NASA Technical Reports Server (NTRS)
Duffy, James B.
1993-01-01
This report describes Rockwell International's cost analysis results of manned launch vehicle concepts for two way transportation system payloads to low earth orbit during the basic and option 1 period of performance for contract NAS8-39207, advanced transportation system studies. Vehicles analyzed include the space shuttle, personnel launch system (PLS) with advanced launch system (ALS) and national launch system (NLS) boosters, foreign launch vehicles, NLS-2 derived launch vehicles, liquid rocket booster (LRB) derived launch vehicle, and cargo transfer and return vehicle (CTRV).
National space transportation systems planning
NASA Technical Reports Server (NTRS)
Lucas, W. R.
1985-01-01
In the fall of 1984, the DOD and NASA had been asked to identify launch vehicle technologies which could be made available for use in 1995 to 2010. The results of the studies of the two groups were integrated, and a consumer report, dated December 1984, was forwarded to the President. Aspects of mission planning and analysis are discussed along with a combined mission model, future launch system requirements, a launch vehicle planning background, Shuttle derivative vehicle program options, payload modularization, launch vehicle technology implications, a new engine program for the mid-1990's. Future launch systems goals are to achieve an order of magnitude reduction in future launch cost and meet the lift requirements and launch rates. Attention is given to an advanced cryogenic engine, advanced LOX/hydrocarbon engine, advanced power systems, aerodynamics/flight mechanics, reentry/recovery systems, avionics/software, advanced manufacturing techniques, autonomous ground and mission operations, advanced structures/materials, and air breathing propulsion.
Advanced information processing system for advanced launch system: Avionics architecture synthesis
NASA Technical Reports Server (NTRS)
Lala, Jaynarayan H.; Harper, Richard E.; Jaskowiak, Kenneth R.; Rosch, Gene; Alger, Linda S.; Schor, Andrei L.
1991-01-01
The Advanced Information Processing System (AIPS) is a fault-tolerant distributed computer system architecture that was developed to meet the real time computational needs of advanced aerospace vehicles. One such vehicle is the Advanced Launch System (ALS) being developed jointly by NASA and the Department of Defense to launch heavy payloads into low earth orbit at one tenth the cost (per pound of payload) of the current launch vehicles. An avionics architecture that utilizes the AIPS hardware and software building blocks was synthesized for ALS. The AIPS for ALS architecture synthesis process starting with the ALS mission requirements and ending with an analysis of the candidate ALS avionics architecture is described.
NASA Technical Reports Server (NTRS)
Spears, L. T.; Kramer, R. D.
1990-01-01
The objectives were to examine launch vehicle applications and propulsion requirements for potential future manned space transportation systems and to support planning toward the evolution of Space Shuttle Main Engine (SSME) and Space Transportation Main Engine (STME) engines beyond their current or initial launch vehicle applications. As a basis for examinations of potential future manned launch vehicle applications, we used three classes of manned space transportation concepts currently under study: Space Transportation System Evolution, Personal Launch System (PLS), and Advanced Manned Launch System (AMLS). Tasks included studies of launch vehicle applications and requirements for hydrogen-oxygen rocket engines; the development of suggestions for STME engine evolution beyond the mid-1990's; the development of suggestions for STME evolution beyond the Advanced Launch System (ALS) application; the study of booster propulsion options, including LOX-Hydrocarbon options; the analysis of the prospects and requirements for utilization of a single engine configuration over the full range of vehicle applications, including manned vehicles plus ALS and Shuttle C; and a brief review of on-going and planned LOX-Hydrogen propulsion technology activities.
NASA Technical Reports Server (NTRS)
Bai, S. Don
2000-01-01
Design, propellant selection, and launch assistance for advanced chemical propulsion system is discussed. Topics discussed include: rocket design, advance fuel and high energy density materials, launch assist, and criteria for fuel selection.
Next generation solid boosters
NASA Technical Reports Server (NTRS)
Lund, R. K.
1991-01-01
Space transportation solid rocket motor systems; Shuttle derived heavy lift launch vehicles; advanced launch system (ALS) derived heavy lift launch vehicles; large launch solid booster vehicles are outlined. Performance capabilities and concept objectives are presented. Small launch vehicle concepts; enabling technologies; reusable flyback booster system; and high-performance solid motors for space are briefly described. This presentation is represented by viewgraphs.
Advanced Launch System (ALS) actuation and power systems impact operability and cost
NASA Technical Reports Server (NTRS)
Sundberg, Gale R.
1990-01-01
To obtain the Advanced Launch System (ALS) primary goals of reduced costs and improved operability, there must be significant reductions in the launch operations and servicing requirements relative to current vehicle designs and practices. One of the primary methods for achieving these goals is by using vehicle electrical power system and controls for all actuation and avionics requirements. A brief status review of the ALS and its associated Advanced Development Program is presented to demonstrate maturation of those technologies that will help meet the overall operability and cost goals. The electric power and actuation systems are highlighted as a specific technology ready not only to meet the stringent ALS goals (cryogenic field valves and thrust vector controls with peak power demands to 75 hp), but also those of other launch vehicles, military and civilian aircraft, lunar/Martian vehicles, and a multitude of commercial applications.
NASA Technical Reports Server (NTRS)
Sundberg, Gale R.
1990-01-01
To obtain the Advanced Launch System (ALS) primary goals of reduced costs and improved operability, there must be significant reductions in the launch operations and servicing requirements relative to current vehicle designs and practices. One of the primary methods for achieving these goals is by using vehicle electrical power system and controls for all actuation and avionics requirements. A brief status review of the ALS and its associated Advanced Development Program is presented to demonstrate maturation of those technologies that will help meet the overall operability and cost goals. The electric power and actuation systems are highlighted as a specific technology ready not only to meet the stringent ALS goals (cryogenic field valves and thrust vector controls with peak power demands to 75 hp), but also those of other launch vehicles, military and civilian aircraft, lunar/Martian vehicles, and a multitude of commercial applications.
NASA Technical Reports Server (NTRS)
Sundberg, Gale R.
1990-01-01
To obtain the Advanced Launch System (ALS) primary goals of reduced costs and improved operability, there must be significant reductions in the launch operations and servicing requirements relative to current vehicle designs and practices. One of the primary methods for achieving these goals is by using vehicle electrrical power system and controls for all aviation and avionics requirements. A brief status review of the ALS and its associated Advanced Development Program is presented to demonstrate maturation of those technologies that will help meet the overall operability and cost goals. The electric power and actuation systems are highlighted as a sdpecific technology ready not only to meet the stringent ALS goals (cryogenic field valves and thrust vector controls with peak power demands to 75 hp), but also those of other launch vehicles, military ans civilian aircraft, lunar/Martian vehicles, and a multitude of comercial applications.
MSFC Advanced Concepts Office and the Iterative Launch Vehicle Concept Method
NASA Technical Reports Server (NTRS)
Creech, Dennis
2011-01-01
This slide presentation reviews the work of the Advanced Concepts Office (ACO) at Marshall Space Flight Center (MSFC) with particular emphasis on the method used to model launch vehicles using INTegrated ROcket Sizing (INTROS), a modeling system that assists in establishing the launch concept design, and stage sizing, and facilitates the integration of exterior analytic efforts, vehicle architecture studies, and technology and system trades and parameter sensitivities.
NASA Astrophysics Data System (ADS)
Karabeyoglu, Arif; Tuncer, Onur; Inalhan, Gokhan
2016-07-01
Mankind is relient on chemical propulsion systems for space access. Nevertheless, this has been a stagnant area in terms of technological development and the technology base has not changed much almost for the past forty years. This poses a vicious circle for launch applications such that high launch costs constrain the demand and low launch freqencies drive costs higher. This also has been a key limiting factor for small and micro satellites that are geared towards planetary science. Rather this be because of the launch frequencies or the costs, the access of small and micro satellites to orbit has been limited. With today's technology it is not possible to escape this circle. However the emergence of cost effective and high performance propulsion systems such as advanced hybrid rockets can decrease launch costs by almost an order or magnitude. This paper briefly introduces the timeline and research challenges that were overcome during the development of advanced hybrid LOX/paraffin based rockets. Experimental studies demonstrated effectiveness of these advanced hybrid rockets which incorporate fast burning parafin based fuels, advanced yet simple internal balistic design and carbon composite winding/fuel casting technology that enables the rocket motor to be built from inside out. A feasibility scenario is studied using these rocket motors as building blocks for a modular launch vehicle capable of delivering micro satellites into low earth orbit. In addition, the building block rocket motor can be used further solar system missions providing the ability to do standalone small and micro satellite missions to planets within the solar system. This enabling technology therefore offers a viable alternative in order to escape the viscous that has plagued the space launch industry and that has limited the small and micro satellite delivery for planetary science.
The Vehicle Control Systems Branch at the Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Barret, Chris
1990-01-01
This paper outlines the responsibility of the Vehicle Control Systems Branch at the Marshall Space Flight Center (MSFC) to analyze, evaluate, define, design, verify, and specify requirements for advanced launch vehicles and related space projects, and to conduct research in advanced flight control concepts. Attention is given to branch responsibilities which include Shuttle-C, Shuttle-C Block II, Shuttle-Z, lunar cargo launch vehicles, Mars cargo launch vehicles, orbital maneuvering vehicle, automatic docking, tethered satellite, aeroassisted flight experiment, and solid rocket booster parachute recovery system design.
NASA Technical Reports Server (NTRS)
Cole, Richard
1991-01-01
The major goals of this effort are as follows: (1) to examine technology insertion options to optimize Advanced Information Processing System (AIPS) performance in the Advanced Launch System (ALS) environment; (2) to examine the AIPS concepts to ensure that valuable new technologies are not excluded from the AIPS/ALS implementations; (3) to examine advanced microprocessors applicable to AIPS/ALS, (4) to examine radiation hardening technologies applicable to AIPS/ALS; (5) to reach conclusions on AIPS hardware building blocks implementation technologies; and (6) reach conclusions on appropriate architectural improvements. The hardware building blocks are the Fault-Tolerant Processor, the Input/Output Sequencers (IOS), and the Intercomputer Interface Sequencers (ICIS).
Robust flight design for an advanced launch system vehicle
NASA Astrophysics Data System (ADS)
Dhand, Sanjeev K.; Wong, Kelvin K.
Current launch vehicle trajectory design philosophies are generally based on maximizing payload capability. This approach results in an expensive trajectory design process for each mission. Two concepts of robust flight design have been developed to significantly reduce this cost: Standardized Trajectories and Command Multiplier Steering (CMS). These concepts were analyzed for an Advanced Launch System (ALS) vehicle, although their applicability is not restricted to any particular vehicle. Preliminary analysis has demonstrated the feasibility of these concepts at minimal loss in payload capability.
Smart sensor technology for advanced launch vehicles
NASA Astrophysics Data System (ADS)
Schoess, Jeff
1989-07-01
Next-generation advanced launch vehicles will require improved use of sensor data and the management of multisensor resources to achieve automated preflight checkout, prelaunch readiness assessment and vehicle inflight condition monitoring. Smart sensor technology is a key component in meeting these needs. This paper describes the development of a smart sensor-based condition monitoring system concept referred to as the Distributed Sensor Architecture. A significant event and anomaly detection scheme that provides real-time condition assessment and fault diagnosis of advanced launch system rocket engines is described. The design and flight test of a smart autonomous sensor for Space Shuttle structural integrity health monitoring is presented.
NASA Technical Reports Server (NTRS)
1995-01-01
Sections 10 to 13 of the Advanced Transportation System Studies final report are included in this volume. Section 10 contains a copy of an executive summary that was prepared by Lockheed Space Operations Company (LSOC) to document their support to the TA-2 contract during the first-year period of performance of the contract, May 1992 through May 1993. LSOC participated on the TA-2 contract as part of the concurrent engineering launch system definition team, and provided outstanding heavy lift launch vehicle (HLLV) ground operations requirements and concept assessments for Lockheed Missiles and Space Company (LMSC) through an intercompany work transfer as well as providing specific HLLV ground operations assessments at the direction of NASA KSC through KSC funding that was routed to the TA-2 contract. Section 11 contains a copy of a vehicle-independent, launch system health management requirements assessment. The purpose of the assessment was to define both health management requirements and the associated interfaces between a generic advanced transportation system launch vehicle and all related elements of the entire transportation system, including the ground segment. Section 12 presents the major TA-2 presentations provided to summarize the significant results and conclusions that were developed over the course of the contract. Finally, Section 13 presents the design and assessment report on the first lunar outpost heavy lift launch vehicle.
76 FR 72686 - 36(b)(1) Arms Sales Notification
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-25
... Electromagnetic Aircraft Launch System/Advanced Arresting Gear (EMALS/AAG). The EMALS long lead sub-assemblies... United Kingdom--Electromagnetic Aircraft Launch System Long Lead Sub- Assemblies The Government of the United Kingdom (UK) has requested the long lead sub-assemblies for the Electromagnetic Aircraft Launch...
NASA Technical Reports Server (NTRS)
1995-01-01
The purpose of the Advanced Transportation System Studies (ATSS) Technical Area 2 (TA-2) Heavy Lift Launch Vehicle Development contract was to provide advanced launch vehicle concept definition and analysis to assist NASA in the identification of future launch vehicle requirements. Contracted analysis activities included vehicle sizing and performance analysis, subsystem concept definition, propulsion subsystem definition (foreign and domestic), ground operations and facilities analysis, and life cycle cost estimation. This document is Volume 2 of the final report for the contract. It provides documentation of selected technical results from various TA-2 analysis activities, including a detailed narrative description of the SSTO concept assessment results, a user's guide for the associated SSTO sizing tools, an SSTO turnaround assessment report, an executive summary of the ground operations assessments performed during the first year of the contract, a configuration-independent vehicle health management system requirements report, a copy of all major TA-2 contract presentations, a copy of the FLO launch vehicle final report, and references to Pratt & Whitney's TA-2 sponsored final reports regarding the identification of Russian main propulsion technologies.
NASA Technical Reports Server (NTRS)
Threet, Grady E.; Waters, Eric D.; Creech, Dennis M.
2012-01-01
The Advanced Concepts Office (ACO) Launch Vehicle Team at the NASA Marshall Space Flight Center (MSFC) is recognized throughout NASA for launch vehicle conceptual definition and pre-phase A concept design evaluation. The Launch Vehicle Team has been instrumental in defining the vehicle trade space for many of NASA s high level launch system studies from the Exploration Systems Architecture Study (ESAS) through the Augustine Report, Constellation, and now Space Launch System (SLS). The Launch Vehicle Team s approach to rapid turn-around and comparative analysis of multiple launch vehicle architectures has played a large role in narrowing the design options for future vehicle development. Recently the Launch Vehicle Team has been developing versions of their vetted tools used on large launch vehicles and repackaged the process and capability to apply to smaller more responsive launch vehicles. Along this development path the LV Team has evaluated trajectory tools and assumptions against sounding rocket trajectories and air launch systems, begun altering subsystem mass estimating relationships to handle smaller vehicle components, and as an additional development driver, have begun an in-house small launch vehicle study. With the recent interest in small responsive launch systems and the known capability and response time of the ACO LV Team, ACO s launch vehicle assessment capability can be utilized to rapidly evaluate the vast and opportune trade space that small launch vehicles currently encompass. This would provide a great benefit to the customer in order to reduce that large trade space to a select few alternatives that should best fit the customer s payload needs.
Going Boldly Beyond: Progress on NASA's Space Launch System
NASA Technical Reports Server (NTRS)
Singer, Jody; Crumbly, Chris
2013-01-01
NASA's Space Launch System is implementing an evolvable configuration approach to system development in a resource-constrained era. Legacy systems enable non-traditional development funding and contribute to sustainability and affordability. Limited simultaneous developments reduce cost and schedule risk. Phased approach to advanced booster development enables innovation and competition, incrementally demonstrating affordability and performance enhancements. Advanced boosters will provide performance for the most capable heavy lift launcher in history, enabling unprecedented space exploration benefiting all of humanity.
The Next Great Ship: NASA's Space Launch System
NASA Technical Reports Server (NTRS)
May, Todd A.
2013-01-01
Topics covered include: Most Capable U.S. Launch Vehicle; Liquid engines Progress; Boosters Progress; Stages and Avionics Progress; Systems Engineering and Integration Progress; Spacecraft and Payload Integration Progress; Advanced Development Progress.
Ground-to-orbit laser propulsion: Advanced applications
NASA Technical Reports Server (NTRS)
Kare, Jordin T.
1990-01-01
Laser propulsion uses a large fixed laser to supply energy to heat an inert propellant in a rocket thruster. Such a system has two potential advantages: extreme simplicity of the thruster, and potentially high performance, particularly high exhaust velocity. By taking advantage of the simplicity of the thruster, it should be possible to launch small (10 to 1000 kg) payloads to orbit using roughly 1 MW of average laser power per kg of payload. The incremental cost of such launches would be of an order of $200/kg for the smallest systems, decreasing to essentially the cost of electricity to run the laser (a few times $10/kg) for larger systems. Although the individual payload size would be smaller, a laser launch system would be inherently high-volume, with the capacity to launch tens of thousands of payloads per year. Also, with high exhaust velocity, a laser launch system could launch payloads to high velocities - geosynchronous transfer, Earth escape, or beyond - at a relatively small premium over launches to LEO. The status of pulsed laser propulsion is briefly reviewed including proposals for advanced vehicles. Several applications appropriate to the early part of the next century and perhaps valuable well into the next millennium are discussed qualitatively: space habitat supply, deep space mission supply, nuclear waste disposal, and manned vehicle launching.
Technology Innovations from NASA's Next Generation Launch Technology Program
NASA Technical Reports Server (NTRS)
Cook, Stephen A.; Morris, Charles E. K., Jr.; Tyson, Richard W.
2004-01-01
NASA's Next Generation Launch Technology Program has been on the cutting edge of technology, improving the safety, affordability, and reliability of future space-launch-transportation systems. The array of projects focused on propulsion, airframe, and other vehicle systems. Achievements range from building miniature fuel/oxygen sensors to hot-firings of major rocket-engine systems as well as extreme thermo-mechanical testing of large-scale structures. Results to date have significantly advanced technology readiness for future space-launch systems using either airbreathing or rocket propulsion.
Atmospheric statistics for aerospace vehicle operations
NASA Technical Reports Server (NTRS)
Smith, O. E.; Batts, G. W.
1993-01-01
Statistical analysis of atmospheric variables was performed for the Shuttle Transportation System (STS) design trade studies and the establishment of launch commit criteria. Atmospheric constraint statistics have been developed for the NASP test flight, the Advanced Launch System, and the National Launch System. The concepts and analysis techniques discussed in the paper are applicable to the design and operations of any future aerospace vehicle.
Atomic hydrogen as a launch vehicle propellant
NASA Technical Reports Server (NTRS)
Palaszewski, Bryan A.
1990-01-01
An analysis of several atomic hydrogen launch vehicles was conducted. A discussion of the facilities and the technologies that would be needed for these vehicles is also presented. The Gross Liftoff Weights (GLOW) for two systems were estimated; their specific impulses (I sub sp) were 750 and 1500 lb (sub f)/s/lb(sub m). The atomic hydrogen launch vehicles were also compared to the currently planned Advanced Launch System design concepts. Very significant GLOW reductions of 52 to 58 percent are possible over the Advanced Launch System designs. Applying atomic hydrogen propellants to upper stages was also considered. Very high I(sub sp) (greater than 750 1b(sub f)/s/lb(sub m) is needed to enable a mass savings over advanced oxygen/hydrogen propulsion. Associated with the potential benefits of high I(sub sp) atomic hydrogen are several challenging problems. Very high magnetic fields are required to maintain the atomic hydrogen in a solid kilogauss (3 Tesla). Also the storage temperature of the propellant is 4 K. This very low temperature will require a large refrigeration facility for the launch vehicle. The design considerations for a very high recombination rate for the propellant are also discussed. A recombination rate of 210 cm/s is predicted for atomic hydrogen. This high recombination rate can produce very high acceleration for the launch vehicle. Unique insulation or segmentation to inhibit the propellant may be needed to reduce its recombination rate.
NASA Technical Reports Server (NTRS)
Duffy, James B.
1993-01-01
The purpose of the Advanced Transportation System Study (ATSS) task area 1 study effort is to examine manned launch vehicle booster concepts and two-way cargo transfer and return vehicle concepts to determine which of the many proposed concepts best meets NASA's needs for two-way transportation to low earth orbit. The study identified specific configurations of the normally unmanned, expendable launch vehicles (such as the National Launch System family) necessary to fly manned payloads. These launch vehicle configurations were then analyzed to determine the integrated booster/spacecraft performance, operations, reliability, and cost characteristics for the payload delivery and return mission. Design impacts to the expendable launch vehicles which would be required to perform the manned payload delivery mission were also identified. These impacts included the implications of applying NASA's man-rating requirements, as well as any mission or payload unique impacts. The booster concepts evaluated included the National Launch System (NLS) family of expendable vehicles and several variations of the NLS reference configurations to deliver larger manned payload concepts (such as the crew logistics vehicle (CLV) proposed by NASA JSC). Advanced, clean sheet concepts such as an F-1A engine derived liquid rocket booster (LRB), the single stage to orbit rocket, and a NASP-derived aerospace plane were also included in the study effort. Existing expendable launch vehicles such as the Titan 4, Ariane 5, Energia, and Proton were also examined. Although several manned payload concepts were considered in the analyses, the reference manned payload was the NASA Langley Research Center's HL-20 version of the personnel launch system (PLS). A scaled up version of the PLS for combined crew/cargo delivery capability, the HL-42 configuration, was also included in the analyses of cargo transfer and return vehicle (CTRV) booster concepts. In addition to strictly manned payloads, two-way cargo transportation systems (CTRV's) were also examined. The study provided detailed design and analysis of the performance, reliability, and operations of these concepts. The study analyzed these concepts as unique systems and also analyzed several combined CTRV/booster configurations as integrated launch systems (such as for launch abort analyses). Included in the set of CTRV concepts analyzed were the medium CTRV, the integral CTRV (in both a pressurized and unpressurized configuration), the winged CTRV, and an attached cargo carrier for the PLS system known as the PLS caboose.
Design options for advanced manned launch systems
NASA Astrophysics Data System (ADS)
Freeman, Delma C.; Talay, Theodore A.; Stanley, Douglas O.; Lepsch, Roger A.; Wilhite, Alan W.
1995-03-01
Various concepts for advanced manned launch systems are examined for delivery missions to space station and polar orbit. Included are single-and two-stage winged systems with rocket and/or air-breathing propulsion systems. For near-term technologies, two-stage reusable rocket systems are favored over single-stage rocket or two-stage air-breathing/rocket systems. Advanced technologies enable viable single-stage-to-orbit (SSTO) concepts. Although two-stage rocket systems continue to be lighter in dry weight than SSTO vehicles, advantages in simpler operations may make SSTO vehicles more cost-effective over the life cycle. Generally, rocket systems maintain a dry-weight advantage over air-breathing systems at the advanced technology levels, but to a lesser degree than when near-term technologies are used. More detailed understanding of vehicle systems and associated ground and flight operations requirements and procedures is essential in determining quantitative discrimination between these latter concepts.
Current CFD Practices in Launch Vehicle Applications
NASA Technical Reports Server (NTRS)
Kwak, Dochan; Kiris, Cetin
2012-01-01
The quest for sustained space exploration will require the development of advanced launch vehicles, and efficient and reliable operating systems. Development of launch vehicles via test-fail-fix approach is very expensive and time consuming. For decision making, modeling and simulation (M&S) has played increasingly important roles in many aspects of launch vehicle development. It is therefore essential to develop and maintain most advanced M&S capability. More specifically computational fluid dynamics (CFD) has been providing critical data for developing launch vehicles complementing expensive testing. During the past three decades CFD capability has increased remarkably along with advances in computer hardware and computing technology. However, most of the fundamental CFD capability in launch vehicle applications is derived from the past advances. Specific gaps in the solution procedures are being filled primarily through "piggy backed" efforts.on various projects while solving today's problems. Therefore, some of the advanced capabilities are not readily available for various new tasks, and mission-support problems are often analyzed using ad hoc approaches. The current report is intended to present our view on state-of-the-art (SOA) in CFD and its shortcomings in support of space transport vehicle development. Best practices in solving current issues will be discussed using examples from ascending launch vehicles. Some of the pacing will be discussed in conjunction with these examples.
A view toward future launch vehicles - A civil perspective
NASA Technical Reports Server (NTRS)
Darwin, Charles R.; Austin, Gene; Varnado, Lee; Eudy, Glenn
1989-01-01
Prospective NASA launch vehicle development efforts, which in addition to follow-on developments of the Space Shuttle encompass the Shuttle-C cargo version, various possible Advanced Launch System (ALS) configurations, and various Heavy Lift Launch System (HLLS) design options. Fully and partially reusable manned vehicle alternatives are also under consideration. In addition to improving on the current Space Shuttle's reliability and flexibility, ALS and HLLV development efforts are expected to concentrate on the reduction of operating costs for the given payload-launch capability.
Space Launch System Advanced Development Office, FY 2013 Annual Report
NASA Technical Reports Server (NTRS)
Crumbly, C. M.; Bickley, F. P.; Hueter, U.
2013-01-01
The Advanced Development Office (ADO), part of the Space Launch System (SLS) program, provides SLS with the advanced development needed to evolve the vehicle from an initial Block 1 payload capability of 70 metric tons (t) to an eventual capability Block 2 of 130 t, with intermediary evolution options possible. ADO takes existing technologies and matures them to the point that insertion into the mainline program minimizes risk. The ADO portfolio of tasks covers a broad range of technical developmental activities. The ADO portfolio supports the development of advanced boosters, upper stages, and other advanced development activities benefiting the SLS program. A total of 34 separate tasks were funded by ADO in FY 2013.
Technology Requirements for Affordable Single-Stage Rocket Launch Vehicles
NASA Technical Reports Server (NTRS)
Stanley, Douglas O.; Piland, William M.
2004-01-01
A number of manned Earth-to-orbit (ETO) vehicle options for replacing or complementing the current Space Transportation System are being examined under the Advanced Manned Launch System (AMLS) study. The introduction of a reusable single-stage vehicle (SSV) into the U.S. launch vehicle fleet early in the next century could greatly reduce ETO launch costs. As a part of the AMLS study, the conceptual design of an SSV using a wide variety of enhancing technologies has recently been completed and is described in this paper. This paper also identifies the major enabling and enhancing technologies for a reusable rocket-powered SSV and provides examples of the mission payoff potential of a variety of important technologies. This paper also discusses the impact of technology advancements on vehicle margins, complexity, and risk, all of which influence the total system cost.
2009-05-05
VANDENBERG AIR FORCE BASE, Calif. -- A United Launch Alliance Delta II rocket, on behalf of the NASA Launch Services Program, is poised on its Space Launch Complex-2 launch pad at Vandenberg AFB, Calif., ready for launch. The Delta II will carry the Missile Defense Agency's Space Tracking and Surveillance System (STSS) Advanced Technology Risk Reduction (ATRR) payload into orbit. The launch is scheduled for 1:24 p.m. PDT. Photo by Carleton Bailie, United Launch Alliance.
Atomic hydrogen as a launch vehicle propellant
NASA Technical Reports Server (NTRS)
Palaszewski, Bryan A.
1990-01-01
An analysis of several atomic hydrogen launch vehicles was conducted. A discussion of the facilities and the technologies that would be needed for these vehicles is also presented. The Gross Liftoff Weights (GLOW) for two systems were estimated; their specific impulses (I sub sp) were 750 and 1500 lb(sub f)/s/lb(sub m). The atomic hydrogen launch vehicles were also compared to the currently planned Advanced Launch System design concepts. Very significant GLOW reductions of 52 to 58 percent are possible over the Advanced Launch System designs. Applying atomic hydrogen propellants to upper stages was also considered. Very high I(sub sp) (greater than 750 lb(sub f)/s/lb(sub m)) is needed to enable a mass savings over advanced oxygen/hydrogen propulsion. Associated with the potential benefits of high I(sub sp) atomic hydrogen are several challenging problems. Very high magnetic fields are required to maintain the atomic hydrogen in a solid hydrogen matrix. The magnetic field strength was estimated to be 30 kilogauss (3 Tesla). Also the storage temperature of the propellant is 4 K. This very low temperature will require a large refrigeration facility for the launch vehicle. The design considerations for a very high recombination rate for the propellant are also discussed. A recombination rate of 210 cm/s is predicted for atomic hydrogen. This high recombination rate can produce very high acceleration for the launch vehicle. Unique insulation or segmentation to inhibit the propellant may be needed to reduce its recombination rate.
NASA Technical Reports Server (NTRS)
Lala, Jaynarayan H.; Harper, Richard E.; Jaskowiak, Kenneth R.; Rosch, Gene; Alger, Linda S.; Schor, Andrei L.
1990-01-01
An avionics architecture for the advanced launch system (ALS) that uses validated hardware and software building blocks developed under the advanced information processing system program is presented. The AIPS for ALS architecture defined is preliminary, and reliability requirements can be met by the AIPS hardware and software building blocks that are built using the state-of-the-art technology available in the 1992-93 time frame. The level of detail in the architecture definition reflects the level of detail available in the ALS requirements. As the avionics requirements are refined, the architecture can also be refined and defined in greater detail with the help of analysis and simulation tools. A useful methodology is demonstrated for investigating the impact of the avionics suite to the recurring cost of the ALS. It is shown that allowing the vehicle to launch with selected detected failures can potentially reduce the recurring launch costs. A comparative analysis shows that validated fault-tolerant avionics built out of Class B parts can result in lower life-cycle-cost in comparison to simplex avionics built out of Class S parts or other redundant architectures.
NASA Astrophysics Data System (ADS)
Cook, Stephen; Hueter, Uwe
2003-08-01
NASA's Integrated Space Transportation Plan (ISTP) calls for investments in Space Shuttle safety upgrades, second generation Reusable Launch Vehicle (RLV) advanced development and third generation RLV and in-space research and technology. NASA's third generation launch systems are to be fully reusable and operation by 2025. The goals for third generation launch systems are to reduce cost by a factor of 100 and improve safety by a factor of 10,000 over current systems. The Advanced Space Transportation Program Office (ASTP) at NASA's Marshall Space Flight Center in Huntsville, AL has the agency lead to develop third generation space transportation technologies. The Hypersonics Investment Area, part of ASTP, is developing the third generation launch vehicle technologies in two main areas, propulsion and airframes. The program's major investment is in hypersonic airbreathing propulsion since it offers the greatest potential for meeting the third generation launch vehicles. The program will mature the technologies in three key propulsion areas, scramjets, rocket-based combined cycle and turbine-based combination cycle. Ground and flight propulsion tests are being planned for the propulsion technologies. Airframe technologies will be matured primarily through ground testing. This paper describes NASA's activities in hypersonics. Current programs, accomplishments, future plans and technologies that are being pursued by the Hypersonics Investment Area under the Advanced Space Transportation Program Office will be discussed.
2009-05-05
VANDENBERG AIR FORCE BASE, Calif. – A United Launch Alliance Delta II rocket blasts off from Space Launch Complex-2 launch pad at Vandenberg AFB, Calif., at 1:24 p.m. PDT. The Delta II successfully carried the Missile Defense Agency's Space Tracking and Surveillance System (STSS) Advanced Technology Risk Reduction (ATRR) payload into orbit. Photo by Carleton Bailie, United Launch Alliance.
NASA Technical Reports Server (NTRS)
Crumbly, C. M.; Bickley, F. P.; Hueter, U.
2015-01-01
The Advanced Development Office (ADO), part of the Space Launch System (SLS) program, provides SLS with the advanced development needed to evolve the vehicle from an initial Block 1 payload capability of 70 metric tons (t) to an eventual capability Block 2 of 130 t, with intermediary evolution options possible. ADO takes existing technologies and matures them to the point that insertion into the mainline program minimizes risk. The ADO portfolio of tasks covers a broad range of technical developmental activities. The ADO portfolio supports the development of advanced boosters, upper stages, and other advanced development activities benefiting the SLS program. A total of 36 separate tasks were funded by ADO in FY 2014.
eLaunch Hypersonics: An Advanced Launch System
NASA Technical Reports Server (NTRS)
Starr, Stanley
2010-01-01
This presentation describes a new space launch system that NASA can and should develop. This approach can significantly reduce ground processing and launch costs, improve reliability, and broaden the scope of what we do in near earth orbit. The concept (not new) is to launch a re-usable air-breathing hypersonic vehicle from a ground based electric track. This vehicle launches a final rocket stage at high altitude/velocity for the final leg to orbit. The proposal here differs from past studies in that we will launch above Mach 1.5 (above transonic pinch point) which further improves the efficiency of air breathing, horizontal take-off launch systems. The approach described here significantly reduces cost per kilogram to orbit, increases safety and reliability of the boost systems, and reduces ground costs due to horizontal-processing. Finally, this approach provides significant technology transfer benefits for our national infrastructure.
A white paper: Operational efficiency. New approaches to future propulsion systems
NASA Technical Reports Server (NTRS)
Rhodes, Russel; Wong, George
1991-01-01
Advanced launch systems for the next generation of space transportation systems (1995 to 2010) must deliver large payloads (125,000 to 500,000 lbs) to low earth orbit (LEO) at one tenth of today's cost, or 300 to 400 $/lb of payload. This cost represents an order of magnitude reduction from the Titan unmanned vehicle cost of delivering payload to orbit. To achieve this sizable reduction, the operations cost as well as the engine cost must both be lower than current engine system. The Advanced Launch System (ALS) is studying advanced engine designs, such as the Space Transportation Main Engine (STME), which has achieved notable reduction in cost. The results are presented of a current study wherein another level of cost reduction can be achieved by designing the propulsion module utilizing these advanced engines for enhanced operations efficiency and reduced operations cost.
NASA Technical Reports Server (NTRS)
Ferlita, F.
1989-01-01
The Advanced Launch Systems (ALS) Advanced Development Oxidizer Turbopump Program has designed, fabricated and demonstrated a low cost, highly reliable oxidizer turbopump for the Space Transportation Engine that minimizes the recurring cost for the ALS engines. Pratt and Whitney's (P and W's) plan for integrating the analyses, testing, fabrication, and other program efforts is addressed. This plan offers a comprehensive description of the total effort required to design, fabricate, and test the ALS oxidizer turbopump. The proposed ALS oxidizer turbopump reduces turbopump costs over current designs by taking advantage of design simplicity and state-of-the-art materials and producibility features without compromising system reliability. This is accomplished by selecting turbopump operating conditions that are within known successful operating regions and by using proven manufacturing techniques.
The Advanced Technology Development Center (ATDC)
NASA Technical Reports Server (NTRS)
Clements, G. R.; Willcoxon, R. (Technical Monitor)
2001-01-01
NASA is building the Advanced Technology Development Center (ATDC) to provide a 'national resource' for the research, development, demonstration, testing, and qualification of Spaceport and Range Technologies. The ATDC will be located at Space Launch Complex 20 (SLC-20) at Cape Canaveral Air Force Station (CCAFS) in Florida. SLC-20 currently provides a processing and launch capability for small-scale rockets; this capability will be augmented with additional ATDC facilities to provide a comprehensive and integrated in situ environment. Examples of Spaceport Technologies that will be supported by ATDC infrastructure include densified cryogenic systems, intelligent automated umbilicals, integrated vehicle health management systems, next-generation safety systems, and advanced range systems. The ATDC can be thought of as a prototype spaceport where industry, government, and academia, in partnership, can work together to improve safety of future space initiatives. The ATDC is being deployed in five separate phases. Major ATDC facilities will include a Liquid Oxygen Area; a Liquid Hydrogen Area, a Liquid Nitrogen Area, and a multipurpose Launch Mount; 'Iron Rocket' Test Demonstrator; a Processing Facility with a Checkout and Control System; and Future Infrastructure Developments. Initial ATDC development will be completed in 2006.
NASA's advanced space transportation system launch vehicles
NASA Technical Reports Server (NTRS)
Branscome, Darrell R.
1991-01-01
Some insight is provided into the advanced transportation planning and systems that will evolve to support long term mission requirements. The general requirements include: launch and lift capacity to low earth orbit (LEO); space based transfer systems for orbital operations between LEO and geosynchronous equatorial orbit (GEO), the Moon, and Mars; and Transfer vehicle systems for long duration deep space probes. These mission requirements are incorporated in the NASA Civil Needs Data Base. To accomplish these mission goals, adequate lift capacity to LEO must be available: to support science and application missions; to provide for construction of the Space Station Freedom; and to support resupply of personnel and supplies for its operations. Growth in lift capacity must be time phased to support an expanding mission model that includes Freedom Station, the Mission to Planet Earth, and an expanded robotic planetary program. The near term increase in cargo lift capacity associated with development of the Shuttle-C is addressed. The joint DOD/NASA Advanced Launch System studies are focused on a longer term new cargo capability that will significantly reduce costs of placing payloads in space.
The Economics of Advanced In-Space Propulsion
NASA Technical Reports Server (NTRS)
Bangalore, Manju; Dankanich, John
2016-01-01
The cost of access to space is the single biggest driver is commercial space sector. NASA continues to invest in both launch technology and in-space propulsion. Low-cost launch systems combined with advanced in-space propulsion offer the greatest potential market capture. Launch market capture is critical to national security and has a significant impact on domestic space sector revenue. NASA typically focuses on pushing the limits on performance. However, the commercial market is driven by maximum net revenue (profits). In order to maximum the infusion of NASA investments, the impact on net revenue must be known. As demonstrated by Boeing's dual launch, the Falcon 9 combined with all Electric Propulsion (EP) can dramatically shift the launch market from foreign to domestic providers.
Solar Power Satellite Development: Advances in Modularity and Mechanical Systems
NASA Technical Reports Server (NTRS)
Belvin, W. Keith; Dorsey, John T.; Watson, Judith J.
2010-01-01
Space solar power satellites require innovative concepts in order to achieve economically and technically feasible designs. The mass and volume constraints of current and planned launch vehicles necessitate highly efficient structural systems be developed. In addition, modularity and in-space deployment will be enabling design attributes. This paper reviews the current challenges of launching and building very large space systems. A building block approach is proposed in order to achieve near-term solar power satellite risk reduction while promoting the necessary long-term technology advances. Promising mechanical systems technologies anticipated in the coming decades including modularity, material systems, structural concepts, and in-space operations are described
Advanced Manned Launch System (AMLS) study
NASA Technical Reports Server (NTRS)
Ehrlich, Carl F., Jr.; Potts, Jack; Brown, Jerry; Schell, Ken; Manley, Mary; Chen, Irving; Earhart, Richard; Urrutia, Chuck; Randolph, Ray; Morris, Jim
1992-01-01
To assure national leadership in space operations and exploration in the future, NASA must be able to provide cost effective and operationally efficient space transportation. Several NASA studies and the joint NASA/DoD Space Transportation Architecture Studies (STAS) have shown the need for a multi-vehicle space transportation system with designs driven by enhanced operations and low costs. NASA is currently studying an advanced manned launch system (AMLS) approach to transport crew and cargo to the Space Station Freedom. Several single and multiple stage systems from air-breathing to all-rocket concepts are being examined in a series of studies potential replacements for the Space Shuttle launch system in the 2000-2010 time frame. Rockwell International Corporation, under contract to the NASA Langley Research Center, has analyzed a two-stage all-rocket concept to determine whether this class of vehicles is appropriate for the AMLS function. The results of the pre-phase A study are discussed.
Vehicle health management for guidance, navigation and control systems
NASA Technical Reports Server (NTRS)
Radke, Kathleen; Frazzini, Ron; Bursch, Paul; Wald, Jerry; Brown, Don
1993-01-01
The objective of the program was to architect a vehicle health management (VHM) system for space systems avionics that assures system readiness for launch vehicles and for space-based dormant vehicles. The platforms which were studied and considered for application of VHM for guidance, navigation and control (GN&C) included the Advanced Manned Launch System (AMLS), the Horizontal Landing-20/Personnel Launch System (HL-20/PLS), the Assured Crew Return Vehicle (ACRV) and the Extended Duration Orbiter (EDO). This set was selected because dormancy and/or availability requirements are driving the designs of these future systems.
Advanced missions safety. Volume 3: Appendices. Part 1: Space shuttle rescue capability
NASA Technical Reports Server (NTRS)
1972-01-01
The space shuttle rescue capability is analyzed as a part of the advanced mission safety study. The subjects discussed are: (1) mission evaluation, (2) shuttle configurations and performance, (3) performance of shuttle-launched tug system, (4) multiple pass grazing reentry from lunar orbit, (5) ground launched ascent and rendezvous time, (6) cost estimates, and (7) parallel-burn space shuttle configuration.
NASA Technology Area 1: Launch Propulsion Systems
NASA Technical Reports Server (NTRS)
McConnaughey, Paul; Femminineo, Mark; Koelfgen, Syri; Lepsch, Roger; Ryan, Richard M.; Taylor, Steven A.
2011-01-01
This slide presentation reviews the technology advancements plans for the NASA Technology Area 1, Launch Propulsion Systems Technology Area (LPSTA). The draft roadmap reviews various propulsion system technologies that will be developed during the next 25 + years. This roadmap will be reviewed by the National Research Council which will issue a final report, that will include findings and recommendations.
NASA Technical Reports Server (NTRS)
Cockrell, Charles E., Jr.
2003-01-01
The Next Generation Launch Technology (NGLT) program, Vehicle Systems Research and Technology (VSR&T) project is pursuing technology advancements in aerothermodynamics, aeropropulsion and flight mechanics to enable development of future reusable launch vehicle (RLV) systems. The current design trade space includes rocket-propelled, hypersonic airbreathing and hybrid systems in two-stage and single-stage configurations. Aerothermodynamics technologies include experimental and computational databases to evaluate stage separation of two-stage vehicles as well as computational and trajectory simulation tools for this problem. Additionally, advancements in high-fidelity computational tools and measurement techniques are being pursued along with the study of flow physics phenomena, such as boundary-layer transition. Aero-propulsion technology development includes scramjet flowpath development and integration, with a current emphasis on hypervelocity (Mach 10 and above) operation, as well as the study of aero-propulsive interactions and the impact on overall vehicle performance. Flight mechanics technology development is focused on advanced guidance, navigation and control (GN&C) algorithms and adaptive flight control systems for both rocket-propelled and airbreathing vehicles.
NASA Marshall Space Flight Center Controls Systems Design and Analysis Branch
NASA Technical Reports Server (NTRS)
Gilligan, Eric
2014-01-01
Marshall Space Flight Center maintains a critical national capability in the analysis of launch vehicle flight dynamics and flight certification of GN&C algorithms. MSFC analysts are domain experts in the areas of flexible-body dynamics and control-structure interaction, thrust vector control, sloshing propellant dynamics, and advanced statistical methods. Marshall's modeling and simulation expertise has supported manned spaceflight for over 50 years. Marshall's unparalleled capability in launch vehicle guidance, navigation, and control technology stems from its rich heritage in developing, integrating, and testing launch vehicle GN&C systems dating to the early Mercury-Redstone and Saturn vehicles. The Marshall team is continuously developing novel methods for design, including advanced techniques for large-scale optimization and analysis.
Operationally Responsive Spacecraft Using Electric Propulsion
2012-09-13
Although this may not pose a problem for communications , it certainly does limit the amount of useful time for optical and radio frequency systems that...Wideband Global SATCOM (WGS), Defense Satellite Communication System (DSCS), and Advanced Extremely High Frequency (AEHF). An alternative method...consequently, they urgently attempted to launch an additional Defense Satellite Communications System III spacecraft. That mission finally launched on 11
Advanced Ground Systems Maintenance Cryogenics Test Lab Control System Upgrade Project
NASA Technical Reports Server (NTRS)
Harp, Janice Leshay
2014-01-01
This project will outfit the Simulated Propellant Loading System (SPLS) at KSC's Cryogenics Test Laboratory with a new programmable logic control system. The control system upgrade enables the Advanced Ground Systems Maintenace Element Integration Team and other users of the SPLS to conduct testing in a controls environment similar to that used at the launch pad.
1999-10-21
This artist’s concept depicts a Magnetic Launch Assist vehicle in orbit. Formerly referred to as the Magnetic Levitation (Maglev) system, the Magnetic Launch Assist system is a launch system developed and tested by engineers at the Marshall Space Flight Center (MSFC) that could levitate and accelerate a launch vehicle along a track at high speeds before it leaves the ground. Using electricity and magnetic fields, a Magnetic Launch Assist system would drive a spacecraft along a horizontal track until it reaches desired speeds. The system is similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway. A full-scale, operational track would be about 1.5-miles long, capable of accelerating a vehicle to 600 mph in 9.5 seconds, and the vehicle would then shift to rocket engines for launch into orbit. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.
1999-01-01
This illustration is an artist’s concept of a Magnetic Launch Assist System, formerly referred as the Magnetic Levitation (Maglev) system, for space launch. Overcoming the grip of Earth’s gravity is a supreme challenge for engineers who design rockets that leave the planet. Engineers at the Marshall Space Flight Center have developed and tested Magnetic Launch Assist System technologies that could levitate and accelerate a launch vehicle along a track at high speeds before it leaves the ground. Using electricity and magnetic fields, a Magnetic Launch Assist system would drive a spacecraft along a horizontal track until it reaches desired speeds. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, landing gear and the wing size, as well as the elimination of propellant weight resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.
NASA Technical Reports Server (NTRS)
Wall, John; VanZwieten, Tannen; Giiligan Eric; Miller, Chris; Hanson, Curtis; Orr, Jeb
2015-01-01
Adaptive Augmenting Control (AAC) has been developed for NASA's Space Launch System (SLS) family of launch vehicles and implemented as a baseline part of its flight control system (FCS). To raise the technical readiness level of the SLS AAC algorithm, the Launch Vehicle Adaptive Control (LVAC) flight test program was conducted in which the SLS FCS prototype software was employed to control the pitch axis of Dryden's specially outfitted F/A-18, the Full Scale Advanced Systems Test Bed (FAST). This presentation focuses on a set of special test cases which demonstrate the successful mitigation of the unstable coupling of an F/A-18 airframe structural mode with the SLS FCS.
Integrated Ground Operations Demonstration Units Testing Plans and Status
NASA Technical Reports Server (NTRS)
Johnson, Robert G.; Notardonato, William U.; Currin, Kelly M.; Orozco-Smith, Evelyn M.
2012-01-01
Cryogenic propellant loading operations with their associated flight and ground systems are some of the most complex, critical activities in launch operations. Consequently, these systems and operations account for a sizeable portion of the life cycle costs of any launch program. NASA operations for handling cryogens in ground support equipment have not changed substantially in 50 years, despite advances in cryogenics, system health management and command and control technologies. This project was developed to mature, integrate and demonstrate advancement in the current state of the art in these areas using two distinct integrated ground operations demonstration units (GODU): GODU Integrated Refrigeration and Storage (IRAS) and GODU Autonomous Control
NASA Technical Reports Server (NTRS)
Jones, Harry
2003-01-01
The ALS project plan goals are reducing cost, improving performance, and achieving flight readiness. ALS selects projects to advance the mission readiness of low cost, high performance technologies. The role of metrics is to help select good projects and report progress. The Equivalent Mass (EM) of a system is the sum of the estimated mass of the hardware, of its required materials and spares, and of the pressurized volume, power supply, and cooling system needed to support the hardware in space. EM is the total payload launch mass needed to provide and support a system. EM is directly proportional to the launch cost.
Next Generation Launch Technology Program Lessons Learned
NASA Technical Reports Server (NTRS)
Cook, Stephen; Tyson, Richard
2005-01-01
In November 2002, NASA revised its Integrated Space Transportation Plan (ISTP) to evolve the Space Launch Initiative (SLI) to serve as a theme for two emerging programs. The first of these, the Orbital Space Plane (OSP), was intended to provide crew-escape and crew-transfer functions for the ISS. The second, the NGLT Program, developed technologies needed for safe, routine space access for scientific exploration, commerce, and national defense. The NGLT Program was comprised of 12 projects, ranging from fundamental high-temperature materials research to full-scale engine system developments (turbine and rocket) to scramjet flight test. The Program included technology advancement activities with a broad range of objectives, ultimate applications/timeframes, and technology maturity levels. An over-arching Systems Engineering and Analysis (SE&A) approach was employed to focus technology advancements according to a common set of requirements. Investments were categorized into three segments of technology maturation: propulsion technologies, launch systems technologies, and SE&A.
NASA's Advanced Space Transportation Hypersonic Program
NASA Technical Reports Server (NTRS)
Hueter, Uwe; McClinton, Charles; Cook, Stephen (Technical Monitor)
2002-01-01
NASA's has established long term goals for access-to-space. NASA's third generation launch systems are to be fully reusable and operational in approximately 25 years. The goals for third generation launch systems are to reduce cost by a factor of 100 and improve safety by a factor of 10,000 over current conditions. The Advanced Space Transportation Program Office (ASTP) at NASA's Marshall Space Flight Center in Huntsville, AL has the agency lead to develop third generation space transportation technologies. The Hypersonics Investment Area, part of ASTP, is developing the third generation launch vehicle technologies in two main areas, propulsion and airframes. The program's major investment is in hypersonic airbreathing propulsion since it offers the greatest potential for meeting the third generation launch vehicles. The program will mature the technologies in three key propulsion areas, scramjets, rocket-based combined cycle and turbine-based combination cycle. Ground and flight propulsion tests are being planned for the propulsion technologies. Airframe technologies will be matured primarily through ground testing. This paper describes NASA's activities in hypersonics. Current programs, accomplishments, future plans and technologies that are being pursued by the Hypersonics Investment Area under the Advanced Space Transportation Program Office will be discussed.
1997-01-24
Space Systems/LORAL employees inspect solar panels for the GOES-K weather satellite in the Astrotech facility at Titusville, Fla., as they begin final testing of the imaging system, communications and power systems of the spacecraft. The GOES-K is the third spacecraft to be launched in the new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration (NOAA). The GOES-K is built for NASA and NOAA by Space Systems/LORAL of Palo Alto, Calif. The launch of the satellite from Launch Pad 36B at Cape Canaveral Air Station on an Atlas 1 rocket (AC-79) is currently planned for Apr. 24 at the opening of a launch window which extends from 1:56 to 3:19 a.m. EDT
1997-01-24
Space Systems/LORAL employees inspect solar panels for the GOES-K weather satellite in the Astrotech facility at Titusville, Fla., as they begin final testing of the imaging system, communications and power systems of the spacecraft. The GOES-K is the third spacecraft to be launched in the new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration (NOAA). The GOES-K is built for NASA and NOAA by Space Systems/LORAL of Palo Alto, Calif. The launch of the satellite from Launch Pad 36B at Cape Canaveral Air Station on an Atlas 1 rocket (AC-79) is currently planned for Apr. 24 at the opening of a launch window which extends from 1:56 to 3:19 a.m. EDT
1997-01-24
Space Systems/LORAL employees inspect solar panels for the GOES-K weather satellite in the Astrotech facility at Titusville, Fla., as they begin final testing of the imaging system, communications and power systems of the spacecraft. The GOES-K is the third spacecraft to be launched in the new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration (NOAA). The GOES-K is built for NASA and NOAA by Space Systems/LORAL of Palo Alto, Calif. The launch of the satellite from Launch Pad 36B at Cape Canaveral Air Station on an Atlas 1 rocket (AC-79) is currently planned for Apr. 24 at the opening of a launch window which extends from 1:56 to 3:19 a.m. EDT
GOES-K solar panel inspection at Astrotech
NASA Technical Reports Server (NTRS)
1997-01-01
Space Systems/LORAL employees inspect solar panels for the GOES-K weather satellite in the Astrotech facility at Titusville, Fla., as they begin final testing of the imaging system, communications and power systems of the spacecraft. The GOES-K is the third spacecraft to be launched in the new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration (NOAA). The GOES-K is built for NASA and NOAA by Space Systems/LORAL of Palo Alto, Calif. The launch of the satellite from Launch Pad 36B at Cape Canaveral Air Station on an Atlas 1 rocket (AC-79) is currently planned for Apr. 24 at the opening of a launch window which extends from 1:56 to 3:19 a.m. EDT.
Aerodynamics of the advanced launch system (ALS) propulsion and avionics (P/A) module
NASA Technical Reports Server (NTRS)
Ferguson, Stan; Savage, Dick
1992-01-01
This paper discusses the design and testing of candidate Advanced Launch System (ALS) Propulsion and Avionics (P/A) Module configurations. The P/A Module is a key element of future launch systems because it is essential to the recovery and reuse of high-value propulsion and avionics hardware. The ALS approach involves landing of first stage (booster) and/or second stage (core) P/A modules near the launch site to minimize logistics and refurbishment cost. The key issue addressed herein is the aerodynamic design of the P/A module, including the stability characteristics and the lift-to-drag (L/D) performance required to achieve the necessary landing guidance accuracy. The reference P/A module configuration was found to be statically stable for the desired flight regime, to provide adequate L/D for targeting, and to have effective modulation of the L/D performance using a body flap. The hypersonic aerodynamic trends for nose corner radius, boattail angle and body flap deflections were consistent with pretest predictions. However, the levels for the L/D and axial force for hypersonic Mach numbers were overpredicted by impact theories.
Artificial intelligent decision support for low-cost launch vehicle integrated mission operations
NASA Astrophysics Data System (ADS)
Szatkowski, Gerard P.; Schultz, Roger
1988-11-01
The feasibility, benefits, and risks associated with Artificial Intelligence (AI) Expert Systems applied to low cost space expendable launch vehicle systems are reviewed. This study is in support of the joint USAF/NASA effort to define the next generation of a heavy-lift Advanced Launch System (ALS) which will provide economical and routine access to space. The significant technical goals of the ALS program include: a 10 fold reduction in cost per pound to orbit, launch processing in under 3 weeks, and higher reliability and safety standards than current expendables. Knowledge-based system techniques are being explored for the purpose of automating decision support processes in onboard and ground systems for pre-launch checkout and in-flight operations. Issues such as: satisfying real-time requirements, providing safety validation, hardware and Data Base Management System (DBMS) interfacing, system synergistic effects, human interfaces, and ease of maintainability, have an effect on the viability of expert systems as a useful tool.
Artificial intelligent decision support for low-cost launch vehicle integrated mission operations
NASA Technical Reports Server (NTRS)
Szatkowski, Gerard P.; Schultz, Roger
1988-01-01
The feasibility, benefits, and risks associated with Artificial Intelligence (AI) Expert Systems applied to low cost space expendable launch vehicle systems are reviewed. This study is in support of the joint USAF/NASA effort to define the next generation of a heavy-lift Advanced Launch System (ALS) which will provide economical and routine access to space. The significant technical goals of the ALS program include: a 10 fold reduction in cost per pound to orbit, launch processing in under 3 weeks, and higher reliability and safety standards than current expendables. Knowledge-based system techniques are being explored for the purpose of automating decision support processes in onboard and ground systems for pre-launch checkout and in-flight operations. Issues such as: satisfying real-time requirements, providing safety validation, hardware and Data Base Management System (DBMS) interfacing, system synergistic effects, human interfaces, and ease of maintainability, have an effect on the viability of expert systems as a useful tool.
1999-01-01
This artist’s concept depicts a Magnetic Launch Assist vehicle clearing the track and shifting to rocket engines for launch into orbit. The system, formerly referred as the Magnetic Levitation (MagLev) system, is a launch system developed and tested by Engineers at the Marshall Space Flight Center (MSFC) that could levitate and accelerate a launch vehicle along a track at high speeds before it leaves the ground. Using an off-board electric energy source and magnetic fields, a Magnetic Launch Assist system would drive a spacecraft along a horizontal track until it reaches desired speeds. The system is similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway. A full-scale, operational track would be about 1.5-miles long, capable of accelerating a vehicle to 600 mph in 9.5 seconds, and the vehicle would then shift to rocket engines for launch into orbit. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.
NASA Astrophysics Data System (ADS)
Voss, H. D.; Dailey, J.; Snyder, S. J.
2011-09-01
Students creating and flying experiments into near-space using a low-cost balloon High-Altitude Research Platform (HARP) greatly advance understanding in introductory astronomy and advanced classes across several disciplines. Remote sensing above 98% of the atmosphere using cameras, image intensifiers, IR, and UV sensors provides access to the heavens and large regions of the earth below. In situ and limb atmospheric gas measurements, near-space stratosphere measurements, and cosmic rays engage students in areas from planetary atmospheres to supernova acceleration. This new capability is possible by exposing students to recent advances in MEMS technology, nanotechnology, wireless telecommunication systems, GPS, DSPs and other microchip miniaturizations to build less than 4 kg payloads. The HARP program provides an engaging laboratory, gives challenging science, technology, engineering, and mathematics (STEM) field experiences, reaches students from diverse backgrounds, encourages collaboration among science faculty, and provides quantitative assessment of the learning outcomes. Over a seven-year period, Taylor University, an undergraduate liberal arts school, has successfully launched over 230 HARP systems to altitudes over 30 km (100% retrieval success with rapid recovery) with flight times between two and six hours. The HARP payloads included two GPS tracking systems, cameras and monitors, a 110 kbit down link, an uplink command capability for educational experiments (K-12 and undergraduate). Launches were conducted during the day and night, with multiple balloons, with up to 10 payloads for experiments, and under varying weather and upper atmospheric conditions. The many launches in a short period of time allowed the payload bus design to evolve toward increased performance, reliability, standardization, simplicity, and modularity for low-cost launch services. Through NSF and NASA grants, the program has expanded, leading to representatives from more than 52 universities being trained at workshops to implement high-altitude balloon launches in the classroom. A spin-off company, StratoStar Systems LLC, now sells the turn-key high-altitude balloon system, and another spin-off company, NearSpace Launch, now offers a low cost ride-for-hire into near-space.
NASA Technical Reports Server (NTRS)
Hogenson, P. A.; Lu, Tina
1995-01-01
The objective is to develop the advanced thermal seals to a technology readiness level (TRL) of 6 to support the rapid turnaround time and low maintenance requirements of the X-33 and the future reusable launch vehicle (RLV). This program is divided into three subtasks: (1) orbiter thermal seals operation history review; (2) material, process, and design improvement; and (3) fabrication and evaluation of the advanced thermal seals.
A feedback control for the advanced launch system
NASA Technical Reports Server (NTRS)
Seywald, Hans; Cliff, Eugene M.
1991-01-01
A robust feedback algorithm is presented for a near-minimum-fuel ascent of a two-stage launch vehicle operating in the equatorial plane. The development of the algorithm is based on the ideas of neighboring optimal control and can be derived into three phases. In phase 1, the formalism of optimal control is employed to calculate fuel-optimal ascent trajectories for a simple point-mass model. In phase 2, these trajectories are used to numerically calculate gain functions of time for the control(s), the total flight time, and possibly, for other variables of interest. In phase 3, these gains are used to determine feedback expressions for the controls associated with a more realistic model of a launch vehicle. With the Advanced Launch System in mind, all calculations are performed on a two-stage vehicle with fixed thrust history, but this restriction is by no means important for the approach taken. Performance and robustness of the algorithm is found to be excellent.
Estimating the Life Cycle Cost of Space Systems
NASA Technical Reports Server (NTRS)
Jones, Harry W.
2015-01-01
A space system's Life Cycle Cost (LCC) includes design and development, launch and emplacement, and operations and maintenance. Each of these cost factors is usually estimated separately. NASA uses three different parametric models for the design and development cost of crewed space systems; the commercial PRICE-H space hardware cost model, the NASA-Air Force Cost Model (NAFCOM), and the Advanced Missions Cost Model (AMCM). System mass is an important parameter in all three models. System mass also determines the launch and emplacement cost, which directly depends on the cost per kilogram to launch mass to Low Earth Orbit (LEO). The launch and emplacement cost is the cost to launch to LEO the system itself and also the rockets, propellant, and lander needed to emplace it. The ratio of the total launch mass to payload mass depends on the mission scenario and destination. The operations and maintenance costs include any material and spares provided, the ground control crew, and sustaining engineering. The Mission Operations Cost Model (MOCM) estimates these costs as a percentage of the system development cost per year.
NASA Space Launch System (SLS) Progress Report
NASA Technical Reports Server (NTRS)
Williams, Tom
2012-01-01
The briefing objectives are: (1) Explain the SLS current baseline architecture and the SLS block-upgrade approach. (2) Summarize the SLS evolutionary path in relation to the Advanced Booster and Advanced Development NASA Research Announcements.
Advanced Electric Propulsion for Space Solar Power Satellites
NASA Technical Reports Server (NTRS)
Oleson, Steve
1999-01-01
The sun tower concept of collecting solar energy in space and beaming it down for commercial use will require very affordable in-space as well as earth-to-orbit transportation. Advanced electric propulsion using a 200 kW power and propulsion system added to the sun tower nodes can provide a factor of two reduction in the required number of launch vehicles when compared to in-space cryogenic chemical systems. In addition, the total time required to launch and deliver the complete sun tower system is of the same order of magnitude using high power electric propulsion or cryogenic chemical propulsion: around one year. Advanced electric propulsion can also be used to minimize the stationkeeping propulsion system mass for this unique space platform. 50 to 100 kW class Hall, ion, magnetoplasmadynamic, and pulsed inductive thrusters are compared. High power Hall thruster technology provides the best mix of launches saved and shortest ground to Geosynchronous Earth Orbital Environment (GEO) delivery time of all the systems, including chemical. More detailed studies comparing launch vehicle costs, transfer operations costs, and propulsion system costs and complexities must be made to down-select a technology. The concept of adding electric propulsion to the sun tower nodes was compared to a concept using re-useable electric propulsion tugs for Low Earth Orbital Environment (LEO) to GEO transfer. While the tug concept would reduce the total number of required propulsion systems, more launchers and notably longer LEO to GEO and complete sun tower ground to GEO times would be required. The tugs would also need more complex, longer life propulsion systems and the ability to dock with sun tower nodes.
Advanced Space Transportation Program (ASTP)
2002-10-01
NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the Space Launch Initiative (SLI), NASA's priority developmental program focused on empowering America's leadership in space. SLI includes commercial, higher education, and defense partnerships and contracts to offer widespread participation in both the risk and success of developing our nation's next-generation reusable launch vehicle. This photo depicts an artist's concept of a future second-generation launch vehicle. For the SLI, architecture definition includes all components of the next-generation reusable launch system: Earth-to-orbit vehicles (the Space Shuttle is the first generation earth-to-orbit vehicle), crew transfer vehicles, transfer stages, ground processing systems, flight operations systems, and development of business case strategies. Three contractor teams have each been funded to develop potential second- generation reusable launch system architectures: The Boeing Company of Seal Beach, California; Lockheed Martin Corporation of Denver, Colorado along with a team including Northrop Grumman of El Segundo, California; and Orbital Sciences Corporation of Dulles, Virginia.
Advanced Space Transportation Program (ASTP)
2002-10-01
NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the Space Launch Initiative (SLI), NASA's priority developmental program focused on empowering America's leadership in space. SLI includes commercial, higher education and defense partnerships and contracts to offer widespread participation in both the risk and success of developing our nation's next-generation reusable launch vehicle. This photo depicts an artist's concept of a future second-generation launch vehicle during separation of stages. For SLI, architecture definition includes all components of the next-generation reusable launch system: Earth-to-orbit vehicles (the Space Shuttle is the first-generation earth-to-orbit vehicle), crew transfer vehicles, transfer stages, ground processing systems, flight operations systems, and development of business case strategies. Three contractor teams have each been funded to develop potential second generation reusable launch system architectures: The Boeing Company of Seal Beach, California; Lockheed Martin Corporation of Denver, Colorado; a team including Northrop Grumman of El Segundo, California; and Orbital Sciences Corporation of Dulles, Virginia.
NASA Technical Reports Server (NTRS)
McCurry, J.
1995-01-01
The purpose of the TA-2 contract was to provide advanced launch vehicle concept definition and analysis to assist NASA in the identification of future launch vehicle requirements. Contracted analysis activities included vehicle sizing and performance analysis, subsystem concept definition, propulsion subsystem definition (foreign and domestic), ground operations and facilities analysis, and life cycle cost estimation. This document is part of the final report for the TA-2 contract. The final report consists of three volumes: Volume 1 is the Executive Summary, Volume 2 is Technical Results, and Volume 3 is Program Cost Estimates. The document-at-hand, Volume 1, provides a summary description of the technical activities that were performed over the entire contract duration, covering three distinct launch vehicle definition activities: heavy-lift (300,000 pounds injected mass to low Earth orbit) launch vehicles for the First Lunar Outpost (FLO), medium-lift (50,000-80,000 pounds injected mass to low Earth orbit) launch vehicles, and single-stage-to-orbit (SSTO) launch vehicles (25,000 pounds injected mass to a Space Station orbit).
Reusable aerospace system with horizontal take-off
NASA Astrophysics Data System (ADS)
Lozino-Lozinskii, G. E.; Shkadov, L. M.; Plokhikh, V. P.
1990-10-01
An aerospace system (ASS) concept aiming at cost reductions for launching facilities, reduction of ground preparations for start and launch phases, flexibility of use, international inspection of space systems, and emergency rescue operations is presented. The concept suggests the utilization of an AN-225 subsonic carrier aircraft capable of carrying up to 250 ton of the external load, external fuel tank, and orbital spacecraft. It includes a horizontal take-off, full reusable or single-use system, orbital aircraft with hypersonic characteristics, the use of an air-breathing jet engine on the first stage of launch, and the utilization of advanced structural materials. Among possible applications for ASS are satellite launches into low supporting orbits, suborbital cargo and passenger flights, scientific and economic missions, and the technical servicing of orbital vehicles and stations.
Systems integration and demonstration of advanced reusable structure for ALS
NASA Technical Reports Server (NTRS)
Gibbins, Martin N.
1991-01-01
The objective was to investigate the potential of advanced material to achieve life cycle cost (LCC) benefits for reusable structure on the advanced launch system. Three structural elements were investigated - all components of an Advanced Launch System reusable propulsion/avionics module. Leading aeroshell configurations included sandwich structure using titanium, graphite/polyimide (Gr/PI), or high-temperature aluminum (HTA) face sheets. Thrust structure truss concepts used titanium, graphite/epoxy, or silicon carbide/aluminum struts. Leading aft bulkhead concepts employed graphite epoxy and aluminum. The technical effort focused on the aeroshell because the greatest benefits were expected there. Thermal analyses show the structural temperature profiles during operation. Finite element analyses show stresses during splash-down. Weight statements and manufacturing cost estimates were prepared for calculation of LCC for each design. The Gr/PI aeroshell showed the lowest potential LCC, but the HTA aeroshell was judged to be lower risk. A technology development plan was prepared to validate the applicable structural technology.
Advanced Launch System Multi-Path Redundant Avionics Architecture Analysis and Characterization
NASA Technical Reports Server (NTRS)
Baker, Robert L.
1993-01-01
The objective of the Multi-Path Redundant Avionics Suite (MPRAS) program is the development of a set of avionic architectural modules which will be applicable to the family of launch vehicles required to support the Advanced Launch System (ALS). To enable ALS cost/performance requirements to be met, the MPRAS must support autonomy, maintenance, and testability capabilities which exceed those present in conventional launch vehicles. The multi-path redundant or fault tolerance characteristics of the MPRAS are necessary to offset a reduction in avionics reliability due to the increased complexity needed to support these new cost reduction and performance capabilities and to meet avionics reliability requirements which will provide cost-effective reductions in overall ALS recurring costs. A complex, real-time distributed computing system is needed to meet the ALS avionics system requirements. General Dynamics, Boeing Aerospace, and C.S. Draper Laboratory have proposed system architectures as candidates for the ALS MPRAS. The purpose of this document is to report the results of independent performance and reliability characterization and assessment analyses of each proposed candidate architecture and qualitative assessments of testability, maintainability, and fault tolerance mechanisms. These independent analyses were conducted as part of the MPRAS Part 2 program and were carried under NASA Langley Research Contract NAS1-17964, Task Assignment 28.
Robust Neighboring Optimal Guidance for the Advanced Launch System
NASA Technical Reports Server (NTRS)
Hull, David G.
1993-01-01
In recent years, optimization has become an engineering tool through the availability of numerous successful nonlinear programming codes. Optimal control problems are converted into parameter optimization (nonlinear programming) problems by assuming the control to be piecewise linear, making the unknowns the nodes or junction points of the linear control segments. Once the optimal piecewise linear control (suboptimal) control is known, a guidance law for operating near the suboptimal path is the neighboring optimal piecewise linear control (neighboring suboptimal control). Research conducted under this grant has been directed toward the investigation of neighboring suboptimal control as a guidance scheme for an advanced launch system.
NASA Technical Reports Server (NTRS)
Carroll, Carol W.; Fleming, Mary; Hogenson, Pete; Green, Michael J.; Rasky, Daniel J. (Technical Monitor)
1995-01-01
NASA Ames Research Center and Rockwell International are partners in a Cooperative Agreement (CA) for the development of Thermal Protection Systems (TPS) for the Reusable Launch Vehicle (RLV) Technology Program. This Cooperative Agreement is a 30 month effort focused on transferring NASA innovations to Rockwell and working as partners to advance the state-of-the-art in several TPS areas. The use of a Cooperative Agreement is a new way of doing business for NASA and Industry which eliminates the traditional customer/contractor relationship and replaces it with a NASA/Industry partnership.
The Perfect Mate for Safe Fueling
NASA Technical Reports Server (NTRS)
2004-01-01
Referred to as the "lifeline for any space launch vehicle" by NASA Space Launch Initiative Program Manager Warren Wiley, an umbilical is a large device that transports power, communications, instrument readings, and fluids such as propellants, pressurization gases, and coolants from one source to another. Numerous launch vehicles, planetary systems, and rovers require umbilical "mating". This process is a driving factor for dependable and affordable space access. With future-generation space vehicles in mind, NASA recently designed a smart, automated method for quickly and reliably mating and demating electrical and fluid umbilical connectors. The new umbilical concept is expected to replace NASA s traditional umbilical systems that release at vehicle lift-off (T-0). The idea is to increase safety by automatically performing hazardous tasks, thus reducing potential failure modes and the time and labor hours necessary to prepare for launch. The new system will also be used as a test bed for quick disconnect development and for advance control and leak detection. It incorporates concepts such as a secondary mate plate, robotic machine vision, and compliant motor motion control, and is destined to advance usage of automated umbilicals in a variety of aerospace and commercial applications.
NASA Launches Rocket Into Active Auroras
2017-12-08
A test rocket is launched the night of Feb. 17 from the Poker Flat Research Range in Alaska. Test rockets are launched as part of the countdown to test out the radar tracking systems. NASA is launching five sounding rockets from the Poker Range into active auroras to explore the Earth's magnetic environment and its impact on Earth’s upper atmosphere and ionosphere. The launch window for the four remaining rockets runs through March 3. Credit: NASA/Terry Zaperach NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Research on advanced transportation systems
NASA Astrophysics Data System (ADS)
Nagai, Hirokazu; Hashimoto, Ryouhei; Nosaka, Masataka; Koyari, Yukio; Yamada, Yoshio; Noda, Keiichirou; Shinohara, Suetsugu; Itou, Tetsuichi; Etou, Takao; Kaneko, Yutaka
1992-08-01
An overview of the researches on advanced space transportation systems is presented. Conceptual study is conducted on fly back boosters with expendable upper stage rocket systems assuming a launch capacity of 30 tons and returning to the launch site by the boosters, and prospect of their feasibility is obtained. Reviews are conducted on subjects as follows: (1) trial production of 10 tons sub scale engines for the purpose of acquiring hardware data and picking up technical problems for full scale 100 tons thrust engines using hydrocarbon fuels; (2) development techniques for advanced liquid propulsion systems from the aspects of development schedule, cost; (3) review of conventional technologies, and common use of component; (4) oxidant switching propulsion systems focusing on feasibility of Liquefied Air Cycle Engine (LACE) and Compressed Air Cycle Engine (CACE); (5) present status of slosh hydrogen manufacturing, storage, and handling; (6) construction of small high speed dynamometer for promoting research on mini pump development; (7) hybrid solid boosters under research all over the world as low-cost and clean propulsion systems; and (8) high performance solid propellant for upper stage and lower stage propulsion systems.
NASA Astrophysics Data System (ADS)
Launch vehicle propulsion system reliability considerations during the design and verification processes are discussed. The tools available for predicting and minimizing anomalies or failure modes are described and objectives for validating advanced launch system propulsion reliability are listed. Methods for ensuring vehicle/propulsion system interface reliability are examined and improvements in the propulsion system development process are suggested to improve reliability in launch operations. Also, possible approaches to streamline the specification and procurement process are given. It is suggested that government and industry should define reliability program requirements and manage production and operations activities in a manner that provides control over reliability drivers. Also, it is recommended that sufficient funds should be invested in design, development, test, and evaluation processes to ensure that reliability is not inappropriately subordinated to other management considerations.
Cryogenics Testbed Laboratory Flange Baseline Configuration
NASA Technical Reports Server (NTRS)
Acuna, Marie Lei Ysabel D.
2013-01-01
As an intern at Kennedy Space Center (KSC), I was involved in research for the Fluids and Propulsion Division of the NASA Engineering (NE) Directorate. I was immersed in the Integrated Ground Operations Demonstration Units (IGODU) project for the majority of my time at KSC, primarily with the Ground Operations Demonstration Unit Liquid Oxygen (GODU L02) branch of IGODU. This project was established to develop advancements in cryogenic systems as a part of KSC's Advanced Exploration Systems (AES) program. The vision of AES is to develop new approaches for human exploration, and operations in and beyond low Earth orbit. Advanced cryogenic systems are crucial to minimize the consumable losses of cryogenic propellants, develop higher performance launch vehicles, and decrease operations cost for future launch programs. During my internship, I conducted a flange torque tracking study that established a baseline configuration for the flanges in the Simulated Propellant Loading System (SPLS) at the KSC Cryogenics Test Laboratory (CTL) - the testing environment for GODU L02.
Electromechanical actuation for thrust vector control applications
NASA Technical Reports Server (NTRS)
Roth, Mary Ellen
1990-01-01
The advanced launch system (ALS), is a launch vehicle that is designed to be cost-effective, highly reliable, and operationally efficient with a goal of reducing the cost per pound to orbit. An electromechanical actuation (EMA) system is being developed as an attractive alternative to the hydraulic systems. The controller will integrate 20 kHz resonant link power management and distribution (PMAD) technology and pulse population modulation (PPM) techniques to implement field-oriented vector control (FOVC) of a new advanced induction motor. The driver and the FOVC will be microprocessor controlled. For increased system reliability, a built-in test (BITE) capability will be included. This involves introducing testability into the design of a system such that testing is calibrated and exercised during the design, manufacturing, maintenance, and prelaunch activities. An actuator will be integrated with the motor controller for performance testing of the EMA thrust vector control (TVC) system. The EMA system and work proposed for the future are discussed.
The New Millennium Program: Validating Advanced Technologies for Future Space Missions
NASA Technical Reports Server (NTRS)
Minning, Charles P.; Luers, Philip
1999-01-01
This presentation reviews the activities of the New Millennium Program (NMP) in validating advanced technologies for space missions. The focus of these breakthrough technologies are to enable new capabilities to fulfill the science needs, while reducing costs of future missions. There is a broad spectrum of NMP partners, including government agencies, universities and private industry. The DS-1 was launched on October 24, 1998. Amongst the technologies validated by the NMP on DS-1 are: a Low Power Electronics Experiment, the Power Activation and Switching Module, Multi-Functional Structures. The first two of these technologies are operational and the data analysis is still ongoing. The third program is also operational, and its performance parameters have been verified. The second program, DS-2, was launched January 3 1999. It is expected to impact near Mars southern polar region on 3 December 1999. The technologies used on this mission awaiting validation are an advanced microcontroller, a power microelectronics unit, an evolved water experiment and soil thermal conductivity experiment, Lithium-Thionyl Chloride batteries, the flexible cable interconnect, aeroshell/entry system, and a compact telecom system. EO-1 on schedule for launch in December 1999 carries several technologies to be validated. Amongst these are: a Carbon-Carbon Radiator, an X-band Phased Array Antenna, a pulsed plasma thruster, a wideband advanced recorder processor, an atmospheric corrector, lightweight flexible solar arrays, Advanced Land Imager and the Hyperion instrument
Advanced Aero-Propulsive Mid-Lift-to-Drag Ratio Entry Vehicle for Future Exploration Missions
NASA Technical Reports Server (NTRS)
Campbell, C. H.; Stosaric, R. R; Cerimele, C. J.; Wong, K. A.; Valle, G. D.; Garcia, J. A.; Melton, J. E.; Munk, M. M.; Blades, E.; Kuruvila, G.;
2012-01-01
NASA is currently looking well into the future toward realizing Exploration mission possibilities to destinations including the Earth-Moon Lagrange points, Near-Earth Asteroids (NEAs) and the Moon. These are stepping stones to our ultimate destination Mars. New ideas will be required to conquer the significant challenges that await us, some just conceptions and others beginning to be realized. Bringing these ideas to fruition and enabling further expansion into space will require varying degrees of change, from engineering and integration approaches used in spacecraft design and operations, to high-level architectural capabilities bounded only by the limits of our ideas. The most profound change will be realized by paradigm change, thus enabling our ultimate goals to be achieved. Inherent to achieving these goals, higher entry, descent, and landing (EDL) performance has been identified as a high priority. Increased EDL performance will be enabled by highly-capable thermal protection systems (TPS), the ability to deliver larger and heavier payloads, increased surface access, and tighter landing footprints to accommodate multiple asset, single-site staging. In addition, realizing reduced cost access to space will demand more efficient approaches and reusable launch vehicle systems. Current operational spacecraft and launch vehicles do not incorporate the technologies required for these far-reaching missions and goals, nor what is needed to achieve the desired launch vehicle cost savings. To facilitate these missions and provide for safe and more reliable capabilities, NASA and its partners will need to make ideas reality by gaining knowledge through the design, development, manufacturing, implementation and flight testing of robotic and human spacecraft. To accomplish these goals, an approach is recommended for integrated development and implementation of three paradigm-shifting capabilities into an advanced entry vehicle system with additional application to launch vehicle stage return, thus making ideas reality. These paradigm shifts include the technology maturation of advanced flexible thermal protection materials onto mid lift-to-drag ratio entry vehicles, the development of integrated supersonic aero-propulsive maneuvering, and the implementation of advanced asymmetric launch shrouds. These paradigms have significant overlap with launch vehicle stage return already being developed by the Air Force and several commercial space efforts. Completing the realization of these combined paradigms holds the key to a high-performing entry vehicle system capability that fully leverages multiple technology benefits to accomplish NASA's Exploration missions to atmospheric planetary destinations.
Equivalent Mass versus Life Cycle Cost for Life Support Technology Selection
NASA Technical Reports Server (NTRS)
Jones, Harry
2003-01-01
The decision to develop a particular life support technology or to select it for flight usually depends on the cost to develop and fly it. Other criteria such as performance, safety, reliability, crew time, and technical and schedule risk are considered, but cost is always an important factor. Because launch cost would account for much of the cost of a future planetary mission, and because launch cost is directly proportional to the mass launched, equivalent mass has been used instead of cost to select advanced life support technology. The equivalent mass of a life support system includes the estimated mass of the hardware and of the spacecraft pressurized volume, power supply, and cooling system that the hardware requires. The equivalent mass of a system is defined as the total payload launch mass needed to provide and support the system. An extension of equivalent mass, Equivalent System Mass (ESM), has been established for use in the Advanced Life Support project. ESM adds a mass-equivalent of crew time and possibly other cost factors to equivalent mass. Traditional equivalent mass is strictly based on flown mass and reflects only the launch cost. ESM includes other important cost factors, but it complicates the simple flown mass definition of equivalent mass by adding a non-physical mass penalty for crew time that may exceed the actual flown mass. Equivalent mass is used only in life support analysis. Life Cycle Cost (LCC) is much more commonly used. LCC includes DDT&E, launch, and operations costs. For Earth orbit rather than planetary missions, the launch cost is less than the cost of Design, Development, Test, and Evaluation (DDTBE). LCC is a more inclusive cost estimator than equivalent mass. The relative costs of development, launch, and operations vary depending on the mission destination and duration. Since DDTBE or operations may cost more than launch, LCC gives a more accurate relative cost ranking than equivalent mass. To select the lowest cost technology for a particular application we should use LCC rather than equivalent mass.
Engine technology challenges for a 21st Century High-Speed Civil Transport
NASA Technical Reports Server (NTRS)
Shaw, Robert J.; Gilkey, Samuel; Hines, Richard
1993-01-01
Ongoing NASA-funded studies by Boeing, McDonnell-Douglas, General Electric, and Pratt & Whitney indicate that an opportunity exists for a 21st Century High-Speed Civil Transport (HSCT) to become a major part of the international air transportation system. However, before industry will consider an HSCT product launch and an investment estimated to be over $15 billion for design and certification, major technology advances must be made. An overview of the propulsion-specific technology advances that must be in hand before an HSCT product launch could be considered is presented.
From Earth to Orbit: An assessment of transportation options
NASA Technical Reports Server (NTRS)
Gavin, Joseph G., Jr.; Blond, Edmund; Brill, Yvonne C.; Budiansky, Bernard; Cooper, Robert S.; Demisch, Wolfgang H.; Hawk, Clark W.; Kerrebrock, Jack L.; Lichtenberg, Byron K.; Mager, Artur
1992-01-01
The report assesses the requirements, benefits, technological feasibility, and roles of Earth-to-Orbit transportation systems and options that could be developed in support of future national space programs. Transportation requirements, including those for Mission-to-Planet Earth, Space Station Freedom assembly and operation, human exploration of space, space science missions, and other major civil space missions are examined. These requirements are compared with existing, planned, and potential launch capabilities, including expendable launch vehicles (ELV's), the Space Shuttle, the National Launch System (NLS), and new launch options. In addition, the report examines propulsion systems in the context of various launch vehicles. These include the Advanced Solid Rocket Motor (ASRM), the Redesigned Solid Rocket Motor (RSRM), the Solid Rocket Motor Upgrade (SRMU), the Space Shuttle Main Engine (SSME), the Space Transportation Main Engine (STME), existing expendable launch vehicle engines, and liquid-oxygen/hydrocarbon engines. Consideration is given to systems that have been proposed to accomplish the national interests in relatively cost effective ways, with the recognition that safety and reliability contribute to cost-effectiveness. Related resources, including technology, propulsion test facilities, and manufacturing capabilities are also discussed.
Advanced Space Transportation Program (ASTP)
2002-10-01
NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the Space Launch Initiative (SLI), NASA's priority developmental program focused on empowering America's leadership in space. SLI includes commercial, higher education, and Defense partnerships and contracts to offer widespread participation in both the risk and success of developing our nation's next-generation reusable launch vehicle. This photo depicts an artist's concept of a future second-generation launch vehicle enroute to the International Space Station. For the SLI, architecture definition includes all components of the next-generation reusable launch system: Earth-to-orbit vehicles (the Space Shuttle is the first generation earth-to-orbit vehicle), crew transfer vehicles, transfer stages, ground processing systems, flight operations systems, and development of business case strategies. Three contractor teams have each been funded to develop potential second-generation reusable launch system architectures: The Boeing Company of Seal Beach, California; Lockheed Martin Corporation of Denver, Colorado along with a team including Northrop Grumman of El Segundo, California; and Orbital Sciences Corporation of Dulles, Virginia.
NASA Technical Reports Server (NTRS)
Huebner, Lawrence D.; Saiyed, Naseem H.; Swith, Marion Shayne
2005-01-01
When United States President George W. Bush announced the Vision for Space Exploration in January 2004, twelve propulsion and launch system projects were being pursued in the Next Generation Launch Technology (NGLT) Program. These projects underwent a review for near-term relevance to the Vision. Subsequently, five projects were chosen as advanced development projects by NASA s Exploration Systems Mission Directorate (ESMD). These five projects were Auxiliary Propulsion, Integrated Powerhead Demonstrator, Propulsion Technology and Integration, Vehicle Subsystems, and Constellation University Institutes. Recently, an NGLT effort in Vehicle Structures was identified as a gap technology that was executed via the Advanced Development Projects Office within ESMD. For all of these advanced development projects, there is an emphasis on producing specific, near-term technical deliverables related to space transportation that constitute a subset of the promised NGLT capabilities. The purpose of this paper is to provide a brief description of the relevancy review process and provide a status of the aforementioned projects. For each project, the background, objectives, significant technical accomplishments, and future plans will be discussed. In contrast to many of the current ESMD activities, these areas are providing hardware and testing to further develop relevant technologies in support of the Vision for Space Exploration.
Advanced Composite Structures At NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Eldred, Lloyd B.
2015-01-01
Dr. Eldred's presentation will discuss several NASA efforts to improve and expand the use of composite structures within aerospace vehicles. Topics will include an overview of NASA's Advanced Composites Project (ACP), Space Launch System (SLS) applications, and Langley's ISAAC robotic composites research tool.
Small, Low Cost, Launch Capability Development
NASA Technical Reports Server (NTRS)
Brown, Thomas
2014-01-01
A recent explosion in nano-sat, small-sat, and university class payloads has been driven by low cost electronics and sensors, wide component availability, as well as low cost, miniature computational capability and open source code. Increasing numbers of these very small spacecraft are being launched as secondary payloads, dramatically decreasing costs, and allowing greater access to operations and experimentation using actual space flight systems. While manifesting as a secondary payload provides inexpensive rides to orbit, these arrangements also have certain limitations. Small, secondary payloads are typically included with very limited payload accommodations, supported on a non interference basis (to the prime payload), and are delivered to orbital conditions driven by the primary launch customer. Integration of propulsion systems or other hazardous capabilities will further complicate secondary launch arrangements, and accommodation requirements. The National Aeronautics and Space Administration's Marshall Space Flight Center has begun work on the development of small, low cost launch system concepts that could provide dedicated, affordable launch alternatives to small, high risk university type payloads and spacecraft. These efforts include development of small propulsion systems and highly optimized structural efficiency, utilizing modern advanced manufacturing techniques. This paper outlines the plans and accomplishments of these efforts and investigates opportunities for truly revolutionary reductions in launch and operations costs. Both evolution of existing sounding rocket systems to orbital delivery, and the development of clean sheet, optimized small launch systems are addressed.
Evaluation of undeveloped rocket engine cycle applications to advanced transportation
NASA Technical Reports Server (NTRS)
1990-01-01
Undeveloped pump-fed, liquid propellant rocket engine cycles were assessed and evaluated for application to Next Manned Transportation System (NMTS) vehicles, which would include the evolving Space Transportation System (STS Evolution), the Personnel Launch System (PLS), and the Advanced Manned Launch System (AMLS). Undeveloped engine cycles selected for further analysis had potential for increased reliability, more maintainability, reduced cost, and improved (or possibly level) performance when compared to the existing SSME and proposed STME engines. The split expander (SX) cycle, the full flow staged combustion (FFSC) cycle, and a hybrid version of the FFSC, which has a LOX expander drive for the LOX pump, were selected for definition and analysis. Technology requirements and issues were identified and analyses of vehicle systems weight deltas using the SX and FFSC cycles in AMLS vehicles were performed. A strawman schedule and cost estimate for FFSC subsystem technology developments and integrated engine system demonstration was also provided.
The Space Launch System and Missions to the Outer Solar System
NASA Astrophysics Data System (ADS)
Klaus, Kurt K.; Post, Kevin
2015-11-01
Introduction: America’s heavy lift launch vehicle, the Space Launch System, enables a variety of planetary science missions. The SLS can be used for most, if not all, of the National Research Council’s Planetary Science Decadal Survey missions to the outer planets. The SLS performance enables larger payloads and faster travel times with reduced operational complexity.Europa Clipper: Our analysis shows that a launch on the SLS would shorten the Clipper mission travel time by more than four years over earlier mission concept studies.Jupiter Trojan Tour and Rendezvous: Our mission concept replaces Advanced Stirling Radioisotope Generators (ASRGs) in the original design with solar arrays. The SLS capability offers many more target opportunities.Comet Surface Sample Return: Although in our mission concept, the SLS launches later than the NRC mission study (November 2022 instead of the original launch date of January 2021), it reduces the total mission time, including sample return, by two years.Saturn Apmospheric Entry Probe: Though Saturn arrivial time remains the same in our concept as the arrival date in the NRC study (2034), launching on the SLS shortens the mission travel time by three years with a direct ballistic trajectory.Uranus Orbiter with Probes: The SLS shortens travel time for an Uranus mission by four years with a Jupiter swing-by trajectory. It removes the need for a solar electric propulsion (SEP) stage used in the NRC mission concept study.Other SLS Science Mission Candidates: Two other mission concepts we are investigating that may be of interest to this community are the Advanced Technology Large Aperature Space Telescope (ATLAST) and the Interstellar Explorer also referred to as the Interstellar Probe.Summary: The first launch of the SLS is scheduled for 2018 followed by the first human launch in 2021. The SLS in its evolving configurations will enable a broad range of exploration missions which will serve to recapture the enthusiasm and commitment that permeated the planetary exploration community during the early years of robotic exploration.
National Launch System: Structures and materials
NASA Technical Reports Server (NTRS)
Bunting, Jack O.
1993-01-01
The National Launch System provides an opportunity to realize the potential of Al-Li. Advanced structures can reduce weights by 5-40 percent as well as relax propulsion system performance specifications and reduce requirements for labor and materials. The effect on costs will be substantial. Advanced assembly and process control technologies also offer the potential for greatly reduced labor during the manufacturing and inspection processes. Current practices are very labor-intensive and, as a result, labor costs far outweigh material costs for operational space transportation systems. The technological readiness of new structural materials depends on their commercial availability, producibility and materials properties. Martin Marietta is vigorously pursuing the development of its Weldalite 049 Al-Li alloys in each of these areas. Martin Marietta is also preparing to test an automated work cell concept that it has developed using discrete event simulation.
Technology Challenges and Opportunities for Very Large In-Space Structural Systems
NASA Technical Reports Server (NTRS)
Belvin, W. Keith; Dorsey, John T.; Watson, Judith J.
2009-01-01
Space solar power satellites and other large space systems will require creative and innovative concepts in order to achieve economically viable designs. The mass and volume constraints of current and planned launch vehicles necessitate highly efficient structural systems be developed. In addition, modularity and in-space deployment/construction will be enabling design attributes. While current space systems allocate nearly 20 percent of the mass to the primary structure, the very large space systems of the future must overcome subsystem mass allocations by achieving a level of functional integration not yet realized. A proposed building block approach with two phases is presented to achieve near-term solar power satellite risk reduction with accompanying long-term technology advances. This paper reviews the current challenges of launching and building very large space systems from a structures and materials perspective utilizing recent experience. Promising technology advances anticipated in the coming decades in modularity, material systems, structural concepts, and in-space operations are presented. It is shown that, together, the current challenges and future advances in very large in-space structural systems may provide the technology pull/push necessary to make solar power satellite systems more technically and economically feasible.
The commercial implications of the EELV program
NASA Astrophysics Data System (ADS)
Sasso, Steven E.
1998-01-01
There have been several studies over the past 15 years intended to define and develop a space launch system that would meet future needs of the United States Government (USG). While these past studies (Advanced Launch System, National Launch System, Spacelifter, etc) yielded valuable data, none were carried to fruition. Overriding issues included high development cost, changing requirements, and uncertainty in the mission model, as well lack of a clear direction for where this nation should be headed. In 1995, the Air Force embarked on the Evolved Expendable Launch Vehicle (EELV) program as a way of defining and developing the next-generation expendable launch system. This time groundrules for this effort were clearly defined-the program relied on the use of evolving a system rather than developing a high-technology solution to reduce development cost, and the commercial market was factored in as a way of reducing cost to the USG. The EELV program is nearing the engineering manufacturing development (EMD) phase by mid-1998 with first flight planned for early 2001. This paper describes the planned Lockheed Martin EELV program and its ability to utilize the commercial market to benefit the USG in its need to develop the next-generation expendable launch vehicle.
System design analyses of a rotating advanced-technology space station for the year 2025
NASA Technical Reports Server (NTRS)
Queijo, M. J.; Butterfield, A. J.; Cuddihy, W. F.; Stone, R. W.; Wrobel, J. R.; Garn, P. A.; King, C. B.
1988-01-01
Studies of an advanced technology space station configured to implement subsystem technologies projected for availability in the time period 2000 to 2025 is documented. These studies have examined the practical synergies in operational performance available through subsystem technology selection and identified the needs for technology development. Further analyses are performed on power system alternates, momentum management and stabilization, electrothermal propulsion, composite materials and structures, launch vehicle alternates, and lunar and planetary missions. Concluding remarks are made regarding the advanced technology space station concept, its intersubsystem synergies, and its system operational subsystem advanced technology development needs.
Space Launch System Launch Vehicle Stage Adapter Hardware Completes Manufacturing
2017-08-28
The Launch Vehicle Stage Adapter for the first flight of the Space Launch System, NASA’s new deeps space rocket, recently completed manufacturing at NASA’s Marshal Space Flight Center in Huntsville, Alabama. The LVSA, the largest piece of the rocket welded together in Marshall’s Huntsville manufacturing area, will connect two major sections of SLS – the 27.6-foot diameter core stage and the 16.4-foot interim cryogenic propulsion stage – for the first integrated flight of SLS and the Orion spacecraft. Teledyne Brown Engineering of Huntsville, the prime contractor for the adapter, has completed manufacturing, and engineers are preparing to apply thermal insulation. It will be the largest piece of hardware that Marshall. The LVSA was moved from the NASA welding area to NASA’s Center for Advanced Manufacturing where the thermal protection system will be applied.
Magnetic levitation systems for future aeronautics and space research and missions
NASA Technical Reports Server (NTRS)
Blankson, Isaiah M.; Mankins, John C.
1996-01-01
The objectives, advantages, and research needs for several applications of superconducting magnetic levitation to aerodynamics research, testing, and space-launch are discussed. Applications include very large-scale magnetic balance and suspension systems for high alpha testing, support interference-free testing of slender hypersonic propulsion/airframe integrated vehicles, and hypersonic maglev. Current practice and concepts are outlined as part of a unified effort in high magnetic fields R&D within NASA. Recent advances in the design and construction of the proposed ground-based Holloman test track (rocket sled) that uses magnetic levitation are presented. It is protected that ground speeds of up to Mach 8 to 11 at sea-level are possible with such a system. This capability may enable supersonic combustor tests as well as ramjet-to-scramjet transition simulation to be performed in clean air. Finally a novel space launch concept (Maglifter) which uses magnetic levitation and propulsion for a re-usable 'first stage' and rocket or air-breathing combined-cycle propulsion for its second stage is discussed in detail. Performance of this concept is compared with conventional advanced launch systems and a preliminary concept for a subscale system demonstration is presented.
U.S. advanced launch vehicle technology programs : Quarterly Launch Report : special report
DOT National Transportation Integrated Search
1996-01-01
U.S. firms and U.S. government agencies are jointly investing in advanced launch vehicle technology. This Special Report summarizes U.S. launch vehicle technology programs and highlights the changing : roles of government and industry players in pick...
2017-10-31
Animation depicting NASA’s Space Launch System, the world's most powerful rocket for a new era of human exploration beyond Earth’s orbit. With its unprecedented capabilities, SLS will launch astronauts in the agency’s Orion spacecraft on missions to explore multiple, deep-space destinations, including Mars. Traveling to deep space requires a large vehicle that can carry huge payloads, and future evolutions of SLS with the exploration upper stage and advanced boosters will increase the rocket’s lift capability and flexibility for multiple types of mission needs.
2011-10-28
The Satellite Operations Facility of the National Oceanic and Atmospheric Administration (NOAA) is seen here minutes before the launch of the National Polar-orbiting Operational Environmental Satellite System Preparatory Project (NPP) on Friday, Oct. 28, 2011 in Suitland, Md. NPP is a joint venture between NASA and NOAA, and is the nation's newest Earth-observing satellite, which will provide data on climate change science, allow for accurate weather forecasts and advance warning for severe weather. NPP was launched from Vandenberg Air Force Base in California. Photo Credit: (NASA/Carla Cioffi)
2004-04-15
It is predicted that by the year 2040, there will be no distinction between a commercial airliner and a commercial launch vehicle. Fourth Generation Reusable Launch Vehicles (RLVs) will be so safe and reliable that no crew escape system will be necessary. Every year there will be in excess of 10,000 flights and the turn-around time between flights will be just hours. The onboard crew will be able to accomplish a launch without any assistance from the ground. Provided is an artist's concept of these fourth generation space vehicles.
Space Launch System Co-Manifested Payload Options for Habitation
NASA Technical Reports Server (NTRS)
Smitherman, David
2015-01-01
The Space Launch System (SLS) has a co-manifested payload capability that will grow over time as the launch vehicle matures and planned upgrades are implemented. The final configuration is planned to be capable of inserting a payload greater than 10 metric tons (mt) into a trans-lunar injection trajectory along with the crew in the Orion capsule and its service module. The co-manifested payload is located below the Orion and its service module in a 10 m high fairing similar to the way the Saturn launch vehicle carried the lunar lander below the Apollo command and service modules. Various approaches that utilize this comanifested payload capability to build up infrastructure in deep space have been explored in support of future asteroid, lunar, and Mars mission scenarios. This paper reports on the findings of the Advanced Concepts Office study team at NASA Marshall Space Flight Center (MSFC) working with the Advanced Exploration Systems Program on the Exploration Augmentation Module Project. It includes some of the possible options for habitation in the co-manifested payload volume of the SLS. Findings include a set of module designs that can be developed in 10 mt increments to support these co-manifested payload missions along with a comparison of this approach to a large-module payload flight configuration for the SLS.
Materials in NASA's Space Launch System: The Stuff Dreams are Made of
NASA Technical Reports Server (NTRS)
May, Todd A.
2012-01-01
Mr. Todd May, Program Manager for NASA's Space Launch System, will showcase plans and progress the nation s new super-heavy-lift launch vehicle, which is on track for a first flight to launch an Orion Multi-Purpose Crew Vehicle around the Moon in 2017. Mr. May s keynote address will share NASA's vision for future human and scientific space exploration and how SLS will advance those plans. Using new, in-development, and existing assets from the Space Shuttle and other programs, SLS will provide safe, affordable, and sustainable space launch capabilities for exploration payloads starting at 70 metric tons (t) and evolving through 130 t for entirely new deep-space missions. Mr. May will also highlight the impact of material selection, development, and manufacturing as they contribute to reducing risk and cost while simultaneously supporting the nation s exploration goals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
G. CANAVAN
Space Based Interceptor (SBI) have ranges that are adequate to address rogue ICBMs. They are not overly sensitive to 30-60 s delay times. Current technologies would support boost phase intercept with about 150 interceptors. Higher acceleration and velocity could reduce than number by about a factor of 3 at the cost of heavier and more expensive Kinetic Kill Vehicles (KKVs). 6g SBI would reduce optimal constellation costs by about 35%; 8g SBI would reduce them another 20%. Interceptor ranges fall rapidly with theater missile range. Constellations increase significantly for ranges under 3,000 km, even with advanced interceptor technology. For distributedmore » launches, these estimates recover earlier strategic scalings, which demonstrate the improved absentee ratio for larger or multiple launch areas. Constellations increase with the number of missiles and the number of interceptors launched at each. The economic estimates above suggest that two SBI per missile with a modest midcourse underlay is appropriate. The SBI KKV technology would appear to be common for space- and surface-based boost phase systems, and could have synergisms with improved midcourse intercept and discrimination systems. While advanced technology could be helpful in reducing costs, particularly for short range theater missiles, current technology appears adequate for pressing rogue ICBM, accidental, and unauthorized launches.« less
The Feasibility of Railgun Horizontal-Launch Assist
NASA Technical Reports Server (NTRS)
Youngquist, Robert C.; Cox, Robert B.
2011-01-01
Railguns typically operate for a few milliseconds, supplying thousands of G's of acceleration to a small projectile, resulting in exceptional speeds. This paper argues through analysis and experiment, that this "standard" technology can be modified to provide 2-3 G's acceleration to a relatively heavy launch vehicle for a time period exceeding several seconds, yielding a launch assist velocity in excess of Mach 1. The key insight here is that an efficient rail gun operates at a speed approximately given by the system resistance divided by the inductance gradient, which can be tailored because recent MOSFET and ultra-capacitor advances allow very low total power supply resistances with high capacitance and augmented railgun architectures provide a scalable inductance gradient. Consequently, it should now be possible to construct a horizontal launch assist system utilizing railgun based architecture.
NASA's Spaceliner 100 Investment Area Technology Activities
NASA Technical Reports Server (NTRS)
Hueter, Uwe; Lyles, Garry M. (Technical Monitor)
2001-01-01
NASA's has established long term goals for access-to-space. The third generation launch systems are to be fully reusable and operational around 2025. The goals for the third generation launch system are to reduce cost by a factor of 100 and improve safety by a factor of 10,000 over current conditions. The Advanced Space Transportation Program Office (ASTP) at the NASA's Marshall Space Flight Center in Huntsville, AL has the agency lead to develop space transportation technologies. Within ASTP, under the Spaceliner100 Investment Area, third generation technologies are being pursued in the areas of propulsion, airframes, integrated vehicle health management (IVHM), launch systems, and operations and range. The ASTP program will mature these technologies through ground system testing. Flight testing where required, will be advocated on a case by case basis.
NASA Technical Reports Server (NTRS)
1987-01-01
This report describes the preliminary design specifications for an Advanced Space Transportation System consisting of a fully reusable flyback booster, an intermediate-orbit cargo vehicle, and a shuttle-type orbiter with an enlarged cargo bay. It provides a comprehensive overview of mission profile, aerodynamics, structural design, and cost analyses. These areas are related to the overall feasibility and usefullness of the proposed system.
Hydrogen Vent Ground Umbilical Quick Disconnect - Flight Seal Advanced Development
NASA Technical Reports Server (NTRS)
Girard, Doug; Jankowski, Fred; Minich, Mark C.; Yu, Weiping
2012-01-01
This project is a team effort between NASA Engineering (NE) and Team QNA Engineering personnel to provide support for the Umbilical Systems Development project which is funded by Advanced Exploration Systems (AES) and 21st Century Launch Complex. Specifically, this project seeks to develop a new interface between the PPBE baselined Legacy SSP LH2 Vent Arm QD probe and SLS vent seal.
Guidance and Control Aspects of Tactical Air-Launched Missiles
1980-10-01
information; - Continuously stimulating advances in the aerospace sciences relevant to strengthening the common defence pusture; -- Improving the co...Symposium on Precision Delivery Systems was held at Eglin Air Force Base , Florida. USA. Many important advances in guidance sensor technology, control system...paper concentrates primarily or the US Army Missile Command’s technology base for development of the precision pointing and tracking or fire control
Mission Benefits Analysis of Logistics Reduction Technologies
NASA Technical Reports Server (NTRS)
Ewert, Michael K.; Broyan, James Lee, Jr.
2013-01-01
Future space exploration missions will need to use less logistical supplies if humans are to live for longer periods away from our home planet. Anything that can be done to reduce initial mass and volume of supplies or reuse or recycle items that have been launched will be very valuable. Reuse and recycling also reduce the trash burden and associated nuisances, such as smell, but require good systems engineering and operations integration to reap the greatest benefits. A systems analysis was conducted to quantify the mass and volume savings of four different technologies currently under development by NASA s Advanced Exploration Systems (AES) Logistics Reduction and Repurposing project. Advanced clothing systems lead to savings by direct mass reduction and increased wear duration. Reuse of logistical items, such as packaging, for a second purpose allows fewer items to be launched. A device known as a heat melt compactor drastically reduces the volume of trash, recovers water and produces a stable tile that can be used instead of launching additional radiation protection. The fourth technology, called trash-to-gas, can benefit a mission by supplying fuel such as methane to the propulsion system. This systems engineering work will help improve logistics planning and overall mission architectures by determining the most effective use, and reuse, of all resources.
Mission Benefits Analysis of Logistics Reduction Technologies
NASA Technical Reports Server (NTRS)
Ewert, Michael K.; Broyan, James L.
2012-01-01
Future space exploration missions will need to use less logistical supplies if humans are to live for longer periods away from our home planet. Anything that can be done to reduce initial mass and volume of supplies or reuse or recycle items that have been launched will be very valuable. Reuse and recycling also reduce the trash burden and associated nuisances, such as smell, but require good systems engineering and operations integration to reap the greatest benefits. A systems analysis was conducted to quantify the mass and volume savings of four different technologies currently under development by NASA fs Advanced Exploration Systems (AES) Logistics Reduction and Repurposing project. Advanced clothing systems lead to savings by direct mass reduction and increased wear duration. Reuse of logistical items, such as packaging, for a second purpose allows fewer items to be launched. A device known as a heat melt compactor drastically reduces the volume of trash, recovers water and produces a stable tile that can be used instead of launching additional radiation protection. The fourth technology, called trash ]to ]supply ]gas, can benefit a mission by supplying fuel such as methane to the propulsion system. This systems engineering work will help improve logistics planning and overall mission architectures by determining the most effective use, and reuse, of all resources.
An Approach to Establishing System Benefits for Technology in NASA's Hypersonics Investment Area
NASA Technical Reports Server (NTRS)
Hueter, Uwe; Pannell, Bill; Cook, Stephen (Technical Monitor)
2001-01-01
NASA's has established long term goals for access-to-space. The third generation launch systems are to be fully reusable and operational around 2025. The goals for the third generation launch system are to significantly reduce cost and improve safety over current systems. The Advanced Space Transportation Program (ASTP) Office at the NASA's Marshall Space Flight Center in Huntsville, AL has the agency lead to develop space transportation technologies. Within ASTP, under the Hypersonics Investment Area, third generation technologies are being pursued. The Hypersonics Investment Area's primary objective is to mature vehicle technologies to enable substantial increases in the design and operating margins of third generation RLVs (current Space Shuttle is considered the first generation RLV) by incorporating advanced propulsion systems, materials, structures, thermal protection systems, power, and avionics technologies. The paper describes the system process, tools and concepts used to determine the technology benefits. Preliminary results will be presented along with the current technology investments that are being made by ASTP's Hypersonics Investment Area.
Proceedings of the 2nd Annual Conference on NASA/University Advanced Space Design Program
NASA Technical Reports Server (NTRS)
1986-01-01
Topics discussed include: lunar transportation system, Mars rover, lunar fiberglass production, geosynchronous space stations, regenerative system for growing plants, lunar mining devices, lunar oxygen transporation system, mobile remote manipulator system, Mars exploration, launch/landing facility for a lunar base, and multi-megawatt nuclear power system.
1996-11-01
Orbit ( SSTO ) Reusable Launch Vehicles (RLVs) are currently under cooperative development by NASA, the Air Force, and the aerospace industry in the pursuit...exploit these rapid transit technologies to advance ’Global Reach for America.’ The SSTO RLV is a single stage rocket that will be completely reusable...investigated to assess the projected capabilities and costs of the SSTO system. This paper reviews the proposed capabilities of the SSTO system, discusses
2008-01-24
NASA Dryden technicians work on a fit-check mockup in preparation for systems installation work on an Orion boilerplate crew capsule for launch abort testing. A mockup Orion crew module has been constructed by NASA Dryden Flight Research Center's Fabrication Branch. The mockup is being used to develop integration procedures for avionics and instrumentation in advance of the arrival of the first abort flight test article.
2008-01-24
NASA Dryden technicians take measurements inside a fit-check mockup for prior to systems installation on a boilerplate Orion launch abort test crew capsule. A mockup Orion crew module has been constructed by NASA Dryden Flight Research Center's Fabrication Branch. The mockup is being used to develop integration procedures for avionics and instrumentation in advance of the arrival of the first abort flight test article.
Structural Dynamics Testing of Advanced Stirling Convertor Components
NASA Technical Reports Server (NTRS)
Oriti, Salvatore M.; Williams, Zachary Douglas
2013-01-01
NASA Glenn Research Center has been supporting the development of Stirling energy conversion for use in space. Lockheed Martin has been contracted by the Department of Energy to design and fabricate flight-unit Advanced Stirling Radioisotope Generators, which utilize Sunpower, Inc., free-piston Advanced Stirling Convertors. The engineering unit generator has demonstrated conversion efficiency in excess of 20 percent, offering a significant improvement over existing radioisotope-fueled power systems. NASA Glenn has been supporting the development of this generator by developing the convertors through a technology development contract with Sunpower, and conducting research and experiments in a multitude of areas, such as high-temperature material properties, organics testing, and convertor-level extended operation. Since the generator must undergo launch, several launch simulation tests have also been performed at the convertor level. The standard test sequence for launch vibration exposure has consisted of workmanship and flight acceptance levels. Together, these exposures simulate what a flight convertor will experience. Recently, two supplementary tests were added to the launch vibration simulation activity. First was a vibration durability test of the convertor, intended to quantify the effect of vibration levels up to qualification level in both the lateral and axial directions. Second was qualification-level vibration of several heater heads with small oxide inclusions in the material. The goal of this test was to ascertain the effect of the inclusions on launch survivability to determine if the heater heads were suitable for flight.
Auxiliary propulsion technology for advanced Earth-to-orbit vehicles
NASA Technical Reports Server (NTRS)
Schneider, Steven J.
1987-01-01
The payload which can be delivered to orbit by advanced Earth-to-Orbit vehicles is significantly increased by advanced subsystem technology. Any weight which can be saved by advanced subsystem design can be converted to payload at Main Engine Cut Off (MECO) given the same launch vehicle performance. The auxiliary propulsion subsystem and the impetus for the current hydrogen/oxygen technology program is examined. A review of the auxiliary propulsion requirements of advanced Earth-to-Orbit (ETO) vehicles and their proposed missions is given first. Then the performance benefits of hydrogen/oxygen auxiliary propulsion are illustrated using current shuttle data. The proposed auxiliary propulsion subsystem implementation includes liquid hydrogen/liquid oxygen (LH2/LO2) primary Reaction Control System (RCS) engines and gaseous hydrogen/gaseous oxygen (GH2/GO2) vernier RCS engines. A distribution system for the liquid cryogens to the engines is outlined. The possibility of providing one dual-phase engine that can operate on either liquid or gaseous propellants is being explored, as well as the simultaneous firing of redundant primary RCS thrusters to provide Orbital Maneuvering System (OMS) level impulse. Scavenging of propellants from integral main engine tankage is proposed to utilize main engine tank residuals and to combine launch vehicle and subsystem reserves.
NASA Technical Reports Server (NTRS)
Strobl, Bill
1991-01-01
Cultural changes; people and jobs; examples of cultural changes required; advanced launch system (ALS) philosophy; ALS operability capabilities; and ALS operability in design are outlined. This presentation is represented by viewgraphs.
NASA Technical Reports Server (NTRS)
1989-01-01
The analyses performed in assessing the merit of the Liquid Rocket Booster concept for use in alternate applications such as for Shuttle C, for Standalone Expendable Launch Vehicles, and possibly for use with the Air Force's Advanced Launch System are presented. A comparison is also presented of the three LRB candidate designs, namely: (1) the LO2/LH2 pump fed, (2) the LO2/RP-1 pump fed, and (3) the LO2/RP-1 pressure fed propellant systems in terms of evolution along with design and cost factors, and other qualitative considerations. A further description is also presented of the recommended LRB standalone, core-to-orbit launch vehicle concept.
Orbital ATK CRS-7 Launch Coverage
2017-04-18
NASA Television conducted a live broadcast from Kennedy Space Center as Orbital ATK’s CRS-7 lifted off atop a United Launch Alliance Atlas V rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. Orbital ATK’s Cygnus spacecraft carried more than 7,600 pounds of science research, crew supplies, and hardware to the orbiting laboratory as Orbital ATK’s seventh commercial resupply services mission to the International Space Station. Launch commentary conducted by: -George Diller, NASA Communications Special guests included: -Frank DeMauro, VP & GM, Advanced Programs Division, Space Systems Group, Orbital ATK -Tori McLendon, NASA Communications -Robert Cabana, Kennedy Space Center Director -Tara Ruttley, Associate Program Scientist, International Space Station -Vern Thorp, Program Manager for Commercial Missions, United Launch Alliance
Advanced expander test bed engine
NASA Technical Reports Server (NTRS)
Mitchell, J. P.
1992-01-01
The Advanced Expander Test Bed (AETB) is a key element in NASA's Space Chemical Engine Technology Program for development and demonstration of expander cycle oxygen/hydrogen engine and advanced component technologies applicable to space engines as well as launch vehicle upper stage engines. The AETB will be used to validate the high pressure expander cycle concept, study system interactions, and conduct studies of advanced mission focused components and new health monitoring techniques in an engine system environment. The split expander cycle AETB will operate at combustion chamber pressures up to 1200 psia with propellant flow rates equivalent to 20,000 lbf vacuum thrust.
NASA Technical Reports Server (NTRS)
1976-01-01
Twelve aerothermodynamic space technology needs were identified to reduce the design uncertainties in aerodynamic heating and forces experienced by heavy lift launch vehicles, orbit transfer vehicles, and advanced single stage to orbit vehicles for the space transportation system, and for probes, planetary surface landers, and sample return vehicles for solar system exploration vehicles. Research and technology needs identified include: (1) increasing the fluid dynamics capability by at least two orders of magnitude by developing an advanced computer processor for the solution of fluid dynamic problems with improved software; (2) predicting multi-engine base flow fields for launch vehicles; and (3) developing methods to conserve energy in aerothermodynamic ground test facilities.
NASA Space Technology Draft Roadmap Area 13: Ground and Launch Systems Processing
NASA Technical Reports Server (NTRS)
Clements, Greg
2011-01-01
This slide presentation reviews the technology development roadmap for the area of ground and launch systems processing. The scope of this technology area includes: (1) Assembly, integration, and processing of the launch vehicle, spacecraft, and payload hardware (2) Supply chain management (3) Transportation of hardware to the launch site (4) Transportation to and operations at the launch pad (5) Launch processing infrastructure and its ability to support future operations (6) Range, personnel, and facility safety capabilities (7) Launch and landing weather (8) Environmental impact mitigations for ground and launch operations (9) Launch control center operations and infrastructure (10) Mission integration and planning (11) Mission training for both ground and flight crew personnel (12) Mission control center operations and infrastructure (13) Telemetry and command processing and archiving (14) Recovery operations for flight crews, flight hardware, and returned samples. This technology roadmap also identifies ground, launch and mission technologies that will: (1) Dramatically transform future space operations, with significant improvement in life-cycle costs (2) Improve the quality of life on earth, while exploring in co-existence with the environment (3) Increase reliability and mission availability using low/zero maintenance materials and systems, comprehensive capabilities to ascertain and forecast system health/configuration, data integration, and the use of advanced/expert software systems (4) Enhance methods to assess safety and mission risk posture, which would allow for timely and better decision making. Several key technologies are identified, with a couple of slides devoted to one of these technologies (i.e., corrosion detection and prevention). Development of these technologies can enhance life on earth and have a major impact on how we can access space, eventually making routine commercial space access and improve building and manufacturing, and weather forecasting for example for the effect of these process improvements on our daily lives.
Magnetic Launch Assist System Demonstration Test
NASA Technical Reports Server (NTRS)
2001-01-01
Engineers at the Marshall Space Flight Center (MSFC) have been testing Magnetic Launch Assist Systems, formerly known as Magnetic Levitation (MagLev) technologies. To launch spacecraft into orbit, a Magnetic Launch Assist system would use magnetic fields to levitate and accelerate a vehicle along a track at a very high speed. Similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway, the launch-assist system would electromagnetically drive a space vehicle along the track. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. This photograph shows a subscale model of an airplane running on the experimental track at MSFC during the demonstration test. This track is an advanced linear induction motor. Induction motors are common in fans, power drills, and sewing machines. Instead of spinning in a circular motion to turn a shaft or gears, a linear induction motor produces thrust in a straight line. Mounted on concrete pedestals, the track is 100-feet long, about 2-feet wide, and about 1.5- feet high. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.
Logistics Reduction Technologies for Exploration Missions
NASA Technical Reports Server (NTRS)
Broyan, James L., Jr.; Ewert, Michael K.; Fink, Patrick W.
2014-01-01
Human exploration missions under study are limited by the launch mass capacity of existing and planned launch vehicles. The logistical mass of crew items is typically considered separate from the vehicle structure, habitat outfitting, and life support systems. Although mass is typically the focus of exploration missions, due to its strong impact on launch vehicle and habitable volume for the crew, logistics volume also needs to be considered. NASA's Advanced Exploration Systems (AES) Logistics Reduction and Repurposing (LRR) Project is developing six logistics technologies guided by a systems engineering cradle-to-grave approach to enable after-use crew items to augment vehicle systems. Specifically, AES LRR is investigating the direct reduction of clothing mass, the repurposing of logistical packaging, the use of autonomous logistics management technologies, the processing of spent crew items to benefit radiation shielding and water recovery, and the conversion of trash to propulsion gases. Reduction of mass has a corresponding and significant impact to logistical volume. The reduction of logistical volume can reduce the overall pressurized vehicle mass directly, or indirectly benefit the mission by allowing for an increase in habitable volume during the mission. The systematic implementation of these types of technologies will increase launch mass efficiency by enabling items to be used for secondary purposes and improve the habitability of the vehicle as mission durations increase. Early studies have shown that the use of advanced logistics technologies can save approximately 20 m(sup 3) of volume during transit alone for a six-person Mars conjunction class mission.
NASA Technical Reports Server (NTRS)
Monell, D.; Mathias, D.; Reuther, J.; Garn, M.
2003-01-01
A new engineering environment constructed for the purposes of analyzing and designing Reusable Launch Vehicles (RLVs) is presented. The new environment has been developed to allow NASA to perform independent analysis and design of emerging RLV architectures and technologies. The new Advanced Engineering Environment (AEE) is both collaborative and distributed. It facilitates integration of the analyses by both vehicle performance disciplines and life-cycle disciplines. Current performance disciplines supported include: weights and sizing, aerodynamics, trajectories, propulsion, structural loads, and CAD-based geometries. Current life-cycle disciplines supported include: DDT&E cost, production costs, operations costs, flight rates, safety and reliability, and system economics. Involving six NASA centers (ARC, LaRC, MSFC, KSC, GRC and JSC), AEE has been tailored to serve as a web-accessed agency-wide source for all of NASA's future launch vehicle systems engineering functions. Thus, it is configured to facilitate (a) data management, (b) automated tool/process integration and execution, and (c) data visualization and presentation. The core components of the integrated framework are a customized PTC Windchill product data management server, a set of RLV analysis and design tools integrated using Phoenix Integration's Model Center, and an XML-based data capture and transfer protocol. The AEE system has seen production use during the Initial Architecture and Technology Review for the NASA 2nd Generation RLV program, and it continues to undergo development and enhancements in support of its current main customer, the NASA Next Generation Launch Technology (NGLT) program.
Advanced Ground Systems Maintenance Enterprise Architecture Project
NASA Technical Reports Server (NTRS)
Harp, Janicce Leshay
2014-01-01
The project implements an architecture for delivery of integrated health management capabilities for the 21st Century launch complex. Capabilities include anomaly detection, fault isolation, prognostics and physics-based diagnostics.
Solid propulsion advanced concepts
NASA Technical Reports Server (NTRS)
Nakamura, Y.; Shafer, J. I.
1972-01-01
The feasibility and application of a solid propulsion powered spacecraft concept to implement high energy missions independent of multiplanetary swingby opportunities are assessed and recommendations offered for future work. An upper stage, solid propulsion launch vehicle augmentation system was selected as the baseline configuration in view of the established program goals of low cost and high reliability. Spacecraft and propulsion system data that characterize mission performance capabilities were generated to serve as the basis for subsequent tradeoff studies. A cost effectiveness model was used for the preliminary feasibility assessment to provide a meaningful comparative effectiveness measure of the various candidate designs. The results substantiated the feasibility of the powered spacecraft concept when used in conjunction with several intermediate-sized launch vehicles as well as the existence of energy margins by which to exploit the attainment of extended mission capabilities. Additionally, in growth option applications, the employment of advanced propulsion systems and alternate spacecraft approaches appear promising.
NASA Technical Reports Server (NTRS)
Littlefield, Alan C.; Melton, Gregory S.
2000-01-01
The X-33 Advanced Technology Demonstrator is an un-piloted, vertical take-off, horizontal landing spacecraft. The purpose of the X-33 program is to demonstrate technologies that will dramatically lower the cost of access to space. The rocket-powered X-33 will reach an altitude of up to 100 km and speeds between Mach 13 and 15. Fifteen flight tests are planned, beginning in 2000. Some of the key technologies demonstrated will be the linear aerospike engine, improved thermal protection systems, composite fuel tanks and reduced operational timelines. The X-33 vehicle umbilical connections provide monitoring, power, cooling, purge, and fueling capability during horizontal processing and vertical launch operations. Two "rise-off" umbilicals for the X-33 have been developed, tested, and installed. The X-33 umbilical systems mechanisms incorporate several unique design features to simplify horizontal operations and provide reliable disconnect during launch.
NASA Technical Reports Server (NTRS)
Littlefield, Alan C.; Melton, Gregory S.
1999-01-01
The X-33 Advanced Technology Demonstrator is an un-piloted, vertical take-off, horizontal landing spacecraft. The purpose of the X-33 program is to demonstrate technologies that will dramatically lower the cost of access to space. The rocket-powered X-33 will reach an altitude of up to 100 km and speeds between Mach 13 and 15. Fifteen flight tests are planned, beginning in 2000. Some of the key technologies demonstrated will be the linear aerospike engine, improved thermal protection systems, composite fuel tanks and reduced operational timelines. The X-33 vehicle umbilical connections provide monitoring, power, cooling, purge, and fueling capability during horizontal processing and vertical launch operations. Two "rise-ofF' umbilicals for the X-33 have been developed, tested, and installed. The X-33 umbilical systems mechanisms incorporate several unique design features to simplify horizontal operations and provide reliable disconnect during launch.
NASA's Spaceliner Investment Area Technology Activities
NASA Technical Reports Server (NTRS)
Hueter, Uwe; Lyles, Garry M. (Technical Monitor)
2001-01-01
NASA's has established long term goals for access-to-space. The third generation launch systems are to be fully reusable and operational around 2025. The goals for the third generation launch system are to significantly reduce cost and improve safety over current conditions. The Advanced Space Transportation Program Office (ASTP) at the NASA's Marshall Space Flight Center in Huntsville, AL has the agency lead to develop space transportation technologies. Within ASTP, under the Spaceliner Investment Area, third generation technologies are being pursued in the areas of propulsion, airframes, integrated vehicle health management (IVHM), avionics, power, operations, and range. The ASTP program will mature these technologies through both ground and flight system testing. The Spaceliner Investment Area plans to mature vehicle technologies to reduce the implementation risks for future commercially developed reusable launch vehicles (RLV). The plan is to substantially increase the design and operating margins of the third generation RLV (the Space Shuttle is the first generation) by incorporating advanced technologies in propulsion, materials, structures, thermal protection systems, avionics, and power. Advancements in design tools and better characterization of the operational environment will allow improvements in design margins. Improvements in operational efficiencies will be provided through use of advanced integrated health management, operations, and range technologies. The increase in margins will allow components to operate well below their design points resulting in improved component operating life, reliability, and safety which in turn reduces both maintenance and refurbishment costs. These technologies have the potential of enabling horizontal takeoff by reducing the takeoff weight and achieving the goal of airline-like operation. These factors in conjunction with increased flight rates from an expanding market will result in significant improvements in safety and reductions in operational costs of future vehicles. The paper describes current status, future plans and technologies that are being matured by the Spaceliner Investment Area under the Advanced Space Transportation Program Office.
NASA Technical Reports Server (NTRS)
1993-01-01
The Marshall Space Flight Center is responsible for the development and management of advanced launch vehicle propulsion systems, including the Space Shuttle Main Engine (SSME), which is presently operational, and the Space Transportation Main Engine (STME) under development. The SSME's provide high performance within stringent constraints on size, weight, and reliability. Based on operational experience, continuous design improvement is in progress to enhance system durability and reliability. Specialized data analysis and interpretation is required in support of SSME and advanced propulsion system diagnostic evaluations. Comprehensive evaluation of the dynamic measurements obtained from test and flight operations is necessary to provide timely assessment of the vibrational characteristics indicating the operational status of turbomachinery and other critical engine components. Efficient performance of this effort is critical due to the significant impact of dynamic evaluation results on ground test and launch schedules, and requires direct familiarity with SSME and derivative systems, test data acquisition, and diagnostic software. Detailed analysis and evaluation of dynamic measurements obtained during SSME and advanced system ground test and flight operations was performed including analytical/statistical assessment of component dynamic behavior, and the development and implementation of analytical/statistical models to efficiently define nominal component dynamic characteristics, detect anomalous behavior, and assess machinery operational condition. In addition, the SSME and J-2 data will be applied to develop vibroacoustic environments for advanced propulsion system components, as required. This study will provide timely assessment of engine component operational status, identify probable causes of malfunction, and indicate feasible engineering solutions. This contract will be performed through accomplishment of negotiated task orders.
Magnetic Launch Assist Demonstration Test
NASA Technical Reports Server (NTRS)
2001-01-01
This image shows a 1/9 subscale model vehicle clearing the Magnetic Launch Assist System, formerly referred to as the Magnetic Levitation (MagLev), test track during a demonstration test conducted at the Marshall Space Flight Center (MSFC). Engineers at MSFC have developed and tested Magnetic Launch Assist technologies. To launch spacecraft into orbit, a Magnetic Launch Assist System would use magnetic fields to levitate and accelerate a vehicle along a track at very high speeds. Similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway, a launch-assist system would electromagnetically drive a space vehicle along the track. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. This track is an advanced linear induction motor. Induction motors are common in fans, power drills, and sewing machines. Instead of spinning in a circular motion to turn a shaft or gears, a linear induction motor produces thrust in a straight line. Mounted on concrete pedestals, the track is 100-feet long, about 2-feet wide and about 1.5-feet high. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.
1998 IEEE Aerospace Conference. Proceedings.
NASA Astrophysics Data System (ADS)
The following topics were covered: science frontiers and aerospace; flight systems technologies; spacecraft attitude determination and control; space power systems; smart structures and dynamics; military avionics; electronic packaging; MEMS; hyperspectral remote sensing for GVP; space laser technology; pointing, control, tracking and stabilization technologies; payload support technologies; protection technologies; 21st century space mission management and design; aircraft flight testing; aerospace test and evaluation; small satellites and enabling technologies; systems design optimisation; advanced launch vehicles; GPS applications and technologies; antennas and radar; software and systems engineering; scalable systems; communications; target tracking applications; remote sensing; advanced sensors; and optoelectronics.
Solar Electric and Chemical Propulsion for a Titan Mission
NASA Technical Reports Server (NTRS)
Cupples, Michael; Green, Shaun E.; Donahue, Benjamin B.; Coverstone, Victoria L.
2005-01-01
Systems analyses were performed for a Titan Explorer Mission characterized by Earth-Saturn transfer stages using solar electric power generation and propulsion systems for primary interplanetary propulsion, and chemical propulsion for capture at Titan. An examination of a range of system factors was performed to determine their effect on the payload delivery capability to Titan. The effect of varying launch vehicle type, solar array power level, ion thruster number, specific impulse, trip time, and Titan capture stage chemical propellant choice was investigated. The major purpose of the study was to demonstrate the efficacy of applying advanced ion propulsion system technologies like NASA's Evolutionary Xenon Thruster (NEXT), coupled with state-of-the-art (SOA) and advanced chemical technologies to a Flagship class mission. This study demonstrated that a NASA Design Reference Mission (DRM) payload of 406 kg could be successfully delivered to Titan using the baseline advanced ion propulsion system in conjunction with SOA chemical propulsion for Titan capture. In addition, the SEPS/Chemical system of this study is compared to an all- chemical NASA DRM mission. Results showed that the NEXT- based SEPS/Chemical system was able to deliver the required payload to Titan in 5 years less transfer time and on a smaller launch vehicle than the SOA chemical option.
Future X Pathfinder: Quick, Low Cost Flight Testing for Tomorrow's Launch Vehicles
NASA Technical Reports Server (NTRS)
London, John, III; Sumrall, Phil
1999-01-01
The DC-X and DC-XA Single Stage Technology flight program demonstrated the value of low cost rapid prototyping and flight testing of launch vehicle technology testbeds. NASA is continuing this important legacy through a program referred to as Future-X Pathfinder. This program is designed to field flight vehicle projects that cost around $100M each, with a new vehicle flying about every two years. Each vehicle project will develop and extensively flight test a launch vehicle technology testbed that will advance the state of the art in technologies directly relevant to future space transportation systems. There are currently two experimental, or "X" vehicle projects in the Pathfinder program, with additional projects expected to follow in the near future. The first Pathfinder project is X-34. X-34 is a suborbital rocket plane capable of flights to Mach 8 and 75 kilometers altitude. There are a number of reusable launch vehicle technologies embedded in the X-34 vehicle design, such as composite structures and propellant tanks, and advanced reusable thermal protection systems. In addition, X-34 is designed to carry experiments applicable to both the launch vehicle and hypersonic aeronautics community. X-34 is scheduled to fly later this year. The second Pathfinder project is the X-37. X-37 is an orbital space plane that is carried into orbit either by the Space Shuttle or by an expendable launch vehicle. X-37 provides NASA access to the orbital and orbital reentry flight regimes with an experimental testbed vehicle. The vehicle will expose embedded and carry-on advanced space transportation technologies to the extreme environments of orbit and reentry. Early atmospheric approach and landing tests of an unpowered version of the X-37 will begin next year, with orbital flights beginning in late 2001. Future-X Pathfinder is charting a course for the future with its growing fleet of low-cost X- vehicles. X-34 and X-37 are leading the assault on high launch costs and enabling the flight testing of technologies that will lead to affordable access to space.
Hybrid propulsion technology program: Phase 1, volume 2
NASA Technical Reports Server (NTRS)
Schuler, A. L.; Wiley, D. R.
1989-01-01
The program objectives of developing hybrid propulsion technology (HPT) to enable its application for manned and unmanned high thrust, high performance space launch vehicles are examined. The studies indicate that the hybrid propulsion (HP) is very attractive, especially when applied to large boosters for programs such as the Advanced Launch System (ALS) and the second generation Space Shuttle. Some of the advantages of HP are identified. Space launch vehicles using HP are less costly than those flying today because their propellant and insulation costs are much less and there are fewer operational restraints due to reduced safety requirements. Boosters using HP have safety features that are highly desirable, particularly for manned flights. HP systems will have a clean exhaust and high performance. Boosters using HP readily integrate with launch vehicles and their launch operations, because they are very compact for the amount of energy contained. Hybrid propulsion will increase the probability of mission success. In order to properly develop the technologies of HP, preliminary HP concepts are evaluated. System analyses and trade studies were performed to identify technologies applicable to HP.
An Overview of Advanced Concepts for Launch
2012-02-09
Loads, System. --- Space Platforms Unfeasible. --- Space Elevator Materials, O, µmeteoroids, weather, vibrations.. Asteroid Mining Breakthrough...Unfeasible. --- Space Elevator Materials, O, µmeteoroids, weather, vibrations.. Asteroid Mining Breakthrough Physics No known feasible concepts
The Advanced Composition Explorer spacecraft lifts off from Pad 17A, CCAS
NASA Technical Reports Server (NTRS)
1997-01-01
A Boeing Delta II expendable launch vehicle lifts off with NASA's Advanced Composition Explorer (ACE) observatory at 10:39 a.m. EDT, on Aug. 25, 1997, from Launch Complex 17A, Cape Canaveral Air Station. This is the second Delta launch under the Boeing name and the first from Cape Canaveral. Launch was scrubbed one day by Air Force range safety personnel because two commercial fishing vessels were within the Delta's launch danger area. The ACE spacecraft will study low-energy particles of solar origin and high-energy galactic particles on its one-million-mile journey. The collecting power of instruments aboard ACE is 10 to 1,000 times greater than anything previously flown to collect similar data by NASA. Study of these energetic particles may contribute to our understanding of the formation and evolution of the solar system. ACE has a two-year minimum mission lifetime and a goal of five years of service. ACE was built for NASA by the Johns Hopkins Applied Physics Laboratory and is managed by the Explorer Project Office at NASA's Goddard Space Flight Center. The lead scientific institution is the California Institute of Technology (Caltech) in Pasadena, Calif.
NASA Technical Reports Server (NTRS)
Duffy, James B.
1992-01-01
The report describes the work breakdown structure (WBS) and its associated WBS dictionary for task area 1 of contract NAS8-39207, advanced transportation system studies (ATSS). This WBS format is consistent with the preliminary design level of detail employed by both task area 1 and task area 4 in the ATSS study and is intended to provide an estimating structure for parametric cost estimates.
NASA 2nd Generation RLV Program Introduction, Status and Future Plans
NASA Technical Reports Server (NTRS)
Dumbacher, Dan L.; Smith, Dennis E. (Technical Monitor)
2002-01-01
The Space Launch Initiative (SLI), managed by the Second Generation Reusable Launch Vehicle (2ndGen RLV) Program, was established to examine the possibility of revolutionizing space launch capabilities, define conceptual architectures, and concurrently identify the advanced technologies required to support a next-generation system. Initial Program funds have been allocated to design, evaluate, and formulate realistic plans leading to a 2nd Gen RLV full-scale development (FSD) decision by 2006. Program goals are to reduce both risk and cost for accessing the limitless opportunities afforded outside Earth's atmosphere fo civil, defense, and commercial enterprises. A 2nd Gen RLV architecture includes a reusable Earth-to-orbit launch vehicle, an on-orbit transport and return vehicle, ground and flight operations, mission planning, and both on-orbit and on-the-ground support infrastructures All segments of the architecture must advance in step with development of the RLV if a next-generation system is to be fully operational early next decade. However, experience shows that propulsion is the single largest contributor to unreliability during ascent, requires the largest expenditure of time for maintenance, and takes a long time to develop; therefore, propulsion is the key to meeting safety, reliability, and cost goals. For these reasons, propulsion is SLI's top technology investment area.
Orbital ATK CRS-7 What's on Board Science Briefing
2017-04-17
NASA Television held two “What’s on Board” science mission briefings from Kennedy Space Center's Press Site to discuss some of the science headed to the International Space Station on Orbital ATK’s seventh commercial resupply services mission, CRS-7. Orbital ATK’s Cygnus spacecraft will carry more than 7,600 pounds of science research, crew supplies, and hardware to the orbiting laboratory. CRS-7 will lift off atop a United Launch Alliance Atlas V rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. Part I Briefing participants were: -Cheryl Warner, NASA Communications -Tara Ruttley, Associate Program Scientist, JSC -Michael Roberts, Deputy Chief Scientist, CASIS -Bryan Onate, Project Manager, Advanced Plant Habitat, Kennedy Space Center -Howard Levine, Project Scientist, Advanced Plant Habitat, Kennedy Space Center -Sourav Sinha, Principle Investigator for ADCs in Microgravity, Oncolinx -Julian Rubinfien, Genes in Space II winner -Sebastian Kraves, Co-founder, Genes in Space -Henry Martin, External Payloads Coordinator, NanoRacks -Davide Massutti, QB50 CubeSats, Von Karman Institute Part II Briefing participants were: -Jason Townsend, NASA Communications -Joe Fust, Mission Integrator, United Launch Alliance -Paul Escalera, Orbital ATK Staff Systems Engineer Part II Briefing participants were: -Jason Townsend, NASA Communications -Joe Fust, Mission Integrator, United Launch Alliance -Paul Escalera, Orbital ATK Staff Systems Engineer
NASA Technical Reports Server (NTRS)
Garber, T.; Hiland, J.; Orletsky, D.; Augenstein, B.; Miller, M.
1991-01-01
A number of transportation and propulsion options for Mars exploration missions are analyzed. As part of Project Outreach, RAND received and evaluated 350 submissions in the launch vehicle, space transportation, and propulsion areas. After screening submissions, aggregating those that proposed identical or nearly identical concepts, and eliminating from further consideration those that violated known physical princples, we had reduced the total number of viable submissions to 213. In order to avoid comparing such disparate things as launch vehicles and electric propulsion systems, six broad technical areas were selected to categorize the submissions: space transportation systems; earth-to-orbit (ETO) launch systems; chemical propulsion; nuclear propulsion; low-thrust propulsion; and other. To provide an appropriate background for analyzing the submissions, an extensive survey was made of the various technologies relevant to the six broad areas listed above. We discuss these technologies with the intent of providing the reader with an indication of the current state of the art, as well as the advances that might be expected within the next 10 to 20 years.
NASA Technical Reports Server (NTRS)
Barrett, Joe H., III; Lafosse, Richard; Hood, Doris; Hoeth, Brian
2007-01-01
Graphical overlays can be created in real-time in the Advanced Weather Interactive Processing System (AWIPS) using shapefiles or DARE Graphics Metafile (DGM) files. This presentation describes how to create graphical overlays on-the-fly for AWIPS, by using two examples of AWIPS applications that were created by the Applied Meteorology Unit (AMU). The first example is the Anvil Threat Corridor Forecast Tool, which produces a shapefile that depicts a graphical threat corridor of the forecast movement of thunderstorm anvil clouds, based on the observed or forecast upper-level winds. This tool is used by the Spaceflight Meteorology Group (SMG) and 45th Weather Squadron (45 WS) to analyze the threat of natural or space vehicle-triggered lightning over a location. The second example is a launch and landing trajectory tool that produces a DGM file that plots the ground track of space vehicles during launch or landing. The trajectory tool can be used by SMG and the 45 WS forecasters to analyze weather radar imagery along a launch or landing trajectory. Advantages of both file types will be listed.
Space transportation activities in the United States
NASA Technical Reports Server (NTRS)
Gabris, Edward A.
1994-01-01
The status of the existing space transportation systems in the U.S. and options for increased capability is being examined in the context of mission requirements, options for new vehicles, cost to operate the existing vehicles, cost to develop new vehicles, and the capabilities and plans of other suppliers. This assessment is addressing the need to build and resupply the space station, to maintain necessary military assets in a rapidly changing world, and to continue a competitive commercial space transportation industry. The Department of Defense (DOD) and NASA each conducted an 'access to space' study using a common mission model but with the emphasis on their unique requirements. Both studies considered three options: maintain and improve the existing capability, build a new launch vehicle using contemporary technology, and build a new launch vehicle using advanced technology. While no decisions have been made on a course of action, it will be influenced by the availability of funds in the U.S. budget, the changing need for military space assets, the increasing competition among space launch suppliers, and the emerging opportunity for an advanced technology, low cost system and international partnerships to develop it.
Magnetic Launch Assist Experimental Track
NASA Technical Reports Server (NTRS)
1999-01-01
In this photograph, a futuristic spacecraft model sits atop a carrier on the Magnetic Launch Assist System, formerly known as the Magnetic Levitation (MagLev) System, experimental track at the Marshall Space Flight Center (MSFC). Engineers at MSFC have developed and tested Magnetic Launch Assist technologies that would use magnetic fields to levitate and accelerate a vehicle along a track at very high speeds. Similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway, a Magnetic Launch Assist system would electromagnetically drive a space vehicle along the track. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. This track is an advanced linear induction motor. Induction motors are common in fans, power drills, and sewing machines. Instead of spinning in a circular motion to turn a shaft or gears, a linear induction motor produces thrust in a straight line. Mounted on concrete pedestals, the track is 100-feet long, about 2-feet wide, and about 1.5-feet high. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.
2001-03-01
Engineers at the Marshall Space Flight Center (MSFC) have been testing Magnetic Launch Assist Systems, formerly known as Magnetic Levitation (MagLev) technologies. To launch spacecraft into orbit, a Magnetic Launch Assist system would use magnetic fields to levitate and accelerate a vehicle along a track at a very high speed. Similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway, the launch-assist system would electromagnetically drive a space vehicle along the track. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. This photograph shows a subscale model of an airplane running on the experimental track at MSFC during the demonstration test. This track is an advanced linear induction motor. Induction motors are common in fans, power drills, and sewing machines. Instead of spinning in a circular motion to turn a shaft or gears, a linear induction motor produces thrust in a straight line. Mounted on concrete pedestals, the track is 100-feet long, about 2-feet wide, and about 1.5- feet high. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.
Life Cycle Analysis of Dedicated Nano-Launch Technologies
NASA Technical Reports Server (NTRS)
Zapata, Edgar; McCleskey, Carey; Martin, John; Lepsch, Roger; Hernani, Tosoc
2014-01-01
Recent technology advancements have enabled the development of small cheap satellites that can perform useful functions in the space environment. Currently, the only low cost option for getting these payloads into orbit is through ride share programs. As a result, these launch opportunities await primary payload launches and a backlog exists. An alternative option would be dedicated nano-launch systems built and operated to provide more flexible launch services, higher availability, and affordable prices. The potential customer base that would drive requirements or support a business case includes commercial, academia, civil government and defense. Further, NASA technology investments could enable these alternative game changing options.With this context, in 2013 the Game Changing Development (GCD) program funded a NASA team to investigate the feasibility of dedicated nano-satellite launch systems with a recurring cost of less than $2 million per launch for a 5 kg payload to low Earth orbit. The team products would include potential concepts, technologies and factors for enabling the ambitious cost goal, exploring the nature of the goal itself, and informing the GCD program technology investment decision making process. This paper provides an overview of the life cycle analysis effort that was conducted in 2013 by an inter-center NASA team. This effort included the development of reference nano-launch system concepts, developing analysis processes and models, establishing a basis for cost estimates (development, manufacturing and launch) suitable to the scale of the systems, and especially, understanding the relationship of potential game changing technologies to life cycle costs, as well as other factors, such as flights per year.
Control of NASA's Space Launch System
NASA Technical Reports Server (NTRS)
VanZwieten, Tannen S.
2014-01-01
The flight control system for the NASA Space Launch System (SLS) employs a control architecture that evolved from Saturn, Shuttle & Ares I-X while also incorporating modern enhancements. This control system, baselined for the first unmanned launch, has been verified and successfully flight-tested on the Ares I-X rocket and an F/A-18 aircraft. The development of the launch vehicle itself came on the heels of the Space Shuttle retirement in 2011, and will deliver more payload to orbit and produce more thrust than any other vehicle, past or present, opening the way to new frontiers of space exploration as it carries the Orion crew vehicle, equipment, and experiments into new territories. The initial 70 metric ton vehicle consists of four RS-25 core stage engines from the Space Shuttle inventory, two 5- segment solid rocket boosters which are advanced versions of the Space Shuttle boosters, and a core stage that resembles the External Tank and carries the liquid propellant while also serving as the vehicle's structural backbone. Just above SLS' core stage is the Interim Cryogenic Propulsion Stage (ICPS), based upon the payload motor used by the Delta IV Evolved Expendable Launch Vehicle (EELV).
Testing of Twin Linear Aerospike XRS-2200 Engine
NASA Technical Reports Server (NTRS)
2001-01-01
The test of twin Linear Aerospike XRS-2200 engines, originally built for the X-33 program, was performed on August 6, 2001 at NASA's Sternis Space Center, Mississippi. The engines were fired for the planned 90 seconds and reached a planned maximum power of 85 percent. NASA's Second Generation Reusable Launch Vehicle Program , also known as the Space Launch Initiative (SLI), is making advances in propulsion technology with this third and final successful engine hot fire, designed to test electro-mechanical actuators. Information learned from this hot fire test series about new electro-mechanical actuator technology, which controls the flow of propellants in rocket engines, could provide key advancements for the propulsion systems for future spacecraft. The Second Generation Reusable Launch Vehicle Program, led by NASA's Marshall Space Flight Center in Huntsville, Alabama, is a technology development program designed to increase safety and reliability while reducing costs for space travel. The X-33 program was cancelled in March 2001.
2001-08-06
The test of twin Linear Aerospike XRS-2200 engines, originally built for the X-33 program, was performed on August 6, 2001 at NASA's Sternis Space Center, Mississippi. The engines were fired for the planned 90 seconds and reached a planned maximum power of 85 percent. NASA's Second Generation Reusable Launch Vehicle Program , also known as the Space Launch Initiative (SLI), is making advances in propulsion technology with this third and final successful engine hot fire, designed to test electro-mechanical actuators. Information learned from this hot fire test series about new electro-mechanical actuator technology, which controls the flow of propellants in rocket engines, could provide key advancements for the propulsion systems for future spacecraft. The Second Generation Reusable Launch Vehicle Program, led by NASA's Marshall Space Flight Center in Huntsville, Alabama, is a technology development program designed to increase safety and reliability while reducing costs for space travel. The X-33 program was cancelled in March 2001.
Advanced Ground Systems Maintenance Enterprise Architecture Project
NASA Technical Reports Server (NTRS)
Perotti, Jose M. (Compiler)
2015-01-01
The project implements an architecture for delivery of integrated health management capabilities for the 21st Century launch complex. The delivered capabilities include anomaly detection, fault isolation, prognostics and physics based diagnostics.
Space nuclear power applied to electric propulsion
NASA Technical Reports Server (NTRS)
Vicente, F. A.; Karras, T.; Darooka, D.; Isenberg, L.
1989-01-01
Space reactor power systems with characteristics ideal for advanced spacecraft systems applications are discussed. These characteristics are: high power-to-weight ratio (15 to 33 W/kg); high volume density (high ballistic coefficient); no preferential orientation in orbit; long operational life; high reliability; and total launch and operational safety. These characteristics allow the use of electric propulsion to raise spacecraft from low earth parking orbits to operational orbits, greatly increasing the useful orbit payload for a given launch vehicle by eliminating the need for a separation injection stage. A proposed demonstration mission is described.
NASA Technical Reports Server (NTRS)
1995-01-01
The sections in this report include: Single Stage to Orbit (SSTO) Design Ground-rules; Operations Issues and Lessons Learned; Vertical-Takeoff/Landing Versus Vertical-Takeoff/Horizontal-Landing; SSTO Design Results; SSTO Simulation Results; SSTO Assessment Results; SSTO Sizing Tool User's Guide; SSto Turnaround Assessment Report; Ground Operations Assessment First Year Executive Summary; Health Management System Definition Study; Major TA-2 Presentations; First Lunar Outpost Heavy Lift Launch Vehicle Design and Assessment; and the section, Russian Propulsion Technology Assessment Reports.
SLS Resource Reel Aug 2016 orig
2016-07-04
Space Launch System Resource Reel Description: This video includes launch animation of NASA’s Space Launch System (SLS), as well as work taking place across NASA centers and the country to build and test the various components that make up the rocket including: the 5-segment solid rocket boosters, the RS-25 rocket engines, the massive tanks that make up the Core Stage of the rocket that fuels the RS-25 engines, and upper portions of the rocket that connect the interim cryogenic propulsion stage to the Orion spacecraft. SLS, is an advanced launch vehicle for a new era of exploration beyond Earth’s orbit into deep space. SLS, the world’s most powerful rocket, will launch astronauts in the agency’s Orion spacecraft on missions to an asteroid and eventually to Mars, while opening new possibilities for other payloads including robotic scientific missions to places like Mars, Saturn and Jupiter. Graphic Information: PAO Name:Kim Henry Phone Number:256-544-1899 Email Address: kimberly.m.henry@nasa.gov
Lateral Load Testing of the Advanced Stirling Convertor (ASC-E2) Heater Head
NASA Technical Reports Server (NTRS)
Cornell, Peggy A.; Krause, David L.; Davis, Glen; Robbie, Malcolm G.; Gubics, David A.
2010-01-01
Free-piston Stirling convertors are fundamental to the development of NASA s next generation of radioisotope power system, the Advanced Stirling Radioisotope Generator (ASRG). The ASRG will use General Purpose Heat Source (GPHS) modules as the energy source and Advanced Stirling Convertors (ASCs) to convert heat into electrical energy, and is being developed by Lockheed Martin under contract to the Department of Energy. Achieving flight status mandates that the ASCs satisfy design as well as flight requirements to ensure reliable operation during launch. To meet these launch requirements, GRC performed a series of quasi-static mechanical tests simulating the pressure, thermal, and external loading conditions that will be experienced by an ASC-E2 heater head assembly. These mechanical tests were collectively referred to as "lateral load tests" since a primary external load lateral to the heater head longitudinal axis was applied in combination with the other loading conditions. The heater head was subjected to the operational pressure, axial mounting force, thermal conditions, and axial and lateral launch vehicle acceleration loadings. To permit reliable prediction of the heater head s structural performance, GRC completed Finite Element Analysis (FEA) computer modeling for the stress, strain, and deformation that will result during launch. The heater head lateral load test directly supported evaluation of the analysis and validation of the design to meet launch requirements. This paper provides an overview of each element within the test and presents assessment of the modeling as well as experimental results of this task.
Lateral Load Testing of the Advanced Stirling Convertor (ASC-E2) Heater Head
NASA Technical Reports Server (NTRS)
Cornell, Peggy A.; Krause, David L.; Davis, Glen; Robbie, Malcolm G.; Gubics, David A.
2011-01-01
Free-piston Stirling convertors are fundamental to the development of NASA s next generation of radioisotope power system, the Advanced Stirling Radioisotope Generator (ASRG). The ASRG will use General Purpose Heat Source (GPHS) modules as the energy source and Advanced Stirling Convertors (ASCs) to convert heat into electrical energy, and is being developed by Lockheed Martin under contract to the Department of Energy. Achieving flight status mandates that the ASCs satisfy design as well as flight requirements to ensure reliable operation during launch. To meet these launch requirements, GRC performed a series of quasi-static mechanical tests simulating the pressure, thermal, and external loading conditions that will be experienced by an ASC-E2 heater head assembly. These mechanical tests were collectively referred to as "lateral load tests" since a primary external load lateral to the heater head longitudinal axis was applied in combination with the other loading conditions. The heater head was subjected to the operational pressure, axial mounting force, thermal conditions, and axial and lateral launch vehicle acceleration loadings. To permit reliable prediction of the heater head s structural performance, GRC completed Finite Element Analysis (FEA) computer modeling for the stress, strain, and deformation that will result during launch. The heater head lateral load test directly supported evaluation of the analysis and validation of the design to meet launch requirements. This paper provides an overview of each element within the test and presents assessment of the modeling as well as experimental results of this task.
Lateral Load Testing of the Advanced Stirling Convertor (ASC-E2) Heater Head
NASA Technical Reports Server (NTRS)
Cornell, Peggy A.; Krause, David L.; Davis, Glen; Robbie, Malcolm G.; Gubics, David A.
2010-01-01
Free-piston Stirling convertors are fundamental to the development of NASA s next generation of radioisotope power system, the Advanced Stirling Radioisotope Generator (ASRG). The ASRG will use General Purpose Heat Source (GPHS) modules as the energy source and Advanced Stirling Convertors (ASCs) to convert heat into electrical energy, and is being developed by Lockheed Martin under contract to the Department of Energy. Achieving flight status mandates that the ASCs satisfy design as well as flight requirements to ensure reliable operation during launch. To meet these launch requirements, GRC performed a series of quasi-static mechanical tests simulating the pressure, thermal, and external loading conditions that will be experienced by an ASC E2 heater head assembly. These mechanical tests were collectively referred to as lateral load tests since a primary external load lateral to the heater head longitudinal axis was applied in combination with the other loading conditions. The heater head was subjected to the operational pressure, axial mounting force, thermal conditions, and axial and lateral launch vehicle acceleration loadings. To permit reliable prediction of the heater head s structural performance, GRC completed Finite Element Analysis (FEA) computer modeling for the stress, strain, and deformation that will result during launch. The heater head lateral load test directly supported evaluation of the analysis and validation of the design to meet launch requirements. This paper provides an overview of each element within the test and presents assessment of the modeling as well as experimental results of this task.
NASA Technical Reports Server (NTRS)
Fang, Wai-Chi; Alkalai, Leon
1996-01-01
Recent changes within NASA's space exploration program favor the design, implementation, and operation of low cost, lightweight, small and micro spacecraft with multiple launches per year. In order to meet the future needs of these missions with regard to the use of spacecraft microelectronics, NASA's advanced flight computing (AFC) program is currently considering industrial cooperation and advanced packaging architectures. In relation to this, the AFC program is reviewed, considering the design and implementation of NASA's AFC multichip module.
2001-03-01
This image shows a 1/9 subscale model vehicle clearing the Magnetic Launch Assist System, formerly referred to as the Magnetic Levitation (MagLev), test track during a demonstration test conducted at the Marshall Space Flight Center (MSFC). Engineers at MSFC have developed and tested Magnetic Launch Assist technologies. To launch spacecraft into orbit, a Magnetic Launch Assist System would use magnetic fields to levitate and accelerate a vehicle along a track at very high speeds. Similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway, a launch-assist system would electromagnetically drive a space vehicle along the track. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. This track is an advanced linear induction motor. Induction motors are common in fans, power drills, and sewing machines. Instead of spinning in a circular motion to turn a shaft or gears, a linear induction motor produces thrust in a straight line. Mounted on concrete pedestals, the track is 100-feet long, about 2-feet wide and about 1.5-feet high. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.
Equivalent Mass versus Life Cycle Cost for Life Support Technology Selection
NASA Technical Reports Server (NTRS)
Jones, Harry
2003-01-01
The decision to develop a particular life support technology or to select it for flight usually depends on the cost to develop and fly it. Other criteria - performance, safety, reliability, crew time, and risk - are considered, but cost is always an important factor. Because launch cost accounts for most of the cost of planetary missions, and because launch cost is directly proportional to the mass launched, equivalent mass has been used instead of cost to select life support technology. The equivalent mass of a life support system includes the estimated masses of the hardware and of the pressurized volume, power supply, and cooling system that the hardware requires. The equivalent mass is defined as the total payload launch mass needed to provide and support the system. An extension of equivalent mass, Equivalent System Mass (ESM), has been established for use in Advanced Life Support. A crew time mass-equivalent and sometimes other non-mass factors are added to equivalent mass to create ESM. Equivalent mass is an estimate of the launch cost only. For earth orbit rather than planetary missions, the launch cost is usually exceeded by the cost of Design, Development, Test, and Evaluation (DDT&E). Equivalent mass is used only in life support analysis. Life Cycle Cost (LCC) is much more commonly used. LCC includes DDT&E, launch, and operations costs. Since LCC includes launch cost, it is always a more accurate cost estimator than equivalent mass. The relative costs of development, launch, and operations vary depending on the mission design, destination, and duration. Since DDT&E or operations may cost more than launch, LCC may give a more accurate cost ranking than equivalent mass. To be sure of identifying the lowest cost technology for a particular mission, we should use LCC rather than equivalent mass.
The Advanced Solid Rocket Motor
NASA Technical Reports Server (NTRS)
Mitchell, Royce E.
1992-01-01
The Advanced Solid Rocket Motor will utilize improved design features and automated manufacturing methods to produce an inherently safer propulsive system for the Space Shuttle and future launch systems. This second-generation motor will also provide an additional 12,000 pounds of payload to orbit, enhancing the utility and efficiency of the Shuttle system. The new plant will feature strip-wound, asbestos-free insulation; propellant continuous mixing and casting; and extensive robotic systems. Following a series of static tests at the Stennis Space Center, MS flights are targeted to begin in early 1997.
Life cycle cost based program decisions
NASA Technical Reports Server (NTRS)
Dick, James S.
1991-01-01
The following subject areas are covered: background (space propulsion facility assessment team final report); changes (Advanced Launch System, National Aerospace Plane, and space exploration initiative); life cycle cost analysis rationale; and recommendation to panel.
Lunar base applications of superconductivity: Lunar base systems study task 3.4
NASA Technical Reports Server (NTRS)
1988-01-01
The application of superconductor technology to several key aspects of an advanced-stage Lunar Base is described. Applications in magnetic energy storage, electromagnetic launching, and radiation shielding are discussed.
Advanced Mirror Technology Development (AMTD) Project: 3.0 Year Status
NASA Technical Reports Server (NTRS)
Stahl, H. Philip
2015-01-01
Advanced Mirror Technology Development (AMTD) is a funded NASA Strategic Astrophysics Technology project. Begun in 2011, we are in Phase 2 of a multi-year effort. Our objective is to mature towards TRL6 critical technologies needed to produce 4-m or larger flight-qualified UVOIR mirrors by 2018 so that a viable astronomy mission can be considered by the 2020 Decadal Review. The developed technology must enable missions capable of both general astrophysics and ultra-high contrast observations of exoplanets. Just as JWST's architecture was driven by launch vehicle, a future UVOIR mission's architecture (monolithic, segmented or interferometric) will depend on capacities of future launch vehicles (and budget). Since we cannot predict the future, we must prepare for all potential futures. Therefore, we are pursuing multiple technology paths. AMTD uses a science-driven systems engineering approach. We mature technologies required to enable the highest priority science AND result in a high-performance low-cost low-risk system. One of our key accomplishments is that we have derived engineering specifications for advanced normal-incidence monolithic and segmented mirror systems needed to enable both general astrophysics and ultra-high contrast observations of exoplanets missions as a function of potential launch vehicle and its inherent mass and volume constraints. Another key accomplishment is that we have matured our technology by building and testing hardware. To demonstrate stacked core technology, we built a 400 mm thick mirror. Currently, to demonstrate lateral scalability, we are manufacturing a 1.5 meter mirror. To assist in architecture trade studies, the Engineering team develops Structural, Thermal and Optical Performance (STOP) models of candidate mirror assembly systems including substrates, structures, and mechanisms. These models are validated by test of full- and subscale components in relevant thermo-vacuum environments. Specific analyses include: maximum mirror substrate size, first fundamental mode frequency (i.e., stiffness) and mass required to fabricate without quilting, survive launch, and achieve stable pointing and maximum thermal time constant.
Finite element method for optimal guidance of an advanced launch vehicle
NASA Technical Reports Server (NTRS)
Hodges, Dewey H.; Bless, Robert R.; Calise, Anthony J.; Leung, Martin
1992-01-01
A temporal finite element based on a mixed form of Hamilton's weak principle is summarized for optimal control problems. The resulting weak Hamiltonian finite element method is extended to allow for discontinuities in the states and/or discontinuities in the system equations. An extension of the formulation to allow for control inequality constraints is also presented. The formulation does not require element quadrature, and it produces a sparse system of nonlinear algebraic equations. To evaluate its feasibility for real-time guidance applications, this approach is applied to the trajectory optimization of a four-state, two-stage model with inequality constraints for an advanced launch vehicle. Numerical results for this model are presented and compared to results from a multiple-shooting code. The results show the accuracy and computational efficiency of the finite element method.
2011-10-28
NASA Deputy Administrator Lori Garver, left, watches the launch of the National Polar-orbiting Operational Environmental Satellite System Preparatory Project (NPP) at the National Oceanic and Atmospheric Administration (NOAA) Satellite Operations Center on Friday, Oct. 28, 2011 in Suitland, Md. U.S Congresswoman Donna Edwards, D-Md., is seen next to Garver. NPP is a joint venture between NASA and NOAA, and is the nation's newest Earth-observing satellite, which will provide data on climate change science, allow for accurate weather forecasts and advance warning for severe weather. NPP was launched from Vandenberg Air Force Base in California. Photo Credit: (NASA/Carla Cioffi)
2011-10-28
Dr. Kathy Sullivan, center, Deputy Administrator of the National Oceanic and Atmospheric Administration (NOAA) and former NASA astronaut is interviewed by a local television network at NOAA's Satellite Operations Facility in Suitland, Md. after the successful launch of the National Polar-orbiting Operational Environmental Satellite System Preparatory Project (NPP) on Friday, Oct. 28, 2011. NPP is a joint venture between NASA and NOAA, and is the nation's newest Earth-observing satellite, which will provide data on climate change science, allow for accurate weather forecasts and advance warning for severe weather. NPP was launched from Vandenberg Air Force Base in California. Photo Credit: (NASA/Carla Cioffi)
Aerogel Insulation Systems for Space Launch Applications
NASA Technical Reports Server (NTRS)
Fesmire, James E.
2005-01-01
New developments in materials science in the areas of solution gelation processes and nanotechnology have led to the recent commercial production of aerogels. Concurrent with these advancements has been the development of new approaches to cryogenic thermal insulation systems. For example, thermal and physical characterizations of aerogel beads under cryogenic-vacuum conditions have been performed at the Cryogenics Test Laboratory of the NASA Kennedy Space Center. Aerogel-based insulation system demonstrations have also been conducted to improve performance for space launch applications. Subscale cryopumping experiments show the thermal insulating ability of these fully breathable nanoporous materials. For a properly executed thermal insulation system, these breathable aerogel systems are shown to not cryopump beyond the initial cooldown and thermal stabilization phase. New applications are being developed to augment the thermal protection systems of space launch vehicles, including the Space Shuttle External Tank. These applications include a cold-boundary temperature of 90 K with an ambient air environment in which both weather and flight aerodynamics are important considerations. Another application is a nitrogen-purged environment with a cold-boundary temperature of 20 K where both initial cooldown and launch ascent profiles must be considered. Experimental results and considerations for these flight system applications are discussed.
Design for Safety - The Ares Launch Vehicles Paradigm Change
NASA Technical Reports Server (NTRS)
Safie, Fayssal M.; Maggio, Gaspare
2010-01-01
The lessons learned from the S&MA early involvement in the Ares I launch vehicle design phases proved that performing an in-line function jointly with engineering is critical for S&MA to have an effective role in supporting the system, element, and component design. These lessons learned were used to effectively support the Ares V conceptual design phase and planning for post conceptual design phases. The Top level Conceptual LOM assessment for Ares V performed by the S&MA community jointly with the engineering Advanced Concept Office (ACO) was influential in the final selection of the Ares V system configuration. Post conceptual phase, extensive reliability effort should be planned to support future Heavy Lift Launch Vehicles (HLLV) design. In-depth reliability analysis involving the design, manufacturing, and system engineering communities is critical to understand design and process uncertainties and system integrated failures.
NASA's Launch Propulsion Systems Technology Roadmap
NASA Technical Reports Server (NTRS)
McConnaughey, Paul K.; Femminineo, Mark G.; Koelfgen, Syri J.; Lepsch, Roger A; Ryan, Richard M.; Taylor, Steven A.
2012-01-01
Safe, reliable, and affordable access to low-Earth (LEO) orbit is necessary for all of the United States (US) space endeavors. In 2010, NASA s Office of the Chief Technologist commissioned 14 teams to develop technology roadmaps that could be used to guide the Agency s and US technology investment decisions for the next few decades. The Launch Propulsion Systems Technology Area (LPSTA) team was tasked to address the propulsion technology challenges for access to LEO. The developed LPSTA roadmap addresses technologies that enhance existing solid or liquid propulsion technologies and their related ancillary systems or significantly advance the technology readiness level (TRL) of less mature systems like airbreathing, unconventional, and other launch technologies. In developing this roadmap, the LPSTA team consulted previous NASA, military, and industry studies as well as subject matter experts to develop their assessment of this field, which has fundamental technological and strategic impacts for US space capabilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitehorn, Will
The talk will explore a little of the history of space launch systems and rocketry, will explain why commercial space tourism did not take off after Apollo, and what is happening right now with commercial space systems such as Virgin's, utilising advances in aerospace technology not exploited by conventional ground-based rocket systems. I will then explain the Virgin Galactic technology, its business plan as a US-regulated space tourism company, and the nature of its applications. I will then go on to say a little of how our system can be utilised for sub-orbital space science based on a commercial business plan
Whitehorn, Will
2017-12-15
The talk will explore a little of the history of space launch systems and rocketry, will explain why commercial space tourism did not take off after Apollo, and what is happening right now with commercial space systems such as Virgin's, utilising advances in aerospace technology not exploited by conventional ground-based rocket systems. I will then explain the Virgin Galactic technology, its business plan as a US-regulated space tourism company, and the nature of its applications. I will then go on to say a little of how our system can be utilised for sub-orbital space science based on a commercial business plan
Athena: Advanced air launched space booster
NASA Astrophysics Data System (ADS)
Booker, Corey G.; Ziemer, John; Plonka, John; Henderson, Scott; Copioli, Paul; Reese, Charles; Ullman, Christopher; Frank, Jeremy; Breslauer, Alan; Patonis, Hristos
1994-06-01
The infrastructure for routine, reliable, and inexpensive access of space is a goal that has been actively pursued over the past 50 years, but has yet not been realized. Current launch systems utilize ground launching facilities which require the booster vehicle to plow up through the dense lower atmosphere before reaching space. An air launched system on the other hand has the advantage of being launched from a carrier aircraft above this dense portion of the atmosphere and hence can be smaller and lighter compared to its ground based counterpart. The goal of last year's Aerospace Engineering Course 483 (AE 483) was to design a 227,272 kg (500,000 lb.) air launched space booster which would beat the customer's launch cost on existing launch vehicles by at least 50 percent. While the cost analysis conducted by the class showed that this goal could be met, the cost and size of the carrier aircraft make it appear dubious that any private company would be willing to invest in such a project. To avoid this potential pitfall, this year's AE 483 class was to design as large an air launched space booster as possible which can be launched from an existing or modification to an existing aircraft. An initial estimate of the weight of the booster is 136,363 kg (300,000 lb.) to 159,091 kg (350,000 lb.).
Athena: Advanced air launched space booster
NASA Technical Reports Server (NTRS)
Booker, Corey G.; Ziemer, John; Plonka, John; Henderson, Scott; Copioli, Paul; Reese, Charles; Ullman, Christopher; Frank, Jeremy; Breslauer, Alan; Patonis, Hristos
1994-01-01
The infrastructure for routine, reliable, and inexpensive access of space is a goal that has been actively pursued over the past 50 years, but has yet not been realized. Current launch systems utilize ground launching facilities which require the booster vehicle to plow up through the dense lower atmosphere before reaching space. An air launched system on the other hand has the advantage of being launched from a carrier aircraft above this dense portion of the atmosphere and hence can be smaller and lighter compared to its ground based counterpart. The goal of last year's Aerospace Engineering Course 483 (AE 483) was to design a 227,272 kg (500,000 lb.) air launched space booster which would beat the customer's launch cost on existing launch vehicles by at least 50 percent. While the cost analysis conducted by the class showed that this goal could be met, the cost and size of the carrier aircraft make it appear dubious that any private company would be willing to invest in such a project. To avoid this potential pitfall, this year's AE 483 class was to design as large an air launched space booster as possible which can be launched from an existing or modification to an existing aircraft. An initial estimate of the weight of the booster is 136,363 kg (300,000 lb.) to 159,091 kg (350,000 lb.).
1997-04-25
The GOES-K weather satellite lifts off from Launch Pad 36B at Cape Canaveral Air Station on an Atlas 1 rocket (AC-79) at 1:49 a.m. EDT April 25. The GOES-K is the third spacecraft to be launched in the new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration (NOAA). The GOES-K is built for NASA and NOAA by Space Systems/LORAL of Palo Alto, Calif. The advanced weather satellite was built and launched for NOAA under technical guidance and project management by NASA’s Goddard Space Flight Center. Once it is in geosynchronous orbit at 22,240 miles above the Earth’s equator at 105 degrees West Longitude and undergoes its final checkout, the GOES-K will be designated GOES-10. The primary objective of the GOES-K launch is to provide a full-capability satellite in an on-orbit storage condition to assure NOAA backup continuity in weather coverage of the Earth in case one of the existing two operational GOES satellites now in orbit begins to malfunction
1997-04-25
The GOES-K weather satellite lifts off from Launch Pad 36B at Cape Canaveral Air Station on an Atlas 1 rocket (AC-79) at 1:49 a.m. EDT April 25. The GOES-K is the third spacecraft to be launched in the new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration (NOAA). The GOES-K is built for NASA and NOAA by Space Systems/LORAL of Palo Alto, Calif. The advanced weather satellite was built and launched for NOAA under technical guidance and project management by NASA’s Goddard Space Flight Center. Once it is in geosynchronous orbit at 22,240 miles above the Earth’s equator at 105 degrees West Longitude and undergoes its final checkout, the GOES-K will be designated GOES-10. The primary objective of the GOES-K launch is to provide a full-capability satellite in an on-orbit storage condition to assure NOAA backup continuity in weather coverage of the Earth in case one of the existing two operational GOES satellites now in orbit begins to malfunction
1997-04-25
The GOES-K weather satellite lifts off from Launch Pad 36B at Cape Canaveral Air Station on an Atlas 1 rocket (AC-79) at 1:49 a.m. EDT April 25. The GOES-K is the third spacecraft to be launched in the new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration (NOAA). The GOES-K is built for NASA and NOAA by Space Systems/LORAL of Palo Alto, Calif. The advanced weather satellite was built and launched for NOAA under technical guidance and project management by NASA’s Goddard Space Flight Center. Once it is in geosynchronous orbit at 22,240 miles above the Earth’s equator at 105 degrees West Longitude and undergoes its final checkout, the GOES-K will be designated GOES-10. The primary objective of the GOES-K launch is to provide a full-capability satellite in an on-orbit storage condition to assure NOAA backup continuity in weather coverage of the Earth in case one of the existing two operational GOES satellites now in orbit begins to malfunction
1997-04-25
The GOES-K weather satellite lifts off from Launch Pad 36B at Cape Canaveral Air Station on an Atlas 1 rocket (AC-79) at 1:49 a.m. EDT April 25. The GOES-K is the third spacecraft to be launched in the new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration (NOAA). The GOES-K is built for NASA and NOAA by Space Systems/LORAL of Palo Alto, Calif. The advanced weather satellite was built and launched for NOAA under technical guidance and project management by NASA’s Goddard Space Flight Center. Once it is in geosynchronous orbit at 22,240 miles above the Earth’s equator at 105 degrees West Longitude and undergoes its final checkout, the GOES-K will be designated GOES-10. The primary objective of the GOES-K launch is to provide a full-capability satellite in an on-orbit storage condition to assure NOAA backup continuity in weather coverage of the Earth in case one of the existing two operational GOES satellites now in orbit begins to malfunction
1997-04-25
The GOES-K weather satellite lifts off from Launch Pad 36B at Cape Canaveral Air Station on an Atlas 1 rocket (AC-79) at 1:49 a.m. EDT April 25. The GOES-K is the third spacecraft to be launched in the new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration (NOAA). The GOES-K is built for NASA and NOAA by Space Systems/LORAL of Palo Alto, Calif. The advanced weather satellite was built and launched for NOAA under technical guidance and project management by NASA’s Goddard Space Flight Center. Once it is in geosynchronous orbit at 22,240 miles above the Earth’s equator at 105 degrees West Longitude and undergoes its final checkout, the GOES-K will be designated GOES-10. The primary objective of the GOES-K launch is to provide a full-capability satellite in an on-orbit storage condition to assure NOAA backup continuity in weather coverage of the Earth in case one of the existing two operational GOES satellites now in orbit begins to malfunction
NASA Technical Reports Server (NTRS)
McCurry, J. B.
1995-01-01
The purpose of the TA-2 contract was to provide advanced launch vehicle concept definition and analysis to assist NASA in the identification of future launch vehicle requirements. Contracted analysis activities included vehicle sizing and performance analysis, subsystem concept definition, propulsion subsystem definition (foreign and domestic), ground operations and facilities analysis, and life cycle cost estimation. The basic period of performance of the TA-2 contract was from May 1992 through May 1993. No-cost extensions were exercised on the contract from June 1993 through July 1995. This document is part of the final report for the TA-2 contract. The final report consists of three volumes: Volume 1 is the Executive Summary, Volume 2 is Technical Results, and Volume 3 is Program Cost Estimates. The document-at-hand, Volume 3, provides a work breakdown structure dictionary, user's guide for the parametric life cycle cost estimation tool, and final report developed by ECON, Inc., under subcontract to Lockheed Martin on TA-2 for the analysis of heavy lift launch vehicle concepts.
NASA Technical Reports Server (NTRS)
Garbeff, Theodore J., II; Baerny, Jennifer K.
2017-01-01
The following details recent efforts undertaken at the NASA Ames Unitary Plan wind tunnels to design and deploy an advanced, production-level infrared (IR) flow visualization data system. Highly sensitive IR cameras, coupled with in-line image processing, have enabled the visualization of wind tunnel model surface flow features as they develop in real-time. Boundary layer transition, shock impingement, junction flow, vortex dynamics, and buffet are routinely observed in both transonic and supersonic flow regimes all without the need of dedicated ramps in test section total temperature. Successful measurements have been performed on wing-body sting mounted test articles, semi-span floor mounted aircraft models, and sting mounted launch vehicle configurations. The unique requirements of imaging in production wind tunnel testing has led to advancements in the deployment of advanced IR cameras in a harsh test environment, robust data acquisition storage and workflow, real-time image processing algorithms, and evaluation of optimal surface treatments. The addition of a multi-camera IR flow visualization data system to the Ames UPWT has demonstrated itself to be a valuable analyses tool in the study of new and old aircraft/launch vehicle aerodynamics and has provided new insight for the evaluation of computational techniques.
Space Congress, 29th, Cocoa Beach, FL, Apr. 21-24, 1992, Proceedings
NASA Technical Reports Server (NTRS)
1992-01-01
The present volume on the quest for new frontiers in space discusses weather impacts on space operations, planning for the performance of future space bases, a new guidance and control unit for the Titan IV vehicle, and nondestructive evaluation of Shuttle Columbia tiles. Attention is given to Space Shuttle payload accommodations and trends in customer demands, a generic propellants transfer unit, making space part of general education, space station on-orbit solar array loads during assembly, and dimensional stability of the attitude reference assembly on SSF. Topics addressed include National Launch System payload accommodations and launch operations, the integrated factory/launch site processing concept, Pioneer 10 interstellar studies, and the role of advanced nuclear propulsion systems in precursor interstellar missions. Also discussed are legal challenges in realizing interstellar initiatives, Mars transportation system synthesis, and NASA's commercial space program.
Advanced mobile satellite communications using COMETS satellite in MM-wave and Ka-band
NASA Technical Reports Server (NTRS)
Ohmori, Shingo; Isobe, Shunkichi; Takeuchi, Makoto; Naito, Hideyuki
1993-01-01
Early in the 21st century, the demand for personal communications using mobile, hand-held, and VSAT terminals will rapidly increase. In a future system, many different types of services should be provided with one-hop connection. The Communications Research Laboratory (CRL) has studied a future advanced mobile satellite communications system using millimeter wave and Ka band. In 1990, CRL started the Communications and Broadcasting Engineering Test Satellite (COMETS) project. The satellite has been developed in conjunction with NASDA and will be launched in 1997. This paper describes the COMETS payload configuration and the experimental system for the advanced mobile communications mission.
LANDSAT D to test thematic mapper, inaugurate operational system
NASA Technical Reports Server (NTRS)
1982-01-01
NASA will launch the Landsat D spacecraft on July 9, 1982 aboard a new, up-rated Delta 3920 expendable launch vehicle. LANDSAT D will incorporate two highly sophisticated sensors; the flight proven multispectral scanner; and a new instrument expected to advance considerably the remote sensing capabilities of Earth resources satellites. The new sensor, the thematic mapper, provides data in seven spectral (light) bands with greatly improved spectral, spatial and radiometric resolution.
2008-03-15
A CONCEPT IMAGE SHOWS THE ARES I CREW LAUNCH VEHICLE DURING ASCENT. ARES I IS AN IN-LINE, TWO-STAGE ROCKET CONFIGURATION TOPED BY THE ORION CREW EXPLORATION VEHICLE AND LAUNCH ABORT SYSTEM. THE ARES I FIRST STAGE IS A SINGLE, FIVE-SEGMENT REUSABLE SOLID ROCKET BOOSTER, DERIVED FROM THE SPACE SHUTTLE. ITS UPPER STAGE IS POWERED BY A J-2X ENGINE. ARES I WILL CARRY THE ORION WITH ITS CRW OF UP TO SIX ASTRONAUTS TO EARTH ORBIT.
NASA Technical Reports Server (NTRS)
Crumbly, Christopher M.; Craig, Kellie D.
2011-01-01
The intent of the Advanced Booster Engineering Demonstration and/or Risk Reduction (ABEDRR) effort is to: (1) Reduce risks leading to an affordable Advanced Booster that meets the evolved capabilities of SLS (2) Enable competition by mitigating targeted Advanced Booster risks to enhance SLS affordability. Key Concepts (1) Offerors must propose an Advanced Booster concept that meets SLS Program requirements (2) Engineering Demonstration and/or Risk Reduction must relate to the Offeror s Advanced Booster concept (3) NASA Research Announcement (NRA) will not be prescriptive in defining Engineering Demonstration and/or Risk Reduction
NASA Technical Reports Server (NTRS)
Frisbee, Robert H.
1996-01-01
This presentation describes a number of advanced space propulsion technologies with the potential for meeting the need for dramatic reductions in the cost of access to space, and the need for new propulsion capabilities to enable bold new space exploration (and, ultimately, space exploitation) missions of the 21st century. For example, current Earth-to-orbit (e.g., low Earth orbit, LEO) launch costs are extremely high (ca. $10,000/kg); a factor 25 reduction (to ca. $400/kg) will be needed to produce the dramatic increases in space activities in both the civilian and government sectors identified in the Commercial Space Transportation Study (CSTS). Similarly, in the area of space exploration, all of the relatively 'easy' missions (e.g., robotic flybys, inner solar system orbiters and landers; and piloted short-duration Lunar missions) have been done. Ambitious missions of the next century (e.g., robotic outer-planet orbiters/probes, landers, rovers, sample returns; and piloted long-duration Lunar and Mars missions) will require major improvements in propulsion capability. In some cases, advanced propulsion can enable a mission by making it faster or more affordable, and in some cases, by directly enabling the mission (e.g., interstellar missions). As a general rule, advanced propulsion systems are attractive because of their low operating costs (e.g., higher specific impulse, ISD) and typically show the most benefit for relatively 'big' missions (i.e., missions with large payloads or AV, or a large overall mission model). In part, this is due to the intrinsic size of the advanced systems as compared to state-of-the-art (SOTA) chemical propulsion systems. Also, advanced systems often have a large 'infrastructure' cost, either in the form of initial R&D costs or in facilities hardware costs (e.g., laser or microwave transmission ground stations for beamed energy propulsion). These costs must then be amortized over a large mission to be cost-competitive with a SOTA system with a low initial development and infrastructure cost and a high operating cost. Note however that this has resulted in a 'Catch 22' standoff between the need for large initial investment that is amortized over many launches to reduce costs, and the limited number of launches possible at today's launch costs. Some examples of missions enabled (either in cost or capability) by advanced propulsion include long-life station-keeping or micro-spacecraft applications using electric propulsion or BMDO-derived micro-thrusters, low-cost orbit raising (LEO to GEO or Lunar orbit) using electric propulsion, robotic planetary missions using aerobraking or electric propulsion, piloted Mars missions using aerobraking and/or propellant production from Martian resources, very fast (100-day round-trip) piloted Mars missions using fission or fusion propulsion, and, finally, interstellar missions using fusion, antimatter, or beamed energy. The NASA Advanced Propulsion Technology program at the Jet Propulsion Laboratory (JPL) is aimed at assessing the feasibility of a range of near-term to far term advanced propulsion technologies that have the potential to reduce costs and/or enable future space activities. The program includes cooperative modeling and research activities between JPL and various universities and industry; and directly supported independent research at universities and industry. The cooperative program consists of mission studies, research and development of ion engine technology using C60 (Buckminsterfullerene) propellant, and research and development of lithium-propellant Lorentz-force accelerator (LFA) engine technology. The university/industry-supported research includes modeling and proof-of-concept experiments in advanced, high-lsp, long-life electric propulsion, and in fusion propulsion.
Orion Journey to Mars, L-2 Briefing
2014-12-02
At NASA's Kennedy Space Center in Florida, NASA leaders spoke to members of the news media about how the first flight of the new Orion spacecraft is a first step in the agency's plans to send humans to Mars. At Kennedy's News Center auditorium from the left are: Mike Curie of NASA Public Affairs, Mike Bolger, program manager of Ground Systems Development and Operations Program, and Chris Crumbly, manager of Space Launch System Spacecraft/Payload Integration and Evolution. Participating via video from the agency's headquarters in Washington included Jason Crusan, director of Advanced Exploration Systems Division of Human Exploration and Operations Mission Directorate, seen on the monitor on the right. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket.
Assessment of Advanced Logistics Delivery System (ALDS) Launch Systems Concepts
2004-10-01
highest force vs. rotor weight required, allows much higher magnetic field generation than the linear induction or linear permanent magnet motors , and...provides the highest force vs. rotor weight required, allows much higher magnetic generation than the linear induction or linear permanent magnet motors , and
2013-02-22
FROM LEFT, NASA ADMINISTRATOR CHARLES BOLDEN LISTENS TO MARSHALL MATERIALS ENGINEER NANCY TOLLIVER; JOHN VICKERS, MANAGER OF THE NATIONAL CENTER FOR ADVANCED MANUFACTURING; AND MARSHALL FLIGHT SYSTEMS DESIGN ENGINEER ROB BLACK AS THEY BRIEF HIM ON THE USE OF 3-D PRINTING AND PROTOTYPING TECHNOLOGY TO CREATE PARTS FOR THE SPACE LAUNCH SYSTEM
ERIC Educational Resources Information Center
Anderson, Talea
2015-01-01
In 2013-2014, Brooks Library at Central Washington University (CWU) launched library content in three systems: a digital asset-management system, an institutional repository (IR), and a web-based discovery layer. In early 2014, the archives at the library began to use these systems to disseminate media recently digitized from legacy formats. As…
Space Logistics: Launch Capabilities
NASA Technical Reports Server (NTRS)
Furnas, Randall B.
1989-01-01
The current maximum launch capability for the United States are shown. The predicted Earth-to-orbit requirements for the United States are presented. Contrasting the two indicates the strong National need for a major increase in Earth-to-orbit lift capability. Approximate weights for planned payloads are shown. NASA is studying the following options to meet the need for a new heavy-lift capability by mid to late 1990's: (1) Shuttle-C for near term (include growth versions); and (2) the Advanced Lauching System (ALS) for the long term. The current baseline two-engine Shuttle-C has a 15 x 82 ft payload bay and an expected lift capability of 82,000 lb to Low Earth Orbit. Several options are being considered which have expanded diameter payload bays. A three-engine Shuttle-C with an expected lift of 145,000 lb to LEO is being evaluated as well. The Advanced Launch System (ALS) is a potential joint development between the Air Force and NASA. This program is focused toward long-term launch requirements, specifically beyond the year 2000. The basic approach is to develop a family of vehicles with the same high reliability as the Shuttle system, yet offering a much greater lift capability at a greatly reduced cost (per pound of payload). The ALS unmanned family of vehicles will provide a low end lift capability equivalent to Titan IV, and a high end lift capability greater than the Soviet Energia if requirements for such a high-end vehicle are defined.In conclusion, the planning of the next generation space telescope should not be constrained to the current launch vehicles. New vehicle designs will be driven by the needs of anticipated heavy users.
PVDF flux/mass/velocity/trajectory systems and their applications in space
NASA Technical Reports Server (NTRS)
Tuzzolino, Anthony J.
1994-01-01
The current status of the University of Chicago Polyvinylidene Fluoride (PVDF) flux/mass/velocity/trajectory instrumentation is summarized. The particle response and thermal stability characteristics of pure PVDF and PVDF copolymer sensors are described, as well as the characteristics of specially constructed two-dimensional position-sensing PVDF sensors. The performance of high-flux systems and of velocity/trajectory systems using these sensors is discussed, and the objectives and designs of a PVDF velocity/trajectory dust instrument for launch on the Advanced Research and Global Observation Satellite (ARGOS) in 1995 and of a high-flux dust instrument for launch on the Cassini spacecraft to Saturn in 1997 are summarized.
1999-10-01
In this photograph, a futuristic spacecraft model sits atop a carrier on the Magnetic Launch Assist System, formerly known as the Magnetic Levitation (MagLev) System, experimental track at the Marshall Space Flight Center (MSFC). Engineers at MSFC have developed and tested Magnetic Launch Assist technologies that would use magnetic fields to levitate and accelerate a vehicle along a track at very high speeds. Similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway, a Magnetic Launch Assist system would electromagnetically drive a space vehicle along the track. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. This track is an advanced linear induction motor. Induction motors are common in fans, power drills, and sewing machines. Instead of spinning in a circular motion to turn a shaft or gears, a linear induction motor produces thrust in a straight line. Mounted on concrete pedestals, the track is 100-feet long, about 2-feet wide, and about 1.5-feet high. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.
The Road from the NASA Access to Space Study to a Reusable Launch Vehicle
NASA Technical Reports Server (NTRS)
Powell, Richard W.; Cook, Stephen A.; Lockwood, Mary Kae
1998-01-01
NASA is cooperating with the aerospace industry to develop a space transportation system that provides reliable access-to-space at a much lower cost than is possible with today's launch vehicles. While this quest has been on-going for many years it received a major impetus when the U.S. Congress mandated as part of the 1993 NASA appropriations bill that: "In view of budget difficulties, present and future..., the National Aeronautics and Space Administration shall ... recommend improvements in space transportation." NASA, working with other organizations, including the Department of Transportation, and the Department of Defense identified three major transportation architecture options that were to be evaluated in the areas of reliability, operability and cost. These architectural options were: (1) retain and upgrade the Space Shuttle and the current expendable launch vehicles; (2) develop new expendable launch vehicles using conventional technologies and transition to these new vehicles beginning in 2005; and (3) develop new reusable vehicles using advanced technology, and transition to these vehicles beginning in 2008. The launch needs mission model was based on 1993 projections of civil, defense, and commercial payload requirements. This "Access to Space" study concluded that the option that provided the greatest potential for meeting the cost, operability, and reliability goals was a rocket-powered single-stage-to-orbit fully reusable launch vehicle (RLV) fleet designed with advanced technologies.
NASA's Space Launch System: An Evolving Capability for Exploration
NASA Technical Reports Server (NTRS)
Creech, Stephen D.; Robinson, Kimberly F.
2016-01-01
A foundational capability for international human deep-space exploration, NASA's Space Launch System (SLS) vehicle represents a new spaceflight infrastructure asset, creating opportunities for mission profiles and space systems that cannot currently be executed. While the primary purpose of SLS, which is making rapid progress towards initial launch readiness in two years, will be to support NASA's Journey to Mars, discussions are already well underway regarding other potential utilization of the vehicle's unique capabilities. In its initial Block 1 configuration, capable of launching 70 metric tons (t) to low Earth orbit (LEO), SLS will propel the Orion crew vehicle to cislunar space, while also delivering small CubeSat-class spacecraft to deep-space destinations. With the addition of a more powerful upper stage, the Block 1B configuration of SLS will be able to deliver 105 t to LEO and enable more ambitious human missions into the proving ground of space. This configuration offers opportunities for launching co-manifested payloads with the Orion crew vehicle, and a class of secondary payloads, larger than today's CubeSats. Further upgrades to the vehicle, including advanced boosters, will evolve its performance to 130 t in its Block 2 configuration. Both Block 1B and Block 2 also offer the capability to carry 8.4- or 10-m payload fairings, larger than any contemporary launch vehicle. With unmatched mass-lift capability, payload volume, and C3, SLS not only enables spacecraft or mission designs currently impossible with contemporary EELVs, it also offers enhancing benefits, such as reduced risk, operational costs and/or complexity, shorter transit time to destination or launching large systems either monolithically or in fewer components. This paper will discuss both the performance and capabilities of Space Launch System as it evolves, and the current state of SLS utilization planning.
Life Cycle Analysis of Dedicated Nano-Launch Technologies
NASA Technical Reports Server (NTRS)
Zapata, Edgar; McCleskey, Carey (Editor); Martin, John; Lepsch, Roger; Ternani, Tosoc
2014-01-01
Recent technology advancements have enabled the development of small cheap satellites that can perform useful functions in the space environment. Currently, the only low cost option for getting these payloads into orbit is through ride share programs - small satellites awaiting the launch of a larger satellite, and then riding along on the same launcher. As a result, these small satellite customers await primary payload launches and a backlog exists. An alternative option would be dedicated nano-launch systems built and operated to provide more flexible launch services, higher availability, and affordable prices. The potential customer base that would drive requirements or support a business case includes commercial, academia, civil government and defense. Further, NASA technology investments could enable these alternative game changing options. With this context, in 2013 the Game Changing Development (GCD) program funded a NASA team to investigate the feasibility of dedicated nano-satellite launch systems with a recurring cost of less than $2 million per launch for a 5 kg payload to low Earth orbit. The team products would include potential concepts, technologies and factors for enabling the ambitious cost goal, exploring the nature of the goal itself, and informing the GCD program technology investment decision making process. This paper provides an overview of the life cycle analysis effort that was conducted in 2013 by an inter-center NASA team. This effort included the development of reference nano-launch system concepts, developing analysis processes and models, establishing a basis for cost estimates (development, manufacturing and launch) suitable to the scale of the systems, and especially, understanding the relationship of potential game changing technologies to life cycle costs, as well as other factors, such as flights per year.
Launch vehicle and power level impacts on electric GEO insertion
NASA Technical Reports Server (NTRS)
Oleson, Steven R.; Myers, Roger M.
1996-01-01
Solar Electric Propulsion (SEP) has been shown to increase net geosynchronous spacecraft mass when used for station keeping and final orbit insertion. The impact of launch vehicle selection and power level on the benefits of this approach were examined for 20 and 25 kW systems launched using the Ariane 5, Atlas IIAR, Long March, Proton, and Sea Launch vehicles. Two advanced on-board propulsion technologies, 5 kW ion and Hall thruster systems, were used to establish the relative merits of the technologies and launch vehicles. GaAs solar arrays were assumed. The analysis identifies the optimal starting orbits for the SEP orbit raising/plane changing while considering the impacts of radiation degradation in the Van Allen belts, shading, power degradation, and oblateness. This use of SEP to provide part of the orbit insertion results in net mass increases of 15 - 38% and 18 - 46% for one to two month trip times, respectively, over just using SEP for 15 years of north/south station keeping. SEP technology was shown to have a greater impact on net masses of launch vehicles with higher launch latitudes when avoidance of solar array and payload degradation is desired. This greater impact of SEP could help reduce the plane changing disadvantage of high latitude launch sites. Comparison with results for 10 and 15 kW systems show clear benefits of incremental increases in SEP power level, suggesting that an evolutionary approach to high power SEP for geosynchronous spacecraft is possible.
An Approach to Establishing System Benefits for Technologies In NASA's Spaceliner Investment Area
NASA Technical Reports Server (NTRS)
Hueter, Uwe; Pannell, Bill; Lyles, Garry M. (Technical Monitor)
2001-01-01
NASA's has established long term goals for access-to-space. The third generation launch systems are to be fully reusable and operational around 2025. The goals for the third generation launch system are to significantly reduce cost and improve safety over current systems. The Advanced Space Transportation Program Office (ASTP) at the NASA's Marshall Space Flight Center in Huntsville, AL has the agency lead to develop space transportation technologies. Within ASTP, under the Spaceliner Investment Area, third generation technologies are being pursued. The Spaceliner Investment Area's primary objective is to mature vehicle technologies to enable substantial increases in the design and operating margins of third generation RLVs (current Space Shuttle is considered the first generation RLV) by incorporating advanced propulsion systems, materials, structures, thermal protection systems, power, and avionics technologies. Advancements in design tools and better characterization of the operational environment will result in reduced design and operational variabilities leading to improvements in margins. Improvements in operational efficiencies will be obtained through the introduction of integrated vehicle health management, operations and range technologies. Investments in these technologies will enable the reduction in the high operational costs associated with today's vehicles by allowing components to operate well below their design points resulting in improved component operating life, reliability, and safety which in turn reduces both maintenance and refurbishment costs. The introduction of advanced technologies may enable horizontal takeoff by significantly reducing the takeoff weight and allowing use of existing infrastructure. This would be a major step toward the goal of airline-like operation. These factors in conjunction with increased flight rates, resulting from reductions in transportation costs, will result in significant improvements of future vehicles. The real-world problem is that resources are limited and technologies need to be prioritized to assure the resources are spent on technologies that provide the highest system level benefits. Toward that end, a systems approach is being taken to determine the benefits of technologies for the Spaceliner Investment Area. Technologies identified to be enabling will be funded. However, the other technologies will be funded based on their system's benefits. Since the final launch system concept will not be decided for many years, several vehicle concepts are being evaluated to determine technology benefits. Not only performance, but also cost and operability are being assessed. This will become an annual process to assess these technologies against their goals and the benefits to various launch systems concepts. The paper describes the system process, tools and concepts used to determine the technology benefits. Preliminary results will be presented along with the current technology investments that are being made by ASTP's Spaceliner Investment Area.
Small Space Launch: Origins & Challenges
NASA Astrophysics Data System (ADS)
Freeman, T.; Delarosa, J.
2010-09-01
The United States Space Situational Awareness capability continues to be a key element in obtaining and maintaining the high ground in space. Space Situational Awareness satellites are critical enablers for integrated air, ground and sea operations, and play an essential role in fighting and winning conflicts. The United States leads the world space community in spacecraft payload systems from the component level into spacecraft, and in the development of constellations of spacecraft. In the area of launch systems that support Space Situational Awareness, despite the recent development of small launch vehicles, the United States launch capability is dominated by an old, unresponsive and relatively expensive set of launchers in the Expandable, Expendable Launch Vehicles (EELV) platforms; Delta IV and Atlas V. The United States directed Air Force Space Command to develop the capability for operationally responsive access to space and use of space to support national security, including the ability to provide critical space capabilities in the event of a failure of launch or on-orbit capabilities. On 1 Aug 06, Air Force Space Command activated the Space Development & Test Wing (SDTW) to perform development, test and evaluation of Air Force space systems and to execute advanced space deployment and demonstration projects to exploit new concepts and technologies, and rapidly migrate capabilities to the warfighter. The SDTW charged the Launch Test Squadron (LTS) with the mission to develop the capability of small space launch, supporting government research and development space launches and missile defense target missions, with operationally responsive spacelift for Low-Earth-Orbit Space Situational Awareness assets as a future mission. This new mission created new challenges for LTS. The LTS mission tenets of developing space launches and missile defense target vehicles were an evolution from the squadrons previous mission of providing sounding rockets under the Rocket Sounding Launch Program (RSLP). The new mission tenets include shortened operational response periods criteria for the warfighter, while reducing the life-cycle development, production and launch costs of space launch systems. This presentation will focus on the technical challenges in transforming and integrating space launch vehicles and space craft vehicles for small space launch missions.
Tabletop Experimental Track for Magnetic Launch Assist
NASA Technical Reports Server (NTRS)
2000-01-01
Marshall Space Flight Center's (MSFC's) Advanced Space Transportation Program has developed the Magnetic Launch Assist System, formerly known as the Magnetic Levitation (MagLev) technology that could give a space vehicle a running start to break free from Earth's gravity. A Magnetic Launch Assist system would use magnetic fields to levitate and accelerate a vehicle along a track at speeds up to 600 mph. The vehicle would shift to rocket engines for launch into orbit. Similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway, a Magnetic Launch Assist system would electromagnetically propel a space vehicle along the track. The tabletop experimental track for the system shown in this photograph is 44-feet long, with 22-feet of powered acceleration and 22-feet of passive braking. A 10-pound carrier with permanent magnets on its sides swiftly glides by copper coils, producing a levitation force. The track uses a linear synchronous motor, which means the track is synchronized to turn the coils on just before the carrier comes in contact with them, and off once the carrier passes. Sensors are positioned on the side of the track to determine the carrier's position so the appropriate drive coils can be energized. MSFC engineers have conducted tests on the indoor track and a 50-foot outdoor track. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.
Earth-to-orbit reusable launch vehicles: A comparative assessment
NASA Technical Reports Server (NTRS)
Chase, R. L.
1978-01-01
A representative set of space systems, functions, and missions for NASA and DoD from which launch vehicle requirements and characteristics was established as well as a set of air-breathing launch vehicles based on graduated technology capabilities corresponding to increasingly higher staging Mach numbers. The utility of the air-breathing launch vehicle candidates based on lift-off weight, performance, technology needs, and risk was assessed and costs were compared to alternative concepts. The results indicate that a fully reusable launch vehicle, whether two stage or one stage, could potentially reduce the cost per flight 60-80% compared to that for a partially reusable vehicle but would require advances in thermal protection system technology. A two-stage-to-orbit, parallel-lift vehicle with an air-breathing booster would cost approximately the same as a single-stage-to-orbit vehicle, but the former would have greater flexibility and a significantly reduced developmental risk. A twin-booster, subsonic-staged, parallel-lift vehicle represents the lowest system cost and developmental risk. However, if a large supersonic turbojet engine in the 350,000-N thrust class were available, supersonic staging would be preferred, and the investment in development would be returned in reduced program cost.
An electromechanical actuation system for an expendable launch vehicle
NASA Technical Reports Server (NTRS)
Burrows, Linda M.; Roth, Mary Ellen
1992-01-01
A major effort at the NASA Lewis Research Center in recent years has been to develop electro-mechanical actuators (EMA's) to replace the hydraulic systems used for thrust vector control (TVC) on launch vehicles. This is an attempt ot overcome the inherent inefficiencies and costs associated with the existing hydraulic structures. General Dynamics Space Systems Division, under contract to NASA Lewis, is developing 18.6 kW (25 hp), 29.8 kW (40 hp), and 52.2 kW (70 hp) peak EMA systems to meet the power demands for TVC on a family of vehicles developed for the National Launch System. These systems utilize a pulse population modulated converter and field-oriented control scheme to obtain independent control of both the voltage and frequency. These techniques allow an induction motor to be operated at its maximum torque at all times. At NASA Lewis, we are building on this technology to develop our own in-house system capable of meeting the peak power requirements for an expendable launch vehicle (ELV) such as the Atlas. Our EMA will be capable of delivering 22.4 kW (30 hp) peak power with a nominal of 6.0 kW (8 hp). This system differs from the previous ones in two areas: (1) the use of advanced control methods, and (2) the incorporation of built-in-test. The advanced controls are essential for minimizing the controller size, while the built-in-test is necessary to enhance the system reliability and vehicle health monitoring. The ultimate goal of this program is to demonstrate an EMA which will be capable of self-test and easy integration into other projects. This paper will describe the effort underway at NASA Lewis to develop an EMA for an Atlas class ELV. An explanation will be given for each major technology block, and the status of each major technology block and the status of the overall program will be reported.
Space Shuttle development update
NASA Technical Reports Server (NTRS)
Brand, V.
1984-01-01
The development efforts, since the STS-4 flight, in the Space Shuttle (SS) program are presented. The SS improvements introduced in the last two years include lower-weight loads, communication through the Tracking and Data Relay Satellite, expanded extravehicular activity capability, a maneuvering backpack and the manipulator foot restraint, the improvements in thermal projection system, the 'optional terminal area management targeting' guidance software, a rendezvous system with radar and star tracker sensors, and improved on-orbit living conditions. The flight demonstrations include advanced launch techniques (e.g., night launch and direct insertion to orbit); the on-orbit demonstrations; and added entry and launching capabilities. The entry aerodynamic analysis and entry flight control fine tuning are described. Reusability, improved ascent performance, intact abort and landing flexibility, rollout control, and 'smart speedbrakes' are among the many improvements planned for the future.
Level II Documentation of Launch Complex 31/32, Cape Canaveral Air Force Station, Florida
2008-12-01
a mobile launcher tied down on the concrete pad, with a concrete flame bucket descending off one side of the surface area (Figure...pedestal (Figure 9). The complex’s Launch Pad 10 was a hex- agonal reinforced concrete surface with tie down points and a concrete flame bucket at its...fuel propel- lant.126 This allowed for rapid deployment, and for a more effective and less expensive weapon system . Technological advancements
Nimbus-F to carry advanced weather instruments
NASA Technical Reports Server (NTRS)
1975-01-01
Meteorological research instruments launched aboard NASA's Nimbus-F spacecraft are briefly described along with the Nimbus satellite program initiated to develop an observatory system capable of meeting the research and development needs of the nation's atmospheric and earth sciences program. The following aspects of the mission are described: spacecraft design, launch operations, sequence of orbital events, and operations control and tracking. The Global Atmospheric Research program is discussed in terms of the Nimbus-F experiments and atmospheric sounding instruments.
NASA Astrophysics Data System (ADS)
Martynov, M. B.; Merkulov, P. V.; Lomakin, I. V.; Vyatlev, P. A.; Simonov, A. V.; Leun, E. V.; Barabanov, A. A.; Nasyrov, A. F.
2017-12-01
The advanced Russian project Laplace-P is aimed at developing and launching two scientific spacecraft (SC)— Laplace-P1 ( LP1 SC) and Laplace-P2 ( LP2 SC)—designed for remote and in-situ studies of the system of Jupiter and its moon Ganymede. The LP1 and LP2 spacecraft carry an orbiter and a lander onboard, respectively. One of the orbiter's objectives is to map the surface of Ganymede from the artificial satellite's orbit and to acquire the data for the landing site selection. The main objective of the lander is to carry out in-situ investigations of Ganymede's surface. The paper describes the scientific goals and objectives of the mission, its special features, and the LP1 and LP2 mission profiles during all of the phases—from the launch to the landing on the surface of Ganymede.
Development Status of the Advanced Life Support On-Line Project Information System
NASA Technical Reports Server (NTRS)
Levri, Julie A.; Hogan, John A.; Cavazzoni, Jim; Brodbeck, Christina; Morrow, Rich; Ho, Michael; Kaehms, Bob; Whitaker, Dawn R.
2005-01-01
The Advanced Life Support Program has recently accelerated an effort to develop an On-line Project Information System (OPIS) for research project and technology development data centralization and sharing. The core functionality of OPIS will launch in October of 2005. This paper presents the current OPIS development status. OPIS core functionality involves a Web-based annual solicitation of project and technology data directly from ALS Principal Investigators (PIS) through customized data collection forms. Data provided by PIs will be reviewed by a Technical Task Monitor (TTM) before posting the information to OPIS for ALS Community viewing via the Web. The data will be stored in an object-oriented relational database (created in MySQL(R)) located on a secure server at NASA ARC. Upon launch, OPIS can be utilized by Managers to identify research and technology development gaps and to assess task performance. Analysts can employ OPIS to obtain.
A Rocket Powered Single-Stage-to-Orbit Launch Vehicle With U.S. and Soviet Engineers
NASA Technical Reports Server (NTRS)
MacConochie, Ian O.; Stnaley, Douglas O.
1991-01-01
A single-stage-to-orbit launch vehicle is used to assess the applicability of Soviet Energia high-pressure-hydrocarbon engine to advanced U.S. manned space transportation systems. Two of the Soviet engines are used with three Space Shuttle Main Engines. When applied to a baseline vehicle that utilized advanced hydrocarbon engines, the higher weight of the Soviet engines resulted in a 20 percent loss of payload capability and necessitated a change in the crew compartment size and location from mid-body to forebody in order to balance the vehicle. Various combinations of Soviet and Shuttle engines were evaluated for comparison purposes, including an all hydrogen system using all Space Shuttle Main Engines. Operational aspects of the baseline vehicle are also discussed. A new mass properties program entitles Weights and Moments of Inertia (WAMI) is used in the study.
NASA Crew Launch Vehicle Approach Builds on Lessons from Past and Present Missions
NASA Technical Reports Server (NTRS)
Dumbacher, Daniel L.
2006-01-01
The United States Vision for Space Exploration, announced in January 2004, outlines the National Aeronautics and Space Administration's (NASA) strategic goals and objectives, including retiring the Space Shuttle and replacing it with a new human-rated system suitable for missions to the Moon and Mars. The Crew Exploration Vehicle (CEV) that the new Crew Launch Vehicle (CLV) lofts into space early next decade will initially ferry astronauts to the International Space Station and be capable of carrying crews back to lunar orbit and of supporting missions to Mars orbit. NASA is using its extensive experience gained from past and ongoing launch vehicle programs to maximize the CLV system design approach, with the objective of reducing total lifecycle costs through operational efficiencies. To provide in-depth data for selecting this follow-on launch vehicle, the Exploration Systems Architecture Study was conducted during the summer of 2005, following the confirmation of the new NASA Administrator. A team of aerospace subject matter experts used technical, budget, and schedule objectives to analyze a number of potential launch systems, with a focus on human rating for exploration missions. The results showed that a variant of the Space Shuttle, utilizing the reusable Solid Rocket Booster as the first stage, along with a new upper stage that uses a derivative of the RS-25 Space Shuttle Main Engine to deliver 25 metric tons to low-Earth orbit, was the best choice to reduce the risks associated with fielding a new system in a timely manner. The CLV Project, managed by the Exploration Launch Office located at NASA's Marshall Space Flight Center, is leading the design, development, testing, and operation of this new human-rated system. The CLV Project works closely with the Space Shuttle Program to transition hardware, infrastructure, and workforce assets to the new launch system . leveraging a wealth of lessons learned from Shuttle operations. The CL V is being designed to reduce costs through a number of methods, ranging from validating requirements to conducting trades studies against the concept design. Innovations such as automated processing will build on lessons learned from the Shuttle, other launch systems, Department of Defense operations experience, and subscale flight tests such as the Delta Clipper-Experimental Advanced (DCXA) vehicle operations that utilized minimal touch labor, automated cryogen ic propellant loading , and an 8-hour turnaround for a cryogenic propulsion system. For the CLV, the results of hazard analyses are contributing to an integrated vehicle health monitoring system that will troubleshoot anomalies and determine which ones can be solved without human intervention. Such advances will help streamline the mission operations process for pilots and ground controllers alike. In fiscal year 2005, NASA invested approximately $4.5 billion of its $16 bill ion budget on the Space Shuttle. The ultimate goal of the CLV Project is to deliver a safe, reliable system designed to minimize lifecycle costs so that NASA's budget can be invested in missions of scientific discovery. Lessons learned from developing the CLV will be applied to the growth path for future systems, including a heavy lift launch vehicle.
Advanced APS impacts on vehicle payloads
NASA Technical Reports Server (NTRS)
Schneider, Steven J.; Reed, Brian D.
1989-01-01
Advanced auxiliary propulsion system (APS) technology has the potential to both, increase the payload capability of earth-to-orbit (ETO) vehicles by reducing APS propellant mass, and simplify ground operations and logistics by reducing the number of fluids on the vehicle and eliminating toxic, corrosive propellants. The impact of integrated cryogenic APS on vehicle payloads is addressed. In this system, launch propulsion system residuals are scavenged from integral launch propulsion tanks for use in the APS. Sufficient propellant is preloaded into the APS to return to earth with margin and noncomplete scavenging assumed. No propellant conditioning is required by the APS, but ambient heat soak is accommodated. High temperature rocket materials enable the use of the unconditioned hydrogen/oxygen in the APS and are estimated to give APS rockets specific impulse of up to about 444 sec. The payload benefits are quantified and compared with an uprated monomethylhydrazine/nitrogen tetroxide system in a conservative fashion, by assuming a 25.5 percent weight growth for the hydrogen/oxygen system and a 0 percent weight growth for the uprated system. The combination of scavenging and high performance gives payload impacts which are highly mission specific. A payload benefit of 861 kg (1898 lbm) was estimated for a Space Station Freedom rendezvous mission and 2099 kg (4626 lbm) for a sortie mission, with payload impacts varying with the amount of launch propulsion residual propellants. Missions without liquid propellant scavenging were estimated to have payload penalties, however, operational benefits were still possible.
Advanced APS Impacts on Vehicle Payloads
NASA Technical Reports Server (NTRS)
Schneider, Steven J.; Reed, Brian D.
1989-01-01
Advanced auxiliary propulsion system (APS) technology has the potential to both, increase the payload capability of earth-to-orbit (ETO) vehicles by reducing APS propellant mass, and simplify ground operations and logistics by reducing the number of fluids on the vehicle and eliminating toxic, corrosive propellants. The impact of integrated cryogenic APS on vehicle payloads is addressed. In this system, launch propulsion system residuals are scavenged from integral launch propulsion tanks for use in the APS. Sufficient propellant is preloaded into the APS to return to earth with margin and noncomplete scavenging assumed. No propellant conditioning is required by the APS, but ambient heat soak is accommodated. High temperature rocket materials enable the use of the unconditioned hydrogen/oxygen in the APS and are estimated to give APS rockets specific impulse of up to about 444 sec. The payload benefits are quantified and compared with an uprated monomethyl hydrazine/nitrogen tetroxide system in a conservative fashion, by assuming a 25.5 percent weight growth for the hydrogen/oxygen system and a 0 percent weight growth for the uprated system. The combination and scavenging and high performance gives payload impacts which are highly mission specific. A payload benefit of 861 kg (1898 lbm) was estimated for a Space Station Freedom rendezvous mission and 2099 kg (4626 lbm) for a sortie mission, with payload impacts varying with the amount of launch propulsion residual propellants. Missions without liquid propellant scavenging were estimated to have payload penalties, however, operational benefits were still possible.
Advanced Space Transportation Program (ASTP)
1995-01-23
Pictured here is a DC-XA Reusable Launch Vehicle (RLV) prototype concept with an RLV logo. The Delta Clipper-Experimental (DC-X) was originally developed by McDornell Douglas for the Department of Defense (DOD). The DC-XA is a single-stage-to-orbit, vertical takeoff/vertical landing, launch vehicle concept, whose development is geared to significantly reduce launch costs and will provide a test bed for NASA Reusable Launch Vehicle (RLV) technology as the Delta Clipper-Experimental Advanced (DC-XA).
NASA Technical Reports Server (NTRS)
Stern, Martin O.
1992-01-01
This report describes a study to evaluate the benefits of advanced propulsion technologies for transporting materials between low Earth orbit and the Moon. A relatively conventional reference transportation system, and several other systems, each of which includes one advanced technology component, are compared in terms of how well they perform a chosen mission objective. The evaluation method is based on a pairwise life-cycle cost comparison of each of the advanced systems with the reference system. Somewhat novel and economically important features of the procedure are the inclusion not only of mass payback ratios based on Earth launch costs, but also of repair and capital acquisition costs, and of adjustments in the latter to reflect the technological maturity of the advanced technologies. The required input information is developed by panels of experts. The overall scope and approach of the study are presented in the introduction. The bulk of the paper describes the evaluation method; the reference system and an advanced transportation system, including a spinning tether in an eccentric Earth orbit, are used to illustrate it.
2009-03-04
CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., the GOES-O satellite will undergo final testing of the imaging system, instrumentation, communications and power systems. The latest Geostationary Operational Environmental Satellite, GOES-O was developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA. The GOES-O satellite is targeted to launch April 28 onboard a United Launch Alliance Delta IV expendable launch vehicle. Once in orbit, GOES-O will be designated GOES-14, and NASA will provide on-orbit checkout and then transfer operational responsibility to NOAA. GOES-O will be placed in on-orbit storage as a replacement for an older GOES satellite. GOES-O carries an advanced attitude control system using star trackers with spacecraft optical bench Imager and Sounder mountings that provide enhanced instrument pointing performance for improved image navigation and registration to better locate severe storms and other events important to the NOAA National Weather Service. Photo credit: NASA/Kim Shiflett
Application of information technology to the National Launch System
NASA Technical Reports Server (NTRS)
Mauldin, W. T.; Smith, Carolyn L.; Monk, Jan C.; Davis, Steve; Smith, Marty E.
1992-01-01
The approach to the development of the Unified Information System (UNIS) to provide in a timely manner all the information required to manage, design, manufacture, integrate, test, launch, operate, and support the Advanced Launch System (NLS), as well as the current and planned capabilities are described. STESYM, the Space Transportation Main Engine (STME) development program, is comprised of a collection of data models which can be grouped into two primary models: the Engine Infrastructure Model (ENGIM) and the Engine Integrated Cast Model (ENGICOM). ENGIM is an end-to-end model of the infrastructure needed to perform the fabrication, assembly, and testing of the STEM program and its components. Together, UNIS and STESYM are to provide NLS managers and engineers with the ability to access various types and files of data quickly and use that data to assess the capabilities of the STEM program.
Mars NanoOrbiter: A CubeSat for Mars System Science
NASA Astrophysics Data System (ADS)
Ehlmann, Bethany; Klesh, Andrew; Alsedairy, Talal
2017-10-01
The Mars NanoOrbiter mission consists of two identical 12U spacecraft, launched simultaneously as secondary payloads on a larger planetary mission launch, and deployed to Earth-escape, as early as with Mars 2020. The nominal mission will last for 1 year, during which time the craft will independently navigate to Mars, enter into elliptical orbit, and achieve close flybys of Phobos and Deimos, obtaining unprecedented coverage of each moon. The craft will additionally provide high temporal resolution data of Mars clouds and atmospheric phenomena at multiple times of day. Two spacecraft provide redundancy to reduce the risk in meeting the science objectives at the Mars moons and enhanced coverage of the dynamic Mars atmosphere. This technology is enabled by recent advances in CubeSat propulsion technology, attitude control systems, guidance, navigation and control. NanoOrbiter builds directly on the systems heritage of the MarCO mission, scheduled to launch with the 2018 Discovery mission Insight.
Model implementation for dynamic computation of system cost for advanced life support
NASA Technical Reports Server (NTRS)
Levri, J. A.; Vaccari, D. A.
2004-01-01
Life support system designs for long-duration space missions have a multitude of requirements drivers, such as mission objectives, political considerations, cost, crew wellness, inherent mission attributes, as well as many other influences. Evaluation of requirements satisfaction can be difficult, particularly at an early stage of mission design. Because launch cost is a critical factor and relatively easy to quantify, it is a point of focus in early mission design. The method used to determine launch cost influences the accuracy of the estimate. This paper discusses the appropriateness of dynamic mission simulation in estimating the launch cost of a life support system. This paper also provides an abbreviated example of a dynamic simulation life support model and possible ways in which such a model might be utilized for design improvement. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lovelace, Uriel; Sumrall, Phil; Pritchard, Brian
1989-04-01
An evaluation is made of performance requirements and technology development prospects for the logistical capacity entailed by manned space exploration. While the Space Shuttle will suffice for the launch of crews to a LEO Space Station, in support of such exploration missions, cargo transport will require 500-1000 tonne annual payload capacity launchers. As a first step toward satisfaction of such requirements, NASA has undertaken the development of the Shuttle-C unmanned Space Shuttle derivative. This will be followed by the Shuttle-Z derivative-family, aimed at meeting the needs of Mars missions. Joint USAF/NASA Advanced Launch System development will allow a given launch to place 91 tonnes in LEO.
NASA Launches NOAA Weather Satellite to Improve Forecasts
2017-11-18
Early on the morning of Saturday, Nov. 18, NASA successfully launched for the National Oceanic and Atmospheric Administration (NOAA) the first in a series of four advanced polar-orbiting satellites, equipped with next-generation technology and designed to improve the accuracy of U.S. weather forecasts out to seven days. The Joint Polar Satellite System-1 (JPSS-1) lifted off on a United Launch Alliance Delta II rocket from Vandenberg Air Force Base on California’s central coast. JPSS-1 data will improve weather forecasting and help agencies involved with post-storm recovery by visualizing storm damage and the geographic extent of power outages.
Cutting More than Metal: Breaking Through the Development Cycle
NASA Technical Reports Server (NTRS)
Singer, Christopher E.; Onken, Jay
2014-01-01
NASA is advancing a new development approach and new technologies in the design construction, and testing of the next great launch vehicle for space exploration. The ability to use these new tools is made possible by a learning culture able to embrace innovation, flexibility, and prudent risk tolerance, while retaining the hard-won lessons learned through the successes and failures of the past. This paper provides an overview of the Marshall Space Flight Center's new approach to launch vehicle development, as well as examples of how that approach has been leveraged by NASA's Space Launch System (SLS) Program to achieve its key goals to safety, affordability, and sustainability.
Advanced small launch vehicle study
NASA Technical Reports Server (NTRS)
Reins, G. E.; Alvis, J. F.
1972-01-01
A conceptual design study was conducted to determine the most economical (lowest cost/launch) approach for the development of an advanced small launch vehicle (ASLV) for use over the next decade. The ASLV design objective was to place a 340 kg (750 lb) payload into a 556 km (300 n.mi.) circular orbit when launched due east from Wallops Island, Virginia. The investigation encompassed improvements to the current Scout launch vehicle; use of existing military and NASA launch vehicle stages; and new, optionally staged vehicles. Staging analyses included use of liquid, solid, and hybrid propellants. Improvements in guidance, controls, interstages, telemetry, and payload shroud were also considered. It was concluded that the most economical approach is to progressively improve the Scout launch vehicle in three phased steps which are discussed.
Operations Analysis of the 2nd Generation Reusable Launch Vehicle
NASA Technical Reports Server (NTRS)
Noneman, Steven R.; Smith, C. A. (Technical Monitor)
2002-01-01
The Space Launch Initiative (SLI) program is developing a second-generation reusable launch vehicle. The program goals include lowering the risk of loss of crew to 1 in 10,000 and reducing annual operations cost to one third of the cost of the Space Shuttle. The SLI missions include NASA, military and commercial satellite launches and crew and cargo launches to the space station. The SLI operations analyses provide an assessment of the operational support and infrastructure needed to operate candidate system architectures. Measures of the operability are estimated (i.e. system dependability, responsiveness, and efficiency). Operations analysis is used to determine the impact of specific technologies on operations. A conceptual path to reducing annual operations costs by two thirds is based on key design characteristics, such as reusability, and improved processes lowering labor costs. New operations risks can be expected to emerge. They can be mitigated with effective risk management with careful identification, assignment, tracking, and closure. SLI design characteristics such as nearly full reusability, high reliability, advanced automation, and lowered maintenance and servicing coupled with improved processes are contributors to operability and large operating cost reductions.
Modular Approach to Launch Vehicle Design Based on a Common Core Element
NASA Technical Reports Server (NTRS)
Creech, Dennis M.; Threet, Grady E., Jr.; Philips, Alan D.; Waters, Eric D.; Baysinger, Mike
2010-01-01
With a heavy lift launch vehicle as the centerpiece of our nation's next exploration architecture's infrastructure, the Advanced Concepts Office at NASA's Marshall Space Flight Center initiated a study to examine the utilization of elements derived from a heavy lift launch vehicle for other potential launch vehicle applications. The premise of this study is to take a vehicle concept, which has been optimized for Lunar Exploration, and utilize the core stage with other existing or near existing stages and boosters to determine lift capabilities for alternative missions. This approach not only yields a vehicle matrix with a wide array of capabilities, but also produces an evolutionary pathway to a vehicle family based on a minimum development and production cost approach to a launch vehicle system architecture, instead of a purely performance driven approach. The upper stages and solid rocket booster selected for this study were chosen to reflect a cross-section of: modified existing assets in the form of a modified Delta IV upper stage and Castor-type boosters; potential near term launch vehicle component designs including an Ares I upper stage and 5-segment boosters; and longer lead vehicle components such as a Shuttle External Tank diameter upper stage. The results of this approach to a modular launch system are given in this paper.
Outer Planet Exploration with Advanced Radioisotope Electric Propulsion
NASA Technical Reports Server (NTRS)
Oleson, Steven; Gefert, Leon; Patterson, Michael; Schreiber, Jeffrey; Benson, Scott; McAdams, Jim; Ostdiek, Paul
2002-01-01
In response to a request by the NASA Deep Space Exploration Technology Program, NASA Glenn Research Center conducted a study to identify advanced technology options to perform a Pluto/Kuiper mission without depending on a 2004 Jupiter Gravity Assist, but still arriving before 2020. A concept using a direct trajectory with small, sub-kilowatt ion thrusters and Stirling radioisotope power systems was shown to allow the same or smaller launch vehicle class as the chemical 2004 baseline and allow a launch slip and still flyby in the 2014 to 2020 timeframe. With this promising result the study was expanded to use a radioisotope power source for small electrically propelled orbiter spacecraft for outer planet targets such as Uranus, Neptune, and Pluto.
NASA Technical Reports Server (NTRS)
Shivers, C. Herb
2012-01-01
NASA is developing the Space Launch System -- an advanced heavy-lift launch vehicle that will provide an entirely new capability for human exploration beyond Earth's orbit. The Space Launch System will provide a safe, affordable and sustainable means of reaching beyond our current limits and opening up new discoveries from the unique vantage point of space. The first developmental flight, or mission, is targeted for the end of 2017. The Space Launch System, or SLS, will be designed to carry the Orion Multi-Purpose Crew Vehicle, as well as important cargo, equipment and science experiments to Earth's orbit and destinations beyond. Additionally, the SLS will serve as a backup for commercial and international partner transportation services to the International Space Station. The SLS rocket will incorporate technological investments from the Space Shuttle Program and the Constellation Program in order to take advantage of proven hardware and cutting-edge tooling and manufacturing technology that will significantly reduce development and operations costs. The rocket will use a liquid hydrogen and liquid oxygen propulsion system, which will include the RS-25D/E from the Space Shuttle Program for the core stage and the J-2X engine for the upper stage. SLS will also use solid rocket boosters for the initial development flights, while follow-on boosters will be competed based on performance requirements and affordability considerations.
2000-01-01
Marshall Space Flight Center’s (MSFC’s) Advanced Space Transportation Program has developed the Magnetic Launch Assist System, formerly known as the Magnetic Levitation (MagLev) technology that could give a space vehicle a running start to break free from Earth’s gravity. A Magnetic Launch Assist system would use magnetic fields to levitate and accelerate a vehicle along a track at speeds up to 600 mph. The vehicle would shift to rocket engines for launch into orbit. Similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway, a Magnetic Launch Assist system would electromagnetically propel a space vehicle along the track. The tabletop experimental track for the system shown in this photograph is 44-feet long, with 22-feet of powered acceleration and 22-feet of passive braking. A 10-pound carrier with permanent magnets on its sides swiftly glides by copper coils, producing a levitation force. The track uses a linear synchronous motor, which means the track is synchronized to turn the coils on just before the carrier comes in contact with them, and off once the carrier passes. Sensors are positioned on the side of the track to determine the carrier’s position so the appropriate drive coils can be energized. MSFC engineers have conducted tests on the indoor track and a 50-foot outdoor track. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.
Cost and Economics for Advanced Launch Vehicles
NASA Technical Reports Server (NTRS)
Whitfield, Jeff
1998-01-01
Market sensitivity and weight-based cost estimating relationships are key drivers in determining the financial viability of advanced space launch vehicle designs. Due to decreasing space transportation budgets and increasing foreign competition, it has become essential for financial assessments of prospective launch vehicles to be performed during the conceptual design phase. As part of this financial assessment, it is imperative to understand the relationship between market volatility, the uncertainty of weight estimates, and the economic viability of an advanced space launch vehicle program. This paper reports the results of a study that evaluated the economic risk inherent in market variability and the uncertainty of developing weight estimates for an advanced space launch vehicle program. The purpose of this study was to determine the sensitivity of a business case for advanced space flight design with respect to the changing nature of market conditions and the complexity of determining accurate weight estimations during the conceptual design phase. The expected uncertainty associated with these two factors drives the economic risk of the overall program. The study incorporates Monte Carlo simulation techniques to determine the probability of attaining specific levels of economic performance when the market and weight parameters are allowed to vary. This structured approach toward uncertainties allows for the assessment of risks associated with a launch vehicle program's economic performance. This results in the determination of the value of the additional risk placed on the project by these two factors.
Data Compression Techniques for Advanced Space Transportation Systems
NASA Technical Reports Server (NTRS)
Bradley, William G.
1998-01-01
Advanced space transportation systems, including vehicle state of health systems, will produce large amounts of data which must be stored on board the vehicle and or transmitted to the ground and stored. The cost of storage or transmission of the data could be reduced if the number of bits required to represent the data is reduced by the use of data compression techniques. Most of the work done in this study was rather generic and could apply to many data compression systems, but the first application area to be considered was launch vehicle state of health telemetry systems. Both lossless and lossy compression techniques were considered in this study.
NASA's Hypersonic Investment Area
NASA Technical Reports Server (NTRS)
Hueter, Uwe; Hutt, John; McClinton, Charles
2002-01-01
NASA has established long term goals for access to space. The third generation launch systems are to be fully reusable and operational around 2025. The goal for third-generation launch systems represents significant reduction in cost and improved safety over the current first generation system. The Advanced Space Transportation Office (ASTP) at NASA s Marshall Space Flight Center (MSFC) has the agency lead to develop space transportation technologies. Within ASTP, under the Hypersonic Investment Area (HIA), third generation technologies are being pursued in the areas of propulsion, airframe, integrated vehicle health management (IVHM), avionics, power, operations and system analysis. These technologies are being matured through research and both ground and flight-testing. This paper provides an overview of the HIA program plans and recent accomplishments.
A Personnel Launch System for safe and efficient manned operations
NASA Astrophysics Data System (ADS)
Petro, Andrew J.; Andrews, Dana G.; Wetzel, Eric D.
1990-10-01
Several Conceptual designs for a simple, rugged Personnel Launch System (PLS) are presented. This system could transport people to and from Low Earth Orbit (LEO) starting in the late 1990's using a new modular Advanced Launch System (ALS) developed for the Space Exploration Initiative (SEI). The PLS is designed to be one element of a new space transportation architecture including heavy-lift cargo vehicles, lunar transfer vehicles, and multiple-role spcecraft such as the current Space Shuttle. The primary role of the PLS would be to deliver crews embarking on lunar or planetary missions to the Space Station, but it would also be used for earth-orbit sortie missions, space rescue missions, and some satellite servicing missions. The PLS design takes advantage of emerging electronic and structures technologies to offer a robust vehicle with autonomous operating and quick turnaround capabilities. Key features include an intact abort capability anywhere in the operating envelope, and elimination of all toxic propellants to streamline ground operations.
2014-12-02
CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, NASA leaders spoke to members of the news media about how the first flight of the new Orion spacecraft is a first step in the agency's plans to send humans to Mars. At Kennedy's News Center auditorium from the left are: Mike Curie of NASA Public Affairs, Mike Bolger, program manager of Ground Systems Development and Operations Program, and Chris Crumbly, manager of Space Launch System Spacecraft/Payload Integration and Evolution. Participating via video from the agency's headquarters in Washington included Jason Crusan, director of Advanced Exploration Systems Division of Human Exploration and Operations Mission Directorate, seen on the monitor on the right. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion Photo credit: NASA/Kim Shiflett
Enabling Dedicated, Affordable Space Access Through Aggressive Technology Maturation
NASA Technical Reports Server (NTRS)
Jones, Jonathan; Kibbey, Tim; Lampton, Pat; Brown, Thomas
2014-01-01
A recent explosion in nano-sat, small-sat, and university class payloads has been driven by low cost electronics and sensors, wide component availability, as well as low cost, miniature computational capability and open source code. Increasing numbers of these very small spacecraft are being launched as secondary payloads, dramatically decreasing costs, and allowing greater access to operations and experimentation using actual space flight systems. While manifesting as a secondary payload provides inexpensive rides to orbit, these arrangements also have certain limitations. Small, secondary payloads are typically included with very limited payload accommodations, supported on a non interference basis (to the prime payload), and are delivered to orbital conditions driven by the primary launch customer. Integration of propulsion systems or other hazardous capabilities will further complicate secondary launch arrangements, and accommodation requirements. The National Aeronautics and Space Administration's Marshall Space Flight Center has begun work on the development of small, low cost launch system concepts that could provide dedicated, affordable launch alternatives to small, risk tolerant university type payloads and spacecraft. These efforts include development of small propulsion systems and highly optimized structural efficiency, utilizing modern advanced manufacturing techniques. This paper outlines the plans and accomplishments of these efforts and investigates opportunities for truly revolutionary reductions in launch and operations costs. Both evolution of existing sounding rocket systems to orbital delivery, and the development of clean sheet, optimized small launch systems are addressed. A launch vehicle at the scale and price point which allows developers to take reasonable risks with new propulsion and avionics hardware solutions does not exist today. Establishing this service provides a ride through the proverbial "valley of death" that lies between demonstration in laboratory and flight environments. This effort will provide the framework to mature both on-orbit and earth-to-orbit avionics and propulsion technologies while also providing dedicated, affordable access to LEO for cubesat class payloads.
Friction Stir Welding and NASA
NASA Technical Reports Server (NTRS)
Horton, K Renee
2016-01-01
Friction stir welding (FSW) is a solid state welding process with potential advantages for aerospace and automotive industries dealing with light alloys. Self-reacting friction stir welding (SR-FSW) is one variation of the FSW process being developed at the National Aeronautics and Space Administration (NASA) for use in the fabrication of propellant tanks and other areas used on the Space Launch System (SLS) NASA's SLS is an advanced, heavy-lift launch vehicle which will provide an entirely new capability for science and human exploration beyond Earth's orbit. The SLS will give the nation a safe, affordable and sustainable means of reaching beyond our current limits and open new doors of discovery from the unique vantage point of space This talk will elaborate on the SR-FSW process and it's usage on the current Space Launch System Program at NASA.
National Urban Database and Access Portal Tool
Based on the need for advanced treatments of high resolution urban morphological features (e.g., buildings, trees) in meteorological, dispersion, air quality and human exposure modeling systems for future urban applications, a new project was launched called the National Urban Da...
Study on fault-tolerant processors for advanced launch system
NASA Technical Reports Server (NTRS)
Shin, Kang G.; Liu, Jyh-Charn
1990-01-01
Issues related to the reliability of a redundant system with large main memory are addressed. The Fault-Tolerant Processor (FTP) for the Advanced Launch System (ALS) is used as a basis for the presentation. When the system is free of latent faults, the probability of system crash due to multiple channel faults is shown to be insignificant even when voting on the outputs of computing channels is infrequent. Using channel error maskers (CEMs) is shown to improve reliability more effectively than increasing redundancy or the number of channels for applications with long mission times. Even without using a voter, most memory errors can be immediately corrected by those CEMs implemented with conventional coding techniques. In addition to their ability to enhance system reliability, CEMs (with a very low hardware overhead) can be used to dramatically reduce not only the need of memory realignment, but also the time required to realign channel memories in case, albeit rare, such a need arises. Using CEMs, two different schemes were developed to solve the memory realignment problem. In both schemes, most errors are corrected by CEMs, and the remaining errors are masked by a voter.
NASA Technical Reports Server (NTRS)
Somers, Alan; Celano, Luigi; Kauffman, Jeffrey; Rogers, Laura; Peterson, Craig
2005-01-01
Missions with planned launch dates several years from today pose significant design challenges in properly accounting for technology advances that may occur in the time leading up to actual spacecraft design, build, test and launch. Conceptual mission and spacecraft designs that rely solely on off the shelf technology will result in conservative estimates that may not be attractive or truly representative of the mission as it actually will be designed and built. This past summer, as part of one of NASA s Vision Mission Studies, a group of students at the Laboratory for Spacecraft and Mission Design (LSMD) have developed and analyzed different Neptune mission baselines, and determined the benefits of various assumed technology improvements. The baseline mission uses either a chemical propulsion system or a solar-electric system. Insertion into orbit around Neptune is achieved by means of aerocapture. Neptune s large moon Triton is used as a tour engine. With these technologies a comprehensive Cassini-class investigation of the Neptune system is possible. Technologies under investigation include the aerocapture heat shield and thermal protection system, both chemical and solar electric propulsion systems, spacecraft power, and energy storage systems.
NASA Technical Reports Server (NTRS)
Singh, M.
2007-01-01
Advanced repair and refurbishment technologies are critically needed for the thermal protection system of current space transportation systems as well as for future launch and crew return vehicles. There is a history of damage to these systems from impact during ground handling or ice during launch. In addition, there exists the potential for in-orbit damage from micrometeoroid and orbital debris impact as well as different factors (weather, launch acoustics, shearing, etc.) during launch and re-entry. The GRC developed GRABER (Glenn Refractory Adhesive for Bonding and Exterior Repair) material has shown multiuse capability for repair of small cracks and damage in reinforced carbon-carbon (RCC) material. The concept consists of preparing an adhesive paste of desired ceramic with appropriate additives and then applying the paste to the damaged/cracked area of the RCC composites with an adhesive delivery system. The adhesive paste cures at 100-120 C and transforms into a high temperature ceramic during reentry conditions. A number of plasma torch and ArcJet tests were carried out to evaluate the crack repair capability of GRABER materials for Reinforced Carbon-Carbon (RCC) composites. For the large area repair applications, Integrated Systems for Tile and Leading Edge Repair (InSTALER) have been developed and evaluated under various ArcJet testing conditions. In this presentation, performance of the repair materials as applied to RCC is discussed. Additionally, critical in-space repair needs and technical challenges are reviewed.
Airborne Simulation of Launch Vehicle Dynamics
NASA Technical Reports Server (NTRS)
Gilligan, Eric T.; Miller, Christopher J.; Hanson, Curtis E.; Orr, Jeb S.
2014-01-01
In this paper we present a technique for approximating the short-period dynamics of an exploration-class launch vehicle during flight test with a high-performance surrogate aircraft in relatively benign endoatmospheric flight conditions. The surrogate vehicle relies upon a nonlinear dynamic inversion scheme with proportional-integral feedback to drive a subset of the aircraft states into coincidence with the states of a time-varying reference model that simulates the unstable rigid body dynamics, servodynamics, and parasitic elastic and sloshing dynamics of the launch vehicle. The surrogate aircraft flies a constant pitch rate trajectory to approximate the boost phase gravity-turn ascent, and the aircraft's closed-loop bandwidth is sufficient to simulate the launch vehicle's fundamental lateral bending and sloshing modes by exciting the rigid body dynamics of the aircraft. A novel control allocation scheme is employed to utilize the aircraft's relatively fast control effectors in inducing various failure modes for the purposes of evaluating control system performance. Sufficient dynamic similarity is achieved such that the control system under evaluation is optimized for the full-scale vehicle with no changes to its parameters, and pilot-control system interaction studies can be performed to characterize the effects of guidance takeover during boost. High-fidelity simulation and flight test results are presented that demonstrate the efficacy of the design in simulating the Space Launch System (SLS) launch vehicle dynamics using NASA Dryden Flight Research Center's Full-scale Advanced Systems Testbed (FAST), a modified F/A-18 airplane, over a range of scenarios designed to stress the SLS's adaptive augmenting control (AAC) algorithm.
Advanced expander test bed program
NASA Technical Reports Server (NTRS)
Riccardi, D. P.; Mitchell, J. C.
1993-01-01
The Advanced Expander Test Bed (AETB) is a key element in NASA's Space Chemical Engine Technology Program for development and demonstration of expander cycle oxygen/hydrogen engine and advanced component technologies applicable to space engines as well as launch vehicle upper stage engines. The AETB will be used to validate the high-pressure expander cycle concept, investigate system interactions, and conduct investigations of advanced mission focused components and new health monitoring techniques in an engine system environment. The split expander cycle AETB will operate at combustion chamber pressures up to 1200 psia with propellant flow rates equivalent to 20,000 lbf vacuum thrust. Contract work began 27 Apr. 1990. During 1992, a major milestone was achieved with the review of the final design of the oxidizer turbopump in Sep. 1992.
Electromechanical actuation for thrust vector control applications
NASA Technical Reports Server (NTRS)
Roth, Mary Ellen
1990-01-01
At present, actuation systems for the Thrust Vector Control (TVC) for launch vehicles are hydraulic systems. The Advanced Launch System (ALS), a joint initiative between NASA and the Air Force, is a launch vehicle that is designed to be cost effective, highly reliable and operationally efficient with a goal of reducing the cost per pound to orbit. As part of this initiative, an electromechanical actuation system is being developed as an attractive alternative to the hydraulic systems used today. NASA-Lewis is developing and demonstrating an Induction Motor Controller Actuation System with a 40 hp peak rating. The controller will integrate 20 kHz resonant link Power Management and Distribution (PMAD) technology and Pulse Population Modulation (PPM) techniques to implement Field Oriented Vector Control (FOVC) of a new advanced induction motor. Through PPM, multiphase variable frequency, variable voltage waveforms can be synthesized from the 20 kHz source. FOVC shows that varying both the voltage and frequency and their ratio (V/F), permits independent control of both torque and speed while operating at maximum efficiency at any point on the torque-speed curve. The driver and the FOVC will be microprocessor controlled. For increased system reliability, a Built-in Test (BITE) capability will be included. This involves introducing testability into the design of a system such that testing is calibrated and exercised during the design, manufacturing, maintenance and prelaunch activities. An actuator will be integrated with the motor controller for performance testing of the EMA TVC system. The design and fabrication of the motor controller is being done by General Dynamics Space Systems Division. The University of Wisconsin-Madison will assist in the design of the advanced induction motor and in the implementation of the FOVC theory. A 75 hp electronically controlled dynamometer will be used to test the motor controller in all four quadrants of operation using flight type control algorithms. Integrated testing of the controller and actuator will be conducted at a facility yet to be named. The EMA system described above is discussed in detail.
Update on Risk Reduction Activities for a Liquid Advanced Booster for NASA's Space Launch System
NASA Technical Reports Server (NTRS)
Crocker, Andy; Greene, William D.
2017-01-01
Goals of NASA's Advanced Booster Engineering Demonstration and/or Risk Reduction (ABEDRR) are to: (1) Reduce risks leading to an affordable Advanced Booster that meets the evolved capabilities of SLS. (2) Enable competition by mitigating targeted Advanced Booster risks to enhance SLS affordability. SLS Block 1 vehicle is being designed to carry 70 mT to LEO: (1) Uses two five-segment solid rocket boosters (SRBs) similar to the boosters that helped power the space shuttle to orbit. Evolved 130 mT payload class rocket requires an advanced booster with more thrust than any existing U.S. liquid-or solid-fueled boosters
Logistics Reduction and Repurposing Technology for Long Duration Space Missions
NASA Technical Reports Server (NTRS)
Broyan, James Lee, Jr.; Chu, Andrew; Ewert, Michael K.
2014-01-01
One of NASA's Advanced Exploration Systems (AES) projects is the Logistics Reduction and Repurposing (LRR) project, which has the goal of reducing logistics resupply items through direct and indirect means. Various technologies under development in the project will reduce the launch mass of consumables and their packaging, enable reuse and repurposing of items, and make logistics tracking more efficient. Repurposing also reduces the trash burden onboard spacecraft and indirectly reduces launch mass by one manifest item having two purposes rather than two manifest items each having only one purpose. This paper provides the status of each of the LRR technologies in their third year of development under AES. Advanced clothing systems (ACSs) are being developed to enable clothing to be worn longer, directly reducing launch mass. ACS has completed a ground exercise clothing study in preparation for an International Space Station technology demonstration in 2014. Development of launch packaging containers and other items that can be repurposed on-orbit as part of habitation outfitting has resulted in a logistics-to-living (L2L) concept. L2L has fabricated and evaluated several multi-purpose cargo transfer bags for potential reuse on-orbit. Autonomous logistics management is using radio frequency identification (RFID) to track items and thus reduce crew time for logistics functions. An RFID dense reader prototype is under construction and plans for integrated testing are being made. A heat melt compactor (HMC) second generation unit for processing trash into compact and stable tiles is nearing completion. The HMC prototype compaction chamber has been completed and system development testing is under way. Research has been conducted on the conversion of trash-to-gas (TtG) for high levels of volume reduction and for use in propulsion systems. A steam reformation system was selected for further system definition of the TtG technology.
Logistics Reduction and Repurposing Technology for Long Duration Space Missions
NASA Technical Reports Server (NTRS)
Broyan, James L.; Chu, Andrew; Ewert, Michael K.
2014-01-01
One of NASA's Advanced Exploration Systems (AES) projects is the Logistics Reduction and Repurposing (LRR) project, which has the goal of reducing logistics resupply items through direct and indirect means. Various technologies under development in the project will reduce the launch mass of consumables and their packaging, enable reuse and repurposing of items and make logistics tracking more efficient. Repurposing also reduces the trash burden onboard spacecraft and indirectly reduces launch mass by replacing some items on the manifest. Examples include reuse of trash as radiation shielding or propellant. This paper provides the status of the LRR technologies in their third year of development under AES. Advanced clothing systems (ACS) are being developed to enable clothing to be worn longer, directly reducing launch mass. ACS has completed a ground exercise clothing study in preparation for an International Space Station (ISS) technology demonstration in 2014. Development of launch packaging containers and other items that can be repurposed on-orbit as part of habitation outfitting has resulted in a logistics-to-living (L2L) concept. L2L has fabricated and evaluated several multi-purpose cargo transfer bags (MCTBs) for potential reuse on orbit. Autonomous logistics management (ALM) is using radio frequency identification (RFID) to track items and thus reduce crew requirements for logistics functions. An RFID dense reader prototype is under construction and plans for integrated testing are being made. Development of a heat melt compactor (HMC) second generation unit for processing trash into compact and stable tiles is nearing completion. The HMC prototype compaction chamber has been completed and system development testing is underway. Research has been conducted on the conversion of trash-to-gas (TtG) for high levels of volume reduction and for use in propulsion systems. A steam reformation system was selected for further system definition of the TtG technology. And benefits analysis of all LRR technologies have been updated with the latest test and analysis results.
Orbital Space Plane (OSP) Program
NASA Technical Reports Server (NTRS)
McKenzie, Patrick M.
2003-01-01
Lockheed Martin has been an active participant in NASA's Space Launch Initiative (SLI) programs over the past several years. SLI, part of NASA's Integrated Space Transportation Plan (ISTP), was restructured in November of 2002 to focus the overall theme of safer, more afford-able space transportation along two paths - the Orbital Space Plane Program and the Next Generation Launch Technology programs. The Orbital Space Plane Program has the goal of providing rescue capability from the International Space Station by 2008 and transfer capability for crew (and limited cargo) by 2012. The Next Generation Launch Technology program is combining research and development efforts from the 2nd Generation Reusable Launch Vehicle (2GRLV) program with cutting-edge, advanced space transportation programs (previously designated 3rd Generation) into one program aimed at enabling safe, reliable, cost-effective reusable launch systems by the middle of the next decade. Lockheed Martin is one of three prime contractors working to bring Orbital Space Plane system concepts to a system definition level of maturity by December of 2003. This paper and presentation will update the international community on the progress of the' OSP program, from an industry perspective, and provide insights into Lockheed Martin's role in enabling the vision of a safer, more affordable means of taking people to and from space.
Orbital Space Plane (OSP) Program at Lockheed Martin
NASA Technical Reports Server (NTRS)
Ford, Robert
2003-01-01
Lockheed Martin has been an active participant in NASA's Space Launch Initiative (SLI) programs over the past several years. SLI, part of NASA's Integrated Space Transportation Plan (ISTP), was restructured in November 2002 to focus the overall theme of safer, more affordable space transportation along two paths the Orbital Space Plane (OSP) and the Next Generation Launch Technology programs. The Orbital Space Plane program has the goal of providing rescue capability from the International Space Station by 2008 or earlier and transfer capability for crew (and contingency cargo) by 2012. The Next Generation Launch Technology program is combining research and development efforts from the 2d Generation Reusable Launch Vehicle (2GRLV) program with cutting-edge, advanced space transportation programs (previously designated 31d Generation) into one program aimed at enabling safe, reliable, cost-effective reusable launch systems by the middle of the next decade. Lockheed Martin is one of three prime contractors working to bring Orbital Space Plane system concepts to a system design level of maturity by December 2003. This paper and presentation will update the aerospace community on the progress of the OSP program, from an industry perspective, and provide insights into Lockheed Martin's role in enabling the vision of a safer, more affordable means of taking people to and from space.
NASA Technical Reports Server (NTRS)
1992-01-01
MISSION OPERATIONS REPORTS are published for use by NASA senior management, as required by NASA Headquarters Management Instruction HQMI 8610. lC, effective November 26, 1991. The purpose of these reports is to provide a documentation system that represents an internal discipline to establish critical discriminators selected in advance to measure mission accomplishment, provide a formal written assessment of mission accomplishment, and provide an accountability of technical achievement. Prelaunch reports are prepared and issued for each flight project just prior to launch. Following launch, updating (Post Launch) reports are issued to provide mission status and progress in meeting mission objectives. Primary distribution of these reports is intended for personnel having program/project management responsibilities.
Health management and controls for earth to orbit propulsion systems
NASA Technical Reports Server (NTRS)
Bickford, R. L.
1992-01-01
Fault detection and isolation for advanced rocket engine controllers are discussed focusing on advanced sensing systems and software which significantly improve component failure detection for engine safety and health management. Aerojet's Space Transportation Main Engine controller for the National Launch System is the state of the art in fault tolerant engine avionics. Health management systems provide high levels of automated fault coverage and significantly improve vehicle delivered reliability and lower preflight operations costs. Key technologies, including the sensor data validation algorithms and flight capable spectrometers, have been demonstrated in ground applications and are found to be suitable for bridging programs into flight applications.
Space Launch System Co-Manifested Payload Options for Habitation
NASA Technical Reports Server (NTRS)
Smitherman, David
2015-01-01
The Space Launch System (SLS) has a co-manifested payload capability that will grow over time as the rocket matures and planned upgrades are implemented. The final configuration is planned to be capable of inserting a payload greater than 10 metric tons (mt) into a trans-lunar injection trajectory along with the crew in the Orion capsule and the service module. The co-manifested payload is located below the Orion and its service module in a 10-meter high fairing similar to the way the Saturn launch vehicle carried the lunar lander below the Apollo command and service modules. A variety of approaches have been explored that utilizes this co-manifested payload capability to build up infrastructure in deep space in support of future asteroid, lunar, and Mars mission scenarios. This paper is a report on the findings from the Advanced Concepts Office study team at the NASA Marshall Space Flight Center, working with the Advanced Exploration Systems Program on the Exploration Augmentation Module Project. It includes some of the possible options for habitation in the co-manifested payload volume on SLS. Findings include module designs that can be developed in 10mt increments to support these missions, including overall conceptual layouts, mass properties, and approaches for integration into various scenarios for near-term support of deep space habitat research and technology development, support to asteroid exploration, and long range support for Mars transfer flights.
Payload accommodations. Avionics payload support architecture
NASA Technical Reports Server (NTRS)
Creasy, Susan L.; Levy, C. D.
1990-01-01
Concepts for vehicle and payload avionics architectures for future NASA programs, including the Assured Shuttle Access program, Space Station Freedom (SSF), Shuttle-C, Advanced Manned Launch System (AMLS), and the Lunar/Mars programs are discussed. Emphasis is on the potential available to increase payload services which will be required in the future, while decreasing the operational cost/complexity by utilizing state of the art advanced avionics systems and a distributed processing architecture. Also addressed are the trade studies required to determine the optimal degree of vehicle (NASA) to payload (customer) separation and the ramifications of these decisions.
Advanced power systems for EOS
NASA Technical Reports Server (NTRS)
Bailey, Sheila G.; Weinberg, Irving; Flood, Dennis J.
1991-01-01
The Earth Observing System, which is part of the International Mission to Planet Earth, is NASA's main contribution to the Global Change Research Program. Five large platforms are to be launched into polar orbit: two by NASA, two by the European Space Agency, and one by the Japanese. In such an orbit the radiation resistance of indium phosphide solar cells combined with the potential of utilizing 5 micron cell structures yields an increase of 10 percent in the payload capability. If further combined with the Advanced Photovoltaic Solar Array, the total additional payload capability approaches 12 percent.
2013-02-22
DURING HIS FEB. 22 VISIT TO THE NATIONAL CENTER FOR ADVANCED MANUFACTURING RAPID PROTOTYPING FACILITY AT NASA'S MARSHALL SPACE FLIGHT CENTER, NASA ADMINISTRATOR CHARLES BOLDEN, CENTER, TALKS WITH FRANK LEDBETTER, RIGHT, CHIEF OF THE NONMETALLIC MATERIALS AND MANUFACTURING DIVISION AT MARSHALL, ABOUT THE USE OF 3-D PRINTING AND PROTOTYPING TECHNOLOGY TO CREATE PARTS FOR THE SPACE LAUNCH SYSTEM. ALSO PARTICIPATING IN THE TOUR ARE, FROM BACK RIGHT, MARSHALL CENTER DIRECTOR PATRICK SCHEUERMANN; SHERRY KITTREDGE, DEPUTY MANAGER OF THE SLS LIQUID ENGINES OFFICE; MARSHALL FLIGHT SYSTEMS DESIGN ENGINEER ROB BLACK; AND JOHN VICKERS, MANAGER OF THE NATIONAL CENTER FOR ADVANCED MANUFACTURING.
Materials Challenges in Space Exploration
NASA Technical Reports Server (NTRS)
Bhat, Biliyar N.
2005-01-01
United States civil space program administered by National Aeronautics and Space Administration has a new strategic direction to explore the solar system. This new 'vision for space exploration' encompasses a broad range of human and robotic missions, including the Moon. Mars and destinations beyond. These missions require advanced systems and capabilities that will accelerate the development of many critical technologies, including advanced materials and structural concepts. Specifically, it is planned to develop high-performance materials for vehicle structures, propulsion systems, and space suits; structural concepts for modular assembly for space infrastructure: lightweight deployable and inflatable structures for large space systems and crew habitats; and highly integrated structural systems and advanced thermal management systems for reducing launch mass and volume. This paper will present several materials challenges in advanced space systems-high performance structural and thermal materials, space durable materials, radiation protection materials, and nano-structural materials. Finally, the paper will take a look at the possibility of utilizing materials in situ, i.e., processing materials on the surface of the Moon and Mars.
NASA Technical Reports Server (NTRS)
Prosser, Bill
2016-01-01
Advanced nondestructive measurement techniques are critical for ensuring the reliability and safety of NASA spacecraft. Techniques such as infrared thermography, THz imaging, X-ray computed tomography and backscatter X-ray are used to detect indications of damage in spacecraft components and structures. Additionally, sensor and measurement systems are integrated into spacecraft to provide structural health monitoring to detect damaging events that occur during flight such as debris impacts during launch and assent or from micrometeoroid and orbital debris, or excessive loading due to anomalous flight conditions. A number of examples will be provided of how these nondestructive measurement techniques have been applied to resolve safety critical inspection concerns for the Space Shuttle, International Space Station (ISS), and a variety of launch vehicles and unmanned spacecraft.
The Advanced Communications Technology Satellite - Performance, Reliability and Lessons Learned
NASA Technical Reports Server (NTRS)
Krawczyk, Richard J.; Ignaczak, Louis R.
2000-01-01
The Advanced Communications Satellite (ACTS) was conceived and developed in the mid- 1980s as an experimental satellite to demonstrate unproven Ka-band technology, and potential new commercial applications and services. Since launch into geostationary orbit in September 1993. ACTS has accumulated almost seven years of essentially trouble-free operation and met all program objectives. The unique technology, service experiments. and system level demonstrations accomplished by ACTS have been reported in many forums over the past several years. As ACTS completes its final experiments activity, this paper will relate the top-level program goals that have been achieved in the design, operation, and performance of the particular satellite subsystems. Pre-launch decisions to ensure satellite reliability and the subsequent operational experiences contribute to lessons learned that may be applicable to other comsat programs.
Pluto/Kuiper Missions with Advanced Electric Propulsion and Power
NASA Technical Reports Server (NTRS)
Oleson, S. R.; Patterson, M. J.; Schrieber, J.; Gefert, L. P.
2001-01-01
In response to a request by NASA Code SD Deep Space Exploration Technology Program, NASA Glenn Research center performed a study to identify advanced technology options to perform a Pluto/Kuiper mission without depending on a 2004 Jupiter Gravity Assist, but still arriving before 2020. A concept using a direct trajectory with small, sub-kilowatt ion thrusters and Stirling radioisotope power system was shown to allow the same or smaller launch vehicle class (EELV) as the chemical 2004 baseline and allow launch in any year and arrival in the 2014 to 2020 timeframe. With the nearly constant power available from the radioisotope power source such small ion propelled spacecraft could explore many of the outer planetary targets. Such studies are already underway. Additional information is contained in the original extended abstract.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zitney, S.E.
This presentation will examine process systems engineering R&D needs for application to advanced fossil energy (FE) systems and highlight ongoing research activities at the National Energy Technology Laboratory (NETL) under the auspices of a recently launched Collaboratory for Process & Dynamic Systems Research. The three current technology focus areas include: 1) High-fidelity systems with NETL's award-winning Advanced Process Engineering Co-Simulator (APECS) technology for integrating process simulation with computational fluid dynamics (CFD) and virtual engineering concepts, 2) Dynamic systems with R&D on plant-wide IGCC dynamic simulation, control, and real-time training applications, and 3) Systems optimization including large-scale process optimization, stochastic simulationmore » for risk/uncertainty analysis, and cost estimation. Continued R&D aimed at these and other key process systems engineering models, methods, and tools will accelerate the development of advanced gasification-based FE systems and produce increasingly valuable outcomes for DOE and the Nation.« less
NASA Technical Reports Server (NTRS)
Carruth, Ralph
2008-01-01
There are various aspects of advanced manufacturing technology development at the field centers of the National Aeronautics and Space Administration (NASA). The Marshall Space Flight Center (MSFC) has been given the assignment to lead the National Center for Advanced Manufacturing (NCAM) at MSFC and pursue advanced development and coordination with other federal agencies for NASA. There are significant activities at the Marshall Center as well as at the Michoud Assembly Facility (MAF) in New Orleans which we operate in conjunction with the University of New Orleans. New manufacturing processes in metals processing, component development, welding operations, composite manufacturing and thermal protection system material and process development will be utilized in the manufacturing of the United States two new launch vehicles, the Ares I and the Ares V. An overview of NCAM will be presented as well as some of the development activities and manufacturing that are ongoing in Ares Upper Stage development. Some of the tools and equipment produced by Italian owned companies and their application in this work will be mentioned.
NASA Launches Five Rockets in Five Minutes
2017-12-08
NASA image captured March 27, 2012 NASA successfully launched five suborbital sounding rockets this morning from its Wallops Flight Facility in Virginia as part of a study of the upper level jet stream. The first rocket was launched at 4:58 a.m. EDT and each subsequent rocket was launched 80 seconds apart. Each rocket released a chemical tracer that created milky, white clouds at the edge of space. Tracking the way the clouds move can help scientists understand the movement of the winds some 65 miles up in the sky, which in turn will help create better models of the electromagnetic regions of space that can damage man-made satellites and disrupt communications systems. The launches and clouds were reported to be seen from as far south as Wilmington, N.C.; west to Charlestown, W. Va.; and north to Buffalo, N.Y. Credit: NASA/Wallops To watch a video of the launch and to read more go to: www.nasa.gov/mission_pages/sunearth/missions/atrex-launch... NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Launches Five Rockets in Five Minutes
2012-03-27
NASA image captured March 27, 2012 NASA successfully launched five suborbital sounding rockets this morning from its Wallops Flight Facility in Virginia as part of a study of the upper level jet stream. The first rocket was launched at 4:58 a.m. EDT and each subsequent rocket was launched 80 seconds apart. Each rocket released a chemical tracer that created milky, white clouds at the edge of space. Tracking the way the clouds move can help scientists understand the movement of the winds some 65 miles up in the sky, which in turn will help create better models of the electromagnetic regions of space that can damage man-made satellites and disrupt communications systems. The launches and clouds were reported to be seen from as far south as Wilmington, N.C.; west to Charlestown, W. Va.; and north to Buffalo, N.Y. Credit: NASA/Wallops To watch a video of the launch and to read more go to: www.nasa.gov/mission_pages/sunearth/missions/atrex-launch... NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Technical Reports Server (NTRS)
Creech, Stephen D.; Crumbly, Christopher M.; Robinson, Kimerly F.
2016-01-01
A foundational capability for international human deep-space exploration, NASA's Space Launch System (SLS) vehicle represents a new spaceflight infrastructure asset, creating opportunities for mission profiles and space systems that cannot currently be executed. While the primary purpose of SLS, which is making rapid progress towards initial launch readiness in two years, will be to support NASA's Journey to Mars, discussions are already well underway regarding other potential utilization of the vehicle's unique capabilities. In its initial Block 1 configuration, capable of launching 70 metric tons (t) to low Earth orbit (LEO), SLS is capable of propelling the Orion crew vehicle to cislunar space, while also delivering small CubeSat-class spacecraft to deep-space destinations. With the addition of a more powerful upper stage, the Block 1B configuration of SLS will be able to deliver 105 t to LEO and enable more ambitious human missions into the proving ground of space. This configuration offers opportunities for launching co-manifested payloads with the Orion crew vehicle, and a class of secondary payloads, larger than today's CubeSats. Further upgrades to the vehicle, including advanced boosters, will evolve its performance to 130 t in its Block 2 configuration. Both Block 1B and Block 2 also offer the capability to carry 8.4- or 10-m payload fairings, larger than any contemporary launch vehicle. With unmatched mass-lift capability, payload volume, and C3, SLS not only enables spacecraft or mission designs currently impossible with contemporary EELVs, it also offers enhancing benefits, such as reduced risk, operational costs and/or complexity, shorter transit time to destination or launching large systems either monolithically or in fewer components. This paper will discuss both the performance and capabilities of Space Launch System as it evolves, and the current state of SLS utilization planning.
Rockets Launched from NASA’s Wallops Flight Facility
2015-02-24
NASA’s Wallops Flight Facility supported the successful launch of three Terrier-Oriole suborbital rockets for the Department of Defense between 2:30 and 2:31 a.m. today, Feb. 24, from NASA’s launch range on the Eastern Shore of Virginia. The next launch from the Wallops Flight Facility is a NASA Terrier-Improved Malemute suborbital sounding rocket between 6 and 9 a.m. on March 27. The rocket will be carrying the Rocksat-X payload carrying university student developed experiments. Credit: NASA/Alison Stancil NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Integration of Mirror Design with Suspension System Using NASA's New Mirror Modeling Software
NASA Technical Reports Server (NTRS)
Arnold, William R., Sr.; Bevan, Ryan M.; Stahl, H. Philip
2013-01-01
Advances in mirror fabrication are making very large space based telescopes possible. In many applications, only monolithic mirrors can meet the performance requirements. The existing and near-term planned heavy launch vehicles place a premium on lowest possible mass, and then available payload shroud sizes limit near term designs to 4 meter class mirrors. Practical 8 meter class and beyond designs could encourage planners to include larger shrouds, if it can be proven that such mirrors can be manufactured. These two factors, lower mass and larger mirrors, present the classic optimization problem. There is a practical upper limit to how large of a mirror can be supported by a purely kinematic mount system handling both operational and launch loads. This paper shows how the suspension system and mirror blank need to be designed simultaneously. We will also explore the concepts of auxiliary support systems which act only during launch and disengage on orbit. We will define required characteristics of these systems and show how they can substantially reduce the mirror mass.
Integration of Mirror Design with Suspension System using NASA's New Mirror Modeling Software
NASA Technical Reports Server (NTRS)
Arnold,William R., Sr.; Bevan, Ryan M.; Stahl, Philip
2013-01-01
Advances in mirror fabrication are making very large space based telescopes possible. In many applications, only monolithic mirrors can meet the performance requirements. The existing and near-term planned heavy launch vehicles place a premium on lowest possible mass, and then available payload shroud sizes limit near term designs to 4 meter class mirrors. Practical 8 meter class and beyond designs could encourage planners to include larger shrouds, if it can be proven that such mirrors can be manufactured. These two factors, lower mass and larger mirrors, present the classic optimization problem. There is a practical upper limit to how large of a mirror can be supported by a purely kinematic mount system handling both operational and launch loads. This paper shows how the suspension system and mirror blank need to be designed simultaneously. We will also explore the concepts of auxiliary support systems which act only during launch and disengage on orbit. We will define required characteristics of these systems and show how they can substantially reduce the mirror mass.
Results of Evaluation of Solar Thermal Propulsion
NASA Technical Reports Server (NTRS)
Woodcock, Gordon; Byers, Dave
2003-01-01
The solar thermal propulsion evaluation reported here relied on prior research for all information on solar thermal propulsion technology and performance. Sources included personal contacts with experts in the field in addition to published reports and papers. Mission performance models were created based on this information in order to estimate performance and mass characteristics of solar thermal propulsion systems. Mission analysis was performed for a set of reference missions to assess the capabilities and benefits of solar thermal propulsion in comparison with alternative in-space propulsion systems such as chemical and electric propulsion. Mission analysis included estimation of delta V requirements as well as payload capabilities for a range of missions. Launch requirements and costs, and integration into launch vehicles, were also considered. The mission set included representative robotic scientific missions, and potential future NASA human missions beyond low Earth orbit. Commercial communications satellite delivery missions were also included, because if STP technology were selected for that application, frequent use is implied and this would help amortize costs for technology advancement and systems development. A C3 Topper mission was defined, calling for a relatively small STP. The application is to augment the launch energy (C3) available from launch vehicles with their built-in upper stages. Payload masses were obtained from references where available. The communications satellite masses represent the range of payload capabilities for the Delta IV Medium and/or Atlas launch vehicle family. Results indicated that STP could improve payload capability over current systems, but that this advantage cannot be realized except in a few cases because of payload fairing volume limitations on current launch vehicles. It was also found that acquiring a more capable (existing) launch vehicle, rather than adding an STP stage, is the most economical in most cases.
Assessment of candidate-expendable launch vehicles for large payloads
NASA Technical Reports Server (NTRS)
1984-01-01
In recent years the U.S. Air Force and NASA conducted design studies of 3 expendable launch vehicle configurations that could serve as a backup to the space shuttle--the Titan 34D7/Centaur, the Atlas II/Centaur, and the shuttle-derived SRB-X--as well as studies of advanced shuttle-derived launch vehicles with much larger payload capabilities than the shuttle. The 3 candidate complementary launch vehicles are judged to be roughly equivalent in cost, development time, reliability, and payload-to-orbit performance. Advanced shuttle-derived vehicles are considered viable candidates to meet future heavy lift launch requirements; however, they do not appear likely to result in significant reduction in cost-per-pound to orbit.
Potential Standards and Methods for the National Guard’s Homeland Response Force
2011-09-01
rapidly determine a missile launch and probable impact area ( Opall -Rome, 2009). Since 2006, Color Red coverage has expanded throughout the country...Manportable Air Defense (MANPAD) systems, land mines , advanced communication systems, mortars, unmanned air systems (UAS), frequency-hopping...Consequence Management Response Force (CCMRF). Internal document. Opall -Rome, B. (2009, January19). In Israel: Anti-sniper gear spots rockets
Reusable Launch Vehicle Control In Multiple Time Scale Sliding Modes
NASA Technical Reports Server (NTRS)
Shtessel, Yuri; Hall, Charles; Jackson, Mark
2000-01-01
A reusable launch vehicle control problem during ascent is addressed via multiple-time scaled continuous sliding mode control. The proposed sliding mode controller utilizes a two-loop structure and provides robust, de-coupled tracking of both orientation angle command profiles and angular rate command profiles in the presence of bounded external disturbances and plant uncertainties. Sliding mode control causes the angular rate and orientation angle tracking error dynamics to be constrained to linear, de-coupled, homogeneous, and vector valued differential equations with desired eigenvalues placement. Overall stability of a two-loop control system is addressed. An optimal control allocation algorithm is designed that allocates torque commands into end-effector deflection commands, which are executed by the actuators. The dual-time scale sliding mode controller was designed for the X-33 technology demonstration sub-orbital launch vehicle in the launch mode. Simulation results show that the designed controller provides robust, accurate, de-coupled tracking of the orientation angle command profiles in presence of external disturbances and vehicle inertia uncertainties. This is a significant advancement in performance over that achieved with linear, gain scheduled control systems currently being used for launch vehicles.
Spacecraft Impacts with Advanced Power and Electric Propulsion
NASA Technical Reports Server (NTRS)
Mason, Lee S.; Oleson, Steven R.
2000-01-01
A study was performed to assess the benefits of advanced power and electric propulsion systems for various space missions. Advanced power technologies that were considered included multiband gap and thin-film solar arrays, lithium batteries, and flywheels. Electric propulsion options included Hall effect thrusters and Ion thrusters. Several mission case studies were selected as representative of future applications for advanced power and propulsion systems. These included a low altitude Earth science satellite, a LEO communications constellation, a GEO military surveillance satellite, and a Mercury planetary mission. The study process entailed identification of overall mission performance using state-of-the-art power and propulsion technology, enhancements made possible with either power or electric propulsion advances individually, and the collective benefits realized when advanced power and electric propulsion are combined. Impacts to the overall spacecraft included increased payload, longer operational life, expanded operations and launch vehicle class step-downs.
Analysis of a rotating advanced-technology space station for the year 2025
NASA Technical Reports Server (NTRS)
Queijo, M. J.; Butterfield, A. J.; Cuddihy, W. F.; King, C. B.; Stone, R. W.; Garn, P. A.
1988-01-01
An analysis is made of several aspects of an advanced-technology rotating space station configuration generated under a previous study. The analysis includes examination of several modifications of the configuration, interface with proposed launch systems, effects of low-gravity environment on human subjects, and the space station assembly sequence. Consideration was given also to some aspects of space station rotational dynamics, surface charging, and the possible application of tethers.
Dual-Fuel Propulsion in Single-Stage Advanced Manned Launch System Vehicle
NASA Technical Reports Server (NTRS)
Lepsch, Roger A., Jr.; Stanley, Douglas O.; Unal, Resit
1995-01-01
As part of the United States Advanced Manned Launch System study to determine a follow-on, or complement, to the Space Shuttle, a reusable single-stage-to-orbit concept utilizing dual-fuel rocket propulsion has been examined. Several dual-fuel propulsion concepts were investigated. These include: a separate-engine concept combining Russian RD-170 kerosene-fueled engines with space shuttle main engine-derivative engines: the kerosene- and hydrogen-fueled Russian RD-701 engine; and a dual-fuel, dual-expander engine. Analysis to determine vehicle weight and size characteristics was performed using conceptual-level design techniques. A response-surface methodology for multidisciplinary design was utilized to optimize the dual-fuel vehicles with respect to several important propulsion-system and vehicle design parameters, in order to achieve minimum empty weight. The tools and methods employed in the analysis process are also summarized. In comparison with a reference hydrogen- fueled single-stage vehicle, results showed that the dual-fuel vehicles were from 10 to 30% lower in empty weight for the same payload capability, with the dual-expander engine types showing the greatest potential.
Green Propulsion Advancement and Infusion
NASA Technical Reports Server (NTRS)
Mulkey, Henry W.; Maynard, Andrew P.; Anflo, Kjell
2018-01-01
All space missions benefit from increased propulsion system performance, allowing lower spacecraft launch mass, larger scientific payloads, or extended on-orbit lifetimes. Likewise, long-term storable liquid propellant candidates that offer significant reduction in personnel hazards and shorter payload processing schedules present a more attractive propulsion subsystem solution to spacecraft builders. Aiming to reduce risk to potential infusion missions and fully comprehend the alternative propellant performance, the work presented herein represents many years of development and collaborative efforts to successfully align higher performance, low toxicity green propellants into NASA Goddard Space Flight Center (GSFC) missions. High Performance Green Propulsion (HPGP), and the associated propellant technology, has advanced significantly in maturity with increased familiarity with LMP-103S propellant handling, the proven reduction in loading hazards, successful launches conducted at multiple international Ranges, and HPGP on-orbit flight heritage. As science missions move forward to the potential infusion of HPGP technology, the National Aeronautics and Space Administration (NASA) and its partners are working to address gaps in system performance and operational considerations.
2016 Year in Review Video- NASA’s Marshall Space Flight Center
2016-12-22
The work underway today at NASA’s Marshall Space Flight Center is making it possible to send humans beyond Earth’s orbit and into deep space on bold new missions of space exploration. Marshall teams are designing and building NASA’s Space Launch System, the most powerful rocket ever built and the only launch vehicle capable of launching human explorers to Mars. Using the International Space Station’s orbiting lab, Marshall flight controllers provided round-the-clock oversight of science experiments, supporting the first-ever DNA sequencing in space, pioneering 3-D printing capabilities and advancing human health research. Several successful New Frontiers deep-space robotic missions including OSIRIS-REx, New Horizons and Juno, made new discoveries and refined theories of the solar system. And Marshall collaborations with outside partners are yielding innovative technologies and solving technical challenges that are making the Journey to Mars a reality.
2009-03-04
CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., technicians remove the protective cover wrapped around the GOES-O satellite. The satellite will undergo final testing of the imaging system, instrumentation, communications and power systems. The latest Geostationary Operational Environmental Satellite, GOES-O was developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA. The GOES-O satellite is targeted to launch April 28 onboard a United Launch Alliance Delta IV expendable launch vehicle. Once in orbit, GOES-O will be designated GOES-14, and NASA will provide on-orbit checkout and then transfer operational responsibility to NOAA. GOES-O will be placed in on-orbit storage as a replacement for an older GOES satellite. GOES-O carries an advanced attitude control system using star trackers with spacecraft optical bench Imager and Sounder mountings that provide enhanced instrument pointing performance for improved image navigation and registration to better locate severe storms and other events important to the NOAA National Weather Service. Photo credit: NASA/Kim Shiflett
2009-03-04
CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., technicians move the test stand with the GOES-O satellite. The satellite will undergo final testing of the imaging system, instrumentation, communications and power systems. The latest Geostationary Operational Environmental Satellite, GOES-O was developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA. The GOES-O satellite is targeted to launch April 28 onboard a United Launch Alliance Delta IV expendable launch vehicle. Once in orbit, GOES-O will be designated GOES-14, and NASA will provide on-orbit checkout and then transfer operational responsibility to NOAA. GOES-O will be placed in on-orbit storage as a replacement for an older GOES satellite. GOES-O carries an advanced attitude control system using star trackers with spacecraft optical bench Imager and Sounder mountings that provide enhanced instrument pointing performance for improved image navigation and registration to better locate severe storms and other events important to the NOAA National Weather Service. Photo credit: NASA/Kim Shiflett
2009-03-04
CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., technicians remove the protective cover wrapped around the GOES-O satellite. The satellite will undergo final testing of the imaging system, instrumentation, communications and power systems. The latest Geostationary Operational Environmental Satellite, GOES-O was developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA. The GOES-O satellite is targeted to launch April 28 onboard a United Launch Alliance Delta IV expendable launch vehicle. Once in orbit, GOES-O will be designated GOES-14, and NASA will provide on-orbit checkout and then transfer operational responsibility to NOAA. GOES-O will be placed in on-orbit storage as a replacement for an older GOES satellite. GOES-O carries an advanced attitude control system using star trackers with spacecraft optical bench Imager and Sounder mountings that provide enhanced instrument pointing performance for improved image navigation and registration to better locate severe storms and other events important to the NOAA National Weather Service. Photo credit: NASA/Kim Shiflett
2009-03-04
CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., the solar arrays on the GOES-O satellite are revealed. GOES-O will undergo final testing of the imaging system, instrumentation, communications and power systems. The latest Geostationary Operational Environmental Satellite, GOES-O was developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA. The GOES-O satellite is targeted to launch April 28 onboard a United Launch Alliance Delta IV expendable launch vehicle. Once in orbit, GOES-O will be designated GOES-14, and NASA will provide on-orbit checkout and then transfer operational responsibility to NOAA. GOES-O will be placed in on-orbit storage as a replacement for an older GOES satellite. GOES-O carries an advanced attitude control system using star trackers with spacecraft optical bench Imager and Sounder mountings that provide enhanced instrument pointing performance for improved image navigation and registration to better locate severe storms and other events important to the NOAA National Weather Service. Photo credit: NASA/Kim Shiflett
2009-03-04
CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., the GOES-O satellite is lifted out of its shipping container to a vertical position. It will be placed on a stand for final testing of the imaging system, instrumentation, communications and power systems. The latest Geostationary Operational Environmental Satellite, GOES-O was developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA. The GOES-O satellite is targeted to launch April 28 onboard a United Launch Alliance Delta IV expendable launch vehicle. Once in orbit, GOES-O will be designated GOES-14, and NASA will provide on-orbit checkout and then transfer operational responsibility to NOAA. GOES-O will be placed in on-orbit storage as a replacement for an older GOES satellite. GOES-O carries an advanced attitude control system using star trackers with spacecraft optical bench Imager and Sounder mountings that provide enhanced instrument pointing performance for improved image navigation and registration to better locate severe storms and other events important to the NOAA National Weather Service. Photo credit: NASA/Kim Shiflett
2009-03-04
CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., the GOES-O satellite is lifted out of its shipping container. It will be placed on a stand for final testing of the imaging system, instrumentation, communications and power systems. The latest Geostationary Operational Environmental Satellite, GOES-O was developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA. The GOES-O satellite is targeted to launch April 28 onboard a United Launch Alliance Delta IV expendable launch vehicle. Once in orbit, GOES-O will be designated GOES-14, and NASA will provide on-orbit checkout and then transfer operational responsibility to NOAA. GOES-O will be placed in on-orbit storage as a replacement for an older GOES satellite. GOES-O carries an advanced attitude control system using star trackers with spacecraft optical bench Imager and Sounder mountings that provide enhanced instrument pointing performance for improved image navigation and registration to better locate severe storms and other events important to the NOAA National Weather Service. Photo credit: NASA/Kim Shiflett
2009-03-04
CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., technicians help guide the cables lifting the GOES-O satellite toward the stand at right. The satellite will undergo final testing of the imaging system, instrumentation, communications and power systems. The latest Geostationary Operational Environmental Satellite, GOES-O was developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA. The GOES-O satellite is targeted to launch April 28 onboard a United Launch Alliance Delta IV expendable launch vehicle. Once in orbit, GOES-O will be designated GOES-14, and NASA will provide on-orbit checkout and then transfer operational responsibility to NOAA. GOES-O will be placed in on-orbit storage as a replacement for an older GOES satellite. GOES-O carries an advanced attitude control system using star trackers with spacecraft optical bench Imager and Sounder mountings that provide enhanced instrument pointing performance for improved image navigation and registration to better locate severe storms and other events important to the NOAA National Weather Service. Photo credit: NASA/Kim Shiflett
2009-03-04
CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., the GOES-O satellite is lowered toward a test stand. The satellite will undergo final testing of the imaging system, instrumentation, communications and power systems. The latest Geostationary Operational Environmental Satellite, GOES-O was developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA. The GOES-O satellite is targeted to launch April 28 onboard a United Launch Alliance Delta IV expendable launch vehicle. Once in orbit, GOES-O will be designated GOES-14, and NASA will provide on-orbit checkout and then transfer operational responsibility to NOAA. GOES-O will be placed in on-orbit storage as a replacement for an older GOES satellite. GOES-O carries an advanced attitude control system using star trackers with spacecraft optical bench Imager and Sounder mountings that provide enhanced instrument pointing performance for improved image navigation and registration to better locate severe storms and other events important to the NOAA National Weather Service. Photo credit: NASA/Kim Shiflett
2009-03-04
CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., the protective shipping cover has been removed from the GOES-O satellite. GOES-O will undergo final testing of the imaging system, instrumentation, communications and power systems. The latest Geostationary Operational Environmental Satellite, GOES-O was developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA. The GOES-O satellite is targeted to launch April 28 onboard a United Launch Alliance Delta IV expendable launch vehicle. Once in orbit, GOES-O will be designated GOES-14, and NASA will provide on-orbit checkout and then transfer operational responsibility to NOAA. GOES-O will be placed in on-orbit storage as a replacement for an older GOES satellite. GOES-O carries an advanced attitude control system using star trackers with spacecraft optical bench Imager and Sounder mountings that provide enhanced instrument pointing performance for improved image navigation and registration to better locate severe storms and other events important to the NOAA National Weather Service. Photo credit: NASA/Kim Shiflett
2009-03-04
CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., the GOES-O satellite is lowered toward a stand. The satellite will undergo final testing of the imaging system, instrumentation, communications and power systems. The latest Geostationary Operational Environmental Satellite, GOES-O was developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA. The GOES-O satellite is targeted to launch April 28 onboard a United Launch Alliance Delta IV expendable launch vehicle. Once in orbit, GOES-O will be designated GOES-14, and NASA will provide on-orbit checkout and then transfer operational responsibility to NOAA. GOES-O will be placed in on-orbit storage as a replacement for an older GOES satellite. GOES-O carries an advanced attitude control system using star trackers with spacecraft optical bench Imager and Sounder mountings that provide enhanced instrument pointing performance for improved image navigation and registration to better locate severe storms and other events important to the NOAA National Weather Service. Photo credit: NASA/Kim Shiflett
MagLifter Site Investigation and Implementation Strategies
NASA Technical Reports Server (NTRS)
Burke, Pamela; Slaughter, Maynard; Beer, C. Neil
1995-01-01
MagLifter, as defined here, is an advanced, earth-bound catapult system to provide the initial lift for earth orbiting vehicles to reduce or eliminate the need for multistage propulsion, thus reducing the cost of orbital space flight. It is presumed that magnetic levitation will catapult the vehicle to a desired initial velocity sufficient for reaching orbit with the vehicles own engines. Of necessity, the system must be located on and around a mountain with sufficient relief to allow the catapult to accelerate the launch vehicle to a sufficient speed in the desired direction to allow it to reach orbit. Such a mountain site must meet criteria consistent with current and future space launch needs and conditions. It is the purpose of this report to set forth preliminary criteria for choosing a suitable maglifter site. The report is divided into four major sections: (1) Assumed Launch System and Flight Vehicle Characteristics; (2) Task 1.A - Initial Site Selection Criteria; (3) Conclusions; and (4) Appendix - Phases of the Site Selection Process.
Earth Observing System (EOS) Aqua Launch and Early Mission Attitude Support Experiences
NASA Technical Reports Server (NTRS)
Tracewell, D.; Glickman, J.; Hashmall, J.; Natanson, G.; Sedlak, J.
2003-01-01
The Earth Observing System (EOS) Aqua satellite was successfully launched on May 4,2002. Aqua is the second in the series of EOS satellites. EOS is part of NASA s Earth Science Enterprise Program, whose goals are to advance the scientific understanding of the Earth system. Aqua is a three-axis stabilized, Earth-pointing spacecraft in a nearly circular, sun-synchronous orbit at an altitude of 705 km. The Goddard Space Flight Center (GSFC) Flight Dynamics attitude team supported all phases of the launch and early mission. This paper presents the main results and lessons learned during this period, including: real-time attitude mode transition support, sensor calibration, onboard computer attitude validation, response to spacecraft emergencies, postlaunch attitude analyses, and anomaly resolution. In particular, Flight Dynamics support proved to be invaluable for successful Earth acquisition, fine-point mode transition, and recognition and correction of several anomalies, including support for the resolution of problems observed with the MODIS instrument.
Solar Electric and Chemical Propulsion Technology Applications to a Titan Orbiter/Lander Mission
NASA Technical Reports Server (NTRS)
Cupples, Michael
2007-01-01
Several advanced propulsion technology options were assessed for a conceptual Titan Orbiter/Lander mission. For convenience of presentation, the mission was broken into two phases: interplanetary and Titan capture. The interplanetary phase of the mission was evaluated for an advanced Solar Electric Propulsion System (SEPS), while the Titan capture phase was evaluated for state-of-art chemical propulsion (NTO/Hydrazine), three advanced chemical propulsion options (LOX/Hydrazine, Fluorine/Hydrazine, high Isp mono-propellant), and advanced tank technologies. Hence, this study was referred to as a SEPS/Chemical based option. The SEPS/Chemical study results were briefly compared to a 2002 NASA study that included two general propulsion options for the same conceptual mission: an all propulsive based mission and a SEPS/Aerocapture based mission. The SEP/Chemical study assumed identical science payload as the 2002 NASA study science payload. The SEPS/Chemical study results indicated that the Titan mission was feasible for a medium launch vehicle, an interplanetary transfer time of approximately 8 years, an advanced SEPS (30 kW), and current chemical engine technology (yet with advanced tanks) for the Titan capture. The 2002 NASA study showed the feasibility of the mission based on a somewhat smaller medium launch vehicle, an interplanetary transfer time of approximately 5.9 years, an advanced SEPS (24 kW), and advanced Aerocapture based propulsion technology for the Titan capture. Further comparisons and study results were presented for the advanced chemical and advanced tank technologies.
Alien crop circle? No, that’s just NASA’s newest balloon launch pad
2017-12-08
Aviators, skydivers and other altitude-seeking enthusiasts flying out of Wanaka Airport, New Zealand, are double taking at a new topographical feature reminiscent of an alien crop circle. Rest assured, the nearly 2,000-foot (600-meter) diameter circle with a pie-shaped wedge on one side and spokes on the other is no extraterrestrial footprint and it’s definitely no hoax. It’s NASA’s newest launch pad for launching the agency’s most advanced high-altitude, heavy-lift scientific balloon: the super pressure balloon. The four spokes emanating from the center and toward the west, each nearly 1,000 feet (300 meters) long, align with magnetic compass directions at 240, 260, 290 and 320 degrees. On launch day, balloon flight experts from NASA’s Columbia Scientific Balloon Facility will assess meteorological data and determine if the conditions are suitable to support a launch opportunity. The new pad is the first major project in developing a long-term super pressure balloon launch site in Wanaka. Earlier in 2017, NASA signed a 10-year lease with the Queenstown Airport Corporation to conduct balloon operations from a newly acquired piece of land adjacent to the Wanaka Airport. Credit: NASA/Dave Webb NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Technical Reports Server (NTRS)
Ding, Robert J.
2010-01-01
Some of the applications of advanced welding techniques are shown in this poster presentation. Included are brief explanations of the use on the Ares I and Ares V launch vehicle and on the Space Shuttle Launch vehicle. Also included are microstructural views from four advanced welding techniques: Variable Polarity Plasma Arc (VPPA) weld (fusion), self-reacting friction stir welding (SR-FSW), conventional FSW, and Tube Socket Weld (TSW) on aluminum.
Maglev Launch: Ultra-low Cost, Ultra-high Volume Access to Space for Cargo and Humans
NASA Astrophysics Data System (ADS)
Powell, James; Maise, George; Rather, John
2010-01-01
Despite decades of efforts to reduce rocket launch costs, improvements are marginal. Launch cost to LEO for cargo is ~$10,000 per kg of payload, and to higher orbit and beyond much greater. Human access to the ISS costs $20 million for a single passenger. Unless launch costs are greatly reduced, large scale commercial use and human exploration of the solar system will not occur. A new approach for ultra low cost access to space-Maglev Launch-magnetically accelerates levitated spacecraft to orbital speeds, 8 km/sec or more, in evacuated tunnels on the surface, using Maglev technology like that operating in Japan for high speed passenger transport. The cost of electric energy to reach orbital speed is less than $1 per kilogram of payload. Two Maglev launch systems are described, the Gen-1System for unmanned cargo craft to orbit and Gen-2, for large-scale access of human to space. Magnetically levitated and propelled Gen-1 cargo craft accelerate in a 100 kilometer long evacuated tunnel, entering the atmosphere at the tunnel exit, which is located in high altitude terrain (~5000 meters) through an electrically powered ``MHD Window'' that prevents outside air from flowing into the tunnel. The Gen-1 cargo craft then coasts upwards to space where a small rocket burn, ~0.5 km/sec establishes, the final orbit. The Gen-1 reference design launches a 40 ton, 2 meter diameter spacecraft with 35 tons of payload. At 12 launches per day, a single Gen-1 facility could launch 150,000 tons annually. Using present costs for tunneling, superconductors, cryogenic equipment, materials, etc., the projected construction cost for the Gen-1 facility is 20 billion dollars. Amortization cost, plus Spacecraft and O&M costs, total $43 per kg of payload. For polar orbit launches, sites exist in Alaska, Russia, and China. For equatorial orbit launches, sites exist in the Andes and Africa. With funding, the Gen-1 system could operate by 2020 AD. The Gen-2 system requires more advanced technology. Passenger spacecraft enter the atmosphere at 70,000 feet, where deceleration is acceptable. A levitated evacuated launch tube is used, with the levitation force generated by magnetic interaction between superconducting cables on the levitated launch tube and superconducting cables on the ground beneath. The Gen-2 system could launch 100's of thousands of passengers per year, and operate by 2030 AD. Maglev launch will enable large human scale exploration of space, thousands of gigawatts of space solar power satellites for beamed power to Earth, a robust defense against asteroids and comets, and many other applications not possible now.
NASA Technical Reports Server (NTRS)
Barret, C.
1995-01-01
The Marshall Space Flight Center has a rich heritage of launch vehicles that have used aerodynamic surfaces for flight stability such as the Saturn vehicles and flight control such as on the Redstone. Recently, due to aft center-of-gravity locations on launch vehicles currently being studied, the need has arisen for the vehicle control augmentation that is provided by these flight controls. Aerodynamic flight control can also reduce engine gimbaling requirements, provide actuator failure protection, enhance crew safety, and increase vehicle reliability, and payload capability. In the Saturn era, NASA went to the Moon with 300 sq ft of aerodynamic surfaces on the Saturn V. Since those days, the wealth of smart materials and advanced composites that have been developed allow for the design of very lightweight, strong, and innovative launch vehicle flight control surfaces. This paper presents an overview of the advanced composites and smart materials that are directly applicable to launch vehicle control surfaces.
The Advanced Composition Explorer spacecraft lifts off from Pad 17A, CCAS
NASA Technical Reports Server (NTRS)
1997-01-01
Photographers and other onlookers watch as a Boeing Delta II expendable launch vehicle lifts off with NASA's Advanced Composition Explorer (ACE) observatory at 10:39 a.m. EDT, on Aug. 25, 1997, from Launch Complex 17A, Cape Canaveral Air Station. This is the second Delta launch under the Boeing name and the first from Cape Canaveral. Liftoff had been scheduled for Aug. 24, but was scrubbed one day by Air Force range safety personnel because two commercial fishing vessels were within the Delta's launch danger area. The ACE spacecraft will study low-energy particles of solar origin and high-energy galactic particles on its one-million-mile journey. The collecting power of instruments aboard ACE is 10 to 1,000 times greater than anything previously flown to collect similar data by NASA. Study of these energetic particles may contribute to our understanding of the formation and evolution of the solar system. ACE has a two-year minimum mission lifetime and a goal of five years of service. ACE was built for NASA by the Johns Hopkins Applied Physics Laboratory and is managed by the Explorer Project Office at NASA's Goddard Space Flight Center. The lead scientific institution is the California Institute of Technology (Caltech) in Pasadena, Calif.
Launch Condition Deviations of Reusable Launch Vehicle Simulations in Exo-Atmospheric Zoom Climbs
NASA Technical Reports Server (NTRS)
Urschel, Peter H.; Cox, Timothy H.
2003-01-01
The Defense Advanced Research Projects Agency has proposed a two-stage system to deliver a small payload to orbit. The proposal calls for an airplane to perform an exo-atmospheric zoom climb maneuver, from which a second-stage rocket is launched carrying the payload into orbit. The NASA Dryden Flight Research Center has conducted an in-house generic simulation study to determine how accurately a human-piloted airplane can deliver a second-stage rocket to a desired exo-atmospheric launch condition. A high-performance, fighter-type, fixed-base, real-time, pilot-in-the-loop airplane simulation has been modified to perform exo-atmospheric zoom climb maneuvers. Four research pilots tracked a reference trajectory in the presence of winds, initial offsets, and degraded engine thrust to a second-stage launch condition. These launch conditions have been compared to the reference launch condition to characterize the expected deviation. At each launch condition, a speed change was applied to the second-stage rocket to insert the payload onto a transfer orbit to the desired operational orbit. The most sensitive of the test cases was the degraded thrust case, yielding second-stage launch energies that were too low to achieve the radius of the desired operational orbit. The handling qualities of the airplane, as a first-stage vehicle, have also been investigated.
Airborne Simulation of Launch Vehicle Dynamics
NASA Technical Reports Server (NTRS)
Miller, Christopher J.; Orr, Jeb S.; Hanson, Curtis E.; Gilligan, Eric T.
2015-01-01
In this paper we present a technique for approximating the short-period dynamics of an exploration-class launch vehicle during flight test with a high-performance surrogate aircraft in relatively benign endoatmospheric flight conditions. The surrogate vehicle relies upon a nonlinear dynamic inversion scheme with proportional-integral feedback to drive a subset of the aircraft states into coincidence with the states of a time-varying reference model that simulates the unstable rigid body dynamics, servodynamics, and parasitic elastic and sloshing dynamics of the launch vehicle. The surrogate aircraft flies a constant pitch rate trajectory to approximate the boost phase gravity turn ascent, and the aircraft's closed-loop bandwidth is sufficient to simulate the launch vehicle's fundamental lateral bending and sloshing modes by exciting the rigid body dynamics of the aircraft. A novel control allocation scheme is employed to utilize the aircraft's relatively fast control effectors in inducing various failure modes for the purposes of evaluating control system performance. Sufficient dynamic similarity is achieved such that the control system under evaluation is configured for the full-scale vehicle with no changes to its parameters, and pilot-control system interaction studies can be performed to characterize the effects of guidance takeover during boost. High-fidelity simulation and flight-test results are presented that demonstrate the efficacy of the design in simulating the Space Launch System (SLS) launch vehicle dynamics using the National Aeronautics and Space Administration (NASA) Armstrong Flight Research Center Fullscale Advanced Systems Testbed (FAST), a modified F/A-18 airplane (McDonnell Douglas, now The Boeing Company, Chicago, Illinois), over a range of scenarios designed to stress the SLS's Adaptive Augmenting Control (AAC) algorithm.
The Advanced Composition Explorer is placed atop its Delta II launcher at Pad 17A, CCAS
NASA Technical Reports Server (NTRS)
1997-01-01
The Advanced Composition Explorer (ACE) spacecraft is placed atop its launch vehicle at Launch Complex 17A. Scheduled for launch on a Delta II rocket from Cape Canaveral Air Station on Aug. 24, ACE will study low-energy particles of solar origin and high-energy galactic particles. The collecting power of instruments aboard ACE is 10 to 1,000 times greater than anything previously flown to collect similar data by NASA.
NASA Technical Reports Server (NTRS)
Meyer, Michael L.; Motil, Susan M.; Kortes, Trudy F.; Taylor, William J.; McRight, Patrick S.
2012-01-01
The high specific impulse of cryogenic propellants can provide a significant performance advantage for in-space transfer vehicles. The upper stages of the Saturn V and various commercial expendable launch vehicles have used liquid oxygen and liquid hydrogen propellants; however, the application of cryogenic propellants has been limited to relatively short duration missions due to the propensity of cryogens to absorb environmental heat resulting in fluid losses. Utilizing advanced cryogenic propellant technologies can enable the efficient use of high performance propellants for long duration missions. Crewed mission architectures for beyond low Earth orbit exploration can significantly benefit from this capability by developing realistic launch spacing for multiple launch missions, by prepositioning stages and by staging propellants at an in-space depot. The National Aeronautics and Space Administration through the Office of the Chief Technologist is formulating a Cryogenic Propellant Storage and Transfer Technology Demonstration Mission to mitigate the technical and programmatic risks of infusing these advanced technologies into the development of future cryogenic propellant stages or in-space propellant depots. NASA is seeking an innovative path for human space exploration, which strengthens the capability to extend human and robotic presence throughout the solar system. This mission will test and validate key cryogenic technological capabilities and has the objectives of demonstrating advanced thermal control technologies to minimize propellant loss during loiter, demonstrating robust operation in a microgravity environment, and demonstrating efficient propellant transfer on orbit. The status of the demonstration mission concept development, technology demonstration planning and technology maturation activities in preparation for flight system development are described.
NASA Astrophysics Data System (ADS)
Kim, Edward; Leslie, Vince; Lyu, Joseph; Smith, Craig; McCormick, Lisa; Anderson, Kent
2016-04-01
The Advanced Technology Microwave Sounder (ATMS) is the newest generation of microwave sounder in the international fleet of polar-orbiting weather satellites, replacing the Advanced Microwave Sounding Unit (AMSU) which first entered service in 1998. The first ATMS was launched aboard the Suomi NPP (S-NPP) satellite in late 2011. The second ATMS is manifested on the Joint Polar Satellite System-1 Satellite (JPSS-1). ATMS provides 22 channels of temperature and humidity sounding observations over a frequency range from 23 to 183 GHz. These microwave soundings provide the highest impact data ingested by operational Numerical Weather Prediction (NWP) models, and are the most critical of the polar-orbiting satellite observations, particularly because microwave sensing can penetrate clouds. This paper will present performance characterizations from pre-launch calibration measurements of the JPSS-1 ATMS just completed in December, 2015. The measurements were conducted in a thermal vacuum chamber with blackbody targets simulating cold space, ambient, and a variable Earth scene. They represent the best opportunity for calibration characterization of the instrument since the environment can be carefully controlled. We will present characterizations of the sensitivity (NEDT), accuracy, nonlinearity, noise spectral characteristics, gain stability, repeatability, and inter-channel correlation. An estimate of expected "striping" will be presented, and a discussion of reflector emissivity effects will also be provided. Comparisons will be made with the S-NPP flight unit. Finally, we will describe planned on-orbit characterizations - such as pitch and roll maneuvers - that will further improve both the measurement quality and the understanding of various error contributions.
Pyro thruster for performing rocket booster attachment, disconnect, and jettison functions
NASA Technical Reports Server (NTRS)
Hornyak, Stephen
1989-01-01
The concept of a pyro thruster, combining an automatic structural attachment with quick disconnect and thrusting capability, is described. The purpose of the invention is to simplify booster installation, disengagement, and jettison functions for the U.S. Air Force Advanced Launch Systems (ALS) program.
Interactive Model-Centric Systems Engineering (IMCSE) Phase 5
2018-02-28
Conducting Program Team Launches ................................................................................................. 12 Informing Policy...research advances knowledge relevant to human interaction with models and model-generated information . Figure 1 highlights several questions the...stakeholders interact using models and model generated information ; facets of human interaction with visualizations and large data sets; and underlying
1999-01-05
The solar panels on the GOES-L weather satellite are fully deployed. Final testing of the imaging system, instrumentation, communications and power systems also will be performed at the Astrotech facility, Titusville, Fla. The satellite is to be launched from Cape Canaveral Air Station (CCAS) aboard an Atlas II rocket in late March. The GOES-L is the fourth of a new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration. It is a three-axis inertially stabilized spacecraft that will provide pictures and perform atmospheric sounding at the same time. Once launched, the satellite, to be designated GOES-11, will undergo checkout and provide backup capabilities for the existing, aging GOES East weather satellite
1999-01-05
At Astrotech, in Titusville, Fla., Loral workers check trim tab deployment on the GOES-L weather satellite. Other tests to be performed are the imaging system, instrumentation, communications and power systems. The satellite is to be launched from Cape Canaveral Air Station aboard a Lockheed Martin Atlas II rocket in late March. The GOES-L is the fourth of a new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration. It is a three-axis inertially stabilized spacecraft that will provide pictures and perform atmospheric sounding at the same time. Once launched, the satellite, to be designated GOES-11, will undergo checkout and provide backup capabilities for the existing, aging GOES East weather satellite
1999-01-05
At Astrotech, in Titusville, Fla., Loral workers check trim tab deployment on the GOES-L weather satellite. Other tests to be performed are the imaging system, instrumentation, communications and power systems. The satellite is to be launched from Cape Canaveral Air Station aboard a Lockheed Martin Atlas II rocket in late March. The GOES-L is the fourth of a new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration. It is a three-axis inertially stabilized spacecraft that will provide pictures and perform atmospheric sounding at the same time. Once launched, the satellite, to be designated GOES-11, will undergo checkout and provide backup capabilities for the existing, aging GOES East weather satellite
Costs and benefits of future heavy Space Freighters
NASA Astrophysics Data System (ADS)
Arend, H.
1987-10-01
A class of two-stage reusable ballistic Space Freighters with nominal launch masses of 7000 metric tons for transport of heavy payloads into low earth orbits is investigated in this paper with spcial regard to vehicle cost efficiency. A life-cycle cost analysis shows that Space Freighters with a conventional aluminum structure offer significantly lower specific transportation costs than today's systems for large payload markets and high launch rates. Advanced structural materials and thermal protection systems offer further important reductions not only with regard to vehicle mass but also with respect to specific transportation cost. A phased introduction of these technologies is cost efficient for larger programs with more than 100 vehicles.
SSC-20170608-Journey Band Member Tours Stennis
2017-06-08
Ross Valory, bass guitar player with the Rock and Roll Hall of Fame band Journey, visited NASA’s Stennis Space Center on June 8. Valory, along with several members of their crew, toured various facilities at Stennis including the B-2 Test Stand which will be used to test the core stage for NASA’s Space Launch System or SLS. The SLS is a powerful, advanced launch vehicle for a new era of human exploration beyond Earth’s orbit. With its unprecedented power and capabilities, SLS will launch crews of up to four astronauts in the agency’s Orion spacecraft on missions to explore multiple, deep-space destinations eventually including Mars. During the tour, Valory made this short video about America’s journey to Mars.
Composite Dry Structure Cost Improvement Approach
NASA Technical Reports Server (NTRS)
Nettles, Alan; Nettles, Mindy
2015-01-01
This effort demonstrates that by focusing only on properties of relevance, composite interstage and shroud structures can be placed on the Space Launch System vehicle that simultaneously reduces cost, improves reliability, and maximizes performance, thus providing the Advanced Development Group with a new methodology of how to utilize composites to reduce weight for composite structures on launch vehicles. Interstage and shroud structures were chosen since both of these structures are simple in configuration and do not experience extreme environments (such as cryogenic or hot gas temperatures) and should represent a good starting point for flying composites on a 'man-rated' vehicle. They are used as an example only. The project involves using polymer matrix composites for launch vehicle structures, and the logic and rationale behind the proposed new methodology.
Development of Metal Matrix Composites for NASA'S Advanced Propulsion Systems
NASA Technical Reports Server (NTRS)
Lee, Jonathan A.
2000-01-01
The state-of-the-art development of several aluminum and copper based Metal Matrix Composites (MMC) for NASA's advanced propulsion systems will be presented. The presentation's goal is to provide an overview of NASA-Marshall Space Flight Center's planned and on-going activities in MMC for advanced liquid rocket engines such as the X-33 vehicle's Aerospike and X-34 Fastrac engine. The focus will be on lightweight and environmental compatibility with oxygen and hydrogen of key MMC materials, within each NASA's new propulsion application, that will provide a high payoff for NASA's reusable launch vehicle systems and space access vehicles. Advanced MMC processing techniques such as plasma spray, centrifugal casting, pressure infiltration casting will be discussed. Development of a novel 3D printing method for low cost production of composite preform, and functional gradient MMC to enhanced rocket engine's dimensional stability will be presented.
2013-08-09
CAPE CANAVERAL, Fla. – As seen on Google Maps, Firing Room 4 inside the Launch Control Center at NASA's Kennedy Space Center was one of the four control rooms used by NASA and contractor launch teams to oversee a space shuttle countdown. This firing room was the most advanced of the control rooms used for shuttle missions and was the primary firing room for the shuttle's final series of launches before retirement. It is furnished in a more contemporary style with wood cabinets and other features, although it retains many of the computer systems the shuttle counted on to operate safely. Specialized operators worked at consoles tailored to keep track of the status of shuttle systems while the spacecraft was processed in the Orbiter Processing Facility, being stacked inside the Vehicle Assembly Building and standing at the launch pad before liftoff. The firing rooms, including 3, were also used during NASA's Apollo Program. Google precisely mapped the space center and some of its historical facilities for the company's map page. The work allows Internet users to see inside buildings at Kennedy as they were used during the space shuttle era. Photo credit: Google/Wendy Wang
Cargo launch vehicles to low earth orbit
NASA Technical Reports Server (NTRS)
Austin, Robert E.
1990-01-01
There are two primary space transportation capabilities required to support both base programs and expanded mission requirements: earth-to-orbit (ETO) transportation systems and space transfer vehicle systems. Existing and new ETO vehicles required to support mission requirements, and planned robotic missions, along with currently planned ETO vehicles are provided. Lunar outposts, Mars' outposts, base and expanded model, ETO vehicles, advanced avionics technologies, expert systems, network architecture and operations systems, and technology transfer are discussed.
Introduction: Aims and Requirements of Future Aerospace Vehicles. Chapter 1
NASA Technical Reports Server (NTRS)
Rodriguez, Pedro I.; Smeltzer, Stanley S., III; McConnaughey, Paul (Technical Monitor)
2001-01-01
The goals and system-level requirements for the next generation aerospace vehicles emphasize safety, reliability, low-cost, and robustness rather than performance. Technologies, including new materials, design and analysis approaches, manufacturing and testing methods, operations and maintenance, and multidisciplinary systems-level vehicle development are key to increasing the safety and reducing the cost of aerospace launch systems. This chapter identifies the goals and needs of the next generation or advanced aerospace vehicle systems.
Advanced Launch System (ALS) Space Transportation Expert System Study
1991-03-01
goal (i.e. it develops a plan). The expert system checks the configuration, issues control commands, and reads sensor inputs to determine facts. The...than a conceptual design issue - a statement does not imply consequences, and only invokes database slot-filler actions such as inheriting an ancestor’s...Subclasses all other classes Private Components Public Components Functions Flatten -> storableForm Action : Creates a flat storable form of the object
Space Technology Demo at NASA Wallops
2017-12-08
A vapor cloud is seen after launch of a Black Brant IX suborbital sounding rocket, launched at 7:07 p.m., Wednesday October 7, 2015. (NASA Photo/J. Adkins) A Black Brant IX suborbital rocket was launched from NASA's Wallops Flight Facility. The launch occurred at 7:07 p.m. The primary purpose of the flight was to test the performance of the second-stage Black Brant motor. Preliminary indications are that the motor performed as planned. Preliminary data analysis of the technology experiments (vapor tracer deployments) on the payload is in progress. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Kuiper Belt Object Orbiter Using Advanced Radioisotope Power Sources and Electric Propulsion
NASA Technical Reports Server (NTRS)
Oleson, Steven R.; McGuire, Melissa L.; Dankanich, John; Colozza, Anthony; Schmitz, Paul; Khan, Omair; Drexler, Jon; Fittje, James
2011-01-01
A joint NASA GRC/JPL design study was performed for the NASA Radioisotope Power Systems Office to explore the use of radioisotope electric propulsion for flagship class missions. The Kuiper Belt Object Orbiter is a flagship class mission concept projected for launch in the 2030 timeframe. Due to the large size of a flagship class science mission larger radioisotope power system building blocks were conceptualized to provide the roughly 4 kW of power needed by the NEXT ion propulsion system and the spacecraft. Using REP the spacecraft is able to rendezvous with and orbit a Kuiper Belt object in 16 years using either eleven (no spare) 420 W advanced RTGs or nine (with a spare) 550 W advanced Stirling Radioisotope systems. The design study evaluated integrating either system and estimated impacts on cost as well as required General Purpose Heat Source requirements.
Post Advanced Technology Implementation Effects on School Psychologist Job Performance
ERIC Educational Resources Information Center
Hobson, Rana Dirice
2017-01-01
The technology acceptance model (TAM) has been widely used to assess technology adoption in business, education, and health care. The New York City Department of Education (NYCDOE) launched a web-based Individualized Educational Program (IEP) system for school psychologists to use in conducting evaluations and reviews. This quantitative study…
EPA Research Pathfinder Innovation Projects (PIPs), an internal competition for Agency scientists, was launched in 2010 to solicit innovative research proposals that would help the Agency to advance science for sustainability. In 2011, of the 117 proposals received from almost 30...
2007-09-09
Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. In this HD video image, the first stage reentry 1/2% model is undergoing pressure measurements inside the wind tunnel testing facility at MSFC. (Highest resolution available)
Affordable Launch Services using the Sport Orbit Transfer System
NASA Astrophysics Data System (ADS)
Goldstein, D. J.
2002-01-01
Despite many advances in small satellite technology, a low-cost, reliable method is needed to place spacecraft in their de- sired orbits. AeroAstro has developed the Small Payload ORbit Transfer (SPORTTM) system to provide a flexible low-cost orbit transfer capability, enabling small payloads to use low-cost secondary launch opportunities and still reach their desired final orbits. This capability allows small payloads to effectively use a wider variety of launch opportunities, including nu- merous under-utilized GTO slots. Its use, in conjunction with growing opportunities for secondary launches, enable in- creased access to space using proven technologies and highly reliable launch vehicles such as the Ariane family and the Starsem launcher. SPORT uses a suite of innovative technologies that are packaged in a simple, reliable, modular system. The command, control and data handling of SPORT is provided by the AeroAstro BitsyTM core electronics module. The Bitsy module also provides power regulation for the batteries and optional solar arrays. The primary orbital maneuvering capability is provided by a nitrous oxide monopropellant propulsion system. This system exploits the unique features of nitrous oxide, which in- clude self-pressurization, good performance, and safe handling, to provide a light-weight, low-cost and reliable propulsion capability. When transferring from a higher energy orbit to a lower energy orbit (i.e. GTO to LEO), SPORT uses aerobraking technol- ogy. After using the propulsion system to lower the orbit perigee, the aerobrake gradually slows SPORT via atmospheric drag. After the orbit apogee is reduced to the target level, an apogee burn raises the perigee and ends the aerobraking. At the conclusion of the orbit transfer maneuver, either the aerobrake or SPORT can be shed, as desired by the payload. SPORT uses a simple design for high reliability and a modular architecture for maximum mission flexibility. This paper will discuss the launch system and its application to small satellite launch without increasing risk. It will also discuss relevant issues such as aerobraking operations and radiation issues, as well as existing partnerships and patents for the system.
Small Launch Vehicle Design Approaches: Clustered Cores Compared with Multi-Stage Inline Concepts
NASA Technical Reports Server (NTRS)
Waters, Eric D.; Beers, Benjamin; Esther, Elizabeth; Philips, Alan; Threet, Grady E., Jr.
2013-01-01
In an effort to better define small launch vehicle design options two approaches were investigated from the small launch vehicle trade space. The primary focus was to evaluate a clustered common core design against a purpose built inline vehicle. Both designs focused on liquid oxygen (LOX) and rocket propellant grade kerosene (RP-1) stages with the terminal stage later evaluated as a LOX/methane (CH4) stage. A series of performance optimization runs were done in order to minimize gross liftoff weight (GLOW) including alternative thrust levels, delivery altitude for payload, vehicle length to diameter ratio, alternative engine feed systems, re-evaluation of mass growth allowances, passive versus active guidance systems, and rail and tower launch methods. Additionally manufacturability, cost, and operations also play a large role in the benefits and detriments for each design. Presented here is the Advanced Concepts Office's Earth to Orbit Launch Team methodology and high level discussion of the performance trades and trends of both small launch vehicle solutions along with design philosophies that shaped both concepts. Without putting forth a decree stating one approach is better than the other; this discussion is meant to educate the community at large and let the reader determine which architecture is truly the most economical; since each path has such a unique set of limitations and potential payoffs.
NASA Astrophysics Data System (ADS)
Steadman, Bob; Finklea, John; Kershaw, James; Loughman, Cathy; Shaffner, Patti; Frost, Dean; Deller, Sean
2014-06-01
Textron's Advanced MicroObserver(R) is a next generation remote unattended ground sensor system (UGS) for border security, infrastructure protection, and small combat unit security. The original MicroObserver(R) is a sophisticated seismic sensor system with multi-node fusion that supports target tracking. This system has been deployed in combat theaters. The system's seismic sensor nodes are uniquely able to be completely buried (including antennas) for optimal covertness. The advanced version adds a wireless day/night Electro-Optic Infrared (EOIR) system, cued by seismic tracking, with sophisticated target discrimination and automatic frame capture features. Also new is a field deployable Gateway configurable with a variety of radio systems and flexible networking, an important upgrade that enabled the research described herein. BattleHawkTM is a small tube launched Unmanned Air Vehicle (UAV) with a warhead. Using transmitted video from its EOIR subsystem an operator can search for and acquire a target day or night, select a target for attack, and execute terminal dive to destroy the target. It is designed as a lightweight squad level asset carried by an individual infantryman. Although BattleHawk has the best loiter time in its class, it's still relatively short compared to large UAVs. Also it's a one-shot asset in its munition configuration. Therefore Textron Defense Systems conducted research, funded internally, to determine if there was military utility in having the highly persistent MicroObserver(R) system cue BattleHawk's launch and vector it to beyond visual range targets for engagement. This paper describes that research; the system configuration implemented, and the results of field testing that was performed on a government range early in 2013. On the integrated system that was implemented, MicroObserver(R) seismic detections activated that system's camera which then automatically captured images of the target. The geo-referenced and time-tagged MicroObserver(R) target reports and images were then automatically forwarded to the BattleHawk Android-based controller. This allowed the operator to see the intruder (classified and geo-located) on the map based display, assess the intruder as likely hostile (via the image), and launch BattleHawk with the pre-loaded target coordinates. The operator was thus able to quickly acquire the intended target (without a search) and initiate target engagement immediately. System latencies were a major concern encountered during the research.
Development of Advanced Robotic Hand System for space application
NASA Technical Reports Server (NTRS)
Machida, Kazuo; Akita, Kenzo; Mikami, Tatsuo; Komada, Satoru
1994-01-01
The Advanced Robotic Hand System (ARH) is a precise telerobotics system with a semi dexterous hand for future space application. The ARH will be tested in space as one of the missions of the Engineering Tests Satellite 7 (ETS-7) which will be launched in 1997. The objectives of the ARH development are to evaluate the capability of a possible robot hand for precise and delicate tasks and to validate the related technologies implemented in the system. The ARH is designed to be controlled both from ground as a teleoperation and by locally autonomous control. This paper presents the overall system design and the functional capabilities of the ARH as well as its mission outline as the preliminary design has been completed.
Advanced Launch Technology Life Cycle Analysis Using the Architectural Comparison Tool (ACT)
NASA Technical Reports Server (NTRS)
McCleskey, Carey M.
2015-01-01
Life cycle technology impact comparisons for nanolauncher technology concepts were performed using an Affordability Comparison Tool (ACT) prototype. Examined are cost drivers and whether technology investments can dramatically affect the life cycle characteristics. Primary among the selected applications was the prospect of improving nanolauncher systems. As a result, findings and conclusions are documented for ways of creating more productive and affordable nanolauncher systems; e.g., an Express Lane-Flex Lane concept is forwarded, and the beneficial effect of incorporating advanced integrated avionics is explored. Also, a Functional Systems Breakdown Structure (F-SBS) was developed to derive consistent definitions of the flight and ground systems for both system performance and life cycle analysis. Further, a comprehensive catalog of ground segment functions was created.
NASA Technical Reports Server (NTRS)
Brenner, Richard; Lala, Jaynarayan H.; Nagle, Gail A.; Schor, Andrei; Turkovich, John
1994-01-01
This program demonstrated the integration of a number of technologies that can increase the availability and reliability of launch vehicles while lowering costs. Availability is increased with an advanced guidance algorithm that adapts trajectories in real-time. Reliability is increased with fault-tolerant computers and communication protocols. Costs are reduced by automatically generating code and documentation. This program was realized through the cooperative efforts of academia, industry, and government. The NASA-LaRC coordinated the effort, while Draper performed the integration. Georgia Institute of Technology supplied a weak Hamiltonian finite element method for optimal control problems. Martin Marietta used MATLAB to apply this method to a launch vehicle (FENOC). Draper supplied the fault-tolerant computing and software automation technology. The fault-tolerant technology includes sequential and parallel fault-tolerant processors (FTP & FTPP) and authentication protocols (AP) for communication. Fault-tolerant technology was incrementally incorporated. Development culminated with a heterogeneous network of workstations and fault-tolerant computers using AP. Draper's software automation system, ASTER, was used to specify a static guidance system based on FENOC, navigation, flight control (GN&C), models, and the interface to a user interface for mission control. ASTER generated Ada code for GN&C and C code for models. An algebraic transform engine (ATE) was developed to automatically translate MATLAB scripts into ASTER.
Aerospace induction motor actuators driven from a 20-kHz power link
NASA Technical Reports Server (NTRS)
Hansen, Irving G.
1990-01-01
Aerospace electromechanical actuators utilizing induction motors are under development in sizes up to 40 kW. While these actuators have immediate application to the Advanced Launch System (ALS) program, several potential applications are currently under study including the Advanced Aircraft Program. Several recent advances developed for the Space Station Freedom have allowed induction motors to be selected as a first choice for such applications. Among these technologies are bi-directional electronics and high frequency power distribution techniques. Each of these technologies are discussed with emphasis on their impact upon induction motor operation.
NASA Technical Reports Server (NTRS)
Isobe, Shunkichi; Ohmori, Shingo; Hamamoto, Naokazu; Yamamoto, Minoru
1991-01-01
Communications Research Laboratory (CRL) studied an advanced mobile satellite communications system using Ka and millimeter-wave bands in the R&D Satellite project. The project started in 1990 and the satellite will be launched in 1997. On-board multi-beam interconnecting is one of basic functions to realize one-hop connection among Very Small Aperture Terminals (VSATs), mobile, and hand-held terminals in future mobile satellite communications system. An Intermediate Frequency (IF) filter bank and regenerative transponder are suitable for this function. The transponder configuration of an advanced mobile communications mission of the R&D Satellite for experiment is shown. High power transmitters of Ka and millimeter-wave bands, a 3x3 IF filter band and Single Channel Per Carrier/Time Division Multiplexing (SCPC/TDM) regenerative MODEMS, which will be boarded on the R&D Satellite, are being developed for the purpose of studying the feasibility of advanced mobile communications system.
NASA's Solar Dynamics Observatory (SDO): A Systems Approach to a Complex Mission
NASA Technical Reports Server (NTRS)
Ruffa, John A.; Ward, David K.; Bartusek, LIsa M.; Bay, Michael; Gonzales, Peter J.; Pesnell, William D.
2012-01-01
The Solar Dynamics Observatory (SDO) includes three advanced instruments, massive science data volume, stringent science data completeness requirements, and a custom ground station to meet mission demands. The strict instrument science requirements imposed a number of challenging drivers on the overall mission system design, leading the SDO team to adopt an integrated systems engineering presence across all aspects of the mission to ensure that mission science requirements would be met. Key strategies were devised to address these system level drivers and mitigate identified threats to mission success. The global systems engineering team approach ensured that key drivers and risk areas were rigorously addressed through all phases of the mission, leading to the successful SDO launch and on-orbit operation. Since launch, SDO's on-orbit performance has met all mission science requirements and enabled groundbreaking science observations, expanding our understanding of the Sun and its dynamic processes.
NASA's Solar Dynamics Observatory (SDO): A Systems Approach to a Complex Mission
NASA Technical Reports Server (NTRS)
Ruffa, John A.; Ward, David K.; Bartusek, Lisa M.; Bay, Michael; Gonzales, Peter J.; Pesnell, William D.
2012-01-01
The Solar Dynamics Observatory (SDO) includes three advanced instruments, massive science data volume, stringent science data completeness requirements, and a custom ground station to meet mission demands. The strict instrument science requirements imposed a number of challenging drivers on the overall mission system design, leading the SDO team to adopt an integrated systems engineering presence across all aspects of the mission to ensure that mission science requirements would be met. Key strategies were devised to address these system level drivers and mitigate identified threats to mission success. The global systems engineering team approach ensured that key drivers and risk areas were rigorously addressed through all phases of the mission, leading to the successful SDO launch and on-orbit operation. Since launch, SDO s on-orbit performance has met all mission science requirements and enabled groundbreaking science observations, expanding our understanding of the Sun and its dynamic processes.
Space America's commercial space program
NASA Technical Reports Server (NTRS)
Macleod, N. H.
1984-01-01
Space America prepared a private sector land observing space system which includes a sensor system with eight spectral channels configured for stereoscopic data acquisition of four stereo pairs, a spacecraft bus with active three-axis stabilization, a ground station for data acquisition, preprocessing and retransmission. The land observing system is a component of Space America's end-to-end system for Earth resources management, monitoring and exploration. In the context of the Federal Government's program of commercialization of the US land remote sensing program, Space America's space system is characteristic of US industry's use of advanced technology and of commercial, entrepreneurial management. Well before the issuance of the Request for Proposals for Transfer of the United States Land Remote Sensing Program to the Private Sector by the US Department of Commerce, Space Services, Inc., the managing venturer of Space America, used private funds to develop and manage its sub-orbital launch of its Conestoga launch vehicle.
Advancing the practice of systems engineering at JPL
NASA Technical Reports Server (NTRS)
Jansma, Patti A.; Jones, Ross M.
2006-01-01
In FY 2004, JPL launched an initiative to improve the way it practices systems engineering. The Lab's senior management formed the Systems Engineering Advancement (SEA) Project in order to "significantly advance the practice and organizational capabilities of systems engineering at JPL on flight projects and ground support tasks." The scope of the SEA Project includes the systems engineering work performed in all three dimensions of a program, project, or task: 1. the full life-cycle, i.e., concept through end of operations 2. the full depth, i.e., Program, Project, System, Subsystem, Element (SE Levels 1 to 5) 3. the full technical scope, e.g., the flight, ground and launch systems, avionics, power, propulsion, telecommunications, thermal, etc. The initial focus of their efforts defined the following basic systems engineering functions at JPL: systems architecture, requirements management, interface definition, technical resource management, system design and analysis, system verification and validation, risk management, technical peer reviews, design process management and systems engineering task management, They also developed a list of highly valued personal behaviors of systems engineers, and are working to inculcate those behaviors into members of their systems engineering community. The SEA Project is developing products, services, and training to support managers and practitioners throughout the entire system lifecycle. As these are developed, each one needs to be systematically deployed. Hence, the SEA Project developed a deployment process that includes four aspects: infrastructure and operations, communication and outreach, education and training, and consulting support. In addition, the SEA Project has taken a proactive approach to organizational change management and customer relationship management - both concepts and approaches not usually invoked in an engineering environment. This paper'3 describes JPL's approach to advancing the practice of systems engineering at the Lab. It describes the general approach used and how they addressed the three key aspects of change: people, process and technology. It highlights a list of highly valued personal behaviors of systems engineers, discusses the various products, services and training that were developed, describes the deployment approach used, and concludes with several lessons learned.
Air breathing engine/rocket trajectory optimization
NASA Technical Reports Server (NTRS)
Smith, V. K., III
1979-01-01
This research has focused on improving the mathematical models of the air-breathing propulsion systems, which can be mated with the rocket engine model and incorporated in trajectory optimization codes. Improved engine simulations provided accurate representation of the complex cycles proposed for advanced launch vehicles, thereby increasing the confidence in propellant use and payload calculations. The versatile QNEP (Quick Navy Engine Program) was modified to allow treatment of advanced turboaccelerator cycles using hydrogen or hydrocarbon fuels and operating in the vehicle flow field.
NASA Technical Reports Server (NTRS)
Hueter, Uwe
2000-01-01
NASA's Office of Aeronautics and Space Transportation Technology (OASTT) established the following three major goals, referred to as "The Three Pillars for Success": Global Civil Aviation, Revolutionary Technology Leaps, and Access to Space. The Advanced Space Transportation Program Office (ASTP) at the NASA's Marshall Space Flight Center in Huntsville, Ala. focuses on future space transportation technologies under the "Access to Space" pillar. The Propulsion Projects within ASTP under the investment area of Spaceliner100, focus on the earth-to-orbit (ETO) third generation reusable launch vehicle technologies. The goals of Spaceliner 100 is to reduce cost by a factor of 100 and improve safety by a factor of 10,000 over current conditions. The ETO Propulsion Projects in ASTP, are actively developing combination/combined-cycle propulsion technologies that utilized airbreathing propulsion during a major portion of the trajectory. System integration, components, materials and advanced rocket technologies are also being pursued. Over the last several years, one of the main thrusts has been to develop rocket-based combined cycle (RBCC) technologies. The focus has been on conducting ground tests of several engine designs to establish the RBCC flowpaths performance. Flowpath testing of three different RBCC engine designs is progressing. Additionally, vehicle system studies are being conducted to assess potential operational space access vehicles utilizing combined-cycle propulsion systems. The design, manufacturing, and ground testing of a scale flight-type engine are planned. The first flight demonstration of an airbreathing combined cycle propulsion system is envisioned around 2005. The paper will describe the advanced propulsion technologies that are being being developed under the ETO activities in the ASTP program. Progress, findings, and future activities for the propulsion technologies will be discussed.
NASA Headquarters/Kennedy Space Center: Organization and Small Spacecraft Launch Services
NASA Technical Reports Server (NTRS)
Sierra, Albert; Beddel, Darren
1999-01-01
The objectives of the Kennedy Space Center's (KSC) Expendable Launch Vehicles (ELV) Program are to provide safe, reliable, cost effective ELV launches, maximize customer satisfaction, and perform advanced payload processing capability development. Details are given on the ELV program organization, products and services, foreign launch vehicle policy, how to get a NASA launch service, and some of the recent NASA payloads.
NASA Propulsion Investments for Exploration and Science
NASA Technical Reports Server (NTRS)
Smith, Bryan K.; Free, James M.; Klem, Mark D.; Priskos, Alex S.; Kynard, Michael H.
2008-01-01
The National Aeronautics and Space Administration (NASA) invests in chemical and electric propulsion systems to achieve future mission objectives for both human exploration and robotic science. Propulsion system requirements for human missions are derived from the exploration architecture being implemented in the Constellation Program. The Constellation Program first develops a system consisting of the Ares I launch vehicle and Orion spacecraft to access the Space Station, then builds on this initial system with the heavy-lift Ares V launch vehicle, Earth departure stage, and lunar module to enable missions to the lunar surface. A variety of chemical engines for all mission phases including primary propulsion, reaction control, abort, lunar ascent, and lunar descent are under development or are in early risk reduction to meet the specific requirements of the Ares I and V launch vehicles, Orion crew and service modules, and Altair lunar module. Exploration propulsion systems draw from Apollo, space shuttle, and commercial heritage and are applied across the Constellation architecture vehicles. Selection of these launch systems and engines is driven by numerous factors including development cost, existing infrastructure, operations cost, and reliability. Incorporation of green systems for sustained operations and extensibility into future systems is an additional consideration for system design. Science missions will directly benefit from the development of Constellation launch systems, and are making advancements in electric and chemical propulsion systems for challenging deep space, rendezvous, and sample return missions. Both Hall effect and ion electric propulsion systems are in development or qualification to address the range of NASA s Heliophysics, Planetary Science, and Astrophysics mission requirements. These address the spectrum of potential requirements from cost-capped missions to enabling challenging high delta-v, long-life missions. Additionally, a high specific impulse chemical engine is in development that will add additional capability to performance-demanding space science missions. In summary, the paper provides a survey of current NASA development and risk reduction propulsion investments for exploration and science.
Expendable launch vehicles technology: A report to the US Senate and the US House of Representatives
NASA Technical Reports Server (NTRS)
1990-01-01
As directed in Public Law 100-657, Commercial Space Launch Act Amendments of 1988, and consistent with National Space Policy, NASA has prepared a report on a potential program of research on technologies to reduce the initial and recurring costs, increase reliability, and improve performance of expendable launch vehicles for the launch of commercial and government spacecraft into orbit. The report was developed in consultation with industry and in recognition of relevant ongoing and planned NASA and DoD technology programs which will provide much of the required launch systems technology for U.S. Government needs. Additional efforts which could be undertaken to strengthen the technology base are identified. To this end, focus is on needs for launch vehicle technology development and, in selected areas, includes verification to permit private-sector new technology application at reduced risk. If such a program were to be implemented, it would entail both government and private-sector effort and resources. The additional efforts identified would augment the existing launch vehicle technology programs. The additional efforts identified have not been funded, based upon agency assessments of relative priority vis-a-vis the existing programs. Throughout the consultation and review process, the industry representatives stressed the overriding importance of continuing the DoD/NASA Advanced Launch Development activity and other government technology programs as a primary source of essential launch vehicle technology.
Expendable launch vehicles technology: A report to the US Senate and the US House of Representatives
NASA Astrophysics Data System (ADS)
1990-07-01
As directed in Public Law 100-657, Commercial Space Launch Act Amendments of 1988, and consistent with National Space Policy, NASA has prepared a report on a potential program of research on technologies to reduce the initial and recurring costs, increase reliability, and improve performance of expendable launch vehicles for the launch of commercial and government spacecraft into orbit. The report was developed in consultation with industry and in recognition of relevant ongoing and planned NASA and DoD technology programs which will provide much of the required launch systems technology for U.S. Government needs. Additional efforts which could be undertaken to strengthen the technology base are identified. To this end, focus is on needs for launch vehicle technology development and, in selected areas, includes verification to permit private-sector new technology application at reduced risk. If such a program were to be implemented, it would entail both government and private-sector effort and resources. The additional efforts identified would augment the existing launch vehicle technology programs. The additional efforts identified have not been funded, based upon agency assessments of relative priority vis-a-vis the existing programs. Throughout the consultation and review process, the industry representatives stressed the overriding importance of continuing the DoD/NASA Advanced Launch Development activity and other government technology programs as a primary source of essential launch vehicle technology.
Integration of Mirror Design with Suspension System using NASA's New Mirror Modeling Software
NASA Technical Reports Server (NTRS)
Arnold, William; Bevan Ryan M.; Stahl, Philip
2013-01-01
Advances in mirror fabrication is making very large space based telescopes possible. In the many applications, only monolithic mirrors meet the performance requirements. The existing and near-term planned heavy launch vehicles place a premium on lowest possible mass. Again, available and planned payload shroud size limits near term designs to 4 meter class mirror. Practical 8 meter and beyond designs could encourage planners to include larger shrouds if it can be proven that such mirrors can be manufactured. These two factors lower mass and larger mirrors, presents the classic optimization problem. There is a practical upper limit to how large a mirror can be supported by a purely kinematic mount system and be launched. This paper shows how the design of the suspension system and mirror blank needs to be designed simultaneously. We will also explore the concepts of auxiliary support systems, which act only during launch and disengage on orbit. We will define required characteristics of these systems and show how they can substantially reduce the mirror mass. The AMTD project is developing and maturing the processes for future replacements for HUBBLE, creating the design tools, validating the methods and techniques necessary to manufacture, test and launch extremely large optical missions. This paper will use the AMTD 4 meter "design point" as an illustration of the typical use of the modeler in generating the multiple models of mirror and suspension systems used during the conceptual design phase of most projects. The influence of Hexapod geometry, mirror depth, cell size and construction techniques (Exelsis Deep Core Low Temperature Fusion (c) versus Corning Frit Bonded (c) versus Schott Pocket Milled Zerodur (c) in this particular study) are being evaluated. Due to space and time consideration we will only be able to present snippets of the study in this paper. The advances in manufacturing techniques for lightweight mirrors, such as EXELSIS deep core low temperature fusion, Corning's continued improvements in the Frit bonding process and the ability to cast large complex designs, combined with water-jet and conventional diamond.
IDEAS: A multidisciplinary computer-aided conceptual design system for spacecraft
NASA Technical Reports Server (NTRS)
Ferebee, M. J., Jr.
1984-01-01
During the conceptual development of advanced aerospace vehicles, many compromises must be considered to balance economy and performance of the total system. Subsystem tradeoffs may need to be made in order to satisfy system-sensitive attributes. Due to the increasingly complex nature of aerospace systems, these trade studies have become more difficult and time-consuming to complete and involve interactions of ever-larger numbers of subsystems, components, and performance parameters. The current advances of computer-aided synthesis, modeling and analysis techniques have greatly helped in the evaluation of competing design concepts. Langley Research Center's Space Systems Division is currently engaged in trade studies for a variety of systems which include advanced ground-launched space transportation systems, space-based orbital transfer vehicles, large space antenna concepts and space stations. The need for engineering analysis tools to aid in the rapid synthesis and evaluation of spacecraft has led to the development of the Interactive Design and Evaluation of Advanced Spacecraft (IDEAS) computer-aided design system. The ADEAS system has been used to perform trade studies of competing technologies and requirements in order to pinpoint possible beneficial areas for research and development. IDEAS is presented as a multidisciplinary tool for the analysis of advanced space systems. Capabilities range from model generation and structural and thermal analysis to subsystem synthesis and performance analysis.
Advanced electric motor technology: Flux mapping
NASA Technical Reports Server (NTRS)
Doane, George B., III; Campbell, Warren; Brantley, Larry W.; Dean, Garvin
1992-01-01
This report contains the assumptions, mathematical models, design methodology, and design points involved with the design of an electromechanical actuator (EMA) suitable for directing the thrust vector of a large MSFC/NASA launch vehicle. Specifically the design of such an actuator for use on the upcoming liquid fueled National Launch System (NLS) is considered culminating in a point design of both the servo system and the electric motor needed. A major thrust of the work is in selecting spur gear and roller screw reduction ratios to achieve simultaneously wide bandwidth, maximum power transfer, and disturbance rejection while meeting specified horsepower requirements at a given stroking speed as well as a specified maximum stall force. An innovative feedback signal is utilized in meeting these diverse objectives.
SCARLET development, fabrication and testing for the Deep Space 1 spacecraft
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, D.M.; Allen, D.M.
1997-12-31
An advanced version of ``Solar Concentrator Arrays with Refractive Linear Element Technology`` (SCARLET) is being assembled for use on the first NASA/JPL New Millennium spacecraft: Deep Space 1 (DS1). The array is scaled up from the first SCARLET array that was built for the METEOR satellite in 1995 and incorporates advanced technologies such as dual-junction solar cells and an improved structural design. Due to the failure of the Conestoga launch vehicle, this will be the first flight of a modular concentrator array. SCARLET will provide 2.6 kW to the DS1 spacecraft to be launched in July 1998 for a missionmore » that includes fly-bys of the asteroid McAuliffe, Mars, and the comet West-Kohoutek-Ikemura. This paper describes the SCARLET design, fabrication/assembly, and testing program for the flight system.« less
SMART-1, Platform Design and Project Status
NASA Astrophysics Data System (ADS)
Sjoberg, F.
SMART-1 is the first of the Small Missions for Advanced Research and Technology (SMART), an element of ESA's Horizons 2000 plan for scientific projects. These missions aim at testing key technologies for future Cornerstone missions. The mission of SMART-1 is the flight demonstration of Electric Primary Propulsion for a scientifically relevant deep space trajectory. More specifically, SMART-1 will be launched into a geostationary transfer orbit and use a single ion thruster to achieve lunar orbit. include: -A modern avionics architecture with a clean-cut control hierarchy -Extensive Failure Detection, Isolation and Recovery (FDIR) capabilities following the control hierarchy of the -An advanced power control and distribution system -A newly developed gimbal mechanism for the orientation of the electric ion thruster The project is currently in the FM AIT phase scheduled for launch in late 2002. The paper will describe the SMART- 1 spacecraft platform design as well as the current project and spacecraft verification status.
CRYOTE (Cryogenic Orbital Testbed) Concept
NASA Technical Reports Server (NTRS)
Gravlee, Mari; Kutter, Bernard; Wollen, Mark; Rhys, Noah; Walls, Laurie
2009-01-01
Demonstrating cryo-fluid management (CFM) technologies in space is critical for advances in long duration space missions. Current space-based cryogenic propulsion is viable for hours, not the weeks to years needed by space exploration and space science. CRYogenic Orbital TEstbed (CRYOTE) provides an affordable low-risk environment to demonstrate a broad array of critical CFM technologies that cannot be tested in Earth's gravity. These technologies include system chilldown, transfer, handling, health management, mixing, pressure control, active cooling, and long-term storage. United Launch Alliance is partnering with Innovative Engineering Solutions, the National Aeronautics and Space Administration, and others to develop CRYOTE to fly as an auxiliary payload between the primary payload and the Centaur upper stage on an Atlas V rocket. Because satellites are expensive, the space industry is largely risk averse to incorporating unproven systems or conducting experiments using flight hardware that is supporting a primary mission. To minimize launch risk, the CRYOTE system will only activate after the primary payload is separated from the rocket. Flying the testbed as an auxiliary payload utilizes Evolved Expendable Launch Vehicle performance excess to cost-effectively demonstrate enhanced CFM.
2009-03-04
CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., technicians help guide the cables lifting the GOES-O satellite away from its shipping container. The satellite will be placed on a stand for final testing of the imaging system, instrumentation, communications and power systems. The latest Geostationary Operational Environmental Satellite, GOES-O was developed by NASA for the National Oceanic and Atmospheric Administration, or NOAA. The GOES-O satellite is targeted to launch April 28 onboard a United Launch Alliance Delta IV expendable launch vehicle. Once in orbit, GOES-O will be designated GOES-14, and NASA will provide on-orbit checkout and then transfer operational responsibility to NOAA. GOES-O will be placed in on-orbit storage as a replacement for an older GOES satellite. GOES-O carries an advanced attitude control system using star trackers with spacecraft optical bench Imager and Sounder mountings that provide enhanced instrument pointing performance for improved image navigation and registration to better locate severe storms and other events important to the NOAA National Weather Service. Photo credit: NASA/Kim Shiflett
Improving Conceptual Design for Launch Vehicles
NASA Technical Reports Server (NTRS)
Olds, John R.
1998-01-01
This report summarizes activities performed during the second year of a three year cooperative agreement between NASA - Langley Research Center and Georgia Tech. Year 1 of the project resulted in the creation of a new Cost and Business Assessment Model (CABAM) for estimating the economic performance of advanced reusable launch vehicles including non-recurring costs, recurring costs, and revenue. The current year (second year) activities were focused on the evaluation of automated, collaborative design frameworks (computation architectures or computational frameworks) for automating the design process in advanced space vehicle design. Consistent with NASA's new thrust area in developing and understanding Intelligent Synthesis Environments (ISE), the goals of this year's research efforts were to develop and apply computer integration techniques and near-term computational frameworks for conducting advanced space vehicle design. NASA - Langley (VAB) has taken a lead role in developing a web-based computing architectures within which the designer can interact with disciplinary analysis tools through a flexible web interface. The advantages of this approach are, 1) flexible access to the designer interface through a simple web browser (e.g. Netscape Navigator), 2) ability to include existing 'legacy' codes, and 3) ability to include distributed analysis tools running on remote computers. To date, VAB's internal emphasis has been on developing this test system for the planetary entry mission under the joint Integrated Design System (IDS) program with NASA - Ames and JPL. Georgia Tech's complementary goals this year were to: 1) Examine an alternate 'custom' computational architecture for the three-discipline IDS planetary entry problem to assess the advantages and disadvantages relative to the web-based approach.and 2) Develop and examine a web-based interface and framework for a typical launch vehicle design problem.
NASA Technical Reports Server (NTRS)
Kloesel, Kurt J.; Ratnayake, Nalin A.; Clark, Casie M.
2011-01-01
Access to space is in the early stages of commercialization. Private enterprises, mainly under direct or indirect subsidy by the government, have been making headway into the LEO launch systems infrastructure, of small-weight-class payloads of approximately 1000 lbs. These moderate gains have emboldened the launch industry and they are poised to move into the middle-weight class (roughly 5000 lbs). These commercially successful systems are based on relatively straightforward LOX-RP, two-stage, bi-propellant rocket technology developed by the government 40 years ago, accompanied by many technology improvements. In this paper we examine a known generic LOX-RP system with the focus on the booster stage (1st stage). The booster stage is then compared to modeled Rocket-Based and Turbine-Based Combined Cycle booster stages. The air-breathing propulsion stages are based on/or extrapolated from known performance parameters of ground tested RBCC (the Marquardt Ejector Ramjet) and TBCC (the SR-71/J-58 engine) data. Validated engine models using GECAT and SCCREAM are coupled with trajectory optimization and analysis in POST-II to explore viable launch scenarios using hypothetical aerospaceplane platform obeying the aerodynamic model of the SR-71. Finally, and assessment is made of the requisite research technology advances necessary for successful commercial and government adoption of combined-cycle engine systems for space access.
Air-Cored Linear Induction Motor for Earth-to-Orbit Systems
NASA Technical Reports Server (NTRS)
Zabar, Zivan; Levi, Enrico; Birenbaum, Leo
1996-01-01
The need for lowering the cost of Earth-to-Orbit (ETO) launches has prompted consideration of electromagnetic launchers. A preliminary design based on the experience gained in an advanced type of coilgun and on innovative ideas shows that such a launcher is technically feasible with almost off-the-shelf components.
Flight and mission operations support for Voyager spacecraft launching and Viking-Mars mission
NASA Technical Reports Server (NTRS)
1978-01-01
The activities of the Jet Propulsion Laboratory during fiscal year 1976-1977 are summarized. Areas covered include ongoing and planned flight projects, DSN operations and development, research and advanced development in science and engineering, and civil systems projects. In addition, administrative and operational facilities and developments are described.
ERIC Educational Resources Information Center
Sporte, Susan E.; Jiang, Jennie Y.
2016-01-01
Three years after the launch of Chicago's redesigned teacher evaluation system, Recognizing Educators Advancing Chicago Students (REACH) Students, most teachers and administrators continue to report they believe REACH has the potential to improve instruction and student learning, and they remain negative about the use of student growth in…
Multipurpose satellite bus (MPS)
NASA Technical Reports Server (NTRS)
1991-01-01
The Naval Postgraduate School Advanced Design Project sponsored by the Universities Space Research Association Advanced Design Program is a multipurpose satellite bus (MPS). The design was initiated from a Statement of Work (SOW) developed by the Defense Advanced Research Projects Agency (DARPA). The SOW called for a 'proposal to design a small, low-cost, lightweight, general purpose spacecraft bus capable of accommodating any of a variety of mission payloads. Typical payloads envisioned include those associated with meteorological, communication, surveillance and tracking, target location, and navigation mission areas.' The design project investigates two dissimilar missions, a meteorological payload and a communications payload, mated with a single spacecraft bus with minimal modifications. The MPS is designed for launch aboard the Pegasus Air Launched Vehicle (ALV) or the Taurus Standard Small Launch Vehicle (SSLV).
2008-11-04
VANDENBERG AIR FORCE BASE, Calif. – The NOAA-N Prime spacecraft is positioned for movement into NASA's Hazardous Processing Facility on Vandenberg Air Force Base in California. NOAA-N Prime was built by Lockheed Martin Space Systems Company for its Advanced Television Infrared Observational Satellites -N series. It is the latest polar-orbiting operational environmental weather satellite developed by NASA for the National Oceanic and Atmospheric Administration. The satellite will provide a platform to support environmental monitoring instruments for imaging and measuring the Earth's atmosphere, its surface and cloud cover, including Earth radiation, atmospheric ozone, aerosol distribution, sea surface temperature and vertical temperature and water profiles in the troposphere and stratosphere. The satellite will assist in measuring proton and electron fluxes at orbit altitude, collecting data from remote platforms to assist the Search and Rescue Satellite-Aided Tracking system. The satellite will be launched from the Western Range at Vandenberg AFB by a United Launch Alliance two-stage Delta II rocket managed by NASA's Launch Service Program at Kennedy. Photo credit: NASA/Jerry Nagy, VAFB
2008-11-04
VANDENBERG AIR FORCE BASE, Calif. – The NOAA-N Prime spacecraft is offloaded from the transporter at NASA's Hazardous Processing Facility on Vandenberg Air Force Base in California. NOAA-N Prime was built by Lockheed Martin Space Systems Company for its Advanced Television Infrared Observational Satellites -N series. It is the latest polar-orbiting operational environmental weather satellite developed by NASA for the National Oceanic and Atmospheric Administration. The satellite will provide a platform to support environmental monitoring instruments for imaging and measuring the Earth's atmosphere, its surface and cloud cover, including Earth radiation, atmospheric ozone, aerosol distribution, sea surface temperature and vertical temperature and water profiles in the troposphere and stratosphere. The satellite will assist in measuring proton and electron fluxes at orbit altitude, collecting data from remote platforms to assist the Search and Rescue Satellite-Aided Tracking system. The satellite will be launched from the Western Range at Vandenberg AFB by a United Launch Alliance two-stage Delta II rocket managed by NASA's Launch Service Program at Kennedy. Photo credit: NASA/Jerry Nagy, VAFB
2008-11-04
VANDENBERG AIR FORCE BASE, Calif. – The NOAA-N Prime spacecraft arrives at NASA's Hazardous Processing Facility on Vandenberg Air Force Base in California. NOAA-N Prime was built by Lockheed Martin Space Systems Company for its Advanced Television Infrared Observational Satellites -N series. It is the latest polar-orbiting operational environmental weather satellite developed by NASA for the National Oceanic and Atmospheric Administration. The satellite will provide a platform to support environmental monitoring instruments for imaging and measuring the Earth's atmosphere, its surface and cloud cover, including Earth radiation, atmospheric ozone, aerosol distribution, sea surface temperature and vertical temperature and water profiles in the troposphere and stratosphere. The satellite will assist in measuring proton and electron fluxes at orbit altitude, collecting data from remote platforms to assist the Search and Rescue Satellite-Aided Tracking system. The satellite will be launched from the Western Range at Vandenberg AFB by a United Launch Alliance two-stage Delta II rocket managed by NASA's Launch Service Program at Kennedy. Photo credit: NASA/Jerry Nagy, VAFB
2008-11-04
VANDENBERG AIR FORCE BASE, Calif. – The NOAA-N Prime spacecraft is offloaded from a C-5 aircraft after arrival at Vandenberg Air Force Base Airfield in California. NOAA-N Prime was built by Lockheed Martin Space Systems Company for its Advanced Television Infrared Observational Satellites -N series. It is the latest polar-orbiting operational environmental weather satellite developed by NASA for the National Oceanic and Atmospheric Administration. The satellite will provide a platform to support environmental monitoring instruments for imaging and measuring the Earth's atmosphere, its surface and cloud cover, including Earth radiation, atmospheric ozone, aerosol distribution, sea surface temperature and vertical temperature and water profiles in the troposphere and stratosphere. The satellite will assist in measuring proton and electron fluxes at orbit altitude, collecting data from remote platforms to assist the Search and Rescue Satellite-Aided Tracking system. The satellite will be launched from the Western Range at Vandenberg AFB by a United Launch Alliance two-stage Delta II rocket managed by NASA's Launch Service Program at Kennedy. Photo credit: NASA/Jerry Nagy, VAFB
2008-11-04
VANDENBERG AIR FORCE BASE, Calif. – Workers move the NOAA-N Prime spacecraft into NASA's Hazardous Processing Facility on Vandenberg Air Force Base in California. NOAA-N Prime was built by Lockheed Martin Space Systems Company for its Advanced Television Infrared Observational Satellites -N series. It is the latest polar-orbiting operational environmental weather satellite developed by NASA for the National Oceanic and Atmospheric Administration. The satellite will provide a platform to support environmental monitoring instruments for imaging and measuring the Earth's atmosphere, its surface and cloud cover, including Earth radiation, atmospheric ozone, aerosol distribution, sea surface temperature and vertical temperature and water profiles in the troposphere and stratosphere. The satellite will assist in measuring proton and electron fluxes at orbit altitude, collecting data from remote platforms to assist the Search and Rescue Satellite-Aided Tracking system. The satellite will be launched from the Western Range at Vandenberg AFB by a United Launch Alliance two-stage Delta II rocket managed by NASA's Launch Service Program at Kennedy. Photo credit: NASA/Jerry Nagy, VAFB
2008-11-04
VANDENBERG AIR FORCE BASE, Calif. – The NOAA-N Prime spacecraft is offloaded from a C-5 aircraft after arrival at Vandenberg Air Force Base Airfield in California. NOAA-N Prime was built by Lockheed Martin Space Systems Company for its Advanced Television Infrared Observational Satellites -N series. It is the latest polar-orbiting operational environmental weather satellite developed by NASA for the National Oceanic and Atmospheric Administration. The satellite will provide a platform to support environmental monitoring instruments for imaging and measuring the Earth's atmosphere, its surface and cloud cover, including Earth radiation, atmospheric ozone, aerosol distribution, sea surface temperature and vertical temperature and water profiles in the troposphere and stratosphere. The satellite will assist in measuring proton and electron fluxes at orbit altitude, collecting data from remote platforms to assist the Search and Rescue Satellite-Aided Tracking system. The satellite will be launched from the Western Range at Vandenberg AFB by a United Launch Alliance two-stage Delta II rocket managed by NASA's Launch Service Program at Kennedy. Photo credit: NASA/Jerry Nagy, VAFB
Space Launch System for Exploration and Science
NASA Astrophysics Data System (ADS)
Klaus, K.
2013-12-01
Introduction: The Space Launch System (SLS) is the most powerful rocket ever built and provides a critical heavy-lift launch capability enabling diverse deep space missions. The exploration class vehicle launches larger payloads farther in our solar system and faster than ever before. The vehicle's 5 m to 10 m fairing allows utilization of existing systems which reduces development risks, size limitations and cost. SLS lift capacity and superior performance shortens mission travel time. Enhanced capabilities enable a myriad of missions including human exploration, planetary science, astrophysics, heliophysics, planetary defense and commercial space exploration endeavors. Human Exploration: SLS is the first heavy-lift launch vehicle capable of transporting crews beyond low Earth orbit in over four decades. Its design maximizes use of common elements and heritage hardware to provide a low-risk, affordable system that meets Orion mission requirements. SLS provides a safe and sustainable deep space pathway to Mars in support of NASA's human spaceflight mission objectives. The SLS enables the launch of large gateway elements beyond the moon. Leveraging a low-energy transfer that reduces required propellant mass, components are then brought back to a desired cislunar destination. SLS provides a significant mass margin that can be used for additional consumables or a secondary payloads. SLS lowers risks for the Asteroid Retrieval Mission by reducing mission time and improving mass margin. SLS lift capacity allows for additional propellant enabling a shorter return or the delivery of a secondary payload, such as gateway component to cislunar space. SLS enables human return to the moon. The intermediate SLS capability allows both crew and cargo to fly to translunar orbit at the same time which will simplify mission design and reduce launch costs. Science Missions: A single SLS launch to Mars will enable sample collection at multiple, geographically dispersed locations and a low-risk, direct return of Martian material. For the Europa Clipper mission the SLS eliminates Venus and Earth flybys, providing a direct launch to the Jovian system, arriving four years earlier than missions utilizing existing launch vehicles. This architecture allows increased mass for radiation shielding, expansion of the science payload and provides a model for other outer planet missions. SLS provides a direct launch to the Uranus system, reducing travel time by two years when compared to existing launch capabilities. SLS can launch the Advanced Technology Large-Aperture Space Telescope (ATLAST 16 m) to SEL2, providing researchers 10 times the resolution of the James Webb Space Telescope and up to 300 times the sensitivity of the Hubble Space Telescope. SLS is the only vehicle capable of deploying telescopes of this mass and size in a single launch. It simplifies mission design and reduces risks by eliminating the need for multiple launches and in-space assembly. SLS greatly shortens interstellar travel time, delivering the Interstellar Explorer to 200 AU in about 15 years with a maximum speed of 63 km/sec--13.3 AU per year (Neptune orbits the sun at an approximate distance of 30 AU ).
NASA Technical Reports Server (NTRS)
Pearson, S. D.; Vaughan, W. W.; Batts, G. W.; Jasper, G. L.
1996-01-01
The terrestrial environment is an important forcing function in the design and development of the launch vehicle. The scope of the terrestrial environment includes the following phenomena: Winds; Atmospheric Thermodynamic Models and Properties; Thermal Radiation; U.S. and World Surface Environment Extremes; Humidity; Precipitation, Fog, and Icing; Cloud Characteristics and Cloud Cover Models; Atmospheric Electricity; Atmospheric Constituents; Vehicle Engine Exhaust and Toxic Chemical Release; Occurrences of Tornadoes and Hurricanes; Geological Hazards, and Sea States. One must remember that the flight profile of any launch vehicle is in the terrestrial environment. Terrestrial environment definitions are usually limited to information below 90 km. Thus, a launch vehicle's operations will always be influenced to some degree by the terrestrial environment with which it interacts. As a result, the definition of the terrestrial environment and its interpretation is one of the key launch vehicle design and development inputs. This definition is a significant role, for example, in the areas of structures, control systems, trajectory shaping (performance), aerodynamic heating and take off/landing capabilities. The launch vehicle's capabilities which result from the design, in turn, determines the constraints and flight opportunities for tests and operations.
NASA Technical Reports Server (NTRS)
1989-01-01
By simply combining two baseline pump-fed LOX/RP-1 Liquid Rocket Boosters (LRBs) with the Denver core, a launch vehicle (Option 1 Advanced Launch System (ALS)) is obtained that can perform both the 28.5 deg (ALS) mission and the polar orbit ALS mission. The Option 2 LRB was obtained by finding the optimum LOX/LH2 engine for the STS/LRB reference mission (70.5 K lb payload). Then this engine and booster were used to estimate ALS payload for the 28.5 deg inclination ALS mission. Previous studies indicated that the optimum number of STS/LRB engines is four. When the engine/booster sizing was performed, each engine had 478 K lb sea level thrust and the booster carried 625,000 lb of useable propellant. Two of these LRBs combined with the Denver core provided a launch vehicle that meets the payload requirements for both the ALS and STS reference missions. The Option 3 LRB uses common engines for the cores and boosters. The booster engines do not have the nozzle extension. These engines were sized as common ALS engines. An ALS launch vehicle that has six core engines and five engines per booster provides 109,100 lb payload for the 28.5 deg mission. Each of these LOX/LH2 LRBs carries 714,100 lb of useable propellant. It is estimated that the STS/LRB reference mission payload would be 75,900 lb.
2017-12-08
The BARREL team inflates their second balloon just before its launch on Aug. 13, 2015, from Kiruna, Sweden. The day before this launch, the BARREL team successfully recovered the payload from the first balloon launch on Aug. 10. Payload recovery is especially important for this second launch, which carries an instrument and recorded data from a University of Houston team of student scientists. The NASA-funded BARREL – which stands for Balloon Array for Radiation-belt Relativistic Electron Losses – measures electrons in the atmosphere near the poles. Such electrons rain down into the atmosphere from two giant radiation belts surrounding Earth, called the Van Allen belts. For its third campaign, BARREL is launching six balloons from the Esrange Space Center in Kiruna, Sweden. BARREL is led by Dartmouth College in Hanover, New Hampshire. Credit: NASA/Dartmouth/Alexa Halford NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Base heating methodology improvements, volume 1
NASA Technical Reports Server (NTRS)
Bender, Robert L.; Reardon, John E.; Somers, Richard E.; Fulton, Michael S.; Smith, Sheldon D.; Pergament, Harold
1992-01-01
This document is the final report for NASA MSFC Contract NAS8-38141. The contracted effort had the broad objective of improving the launch vehicles ascent base heating methodology to improve and simplify the determination of that environment for Advanced Launch System (ALS) concepts. It was pursued as an Advanced Development Plan (ADP) for the Joint DoD/NASA ALS program office with project management assigned to NASA/MSFC. The original study was to be completed in 26 months beginning Sep. 1989. Because of several program changes and emphasis on evolving launch vehicle concepts, the period of performance was extended to the current completion date of Nov. 1992. A computer code incorporating the methodology improvements into a quick prediction tool was developed and is operational for basic configuration and propulsion concepts. The code and its users guide are also provided as part of the contract documentation. Background information describing the specific objectives, limitations, and goals of the contract is summarized. A brief chronology of the ALS/NLS program history is also presented to provide the reader with an overview of the many variables influencing the development of the code over the past three years.
Design and implementation of an experiment scheduling system for the ACTS satellite
NASA Technical Reports Server (NTRS)
Ringer, Mark J.
1994-01-01
The Advanced Communication Technology Satellite (ACTS) was launched on the 12th of September 1993 aboard STS-51. All events since that time have proceeded as planned with user operations commencing on December 6th, 1993. ACTS is a geosynchronous satellite designed to extend the state of the art in communication satellite design and is available to experimenters on a 'time/bandwidth available' basis. The ACTS satellite requires the advance scheduling of experimental activities based upon a complex set of resource, state, and activity constraints in order to ensure smooth operations. This paper describes the software system developed to schedule experiments for ACTS.
Experiment module concepts study. Volume 2: Experiments and mission operations
NASA Technical Reports Server (NTRS)
Macdonald, J. M.
1970-01-01
The baseline experiment program is concerned with future space experiments and cover the scientific disciplines of astronomy, space physics, space biology, biomedicine and biotechnology, earth applications, materials science, and advanced technology. The experiments within each discipline are grouped into functional program elements according to experiments that support a particular area of research or investigation and experiments that impose similar or related demand on space station support systems. The experiment requirements on module subsystems, experiment operating modes and time profiles, and the role of the astronaut are discussed. Launch and rendezvous with the space station, disposal, and on-orbit operations are delineated. The operational interfaces between module and other system elements are presented and include space station and logistic system interfaces. Preliminary launch and on-orbit environmental criteria and requirements are discussed, and experiment equipment weights by functional program elements are tabulated.
Manager's assistant systems for space system planning
NASA Technical Reports Server (NTRS)
Bewley, William L.; Burnard, Robert; Edwards, Gary E.; Shoop, James
1992-01-01
This paper describes a class of knowledge-based 'assistant' systems for space system planning. Derived from technology produced for the DARPA/USAF Pilot's Associate program, these assistant systems help the human planner by doing the bookkeeping to maintain plan data and executing the procedures and heuristics currently used by the human planner to define, assess, diagnose, and revise plans. Intelligent systems for Space Station Freedom assembly sequence planning and Advanced Launch System modeling will be presented as examples. Ongoing NASA-funded work on a framework supporting the development of such tools will also be described.
SeaFrame: Sustaining Today’s Fleet Efficiently and Effectively. Volume 5, Issue 1, 2009
2009-01-01
Maneuvering 11 Shipboard Launch and Recovery Systems 13 Integrated Logistics System 15 Special Hull Treatment Tile Manufacturing 17 Navy Shipboard Oil ...Developing advanced blade section design technology for propulsors that reduces cavitation damage and required repair cost and time. - Conducting...complex we have ever written.” Ammeen adds that steering and diving algorithms are also very complex, because hydrodynamic effects of a submarine
Report of the Defense Science Board Task Force on Nuclear Deterrence Skills
2008-09-01
entail modeling and simulation capability analogous to that for weapon design. A minimum “national” nuclear weapons effects simulator enterprise...systems programs (design, develop, produce, deploy, and sustain) relies 18 I C HA P TE R 3 upon a variety of management models . For example, the Air...entry vehicle design, modeling and simulation efforts, command and control, launch system infrastructure, intermediate-range missile concepts, advanced
Solar power satellite system definition study, volume 4, phase 2
NASA Technical Reports Server (NTRS)
1979-01-01
Results of an overall evaluation of the solar power satellite concept are reported. Specific topics covered include: solid state sandwich configuration; parametric development of reliability design; power distribution system for solid state solar power satellites; multibeam transmission; GEO base system configuration; suppression of the heavy lift launch vehicle trajectory; conceptual design of an offshore space center facility; solar power satellite development and operations scenario; and microwave power transmission technology, advancement, development, and facility requirements.
NASA Advanced Concepts Office, Earth-To-Orbit Team Design Process and Tools
NASA Technical Reports Server (NTRS)
Waters, Eric D.; Creech, Dennis M.; Garcia, Jessica; Threet, Grady E., Jr.; Phillips, Alan
2012-01-01
The Earth-to-Orbit Team (ETO) of the Advanced Concepts Office (ACO) at NASA Marshall Space Flight Center (MSFC) is considered the pre-eminent go-to group for pre-phase A and phase A concept definition. Over the past several years the ETO team has evaluated thousands of launch vehicle concept variations for a significant number of studies including agency-wide efforts such as the Exploration Systems Architecture Study (ESAS), Constellation, Heavy Lift Launch Vehicle (HLLV), Augustine Report, Heavy Lift Propulsion Technology (HLPT), Human Exploration Framework Team (HEFT), and Space Launch System (SLS). The ACO ETO Team is called upon to address many needs in NASA s design community; some of these are defining extremely large trade-spaces, evaluating advanced technology concepts which have not been addressed by a large majority of the aerospace community, and the rapid turn-around of highly time critical actions. It is the time critical actions, those often limited by schedule or little advanced warning, that have forced the five member ETO team to develop a design process robust enough to handle their current output level in order to meet their customer s needs. Based on the number of vehicle concepts evaluated over the past year this output level averages to four completed vehicle concepts per day. Each of these completed vehicle concepts includes a full mass breakdown of the vehicle to a tertiary level of subsystem components and a vehicle trajectory analysis to determine optimized payload delivery to specified orbital parameters, flight environments, and delta v capability. A structural analysis of the vehicle to determine flight loads based on the trajectory output, material properties, and geometry of the concept is also performed. Due to working in this fast-paced and sometimes rapidly changing environment, the ETO Team has developed a finely tuned process to maximize their delivery capabilities. The objective of this paper is to describe the interfaces between the three disciplines used in the design process: weights and sizing, trajectory, and structural analysis. The tools used to perform such analysis are INtegrated Rocket Sizing (INTROS), Program to Optimize Simulated Trajectories (POST), and Launch Vehicle Analysis (LVA) respectively. The methods each discipline uses to streamline their particular part of the design process will also be discussed.
NASA Advanced Concepts Office, Earth-To-Orbit Team Design Process and Tools
NASA Technical Reports Server (NTRS)
Waters, Eric D.; Garcia, Jessica; Threet, Grady E., Jr.; Phillips, Alan
2013-01-01
The Earth-to-Orbit Team (ETO) of the Advanced Concepts Office (ACO) at NASA Marshall Space Flight Center (MSFC) is considered the pre-eminent "go-to" group for pre-phase A and phase A concept definition. Over the past several years the ETO team has evaluated thousands of launch vehicle concept variations for a significant number of studies including agency-wide efforts such as the Exploration Systems Architecture Study (ESAS), Constellation, Heavy Lift Launch Vehicle (HLLV), Augustine Report, Heavy Lift Propulsion Technology (HLPT), Human Exploration Framework Team (HEFT), and Space Launch System (SLS). The ACO ETO Team is called upon to address many needs in NASA's design community; some of these are defining extremely large trade-spaces, evaluating advanced technology concepts which have not been addressed by a large majority of the aerospace community, and the rapid turn-around of highly time critical actions. It is the time critical actions, those often limited by schedule or little advanced warning, that have forced the five member ETO team to develop a design process robust enough to handle their current output level in order to meet their customer's needs. Based on the number of vehicle concepts evaluated over the past year this output level averages to four completed vehicle concepts per day. Each of these completed vehicle concepts includes a full mass breakdown of the vehicle to a tertiary level of subsystem components and a vehicle trajectory analysis to determine optimized payload delivery to specified orbital parameters, flight environments, and delta v capability. A structural analysis of the vehicle to determine flight loads based on the trajectory output, material properties, and geometry of the concept is also performed. Due to working in this fast-paced and sometimes rapidly changing environment, the ETO Team has developed a finely tuned process to maximize their delivery capabilities. The objective of this paper is to describe the interfaces between the three disciplines used in the design process: weights and sizing, trajectory, and structural analysis. The tools used to perform such analysis are INtegrated Rocket Sizing (INTROS), Program to Optimize Simulated Trajectories (POST), and Launch Vehicle Analysis (LVA) respectively. The methods each discipline uses to streamline their particular part of the design process will also be discussed.
2007-09-09
Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. The launch vehicle's first stage is a single, five-segment reusable solid rocket booster derived from the Space Shuttle Program's reusable solid rocket motor that burns a specially formulated and shaped solid propellant called polybutadiene acrylonitrile (PBAN). The second or upper stage will be propelled by a J-2X main engine fueled with liquid oxygen and liquid hydrogen. This HD video image depicts a test firing of a 40k subscale J2X injector at MSFC's test stand 115. (Highest resolution available)
2006 NASA Range Safety Annual Report
NASA Technical Reports Server (NTRS)
TenHaken, Ron; Daniels, B.; Becker, M.; Barnes, Zack; Donovan, Shawn; Manley, Brenda
2007-01-01
Throughout 2006, Range Safety was involved in a number of exciting and challenging activities and events, from developing, implementing, and supporting Range Safety policies and procedures-such as the Space Shuttle Launch and Landing Plans, the Range Safety Variance Process, and the Expendable Launch Vehicle Safety Program procedures-to evaluating new technologies. Range Safety training development is almost complete with the last course scheduled to go on line in mid-2007. Range Safety representatives took part in a number of panels and councils, including the newly formed Launch Constellation Range Safety Panel, the Range Commanders Council and its subgroups, the Space Shuttle Range Safety Panel, and the unmanned aircraft systems working group. Space based range safety demonstration and certification (formerly STARS) and the autonomous flight safety system were successfully tested. The enhanced flight termination system will be tested in early 2007 and the joint advanced range safety system mission analysis software tool is nearing operational status. New technologies being evaluated included a processor for real-time compensation in long range imaging, automated range surveillance using radio interferometry, and a space based range command and telemetry processor. Next year holds great promise as we continue ensuring safety while pursuing our quest beyond the Moon to Mars.
Advanced Launch Vehicle Upper Stages Using Liquid Propulsion and Metallized Propellants
NASA Technical Reports Server (NTRS)
Palaszewski, Bryan A.
1990-01-01
Metallized propellants are liquid propellants with a metal additive suspended in a gelled fuel or oxidizer. Typically, aluminum (Al) particles are the metal additive. These propellants provide increase in the density and/or the specific impulse of the propulsion system. Using metallized propellant for volume-and mass-constrained upper stages can deliver modest increases in performance for low earth orbit to geosynchronous earth orbit (LEO-GEO) and other earth orbital transfer missions. Metallized propellants, however, can enable very fast planetary missions with a single-stage upper stage system. Trade studies comparing metallized propellant stage performance with non-metallized upper stages and the Inertial Upper Stage (IUS) are presented. These upper stages are both one- and two-stage vehicles that provide the added energy to send payloads to altitudes and onto trajectories that are unattainable with only the launch vehicle. The stage designs are controlled by the volume and the mass constraints of the Space Transportation System (STS) and Space Transportation System-Cargo (STS-C) launch vehicles. The influences of the density and specific impulse increases enabled by metallized propellants are examined for a variety of different stage and propellant combinations.
2007-08-09
Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image depicts confidence testing of a manufactured aluminum panel that will fabricate the Ares I upper stage barrel. In this test, bent aluminum is stressed to breaking point and thoroughly examined. The panels are manufactured by AMRO Manufacturing located in El Monte, California. (Highest resolution available)
2007-07-09
Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. In this HD video image, an Ares I x-test involves the upper stage separating from the first stage. This particular test was conducted at the NASA Langley Research Center in July 2007. (Highest resolution available)
2007-08-09
Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. In this HD video image, processes for upper stage barrel fabrication are talking place. Aluminum panels are manufacturing process demonstration articles that will undergo testing until perfected. The panels are built by AMRO Manufacturing located in El Monte, California. (Largest resolution available)
2007-08-09
Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image depicts the manufacturing of aluminum panels that will be used to form the Ares I barrel. The panels are manufacturing process demonstration articles that will undergo testing until perfected. The panels are built by AMRO Manufacturing located in El Monte, California. (Highest resolution available)
A Modular Approach To Developing A Large Deployable Reflector
NASA Astrophysics Data System (ADS)
Pittman, R.; Leidich, C.; Mascy, F.; Swenson, B.
1984-01-01
NASA is currently studying the feasibility of developing a Large Deployable Reflector (LDR) astronomical facility to perform astrophysical studies of the infrared and submillimeter portion of the spectrum in the mid 1990's. The LDR concept was recommended by the Astronomy Survey Committee of the National Academy of Sciences as one of two space based projects to be started this decade. The current baseline calls for a 20 m (65.6 ft) aperture telescope diffraction limited at 30 μm and automatically deployed from a single Shuttle launch. The volume, performance, and single launch constraints place great demands on the technology and place LDR beyond the state-of-the-art in certain areas such as lightweight reflector segments. The advent of the Shuttle is opening up many new options and capabilities for producing large space systems. Until now, LDR has always been conceived as an integrated system, deployed autonomously in a single launch. This paper will look at a combination of automatic deployment and on-orbit assembly that may reduce the technological complexity and cost of the LDR system. Many technological tools are now in use or under study that will greatly enhance our capabilities to do assembly in space. Two Shuttle volume budget scenarios will be examined to assess the potential of these tools to reduce the LDR system complexity. Further study will be required to reach the full optimal combination of deployment and assembly, since in most cases the capabilities of these new tools have not been demonstrated. In order to take maximum advantage of these concepts, the design of LDR must be flexible and allow one subsystem to be modified without adversely affecting the entire system. One method of achieving this flexibility is to use a modular design approach in which the major subsystems are physically separated during launch and assembled on orbit. A modular design approach facilitates this flexibility but requires that the subsystems be interfaced in a simple, straightforward, and controlled manner. NASA is currently defining a technology development plan for LDR which will identify the technology advances that are required. The modular approach offers the flexibility to easily incorporate these new advances into the design.
NASA Astrophysics Data System (ADS)
Erickson, C. M.; Martinez, A.
1993-06-01
The 1992 Integrated Modular Engine (IME) design concept, proposed to the Air Force Space Systems Division as a candidate for a National Launch System (NLS) upper stage, emphasized a detailed Quality Functional Deployment (QFD) procedure which set the basis for its final selection. With a list of engine requirements defined and prioritized by the customer, a QFD procedure was implemented where the characteristics of a number of engine and component configurations were assessed for degree of requirement satisfaction. The QFD process emphasized operability, cost, reliability and performance, with relative importance specified by the customer. Existing technology and near-term advanced technology were surveyed to achieve the required design strategies. In the process, advanced nozzles, advanced turbomachinery, valves, controls, and operational procedures were evaluated. The integrated arrangement of three conventional bell nozzle thrust chambers with two advanced turbopump sets selected as the configuration meeting all requirements was rated significantly ahead of the other candidates, including the Aerospike and horizontal flow nozzle configurations.
2002-08-01
An array of components in a laboratory at NASA's Marshall Space Flight Center (MSFC) is being tested by the Flight Mechanics Office to develop an integrated navigation system for the second generation reusable launch vehicle. The laboratory is testing Global Positioning System (GPS) components, a satellite-based location and navigation system, and Inertial Navigation System (INS) components, sensors on a vehicle that determine angular velocity and linear acceleration at various points. The GPS and INS components work together to provide a space vehicle with guidance and navigation, like the push of the OnStar button in your car assists you with directions to a specific address. The integration will enable the vehicle operating system to track where the vehicle is in space and define its trajectory. The use of INS components for navigation is not new to space technology. The Space Shuttle currently uses them. However, the Space Launch Initiative is expanding the technology to integrate GPS and INS components to allow the vehicle to better define its position and more accurately determine vehicle acceleration and velocity. This advanced technology will lower operational costs and enhance the safety of reusable launch vehicles by providing a more comprehensive navigation system with greater capabilities. In this photograph, Dr. Jason Chuang of MSFC inspects an INS component in the laboratory.
NASA Astrophysics Data System (ADS)
Voss, H. D.; Dailey, J. F.; Takehara, D.; Krueger, J. M.
2009-12-01
Over a seven-year period Taylor University, an undergraduate liberal art school, has successfully launched and recovered over 200 sophisticated student payloads to altitudes between 20-33 km (100% success with rapid recovery) with flight times between 2 to 6 hrs. All of the payloads included two GPS tracking systems, cameras and monitors, a 110 kbit down link, an uplink command capability for educational experiments (K-12 and undergrad). Launches were conducted during the day and night, with multiple balloons, with up to 10 payloads for experiments, and under varying weather and upper atmospheric conditions. The many launches in a short period of time allowed the payload bus design to evolve toward increased performance, reliability, standardization, simplicity, and modularity for low-cost launch services. Through NSF and NASA grants, the program has expanded leading to over 50 universities trained at workshops to implement high altitude balloon launches in the classroom. A spin-off company (StraoStar Systems LLC) now sells the high-altitude balloon system and facilitates networking between schools. This high-altitude balloon program helps to advance knowledge and understanding across disciplines by giving students and faculty rapid and low-cost access to earth/ecology remote sensing from high altitude, insitu and limb atmospheric measurements, near-space stratosphere measurements, and IR/UV/cosmic ray access to the heavens. This new capability is possible by exposing students to recent advances in MEMS technology, nanotechnology, wireless telecommunication systems, GPS, DSPs and other microchip miniaturizations to build < 4 kg payloads. The high-altitude balloon program provides an engaging laboratory, gives challenging field experiences, reaches students from diverse backgrounds, encourages collaboration among science faculty, and provides quantitative assessment of the learning outcomes. Furthermore this program has generated many front page news reports along with significant TV coverage because of its connection to hands-on learning for students and adults of all ages, connection to understanding climate change and ways to mitigate global warming, and the excitement of taking measurements in a much uncharted region of our atmosphere. Teaching the scientific method or learning cycle (theory, research, instrumentation, operations, data analysis, and presentation) is a significant pedagogical building block that stimulates and retains students and prepares them well for graduate school and professional careers. Students obtain a personal ownership of their education when they engage in state-of-the-art balloon launch capability into the "unknown" with real-time data (50 Kb) with command interaction. The scientific method comes alive with creativity, problem solving, fun, and multidisciplinary hands-on team work. More students in basic science (and liberal arts) and public have an awareness of the environment, atmosphere, space, and heavens by direct probing and remote sensing from "New Heights" (over 98% of atmosphere at 30 km altitude).
NASA Technical Reports Server (NTRS)
Escher, William J. D.; Herr, Paul N.; Stephenson, Frank W., Jr.
1990-01-01
NASA's Civil Space Technology Initiative encompasses among its major elements the Earth-to-Orbit Propulsion Program (ETOPP) for future launch vehicles, which is budgeted to the extent of $20-30 million/year for the development of essential technologies. ETOPP technologies include, in addition to advanced materials and processes and design/analysis computational tools, the advanced systems-synthesis technologies required for definition of highly reliable LH2 and hydrocarbon fueled rocket engines to be operated at significantly reduced levels of risk and cost relative to the SSME. Attention is given to the technology-transfer services of ETOPP.
NASA Technical Reports Server (NTRS)
Cockrell, James
2015-01-01
Small satellites are becoming ever more capable of performing valuable missions for both government and commercial customers. However, currently these satellites can only be launched affordably as secondary payloads. This makes it difficult for the small satellite mission to launch when needed, to the desired orbit, and with acceptable risk. NASA Ames Research Center has developed and tested a prototype low-cost avionics package for space launch vehicles that provides complete GNC functionality in a package smaller than a tissue box with a mass less than 0.84 kg. AVA takes advantage of commercially available, low-cost, mass-produced, miniaturized sensors, filtering their more noisy inertial data with realtime GPS data. The goal of the Advanced Vehicle Avionics project is to produce and flight-verify a common suite of avionics and software that deliver affordable, capable GNC and telemetry avionics with application to multiple nano-launch vehicles at 1 the cost of current state-of-the-art avionics.
Launch Vehicle Design and Optimization Methods and Priority for the Advanced Engineering Environment
NASA Technical Reports Server (NTRS)
Rowell, Lawrence F.; Korte, John J.
2003-01-01
NASA's Advanced Engineering Environment (AEE) is a research and development program that will improve collaboration among design engineers for launch vehicle conceptual design and provide the infrastructure (methods and framework) necessary to enable that environment. In this paper, three major technical challenges facing the AEE program are identified, and three specific design problems are selected to demonstrate how advanced methods can improve current design activities. References are made to studies that demonstrate these design problems and methods, and these studies will provide the detailed information and check cases to support incorporation of these methods into the AEE. This paper provides background and terminology for discussing the launch vehicle conceptual design problem so that the diverse AEE user community can participate in prioritizing the AEE development effort.
2002-10-18
KENNEDY SPACE CENTER, FLA. -- Workers supervise the move of the suspended TDRS-J spacecraft towards a workstand in the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2) for final checkout and processing before launch, currently targeted for Nov. 20. TDRS-J is the third in the current series of three Tracking and Data Relay Satellites designed to replenish the existing on-orbit fleet of six spacecraft, the first of which was launched in 1983. The Tracking and Data Relay Satellite System is the primary source of space-to-ground voice, data and telemetry for the Space Shuttle. It also provides communications with the International Space Station and scientific spacecraft in low-earth orbit, such as the Hubble Space Telescope, and launch support for some expendable vehicles. This new advanced series of satellites will extend the availability of TDRS communications services until approximately 2017.
2002-10-18
KENNEDY SPACE CENTER, FLA. -- Workers supervise the placement of the TDRS-J spacecraft onto a workstand in the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2) for final checkout and processing before launch, currently targeted for Nov. 20. TDRS-J is the third in the current series of three Tracking and Data Relay Satellites designed to replenish the existing on-orbit fleet of six spacecraft, the first of which was launched in 1983. The Tracking and Data Relay Satellite System is the primary source of space-to-ground voice, data and telemetry for the Space Shuttle. It also provides communications with the International Space Station and scientific spacecraft in low-earth orbit, such as the Hubble Space Telescope, and launch support for some expendable vehicles. This new advanced series of satellites will extend the availability of TDRS communications services until approximately 2017.
Space Technology Demo at NASA Wallops
2017-12-08
A Black Brant IX suborbital sounding rocket is launched at 7:07 p.m., Wednesday October 7, 2015. (NASA Photo/A. Stancil) A Black Brant IX suborbital rocket was launched from NASA's Wallops Flight Facility. The launch occurred at 7:07 p.m. The primary purpose of the flight was to test the performance of the second-stage Black Brant motor. Preliminary indications are that the motor performed as planned. Preliminary data analysis of the technology experiments (vapor tracer deployments) on the payload is in progress. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Space Technology Demo at NASA Wallops
2017-12-08
A Black Brant IX suborbital sounding rocket is launched at 7:07 p.m., Wednesday October 7, 2015. (NASA Photo/T. Zaperach) A Black Brant IX suborbital rocket was launched from NASA's Wallops Flight Facility. The launch occurred at 7:07 p.m. The primary purpose of the flight was to test the performance of the second-stage Black Brant motor. Preliminary indications are that the motor performed as planned. Preliminary data analysis of the technology experiments (vapor tracer deployments) on the payload is in progress. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Delta II ICESat-2 Booster Arrival
2018-03-09
A United Launch Alliance Delta II booster arrives at NASA's Building 836, the Spacecraft Labs Telemetry Station at Vandenberg Air Force Base in California. It will be offloaded and begin preliminary checkouts and preflight processing for launch of the agency's Ice, Cloud and land Elevation Satellite-2, or ICESat-2. Liftoff from Space Launch Complex-2 at Vandenberg is scheduled for Sept. 12, 2018, and will be the last for the venerable Delta II rocket. Once in orbit, the satellite is designed to measure the height of a changing Earth, one laser pulse at a time, 10,000 laser pulses a second. The satellite will carry a single instrument, the Advanced Topographic Laser Altimeter System. ICESat-2 will help scientists investigate why, and how much, Earth's frozen and icy areas are changing. These area make up Earth's the cryosphere.
Delta II ICESat-2 Booster Offload onto Transporter
2018-04-16
At NASA's Building 836, the Spacecraft Labs Telemetry Station at Vandenberg Air Force Base in California, a United Launch Alliance Delta II booster has been removed from its shipping container. Preliminary checkouts and preflight processing will begin leading to launch of the agency's Ice, Cloud and land Elevation Satellite-2, or ICESat-2. Liftoff from Space Launch Complex-2 at Vandenberg is scheduled for Sept. 12, 2018, and will be the last for the venerable Delta II rocket. Once in orbit, the satellite is designed to measure the height of a changing Earth, one laser pulse at a time, 10,000 laser pulses a second. The satellite will carry a single instrument, the Advanced Topographic Laser Altimeter System. ICESat-2 will help scientists investigate why, and how much, Earth's frozen and icy areas are changing. These area make up Earth's the cryosphere.
Delta II ICESat-2 Booster Offload onto Transporter
2018-04-16
A United Launch Alliance Delta II booster arrives at NASA's Building 836, the Spacecraft Labs Telemetry Station at Vandenberg Air Force Base in California. It will be offloaded and begin preliminary checkouts and preflight processing for launch of the agency's Ice, Cloud and land Elevation Satellite-2, or ICESat-2. Liftoff from Space Launch Complex-2 at Vandenberg is scheduled for Sept. 12, 2018, and will be the last for the venerable Delta II rocket. Once in orbit, the satellite is designed to measure the height of a changing Earth, one laser pulse at a time, 10,000 laser pulses a second. The satellite will carry a single instrument, the Advanced Topographic Laser Altimeter System. ICESat-2 will help scientists investigate why, and how much, Earth's frozen and icy areas are changing. These area make up Earth's the cryosphere.
NASA's Space Launch System Advanced Booster Development
NASA Technical Reports Server (NTRS)
Robinson, Kimberly F.; Crumbly, Christopher M.; May, Todd A.
2014-01-01
The National Aeronautics and Space Administration's (NASA's) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is making progress toward delivering a new capability for human space flight and scientific missions beyond Earth orbit. NASA is executing this development within flat budgetary guidelines by using existing engines assets and heritage technology to ready an initial 70 metric ton (t) lift capability for launch in 2017, and then employing a block upgrade approach to evolve a 130-t capability after 2021. A key component of the SLS acquisition plan is a three-phased approach for the first-stage boosters. The first phase is to expedite the 70-t configuration by completing development of the Space Shuttle heritage 5-segment solid rocket boosters (SRBs) for the initial flights of SLS. Since no existing boosters can meet the performance requirements for the 130-t class SLS, the next phases of the strategy focus on the eventual development of advanced boosters with an expected thrust class potentially double the current 5-segment solid rocket booster capability of 3.88 million pounds of thrust each. The second phase in the booster acquisition plan is the Advanced Booster Engineering Demonstration and/or Risk Reduction (ABEDRR) effort, for which contracts were awarded beginning in 2012 after a full and open competition, with a stated intent to reduce risks leading to an affordable advanced booster. NASA has awarded ABEDRR contracts to four industry teams, which are looking into new options for liquid-fuel booster engines, solid-fuel-motor propellants, and composite booster structures. Demonstrations and/or risk reduction efforts were required to be related to a proposed booster concept directly applicable to fielding an advanced booster. This paper will discuss the status of this acquisition strategy and its results toward readying both the 70 t and 130 t configurations of SLS. The third and final phase will be a full and open competition for Design, Development, Test, and Evaluation (DDT&E) of the advanced boosters. These new boosters will enable the flexible path approach to deep space exploration, opening up vast opportunities for human missions to near-Earth asteroids and Mars. This evolved capability will offer large volume for science missions and payloads, will be modular and flexible, and will be right-sized for mission requirements.
NASA Technical Reports Server (NTRS)
Caluori, V. A.
1980-01-01
Technologies either critical to performance of offering cost advantages compared to the investment required to bring them to usable confidence levels are identified. A total transportation system is used as an evaluation yardstick. Vehicles included in the system are a single stage to orbit launch vehicle used in a priority cargo role, a matching orbit transfer vehicle, a heavy lift launch vehicle with a low Earth orbit delivery capability of 226, 575 kg, and a matching solar electric cargo orbit transfer vehicle. The system and its reference technology level are consistent with an initial operational capability in 1990. The 15 year mission scenario is based on early space industrialization leading to the deployment of large systems such as power satellites. Life cycle cost benefits in discounted and undiscounted dollars for each vehicle, technology advancement, and the integrated transportation system are calculated. A preliminary functional analysis was made of the operational support requirements for ground based and space based chemical propulsion orbit transfer vehicles.
NASA Technical Reports Server (NTRS)
Stahl, H. Philip
2013-01-01
Per Astro2010, a new, larger UVO telescope is needed to answer fundamental scientific questions, such as: is there life on Earth-like exoplanets; how galaxies assemble stellar populations; how baryonic matter interacts with intergalactic medium; and how solar systems form and evolve. And, present technology is not mature enough to affordably build and launch any potential UVO concept. Advanced Mirror Technology Development (AMTD) is a funded SAT project. Our objective is to mature to TRL-6 the critical technologies needed to produce 4-m or larger flight-qualified UVOIR mirrors by 2018 so that a viable mission can be considered by the 2020 Decadal Review. AMTD uses a science-driven systems engineering approach. We mature technologies required to enable the highest priority science AND result in a high-performance low-cost low-risk system. To provide the science community with options, we are pursuing multiple technology paths. We have assembled an outstanding team from academia, industry, and government with extensive expertise in astrophysics and exoplanet characterization, and in the design/manufacture of monolithic and segmented space telescopes. One of our key accomplishments is that we have derived engineering specifications for advanced normal-incidence monolithic and segmented mirror systems needed to enable both general astrophysics and ultra-high contrast observations of exoplanets missions as a function of potential launch vehicle and its inherent mass and volume constraints. We defined and initiated a program to mature 6 key technologies required to fabricate monolithic and segmented space mirrors.
Preliminary Sizing of Vertical Take-off Rocket-based Combined-cycle Powered Launch Vehicles
NASA Technical Reports Server (NTRS)
Roche, Joseph M.; McCurdy, David R.
2001-01-01
The task of single-stage-to-orbit has been an elusive goal due to propulsion performance, materials limitations, and complex system integration. Glenn Research Center has begun to assemble a suite of relationships that tie Rocket-Based Combined-Cycle (RBCC) performance and advanced material data into a database for the purpose of preliminary sizing of RBCC-powered launch vehicles. To accomplish this, a near optimum aerodynamic and structural shape was established as a baseline. The program synthesizes a vehicle to meet the mission requirements, tabulates the results, and plots the derived shape. A discussion of the program architecture and an example application is discussed herein.
Systems engineering and integration: Advanced avionics laboratories
NASA Technical Reports Server (NTRS)
1990-01-01
In order to develop the new generation of avionics which will be necessary for upcoming programs such as the Lunar/Mars Initiative, Advanced Launch System, and the National Aerospace Plane, new Advanced Avionics Laboratories are required. To minimize costs and maximize benefits, these laboratories should be capable of supporting multiple avionics development efforts at a single location, and should be of a common design to support and encourage data sharing. Recent technological advances provide the capability of letting the designer or analyst perform simulations and testing in an environment similar to his engineering environment and these features should be incorporated into the new laboratories. Existing and emerging hardware and software standards must be incorporated wherever possible to provide additional cost savings and compatibility. Special care must be taken to design the laboratories such that real-time hardware-in-the-loop performance is not sacrificed in the pursuit of these goals. A special program-independent funding source should be identified for the development of Advanced Avionics Laboratories as resources supporting a wide range of upcoming NASA programs.
2010-01-04
Dr. Robert Goddard with batteries and relay at the launch tower, May 19, 1937. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook
NASA Applications for Computational Electromagnetic Analysis
NASA Technical Reports Server (NTRS)
Lewis, Catherine C.; Trout, Dawn H.; Krome, Mark E.; Perry, Thomas A.
2011-01-01
Computational Electromagnetic Software is used by NASA to analyze the compatibility of systems too large or too complex for testing. Recent advances in software packages and computer capabilities have made it possible to determine the effects of a transmitter inside a launch vehicle fairing, better analyze the environment threats, and perform on-orbit replacements with assured electromagnetic compatibility.
Composite Technology for Exploration
NASA Technical Reports Server (NTRS)
Fikes, John
2017-01-01
The CTE (Composite Technology for Exploration) Project will develop and demonstrate critical composites technologies with a focus on joints that utilize NASA expertise and capabilities. The project will advance composite technologies providing lightweight structures to support future NASA exploration missions. The CTE project will demonstrate weight-saving, performance-enhancing bonded joint technology for Space Launch System (SLS)-scale composite hardware.
New NASA Technologies for Space Exploration
NASA Technical Reports Server (NTRS)
Calle, Carlos I.
2015-01-01
NASA is developing new technologies to enable planetary exploration. NASA's Space Launch System is an advance vehicle for exploration beyond LEO. Robotic explorers like the Mars Science Laboratory are exploring Mars, making discoveries that will make possible the future human exploration of the planet. In this presentation, we report on technologies being developed at NASA KSC for planetary exploration.
Deep Space Habitat Concept Demonstrator
NASA Technical Reports Server (NTRS)
Bookout, Paul S.; Smitherman, David
2015-01-01
This project will develop, integrate, test, and evaluate Habitation Systems that will be utilized as technology testbeds and will advance NASA's understanding of alternative deep space mission architectures, requirements, and operations concepts. Rapid prototyping and existing hardware will be utilized to develop full-scale habitat demonstrators. FY 2014 focused on the development of a large volume Space Launch System (SLS) class habitat (Skylab Gen 2) based on the SLS hydrogen tank components. Similar to the original Skylab, a tank section of the SLS rocket can be outfitted with a deep space habitat configuration and launched as a payload on an SLS rocket. This concept can be used to support extended stay at the Lunar Distant Retrograde Orbit to support the Asteroid Retrieval Mission and provide a habitat suitable for human missions to Mars.
Agenda of the Fourth Annual Summer Conference, NASA/USRA University Advanced Design Program
NASA Technical Reports Server (NTRS)
1988-01-01
Presentations given by the participants at the fourth annual summer conference of the NASA/USRA University Advanced Design Program are summarized. The study topics include potential space and aeronautics projects which could be undertaken during a 20 to 30 year period beginning with the Space Station Initial Operating Configuration (IOC) scheduled for the early to mid-1990's. This includes system design studies for both manned and unmanned endeavors; e.g., lunar launch and landing facilities and operations, variable artificial gravity facility for the Space Station, manned Mars aircraft and delivery system, long term space habitat, construction equipment for lunar bases, Mars oxygen production system, trans-Pacific high speed civil transport, V/STOL aircraft concepts, etc.
NASA Technical Reports Server (NTRS)
Ayon, Juan A. (Editor)
1992-01-01
A technology development program, Astrotech 21, is being proposed by NASA to enable the launching of the next generation of space astrophysical observatories during the years 1995-2015. Astrotech 21 is being planned and will ultimately be implemented jointly by the Astrophysics Division of the Office of Space Science and Applications and the Space Directorate of the Office of Aeronautics and Space Technology. A summary of the Astrotech 21 Optical Systems Technology Workshop is presented. The goal of the workshop was to identify areas of development within advanced optical systems that require technology advances in order to meet the science goals of the Astrotech 21 mission set, and to recommend a coherent development program to achieve the required capabilities.
Space Shuttle 2 Advanced Space Transportation System. Volume 1: Executive Summary
NASA Technical Reports Server (NTRS)
Adinaro, James N.; Benefield, Philip A.; Johnson, Shelby D.; Knight, Lisa K.
1989-01-01
An investigation into the feasibility of establishing a second generation space transportation system is summarized. Incorporating successful systems from the Space Shuttle and technological advances made since its conception, the second generation shuttle was designed to be a lower-cost, reliable system which would guarantee access to space well into the next century. A fully reusable, all-liquid propellant booster/orbiter combination using parallel burn was selected as the base configuration. Vehicle characteristics were determined from NASA ground rules and optimization evaluations. The launch profile was constructed from particulars of the vehicle design and known orbital requirements. A stability and control analysis was performed for the landing phase of the orbiter's flight. Finally, a preliminary safety analysis was performed to indicate possible failure modes and consequences.
NASA Technical Reports Server (NTRS)
Lockett, Tiffany Russell; Martinez, Armando; Boyd, Darren; SanSouice, Michael; Farmer, Brandon; Schneider, Todd; Laue, Greg; Fabisinski, Leo; Johnson, Les; Carr, John A.
2015-01-01
This paper describes recent advancements of the Lightweight Integrated Solar Array and Transceiver (LISA-T) currently being developed at NASA's Marshall Space Flight Center. The LISA-T array comprises a launch stowed, orbit deployed structure on which thin-film photovoltaic (PV) and antenna devices are embedded. The system provides significant electrical power generation at low weights, high stowage efficiency, and without the need for solar tracking. Leveraging high-volume terrestrial-market PVs also gives the potential for lower array costs. LISA-T is addressing the power starvation epidemic currently seen by many small-scale satellites while also enabling the application of deployable antenna arrays. Herein, an overview of the system and its applications are presented alongside sub-system development progress and environmental testing plans.
NASA Technical Reports Server (NTRS)
Russell, Tiffany; Martinez, Armando; Boyd, Darren; SanSoucie, Michael; Farmer, Brandon; Schneider, Todd; Fabisinski, Leo; Johnson, Les; Carr, John A.
2015-01-01
This paper describes recent advancements of the Lightweight Integrated Solar Array and Transceiver (LISA-T) currently being developed at NASA's Marshall Space Flight Center. The LISA-T array comprises a launch stowed, orbit deployed structure on which thin-film photovoltaic (PV) and antenna devices are embedded. The system provides significant electrical power generation at low weights, high stowage efficiency, and without the need for solar tracking. Leveraging high-volume terrestrial-market PVs also gives the potential for lower array costs. LISA-T is addressing the power starvation epidemic currently seen by many small-scale satellites while also enabling the application of deployable antenna arrays. Herein, an overview of the system and its applications are presented alongside sub-system development progress and environmental testing plans/initial results.
An advanced domestic satellite communications system
NASA Technical Reports Server (NTRS)
1980-01-01
An updated traffic projection for U.S. domestic satellite communications service covering a period of 15 years; mid-1980 to mid-1995 was prepared. This model takes into account expected technology advances and reductions in transmission costs, legislative and regulatory changes permitting increased competition, and rising energy costs which will encourage more extensive substitution of telecommunications for travel. The historical development and current status of satellite systems are discussed as well as the characteristics of follow-on systems. Orbital arc utilization, spacecraft configuration for single shuttle launch, Earth station configuration, and system costs are examined. Areas which require technology development include multiple beam frequency reuse antennas, on-board switching, intersatellite links, and ka-band operation. Packing and deployment schemes for enclosing the satellite within the shuttle orbiter bay must also be devised.
NASA Technical Reports Server (NTRS)
Csomor, A.; Faulkner, C.; Ferlita, F.
1990-01-01
Advanced Development Programs are being pursued by Rocketdyne, Aerojet, and Pratt and Whitney to define and validate design approaches toward producing low-cost, reliable liquid-hydrogen and liquid-oxygen turbopumps for a 2580 kN (580 klb) thrust Advanced Launch System. The generic approach, which is evolving after 18 months of trade studies and conceptual and preliminary design efforts, is explained. In addition, the preliminary liquid-hydrogen turbopump designs produced in parallel tasks by Rocketdyne and Aerojet and the liquid-oxygen turbopump design produced by Pratt and Whitney are described, and technology features and issues are discussed.
NASA Technical Reports Server (NTRS)
Dalton, Penni; Cohen, Fred
2004-01-01
The ISS currently uses Ni-H2 batteries in the main power system. Although Ni-H2 is a robust and reliable system, recent advances in battery technology have paved the way for future replacement batteries to be constructed using Li-ion technology. This technology will provide lower launch weight as well as increase ISS electric power system (EPS) efficiency. The result of incorporating this technology in future re-support hardware will be greater power availability and reduced program cost. the presentations of incorporating the new technology.
Overview and major characteristics of future aeronautical and space systems
NASA Technical Reports Server (NTRS)
Venneri, Samuel L.; Noor, Ahmed K.
1992-01-01
A systematic projection is made of prospective materials and structural systems' performance requirements in light of emerging applications. The applications encompass high-speed/long-range rotorcraft, advanced subsonic commercial aircraft, high speed (supersonic) commercial transports, hypersonic aircraft and missiles, extremely high-altitude cruise aircraft and missiles, and aerospace craft and launch vehicles. A tabulation is presented of the materials/structures/dynamics requirements associated with future aerospace systems, as well as the further development needs foreseen in each such case.
GOES-R Advanced Base Line Imager Installation
2016-08-30
Team members prepare the Advanced Base Line Imager, the primary optical instrument, for installation on the Geostationary Operational Environmental Satellite (GOES-R) inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA GOES Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.
GOES-R Advanced Base Line Imager Installation
2016-08-30
Team members install the Advanced Base Line Imager, the primary optical instrument, on the Geostationary Operational Environmental Satellite (GOES-R) inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA GOES Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.
GOES-R Advanced Base Line Imager Installation
2016-08-30
The Advanced Base Line Imager, the primary optical instrument, has been installed on the Geostationary Operational Environmental Satellite (GOES-R) inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA GOES Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.
A Dual Launch Robotic and Human Lunar Mission Architecture
NASA Technical Reports Server (NTRS)
Jones, David L.; Mulqueen, Jack; Percy, Tom; Griffin, Brand; Smitherman, David
2010-01-01
This paper describes a comprehensive lunar exploration architecture developed by Marshall Space Flight Center's Advanced Concepts Office that features a science-based surface exploration strategy and a transportation architecture that uses two launches of a heavy lift launch vehicle to deliver human and robotic mission systems to the moon. The principal advantage of the dual launch lunar mission strategy is the reduced cost and risk resulting from the development of just one launch vehicle system. The dual launch lunar mission architecture may also enhance opportunities for commercial and international partnerships by using expendable launch vehicle services for robotic missions or development of surface exploration elements. Furthermore, this architecture is particularly suited to the integration of robotic and human exploration to maximize science return. For surface operations, an innovative dual-mode rover is presented that is capable of performing robotic science exploration as well as transporting human crew conducting surface exploration. The dual-mode rover can be deployed to the lunar surface to perform precursor science activities, collect samples, scout potential crew landing sites, and meet the crew at a designated landing site. With this approach, the crew is able to evaluate the robotically collected samples to select the best samples for return to Earth to maximize the scientific value. The rovers can continue robotic exploration after the crew leaves the lunar surface. The transportation system for the dual launch mission architecture uses a lunar-orbit-rendezvous strategy. Two heavy lift launch vehicles depart from Earth within a six hour period to transport the lunar lander and crew elements separately to lunar orbit. In lunar orbit, the crew transfer vehicle docks with the lander and the crew boards the lander for descent to the surface. After the surface mission, the crew returns to the orbiting transfer vehicle for the return to the Earth. This paper describes a complete transportation architecture including the analysis of transportation element options and sensitivities including: transportation element mass to surface landed mass; lander propellant options; and mission crew size. Based on this analysis, initial design concepts for the launch vehicle, crew module and lunar lander are presented. The paper also describes how the dual launch lunar mission architecture would fit into a more general overarching human space exploration philosophy that would allow expanded application of mission transportation elements for missions beyond the Earth-moon realm.
NASA Technical Reports Server (NTRS)
Rasky, Daniel J.
2004-01-01
The need for robust and reliable access from space is clearly demonstrated by the recent loss of the Space Shuttle Columbia; as well as the NASA s goals to get the Shuttle re-flying and extend its life, build new vehicles for space access, produce successful robotic landers and s a q k retrr? llisrions, and maximize the science content of ambitious outer planets missions that contain nuclear reactors which must be safe for re-entry after possible launch aborts. The technology lynch pin of access from space is hypersonic entry systems such the thermal protection system, along with navigation, guidance and control (NG&C). But it also extends to descent and landing systems such as parachutes, airbags and their control systems. Current space access technology maturation programs such as NASA s Next Generation Launch Technology (NGLT) program or the In-Space Propulsion (ISP) program focus on maturing laboratory demonstrated technologies for potential adoption by specific mission applications. A key requirement for these programs success is a suitable queue of innovative technologies and advanced concepts to mature, including mission concepts enabled by innovative, cross cutting technology advancements. When considering space access, propulsion often dominates the capability requirements, as well as the attention and resources. From the perspective of access from space some new cross cutting technology drivers come into view, along with some new capability opportunities. These include new miniature vehicles (micro, nano, and picosats), advanced automated systems (providing autonomous on-orbit inspection or landing site selection), and transformable aeroshells (to maximize capabilities and minimize weight). This paper provides an assessment of the technology drivers needed to meet future access from space mission requirements, along with the mission capabilities that can be envisioned from innovative, cross cutting access from space technology developments.
NASA Technical Reports Server (NTRS)
Ong, Cindy; Mueller, Andreas; Thome, Kurtis; Pierce, Leland E.; Malthus, Timothy
2016-01-01
Calibration is the process of quantitatively defining a system's responses to known, controlled signal inputs, and validation is the process of assessing, by independent means, the quality of the data products derived from those system outputs [1]. Similar to other Earth observation (EO) sensors, the calibration and validation of spaceborne imaging spectroscopy sensors is a fundamental underpinning activity. Calibration and validation determine the quality and integrity of the data provided by spaceborne imaging spectroscopy sensors and have enormous downstream impacts on the accuracy and reliability of products generated from these sensors. At least five imaging spectroscopy satellites are planned to be launched within the next five years, with the two most advanced scheduled to be launched in the next two years [2]. The launch of these sensors requires the establishment of suitable, standardized, and harmonized calibration and validation strategies to ensure that high-quality data are acquired and comparable between these sensor systems. Such activities are extremely important for the community of imaging spectroscopy users. Recognizing the need to focus on this underpinning topic, the Geoscience Spaceborne Imaging Spectroscopy (previously, the International Spaceborne Imaging Spectroscopy) Technical Committee launched a calibration and validation initiative at the 2013 International Geoscience and Remote Sensing Symposium (IGARSS) in Melbourne, Australia, and a post-conference activity of a vicarious calibration field trip at Lake Lefroy in Western Australia.
Real-Time Hardware-in-the-Loop Simulation of Ares I Launch Vehicle
NASA Technical Reports Server (NTRS)
Tobbe, Patrick; Matras, Alex; Walker, David; Wilson, Heath; Fulton, Chris; Alday, Nathan; Betts, Kevin; Hughes, Ryan; Turbe, Michael
2009-01-01
The Ares Real-Time Environment for Modeling, Integration, and Simulation (ARTEMIS) has been developed for use by the Ares I launch vehicle System Integration Laboratory at the Marshall Space Flight Center. The primary purpose of the Ares System Integration Laboratory is to test the vehicle avionics hardware and software in a hardware - in-the-loop environment to certify that the integrated system is prepared for flight. ARTEMIS has been designed to be the real-time simulation backbone to stimulate all required Ares components for verification testing. ARTE_VIIS provides high -fidelity dynamics, actuator, and sensor models to simulate an accurate flight trajectory in order to ensure realistic test conditions. ARTEMIS has been designed to take advantage of the advances in underlying computational power now available to support hardware-in-the-loop testing to achieve real-time simulation with unprecedented model fidelity. A modular realtime design relying on a fully distributed computing architecture has been implemented.
Methods and Systems for Advanced Spaceport Information Management
NASA Technical Reports Server (NTRS)
Fussell, Ronald M. (Inventor); Ely, Donald W. (Inventor); Meier, Gary M. (Inventor); Halpin, Paul C. (Inventor); Meade, Phillip T. (Inventor); Jacobson, Craig A. (Inventor); Blackwell-Thompson, Charlie (Inventor)
2007-01-01
Advanced spaceport information management methods and systems are disclosed. In one embodiment, a method includes coupling a test system to the payload and transmitting one or more test signals that emulate an anticipated condition from the test system to the payload. One or more responsive signals are received from the payload into the test system and are analyzed to determine whether one or more of the responsive signals comprises an anomalous signal. At least one of the steps of transmitting, receiving, analyzing and determining includes transmitting at least one of the test signals and the responsive signals via a communications link from a payload processing facility to a remotely located facility. In one particular embodiment, the communications link is an Internet link from a payload processing facility to a remotely located facility (e.g. a launch facility, university, etc.).
Methods and systems for advanced spaceport information management
NASA Technical Reports Server (NTRS)
Ely, Donald W. (Inventor); Fussell, Ronald M. (Inventor); Halpin, Paul C. (Inventor); Blackwell-Thompson, Charlie (Inventor); Meier, Gary M. (Inventor); Meade, Phillip T. (Inventor); Jacobson, Craig A. (Inventor)
2007-01-01
Advanced spaceport information management methods and systems are disclosed. In one embodiment, a method includes coupling a test system to the payload and transmitting one or more test signals that emulate an anticipated condition from the test system to the payload. One or more responsive signals are received from the payload into the test system and are analyzed to determine whether one or more of the responsive signals comprises an anomalous signal. At least one of the steps of transmitting, receiving, analyzing and determining includes transmitting at least one of the test signals and the responsive signals via a communications link from a payload processing facility to a remotely located facility. In one particular embodiment, the communications link is an Internet link from a payload processing facility to a remotely located facility (e.g. a launch facility, university, etc.).
Hypersonic Vehicle Propulsion System Control Model Development Roadmap and Activities
NASA Technical Reports Server (NTRS)
Stueber, Thomas J.; Le, Dzu K.; Vrnak, Daniel R.
2009-01-01
The NASA Fundamental Aeronautics Program Hypersonic project is directed towards fundamental research for two classes of hypersonic vehicles: highly reliable reusable launch systems (HRRLS) and high-mass Mars entry systems (HMMES). The objective of the hypersonic guidance, navigation, and control (GN&C) discipline team is to develop advanced guidance and control algorithms to enable efficient and effective operation of these challenging vehicles. The ongoing work at the NASA Glenn Research Center supports the hypersonic GN&C effort in developing tools to aid the design of advanced control algorithms that specifically address the propulsion system of the HRRLSclass vehicles. These tools are being developed in conjunction with complementary research and development activities in hypersonic propulsion at Glenn and elsewhere. This report is focused on obtaining control-relevant dynamic models of an HRRLS-type hypersonic vehicle propulsion system.
Heavy Lift Launch Capability with a New Hydrocarbon Engine (NHE)
NASA Technical Reports Server (NTRS)
Threet, Grady E., Jr.; Holt, James B.; Philips, Alan D.; Garcia, Jessica A.
2011-01-01
The Advanced Concepts Office (ACO) at NASA Marshall Space Flight Center has analyzed over 2000 Ares V and other heavy lift concepts in the last 3 years. These concepts were analyzed for Lunar Exploration Missions, heavy lift capability to Low Earth Orbit (LEO) as well as exploratory missions to other near earth objects in our solar system. With the pending retirement of the Shuttle fleet, our nation will be without a civil heavy lift launch capability, so the future development of a new heavy lift capability is imperative for the exploration and large science missions our Agency has been tasked to deliver. The majority of the heavy lift concepts analyzed by ACO during the last 3 years have been based on liquid oxygen / liquid hydrogen (LOX/LH2) core stage and solids booster stage propulsion technologies (Ares V / Shuttle Derived and their variants). These concepts were driven by the decisions made from the results of the Exploration Systems Architecture Study (ESAS), which in turn, led to the Ares V launch vehicle that has been baselined in the Constellation Program. Now that the decision has been made at the Agency level to cancel Constellation, other propulsion options such as liquid hydrocarbon fuels are back in the exploration trade space. NASA is still planning exploration missions with the eventual destination of Mars and a new heavy lift launch vehicle is still required and will serve as the centerpiece of our nation s next exploration architecture s infrastructure. With an extensive launch vehicle database already developed on LOX/LH2 based heavy lift launch vehicles, ACO initiated a study to look at using a new high thrust (> 1.0 Mlb vacuum thrust) hydrocarbon engine as the primary main stage propulsion in such a launch vehicle.
NASA Technical Reports Server (NTRS)
Singer, Jody; Pelfrey, Joseph; Norris, George
2016-01-01
For the first time in almost 40 years, a NASA human-rated launch vehicle has completed its Critical Design Review (CDR). By reaching this milestone, NASA's Space Launch System (SLS) and Orion spacecraft are on the path to launch a new era of deep space exploration. NASA is making investments to expand science and exploration capability of the SLS by developing the capability to deploy small satellites during the trans-lunar phase of the mission trajectory. Exploration Mission 1 (EM-1), currently planned for launch no earlier than July 2018, will be the first mission to carry such payloads on the SLS. The EM-1 launch will include thirteen 6U Cubesat small satellites that will be deployed beyond low earth orbit. By providing an earth-escape trajectory, opportunities are created for advancement of small satellite subsystems, including deep space communications and in-space propulsion. This SLS capability also creates low-cost options for addressing existing Agency strategic knowledge gaps and affordable science missions. A new approach to payload integration and mission assurance is needed to ensure safety of the vehicle, while also maintaining reasonable costs for the small payload developer teams. SLS EM-1 will provide the framework and serve as a test flight, not only for vehicle systems, but also payload accommodations, ground processing, and on-orbit operations. Through developing the requirements and integration processes for EM-1, NASA is outlining the framework for the evolved configuration of secondary payloads on SLS Block upgrades. The lessons learned from the EM-1 mission will be applied to processes and products developed for future block upgrades. In the heavy-lift configuration of SLS, payload accommodations will increase for secondary opportunities including small satellites larger than the traditional Cubesat class payload. The payload mission concept of operations, proposed payload capacity of SLS, and the payload requirements for launch and deployment will be described to provide potential payload users an understanding of this unique exploration capability.
STS-93 Mission Highlights Resource Tape
NASA Technical Reports Server (NTRS)
1999-01-01
The STS-93 flight crew, Commander Eileen M. Collins, Pilot Jeffrey S. Ashby, and Mission Specialists Steven A. Hawley, Catherine G. Coleman, and Michel Tognini are seen performing pre-launch activities such as crew suit-up, and ride out to the launch pad for an early morning launch. Also, included are various panoramic views of the shuttle on the pad. The crew is readied in the White Room for their mission. After the closing of the hatch and arm retraction, launch activities are shown including countdown, engine ignition, launch, and the separation of the Solid Rocket Boosters. Once on-orbit the primary objective is to deploy the Advanced X-ray Astrophysics Facility. Throughout the presentation, the astronauts take turns narrating particular aspects of the mission with which they are involved. Coleman and Tognini command Chandra to spring-eject from its cradle in the payload bay. The crew then work on the various experiments being carried out in flight. They successfully set up the first observatory using the Southwest Ultraviolet Imaging System (SWUIS). The SWUIS is used to image planets and other solar system bodies in order to explore their atmospheres and surfaces in the ultraviolet (UV) region of the spectrum. Tognini conducts a ham radio conversation with Jean-Pierre Haignere on the Mir Space Station. Towards the end of the mission Ashby, Hawley and Tognini set up an exercise treadmill and the Treadmill Vibration Information System (TVIS). The live footage ends with the reentry of Columbia into the Earth's Atmosphere. The night landing includes touchdown, deployment of the drag chute and crew departure from the vehicle.
NASA Technical Reports Server (NTRS)
Stanley, Douglas O.; Unal, Resit; Joyner, C. R.
1992-01-01
The application of advanced technologies to future launch vehicle designs would allow the introduction of a rocket-powered, single-stage-to-orbit (SSTO) launch system early in the next century. For a selected SSTO concept, a dual mixture ratio, staged combustion cycle engine that employs a number of innovative technologies was selected as the baseline propulsion system. A series of parametric trade studies are presented to optimize both a dual mixture ratio engine and a single mixture ratio engine of similar design and technology level. The effect of varying lift-off thrust-to-weight ratio, engine mode transition Mach number, mixture ratios, area ratios, and chamber pressure values on overall vehicle weight is examined. The sensitivity of the advanced SSTO vehicle to variations in each of these parameters is presented, taking into account the interaction of each of the parameters with each other. This parametric optimization and sensitivity study employs a Taguchi design method. The Taguchi method is an efficient approach for determining near-optimum design parameters using orthogonal matrices from design of experiments (DOE) theory. Using orthogonal matrices significantly reduces the number of experimental configurations to be studied. The effectiveness and limitations of the Taguchi method for propulsion/vehicle optimization studies as compared to traditional single-variable parametric trade studies is also discussed.
Development of Metal Matrix Composites for NASA's Advanced Propulsion Systems
NASA Technical Reports Server (NTRS)
Lee, J.; Elam, S.
2001-01-01
The state-of-the-art development of several Metal Matrix Composites (MMC) for NASA's advanced propulsion systems will be presented. The goal is to provide an overview of NASA-Marshall Space Flight Center's on-going activities in MMC components for advanced liquid rocket engines such as the X-33 vehicle's Aerospike engine and X-34's Fastrac engine. The focus will be on lightweight, low cost, and environmental compatibility with oxygen and hydrogen of key MMC materials, within each of NASA's new propulsion application, that will provide a high payoff for NASA's Reusable Launch Vehicles and space access vehicles. In order to fabricate structures from MMC, effective joining methods must be developed to join MMC to the same or to different monolithic alloys. Therefore, a qualitative assessment of MMC's welding and joining techniques will be outlined.
NASA Technical Reports Server (NTRS)
Wood, Richard J.
1992-01-01
The Architecture for Survivable Systems Processing (ASSP) program is a two phase program whose objective is the derivation, specification, development and validation of an open system architecture capable of supporting advanced processing needs of space, ground, and launch vehicle operations. The output of the first phase is a set of hardware and software standards and specifications defining this architecture at three levels. The second phase will validate these standards and develop the technology necessary to achieve strategic hardness, packaging density, throughput requirements, and interoperability/interchangeability.
Air Launch: Examining Performance Potential of Various Configurations and Growth Options
NASA Technical Reports Server (NTRS)
Waters, Eric D.; Creech, Dennis M.; Philips, Alan D.
2013-01-01
The Advanced Concepts Office at NASA's George C. Marshall Space Flight Center conducted a high-level analysis of various air launch vehicle configurations, objectively determining maximum launch vehicle payload while considering carrier aircraft capabilities and given dimensional constraints. With the renewed interest in aerial launch of low-earth orbit payloads, referenced by programs such as Stratolaunch and Spaceship2, there exists a need to qualify the boundaries of the trade space, identify performance envelopes, and understand advantages and limiting factors of designing for maximum payload capability. Using the NASA/DARPA Horizontal Launch Study (HLS) Point Design 2 (PD-2) as a pointof- departure configuration, two independent design actions were undertaken. Both designs utilized a Boeing 747-400F as the carrier aircraft, LOX/RP-1 first stage and LOX/LH2 second stage. Each design was sized to meet dimensional and mass constraints while optimizing propellant loads and stage delta V splits. All concepts, when fully loaded, exceeded the allowable Gross Takeoff Weight (GTOW) of the aircraft platform. This excess mass was evaluated as propellant/fuel offload available for a potential in-flight propellant loading scenario. Results indicate many advantages such as payload delivery of approximately 47,000 lbm and significant mission flexibility including variable launch site inclination and launch window. However, in-flight cryogenic fluid transfer and carrier aircraft platform integration are substantial technical hurdles to the realization of such a system configuration.
Low cost booster and high performance orbit injection propulsion extended abstract
NASA Technical Reports Server (NTRS)
Sackheim, R. L.
1994-01-01
Space transportation is currently a major element of cost for communications satellite systems. For every dollar spent in manufacturing the satellite, somewhere between 1 and 3 dollars must be spent to launch the satellite into its initial operational orbit. This also makes the weight of the satellite a very critical cost factor because it is important to maximize the useful payload that is placed into orbit to maximize the return on the original investment. It seems apparent then, that tremendous economic advantage for satellite communications systems can be gained from improvements in two key highly leveraged propulsion areas. The first and most important economic improvement can be achieved by significantly lowering the cost of today's launch vehicles. The second gain that would greatly benefit the communications satellite business position is to increase both the useful (payload) weight placed into the orbit and the revenue generating lifetime of the satellite on-orbit. The point of this paper is to first explain that these two goals can best be achieved by cost reduction and performance increasing advancements in rocket propulsion for both the launch vehicle and for the satellite on-board apogee insertion and on-orbit velocity control systems.
Launch Vehicle Demonstrator Using Shuttle Assets
NASA Technical Reports Server (NTRS)
Threet, Grady E., Jr.; Creech, Dennis M.; Philips, Alan D.; Water, Eric D.
2011-01-01
The Marshall Space Flight Center Advanced Concepts Office (ACO) has the leading role for NASA s preliminary conceptual launch vehicle design and performance analysis. Over the past several years the ACO Earth-to-Orbit Team has evaluated thousands of launch vehicle concept variations for a multitude of studies including agency-wide efforts such as the Exploration Systems Architecture Study (ESAS), Constellation, Heavy Lift Launch Vehicle (HLLV), Heavy Lift Propulsion Technology (HLPT), Human Exploration Framework Team (HEFT), and Space Launch System (SLS). NASA plans to continue human space exploration and space station utilization. Launch vehicles used for heavy lift cargo and crew will be needed. One of the current leading concepts for future heavy lift capability is an inline one and a half stage concept using solid rocket boosters (SRB) and based on current Shuttle technology and elements. Potentially, the quickest and most cost-effective path towards an operational vehicle of this configuration is to make use of a demonstrator vehicle fabricated from existing shuttle assets and relying upon the existing STS launch infrastructure. Such a demonstrator would yield valuable proof-of-concept data and would provide a working test platform allowing for validated systems integration. Using shuttle hardware such as existing RS-25D engines and partial MPS, propellant tanks derived from the External Tank (ET) design and tooling, and four-segment SRB s could reduce the associated upfront development costs and schedule when compared to a concept that would rely on new propulsion technology and engine designs. There are potentially several other additional benefits to this demonstrator concept. Since a concept of this type would be based on man-rated flight proven hardware components, this demonstrator has the potential to evolve into the first iteration of heavy lift crew or cargo and serve as a baseline for block upgrades. This vehicle could also serve as a demonstration and test platform for the Orion Program. Critical spacecraft systems, re-entry and recovery systems, and launch abort systems of Orion could also be demonstrated in early test flights of the launch vehicle demo. Furthermore, an early demonstrator of this type would provide a stop-gap for retaining critical human capital and infrastructure while affording the current emerging generation of young engineers opportunity to work with and capture lessons learned from existing STS program offices and personnel, who were integral in the design and development of the Space Shuttle before these resources are no longer available. The objective of this study is to define candidate launch vehicle demonstration concepts that are based on Space Shuttle assets and determine their performance capabilities and how these demonstration vehicles could evolve to a heavy lift capability to low earth orbit.
GOES-R Advanced Base Line Imager Installation
2016-08-30
Team members assist as a crane lifts the Advanced Base Line Imager, the primary optical instrument, for installation on the Geostationary Operational Environmental Satellite (GOES-R) inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA GOES Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.
GOES-R Advanced Base Line Imager Installation
2016-08-30
Team members assist as a crane moves the Advanced Base Line Imager, the primary optical instruments, for installation on the Geostationary Operational Environmental Satellite (GOES-R) inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA GOES Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.
Development of Carbon Dioxide Removal Systems for Advanced Exploration Systems
NASA Technical Reports Server (NTRS)
Knox, James C.; Trinh, Diep; Gostowski, Rudy; King, Eric; Mattox, Emily M.; Watson, David; Thomas, John
2012-01-01
"NASA's Advanced Exploration Systems (AES) program is pioneering new approaches for rapidly developing prototype systems, demonstrating key capabilities, and validating operational concepts for future human missions beyond Earth orbit" (NASA 2012). These forays beyond the confines of earth's gravity will place unprecedented demands on launch systems. They must not only blast out of earth's gravity well as during the Apollo moon missions, but also launch the supplies needed to sustain a crew over longer periods for exploration missions beyond earth's moon. Thus all spacecraft systems, including those for the separation of metabolic carbon dioxide and water from a crewed vehicle, must be minimized with respect to mass, power, and volume. Emphasis is also placed on system robustness both to minimize replacement parts and ensure crew safety when a quick return to earth is not possible. Current efforts are focused on improving the current state-of-the-art systems utilizing fixed beds of sorbent pellets by seeking more robust pelletized sorbents, evaluating structured sorbents, and examining alternate bed configurations to improve system efficiency and reliability. These development efforts combine testing of sub-scale systems and multi-physics computer simulations to evaluate candidate approaches, select the best performing options, and optimize the configuration of the selected approach, which is then implemented in a full-scale integrated atmosphere revitalization test. This paper describes the carbon dioxide (CO2) removal hardware design and sorbent screening and characterization effort in support of the Atmosphere Resource Recovery and Environmental Monitoring (ARREM) project within the AES program. A companion paper discusses development of atmosphere revitalization models and simulations for this project.
A Status of the Advanced Space Transportation Program from Planning to Action
NASA Technical Reports Server (NTRS)
Lyles, Garry; Griner, Carolyn
1998-01-01
A Technology Plan for Enabling Commercial Space Business was presented at the 48th International Astronautical Congress in Turin, Italy. This paper presents a status of the program's accomplishments. Technology demonstrations have progressed in each of the four elements of the program; (1) Low Cost Technology, (2) Advanced Reusable Technology, (3) Space Transfer Technology and (4) Space Transportation Research. The Low Cost Technology program element is primarily focused at reducing development and acquisition costs of aerospace hardware using a "design to cost" philosophy with robust margins, adapting commercial manufacturing processes and commercial off-the-shelf hardware. The attributes of this philosophy for small payload launch are being demonstrated at the component, sub-system, and system level. The X-34 "Fastrac" engine has progressed through major component and subsystem demonstrations. A propulsion system test bed has been implemented for system-level demonstration of component and subsystem technologies; including propellant tankage and feedlines, controls, pressurization, and engine systems. Low cost turbopump designs, commercial valves and a controller are demonstrating the potential for a ten-fold reduction in engine and propulsion system costs. The Advanced Reusable Technology program element is focused on increasing life through high strength-to-weight structures and propulsion components, highly integrated propellant tanks, automated checkout and health management and increased propulsion system performance. The validation of rocket based combined cycle (RBCC) propulsion is pro,-,ressing through component and subsystem testing. RBCC propulsion has the potential to provide performance margin over an all rocket system that could result in lower gross liftoff weight, a lower propellant mass fraction or a higher payload mass fraction. The Space Transfer Technology element of the program is pursuing technology that can improve performance and dramatically reduce the propellant and structural mass of orbit transfer and deep space systems. Flight demonstration of ion propulsion is progressing towards launch. Ion propulsion is the primary propulsion for Deep Space 1; a flyby of comet West-kohoutek-lkemura and asteroid 3352 McAuliffe. Testing of critical solar-thermal propulsion subsystems have been accomplished and planning is continuing for the flight demonstration of an electrodynamic tether orbit transfer system. The forth and final element of the program, Space Transportation Research, has progressed in several areas of propulsion research. This element of the program is focused at long-term (25 years) breakthrough concepts that could bring launch costs to a factor of one hundred below today's cost or dramatically expand planetary travel and enable interstellar travel.
2007-09-09
Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. In this HD video image, the first stage reentry parachute drop test is conducted at the Yuma, Arizona proving ground. The parachute tests demonstrated a three-stage deployment sequence that included the use of an Orbiter drag chute to properly stage the unfurling of the main chute. The parachute recovery system for Orion will be similar to the system used for Apollo command module landings and include two drogue, three pilot, and three main parachutes. (Highest resolution available)
2006-09-09
Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. In this HD video image, the first stage reentry parachute drop test is conducted at the Yuma, Arizona proving ground. The parachute tests demonstrated a three-stage deployment sequence that included the use of an Orbiter drag chute to properly stage the unfurling of the main chute. The parachute recovery system for Orion will be similar to the system used for Apollo command module landings and include two drogue, three pilot, and three main parachutes. (Highest resolution available)
2007-08-09
Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image depicts friction stir welding used in manufacturing aluminum panels that will fabricate the Ares I upper stage barrel. The panels are subjected to confidence tests in which the bent aluminum is stressed to breaking point and thoroughly examined. The panels are manufactured by AMRO Manufacturing located in El Monte, California. (Highest resolution available)
2007-08-09
Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image, depicts a manufactured aluminum panel, that will be used to fabricate the Ares I upper stage barrel, undergoing a confidence panel test. In this test, the bent aluminum is stressed to breaking point and thoroughly examined. The panels are manufactured by AMRO Manufacturing located in El Monte, California. (Highest resolution available)
2007-08-09
Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image depicts a manufactured aluminum panel, that will fabricate the Ares I upper stage barrel, undergoing a confidence panel test. In this test, the bent aluminum is stressed to breaking point and thoroughly examined. The panels are manufactured by AMRO Manufacturing located in El Monte, California. (Highest resolution available)
2006-08-09
Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image depicts a manufactured aluminum panel, that will fabricate the Ares I upper stage barrel, undergoing a confidence panel test. In this test, bent aluminum is stressed to breaking point and thoroughly examined. The panels are manufactured by AMRO Manufacturing located in El Monte, California. (Highest resolution available)
2006-08-08
Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image depicts a manufactured aluminum panel that will be used to fabricate the Ares I upper stage barrel, undergoing a confidence panel test. In this test, the bent aluminum is stressed to breaking point and thoroughly examined. The panels are manufactured by AMRO Manufacturing located in El Monte, California. (Highest resolution available)
NASA IVHM Technology Experiment for X-vehicles (NITEX)
NASA Technical Reports Server (NTRS)
Sandra, Hayden; Bajwa, Anupa
2001-01-01
The purpose of the NASA IVHM Technology Experiment for X-vehicles (NITEX) is to advance the development of selected IVHM technologies in a flight environment and to demonstrate the potential for reusable launch vehicle ground processing savings. The technologies to be developed and demonstrated include system-level and detailed diagnostics for real-time fault detection and isolation, prognostics for fault prediction, automated maintenance planning based on diagnostic and prognostic results, and a microelectronics hardware platform. Complete flight The Evolution of Flexible Insulation as IVHM consists of advanced sensors, distributed data acquisition, data processing that includes model-based diagnostics, prognostics and vehicle autonomy for control or suggested action, and advanced data storage. Complete ground IVHM consists of evolved control room architectures, advanced applications including automated maintenance planning and automated ground support equipment. This experiment will advance the development of a subset of complete IVHM.
1997-08-25
A Boeing Delta II expendable launch vehicle lifts off with NASA’s Advanced Composition Explorer (ACE) observatory at 10:39 a.m. EDT, on Aug. 25, 1997, from Launch Complex 17A, Cape Canaveral Air Station. This is the second Delta launch under the Boeing name and the first from Cape Canaveral. Launch was scrubbed one day by Air Force range safety personnel because two commercial fishing vessels were within the Delta’s launch danger area. The ACE spacecraft will study low-energy particles of solar origin and high-energy galactic particles on its one-million-mile journey. The collecting power of instruments aboard ACE is 10 to 1,000 times greater than anything previously flown to collect similar data by NASA. Study of these energetic particles may contribute to our understanding of the formation and evolution of the solar system. ACE has a two-year minimum mission lifetime and a goal of five years of service. ACE was built for NASA by the Johns Hopkins Applied Physics Laboratory and is managed by the Explorer Project Office at NASA's Goddard Space Flight Center. The lead scientific institution is the California Institute of Technology (Caltech) in Pasadena, Calif
1997-08-25
A Boeing Delta II expendable launch vehicle lifts off with NASA’s Advanced Composition Explorer (ACE) observatory at 10:39 a.m. EDT, on Aug. 25, 1997, from Launch Complex 17A, Cape Canaveral Air Station. This is the second Delta launch under the Boeing name and the first from Cape Canaveral. Launch was scrubbed one day by Air Force range safety personnel because two commercial fishing vessels were within the Delta’s launch danger area. The ACE spacecraft will study low-energy particles of solar origin and high-energy galactic particles on its one-million-mile journey. The collecting power of instruments aboard ACE is 10 to 1,000 times greater than anything previously flown to collect similar data by NASA. Study of these energetic particles may contribute to our understanding of the formation and evolution of the solar system. ACE has a two-year minimum mission lifetime and a goal of five years of service. ACE was built for NASA by the Johns Hopkins Applied Physics Laboratory and is managed by the Explorer Project Office at NASA's Goddard Space Flight Center. The lead scientific institution is the California Institute of Technology (Caltech) in Pasadena, Calif
1997-08-25
A Boeing Delta II expendable launch vehicle lifts off with NASA’s Advanced Composition Explorer (ACE) observatory at 10:39 a.m. EDT, on Aug. 25, 1997, from Launch Complex 17A, Cape Canaveral Air Station. This is the second Delta launch under the Boeing name and the first from Cape Canaveral. Launch was scrubbed one day by Air Force range safety personnel because two commercial fishing vessels were within the Delta’s launch danger area. The ACE spacecraft will study low-energy particles of solar origin and high-energy galactic particles on its one-million-mile journey. The collecting power of instruments aboard ACE is 10 to 1,000 times greater than anything previously flown to collect similar data by NASA. Study of these energetic particles may contribute to our understanding of the formation and evolution of the solar system. ACE has a two-year minimum mission lifetime and a goal of five years of service. ACE was built for NASA by the Johns Hopkins Applied Physics Laboratory and is managed by the Explorer Project Office at NASA's Goddard Space Flight Center. The lead scientific institution is the California Institute of Technology (Caltech) in Pasadena, Calif
Emerging Communication Technologies (ECT) Phase 3 Final Report
NASA Technical Reports Server (NTRS)
Bastin, Gary L.; Harris, William G.; Bates, Lakesha D.; Nelson, Richard A.
2004-01-01
The Emerging Communication Technology (ECT) project investigated three First Mile communication technologies in support of NASA s Second Generation Reusable Launch Vehicle (2nd Gen RLV), Orbital Space Plane, Advanced Range Technology Working Group (ARTWG) and the Advanced Spaceport Technology Working Group (ASTWG). These First Mile technologies have the purpose of interconnecting mobile users with existing Range Communication infrastructures. ECT was a continuation of the Range Information System Management (RISM) task started in 2002. RISM identified the three advance communication technologies investigated under ECT. These were Wireless Ethernet (Wi-Fi), Free Space Optics (FSO), and Ultra Wideband (UWB). Due to the report s size, it has been broken into three volumes: 1) Main Report 2) Appendices 3) UWB.
Wind Tunnel Testing Underway for Next, More Powerful Version of NASA SLS Rocket
2017-01-24
Engineers at NASA's Langley Research Center and Ames Research Center are running tests in supersonic wind tunnels to develop the next, more powerful version of the world's most advanced launch vehicle, the Space Launch System -- capable of carrying humans to deep space destinations. The new wind tunnel tests are for the second generation of SLS. It will deliver a 105-metric-ton (115-ton) lift capacity and will be 364 feet tall in the crew configuration -- taller than the Saturn V that launched astronauts on missions to the moon. The rocket's core stage will be the same, but the newer rocket will feature a powerful exploration upper stage. On SLS’s second flight with Orion, the rocket will carry up to four astronauts on a mission around the moon, in the deep-space proving ground for the technologies and capabilities needed on NASA’s Journey to Mars.
MUSIC Successfully Launched from NASA Wallops
2017-12-08
The Multiple User Suborbital Instrument Carrier or MUSIC payload was successfully launched at 9:50 a.m. today on a Terrier-Improved Malemute suborbital sounding rocket from NASA’s Wallops Flight Facility. The payload flew to approximately 115 miles apogee and preliminary analysis shows good data was received. Payload recovery is in progress. The next launch from Wallops is between 7 and 10 a.m. EST, Monday, March 7. Three space technology payloads will be carried on a Terrier-Improved Orion suborbital sounding rocket. Credit: NASA/Wallops/Allison Stancil NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Shipping InSight Mars Spacecraft to California for Launch
2015-12-17
Personnel supporting NASA's InSight mission to Mars load the crated InSight spacecraft into a C-17 cargo aircraft at Buckley Air Force Base, Denver, for shipment to Vandenberg Air Force Base, California. The spacecraft, built in Colorado by Lockheed Martin Space Systems, was shipped Dec. 16, 2015, in preparation for launch from Vandenberg in March 2016. InSight, for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, is the first mission dedicated to studying the deep interior of Mars. Its findings will advance understanding of the early history of all rocky planets, including Earth. Note: After thorough examination, NASA managers have decided to suspend the planned March 2016 launch of the Interior Exploration using Seismic Investigations Geodesy and Heat Transport (InSight) mission. The decision follows unsuccessful attempts to repair a leak in a section of the prime instrument in the science payload. http://photojournal.jpl.nasa.gov/catalog/PIA20278
Preparing NASA InSight Spacecraft for Vibration Test
2015-08-18
Spacecraft specialists at Lockheed Martin Space Systems, Denver, prepare NASA's InSight spacecraft for vibration testing as part of assuring that it is ready for the rigors of launch from Earth and flight to Mars. The spacecraft is oriented with its heat shield facing up in this July 13, 2015, photograph. InSight, for Interior Exploration Using Seismic Investigations, Geodesy and Heat Transport, is scheduled for launch in March 2016 and landing in September 2016. It will study the deep interior of Mars to advance understanding of the early history of all rocky planets, including Earth. Note: After thorough examination, NASA managers have decided to suspend the planned March 2016 launch of the Interior Exploration using Seismic Investigations Geodesy and Heat Transport (InSight) mission. The decision follows unsuccessful attempts to repair a leak in a section of the prime instrument in the science payload. http://photojournal.jpl.nasa.gov/catalog/PIA19815
Delta II ICESat-2 Booster Transport
2018-04-17
At Vandenberg Air Force Base in California, on Tuesday, April 17, 2018, a United Launch Alliance (ULA) Delta II booster is transported to Space Launch Complex-2 where it will launch NASA's Ice, Cloud and land Elevation Satellite-2, or ICESat-2, satellite. This will be the last flight for the venerable Delta II rocket. ICESat-2, which is being built and tested by Orbital ATK in Gilbert, Arizona, will carry a single instrument called the Advanced Topographic Laser Altimeter System, or ATLAS. The ATLAS instrument is being built and tested at NASA’s Goddard Space Flight Center in Greenbelt Maryland. Once in orbit, the satellite is designed to measure the height of a changing Earth, one laser pulse at a time, 10,000 laser pulses a second. ICESat-2 will help scientists investigate why, and how much, Earth’s frozen and icy areas, called the cryosphere, are changing.
Delta II ICESat-2 Booster Transport
2018-04-17
At NASA's Building 836, the Spacecraft Labs Telemetry Station at Vandenberg Air Force Base in California, on Tuesday, April 17, 2018, a United Launch Alliance (ULA) Delta II booster is transported to Space Launch Complex-2 where it will launch NASA's Ice, Cloud and land Elevation Satellite-2, or ICESat-2, satellite. This will be the last flight for the venerable Delta II rocket. ICESat-2, which is being built and tested by Orbital ATK in Gilbert, Arizona, will carry a single instrument called the Advanced Topographic Laser Altimeter System, or ATLAS. The ATLAS instrument is being built and tested at NASA’s Goddard Space Flight Center in Greenbelt Maryland. Once in orbit, the satellite is designed to measure the height of a changing Earth, one laser pulse at a time, 10,000 laser pulses a second. ICESat-2 will help scientists investigate why, and how much, Earth’s frozen and icy areas, called the cryosphere, are changing.
Delta II ICESat-2 Booster Transport
2018-04-17
At Vandenberg Air Force Base in California, on Tuesday, April 17, 2018, a United Launch Alliance (ULA) Delta II booster arrives at Space Launch Complex-2 where it will launch NASA's Ice, Cloud and land Elevation Satellite-2, or ICESat-2, satellite. This will be the last flight for the venerable Delta II rocket. ICESat-2, which is being built and tested by Orbital ATK in Gilbert, Arizona, will carry a single instrument called the Advanced Topographic Laser Altimeter System, or ATLAS. The ATLAS instrument is being built and tested at NASA’s Goddard Space Flight Center in Greenbelt Maryland. Once in orbit, the satellite is designed to measure the height of a changing Earth, one laser pulse at a time, 10,000 laser pulses a second. ICESat-2 will help scientists investigate why, and how much, Earth’s frozen and icy areas, called the cryosphere, are changing.
Delta II ICESat-2 Booster Offload onto Transporter
2018-04-16
At NASA's Building 836, the Spacecraft Labs Telemetry Station at Vandenberg Air Force Base in California, a United Launch Alliance Delta II booster is removed from its shipping container. After it is offloaded, preliminary checkouts and preflight processing will begin leading to launch of the agency's Ice, Cloud and land Elevation Satellite-2, or ICESat-2. Liftoff from Space Launch Complex-2 at Vandenberg is scheduled for Sept. 12, 2018, and will be the last for the venerable Delta II rocket. Once in orbit, the satellite is designed to measure the height of a changing Earth, one laser pulse at a time, 10,000 laser pulses a second. The satellite will carry a single instrument, the Advanced Topographic Laser Altimeter System. ICESat-2 will help scientists investigate why, and how much, Earth's frozen and icy areas are changing. These area make up Earth's the cryosphere.
Additive Manufacturing Integrated Energy Demonstration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, Roderick; Lee, Brian; Love, Lonnie
2016-02-05
Meet AMIE - the Additive Manufacturing Integrated Energy demonstration project. Led by Oak Ridge National Laboratory and many industry partners, the AMIE project changes the way we think about generating, storing, and using electrical power. AMIE uses an integrated energy system that shares energy between a building and a vehicle. And, utilizing advanced manufacturing and rapid innovation, it only took one year from concept to launch.
Additive Manufacturing Integrated Energy Demonstration
Jackson, Roderick; Lee, Brian; Love, Lonnie; Mabe, Gavin; Keller, Martin; Curran, Scott; Chinthavali, Madhu; Green, Johney; Sawyer, Karma; Enquist, Phil
2018-01-16
Meet AMIE - the Additive Manufacturing Integrated Energy demonstration project. Led by Oak Ridge National Laboratory and many industry partners, the AMIE project changes the way we think about generating, storing, and using electrical power. AMIE uses an integrated energy system that shares energy between a building and a vehicle. And, utilizing advanced manufacturing and rapid innovation, it only took one year from concept to launch.
Project of Ariane 5 LV family advancement by use of reusable fly-back boosters (named “Bargouzine”)
NASA Astrophysics Data System (ADS)
Sumin, Yu.; Bonnal, Ch.; Kostromin, S.; Panichkin, N.
2007-12-01
The paper concerns possible concept variants of a partially reusable Heavy-Lift Launch Vehicle derived from the advanced basic launcher (Ariane-2010) by means of substitution of the EAP Solid Rocket Boosters for a Reusable Starting Stage consisting two Liquid-propellant Reusable Fly-Back Boosters called "Bargouzin". This paper describes the status of the presently studied RFBB concepts during its three phases. The first project phase was dedicated to feasibility expertise of liquid-rocket reusable fly-back boosters ("Baikal" type) utilization for heavy-lift space launch vehicle. The design features and main conclusions are presented. The second phase has been performed with the purpose of selection of preferable concept among the alternative ones for the future Ariane LV modernization by using RFBB instead of EAP Boosters. The main requirements, logic of work, possible configuration and conclusion are presented. Initial aerodynamic, ballistic, thermoloading, dynamic loading, trade-off and comparison analysis have been performed on these concepts. The third phase consists in performing a more detailed expertise of the chosen LV concept. This part summarizes some of the more detailed results related to flight performance, system mass, thermoprotection system, aspects of technologies, ground complex modification, comparison analyses and conclusion.
Laser-boosted lightcraft technology demonstrator
NASA Technical Reports Server (NTRS)
Antonison, M.; Myrabo, Leik; Chen, S.; Decusatis, C.; Kusche, K.; Minucci, M.; Moder, J.; Morales, C.; Nelson, C.; Richard, J.
1989-01-01
The ultimate goal for this NASA/USRA-sponsored 'Apollo Lightcraft Project' is to develop a revolutionary manned launch vehicle technology that can potentially reduce payload transport costs by a factor of 1000 below the space shuttle orbiter. The Rensellaer design team proposes to utilize advanced, highly energetic, beamed-energy sources (laser, microwave) and innovative combined-cycle (airbreathing/rocket) engines to accomplish this goal. This year's effort, the detailed description and performance analysis of an unmanned 1.4-m Lightcraft Technology Demonstrator (LTD) drone, is presented. The novel launch system employs a 100-MW-class ground-based laser to transmit power directly to an advanced combined-cycle engine that propels the 120-kg LTD to orbit, with a mass ratio of two. The single-stage-to-orbit (SSTO) LTD machine then becomes an autonomous sensor satellite that can deliver precise, high-quality information typical of today's large orbital platforms. The dominant motivation behind this study is to provide an example of how laser propulsion and its low launch costs can induce a comparable order-of-magnitude reduction in sensor satellite packaging costs. The issue is simply one of production technology for future, survivable SSTO aerospace vehicles that intimately share both laser propulsion engine and satellite functional hardware. A mass production cost goal of 10(exp 3)/kg for the LTD vehicle is probably realizable.
Preparing NASA's Next Solar Satellite for Launch
2017-12-08
Orbital Sciences team members move the second half of the payload fairing before it is placed over NASA's IRIS (Interface Region Imaging Spectrograph) spacecraft. The fairing connects to the nose of the Orbital Sciences Pegasus XL rocket that will lift the solar observatory into orbit. The work is taking place in a hangar at Vandenberg Air Force Base, where IRIS is being prepared for launch on a Pegasus XL rocket. Scheduled for launch from Vandenberg on June 26, 2013, IRIS will open a new window of discovery by tracing the flow of energy and plasma through the chromospheres and transition region into the sun's corona using spectrometry and imaging. IRIS fills a crucial gap in our ability to advance studies of the sun-to-Earth connection by tracing the flow of energy and plasma through the foundation of the corona and the region around the sun known as the heliosphere. High res file available here: 1.usa.gov/11yal3w Photo Credit: NASA/Tony Vauclin NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Technical Reports Server (NTRS)
1987-01-01
The Advanced Space Design project for 1986-87 was the design of a two stage launch vehicle, representing a second generation space transportation system (STS) which will be needed to support the space station. The first stage is an unmanned winged booster which is fully reusable with a fly back capability. It has jet engines so that it can fly back to the landing site. This adds safety as well as the flexibility to choose alternate landing sites. There are two different second stages. One of the second stages is a manned advanced space shuttle called Space Shuttle II. Space Shuttle II has a payload capability of delivering 40,000 pounds to the space station in low Earth orbit (LEO), and returning 40,000 pounds to Earth. Servicing the space station makes the ability to return a heavy payload to Earth as important as being able to launch a heavy payload. The other second stage is an unmanned heavy lift cargo vehicle with ability to deliver 150,000 pounds of payload to LEO. This vehicle will not return to Earth; however, the engines and electronics can be removed and returned to Earth in the Space Shuttle II. The rest of the vehicle can then be used on orbit for storage or raw materials, supplies, and space manufactured items awaiting transport back to Earth.
Anvil Forecast Tool in the Advanced Weather Interactive Processing System (AWIPS)
NASA Technical Reports Server (NTRS)
Barrett, Joe H., III; Hood, Doris
2009-01-01
Launch Weather Officers (LWOs) from the 45th Weather Squadron (45 WS) and forecasters from the National Weather Service (NWS) Spaceflight Meteorology Group (SMG) have identified anvil forecasting as one of their most challenging tasks when predicting the probability of violating the Lightning Launch Commit Criteria (LLCC) (Krider et al. 2006; Space Shuttle Flight Rules (FR), NASA/JSC 2004)). As a result, the Applied Meteorology Unit (AMU) developed a tool that creates an anvil threat corridor graphic that can be overlaid on satellite imagery using the Meteorological Interactive Data Display System (MIDDS, Short and Wheeler, 2002). The tool helps forecasters estimate the locations of thunderstorm anvils at one, two, and three hours into the future. It has been used extensively in launch and landing operations by both the 45 WS and SMG. The Advanced Weather Interactive Processing System (AWIPS) is now used along with MIDDS for weather analysis and display at SMG. In Phase I of this task, SMG tasked the AMU to transition the tool from MIDDS to AWIPS (Barrett et aI., 2007). For Phase II, SMG requested the AMU make the Anvil Forecast Tool in AWIPS more configurable by creating the capability to read model gridded data from user-defined model files instead of hard-coded files. An NWS local AWIPS application called AGRID was used to accomplish this. In addition, SMG needed to be able to define the pressure levels for the model data, instead of hard-coding the bottom level as 300 mb and the top level as 150 mb. This paper describes the initial development of the Anvil Forecast Tool for MIDDS, followed by the migration of the tool to AWIPS in Phase I. It then gives a detailed presentation of the Phase II improvements to the AWIPS tool.
2014-12-02
CAPE CANAVERAL, Fla. – At NASA Headquarters in Washington and the Kennedy Space Center in Florida, NASA leaders spoke to members of the new media about how the first flight of the new Orion spacecraft is a first step in the agency's plans to send humans to Mars. Seen on a video monitor at Kennedy, Headquarter participants, from the left are: Trent Perrotto of NASA Public Affairs, Jason Crusan, director of Advanced Exploration Systems Division of Human Exploration and Operations Mission Directorate, Jim Reuther, deputy associate administrator for Programs, Space Technology Mission Directorate, and Jim Green, director of Planetary Division of the Science Mission Directorate. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion Photo credit: NASA/Kim Shiflett
Orion Journey to Mars, L-2 Briefing
2014-12-02
At NASA Headquarters in Washington and the Kennedy Space Center in Florida, NASA leaders spoke to members of the new media about how the first flight of the new Orion spacecraft is a first step in the agency's plans to send humans to Mars. Seen on a video monitor at Kennedy, Headquarter participants, from the left are: Trent Perrotto of NASA Public Affairs, Jason Crusan, director of Advanced Exploration Systems Division of Human Exploration and Operations Mission Directorate, Jim Reuther, deputy associate administrator for Programs, Space Technology Mission Directorate, and Jim Green, director of Planetary Division of the Science Mission Directorate. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted flight test of Orion is scheduled to launch Dec. 4, 2014 atop a United Launch Alliance Delta IV Heavy rocket, and in 2018 on NASA’s Space Launch System rocket.
Structures for the 3rd Generation Reusable Concept Vehicle
NASA Technical Reports Server (NTRS)
Hrinda, Glenn A.
2001-01-01
A major goal of NASA is to create an advance space transportation system that provides a safe, affordable highway through the air and into space. The long-term plans are to reduce the risk of crew loss to 1 in 1,000,000 missions and reduce the cost of Low-Earth Orbit by a factor of 100 from today's costs. A third generation reusable concept vehicle (RCV) was developed to assess technologies required to meet NASA's space access goals. The vehicle will launch from Cape Kennedy carrying a 25,000 lb. payload to the International Space Station (ISS). The system is an air breathing launch vehicle (ABLV) hypersonic lifting body with rockets and uses triple point hydrogen and liquid oxygen propellant. The focus of this paper is on the structural concepts and analysis methods used in developing the third generation reusable launch vehicle (RLV). Member sizes, concepts and material selections will be discussed as well as analysis methods used in optimizing the structure. Analysis based on the HyperSizer structural sizing software will be discussed. Design trades required to optimize structural weight will be presented.
BioSentinel: Enabling CubeSat-Scale Biogical Research Beyond Low Earth Orbit
NASA Technical Reports Server (NTRS)
Sorgenfrei, Matt; Lewis, Brian S.
2014-01-01
The introduction of the Space Launch System will provide NASA with a new means of access to space beyond low Earth orbit (LEO), creating opportunities for scientific research in a range of spacecraft sizes. This presentation describes the preliminary design of the BioSentinel spacecraft, a CubeSat measuring 10cm x 20cm x 30cm, which has been manifested for launch on the maiden voyage of the Space Launch System in 2017. BioSentinel will provide the first direct experimental data from a biological study conducted beyond LEO in over forty years, which in turn will help to pave the way for future human exploration missions. The combination of an advanced biology payload with standard spacecraft bus components required for operation in deep space within a CubeSat form factor poses a unique challenge, and this paper will describe the early design trades under consideration. The baseline spacecraft design calls for the biology payload to occupy four cube-units of volume (denoted 4U), with all spacecraft bus components occupying the remaining 2U.
2003-12-01
This photo gives an overhead look at an RS-88 development rocket engine being test fired at NASA's Marshall Space Flight Center in Huntsville, Alabama, in support of the Pad Abort Demonstration (PAD) test flights for NASA's Orbital Space Plane (OSP). The tests could be instrumental in developing the first crew launch escape system in almost 30 years. Paving the way for a series of integrated PAD test flights, the engine tests support development of a system that could pull a crew safely away from danger during liftoff. A series of 16 hot fire tests of a 50,000-pound thrust RS-88 rocket engine were conducted, resulting in a total of 55 seconds of successful engine operation. The engine is being developed by the Rocketdyne Propulsion and Power unit of the Boeing Company. Integrated launch abort demonstration tests in 2005 will use four RS-88 engines to separate a test vehicle from a test platform, simulating pulling a crewed vehicle away from an aborted launch. Four 156-foot parachutes will deploy and carry the vehicle to landing. Lockheed Martin is building the vehicles for the PAD tests. Seven integrated tests are plarned for 2005 and 2006.
2003-12-01
In this photo, an RS-88 development rocket engine is being test fired at NASA's Marshall Space Flight Center in Huntsville, Alabama, in support of the Pad Abort Demonstration (PAD) test flights for NASA's Orbital Space Plane (OSP). The tests could be instrumental in developing the first crew launch escape system in almost 30 years. Paving the way for a series of integrated PAD test flights, the engine tests support development of a system that could pull a crew safely away from danger during liftoff. A series of 16 hot fire tests of a 50,000-pound thrust RS-88 rocket engine were conducted, resulting in a total of 55 seconds of successful engine operation. The engine is being developed by the Rocketdyne Propulsion and Power unit of the Boeing Company. Integrated launch abort demonstration tests in 2005 will use four RS-88 engines to separate a test vehicle from a test platform, simulating pulling a crewed vehicle away from an aborted launch. Four 156-foot parachutes will deploy and carry the vehicle to landing. Lockheed Martin is building the vehicles for the PAD tests. Seven integrated tests are plarned for 2005 and 2006.
NASA Astrophysics Data System (ADS)
Nandi, S.; Layns, A. L.; Goldberg, M.; Gambacorta, A.; Ling, Y.; Collard, A.; Grumbine, R. W.; Sapper, J.; Ignatov, A.; Yoe, J. G.
2017-12-01
This work describes end to end operational implementation of high priority products from National Oceanic and Atmospheric Administration's (NOAA) operational polar-orbiting satellite constellation, to include Suomi National Polar-orbiting Partnership (S-NPP) and the Joint Polar Satellite System series initial satellite (JPSS-1), into numerical weather prediction and earth systems models. Development and evaluation needed for the initial implementations of VIIRS Environmental Data Records (EDR) for Sea Surface Temperature ingestion in the Real-Time Global Sea Surface Temperature Analysis (RTG) and Polar Winds assimilated in the National Weather Service (NWS) Global Forecast System (GFS) is presented. These implementations ensure continuity of data in these models in the event of loss of legacy sensor data. Also discussed is accelerated operational implementation of Advanced Technology Microwave Sounder (ATMS) Temperature Data Records (TDR) and Cross-track Infrared Sounder (CrIS) Sensor Data Records, identified as Key Performance Parameters by the National Weather Service. Operational use of SNPP after 28 October, 2011 launch took more than one year due to the learning curve and development needed for full exploitation of new remote sensing capabilities. Today, ATMS and CrIS data positively impact weather forecast accuracy. For NOAA's JPSS initial satellite (JPSS-1), scheduled for launch in late 2017, we identify scope and timelines for pre-launch and post-launch activities needed to efficiently transition these capabilities into operations. As part of these alignment efforts, operational readiness for KPPs will be possible as soon as 90 days after launch. The schedule acceleration is possible because of the experience with S-NPP. NOAA operational polar-orbiting satellite constellation provides continuity and enhancement of earth systems observations out to 2036. Program best practices and lessons learned will inform future implementation for follow-on JPSS-3 and -4 missions ensuring benefits and enhancements during the system's design life.
NASA Technical Reports Server (NTRS)
Kimble, Michael C.; Hoberecht, Mark
2003-01-01
NASA's Next Generation Launch Technology (NGLT) program is being developed to meet national needs for civil and commercial space access with goals of reducing the launch costs, increasing the reliability, and reducing the maintenance and operating costs. To this end, NASA is considering an all- electric capability for NGLT vehicles requiring advanced electrical power generation technology at a nominal 20 kW level with peak power capabilities six times the nominal power. The proton exchange membrane (PEM) fuel cell has been identified as a viable candidate to supply this electrical power; however, several technology aspects need to be assessed. Electrochem, Inc., under contract to NASA, has developed a breadboard power generator to address these technical issues with the goal of maximizing the system reliability while minimizing the cost and system complexity. This breadboard generator operates with dry hydrogen and oxygen gas using eductors to recirculate the gases eliminating gas humidification and blowers from the system. Except for a coolant pump, the system design incorporates passive components allowing the fuel cell to readily follow a duty cycle profile and that may operate at high 6:1 peak power levels for 30 second durations. Performance data of the fuel cell stack along with system performance is presented to highlight the benefits of the fuel cell stack design and system design for NGLT vehicles.
Cryogenic propulsion for the Titan Orbiter Polar Surveyor (TOPS) mission
NASA Astrophysics Data System (ADS)
Mustafi, S.; DeLee, C.; Francis, J.; Li, X.; McGuinness, D.; Nixon, C. A.; Purves, L.; Willis, W.; Riall, S.; Devine, M.; Hedayat, A.
2016-03-01
Liquid hydrogen (LH2) and liquid oxygen (LO2) cryogenic propellants can dramatically enhance NASA's ability to explore the solar system due to their superior specific impulse (Isp) capability. Although these cryogenic propellants can be challenging to manage and store, they allow significant mass advantages over traditional hypergolic propulsion systems and are therefore enabling for many planetary science missions. New cryogenic storage techniques such as subcooling and the use of advanced insulation and low thermal conductivity support structures will allow for the long term storage and use of cryogenic propellants for solar system exploration and hence allow NASA to deliver more payloads to targets of interest, launch on smaller and less expensive launch vehicles, or both. These new cryogenic storage technologies were implemented in a design study for the Titan Orbiter Polar Surveyor (TOPS) mission, with LH2 and LO2 as propellants, and the resulting spacecraft design was able to achieve a 43% launch mass reduction over a TOPS mission, that utilized a traditional hypergolic propulsion system with mono-methyl hydrazine (MMH) and nitrogen tetroxide (NTO) propellants. This paper describes the cryogenic propellant storage design for the TOPS mission and demonstrates how these cryogenic propellants are stored passively for a decade-long Titan mission that requires the cryogenics propellants to be stored for 8.5 years.
A test manager's perspective of a test concept for a heavy lift vehicle
NASA Technical Reports Server (NTRS)
Pargeon, John I., Jr.
1990-01-01
The developmment of a test concept is a significant part of the advanced planning activities accomplished for the Initial Operational Test and Evaluation (IOT&E) of new systems. A test concept is generally viewed as a description, including rationale, of the test structure, evaluation methodology and management approach required to plan and conduct the IOT&E of a program such as a new heavy lift launch vehicle system. The test concept as presented in this paper is made up of an operations area, a test area, an evaluation area, and a management area. The description presented here is written from the perspective of one test manager, and represents his views of a possible framework of a test concept using examples for a potential IOT&E of a heavy lift launch vehicle.
The solar panels on the GOES-L satellite are deployed
NASA Technical Reports Server (NTRS)
1999-01-01
The solar panels on the GOES-L weather satellite are fully deployed. Final testing of the imaging system, instrumentation, communications and power systems also will be performed at the Astrotech facility, Titusville, Fla. The satellite is to be launched from Cape Canaveral Air Station (CCAS) aboard an Atlas II rocket in late March. The GOES- L is the fourth of a new advanced series of geostationary weather satellites for the National Oceanic and Atmospheric Administration. It is a three-axis inertially stabilized spacecraft that will provide pictures and perform atmospheric sounding at the same time. Once launched, the satellite, to be designated GOES-11, will undergo checkout and provide backup capabilities for the existing, aging GOES East weather satellite.
Webb Telescope Passes Important Optical Test on This Week @NASA – May 5, 2017
2017-05-05
NASA’s James Webb Space Telescope (JWST) has successfully passed the center of curvature test at Goddard Space Flight Center, in Greenbelt, Md. This important optical measurement of Webb’s fully assembled primary mirror was the final test held at Goddard before the telescope is shipped off for end-to-end cryogenic testing at Johnson Space Center in Houston. When that’s complete, the world’s most advanced observatory goes to Northrop Grumman Aerospace Systems in Redondo Beach, California, for final assembly and testing. Webb is targeted for launch in 2018 on a mission to help unravel some of the greatest mysteries of the universe. Also, Cassini Update, NASA Visits Midwest Company Helping Build Orion, Orion’s Launch Abort System Motor Tested, Wind Tunnel Tests Continue with SLS, and Community College Aerospace Scholars!
Mission Design for the Innovative Interstellar Explorer Vision Mission
NASA Technical Reports Server (NTRS)
Fiehler, Douglas I.; McNutt, Ralph L.
2005-01-01
The Innovative Interstellar Explorer, studied under a NASA Vision Mission grant, examined sending a probe to a heliospheric distance of 200 Astronomical Units (AU) in a "reasonable" amount of time. Previous studies looked at the use of a near-Sun propulsive maneuver, solar sails, and fission reactor powered electric propulsion systems for propulsion. The Innovative Interstellar Explorer's mission design used a combination of a high-energy launch using current launch technology, a Jupiter gravity assist, and electric propulsion powered by advanced radioisotope power systems to reach 200 AU. Many direct and gravity assist trajectories at several power levels were considered in the development of the baseline trajectory, including single and double gravity assists utilizing the outer planets (Jupiter, Saturn, Uranus, and Neptune). A detailed spacecraft design study was completed followed by trajectory analyses to examine the performance of the spacecraft design options.
Supercomputing in the Age of Discovering Superearths, Earths and Exoplanet Systems
NASA Technical Reports Server (NTRS)
Jenkins, Jon M.
2015-01-01
NASA's Kepler Mission was launched in March 2009 as NASA's first mission capable of finding Earth-size planets orbiting in the habitable zone of Sun-like stars, that range of distances for which liquid water would pool on the surface of a rocky planet. Kepler has discovered over 1000 planets and over 4600 candidates, many of them as small as the Earth. Today, Kepler's amazing success seems to be a fait accompli to those unfamiliar with her history. But twenty years ago, there were no planets known outside our solar system, and few people believed it was possible to detect tiny Earth-size planets orbiting other stars. Motivating NASA to select Kepler for launch required a confluence of the right detector technology, advances in signal processing and algorithms, and the power of supercomputing.
Advance prototype silver ion water bactericide system
NASA Technical Reports Server (NTRS)
Jasionowski, W. J.; Allen, E. T.
1974-01-01
An advance prototype unit was designed and fabricated to treat anticipated fuel cell water. The unit is a single canister that contains a membrane-type prefilter and a silver bromide contacting bed. A seven day baseline simulated mission test was performed; the performance was satisfactory and the effluent water was within all specifications for potability. After random vibrations another seven day simulated mission test was performed, and results indicate that simulated launch vibrations have no effects on the design and performance of the advanced prototype. Bench tests and accelerated breadboard tests were conducted to define the characteristics of an upgraded model of the advance prototype unit which would have 30 days of operating capability. A preliminary design of a silver ion generator for the shuttle orbiter was also prepared.
2008-02-15
Shown is a concept illustration of the Ares I crew launch vehicle during launch and the Ares V cargo launch vehicle on the launch pad. Ares I will carry the Orion Crew Exploration Vehicle with an astronaut crew to Earth orbit. Ares V will deliver large-scale hardware to space. This includes the Altair Lunar Lander, materials for establishing an outpost on the moon, and the vehicles and hardware needed to extend a human presence beyond Earth orbit.
Tang, Shenglan; Brixi, Hana; Bekedam, Henk
2014-01-01
China launched its new health system reform plan in 2009 to advance its universal coverage of healthcare, after more than 4 years' consultations and discussions with various stakeholders including the public. This paper aims to introduce and discuss the context and process of China's current health system reform and analyse how political will in China has been translated into policy practice over the past decade. The paper also shares the insights of World Health Organization's contribution to China's health system reform, as the authors advised the Chinese government on the reform options and process. Furthermore, the paper describes and discusses key challenges in the implementation of the reform plan over the past 3 years and draws lessons for other countries. Copyright © 2013 John Wiley & Sons, Ltd.
Planning and scheduling the Hubble Space Telescope: Practical application of advanced techniques
NASA Technical Reports Server (NTRS)
Miller, Glenn E.
1994-01-01
NASA's Hubble Space Telescope (HST) is a major astronomical facility that was launched in April, 1990. In late 1993, the first of several planned servicing missions refurbished the telescope, including corrections for a manufacturing flaw in the primary mirror. Orbiting above the distorting effects of the Earth's atmosphere, the HST provides an unrivaled combination of sensitivity, spectral coverage and angular resolution. The HST is arguably the most complex scientific observatory ever constructed and effective use of this valuable resource required novel approaches to astronomical observation and the development of advanced software systems including techniques to represent scheduling preferences and constraints, a constraint satisfaction problem (CSP) based scheduler and a rule based planning system. This paper presents a discussion of these systems and the lessons learned from operational experience.
Optimal guidance law development for an advanced launch system
NASA Technical Reports Server (NTRS)
Calise, Anthony J.; Hodges, Dewey H.; Leung, Martin S.; Bless, Robert R.
1991-01-01
The proposed investigation on a Matched Asymptotic Expansion (MAE) method was carried out. It was concluded that the method of MAE is not applicable to launch vehicle ascent trajectory optimization due to a lack of a suitable stretched variable. More work was done on the earlier regular perturbation approach using a piecewise analytic zeroth order solution to generate a more accurate approximation. In the meantime, a singular perturbation approach using manifold theory is also under current investigation. Work on a general computational environment based on the use of MACSYMA and the weak Hamiltonian finite element method continued during this period. This methodology is capable of the solution of a large class of optimal control problems.
NASA Technical Reports Server (NTRS)
Rehder, J. J.; Wurster, K. E.
1978-01-01
Techniques for sizing electrically or chemically propelled orbit transfer vehicles and analyzing fleet requirements are used in a comparative analysis of the two concepts for various levels of traffic to geosynchronous orbit. The vehicle masses, fuel requirements, and fleet sizes are determined and translated into launch vehicle payload requirements. Technology projections beyond normal growth are made and their effect on the comparative advantages of the concepts is determined. A preliminary cost analysis indicates that although electric propulsion greatly reduces launch vehicle requirements substantial improvements in the cost and reusability of power systems must occur to make an electrically propelled vehicle competitive.
NASA Technical Reports Server (NTRS)
1976-01-01
All themes require some form of advanced propulsion capabilities to achieve their stated objectives. Requirements cover a broad spectrum ranging from a new generation of heavy lift launch vehicles to low thrust, long lift system for on-orbit operations. The commonality extant between propulsive technologies was established and group technologies were grouped into vehicle classes by functional capability. The five classes of launch vehicles identified by the space transportation theme were augmented with a sixth class, encompassing planetary and on-orbit operations. Propulsion technologies in each class were then ranked, and assigned priority numbers. Prioritized technologies were matched to theme requirements.
Mercury orbiter transport study
NASA Technical Reports Server (NTRS)
Friedlander, A. L.; Feingold, H.
1977-01-01
A data base and comparative performance analyses of alternative flight mode options for delivering a range of payload masses to Mercury orbit are provided. Launch opportunities over the period 1980-2000 are considered. Extensive data trades are developed for the ballistic flight mode option utilizing one or more swingbys of Venus. Advanced transport options studied include solar electric propulsion and solar sailing. Results show the significant performance tradeoffs among such key parameters as trip time, payload mass, propulsion system mass, orbit size, launch year sensitivity and relative cost-effectiveness. Handbook-type presentation formats, particularly in the case of ballistic mode data, provide planetary program planners with an easily used source of reference information essential in the preliminary steps of mission selection and planning.
Update on Risk Reduction Activities for a Liquid Advanced Booster for NASA's Space Launch System
NASA Technical Reports Server (NTRS)
Crocker, Andy; Graham, Bart
2016-01-01
Dynetics has designed innovative structure assemblies; manufactured them using Friction Stir Welding (FSW) to leverage NASA investments in tools, facilities, and processes; conducted proof and burst testing, demonstrating viability of design/build processes Dynetics/AR has applied state-of-the-art manufacturing and processing techniques to the heritage F-1, reducing risk for engine development Dynetics/AR has also made progress on technology demonstrations for ORSC cycle engine, which offers affordability and performance for both NASA and other launch vehicles Full-scale integrated oxidizer-rich test article. Testing will evaluate performance and combustion stability characteristics. Contributes to technology maturation for ox-rich staged combustion engines.
2002-10-18
KENNEDY SPACE CENTER, FLA. - A worker ties down the container with the TDRS-J spacecraft onto a transport vehicle. TDRS-J is the third in the current series of three Tracking and Data Relay Satellites designed to replenish the existing on-orbit fleet of six spacecraft, the first of which was launched in 1983. The Tracking and Data Relay Satellite System is the primary source of space-to-ground voice, data and telemetry for the Space Shuttle. It also provides communications with the International Space Station and scientific spacecraft in low-earth orbit such as the Hubble Space Telescope, and launch support for some expendable vehicles. This new advanced series of satellites will extend the availability of TDRS communications services until approximately 2017.
Advanced Health Management System for the Space Shuttle Main Engine
NASA Technical Reports Server (NTRS)
Davidson, Matt; Stephens, John
2004-01-01
Boeing-Canoga Park (BCP) and NASA-Marshall Space Flight Center (NASA-MSFC) are developing an Advanced Health Management System (AHMS) for use on the Space Shuttle Main Engine (SSME) that will improve Shuttle safety by reducing the probability of catastrophic engine failures during the powered ascent phase of a Shuttle mission. This is a phased approach that consists of an upgrade to the current Space Shuttle Main Engine Controller (SSMEC) to add turbomachinery synchronous vibration protection and addition of a separate Health Management Computer (HMC) that will utilize advanced algorithms to detect and mitigate predefined engine anomalies. The purpose of the Shuttle AHMS is twofold; one is to increase the probability of successfully placing the Orbiter into the intended orbit, and the other is to increase the probability of being able to safely execute an abort of a Space Transportation System (STS) launch. Both objectives are achieved by increasing the useful work envelope of a Space Shuttle Main Engine after it has developed anomalous performance during launch and the ascent phase of the mission. This increase in work envelope will be the result of two new anomaly mitigation options, in addition to existing engine shutdown, that were previously unavailable. The added anomaly mitigation options include engine throttle-down and performance correction (adjustment of engine oxidizer to fuel ratio), as well as enhanced sensor disqualification capability. The HMC is intended to provide the computing power necessary to diagnose selected anomalous engine behaviors and for making recommendations to the engine controller for anomaly mitigation. Independent auditors have assessed the reduction in Shuttle ascent risk to be on the order of 40% with the combined system and a three times improvement in mission success.
Advanced Control Surface Seal Development at NASA GRC for Future Space Launch Vehicles
NASA Technical Reports Server (NTRS)
Dunlap, Patrick H., Jr.; Steinetz, Bruce M.; DeMange, Jeffrey J.
2003-01-01
NASA s Glenn Research Center (GRC) is developing advanced control surface seal technologies for future space launch vehicles as part of the Next Generation Launch Technology project (NGLT). New resilient seal designs are currently being fabricated and high temperature seal preloading devices are being developed as a means of improving seal resiliency. GRC has designed several new test rigs to simulate the temperatures, pressures, and scrubbing conditions that seals would have to endure during service. A hot compression test rig and hot scrub test rig have been developed to perform tests at temperatures up to 3000 F. Another new test rig allows simultaneous seal flow and scrub tests at room temperature to evaluate changes in seal performance with scrubbing. These test rigs will be used to evaluate the new seal designs. The group is also performing tests on advanced TPS seal concepts for Boeing using these new test facilities.
2009-11-30
Son blueberry fields as shown in Figure 113. All FAA and Maine DOT permits were acquired. Richard Willey was the designated LSO (Launch Safety...The launch area is on the Jasper Wyman & Son blueberry fields as shown in Figure 113. FAA and Maine DOT permits are required for flight testing
NASA Technical Reports Server (NTRS)
1976-01-01
TRW has applied the Apollo checkout procedures to retail-store and bank-transaction systems, as well as to control systems for electric power transmission grids -- reducing the chance of power blackouts. Automatic checkout equipment for Apollo Spacecraft is one of the most complex computer systems in the world. Used to integrate extensive Apollo checkout procedures from manufacture to launch, it has spawned major advances in computer systems technology. Store and bank credit system has caused significant improvement in speed and accuracy of transactions, credit authorization, and inventory control. A similar computer service called "Validata" is used nationwide by airlines, airline ticket offices, car rental agencies, and hotels.
Advanced Communications Technology Satellite (ACTS): Design and on-orbit performance measurements
NASA Technical Reports Server (NTRS)
Gargione, F.; Acosta, R.; Coney, T.; Krawczyk, R.
1995-01-01
The Advanced Communications Technology Satellite (ACTS), developed and built by Lockheed Martin Astro space for the NASA Lewis Research Center, was launched in September 1993 on the shuttle STS 51 mission. ACTS is a digital experimental communications test bed that incorporates gigahertz bandwidth transponders operating at Ka band, hopping spot beams, on-board storage and switching, and dynamic rain fade compensation. This paper describes the ACTS enabling technologies, the design of the communications payload, the constraints imposed on the spacecraft bus, and the measurements conducted to verify the performance of the system in orbit.
Science Opportunities Enabled by NASA's Constellation System: Interim Report
NASA Technical Reports Server (NTRS)
2008-01-01
In 2004 NASA initiated studies of advanced science mission concepts known as the Vision Missions and inspired by a series of NASA roadmap activities conducted in 2003. Also in 2004 NASA began implementation of the first phases of a new space exploration policy, the Vision for Space Exploration. This implementation effort included development of a new human-carrying spacecraft, known as Orion, and two new launch vehicles, the Ares I and Ares V rockets.collectively called the Constellation System. NASA asked the National Research Council (NRC) to evaluate the science opportunities enabled by the Constellation System (see Preface) and to produce an interim report on a short time schedule and a final report by November 2008. The committee notes, however, that the Constellation System and its Orion and Ares vehicles have been justified by NASA and selected in order to enable human exploration beyond low Earth orbit, and not to enable science missions. This interim report of the Committee on Science Opportunities Enabled by NASA s Constellation System evaluates the 11 Vision Mission studies presented to it and groups them into two categories: those more deserving of future study, and those less deserving of future study. Although its statement of task also refers to Earth science missions, the committee points out that the Vision Missions effort was focused on future astronomy, heliophysics, and planetary exploration and did not include any Earth science studies because, at the time, the NRC was conducting the first Earth science decadal survey, and funding Earth science studies as part of the Vision Missions effort would have interfered with that process. Consequently, no Earth science missions are evaluated in this interim report. However, the committee will evaluate any Earth science mission proposal submitted in response to its request for information issued in March 2008 (see Appendix A). The committee based its evaluation of the preexisting Vision Missions studies on two criteria: whether the concepts offered the potential for a significant scientific advance, and whether or not the concepts would benefit from the Constellation System. The committee determined that all of the concepts offered the possibility of a significant scientific advance, but it cautions that such an evaluation ultimately must be made by the decadal survey process, and it emphasizes that this interim report s evaluation should not be considered to be an endorsement of the scientific merit of these proposals, which must of course be evaluated relative to other proposals. The committee determined that seven of these concepts would benefit from the Constellation System, whereas four would not, but it stresses that this conclusion does not reflect an evaluation of the scientific merit of the projects, but rather an assessment of whether or not new capabilities provided by the Constellation System could significantly affect them. Some of the mission concepts, such as the Advanced Compton Telescope, already offer a significant scientific advance and fit easily within the mass and volume constraints of existing launch vehicles. Other mission concepts, such as the Palmer Quest proposal to drill through the Mars polar cap, are not constrained by the launch vehicle, but rather by other technology limitations. The committee evaluated the mission concepts as presented to it, aware nevertheless that proposing a far larger and more ambitious mission with the same science goals might be possible given the capabilities of the Ares V launch vehicle. (Such proposals can be submitted in response to the committee s request for information to be evaluated in its final report.) See Table S.1 for a summary of the Vision Missions, including their cost estimates, technical maturity, and reasons that they might benefit from the Constellation System. The committee developed several findings and recommendations.
Delta Advanced Reusable Transport (DART): An alternative manned spacecraft
NASA Astrophysics Data System (ADS)
Lewerenz, T.; Kosha, M.; Magazu, H.
Although the current U.S. Space Transportation System (STS) has proven successful in many applications, the truth remains that the space shuttle is not as reliable or economical as was once hoped. In fact, the Augustine Commission on the future of the U.S. Space Program has recommended that the space shuttle only be used on missions directly requiring human capabilities on-orbit and that the shuttle program should eventually be phased out. This poses a great dilemma since the shuttle provides the only current or planned U.S. means for human access to space at the same time that NASA is building toward a permanent manned presence. As a possible solution to this dilemma, it is proposed that the U.S. begin development of an Alternative Manned Spacecraft (AMS). This spacecraft would not only provide follow-on capability for maintaining human space flight, but would also provide redundancy and enhanced capability in the near future. Design requirements for the AMS studied include: (1) capability of launching on one of the current or planned U.S. expendable launch vehicles (baseline McDonnell Douglas Delta II model 7920 expendable booster); (2) application to a wide variety of missions including autonomous operations, space station support, and access to orbits and inclinations beyond those of the space shuttle; (3) low enough costing to fly regularly in augmentation of space shuttle capabilities; (4) production surge capabilities to replace the shuttle if events require it; (5) intact abort capability in all flight regimes since the planned launch vehicles are not man-rated; (6) technology cut-off date of 1990; and (7) initial operational capability in 1995. In addition, the design of the AMS would take advantage of scientific advances made in the 20 years since the space shuttle was first conceived. These advances are in such technologies as composite materials, propulsion systems, avionics, and hypersonics.
The Advanced Technology Microwave Sounder (ATMS): First Year On-Orbit
NASA Technical Reports Server (NTRS)
Kim, Edward J.
2012-01-01
The Advanced Technology Microwave Sounder (ATMS) is a new satellite microwave sounding sensor designed to provide operational weather agencies with atmospheric temperature and moisture profile information for global weather forecasting and climate applications. A TMS will continue the microwave sounding capabilities first provided by its predecessors, the Microwave Sounding Unit (MSU) and Advanced Microwave Sounding Unit (AMSU). The first flight unit was launched a year ago in October, 2011 aboard the Suomi-National Polar-Orbiting Partnership (S-NPP) satellite, part of the new Joint Polar-Orbiting Satellite System (JPSS). Microwave soundings by themselves are the highest-impact input data used by Numerical Weather Prediction models; and A TMS, when combined with the Cross-track Infrared Sounder (CrIS), forms the Cross-track Infrared and Microwave Sounding Suite (CrIMSS). The microwave soundings help meet sounding requirements under cloudy sky conditions and provide key profile information near the surface. ATMS was designed & built by Aerojet Corporation in Azusa, California, (now Northrop Grumman Electronic Systems). It has 22 channels spanning 23-183 GHz, closely following the channel set of the MSU, AMSU-AI/2, AMSU-B, Microwave Humidity Sounder (MHS), and Humidity Sounder for Brazil (HSB). It continues their cross-track scanning geometry, but for the first time, provides Nyquist sample spacing. All this is accomplished with approximately V. the volume, Y, the mass, and Y, the power of the three AMSUs. A description will be given of its performance from its first year of operation as determined by post-launch calibration activities. These activities include radiometric calibration using the on-board warm targets and cold space views, and geolocation determination. Example imagery and zooms of specific weather events will be shown. The second ATMS flight model is currently under construction and planned for launch on the "Jl" satellite of the JPSS program in approximately 2016. Additional units are expected on the J2 and 13 satellites, as well as potentially on future European METOP satellites.
Delta Advanced Reusable Transport (DART): An alternative manned spacecraft
NASA Technical Reports Server (NTRS)
Lewerenz, T.; Kosha, M.; Magazu, H.
1991-01-01
Although the current U.S. Space Transportation System (STS) has proven successful in many applications, the truth remains that the space shuttle is not as reliable or economical as was once hoped. In fact, the Augustine Commission on the future of the U.S. Space Program has recommended that the space shuttle only be used on missions directly requiring human capabilities on-orbit and that the shuttle program should eventually be phased out. This poses a great dilemma since the shuttle provides the only current or planned U.S. means for human access to space at the same time that NASA is building toward a permanent manned presence. As a possible solution to this dilemma, it is proposed that the U.S. begin development of an Alternative Manned Spacecraft (AMS). This spacecraft would not only provide follow-on capability for maintaining human space flight, but would also provide redundancy and enhanced capability in the near future. Design requirements for the AMS studied include: (1) capability of launching on one of the current or planned U.S. expendable launch vehicles (baseline McDonnell Douglas Delta II model 7920 expendable booster); (2) application to a wide variety of missions including autonomous operations, space station support, and access to orbits and inclinations beyond those of the space shuttle; (3) low enough costing to fly regularly in augmentation of space shuttle capabilities; (4) production surge capabilities to replace the shuttle if events require it; (5) intact abort capability in all flight regimes since the planned launch vehicles are not man-rated; (6) technology cut-off date of 1990; and (7) initial operational capability in 1995. In addition, the design of the AMS would take advantage of scientific advances made in the 20 years since the space shuttle was first conceived. These advances are in such technologies as composite materials, propulsion systems, avionics, and hypersonics.
An overview of beam diagnostic and control systems for 50 MeV AREAL Linac
NASA Astrophysics Data System (ADS)
Sargsyan, A. A.; Amatuni, G. A.; Sahakyan, V. V.; Zanyan, G. S.; Martirosyan, N. W.; Vardanyan, V. V.; Grigoryan, B. A.
2017-03-01
Advanced Research Electron Accelerator Laboratory (AREAL) is an electron linear accelerator project with a laser driven RF gun being constructed at CANDLE Synchrotron Research Institute. After the successful operation of the gun section at 5 MeV, a program of facility energy enhancement up to 50 MeV is launched. In this paper the current status of existing diagnostic and control systems, as well as the results of electron beam parameter measurements are presented. The approaches of intended diagnostic and control systems for the upgrade program are also described.
SSTO rockets. A practical possibility
NASA Technical Reports Server (NTRS)
Bekey, Ivan
1994-01-01
Most experts agree that single-stage-to-orbit (SSTO) rockets would become feasible if more advanced technologies were available to reduce the vehicle dry weight, increase propulsion system performance, or both. However, these technologies are usually judged to be very ambitious and very far off. This notion persists despite major advances in technology and vehicle design in the past decade. There appears to be four major misperceptions about SSTOs, regarding their mass fraction, their presumed inadequate performance margin, their supposedly small payloads, and their extreme sensitivity to unanticipated vehicle weight growth. These misperceptions can be dispelled for SSTO rockets using advanced technologies that could be matured and demonstrated in the near term. These include a graphite-composite primary structure, graphite-composite and Al-Li propellant tanks with integral reusable thermal protection, long-life tripropellant or LOX-hydrogen engines, and several technologies related to operational effectiveness, including vehicle health monitoring, autonomous avionics/flight control, and operable launch and ground handling systems.
SSTO rockets. A practical possibility
NASA Astrophysics Data System (ADS)
Bekey, Ivan
1994-07-01
Most experts agree that single-stage-to-orbit (SSTO) rockets would become feasible if more advanced technologies were available to reduce the vehicle dry weight, increase propulsion system performance, or both. However, these technologies are usually judged to be very ambitious and very far off. This notion persists despite major advances in technology and vehicle design in the past decade. There appears to be four major misperceptions about SSTOs, regarding their mass fraction, their presumed inadequate performance margin, their supposedly small payloads, and their extreme sensitivity to unanticipated vehicle weight growth. These misperceptions can be dispelled for SSTO rockets using advanced technologies that could be matured and demonstrated in the near term. These include a graphite-composite primary structure, graphite-composite and Al-Li propellant tanks with integral reusable thermal protection, long-life tripropellant or LOX-hydrogen engines, and several technologies related to operational effectiveness, including vehicle health monitoring, autonomous avionics/flight control, and operable launch and ground handling systems.
NASA Astrophysics Data System (ADS)
Herceg, M.; Jørgensen, P. S.; Jørgensen, J. L.
2017-08-01
Launched into orbit on November 22, 2013, the Swarm constellation of three satellites precisely measures magnetic signal of the Earth. To ensure the high accuracy of magnetic observation by vector magnetometer (VFM), its inertial attitude is precisely determined by μASC (micro Advanced Stellar Compass). Each of the three Swarm satellites is equipped with three μASC Camera Head Units (CHU) mounted on a common optical bench (OB), which has a purpose of transference of the attitude from the star trackers to the magnetometer measurements. Although substantial pre-launch analyses were made to maximize thermal and mechanical stability of the OB, significant signal with thermal signature is discovered when comparing relative attitude between the three CHU's (Inter Boresight Angle, IBA). These misalignments between CHU's, and consequently geomagnetic reference frame, are found to be correlated with the period of angle between Swarm orbital plane and the Sun (ca. 267 days), which suggests sensitivity of optical bench system on temperature variation. In this paper, we investigate the propagation of thermal effects into the μASC attitude observations and demonstrate how thermally induced attitude variation can be predicted and corrected in the Swarm data processing. The results after applying thermal corrections show decrease in IBA RMS from 6.41 to 2.58″. The model significantly improves attitude determination which, after correction, meets the requirements of Swarm satellite mission. This study demonstrates the importance of the OB pre-launch analysis to ensure minimum thermal gradient on satellite optical system and therefore maximum attitude accuracy.