTRS)

    Hoffman, Stephen J.; Bussey, Ben

    2016-01-01

    This paper describes NASA's initial steps for identifying and evaluating candidate Exploration Zones (EZs) and Regions of Interests (ROIs) for the first human crews that will explore the surface of Mars. NASA's current effort to define the exploration of this planet by human crews, known as the Evolvable Mars Campaign (EMC), provides the context in which these EZs and ROIs are being considered. The EMC spans all aspects of a human Mars mission including launch from Earth, transit to and from Mars, and operations on the surface of Mars. An EZ is a collection of ROIs located within approximately 100 kilometers of a centralized landing site. ROIs are areas relevant for scientific investigation and/or development/maturation of capabilities and resources necessary for a sustainable human presence. The EZ also contains one or more landing sites and a habitation site that will be used by multiple human crews during missions to explore and utilize the ROIs within the EZ. With the EMC as a conceptual basis, the EZ model has been refined to a point where specific site selection criteria for scientific exploration and in situ resource utilization can be defined. In 2015 these criteria were distributed to the planetary sciences community and the in situ resource utilization and civil engineering communities as part of a call for EZ proposals. The resulting "First Landing Site/Exploration Zone Workshop for Human Missions to the Surface of Mars" was held in October 2015 during which 47 proposals for EZs and ROIs were presented and discussed. Proposed locations spanned all longitudes and all allowable latitudes (+/- 50 degrees). Proposed justification for selecting one of these EZs also spanned a significant portion of the scientific and resource criteria provided to the community. Several important findings resulted from this Workshop including: (a) a strong consensus that, at a scale of 100 km (radius), multiple places on Mars exist that have both sufficient scientific interest

  3. Passive Microwave Brightness Temperature Prediction over Snow-covered Land Using an Artificial Neural Network and a Land Surface Model

    NASA Astrophysics Data System (ADS)

    Forman, B.; Reichle, R. H.

    2012-12-01

    An artificial neural network (ANN) is presented for the purpose of estimating passive microwave (PMW) emission from snow-covered land in North America. The NASA Catchment Land Surface Model (Catchment) is used to define snowpack properties. The Catchment-based ANN is then trained with PMW measurements acquired by the Advanced Microwave Scanning Radiometer (AMSR-E) or the Special Sensor Microwave/Imager (SSM/I). The intended use of the ANN is for eventual application as a predicted measurement operator in an ensemble-based data assimilation (DA) framework to be presented in a follow-on study. A comparison of ANN output against AMSR-E and SSM/I measurements not used during training activities as well as a comparison against independent PMW measurements collected during airborne surveys demonstrates the predictive skill of the ANN. When averaged over the study domain for the available PMW measurement collection period, computed statistics (relative to PMW measurements not used during training) for multiple frequencies and polarizations yielded a near-zero bias, a root mean squared error less than 10K, and an anomaly correlation coefficient of approximately 0.7. The ANN demonstrates skill at reproducing brightness temperatures during the ablation phase when the snowpack is ripe and relatively wet. The ANN demonstrates even greater skill during the accumulation phase when the snowpack is relatively dry. Overall, the results suggest the ANN should serve as an effective predicted measurement operator that is computationally efficient at the continental scale.a) bias, (b) RMSE, and (c) anomaly correlation coefficient for vertically-polarized 18.7 GHz passive microwave brightness temperatures from 1 September 2002 to 1 September 2011. Anomaly R values not statistically different from zero at the 95% significance level based on a Fisher Z transform are shown in gray.

  4. Advanced entry guidance algorithm with landing footprint computation

    NASA Astrophysics Data System (ADS)

    Leavitt, James Aaron

    The design and performance evaluation of an entry guidance algorithm for future space transportation vehicles is presented. The algorithm performs two functions: on-board trajectory planning and trajectory tracking. The planned longitudinal path is followed by tracking drag acceleration, as is done by the Space Shuttle entry guidance. Unlike the Shuttle entry guidance, lateral path curvature is also planned and followed. A new trajectory planning function for the guidance algorithm is developed that is suitable for suborbital entry and that significantly enhances the overall performance of the algorithm for both orbital and suborbital entry. In comparison with the previous trajectory planner, the new planner produces trajectories that are easier to track, especially near the upper and lower drag boundaries and for suborbital entry. The new planner accomplishes this by matching the vehicle's initial flight path angle and bank angle, and by enforcing the full three-degree-of-freedom equations of motion with control derivative limits. Insights gained from trajectory optimization results contribute to the design of the new planner, giving it near-optimal downrange and crossrange capabilities. Planned trajectories and guidance simulation results are presented that demonstrate the improved performance. Based on the new planner, a method is developed for approximating the landing footprint for entry vehicles in near real-time, as would be needed for an on-board flight management system. The boundary of the footprint is constructed from the endpoints of extreme downrange and crossrange trajectories generated by the new trajectory planner. The footprint algorithm inherently possesses many of the qualities of the new planner, including quick execution, the ability to accurately approximate the vehicle's glide capabilities, and applicability to a wide range of entry conditions. Footprints can be generated for orbital and suborbital entry conditions using a pre

  5. Estimating land surface energy fluxes over Mt.Everest area of the Tibetan Plateau by using the ASTER and in situ data

    NASA Astrophysics Data System (ADS)

    Han, Cunbo; Ma, Yaoming; Liu, Xin; Chen, Xuelong; Ma, Weiqiang

    2013-04-01

    Determination of land surface energy fluxes is a difficult and crucial work over heterogeneous landscape especially over mountainous regions. In this study, based on 9 scenes of ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) images from 2006 to 2011 and in situ data around Mt.Everest area of the Tibetan Plateau, land surface characteristic variables (albedo, land surface temperature, NDVI and vegetation fraction) and energy fluxes (net radiation flux, soil heat flux, sensible heat flux and latent heat flux) was estimated by using SEBS (Surface Energy Balance System) model. During calculating net radiation, the effect of topography was taken into account by DEM data. The total incoming solar radiation at the ground surface was separated into three parts, the solar direct radiation, the diffuse sky radiation and the adjacent terrain reflected radiation. The results of estimation were validated by land surface observations in the Qomolangma (Mt. Everest) Station for Atmospheric and Environmental Observation and Research, Chinese Academy of Sciences (QOMS/CAS). It is shown that the derived land surface characteristic variables and energy fluxes are in good accordance with the land surface and their thermodynamic status. The mean absolute percentage difference of albedo, land surface temperature and net radiation flux is less than 10%.

  6. Reconnoitering the effect of shallow groundwater on land surface temperature and surface energy balance using MODIS and SEBS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The possibility of observing shallow groundwater depth and areal extent using satellite measurements can support groundwater models and vast irrigation systems management. Besides, these measurements help to integrate groundwater effects on surface energy balance within land surface models and clima...

  7. Advances in surfaces and osseointegration in implantology. Biomimetic surfaces

    PubMed Central

    Albertini, Matteo; Fernandez-Yague, Marc; Lázaro, Pedro; Herrero-Climent, Mariano; Bullon, Pedro; Gil, Francisco-Javier

    2015-01-01

    The present work is a revision of the processes occurring in osseointegration of titanium dental implants according to different types of surfaces -namely, polished surfaces, rough surfaces obtained from subtraction methods, as well as the new hydroxyapatite biomimetic surfaces obtained from thermochemical processes. Hydroxyapatite’s high plasma-projection temperatures have proven to prevent the formation of crystalline apatite on the titanium dental implant, but lead to the formation of amorphous calcium phosphate (i.e., with no crystal structure) instead. This layer produce some osseointegration yet the calcium phosphate layer will eventually dissolve and leave a gap between the bone and the dental implant, thus leading to osseointegration failure due to bacterial colonization. A new surface -recently obtained by thermochemical processes- produces, by crystallization, a layer of apatite with the same mineral content as human bone that is chemically bonded to the titanium surface. Osseointegration speed was tested by means of minipigs, showing bone formation after 3 to 4 weeks, with the security that a dental implant can be loaded. This surface can be an excellent candidate for immediate or early loading procedures. Key words:Dental implants, implants surfaces, osseointegration, biomimetics surfaces. PMID:25662555

  8. The role of GMES / Sentinels in Land-Surface Earth System Science

    NASA Astrophysics Data System (ADS)

    Moreno, J.

    2009-04-01

    A general trend in the current status of representation of Land Surface schemes into Earth System models is driven by the parameterisation of "cycles" instead of individual processes. Particular emphasis is made to account for couplings among the individual cycles, as between the carbon and water cycles. Moreover, the current tendency is to use the measured data -time series in most cases- together with models, in a data assimilation scenario where inputs from multiple sources are integrated. Such approach is more and more necessary as land models tend to be more complex, and particularly due to the fact that land surface variability is not just driven by physical and chemical processes, but intricate biological processes also altered by anthropogenic influences. Human influences in the land system (land use changes, urban development, etc.) and the impacts of natural disasters are becoming also part of land models, but critical data in high spatial and temporal resolutions are needed to properly model such processes. Until now, problems with data availability, data inconsistency and lack of adequate temporal sampling have limited the potential usefulness of such observations in modelling land surface processes. The availability of the GMES / Sentinel series of satellites represents a quite unique opportunity for consolidation of current tendencies and development of new science based on the new type of data that soon will become available. The usefulness of the different Sentinel missions for Land science has been recognised. Although the Sentinel satellite series were primarily designed to provide observations for operational services and routine applications, there is a growing interest in the scientific community towards the usage of Sentinel data for more advanced and innovative science. Moreover, the availability of consistent time series covering a period of over 20 years opens possibilities never explored before, such as systematic data assimilation

  9. Advances in Land Data Assimilation at the NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Reichle, Rolf

    2009-01-01

    Research in land surface data assimilation has grown rapidly over the last decade. In this presentation we provide a brief overview of key research contributions by the NASA Goddard Space Flight Center (GSFC). The GSFC contributions to land assimilation primarily include the continued development and application of the Land Information System (US) and the ensemble Kalman filter (EnKF). In particular, we have developed a method to generate perturbation fields that are correlated in space, time, and across variables and that permit the flexible modeling of errors in land surface models and observations, along with an adaptive filtering approach that estimates observation and model error input parameters. A percentile-based scaling method that addresses soil moisture biases in model and observational estimates opened the path to the successful application of land data assimilation to satellite retrievals of surface soil moisture. Assimilation of AMSR-E surface soil moisture retrievals into the NASA Catchment model provided superior surface and root zone assimilation products (when validated against in situ measurements and compared to the model estimates or satellite observations alone). The multi-model capabilities of US were used to investigate the role of subsurface physics in the assimilation of surface soil moisture observations. Results indicate that the potential of surface soil moisture assimilation to improve root zone information is higher when the surface to root zone coupling is stronger. Building on this experience, GSFC leads the development of the Level 4 Surface and Root-Zone Soil Moisture (L4_SM) product for the planned NASA Soil-Moisture-Active-Passive (SMAP) mission. A key milestone was the design and execution of an Observing System Simulation Experiment that quantified the contribution of soil moisture retrievals to land data assimilation products as a function of retrieval and land model skill and yielded an estimate of the error budget for the

  10. Remote Sensing of Atlanta's Urban Sprawl and the Distribution of Land Cover and Surface Temperatures

    NASA Technical Reports Server (NTRS)

    Laymon, Charles A.; Estes, Maurice G., Jr.; Quattrochi, Dale A.; Arnold, James E. (Technical Monitor)

    2001-01-01

    Between 1973 and 1992, an average of 20 ha of forest was lost each day to urban expansion of Atlanta, Georgia. Urban surfaces have very different thermal properties than natural surfaces-storing solar energy throughout the day and continuing to release it as sensible heat well after sunset. The resulting heat island effect serves as catalysts for chemical reactions from vehicular exhaust and industrialization leading to a deterioration in air quality. In this study, high spatial resolution multispectral remote sensing data has been used to characterize the type, thermal properties, and distribution of land surface materials throughout the Atlanta metropolitan area. Ten-meter data were acquired with the Advanced Thermal and Land Applications Sensor (ATLAS) on May 11 and 12, 1997. ATLAS is a 15-channel multispectral scanner that incorporates the Landsat TM bands with additional bands in the middle reflective infrared and thermal infrared range. The high spatial resolution permitted discrimination of discrete surface types (e.g., concrete, asphalt), individual structures (e.g., buildings, houses) and their associated thermal characteristics. There is a strong temperature contrast between vegetation and anthropomorphic features. Vegetation has a modal temperature at about 20 C, whereas asphalt shingles, pavement, and buildings have a modal temperature of about 39 C. Broad-leaf vegetation classes are indistinguishable on a thermal basis alone. There is slightly more variability (plus or minus 5 C) among the urban surfaces. Grasses, mixed vegetation and mixed urban surfaces are intermediate in temperature and are characterized by broader temperature distributions with modes of about 29 C. Thermal maps serve as a basis for understanding the distribution of "hotspots", i.e., how landscape features and urban fabric contribute the most heat to the lower atmosphere.

  11. Remote Sensing of Atlanta's Urban Sprawl and the Distribution of Land Cover and Surface Temperature

    NASA Technical Reports Server (NTRS)

    Laymon, Charles A.; Estes, Maurice G., Jr.; Quattrochi, Dale A.; Goodman, H. Michael (Technical Monitor)

    2001-01-01

    Between 1973 and 1992, an average of 20 ha of forest was lost each day to urban expansion of Atlanta, Georgia. Urban surfaces have very different thermal properties than natural surfaces-storing solar energy throughout the day and continuing to release it as sensible heat well after sunset. The resulting heat island effect serves as catalysts for chemical reactions from vehicular exhaust and industrialization leading to a deterioration in air quality. In this study, high spatial resolution multispectral remote sensing data has been used to characterize the type, thermal properties, and distribution of land surface materials throughout the Atlanta metropolitan area. Ten-meter data were acquired with the Advanced Thermal and Land Applications Sensor (ATLAS) on May 11 and 12, 1997. ATLAS is a 15-channel multispectral scanner that incorporates the Landsat TM bands with additional bands in the middle reflective infrared and thermal infrared range. The high spatial resolution permitted discrimination of discrete surface types (e.g., concrete, asphalt), individual structures (e.g., buildings, houses) and their associated thermal characteristics. There is a strong temperature contrast between vegetation and anthropomorphic features. Vegetation has a modal temperature at about 20 C, whereas asphalt shingles, pavement, and buildings have a modal temperature of about 39 C. Broad-leaf vegetation classes are indistinguishable on a thermal basis alone. There is slightly more variability (+/-5 C) among the urban surfaces. Grasses, mixed vegetation and mixed urban surfaces are intermediate in temperature and are characterized by broader temperature distributions with modes of about 29 C. Thermal maps serve as a basis for understanding the distribution of "hotspots", i.e., how landscape features and urban fabric contribute the most heat to the lower atmosphere.

  12. The impact of built-up surfaces on land surface temperatures in Italian urban areas.

    PubMed

    Morabito, Marco; Crisci, Alfonso; Messeri, Alessandro; Orlandini, Simone; Raschi, Antonio; Maracchi, Giampiero; Munafò, Michele

    2016-05-01

    Urban areas are characterized by the very high degree of soil sealing and continuous built-up areas: Italy is one of the European countries with the highest artificial land cover rate, which causes a substantial spatial variation in the land surface temperature (LST), modifying the urban microclimate and contributing to the urban heat island effect. Nevertheless, quantitative data regarding the contribution of different densities of built-up surfaces in determining urban spatial LST changes is currently lacking in Italy. This study, which aimed to provide clear and quantitative city-specific information on annual and seasonal spatial LST modifications resulting from increased urban built-up coverage, was conducted generally throughout the whole year, and specifically in two different periods (cool/cold and warm/hot periods). Four cities (Milan, Rome, Bologna and Florence) were included in the study. The LST layer and the built-up-surface indicator were obtained via use of MODIS remote sensing data products (1km) and a very high-resolution map (5m) of built-up surfaces recently developed by the Italian National Institute for Environmental Protection and Research. The relationships between the dependent (mean daily, daytime and nighttime LST values) and independent (built-up surfaces) variables were investigated through linear regression analyses, and comprehensive built-up-surface-related LST maps were also developed. Statistically significant linear relationships (p<0.001) between built-up surfaces and spatial LST variations were observed in all the cities studied, with a higher impact during the warm/hot period than in the cool/cold ones. Daytime and nighttime LST slope patterns depend on the city size and relative urban morphology. If implemented in the existing city plan, the urban maps of built-up-surface-related LST developed in this study might be able to support more sustainable urban land management practices by identifying the critical areas (Hot

  13. Radiometric calibration of Advanced Land Imager using reflectance-based results between 2001 and 2005

    NASA Astrophysics Data System (ADS)

    McCorkel, J.; Thome, K.; Biggar, S.; Kuester, M.

    2006-08-01

    The Landsat series of sensors have supplied the remote sensing community with a continuous data set dating to the early 1970s. An important aspect of retaining the continuity of these data is that a Landsat follow-on as well as current Landsat instruments must be understood radiometrically throughout their mission. The Advanced Land Imager (ALI), for example, was developed as a prototype for the next generation of Landsat Instruments, and as such there was a significant effort to understand its radiometric characteristics as well as how it compares with previous Landsat sensors. The Remote Sensing Group at the University of Arizona has been part of this effort since the late 2000 launch of ALI through the use of the reflectance-based method of vicarious calibration. The reflectance-based approach consists of ground-based measurements of atmospheric conditions and surface reflectance at the time of satellite overpass to predict the at-sensor radiance seen by the sensor under study. The work compares results from the reflectance-based approach obtained from well-characterized test sites such as Railroad Valley Playa in Nevada and Ivanpah Playa in California as applied to ALI, Landsat-5 TM, and Landsat-7 EMT+. The results from the comparison use a total of 14 ALI dates spanning in time from 2001 to late 2005 and show that ALI agrees with the current radiometric results from TM and ETM+ to within 5%.

  14. Assessment of the consistency among global microwave land surface emissivity products

    NASA Astrophysics Data System (ADS)

    Norouzi, H.; Temimi, M.; Prigent, C.; Turk, J.; Khanbilvardi, R.; Tian, Y.; Furuzawa, F. A.; Masunaga, H.

    2015-03-01

    The goal of this work is to intercompare four global land surface emissivity products over various land-cover conditions to assess their consistency. The intercompared land emissivity products were generated over a 5-year period (2003-2007) using observations from the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E), the Special Sensor Microwave Imager (SSM/I), the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI), and WindSat. First, all products were reprocessed in the same projection and spatial resolution as they were generated from sensors with various configurations. Then, the mean value and standard deviations of monthly emissivity values were calculated for each product to assess the spatial distribution of the consistencies/inconsistencies among the products across the globe. The emissivity products were also compared to soil moisture estimates and a satellite-based vegetation index to assess their sensitivities to changes in land surface conditions. Results show the existence of systematic differences among the products. Also, it was noticed that emissivity values in each product have similar frequency dependency over different land-cover types. Monthly means of emissivity values from AMSR-E in the vertical and horizontal polarizations seem to be systematically lower than the rest of the products across various land-cover conditions which may be attributed to the 01:30/13:30 LT overpass time of the sensor and possibly a residual skin temperature effect in the product. The standard deviation of the analyzed products was lowest (less than 0.01) in rain forest regions for all products and highest at northern latitudes, above 0.04 for AMSR-E and SSM/I and around 0.03 for WindSat. Despite differences in absolute emissivity estimates, all products were similarly sensitive to changes in soil moisture and vegetation. The correlation between the emissivity polarization differences and normalized difference vegetation index

  15. Inter-Sensor Comparison of Microwave Land Surface Emissivity Products to Improve Precipitation Retrievals

    NASA Astrophysics Data System (ADS)

    Norouzi, H.; Temimi, M.; Turk, J.; Prigent, C.; Furuzawa, F.; Tian, Y.

    2013-12-01

    Microwave land surface emissivity acts as the background signal to estimate rain rate, cloud liquid water, and total precipitable water. Therefore, its accuracy can directly affect the uncertainty of such measurements. Over land, unlike over oceans, the microwave emissivity is relatively high and and varies significantly as surface conditions and land cover change. Lack of ground truth measurement of microwave emissivity especially on global scale has made the uncertainty analysis of this parameter very challenging. The present study investigates the consistency among the existing global land emissivity estimates from different microwave sensors. The products are determined from various sensors and frequencies ranging from 7 to 90 GHz. The selected emissivity products in this study are from the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) by NOAA - Cooperative remote Sensing and Science and Technology Center (CREST), the Special Sensor Microwave Imager (SSM/I) by The Centre National de la Recherche Scientifique (CNRS) in France, TRMM Microwave Imager (TMI) by Nagoya University, Japan, and WindSat by NASA Jet Propulsion Laboratory (JPL). The emissivity estimates are based on different algorithms and ancillary data sets. This work investigates the difference among these emissivity products from 2003 to 2008 dynamically and spectrally. The similarities and discrepancies of the retrievals are studied at different land cover types. The mean relative difference (MRD) and other statistical parameters are calculated temporally for all five years of the study. Some inherent discrepancies between the selected products can be attributed to the difference in geometry in terms of incident angle, spectral response, and the foot print size which can affect the estimations. The results reveal that in lower frequencies (=<19 GHz) ancillary data especially skin temperature data set is the major source of difference in emissivity retrievals, while in higher frequencies

  16. Investigating Land Surface Phenology Derived from Satellite and GPS Network Microwave Remote Sensing

    NASA Astrophysics Data System (ADS)

    Jones, M. O.; Kimball, J. S.; Small, E. E.; Larson, K. M.

    2013-12-01

    The land surface phenology (LSP) start of season (SOS) metric signals the seasonal onset of vegetation activity, including canopy growth and associated increases in land-atmosphere water, energy and carbon (CO2) exchanges influencing weather and climate variability. The Vegetation Optical Depth (VOD) parameter determined from satellite passive microwave remote sensing provides for global LSP monitoring that is sensitive to changes in vegetation canopy water content and biomass, and insensitive to atmosphere and solar illumination constraints. Direct field measures of canopy water content and biomass changes desired for LSP validation are generally lacking due to prohibitive costs of maintaining regional monitoring networks. Alternatively, a Normalized Microwave Reflectance Index (NMRI) derived from GPS base station measurements is sensitive to daily vegetation water content changes and may provide for effective microwave LSP validation as a relatively high spatial (1000m2) and temporal resolution vegetation phenology measure. We compared NMRI (1.2 and 1.5 GHz) and satellite microwave (AMSR-E sensor) 18.7 GHz frequency VOD records (2007 to 2011) at over 300 GPS sites in North America and their derived SOS metrics for a subset of 24 homogenous land cover sites. Significant correlations were found at 276 of 305 sites, with generally favorable correspondence in the resulting SOS metrics. We also investigated the temporal dynamics of nine NMRI sites within a single 25km resolution VOD pixel and with corresponding 250m MODIS NDVI measures of the three dominant land covers within the pixel to assess the spatial scale discrepancies between these high, moderate, and coarse resolution retrievals. This study is the first attempt to compare satellite microwave LSP metrics to a GPS network derived reflectance index and highlights both the utility and limitations of the NMRI data for LSP validation. Integration of GPS base stations and the NMRI into current phenology observation

  17. Comparative analysis of land surface emissivity retrieval methods and the impact on the land surface temperature based on Landsat-8 thermal infrared data

    NASA Astrophysics Data System (ADS)

    Kan, Zenghui; Liu, Chaoshun; Zhou, Cong; Li, Zhijun

    2015-09-01

    With the increasingly prevalent and far-reaching application of remote sensing, several algorithms have been put forward for land surface temperature retrieval. However, there is still no consensus on the calculation of land surface emissivity (LSE), which is one of the significant parameters in land surface temperature (LST) retrieval. In this paper, two methods of estimating LSE based on thematic mapper data were introduced: Van's empirical formula method and the mixed pixels method. Based on the detailed introduction to Van's empirical formula and the mixed pixels decomposing method in computing surface emissivity, Landsat-8 thermal infrared data and the radiative transfer equation method were used to obtain the land surface temperature in Taihu region. In this paper, atmospheric parameters are based on real-time atmospheric profile to reduce the LST error brought by the atmospheric profile. Two figures were acquired, which represented the LST of Van's empirical formula and the mixed pixels decomposing method respectively. The relationship between land surface temperature and land cover was also studied.

  18. Effect of surface BRDF of various land cover types on the geostationary observations of tropospheric NO2

    NASA Astrophysics Data System (ADS)

    Noguchi, K.; Richter, A.; Rozanov, V.; Rozanov, A.; Burrows, J. P.; Irie, H.; Kita, K.

    2014-04-01

    We investigated the effect of surface reflectance anisotropy, Bidirectional Reflectance Distribution Function (BRDF), on satellite retrievals of tropospheric NO2. We assume the geometry of geostationary measurements over Tokyo, which is one of the worst air-polluted regions in the East Asia. We calculated air mass factors (AMF) and box AMFs (BAMF) for tropospheric NO2 to evaluate the effect of BRDF by using the radiative transfer model SCIATRAN. To model the BRDF effect, we utilized the Moderate Resolution Imaging Spectroradiometer (MODIS) products (MOD43B1 and MOD43B2), which provide three coefficients to express the RossThick-LiSparseReciprocal model, a semi-empirical and kernel-based model of BRDF. Because BRDF depends on the land cover type, we also utilized the High Resolution Land-Use and Land-Cover Map by the Advanced Land Observing Satellite (ALOS)/Advanced Visible and Near Infrared Radiometer type 2 (AVNIR-2), which classifies the ground pixels over Tokyo into six main types: water, urban, paddy, crop, deciduous forest and evergreen forest. We first develop an empirical model of the three BRDF coefficients for each land cover type over Tokyo, and then apply the model to the calculation of land cover type dependent AMFs and BAMFs. Results show that the variability of AMF among the land types is up to several tens percent, and if we neglect the reflectance anisotropy, the difference from BRDF's AMF reaches 10% or more. The evaluation of the BAMFs calculated shows that not to consider variations in BRDF will cause large errors if the concentration of NO2 is high close to the surface, although the importance of BRDF for AMFs decreases for large aerosol optical depth (AOD).

  19. Sensitivity of land surface modeling to parameters: An uncertainty quantification method applied to the Community Land Model

    NASA Astrophysics Data System (ADS)

    Ricciuto, D. M.; Mei, R.; Mao, J.; Hoffman, F. M.; Kumar, J.

    2015-12-01

    Uncertainties in land parameters could have important impacts on simulated water and energy fluxes and land surface states, which will consequently affect atmospheric and biogeochemical processes. Therefore, quantification of such parameter uncertainties using a land surface model is the first step towards better understanding of predictive uncertainty in Earth system models. In this study, we applied a random-sampling, high-dimensional model representation (RS-HDMR) method to analyze the sensitivity of simulated photosynthesis, surface energy fluxes and surface hydrological components to selected land parameters in version 4.5 of the Community Land Model (CLM4.5). Because of the large computational expense of conducting ensembles of global gridded model simulations, we used the results of a previous cluster analysis to select one thousand representative land grid cells for simulation. Plant functional type (PFT)-specific uniform prior ranges for land parameters were determined using expert opinion and literature survey, and samples were generated with a quasi-Monte Carlo approach-Sobol sequence. Preliminary analysis of 1024 simulations suggested that four PFT-dependent parameters (including slope of the conductance-photosynthesis relationship, specific leaf area at canopy top, leaf C:N ratio and fraction of leaf N in RuBisco) are the dominant sensitive parameters for photosynthesis, surface energy and water fluxes across most PFTs, but with varying importance rankings. On the other hand, for surface ans sub-surface runoff, PFT-independent parameters, such as the depth-dependent decay factors for runoff, play more important roles than the previous four PFT-dependent parameters. Further analysis by conditioning the results on different seasons and years are being conducted to provide guidance on how climate variability and change might affect such sensitivity. This is the first step toward coupled simulations including biogeochemical processes, atmospheric processes

  20. Land Surface Temperature Measurements from EOD MODIS Data

    NASA Technical Reports Server (NTRS)

    Wan, Zheng-Ming

    1998-01-01

    We made more tests of the version 2.0 daily Level 2 and Level 3 Land-Surface Temperature (LST) code (PGE 16) jointly with the MODIS Science Data Support Team (SDST). After making minor changes a few times, the PGE16 code has been successfully integrated and tested by MODIS SDST, and recently has passed the inspection at the Goddard Distributed Active Archive Center (DAAC). We conducted a field campaign in the area of Mono Lake, California on March 10, 1998, in order to validate the MODIS LST algorithm in cold and dry conditions. Two MODIS Airborne Simulator (MAS) flights were completed during the field campaign, one before noon, and another around 10 pm PST. The weather condition for the daytime flight was perfect: clear sky, the column water vapor measured by radiosonde around 0.3 cm, and wind speed less than a half meter per second. The quality of MAS data is good for both day and night flights. We analyzed the noise equivalent temperature difference (NE(delta)T) and the calibration accuracy of the seven MAS thermal infrared (TIR) bands, that are used in the MODIS day/night LST algorithm, with daytime MAS data over four flat homogeneous study areas: two on Grant Lake (covered with ice and snow, respectively), one on Mono Lake, and another on the snow field site where we made field measurements. NE(delta)T ranges from 0.2 to 0.6 k for bands 42, 45, 46, and 48. It ranges from 0.8 to 1.1 K for bands 30-32. The day and night MAS data have been used to retrieve surface temperature and emissivities in these bands. A simple method to correct the effect of night thin cirrus has been incorporated into the day/night LST algorithm in dry atmospheric conditions. We compared the retrieved surface temperatures with those measured with TIR spectrometer, radiometers and thermistors in the snow test site, and the retrieved emissivity images with topographic map. The daytime LST values match well within 1 K. The night LST retrieved from MAS data is 3.3 K colder than those from

  1. Land surface cleanup of plutonium at the Nevada Test Site

    SciTech Connect

    Ebeling, L.L.; Evans, R.B.; Walsh, E.J.

    1991-01-01

    The Nevada Test Site (NTS) covers approximately 3300 km{sup 2} of high desert and is located approximately 100 km northwest of Las Vegas, Nevada. Soil contaminated by plutonium exists on the NTS and surrounding areas from safety tests conducted in the 1950s and 1960s. About 150 curies of contamination have been measured over 1200 hectares of land surface. Most contamination is found in the top 5 cm of soil but may be found deep as 25 cm. The cost of conventional removal and disposal of the full soil volume has been estimated at over $500,000,000. This study is directed toward minimizing the volume of waste which must be further processed and disposed of by precisely controlling soil removal depth. The following soil removal machines were demonstrated at the NTS: (1) a CMI Corporation Model PR-500FL pavement profiler, (2) a CMI Corporation Model Tr-225B trimmer reclaimer, (3) a Caterpillar Model 623 elevating scraper equipped with laser depth control, (4) a Caterpillar Model 14G motor grader equipped with laser depth control, (5) a Caterpillar Model 637 auger scraper, and (6) a XCR Series Guzzler vacuum truck. 5 refs., 5 figs.

  2. Downscaling MODIS Land Surface Temperature for Urban Public Health Applications

    NASA Technical Reports Server (NTRS)

    Al-Hamdan, Mohammad; Crosson, William; Estes, Maurice Jr.; Estes, Sue; Quattrochi, Dale; Johnson, Daniel

    2013-01-01

    This study is part of a project funded by the NASA Applied Sciences Public Health Program, which focuses on Earth science applications of remote sensing data for enhancing public health decision-making. Heat related death is currently the number one weather-related killer in the United States. Mortality from these events is expected to increase as a function of climate change. This activity sought to augment current Heat Watch/Warning Systems (HWWS) with NASA remotely sensed data, and models used in conjunction with socioeconomic and heatrelated mortality data. The current HWWS do not take into account intra-urban spatial variation in risk assessment. The purpose of this effort is to evaluate a potential method to improve spatial delineation of risk from extreme heat events in urban environments by integrating sociodemographic risk factors with estimates of land surface temperature (LST) derived from thermal remote sensing data. In order to further improve the consideration of intra-urban variations in risk from extreme heat, we also developed and evaluated a number of spatial statistical techniques for downscaling the 1-km daily MODerate-resolution Imaging Spectroradiometer (MODIS) LST data to 60 m using Landsat-derived LST data, which have finer spatial but coarser temporal resolution than MODIS. In this paper, we will present these techniques, which have been demonstrated and validated for Phoenix, AZ using data from the summers of 2000-2006.

  3. Multiscale Land surface feedbacks within agricultural and urban systems

    NASA Astrophysics Data System (ADS)

    Niyogi, D.

    2012-12-01

    This presentation will first discuss the interplay between agricultural landscapes and regional hydroclimatology with particular emphasis on the US Corn Belt. Results and experiences from studies underway as part of a multistate project (Making Climate Information Useful 2 Usable- U2U) will be summarized. The presentation will also highlight experiences regarding the different challenges in developing the regional assessment and guidance regarding sustainable futures. Study results will also be compared with findings from other geographical regions where agriculture - climate linkages are stretching the limits of sustainable water use. A vulnerability framework that can be considered for such agriculture - climate - water links will also be presented. The second issue the presentation will discuss relates to the urban land surface feedbacks and efforts underway to guide efforts related to greening as well as regional landuse planning. The complex links between city structures, urban layouts, and regional climate will be synthesized and the framework regarding a decision support system that is being developed will be presented. Salient points of the modeling efforts, data challenges, and the need for linking multiple disciplines will be presented with special focus on droughts and the need for considering complex multiscale coupled interactions within the analysis.

  4. Land Surface Temperature Measurements from EOS MODIS Data

    NASA Technical Reports Server (NTRS)

    Wan, Zhengming

    1997-01-01

    We applied the multi-method strategy of land-surface temperature (LST) and emissivity measurements in two field campaigns this year for validating the MODIS LST algorithm. The first field campaign was conducted in Death Valley, CA, on March 3rd and the second one in Railroad Valley, NV, on June 23-27. ER2 MODIS Airborne Simulator (MAS) data were acquired in morning and evening for these two field campaigns. TIR spectrometer, radiometer, and thermistor data were also collected in the field campaigns. The LST values retrieved from MAS data with the day/night LST algorithm agree with those obtained from ground-based measurements within 1 C and show close correlations with topographic maps. The band emissivities retrieved from MAS data show close correlations with geological maps in the Death Valley field campaign. The comparison of measurement data in the latest Railroad Valley field campaign indicates that we are approaching the goals of the LST validation: LST uncertainty less than 0.5 C, and emissivity uncertainty less than 0.005 in the 10-13 spectral range. Measurement data show that the spatial variation in LST is the major uncertainty in the LST validation. In order to reduce this uncertainty, a new component of the multi-method strategy has been identified.

  5. Downscaling MODIS Land Surface Temperature for Urban Public Health Applications

    NASA Astrophysics Data System (ADS)

    Al-Hamdan, M. Z.; Crosson, W. L.; Estes, M. G., Jr.; Estes, S. M.; Quattrochi, D. A.; Johnson, D.

    2013-12-01

    This study is part of a project funded by the NASA Applied Sciences Public Health Program, which focuses on Earth science applications of remote sensing data for enhancing public health decision-making. Heat related death is currently the number one weather-related killer in the United States. Mortality from these events is expected to increase as a function of climate change. This activity sought to augment current Heat Watch/Warning Systems (HWWS) with NASA remotely sensed data, and models used in conjunction with socioeconomic and heat-related mortality data. The current HWWS do not take into account intra-urban spatial variations in risk assessment. The purpose of this effort is to evaluate a potential method to improve spatial delineation of risk from extreme heat events in urban environments by integrating sociodemographic risk factors with land surface temperature (LST) estimates derived from thermal remote sensing data. In order to further improve the assessment of intra-urban variations in risk from extreme heat, we developed and evaluated a number of spatial statistical techniques for downscaling the 1-km daily MODerate-resolution Imaging Spectroradiometer (MODIS) LST data to 60 m using Landsat-derived LST data, which have finer spatial but coarser temporal resolution than MODIS. We will present these techniques, which have been demonstrated and validated for Phoenix, AZ using data from the summers of 2000-2006.

  6. Fire disturbance effects on land surface albedo in Alaskan tundra

    NASA Astrophysics Data System (ADS)

    French, Nancy H. F.; Whitley, Matthew A.; Jenkins, Liza K.

    2016-03-01

    The study uses satellite Moderate Resolution Imaging Spectroradiometer albedo products (MCD43A3) to assess changes in albedo at two sites in the treeless tundra region of Alaska, both within the foothills region of the Brooks Range, the 2007 Anaktuvuk River Fire (ARF) and 2012 Kucher Creek Fire (KCF). Results are compared to each other and other studies to assess the magnitude of albedo change and the longevity of impact of fire on land surface albedo. In both sites there was a marked decrease of albedo in the year following the fire. In the ARF, albedo slowly increased until 4 years after the fire, when it returned to albedo values prior to the fire. For the year immediately after the fire, a threefold difference in the shortwave albedo decrease was found between the two sites. ARF showed a 45.3% decrease, while the KCF showed a 14.1% decrease in shortwave albedo, and albedo is more variable in the KCF site than ARF site 1 year after the fire. These differences are possibly the result of differences in burn severity of the two fires, wherein the ARF burned more completely with more contiguous patches of complete burn than KCF. The impact of fire on average growing season (April-September) surface shortwave forcing in the year following fire is estimated to be 13.24 ± 6.52 W m-2 at the ARF site, a forcing comparable to studies in other treeless ecosystems. Comparison to boreal studies and the implications to energy flux are discussed in the context of future increases in fire occurrence and severity in a warming climate.

  7. Land Surface Temperature Variational Assimilation within the ORCHIDEE Continental Surface model

    NASA Astrophysics Data System (ADS)

    Benavides, Hector Simon; Ottlé, Catherine; Thiria, Sylvie; Brajard, Julien; Bradan, Fouad; Maugis, Pascal

    2014-05-01

    Variational data assimilation of FLUXNET soil surface temperature is applied to the energy and water budgets modules of the ORCHIDEE land surface model. This part of the model, called SECHIBA, describes the exchanges of water and energy between the surface and the atmosphere. The adjoint semi-generator software YAO is used as a framework to implement 4D-VAR assimilation. First, sensitivity analysis was performed in order to validate the adjoint and to identify the most influential parameters. Following, the results of twin experiments using synthetic observations demonstrate the robustness, consistency and flexibility of the process. Rendundant combinations of parameters and insensitive ones can then be detected, thus allowing to document the most efficient set of parameters to calibrate. However, optimal sets of parameter vary with time of day, season, site and initial state, thus suggesting a calibration strategy based on different time windows and sites to help constrain a larger set of parameter than on a single space-time window. Doing so on two FLUXNET sites and including initial soil water content as a parameter improves the model output. Although it proved difficult to characterize at the same time state variables and fluxes, this study puts forward the potential of land surface temperature variational data assimilation in model calibration and prediction errors reduction.

  8. Advanced Face Gear Surface Durability Evaluations

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; Heath, Gregory F.

    2016-01-01

    The surface durability life of helical face gears and isotropic super-finished (ISF) face gears was investigated. Experimental fatigue tests were performed at the NASA Glenn Research Center. Endurance tests were performed on 10 sets of helical face gears in mesh with tapered involute helical pinions, and 10 sets of ISF-enhanced straight face gears in mesh with tapered involute spur pinions. The results were compared to previous tests on straight face gears. The life of the ISF configuration was slightly less than that of previous tests on straight face gears. The life of the ISF configuration was slightly greater than that of the helical configuration.

  9. Linking Satellite Derived Land Surface Temperature with Cholera: A Case Study for South Sudan

    NASA Astrophysics Data System (ADS)

    Aldaach, H. S. V.; Jutla, A.; Akanda, A. S.; Colwell, R. R.

    2014-12-01

    A sudden onset of cholera in South Sudan, in April 2014 in Northern Bari in Juba town resulted in more than 400 cholera cases after four weeks of initial outbreak with a case of fatality rate of CFR 5.4%. The total number of reported cholera cases for the period of April to July, 2014 were 5,141 including 114 deaths. With the limited efficacy of cholera vaccines, it is necessary to develop mechanisms to predict cholera occurrence and thereafter devise intervention strategies for mitigating impacts of the disease. Hydroclimatic processes, primarily precipitation and air temperature are related to epidemic and episodic outbreak of cholera. However, due to coarse resolution of both datasets, it is not possible to precisely locate the geographical location of disease. Here, using Land Surface Temperature (LST) from MODIS sensors, we have developed an algorithm to identify regions susceptible for cholera. Conditions for occurrence of cholera were detectable at least one month in advance in South Sudan and were statistically sensitive to hydroclimatic anomalies of land surface and air temperature, and precipitation. Our results indicate significant spatial and temporal averaging required to infer usable information from LST over South Sudan. Preliminary results that geographically location of cholera outbreak was identifiable within 1km resolution of the LST data.

  10. Estimation of land surface temperature over the Tibetan Plateau using AVHRR and MODIS data

    NASA Astrophysics Data System (ADS)

    Zhong, Lei; Ma, Yaoming; Su, Zhongbo; Salama, Mhd. Suhyb

    2010-09-01

    Estimation of large-scale land surface temperature from satellite images is of great importance for the study of climate change. This is especially true for the most challenging areas, such as the Tibetan Plateau (TP). In this paper, two split window algorithms (SWAs), one for the NOAA’s Advanced Very High Resolution Radiometer (AVHRR), and the other for the Moderate Resolution Imaging Spectroradiometer (MODIS), were applied to retrieve land surface temperature (LST) over the TP simultaneously. AVHRR and MODIS data from 17 January, 14 April, 23 July, and 16 October 2003 were selected as the cases for winter, spring, summer, and autumn, respectively. Firstly, two key parameters (emissivity and water vapor content) were calculated at the pixel scale. Then, the derived LST was compared with in situ measurements from the Coordinated Enhanced Observing Period (CEOP) Asia-Australia Monsoon Project (CAMP) on the TP (CAMP/Tibet) area. They were in good accordance with each other, with an average percentage error (PE) of 10.5% for AVHRR data and 8.3% for MODIS data, meaning the adopted SWAs were applicable in the TP area. The derived LST also showed a wide range and a clear seasonal difference. The results from AVHRR were also in agreement with MODIS, with the latter usually displaying a higher level of accuracy.

  11. Land cover change impacts on surface ozone: an observation-based study

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Lin, Jintai

    2016-04-01

    Ozone air quality is a critical global environmental issue. Although it is clear that industrialization and urbanization has increased surface ozone through enhanced emissions of its precursors, much less is known about the role of changes in land cover and land use. Human activities have substantially altered the global land cover and land use through agriculture, urbanization, deforestation, and afforestation. Changes in Land cover and land use affect the ozone levels by altering soil emissions of nitrogen oxides (NOx), biogenic emissions of volatile organic compounds (VOCs), and dry deposition of ozone itself. This study performs a series of experiments with a chemical transport model based on satellite observation of land types to analyze the influences of changes in land cover/land use and their impact on surface ozone concentration. Our results indicate that land cover change explains 1-2 ppbv of summertime surface ozone increase in the Western United States and 1-6 ppbv of increase in Southern China between 2001 and 2012. This is largely driven by enhanced isoprene emissions and soil NOx emissions. It is also found that land cover change itself elevates summertime surface zone in Canadian coniferous forests by up to 4 ppbv mainly through substantial decreases in ozone dry deposition associated with increased vegetation density in a warmer climate.

  12. Analysis of the Effects of Different Land Use and Land Cover Classification on Surface Meteorological Variables using WRF Model

    NASA Astrophysics Data System (ADS)

    Sati, A. P.

    2015-12-01

    The continuous population growth and the subsequent economic expansion over centuries have been the primary drivers of land use /land cover (LULC) changes resulting in the environmental changes across the globe. Most of the urban areas being developed today are on the expense of agricultural or barren lands and the changes result from various practices such as deforestation, changing agriculture practices, rapid expansion of urban centers etc.For modeling applications, classification of land use is important and periodic updates of land cover are necessary to capture change due to LULC changes.Updated land cover and land use data derived from satellites offer the possibility of consistent and regularly collected information on LULC. In this study we explore the application of Landsat based LULC classification inWeather Research and Forecasting (WRF) model in predicting the meteorology over Delhi, India. The supervised classification of Landsat 8 imagery over Delhi region is performed which update the urban extent as well as other Land use for the region. WRF model simulations are performed using LULC classification from Landsat data, United States Geological Survey (USGS) and Moderate Resolution Imaging Spectroradiometer (MODIS) for various meteorological parameters. Modifications in LULC showed a significant effect on various surface meteorological parameters such as temperature, humidity, wind circulations and other underlying surface parameters. There is a considerable improvement in the spatial distribution of the surface meteorological parameters with correction in input LULC. The study demonstrates the improved LULC classification from Landsat data than currently in vogue and their potential to improve numerical weather simulations especially for expanding urban areas.The continuous population growth and the subsequent economic expansion over centuries have been the primary drivers of land use /land cover (LULC) changes resulting in the environmental changes

  13. Viking landing sites, remote-sensing observations, and physical properties of Martian surface materials

    NASA Technical Reports Server (NTRS)

    Moore, Henry J.; Jakosky, Bruce M.

    1989-01-01

    Consideration is given to the relations between the physical properties of the surface materials at Viking landing sites, the physical properties of other Martian surfaces inferred from radar observations from earth and thermal observations from orbit, and the geological processes that formed the materials and shaped the surfaces. The radar and thermal remote-sensing signatures of the landing site surface materials are estimated and compared with the thermal and radar measurements for the entire planet. It is shown that the surface materials at the landing sites are good analogs for the materials in most of the Martian equatorial regions.

  14. Viking landing sites, remote-sensing observations, and physical properties of Martian surface materials

    NASA Astrophysics Data System (ADS)

    Moore, H. J.; Jakosky, B. M.

    1989-09-01

    Consideration is given to the relations between the physical properties of the surface materials at Viking landing sites, the physical properties of other Martian surfaces inferred from radar observations from earth and thermal observations from orbit, and the geological processes that formed the materials and shaped the surfaces. The radar and thermal remote-sensing signatures of the landing site surface materials are estimated and compared with the thermal and radar measurements for the entire planet. It is shown that the surface materials at the landing sites are good analogs for the materials in most of the Martian equatorial regions.

  15. DEVELOPMENT OF A LAND-SURFACE MODEL PART I: APPLICATION IN A MESOSCALE METEOROLOGY MODEL

    EPA Science Inventory

    Parameterization of land-surface processes and consideration of surface inhomogeneities are very important to mesoscale meteorological modeling applications, especially those that provide information for air quality modeling. To provide crucial, reliable information on the diurn...

  16. Mapping land-surface fluxes of carbon, water and energy from field to regional scales

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A framework for routine mapping of land-surface fluxes of carbon, water, and energy at the field to regional scales has been established for drought monitoring, water resource management, yield forecasting and crop-growth monitoring. The framework uses the ALEXI/DisALEXI suite of land-surface model...

  17. Evaluation of a photosyntheses-based canopy resistance formulation in the Noah Land-surface model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurately representing complex land-surface processes balancing complexity and realism remains one challenge that the weather modelling community is facing nowadays. In this study, a photosynthesis-based Gas-exchange Evapotranspiration Model (GEM) is integrated into the Noah land-surface model repl...

  18. Analysis of Surface Energy Budget Data Over Varying Land-Cover Conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The surface energy budget plays an important role in boundary-layer meteorology and quantifying these budgets over varying land surface types is important in studying land-atmosphere interactions. In late April 2007, eddy covariance towers were erected at four sites in the Little Washita Watershed ...

  19. Analysis of surface energy budget data over varying land-cover conditions.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The surface energy budget plays an important role in boundary-layer meteorology and quantifying these budgets over varying land surface types is important in studying land-atmosphere interactions. In late April 2007, eddy covariance towers were erected at four sites in the Little Washita Watershed i...

  20. A LAND-SURFACE HYDROLOGY PARAMETERIZATION WITH SUBGRID VARIABILITY FOR GENERAL CIRCULATION MODELS

    EPA Science Inventory

    Most of the existing generation of general circulation models (GCMs) use so-called bucket algorithms to represent land-surface hydrology. iosphere-atmosphere models that include the transfer of energy, mass, and momentum between the atmosphere and the land surface are a recent al...

  1. Deriving New Topography-based Global Datasets for Land Surface Modeling

    NASA Astrophysics Data System (ADS)

    Tesfa, T. K.; Leung, L. R.

    2015-12-01

    Topography exerts a major control on land surface processes through its influence on atmospheric forcing, soil and vegetation properties, network topology and drainage area. Land surface spatial structure that captures spatial heterogeneity influenced by topography is expected to improve representation of land surface processes in land surface models. For example, land surface modeling using subbasins instead of regular grids as computational units has demonstrated improved scalability of simulated runoff and streamflow processes. In this study, a local classification method is applied to derive a new land surface spatial structure defined by further dividing subbasins into subgrid units based on elevation, topographic slope and aspect to take advantage of the emergent patterns and scaling properties of atmospheric, hydrologic, and vegetation processes in land surface models. For this purpose, a more consistent 90 meter resolution global surface elevation data has been developed by blending elevation data obtained from various sources. Taking the advantage of natural hydrologic connectivity of watersheds, new subbasin-based river routing and reservoir dependency datasets are being developed to improve representation of the managed hydrologic systems in the Community Land Model.

  2. Using scatterometer-based surface soil moisture products to optimally calibrate land data assimilation systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land data assimilation systems are designed to merge uncertain land surface model predictions with error-prone observations. Ingestion into a data assimilation systems represents a critical pathway towards key applications goals for remotely-sensed surface soil moisture products. However, the effe...

  3. Recent Progresses in Incorporating Human Land-Water Management into Global Land Surface Models Toward Their Integration into Earth System Models

    NASA Technical Reports Server (NTRS)

    Pokhrel, Yadu N.; Hanasaki, Naota; Wada, Yoshihide; Kim, Hyungjun

    2016-01-01

    The global water cycle has been profoundly affected by human land-water management. As the changes in the water cycle on land can affect the functioning of a wide range of biophysical and biogeochemical processes of the Earth system, it is essential to represent human land-water management in Earth system models (ESMs). During the recent past, noteworthy progress has been made in large-scale modeling of human impacts on the water cycle but sufficient advancements have not yet been made in integrating the newly developed schemes into ESMs. This study reviews the progresses made in incorporating human factors in large-scale hydrological models and their integration into ESMs. The study focuses primarily on the recent advancements and existing challenges in incorporating human impacts in global land surface models (LSMs) as a way forward to the development of ESMs with humans as integral components, but a brief review of global hydrological models (GHMs) is also provided. The study begins with the general overview of human impacts on the water cycle. Then, the algorithms currently employed to represent irrigation, reservoir operation, and groundwater pumping are discussed. Next, methodological deficiencies in current modeling approaches and existing challenges are identified. Furthermore, light is shed on the sources of uncertainties associated with model parameterizations, grid resolution, and datasets used for forcing and validation. Finally, representing human land-water management in LSMs is highlighted as an important research direction toward developing integrated models using ESM frameworks for the holistic study of human-water interactions within the Earths system.

  4. Sensitivity of Land Surface Parameters on Thunderstorm Simulation through HRLDAS-WRF Coupling Mode

    NASA Astrophysics Data System (ADS)

    Kumar, Dinesh; Kumar, Krishan; Mohanty, U. C.; Kisore Osuri, Krishna

    2016-07-01

    Land surface characteristics play an important role in large scale, regional and mesoscale atmospheric process. Representation of land surface characteristics can be improved through coupling of mesoscale atmospheric models with land surface models. Mesoscale atmospheric models depend on Land Surface Models (LSM) to provide land surface variables such as fluxes of heat, moisture, and momentum for lower boundary layer evolution. Studies have shown that land surface properties such as soil moisture, soil temperature, soil roughness, vegetation cover, have considerable effect on lower boundary layer. Although, the necessity to initialize soil moisture accurately in NWP models is widely acknowledged, monitoring soil moisture at regional and global scale is a very tough task due to high spatial and temporal variability. As a result, the available observation network is unable to provide the required spatial and temporal data for the most part of the globe. Therefore, model for land surface initializations rely on updated land surface properties from LSM. The solution for NWP land-state initialization can be found by combining data assimilation techniques, satellite-derived soil data, and land surface models. Further, it requires an intermediate step to use observed rainfall, satellite derived surface insolation, and meteorological analyses to run an uncoupled (offline) integration of LSM, so that the evolution of modeled soil moisture can be forced by observed forcing conditions. Therefore, for accurate land-state initialization, high resolution land data assimilation system (HRLDAS) is used to provide the essential land surface parameters. Offline-coupling of HRLDAS-WRF has shown much improved results over Delhi, India for four thunder storm events. The evolution of land surface variables particularly soil moisture, soil temperature and surface fluxes have provided more realistic condition. Results have shown that most of domain part became wetter and warmer after

  5. The Impact of the Parcel-Level Land Architecture on Land Surface Temperature in the Phoenix Metropolitan Area

    NASA Astrophysics Data System (ADS)

    LI, X.; Ouyang, Y.; Turner, B. L., II; Harlan, S.; Brazel, A.

    2014-12-01

    The relationship between land surface temperature (LST) and characteristics of the urban land system has received increasing attention in urban heat island research, especially for desert cities. The relationship between the land composition and LST has been widely studied. Such researches generally employ medium or coarser spatial resolution remotely sensed data and primarily focuses on the effects of one land cover type on the LST. In this study, we explore the effects of land system architecture - composition and configuration of different land-cover classes - on LST in the central Arizona-Phoenix metropolitan area at a fine-scale resolution, focused on the composition and configuration of single family residential parcels. A 1 m resolution land-cover map is used to calculate landscape metrics at the parcel level, and 6.8 m resolution data from the MODIS/ASTER are employed to retrieve LST. We introduce the socio-economic factors at neighborhood level as explanatory variables to help control for potential neighborhood effects. Multiple linear regression models examine the effects of landscape configuration on LST at the parcel scale, controlling for the effects of landscape composition and neighborhood characteristics. Results show that the configuration of parcels affects LST, revealing significant variable relationships between that architecture and LST at nighttime and daytime, and the role of the neighborhood effects on the outcomes.

  6. The surface energy balance at the Huygens landing site and the moist surface conditions on Titan

    NASA Astrophysics Data System (ADS)

    Williams, Kaj E.; McKay, Christopher P.; Persson, Fredrik

    2012-01-01

    The Huygens Probe provided a wealth of data concerning the atmosphere of Titan. It also provided tantalizing evidence of a small amount of surface liquid. We have developed a detailed surface energy balance for the Probe landing site. We find that the daily averaged non-radiative fluxes at the surface are 0.7 W m-2, much larger than the global average value predicted by McKay et al. (1991) of 0.037 W m-2. Considering the moist surface, the methane and ethane detected by the Probe from the surface is consistent with a ternary liquid of ethane, methane, and nitrogen present on the surface with mole fractions of methane, ethane, and nitrogen of 0.44, 0.34, and 0.22, respectively, and a total mass load of ∼0.05 kg m-2. If this liquid is included in the surface energy balance, only a small fraction of the non-radiative energy is due to latent heat release (∼10-3 W m-2). If the amount of atmospheric ethane is less than 0.6×10-5, the surface liquid is most likely evaporating over timescales of 5 Titan days, and the moist surface is probably a remnant of a recent precipitation event. If the surface liquid mass loading is increased to 0.5 kg m-2, then the liquid lifetime increases to ∼56 Titan days. Our modeling results indicate a dew cycle is unlikely, given that even when the diurnal variation of liquid is in equilibrium, the diurnal mass variation is only 3% of the total liquid. If we assume a high atmospheric mixing ratio of ethane (>0.6×10-5), the precipitation of liquid is large (38 cm/Titan year for an ethane mixing ratio of 2×10-5). Such a flux is many orders of magnitude in excess of the photochemical production rate of ethane.

  7. Distributions of surface-layer buoyance versus lifting condensation level over a heterogeneous land surface

    SciTech Connect

    Schrieber, K.; Zhang, Qing; Stull, R.

    1996-04-15

    Onset and coverage of small cumulus clouds depend on the relative abundance of surface-layer air parcels possessing favorable buoyancy and moisture - two variables that are coupled through the surface energy budget. This abundance is described using a joint frequency distribution (JFD) as a function of virtual potential temperature {theta}{sub v} and height of the lifting condensation level z{sub LCL}. It is shown analytically that the shape and spread of this JFD depends on the ranges of Bowen ratios and solar forcings (albedoes, cloud shading, etc.) that exist within a domain of heterogeneous land use. To sample the character of such JFDs in the real atmosphere, a case study is presented using turbulence data gathered by aircraft flying in the surface layer of southwest France. This case study includes 4 days of clear skies during the Hydrologic Atmospheric Pilot Experiment (HAPEX) of 1986. The full flight track during HAPEX overflew a wide range of land use including evergreen forest, corn, vineyards, pastures, and irrigated fields over varied topography. The JFDs from these full tracks are found to be quite complex, being frequently multimodal with a convoluted perimeter. However, when a full track is broken into segments, each over a subdomain of quasi-homogeneous land use, the resulting segment JFDs are mono-modal with simpler topology. Such a characterization of JFDs provides guidance toward eventual subgrid cumulus parameterization in large-scale forecast models, with associated impacts in aviation forecasting, pollutant venting and chemical reactions, verticle dispersion and turbulence modulation, and radiation balance in climate-change models. 48 refs., 17 figs., 7 tabs.

  8. Effects of land use/cover change on land surface energy partitioning and climate in Northeast China

    NASA Astrophysics Data System (ADS)

    Liu, Fengshan; Tao, Fulu; Liu, Jiyuan; Zhang, Shuai; Xiao, Dengpan; Wang, Meng; Zhang, He; Bai, Huizi

    2016-01-01

    The Simple Biosphere Model (SiB2) and the 2 × 2 km resolution National Land use/Land Cover database were used to investigate the effects of Land Use/Cover Change (LUCC) on land surface energy balance and climate in Jilin Province, northeast China, from 1990 to 2005. The spatial patterns of the components of surface energy balance (i.e., net radiation ( R n), latent heat (LH), sensible heat (SH), and albedo ( α)) and climate (i.e., canopy temperature ( T c), diurnal temperature range (DTR)), as well as the roles of land cover type in variations of energy balance and climate, were investigated. The results showed that there were general similar trends in R n, LH, SH, and α in the LUCC process. The spatial patterns of T c and DTR also showed consistent relationships with LUCC processes. Leaf area index (LAI) and canopy conductance ( g c) were found to be the key factors in controlling the spatial patterns of the components of surface energy balance and T c. Using linear correlation method, the gaps of the components of surface energy balance were well-explained by the differences of LAI and g c, and R n had a better correlation with T c and DTR, in the process of LUCC. The surface energy partitioning of R n into LH and SH could not only dampen or strengthen the temperature difference, but also change the relative size of albedo-based R n when the albedo gap was small, between land cover types.

  9. Estimation of Land Surface Temperature from 1-km AVHRR data

    NASA Astrophysics Data System (ADS)

    Frey, Corinne

    2016-04-01

    In order to re-process DLRs 1km AVHRR data archive to different geophysical and descriptive parameters of the land surface and the atmosphere, a series of scientific data processors are being developed in the framework of the TIMELINE project. The archive of DLR ranges back to the 80ies. One of the data processors is SurfTemp, which processes L2 LST and emissivity datasets from AVHRR L1b data. The development of the data processor included the selection of statistical procedures suitable for time series processing, including four mono-window and six split window algorithms. For almost all of these algorithms, new constants were generated, which better account for different atmospheric and geometric acquisition situations. The selection of optimal algorithms for SurfTemp is based on a round robin approach, in which the selected mono-window and split window algorithms are tested on the basis of a large number of TOA radiance/LST pairs, which were generated using a radiative transfer model and the SeeBorV5 profile database. The original LSTs are thereby compared to the LSTs derived from the TOA radiances using the mono- and split window algorithms. The algorithm comparison includes measures of precision, as well as the sensitivity of a method to the accuracy of its input data. The results of the round robin are presented, as well as the implementation of selected algorithms into SurfTemp. Further, first cross-validation results between the AVHRR LST and MODIS LST are shown.

  10. Results from Assimilating AMSR-E Soil Moisture Estimates into a Land Surface Model Using an Ensemble Kalman Filter in the Land Information System

    NASA Technical Reports Server (NTRS)

    Blankenship, Clay B.; Crosson, William L.; Case, Jonathan L.; Hale, Robert

    2010-01-01

    Improve simulations of soil moisture/temperature, and consequently boundary layer states and processes, by assimilating AMSR-E soil moisture estimates into a coupled land surface-mesoscale model Provide a new land surface model as an option in the Land Information System (LIS)

  11. LOTOS: A Proposed Lower Tropospheric Observing System from the Land Surface through the Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Cohn, S. A.; Lee, W. C.; Carbone, R. E.; Oncley, S.; Brown, W. O. J.; Spuler, S.; Horst, T. W.

    2015-12-01

    Advances in sensor capabilities, but also in electronics, optics, RF communication, and off-the-grid power are enabling new measurement paradigms. NCAR's Earth Observing Laboratory (EOL) is considering new sensors, new deployment modes, and integrated observing strategies to address challenges in understanding within the atmospheric boundary layer and the underlying coupling to the land surface. Our vision is of a network of deployable observing sites, each with a suite of complementary instruments that measure surface-atmosphere exchange, and the state and evolution of the boundary layer. EOL has made good progress on distributed surface energy balance and flux stations, and on boundary layer remote sensing of wind and water vapor, all suitable for deployments of combined instruments and as network of such sites. We will present the status of the CentNet surface network development, the 449-MHz modular wind profiler, and a water vapor and temperature profiling differential absorption lidar (DIAL) under development. We will further present a concept for a test bed to better understand the value of these and other possible instruments in forming an instrument suite flexible for multiple research purposes.

  12. Estimating land surface heat flux using radiometric surface temperature without the need for an extra resistance

    NASA Astrophysics Data System (ADS)

    Su, H.; Yang, Y.; Liu, S.

    2015-12-01

    Remotely-sensed land surface temperature (LST) is a key variable in energy balance and is widely used for estimating regional heat flux. However, the inequality between LST and aerodynamic surface temperature (Taero) poses a great challenge for regional heat flux estimation in one -source energy balance models. In this study, a one-source model for land (OSML) was proposed to estimate regional surface heat flux without a need for an empirical extra resistance. The proposed OSML employs both a conceptual VFC/LST trapezoid model and the electrical analogue formula of sensible heat flux (H) to estimate the radiometric-convective resistance (rae) by using a quartic equation. To evaluate the performance of OSML, the model was applied to the Soil Moisture-Atmosphere Coupling Experiment (SMACEX), using a remotely-sensed data set at a regional scale. Validated against tower observations, the root mean square deviation (RMSD) of H and latent heat flux (LE) from OSML was 47 W/m2 and 51 W/m2, which is comparable to other published studies. OSML and SEBS (Surface Energy Balance System) compared under the same available energy indicated that LE estimated by OSML is comparable to that derived from the SEBS model. In conducting further inter-comparisons of rae, the aerodynamic resistance derived from SEBS (ra_SEBS), and aerodynamic resistance (ra) derived from Brutsaert et al. (2005) in corn and soybean fields, we found that rae and ra_SEBS are comparable. Most importantly, our study indicates that the OSML method is applicable without having to acquire wind speed or to specify aerodynamic surface characteristics and that it is applicable to heterogeneous areas.

  13. Approximating tasseled cap values to evaluate brightness, greenness, and wetness for the Advanced Land Imager (ALI)

    USGS Publications Warehouse

    Yamamoto, Kristina H.; Finn, Michael P.

    2012-01-01

    The Tasseled Cap transformation is a method of image band conversion to enhance spectral information. It primarily is used to detect vegetation using the derived brightness, greenness, and wetness bands. An approximation of Tasseled Cap values for the Advanced Land Imager was investigated and compared to the Landsat Thematic Mapper Tasseled Cap values. Despite sharing similar spectral, temporal, and spatial resolution, the two systems are not interchangeable with regard to Tasseled Cap matrices.

  14. Recent developments in the reclamation of surface mined lands

    USGS Publications Warehouse

    Sharma, K.D.; Gough, L.P.; Kumar, S.; Sharma, B.K.; Saxena, S.K.

    1997-01-01

    A broad review of mine land reclamation problems and challenges in arid lands is presented with special emphasis on work recently completed in India. The economics of mining in the Indian Desert is second only to agriculture in importance. Lands disturbed by mining, however, have only recently been the focus of reclamation attempts. Studies were made and results compiled of problems associated with germplasm selection, soil, plant and overburden characterization and manipulation, plant establishment methods utilized, soil amendment needs, use and conservation of available water and the evaluation of ecosystem sustainability. Emphasis is made of the need for multi-disciplinary approaches to mine land reclamation research and for the long-term monitoring of reclamation success.

  15. Advanced Land Use Classification for Nigeriasat-1 Image of Lake Chad Basin

    NASA Astrophysics Data System (ADS)

    Babamaaji, R.; Park, C.; Lee, J.

    2009-12-01

    Lake Chad is a shrinking freshwater lake that has been significantly reduced to about 1/20 of its original size in the 1960’s. The severe draughts in 1970’s and 1980’s and following overexploitations of water resulted in the shortage of surface water in the lake and the surrounding rivers. Ground water resources are in scarcity too as ground water recharge is mostly made by soil infiltration through soil and land cover, but this surface cover is now experiencing siltation and expansion of wetland with invasive species. Large changes in land use and water management practices have taken place in the last 50 years including: removal of water from river systems for irrigation and consumption, degradation of forage land by overgrazing, deforestation, replacing natural ecosystems with mono-cultures, and construction of dams. Therefore, understanding the change of land use and its characteristics must be a first step to find how such changes disturb the water cycle around the lake and affect the shrinkage of the lake. Before any useful thematic information can be extracted from remote sensing data, a land cover classification system has to be developed to obtain the classes of interest. A combination of classification systems used by Global land cover, Water Resources eAtlass and Lake Chad Basin Commission gave rise to 7 land cover classes comprising of - Cropland, vegetation, grassland, water body, shrub-land, farmland ( mostly irrigated) and bareland (i.e. clear land). Supervised Maximum likelihood classification method was used with 15 reference points per class chosen. At the end of the classification, the overall accuracy is 93.33%. Producer’s accuracy for vegetation is 40% compare to the user’s accuracy that is 66.67 %. The reason is that the vegetation is similar to shrub land, it is very hard to differentiate between the vegetation and other plants, and therefore, most of the vegetation is classified as shrub land. Most of the waterbodies are occupied

  16. Estimates of land surface heat fluxes of the Mt. Everest region over the Tibetan Plateau utilizing ASTER data

    NASA Astrophysics Data System (ADS)

    Han, Cunbo; Ma, Yaoming; Chen, Xuelong; Su, Zhongbo

    2016-02-01

    Regional land surface albedo, land surface temperature, net radiation flux, ground heat flux, sensible heat flux, and latent heat flux were derived in the Mt. Everest area utilizing topographical enhanced surface energy balance system (TESEBS) model and nine scenes of ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) data under clear-sky and in-situ measurements at the QOMS station (the Qomolangma Station for Atmospheric Environmental Observation and Research, Chinese Academy of Sciences). The parameterization schemes for diffused and reflected downward shortwave radiation flux of the TESEBS model were improved by introducing the parameters sky-view factor (SVF) and terrain configuration factor (Ct). Then, a so-called C-correction method for land surface albedo was coupled into the TESEBS model to reduce the influences of topography. After topographical correction, the albedo of the dark tilted surface facing away from the Sun was compensated and albedo of the brightness surface facing the Sun was restrained. The downward shortwave radiation flux was broken down into three components including solar direct radiation flux, solar diffused radiation flux, and reflected solar radiation flux by surrounding terrain. The solar diffused radiation flux ranges from about 30 to 60 W/m2 at the satellite passing time on 6 January 2008. The reflected solar radiation flux changes from 0 to more than 100 W/m2 in the area covered by glaciers and snows. Thus, it is important to take the topographical effects into account in estimation of surface radiation balance in the mountainous area, especially in the glacier area. The retrieved land surface parameters, land surface radiation balance components, and the land surface energy balance components were evaluated by the field measurements in the QOMS station. The estimated results were very close to the in-situ observations with low mean bias errors, low root mean square errors and high correlation coefficients

  17. The challenges of designing a lightweight spacecraft structure for landing on the lunar surface

    NASA Astrophysics Data System (ADS)

    Cole, Timothy J.; Bassler, Julie; Cooper, Scott; Stephens, Vince; Ponnusamy, Devamanohar; Briere, Marc; Betenbaugh, Theresa

    2012-02-01

    The Johns Hopkins University Applied Physics Laboratory (JHU/APL) has been working with NASA's Marshall Space Flight Center (MSFC) on a lunar lander design that would take scientific measurements on the surface of the moon. This effort is part of NASA's Robotic Lunar Lander (RLL) Development Project. The requirements imposed on the design of the lander are: (1) Provide a lightweight lander structure to minimize the launch costs and maximize the payload carrying capability, (2) Minimize the lander launch envelope to allow for launching multiple landers on a single launch vehicle, (3) Given specific approach velocities, design a lander with geometric properties (low center-of-gravity, etc.) that maximizes the chances for a controlled landing on the lunar surface, (4) Provide a stable platform for all of the various scientific instruments.The lightweight lander requirement originates from the desire to minimize the launch costs and possibly package multiple landers on a single launch vehicle. The use of lightweight composite materials and advanced manufacturing techniques are employed throughout the design and construction of the structure in order to minimize mass and maximize structural stiffness.Minimizing the launch envelope enables the potential packaging of several spacecraft into one launch vehicle shroud. By having multiple landers, the scientific return is enhanced. Multiple spacecraft on the lunar surface provides independent confirmation of science measurements taken and also highlights any variance in the science data taken at differing lunar latitudes. Naturally, the launch cost per lander is greatly reduced if more than one lander can be packaged on a single launch vehicle.The lunar lander vehicle must arrive at the lunar surface at an upright orientation. In order to accomplish this, the structure geometry must be designed to accommodate attitude errors in roll, pitch and yaw. In addition, the structure must be able to withstand various landing

  18. Recent advances in land data assimilation at the NASA Global Modeling and Assimilation Office

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research in land surface data assimilation has grown rapidly over the last decade. We provide a brief overview of key research contributions by the NASA Global Modeling and Assimilation Office (GMAO). The GMAO contributions primarily include the continued development and application of the Ensembl...

  19. 30 CFR 762.15 - Exploration on land designated as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... for surface coal mining operations. 762.15 Section 762.15 Mineral Resources OFFICE OF SURFACE MINING... AREAS AS UNSUITABLE FOR SURFACE COAL MINING OPERATIONS § 762.15 Exploration on land designated as unsuitable for surface coal mining operations. Designation of any area as unsuitable for all or certain...

  20. 30 CFR 762.15 - Exploration on land designated as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for surface coal mining operations. 762.15 Section 762.15 Mineral Resources OFFICE OF SURFACE MINING... AREAS AS UNSUITABLE FOR SURFACE COAL MINING OPERATIONS § 762.15 Exploration on land designated as unsuitable for surface coal mining operations. Designation of any area as unsuitable for all or certain...

  1. 30 CFR 762.15 - Exploration on land designated as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... for surface coal mining operations. 762.15 Section 762.15 Mineral Resources OFFICE OF SURFACE MINING... AREAS AS UNSUITABLE FOR SURFACE COAL MINING OPERATIONS § 762.15 Exploration on land designated as unsuitable for surface coal mining operations. Designation of any area as unsuitable for all or certain...

  2. 30 CFR 762.15 - Exploration on land designated as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for surface coal mining operations. 762.15 Section 762.15 Mineral Resources OFFICE OF SURFACE MINING... AREAS AS UNSUITABLE FOR SURFACE COAL MINING OPERATIONS § 762.15 Exploration on land designated as unsuitable for surface coal mining operations. Designation of any area as unsuitable for all or certain...

  3. 30 CFR 762.15 - Exploration on land designated as unsuitable for surface coal mining operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for surface coal mining operations. 762.15 Section 762.15 Mineral Resources OFFICE OF SURFACE MINING... AREAS AS UNSUITABLE FOR SURFACE COAL MINING OPERATIONS § 762.15 Exploration on land designated as unsuitable for surface coal mining operations. Designation of any area as unsuitable for all or certain...

  4. Determination of Optimum Viewing Angles for the Angular Normalization of Land Surface Temperature over Vegetated Surface

    PubMed Central

    Ren, Huazhong; Yan, Guangjian; Liu, Rongyuan; Li, Zhao-Liang; Qin, Qiming; Nerry, Françoise; Liu, Qiang

    2015-01-01

    Multi-angular observation of land surface thermal radiation is considered to be a promising method of performing the angular normalization of land surface temperature (LST) retrieved from remote sensing data. This paper focuses on an investigation of the minimum requirements of viewing angles to perform such normalizations on LST. The normally kernel-driven bi-directional reflectance distribution function (BRDF) is first extended to the thermal infrared (TIR) domain as TIR-BRDF model, and its uncertainty is shown to be less than 0.3 K when used to fit the hemispheric directional thermal radiation. A local optimum three-angle combination is found and verified using the TIR-BRDF model based on two patterns: the single-point pattern and the linear-array pattern. The TIR-BRDF is applied to an airborne multi-angular dataset to retrieve LST at nadir (Te-nadir) from different viewing directions, and the results show that this model can obtain reliable Te-nadir from 3 to 4 directional observations with large angle intervals, thus corresponding to large temperature angular variations. The Te-nadir is generally larger than temperature of the slant direction, with a difference of approximately 0.5~2.0 K for vegetated pixels and up to several Kelvins for non-vegetated pixels. The findings of this paper will facilitate the future development of multi-angular thermal infrared sensors. PMID:25825975

  5. Multiecho scheme advances surface NMR for aquifer characterization

    NASA Astrophysics Data System (ADS)

    Grunewald, Elliot; Walsh, David

    2013-12-01

    nuclear magnetic resonance (NMR) is increasingly used as a method to noninvasively characterize aquifers. This technology follows a successful history of NMR logging, applied over decades to estimate hydrocarbon reservoir properties. In contrast to logging, however, surface methods have utilized relatively simple acquisition sequences, from which pore-scale properties may not be reliably and efficiently estimated. We demonstrate for the first time the capability of sophisticated multiecho measurements to rapidly record a surface NMR response that more directly reflects aquifer characteristics. Specifically, we develop an adaptation of the multipulse Carr-Purcell-Meiboom-Gill (CPMG) sequence, widely used in logging, to measure the T2 relaxation response in a single scan. We validate this approach in a field surface NMR data set and by direct comparison with an NMR log. Adoption of the CPMG marked a landmark advancement in the history of logging NMR; we have now realized this same advancement in the surface NMR method.

  6. Water balance in the Amazon basin from a land surface model ensemble

    SciTech Connect

    Getirana, Augusto; Dutra, Emanuel; Guimberteau, Matthieu; Kam, Jonghun; Li, Hongyi; Decharme, Bertrand; Zhang, Zhengqiu J.; Ducharne, Agnes; Boone, Aaron; Balsamo, Gianpaolo; Rodell, Matthew; Mounirou Toure, Ally; Xue, Yongkang; Peters-Lidard, Christa D.; Kumar, Sujay V.; Arsenault, Kristi Rae; Drapeau, Guillaume; Leung, Lai-Yung R.; Ronchail, Josyane; Sheffield, Justin

    2014-12-06

    Despite recent advances in modeling and remote sensing of land surfaces, estimates of the global water budget are still fairly uncertain. The objective of this study is to evaluate the water budget of the Amazon basin based on several state-of-the-art land surface model (LSM) outputs. Water budget variables [total water storage (TWS), evapotranspiration (ET), surface runoff (R) and baseflow (B)] are evaluated at the basin scale using both remote sensing and in situ data. Fourteen LSMs were run using meteorological forcings at a 3-hourly time step and 1-degree spatial resolution. Three experiments are performed using precipitation which has been rescaled to match monthly global GPCP and GPCC datasets and the daily HYBAM dataset for the Amazon basin. R and B are used to force the Hydrological Modeling and Analysis Platform (HyMAP) river routing scheme and simulated discharges are compared against observations at 165 gauges. Simulated ET and TWS are compared against FLUXNET and MOD16A2 evapotranspiration, and GRACE TWS estimates in different catchments. At the basin scale, simulated ET ranges from 2.39mm.d-1 to 3.26mm.d-1 and a low spatial correlation between ET and P indicates that evapotranspiration does not depend on water availability over most of the basin. Results also show that other simulated water budget variables vary significantly as a function of both the LSM and precipitation used, but simulated TWS generally agree at the basin scale. The best water budget simulations resulted from experiments using the HYBAM dataset, mostly explained by a denser rainfall gauge network the daily rescaling.

  7. Sea and Land Surface Temperature Radiometer detection assembly design and performance

    NASA Astrophysics Data System (ADS)

    Coppo, Peter; Mastrandrea, Carmine; Stagi, Moreno; Calamai, Luciano; Nieke, Jens

    2014-01-01

    The Sea and Land Surface Temperature Radiometers (SLSTRs) are high-accuracy radiometers selected for the Copernicus mission Sentinel-3 space component to provide sea surface temperature (SST) data continuity with respect to previous (Advanced) Along Track Scanning Radiometers [(A)ATSRs] for climatology. Many satellites are foreseen over a 20-year period, each with a 7.5-year lifetime. Sentinel-3A will be launched in 2015 and Sentinel-3B at least six months later, implying that two identical satellites will be maintained in the same orbit with a 180-deg phase delay. Each SLSTR has an improved design with respect to AATSR affording wider near-nadir and oblique view swaths (1400 and 740 km) for SST/land surface temperature global coverage at a 1-km spatial resolution (at SSP) with a daily revisit time (with two satellites), appropriate for both climate and meteorology. Cloud screening and other products are obtained with 0.5 km spatial resolution [at sub-satellite point (SSP)] in visible and short wave infrared (SWIR) bands, while two additional channels are included to monitor high temperature events such as forest fires. The two swaths are obtained with two conical scans and telescopes combined optically at a common focus, representing the input of a cooled focal plane assembly, where nine channels are separated with dichroic and are focalized on detectors with appropriate optical relays. IR and SWIR optics/detectors are cooled to 85 K by an active mechanical cryo-cooler with vibration compensation, while the VIS ones are maintained at a stable temperature. The opto-mechanical design and the expected electro-optical performance of the focal plane assembly are described and the model predictions at system level are compared with experimental data acquired in the vacuum chamber in flight representative thermal conditions or in the laboratory.

  8. The global land surface energy balance and its representation in CMIP5 models

    NASA Astrophysics Data System (ADS)

    Wild, Martin; Folini, Doris; Hakuba, Maria; Schär, Christoph; Seneviratne, Sonia; Kato, Seiji; Rutan, David; Ammann, Christof; Wood, Eric; König-Langlo, Gert

    2015-04-01

    The energy budget over terrestrial surfaces is a key determinant of the land surface climate and governs a variety of physical, chemical and biological surface processes. The purpose of the present study is to establish new reference estimates for the different components of the energy balance over global land surfaces. Thanks to the impressive progress in space-based observation systems in the past decade, we now know the energy exchanges between our planet and the surrounding space with unprecedented accuracy. However, the energy flows at the Earth's surface have not been established with the same accuracy, since they cannot be directly measured from satellites. Accordingly, estimates on the magnitude of the fluxes at terrestrial surfaces largely vary, and latest climate models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) still show significant differences in their simulated energy budgets on a land mean basis, which prevents a consistent simulation of the land surface processes in these models. In the present study we use to the extent possible direct observations of surface radiative fluxes from the Global Energy Balance Archive (GEBA) and the Baseline Surface Radiation Network (BSRN) to better constrain the simulated fluxes over global land surfaces. These model-calculated fluxes stem from the comprehensive set of more than 40 global climate from CMIP5 used in the latest IPCC report AR5. The CMIP5 models overall still show a tendency to overestimate the downward solar and underestimate the downward thermal radiation at terrestrial surfaces, a long standing problem in climate modelling. Based on the direct radiation observations and the bias structure of the CMIP5 models we infer best estimates for the downward solar and thermal radiation averaged over global land surfaces. They amount to 184 Wm-2 and 306 Wm-2, respectively. These values closely agree with the respective quantities independently derived by recent state-of-the-art reanalyses

  9. Land surface contribution to climate predictability: the long way from early evidence to improved forecast skill

    NASA Astrophysics Data System (ADS)

    Douville, Hervé

    2013-04-01

    Seasonal forecasts performance over most land areas remains relatively weak, particularly in the mid-latitudes where the interannual ocean variability has a lesser influence than in the tropics. Yet, many observational and numerical studies suggest that there is a fraction of predictability that is still untapped over land at the monthly to seasonal time scales, due to both local and remote land surface effects. Soil moisture and snow mass anomalies may have a strong signature in the land surface energy budget and thereby influence not only surface temperature, but also precipitation through changes in surface evaporation and/or moisture convergence. Land surface anomalies may also trigger planetary waves that can have remote effects on seasonal mean climate. This talk will first illustrate some potential land surface impacts on climate predictability using both statistical and numerical evidence. Then, the limitations of such studies and the practical difficulties for taking advantage of the land surface memory will be presented, as well as on-going efforts for adressing these issues at both European (i.e., SPECS) and international (i.e., GLACE) levels.

  10. Atmosphere-only GCM (ACCESS1.0) simulations with prescribed land surface temperatures

    NASA Astrophysics Data System (ADS)

    Ackerley, Duncan; Dommenget, Dietmar

    2016-06-01

    General circulation models (GCMs) are valuable tools for understanding how the global ocean-atmosphere-land surface system interacts and are routinely evaluated relative to observational data sets. Conversely, observational data sets can also be used to constrain GCMs in order to identify systematic errors in their simulated climates. One such example is to prescribe sea surface temperatures (SSTs) such that 70 % of the Earth's surface temperature field is observationally constrained (known as an Atmospheric Model Intercomparison Project, AMIP, simulation). Nevertheless, in such simulations, land surface temperatures are typically allowed to vary freely, and therefore any errors that develop over the land may affect the global circulation. In this study therefore, a method for prescribing the land surface temperatures within a GCM (the Australian Community Climate and Earth System Simulator, ACCESS) is presented. Simulations with this prescribed land surface temperature model produce a mean climate state that is comparable to a simulation with freely varying land temperatures; for example, the diurnal cycle of tropical convection is maintained. The model is then developed further to incorporate a selection of "proof of concept" sensitivity experiments where the land surface temperatures are changed globally and regionally. The resulting changes to the global circulation in these sensitivity experiments are found to be consistent with other idealized model experiments described in the wider scientific literature. Finally, a list of other potential applications is described at the end of the study to highlight the usefulness of such a model to the scientific community.

  11. Advanced surface paneling method for subsonic and supersonic flow

    NASA Technical Reports Server (NTRS)

    Erickson, L. L.; Johnson, F. T.; Ehlers, F. E.

    1976-01-01

    Numerical results illustrating the capabilities of an advanced aerodynamic surface paneling method are presented. The method is applicable to both subsonic and supersonic flow, as represented by linearized potential flow theory. The method is based on linearly varying sources and quadratically varying doublets which are distributed over flat or curved panels. These panels are applied to the true surface geometry of arbitrarily shaped three dimensional aerodynamic configurations.

  12. Coal surface control for advanced fine coal flotation

    SciTech Connect

    Fuerstenau, D.W.; Sastry, K.V.; Hanson, J.S.; Harris, G.; Sotillo, F.; Diao, J.; De, A. ); Somasundaran, P.; Harris, C.C.; Vasudevan, T.; Liu, D.; Li, C. ); Hu, Weibai; Zou, Y.; Chen, W. ); Choudhry, V.; Sehgal, R.; Ghosh, A. )

    1991-03-22

    The main goal of the project is to characterize the surface and control the behavior of coal during advanced flotation processing in order to achieve an overall objective of near-total pyritic sulfur removal with a high Btu recovery. Also, investigation of the effects of weathering on the surface characteristics of coal is another important aspect of this project. The effect of butanol, dodecane, lime, calcium cyanide, hydrogen peroxide, and ph on flotation performance is discussed. 2 refs., 26 figs., 18 tabs.

  13. A Study on the Influence of the Land Surface Processes on the Southwest Monsoon Simulations using a Regional Climate Model

    NASA Astrophysics Data System (ADS)

    Srinivas, C. V.; Bhaskar Rao, D. V.; Hari Prasad, D.; Hari Prasad, K. B. R. R.; Baskaran, R.; Venkatraman, B.

    2015-10-01

    Influence of the land surface processes as an important mechanism in the development of the Indian Summer Monsoon is studied by performing simulations with a regional atmospheric model. Seasonal scale simulations are conducted for two contrasting summer monsoons (MJJAS months) in 2008 & 2009 with the Weather Research and Forecasting-Advanced Research regional model at a high resolution of 15 km using the boundary conditions derived from the National Centers for Environmental Prediction (NCEP) reanalysis data and using the NOAH land surface parameterization scheme. Simulations are evaluated by comparison of precipitation with 0.5° India Meteorological Department gridded rainfall data over land, atmospheric circulation fields with 1° resolution NCEP global final analysis, and surface fluxes with 0.75° resolution Era-Interim reanalysis. Results indicated significant variation in the evolution of the surface fluxes, air temperatures and flux convergence in the 2 contrasting years. A lower albedo, higher heating (sensible, latent heat fluxes), higher air temperatures, stronger flow and higher moisture flux convergence are noted over the subcontinent during the monsoon 2008 relative to the monsoon 2009. The simulated surface fluxes are in good comparison with observations. The stronger flow in 2008 is found to be associated with stronger heat flux gradients as well as stronger north-south geopotential/pressure gradients. The simulations revealed notable differences in many features such as zonal and meridional surface sensible heat gradients which, in turn, influenced the low-level pressure gradients, wind flow, and moisture transport. The present study reveals that, even at a regional scale, the physical processes of land-surface energy partitioning do influence the regional behavior of the monsoon system to a certain extent.

  14. Determination of Land Surface Temperature and Soil Moisture From Trmm/tmi Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Wen, J.; Su, Z.

    An analytical algorithm for determination of land surface temperature and soil mois- ture from Tropical Rainfall Measuring Mission/Microwave Imager (TRMM/TMI) re- mote sensing data is developed in this study. Error analyses illustrate that uncer- tainty of the involved parameters will not give serious errors in determination of land surface temperature and soil Fresnel reflectivity. With the proposed algorithm and TRMM/TMI remote sensing data collected during Global Energy and Water Experi- ment (GEWEX) Asian Monsoon Experiment in Tibet (GAME/Tibet) Intensive Obser- vation Period (IOP'98) field campaign in 1998, the regional and temporal distributions of the land surface temperature and volumetric soil moisture are estimated over the central Tibetan plateau area. To validate the proposed method, the ground measured surface temperature and soil volumetric moisture are compared to TRMM/TMI de- rived land surface temperature and soil Fresnel reflectivity respectively. The result shows that estimated surface temperature is in good agreement with ground mea- surements, their difference and correlation coefficient are 0.52+-2.41 K and 0.81. A quasi-linear relationship exists between the estimated Fresnel reflectivity and ground measured volumetric soil moisture with a correlation coefficient 0.82. The land sur- face characteristics can also be clearly identified from the regional distribution of the estimated land surface temperature, the mountainous area and water bodies give a very lower surface temperature while the river basin shows a higher surface temper- ature compared to the mountainous area. The southeastern part of the selected area has lower soil moisture, while the river basin exhibits high soil moisture values. It is therefore concluded that the proposed method is successful for the retrieval of land surface temperature and soil moisture using TRMM/TMI data. Keywords: TRMM/TMI, brightness temperature, land surface emperature, soil mois- ture and Tibetan

  15. Inferring land surface parameters from the diurnal variability of microwave and infrared temperatures

    NASA Astrophysics Data System (ADS)

    Norouzi, Hamidreza; Temimi, Marouane; AghaKouchak, Amir; Azarderakhsh, Marzieh; Khanbilvardi, Reza; Shields, Gerarda; Tesfagiorgis, Kibrewossen

    This study investigates the properties of the diurnal cycle of microwave brightness temperatures (TB), namely the phase and the amplitude, and their variability in time and space over the globe to infer information on key land surface parameters like changes in soil texture spatial distribution, soil moisture conditions, and vegetation density. The phase corresponds to the lag between Land Surface Temperature (LST) and TB diurnal cycles. The amplitude is determined as the difference between the maximum and the minimum of TB diurnal cycle. The diurnal cycle of TB was constructed using observations from the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) and the Special Sensor Microwave/Imager (SSM/I). The latter offer a series of sensors, namely, F13, F14, and F15 that were used in this study for a higher temporal coverage and more accurate diurnal cycle determination. LST estimates, which are available every 3 h from the International Satellite Cloud Climatology Project (ISCCP) database were used to build the LST diurnal cycle. ISCCP LST data is an infrared-based temperature with almost no penetration and is the representative of top skin temperature. The analyses of the diurnal cycles showed that the diurnal amplitude of TB decreases as the vegetation density increases, especially in the case of low frequencies which penetrate deeper into the canopy which makes them more sensitive to changes in vegetation density. The interannual variations of TB diurnal amplitudes were also in agreement with the seasonality of the vegetation cover. Over desert and rain forest regions where surface conditions do not vary significantly throughout the year, the changes in diurnal amplitudes were the lowest. A relationship between phase and amplitude values was established. It was found that the amplitude of TB diurnal cycle decreases when the phase lag increases. The spatial distribution of the determined diurnal properties, namely, phase and amplitude of TB

  16. ESTIMATION OF LAND SURFACE WINDOW (8-12 MICROMETER) EMISSIVITY FROM MULTISPECTRAL THERMAL INFRARED REMOTE SENSING - A CASE STUDY IN A PART OF SAHARA DESERT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land surface window emissivity is an important parameter for estimating the longwave radiative budget. This study focuses on estimating the window (8-12 micrometer) emissivity from the waveband emissivities of the five thermal infrared channels of the Advanced Spaceborne Thermal Emission and Reflect...

  17. Internal Physical Features of a Land Surface Model Employing a Tangent Linear Model

    NASA Technical Reports Server (NTRS)

    Yang, Runhua; Cohn, Stephen E.; daSilva, Arlindo; Joiner, Joanna; Houser, Paul R.

    1997-01-01

    The Earth's land surface, including its biomass, is an integral part of the Earth's weather and climate system. Land surface heterogeneity, such as the type and amount of vegetative covering., has a profound effect on local weather variability and therefore on regional variations of the global climate. Surface conditions affect local weather and climate through a number of mechanisms. First, they determine the re-distribution of the net radiative energy received at the surface, through the atmosphere, from the sun. A certain fraction of this energy increases the surface ground temperature, another warms the near-surface atmosphere, and the rest evaporates surface water, which in turn creates clouds and causes precipitation. Second, they determine how much rainfall and snowmelt can be stored in the soil and how much instead runs off into waterways. Finally, surface conditions influence the near-surface concentration and distribution of greenhouse gases such as carbon dioxide. The processes through which these mechanisms interact with the atmosphere can be modeled mathematically, to within some degree of uncertainty, on the basis of underlying physical principles. Such a land surface model provides predictive capability for surface variables including ground temperature, surface humidity, and soil moisture and temperature. This information is important for agriculture and industry, as well as for addressing fundamental scientific questions concerning global and local climate change. In this study we apply a methodology known as tangent linear modeling to help us understand more deeply, the behavior of the Mosaic land surface model, a model that has been developed over the past several years at NASA/GSFC. This methodology allows us to examine, directly and quantitatively, the dependence of prediction errors in land surface variables upon different vegetation conditions. The work also highlights the importance of accurate soil moisture information. Although surface

  18. Spatially Complete Global Spectral Surface Albedos: Value-Added Datasets Derived from Terra MODIS Land Products

    NASA Technical Reports Server (NTRS)

    Moody, Eric G.; King, Michael D.; Platnick, Steven; Schaaf, Crystal B.; Gao, Feng

    2004-01-01

    Land surface albedo is an important parameter in describing the radiative properties of the earth s surface as it represents the amount of incoming solar radiation that is reflected from the surface. The amount and type of vegetation of the surface dramatically alters the amount of radiation that is reflected; for example, croplands that contain leafy vegetation will reflect radiation very differently than blacktop associated with urban areas. In addition, since vegetation goes through a growth, or phenological, cycle, the amount of radiation that is reflected changes over the course of a year. As a result, albedo is both temporally and spatially dependant upon global location as there is a distribution of vegetated surface types and growing conditions. Land surface albedo is critical for a wide variety of earth system research projects including but not restricted to remote sensing of atmospheric aerosol and cloud properties from space, ground-based analysis of aerosol optical properties from surface-based sun/sky radiometers, biophysically-based land surface modeling of the exchange of energy, water, momentum, and carbon for various land use categories, and surface energy balance studies. These projects require proper representation of the surface albedo s spatial, spectral, and temporal variations, however, these representations are often lacking in datasets prior to the latest generation of land surface albedo products.

  19. Forcing a Global, Offline Land Surface Modeling System with Observation-Based Fields

    NASA Technical Reports Server (NTRS)

    Rodell, Matthew; Houser, Paul R.; Jambor, U.; Gottschalck, J.; Radakovich, J.; Arsenault, K.; Meng, C.-J.; Mitchell, K. E.

    2002-01-01

    The Global Land Data Assimilation System (GLDAS) drives multiple uncoupled land surface models in order to produce optimal output fields of surface states in near-real time, globally, at 1/4 degree spatial resolution. These fields are then made available for coupled atmospheric model initialization and further research. One of the unique aspects of GLDAS is its ability to ingest both modeled and observation-derived forcing for running global scale land surface models. This paper compares results of runs forced by modeled and observed precipitation and shortwave radiation fields. Differences are examined and the impact of the observations on model skill is assessed.

  20. Land Surface Process and Air Quality Research and Applications at MSFC

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale; Khan, Maudood

    2007-01-01

    This viewgraph presentation provides an overview of land surface process and air quality research at MSFC including atmospheric modeling and ongoing research whose objective is to undertake a comprehensive spatiotemporal analysis of the effects of accurate land surface characterization on atmospheric modeling results, and public health applications. Land use maps as well as 10 meter air temperature, surface wind, PBL mean difference heights, NOx, ozone, and O3+NO2 plots as well as spatial growth model outputs are included. Emissions and general air quality modeling are also discussed.

  1. Effects land surface type, land use, and land use change on aquatic-atmosphere fluxes of carbon dioxide from tropical forests and peat lands of Borneo

    NASA Astrophysics Data System (ADS)

    Oechel, W. C.; Abelleira Martínez, O.; Anshari, G.; Ikawa, H.; Lawrence, W. T.; Metz, M.; Neteler, M.; Nuriman, M.; Rocchini, D.; Zona, D.

    2011-12-01

    Tropical peat lands appear to be loosing huge amounts of carbon dioxide to the atmosphere due to patterns of land use and land use change including conversion of tropical forest peat lands to palm oil production and other agricultural endeavors and forest exploitation. Here, we look at the effect of land use patterns on the export of carbon to tropical river systems and the efflux from tropical rivers to the atmosphere. Levels of pcarbon dioxide, DOC and POC were measured in the Kapuas River, the longest river in Borneo. Patterns of land use and land use change were correlated with export rates of organic matter to the river as well as the vertical fluxes of carbon dioxide from the river and delta to the atmosphere. Land conversion of tropical forests on peat land soils to agriculture, including palm oil production, had some of the highest rates of lateral fluxes of organic carbon to the river system, and among the highest fluxes of carbon dioxide from the river to the atmosphere. This approach illustrates the utility of using a combination of methods: pcarbon dioxide measurement, water chemistry, temporal remote sensing, and modeling to understand and quantify the impact of land use change on GHG emissions from tropical peat lands. Boat based eddy covariance, developed and tested in the coastal zones of the Pacific Ocean, promises to provide a powerful addition to these approaches.

  2. Identifying surface response to drought and heat with a land surface model and NDVI

    NASA Astrophysics Data System (ADS)

    Harrison, L. S.; Michaelsen, J.; Funk, C. C.; Carvalho, L. V.; Still, C. J.; McNally, A.; Peters-Lidard, C. D.

    2012-12-01

    Lack of in situ observations makes drought monitoring a challenge in East Africa. Hence an effective means of identifying climate hazards and surface impacts are satellite-based rainfall estimates and vegetation observations. During the 2011 Kenyan drought Rainfall Estimation Algorithm Version 2 (RFE2.0) and expedited Moderate Resolution Imaging Spectroradiometer (eMODIS) NDVI products were used to delineate regional gradients of food insecurity, a critical factor in prompt distribution of aid. Land surface models (LSM) beckon as a means for expanding our understanding of drought. Modeled turbulent surface fluxes may make explicit physical processes responsible for observed plant stress. When sensible heating occurs under low evapotranspiration (AET) conditions, we would expect vegetation stress to increase. In this paper we examine two aspects of temperature-vegetation stress as interpreted by a LSM: (1) To what extent do sensible heating anomalies accompany AET anomalies and (2) how do rainfall and temperature influence energy partitioning? We investigate for the March-May rainy season (2001-12) across Kenya's rangelands at interannual and sub-seasonal timescales. Results highlight landscape characteristics with disproportionate sensitivity to climate. LSM estimates are compared to the vegetation response observed with NDVI. We establish the relationship between sources and use 2009 and 2011 agro-pastoral droughts as criteria for the LSM as a potential monitoring tool. Climate and flux data are from Noah3.2 LSM forced with RFE2.0 rainfall in a custom configuration of the NASA Land Information System. Satellite observations are from eMODIS NDVI.

  3. Towards a protocol for validating satellite-based Land Surface Temperature: Theoretical considerations

    NASA Astrophysics Data System (ADS)

    Schneider, Philipp; Ghent, Darren J.; Corlett, Gary C.; Prata, Fred; Remedios, John J.

    2013-04-01

    Land Surface Temperature (LST) and emissivity are important parameters for environmental monitoring and earth system modelling. LST has been observed from space for several decades using a wide variety of satellite instruments with different characteristics, including both platforms in low-earth orbit and in geostationary orbit. This includes for example the series of Advanced Very High Resolution Radiometers (AVHRR) delivering a continuous thermal infrared (TIR) data stream since the early 1980s, the series of Along-Track Scanning Radiometers (ATSR) providing TIR data since 1991, and the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments onboard NASA's Terra and Aqua platforms, providing data since the year 2000. In addition, the Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard of the geostationary Meteosat satellites is now providing LST at unprecedented sub-hour frequency. The data record provided by such instruments is extremely valuable for a wide variety of applications, including climate change, land/atmosphere feedbacks, fire monitoring, modelling, land cover change, geology, crop- and water management. All of these applications, however, require a rigorous validation of the data in order to assess the product quality and the associated uncertainty. Here we report on recent work towards developing a protocol for validation of satellite-based Land Surface Temperature products. Four main validation categories are distinguished within the protocol: A) Comparison with in situ observations, B) Radiance-based validation, C) Inter-comparison with similar LST products, and D) Time-series analysis. Each category is further subdivided into several quality classes, which approximately reflect the validation accuracy that can be achieved by the different approaches, as well as the complexity involved with each method. Advice on best practices is given for methodology common to all categories. For each validation category, recommendations

  4. Spatially Complete Surface Albedo Data Sets: Value-Added Products Derived from Terra MODIS Land Products

    NASA Technical Reports Server (NTRS)

    Moody, Eric G.; King, Michael D.; Platnick, Steven; Schaaf, Crystal B.; Gao, Feng

    2004-01-01

    Spectral land surface albedo is an important parameter for describing the radiative properties of the Earth. Accordingly it reflects the consequences of natural and human interactions, such as anthropogenic, meteorological, and phenological effects, on global and local climatological trends. Consequently, albedos are integral parts in a variety of research areas, such as general circulation models (GCMs), energy balance studies, modeling of land use and land use change, and biophysical, oceanographic, and meteorological studies. Recent observations of diffuse bihemispherical (white-sky) and direct beam directional hemispherical (black-sky ) land surface albedo included in the MOD43B3 product from MODIS instruments aboard NASA's Terra and Aqua satellite platforms have provided researchers with unprecedented spatial, spectral, and temporal characteristics. Cloud and seasonal snow cover, however, curtail retrievals to approximately half the global land surfaces on an annual equal-angle basis, precluding MOD43B3 albedo products from direct inclusion in some research projects and production environments.

  5. Modeling land-surface processes and land-atmosphere interactions in the community weather and regional climate WRF model (Invited)

    NASA Astrophysics Data System (ADS)

    Chen, F.; Barlage, M. J.

    2013-12-01

    The Weather Research and Forecasting (WRF) model has been widely used with high-resolution configuration in the weather and regional climate communities, and hence demands its land-surface models to treat not only fast-response processes, such as plant evapotranspiration that are important for numerical weather prediction but also slow-evolving processes such as snow hydrology and interactions between surface soil water and deep aquifer. Correctly representing urbanization, which has been traditionally ignored in coarse-resolution modeling, is critical for applying WRF to air quality and public health research. To meet these demands, numerous efforts have been undertaken to improve land-surface models (LSM) in WRF, including the recent implementation of the Noah-MP (Noah Multiple-Physics). Noah-MP uses multiple options for key sub-grid land-atmosphere interaction processes (Niu et al., 2011; Yang et al., 2011), and contains a separate vegetation canopy representing within- and under-canopy radiation and turbulent processes, a multilayer physically-based snow model, and a photosynthesis canopy resistance parameterization with a dynamic vegetation model. This paper will focus on the interactions between fast and slow land processes through: 1) a benchmarking of the Noah-MP performance, in comparison to five widely-used land-surface models, in simulating and diagnosing snow evolution for complex terrain forested regions, and 2) the effects of interactions between shallow and deep aquifers on regional weather and climate. Moreover, we will provide an overview of recent improvements of the integrated WRF-Urban modeling system, especially its hydrological enhancements that takes into account the effects of lawn irrigation, urban oasis, evaporation from pavements, anthropogenic moisture sources, and a green-roof parameterization.

  6. A simple hydrologically based model of land surface water and energy fluxes for general circulation models

    NASA Technical Reports Server (NTRS)

    Liang, XU; Lettenmaier, Dennis P.; Wood, Eric F.; Burges, Stephen J.

    1994-01-01

    A generalization of the single soil layer variable infiltration capacity (VIC) land surface hydrological model previously implemented in the Geophysical Fluid Dynamics Laboratory (GFDL) general circulation model (GCM) is described. The new model is comprised of a two-layer characterization of the soil column, and uses an aerodynamic representation of the latent and sensible heat fluxes at the land surface. The infiltration algorithm for the upper layer is essentially the same as for the single layer VIC model, while the lower layer drainage formulation is of the form previously implemented in the Max-Planck-Institut GCM. The model partitions the area of interest (e.g., grid cell) into multiple land surface cover types; for each land cover type the fraction of roots in the upper and lower zone is specified. Evapotranspiration consists of three components: canopy evaporation, evaporation from bare soils, and transpiration, which is represented using a canopy and architectural resistance formulation. Once the latent heat flux has been computed, the surface energy balance is iterated to solve for the land surface temperature at each time step. The model was tested using long-term hydrologic and climatological data for Kings Creek, Kansas to estimate and validate the hydrological parameters, and surface flux data from three First International Satellite Land Surface Climatology Project Field Experiment (FIFE) intensive field campaigns in the summer-fall of 1987 to validate the surface energy fluxes.

  7. Globalland30 Mapping Capacity of Land Surface Water in Thessaly, Greece

    NASA Astrophysics Data System (ADS)

    Manakos, Ioannis; Chatzopoulos-Vouzoglanis, Konstantinos; Petrou, Zisis I.; Filchev, Lachezar; Apostolakis, Antonis

    2015-01-01

    The National Geomatics Center of China (NGCC) produced Global Land Cover (GlobalLand30) maps with 30 m spatial resolution for the years 2000 and 2009-2010, responding to the need for harmonized, accurate, and high-resolution global land cover data. This study aims to assess the mapping accuracy of the land surface water layer of GlobalLand30 for 2009-2010. A representative Mediterranean region, situated in Greece, is considered as the case study area, with 2009 as the reference year. The assessment is realized through an object-based comparison of the GlobalLand30 water layer with the ground truth and visually interpreted data from the Hellenic Cadastre fine spatial resolution (0.5 m) orthophoto map layer. GlobCover 2009, GlobCorine 2009, and GLCNMO 2008 corresponding thematic layers are utilized to show and quantify the progress brought along with the increment of the spatial resolution, from 500 m to 300 m and finally to 30 m with the newly produced GlobalLand30 maps. GlobalLand30 detected land surface water areas show a 91.9% overlap with the reference data, while the coarser resolution products are restricted to lower accuracies. Validation is extended to the drainage network elements, i.e., rivers and streams, where GlobalLand30 outperforms the other global map products, as well.

  8. A joint NOAA/USGS study to evaluate satellite assessment of land surface features and climatic variables

    USGS Publications Warehouse

    Gallo, K.P.; Tarpley, J.D.; Howard, S.M.; Moore, D.G.

    1987-01-01

    Data collection and preliminary analyses have begun for a study that will evaluate the usefulness of satellite data for assessment of land surface features and climatic variables. The objective of the study is to determine what relationships exist between routinely available ground-based climatic and land surface information and satellite-obtained land surface information. The overall goal is to contribute to the increasingly important understanding of land surface climatology.

  9. Towards the development of an on-line model error identification system for land surface models

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Due to the complexity of potential error sources in land surface models, the accurate specification of model error parameters has emerged as a major challenge in the development of effective land data assimilation systems for hydrologic and hydro-climatic applications. While several on-line procedur...

  10. The sensitivity of land emissivity estimates from AMSR-E at C and X bands to surface properties

    NASA Astrophysics Data System (ADS)

    Norouzi, H.; Temimi, M.; Rossow, W. B.; Pearl, C.; Azarderakhsh, M.; Khanbilvardi, R.

    2011-06-01

    Microwave observations at low frequencies exhibit more sensitivity to surface and subsurface properties with little interference from the atmosphere. The objective of this study is to develop a global land emissivity product using passive microwave observations from the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) and to investigate its sensitivity to land surface properties. The developed product complements existing land emissivity products from SSM/I and AMSU by adding land emissivity estimates at two lower frequencies, 6.9 and 10.65 GHz (C- and X-band, respectively). Observations at these low frequencies penetrate deeper into the soil layer. Ancillary data used in the analysis, such as surface skin temperature and cloud mask, are obtained from International Satellite Cloud Climatology Project (ISCCP). Atmospheric properties are obtained from the TIROS Operational Vertical Sounder (TOVS) observations to determine the small upwelling and downwelling atmospheric emissions as well as the atmospheric transmission. A sensitivity test confirms the small effect of the atmosphere but shows that skin temperature accuracy can significantly affect emissivity estimates. Retrieved emissivities at C- and X-bands and their polarization differences exhibit similar patterns of variation with changes in land cover type, soil moisture, and vegetation density as seen at SSM/I-like frequencies (Ka and Ku bands). The emissivity maps from AMSR-E at these higher frequencies agree reasonably well with the existing SSM/I-based product. The inherent but small discrepancy introduced by the difference between SSM/I and AMSR-E frequencies and incidence angles has been examined and found to be small. Large differences between emissivity estimates from ascending and descending overpasses were found at the lower frequencies due to the inconsistency between the thermal IR skin temperatures and passive microwave brightness temperatures which can come from below the

  11. Isolating Effects of Terrain and Subsurface Heterogeneity on Land Surface Energy Fluxes using Coupled Surface-Subsurface Simulations

    NASA Astrophysics Data System (ADS)

    Rihani, J.; Maxwell, R. M.; Chow, F. K.

    2009-12-01

    Idealized simulations are used to study effects of terrain, subsurface formations, properties, land cover and climatology on the feedbacks between water table depth and energy fluxes at the land surface. Vertical and lateral water transport are taken into account in an interactive manner between overland and subsurface flow while having an explicit representation of the water table. This is done by using a three-dimensional variably saturated groundwater code (ParFlow) coupled to a land surface model (the Common Land Model). Results indicate a strong coupling between water table depth and land surface energy fluxes in certain transitional areas between very shallow and very deep water table locations along the hillsides of the simulation cases. Subsurface formations and properties are identified as having the strongest effect on the location, extent, and strength of coupling between water table depth and energy fluxes. These feedbacks are strongly affected by changing thickness of the top-most subsurface formation, and they become more complex as more layers are introduced in the system. Terrain has a more pronounced effect on the hydrology of the system than on the coupling between water table and energy fluxes. Vegetative land cover on the other hand has a small effect on hydrology and water table dynamics, but a large effect on the energy fluxes at the land surface. Two different climatologies are tested and similar trends are observed even with dramatically different atmospheric forcings. A drier climate however will produce narrower transition zones of coupling. This demonstrates that lateral surface and subsurface flows have a great effect on land surface fluxes even for very simplistic terrain and geologic settings. It is thus important that these results are extended to more realistic settings and applied to understand the more complicated coupling processes that occur in a real watershed.

  12. Multi-site evaluation of the JULES land surface model using global and local data

    NASA Astrophysics Data System (ADS)

    Slevin, D.; Tett, S. F. B.; Williams, M.

    2014-08-01

    Changes in atmospheric carbon dioxide and water vapour change the energy balance of the atmosphere and thus climate. One important influence on these greenhouse gases is the land surface. Land Surface Models (LSMs) represent the interaction between the atmosphere and terrestrial biosphere in Global Climate Models (GCMs). As LSMs become more advanced, there is a need to test their accuracy. Uncertainty from LSMs contributes towards uncertainty in carbon cycle simulations and thus uncertainty in future climate change. In this study, we evaluate the ability of the JULES LSM to simulate photosynthesis using local and global datasets at 12 FLUXNET sites. Model parameters include site-specific (local) values for each flux tower site and the default parameters used in the Hadley Centre Global Environmental Model (HadGEM) climate model. Firstly, we compare Gross Primary Productivity (GPP) estimates from driving JULES with data derived from local site measurements with driving JULES with data derived from global parameter and atmospheric reanalysis (on scales of 100 km or so). We find that when using local data, a negative bias is introduced into model simulations with yearly GPP underestimated by 16% on average compared to observations while when using global data, model performance decreases further with yearly GPP underestimated by 30% on average. Secondly, we drive the model using global meteorological data and local parameters and find that global data can be used in place of FLUXNET data with only a 7% reduction in total annual simulated GPP. Thirdly, we compare the global meteorological datasets, WFDEI and PRINCETON, to local data and find that the WATCH dataset more closely matches the local meteorological measurements (FLUXNET). Finally, we compare the results from forcing JULES with the remote sensing product MODIS Leaf Area Index (LAI). JULES was modified to accept MODIS LAI at daily timesteps. We show that forcing the model with daily satellite LAI results in

  13. Hyperresolution Global Land Surface Modeling: Meeting a Grand Challenge for Monitoring Earth's Terrestrial Water

    NASA Technical Reports Server (NTRS)

    Wood, Eric F.; Roundy, Joshua K.; Troy, Tara J.; van Beek, L. P. H.; Bierkens, Marc F. P.; 4 Blyth, Eleanor; de Roo, Ad; Doell. Petra; Ek, Mike; Famiglietti, James; Gochis, David; van de Giesen, Nick; Houser, Paul; Jaffe, Peter R.; Kollet, Stefan; Lehner, Bernhard; Lettenmaier, Dennis P.; Peters-Lidard, Christa; Sivpalan, Murugesu; Sheffield, Justin; Wade, Andrew; Whitehead, Paul

    2011-01-01

    Monitoring Earth's terrestrial water conditions is critically important to many hydrological applications such as global food production; assessing water resources sustainability; and flood, drought, and climate change prediction. These needs have motivated the development of pilot monitoring and prediction systems for terrestrial hydrologic and vegetative states, but to date only at the rather coarse spatial resolutions (approx.10-100 km) over continental to global domains. Adequately addressing critical water cycle science questions and applications requires systems that are implemented globally at much higher resolutions, on the order of 1 km, resolutions referred to as hyperresolution in the context of global land surface models. This opinion paper sets forth the needs and benefits for a system that would monitor and predict the Earth's terrestrial water, energy, and biogeochemical cycles. We discuss six major challenges in developing a system: improved representation of surface-subsurface interactions due to fine-scale topography and vegetation; improved representation of land-atmospheric interactions and resulting spatial information on soil moisture and evapotranspiration; inclusion of water quality as part of the biogeochemical cycle; representation of human impacts from water management; utilizing massively parallel computer systems and recent computational advances in solving hyperresolution models that will have up to 10(exp 9) unknowns; and developing the required in situ and remote sensing global data sets. We deem the development of a global hyperresolution model for monitoring the terrestrial water, energy, and biogeochemical cycles a grand challenge to the community, and we call upon the international hydrologic community and the hydrological science support infrastructure to endorse the effort.

  14. Hyperresolution global land surface modeling: Meeting a grand challenge for monitoring Earth's terrestrial water

    NASA Astrophysics Data System (ADS)

    Wood, Eric F.; Roundy, Joshua K.; Troy, Tara J.; van Beek, L. P. H.; Bierkens, Marc F. P.; Blyth, Eleanor; de Roo, Ad; DöLl, Petra; Ek, Mike; Famiglietti, James; Gochis, David; van de Giesen, Nick; Houser, Paul; Jaffé, Peter R.; Kollet, Stefan; Lehner, Bernhard; Lettenmaier, Dennis P.; Peters-Lidard, Christa; Sivapalan, Murugesu; Sheffield, Justin; Wade, Andrew; Whitehead, Paul

    2011-05-01

    Monitoring Earth's terrestrial water conditions is critically important to many hydrological applications such as global food production; assessing water resources sustainability; and flood, drought, and climate change prediction. These needs have motivated the development of pilot monitoring and prediction systems for terrestrial hydrologic and vegetative states, but to date only at the rather coarse spatial resolutions (˜10-100 km) over continental to global domains. Adequately addressing critical water cycle science questions and applications requires systems that are implemented globally at much higher resolutions, on the order of 1 km, resolutions referred to as hyperresolution in the context of global land surface models. This opinion paper sets forth the needs and benefits for a system that would monitor and predict the Earth's terrestrial water, energy, and biogeochemical cycles. We discuss six major challenges in developing a system: improved representation of surface-subsurface interactions due to fine-scale topography and vegetation; improved representation of land-atmospheric interactions and resulting spatial information on soil moisture and evapotranspiration; inclusion of water quality as part of the biogeochemical cycle; representation of human impacts from water management; utilizing massively parallel computer systems and recent computational advances in solving hyperresolution models that will have up to 109 unknowns; and developing the required in situ and remote sensing global data sets. We deem the development of a global hyperresolution model for monitoring the terrestrial water, energy, and biogeochemical cycles a "grand challenge" to the community, and we call upon the international hydrologic community and the hydrological science support infrastructure to endorse the effort.

  15. Water Balance in the Amazon Basin from a Land Surface Model Ensemble

    NASA Technical Reports Server (NTRS)

    Getirana, Augusto C. V.; Dutra, Emanuel; Guimberteau, Matthieu; Kam, Jonghun; Li, Hong-Yi; Decharme, Bertrand; Zhang, Zhengqiu; Ducharne, Agnes; Boone, Aaron; Balsamo, Gianpaolo; Rodell, Matthew; Toure, Ally M.; Xue, Yongkang; Peters-Lidard, Christa D.; Kumar, Sujay V.; Arsenault, Kristi; Drapeau, Guillaume; Leung, L. Ruby; Ronchail, Josyane; Sheffield, Justin

    2014-01-01

    Despite recent advances in land surfacemodeling and remote sensing, estimates of the global water budget are still fairly uncertain. This study aims to evaluate the water budget of the Amazon basin based on several state-ofthe- art land surface model (LSM) outputs. Water budget variables (terrestrial water storage TWS, evapotranspiration ET, surface runoff R, and base flow B) are evaluated at the basin scale using both remote sensing and in situ data. Meteorological forcings at a 3-hourly time step and 18 spatial resolution were used to run 14 LSMs. Precipitation datasets that have been rescaled to matchmonthly Global Precipitation Climatology Project (GPCP) andGlobal Precipitation Climatology Centre (GPCC) datasets and the daily Hydrologie du Bassin de l'Amazone (HYBAM) dataset were used to perform three experiments. The Hydrological Modeling and Analysis Platform (HyMAP) river routing scheme was forced with R and B and simulated discharges are compared against observations at 165 gauges. Simulated ET and TWS are compared against FLUXNET and MOD16A2 evapotranspiration datasets andGravity Recovery and ClimateExperiment (GRACE)TWSestimates in two subcatchments of main tributaries (Madeira and Negro Rivers).At the basin scale, simulated ET ranges from 2.39 to 3.26 mm day(exp -1) and a low spatial correlation between ET and precipitation indicates that evapotranspiration does not depend on water availability over most of the basin. Results also show that other simulated water budget components vary significantly as a function of both the LSM and precipitation dataset, but simulated TWS generally agrees with GRACE estimates at the basin scale. The best water budget simulations resulted from experiments using HYBAM, mostly explained by a denser rainfall gauge network and the rescaling at a finer temporal scale.

  16. Land surface emissivity from high temporal resolution geostationary infrared imager radiances: Methodology and simulation studies

    NASA Astrophysics Data System (ADS)

    Li, Jun; Li, Zhenglong; Jin, Xin; Schmit, Timothy J.; Zhou, Lihang; Goldberg, Mitchell D.

    2011-01-01

    The time continuity of measurements from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) on board the Meteosat Second Generation (MSG) Meteosat-8/9 and from the Advanced Baseline Imager (ABI) on board the next generation of Geostationary Operational Environmental Satellite (GOES-R) can be uniquely taken into account for infrared (IR) land surface emissivity (LSE) retrievals. The algorithm is based on the assumption that land surface temperature (LST) is temporally variable while the LSE is temporally invariable within a short period of time, i.e., a few hours. SEVIRI/ABI radiances from multiple time steps can be used to retrieve temporally invariable IR LSE and variable LST. The algorithm theoretical basis is described. Sensitivity studies with simulations show that (1) the algorithm is less sensitive to the first guesses of LST and the 8.7 μm LSE but quite sensitive to the first guesses of the 10.8 and 12 μm LSE, (2) the algorithm is weakly sensitive to the observational noise and radiative transfer calculation uncertainty (in the form of random noise), and (3) except for the 8.7 μm LSE and LST, the algorithm is weakly sensitive to the radiance biases from dust contamination but sensitive to the radiance biases in the 12 μm channel from the radiative transfer calculation. It is emphasized that the radiance biases from dust contamination are very difficult if not impossible to estimate due to the high temporal and spatial variations of the spatial distribution and optical properties of dust aerosol. It is also found that the algorithm is sensitive to the LST weighting functions rather than the sensor's local zenith angle; as long as the LST weighting functions are large enough, the retrieval precision is good.

  17. Land surface phenologies viewed in the middle infrared: seasonal contrasts between vegetation, soils, and impervious surfaces

    NASA Astrophysics Data System (ADS)

    Henebry, G. M.; Krehbiel, C.; Kovalskyy, V.

    2012-12-01

    The middle infrared (MIR) region of the electromagnetic spectrum spans 3-5 microns. It is the mixing zone between reflected sunlight and emitted earthlight in roughly equal proportions. This region has received very little attention in terrestrial remote sensing. Yet the MIR merits exploration of how it could be used for monitoring land surface phenologies (LSP) and seasonalities due to five characteristics. First, green vegetation is MIR-dark, reflecting just 2-5% of the incident radiation. Second, soils are MIR-bright, reflecting up to one-third of the incident radiation. Third, impervious surfaces, such as concretes, asphalts, and other building and paving materials are also MIR-bright. Fourth, the resulting seasonal contrast in MIR between vegetated and non-vegetated surfaces lets urbanized areas emerge from the vegetated landscape. Fifth, MIR wavelengths penetrate anthropogenic haze and smoke because the particle radii are smaller. Here we use MODIS (MYD02) image time series to illustrate the temporal progressions of MIR at various wavelengths and how they compare to and diverge from the more familiar NDVI and derived LSP metrics.IR portrait of the USA east of W98: maximum value composite of Aqua MODIS MIR band 23 during DOY 219-233 of 2010.

  18. High resolution land surface response of inland moving Indian monsoon depressions over Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Rajesh, P. V.; Pattnaik, S.

    2016-05-01

    During Indian summer monsoon (ISM) season, nearly about half of the monsoonal rainfall is brought inland by the low pressure systems called as Monsoon Depressions (MDs). These systems bear large amount of rainfall and frequently give copious amount of rainfall over land regions, therefore accurate forecast of these synoptic scale systems at short time scale can help in disaster management, flood relief, food safety. The goal of this study is to investigate, whether an accurate moisture-rainfall feedback from land surface can improve the prediction of inland moving MDs. High Resolution Land Data Assimilation System (HRLDAS) is used to generate improved land state .i.e. soil moisture and soil temperature profiles by means of NOAH-MP land-surface model. Validation of the model simulated basic atmospheric parameters at surface layer and troposphere reveals that the incursion of high resolution land state yields least Root Mean Squared Error (RMSE) with a higher correlation coefficient and facilitates accurate depiction of MDs. Rainfall verification shows that HRLDAS simulations are spatially and quantitatively in more agreement with the observations and the improved surface characteristics could result in the realistic reproduction of the storm spatial structure, movement as well as intensity. These results signify the necessity of investigating more into the land surface-rainfall feedbacks through modifications in moisture flux convergence within the storm.

  19. Modelling the Relationship Between Land Surface Temperature and Landscape Patterns of Land Use Land Cover Classification Using Multi Linear Regression Models

    NASA Astrophysics Data System (ADS)

    Bernales, A. M.; Antolihao, J. A.; Samonte, C.; Campomanes, F.; Rojas, R. J.; dela Serna, A. M.; Silapan, J.

    2016-06-01

    The threat of the ailments related to urbanization like heat stress is very prevalent. There are a lot of things that can be done to lessen the effect of urbanization to the surface temperature of the area like using green roofs or planting trees in the area. So land use really matters in both increasing and decreasing surface temperature. It is known that there is a relationship between land use land cover (LULC) and land surface temperature (LST). Quantifying this relationship in terms of a mathematical model is very important so as to provide a way to predict LST based on the LULC alone. This study aims to examine the relationship between LST and LULC as well as to create a model that can predict LST using class-level spatial metrics from LULC. LST was derived from a Landsat 8 image and LULC classification was derived from LiDAR and Orthophoto datasets. Class-level spatial metrics were created in FRAGSTATS with the LULC and LST as inputs and these metrics were analysed using a statistical framework. Multi linear regression was done to create models that would predict LST for each class and it was found that the spatial metric "Effective mesh size" was a top predictor for LST in 6 out of 7 classes. The model created can still be refined by adding a temporal aspect by analysing the LST of another farming period (for rural areas) and looking for common predictors between LSTs of these two different farming periods.

  20. Validation of spatiotemporally dense springtime land surface phenology with intensive and upscale in situ

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land surface phenology (LSP) developed using temporally and spatially optimized remote sensing data, is particularly promising for use in detailed ecosystem monitoring and modeling efforts. Validating spatiotemporally dense LSP using compatible (intensively collected) in situ phenological data is t...

  1. Large-Scale Validation of AMIP2 Land-Surface Simulations

    SciTech Connect

    Phillips, T J

    2003-02-04

    Diagnostic Subproject 12 (DSP 12) on Land-surface Processes and Parameterizations is one of several AMIP-related efforts to analyze the effectiveness of current climate models in simulating continental processes. DSP 12's particular objectives are (1) to validate large-scale AMIP2 continental simulations against available global reference data sets; (2) to verify continental energy/moisture conservation and diagnose related land-surface processes in the AMIP2 models; and (3) to formulate hypotheses on putative connections between AMIP2 simulation performance and the complexities of the respective land-surface schemes (LSSs) that might be tested by further numerical experimentation. This paper outlines DSP 12's large-scale validation work, while companion papers by Henderson-Sellers et al., Irannejad et al., and Zhang et al. briefly present our analysis of other facets of AMIP2 land-surface simulations.

  2. Estimating spatial veriability in atmospheric properties over remotely sensed land-surface conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper investigates the spatial relationships between land-surface fluxes and near-surface atmospheric properties (AP), and the potential errors in flux estimation due to homogeneous atmospheric inputs over heterogeneous landscapes. A Large Eddy Simulation (LES) model is coupled to a surface ene...

  3. Modeling the influence of land surface flux on the regional climate of the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Ma, Weiqiang; Ma, Yaoming

    2016-07-01

    Land surface heat fluxes over the heterogeneous landscape of the Tibetan Plateau can serve as boundary conditions for modeling the regional climate and the Asian monsoon system. The Weather Research and Forecasting (WRF) atmospheric modeling system has enabled us to model the land surface heat flux through sensitivity experiments that utilize in situ observation data and the regional land-atmosphere exchanges of water and heat fluxes that are foundational to understanding the water and energy cycles present during the Asian monsoon period. A series of sensitivity experiments based on the WRF model and field observations has been proposed and tested for deriving the land surface heat fluxes (surface net radiation flux, soil heat flux, sensible heat flux, and latent heat flux) over a heterogeneous land surface. The sensitivity experiments were simulated over the field area of the Coordinated Enhanced Observing Period Asia-Australia Monsoon Project on the Tibetan Plateau (CEOP-CAMP/Tibet), located on the northern Tibetan Plateau of China. A WRF modeling period from July to August 2007 was selected for the summer monsoon conditions. To validate the modeling results, the ground-measured or calculated variables (e.g., net radiation flux, soil heat flux, sensible heat flux, and latent heat flux) were compared to the simulated values. The modeling results show that the derived model land surface heat fluxes are in agreement with the land surface observations over the study area in summer. Therefore, the WRF model sensitivity experiments were successful in simulating the land surface heat fluxes over the study area.

  4. Land surface temperature inversion of bare soil and vegetation cover based on MODIS data

    NASA Astrophysics Data System (ADS)

    Li, Jingwen; Zhou, Song; Wang, Zhezhen; Lv, Nan; Jiang, Jianwu; Wang, Ke

    2015-12-01

    Land surface temperature is one of the most important parameters in hydrology and agricultural production research . Split-window algorithm based on MODIS data was briefly introduced in this paper and applied in Hetao Irrigation District. Comparison between data retrieval and field collected data showed that data retrieval could reflect land surface temperature basic accurately .Linear fitting of different time series data can improve retrieval precision effectively. The results provide support for drought forecast, soil moisture monitoring etc. in the future.

  5. Modeling the influence of land surface flux on the regional climate of the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Ma, Weiqiang; Ma, Yaoming

    2015-05-01

    Land surface heat fluxes over the heterogeneous landscape of the Tibetan Plateau can serve as boundary conditions for modeling the regional climate and the Asian monsoon system. The Weather Research and Forecasting (WRF) atmospheric modeling system has enabled us to model the land surface heat flux through sensitivity experiments that utilize in situ observation data and the regional land-atmosphere exchanges of water and heat fluxes that are foundational to understanding the water and energy cycles present during the Asian monsoon period. A series of sensitivity experiments based on the WRF model and field observations has been proposed and tested for deriving the land surface heat fluxes (surface net radiation flux, soil heat flux, sensible heat flux, and latent heat flux) over a heterogeneous land surface. The sensitivity experiments were simulated over the field area of the Coordinated Enhanced Observing Period Asia-Australia Monsoon Project on the Tibetan Plateau (CEOP-CAMP/Tibet), located on the northern Tibetan Plateau of China. A WRF modeling period from July to August 2007 was selected for the summer monsoon conditions. To validate the modeling results, the ground-measured or calculated variables (e.g., net radiation flux, soil heat flux, sensible heat flux, and latent heat flux) were compared to the simulated values. The modeling results show that the derived model land surface heat fluxes are in agreement with the land surface observations over the study area in summer. Therefore, the WRF model sensitivity experiments were successful in simulating the land surface heat fluxes over the study area.

  6. Techniques Deriving Land Cover and Earth Surface Deformation Information from Polarimetric SAR Interferometry- Final Report

    NASA Astrophysics Data System (ADS)

    Pottier, E.; Chen, E.; Li, Z.; Hong, W.; Xiang, M.; Li, Y.; Cloude, S. R.; Papathanassiou, K.; Zhang, L.; Li, X.

    2013-01-01

    In this paper we provide a summary of activities carried out under the DRAGON collaborative program in a project concerned with the application of Pol-InSAR to deriving land cover and Earth Surface deformation information. This project (ID. 5344) is based around four main scientific topics: Land Cover Analysis, Earth Surface Deformation Monitoring and DEM Extraction, Forest Vertical Structure Parameters Extraction and PolSARpro Software Development.

  7. Two-Layer Variable Infiltration Capacity Land Surface Representation for General Circulation Models

    NASA Technical Reports Server (NTRS)

    Xu, L.

    1994-01-01

    A simple two-layer variable infiltration capacity (VIC-2L) land surface model suitable for incorporation in general circulation models (GCMs) is described. The model consists of a two-layer characterization of the soil within a GCM grid cell, and uses an aerodynamic representation of latent and sensible heat fluxes at the land surface. The effects of GCM spatial subgrid variability of soil moisture and a hydrologically realistic runoff mechanism are represented in the soil layers. The model was tested using long-term hydrologic and climatalogical data for Kings Creek, Kansas to estimate and validate the hydrological parameters. Surface flux data from three First International Satellite Land Surface Climatology Project Field Experiments (FIFE) intensive field compaigns in the summer and fall of 1987 in central Kansas, and from the Anglo-Brazilian Amazonian Climate Observation Study (ABRACOS) in Brazil were used to validate the mode-simulated surface energy fluxes and surface temperature.

  8. Evaluation of land surface reflectance and emissivity spectra retrieved from MASTER data

    NASA Astrophysics Data System (ADS)

    Sugisaki, Takashi; Tonooka, Hideyuki

    2008-10-01

    The MODIS/ASTER (MASTER) airborne simulator which has fifty bands in the visible to the thermal-infrared spectral regions was developed mainly to support the Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER) and the Moderate resolution Imaging Spectroradiometer (MODIS) instrument teams in the areas of algorithm development, calibration and validation, but its wide spectral capability is also useful for other studies such as geology, environmental monitoring, and land management. Currently, only MASTER product distributed to users is a level-1B at-sensor radiance product, so that if a user needs surface reflectance and/or emissivity/temperature, the user should apply atmospheric correction to a level-1B product. Thus in the present study, we derived surface reflectance and emissivity spectra from MASTER data acquired over Railroad Valley Playa, NV/USA, by atmospheric correction with various atmospheric sources like Aerosol Robotic Network (AERONET) products, and then compared with in-situ measured spectra for both reflective and emissive regions. Calibration errors in the reflective region which caused discrepancy from the in-situ spectra were reduced by adjusting the MASTER radiance to ASTER and MODIS radiances at the top of the atmosphere. We also compared the spectral similarity in the reflective region versus that in the emissive region, for MASTER spectra, and the spectra of ASTER spectral library and in-situ spectra, as an example of discrimination analysis using both reflective and emissive bands.

  9. Discrepancy Between ASTER- and MODIS- Derived Land Surface Temperatures: Terrain Effects

    PubMed Central

    Liu, Yuanbo; Noumi, Yousuke; Yamaguchi, Yasushi

    2009-01-01

    The MODerate resolution Imaging Spectroradiometer (MODIS) and the Advanced Spaceborne Thermal Emission Reflection Radiometer (ASTER) are onboard the same satellite platform NASA TERRA. Both MODIS and ASTER offer routine retrieval of land surface temperatures (LSTs), and the ASTER- and MODIS-retrieved LST products have been used worldwide. Because a large fraction of the earth surface consists of mountainous areas, variations in elevation, terrain slope and aspect angles can cause biases in the retrieved LSTs. However, terrain-induced effects are generally neglected in most satellite retrievals, which may generate discrepancy between ASTER and MODIS LSTs. In this paper, we reported the terrain effects on the LST discrepancy with a case examination over a relief area at the Loess Plateau of China. Results showed that the terrain-induced effects were not major, but nevertheless important for the total LST discrepancy. A large local slope did not necessarily lead to a large LST discrepancy. The angle of emitted radiance was more important than the angle of local slope in generating the LST discrepancy. Specifically, the conventional terrain correction may be unsuitable for densely vegetated areas. The distribution of ASTER-to-MODIS emissivity suggested that the terrain correction was included in the generalized split window (GSW) based approach used to rectify MODIS LSTs. Further study should include the classification-induced uncertainty in emissivity for reliable use of satellite-retrieved LSTs over relief areas. PMID:22399955

  10. Exploring the interactions between water and sediment fluxes, plant growth, and land surface form through modeling

    NASA Astrophysics Data System (ADS)

    Flores Cervantes, J. H.; Bras, R. L.

    2006-12-01

    In a numerical model we explore the interactions between water fluxes, sediment fluxes, and plant growth, on a simulated land surface, and how these interactions shape the land surface in time. We hypothesize that the form of the land surface and the distribution of plants in space depends on the studied interactions. Our numerical model combines elements of an existing "landscape evolution model" where the land surface properties are assumed homogeneous, with: i) a model of soil thickness where a dynamic soil moisture is simulated; and ii) a model of vegetation growth and death as a function of soil moisture. Vegetation cover affects the land surface properties such as the critical shear stress and infiltration capacity. In the resulting model the land surface properties are spatially (and temporally) variable. Seasonality, runon, and the effects of differences in solar radiation in hillslopes with different inclination and orientation (with respect to the geographic north) in the evaporation and transpiration processes, are among the new elements incorporated into the new model. We compare this numerical model to field observations at a location in the Sevilleta Long Term Ecological Research (LTER) Site, NM, where opposing hillslopes, one facing north and the other facing south, are clearly different. The south facing slope has a scarcer vegetation and signs of more fluvial erosion than the north facing slope, which receives less solar radiation and thus is likely to experience less water losses due to evaporation.

  11. Earth Observing-1 Advanced Land Imager: Dark Current and Noise Characterization and Anomalous Detectors

    NASA Technical Reports Server (NTRS)

    Mendenhall, J. A.

    2001-01-01

    The dark current and noise characteristics of the Earth Observing-1 Advanced Land Imager measured during ground calibration at MIT Lincoln Laboratory are presented. Data were collected for the nominal focal plane operating temperature of 220 K as well as supplemental operating temperatures (215 and 225 K). Dark current baseline values are provided, and noise characterization includes the evaluation of white, coherent, low frequency, and high frequency components. Finally, anomalous detectors, characterized by unusual dark current, noise, gain, or cross-talk properties are investigated.

  12. Shallow groundwater effect on land surface temperature and surface energy balance under bare soil conditions: modeling and description

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Appreciating when and how groundwater affects surface temperature and energy fluxes is important for utilizing remote sensing in groundwater studies and for integrating aquifers within land surface models. To explore the shallow groundwater effect, we numerically exposed two soil profiles – one havi...

  13. Projected Surface Radiative Forcing due to 2000 to 2100 Land Use Land Cover Albedo Change Across the Conterminous United States

    NASA Astrophysics Data System (ADS)

    Barnes, C. A.; Sleeter, B. M.

    2013-12-01

    Satellite-derived contemporary land-use land-cover (LULC) change, albedo data, and modeled future LULC changes are used to study potential impacts of LULC change from 2000 to 2100 on surface albedo and radiative forcing across the conterminous United States (CONUS). Downscaled projected LULC change information, consistent with Intergovernmental Panel on Climate Change (IPCC) Special Report on Emission Scenarios (SRES), is provided by incorporating ecoregion-based land use histories, global integrated assessment models, and expert judgment. The downscaled projections span a wide range of future potential socioeconomic conditions across 10 land cover classes and 84 ecoregions. The A2 scenario had the highest overall CONUS forcing (-0.5369 Wm-2) due to projected high demands for developed and agricultural lands, associated with high population growth and low environmental protection. The B1 scenario had the lowest overall CONUS forcing (-0.0114 Wm-2) due primarily to projected low population growth and strong protection of biodiversity. The radiative forcing for individual ecoregions varied geographically in sign and magnitude, with the most negative forcings (as low as -1.8023 Wm-2, A2 scenario) due primarily to the conversion of forest to agriculture, and the most positive forcings (up to 0.9053 Wm-2, B2 scenario) due to the conversion of agriculture to forest. These results make an important contribution to quantifying the potential future role of LULC change on the climate system, and underscore the need for repeat, wall-to-wall, spatially-explicit national land cover mapping.

  14. Terrestrial Water Storage Variations from a Global Land Surface Model Simulation with the Anthropogenic Impacts on Hydrology

    NASA Astrophysics Data System (ADS)

    Yeh, P. J.; Pokhrel, Y. N.; Koirala, S.

    2013-12-01

    Among global water cycle components, Terrestrial Water Storage (TWS) is one of the most difficult to estimate. In this study, basin-scale regional TWS variations simulated by a global-scale land surface model, after validating with GRACE data and observed streamflow, are used to investigate the dominant TWS components as well as the interactions among TWS components over some largest river basins. The analysis is based on an integrated water resources assessment modelling framework developed by incorporating human impact schemes (i.e., reservoir operation, irrigation, withdrawal, groundwater pumping, and environmental flow requirements) into a land surface model - the Minimal Advanced Treatments of Surface Interaction and Runoff (MATSIRO). MATSIRO simulates the majority of land hydrologic processes on a physical basis at the global 1° × 1° resolution. The terrestrial water storage (TWS) simulated consists of soil moisture, groundwater, river water, snow and ice, and the human impact components such as reservoir storage. The effects of irrigation and groundwater pumping on TWS variations are also considered in certain regions where their impacts are known to be significant (e.g. The High Plains Aquifer, US). Moreover, a comparison on the TWS components is made with the MATSIRO simulation without considering human impact. The difference between them is a direct measure on the extent to which human anthropogenic impacts affect regional hydrology.

  15. A Technique for Assimilating GOES-Derived Land Surface Products into Regional Models to Improve the Representation of Land Surface Forcing

    NASA Technical Reports Server (NTRS)

    Lapenta, William M.; Suggs, Ron; McNider, Richard T.; Jedlovec, Gary

    1998-01-01

    As the parameterizations of surface energy budgets in regional models have become more complete physically, models have the potential to be much more realistic in simulations of coupling between surface radiation, hydrology, and surface energy transfer. Realizing the importance of properly specifying the surface energy budget, many institutions are using land-surface models to represent the lower boundary forcing associated with biophysical processes and soil hydrology. However, the added degrees of freedom due to inclusion of such land-surface schemes require the specification of additional parameters within the model system such as vegetative resistances, green vegetation fraction, leaf area index, soil physical and hydraulic characteristics, stream flow, runoff, and the vertical distribution of soil moisture. A technique has been developed for assimilating GOES-IR skin temperature tendencies into the surface energy budget equation of a mesoscale model so that the simulated rate of temperature change closely agrees with the satellite observations. A critical assumption of the technique is that the availability of moisture (either from the soil or vegetation) is the least known term in the model's surface energy budget. Therefore, the simulated latent heat flux, which is a function of surface moisture availability, is adjusted based upon differences between the modeled and satellite-observed skin temperature tendencies. An advantage of this technique is that satellite temperature tendencies are assimilated in an energetically consistent manner that avoids energy imbalances and surface stability problems that arise from direct assimilation of surface shelter temperatures. The fact that the rate of change of the satellite skin temperature is used rather than the absolute temperature means that sensor calibration is not as critical. An advantage of this technique for short-range forecasts is that it does not require a complex land-surface formulation within the

  16. Long-range cross-correlation between urban impervious surfaces and land surface temperatures

    NASA Astrophysics Data System (ADS)

    Nie, Qin; Xu, Jianhua; Man, Wang

    2016-03-01

    The thermal effect of urban impervious surfaces (UIS) is a complex problem. It is thus necessary to study the relationship between UIS and land surface temperatures (LST) using complexity science theory and methods. This paper investigates the long-range cross-correlation between UIS and LST with detrended cross-correlation analysis and multifractal detrended cross-correlation analysis, utilizing data from downtown Shanghai, China. UIS estimates were obtained from linear spectral mixture analysis, and LST was retrieved through application of the mono-window algorithm, using Landsat Thematic Mapper and Enhanced Thematic Mapper Plus data for 1997-2010. These results highlight a positive long-range cross-correlation between UIS and LST across People's Square in Shanghai. LST has a long memory for a certain spatial range of UIS values, such that a large increment in UIS is likely to be followed by a large increment in LST. While the multifractal long-range cross-correlation between UIS and LST was observed over a longer time period in the W-E direction (2002-2010) than in the N-S (2007-2010), these observed correlations show a weakening during the study period as urbanization increased.

  17. Identifying the Local Surface Urban Heat Island Through the Morphology of the Land Surface Temperature

    NASA Astrophysics Data System (ADS)

    Wang, Jiong; Zhan, Qingming; Xiao, Yinghui

    2016-06-01

    Current characterization of the Land Surface Temperature (LST) at city scale insufficiently supports efficient mitigations and adaptations of the Surface Urban Heat Island (SUHI) at local scale. This research intends to delineate the LST variation at local scale where mitigations and adaptations are more feasible. At the local scale, the research helps to identify the local SUHI (LSUHI) at different levels. The concept complies with the planning and design conventions that urban problems are treated with respect to hierarchies or priorities. Technically, the MODerate-resolution Imaging Spectroradiometer satellite image products are used. The continuous and smooth latent LST is first recovered from the raw images. The Multi-Scale Shape Index (MSSI) is then applied to the latent LST to extract morphological indicators. The local scale variation of the LST is quantified by the indicators such that the LSUHI can be identified morphologically. The results are promising. It can potentially be extended to investigate the temporal dynamics of the LST and LSUHI. This research serves to the application of remote sensing, pattern analysis, urban microclimate study, and urban planning at least at 2 levels: (1) it extends the understanding of the SUHI to the local scale, and (2) the characterization at local scale facilitates problem identification and support mitigations and adaptations more efficiently.

  18. Restoration of surface-mined lands with rainfall harvesting

    SciTech Connect

    Sauer, R.H.; Rickard, W.H.

    1982-12-01

    Strip mining for coal in the arid western US will remove grazing land as energy demands are met. Conventional resotration usually includes leveling the spoil banks and covering them with top soil, fertilizing, seeding and irrigation with well or river water. An overview of research on an alternate method of restoring this land is reported. From 1976 through 1981 studies were conducted on the use of water harvesting, the collection and use of rainfall runoff, to restore the vegetative productivity of strip mined lands in arid regions. These studies tested the technical and economic feasibility of using partially leveled spoil banks at strip mines as catchment areas to collect and direct runoff to the topsoiled valley floor where crops were cultivated. Information was collected on the efficiency of seven treatments to increase runoff from the catchment areas and on the productivity of seven crops. The experiments were conducted in arid areas of Washington, Arizona, and Colorado. It was concluded that water harvesting can replace or augment expensive and inadequate supplies of well and river water in arid regions with a suitable climate. These studies showed that some treatments provided adequate runoff to produce a useful crop in the valleys, thus making this alternative approach to restoration technically feasible. This approach was also potentially economically feasible where the treatment costs of the catchment areas were low, the treatment was effective, the crop was productive and valuable, and earthmoving costs were lower than with conventional restoration involving complete leveling of spoil banks. It was also concluded that water harvesting can be made more effective with further information on catchment area treatments, which crops are most adaptable to water harvesting, the optimum incline of the catchment areas and climatic influences on water harvesting.

  19. Coal surface control for advanced physical fine coal cleaning technologies

    SciTech Connect

    Morsi, B.I.; Chiang, S.H.; Sharkey, A.; Blachere, J.; Klinzing, G.; Araujo, G.; Cheng, Y.S.; Gray, R.; Streeter, R.; Bi, H.; Campbell, P.; Chiarlli, P.; Ciocco, M.; Hittle, L.; Kim, S.; Kim, Y.; Perez, L.; Venkatadri, R.

    1992-01-01

    This final report presents the research work carried out on the Coal Surface Control for Advanced Physical Fine Coal Cleaning Technologies project, sponsored by the US Department of Energy, Pittsburgh Energy Technology Center (DOE/PETC). The project was to support the engineering development of the selective agglomeration technology in order to reduce the sulfur content of US coals for controlling SO[sub 2] emissions (i.e., acid rain precursors). The overall effort was a part of the DOE/PETCs Acid Rain Control Initiative (ARCI). The overall objective of the project is to develop techniques for coal surface control prior to the advanced physical fine coal cleaning process of selective agglomeration in order to achieve 85% pyrite sulfur rejection at an energy recovery greater than 85% based on run-of-mine coal. The surface control is meant to encompass surface modification during grinding and laboratory beneficiation testing. The project includes the following tasks: Project planning; methods for analysis of samples; development of standard beneficiation test; grinding studies; modification of particle surface; and exploratory R D and support. The coal samples used in this project include three base coals, Upper Freeport - Indiana County, PA, Pittsburgh NO. 8 - Belmont County, OH, and Illinois No. 6 - Randolph County, IL, and three additional coals, Upper Freeport - Grant County- WV, Kentucky No. 9 Hopkins County, KY, and Wyodak - Campbell County, WY. A total of 149 drums of coal were received.

  20. Spatial characterization of land surface energy fluxes and uncertainty estimation at the Salar de Atacama, Northern Chile

    NASA Astrophysics Data System (ADS)

    Kampf, Stephanie K.; Tyler, Scott W.

    2006-02-01

    We use Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER) data to estimate spatial energy flux and evaporation distributions at the Salar de Atacama, a playa in Northern Chile. Our approach incorporates ASTER surface kinetic temperature, emissivity, and reflectance data, ground-based meteorological measurements, and empirical parameters. Energy flux distributions are estimated using either spatially constant or spatially distributed values of model parameters, with spatially distributed parameters assigned separately to each land cover category in an image classification. We test the sensitivity of energy budget calculations to state variable and parameter values by conducting Monte Carlo simulations for regions with ground energy budget measurements. Results show that assigning spatially distributed model parameters via land cover classifications yields significant improvements to ground and sensible heat flux predictions. Latent heat fluxes cannot, however, be predicted with sufficient accuracy to allow estimation of area-integrated evaporative moisture loss at this low-evaporation playa.

  1. Land surface energy partitioning revisited: A novel approach based on single depth soil measurement

    NASA Astrophysics Data System (ADS)

    Yang, Jiachuan; Wang, Zhi-Hua

    2014-12-01

    The partitioning of solar energy into sensible, latent, and ground heat fluxes over the land surface is responsible for changes of state variables in the soil-atmosphere system. Recent research enables the reconstruction of the land surface temperature and ground heat flux using Green's function approach, as well as the estimate of the distribution of available energy into latent and sensible heat fluxes based on linear stability analysis. Combining the Green's function approach and linear stability analysis, we propose a new physically based numerical procedure to estimate the land surface energy partitioning in this paper. The new method is capable of predicting all surface energy budgets using a single depth soil measurement; the model reliability is evaluated with comparisons to flux tower measurements. The results of this study deepen our insight into the implicit link between surface energy partition and subsurface soil dynamics and how the link can be employed to related research areas.

  2. Impact of Land Surface Parameters on the Evaluation of East Asia Monsoon Precipitation

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Xue, Y.; Guo, W.

    2015-12-01

    Land surface has crucial impact on air movement through momentum, energy and mass exchange. Leaf area index (LAI), one of important variable in the land surface processes, involves in canopy radiative transfer, momentum transfer, precipitation interception loss, and transpiration, which affect on land surface energy and water partition processes. Therefore, it crucially affects the ability of models to adequately simulate land-surface interaction. In this study, Long-term Global Mapping LAI (GLOBMAP LAI) and its corresponding land cover and greenness fraction are introduced into WRF_NMM/SSiB2. Compared with the control simulation based on the original specified LAI that is based on limited survey. The simulation with GLOBMAP LAI produced better precipitation distribution and rain belt movement. The improvements of the East Asia monsoon precipitation simulation are mainly attributed to the correction of the position of subtropical high. The north edge of subtropical high is related to the position of East Asia Westerly Jet. In the control simulation, weak westerlies lead subtropical high to move northward. Therefore compared with observations, more precipitation is in high latitudes. With imposed remote sensing LAI, the model produces larger meridional temperature gradient in surface and upper air, leading to stronger thermal westerlies. The Southward of Westerly Jet blocks the subtropical high, which amends the position of monsoon rain belt. This study directly takes advantage of recently available remote sensing products, and attributes the improved regional model simulation to proper LAI specification, which leads to adequate land/atmosphere interactions.

  3. Sources of discrepancies between satellite-derived and land surface model estimates of latent heat fluxes

    NASA Astrophysics Data System (ADS)

    Lipton, Alan E.; Liang, Pan; Jiménez, Carlos; Moncet, Jean-Luc; Aires, Filipe; Prigent, Catherine; Lynch, Richard; Galantowicz, John F.; d'Entremont, Robert P.; Uymin, Gennady

    2015-03-01

    Monthly-average estimates of latent heat flux have been derived from a combination of satellite-derived microwave emissivities, day-night differences in land surface temperature (from microwave AMSR-E), downward solar and infrared fluxes from ISCCP cloud analysis, and MODIS visible and near-infrared surface reflectances. The estimates, produced with a neural network, were compared with data from the Noah land surface model, as produced for GLDAS-2, and with two alternative estimates derived from different datasets and methods. Areas with extensive, persistent, substantial discrepancies between the satellite and land surface model fluxes have been analyzed with the aid of data from flux towers. The sources of discrepancies were found to include problems with the model surface roughness length and turbulent exchange coefficients for midlatitude cropland areas in summer, inaccuracies in the precipitation data that were used as forcing for the land surface model, and model underestimation of transpiration in some forests during dry periods. At the tower sites analyzed, agreement with tower data was generally closer for our satellite-derived fluxes than for the land surface model fluxes, in terms of monthly averages.

  4. Large-scale Validation of AMIP II Land-surface Simulations: Preliminary Results for Ten Models

    SciTech Connect

    Phillips, T J; Henderson-Sellers, A; Irannejad, P; McGuffie, K; Zhang, H

    2005-12-01

    This report summarizes initial findings of a large-scale validation of the land-surface simulations of ten atmospheric general circulation models that are entries in phase II of the Atmospheric Model Intercomparison Project (AMIP II). This validation is conducted by AMIP Diagnostic Subproject 12 on Land-surface Processes and Parameterizations, which is focusing on putative relationships between the continental climate simulations and the associated models' land-surface schemes. The selected models typify the diversity of representations of land-surface climate that are currently implemented by the global modeling community. The current dearth of global-scale terrestrial observations makes exacting validation of AMIP II continental simulations impractical. Thus, selected land-surface processes of the models are compared with several alternative validation data sets, which include merged in-situ/satellite products, climate reanalyses, and off-line simulations of land-surface schemes that are driven by observed forcings. The aggregated spatio-temporal differences between each simulated process and a chosen reference data set then are quantified by means of root-mean-square error statistics; the differences among alternative validation data sets are similarly quantified as an estimate of the current observational uncertainty in the selected land-surface process. Examples of these metrics are displayed for land-surface air temperature, precipitation, and the latent and sensible heat fluxes. It is found that the simulations of surface air temperature, when aggregated over all land and seasons, agree most closely with the chosen reference data, while the simulations of precipitation agree least. In the latter case, there also is considerable inter-model scatter in the error statistics, with the reanalyses estimates of precipitation resembling the AMIP II simulations more than to the chosen reference data. In aggregate, the simulations of land-surface latent and sensible

  5. Land Surface Albedo from MERIS Reflectances Using MODIS Directional Factors

    NASA Technical Reports Server (NTRS)

    Schaaf, Crystal L. B.; Gao, Feng; Strahler, Alan H.

    2004-01-01

    MERIS Level 2 surface reflectance products are now available to the scientific community. This paper demonstrates the production of MERIS-derived surface albedo and Nadir Bidirectional Reflectance Distribution Function (BRDF) adjusted reflectances by coupling the MERIS data with MODIS BRDF products. Initial efforts rely on the specification of surface anisotropy as provided by the global MODIS BRDF product for a first guess of the shape of the BRDF and then make use all of the coincidently available, partially atmospherically corrected, cloud cleared, MERIS observations to generate MERIS-derived BRDF and surface albedo quantities for each location. Comparisons between MODIS (aerosol-corrected) and MERIS (not-yet aerosol-corrected) surface values from April and May 2003 are also presented for case studies in Spain and California as well as preliminary comparisons with field data from the Devil's Rock Surfrad/BSRN site.

  6. Comparison of the EO-1 Advanced Land Imager Performance With the Landsat Data Continuity Mission Specification

    NASA Technical Reports Server (NTRS)

    Mendenhall, J. A.; Hearn, D. R.; Lencioni, D. E.

    2002-01-01

    The performance requirements for the Advanced Land Imager were developed under NASA's New Millennium Program and were intended to facilitate the validation of new sensor technologies and architectures for potential application in future remote sensing missions. The Advanced Land Imager (ALI) was designed and flown well before the Landsat Data Continuity Mission (LDCM) specifications were developed. Nevertheless, the science focus of the ALI technology validation was Landsat data continuity. Therefore, although exact compliance by ALI is not expected, the performance should demonstrate a path to a compliant sensor system. The performance of the ALI, as determined from preflight and flight data, is compared to the LDCM specification. Twenty-one noncompliances have been identified: four data collection, four spectral, six spatial, and seven radiometric (Table I). All but six of these are considered minor. The six major noncompliances are the result of stray light, leaky detectors, and contamination. Appendix A replicates the LDCM specification and contains ALI compliance notes where appropriate. Details of the ALI stray light, contamination, and leaky detectors are provided in Appendix B, C, and D respectively. Additional information pertaining to the calculation of the ALI edge response and coherent noise is presented in Appendix E and F. A list of ALI related publications is provided in Appendix G.

  7. Advanced Land use Classification Considering Intra-annual Cropping patterns and Urbanization processes as a Contribution to Improve Knowledge base for Water Management.

    NASA Astrophysics Data System (ADS)

    Kumar, N.; Tischbein, B.; Beg, M. K.

    2014-12-01

    Land use and its spatial pattern and dynamics strongly influence water resources and water demand. Therefore, integrated water resources management coordinating water supply and demand is using modeling tools in order to assess the impact of land use changes on the water balance and to conceive infrastructural and operational measures to cope with these impacts. As a consequence, the appropriateness of water management measures depends on the reliability of the output gained by the modeling tools which in turn is highly determined by the capability of the models and the quality of model inputs. This research combines the Soil and Water Assessment Tool (SWAT) and an advanced procedure for spatio-temporal detection of land use dynamics and irrigation in the Upper Kharun basin in the Chhattisgarh State in India. An on-screen visual digitization technique using the Landsat satellite images and their derivatives (NDVI and tasseled cap indices) were employed for land use classification. The land use maps prepared at different time steps within a year can be combined to produce a single multi-temporal land use classification. This approach captures and integrates all the major variations within a year in a single map and hence better represents an area with multiple crop rotations and different levels of urbanization. Urbanization and intensification of irrigation by increasing use of groundwater are major land use processes at the global scale as well as in the study region. The study reveals that an increasing pumping rate of groundwater for irrigation is the main reason for decreasing the groundwater contribution to streamflow and subsequently a lowering in discharge and water yield. On the other hand, annual surface runoff is increased significantly by an expansion in built up areas over the decades in the study area. This information (i) enhances the understanding of land use changes and their relevant drivers, and (ii) facilitates the introduction of best water and

  8. Surface Circulation of Lakes and Nearly Land-Locked Seas

    PubMed Central

    Emery, K. O.; Csanady, G. T.

    1973-01-01

    The pattern of surface circulation has been mapped for more than 40 lakes, marginal seas, estuaries, and lagoons. All are within the northern hemisphere, and all except one are known to have a counterclockwise pattern. This consistent pattern is attributed to the drag of wind blowing across the bodies of water. Warmer surface water is displaced to the right-hand shore zone (facing downwind), where it produces greater surface turbulence and, thus, greater wind drag. This effect leads to counterclockwise water circulation regardless of the direction and, within limits, the duration of the wind. PMID:16592051

  9. Land Surface Phenology in Kazakhstan: Climatic Variability and Institutional Change

    NASA Astrophysics Data System (ADS)

    de Beurs, K. M.; Henebry, G. M.

    2002-12-01

    Kazakhstan is the second largest country to emerge from the collapse of the Soviet Union. At 2.7 million sq km, Kazakhstan is nearly four times the size of Texas and more than one-third the size of the conterminous US. Kazakhstan is mostly rangeland: nearly 70% of the land area is grazed by cattle, sheep, goats, and other livestock. Consequent to the abrupt institutional changes surrounding the disintegration of the Soviet Union in the early 1990s, the Kazakhstan region has reportedly undergone extensive land-cover change. However, observing and quantifying these changes is difficult because of (1) the loss of regional environmental monitoring networks at the beginning of the 1990s and (2) the lack of historical Landsat imagery over much of the region, due to gaps in ground station reception masks. Were the institutional changes sufficiently great to affect NDVI phenology at spatial resolutions and extents relevant to mesoscale meteorological models? To explore this question, we used the NDVI time series from the Pathfinder AVHRR Land (PAL) data set, which consists of 10 d maximum NDVI composites at a spatial resolution of 8 km. Daily minimum and maximum temperatures, and daily precipitation rates were extracted from the NCEP/NCAR CDAS/Reanalysis Project. We produced 10 d composites of growing degree-days (GDD) and precipitation amounts. Simple quadratic models were used to relate NDVI time series to GDD. Two agricultural areas were examined: the region of rain-fed spring wheat cultivation in the north (25600 sq km near Kostanai) and the region of irrigated cotton and rice in the south (576 sq km near Kyzylorda). Two periods were evaluated: during the Soviet era (1985-89) and after the independence of Kazakhstan (1995-99). Models for the irrigated area had a better fit than the models for the rain-fed area, but all models were strongly significant. In the north, the temperature regime and the mean precipitation amounts were comparable for 1985-89 and 1995-99. The

  10. Soft- and reactive landing of ions onto surfaces: Concepts and applications.

    PubMed

    Johnson, Grant E; Gunaratne, Don; Laskin, Julia

    2016-01-01

    Soft- and reactive landing of mass-selected ions is gaining attention as a promising approach for the precisely-controlled preparation of materials on surfaces that are not amenable to deposition using conventional methods. A broad range of ionization sources and mass filters are available that make ion soft-landing a versatile tool for surface modification using beams of hyperthermal (<100 eV) ions. The ability to select the mass-to-charge ratio of the ion, its kinetic energy and charge state, along with precise control of the size, shape, and position of the ion beam on the deposition target distinguishes ion soft landing from other surface modification techniques. Soft- and reactive landing have been used to prepare interfaces for practical applications as well as precisely-defined model surfaces for fundamental investigations in chemistry, physics, and materials science. For instance, soft- and reactive landing have been applied to study the surface chemistry of ions isolated in the gas-phase, prepare arrays of proteins for high-throughput biological screening, produce novel carbon-based and polymer materials, enrich the secondary structure of peptides and the chirality of organic molecules, immobilize electrochemically-active proteins and organometallics on electrodes, create thin films of complex molecules, and immobilize catalytically active organometallics as well as ligated metal clusters. In addition, soft landing has enabled investigation of the size-dependent behavior of bare metal clusters in the critical subnanometer size regime where chemical and physical properties do not scale predictably with size. The morphology, aggregation, and immobilization of larger bare metal nanoparticles, which are directly relevant to the design of catalysts as well as improved memory and electronic devices, have also been studied using ion soft landing. This review article begins in section 1 with a brief introduction to the existing applications of ion soft- and

  11. Assimilation of Freeze-Thaw Observations into the NASA Catchment Land Surface Model

    NASA Astrophysics Data System (ADS)

    Farhadi, L.; Reichle, R. H.; De Lannoy, G. J.; Kimball, J. S.

    2013-12-01

    The land surface freeze/thaw (F/T) state plays a key role in the hydrological and carbon cycles and thus affects water and energy exchanges and net primary productivity at the land surface. To support the level 4 soil moisture and carbon products (value-added, i.e. using a combination of remote sensing data and modeling) for the planned NASA Soil Moisture Active Passive (SMAP) mission, an F/T assimilation algorithm is developed for the NASA Goddard Earth Observing System, version 5 (GEOS-5) modeling and assimilation framework. The algorithm includes a newly developed observation operator that diagnoses the landscape F/T state in the GEOS-5 Catchment land surface model. A rule-based approach that incorporates model and observational errors is developed and used for assimilating the categorical F/T measurements into the land surface model (F/T analysis). An Observing System Simulation Experiment is conducted using synthetically generated measurements of the F/T state for a region in North America (90-110oW longitude, 45-55oN latitude). The synthetic 'truth' is generated using the NASA Catchment land surface model forced with surface meteorological fields from the Modern-Era Retrospective Reanalysis for Research and Applications (MERRA). To generate synthetic measurements, the true categorical F/T state is corrupted with a prescribed amount of F/T classification error. The assimilation experiment employs the same Catchment model except that forcing errors (relative to truth) are introduced via the application of meteorological forcing fields from the Global Land Data Assimilation System (GLDAS). The effect of the F/T analysis and classification error on land surface temperature and soil temperature predictions is examined in this research.

  12. Diagnosing coupled watershed processes using a fully-coupled groundwater, land-surface, surface water and mesoscale atmospheric model

    NASA Astrophysics Data System (ADS)

    Maxwell, R. M.; Kollet, S. J.; Chow, F. K.

    2007-12-01

    A variably-saturated groundwater flow model with an integrated overland flow component, a land-surface model and a mesoscale atmospheric model is used to examine the interplay between coupled water and energy processes. These processes are influenced by land-surface topography and subsurface heterogeneity. This parallel, integrated model simulates spatial variations in land-surface forcing driven by three-dimensional (3D) atmospheric and subsurface components. Spatial statistics are used to demonstrate spatial and temporal correlations between surface and lower atmospheric variables and water table depth. These correlations are particularly strong during times when the land surface temperatures trigger shifts in wind behavior, such as during early morning surface heating. Additionally, spectral transforms of subsurface arrival times are computed using a transient Lagrangian transport simulation. Macrodispersion is used to mimic the effects of subsurface heterogeneity for a range of Peclet numbers. The slopes of these transforms indicate fractal scaling of this system over a range of timescales. All of these techniques point to importance of realistically representing coupled processes and the need to understand and diagnose these processes in nature. This work was conducted under the auspices of the U. S. Department of Energy by the University of California, Lawrence Livermore National Laboratory (LLNL) under contract W-7405-Eng-48. This project was funded by the Laboratory Directed Research and Development Program at LLNL

  13. Comparison of land surface temperature measurements at NOAA CRN sites with airborne and satellite observations

    NASA Astrophysics Data System (ADS)

    Krishnan, P.; Kochendorfer, J.; Baker, B.; Dumas, E.; Meyers, T. P.; Guillevic, P.; Corda, S.; Muratore, J.; Martos, B.

    2011-12-01

    Land surface temperature (LST) is a key variable for studying global or regional land surface processes and the energy and water vapor exchange at the biosphere-atmosphere interface. In an effort to better quantify the spatial variability and overall representativeness of single-point surface temperature measurement being recorded at NOAA's Climate Reference Network (CRN) sites and to improve the accuracy of satellite land surface temperature measurements, airborne flight campaigns were conducted over two vegetated sites in Tennessee, USA during 2010 to 2011. During the campaign, multiple measurements of land surface temperature were made using Infra-Red temperature sensors at micrometeorological tower sites and onboard an instrumented Piper Navajo airborne research aircraft. In addition to this, coincident Moderate Resolution Imaging Spectroradiometer (MODIS) LST observations, onboard the NASA Terra and Aqua Earth Observing System satellites were used. The aircraft-based and satellite based land surface temperature measurements were compared to in situ, tower based LST measurements. Preliminary results show good agreement between in situ, aircraft and satellite measurements.

  14. Using NOAA-AVHRR estimates of land surface temperature for regional agrometeorogical modelling

    NASA Astrophysics Data System (ADS)

    de Wit, A. J. W.; Boogaard, H. L.; van Diepen, C. A.

    2004-09-01

    Agrometeorological crop simulation models are used increasingly in spatial applications like regional crop monitoring and yield forecasting. The spatial application of these models involves gathering spatially representative values of meteorological input variables (temperature, radiation and precipitation). This is usually accomplished by interpolating meteorological variables measured at point locations. This paper explores the use of advanced very high resolution radiometer (AVHRR)-derived surface temperature as a replacement for interpolated maximum air temperature in a spatial crop monitoring and yield forecasting system. A 2-year set of daily National Oceanic And Atmospheric Administration (NOAA)-AVHRR images over western Europe was used to derive estimates of daily surface temperature aggregated over 50 km × 50 km gridcells, a land cover database was used to select only pixels that were classified as 'arable land'. On days that did not yield data due to cloud cover, the monthly average surface temperature was substituted. The AVHRR-derived surface temperature is usually higher than the maximum air temperature measured at a weather station. To account for this difference, an empirical model was used that relates surface temperature to maximum air temperature. The model parameters were obtained using calibration with the maximum air temperature measured at five weather stations. Next, it was applied to the entire AVHRR data set in order to convert AVHRR surface temperature into a simulated maximum air temperature. Finally, a case study was carried out by using the WOrld FOod Studies (WOFOST) crop model to simulate growth of winter-wheat and sunflower for Spain using both the simulated maximum air temperature and the interpolated maximum air temperature from weather stations. Our results demonstrate that the spatial patterns of the yearly temperature sums over Spain are similar for both sources of temperature. Therefore, it can be concluded that the AVHRR

  15. An Integrated Snow Radiance and Snow Physics Modeling Framework for Cold Land Surface Modeling

    NASA Technical Reports Server (NTRS)

    Kim, Edward J.; Tedesco, Marco

    2006-01-01

    Recent developments in forward radiative transfer modeling and physical land surface modeling are converging to allow the assembly of an integrated snow/cold lands modeling framework for land surface modeling and data assimilation applications. The key elements of this framework include: a forward radiative transfer model (FRTM) for snow, a snowpack physical model, a land surface water/energy cycle model, and a data assimilation scheme. Together these form a flexible framework for self-consistent remote sensing and water/energy cycle studies. In this paper we will describe the elements and the integration plan. Each element of this framework is modular so the choice of element can be tailored to match the emphasis of a particular study. For example, within our framework, four choices of a FRTM are available to simulate the brightness temperature of snow: Two models are available to model the physical evolution of the snowpack and underlying soil, and two models are available to handle the water/energy balance at the land surface. Since the framework is modular, other models-physical or statistical--can be accommodated, too. All modules will operate within the framework of the Land Information System (LIS), a land surface modeling framework with data assimilation capabilities running on a parallel-node computing cluster at the NASA Goddard Space Flight Center. The advantages of such an integrated modular framework built on the LIS will be described through examples-e.g., studies to analyze snow field experiment observations, and simulations of future satellite missions for snow and cold land processes.

  16. The Mars Microprobe Mission: Advanced Micro-Avionics for Exploration Surface

    NASA Technical Reports Server (NTRS)

    Blue, Randel

    2000-01-01

    The Mars Microprobe Mission is the second spacecraft developed as part of the New Millennium Program deep space missions. The objective of the Microprobe Project is to demonstrate the applicability of key technologies for future planetary missions by developing two probes for deployment on Mars. The probes are designed with a single stage entry, descent, and landing system and impact the Martian surface at speeds of approximately 200 meters per second. The microprobes are composed of two main sections, a forebody section that penetrates to a depth below the Martian surface of 0.5 to 2 meters, and an aftbody section that remains on the surface. Each probe system consists of a number of advanced technology components developed specifically for this mission. These include a non-erosive aeroshell for entry into. the atmosphere, a set of low temperature batteries to supply probe power, an advanced microcontroller to execute the mission sequence, collect the science data, and react to possible system fault conditions, a telecommunications subsystem implemented on a set of custom integrated circuits, and instruments designed to provide science measurements from above and below the Martian surface. All of the electronic components have been designed and fabricated to withstand the severe impact shock environment and to operate correctly at predicted temperatures below -100 C.

  17. Modeling of Land Surface Flux on the regional climate of the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Ma, Weiqiang; Ma, Yaoming; Hu, Zeyong

    2016-04-01

    Land surface heat fluxes over the heterogeneous landscape of the Tibetan Plateau can serve as boundary conditions for modeling the regional climate and the Asian monsoon system. The Weather Research and Forecasting (WRF) atmospheric modeling system has enabled us to model the land surface heat flux through sensitivity experiments that utilize in-situ observation data and the regional land-atmosphere exchanges of water and heat fluxes that are foundational to understanding the water and energy cycles present during the Asian monsoon period. A series of sensitivity experiments based on the WRF model and field observations has been proposed and tested for deriving the land surface heat fluxes (surface net radiation flux, soil heat flux, sensible heat flux and latent heat flux) over a heterogeneous land surface. The sensitivity experiments were simulated over the field area of the Coordinated Enhanced Observing Period Asia-Australia Monsoon Project on the Tibetan Plateau (CEOP-CAMP/Tibet), located on the northern Tibetan Plateau of China. A WRF modeling period from July to August 2007 was selected for the summer monsoon conditions. To validate the modeling results, the ground-measured or calculated variables (e.g., net radiation flux, soil heat flux, sensible heat flux and latent heat flux) were compared to the simulated values. The modeling results show that the derived model land surface heat fluxes are in agreement with the land surface observations over the study area in summer. Therefore, the WRF model sensitivity experiments were successful in simulating the land surface heat fluxes over the study area. In this study, we designed cases for the WRF model, which lead to the following conclusions: 1) The WRF model successfully simulated the surface heat fluxes over the complex land surface of the Tibetan Plateau, including the diurnal variation. The modeling eigenvalues were similar to the observations. 2) When the initial fields of soil moisture and vegetation

  18. Nonpoint sources of volatile organic compounds in urban areas - Relative importance of land surfaces and air

    USGS Publications Warehouse

    Lopes, T.J.; Bender, D.A.

    1998-01-01

    Volatile organic compounds (VOCs) commonly detected in urban waters across the United States include gasoline-related compounds (e.g. toluene, xylene) and chlorinated compounds (e.g. chloroform, tetrachloroethane [PCE], trichloroethene [TCE]). Statistical analysis of observational data and results of modeling the partitioning of VOCs between air and water suggest that urban land surfaces are the primary nonpoint source of most VOCs. Urban air is a secondary nonpoint source, but could be an important source of the gasoline oxygenate methyl-tert butyl ether (MTBE). Surface waters in urban areas would most effectively be protected by controlling land-surface sources.

  19. Spectral emissivity measurements of land-surface materials and related radiative transfer simulations

    NASA Technical Reports Server (NTRS)

    Wan, Z.; Ng, D.; Dozier, J.

    1994-01-01

    Spectral radiance measurements have been made in the laboratory and in the field for deriving spectral emissivities of some land cover samples with a spectroradiometer and an auxiliary radiation source in the wavelength range 2.5-14.5 micrometers. A easy and quick four-step method (four steps to measure the sample and a diffuse reflecting plate surface under sunshine and shadowing conditions, respectively) has been used for simultaneous determination of surface temperature and emissivity. We emphasized in-situ measurements in combination with radiative transfer simulations, and an error analysis for basic assumptions in deriving spectral emissivity of land-surface samples from thermal infrared measurements.

  20. The CEOS-Land Surface Imaging Constellation Portal for GEOSS: A resource for land surface imaging system information and data access

    USGS Publications Warehouse

    Holm, Thomas; Gallo, Kevin P.; Bailey, Bryan

    2010-01-01

    The Committee on Earth Observation Satellites is an international group that coordinates civil space-borne observations of the Earth, and provides the space component of the Global Earth Observing System of Systems (GEOSS). The CEOS Virtual Constellations concept was implemented in an effort to engage and coordinate disparate Earth observing programs of CEOS member agencies and ultimately facilitate their contribution in supplying the space-based observations required to satisfy the requirements of the GEOSS. The CEOS initially established Study Teams for four prototype constellations that included precipitation, land surface imaging, ocean surface topography, and atmospheric composition. The basic mission of the Land Surface Imaging (LSI) Constellation [1] is to promote the efficient, effective, and comprehensive collection, distribution, and application of space-acquired image data of the global land surface, especially to meet societal needs of the global population, such as those addressed by the nine Group on Earth Observations (GEO) Societal Benefit Areas (SBAs) of agriculture, biodiversity, climate, disasters, ecosystems, energy, health, water, and weather. The LSI Constellation Portal is the result of an effort to address important goals within the LSI Constellation mission and provide resources to assist in planning for future space missions that might further contribute to meeting those goals.

  1. Characterizing Mediterranean Land Surfaces as Component of the Regional Climate System by Remote Sensing

    NASA Technical Reports Server (NTRS)

    Bolle, H.-J.; Koslowsky, D.; Menenti, M.; Nerry, F.; Otterman, Joseph; Starr, D.

    1998-01-01

    Extensive areas in the Mediterranean region are subject to land degradation and desertification. The high variability of the coupling between the surface and the atmosphere affects the regional climate. Relevant surface characteristics, such as spectral reflectance, surface emissivity in the thermal-infrared region, and vegetation indices, serve as "primary" level indicators for the state of the surface. Their spatial, seasonal and interannual variability can be monitored from satellites. Using relationships between these primary data and combining them with prior information about the land surfaces (such as topography, dominant soil type, land use, collateral ground measurements and models), a second layer of information is built up which specifies the land surfaces as a component of the regional climate system. To this category of parameters which are directly involved in the exchange of energy, momentum and mass between the surface and the atmosphere, belong broadband albedo, thermodynamic surface temperature, vegetation types, vegetation cover density, soil top moisture, and soil heat flux. Information about these parameters finally leads to the computation of sensible and latent heat fluxes. The methodology was tested with pilot data sets. Full resolution, properly calibrated and normalized NOAA-AVHRR multi-annual primary data sets are presently compiled for the whole Mediterranean area, to study interannual variability and longer term trends.

  2. Generating daily land surface temperature at Landsat resolution by fusing Landsat and MODIS data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land surface temperature (LST) is a crucial parameter in investigating environmental, ecological processes and climate change at various scales, and is also valuable in the studies of evapotranspiration, soil moisture conditions, surface energy balance, and urban heat islands. These studies require ...

  3. Wireless Channel Characterization in the 5 GHz Microwave Landing System Extension Band for Airport Surface Areas

    NASA Technical Reports Server (NTRS)

    Matolak, David W.

    2007-01-01

    In this project final report, entitled "Wireless Channel Characterization in the 5 GHz Microwave Landing System Extension Band for Airport Surface Areas," we provide a detailed description and model representation for the wireless channel in the airport surface environment in this band. In this executive summary, we review report contents, describe the achieved objectives and major findings, and highlight significant conclusions and recommendations.

  4. Improving satellite-based rainfall estimates over land using spaceborne surface soil moisture retrievals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Over land, remotely-sensed surface soil moisture and precipitation accumulation retrievals contain complementary information that can be exploited for the mutual benefit of both products. Here a Kalman filtering based tool is developed that utilizes a time series of spaceborne surface soil moisture ...

  5. A MODELING APPROACH FOR ESTIMATING WATERSHED IMPERVIOUS SURFACE AREA FROM NATIONAL LAND COVER DATA 92

    EPA Science Inventory

    We used National Land Cover Data 92 (NLCD92), vector impervious surface data, and raster GIS overlay methods to derive impervious surface coefficients per NLCD92 class in portions of the Nfid-Atlantic physiographic region. The methods involve a vector to raster conversion of the ...

  6. All-weather land surface skin temperatures from a combined analysis of microwave and infrared satellite observations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The surface skin temperature (Ts) is a key parameter at the land-atmosphere interface. Upwelling longwave radiation directly epends upon Ts. Energy exchanges at the land-surface boundary are largely controlled by the difference between Ts and the surface air temperature, the air and the surface reac...

  7. Seasonal variability of surface runoff for different land-use types in alpine landscapes

    NASA Astrophysics Data System (ADS)

    Leitinger, G.; Tappeiner, U.; Newesely, Ch.; Obojes, N.; Tasser, E.

    2009-04-01

    Knowledge of surface runoff quantity for distinct hydrological units becomes increasingly important as many rainfall-runoff models use static surface runoff coefficients and therefore neglect eco-hydrological diversity. Especially in small-scale alpine catchments surface runoff and its contribution to mountain torrent runoff is frequently underestimated. Alpine ecosystems are faced with a rapid shift in vegetation patterns due to climate and also land-use change, which alters hydrological behavior in short timescales, even within a season. In a study in the Eastern Alps, Stubai Valley, Austria, surface runoff was investigated by using a rain simulator and accompanying soil water content and soil water tension measurements in different soil depths. Additionally, soil type, soil physical properties and phytomass were assessed. Analyzing more than 40 sprinkler experiments revealed significantly different surface runoff coefficients for different land-use / land-cover types. Moreover, managed areas revealed a clear seasonal variability of surface runoff. The results infer the necessity to consider intensity, duration and date of management when quantifying surface runoff. In other words, as surface runoff reaches the catchment outlet very quickly, water levels will raise much more than for very similar conditions at another date of the season. While almost no surface runoff occurred on abandoned areas, pastures showed high seasonal variability with surface runoff coefficients between 0% and 25%. The results are linked to land-cover type and soil physical properties, among which bulk density and resulting infiltration rates turned out to be most decisive. On pastures soil compaction by grazing cattle could increase stream flow dramatically. However, soil compaction in upper horizons (A-horizon, < 10cm soil depth) was reduced by freeze-and-thaw processes during the winter season. Thereby bulk density decreased and infiltration rates increased. The duration of this

  8. Land Surface Temperature- Comparing Data from Polar Orbiting and Geostationary Satellites

    NASA Astrophysics Data System (ADS)

    Comyn-Platt, E.; Remedios, J. J.; Good, E. J.; Ghent, D.; Saunders, R.

    2012-04-01

    Land Surface Temperature (LST) is a vital parameter in Earth climate science, driving long-wave radiation exchanges that control the surface energy budget and carbon fluxes, which are important factors in Numerical Weather Prediction (NWP) and the monitoring of climate change. Satellites offer a convenient way to observe LST consistently and regularly over large areas. A comparison between LST retrieved from a Geostationary Instrument, the Spinning Enhanced Visible and InfraRed Imager (SEVIRI), and a Polar Orbiting Instrument, the Advanced Along Track Scanning Radiometer (AATSR) is presented. Both sensors offer differing benefits. AATSR offers superior precision and spatial resolution with global coverage but given its sun-synchronous platform only observes at two local times, ~10am and ~10pm. SEVIRI provides the high-temporal resolution (every 15 minutes) required for observing diurnal variability of surface temperatures but given its geostationary platform has a poorer resolution, 3km at nadir, which declines at higher latitudes. A number of retrieval methods are applied to the raw satellite data: First order coefficient based algorithms provided on an operational basis by the LandSAF (for SEVIRI) and the University of Leicester (for AATSR); Second order coefficient based algorithms put forward by the University of Valencia; and an optimal estimation method using the 1DVar software provided by the NWP SAF. Optimal estimation is an iterative technique based upon inverse theory, thus is very useful for expanding into data assimilation systems. The retrievals are assessed and compared on both a fine scale using in-situ data from recognised validation sites and on a broad scale using two 100x100 regions such that biases can be better understood. Overall, the importance of LST lies in monitoring daily temperature extremes, e.g. for estimating permafrost thawing depth or risk of crop damage due to frost, hence the ideal dataset would use a combination of observations

  9. Integrated Land Surface Water State Indicators for Climate Assessment

    NASA Astrophysics Data System (ADS)

    Lamb, B. T.; McDonald, K. C.; Steiner, N.; Azarderakhsh, M.; Schroeder, R.

    2014-12-01

    Accurate characterization of seasonal freeze/thaw transition timing coupled with accompanying characterization of snowpack water content, surface inundation, and radiation balance give the potential for an unambiguous indication of climate change. Earth remote sensing data sources have demonstrated utility for determining these surface and radiation balance state variables. NASA's Climate Indicators Team seeks to develop and test potential climate indicators that employ NASA capabilities to support the National Climate Assessemnt and are useful to decision makers. We present development of a set of climate indicators built upon remote sensing measures of surface water state variables: Landscape freeze/thaw (FT), Snow Water Equivalent (SWE), Surface inundation fraction (Fw), and radiative flux. Indicators based on and derived from these parameters may be assembled from integrated remote sensing datasets and provide key information in assessment of climate state. Combined, these state variables provide unique insight into linkages and feedbacks in terrestrial energy, water and carbon cycles and allow examination to the response of the integrated system to climate drivers. Assembled from existing remote sensing datasets, these deliverables will represent the first broad-scale observationally-based, comprehensive measures of surface water state and distribution coupled to atmospheric radiation for use in climate change assessment.

  10. Is land surface processes representation a possible weak link in current Regional Climate Models?

    NASA Astrophysics Data System (ADS)

    Davin, Edouard L.; Maisonnave, Eric; Seneviratne, Sonia I.

    2016-07-01

    The representation of land surface processes and fluxes in climate models critically affects the simulation of near-surface climate over land. Here we present an evaluation of COSMO-CLM2, a model which couples the COSMO-CLM Regional Climate Model to the Community Land Model (CLM4.0). CLM4.0 provides a more detailed representation of land processes compared to the native land surface scheme in COSMO-CLM. We perform historical reanalysis-driven simulations over Europe with COSMO-CLM2 following the EURO-CORDEX intercomparison protocol. We then evaluate simulations performed with COSMO-CLM2, the standard COSMO-CLM and other EURO-CORDEX RCMs against various observational datasets of temperature, precipitation and surface fluxes. Overall, the results indicate that COSMO-CLM2 outperforms both the standard COSMO-CLM and the other EURO-CORDEX models in simulating sensible, latent and surface radiative fluxes as well as 2-meter temperature across different seasons and regions. The performance improvement is particularly strong for turbulent fluxes and for daily maximum temperatures and more modest for daily minimum temperature, suggesting that land surface processes affect daytime even more than nighttime conditions. COSMO-CLM2 also alleviates a long-standing issue of overestimation of interannual summer temperature variability present in most EURO-CORDEX RCMs. Finally, we show that several factors contribute to these improvements, including the representation of evapotranspiration, radiative fluxes and ground heat flux. Overall, these results demonstrate that land processes represent a key area of development to tackle current deficiencies in RCMs.

  11. Sensitivity of biogenic volatile organic compounds to land surface parameterizations and vegetation distributions in California

    NASA Astrophysics Data System (ADS)

    Zhao, Chun; Huang, Maoyi; Fast, Jerome D.; Berg, Larry K.; Qian, Yun; Guenther, Alex; Gu, Dasa; Shrivastava, Manish; Liu, Ying; Walters, Stacy; Pfister, Gabriele; Jin, Jiming; Shilling, John E.; Warneke, Carsten

    2016-05-01

    Current climate models still have large uncertainties in estimating biogenic trace gases, which can significantly affect atmospheric chemistry and secondary aerosol formation that ultimately influences air quality and aerosol radiative forcing. These uncertainties result from many factors, including uncertainties in land surface processes and specification of vegetation types, both of which can affect the simulated near-surface fluxes of biogenic volatile organic compounds (BVOCs). In this study, the latest version of Model of Emissions of Gases and Aerosols from Nature (MEGAN v2.1) is coupled within the land surface scheme CLM4 (Community Land Model version 4.0) in the Weather Research and Forecasting model with chemistry (WRF-Chem). In this implementation, MEGAN v2.1 shares a consistent vegetation map with CLM4 for estimating BVOC emissions. This is unlike MEGAN v2.0 in the public version of WRF-Chem that uses a stand-alone vegetation map that differs from what is used by land surface schemes. This improved modeling framework is used to investigate the impact of two land surface schemes, CLM4 and Noah, on BVOCs and examine the sensitivity of BVOCs to vegetation distributions in California. The measurements collected during the Carbonaceous Aerosol and Radiative Effects Study (CARES) and the California Nexus of Air Quality and Climate Experiment (CalNex) conducted in June of 2010 provided an opportunity to evaluate the simulated BVOCs. Sensitivity experiments show that land surface schemes do influence the simulated BVOCs, but the impact is much smaller than that of vegetation distributions. This study indicates that more effort is needed to obtain the most appropriate and accurate land cover data sets for climate and air quality models in terms of simulating BVOCs, oxidant chemistry and, consequently, secondary organic aerosol formation.

  12. Validation of the modified Becker's split-window approach for retrieving land surface temperature from AVHRR

    NASA Astrophysics Data System (ADS)

    Quan, Weijun; Chen, Hongbin; Han, Xiuzhen; Ma, Zhiqiang

    2015-10-01

    To further verify the modified Becker's split-window approach for retrieving land surface temperature (LST) from long-term Advanced Very High Resolution Radiometer (AVHRR) data, a cross-validation and a radiance-based (R-based) validation are performed and examined in this paper. In the cross-validation, 3481 LST data pairs are extracted from the AVHRR LST product retrieved with the modified Becker's approach and compared with the Moderate Resolution Imaging Spectroradiometer (MODIS) LST product (MYD11A1) for the period 2002-2008, relative to the positions of 548 weather stations in China. The results show that in most cases, the AVHRR LST values are higher than the MYD11A1. When the AVHRR LSTs are adjusted with a linear regression, the values are close to the MYD11A1, showing a good linear relationship between the two datasets ( R 2 = 0.91). In the R-based validation, comparison is made between AVHRR LST retrieved from the modified Becker's approach and the inversed LST from the Moderate Resolution Transmittance Model (MODTRAN) consolidated with observed temperature and humidity profiles at four radiosonde stations. The results show that the retrieved AVHRR LST deviates from the MODTRAN inversed LST by-1.3 (-2.5) K when the total water vapor amount is less (larger) than 20 mm. This provides useful hints for further improvement of the LST retrieval algorithms' accuracy and consistency.

  13. Modelling interannual variation in the spring and autumn land surface phenology of the European forest

    NASA Astrophysics Data System (ADS)

    Rodriguez-Galiano, Victor F.; Sanchez-Castillo, Manuel; Dash, Jadunandan; Atkinson, Peter M.; Ojeda-Zujar, Jose

    2016-06-01

    This research reveals new insights into the weather drivers of interannual variation in land surface phenology (LSP) across the entire European forest, while at the same time establishes a new conceptual framework for predictive modelling of LSP. Specifically, the random-forest (RF) method, a multivariate, spatially non-stationary and non-linear machine learning approach, was introduced for phenological modelling across very large areas and across multiple years simultaneously: the typical case for satellite-observed LSP. The RF model was fitted to the relation between LSP interannual variation and numerous climate predictor variables computed at biologically relevant rather than human-imposed temporal scales. In addition, the legacy effect of an advanced or delayed spring on autumn phenology was explored. The RF models explained 81 and 62 % of the variance in the spring and autumn LSP interannual variation, with relative errors of 10 and 20 %, respectively: a level of precision that has until now been unobtainable at the continental scale. Multivariate linear regression models explained only 36 and 25 %, respectively. It also allowed identification of the main drivers of the interannual variation in LSP through its estimation of variable importance. This research, thus, shows an alternative to the hitherto applied linear regression approaches for modelling LSP and paves the way for further scientific investigation based on machine learning methods.

  14. Modelling anomalies in the spring and autumn land surface phenology of the European forest

    NASA Astrophysics Data System (ADS)

    Rodriguez-Galiano, V. F.; Sanchez-Castillo, M.; Dash, J.; Atkinson, P. M.

    2015-07-01

    This research reveals new insights into the climatic drivers of anomalies in land surface phenology (LSP) across the entire European forest, while at the same time establishes a new conceptual framework for predictive modelling of LSP. Specifically, the Random Forest method, a multivariate, spatially non-stationary and non-linear machine learning approach, was introduced for phenological modelling across very large areas and across multiple years simultaneously: the typical case for satellite-observed LSP. The RF model was fitted to the relation between LSP anomalies and numerous climate predictor variables computed at biologically-relevant rather than human-imposed temporal scales. In addition, the legacy effect of an advanced or delayed spring on autumn phenology was explored. The RF models explained 81 and 62 % of the variance in the spring and autumn LSP anomalies, with relative errors of 10 and 20 %, respectively: a level of precision that has until now been unobtainable at the continental scale. Multivariate linear regression models explained only 36 and 25 %, respectively. It also allowed identification of the main drivers of the anomalies in LSP through its estimation of variable importance. This research, thus, shows clearly the inadequacy of the hitherto applied linear regression approaches for modelling LSP and paves the way for a new set of scientific investigations based on machine learning methods.

  15. Preface paper to the Semi-Arid Land-Surface-Atmosphere (SALSA) Program special issue

    USGS Publications Warehouse

    Goodrich, D.C.; Chehbouni, A.; Goff, B.; MacNish, B.; Maddock, T.; Moran, S.; Shuttleworth, W.J.; Williams, D.G.; Watts, C.; Hipps, L.H.; Cooper, D.I.; Schieldge, J.; Kerr, Y.H.; Arias, H.; Kirkland, M.; Carlos, R.; Cayrol, P.; Kepner, W.; Jones, B.; Avissar, R.; Begue, A.; Bonnefond, J.-M.; Boulet, G.; Branan, B.; Brunel, J.P.; Chen, L.C.; Clarke, T.; Davis, M.R.; DeBruin, H.; Dedieu, G.; Elguero, E.; Eichinger, W.E.; Everitt, J.; Garatuza-Payan, J.; Gempko, V.L.; Gupta, H.; Harlow, C.; Hartogensis, O.; Helfert, M.; Holifield, C.; Hymer, D.; Kahle, A.; Keefer, T.; Krishnamoorthy, S.; Lhomme, J.-P.; Lagouarde, J.-P.; Lo, Seen D.; Luquet, D.; Marsett, R.; Monteny, B.; Ni, W.; Nouvellon, Y.; Pinker, R.; Peters, C.; Pool, D.; Qi, J.; Rambal, S.; Rodriguez, J.; Santiago, F.; Sano, E.; Schaeffer, S.M.; Schulte, M.; Scott, R.; Shao, X.; Snyder, K.A.; Sorooshian, S.; Unkrich, C.L.; Whitaker, M.; Yucel, I.

    2000-01-01

    The Semi-Arid Land-Surface-Atmosphere Program (SALSA) is a multi-agency, multi-national research effort that seeks to evaluate the consequences of natural and human-induced environmental change in semi-arid regions. The ultimate goal of SALSA is to advance scientific understanding of the semi-arid portion of the hydrosphere-biosphere interface in order to provide reliable information for environmental decision making. SALSA approaches this goal through a program of long-term, integrated observations, process research, modeling, assessment, and information management that is sustained by cooperation among scientists and information users. In this preface to the SALSA special issue, general program background information and the critical nature of semi-arid regions is presented. A brief description of the Upper San Pedro River Basin, the initial location for focused SALSA research follows. Several overarching research objectives under which much of the interdisciplinary research contained in the special issue was undertaken are discussed. Principal methods, primary research sites and data collection used by numerous investigators during 1997-1999 are then presented. Scientists from about 20 US, five European (four French and one Dutch), and three Mexican agencies and institutions have collaborated closely to make the research leading to this special issue a reality. The SALSA Program has served as a model of interagency cooperation by breaking new ground in the approach to large scale interdisciplinary science with relatively limited resources.

  16. Towards a History of NASA Applied Sciences: Making Land Surface Data Useful, 1974-2010

    NASA Astrophysics Data System (ADS)

    Conway, E. M.; Yuen, K.

    2012-12-01

    To date, there is very little historical work on either the NASA Applications Program, or its successor, the NASA Applied Science program. The one relevant, fully-fledged history is of the Landsat program through 1980, which was carried out under the old, long defunct, NASA Office of Applications. Much more historical work can be done on these two programs, and this paper will make a small contribution towards a fuller history by tracing the evolution of the Normalized Difference Vegetation Index and its migration from research product into a variety of different applications. Derived not from Landsat but from the Advanced Very High Resolution Radiometer on the NOAA series of polar orbiting weather satellites, the NDVI dataset originated in ground-based research carried out during the 1970s. Once the AVHRR-derived version was validated in the mid-1980s, it immediately attracted attention from a variety of organizations interested in using it for their own purposes—famine warning and relief, locust warning, etc. It also became an important input to land surface models, which themselves evolved during this period to become the basis of still other applications. This paper will offer an historical analysis of the process by which NDVI became routinized, utilitarian, and deeply embedded in the products of other organizations.

  17. Land surface model calibration through microwave data assimilation for improving soil moisture simulations

    NASA Astrophysics Data System (ADS)

    Yang, Kun; Zhu, La; Chen, Yingying; Zhao, Long; Qin, Jun; Lu, Hui; Tang, Wenjun; Han, Menglei; Ding, Baohong; Fang, Nan

    2016-02-01

    Soil moisture is a key variable in climate system, and its accurate simulation needs effective soil parameter values. Conventional approaches may obtain soil parameter values at point scale, but they are costly and not efficient at grid scale (10-100 km) of current climate models. This study explores the possibility to estimate soil parameter values by assimilating AMSR-E (Advanced Microwave Scanning Radiometer for Earth Observing System) brightness temperature (TB) data. In the assimilation system, the TB is simulated by the coupled system of a land surface model (LSM) and a radiative transfer model (RTM), and the simulation errors highly depend on parameters in both the LSM and the RTM. Thus, sensitive soil parameters may be inversely estimated through minimizing the TB errors. A crucial step for the parameter estimation is made to suppress the contamination of uncertainties in atmospheric forcing data. The effectiveness of the estimated parameter values is evaluated against intensive measurements of soil parameters and soil moisture in three grasslands of the Tibetan Plateau and the Mongolian Plateau. The results indicate that this satellite data-based approach can improve the data quality of soil porosity, a key parameter for soil moisture modeling, and LSM simulations with the estimated parameter values reasonably reproduce the measured soil moisture. This demonstrates it is feasible to calibrate LSMs for soil moisture simulations at grid scale by assimilating microwave satellite data, although more efforts are expected to improve the robustness of the model calibration.

  18. Global observation-based diagnosis of soil moisture control on land surface flux partition

    NASA Astrophysics Data System (ADS)

    Gallego-Elvira, Belen; Taylor, Christopher M.; Harris, Phil P.; Ghent, Darren; Veal, Karen L.; Folwell, Sonja S.

    2016-04-01

    Soil moisture plays a central role in the partition of available energy at the land surface between sensible and latent heat flux to the atmosphere. As soils dry out, evapotranspiration becomes water-limited ("stressed"), and both land surface temperature (LST) and sensible heat flux rise as a result. This change in surface behaviour during dry spells directly affects critical processes in both the land and the atmosphere. Soil water deficits are often a precursor in heat waves, and they control where feedbacks on precipitation become significant. State-of-the-art global climate model (GCM) simulations for the Coupled Model Intercomparison Project Phase 5 (CMIP5) disagree on where and how strongly the surface energy budget is limited by soil moisture. Evaluation of GCM simulations at global scale is still a major challenge owing to the scarcity and uncertainty of observational datasets of land surface fluxes and soil moisture at the appropriate scale. Earth observation offers the potential to test how well GCM land schemes simulate hydrological controls on surface fluxes. In particular, satellite observations of LST provide indirect information about the surface energy partition at 1km resolution globally. Here, we present a potentially powerful methodology to evaluate soil moisture stress on surface fluxes within GCMs. Our diagnostic, Relative Warming Rate (RWR), is a measure of how rapidly the land warms relative to the overlying atmosphere during dry spells lasting at least 10 days. Under clear skies, this is a proxy for the change in sensible heat flux as soil dries out. We derived RWR from MODIS Terra and Aqua LST observations, meteorological re-analyses and satellite rainfall datasets. Globally we found that on average, the land warmed up during dry spells for 97% of the observed surface between 60S and 60N. For 73% of the area, the land warmed faster than the atmosphere (positive RWR), indicating water stressed conditions and increases in sensible heat flux

  19. The impact of land-surface wetness heterogeneity on mesoscale heat fluxes

    NASA Technical Reports Server (NTRS)

    Chen, Fei; Avissar, Roni

    1994-01-01

    Vertical heat fluxes associated with mesoscale circulations generated by land-surface wetness discontinuities are often stronger than turbulent fluxes, especially in the upper part of the atmospheric planetary boundary layer. As a result, they contribute significantly to the subgrid-scale fluxes in large-scale atmospheric models. Yet they are not considered in these models. To provide some insights into the possible parameterization of these fluxes in large-scale models, a state-of-the-art mesoscale numerical model was used to investigate the relationships between mesoscale heat fluxes and atmospheric and land-surface characteristics that play a key role in the generation of mesoscale circulations. The distribution of land-surface wetness, the wavenumber and the wavelength of the land-surface discontinuities, and the large-scale wind speed have a significant impact on the mesoscale heat fluxes. Empirical functions were derived to characterize the relationships between mesoscale heat fluxes and the spatial distribution of land-surface wetness. The strongest mesoscale heat fluxes were obtained for a wavelength of forcing corresponding approximately to the local Rossby deformation radius. The mesoscale heat fluxes are weakened by large-scale background winds but remain significant even with moderate winds.

  20. [Improvement of root parameters in land surface model (LSM )and its effect on the simulated results].

    PubMed

    Cai, Kui-ye; Liu, Jing-miao; Zhang, Zheng-qiu; Liang, Hong; He, Xiao-dong

    2015-10-01

    In order to improve root parameterization in land surface model, the sub-model for root in CERES-Maize was coupled in the SSiB2 after calibrating of maize parameters in SSiB2. The effects of two improved root parameterization schemes on simulated results of land surface flux were analyzed. Results indicated that simulation accuracy of land surface flux was enhanced when the root module provided root depth only with the SSiB2 model (scheme I). Correlation coefficients between observed and simulated values of latent flux and sensible flux increased during the whole growing season, and RMSE of linear fitting decreased. Simulation accuracy of CO2 flux was also enhanced from 121 days after sowing to mature period. On the other hand, simulation accuracy of the flux was enhanced when the root module provided root depth and root length density simultaneously for the SSiB2 model (scheme II). Compared with the scheme I, the scheme II was more comprehensive, while its si