Science.gov

Sample records for advanced li-ion batteries

  1. Developing New Electrolytes for Advanced Li-ion Batteries

    NASA Astrophysics Data System (ADS)

    McOwen, Dennis Wayne

    The use of renewable energy sources is on the rise, as new energy generating technologies continue to become more efficient and economical. Furthermore, the advantages of an energy infrastructure which relies more on sustainable and renewable energy sources are becoming increasingly apparent. The most readily available of these renewable energy sources, wind and solar energy in particular, are naturally intermittent. Thus, to enable the continued expansion and widespread adoption of renewable energy generating technology, a cost-effective energy storage system is essential. Additionally, the market for electric/hybrid electric vehicles, which both require efficient energy storage, continues to grow as more consumers seek to reduce their consumption of gasoline. These vehicles, however, remain quite expensive, due primarily to costs associated with storing the electrical energy. High-voltage and thermally stable Li-ion battery technology is a promising solution for both grid-level and electric vehicle energy storage. Current limitations in materials, however, limit the energy density and safe operating temperature window of the battery. Specifically, the state-of-the-art electrolyte used in Li-ion batteries is not compatible with recently developed high-voltage positive electrodes, which are one of the most effectual ways of increasing the energy density. The electrolyte is also thermally unstable above 50 °C, and prone to thermal runaway reaction if exposed to prolonged heating. The lithium salt used in such electrolytes, LiPF6, is a primary contributor to both of these issues. Unfortunately, an improved lithium salt which meets the myriad property requirements for Li-ion battery electrolytes has eluded researchers for decades. In this study, a renewed effort to find such a lithium salt was begun, using a recently developed methodology to rapidly screen for desirable properties. Four new lithium salts and one relatively new but uncharacterized lithium salt were

  2. Highly Flexible Graphene/Mn3O4 Nanocomposite Membrane as Advanced Anodes for Li-Ion Batteries.

    PubMed

    Wang, Jian-Gan; Jin, Dandan; Zhou, Rui; Li, Xu; Liu, Xing-Rui; Shen, Chao; Xie, Keyu; Li, Baohua; Kang, Feiyu; Wei, Bingqing

    2016-06-28

    Advanced electrode design is crucial in the rapid development of flexible energy storage devices for emerging flexible electronics. Herein, we report a rational synthesis of graphene/Mn3O4 nanocomposite membranes with excellent mechanical flexibility and Li-ion storage properties. The strong interaction between the large-area graphene nanosheets and long Mn3O4 nanowires not only enables the membrane to endure various mechanical deformations but also produces a strong synergistic effect of enhanced reaction kinetics by providing enlarged electrode/electrolyte contact area and reduced electron/ion transport resistance. The mechanically robust membrane is explored as a freestanding anode for Li-ion batteries, which delivers a high specific capacity of ∼800 mAh g(-1) based on the total electrode mass, along with superior high-rate capability and excellent cycling stability. A flexible full Li-ion battery is fabricated with excellent electrochemical properties and high flexibility, demonstrating its great potential for high-performance flexible energy storage devices.

  3. Specification For ST-5 Li Ion Battery

    NASA Technical Reports Server (NTRS)

    Castell, Karen D.; Day, John H. (Technical Monitor)

    2000-01-01

    This Specification defines the general requirements for rechargeable Space Flight batteries intended for use in the ST-5 program. The battery chemistry chosen for this mission is lithium ion (Li-Ion).

  4. Hierarchical MoS2 @Carbon Microspheres as Advanced Anodes for Li-Ion Batteries.

    PubMed

    Bai, Zhongchao; Zhang, Yaohui; Zhang, Yuwen; Guo, Chunli; Tang, Bin

    2015-12-01

    Hierarchical hybridized nanocomposites with rationally constructed compositions and structures have been considered key for achieving superior Li-ion battery performance owing to their enhanced properties, such as fast lithium ion diffusion, good collection and transport of electrons, and a buffer zone for relieving the large volume variations during cycling processes. Hierarchical MoS2 @carbon microspheres (HMCM) have been synthesized in a facile hydrothermal treatment. The structure analyses reveal that ultrathin MoS2 nanoflakes (ca. 2-5 nm) are vertically supported on the surface of carbon nanospheres. The reversible capacity of the HMCM nanocomposite is maintained at 650 mA h g(-1) after 300 cycles at 1 A g(-1) . Furthermore, the capacity can reach 477 mA h g(-1) even at a high current density of 4 A g(-1) . The outstanding electrochemical performance of HMCM is attributed to the synergetic effect between the carbon spheres and the ultrathin MoS2 nanoflakes. Additionally, the carbon matrix can supply conductive networks and prevent the aggregation of layered MoS2 during the charge/discharge process; and ultrathin MoS2 nanoflakes with enlarged surface areas, which can guarantee the flow of the electrolyte, provide more active sites and reduce the diffusion energy barrier of Li(+) ions. PMID:26542735

  5. Nanotechnology in Li-ion Batteries

    SciTech Connect

    Mukaibo, Hitomi

    2010-06-04

    This is the second of three talks on nanostructures for li-ion batteries. The talks provide an up-to-date review of the issues and challenges facing Li-ion battery research with special focus on how nanostructures/ nanotechnology are being applied to this field. Novel materials reported as prospective candidates for anode, cathode and electrolyte will be summarized. The expected role of nanostructures in improving the performance of Li-ion batteries and the actual pros and cons of using such structures in this device will be addressed. Electrochemical experiments used to study Li-ion batteries will also be discussed. This includes the introduction to the standard experimental set-up and how experimental data (from charge-discharge experiments, cyclic voltammetry, impedance spectroscopy, etc) are interpreted.

  6. Negative Electrodes for Li-Ion Batteries

    SciTech Connect

    Kinoshita, Kim; Zaghib, Karim

    2001-10-01

    Graphitized carbons have played a key role in the successful commercialization of Li-ion batteries. The physicochemical properties of carbon cover a wide range; therefore identifying the optimum active electrode material can be time consuming. The significant physical properties of negative electrodes for Li-ion batteries are summarized, and the relationship of these properties to their electrochemical performance in nonaqueous electrolytes, are discussed in this paper.

  7. Nanomaterials Meet Li-ion Batteries.

    PubMed

    Kwon, Nam Hee; Brog, Jean-Pierre; Maharajan, Sivarajakumar; Crochet, Aurélien; Fromm, Katharina M

    2015-01-01

    Li-ion batteries are used in many applications in everyday life: cell phones, laser pointers, laptops, cordless drillers or saws, bikes and even cars. Yet, there is room for improvement in order to make the batteries smaller and last longer. The Fromm group contributes to this research focusing mainly on nanoscale lithium ion cathode materials. This contribution gives an overview over our current activities in the field of batteries. After an introduction on the nano-materials of LiCoO(2) and LiMnPO(4), the studies of our cathode composition and preparation will be presented.

  8. Computational modeling of Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Grazioli, D.; Magri, M.; Salvadori, A.

    2016-08-01

    This review focuses on energy storage materials modeling, with particular emphasis on Li-ion batteries. Theoretical and computational analyses not only provide a better understanding of the intimate behavior of actual batteries under operational and extreme conditions, but they may tailor new materials and shape new architectures in a complementary way to experimental approaches. Modeling can therefore play a very valuable role in the design and lifetime prediction of energy storage materials and devices. Batteries are inherently multi-scale, in space and time. The macro-structural characteristic lengths (the thickness of a single cell, for instance) are order of magnitudes larger than the particles that form the microstructure of the porous electrodes, which in turn are scale-separated from interface layers at which atomistic intercalations occur. Multi-physics modeling concepts, methodologies, and simulations at different scales, as well as scale transition strategies proposed in the recent literature are here revised. Finally, computational challenges toward the next generation of Li-ion batteries are discussed.

  9. Li(+)-conductive polymer-embedded nano-Si particles as anode material for advanced Li-ion batteries.

    PubMed

    Chen, Yao; Zeng, Shi; Qian, Jianfeng; Wang, Yadong; Cao, Yuliang; Yang, Hanxi; Ai, Xinping

    2014-03-12

    Si has been considered as a promising alternative anode for next-generation lithium ion batteries (LIBs), but the commercial application of Si anodes is still limited due to their poor cyclability. In this paper, we propose a new strategy to enhance the long-term cyclability of Si anode by embedding nano-Si particles into a Li(+)-conductive polymer to form a Si/polymer composite with core-shell structure, in which nano-Si cores act as active Li-storage phase and the polymeric matrix serves not only as a strong buffer to accommodate the volume change, but also as a protection barrier to prevent the direct contact of Si surface with electrolyte, so as to maintain the mechanical integrity of Si anode and suppress the repeated destruction and construction of solid electrolyte interphase (SEI) on the Si surface. To realize this strategy, we synthesize a Si/PPP (polyparaphenylene) composite simply by ball-milling the Si nanoparticles with PPP polymer that has n-doping activity. Our experimental results demonstrate that the thus-prepared Si/PPP composite exhibits a high capacity of 3184 mA h g(-1) with an initial coulombic efficiency of 78%, an excellent rate capability with a considerably high capacity of 1670 mA h g(-1) even at a very high rate of 16 A g(-1), and a long-term cyclability with 60% capacity retention over 400 cycles, showing a great prospect for battery application. In addition, this structural design could be adopted to other Li-storable metals or alloys for developing cycle-stable anode materials for Li-ion batteries.

  10. Advanced technology development program for lithium-ion batteries : thermal abuse performance of 18650 Li-ion cells.

    SciTech Connect

    Crafts, Chris C.; Doughty, Daniel Harvey; McBreen, James.; Roth, Emanuel Peter

    2004-03-01

    Li-ion cells are being developed for high-power applications in hybrid electric vehicles currently being designed for the FreedomCAR (Freedom Cooperative Automotive Research) program. These cells offer superior performance in terms of power and energy density over current cell chemistries. Cells using this chemistry are the basis of battery systems for both gasoline and fuel cell based hybrids. However, the safety of these cells needs to be understood and improved for eventual widespread commercial application in hybrid electric vehicles. The thermal behavior of commercial and prototype cells has been measured under varying conditions of cell composition, age and state-of-charge (SOC). The thermal runaway behavior of full cells has been measured along with the thermal properties of the cell components. We have also measured gas generation and gas composition over the temperature range corresponding to the thermal runaway regime. These studies have allowed characterization of cell thermal abuse tolerance and an understanding of the mechanisms that result in cell thermal runaway.

  11. Recent advances on the understanding of structural and composition evolution of LMR cathodes for Li-ion batteries

    SciTech Connect

    Yan, Pengfei; Zheng, Jianming; Xiao, Jie; Wang, Chong-Min; Zhang, Jiguang

    2015-06-08

    Lithium-rich, magnesium-rich (LMR) cathode materials have been regarded as one of the very promising cathodes for Li-ion battery applications. However, their practical application is still limited by several challenges, especially by their limited electrochemical stability rate capability. In this work, we present recent progresses on the understanding of the structural and composition evolution of LMR cathode materials with emphasis being placed on the correlation between structural/chemical evolution and electrochemical properties. In particular, using Li [Li0.2Ni0.2Mn0.6O2 as a typical example, we clearly illustrate the structural characteristics of the pristine materials and their dependence on the materials processing history, cycling induced structural degradation/chemical partition and their correlation with degradation of electrochemical performance. The fundamental understanding obtained in this work may also guide the design and preparation of new cathode materials based on ternary system of transitional metal oxide.

  12. Recent advances on the understanding of structural and composition evolution of LMR cathodes for Li-ion batteries

    DOE PAGES

    Yan, Pengfei; Zheng, Jianming; Xiao, Jie; Wang, Chong-Min; Zhang, Jiguang

    2015-06-08

    Lithium-rich, magnesium-rich (LMR) cathode materials have been regarded as one of the very promising cathodes for Li-ion battery applications. However, their practical application is still limited by several challenges, especially by their limited electrochemical stability rate capability. In this work, we present recent progresses on the understanding of the structural and composition evolution of LMR cathode materials with emphasis being placed on the correlation between structural/chemical evolution and electrochemical properties. In particular, using Li [Li0.2Ni0.2Mn0.6O2 as a typical example, we clearly illustrate the structural characteristics of the pristine materials and their dependence on the materials processing history, cycling induced structuralmore » degradation/chemical partition and their correlation with degradation of electrochemical performance. The fundamental understanding obtained in this work may also guide the design and preparation of new cathode materials based on ternary system of transitional metal oxide.« less

  13. Screening Li-Ion Batteries for Internal Shorts

    NASA Technical Reports Server (NTRS)

    Darcy, Eric

    2006-01-01

    The extremely high cost of aerospace battery failures due to internal shorts makes it essential that their occurrence be very rare, if not eliminated altogether. With Li-ion cells/batteries, the potentially catastrophic safety hazard that some internal shorts present adds additional incentive for prevention. Prevention can be achieved by design, manufacturing measures, and testing. Specifically for NASA s spacesuit application, a Li-ion polymer pouch cell battery design is in its final stages of production. One of the 20 flight batteries fabricated and tested developed a cell internal short, which did not present a safety hazard, but has required revisiting the entire manufacturing and testing process. Herein are the details of the failure investigation that followed to get to root cause of the internal short and the corrective actions that will be taken. The resulting lessons learned are applicable to most Li-ion battery applications.

  14. In situ methods for Li-ion battery research: A review of recent developments

    NASA Astrophysics Data System (ADS)

    Harks, P. P. R. M. L.; Mulder, F. M.; Notten, P. H. L.

    2015-08-01

    A considerable amount of research is being directed towards improving lithium-ion batteries in order to meet today's market demands. In particular in situ investigations of Li-ion batteries have proven extremely insightful, but require the electrochemical cell to be fully compatible with the conditions of the testing method and are therefore often challenging to execute. Advantageously, in the past few years significant progress has been made with new, more advanced, in situ techniques. Herein, a comprehensive overview of in situ methods for studying Li-ion batteries is given, with the emphasis on new developments and reported experimental highlights.

  15. Review on Current State of Li-ion Batteries

    SciTech Connect

    Mukaibo, Hitomi

    2010-06-04

    This is an up-to-date review of the issues and challenges facing Li-ion battery research with special focus on how nanostructures/ nanotechnology are being applied to this field. Novel materials reported as prospective candidates for anode, cathode and electrolyte will be summarized. The expected role of nanostructures in improving the performance of Li-ion batteries and the actual pros and cons of using such structures in this device will be addressed. Electrochemical experiments used to study Li-ion batteries will also be discussed. This includes the introduction to the standard experimental set-up and how experimental data (from charge-discharge experiments, cyclic voltammetry, impedance spectroscopy, etc) are interpreted.

  16. Enhancing Interfacial Bonding between Anisotropically Oriented Grains Using a Glue-Nanofiller for Advanced Li-Ion Battery Cathode.

    PubMed

    Kim, Hyejung; Lee, Sanghan; Cho, Hyeon; Kim, Junhyeok; Lee, Jieun; Park, Suhyeon; Joo, Se Hun; Kim, Su Hwan; Cho, Yoon-Gyo; Song, Hyun-Kon; Kwak, Sang Kyu; Cho, Jaephil

    2016-06-01

    Formation of a glue-nanofiller layer between grains, consisting of a middle-temperature spinel-like Lix CoO2 phase, reinforces the strength of the incoherent interfacial binding between anisotropically oriented grains by enhancing the face-to-face adhesion strength. The cathode treated with the glue-layer exhibits steady cycling performance at both room-temperature and 60 °C. These results represent a step forward in advanced lithium-ion batteries via simple cathode coating. PMID:27074141

  17. COTS Li-Ion Cells in High Voltage Batteries

    NASA Technical Reports Server (NTRS)

    Davies, Francis; Darcy, Eric; Jeevarajan, Judy; Cowles, Phil

    2003-01-01

    Testing at NASA JSC and COMDEV shows that Commercial Off the Shelf (COTS) Li Ion cells can not be used in high voltage batteries safely without considering the voltage stresses that may be put on the protective devices in them during failure modes.

  18. Potential Alternatives for Advanced Energy Material Processing in High Performance Li-ion Batteries (LIBs) via Atmospheric Pressure Plasma Treatment

    NASA Astrophysics Data System (ADS)

    Duh, Jenq-Gong; Chuang, Shang-I.; Lan, Chun-Kai; Yang, Hao; Chen, Hsien-Wei

    2015-09-01

    A new processing technique by atmospheric pressure plasma (APP) jet treatment of LIBs was introduced. Ar/N2 plasma enhanced the high-rate anode performance of Li4Ti5O12. Oxygen vacancies were discovered and nitrogen doping were achieved by the surface reaction between pristine Li4Ti5O12 and plasma reactive species (N* and N2+). Electrochemical impedance spectra confirm that plasma modification increases Li ions diffusivity and reduces internal charge-transfer resistance, leading to a superior capacity (132 mAh/g) and excellent stability with negligible capacity decay over 100 cycles under 10C rate. Besides 2D material surface treatment, a specially designed APP generator that are feasible to modify 3D TiO2 powders is proposed. The rate capacity of 20 min plasma treated TiO2 exhibited 20% increment. Plasma diagnosis revealed that excited Ar and N2 was contributed to TiO2 surface reduction as companied by formation of oxygen vacancy. A higher amount of oxygen vacancy increased the chance for excited nitrogen doped onto surface of TiO2 particle. These findings promote the understanding of APP on processing anode materials in high performance LIBs.

  19. Core-shell nano-FeS2@N-doped graphene as an advanced cathode material for rechargeable Li-ion batteries.

    PubMed

    Tan, Rui; Yang, Jinlong; Hu, Jiangtao; Wang, Kai; Zhao, Yan; Pan, Feng

    2016-01-18

    We report the formation of core-shell nano-FeS2@N-doped graphene as a novel cathode material and its mechanism for use in rechargeable Li-ion batteries. A benefit of the amount of FeS2 nano-crystals as the core for Li-ion storage with high capacity and using coated N-doped graphene as the shell is that FeS2@N-graphene exhibits a remarkable specific energy (950 W h kg(-1) at 0.15 kW g(-1)) and higher specific power (543 W h kg(-1) at 2.79 kW g(-1)) than commercial rechargeable LIB cathodes, as well as stable cycling performance (∼600 W h kg(-1) at 0.75 kW g(-1) after 400 cycles).

  20. Predictive Models of Li-ion Battery Lifetime

    SciTech Connect

    Smith, Kandler; Wood, Eric; Santhanagopalan, Shriram; Kim, Gi-heon; Shi, Ying; Pesaran, Ahmad

    2015-06-15

    It remains an open question how best to predict real-world battery lifetime based on accelerated calendar and cycle aging data from the laboratory. Multiple degradation mechanisms due to (electro)chemical, thermal, and mechanical coupled phenomena influence Li-ion battery lifetime, each with different dependence on time, cycling and thermal environment. The standardization of life predictive models would benefit the industry by reducing test time and streamlining development of system controls.

  1. Predictive Models of Li-ion Battery Lifetime (Presentation)

    SciTech Connect

    Smith, K.; Wood, E.; Santhanagopalan, S.; Kim, G.; Shi, Y.; Pesaran, A.

    2014-09-01

    Predictive models of Li-ion battery reliability must consider a multiplicity of electrochemical, thermal and mechanical degradation modes experienced by batteries in application environments. Complicating matters, Li-ion batteries can experience several path dependent degradation trajectories dependent on storage and cycling history of the application environment. Rates of degradation are controlled by factors such as temperature history, electrochemical operating window, and charge/discharge rate. Lacking accurate models and tests, lifetime uncertainty must be absorbed by overdesign and warranty costs. Degradation models are needed that predict lifetime more accurately and with less test data. Models should also provide engineering feedback for next generation battery designs. This presentation reviews both multi-dimensional physical models and simpler, lumped surrogate models of battery electrochemical and mechanical degradation. Models are compared with cell- and pack-level aging data from commercial Li-ion chemistries. The analysis elucidates the relative importance of electrochemical and mechanical stress-induced degradation mechanisms in real-world operating environments. Opportunities for extending the lifetime of commercial battery systems are explored.

  2. Green Template-Free Synthesis of Hierarchical Shuttle-Shaped Mesoporous ZnFe2 O4 Microrods with Enhanced Lithium Storage for Advanced Li-Ion Batteries.

    PubMed

    Hou, Linrui; Hua, Hui; Lian, Lin; Cao, Hui; Zhu, Siqi; Yuan, Changzhou

    2015-09-01

    In the work, a facile and green two-step synthetic strategy was purposefully developed to efficiently fabricate hierarchical shuttle-shaped mesoporous ZnFe2 O4 microrods (MRs) with a high tap density of ∼0.85 g cm(3) , which were assembled by 1D nanofiber (NF) subunits, and further utilized as a long-life anode for advanced Li-ion batteries. The significant role of the mixed solvent of glycerin and water in the formation of such hierarchical mesoporous MRs was systematically investigated. After 488 cycles at a large current rate of 1000 mA g(-1) , the resulting ZnFe2 O4 MRs with high loading of ∼1.4 mg per electrode still preserved a reversible capacity as large as ∼542 mAh g(-1) . Furthermore, an initial charge capacity of ∼1150 mAh g(-1) is delivered by the ZnFe2 O4 anode at 100 mA g(-1) , resulting in a high Coulombic efficiency of ∼76 % for the first cycle. The superior Li-storage properties of the as-obtained ZnFe2 O4 were rationally associated with its mesoprous micro-/nanostructures and 1D nanoscaled building blocks, which accelerated the electron transportation, facilitated Li(+) transfer rate, buffered the large volume variations during repeated discharge/charge processes, and provided rich electrode-electrolyte sur-/interfaces for efficient lithium storage, particularly at high rates.

  3. Graphene Sandwiched Mesostructured Li-Ion Battery Electrodes.

    PubMed

    Liu, Jinyun; Zheng, Qiye; Goodman, Matthew D; Zhu, Haoyue; Kim, Jinwoo; Krueger, Neil A; Ning, Hailong; Huang, Xingjiu; Liu, Jinhuai; Terrones, Mauricio; Braun, Paul V

    2016-09-01

    A deterministic graphene-sandwiched Li-ion battery electrode consisting of an integrated 3D mesostructure of electrochemically active materials and graphene is presented. As demonstrations, electrodes with active nanomaterials that coat (V2 O5 @graphene@V2 O5 cathode) or are coated by (graphene@Si@graphene anode) graphene are fabricated. These electrodes exhibit high capacities and ultralong cycle lives (the cathode can be cycled over 2000 times with minimal capacity fade). PMID:27383465

  4. Graphene Sandwiched Mesostructured Li-Ion Battery Electrodes.

    PubMed

    Liu, Jinyun; Zheng, Qiye; Goodman, Matthew D; Zhu, Haoyue; Kim, Jinwoo; Krueger, Neil A; Ning, Hailong; Huang, Xingjiu; Liu, Jinhuai; Terrones, Mauricio; Braun, Paul V

    2016-09-01

    A deterministic graphene-sandwiched Li-ion battery electrode consisting of an integrated 3D mesostructure of electrochemically active materials and graphene is presented. As demonstrations, electrodes with active nanomaterials that coat (V2 O5 @graphene@V2 O5 cathode) or are coated by (graphene@Si@graphene anode) graphene are fabricated. These electrodes exhibit high capacities and ultralong cycle lives (the cathode can be cycled over 2000 times with minimal capacity fade).

  5. Li-Ion Battery Cathodes: Enhancing Interfacial Bonding between Anisotropically Oriented Grains Using a Glue-Nanofiller for Advanced Li-Ion Battery Cathode (Adv. Mater. 23/2016).

    PubMed

    Kim, Hyejung; Lee, Sanghan; Cho, Hyeon; Kim, Junhyeok; Lee, Jieun; Park, Suhyeon; Joo, Se Hun; Kim, Su Hwan; Cho, Yoon-Gyo; Song, Hyun-Kon; Kwak, Sang Kyu; Cho, Jaephil

    2016-06-01

    The formation of a spinel Lix CoO2 layer in a Ni-rich secondary particle for lithium-ion batteries is reported by S. K. Kwak, J. Cho, and co-workers on page 4705, who find that the spinel-like Lix CoO2 layer, between layered primary particles, can enhance the mechanical strength of secondary particles by enhancing the interfacial binding energy among the grains. Moreover, the layer can effectively protect the unstable surface of the primary particles and offers a fast electron-ion pathway, resulting in overall enhancements of stability and kinetics in battery performance. PMID:27281047

  6. Ethylmethylcarbonate, a promising solvent for Li-ion rechargeable batteries

    SciTech Connect

    Ein-Eli, Y.; Thomas, S.R.; Koch, V.; Aurbach, D.; Markovsky, B.; Schechter, A.

    1996-12-01

    Ethylmethylcarbonate (EMC) has been found to be a promising solvent for rechargeable Li-ion batteries. Graphite electrodes, which are usually sensitive to the composition of the electrolyte solution, can be successfully cycled at high reversible capacities in several Li salt solutions in this solvent (LiAsF{sub 6}, LiPF{sub 6}, etc.). These results are interesting because lithium ions cannot intercalate into graphite in diethyl carbonate solutions and cycle poorly in dimethyl carbonate solutions. To understand the high compatibility of EMC for Li-ion battery systems as compared with the other two open-chain alkyl carbonates mentioned above, the surface chemistry developed in both Li and carbon electrodes in EMC solution was studied and compared with that developed on these electrodes in other alkyl carbonate solutions. Basically, the major surface species formed on both electrodes in EMC include ROLi, ROCO{sub 2}Li, and Li{sub 2}CO{sub 3} species. The uniqueness of EMC as a battery solvent is discussed in light of these studies.

  7. Probing anode degradation in automotive Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Kwon, Ou Jung

    The lithium-ion battery is drawing attention as a power source for future clean and fuel-efficient vehicles. Although the Li-ion battery presently shows best performance for energy density and power density compared to other rechargeable batteries, some degradation problems still remain as key challenges for long-term durability in automotive applications. Among those problems, Li deposition is well known for causing permanent capacity loss. Fundamental mechanisms of Li deposition in the carbon anode are, however, not fully understood, especially at subzero temperature and/or under high rate charge. This dissertation introduces comprehensive study of Li deposition using automotive 18650 Li-ion cells. The mechanism and relevant diagnostic methods as well as preventive charging protocol are discussed. In part one, a new diagnostic tool is introduced utilizing 3-electrode cell system, which measures thermodynamic and kinetic parameters of cathode and anode, respectively, as a function of temperature and SOC (state of charge): open circuit potential (OCP); Li diffusion coefficient in active particles; and internal resistance. These data are employed to understand electrochemical reaction and its thermal interaction under charging conditions that result in Li deposition. Part two provides a threshold parameter for the onset of Li deposition, which is not commonly used anode potential but charge capacity, or more specifically the amount of Li+ ions participating in intercalation reaction without Li deposition at given charging circumstances. This is called the critical charge capacity in this thesis, beyond which capacity loss at normal operating condition is observed, which becomes more serious as temperature is lowered and/or charge C-rate increases. Based on these experimental results, the mechanism of Li deposition is proposed as the concept of anode particle surface saturation, meaning that once the anode particle surface is saturated with Li in any charging

  8. Novel Energy Sources -Material Architecture and Charge Transport in Solid State Ionic Materials for Rechargeable Li ion Batteries

    SciTech Connect

    Katiyar, Ram S; Gómez, M; Majumder, S B; Morell, G; Tomar, M S; Smotkin, E; Bhattacharya, P; Ishikawa, Y

    2009-01-19

    Since its introduction in the consumer market at the beginning of 1990s by Sony Corporation ‘Li-ion rechargeable battery’ and ‘LiCoO2 cathode’ is an inseparable couple for highly reliable practical applications. However, a separation is inevitable as Li-ion rechargeable battery industry demand more and more from this well serving cathode. Spinel-type lithium manganate (e.g., LiMn2O4), lithium-based layered oxide materials (e.g., LiNiO2) and lithium-based olivine-type compounds (e.g., LiFePO4) are nowadays being extensively studied for application as alternate cathode materials in Li-ion rechargeable batteries. Primary goal of this project was the advancement of Li-ion rechargeable battery to meet the future demands of the energy sector. Major part of the research emphasized on the investigation of electrodes and solid electrolyte materials for improving the charge transport properties in Li-ion rechargeable batteries. Theoretical computational methods were used to select electrodes and electrolyte material with enhanced structural and physical properties. The effect of nano-particles on enhancing the battery performance was also examined. Satisfactory progress has been made in the bulk form and our efforts on realizing micro-battery based on thin films is close to give dividend and work is progressing well in this direction.

  9. High voltage and high specific capacity dual intercalating electrode Li-ion batteries

    NASA Technical Reports Server (NTRS)

    West, William C. (Inventor); Blanco, Mario (Inventor)

    2010-01-01

    The present invention provides high capacity and high voltage Li-ion batteries that have a carbonaceous cathode and a nonaqueous electrolyte solution comprising LiF salt and an anion receptor that binds the fluoride ion. The batteries can comprise dual intercalating electrode Li ion batteries. Methods of the present invention use a cathode and electrode pair, wherein each of the electrodes reversibly intercalate ions provided by a LiF salt to make a high voltage and high specific capacity dual intercalating electrode Li-ion battery. The present methods and systems provide high-capacity batteries particularly useful in powering devices where minimizing battery mass is important.

  10. Conjugated dicarboxylate anodes for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Armand, M.; Grugeon, S.; Vezin, H.; Laruelle, S.; Ribière, P.; Poizot, P.; Tarascon, J.-M.

    2009-02-01

    Present Li-ion batteries for portable electronics are based on inorganic electrodes. For upcoming large-scale applications the notion of materials sustainability produced by materials made through eco-efficient processes, such as renewable organic electrodes, is crucial. We here report on two organic salts, Li2C8H4O4 (Li terephthalate) and Li2C6H4O4(Li trans-trans-muconate), with carboxylate groups conjugated within the molecular core, which are respectively capable of reacting with two and one extra Li per formula unit at potentials of 0.8 and 1.4V, giving reversible capacities of 300 and 150mAhg-1. The activity is maintained at 80∘C with polyethyleneoxide-based electrolytes. A noteworthy advantage of the Li2C8H4O4 and Li2C6H4O4 negative electrodes is their enhanced thermal stability over carbon electrodes in 1M LiPF6 ethylene carbonate-dimethyl carbonate electrolytes, which should result in safer Li-ion cells. Moreover, as bio-inspired materials, both compounds are the metabolites of aromatic hydrocarbon oxidation, and terephthalic acid is available in abundance from the recycling of polyethylene terephthalate.

  11. PHEV/EV Li-Ion Battery Second-Use Project (Presentation)

    SciTech Connect

    Neubauer, J.; Pesaran, A.

    2010-04-01

    Accelerated development and market penetration of plug-in hybrid electric vehicles (PHEVs) and electric vehicles (Evs) are restricted at present by the high cost of lithium-ion (Li-ion) batteries. One way to address this problem is to recover a fraction of the battery cost via reuse in other applications after the battery is retired from service in the vehicle, if the battery can still meet the performance requirements of other energy storage applications. In several current and emerging applications, the secondary use of PHEV and EV batteries may be beneficial; these applications range from utility peak load reduction to home energy storage appliances. However, neither the full scope of possible opportunities nor the feasibility or profitability of secondary use battery opportunities have been quantified. Therefore, with support from the Energy Storage activity of the U.S. Department of Energy's Vehicle Technologies Program, the National Renewable Energy Laboratory (NREL) is addressing this issue. NREL will bring to bear its expertise and capabilities in energy storage for transportation and in distributed grids, advanced vehicles, utilities, solar energy, wind energy, and grid interfaces as well as its understanding of stakeholder dynamics. This presentation introduces NREL's PHEV/EV Li-ion Battery Secondary-Use project.

  12. Scanning electrochemical microscopy of Li-ion batteries.

    PubMed

    Ventosa, E; Schuhmann, W

    2015-11-21

    Li-ion batteries (LIBs) are receiving increasing attention over the past decade due to their high energy density. This energy storage technology is expected to continue improving the performance, especially for its large-scale deployment in plug-in hybrid electric vehicles (PHEVs) and full electric vehicles (EVs). Such improvement requires having a large variety of analytical techniques at scientists' disposal in order to understand and address the multiple mechanisms and processes occurring simultaneously in this complex system. This perspective article aims to highlight the strength and potential of scanning electrochemical microscopy (SECM) in this field. After a brief description of a LIB system and the most commonly used techniques in this field, the unique information provided by SECM is illustrated by discussing several recent examples from the literature.

  13. Current and Prospective Li-Ion Battery Recycling and Recovery Processes

    NASA Astrophysics Data System (ADS)

    Heelan, Joseph; Gratz, Eric; Zheng, Zhangfeng; Wang, Qiang; Chen, Mengyuan; Apelian, Diran; Wang, Yan

    2016-06-01

    The lithium ion (Li-ion) battery industry has been growing exponentially since its initial inception in the late 20th century. As battery materials evolve, the applications for Li-ion batteries have become even more diverse. To date, the main source of Li-ion battery use varies from consumer portable electronics to electric/hybrid electric vehicles. However, even with the continued rise of Li-ion battery development and commercialization, the recycling industry is lagging; approximately 95% of Li-ion batteries are landfilled instead of recycled upon reaching end of life. Industrialized recycling processes are limited and only capable of recovering secondary raw materials, not suitable for direct reuse in new batteries. Most technologies are also reliant on high concentrations of cobalt to be profitable, and intense battery sortation is necessary prior to processing. For this reason, it is critical that a new recycling process be commercialized that is capable of recovering more valuable materials at a higher efficiency. A new technology has been developed by the researchers at Worcester Polytechnic Institute which is capable of recovering LiNi x Mn y Co z O2 cathode material from a hydrometallurgical process, making the recycling system as a whole more economically viable. By implementing a flexible recycling system that is closed-loop, recycling of Li-ion batteries will become more prevalent saving millions of pounds of batteries from entering the waste stream each year.

  14. Current and Prospective Li-Ion Battery Recycling and Recovery Processes

    NASA Astrophysics Data System (ADS)

    Heelan, Joseph; Gratz, Eric; Zheng, Zhangfeng; Wang, Qiang; Chen, Mengyuan; Apelian, Diran; Wang, Yan

    2016-10-01

    The lithium ion (Li-ion) battery industry has been growing exponentially since its initial inception in the late 20th century. As battery materials evolve, the applications for Li-ion batteries have become even more diverse. To date, the main source of Li-ion battery use varies from consumer portable electronics to electric/hybrid electric vehicles. However, even with the continued rise of Li-ion battery development and commercialization, the recycling industry is lagging; approximately 95% of Li-ion batteries are landfilled instead of recycled upon reaching end of life. Industrialized recycling processes are limited and only capable of recovering secondary raw materials, not suitable for direct reuse in new batteries. Most technologies are also reliant on high concentrations of cobalt to be profitable, and intense battery sortation is necessary prior to processing. For this reason, it is critical that a new recycling process be commercialized that is capable of recovering more valuable materials at a higher efficiency. A new technology has been developed by the researchers at Worcester Polytechnic Institute which is capable of recovering LiNi x Mn y Co z O2 cathode material from a hydrometallurgical process, making the recycling system as a whole more economically viable. By implementing a flexible recycling system that is closed-loop, recycling of Li-ion batteries will become more prevalent saving millions of pounds of batteries from entering the waste stream each year.

  15. NREL's PHEV/EV Li-Ion Battery Secondary-Use Project

    SciTech Connect

    Newbauer, J.; Pesaran, A.

    2010-06-01

    Accelerated development and market penetration of plug-in hybrid electric vehicles (PHEVs) and electric vehicles (EVs) is restricted at present by the high cost of lithium-ion (Li-ion) batteries. One way to address this problem is to recover a fraction of the Li-ion battery's cost via reuse in other applications after it is retired from service in the vehicle, when the battery may still have sufficient performance to meet the requirements of other energy storage applications.

  16. The Li-ion rechargeable battery: a perspective.

    PubMed

    Goodenough, John B; Park, Kyu-Sung

    2013-01-30

    Each cell of a battery stores electrical energy as chemical energy in two electrodes, a reductant (anode) and an oxidant (cathode), separated by an electrolyte that transfers the ionic component of the chemical reaction inside the cell and forces the electronic component outside the battery. The output on discharge is an external electronic current I at a voltage V for a time Δt. The chemical reaction of a rechargeable battery must be reversible on the application of a charging I and V. Critical parameters of a rechargeable battery are safety, density of energy that can be stored at a specific power input and retrieved at a specific power output, cycle and shelf life, storage efficiency, and cost of fabrication. Conventional ambient-temperature rechargeable batteries have solid electrodes and a liquid electrolyte. The positive electrode (cathode) consists of a host framework into which the mobile (working) cation is inserted reversibly over a finite solid-solution range. The solid-solution range, which is reduced at higher current by the rate of transfer of the working ion across electrode/electrolyte interfaces and within a host, limits the amount of charge per electrode formula unit that can be transferred over the time Δt = Δt(I). Moreover, the difference between energies of the LUMO and the HOMO of the electrolyte, i.e., electrolyte window, determines the maximum voltage for a long shelf and cycle life. The maximum stable voltage with an aqueous electrolyte is 1.5 V; the Li-ion rechargeable battery uses an organic electrolyte with a larger window, which increase the density of stored energy for a given Δt. Anode or cathode electrochemical potentials outside the electrolyte window can increase V, but they require formation of a passivating surface layer that must be permeable to Li(+) and capable of adapting rapidly to the changing electrode surface area as the electrode changes volume during cycling. A passivating surface layer adds to the impedance of the

  17. The Li-ion rechargeable battery: a perspective.

    PubMed

    Goodenough, John B; Park, Kyu-Sung

    2013-01-30

    Each cell of a battery stores electrical energy as chemical energy in two electrodes, a reductant (anode) and an oxidant (cathode), separated by an electrolyte that transfers the ionic component of the chemical reaction inside the cell and forces the electronic component outside the battery. The output on discharge is an external electronic current I at a voltage V for a time Δt. The chemical reaction of a rechargeable battery must be reversible on the application of a charging I and V. Critical parameters of a rechargeable battery are safety, density of energy that can be stored at a specific power input and retrieved at a specific power output, cycle and shelf life, storage efficiency, and cost of fabrication. Conventional ambient-temperature rechargeable batteries have solid electrodes and a liquid electrolyte. The positive electrode (cathode) consists of a host framework into which the mobile (working) cation is inserted reversibly over a finite solid-solution range. The solid-solution range, which is reduced at higher current by the rate of transfer of the working ion across electrode/electrolyte interfaces and within a host, limits the amount of charge per electrode formula unit that can be transferred over the time Δt = Δt(I). Moreover, the difference between energies of the LUMO and the HOMO of the electrolyte, i.e., electrolyte window, determines the maximum voltage for a long shelf and cycle life. The maximum stable voltage with an aqueous electrolyte is 1.5 V; the Li-ion rechargeable battery uses an organic electrolyte with a larger window, which increase the density of stored energy for a given Δt. Anode or cathode electrochemical potentials outside the electrolyte window can increase V, but they require formation of a passivating surface layer that must be permeable to Li(+) and capable of adapting rapidly to the changing electrode surface area as the electrode changes volume during cycling. A passivating surface layer adds to the impedance of the

  18. Perspectives on Li and transition metal fluoride phosphates as cathode materials for a new generation of Li-ion batteries

    PubMed Central

    Antipov, Evgeny V.; Khasanova, Nellie R.; Fedotov, Stanislav S.

    2015-01-01

    To satisfy the needs of rapidly growing applications, Li-ion batteries require further significant improvements of their key properties: specific energy and power, cyclability, safety and costs. The first generation of cathode materials for Li-ion batteries based on mixed oxides with either spinel or rock-salt derivatives has already been widely commercialized, but the potential to improve the performance of these materials further is almost exhausted. Li and transition metal inorganic compounds containing different polyanions are now considered as the most promising cathode materials for the next generation of Li-ion batteries. Further advances in cathode materials are considered to lie in combining different anions [such as (XO4)n− and F−] in the anion sublattice, which is expected to enhance the specific energy and power of these materials. This review focuses on recent advances related to the new class of cathode materials for Li-ion batteries containing phosphate and fluoride anions. Special attention is given to their crystal structures and the relationships between structure and properties, which are important for their possible practical applications. PMID:25610630

  19. Perspectives on Li and transition metal fluoride phosphates as cathode materials for a new generation of Li-ion batteries.

    PubMed

    Antipov, Evgeny V; Khasanova, Nellie R; Fedotov, Stanislav S

    2015-01-01

    To satisfy the needs of rapidly growing applications, Li-ion batteries require further significant improvements of their key properties: specific energy and power, cyclability, safety and costs. The first generation of cathode materials for Li-ion batteries based on mixed oxides with either spinel or rock-salt derivatives has already been widely commercialized, but the potential to improve the performance of these materials further is almost exhausted. Li and transition metal inorganic compounds containing different polyanions are now considered as the most promising cathode materials for the next generation of Li-ion batteries. Further advances in cathode materials are considered to lie in combining different anions [such as (XO4) (n-) and F(-)] in the anion sublattice, which is expected to enhance the specific energy and power of these materials. This review focuses on recent advances related to the new class of cathode materials for Li-ion batteries containing phosphate and fluoride anions. Special attention is given to their crystal structures and the relationships between structure and properties, which are important for their possible practical applications.

  20. Theoretical evaluation of high-energy lithium metal phosphate cathode materials in Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Howard, Wilmont F.; Spotnitz, Robert M.

    Lithium metal phosphates (olivines) are emerging as long-lived, safe cathode materials in Li-ion batteries. Nano-LiFePO 4 already appears in high-power applications, and LiMnPO 4 development is underway. Current and emerging Fe- and Mn-based intercalants, however, are low-energy producers compared to Ni and Co compounds. LiNiPO 4, a high voltage olivine, has the potential for superior energy output (>10.7 Wh in 18650 batteries), compared with commercial Li(Co,Ni)O 2 derivatives (up to 9.9 Wh). Speculative Co and Ni olivine cathode materials charged to above 4.5 V will require significant advances in electrolyte compositions and nanotechnology before commercialization. The major drivers toward 5 V battery chemistries are the inherent abuse tolerance of phosphates and the economic benefit of LiNiPO 4: it can produce 34% greater energy per dollar of cell material cost than LiAl 0.05Co 0.15Ni 0.8O 2, today's "standard" cathode intercalant in Li-ion batteries.

  1. Red Mud and Li-Ion Batteries: A Magnetic Connection.

    PubMed

    Suryawanshi, Anil; Aravindan, Vanchiappan; Madhavi, Srinivasan; Ogale, Satishchandra

    2016-08-23

    Exceptional Li-ion battery performance is presented with the oxide component of the anode was extracted from red mud by simple magnetic separation and applied directly without any further processing. The extracted material has γ-Fe2 O3 as the major phase with inter-dispersed phases of Ti, Al, and Si oxides. In a half-cell assembly, the phase displayed a reversible capacity (∼697 mA h g(-1) ) with excellent stability upon cycling. Interestingly, the stability is rendered by the multiphase constitution of the material with the presence of other electrochemically inactive metal oxides, such as Al2 O3 , SiO2 , and Fe2 TiO4 , which could accommodate the strain and facilitate release during the charge-discharge processes in the electrochemically active maghemite component. We fabricated the full-cell assembly with eco-friendly cathode LiMn2 O4 by adjusting the mass loading. Prior to full-cell assembly, an electrochemical pre-lithiation was enforced to overcome the irreversible capacity loss obtained from the anode. The full-cell delivered a capacity of ∼100 mA h g(-1) (based on cathode loading) with capacity retention of ∼61 % after 2000 cycles under ambient conditions. PMID:27403736

  2. Silicon Based Anodes for Li-Ion Batteries

    SciTech Connect

    Zhang, Jiguang; Wang, Wei; Xiao, Jie; Xu, Wu; Graff, Gordon L.; Yang, Zhenguo; Choi, Daiwon; Li, Xiaolin; Wang, Deyu; Liu, Jun

    2012-06-15

    Silicon is environmentally benign and ubiquitous. Because of its high specific capacity, it is considered one of the most promising candidates to replace the conventional graphite negative electrode used in today's Li ion batteries. Silicon has a theoretical specific capacity of nearly 4200 mAh/g (Li21Si5), which is 10 times larger than the specific capacity of graphite (LiC6, 372 mAh/g). However, the high capacity of silicon is associated with huge volume changes (more than 300 percent) when alloyed with lithium, which can cause severe cracking and pulverization of the electrode and lead to significant capacity loss. Significant scientific research has been conducted to circumvent the deterioration of silicon based anode materials during cycling. Various strategies, such as reduction of particle size, generation of active/inactive composites, fabrication of silicon based thin films, use of alternative binders, and the synthesis of 1-D silicon nanostructures have been implemented by a number of research groups. Fundamental mechanistic research has also been performed to better understand the electrochemical lithiation and delithiation process during cycling in terms of crystal structure, phase transitions, morphological changes, and reaction kinetics. Although efforts to date have not attained a commercially viable Si anode, further development is expected to produce anodes with three to five times the capacity of graphite. In this chapter, an overview of research on silicon based anodes used for lithium-ion battery applications will be presented. The overview covers electrochemical alloying of the silicon with lithium, mechanisms responsible for capacity fade, and methodologies adapted to overcome capacity degradation observed during cycling. The recent development of silicon nanowires and nanoparticles with significantly improved electrochemical performance will also be discussed relative to the mechanistic understanding. Finally, future directions on the

  3. Thermal diffusivity study of aged Li-ion batteries using flash method

    NASA Astrophysics Data System (ADS)

    Nagpure, Shrikant C.; Dinwiddie, Ralph; Babu, S. S.; Rizzoni, Giorgio; Bhushan, Bharat; Frech, Tim

    Advanced Li-ion batteries with high energy and power density are fast approaching compatibility with automotive demands. While the mechanism of operation of these batteries is well understood, the aging mechanisms are still under investigation. Investigation of aging mechanisms in Li-ion batteries becomes very challenging, as aging does not occur due to a single process, but because of multiple physical processes occurring at the same time in a cascading manner. As the current characterization techniques such as Raman spectroscopy, X-ray diffraction, and atomic force microscopy are used independent of each other they do not provide a comprehensive understanding of material degradation at different length (nm 2 to m 2) scales. Thus to relate the damage mechanisms of the cathode at mm length scale to micro/nanoscale, data at an intermediate length scale is needed. As such, we demonstrate here the use of thermal diffusivity analysis by flash method to bridge the gap between different length scales. In this paper we present the thermal diffusivity analysis of an unaged and aged cell. Thermal diffusivity analysis maps the damage to the cathode samples at millimeter scale lengths. Based on these maps we also propose a mechanism leading to the increase of the thermal diffusivity as the cells are aged.

  4. Li-Ion Battery and Supercapacitor Hybrid Design for Long Extravehicular Activities

    NASA Technical Reports Server (NTRS)

    Jeevarajan, Judith

    2013-01-01

    With the need for long periods of extravehicular activities (EVAs) on the Moon or Mars or a near-asteroid, the need for long-performance batteries has increased significantly. The energy requirements for the EVA suit, as well as surface systems such as rovers, have increased significantly due to the number of applications they need to power at the same time. However, even with the best state-of-the-art Li-ion batteries, it is not possible to power the suit or the rovers for the extended period of performance. Carrying a charging system along with the batteries makes it cumbersome and requires a self-contained power source for the charging system that is usually not possible. An innovative method to charge and use the Li-ion batteries for long periods seems to be necessary and hence, with the advent of the Li-ion supercapacitors, a method has been developed to extend the performance period of the Li-ion power system for future exploration applications. The Li-ion supercapacitors have a working voltage range of 3.8 to 2.5 V, and are different from a traditional supercapacitor that typically has a working voltage of 1 V. The innovation is to use this Li-ion supercapacitor to charge Liion battery systems on an as-needed basis. The supercapacitors are charged using solar arrays and have battery systems of low capacity in parallel to be able to charge any one battery system while they provide power to the application. Supercapacitors can safely take up fast charge since the electrochemical process involved is still based on charge separation rather than the intercalation process seen in Li-ion batteries, thus preventing lithium metal deposition on the anodes. The lack of intercalation and eliminating wear of the supercapacitors allows for them to be charged and discharged safely for a few tens of thousands of cycles. The Li-ion supercapacitors can be charged from the solar cells during the day during an extended EVA. The Liion battery used can be half the capacity

  5. Biomineralized multifunctional magnetite/carbon microspheres for applications in Li-ion batteries and water treatment.

    PubMed

    Shim, Hyun-Woo; Park, Sangbaek; Song, Hee Jo; Kim, Jae-Chan; Jang, Eunjin; Hong, Kug Sun; Kim, T Doohun; Kim, Dong-Wan

    2015-03-16

    Advanced functional materials incorporating well-defined multiscale architectures are a key focus for multiple nanotechnological applications. However, strategies for developing such materials, including nanostructuring, nano-/microcombination, hybridization, and so on, are still being developed. Here, we report a facile, scalable biomineralization process in which Micrococcus lylae bacteria are used as soft templates to synthesize 3D hierarchically structured magnetite (Fe3O4) microspheres for use as Li-ion battery anode materials and in water treatment applications. Self-assembled Fe3O4 microspheres with flower-like morphologies are systematically fabricated from biomineralized 2D FeO(OH) nanoflakes at room temperature and are subsequently subjected to post-annealing at 400 °C. In particular, because of their mesoporous properties with a hollow interior and the improved electrical conductivity resulting from the carbonized bacterial templates, the Fe3 O4 microspheres obtained by calcining the FeO(OH) in Ar exhibit enhanced cycle stability and rate capability as Li-ion battery anodes, as well as superior adsorption of organic pollutants and toxic heavy metals.

  6. Composite Cathodes for Dual-Rate Li-Ion Batteries

    NASA Technical Reports Server (NTRS)

    Whitacre, Jay; West, William; Bugga, Ratnakumar

    2008-01-01

    Composite-material cathodes that enable Li-ion electrochemical cells and batteries to function at both high energy densities and high discharge rates are undergoing development. Until now, using commercially available cathode materials, it has been possible to construct cells that have either capability for high-rate discharge or capability to store energy at average or high density, but not both capabilities. However, both capabilities are needed in robotic, standby-power, and other applications that involve duty cycles that include long-duration, low-power portions and short-duration, high-power portions. The electrochemically active ingredients of the present developmental composite cathode materials are: carbon-coated LiFePO4, which has a specific charge capacity of about 160 mA h/g and has been used as a high-discharge-rate cathode material and Li[Li(0.17)Mn(0.58)Ni(0.25)]O2, which has a specific charge capacity of about 240 mA h/g and has been used as a high-energy-density cathode material. In preparation for fabricating the composite material cathode described, these electrochemically active ingredients are incorporated into two sub-composites: a mixture comprising 10 weight percent of poly(vinylidine fluoride); 10 weight percent of carbon and 80 weight percent of carbon coated LiFePO4; and, a mixture comprising 10 weight percent of PVDF, and 80 weight percent of Li[Li(0.17)Mn(0.58)Ni(0.25)]O2. In the fabrication process, these mixtures are spray-deposited onto an aluminum current collector. Electrochemical tests performed thus far have shown that better charge/discharge performance is obtained when either 1) each mixture is sprayed on a separate area of the current collector or (2) the mixtures are deposited sequentially (in contradistinction to simultaneously) on the same current-collector area so that the resulting composite cathode material consists of two different sub-composite layers.

  7. Strain imaging of a LiCoO2 cathode in a Li-ion battery

    NASA Astrophysics Data System (ADS)

    Matsushita, Yuki; Osaka, Ryuma; Butsugan, Kenta; Takata, Keiji

    2016-09-01

    Li-ion batteries have been recognized as promising devices for a sustainable society. Layered LiCoO2 and graphite are commonly used as electrode materials for Li-ion batteries. When charging and discharging, Li-ions are extracted or inserted into the interlayers, which causes changes in volume. Scanning probe microscopy (SPM) can allow high resolution imaging of these volume changes, which enables us to investigate Li-ion migration without destruction. We observed volume changes in the LiCoO2 cathode using SPM and successfully imaged the distribution of the volume changes corresponding to the LiCoO2 particles. Volume changes in the interspace were significantly larger than those in the particles. The large volume changes are caused by electrolyte flux induced by changes in concentration of Li ions. The volume changes were greatly reduced when the electrolyte dried out. The dry-out and infiltration of electrolyte between the LiCoO2 particles and the current collector spread out with the procedure of degradation of the batteries. The boundaries between the dry-out and infiltration regions acted as barriers of electrolyte flux.

  8. Performance Testing of Yardney Li-Ion Cells and Batteries in Support of Future NASA Missions

    NASA Technical Reports Server (NTRS)

    Smart, M. C.; Ratnakumar, B. V.; Whitcanack, L. D.; Puglia, F. J.; Santee, S.; Gitzendanner, R.

    2009-01-01

    NASA requires lightweight rechargeable batteries for future missions to Mars and the outer planets that are capable of operating over a wide range of temperatures, with high specific energy and energy densities. Due to the attractive performance characteristics, Li-ion batteries have been identified as the battery chemistry of choice for a number of future applications. For example, JPL is planning to launch another unmanned rover mission to the planet Mars. This mission, referred to as the Mars Science Laboratory (MSL), will involve the use of a rover that is much larger than the previously developed Spirit and Opportunity Rovers for the 2003 Mars Exploration Rover (MER) mission, that are currently still in operation on the surface of the planet after more than five years. Part of the reason that the MER rovers have operated so successfully, far exceeding the required mission duration of 90 sols, is that they possess robust Li-ion batteries, manufactured by Yardney Technical Products, which have demonstrated excellent life characteristics. Given the excellent performance characteristics displayed, similar Li-ion batteries have been projected to successfully meet the mission requirements of the up-coming MSL mission. In addition to future missions to Mars, Li-ion technology is attractive for a number of other future NASA applications which require high specific energy, rechargeable batteries. To ascertain the viability of using Li-ion batteries for these applications, a number of performance validation tests have been performed on both Yardney cells and batteries of various sizes. These tests include mission simulation tests, charge and discharge rate characterization testing, cycle life testing under various conditions, and storage testing.

  9. Chemical recycling of cell phone Li-ion batteries: Application in environmental remediation.

    PubMed

    Gonçalves, Mariana C Abreu; Garcia, Eric M; Taroco, Hosane A; Gorgulho, Honória F; Melo, Júlio O F; Silva, Rafael R A; Souza, Amauri G

    2015-06-01

    This paper presents, for the first time, the recycling and use of spent Li-ion battery cathode tape as a catalyst in the degradation of an organic dye. In our proposal, two major environmental problems can be solved: the secure disposal of cell phone batteries and the treatment of effluents with potentially toxic organic dyes. The spent Li-ion battery cathode investigated in this paper corresponds to 29% of the mass of Li-ion batteries and is made up of 83% LiCoO2, 14.5% C and less than 2.5% Al, Al2O3 and Co3O4. The use of spent Li-ion battery cathode tape increased the degradation velocity constant of methylene blue in the absence of light by about 200 times in relation to pure H2O2. This increase can be explained by a reduction in the activation energy from 83 kJ mol(-1) to 26 kJ mol(-1). The mechanism of degradation promoted by LiCoO2 is probably related to the generation of superoxide radical (O2(-)). The rupture of the aromatic rings of methylene blue was analyzed by ESI-MS.

  10. Integrated li-ion ultracapacitor with lead acid battery for vehicular start-stop

    NASA Astrophysics Data System (ADS)

    Manla, Emad

    Advancements in automobile manufacturing aim at improving the driving experience at every level possible. One improvement aspect is increasing gas efficiency via hybridization, which can be achieved by introducing a feature called start-stop. This feature automatically switches the internal combustion engine off when it idles and switches it back on when it is time to resume driving. This application has been proven to reduce the amount of gas consumption and emission of greenhouse effect gases in the atmosphere. However, the repeated cranking of the engine puts a large amount of stress on the lead acid battery required to perform the cranking, which effectively reduces its life span. This dissertation presents a hybrid energy storage system assembled from a lead acid battery and an ultracapacitor module connected in parallel. The Li-ion ultracapacitor was tested and modeled to predict its behavior when connected in a system requiring pulsed power such as the one proposed. Both test and simulation results show that the proposed hybrid design significantly reduces the cranking loading and stress on the battery. The ultracapacitor module can take the majority of the cranking current, effectively reducing the stress on the battery. The amount of cranking current provided by the ultracapacitor can be easily controlled via controlling the resistance of the cable connected directly between the ultracapacitor module and the car circuitry.

  11. Low Defect FeFe(CN)6 Framework as Stable Host Material for High Performance Li-Ion Batteries.

    PubMed

    Wu, Xianyong; Shao, Miaomiao; Wu, Chenghao; Qian, Jiangfeng; Cao, Yuliang; Ai, Xinping; Yang, Hanxi

    2016-09-14

    Low cost and high performance Li-ion batteries have been extensively pursued for grid-scale energy storage applications; however, their development has been impeded for a long time due to the lack of qualified cathode materials with not only decent electrochemical performance but also resource abundance and low price. In this paper, we report Prussian-blue type FeFe(CN)6 nanocrystals with well-controlled lattice defects and perfect nanocubic morphology, which can exhibit a high Li-storage capacity of 160 mAh g(-1), a strong rate performance at 24 C, and a superior cycle stability with 90% capacity retention over 300 cycles. This low defect lattice and its excellent Li-insertion performance might provide a new insight into the design of advanced Li-ion battery materials and also a competitive alternative to the presently developed Li(+) insertion cathodes to develop low cost and high performance Li-ion batteries for grid-scale energy storage applications.

  12. Low Defect FeFe(CN)6 Framework as Stable Host Material for High Performance Li-Ion Batteries.

    PubMed

    Wu, Xianyong; Shao, Miaomiao; Wu, Chenghao; Qian, Jiangfeng; Cao, Yuliang; Ai, Xinping; Yang, Hanxi

    2016-09-14

    Low cost and high performance Li-ion batteries have been extensively pursued for grid-scale energy storage applications; however, their development has been impeded for a long time due to the lack of qualified cathode materials with not only decent electrochemical performance but also resource abundance and low price. In this paper, we report Prussian-blue type FeFe(CN)6 nanocrystals with well-controlled lattice defects and perfect nanocubic morphology, which can exhibit a high Li-storage capacity of 160 mAh g(-1), a strong rate performance at 24 C, and a superior cycle stability with 90% capacity retention over 300 cycles. This low defect lattice and its excellent Li-insertion performance might provide a new insight into the design of advanced Li-ion battery materials and also a competitive alternative to the presently developed Li(+) insertion cathodes to develop low cost and high performance Li-ion batteries for grid-scale energy storage applications. PMID:27556906

  13. First Li-Ion Battery On-Board A Russian Commercial Geo Satellite

    NASA Astrophysics Data System (ADS)

    Masgrangeas, David; Lagattu, Benoit; Nesterishin, Michael; Krenko, Alexander

    2011-10-01

    This paper deals with the first integration of a Li-ion battery from a western company aboard a Russian commercial GEO satellite. State of the art electrochemistry allied with innovative battery design lead to successful contract for development, manufacturing and delivery of flight hardware. After several months of joint technical work, two batteries were delivered for integration and tested inside a GEO spacecraft. Delivery conditions of a Li-ion battery were also part of the challenge and were successfully filled by both parties. This paper presents the first results of interfacing batteries and spacecraft. Mechanical, thermal and electrical aspects are discussed as well as learned lessons. Beyond cultural and technical habits and despite language barriers, this contract was a true success story between two major companies, each leading its own market share.

  14. Contribution of Li-ion batteries to the environmental impact of electric vehicles.

    PubMed

    Notter, Dominic A; Gauch, Marcel; Widmer, Rolf; Wäger, Patrick; Stamp, Anna; Zah, Rainer; Althaus, Hans-Jörg

    2010-09-01

    Battery-powered electric cars (BEVs) play a key role in future mobility scenarios. However, little is known about the environmental impacts of the production, use and disposal of the lithium ion (Li-ion) battery. This makes it difficult to compare the environmental impacts of BEVs with those of internal combustion engine cars (ICEVs). Consequently, a detailed lifecycle inventory of a Li-ion battery and a rough LCA of BEV based mobility were compiled. The study shows that the environmental burdens of mobility are dominated by the operation phase regardless of whether a gasoline-fueled ICEV or a European electricity fueled BEV is used. The share of the total environmental impact of E-mobility caused by the battery (measured in Ecoindicator 99 points) is 15%. The impact caused by the extraction of lithium for the components of the Li-ion battery is less than 2.3% (Ecoindicator 99 points). The major contributor to the environmental burden caused by the battery is the supply of copper and aluminum for the production of the anode and the cathode, plus the required cables or the battery management system. This study provides a sound basis for more detailed environmental assessments of battery based E-mobility. PMID:20695466

  15. Contribution of Li-ion batteries to the environmental impact of electric vehicles.

    PubMed

    Notter, Dominic A; Gauch, Marcel; Widmer, Rolf; Wäger, Patrick; Stamp, Anna; Zah, Rainer; Althaus, Hans-Jörg

    2010-09-01

    Battery-powered electric cars (BEVs) play a key role in future mobility scenarios. However, little is known about the environmental impacts of the production, use and disposal of the lithium ion (Li-ion) battery. This makes it difficult to compare the environmental impacts of BEVs with those of internal combustion engine cars (ICEVs). Consequently, a detailed lifecycle inventory of a Li-ion battery and a rough LCA of BEV based mobility were compiled. The study shows that the environmental burdens of mobility are dominated by the operation phase regardless of whether a gasoline-fueled ICEV or a European electricity fueled BEV is used. The share of the total environmental impact of E-mobility caused by the battery (measured in Ecoindicator 99 points) is 15%. The impact caused by the extraction of lithium for the components of the Li-ion battery is less than 2.3% (Ecoindicator 99 points). The major contributor to the environmental burden caused by the battery is the supply of copper and aluminum for the production of the anode and the cathode, plus the required cables or the battery management system. This study provides a sound basis for more detailed environmental assessments of battery based E-mobility.

  16. Reaction temperature sensing (RTS)-based control for Li-ion battery safety.

    PubMed

    Zhang, Guangsheng; Cao, Lei; Ge, Shanhai; Wang, Chao-Yang; Shaffer, Christian E; Rahn, Christopher D

    2015-12-11

    We report reaction temperature sensing (RTS)-based control to fundamentally enhance Li-ion battery safety. RTS placed at the electrochemical interface inside a Li-ion cell is shown to detect temperature rise much faster and more accurately than external measurement of cell surface temperature. We demonstrate, for the first time, that RTS-based control shuts down a dangerous short-circuit event 3 times earlier than surface temperature- based control and prevents cell overheating by 50 °C and the resultant cell damage.

  17. Reaction temperature sensing (RTS)-based control for Li-ion battery safety

    PubMed Central

    Zhang, Guangsheng; Cao, Lei; Ge, Shanhai; Wang, Chao-Yang; Shaffer, Christian E.; Rahn, Christopher D.

    2015-01-01

    We report reaction temperature sensing (RTS)-based control to fundamentally enhance Li-ion battery safety. RTS placed at the electrochemical interface inside a Li-ion cell is shown to detect temperature rise much faster and more accurately than external measurement of cell surface temperature. We demonstrate, for the first time, that RTS-based control shuts down a dangerous short-circuit event 3 times earlier than surface temperature- based control and prevents cell overheating by 50 °C and the resultant cell damage. PMID:26658957

  18. High Voltage Li-Ion Battery Using Exfoliated Graphite/Graphene Nanosheets Anode.

    PubMed

    Agostini, Marco; Brutti, Sergio; Hassoun, Jusef

    2016-05-01

    The achievement of a new generation of lithium-ion battery, suitable for a continuously growing consumer electronic and sustainable electric vehicle markets, requires the development of new, low-cost, and highly performing materials. Herein, we propose a new and efficient lithium-ion battery obtained by coupling exfoliated graphite/graphene nanosheets (EGNs) anode and high-voltage, spinel-structure cathode. The anode shows a capacity exceeding by 40% that ascribed to commercial graphite in lithium half-cell, at very high C-rate, due to its particular structure and morphology as demonstrated by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The Li-ion battery reveals excellent efficiency and cycle life, extending up to 150 cycles, as well as an estimated practical energy density of about 260 Wh kg(-1), that is, a value well exceeding the one associated with the present-state Li-ion battery.

  19. Nanometer-scale electrochemical intercalation and diffusion mapping of Li-ion battery materials

    SciTech Connect

    Balke, Nina; Jesse, Stephen; Morozovska, A. N.; Eliseev, E. A.; Chung, Ding-wen; Garcia, R. Edwin; Dudney, Nancy J; Kalinin, Sergei V

    2010-01-01

    The electrochemical energy storage systems based on Li-based insertion and reconstitution chemistries are a vital component of future energy technologies. Development of high energy and power density materials demands detailed understanding of the nanoscale mechanisms involved in Li-battery operation, including the interplay between the interfacial electrochemical reactions, electron and Li-ion diffusion, and structural defects. We demonstrate that strong coupling between Li-ion concentration and lattice parameters can be used as an efficient basis for real-space imaging of Li-ion currents and electrochemical reactivity on the nanometer length scales, providing what until now has been an elusive view of the electrochemical reactivity on a level of single structural element.

  20. Low-temperature performance of Li-ion batteries: The behavior of lithiated graphite

    NASA Astrophysics Data System (ADS)

    Senyshyn, A.; Mühlbauer, M. J.; Dolotko, O.; Ehrenberg, H.

    2015-05-01

    Safety issues along with the substantially reduced energy and power capabilities of Li-ion cells, operated at low temperatures, pose a technical barrier limiting their use in electric vehicles and aerospace applications. A combined in situ high-resolution neutron powder diffraction and electrochemical study on Li-ion cells of the 18650-type over a temperature range from 230 K to 320 K is reported with a focus on the graphite anode and the low temperature performance of the cell. Instead of a quasi-continuous behavior as observed at ambient temperatures, an anomalous behavior occurs upon discharge at low temperature, primarily reflected in the abrupt character of the LiC12 - to - graphite phase transformation and the unusual temperature dependence of the amount of LiC6. An instability of lithiated graphite phases at temperatures below 250 K is observed, which affects the performance of Li-ion batteries at low temperatures.

  1. High performance Li-ion sulfur batteries enabled by intercalation chemistry.

    PubMed

    Lv, Dongping; Yan, Pengfei; Shao, Yuyan; Li, Qiuyan; Ferrara, Seth; Pan, Huilin; Graff, Gordon L; Polzin, Bryant; Wang, Chongmin; Zhang, Ji-Guang; Liu, Jun; Xiao, Jie

    2015-09-11

    The unstable interface of lithium metal in high energy density Li sulfur (Li-S) batteries raises concerns of poor cycling, low efficiency and safety issues, which may be addressed by using intercalation types of anode. Herein, a new prototype of Li-ion sulfur battery with high performance has been demonstrated by coupling a graphite anode with a sulfur cathode (2 mA h cm(-2)) after successfully addressing the interface issue of graphite in an ether based electrolyte. PMID:26214797

  2. High performance Li-ion sulfur batteries enabled by intercalation chemistry.

    PubMed

    Lv, Dongping; Yan, Pengfei; Shao, Yuyan; Li, Qiuyan; Ferrara, Seth; Pan, Huilin; Graff, Gordon L; Polzin, Bryant; Wang, Chongmin; Zhang, Ji-Guang; Liu, Jun; Xiao, Jie

    2015-09-11

    The unstable interface of lithium metal in high energy density Li sulfur (Li-S) batteries raises concerns of poor cycling, low efficiency and safety issues, which may be addressed by using intercalation types of anode. Herein, a new prototype of Li-ion sulfur battery with high performance has been demonstrated by coupling a graphite anode with a sulfur cathode (2 mA h cm(-2)) after successfully addressing the interface issue of graphite in an ether based electrolyte.

  3. Nanoscale interface control for high-performance Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Oh, Yuhong; Nam, Seunghoon; Wi, Sungun; Hong, Saeromi; Park, Byungwoo

    2012-04-01

    Li-ion batteries have attracted great interest for the past decades, and now are one of the most important power sources for portable electronic devices, store electricity, hybrid electric vehicles (HEV), etc. However, Li-ion-battery technologies still have several problems related to the electrochemical performance (cycle-life performance and power density) or safety of the active electrode materials. There have been numerous breakthrough challenges to overcome these problems by extensive research. Among the various methods to improve the battery's electrochemical properties, nanoscale coating on active materials and control of the nanostructured morphology were proven as effective approaches over the last decade. In this review paper, enhanced electrochemical properties of the cathode and anode materials via nanoscale interface modification and the respective enhancing mechanisms will be discussed.

  4. Pyro-synthesis of a high rate nano-Li3V2(PO4)3/C cathode with mixed morphology for advanced Li-ion batteries

    PubMed Central

    Kang, Jungwon; Mathew, Vinod; Gim, Jihyeon; Kim, Sungjin; Song, Jinju; Im, Won Bin; Han, Junhee; Lee, Jeong Yong; Kim, Jaekook

    2014-01-01

    A monoclinic Li3V2(PO4)3/C (LVP/C) cathode for lithium battery applications was synthesized by a polyol-assisted pyro-synthesis. The polyol in the present synthesis acts not only as a solvent, reducing agent and a carbon source but also as a low-cost fuel that facilitates a combustion process combined with the release of ultrahigh exothermic energy useful for nucleation process. Subsequent annealing of the amorphous particles at 800°C for 5 h is sufficient to produce highly crystalline LVP/C nanoparticles. A combined analysis of X-ray diffraction (XRD) and neutron powder diffraction (NPD) patterns was used to determine the unit cell parameters of the prepared LVP/C. Electron microscopic studies revealed rod-type particles of length ranging from nanometer to micrometers dispersed among spherical particles with average particle-sizes in the range of 20–30 nm. When tested for Li-insertion properties in the potential windows of 3–4.3 and 3–4.8 V, the LVP/C cathode demonstrated initial discharge capacities of 131 and 196 mAh/g (~100% theoretical capacities) at 0.15 and 0.1 C current densities respectively with impressive capacity retentions for 50 cycles. Interestingly, the LVP/C cathode delivered average specific capacities of 125 and 90 mAh/g at current densities of 9.6 C and 15 C respectively within the lower potential window. PMID:24509825

  5. Sampling based State of Health estimation methodology for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Camci, Fatih; Ozkurt, Celil; Toker, Onur; Atamuradov, Vepa

    2015-03-01

    Storage and management of energy is becoming a more and more important problem every day, especially for electric and hybrid vehicle applications. Li-ion battery is one of the most important technological alternatives for high capacity energy storage and related industrial applications. State of Health (SoH) of Li-ion batteries plays a critical role in their deployment from economic, safety, and availability aspects. Most, if not all, of the studies related to SoH estimation focus on the measurement of a new parameter/physical phenomena related to SoH, or development of new statistical/computational methods using several parameters. This paper presents a new approach for SoH estimation for Li-ion battery systems with multiple battery cells: The main idea is a new circuit topology which enables separation of battery cells into two groups, main and test batteries, whenever a SoH related measurement is to be conducted. All battery cells will be connected to the main battery during the normal mode of operation. When a measurement is needed for SoH estimation, some of the cells will be separated from the main battery, and SoH estimation related measurements will be performed on these units. Compared to classical SoH measurement methods which deal with whole battery system, the proposed method estimates the SoH of the system by separating a small but representative set of cells. While SoH measurements are conducted on these isolated cells, remaining cells in the main battery continue to function in normal mode, albeit in slightly reduced performance levels. Preliminary experimental results are quite promising, and validate the feasibility of the proposed approach. Technical details of the proposed circuit architecture are also summarized in the paper.

  6. Association and Diffusion of Li(+) in Carboxymethylcellulose Solutions for Environmentally Friendly Li-ion Batteries.

    PubMed

    Casalegno, Mosè; Castiglione, Franca; Passarello, Marco; Mele, Andrea; Passerini, Stefano; Raos, Guido

    2016-07-21

    Carboxymethylcellulose (CMC) has been proposed as a polymeric binder for electrodes in environmentally friendly Li-ion batteries. Its physical properties and interaction with Li(+) ions in water are interesting not only from the point of view of electrode preparation-processability in water is one of the main reasons for its environmental friendliness-but also for its possible application in aqueous Li-ion batteries. We combine molecular dynamics simulations and variable-time pulsed field gradient spin-echo (PFGSE) NMR spectroscopy to investigate Li(+) transport in CMC-based solutions. Both the simulations and experimental results show that, at concentrations at which Li-CMC has a gel-like consistency, the Li(+) diffusion coefficient is still very close to that in water. These Li(+) ions interact preferentially with the carboxylate groups of CMC, giving rise to a rich variety of coordination patterns. However, the diffusion of Li(+) in these systems is essentially unrestricted, with a fast, nanosecond-scale exchange of the ions between CMC and the aqueous environment. PMID:27253620

  7. Association and Diffusion of Li(+) in Carboxymethylcellulose Solutions for Environmentally Friendly Li-ion Batteries.

    PubMed

    Casalegno, Mosè; Castiglione, Franca; Passarello, Marco; Mele, Andrea; Passerini, Stefano; Raos, Guido

    2016-07-21

    Carboxymethylcellulose (CMC) has been proposed as a polymeric binder for electrodes in environmentally friendly Li-ion batteries. Its physical properties and interaction with Li(+) ions in water are interesting not only from the point of view of electrode preparation-processability in water is one of the main reasons for its environmental friendliness-but also for its possible application in aqueous Li-ion batteries. We combine molecular dynamics simulations and variable-time pulsed field gradient spin-echo (PFGSE) NMR spectroscopy to investigate Li(+) transport in CMC-based solutions. Both the simulations and experimental results show that, at concentrations at which Li-CMC has a gel-like consistency, the Li(+) diffusion coefficient is still very close to that in water. These Li(+) ions interact preferentially with the carboxylate groups of CMC, giving rise to a rich variety of coordination patterns. However, the diffusion of Li(+) in these systems is essentially unrestricted, with a fast, nanosecond-scale exchange of the ions between CMC and the aqueous environment.

  8. Review on recent progress of nanostructured anode materials for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Goriparti, Subrahmanyam; Miele, Ermanno; De Angelis, Francesco; Di Fabrizio, Enzo; Proietti Zaccaria, Remo; Capiglia, Claudio

    2014-07-01

    This review highlights the recent research advances in active nanostructured anode materials for the next generation of Li-ion batteries (LIBs). In fact, in order to address both energy and power demands of secondary LIBs for future energy storage applications, it is required the development of innovative kinds of electrodes. Nanostructured materials based on carbon, metal/semiconductor, metal oxides and metal phosphides/nitrides/sulfides show a variety of admirable properties for LIBs applications such as high surface area, low diffusion distance, high electrical and ionic conductivity. Therefore, nanosized active materials are extremely promising for bridging the gap towards the realization of the next generation of LIBs with high reversible capacities, increased power capability, long cycling stability and free from safety concerns. In this review, anode materials are classified, depending on their electrochemical reaction with lithium, into three groups: intercalation/de-intercalation, alloy/de-alloy and conversion materials. Furthermore, the effect of nanoscale size and morphology on the electrochemical performance is presented. Synthesis of the nanostructures, lithium battery performance and electrode reaction mechanisms are also discussed. To conclude, the main aim of this review is to provide an organic outline of the wide range of recent research progresses and perspectives on nanosized active anode materials for future LIBs.

  9. An omnipotent Li-ion battery charger with multimode control and polarity reversible techniques

    NASA Astrophysics Data System (ADS)

    Chen, Jiann-Jong; Ku, Yi-Tsen; Yang, Hong-Yi; Hwang, Yuh-Shyan; Yu, Cheng-Chieh

    2016-07-01

    The omnipotent Li-ion battery charger with multimode control and polarity reversible techniques is presented in this article. The proposed chip is fabricated with TSMC 0.35μm 2P4M complementary metal-oxide- semiconductor processes, and the chip area including pads is 1.5 × 1.5 mm2. The structure of the omnipotent charger combines three charging modes and polarity reversible techniques, which adapt to any Li-ion batteries. The three reversible Li-ion battery charging modes, including trickle-current charging, large-current charging and constant-voltage charging, can charge in matching polarities or opposite polarities. The proposed circuit has a maximum charging current of 300 mA and the input voltage of the proposed circuit is set to 4.5 V. The maximum efficiency of the proposed charger is about 91% and its average efficiency is 74.8%. The omnipotent charger can precisely provide the charging current to the battery.

  10. High resolution morphology and electrical characterization of aged Li-ion battery cathode.

    PubMed

    Ramdon, Sanjay; Bhushan, Bharat

    2012-08-15

    Understanding the changes that take place in an aged Lithium-ion (Li-ion) battery cathode is vital to improving battery storage capabilities. High resolution imaging using an atomic force microscope (AFM) and current measurement capabilities are used to determine the difference in surface morphology as well as conductance between unaged and aged cathode. Upon aging, agglomeration of LiFePO(4) particles with nanocrystalline deposits is observed and the samples show lower conductance and hence increased resistance. The data identifies potential degradation mechanisms which reduce the conductivity of the cathode leading to poor cycling performance of the battery.

  11. Diphenyloctyl phosphate as a flame-retardant additive in electrolyte for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Shim, Eun-Gi; Nam, Tae-Heum; Kim, Jung-Gu; Kim, Hyun-Soo; Moon, Seong-In

    The use of diphenyloctyl phosphate (DPOF) as a flame-retardant additive in liquid electrolyte for Li-ion batteries is investigated. Mesocarbon microbeads (MCMB) and LiCoO 2 are used as the anode and cathode materials, respectively. Cyclic voltammetry (CV), differential scanning calorimetry (DSC), electrochemical impedance spectroscopy (EIS), and scanning electron microscopy (SEM) are used for the analyses. The cell with DPOF shows better electrochemical cell performance than that without DPOF in initial charge/discharge and rate performance tests. In cycling tests, a cell with DPOF-containing electrolyte exhibited better discharge capacity and capacity retention than that of the DPOF-free electrolyte after cycling. These results confirm the viability of using DPOF as a flame-retardant additive for improving the cell performance and thermal stability of electrolytes for Li-ion batteries.

  12. Flexible free-standing graphene/SnO₂ nanocomposites paper for Li-ion battery.

    PubMed

    Liang, Junfei; Zhao, Yue; Guo, Lin; Li, Lidong

    2012-11-01

    A flexible free-standing graphene/SnO₂ nanocomposites paper (GSP) was prepared by coupling a simple filtration method and a thermal reduction together for the first time. Compared with the pure SnO₂ nanoparticles, the GSP exhibited a better cycling stability, because the graphene with high mechanical strength and elasticity can work as a buffer to prevent the volume expansion and contraction of SnO₂ nanoparticles during the Li⁺ insertion/extraction process. Meanwhile, compared with single graphene paper, the GSP showed a higher capacity because of the hybridizing with higher capacity SnO₂ nanoparticles. The excellent electrochemical performance of the GSP as an anode material in Li-ion battery was obtained. The as-prepared GSP shows a great potential for flexible Li-ion batteries.

  13. NANOSTRUCTURED METAL OXIDES FOR ANODES OF LI-ION RECHARGEABLE BATTERIES

    SciTech Connect

    Au, M.

    2009-12-04

    The aligned nanorods of Co{sub 3}O{sub 4} and nanoporous hollow spheres (NHS) of SnO{sub 2} and Mn{sub 2}O{sub 3} were investigated as the anodes for Li-ion rechargeable batteries. The Co{sub 3}O{sub 4} nanorods demonstrated 1433 mAh/g reversible capacity. The NHS of SnO{sub 2} and Mn{sub 2}O{sub 3} delivered 400 mAh/g and 250 mAh/g capacities respectively in multiple galvonastatic discharge-charge cycles. It was found that high capacity of NHS of metal oxides is sustainable attributed to their unique structure that maintains material integrity during cycling. The nanostructured metal oxides exhibit great potential as the new anode materials for Li-ion rechargeable batteries with high energy density, low cost and inherent safety.

  14. Nanostructured ion beam-modified Ge films for high capacity Li ion battery anodes

    SciTech Connect

    Rudawski, N. G.; Darby, B. L.; Yates, B. R.; Jones, K. S.; Elliman, R. G.; Volinsky, A. A.

    2012-02-20

    Nanostructured ion beam-modified Ge electrodes fabricated directly on Ni current collector substrates were found to exhibit excellent specific capacities during electrochemical cycling in half-cell configuration with Li metal for a wide range of cycling rates. Structural characterization revealed that the nanostructured electrodes lose porosity during cycling but maintain excellent electrical contact with the metallic current collector substrate. These results suggest that nanostructured Ge electrodes have great promise for use as high performance Li ion battery anodes.

  15. Synthesis, Characterization and Testing of Novel Anode and Cathode Materials for Li-Ion Batteries

    SciTech Connect

    White, Ralph E.; Popov, Branko N.

    2002-10-31

    During this program we have synthesized and characterized several novel cathode and anode materials for application in Li-ion batteries. Novel synthesis routes like chemical doping, electroless deposition and sol-gel method have been used and techniques like impedance, cyclic voltammetry and charge-discharge cycling have been used to characterize these materials. Mathematical models have also been developed to fit the experimental result, thus helping in understanding the mechanisms of these materials.

  16. Antiperovskite Li 3 OCl superionic conductor films for solid-state Li-ion batteries

    DOE PAGES

    Lü, Xujie; Howard, John W.; Chen, Aiping; Zhu, Jinlong; Li, Shuai; Wu, Gang; Dowden, Paul; Xu, Hongwu; Zhao, Yusheng; Jia, Quanxi

    2016-02-02

    We prepared antiperovskite Li3OCl superionic conductor films via pulsed laser deposition using a composite target. A significantly enhanced ionic conductivity of 2.0 × 10-4 S cm-1 at room temperature is achieved, and this value is more than two orders of magnitude higher than that of its bulk counterpart. Moreover, the applicability of Li3OCl as a solid electrolyte for Li-ion batteries is demonstrated.

  17. Thermal management of Li-ion battery with phase change material for electric scooters: experimental validation

    NASA Astrophysics Data System (ADS)

    Khateeb, Siddique A.; Amiruddin, Shabab; Farid, Mohammed; Selman, J. Robert; Al-Hallaj, Said

    This work reports the laboratory test results of a Li-ion battery designed for electric scooter applications. Four different modes of heat dissipation were investigated in this experimental study: (1) natural convection cooling; (2) presence of aluminum foam heat transfer matrix; (3) use of phase change material (PCM); and (4) combination of aluminum foam and PCM. The objective of using the PCM is to lower the temperature rise of the Li-ion cells and create a uniform temperature distribution in the battery module. This is clearly justified looking at the experimental results presented in this work. The use of high thermal conductivity aluminum foam in the voids between the cells reduces the temperature rise of the Li-ion cells but is insufficient when operated in high ambient temperature such as those usually occur in summer. The use of aluminum foam with PCM causes a significant temperature drop of about 50% compared to the first case of no thermal management. It also provides uniform temperature distribution within the battery module, which is important for the efficient performance of the cells used. The laboratory results were modeled using a 2-D thermal model accounting for the four different modes of heat dissipation and good agreement was obtained between the simulation and experimental results.

  18. Enhanced autonomic shutdown of Li-ion batteries by polydopamine coated polyethylene microspheres

    NASA Astrophysics Data System (ADS)

    Baginska, Marta; Blaiszik, Benjamin J.; Rajh, Tijana; Sottos, Nancy R.; White, Scott R.

    2014-12-01

    Thermally triggered autonomic shutdown of a Lithium-ion (Li-ion) battery is demonstrated using polydopamine (PDA)-coated polyethylene microspheres applied onto a battery anode. The microspheres are dispersed in a buffered 10 mM dopamine salt solution and the pH is raised to initiate the polymerization and coat the microspheres. Coated microspheres are then mixed with an aqueous binder, applied onto a battery anode surface, dried, and incorporated into Li-ion coin cells. FTIR and Raman spectroscopy are used to verify the presence of the polydopamine on the surface of the microspheres. Scanning electron microscopy is used to examine microsphere surface morphology and resulting anode coating quality. Charge and discharge capacity, as well as impedance, are measured for Li-ion coin cells as a function of microsphere content. Autonomous shutdown is achieved by applying 1.7 mg cm-2 of PDA-coated microspheres to the electrode. The PDA coating significantly reduces the mass of microspheres for effective shutdown compared to our prior work with uncoated microspheres.

  19. Enhanced autonomic shutdown of Li-ion batteries by polydopamine coated polyethylene microspheres

    SciTech Connect

    Baginska, Marta; Blaiszik, Benjamin J.; Rajh, Tijana; Sottos, Nancy R.; White, Scott R.

    2014-07-17

    Thermally triggered autonomic shutdown of a Lithium-ion (Li-ion) battery is demonstrated using polydopamine (PDA)-coated polyethylene microspheres applied onto a battery anode. The microspheres are dispersed in a buffered 10 mM dopamine salt solution and the pH is raised to initiate the polymerization and coat the microspheres. Coated microspheres are then mixed with an aqueous binder, applied onto a battery anode surface, dried, and incorporated into Li-ion coin cells. FTIR and Raman spectroscopy are used to verify the presence of the polydopamine on the surface of the microspheres. Scanning electron microscopy is used to examine microsphere surface morphology and resulting anode coating quality. Charge and discharge capacity, as well as impedance, are measured for Li-ion coin cells as a function of microsphere content. Autonomous shutdown is achieved by applying 1.7 mg cm–2 of PDA-coated microspheres to the electrode. Furthermore, the PDA coating significantly reduces the mass of microspheres for effective shutdown compared to our prior work with uncoated microspheres.

  20. Enhanced autonomic shutdown of Li-ion batteries by polydopamine coated polyethylene microspheres

    DOE PAGES

    Baginska, Marta; Blaiszik, Benjamin J.; Rajh, Tijana; Sottos, Nancy R.; White, Scott R.

    2014-07-17

    Thermally triggered autonomic shutdown of a Lithium-ion (Li-ion) battery is demonstrated using polydopamine (PDA)-coated polyethylene microspheres applied onto a battery anode. The microspheres are dispersed in a buffered 10 mM dopamine salt solution and the pH is raised to initiate the polymerization and coat the microspheres. Coated microspheres are then mixed with an aqueous binder, applied onto a battery anode surface, dried, and incorporated into Li-ion coin cells. FTIR and Raman spectroscopy are used to verify the presence of the polydopamine on the surface of the microspheres. Scanning electron microscopy is used to examine microsphere surface morphology and resulting anodemore » coating quality. Charge and discharge capacity, as well as impedance, are measured for Li-ion coin cells as a function of microsphere content. Autonomous shutdown is achieved by applying 1.7 mg cm–2 of PDA-coated microspheres to the electrode. Furthermore, the PDA coating significantly reduces the mass of microspheres for effective shutdown compared to our prior work with uncoated microspheres.« less

  1. Improved Control of Charging Voltage for Li-Ion Battery

    NASA Technical Reports Server (NTRS)

    Timmerman, Paul; Bugga, Ratnakumar

    2006-01-01

    The protocol for charging a lithium-ion battery would be modified, according to a proposal, to compensate for the internal voltage drop (charging current internal resistance of the battery). The essence of the modification is to provide for measurement of the internal voltage drop and to increase the terminal-voltage setting by the amount of the internal voltage drop. Ordinarily, a lithium-ion battery is charged at constant current until its terminal voltage attains a set value equal to the nominal full-charge potential. The set value is chosen carefully so as not to exceed the lithium-plating potential, because plated lithium in metallic form constitutes a hazard. When the battery is charged at low temperature, the internal voltage drop is considerable because the electrical conductivity of the battery electrolyte is low at low temperature. Charging the battery at high current at any temperature also gives rise to a high internal voltage drop. In some cases, the internal voltage drop can be as high as 1 volt per cell. Because the voltage available for charging is less than the terminal voltage by the amount of the internal voltage drop, the battery is not fully charged (see figure), even when the terminal voltage reaches the set value. In the modified protocol, the charging current would be periodically interrupted so that the zero-current battery-terminal voltage indicative of the state of charge could be measured. The terminal voltage would also be measured at full charging current. The difference between the full-current and zero-current voltages would equal the internal voltage drop. The set value of terminal voltage would then be increased beyond the nominal full-charge potential by the amount of the internal voltage drop. This adjustment would be performed repeatedly, in real time, so that the voltage setting would track variations in the internal voltage drop to afford full charge without risk of lithium plating. If the charging current and voltage settings

  2. An Update on the Performance of Li-Ion Rechargeable Batteries on Mars Rovers

    NASA Technical Reports Server (NTRS)

    Ratnakumara, Bugga V.; Smart, M. C.; Whitcanack, L. D.; Chin, K. B.; Ewell, R. C.; Surampudi, S.; Puglia, F.; Gitzendanner, R.

    2006-01-01

    NASA's Mars Rovers, Spirit and Opportunity have been exploring the surface of Mars for the last thirty months, far exceeding the primary mission life of three months, performing astounding geological studies to examine the habitability of Mars. Such an extended mission life may be attributed to impressive performances of several subsystems, including power subsystem components, i.e., solar array and batteries. The novelty and challenge for this mission in terms of energy storage is the use of lithium-ion batteries, for the first time in a major NASA mission, for keeping the rover electronics warm, and supporting nighttime experimentation and communications. The use of Li-ion batteries has considerably enhanced or even enabled these rovers, by providing greater mass and volume allocations for the payload and wider range of operating temperatures for the power subsystem and thus reduced thermal management. After about 800 days of exploration, there is only marginal change in the end-of discharge (EOD) voltages of the batteries or in their capacities, as estimated from in-flight voltage data and corroborated by ground testing of prototype batteries. Enabled by such impressive durability from the Li-ion batteries, both from a cycling and calendar life stand point, these rovers are poised to extend their exploration well beyond 1000 sols, though other components have started showing signs of decay. In this paper, we will update the performance characteristics of these batteries on both Spirit and Opportunity.

  3. Bundled and densified carbon nanotubes (CNT) fabrics as flexible ultra-light weight Li-ion battery anode current collectors

    NASA Astrophysics Data System (ADS)

    Yehezkel, Shani; Auinat, Mahmud; Sezin, Nina; Starosvetsky, David; Ein-Eli, Yair

    2016-04-01

    Carbon nanotubes (CNT) fabrics were studied and evaluated as anode current collectors, replacing the traditional copper foil current collector in Li-ion batteries. Glavanostatic measurements reveal high values of irreversible capacities (as high as 28%), resulted mainly from the formation of the solid electrolyte interphase (SEI) layer at the CNT fabric surface. Various pre-treatments to the CNT fabric prior to active anode material loading have shown that the lowest irreversible capacity is achieved by immersing and washing the CNT fabric with iso-propanol (IPA), which dramatically modified the fabric surface. Additionally, the use of very thin CNT fabrics (5 μm) results in a substantial irreversible capacity minimization. A combination of IPA rinse action and utilization of the thinnest CNT fabric provides the lowest irreversible capacity of 13%. The paper describes innovative and rather simple techniques towards a complete implementation of CNT fabric as an anode current collector in Li-ion batteries, instead of the relatively heavy and expensive copper foil, enabling an improvement in the gravimetric and volumetric energy densities of such advanced batteries.

  4. Polymer electrolytes for a rechargeable li-Ion battery

    SciTech Connect

    Argade, S.D.; Saraswat, A.K.; Rao, B.M.L.; Lee, H.S.; Xiang, C.L.; McBreen, J.

    1996-10-01

    Lithium-ion polymer electrolyte battery technology is attractive for many consumer and military applications. A Li{sub x}C/Li{sub y}Mn{sub 2}O{sub 4} battery system incorporating a polymer electrolyte separator base on novel Li-imide salts is being developed under sponsorship of US Army Research Laboratory (Fort Monmouth NJ). This paper reports on work currently in progress on synthesis of Li-imide salts, polymer electrolyte films incorporating these salts, and development of electrodes and cells. A number of Li salts have been synthesized and characterized. These salts appear to have good voltaic stability. PVDF polymer gel electrolytes based on these salts have exhibited conductivities in the range 10{sup -4} to 10{sub -3} S/cm.

  5. Surface treated natural graphite as anode material for high-power Li-ion battery applications.

    SciTech Connect

    Liu, J.; Vissers, D. R.; Amine, K.; Barsukov, I. V.; Henry, F.; Doniger, J.; Chemical Engineering; Superior Graphite Co.

    2006-01-01

    High power application of Li-ion battery in hybrid electrical vehicles requires low cost and safe cell materials. Among the various carbon anode materials used in lithium ion batteries, natural graphite shows the most promise with advantages in performance and cost. However, natural graphite is not compatible with propylene carbonate (PC)-based electrolytes, which have a lower melting point and improved safety characteristics. The problem with it is that the molecules of propylene carbonate intercalate with Li+ into graphite, and that frequently leads to the exfoliation of the graphite matrix.

  6. A β-VOPO4/ε-VOPO4 composite Li-ion battery cathode

    SciTech Connect

    Chen, Zehua; Chen, Qiyuan; Wang, Haiyan; Zhang, Ruibo; Zhou, Hui; Chen, Liquan; Whittingham, M. Stanley

    2014-09-01

    VOPO4 is an example of a Li-ion battery cathode that can achieve over 300 Ah/kg when two Li-ions are intercalated. A two phase β-VOPO4/ε-VOPO4 composite was found to improve the cycling capacity of ε-VOPO4 from tetragonal H2VOPO4, particularly as the rate is increased. In the potential range of 2.0–4.5 V, this composite showed an initial electrochemical capacity of 208 mAh/g at 0.08 mA/cm2, 190 mAh/g at 0.16 mA/cm2, and 160 mAh/g at 0.41 mA/cm2.

  7. Anion-redox nanolithia cathodes for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhu, Zhi; Kushima, Akihiro; Yin, Zongyou; Qi, Lu; Amine, Khalil; Lu, Jun; Li, Ju

    2016-08-01

    The development of lithium-air batteries is plagued by a high potential gap (>1.2 V) between charge and discharge, and poor cyclability due to the drastic phase change of O2 (gas) and Ox- (condensed phase) at the cathode during battery operations. Here we report a cathode consisting of nanoscale amorphous lithia (nanolithia) confined in a cobalt oxide, enabling charge/discharge between solid Li2O/Li2O2/LiO2 without any gas evolution. The cathode has a theoretical capacity of 1,341 Ah kg-1, a mass density exceeding 2.2 g cm-3, and a practical discharge capacity of 587 Ah kg-1 at 2.55 V versus Li/Li+. It also displays stable cycling performance (only 1.8% loss after 130 cycles in lithium-matched full-cell tests against Li4Ti5O12 anode), as well as a round-trip overpotential of only 0.24 V. Interestingly, the cathode is automatically protected from O2 gas release and overcharging through the shuttling of self-generated radical species soluble in the carbonate electrolyte.

  8. Anion-redox nanolithia cathodes for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhu, Zhi; Kushima, Akihiro; Yin, Zongyou; Qi, Lu; Amine, Khalil; Lu, Jun; Li, Ju

    2016-08-01

    The development of lithium–air batteries is plagued by a high potential gap (>1.2 V) between charge and discharge, and poor cyclability due to the drastic phase change of O2 (gas) and Ox‑ (condensed phase) at the cathode during battery operations. Here we report a cathode consisting of nanoscale amorphous lithia (nanolithia) confined in a cobalt oxide, enabling charge/discharge between solid Li2O/Li2O2/LiO2 without any gas evolution. The cathode has a theoretical capacity of 1,341 Ah kg‑1, a mass density exceeding 2.2 g cm‑3, and a practical discharge capacity of 587 Ah kg‑1 at 2.55 V versus Li/Li+. It also displays stable cycling performance (only 1.8% loss after 130 cycles in lithium-matched full-cell tests against Li4Ti5O12 anode), as well as a round-trip overpotential of only 0.24 V. Interestingly, the cathode is automatically protected from O2 gas release and overcharging through the shuttling of self-generated radical species soluble in the carbonate electrolyte.

  9. Environmental characteristics comparison of Li-ion batteries and Ni-MH batteries under the uncertainty of cycle performance.

    PubMed

    Yu, Yajuan; Wang, Xiang; Wang, Dong; Huang, Kai; Wang, Lijing; Bao, Liying; Wu, Feng

    2012-08-30

    An environmental impact assessment model for secondary batteries under uncertainty is proposed, which is a combination of the life cycle assessment (LCA), Eco-indicator 99 system and Monte Carlo simulation (MCS). The LCA can describe the environmental impact mechanism of secondary batteries, whereas the cycle performance was simulated through MCS. The composite LCA-MCS model was then carried out to estimate the environmental impact of two kinds of experimental batteries. Under this kind of standard assessment system, a comparison between different batteries could be accomplished. The following results were found: (1) among the two selected batteries, the environmental impact of the Li-ion battery is lower than the nickel-metal hydride (Ni-MH) battery, especially with regards to resource consumption and (2) the lithium ion (Li-ion) battery is less sensitive to cycle uncertainty, its environmental impact fluctuations are small when compared with the selected Ni-MH battery and it is more environmentally friendly. The assessment methodology and model proposed in this paper can also be used for any other secondary batteries and they can be helpful in the development of environmentally friendly secondary batteries.

  10. Searching for Sustainable and "Greener" Li-ion Batteries

    ScienceCinema

    Tarascon, Jean-Marie [University of Picardie at Aimens, France

    2016-07-12

    Lithium-ion batteries are strong candidates for powering upcoming generations of hybrid electric vehicles and plug-in hybrid electric vehicles. But improvements in safety must be achieved while keeping track of materials resources and abundances, as well as materials synthesis and recycling processes, all of which could inflict a heavy energy cost. Thus, electrode materials that have a minimum footprint in nature and are made via eco-efficient processes are sorely needed. The arrival of electrode materials based on minerals such as LiFePO4 (tryphilite) is a significant, but not sufficient, step toward the long-term demand for materials sustainability. The eco-efficient synthesis of LiFePO4 nanopowders via hydrothermal/ solvo-thermal processes using latent bases, structure directing templates, or other bio-related approaches will be presented in this talk. However, to secure sustainability and greeness, organic electrodes appear to be ideal candidates.... We took a fresh look at organic based electrodes; the results of this research into sequentially metal-organic-framework electrodes and Li-based organic electrodes (LixCyOz) will be reported and discussed.

  11. Syntheses and characterization of lithium alkyl mono- and dicarbonates as components of surface films in Li-ion batteries.

    PubMed

    Xu, Kang; Zhuang, Guorong V; Allen, Jan L; Lee, Unchul; Zhang, Sheng S; Ross, Philip N; Jow, T Richard

    2006-04-20

    A homologous series of lithium alkyl mono- and dicarbonate salts was synthesized as model reference compounds for the frequently proposed components constituting the electrolyte/electrode interface in Li-ion batteries. The physicochemical characterization of these reference compounds in the bulk state using thermal analyses and X-ray photoelectron, nuclear magnetic resonance, and Fourier transform infrared spectroscopies establishes a reliable database of comparison for the studies on the surface chemistry of electrodes harvested from Li-ion cells.

  12. Time domain simulation of Li-ion batteries using non-integer order equivalent electrical circuit

    NASA Astrophysics Data System (ADS)

    Riu, D.; Montaru, M.; Bultel, Y.

    2013-06-01

    For electric vehicle (EV) or hybrid EV (HEV) development and integration of renewables in electrical networks, battery monitoring systems have to be more and more precise to take into account the state-of-charge and the dynamic behavior of the battery. Some non-integer order models of electrochemical batteries have been proposed in literacy with a good accuracy and a low number of parameters in the frequential domain. Nevertheless, time simulation of such models required to approximate this non-integer order system by an equivalent high integer order model. An adapted algorithm is then proposed in this article to simulate the non-integer order model without any approximation, thanks to the construction of a 3-order generalized state-space system. This algorithm is applied and validated on a 2.3 A.h Li-ion battery.

  13. High Voltage Li-Ion Battery Using Exfoliated Graphite/Graphene Nanosheets Anode.

    PubMed

    Agostini, Marco; Brutti, Sergio; Hassoun, Jusef

    2016-05-01

    The achievement of a new generation of lithium-ion battery, suitable for a continuously growing consumer electronic and sustainable electric vehicle markets, requires the development of new, low-cost, and highly performing materials. Herein, we propose a new and efficient lithium-ion battery obtained by coupling exfoliated graphite/graphene nanosheets (EGNs) anode and high-voltage, spinel-structure cathode. The anode shows a capacity exceeding by 40% that ascribed to commercial graphite in lithium half-cell, at very high C-rate, due to its particular structure and morphology as demonstrated by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The Li-ion battery reveals excellent efficiency and cycle life, extending up to 150 cycles, as well as an estimated practical energy density of about 260 Wh kg(-1), that is, a value well exceeding the one associated with the present-state Li-ion battery. PMID:27052542

  14. Selected test results from the neosonic polymer Li-ion battery.

    SciTech Connect

    Ingersoll, David T.; Hund, Thomas D.

    2010-07-01

    The performance of the Neosonic polymer Li-ion battery was measured using a number of tests including capacity, capacity as a function of temperature, ohmic resistance, spectral impedance, hybrid pulsed power test, utility partial state of charge (PSOC) pulsed cycle test, and an over-charge/voltage abuse test. The goal of this work was to evaluate the performance of the polymer Li-ion battery technology for utility applications requiring frequent charges and discharges, such as voltage support, frequency regulation, wind farm energy smoothing, and solar photovoltaic energy smoothing. Test results have indicated that the Neosonic polymer Li-ion battery technology can provide power levels up to the 10C{sub 1} discharge rate with minimal energy loss compared to the 1 h (1C) discharge rate. Two of the three cells used in the utility PSOC pulsed cycle test completed about 12,000 cycles with only a gradual loss in capacity of 10 and 13%. The third cell experienced a 40% loss in capacity at about 11,000 cycles. The DC ohmic resistance and AC spectral impedance measurements also indicate that there were increases in impedance after cycling, especially for the third cell. Cell No.3 impedance Rs increased significantly along with extensive ballooning of the foil pouch. Finally, at a 1C (10 A) charge rate, the over charge/voltage abuse test with cell confinement similar to a multi cell string resulted in the cell venting hot gases at about 45 C 45 minutes into the test. At 104 minutes into the test the cell voltage spiked to the 12 volt limit and continued out to the end of the test at 151 minutes. In summary, the Neosonic cells performed as expected with good cycle-life and safety.

  15. Anodic polymerization of vinyl ethylene carbonate in Li-Ion battery electrolyte

    SciTech Connect

    Chen, Guoying; Zhuang, Guorong V.; Richardson, Thomas J.; Gao, Liu; Ross Jr., Philip N.

    2005-02-28

    A study of the anodic oxidation of vinyl ethylene carbonate (VEC) was conducted with post-mortem analysis of reaction products by ATR-FTIR and gel permeation chromatography (GPC). The half-wave potential (E1/2) for oxidation of VEC is ca. 3.6 V producing a resistive film on the electrode surface. GPC analysis of the film on a gold electrode produced by anodization of a commercial Li-ion battery electrolyte containing 2 percent VEC at 4.1 V showed the presence of a high molecular weight polymer. IR analysis indicated polycarbonate with alkyl carbonate rings linked by aliphatic methylene and methyl branches.

  16. Unravelling Li-Ion Transport from Picoseconds to Seconds: Bulk versus Interfaces in an Argyrodite Li6PS5Cl-Li2S All-Solid-State Li-Ion Battery.

    PubMed

    Yu, Chuang; Ganapathy, Swapna; de Klerk, Niek J J; Roslon, Irek; van Eck, Ernst R H; Kentgens, Arno P M; Wagemaker, Marnix

    2016-09-01

    One of the main challenges of all-solid-state Li-ion batteries is the restricted power density due to the poor Li-ion transport between the electrodes via the electrolyte. However, to establish what diffusional process is the bottleneck for Li-ion transport requires the ability to distinguish the various processes. The present work investigates the Li-ion diffusion in argyrodite Li6PS5Cl, a promising electrolyte based on its high Li-ion conductivity, using a combination of (7)Li NMR experiments and DFT based molecular dynamics simulations. This allows us to distinguish the local Li-ion mobility from the long-range Li-ion motional process, quantifying both and giving a coherent and consistent picture of the bulk diffusion in Li6PS5Cl. NMR exchange experiments are used to unambiguously characterize Li-ion transport over the solid electrolyte-electrode interface for the electrolyte-electrode combination Li6PS5Cl-Li2S, giving unprecedented and direct quantitative insight into the impact of the interface on Li-ion charge transport in all-solid-state batteries. The limited Li-ion transport over the Li6PS5Cl-Li2S interface, orders of magnitude smaller compared with that in the bulk Li6PS5Cl, appears to be the bottleneck for the performance of the Li6PS5Cl-Li2S battery, quantifying one of the major challenges toward improved performance of all-solid-state batteries. PMID:27511442

  17. Unravelling Li-Ion Transport from Picoseconds to Seconds: Bulk versus Interfaces in an Argyrodite Li6PS5Cl-Li2S All-Solid-State Li-Ion Battery.

    PubMed

    Yu, Chuang; Ganapathy, Swapna; de Klerk, Niek J J; Roslon, Irek; van Eck, Ernst R H; Kentgens, Arno P M; Wagemaker, Marnix

    2016-09-01

    One of the main challenges of all-solid-state Li-ion batteries is the restricted power density due to the poor Li-ion transport between the electrodes via the electrolyte. However, to establish what diffusional process is the bottleneck for Li-ion transport requires the ability to distinguish the various processes. The present work investigates the Li-ion diffusion in argyrodite Li6PS5Cl, a promising electrolyte based on its high Li-ion conductivity, using a combination of (7)Li NMR experiments and DFT based molecular dynamics simulations. This allows us to distinguish the local Li-ion mobility from the long-range Li-ion motional process, quantifying both and giving a coherent and consistent picture of the bulk diffusion in Li6PS5Cl. NMR exchange experiments are used to unambiguously characterize Li-ion transport over the solid electrolyte-electrode interface for the electrolyte-electrode combination Li6PS5Cl-Li2S, giving unprecedented and direct quantitative insight into the impact of the interface on Li-ion charge transport in all-solid-state batteries. The limited Li-ion transport over the Li6PS5Cl-Li2S interface, orders of magnitude smaller compared with that in the bulk Li6PS5Cl, appears to be the bottleneck for the performance of the Li6PS5Cl-Li2S battery, quantifying one of the major challenges toward improved performance of all-solid-state batteries.

  18. Scenario-based prediction of Li-ion batteries fire-induced toxicity

    NASA Astrophysics Data System (ADS)

    Lecocq, Amandine; Eshetu, Gebrekidan Gebresilassie; Grugeon, Sylvie; Martin, Nelly; Laruelle, Stephane; Marlair, Guy

    2016-06-01

    The development of high energy Li-ion batteries with improved durability and increased safety mostly relies on the use of newly developed electrolytes. A detailed appraisal of fire-induced thermal and chemical threats on LiPF6- and LiFSI-based electrolytes by means of the so-called "fire propagation apparatus" had highlighted that the salt anion was responsible for the emission of a non negligible content of irritant gas as HF (PF6-) or HF and SO2 (FSI-). A more thorough comparative investigation of the toxicity threat in the case of larger-size 0.4 kWh Li-ion modules was thus undertaken. A modeling approach that consists in extrapolating the experimental data obtained from 1.3Ah LiFePO4/graphite pouch cells under fire conditions and in using the state-of-the-art fire safety international standards for the evaluation of fire toxicity was applied under two different real-scale simulating scenarios. The obtained results reveal that critical thresholds are highly dependent on the nature of the salt, LiPF6 or LiFSI, and on the cells state of charge. Hence, this approach can help define appropriate fire safety engineering measures for a given technology (different chemistry) or application (fully charged backup batteries or batteries subjected to deep discharge).

  19. A three-dimensional meso-macroscopic model for Li-Ion intercalation batteries

    DOE PAGES

    Allu, S.; Kalnaus, S.; Simunovic, S.; Nanda, J.; Turner, J. A.; Pannala, S.

    2016-06-09

    Through this study, we present a three-dimensional computational formulation for electrode-electrolyte-electrode system of Li-Ion batteries. The physical consistency between electrical, thermal and chemical equations is enforced at each time increment by driving the residual of the resulting coupled system of nonlinear equations to zero. The formulation utilizes a rigorous volume averaging approach typical of multiphase formulations used in other fields and recently extended to modeling of supercapacitors [1]. Unlike existing battery modeling methods which use segregated solution of conservation equations and idealized geometries, our unified approach can model arbitrary battery and electrode configurations. The consistency of multi-physics solution also allowsmore » for consideration of a wide array of initial conditions and load cases. The formulation accounts for spatio-temporal variations of material and state properties such as electrode/void volume fractions and anisotropic conductivities. The governing differential equations are discretized using the finite element method and solved using a nonlinearly consistent approach that provides robust stability and convergence. The new formulation was validated for standard Li-ion cells and compared against experiments. Finally, its scope and ability to capture spatio-temporal variations of potential and lithium distribution is demonstrated on a prototypical three-dimensional electrode problem.« less

  20. A three-dimensional meso-macroscopic model for Li-Ion intercalation batteries

    NASA Astrophysics Data System (ADS)

    Allu, S.; Kalnaus, S.; Simunovic, S.; Nanda, J.; Turner, J. A.; Pannala, S.

    2016-09-01

    In this paper we present a three-dimensional computational formulation for electrode-electrolyte-electrode system of Li-Ion batteries. The physical consistency between electrical, thermal and chemical equations is enforced at each time increment by driving the residual of the resulting coupled system of nonlinear equations to zero. The formulation utilizes a rigorous volume averaging approach typical of multiphase formulations used in other fields and recently extended to modeling of supercapacitors [1]. Unlike existing battery modeling methods which use segregated solution of conservation equations and idealized geometries, our unified approach can model arbitrary battery and electrode configurations. The consistency of multi-physics solution also allows for consideration of a wide array of initial conditions and load cases. The formulation accounts for spatio-temporal variations of material and state properties such as electrode/void volume fractions and anisotropic conductivities. The governing differential equations are discretized using the finite element method and solved using a nonlinearly consistent approach that provides robust stability and convergence. The new formulation was validated for standard Li-ion cells and compared against experiments. Its scope and ability to capture spatio-temporal variations of potential and lithium distribution is demonstrated on a prototypical three-dimensional electrode problem.

  1. ALD of Al2O3 for Highly Improved Performance in Li-Ion Batteries

    SciTech Connect

    Dillon, A.; Jung, Y. S.; Ban, C.; Riley, L.; Cavanagh, A.; Yan, Y.; George, S.; Lee, S. H.

    2012-01-01

    Significant advances in energy density, rate capability and safety will be required for the implementation of Li-ion batteries in next generation electric vehicles. We have demonstrated atomic layer deposition (ALD) as a promising method to enable superior cycling performance for a vast variety of battery electrodes. The electrodes range from already demonstrated commercial technologies (cycled under extreme conditions) to new materials that could eventually lead to batteries with higher energy densities. For example, an Al2O3 ALD coating with a thickness of ~ 8 A was able to stabilize the cycling of unexplored MoO3 nanoparticle anodes with a high volume expansion. The ALD coating enabled stable cycling at C/2 with a capacity of ~ 900 mAh/g. Furthermore, rate capability studies showed the ALD-coated electrode maintained a capacity of 600 mAh/g at 5C. For uncoated electrodes it was only possible to observe stable cycling at C/10. Also, we recently reported that a thin ALD Al2O3 coating with a thickness of ~5 A can enable natural graphite (NG) electrodes to exhibit remarkably durable cycling at 50 degrees C. The ALD-coated NG electrodes displayed a 98% capacity retention after 200 charge-discharge cycles. In contrast, bare NG showed a rapid decay. Additionally, Al2O3 ALD films with a thickness of 2 to 4 A have been shown to allow LiCoO2 to exhibit 89% capacity retention after 120 charge-discharge cycles performed up to 4.5 V vs Li/Li+. Bare LiCoO2 rapidly deteriorated in the first few cycles. The capacity fade is likely caused by oxidative decomposition of the electrolyte at higher potentials or perhaps cobalt dissolution. Interestingly, we have recently fabricated full cells of NG and LiCoO2 where we coated both electrodes, one or the other electrode as well as neither electrode. In creating these full cells, we observed some surprising results that lead us to obtain a greater understanding of the ALD coatings. We have also recently coated a binder free LiNi0.04Mn0

  2. Solid-State Li-Ion Batteries Using Fast, Stable, Glassy Nanocomposite Electrolytes for Good Safety and Long Cycle-Life.

    PubMed

    Tan, Guoqiang; Wu, Feng; Zhan, Chun; Wang, Jing; Mu, Daobin; Lu, Jun; Amine, Khalil

    2016-03-01

    The development of safe, stable, and long-life Li-ion batteries is being intensively pursued to enable the electrification of transportation and intelligent grid applications. Here, we report a new solid-state Li-ion battery technology, using a solid nanocomposite electrolyte composed of porous silica matrices with in situ immobilizing Li(+)-conducting ionic liquid, anode material of MCMB, and cathode material of LiCoO2, LiNi1/3Co1/3Mn1/3O2, or LiFePO4. An injection printing method is used for the electrode/electrolyte preparation. Solid nanocomposite electrolytes exhibit superior performance to the conventional organic electrolytes with regard to safety and cycle-life. They also have a transparent glassy structure with high ionic conductivity and good mechanical strength. Solid-state full cells tested with the various cathodes exhibited high specific capacities, long cycling stability, and excellent high temperature performance. This solid-state battery technology will provide new avenues for the rational engineering of advanced Li-ion batteries and other electrochemical devices. PMID:26862941

  3. MgO-decorated few-layered graphene as an anode for li-ion batteries.

    PubMed

    Petnikota, Shaikshavali; Rotte, Naresh K; Reddy, M V; Srikanth, Vadali V S S; Chowdari, B V R

    2015-02-01

    Combustion of magnesium in dry ice and a simple subsequent acid treatment step resulted in a MgO-decorated few-layered graphene (FLG) composite that has a specific surface area of 393 m(2)/g and an average pore volume of 0.9 cm(3)/g. As an anode material in Li-ion batteries, the composite exhibited high reversible capacity and excellent cyclic performance in spite of high first-cycle irreversible capacity loss. A reversible capacity as high as 1052 mAh/g was measured during the first cycle. Even at the end of the 60th cycle, more than 83% of the capacity could be retained. Cyclic voltammetry results indicated pseudocapacitance behavior due to electrochemical absorption and desorption of lithium ions onto graphene. An increase in the capacity has been observed during long-term cycling owing to electrochemical exfoliation of graphene sheets. Owing to its good thermal stability and superior cyclic performance with high reversible capacities, MgO-decked FLG can be an excellent alternative to graphite as an anode material in Li-ion batteries, after suitable modifications. PMID:25559260

  4. Lithium salt of tetrahydroxybenzoquinone: toward the development of a sustainable Li-ion battery.

    PubMed

    Chen, Haiyan; Armand, Michel; Courty, Matthieu; Jiang, Meng; Grey, Clare P; Dolhem, Franck; Tarascon, Jean-Marie; Poizot, Philippe

    2009-07-01

    The use of lithiated redox organic molecules containing electrochemically active C=O functionalities, such as lithiated oxocarbon salts, is proposed. These represent alternative electrode materials to those used in current Li-ion battery technology that can be synthesized from renewable starting materials. The key material is the tetralithium salt of tetrahydroxybenzoquinone (Li(4)C(6)O(6)), which can be both reduced to Li(2)C(6)O(6) and oxidized to Li(6)C(6)O(6). In addition to being directly synthesized from tetrahydroxybenzoquinone by neutralization at room temperature, we demonstrate that this salt can readily be formed by the thermal disproportionation of Li(2)C(6)O(6) (dilithium rhodizonate phase) under an inert atmosphere. The Li(4)C(6)O(6) compound shows good electrochemical performance vs Li with a sustained reversibility of approximately 200 mAh g(-1) at an average potential of 1.8 V, allowing a Li-ion battery that cycles between Li(2)C(6)O(6) and Li(6)C(6)O(6) to be constructed. PMID:19476355

  5. Li-rich layer-structured cathode materials for high energy Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Li, Liu; Lee, Kim Seng; Lu, Li

    2014-08-01

    Li-rich layer-structured xLi2MnO3 ṡ (1 - x)LiMO2 (M = Mn, Ni, Co, etc.) materials have attracted much attention due to their extraordinarily high reversible capacity as the cathode material in Li-ion batteries. To better understand the nature of this type of materials, this paper reviews history of development of the Li-rich cathode materials, and provides in-depth study on complicated crystal structures and reaction mechanisms during electrochemical charge/discharge cycling. Despite the fabulous capability at low rate, several drawbacks still gap this type of high-capacity cathode materials from practical applications, for instance the large irreversible capacity loss at first cycle, poor rate capability, severe voltage decay and capacity fade during electrochemical charge/discharge cycling. This review will also address mechanisms for these inferior properties and propose various possible solutions to solve above issues for future utilization of these cathode materials in commercial Li-ion batteries.

  6. Interaction of High Flash Point Electrolytes and PE-Based Separators for Li-Ion Batteries.

    PubMed

    Hofmann, Andreas; Kaufmann, Christoph; Müller, Marcus; Hanemann, Thomas

    2015-01-01

    In this study, promising electrolytes for use in Li-ion batteries are studied in terms of interacting and wetting polyethylene (PE) and particle-coated PE separators. The electrolytes are characterized according to their physicochemical properties, where the flow characteristics and the surface tension are of particular interest for electrolyte-separator interactions. The viscosity of the electrolytes is determined to be in a range of η = 4-400 mPa∙s and surface tension is finely graduated in a range of γL = 23.3-38.1 mN∙m(-1). It is verified that the technique of drop shape analysis can only be used in a limited matter to prove the interaction, uptake and penetration of electrolytes by separators. Cell testing of Li|NMC half cells reveals that those cell results cannot be inevitably deduced from physicochemical electrolyte properties as well as contact angle analysis. On the other hand, techniques are more suitable which detect liquid penetration into the interior of the separator. It is expected that the results can help fundamental researchers as well as users of novel electrolytes in current-day Li-ion battery technologies for developing and using novel material combinations. PMID:26343636

  7. Atomic-Scale Mechanisms for Electrolyte Decomposition in Li-ion Battery Cathodes

    NASA Astrophysics Data System (ADS)

    Fuhst, Mallory; Siegel, Donald

    Li-ion batteries using high energy density LiCoO2 (LCO) intercalation cathodes are known to generate gaseous species inside the cell, which can lead to venting flammable solvent vapor. It has been hypothesized that reactions at the cathode/electrolyte interface catalyze the production of these gaseous species. To elucidate the underlying reaction mechanism, first principles calculations were used to model interactions between LCO surfaces and Ethylene Carbonate (EC), a commonly used solvent in Li-ion batteries. A Metropolis Monte Carlo algorithm was used to identify likely low energy adsorption configurations for EC on the (10-14) surface of LCO. Several of these geometries were further analyzed with DFT. The thermodynamics and kinetics of EC decomposition were evaluated for plausible reaction pathways and associated various solvent decomposition mechanisms, such as hydrogen abstraction. Preliminary results indicate that hydrogen abstraction may lead to the spontaneous decomposition of EC into CO and other adsorbed species at the surface. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE 1256260.

  8. Interaction of High Flash Point Electrolytes and PE-Based Separators for Li-Ion Batteries.

    PubMed

    Hofmann, Andreas; Kaufmann, Christoph; Müller, Marcus; Hanemann, Thomas

    2015-08-27

    In this study, promising electrolytes for use in Li-ion batteries are studied in terms of interacting and wetting polyethylene (PE) and particle-coated PE separators. The electrolytes are characterized according to their physicochemical properties, where the flow characteristics and the surface tension are of particular interest for electrolyte-separator interactions. The viscosity of the electrolytes is determined to be in a range of η = 4-400 mPa∙s and surface tension is finely graduated in a range of γL = 23.3-38.1 mN∙m(-1). It is verified that the technique of drop shape analysis can only be used in a limited matter to prove the interaction, uptake and penetration of electrolytes by separators. Cell testing of Li|NMC half cells reveals that those cell results cannot be inevitably deduced from physicochemical electrolyte properties as well as contact angle analysis. On the other hand, techniques are more suitable which detect liquid penetration into the interior of the separator. It is expected that the results can help fundamental researchers as well as users of novel electrolytes in current-day Li-ion battery technologies for developing and using novel material combinations.

  9. Interaction of High Flash Point Electrolytes and PE-Based Separators for Li-Ion Batteries

    PubMed Central

    Hofmann, Andreas; Kaufmann, Christoph; Müller, Marcus; Hanemann, Thomas

    2015-01-01

    In this study, promising electrolytes for use in Li-ion batteries are studied in terms of interacting and wetting polyethylene (PE) and particle-coated PE separators. The electrolytes are characterized according to their physicochemical properties, where the flow characteristics and the surface tension are of particular interest for electrolyte–separator interactions. The viscosity of the electrolytes is determined to be in a range of η = 4–400 mPa∙s and surface tension is finely graduated in a range of γL = 23.3–38.1 mN∙m−1. It is verified that the technique of drop shape analysis can only be used in a limited matter to prove the interaction, uptake and penetration of electrolytes by separators. Cell testing of Li|NMC half cells reveals that those cell results cannot be inevitably deduced from physicochemical electrolyte properties as well as contact angle analysis. On the other hand, techniques are more suitable which detect liquid penetration into the interior of the separator. It is expected that the results can help fundamental researchers as well as users of novel electrolytes in current-day Li-ion battery technologies for developing and using novel material combinations. PMID:26343636

  10. MgO-decorated few-layered graphene as an anode for li-ion batteries.

    PubMed

    Petnikota, Shaikshavali; Rotte, Naresh K; Reddy, M V; Srikanth, Vadali V S S; Chowdari, B V R

    2015-02-01

    Combustion of magnesium in dry ice and a simple subsequent acid treatment step resulted in a MgO-decorated few-layered graphene (FLG) composite that has a specific surface area of 393 m(2)/g and an average pore volume of 0.9 cm(3)/g. As an anode material in Li-ion batteries, the composite exhibited high reversible capacity and excellent cyclic performance in spite of high first-cycle irreversible capacity loss. A reversible capacity as high as 1052 mAh/g was measured during the first cycle. Even at the end of the 60th cycle, more than 83% of the capacity could be retained. Cyclic voltammetry results indicated pseudocapacitance behavior due to electrochemical absorption and desorption of lithium ions onto graphene. An increase in the capacity has been observed during long-term cycling owing to electrochemical exfoliation of graphene sheets. Owing to its good thermal stability and superior cyclic performance with high reversible capacities, MgO-decked FLG can be an excellent alternative to graphite as an anode material in Li-ion batteries, after suitable modifications.

  11. Performance of Li-Ion Cells Under Battery Voltage Charge Control

    NASA Technical Reports Server (NTRS)

    Vaidyanathan, Hari; Rao, Gopalakrishna M.

    2002-01-01

    Li-ion cells manufactured by YTP, SAFT, and MSA have completed 6714, 6226, and 3441 cycles, respectively. An increase in the charge voltage limit was required in all cases to maintain the discharge voltage. SAFT and MSA cells were capable of cycling at -10 C and 0 C with an increase in the charge voltage limit, whereas Yardney cells could not be cycled. Reconditioning improved the discharge voltage of SAFT and MSA cells; it is important to note that the effect has been temporary as in Ni-H and Ni-Cd batteries. It was demonstrated that the charge operation with VT clamp at battery rather than at cell level is feasible. Continuation of testing depends on the health of the cells and on the funding situation.

  12. Hierarchically ordered mesoporous Co3O4 materials for high performance Li-ion batteries.

    PubMed

    Sun, Shijiao; Zhao, Xiangyu; Yang, Meng; Wu, Linlin; Wen, Zhaoyin; Shen, Xiaodong

    2016-01-01

    Highly ordered mesoporous Co3O4 materials have been prepared via a nanocasting route with three-dimensional KIT-6 and two-dimensional SBA-15 ordered mesoporous silicas as templates and Co(NO3)2 · 6H2O as precursor. Through changing the hydrothermal treating temperature of the silica template, ordered mesoporous Co3O4 materials with hierarchical structures have been developed. The larger pores around 10 nm provide an efficient transport for Li ions, while the smaller pores between 3-5 nm offer large electrochemically active areas. Electrochemical impedance analysis proves that the hierarchical structure contributes to a lower charge transfer resistance in the mesoporous Co3O4 electrode than the mono-sized structure. High reversible capacities around 1141 mAh g(-1) of the hierarchically mesoporous Co3O4 materials are obtained, implying their potential applications for high performance Li-ion batteries. PMID:26781265

  13. Hierarchically ordered mesoporous Co3O4 materials for high performance Li-ion batteries

    PubMed Central

    Sun, Shijiao; Zhao, Xiangyu; Yang, Meng; Wu, Linlin; Wen, Zhaoyin; Shen, Xiaodong

    2016-01-01

    Highly ordered mesoporous Co3O4 materials have been prepared via a nanocasting route with three-dimensional KIT-6 and two-dimensional SBA-15 ordered mesoporous silicas as templates and Co(NO3)2 · 6H2O as precursor. Through changing the hydrothermal treating temperature of the silica template, ordered mesoporous Co3O4 materials with hierarchical structures have been developed. The larger pores around 10 nm provide an efficient transport for Li ions, while the smaller pores between 3–5 nm offer large electrochemically active areas. Electrochemical impedance analysis proves that the hierarchical structure contributes to a lower charge transfer resistance in the mesoporous Co3O4 electrode than the mono-sized structure. High reversible capacities around 1141 mAh g−1 of the hierarchically mesoporous Co3O4 materials are obtained, implying their potential applications for high performance Li-ion batteries. PMID:26781265

  14. Electron paramagnetic resonance imaging for real-time monitoring of Li-ion batteries

    PubMed Central

    Sathiya, M.; Leriche, J.-B.; Salager, E.; Gourier, D.; Tarascon, J.-M.; Vezin, H.

    2015-01-01

    Batteries for electrical storage are central to any future alternative energy paradigm. The ability to probe the redox mechanisms occurring at electrodes during their operation is essential to improve battery performances. Here we present the first report on Electron Paramagnetic Resonance operando spectroscopy and in situ imaging of a Li-ion battery using Li2Ru0.75Sn0.25O3, a high-capacity (>270 mAh g−1) Li-rich layered oxide, as positive electrode. By monitoring operando the electron paramagnetic resonance signals of Ru5+ and paramagnetic oxygen species, we unambiguously prove the formation of reversible (O2)n− species that contribute to their high capacity. In addition, we visualize by imaging with micrometric resolution the plating/stripping of Li at the negative electrode and highlight the zones of nucleation and growth of Ru5+/oxygen species at the positive electrode. This efficient way to locate ‘electron’-related phenomena opens a new area in the field of battery characterization that should enable future breakthroughs in battery research. PMID:25662295

  15. A flexible Li-ion battery with design towards electrodes electrical insulation

    NASA Astrophysics Data System (ADS)

    Vieira, E. M. F.; Ribeiro, J. F.; Sousa, R.; Correia, J. H.; Goncalves, L. M.

    2016-08-01

    The application of micro electromechanical systems (MEMS) technology in several consumer electronics leads to the development of micro/nano power sources with high power and MEMS integration possibility. This work presents the fabrication of a flexible solid-state Li-ion battery (LIB) (~2.1 μm thick) with a design towards electrodes electrical insulation, using conventional, low cost and compatible MEMS fabrication processes. Kapton® substrate provides flexibility to the battery. E-beam deposited 300 nm thick Ge anode was coupled with LiCoO2/LiPON (cathode/solid-state electrolyte) in a battery system. LiCoO2 and LiPON films were deposited by RF-sputtering with a power source of 120 W and 100 W, respectively. LiCoO2 film was annealed at 400 °C after deposition. The new design includes Si3N4 and LiPO thin-films, providing electrode electrical insulation and a battery chemical stability safeguard, respectively. Microstructure and battery performance were investigated by scanning electron microscopy, electric resistivity and electrochemical measurements (open circuit potential, charge/discharge cycles and electrochemical impedance spectroscopy). A rechargeable thin-film and lightweight flexible LIB using MEMS processing compatible materials and techniques is reported.

  16. Use of phosphoranimines to reduce organic carbonate content in Li-ion battery electrolytes

    DOE PAGES

    Dufek, Eric J.; Klaehn, John R.; McNally, Joshua S.; Rollins, Harry W.; Jamison, David K.

    2016-05-09

    In this study, the use of phosphoranimines (PAs), a class of linear, monomeric phosphazenes, as electrolytes for Li-ion battery applications has been investigated as a route to improve safety and stability for Li-ion batteries. Of the potential PAs for use in battery applications, this work focuses on the initial synthetic preparation and analysis of N-trimethylsilyl-P,P-bis((2-methoxyethoxy)ethoxy)-P-ethylphosphoranimine (PA-5). PA-5 has high LiPF6 solubility in excess of 2 M, high thermal stability with a melting point below -80°C and high thermal stability as a neat compound to at least 250°C. As part of electrolyte blends, the inclusion of PA-5 shifts the onset ofmore » thermal degradation by close to 40°C at 35% loading and by 20°C at a 10% loading, improves the low temperature performance of the electrolyte, and when used as a primary solvent leads to increases in the flash point (by 20°C) when compared to more traditional EC:EMC blends. Cycling capabilities of full-coin cells with graphite negative electrodes and Li1+w[Ni0.5Mn0.3Co0.2]1-wO2 positive electrodes using PA-5:EC:EMC electrolyte blends are comparable with the performance seen for traditional EC:EMC blends. Analysis of the impact of the use of additives such as vinylene carbonate in PA-5:EC:EMC blended electrolyte results in enhanced capacity retention and improved coulombic efficiency.« less

  17. Scalable Synthesis of Defect Abundant Si Nanorods for High-Performance Li-Ion Battery Anodes.

    PubMed

    Wang, Jing; Meng, Xiangcai; Fan, Xiulin; Zhang, Wenbo; Zhang, Hongyong; Wang, Chunsheng

    2015-06-23

    Microsized nanostructured silicon-carbon composite is a promising anode material for high energy Li-ion batteries. However, large-scale synthesis of high-performance nano-Si materials at a low cost still remains a significant challenge. We report a scalable low cost method to synthesize Al/Na-doped and defect-abundant Si nanorods that have excellent electrochemical performance with high first-cycle Coulombic efficiency (90%). The unique Si nanorods are synthesized by acid etching the refined and rapidly solidified eutectic Al-Si ingot. To maintain the high electronic conductivity, a thin layer of carbon is then coated on the Si nanorods by carbonization of self-polymerized polydopamine (PDA) at 800 °C. The carbon coated Si nanorods (Si@C) electrode at 0.9 mg cm(-2) loading (corresponding to area-specific-capacity of ∼2.0 mAh cm(-2)) exhibits a reversible capacity of ∼2200 mAh g(-1) at 100 mA g(-1) current, and maintains ∼700 mAh g(-1) over 1000 cycles at 1000 mA g(-1) with a capacity decay rate of 0.02% per cycle. High Coulombic efficiencies of 87% in the first cycle and ∼99.7% after 5 cycles are achieved due to the formation of an artificial Al2O3 solid electrolyte interphase (SEI) on the Si surface, and the low surface area (31 m(2) g(-1)), which has never been reported before for nano-Si anodes. The excellent electrochemical performance results from the massive defects (twins, stacking faults, dislocations) and Al/Na doping in Si nanorods induced by rapid solidification and Na salt modifications; this greatly enhances the robustness of Si from the volume changes and alleviates the mechanical stress/strain of the Si nanorods during the lithium insertion/extraction process. Introducing massive defects and Al/Na doping in eutectic Si nanorods for Li-ion battery anodes is unexplored territory. We venture this uncharted territory to commercialize this nanostructured Si anode for the next generation of Li-ion batteries.

  18. Scalable Synthesis of Defect Abundant Si Nanorods for High-Performance Li-Ion Battery Anodes.

    PubMed

    Wang, Jing; Meng, Xiangcai; Fan, Xiulin; Zhang, Wenbo; Zhang, Hongyong; Wang, Chunsheng

    2015-06-23

    Microsized nanostructured silicon-carbon composite is a promising anode material for high energy Li-ion batteries. However, large-scale synthesis of high-performance nano-Si materials at a low cost still remains a significant challenge. We report a scalable low cost method to synthesize Al/Na-doped and defect-abundant Si nanorods that have excellent electrochemical performance with high first-cycle Coulombic efficiency (90%). The unique Si nanorods are synthesized by acid etching the refined and rapidly solidified eutectic Al-Si ingot. To maintain the high electronic conductivity, a thin layer of carbon is then coated on the Si nanorods by carbonization of self-polymerized polydopamine (PDA) at 800 °C. The carbon coated Si nanorods (Si@C) electrode at 0.9 mg cm(-2) loading (corresponding to area-specific-capacity of ∼2.0 mAh cm(-2)) exhibits a reversible capacity of ∼2200 mAh g(-1) at 100 mA g(-1) current, and maintains ∼700 mAh g(-1) over 1000 cycles at 1000 mA g(-1) with a capacity decay rate of 0.02% per cycle. High Coulombic efficiencies of 87% in the first cycle and ∼99.7% after 5 cycles are achieved due to the formation of an artificial Al2O3 solid electrolyte interphase (SEI) on the Si surface, and the low surface area (31 m(2) g(-1)), which has never been reported before for nano-Si anodes. The excellent electrochemical performance results from the massive defects (twins, stacking faults, dislocations) and Al/Na doping in Si nanorods induced by rapid solidification and Na salt modifications; this greatly enhances the robustness of Si from the volume changes and alleviates the mechanical stress/strain of the Si nanorods during the lithium insertion/extraction process. Introducing massive defects and Al/Na doping in eutectic Si nanorods for Li-ion battery anodes is unexplored territory. We venture this uncharted territory to commercialize this nanostructured Si anode for the next generation of Li-ion batteries. PMID:26014439

  19. Performance of Li-Ion Cells Under Battery Voltage Charge Control

    NASA Technical Reports Server (NTRS)

    Rao, Gopalakrishna M.; Vaidyanathan, Hari; Day, John H. (Technical Monitor)

    2001-01-01

    A study consisting of electrochemical characterization and Low-Earth-Orbit (LEO) cycling of Li-Ion cells from three vendors was initiated in 1999 to determine the cycling performance and to infuse the new technology in the future NASA missions. The 8-cell batteries included in this evaluation are prismatic cells manufactured by Mine Safety Appliances Company (MSA), cylindrical cells manufactured by SAFT and prismatic cells manufactured by Yardney Technical Products, Inc. (YTP). The three batteries were cycle tested in the LEO regime at 40% depth of discharge, and under a charge control technique that consists of battery voltage clamp with a current taper. The initial testing was conducted at 20 C; however, the batteries were cycled also intermittently at low temperatures. YTP 20 Ah cells consisted of mixed-oxide (Co and Ni) positive, graphitic carbon negative, LIPF6 salt mixed with organic carbonate solvents. The battery voltage clamp was 32 V. The low temperature cycling tests started after 4575 cycles at 20 C. The cells were not capable of cycling. at low temperature since the charge acceptance at battery level was poor. There was a cell in the battery that showed too high an end-of-charge (EOC) voltage thereby limiting the ability to charge the rest of the cells in the battery. The battery has completed 6714 cycles. SAFT 12 Ah cells consisted of mixed-oxide (Co and NO positive, graphitic carbon negative, LiPF6 salt mixed with organic carbonate solvents. The battery voltage clamp was for 30.8 V. The low temperature cycling tests started after 4594 cycles at 20 C. A cell that showed low end of discharge (EOD) and EOC voltages and three other cells that showed higher EOC voltages limited the charge acceptance at the selected voltage limit during charge. The cells were capable of cycling at 10 C and 0 C but the charge voltage limit had to be increased to 34.3 V (4.3 V per cell). The low temperature cycling may have induced poor chargeability since the voltage had to

  20. Quantitative Analysis of Three-dimensional Microstructure of Li-ion Battery Electrodes

    NASA Astrophysics Data System (ADS)

    Liu, Zhao

    Li-ion batteries (LIBs) have attracted considerable attention in the past two decades due to their widespread applications in portable electronics, and their growing use in electric vehicles and large-scale grid storage. Increasing battery energy density and powder density while maintaining long life, along with battery safety, are the biggest challenges that limit their further development. Various approaches with materials and chemistry have been employed to improve performance. However, one less-studied aspect that also impacts performance is the electrode microstructure. In particular, three-dimensional (3D) electrode microstructural data for LIB electrodes, which were not widely available prior to this thesis, can provide important input for understanding and improving LIB performance. The focus of this thesis is to apply 3D tomographic techniques, together with electrochemical performance data, to obtain LIB microstructure-performance correlations. Two advanced 3D structural analysis techniques, focused ion beam-scanning electron microscopy (FIB-SEM) and transmission X-ray microscopy (TXM) nanotomography, are used to quantify LIB electrode microstructure. 3D characterization of LIB electrode microstructure is used to obtain a deeper understanding of mechanisms that limit LIB performance. Microstructural characterization before and after cycling is used to explore capacity loss mechanisms. It is hoped that the results can guide electrode microstructures design to improve performance and stability. Two types of commercial electrodes, LiCoO2 and LiCoO 2/Li(Ni1/3Mn1/3Co1/3)O2, are studied using FIB-SEM and TXM. Both methods were found to be applicable to quantifying the oxide particle microstructure, including volume fraction, surface area, and particle size distribution, and results agreed well. However, structural inhomogeneity found in these commercial samples, limited the capability to resolve microstructural changes during cycling. In order to also quantify

  1. Experimental and theoretical investigations of functionalized boron nitride as electrode materials for Li-ion batteries

    SciTech Connect

    Zhang, Fan; Nemeth, Karoly; Bareño, Javier; Dogan, Fulya; Bloom, Ira D.; Shaw, Leon L.

    2016-01-01

    The feasibility of synthesizing functionalized h-BN (FBN) via the reaction between molten LiOH and solid h-BN is studied for the first time and its first ever application as an electrode material in Li-ion batteries is evaluated. Density functional theory (DFT) calculations are performed to provide mechanistic understanding of the possible electrochemical reactions derived from the FBN. Various materials characterizations reveal that the melt-solid reaction can lead to exfoliation and functionalization of h-BN simultaneously, while electrochemical analysis proves that the FBN can reversibly store charges through surface redox reactions with good cycle stability and coulombic efficiency. DFT calculations have provided physical insights into the observed electrochemical properties derived from the FBN.

  2. On the utility of C24 fullerene framework for Li-ion batteries: Quantum chemical analysis

    NASA Astrophysics Data System (ADS)

    Bagheri, Zargham

    2016-10-01

    The potential application of carbonaceous C24 nanocluster framework as an anode in Li-ion batteries (LIBs) is investigated using density functional theory calculations. We find that this fullerene unexpectedly gives an imaginary cell voltage and cannot be used as an anode in LIBs. Here, we explain the origin of this unusual behavior and introduce a strategy to make it suitable for anode materials. We show that there is no energy barrier for Li+ diffusion through two neighboring hydrogenated C24 fullerenes. The percentage of Hartree Fock (HF) exchange of density functionals reversely affects the adsorption energies of Li and Li+, so that it is decreased and increased by increasing %HF exchange, respectively. Also, a linear relationship between %HF and HOMO or LUMO level of the studied systems is predicted.

  3. Cross-Linked Chitosan as an Efficient Binder for Si Anode of Li-ion Batteries.

    PubMed

    Chen, Chao; Lee, Sang Ha; Cho, Misuk; Kim, Jaehoon; Lee, Youngkwan

    2016-02-01

    We investigate the use of chitosan (CS) as a new cross-linkable and water-soluble binder for the Si anode of Li-ion batteries. In contrast to the traditional binder utilizing a hydrogen bond and/or van der Waals force-linked anode electrodes, CS can easily form a 3D network to limit the movement of Si particles through the cross-linking between the amino groups of CS and the dialdehyde of glutaraldehyde (GA). Chemical, mechanical, and morphological analyses are conducted by Fourier transform infrared spectroscopy, tensile testing, and scanning electron microscopy. The cross-linked Si/CS-GA anode exhibits an initial discharge capacity of 2782 mAh g(-1) with a high initial Coulombic efficiency of 89% and maintained a capacity of 1969 mAh g(-1) at the current density of 500 mA g(-1) over 100 cycles. PMID:26745390

  4. Carbon supported tin-based nanocomposites as anodes for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhou, Xiangyang; Zou, Youlan; Yang, Juan

    2013-02-01

    SnO2 (Sn)/C composites as anodes for Li-ion batteries were fabricated by a simple chemical process of hydrothermal synthesis and subsequent heat treatment. The as-prepared materials were characterized by various analytic techniques. Results show that heat treatment temperature has a strong influence on physical and electrochemical performance of these composites. In these composites, irregular SnO2 lamellas arranged like chrysanthemum were dispersed among the elastic carbon matrix for rapid access of lithium ions to the material bulk. SnO2/C anode heat-treated at a temperature of 600 °C exhibits a reversible capacity of 533.4 mAh/g after 50 cycles at the current density of 100 mA/g.

  5. Size controlled CuO nanoparticles for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Waser, Oliver; Hess, Michael; Güntner, Andreas; Novák, Petr; Pratsinis, Sotiris E.

    2013-11-01

    Monocrystalline copper(II) oxide nanoparticles were made by scalable flame spray pyrolysis (FSP) and analyzed by X-ray diffraction (XRD), nitrogen adsorption (BET), transmission electron microscopy (TEM) and X-ray absorption near edge structure (XANES). Their primary particle diameter was closely controlled from 6 to 50 nm by varying the FSP conditions. Their electrochemical performance as Li-ion battery materials was tested in composite electrodes vs. Li-metal. Near theoretical specific charges were obtained for intermediate CuO sizes of 20 and 50 nm (dBET). In contrast, larger, commercially available CuO (dBET = 670 nm) exhibited significantly lower practical specific charge due to incomplete oxidation in the delithiation cycle as indicated by the remaining Cu and Cu2O by XRD and XANES analysis.

  6. TUNING SILICON NANORODS FOR ANODES OF LI-ION RECHARGEABLE BATTERIES

    SciTech Connect

    Au, M.

    2010-11-23

    Silicon is a promising anode material for Li-ion batteries in regarding of high capacity, low cost and safety, but it suffers poor cycling stability due to the pulverization induced by severe volume expansion/shrinkage (297%) during lithium insertion/extraction. In our previous investigation on aluminum nanorods anodes, it is found the selection of substrates in which Al nanorods grown plays the role in prevention of pulverization resulting in the increase of cycling life. Adapting this knowledge, we investigated the Si based nanorods anodes by tuning its composition and element distribution. Our results show that although the Si nanorods demonstrated higher initial anodic capacity of 1500 mAh/g, it diminished after 50 cycles due to morphology change and pulverization. By codepositing Cu, the Si-Cu composite nanorods demonstrated sustainable capacity of 500 mAh/g in 100 cycles attributing to its flexible and less brittle nature.

  7. Parameter sensitivity analysis of a simplified electrochemical and thermal model for Li-ion batteries aging

    NASA Astrophysics Data System (ADS)

    Edouard, C.; Petit, M.; Forgez, C.; Bernard, J.; Revel, R.

    2016-09-01

    In this work, a simplified electrochemical and thermal model that can predict both physicochemical and aging behavior of Li-ion batteries is studied. A sensitivity analysis of all its physical parameters is performed in order to find out their influence on the model output based on simulations under various conditions. The results gave hints on whether a parameter needs particular attention when measured or identified and on the conditions (e.g. temperature, discharge rate) under which it is the most sensitive. A specific simulation profile is designed for parameters involved in aging equations in order to determine their sensitivity. Finally, a step-wise method is followed to limit the influence of parameter values when identifying some of them, according to their relative sensitivity from the study. This sensitivity analysis and the subsequent step-wise identification method show very good results, such as a better fitting of the simulated cell voltage with experimental data.

  8. Cross-Linked Chitosan as an Efficient Binder for Si Anode of Li-ion Batteries.

    PubMed

    Chen, Chao; Lee, Sang Ha; Cho, Misuk; Kim, Jaehoon; Lee, Youngkwan

    2016-02-01

    We investigate the use of chitosan (CS) as a new cross-linkable and water-soluble binder for the Si anode of Li-ion batteries. In contrast to the traditional binder utilizing a hydrogen bond and/or van der Waals force-linked anode electrodes, CS can easily form a 3D network to limit the movement of Si particles through the cross-linking between the amino groups of CS and the dialdehyde of glutaraldehyde (GA). Chemical, mechanical, and morphological analyses are conducted by Fourier transform infrared spectroscopy, tensile testing, and scanning electron microscopy. The cross-linked Si/CS-GA anode exhibits an initial discharge capacity of 2782 mAh g(-1) with a high initial Coulombic efficiency of 89% and maintained a capacity of 1969 mAh g(-1) at the current density of 500 mA g(-1) over 100 cycles.

  9. Nanostructured Si/Sn-Ni/C composite as negative electrode for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Edfouf, Z.; Cuevas, F.; Latroche, M.; Georges, C.; Jordy, C.; Hézèque, T.; Caillon, G.; Jumas, J. C.; Sougrati, M. T.

    2011-05-01

    A nanostructured composite with overall atomic composition Ni0.14Sn0.17Si0.32Al0.037C0.346 has been prepared combining powder metallurgy and mechanical milling techniques for being used as anode material in Li-ion battery. Chemical and structural properties of the nanocomposite have been determined by X-ray diffraction (XRD), 119Sn Transmission Mössbauer Spectroscopy (TMS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The composite consists of Si particles with typical size ∼150 nm embedded in a poorly crystallized and complex multielemental matrix. The matrix is composed mostly by Ni3.4Sn4, and disordered carbon. Electrochemical evaluation shows a high reversible capacity of 920 mAh g-1, with reasonable reversible capacity retention (∼0.1% loss/cycle) over 280 cycles.

  10. A Combustion Chemistry Analysis of Carbonate Solvents in Li-Ion Batteries

    SciTech Connect

    Harris, S J; Timmons, A; Pitz, W J

    2008-11-13

    Under abusive conditions Li-ion batteries can rupture, ejecting electrolyte and other flammable gases. In this paper we consider some of the thermochemical properties of these gases that will determine whether they ignite and how energetically they burn. We show that flames of carbonate solvents are fundamentally less energetic than those of conventional hydrocarbons. An example of this difference is given using a recently developed mechanism for dimethyl carbonate (DMC) combustion, where we show that a diffusion flame burning DMC has only half the peak energy release rate of an analogous propane flame. We find a significant variation among the carbonate solvents in the factors that are important to determining flammability, such as combustion enthalpy and vaporization enthalpy. This result suggests that thermochemical and kinetic factors might well be considered when choosing solvent mixtures.

  11. Porous Silicon Nanotube Arrays as Anode Material for Li-Ion Batteries.

    PubMed

    Tesfaye, Alexander T; Gonzalez, Roberto; Coffer, Jeffery L; Djenizian, Thierry

    2015-09-23

    We report the electrochemical performance of Si nanotube vertical arrays possessing thin porous sidewalls for Li-ion batteries. Porous Si nanotubes were fabricated on stainless steel substrates using a sacrificial ZnO nanowire template method. These porous Si nanotubes are stable at multiple C-rates. A second discharge capacity of 3095 mAh g(-1) with a Coulombic efficiency of 63% is attained at a rate of C/20 and a stable gravimetric capacity of 1670 mAh g(-1) obtained after 30 cycles. The high capacity values are attributed to the large surface area offered by the porosity of the 3D nanostructures, thereby promoting lithium-ion storage according to a pseudocapacitive mechanism.

  12. Polyethylene terephthalate/poly (vinylidene fluoride) composite separator for Li-ion battery

    NASA Astrophysics Data System (ADS)

    Wu, Dezhi; Huang, Shaohua; Xu, Zhiqin; Xiao, Zhiming; Shi, Chuan; Zhao, Jinbao; Zhu, Rui; Sun, Daoheng; Lin, Liwei

    2015-07-01

    Electrospun nanofiber membranes have been proved to enhance performances of Li-ion batteries, but their poor mechanical strength hinders their industrial application. This paper combines meltblown polyethylene terephthalate (PET) nonwoven and electrospun poly (vinylidene fluoride) (PVDF) membrane together to improve the mechanical property via hot-pressing, wherein a dried 3 wt% PVDF solution coating on PET nonwoven is used as a binder. The hot-pressing temperature is optimized to be 145 °C and the composite PET/PVDF separator exhibits an excellent mechanical property, whose transverse and longitudinal tensile strength could reach 13.70 and 34.85 MPa respectively. Compared with a commercial PP separator, the hot-pressed PET/PVDF membrane separator shows better wettability, higher thermal shrinkage and improved electrochemical performance as well.

  13. Polyethylene terephthalate/poly(vinylidene fluoride) composite separator for Li-ion battery

    NASA Astrophysics Data System (ADS)

    Wu, Dezhi; Huang, Shaohua; Xu, Zhiqin; Xiao, Zhiming; Shi, Chuan; Zhao, Jinbao; Zhu, Rui; Sun, Daoheng; Lin, Liwei

    2015-06-01

    Electrospun nanofiber membranes have been proved to enhance the performance of a Li-ion battery (LIB), but their poor mechanical strength hinders their industrial application. This paper combines a meltblown polyethylene terephthalate (PET) nonwoven and a electrospun poly(vinylidene fluoride) (PVDF) membrane together to improve the mechanical property via hot-pressing, wherein a dried 3 wt% PVDF solution coating on PET nonwoven is used as a binder. The experiment results indicate that the hot-pressing PET/PVDF separator exhibits an excellent mechanical property, whose transverse and longitudinal tensile strength could reach 13.70 MPa and 34.85 MPa respectively. Compared with a commercial PP separator, the hot-pressing PET/PVDF membrane separator shows better wettability, higher thermal shrinkage and excellent discharge capacity as well.

  14. High-performance gel electrolytes with tetra-armed polymer network for Li ion batteries

    NASA Astrophysics Data System (ADS)

    Hazama, Taisuke; Fujii, Kenta; Sakai, Takamasa; Aoki, Masahiro; Mimura, Hideyuki; Eguchi, Hisao; Todorov, Yanko; Yoshimoto, Nobuko; Morita, Masayuki

    2015-07-01

    An organo gel with only 6 wt % tetra-armed poly(ethylene glycol), TetraPEG, was prepared and applied as a novel gel electrolyte for Li ion batteries (LIBs). The TetraPEG gel electrolyte containing 1.0 M LiPF6 in binary or ternary mixtures, i.e., EC + DEC and EC + DEC + TFEP (EC: ethylene carbonate, DEC: diethyl carbonate and TFEP: tris(2,2,2-trifluoroethyl)phosphate showed high ionic conductivity required for the use in LIB systems. The TetraPEG gel based on ternary EC + DEC + TFEP system acts as a nonflammable gel electrolyte at the TFEP content higher than 20 vol%. In cyclic voltammetry and charge/discharge cycling tests, the TetraPEG gel electrolytes showed good reversibility for a graphite negative electrode.

  15. Design of composite polymer electrolytes for Li ion batteries based on mechanical stability criteria

    SciTech Connect

    Kalnaus, Sergiy; Sabau, Adrian S; Tenhaeff, Wyatt E; Daniel, Claus; Dudney, Nancy J

    2012-01-01

    Mechanical properties and conductivity were computed for several composite polymer electrolyte structures. A multi-phase effective medium approach was used to estimate effective conductivity. The Mori-Tanaka approach was applied for calculating the effective stiffness tensor of the composites. An analysis of effective mechanical properties was performed in order to identify the composite structures, which would be capable of blocking the dendrites forming in Li-ion battery when Li metal is used as anode. The data on conductivity, elastic modulus, and Poisson s ratio can be used to formulate design criteria for solid electrolytes that would exhibit appropriate stiffness and compressibility to suppress lithium dendrite growth while maintaining high effective conductivities.

  16. Selected test results from the LiFeBatt iron phosphate Li-ion battery.

    SciTech Connect

    Ingersoll, David T.; Hund, Thomas D.

    2008-09-01

    In this paper the performance of the LiFeBatt Li-ion cell was measured using a number of tests including capacity measurements, capacity as a function of temperature, ohmic resistance, spectral impedance, high power partial state of charge (PSOC) pulsed cycling, pulse power measurements, and an over-charge/voltage abuse test. The goal of this work was to evaluate the performance of the iron phosphate Li-ion battery technology for utility applications requiring frequent charges and discharges, such as voltage support, frequency regulation, and wind farm energy smoothing. Test results have indicated that the LiFeBatt battery technology can function up to a 10C{sub 1} discharge rate with minimal energy loss compared to the 1 h discharge rate (1C). The utility PSOC cycle test at up to the 4C{sub 1} pulse rate completed 8,394 PSOC pulsed cycles with a gradual loss in capacity of 10 to 15% depending on how the capacity loss is calculated. The majority of the capacity loss occurred during the initial 2,000 cycles, so it is projected that the LiFeBatt should PSOC cycle well beyond 8,394 cycles with less than 20% capacity loss. The DC ohmic resistance and AC spectral impedance measurements also indicate that there were only very small changes after cycling. Finally, at a 1C charge rate, the over charge/voltage abuse test resulted in the cell venting electrolyte at 110 C after 30 minutes and then open-circuiting at 120 C with no sparks, fire, or voltage across the cell.

  17. Selective recovery of valuable metals from spent Li-ion batteries using solvent-impregnated resins.

    PubMed

    Guo, Fuqiang; Nishihama, Syouhei; Yoshizuka, Kazuharu

    2013-01-01

    Selective recovery of valuable metals (Cu(2+), Co(2+) and Li(+)) from leachate of spent lithium-ion (Li-ion) batteries was investigated in acidic chloride media using solvent impregnated resins (SIRs). An SIR containing bis(2-ethylhexyl) phosphoric acid (D2EHPA) had high selectivity for Fe(3+) and Al(3+), with an order of selectivity Fe(3+) > Al(3+) > Cu(2+) > Co(2+). Fe(3+) and Al(3+) could be removed from synthetic leachate by precipitation, followed by column adsorption with the SIR containing D2EHPA. The synthetic leachate was then applied to chromatography for selective recovery of Cu(2+), Co(2+) and Li(+). The solution was first fed upward to a column packed with an SIR containing 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (PC-88A) for selective separation of Cu(2+), followed by upward feed to another column packed with an SIR comprising PC-88A and bis(2,4,4-trimethylpentyl) phosphinic acid (Cyanex 272) for selective recovery of Co(2+). Finally, a column packed with a synergistic SIR containing both 1-phenyl-1,3-tetradecanedione (C11phbetaDK) and tri-n-octylphosphine oxide (TOPO) was used for selective recovery of Li(+). A process flowsheet is proposed for selective recovery of Cu(2+), Co(2+) and Li(+) using several SIRs. This process was found to be simple and efficient for selective recovery of valuable metals from leachate of spent Li-ion batteries. Pure copper, cobalt and lithium products were obtained, with high elution yields. PMID:24191463

  18. Selective recovery of valuable metals from spent Li-ion batteries using solvent-impregnated resins.

    PubMed

    Guo, Fuqiang; Nishihama, Syouhei; Yoshizuka, Kazuharu

    2013-01-01

    Selective recovery of valuable metals (Cu(2+), Co(2+) and Li(+)) from leachate of spent lithium-ion (Li-ion) batteries was investigated in acidic chloride media using solvent impregnated resins (SIRs). An SIR containing bis(2-ethylhexyl) phosphoric acid (D2EHPA) had high selectivity for Fe(3+) and Al(3+), with an order of selectivity Fe(3+) > Al(3+) > Cu(2+) > Co(2+). Fe(3+) and Al(3+) could be removed from synthetic leachate by precipitation, followed by column adsorption with the SIR containing D2EHPA. The synthetic leachate was then applied to chromatography for selective recovery of Cu(2+), Co(2+) and Li(+). The solution was first fed upward to a column packed with an SIR containing 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (PC-88A) for selective separation of Cu(2+), followed by upward feed to another column packed with an SIR comprising PC-88A and bis(2,4,4-trimethylpentyl) phosphinic acid (Cyanex 272) for selective recovery of Co(2+). Finally, a column packed with a synergistic SIR containing both 1-phenyl-1,3-tetradecanedione (C11phbetaDK) and tri-n-octylphosphine oxide (TOPO) was used for selective recovery of Li(+). A process flowsheet is proposed for selective recovery of Cu(2+), Co(2+) and Li(+) using several SIRs. This process was found to be simple and efficient for selective recovery of valuable metals from leachate of spent Li-ion batteries. Pure copper, cobalt and lithium products were obtained, with high elution yields.

  19. Direct view on the phase evolution in individual LiFePO4 nanoparticles during Li-ion battery cycling

    PubMed Central

    Zhang, Xiaoyu; van Hulzen, Martijn; Singh, Deepak P.; Brownrigg, Alex; Wright, Jonathan P.; van Dijk, Niels H.; Wagemaker, Marnix

    2015-01-01

    Phase transitions in Li-ion electrode materials during (dis)charge are decisive for battery performance, limiting high-rate capabilities and playing a crucial role in the cycle life of Li-ion batteries. However, the difficulty to probe the phase nucleation and growth in individual grains is hindering fundamental understanding and progress. Here we use synchrotron microbeam diffraction to disclose the cycling rate-dependent phase transition mechanism within individual particles of LiFePO4, a key Li-ion electrode material. At low (dis)charge rates well-defined nanometer thin plate-shaped domains co-exist and transform much slower and concurrent as compared with the commonly assumed mosaic transformation mechanism. As the (dis)charge rate increases phase boundaries become diffuse speeding up the transformation rates of individual grains. Direct observation of the transformation of individual grains reveals that local current densities significantly differ from what has previously been assumed, giving new insights in the working of Li-ion battery electrodes and their potential improvements. PMID:26395323

  20. Performance of Li-ion secondary batteries in low power, hybrid power supplies

    NASA Astrophysics Data System (ADS)

    Prakash, Shruti; Mustain, William E.; Kohl, Paul A.

    Small, portable electronic devices need power supplies that have long life, high energy efficiency, high energy density, and can deliver short power bursts. Hybrid power sources that combine a high energy density fuel cell, or an energy scavenging device, with a high power secondary battery are of interest in sensors and wireless devices. However, fuel cells with low self-discharge have low power density and have a poor response to transient loads. A low capacity secondary lithium ion cell can provide short burst power needed in a hybrid fuel cell-battery power supply. This paper describes the polarization, cycling, and self-discharge of commercial lithium ion batteries as they would be used in the small, hybrid power source. The performance of 10 Li-ion variations, including organic electrolytes with Li xV 2O 5 and Li xMn 2O 4 cathodes and LiPON electrolyte with a LiCoO 2 cathode was evaluated. Electrochemical characterization shows that the vanadium oxide cathode cells perform better than their manganese oxide counterparts in every category. The vanadium oxide cells also show better cycling performance under shallow discharge conditions than LiPON cells at a given current. However, the LiPON cells show significantly lower energy loss due to polarization and self-discharge losses than the vanadium and manganese cells with organic electrolytes.

  1. Intelligent Li ion battery management based on a digital signal processor for a moving actuator total artificial heart.

    PubMed

    Kim, W E; Ahn, J M; Choi, S W; Min, B G

    1997-01-01

    An intelligent Li Ion battery management (ILBM) system was developed based on a digital signal processor (DSP). Instead of using relatively complicated hardware charging control, a DSP algorithm was used, and favorable characteristics in volume, mass, and temperature increase of the implantable battery were achieved. In vitro tests were performed to evaluate the DSP based algorithm for Li Ion charging control (24 V dc motor input power 16 W, 5 L/min, 100 mmHg afterload). In this article, the first improvement was volume reduction using a Li Ion battery (3.6 V/Cell, 900 mA, seven cells: 25.2 V, 22.7 W). Its volume and mass were decreased by 40% and 50% respectively (40*55*75 mm, 189 g), compared to previously reported results, with total energy capacity increased by 110% (more than 60 min vs 25 min run time in the other battery). The second improvement includes the ILBM, which can control the performance detection for each unit cell and has a low temperature rise. The ILBM's unit cell energy detection was important because the low performance of one cell dropped to 50% of the total performance along with a 20% increase in surface temperature. All electronics for a transcutaneous energy transmission (TET), battery, and telemetry were finalized for hybridization and used for total artificial heat (TAH) implantation.

  2. Development and testing of 100 kW/1 min Li-ion battery systems for energy storage applications

    NASA Astrophysics Data System (ADS)

    Clark, N. H.; Doughty, D. H.

    Two 100 kW min -1 (1.67 kW h -1) Li-ion battery energy storage systems (BESS) are described. The systems include a high-power Li-ion battery and a 100 kW power conditioning system (PCS). The battery consists of 12 modules of 12 series-connected Saft Li-ion VL30P cells. The stored energy of the battery ranges from 1.67 to 14 kW h -1 and has an operating voltage window of 515-405 V (dc). Two complete systems were designed, built and successfully passed factory acceptance testing after which each was deployed in a field demonstration. The first demonstration used the system to supplement distributed microturbine generation and to provide load following capability. The system was run at its rated power level for 3 min, which exceeded the battery design goal by a factor of 3. The second demonstration used another system as a stand-alone uninterrupted power supply (UPS). The system was available (online) for 1146 h and ran for over 2 min.

  3. Electronic structure of lithium borocarbide as a cathode material for a rechargeable Li-ion battery: First-principles calculation

    NASA Astrophysics Data System (ADS)

    Xu, Qiang; Ban, Chunmei; Dillon, Anne; Wei, Suhuai; Zhao, Yufeng

    2011-03-01

    Traditional cathode materials, such as transition-metal oxides, are heavy, expensive, and often not benign. Therefore, alternative materials without transition metal elements are highly desirable in order to design high-capacity Li-ion batteries of light weight and low price. Here we report on potential application of the LiBC compound as cathode materials, in which graphene-like BC sheets are intercalated by Li ions. The crystal structure and properties of LiBC were firstly reported by Wörle et al. in 1995. Importantly, it was found that the 75% Li ions can be retrieved out of the compound without changing the layered structure. We have performed first-principles calculations based on density functional theory, as implemented in the Vienna Ab-initio Simulation Package. According to our calculation, the layered Li x BC structure can be well preserved at x > 0.5 . Thereversibleelectrochemicalreaction , LiBC <--> Li 0.5 , gives an energy capacity of 609mAh/g and an open-circuit voltage of 2.42V. The volume change is only about 5% during the charging and discharging process. All these results point to a potentially promising application of LiBC as a novel cathode material for high-capacity Li-ion batteries in replacement of the transition metal oxides.

  4. A nanonet-enabled Li ion battery cathode material with high power rate, high capacity, and long cycle lifetime.

    PubMed

    Zhou, Sa; Yang, Xiaogang; Lin, Yongjing; Xie, Jin; Wang, Dunwei

    2012-01-24

    The performance of advanced energy conversion and storage devices, including solar cells and batteries, is intimately connected to the electrode designs at the nanoscale. Consider a rechargeable Li ion battery, a prevalent energy storage technology, as an example. Among other factors, the electrode material design at the nanoscale is key to realizing the goal of measuring fast ionic diffusion and high electronic conductivity, the inherent properties that determine power rates, and good stability upon repeated charge and discharge, which is critical to the sustainable high capacities. Here we show that such a goal can be achieved by forming heteronanostructures on a radically new platform we discovered, TiSi(2) nanonets. In addition to the benefits of high surface area, good electrical conductivity, and superb mechanical strength offered by the nanonet, the design also takes advantage of how TiSi(2) reacts with O(2) upon heating. The resulting TiSi(2)/V(2)O(5) nanostructures exhibit a specific capacity of 350 Ah/kg, a power rate up to 14.5 kW/kg, and 78.7% capacity retention after 9800 cycles of charge and discharge. These figures indicate that a cathode material significantly better than V(2)O(5) of other morphologies is produced.

  5. A POM–organic framework anode for Li-ion battery

    DOE PAGES

    Yue, Yanfeng; Li, Yunchao; Bi, Zhonghe; Veith, Gabriel M.; Bridges, Craig A.; Guo, Bingkun; Chen, Jihua; Mullins, David R.; Surwade, Sumedh P.; Mahurin, Shannon M.; et al

    2015-10-12

    Rechargeable Li-ion batteries (LIBs) are currently the dominant power source for portable electronic devices and electric vehicles, and for small-scale stationary energy storage. However, one bottleneck of the anode materials for LIBs is the poor cycling performance caused by the fact that the anodes cannot maintain their integrity over several charge–discharge cycles. In this work, we demonstrate an approach to improving the cycling performance of lithium-ion battery anodes by constructing an extended 3D network of flexible redox active polyoxometalate (POM) clusters with redox active organic linkers, herein described as POMOF. In addition, this architecture enables the accommodation of large volumemore » changes during cycling at relatively high current rates. For example, the POMOF anode exhibits a high reversible capacity of 540 mA h g–1 after 360 cycles at a current rate of 0.25C and a long cycle life at a current rate of 1.25C (>500 cycles).« less

  6. A POM–organic framework anode for Li-ion battery

    SciTech Connect

    Yue, Yanfeng; Li, Yunchao; Bi, Zhonghe; Veith, Gabriel M.; Bridges, Craig A.; Guo, Bingkun; Chen, Jihua; Mullins, David R.; Surwade, Sumedh P.; Mahurin, Shannon M.; Liu, Hongjun; Paranthaman, M. Parans; Dai, Sheng

    2015-10-12

    Rechargeable Li-ion batteries (LIBs) are currently the dominant power source for portable electronic devices and electric vehicles, and for small-scale stationary energy storage. However, one bottleneck of the anode materials for LIBs is the poor cycling performance caused by the fact that the anodes cannot maintain their integrity over several charge–discharge cycles. In this work, we demonstrate an approach to improving the cycling performance of lithium-ion battery anodes by constructing an extended 3D network of flexible redox active polyoxometalate (POM) clusters with redox active organic linkers, herein described as POMOF. In addition, this architecture enables the accommodation of large volume changes during cycling at relatively high current rates. For example, the POMOF anode exhibits a high reversible capacity of 540 mA h g–1 after 360 cycles at a current rate of 0.25C and a long cycle life at a current rate of 1.25C (>500 cycles).

  7. Fabrication of free-standing aligned multiwalled carbon nanotube array for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Bulusheva, L. G.; Arkhipov, V. E.; Fedorovskaya, E. O.; Zhang, Su; Kurenya, A. G.; Kanygin, M. A.; Asanov, I. P.; Tsygankova, A. R.; Chen, Xiaohong; Song, Huaihe; Okotrub, A. V.

    2016-04-01

    We show that a high-temperature CCl4 vapor treatment of vertically aligned multiwalled carbon nanotubes (VA-MWCNTs) grown on silicon substrate allows carefully detach the array from the substrate. Moreover, this procedure partially purifies the VA-MWCNTs from the residual iron catalyst. To improve electrical connectivity of free-standing VA-MWCNTs in an electrochemical cell, the array was placed between the layers of Ni foam. Such assembly demonstrated the better performance in Li-battery as compared to the disordered MWCNTs. After 50 cycles, the specific capacity of VA-MWCNT array synthesized from 0.5 wt% ferrocene solution in toluene was 350 mAh g-1 at a current density of 0.1 A g-1, while the battery with the disordered MWCNTs achieved 197 mAh g-1 only. By the results of electrochemical impedance spectroscopy, the higher capacity of VA-MWCNTs was attributed to larger surface area available for electrolyte and Li ions due to the absence of binder coating.

  8. Challenges in Accommodating Volume Change of Si Anodes for Li-Ion Batteries

    PubMed Central

    Ko, Minseong; Chae, Sujong; Cho, Jaephil

    2015-01-01

    Si has been considered as a promising alternative anode for next-generation Li-ion batteries (LIBs) because of its high theoretical energy density, relatively low working potential, and abundance in nature. However, Si anodes exhibit rapid capacity decay and an increase in the internal resistance, which are caused by the large volume changes upon Li insertion and extraction. This unfortunately limits their practical applications. Therefore, managing the total volume change remains a critical challenge for effectively alleviating the mechanical fractures and instability of solid-electrolyte-interphase products. In this regard, we review the recent progress in volume-change-accommodating Si electrodes and investigate their ingenious structures with significant improvements in the battery performance, including size-controlled materials, patterned thin films, porous structures, shape-preserving shell designs, and graphene composites. These representative approaches potentially overcome the large morphologic changes in the volume of Si anodes by securing the strain relaxation and structural integrity in the entire electrode. Finally, we propose perspectives and future challenges to realize the practical application of Si anodes in LIB systems. PMID:27525208

  9. Improved layered mixed transition metal oxides for Li-ion batteries

    SciTech Connect

    Doeff, Marca M.; Conry, Thomas; Wilcox, James

    2010-03-05

    Recent work in our laboratory has been directed towards development of mixed layered transition metal oxides with general composition Li[Ni, Co, M, Mn]O2 (M=Al, Ti) for Li ion battery cathodes. Compounds such as Li[Ni1/3Co1/3Mn1/3]O2 (often called NMCs) are currently being commercialized for use in consumer electronic batteries, but the high cobalt content makes them too expensive for vehicular applications such as electric vehicles (EV), plug-in hybrid electric vehicles (PHEVs), or hybrid electric vehicles (HEVs). To reduce materials costs, we have explored partial or full substitution of Co with Al, Ti, and Fe. Fe substitution generally decreases capacity and results in poorer rate and cycling behavior. Interestingly, low levels of substitution with Al or Ti improve aspects of performance with minimal impact on energy densities, for some formulations. High levels of Al substitution compromise specific capacity, however, so further improvements require that the Ni and Mn content be increased and Co correspondingly decreased. Low levels of Al or Ti substitution can then be used offset negative effects induced by the higher Ni content. The structural and electrochemical characterization of substituted NMCs is presented in this paper.

  10. NASA Aerospace Flight Battery Program: Generic Safety, Handling and Qualification Guidelines for Lithium-Ion (Li-Ion) Batteries; Availability of Source Materials for Lithium-Ion (Li-Ion) Batteries; Maintaining Technical Communications Related to Aerospace Batteries (NASA Aerospace Battery Workshop). Volume 1, Part 1

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.; Brewer, Jeffrey C.; Bugga, Ratnakumar V.; Darcy, Eric C.; Jeevarajan, Judith A.; McKissock, Barbara I.; Schmitz, Paul C.

    2010-01-01

    This NASA Aerospace Flight Battery Systems Working Group was chartered within the NASA Engineering and Safety Center (NESC). The Battery Working Group was tasked to complete tasks and to propose proactive work to address battery related, agency-wide issues on an annual basis. In its first year of operation, this proactive program addressed various aspects of the validation and verification of aerospace battery systems for NASA missions. Studies were performed, issues were discussed and in many cases, test programs were executed to generate recommendations and guidelines to reduce risk associated with various aspects of implementing battery technology in the aerospace industry. This document contains Part 1 - Volume I: Generic Safety, Handling and Qualification Guidelines for Lithium-Ion (Li-Ion) Batteries, Availability of Source Materials for Lithium-Ion (Li-Ion) Batteries, and Maintaining Technical Communications Related to Aerospace Batteries (NASA Aerospace Battery Workshop).

  11. Effects of Carbon Content on the Electrochemical Performances of MoS2-C Nanocomposites for Li-Ion Batteries.

    PubMed

    Sun, Weiyi; Hu, Zhe; Wang, Caiyun; Tao, Zhanliang; Chou, Shu-Lei; Kang, Yong-Mook; Liu, Hua-Kun

    2016-08-31

    Molybdenum disulfide is popular for rechargeable batteries, especially in Li-ion batteries, because of its layered structure and relatively high specific capacity. In this paper, we report MoS2-C nanocomposites that are synthesized by a hydrothermal process, and their use as anode material for Li-ion batteries. Ascorbic acid is used as the carbon source, and the carbon contents can be tuned from 2.5 wt % to 16.2 wt %. With increasing of carbon content, the morphology of MoS2-C nanocomposites changes from nanoflowers to nanospheres, and the particle size is decreased from 200 to 60 nm. This change is caused by the chemical complex interaction of ascorbic acid. The MoS2-C nanocomposite with 8.4 wt % C features a high capacity of 970 mAh g(-1) and sustains a capacity retention ratio of nearly 100% after 100 cycles. When the current increases to 1000 mA g(-1), the capacity still reaches 730 mAh g(-1). The above manifests that the carbon coating layer does not only accelerate the charge transfer kinetics to supply quick discharging and charging, but also hold the integrity of the electrode materials as evidenced by the long cycling stability. Therefore, MoS2-based nanocomposites could be used as commercial anode materials in Li-ion batteries. PMID:27502442

  12. Effects of Carbon Content on the Electrochemical Performances of MoS2-C Nanocomposites for Li-Ion Batteries.

    PubMed

    Sun, Weiyi; Hu, Zhe; Wang, Caiyun; Tao, Zhanliang; Chou, Shu-Lei; Kang, Yong-Mook; Liu, Hua-Kun

    2016-08-31

    Molybdenum disulfide is popular for rechargeable batteries, especially in Li-ion batteries, because of its layered structure and relatively high specific capacity. In this paper, we report MoS2-C nanocomposites that are synthesized by a hydrothermal process, and their use as anode material for Li-ion batteries. Ascorbic acid is used as the carbon source, and the carbon contents can be tuned from 2.5 wt % to 16.2 wt %. With increasing of carbon content, the morphology of MoS2-C nanocomposites changes from nanoflowers to nanospheres, and the particle size is decreased from 200 to 60 nm. This change is caused by the chemical complex interaction of ascorbic acid. The MoS2-C nanocomposite with 8.4 wt % C features a high capacity of 970 mAh g(-1) and sustains a capacity retention ratio of nearly 100% after 100 cycles. When the current increases to 1000 mA g(-1), the capacity still reaches 730 mAh g(-1). The above manifests that the carbon coating layer does not only accelerate the charge transfer kinetics to supply quick discharging and charging, but also hold the integrity of the electrode materials as evidenced by the long cycling stability. Therefore, MoS2-based nanocomposites could be used as commercial anode materials in Li-ion batteries.

  13. Development of in-situ full-field spectroscopic imaging analysis and application on Li-ion battery using transmission x-ray microscopy

    NASA Astrophysics Data System (ADS)

    Chen-Wiegart, Yu-chen K.; Wang, Jiajun; Wang, Jun

    2013-09-01

    This paper presents the advance in spectroscopic imaging technique and analysis method from the newly developed transmission x-ray microscopy (TXM) at the beamline X8C of National Synchrotron Light Source. Through leastsquares linear combination fitting we developed on the in situ spectroscopic images, a time-dependent and spatially resolved chemical composition mapping can be obtained and quantitatively analyzed undergone chemical/electrochemical reactions. A correlation of morphological evolution, chemical state distribution changes and reaction conditions can be revealed. We successfully applied this method to study the electrochemical evolution of CuO, an anode material of Li-ion battery, during the lithiation-delitiation cycling.

  14. Todorokite-type manganese oxide nanowires as an intercalation cathode for Li-ion and Na-ion batteries

    SciTech Connect

    Byles, B. W.; West, P.; Cullen, D. A.; More, K. L.; Pomerantseva, E.

    2015-01-01

    Extended hydrothermal treatment at an elevated temperature of 220 °C allowed high yield synthesis of manganese oxide nanowires with a todorokite crystal structure suitable for ions intercalation. The flexible, high aspect ratio nanowires are 50–100 nm in diameter and up to several microns long, with 3 × 3 structural tunnels running parallel to the nanowire longitudinal axis. Moreover, the tunnels are occupied by magnesium ions and water molecules, with the chemical composition found to be Mg0.2MnO2·0.5H2O. The todorokite nanowires were, for the first time, electrochemically tested in both Li-ion and Na-ion cells. A first discharge capacity of 158 mA h g-1 was achieved in a Na-ion system, which was found to be greater than the first discharge capacity in a Li-ion system (133 mA h g-1). In spite of the large structural tunnel dimensions, todorokite showed a significant first cycle capacity loss in a Na-ion battery. After 20 cycles, the capacity was found to stabilize around 50 mA h g-1 and remained at this level for 100 cycles. In a Li-ion system, todorokite nanowires showed significantly better capacity retention with 78% of its initial capacity remaining after 100 cycles. Rate capability tests also showed superior performance of todorokite nanowires in Li-ion cells compared to Na-ion cells at higher current rates. Finally, these results highlight the difference in electrochemical cycling behavior of Li-ion and Na-ion batteries for a host material with spacious 3 × 3 tunnels tailored for large Na+ ion intercalation.

  15. Todorokite-type manganese oxide nanowires as an intercalation cathode for Li-ion and Na-ion batteries

    DOE PAGES

    Byles, B. W.; West, P.; Cullen, D. A.; More, K. L.; Pomerantseva, E.

    2015-01-01

    Extended hydrothermal treatment at an elevated temperature of 220 °C allowed high yield synthesis of manganese oxide nanowires with a todorokite crystal structure suitable for ions intercalation. The flexible, high aspect ratio nanowires are 50–100 nm in diameter and up to several microns long, with 3 × 3 structural tunnels running parallel to the nanowire longitudinal axis. Moreover, the tunnels are occupied by magnesium ions and water molecules, with the chemical composition found to be Mg0.2MnO2·0.5H2O. The todorokite nanowires were, for the first time, electrochemically tested in both Li-ion and Na-ion cells. A first discharge capacity of 158 mA hmore » g-1 was achieved in a Na-ion system, which was found to be greater than the first discharge capacity in a Li-ion system (133 mA h g-1). In spite of the large structural tunnel dimensions, todorokite showed a significant first cycle capacity loss in a Na-ion battery. After 20 cycles, the capacity was found to stabilize around 50 mA h g-1 and remained at this level for 100 cycles. In a Li-ion system, todorokite nanowires showed significantly better capacity retention with 78% of its initial capacity remaining after 100 cycles. Rate capability tests also showed superior performance of todorokite nanowires in Li-ion cells compared to Na-ion cells at higher current rates. Finally, these results highlight the difference in electrochemical cycling behavior of Li-ion and Na-ion batteries for a host material with spacious 3 × 3 tunnels tailored for large Na+ ion intercalation.« less

  16. Hard carbon coated nano-Si/graphite composite as a high performance anode for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Jeong, Sookyung; Li, Xiaolin; Zheng, Jianming; Yan, Pengfei; Cao, Ruiguo; Jung, Hee Joon; Wang, Chongmin; Liu, Jun; Zhang, Ji-Guang

    2016-10-01

    With the ever-increasing demands for higher energy densities in Li-ion batteries, alternative anodes with higher reversible capacity are required to replace the conventional graphite anode. Here, we demonstrate a cost-effective hydrothermal carbonization approach to prepare a hard carbon coated nano-Si/graphite (HC-nSi/G) composite as a high performance anode for Li-ion batteries. In this hierarchical structured composite, the hard carbon coating not only provides an efficient pathway for electron transfer, but also alleviates the volume variation of Si during charge/discharge processes. The HC-nSi/G composite electrode shows excellent performance, including a high specific capacity of 878.6 mAh g-1 based on the total weight of composite, good rate performance, and a decent cycling stability, which is promising for practical applications.

  17. Development of non-enzymatic glucose sensor using recycled cobalt from cell phone Li-ion batteries.

    PubMed

    Gonçalves, Sicele A; Garcia, Eric M; Taroco, Hosane A; Teixeira, Rodrigo G; Guedes, Kassílio J; Gorgulho, Honória F; Martelli, Patrícia B; Fernandes, Antônio P L

    2015-12-01

    This article aims to present an alternative to recycling of spent Li-ion batteries applied to electrochemical sensor manufacturing. The cobalt, from cathode of Li-ion batteries, was recovered by electrodeposition onto AISI 430 stainless steel substrate and applied as glucose sensor. The composition of cathode utilized was obtained by AAS measures and corresponds to LiNi0,40Co0,60O2. Despite this composition, in the cobalt electrodeposition onto AISI 430 stainless steel the Ni is less of 1.7% (w/w) due the anomalous electrodeposition. The sensitivity of cobalt electrode for glucose detection is 70.2 μA/mmol cm(2) and the linear range is 1-10 mmol/L. This result shows that the Co electrodeposited onto AISI 430 stainless steel is a promissory and low-cost non-enzymatic glucose sensor.

  18. Engineered Si electrode nanoarchitecture: a scalable postfabrication treatment for the production of next-generation Li-ion batteries.

    PubMed

    Hassan, Fathy M; Chabot, Victor; Elsayed, Abdel Rahman; Xiao, Xingcheng; Chen, Zhongwei

    2014-01-01

    A novel, economical flash heat treatment of the fabricated silicon based electrodes is introduced to boost the performance and cycle capability of Li-ion batteries. The treatment reveals a high mass fraction of Si, improved interfacial contact, synergistic SiO2/C coating, and a conductive cellular network for improved conductivity, as well as flexibility for stress compensation. The enhanced electrodes achieve a first cycle efficiency of ∼84% and a maximum charge capacity of 3525 mA h g(-1), almost 84% of silicon's theoretical maximum. Further, a stable reversible charge capacity of 1150 mA h g(-1) at 1.2 A g(-1) can be achieved over 500 cycles. Thus, the flash heat treatment method introduces a promising avenue for the production of industrially viable, next-generation Li-ion batteries. PMID:24329030

  19. Development of non-enzymatic glucose sensor using recycled cobalt from cell phone Li-ion batteries.

    PubMed

    Gonçalves, Sicele A; Garcia, Eric M; Taroco, Hosane A; Teixeira, Rodrigo G; Guedes, Kassílio J; Gorgulho, Honória F; Martelli, Patrícia B; Fernandes, Antônio P L

    2015-12-01

    This article aims to present an alternative to recycling of spent Li-ion batteries applied to electrochemical sensor manufacturing. The cobalt, from cathode of Li-ion batteries, was recovered by electrodeposition onto AISI 430 stainless steel substrate and applied as glucose sensor. The composition of cathode utilized was obtained by AAS measures and corresponds to LiNi0,40Co0,60O2. Despite this composition, in the cobalt electrodeposition onto AISI 430 stainless steel the Ni is less of 1.7% (w/w) due the anomalous electrodeposition. The sensitivity of cobalt electrode for glucose detection is 70.2 μA/mmol cm(2) and the linear range is 1-10 mmol/L. This result shows that the Co electrodeposited onto AISI 430 stainless steel is a promissory and low-cost non-enzymatic glucose sensor. PMID:26321381

  20. Structural and Electrochemical Impacts of Oxygen Doped and Surfactant Coated Activated Carbon Electrodes in Li-ion Batteries

    NASA Astrophysics Data System (ADS)

    Collins, John; Gourdin, Gerald; Qu, Deyang; Foster, Michelle

    2013-03-01

    Passive charge and discharge dynamics are necessary for advancing Li-ion batteries. Surfactant adsorption on activated carbon has been shown to promote advancements in the discharge capacity, time and cycle-ability of electrochemical systems--specifically by enhancing diffusion pathways for ion insertion/de-insertion and suppressing pore blockage from precipitates known to form during charge/discharge states. Enhancement of surfactant chemisorption on activated carbon is achieved through oxygen doping of the carbon surface. In addition, doping alters the degree of Faradaic processes occurring in solution, resulting in prolonged reduction at the carbon surface. The work presented describes how surface oxygen groups on a granulated activated carbon have been manipulated using nitric acid in a controlled, stepwise fashion. A nonionic surfactant was applied to oxidized and non-oxidized samples at various concentrations. The composition and structure of the activated carbon surface was characterized using DRIFTS, Raman Spectroscopy, SEM and Porosimetry. The charge/discharge Li insertion capacities along with correlating surface microstructure changes were analyzed for all treated electrodes at progressive oxidation stages.

  1. CO₂ and O₂ evolution at high voltage cathode materials of Li-ion batteries: a differential electrochemical mass spectrometry study.

    PubMed

    Wang, Hongsen; Rus, Eric; Sakuraba, Takahito; Kikuchi, Jun; Kiya, Yasuyuki; Abruña, Héctor D

    2014-07-01

    A three-electrode differential electrochemical mass spectrometry (DEMS) cell has been developed to study the oxidative decomposition of electrolytes at high voltage cathode materials of Li-ion batteries. In this DEMS cell, the working electrode used was the same as the cathode electrode in real Li-ion batteries, i.e., a lithium metal oxide deposited on a porous aluminum foil current collector. A charged LiCoO2 or LiMn2O4 was used as the reference electrode, because of their insensitivity to air, when compared to lithium. A lithium sheet was used as the counter electrode. This DEMS cell closely approaches real Li-ion battery conditions, and thus the results obtained can be readily correlated with reactions occurring in real Li-ion batteries. Using DEMS, the oxidative stability of three electrolytes (1 M LiPF6 in EC/DEC, EC/DMC, and PC) at three cathode materials including LiCoO2, LiMn2O4, and LiNi(0.5)Mn(1.5)O4 were studied. We found that 1 M LiPF6 + EC/DMC electrolyte is quite stable up to 5.0 V, when LiNi(0.5)Mn(1.5)O4 is used as the cathode material. The EC/DMC solvent mixture was found to be the most stable for the three cathode materials, while EC/DEC was the least stable. The oxidative decomposition of the EC/DEC mixture solvent could be readily observed under operating conditions in our cell even at potentials as low as 4.4 V in 1 M LiPF6 + EC/DEC electrolyte on a LiCoO2 cathode, as indicated by CO2 and O2 evolution. The features of this DEMS cell to unveil solvent and electrolyte decomposition pathways are also described.

  2. Accurate static and dynamic properties of liquid electrolytes for Li-ion batteries from ab initio molecular dynamics.

    PubMed

    Ganesh, P; Jiang, De-en; Kent, P R C

    2011-03-31

    Lithium-ion batteries have the potential to revolutionize the transportation industry, as they did for wireless communication. A judicious choice of the liquid electrolytes used in these systems is required to achieve a good balance among high-energy storage, long cycle life and stability, and fast charging. Ethylene-carbonate (EC) and propylene-carbonate (PC) are popular electrolytes. However, to date, almost all molecular-dynamics simulations of these fluids rely on classical force fields, while a complete description of the functionality of Li-ion batteries will eventually require quantum mechanics. We perform accurate ab initio molecular-dynamics simulations of ethylene- and propylene-carbonate with LiPF(6) at experimental concentrations to build solvation models which explain available neutron scattering and nuclear magnetic resonance (NMR) results and to compute Li-ion solvation energies and diffusion constants. Our results suggest some similarities between the two liquids as well as some important differences. Simulations also provide useful insights into formation of solid-electrolyte interphases in the presence of electrodes in conventional Li-ion batteries.

  3. Borophene as an extremely high capacity electrode material for Li-ion and Na-ion batteries.

    PubMed

    Zhang, Xiaoming; Hu, Junping; Cheng, Yingchun; Yang, Hui Ying; Yao, Yugui; Yang, Shengyuan A

    2016-08-18

    "Two-dimensional (2D) materials as electrodes" is believed to be the trend for future Li-ion and Na-ion battery technologies. Here, by using first-principles methods, we predict that the recently reported borophene (2D boron sheets) can serve as an ideal electrode material with high electrochemical performance for both Li-ion and Na-ion batteries. The calculations are performed on two experimentally stable borophene structures, namely β12 and χ3 structures. The optimized Li and Na adsorption sites are identified, and the host materials are found to maintain good electric conductivity before and after adsorption. Besides advantages including small diffusion barriers and low average open-circuit voltages, most remarkably, the storage capacity can be as high as 1984 mA h g(-1) in β12 borophene and 1240 mA h g(-1) in χ3 borophene for both Li and Na, which are several times higher than the commercial graphite electrode and are the highest among all the 2D materials discovered to date. Our results highly support that borophenes can be appealing anode materials for both Li-ion and Na-ion batteries with extremely high power density. PMID:27502997

  4. Phosphorene ribbons as anode materials with superhigh rate and large capacity for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Wang, Da; Guo, Gen-Cai; Wei, Xiao-Lin; Liu, Li-Min; Zhao, Shi-Jin

    2016-01-01

    By means of density functional theory calculations, we systematically investigated the adsorption and diffusion properties of lithium ions on the armchair and zigzag phosphorene nanoribbons (AC-PNR and ZZ-PNR), in comparison with the pristine phosphorene. It is shown that both AC- and ZZ-PNR have a significantly enhanced Li binding strength but without sacrificing the Li mobility due to the presence of unique edge states. Besides, the ZZ-PNR with the width of 21.5 Å has a moderate working voltage (0.504-0.021 V), high capacity (541 mA h/g) and fast charge/discharge rate, which is more promising to be used as an anode material for LIBs. By contrast, the obvious depravation of the voltage is found in AC-PNR, which is mainly due to its weak stiffness that cannot afford the observed structural deformation during the lithiated process. Thus, it is highly expected to avoid the undesirable structural expansion in AC-PNR. The results presented here provide valuable insights into exploring high performance armchair/zigzag phosphorene nanoribbons for potential Li-ion battery applications.

  5. Post oxygen treatment characteristics of coke as an anode material for Li-ion batteries.

    PubMed

    Kim, Jae-Hun; Park, Min-Sik; Jo, Yong Nam; Yu, Ji-Sang; Jeong, Goojin; Kim, Young-Jun

    2013-05-01

    The effect of a oxygen treatment on the electrochemical characteristics of a soft carbon anode material for Li-ion batteries was investigated. After a coke carbonization process at 1000 degrees C in an argon atmosphere, the samples were treated under a flow of oxygen gas to obtain a mild oxidation effect. After this oxygen treatment, the coke samples exhibited an improved initial coulombic efficiency and cycle performance as compared to the carbonized sample. High-resolution transmission electron microscopy revealed that the carbonized cokes consisted of disordered and nanosized graphene layers and the surface of the modified carbon was significantly changed after the treatment. The chemical state of the cokes was analyzed using X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. The enhanced electrochemical properties of the surface modified cokes could be attributed to the mild oxidation effect induced by the oxygen treatment. The mild oxidation process could have led to the elimination of surface imperfections and the reinforcement of a solid electrolyte interphase film, which resulted in the improved electrochemical characteristics.

  6. Bio-Derived, Binderless, Hierarchically Porous Carbon Anodes for Li-ion Batteries.

    PubMed

    Campbell, Brennan; Ionescu, Robert; Favors, Zachary; Ozkan, Cengiz S; Ozkan, Mihrimah

    2015-09-29

    Here we explore the electrochemical performance of pyrolyzed skins from the species A. bisporus, also known as the Portobello mushroom, as free-standing, binder-free, and current collector-free Li-ion battery anodes. At temperatures above 900 °C, the biomass-derived carbon nanoribbon-like architectures undergo unique processes to become hierarchically porous. During heat-treatment, the oxygen and heteroatom-rich organics and potassium compounds naturally present in the mushroom skins play a mutual role in creating inner void spaces throughout the resulting carbon nanoribbons, which is a process analogous to KOH-activation of carbon materials seen in literature. The pores formed in the pyrolytic carbon nanoribbons range in size from sub-nanometer to tens of nanometers, making the nanoribbons micro, meso, and macroporous. Detailed studies were conducted on the carbon nanoribbons using SEM and TEM to study morphology, as well as XRD and EDS to study composition. The self-supporting nanoribbon anodes demonstrate significant capacity increase as they undergo additional charge/discharge cycles. After a pyrolysis temperature of 1100 °C, the pristine anodes achieve over 260 mAh/g after 700 cycles and a Coulombic efficiency of 101.1%, without the use of harmful solvents or chemical activation agents.

  7. Physics of electron and lithium-ion transport in electrode materials for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Musheng, Wu; Bo, Xu; Chuying, Ouyang

    2016-01-01

    The physics of ionic and electrical conduction at electrode materials of lithium-ion batteries (LIBs) are briefly summarized here, besides, we review the current research on ionic and electrical conduction in electrode material incorporating experimental and simulation studies. Commercial LIBs have been widely used in portable electronic devices and are now developed for large-scale applications in hybrid electric vehicles (HEV) and stationary distributed power stations. However, due to the physical limits of the materials, the overall performance of today’s LIBs does not meet all the requirements for future applications, and the transport problem has been one of the main barriers to further improvement. The electron and Li-ion transport behaviors are important in determining the rate capacity of LIBs. Project supported by the National High Technology Research and Development Program of China (Grant No. 2015AA034201), the National Natural Science Foundation of China (Grant Nos. 11234013 and 11264014), the Natural Science Foundation of Jiangxi Province, China (Grant Nos. 20133ACB21010 and 20142BAB212002), and the Foundation of Jiangxi Education Committee, China (Grant Nos. GJJ14254 and KJLD14024). C. Y. Ouyang is also supported by the “Gan-po talent 555” Project of Jiangxi Province, China.

  8. Engineering study on TiSnSb-based composite negative electrode for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Wilhelm, H. A.; Marino, C.; Darwiche, A.; Soudan, P.; Morcrette, M.; Monconduit, L.; Lestriez, B.

    2015-01-01

    Micrometric TiSnSb is a promising negative electrode material for Li-ion batteries when formulated with carboxymethyl cellulose (CMC) binder and a mixture of carbon black and carbon nanofibers, and cycled in a fluoroethylene carbonate (FEC)-containing electrolyte. Here, other binder systems were evaluated, polyacrylic acid (PAAH) mixed with CMC, CMC in buffered solution at pH 3 and amylopectin. However CMC showed the better performance in terms of cycle life of the electrode. Whatever the binder, cycle life decreases with increasing the active mass loading, which is attributed to both the precipitation of liquid electrolyte degradation products and to the loss of electrical contacts within the composite electrode and with the current collector as a consequence of the active particles volume variations. Furthermore, calendaring the electrode unfortunately decreases the cycle life. The rate performance was studied as a function of the active mass loading and was shown to be determined by the electrode polarization resistance. Finally, full cells cycling tests with Li1Ni1/3Co1/3Mn1/3O2 at the positive electrode were done. 60% of the capacity is retained after 200 cycles at the surface capacity of 2.7 mAh cm-2.

  9. Morphology-dependent vanadium oxide nanostructures grown on Ti foil for Li-ion battery.

    PubMed

    Wei, Lunzhen; Wang, Yuhang; Wang, Yanli; Xu, Ming; Zheng, Gengfeng

    2014-10-15

    Vanadium oxide is considered as a potential cathode material for lithium-ion batteries, while its performance is significantly restricted by its poor Li(+) ion diffusion rate and low electric conductivity. These ion and charge transport rates, however, are also well correlated with the 3-dimensional (3D) morphologies/structures of the electroactive materials. Herein, we synthesized three different nanostructured vanadium oxides on Ti foils. The comparison of electrochemical properties of these materials shows that the structures of electrodes have great influences on their performances. Among these structures, the nanoribbons are most beneficial for fast charge transfer and reduced contact resistance. In addition, the spaces between each nanoribbon provide efficient ion transport pathways and sufficient electrolyte penetration. The initial discharge and charge capacities of vanadium oxide nanoribbon reach to 322 and 310mAhg(-)(1), with a reversible discharge/charge capacity of 200mAhg(-)(1) at the current rate of 1C (1C=300mAg(-)(1)).

  10. Electrospun titania-based fibers for high areal capacity Li-ion battery anodes

    NASA Astrophysics Data System (ADS)

    Self, Ethan C.; Wycisk, Ryszard; Pintauro, Peter N.

    2015-05-01

    Electrospinning is utilized to prepare composite fiber Li-ion battery anodes containing titania and carbon nanoparticles with a poly (acrylic acid) binder. The electrospun material exhibits a stable charge/discharge capacity with only 5% capacity fade over 450 cycles at 0.5 C. Compared to a conventional slurry cast electrode of the same composition, the electrospun anode demonstrates 4-fold higher capacity retention (31% vs. 7.9%) at a charge/discharge rate of 5 C. Electrospinning is also used to prepare ultrathick anodes (>1 mm) with areal capacities up to 3.9 mAh cm-2. Notably, the thick electrodes exhibit areal capacities of 2.5 and 1.3 mAh cm-2 at 1 C and 2 C, respectively. Electrospun anodes with densely packed fibers have a 2 C volumetric capacity which exceeds that of the slurry cast material (21.2 and 17.5 mAh cm-3, respectively). The excellent performance of the electrospun anodes is attributed to interfiber voids which provide complete electrolyte intrusion, a large electrode/electrolyte interface, and short Li+ transport pathways between the electrolyte and titania nanoparticles.

  11. High Performance Particle/Polymer Nanofiber Anodes for Li-ion Batteries using Electrospinning.

    PubMed

    Self, Ethan C; McRen, Emily C; Pintauro, Peter N

    2016-01-01

    Electrospun nanofiber mats containing carbon nanoparticles in a poly(vinylidene fluoride) binder were prepared and characterized as Li-ion battery anodes. The mats exhibited an initial capacity of 161 mAh g(-1) with 91.7% capacity retention after 510 cycles at 0.1 C (1 C=372 mA gcarbon (-1)). Whereas many nanoscale electrodes are limited to low areal and/or volumetric capacities, the particle/polymer nanofiber anodes can be made thick with a high fiber volume fraction while maintaining good rate capabilities. Thus, a nanofiber anode with a fiber volume fraction of 0.79 exhibits a volumetric capacity of 55 mAh cm(-3) at 2 C, which is twice that of a typical graphite anode. Similarly, thick nanofiber mats with a high areal capacity of 4.3 mAh cm(-2) were prepared and characterized. The excellent performance of electrospun anodes is attributed to electrolyte intrusion throughout the interfiber void space and efficient Li(+) transport between the electrolyte and carbon nanoparticles in the radial fiber direction.

  12. A new active Li-Mn-O compound for high energy density Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Freire, M.; Kosova, N. V.; Jordy, C.; Chateigner, D.; Lebedev, O. I.; Maignan, A.; Pralong, V.

    2016-02-01

    The search for new materials that could improve the energy density of Li-ion batteries is one of today’s most challenging issues. Many families of transition metal oxides as well as transition metal polyanionic frameworks have been proposed during the past twenty years. Among them, manganese oxides, such as the LiMn2O4 spinel or the overlithiated oxide Li[Li1/3Mn2/3]O2, have been intensively studied owing to the low toxicity of manganese-based materials and the high redox potential of the Mn3+/Mn4+ couple. In this work, we report on a new electrochemically active compound with the `Li4Mn2O5’ composition, prepared by direct mechanochemical synthesis at room temperature. This rock-salt-type nanostructured material shows a discharge capacity of 355 mAh g-1, which is the highest yet reported among the known lithium manganese oxide electrode materials. According to the magnetic measurements, this exceptional capacity results from the electrochemical activity of the Mn3+/Mn4+ and O2-/O- redox couples, and, importantly, of the Mn4+/Mn5+ couple also.

  13. Electrochemical characteristics of plasma-etched black silicon as anodes for Li-ion batteries

    SciTech Connect

    Lee, Gibaek; Wehrspohn, Ralf B.; Schweizer, Stefan L.

    2014-11-01

    Nanostructured silicon as an anode material for Li-ion batteries is produced for the first time by inductively coupled plasma–plasma etching of Si wafers in the black silicon regime. The microscopic structure strongly resembles other types of nanostructured silicon, with a well-arranged nanostructure possessing a sufficient porosity for accommodating large volume expansion. Despite these features, however, a high first-cycle irreversible capacity loss and a poor cycle life are observed. The main reason for these poor features is the formation of a thick solid-electrolyte interphase (SEI) layer related to the surface condition of the pristine nanostructured black silicon (b-Si) electrode. Therefore, the cycle life of the b-Si electrode is heavily influenced by the constant reformation of the SEI layer depending upon the surface composition in spite of the presence of nanostructured Si. In the fast lithiation experiments, the nanostructure region of the b-Si electrode is detached from the Si substrate owing to the kinetics difference between the lithium ion diffusion and the electron injection and phase transformation in the nanostructured Si region. This means that more Si substrate is involved in lithiation at high current rates. It is therefore important to maintain balance in the chemical kinetics during the lithiation of nanostructured Si electrodes with a Si substrate.

  14. Bio-Derived, Binderless, Hierarchically Porous Carbon Anodes for Li-ion Batteries.

    PubMed

    Campbell, Brennan; Ionescu, Robert; Favors, Zachary; Ozkan, Cengiz S; Ozkan, Mihrimah

    2015-01-01

    Here we explore the electrochemical performance of pyrolyzed skins from the species A. bisporus, also known as the Portobello mushroom, as free-standing, binder-free, and current collector-free Li-ion battery anodes. At temperatures above 900 °C, the biomass-derived carbon nanoribbon-like architectures undergo unique processes to become hierarchically porous. During heat-treatment, the oxygen and heteroatom-rich organics and potassium compounds naturally present in the mushroom skins play a mutual role in creating inner void spaces throughout the resulting carbon nanoribbons, which is a process analogous to KOH-activation of carbon materials seen in literature. The pores formed in the pyrolytic carbon nanoribbons range in size from sub-nanometer to tens of nanometers, making the nanoribbons micro, meso, and macroporous. Detailed studies were conducted on the carbon nanoribbons using SEM and TEM to study morphology, as well as XRD and EDS to study composition. The self-supporting nanoribbon anodes demonstrate significant capacity increase as they undergo additional charge/discharge cycles. After a pyrolysis temperature of 1100 °C, the pristine anodes achieve over 260 mAh/g after 700 cycles and a Coulombic efficiency of 101.1%, without the use of harmful solvents or chemical activation agents. PMID:26415917

  15. Quinone-formaldehyde polymer as an active material in Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Pirnat, Klemen; Mali, Gregor; Gaberscek, Miran; Dominko, Robert

    2016-05-01

    A benzoquinone polymer is synthesized by the polymerisation of hydrobenzoquinone and formaldehyde, followed by oxidation process using a hydrogen peroxide to convert hydroquinone to quinone. As prepared materials are characterized with FTIR, 1H-13C CPMAS NMR, pyrolysis coupled with gas chromatography (GC) and mass spectrometer (MS), TGA-MS analysis, EDX, elemental analysis, XRD, SEM and TEM microscopies and BET nitrogen adsorption. The benzoquinone polymer shows an excellent electrochemical performance when used as a positive electrode material in Li-ion secondary batteries. Using an electrolyte consisting 1 M bis(trifluoromethane)-sulfonimide lithium salt dissolved in 1,3-dioxolane and dimethoxyethane in a vol. ratio 1:1 (1 M LiTFSI/DOL + DME = 1:1) a stable capacity close to 150 mAh/g can be obtained. Compared to other electroactive materials based on benzoquinones it has a supreme capacity stability and is prepared by a simple synthesis using easily accessible starting materials. Further improvements in the capacity value (up to the theoretical value of 406 mAh/g) can be foreseen by achieving a higher degree of oxidation and by modification of polymerization process to enhance the electronic and ionic conductivity.

  16. Bio-Derived, Binderless, Hierarchically Porous Carbon Anodes for Li-ion Batteries

    NASA Astrophysics Data System (ADS)

    Campbell, Brennan; Ionescu, Robert; Favors, Zachary; Ozkan, Cengiz S.; Ozkan, Mihrimah

    2015-09-01

    Here we explore the electrochemical performance of pyrolyzed skins from the species A. bisporus, also known as the Portobello mushroom, as free-standing, binder-free, and current collector-free Li-ion battery anodes. At temperatures above 900 °C, the biomass-derived carbon nanoribbon-like architectures undergo unique processes to become hierarchically porous. During heat-treatment, the oxygen and heteroatom-rich organics and potassium compounds naturally present in the mushroom skins play a mutual role in creating inner void spaces throughout the resulting carbon nanoribbons, which is a process analogous to KOH-activation of carbon materials seen in literature. The pores formed in the pyrolytic carbon nanoribbons range in size from sub-nanometer to tens of nanometers, making the nanoribbons micro, meso, and macroporous. Detailed studies were conducted on the carbon nanoribbons using SEM and TEM to study morphology, as well as XRD and EDS to study composition. The self-supporting nanoribbon anodes demonstrate significant capacity increase as they undergo additional charge/discharge cycles. After a pyrolysis temperature of 1100 °C, the pristine anodes achieve over 260 mAh/g after 700 cycles and a Coulombic efficiency of 101.1%, without the use of harmful solvents or chemical activation agents.

  17. Internal and External Temperature Monitoring of a Li-Ion Battery with Fiber Bragg Grating Sensors.

    PubMed

    Novais, Susana; Nascimento, Micael; Grande, Lorenzo; Domingues, Maria Fátima; Antunes, Paulo; Alberto, Nélia; Leitão, Cátia; Oliveira, Ricardo; Koch, Stephan; Kim, Guk Tae; Passerini, Stefano; Pinto, João

    2016-08-30

    The integration of fiber Bragg grating (FBG) sensors in lithium-ion cells for in-situ and in-operando temperature monitoring is presented herein. The measuring of internal and external temperature variations was performed through four FBG sensors during galvanostatic cycling at C-rates ranging from 1C to 8C. The FBG sensors were placed both outside and inside the cell, located in the center of the electrochemically active area and at the tab-electrode connection. The internal sensors recorded temperature variations of 4.0 ± 0.1 °C at 5C and 4.7 ± 0.1 °C at 8C at the center of the active area, and 3.9 ± 0.1 °C at 5C and 4.0 ± 0.1 °C at 8C at the tab-electrode connection, respectively. This study is intended to contribute to detection of a temperature gradient in real time inside a cell, which can determine possible damage in the battery performance when it operates under normal and abnormal operating conditions, as well as to demonstrate the technical feasibility of the integration of in-operando microsensors inside Li-ion cells.

  18. A new active Li-Mn-O compound for high energy density Li-ion batteries.

    PubMed

    Freire, M; Kosova, N V; Jordy, C; Chateigner, D; Lebedev, O I; Maignan, A; Pralong, V

    2016-02-01

    The search for new materials that could improve the energy density of Li-ion batteries is one of today's most challenging issues. Many families of transition metal oxides as well as transition metal polyanionic frameworks have been proposed during the past twenty years. Among them, manganese oxides, such as the LiMn2O4 spinel or the overlithiated oxide Li[Li1/3Mn2/3]O2, have been intensively studied owing to the low toxicity of manganese-based materials and the high redox potential of the Mn(3+)/Mn(4+) couple. In this work, we report on a new electrochemically active compound with the 'Li4Mn2O5' composition, prepared by direct mechanochemical synthesis at room temperature. This rock-salt-type nanostructured material shows a discharge capacity of 355 mAh g(-1), which is the highest yet reported among the known lithium manganese oxide electrode materials. According to the magnetic measurements, this exceptional capacity results from the electrochemical activity of the Mn(3+)/Mn(4+) and O(2-)/O(-) redox couples, and, importantly, of the Mn(4+)/Mn(5+) couple also.

  19. Internal and External Temperature Monitoring of a Li-Ion Battery with Fiber Bragg Grating Sensors

    PubMed Central

    Novais, Susana; Nascimento, Micael; Grande, Lorenzo; Domingues, Maria Fátima; Antunes, Paulo; Alberto, Nélia; Leitão, Cátia; Oliveira, Ricardo; Koch, Stephan; Kim, Guk Tae; Passerini, Stefano; Pinto, João

    2016-01-01

    The integration of fiber Bragg grating (FBG) sensors in lithium-ion cells for in-situ and in-operando temperature monitoring is presented herein. The measuring of internal and external temperature variations was performed through four FBG sensors during galvanostatic cycling at C-rates ranging from 1C to 8C. The FBG sensors were placed both outside and inside the cell, located in the center of the electrochemically active area and at the tab-electrode connection. The internal sensors recorded temperature variations of 4.0 ± 0.1 °C at 5C and 4.7 ± 0.1 °C at 8C at the center of the active area, and 3.9 ± 0.1 °C at 5C and 4.0 ± 0.1 °C at 8C at the tab-electrode connection, respectively. This study is intended to contribute to detection of a temperature gradient in real time inside a cell, which can determine possible damage in the battery performance when it operates under normal and abnormal operating conditions, as well as to demonstrate the technical feasibility of the integration of in-operando microsensors inside Li-ion cells. PMID:27589749

  20. Internal and External Temperature Monitoring of a Li-Ion Battery with Fiber Bragg Grating Sensors.

    PubMed

    Novais, Susana; Nascimento, Micael; Grande, Lorenzo; Domingues, Maria Fátima; Antunes, Paulo; Alberto, Nélia; Leitão, Cátia; Oliveira, Ricardo; Koch, Stephan; Kim, Guk Tae; Passerini, Stefano; Pinto, João

    2016-01-01

    The integration of fiber Bragg grating (FBG) sensors in lithium-ion cells for in-situ and in-operando temperature monitoring is presented herein. The measuring of internal and external temperature variations was performed through four FBG sensors during galvanostatic cycling at C-rates ranging from 1C to 8C. The FBG sensors were placed both outside and inside the cell, located in the center of the electrochemically active area and at the tab-electrode connection. The internal sensors recorded temperature variations of 4.0 ± 0.1 °C at 5C and 4.7 ± 0.1 °C at 8C at the center of the active area, and 3.9 ± 0.1 °C at 5C and 4.0 ± 0.1 °C at 8C at the tab-electrode connection, respectively. This study is intended to contribute to detection of a temperature gradient in real time inside a cell, which can determine possible damage in the battery performance when it operates under normal and abnormal operating conditions, as well as to demonstrate the technical feasibility of the integration of in-operando microsensors inside Li-ion cells. PMID:27589749

  1. Extraction of Li and Co from Li-ion Batteries by Chemical Methods

    NASA Astrophysics Data System (ADS)

    Guzolu, Jafar Sharrivar; Gharabaghi, Mahdi; Mobin, Mohammad; Alilo, Hojat

    2016-05-01

    In this work a process involving ultrasonic washing and leaching and precipitation was used to recover Li and Co from spent Li-ion batteries. Ultrasonic washing was used to reduce energy consumption and pollution whereas hydrochloric acid was used as leaching reagent. 98 % of Li and nearly 99 % of Co were obtained under optimum condition of 5 M hydrochloric acid solution, temperature of 95 °C, reaction time of 70 min, and solid-liquid ratio of 10 g/L. In this process at first nickel, copper, iron, aluminum, cobalt, and manganese were precipitated from leaching solution using sodium hydroxide at pH f 12.5 and reaction time of 1 h and temperature was 55 °C and all metal recoveries were more than 99 %. In the precipitation experiments, lithium loss was only 18.34 %. In the next stage, white lithium carbonate was precipitated by addition of saturated sodium carbonate solution to the left filtrate from first precipitation step. The purity of the recovered powder of lithium was 95 %.

  2. Bio-Derived, Binderless, Hierarchically Porous Carbon Anodes for Li-ion Batteries

    PubMed Central

    Campbell, Brennan; Ionescu, Robert; Favors, Zachary; Ozkan, Cengiz S.; Ozkan, Mihrimah

    2015-01-01

    Here we explore the electrochemical performance of pyrolyzed skins from the species A. bisporus, also known as the Portobello mushroom, as free-standing, binder-free, and current collector-free Li-ion battery anodes. At temperatures above 900 °C, the biomass-derived carbon nanoribbon-like architectures undergo unique processes to become hierarchically porous. During heat-treatment, the oxygen and heteroatom-rich organics and potassium compounds naturally present in the mushroom skins play a mutual role in creating inner void spaces throughout the resulting carbon nanoribbons, which is a process analogous to KOH-activation of carbon materials seen in literature. The pores formed in the pyrolytic carbon nanoribbons range in size from sub-nanometer to tens of nanometers, making the nanoribbons micro, meso, and macroporous. Detailed studies were conducted on the carbon nanoribbons using SEM and TEM to study morphology, as well as XRD and EDS to study composition. The self-supporting nanoribbon anodes demonstrate significant capacity increase as they undergo additional charge/discharge cycles. After a pyrolysis temperature of 1100 °C, the pristine anodes achieve over 260 mAh/g after 700 cycles and a Coulombic efficiency of 101.1%, without the use of harmful solvents or chemical activation agents. PMID:26415917

  3. Reduced Graphene Oxide Films with Ultrahigh Conductivity as Li-Ion Battery Current Collectors.

    PubMed

    Chen, Yanan; Fu, Kun; Zhu, Shuze; Luo, Wei; Wang, Yanbin; Li, Yiju; Hitz, Emily; Yao, Yonggang; Dai, Jiaqi; Wan, Jiayu; Danner, Valencia A; Li, Teng; Hu, Liangbing

    2016-06-01

    Solution processed, highly conductive films are extremely attractive for a range of electronic devices, especially for printed macroelectronics. For example, replacing heavy, metal-based current collectors with thin, light, flexible, and highly conductive films will further improve the energy density of such devices. Films with two-dimensional building blocks, such as graphene or reduced graphene oxide (RGO) nanosheets, are particularly promising due to their low percolation threshold with a high aspect ratio, excellent flexibility, and low cost. However, the electrical conductivity of these films is low, typically less than 1000 S/cm. In this work, we for the first time report a RGO film with an electrical conductivity of up to 3112 S/cm. We achieve high conductivity in RGO films through an electrical current-induced annealing process at high temperature of up to 2750 K in less than 1 min of anneal time. We studied in detail the unique Joule heating process at ultrahigh temperature. Through a combination of experimental and computational studies, we investigated the fundamental mechanism behind the formation of a highly conductive three-dimensional structure composed of well-connected RGO layers. The highly conductive RGO film with high direct current conductivity, low thickness (∼4 μm) and low sheet resistance (0.8 Ω/sq.) was used as a lightweight current collector in Li-ion batteries.

  4. Composit, Nanoparticle-Based Anode material for Li-ion Batteries Applied in Hybrid Electric (HEV's)

    SciTech Connect

    Dr. Malgorzata Gulbinska

    2009-08-24

    Lithium-ion batteries are promising energy storage devices in hybrid and electric vehicles with high specific energy values ({approx}150 Wh/kg), energy density ({approx}400 Wh/L), and long cycle life (>15 years). However, applications in hybrid and electric vehicles require increased energy density and improved low-temperature (<-10 C) performance. Silicon-based anodes are inexpensive, environmentally benign, and offer excellent theoretical capacity values ({approx}4000 mAh/g), leading to significantly less anode material and thus increasing the overall energy density value for the complete battery (>500 Wh/L). However, tremendous volume changes occur during cycling of pure silicon-based anodes. The expansion and contraction of these silicon particles causes them to fracture and lose electrical contact to the current collector ultimately severely limiting their cycle life. In Phase I of this project Yardney Technical Products, Inc. proposed development of a carbon/nano-silicon composite anode material with improved energy density and silicon's cycleability. In the carbon/nano-Si composite, silicon nanoparticles were embedded in a partially-graphitized carbonaceous matrix. The cycle life of anode material would be extended by decreasing the average particle size of active material (silicon) and by encapsulation of silicon nanoparticles in a ductile carbonaceous matrix. Decreasing the average particle size to a nano-region would also shorten Li-ion diffusion path and thus improve rate capability of the silicon-based anodes. Improved chemical inertness towards PC-based, low-temperature electrolytes was expected as an additional benefit of a thin, partially graphitized coating around the active electrode material.

  5. General approach for high-power li-ion batteries: multiscale lithographic patterning of electrodes.

    PubMed

    Choi, Sinho; Kim, Tae-Hee; Lee, Jung-In; Kim, Jieun; Song, Hyun-Kon; Park, Soojin

    2014-12-01

    We demonstrate multiscale patterned electrodes that provide surface-area enhancement and strong adhesion between electrode materials and current collector. The combination of multiscale structured current collector and active materials (anodes and cathodes) enables us to make high-performance Li-ion batteries (LIBs). When LiFePO4 (LFP) cathode and Li4 Ti5 O12 (LTO) anode materials are combined with patterned current collectors, their electrochemical performances are significantly improved, including a high rate capability (LiFePO4 : 100 mAh g(-1) , Li4 Ti5 O12 : 60 mAh g(-1) at 100C rate) and highly stable cycling (LiFePO4 : capacity retention of 99.8% after 50 cycles at 10C rate). Moreover, we successfully fabricate full cell system consisting of patterned LFP cathode and patterned LTO anode, exhibiting high-power battery performances [capacity of approximately 70 mAh g(-1) during 1000 cycles at 10C rate (corresponding to charging/discharging time of 6 min)]. We extend this idea to Si anode that exhibits a large volume change during lithiation/delithiation process. The patterned Si electrodes show significantly enhanced electrochemical performances, including a high specific capacity (825 mAh g(-1) ) at high rate of 5C and a stable cycling retention (88% after 100 cycle at a 0.1C rate). This simple strategy can be extended to other cathode and anode materials for practical LIB applications.

  6. Probing the pseudo-1-D ion diffusion in lithium titanium niobate anode for Li-ion battery.

    PubMed

    Das, Suman; Dutta, Dipak; Araujo, Rafael B; Chakraborty, Sudip; Ahuja, Rajeev; Bhattacharyya, Aninda J

    2016-08-10

    Comprehensive understanding of the charge transport mechanism in the intrinsic structure of an electrode material is essential in accounting for its electrochemical performance. We present here systematic experimental and theoretical investigations of Li(+)-ion diffusion in a novel layered material, viz. lithium titanium niobate. Lithium titanium niobate (exact composition Li0.55K0.45TiNbO5·1.06H2O) is obtained from sol-gel synthesized potassium titanium niobate (KTiNbO5) by an ion-exchange method. The Li(+)-ions are inserted and de-inserted preferentially into the galleries between the octahedral layers formed by edge and corner sharing TiO6 and NbO6 octahedral units and the effective chemical diffusion coefficient, is estimated to be 3.8 × 10(-11) cm(2) s(-1) using the galvanostatic intermittent titration technique (GITT). Calculations based on density functional theory (DFT) strongly confirm the anisotropic Li(+)-ion diffusion in the interlayer galleries and that Li(+)-ions predominantly diffuse along the crystallographic b-direction. The preferential Li(+)-ion diffusion along the b-direction is assisted by line-defects, which are observed to be higher in concentration along the b-direction compared to the a- and c-directions, as revealed by high resolution electron microscopy. The Li-Ti niobate can be cycled to low voltages (≈0.2 V) and show stable and satisfactory battery performance over 100 cycles. Due to the possibility of cycling to low voltages, cyclic voltammetry and X-ray photoelectron spectroscopy convincingly reveal the reversibility of Ti(3+) ↔ Ti(2+) along with Ti(4+) ↔ Ti(3+) and Nb(5+) ↔ Nb(4+). PMID:27459636

  7. Probing the pseudo-1-D ion diffusion in lithium titanium niobate anode for Li-ion battery.

    PubMed

    Das, Suman; Dutta, Dipak; Araujo, Rafael B; Chakraborty, Sudip; Ahuja, Rajeev; Bhattacharyya, Aninda J

    2016-08-10

    Comprehensive understanding of the charge transport mechanism in the intrinsic structure of an electrode material is essential in accounting for its electrochemical performance. We present here systematic experimental and theoretical investigations of Li(+)-ion diffusion in a novel layered material, viz. lithium titanium niobate. Lithium titanium niobate (exact composition Li0.55K0.45TiNbO5·1.06H2O) is obtained from sol-gel synthesized potassium titanium niobate (KTiNbO5) by an ion-exchange method. The Li(+)-ions are inserted and de-inserted preferentially into the galleries between the octahedral layers formed by edge and corner sharing TiO6 and NbO6 octahedral units and the effective chemical diffusion coefficient, is estimated to be 3.8 × 10(-11) cm(2) s(-1) using the galvanostatic intermittent titration technique (GITT). Calculations based on density functional theory (DFT) strongly confirm the anisotropic Li(+)-ion diffusion in the interlayer galleries and that Li(+)-ions predominantly diffuse along the crystallographic b-direction. The preferential Li(+)-ion diffusion along the b-direction is assisted by line-defects, which are observed to be higher in concentration along the b-direction compared to the a- and c-directions, as revealed by high resolution electron microscopy. The Li-Ti niobate can be cycled to low voltages (≈0.2 V) and show stable and satisfactory battery performance over 100 cycles. Due to the possibility of cycling to low voltages, cyclic voltammetry and X-ray photoelectron spectroscopy convincingly reveal the reversibility of Ti(3+) ↔ Ti(2+) along with Ti(4+) ↔ Ti(3+) and Nb(5+) ↔ Nb(4+).

  8. Environmental impact assessment and end-of-life treatment policy analysis for Li-ion batteries and Ni-MH batteries.

    PubMed

    Yu, Yajuan; Chen, Bo; Huang, Kai; Wang, Xiang; Wang, Dong

    2014-03-01

    Based on Life Cycle Assessment (LCA) and Eco-indicator 99 method, a LCA model was applied to conduct environmental impact and end-of-life treatment policy analysis for secondary batteries. This model evaluated the cycle, recycle and waste treatment stages of secondary batteries. Nickel-Metal Hydride (Ni-MH) batteries and Lithium ion (Li-ion) batteries were chosen as the typical secondary batteries in this study. Through this research, the following results were found: (1) A basic number of cycles should be defined. A minimum cycle number of 200 would result in an obvious decline of environmental loads for both battery types. Batteries with high energy density and long life expectancy have small environmental loads. Products and technology that help increase energy density and life expectancy should be encouraged. (2) Secondary batteries should be sorted out from municipal garbage. Meanwhile, different types of discarded batteries should be treated separately under policies and regulations. (3) The incineration rate has obvious impact on the Eco-indicator points of Nickel-Metal Hydride (Ni-MH) batteries. The influence of recycle rate on Lithium ion (Li-ion) batteries is more obvious. These findings indicate that recycling is the most promising direction for reducing secondary batteries' environmental loads. The model proposed here can be used to evaluate environmental loads of other secondary batteries and it can be useful for proposing policies and countermeasures to reduce the environmental impact of secondary batteries. PMID:24646862

  9. Environmental impact assessment and end-of-life treatment policy analysis for Li-ion batteries and Ni-MH batteries.

    PubMed

    Yu, Yajuan; Chen, Bo; Huang, Kai; Wang, Xiang; Wang, Dong

    2014-03-18

    Based on Life Cycle Assessment (LCA) and Eco-indicator 99 method, a LCA model was applied to conduct environmental impact and end-of-life treatment policy analysis for secondary batteries. This model evaluated the cycle, recycle and waste treatment stages of secondary batteries. Nickel-Metal Hydride (Ni-MH) batteries and Lithium ion (Li-ion) batteries were chosen as the typical secondary batteries in this study. Through this research, the following results were found: (1) A basic number of cycles should be defined. A minimum cycle number of 200 would result in an obvious decline of environmental loads for both battery types. Batteries with high energy density and long life expectancy have small environmental loads. Products and technology that help increase energy density and life expectancy should be encouraged. (2) Secondary batteries should be sorted out from municipal garbage. Meanwhile, different types of discarded batteries should be treated separately under policies and regulations. (3) The incineration rate has obvious impact on the Eco-indicator points of Nickel-Metal Hydride (Ni-MH) batteries. The influence of recycle rate on Lithium ion (Li-ion) batteries is more obvious. These findings indicate that recycling is the most promising direction for reducing secondary batteries' environmental loads. The model proposed here can be used to evaluate environmental loads of other secondary batteries and it can be useful for proposing policies and countermeasures to reduce the environmental impact of secondary batteries.

  10. Green synthesis of boron doped graphene and its application as high performance anode material in Li ion battery

    SciTech Connect

    Sahoo, Madhumita; Sreena, K.P.; Vinayan, B.P.; Ramaprabhu, S.

    2015-01-15

    Graphical abstract: Boron doped graphene (B-G), synthesized by simple hydrogen induced reduction technique using boric acid as boron precursor, have more uneven surface as a result of smaller bonding distance of boron compared to carbon, showed high capacity and high rate capability compared to pristine graphene as an anode material for Li ion battery application. - Abstract: The present work demonstrates a facile route for the large-scale, catalyst free, and green synthesis approach of boron doped graphene (B-G) and its use as high performance anode material for Li ion battery (LIB) application. Boron atoms were doped into graphene framework with an atomic percentage of 5.93% via hydrogen induced thermal reduction technique using graphite oxide and boric acid as precursors. Various characterization techniques were used to confirm the boron doping in graphene sheets. B-G as anode material shows a discharge capacity of 548 mAh g{sup −1} at 100 mA g{sup −1} after 30th cycles. At high current density value of 1 A g{sup −1}, B-G as anode material enhances the specific capacity by about 1.7 times compared to pristine graphene. The present study shows a simplistic way of boron doping in graphene leading to an enhanced Li ion adsorption due to the change in electronic states.

  11. Mussel-Inspired Polydopamine Coating for Enhanced Thermal Stability and Rate Performance of Graphite Anodes in Li-Ion Batteries.

    PubMed

    Park, Seong-Hyo; Kim, Hyeon Jin; Lee, Junmin; Jeong, You Kyeong; Choi, Jang Wook; Lee, Hochun

    2016-06-01

    Despite two decades of commercial history, it remains very difficult to simultaneously achieve both high rate capability and thermal stability in the graphite anodes of Li-ion batteries because the stable solid electrolyte interphase (SEI) layer, which is essential for thermal stability, impedes facile Li(+) ion transport at the interface. Here, we resolve this longstanding challenge using a mussel-inspired polydopamine (PD) coating via a simple immersion process. The nanometer-thick PD coating layer allows the formation of an SEI layer on the coating surface without perturbing the intrinsic properties of the SEI layer of the graphite anodes. PD-coated graphite exhibits far better performances in cycling test at 60 °C and storage test at 90 °C than bare graphite. The PD-coated graphite also displays superior rate capability during both lithiation and delithiation. As evidenced by surface free energy analysis, the enhanced performance of the PD-coated graphite can be ascribed to the Lewis basicity of the PD, which scavenges harmful hydrofluoric acid and forms an intermediate triple-body complex among a Li(+) ion, solvent molecules, and the PD's basic site. The usefulness of the proposed PD coating can be expanded to various electrodes in rechargeable batteries that suffer from poor thermal stability and interfacial kinetics. PMID:27183170

  12. Battery Control Boards for Li-Ion Batteries on Mars Exploration Rovers

    NASA Technical Reports Server (NTRS)

    Ewell, R.; Ratnakumar, B. V.; Smart, M.; Chin, K. B.; Whitcanack, L.; Narayanan, S. R.; Surampudi, S.

    2006-01-01

    Rechargeable Lithium-ion batteries have been operating successfully on both Spirit and Opportunity rovers for the last two years, which includes six months of Assembly Launch and Test Operations (ATLO), seven months of cruise and about eleven months of surface operations. The Battery Control Boards designed and fabricated in-house would protect cells against overcharge and over-discharge and provide cell balance. Their performance has thus far been quite satisfactory. The ground data o the mission simulation battery project little capacity loss of less than 3% during cruise and 180 sols. Batteries are poised to extend the mission beyond six months, if not a couple of years.

  13. Environmental Impact Assessment and End-of-Life Treatment Policy Analysis for Li-Ion Batteries and Ni-MH Batteries

    PubMed Central

    Yu, Yajuan; Chen, Bo; Huang, Kai; Wang, Xiang; Wang, Dong

    2014-01-01

    Based on Life Cycle Assessment (LCA) and Eco-indicator 99 method, a LCA model was applied to conduct environmental impact and end-of-life treatment policy analysis for secondary batteries. This model evaluated the cycle, recycle and waste treatment stages of secondary batteries. Nickel-Metal Hydride (Ni-MH) batteries and Lithium ion (Li-ion) batteries were chosen as the typical secondary batteries in this study. Through this research, the following results were found: (1) A basic number of cycles should be defined. A minimum cycle number of 200 would result in an obvious decline of environmental loads for both battery types. Batteries with high energy density and long life expectancy have small environmental loads. Products and technology that help increase energy density and life expectancy should be encouraged. (2) Secondary batteries should be sorted out from municipal garbage. Meanwhile, different types of discarded batteries should be treated separately under policies and regulations. (3) The incineration rate has obvious impact on the Eco-indicator points of Nickel-Metal Hydride (Ni-MH) batteries. The influence of recycle rate on Lithium ion (Li-ion) batteries is more obvious. These findings indicate that recycling is the most promising direction for reducing secondary batteries’ environmental loads. The model proposed here can be used to evaluate environmental loads of other secondary batteries and it can be useful for proposing policies and countermeasures to reduce the environmental impact of secondary batteries. PMID:24646862

  14. Flexible Paper Electrodes for Li-Ion Batteries Using Low Amount of TEMPO-Oxidized Cellulose Nanofibrils as Binder.

    PubMed

    Lu, Huiran; Behm, Mårten; Leijonmarck, Simon; Lindbergh, Göran; Cornell, Ann

    2016-07-20

    Flexible Li-ion batteries attract increasing interest for applications in bendable and wearable electronic devices. TEMPO-oxidized cellulose nanofibrils (TOCNF), a renewable material, is a promising candidate as binder for flexible Li-ion batteries with good mechanical properties. Paper batteries can be produced using a water-based paper making process, avoiding the use of toxic solvents. In this work, finely dispersed TOCNF was used and showed good binding properties at concentrations as low as 4 wt %. The TOCNF was characterized using atomic force microscopy and found to be well dispersed with fibrils of average widths of about 2.7 nm and lengths of approximately 0.1-1 μm. Traces of moisture, trapped in the hygroscopic cellulose, is a concern when the material is used in Li-ion batteries. The low amount of binder reduces possible moisture and also increases the capacity of the electrodes, based on total weight. Effects of moisture on electrochemical battery performance were studied on electrodes dried at 110 °C in a vacuum for varying periods. It was found that increased drying time slightly increased the specific capacities of the LiFePO4 electrodes, whereas the capacities of the graphite electrodes decreased. The Coulombic efficiencies of the electrodes were not much affected by the varying drying times. Drying the electrodes for 1 h was enough to achieve good electrochemical performance. Addition of vinylene carbonate to the electrolyte had a positive effect on cycling for both graphite and LiFePO4. A failure mechanism observed at high TOCNF concentrations is the formation of compact films in the electrodes. PMID:27362635

  15. Flexible Paper Electrodes for Li-Ion Batteries Using Low Amount of TEMPO-Oxidized Cellulose Nanofibrils as Binder.

    PubMed

    Lu, Huiran; Behm, Mårten; Leijonmarck, Simon; Lindbergh, Göran; Cornell, Ann

    2016-07-20

    Flexible Li-ion batteries attract increasing interest for applications in bendable and wearable electronic devices. TEMPO-oxidized cellulose nanofibrils (TOCNF), a renewable material, is a promising candidate as binder for flexible Li-ion batteries with good mechanical properties. Paper batteries can be produced using a water-based paper making process, avoiding the use of toxic solvents. In this work, finely dispersed TOCNF was used and showed good binding properties at concentrations as low as 4 wt %. The TOCNF was characterized using atomic force microscopy and found to be well dispersed with fibrils of average widths of about 2.7 nm and lengths of approximately 0.1-1 μm. Traces of moisture, trapped in the hygroscopic cellulose, is a concern when the material is used in Li-ion batteries. The low amount of binder reduces possible moisture and also increases the capacity of the electrodes, based on total weight. Effects of moisture on electrochemical battery performance were studied on electrodes dried at 110 °C in a vacuum for varying periods. It was found that increased drying time slightly increased the specific capacities of the LiFePO4 electrodes, whereas the capacities of the graphite electrodes decreased. The Coulombic efficiencies of the electrodes were not much affected by the varying drying times. Drying the electrodes for 1 h was enough to achieve good electrochemical performance. Addition of vinylene carbonate to the electrolyte had a positive effect on cycling for both graphite and LiFePO4. A failure mechanism observed at high TOCNF concentrations is the formation of compact films in the electrodes.

  16. Carbon supported tin-based nanocomposites as anodes for Li-ion batteries

    SciTech Connect

    Zhou, Xiangyang; Zou, Youlan; Yang, Juan

    2013-02-15

    SnO{sub 2} (Sn)/C composites as anodes for Li-ion batteries were fabricated by a simple chemical process of hydrothermal synthesis and subsequent heat treatment. The as-prepared materials were characterized by various analytic techniques. Results show that heat treatment temperature has a strong influence on physical and electrochemical performance of these composites. In these composites, irregular SnO{sub 2} lamellas arranged like chrysanthemum were dispersed among the elastic carbon matrix for rapid access of lithium ions to the material bulk. SnO{sub 2}/C anode heat-treated at a temperature of 600 Degree-Sign C exhibits a reversible capacity of 533.4 mAh/g after 50 cycles at the current density of 100 mA/g. - Graphical abstract: Chrysanthemum-like microstructures SnO{sub 2} grains expand along two-dimensional direction during cycling. The intervals among adjacent SnO{sub 2} lamellas provide the sites for lithium insertion and the space for volume expansion. After long cycling, SnO{sub 2} lamellas adhere together to form compact layers, which preserved the integrity of the structure. Highlights: Black-Right-Pointing-Pointer Carbon supported SnO{sub 2} (Sn)/C composites have been synthesized. Black-Right-Pointing-Pointer Temperature control affects the physical and electrochemical performance. Black-Right-Pointing-Pointer Clusters of chrysanthemum-like microstructures were observed. Black-Right-Pointing-Pointer Intervals exist between SnO{sub 2} layers. Black-Right-Pointing-Pointer Integrity structure of SnO{sub 2}/C composites was preserved.

  17. High-Capacity Layered-Spinel Cathodes for Li-Ion Batteries.

    PubMed

    Nayak, Prasant Kumar; Levi, Elena; Grinblat, Judith; Levi, Mikhael; Markovsky, Boris; Munichandraiah, N; Sun, Yang Kook; Aurbach, Doron

    2016-09-01

    Li and Mn-rich layered oxides with the general structure x Li2 MnO3 ⋅(1-x) LiMO2 (M=Ni, Mn, Co) are promising cathode materials for Li-ion batteries because of their high specific capacity, which may be greater than 250 mA h g(-1) . However, these materials suffer from high first-cycle irreversible capacity, gradual capacity fading, limited rate capability and discharge voltage decay upon cycling, which prevent their commercialization. The decrease in average discharge voltage is a major issue, which is ascribed to a structural layered-to-spinel transformation upon cycling of these oxide cathodes in wide potential ranges with an upper limit higher than 4.5 V and a lower limit below 3 V versus Li. By using four elements systems (Li, Mn, Ni, O) with appropriate stoichiometry, it is possible to prepare high capacity composite cathode materials that contain LiMn1.5 Ni0.5 O4 and Lix Mny Niz O2 components. The Li and Mn-rich layered-spinel cathode materials studied herein exhibit a high specific capacity (≥200 mA h g(-1) ) with good capacity retention upon cycling in a wide potential domain (2.4-4.9 V). The effect of constituent phases on their electrochemical performance, such as specific capacity, cycling stability, average discharge voltage, and rate capability, are explored here. This family of materials can provide high specific capacity, high rate capability, and promising cycle life. Using Co-free cathode materials is also an obvious advantage of these systems. PMID:27530465

  18. High-Capacity Layered-Spinel Cathodes for Li-Ion Batteries.

    PubMed

    Nayak, Prasant Kumar; Levi, Elena; Grinblat, Judith; Levi, Mikhael; Markovsky, Boris; Munichandraiah, N; Sun, Yang Kook; Aurbach, Doron

    2016-09-01

    Li and Mn-rich layered oxides with the general structure x Li2 MnO3 ⋅(1-x) LiMO2 (M=Ni, Mn, Co) are promising cathode materials for Li-ion batteries because of their high specific capacity, which may be greater than 250 mA h g(-1) . However, these materials suffer from high first-cycle irreversible capacity, gradual capacity fading, limited rate capability and discharge voltage decay upon cycling, which prevent their commercialization. The decrease in average discharge voltage is a major issue, which is ascribed to a structural layered-to-spinel transformation upon cycling of these oxide cathodes in wide potential ranges with an upper limit higher than 4.5 V and a lower limit below 3 V versus Li. By using four elements systems (Li, Mn, Ni, O) with appropriate stoichiometry, it is possible to prepare high capacity composite cathode materials that contain LiMn1.5 Ni0.5 O4 and Lix Mny Niz O2 components. The Li and Mn-rich layered-spinel cathode materials studied herein exhibit a high specific capacity (≥200 mA h g(-1) ) with good capacity retention upon cycling in a wide potential domain (2.4-4.9 V). The effect of constituent phases on their electrochemical performance, such as specific capacity, cycling stability, average discharge voltage, and rate capability, are explored here. This family of materials can provide high specific capacity, high rate capability, and promising cycle life. Using Co-free cathode materials is also an obvious advantage of these systems.

  19. Layered Li-Mn-M-oxides as cathodes for Li-ion batteries:. Recent trends

    NASA Astrophysics Data System (ADS)

    Shaju, K. M.; Subba Rao, G. V.; Chowdari, B. V. R.

    2002-12-01

    There is an increasing demand for manganese (Mn) based mixed oxides which can effectively replace the presently used LiCoO2 as cathode in Li-ion batteries (LIB). The well-studied spinel, LiMn2O4 and its doped derivatives give a capacity of 100-120 mAh/g, but show capacity-fading on cycling especially above 55°C. The layered LiMnO2, isostructural to LiCoO2 (so called O3-structure) can be a viable cathode. However, studies have shown that it undergoes conversion to spinel structure on cycling and thus gives capacity-fading. Other alternative systems recently studied are: O2-structured layered Li-M-Mn-oxides with the general formula Li(2/3)+x(MyMn1-y)O2, M = Li, Ni, Co; x ≤ 0.33 and y = 0.1-0.67, O3-Li(Ni1/2Mn1/2)O2, Li(NixCo1-2xMnx)O2, and M'-substituted Li2MnO3 (M' = Ni, Co, Cr). Some of them are shown to have stable cycling performance, good rate-capability and structural stability over charge-discharge cycling in the 2.5-4.6 V region. Further, the electrochemical processes in the above mixed oxides have been shown to involve Ni2+/4+ or Cr3+/6+ redox couple, thus invoking novel ideas to develop new cathode materials. A brief review of the work done on the above O2- and O3-layered Li-Mn-M-oxides (M = metal) as cathodes for LIB is presented.

  20. Computer-Aided Engineering of Batteries for Designing Better Li-Ion Batteries (Presentation)

    SciTech Connect

    Pesaran, A.; Kim, G. H.; Smith, K.; Lee, K. J.; Santhanagopalan, S.

    2012-02-01

    This presentation describes the current status of the DOE's Energy Storage R and D program, including modeling and design tools and the Computer-Aided Engineering for Automotive Batteries (CAEBAT) program.

  1. Preparation and characterization of core-shell battery materials for Li-ion batteries manufactured by substrate induced coagulation

    NASA Astrophysics Data System (ADS)

    Basch, Angelika; Albering, Jörg H.

    2011-03-01

    In this work Substrate Induced Coagulation (SIC) was used to coat the cathode material LiCoO2, commonly used in Li-ion batteries, with fine nano-sized particulate titania. Substrate Induced Coagulation is a self-assembled dip-coating process capable of coating different surfaces with fine particulate materials from liquid media. A SIC coating consists of thin and rinse-prove layers of solid particles. An advantage of this dip-coating method is that the method is easy and cheap and that the materials can be handled by standard lab equipment. Here, the SIC coating of titania on LiCoO2 is followed by a solid-state reaction forming new inorganic layers and a core-shell material, while keeping the content of active battery material high. This titania based coating was designed to confine the reaction of extensively delithiated (charged) LiCoO2 and the electrolyte. The core-shell materials were characterized by SEM, XPS, XRD and Rietveld analysis.

  2. Preparation and characterization of core-shell battery materials for Li-ion batteries manufactured by substrate induced coagulation.

    PubMed

    Basch, Angelika; Albering, Jörg H

    2011-03-15

    In this work Substrate Induced Coagulation (SIC) was used to coat the cathode material LiCoO(2), commonly used in Li-ion batteries, with fine nano-sized particulate titania. Substrate Induced Coagulation is a self-assembled dip-coating process capable of coating different surfaces with fine particulate materials from liquid media. A SIC coating consists of thin and rinse-prove layers of solid particles. An advantage of this dip-coating method is that the method is easy and cheap and that the materials can be handled by standard lab equipment. Here, the SIC coating of titania on LiCoO(2) is followed by a solid-state reaction forming new inorganic layers and a core-shell material, while keeping the content of active battery material high. This titania based coating was designed to confine the reaction of extensively delithiated (charged) LiCoO(2) and the electrolyte. The core-shell materials were characterized by SEM, XPS, XRD and Rietveld analysis.

  3. Flexible Batteries: Hierarchical Assemblies of Carbon Nanotubes for Ultraflexible Li-Ion Batteries (Adv. Mater. 31/2016).

    PubMed

    Ahmad, Shahab; Copic, Davor; George, Chandramohan; De Volder, Michael

    2016-08-01

    An advanced battery architecture composed of 3D carbon nanotube (CNT) current collectors is used to mitigate stresses in flexible batteries. On Page 6705, C. George, M. De Volder, and co-workers describe the fabrication process and characteristics of this new generation of ultraflexible batteries, which show high rate and cyclablility. These batteries may find applications in the powering of flexible displays and logics. PMID:27511532

  4. Flexible Batteries: Hierarchical Assemblies of Carbon Nanotubes for Ultraflexible Li-Ion Batteries (Adv. Mater. 31/2016).

    PubMed

    Ahmad, Shahab; Copic, Davor; George, Chandramohan; De Volder, Michael

    2016-08-01

    An advanced battery architecture composed of 3D carbon nanotube (CNT) current collectors is used to mitigate stresses in flexible batteries. On Page 6705, C. George, M. De Volder, and co-workers describe the fabrication process and characteristics of this new generation of ultraflexible batteries, which show high rate and cyclablility. These batteries may find applications in the powering of flexible displays and logics.

  5. Relating the 3D electrode morphology to Li-ion battery performance; a case for LiFePO4

    NASA Astrophysics Data System (ADS)

    Liu, Zhao; Verhallen, Tomas W.; Singh, Deepak P.; Wang, Hongqian; Wagemaker, Marnix; Barnett, Scott

    2016-08-01

    One of the main goals in lithium ion battery electrode design is to increase the power density. This requires insight in the relation between the complex heterogeneous microstructure existing of active material, conductive additive and electrolyte providing the required electronic and Li-ion transport. FIB-SEM is used to determine the three phase 3D morphology, and Li-ion concentration profiles obtained with Neutron Depth Profiling (NDP) are compared for two cases, conventional LiFePO4 electrodes and better performing carbonate templated LiFePO4 electrodes. This provides detailed understanding of the impact of key parameters such as the tortuosity for electron and Li-ion transport though the electrodes. The created hierarchical pore network of the templated electrodes, containing micron sized pores, appears to be effective only at high rate charge where electrolyte depletion is hindering fast discharge. Surprisingly the carbonate templating method results in a better electronic conductive CB network, enhancing the activity of LiFePO4 near the electrolyte-electrode interface as directly observed with NDP, which in a large part is responsible for the improved rate performance both during charge and discharge. The results demonstrate that standard electrodes have a far from optimal charge transport network and that significantly improved electrode performance should be possible by engineering the microstructure.

  6. The power of Nb-substituted TiO2 in Li-ion batteries: Morphology transformation induced by high concentration substitution

    NASA Astrophysics Data System (ADS)

    Yang, Hao; Lan, Chun-Kai; Duh, Jenq-Gong

    2015-08-01

    This study aims to investigate the power potential of Li-ion batteries using a hydrothermal process to synthesize nanoscale Nb-TiO2 with high surface area. By substituting Nb into anatase TiO2, the rate capability of Li-ion batteries is improved with the formation of nanoplate Nb-TiO2 containing (001) facets and NbOx species. In addition, the high solubility of Nb promotes the transformation of TiO2 from hollow-like to plate-like morphology, accelerating the Li-ion surface transportation over a large contact area. With respect to rate capability, Nb-TiO2 displays a high capacity of 220 mAh g-1 at 0.5C and retains 127 mAh g-1 at 10C. Additionally, the cyclability test exhibits less degradation after 10,000 cycles. In order to investigate the mechanisms of capability improvement, electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) are applied to measure the Li-ion diffusivity and surface charge-transfer resistance. The results demonstrate that both Li-ion diffusivity and surface charge-transfer ability are enhanced, leading to pseudocapacitance. Thus, it can be concluded that nanoplate Nb-TiO2 exhibits superior rate capability by the improvement of pseudocapacitance. This study derives a novel process to synthesize nanoplate TiO2 and should provide a potential approach for industrial fabrication of high power Li-ion batteries.

  7. Facile synthetic route towards nanostructured Fe-TiO2(B), used as negative electrode for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Grosjean, Remi; Fehse, Marcus; Pigeot-Remy, Stéphanie; Stievano, Lorenzo; Monconduit, Laure; Cassaignon, Sophie

    2015-03-01

    We present here a novel simple method for the synthesis of highly pure TiO2(B). The fast microwave-assisted synthetic route allows facile scale-up of the process. Aiming at an application of the titania polymorph as negative electrode for Li-ion batteries, we have prepared a Fe-containing TiO2(B) and tested the electrochemical performances of both pure and Fe-containing materials. Fe insertion in TiO2(B) allows enhancing capacity and rate capability.

  8. Improved electrolytes for Li-ion batteries: Mixtures of ionic liquid and organic electrolyte with enhanced safety and electrochemical performance

    NASA Astrophysics Data System (ADS)

    Guerfi, A.; Dontigny, M.; Charest, P.; Petitclerc, M.; Lagacé, M.; Vijh, A.; Zaghib, K.

    Physical and electrochemical characteristics of Li-ion battery systems based on LiFePO 4 cathodes and graphite anodes with mixture electrolytes were investigated. The mixed electrolytes are based on an ionic liquid (IL), and organic solvents used in commercial batteries. We investigated a range of compositions to determine an optimum conductivity and non-flammability of the mixed electrolyte. This led us to examine mixtures of ILs with the organic electrolyte usually employed in commercial Li-ion batteries, i.e., ethylene carbonate (EC) and diethylene carbonate (DEC). The IL electrolyte consisted of (trifluoromethyl sulfonylimide) (TFSI) as anion and 1-ethyl-3-methyleimidazolium (EMI) as the cation. The physical and electrochemical properties of some of these mixtures showed an improvement characteristics compared to the constituents alone. The safety was improved with electrolyte mixtures; when IL content in the mixture is ≥40%, no flammability is observed. A stable SEI layer was obtained on the MCMB graphite anode in these mixed electrolytes, which is not obtained with IL containing the TFSI-anion. The high-rate capability of LiFePO 4 is similar in the organic electrolyte and the mixture with a composition of 1:1. The interface resistance of the LiFePO 4 cathode is stabilized when the IL is added to the electrolyte. A reversible capacity of 155 mAh g -1 at C/12 is obtained with cells having at least some organic electrolyte compared to only 124 mAh g -1 with pure IL. With increasing discharge rate, the capacity is maintained close to that in the organic solvent up to 2 C rate. At higher rates, the results with mixture electrolytes start to deviate from the pure organic electrolyte cell. The evaluation of the Li-ion cells; LiFePO 4//Li 4Ti 5O 12 with organic and, 40% mixture electrolytes showed good 1st CE at 98.7 and 93.0%, respectively. The power performance of both cell configurations is comparable up to 2 C rate. This study indicates that safety and

  9. Heterostructure composites of rGO/GeO2/PANI with enhanced performance for Li ion battery anode material

    NASA Astrophysics Data System (ADS)

    Sarkar, Sumanta; Borah, Rohan; Santhosha, A. L.; Dhanya, R.; Narayana, Chandrabhas; Bhattacharyya, Aninda J.; Peter, Sebastian C.

    2016-02-01

    A novel solvothermal method has been used for the synthesis of porous ellipsoidal GeO2 particles with oleic acid and oleylamine as solvent and co-surfactant, respectively and its performance has been studied as an anode material for Li ion battery applications. The presence of highly hydrophobic oleic acid and oleylamine on the surface of the as synthesized sample imparts a detrimental effect on its performance. Although removal of the capping agents with glacial acetic acid improves the performance to some extent, a drastic enhancement in both the specific capacity and cycling stability is observed when the nanoparticles are wrapped with rGO/PANI composites at low temperature.

  10. Materials cost evaluation report for high-power Li-ion batteries.

    SciTech Connect

    Henriksen, G. L.; Amine, K.; Liu, J.

    2003-01-10

    The U.S. Department of Energy (DOE) is the lead federal agency in the partnership between the U.S. automobile industry and the federal government to develop fuel cell electric vehicles (FCEVs) and hybrid electric vehicles (HEVs) as part of the FreedomCAR Partnership. DOE's FreedomCAR and Vehicle Technologies Office sponsors the Advanced Technology Development (ATD) Program--involving 5 of its national laboratories--to assist the industrial developers of high-power lithium-ion batteries to overcome the barriers of cost, calendar life, and abuse tolerance so that this technology can be rendered practical for use in HEV and FCEV applications under the FreedomCAR Partnership. In the area of cost reduction, Argonne National Laboratory (ANL) is working to identify and develop advanced anode, cathode, and electrolyte components that can significantly reduce the cost of the cell chemistry, while simultaneously extending the calendar life and enhancing the inherent safety of this electrochemical system. The material cost savings are quantified and tracked via the use of a cell and battery design model that establishes the quantity of each material needed in the production of batteries that are designed to meet the requirements of a minimum-power-assist HEV battery or a maximum-power-assist HEV battery for the FreedomCAR Partnership. Similar models will be developed for FEV batteries when the requirements for those batteries are finalized. In order to quantify the material costs relative to the FreedomCAR battery cost goals, ANL uses (1) laboratory cell performance data, (2) its battery design model and (3) battery manufacturing process yields to create battery-level material cost models. Using these models and industry-supplied material cost information, ANL assigns battery-level material costs for different cell chemistries. These costs can then be compared with the battery cost goals to determine the probability of meeting the goals with these cell chemistries. As can be

  11. Influence of memory effect on the state-of-charge estimation of large-format Li-ion batteries based on LiFePO4 cathode

    NASA Astrophysics Data System (ADS)

    Shi, Wei; Wang, Jiulin; Zheng, Jianming; Jiang, Jiuchun; Viswanathan, Vilayanur; Zhang, Ji-Guang

    2016-04-01

    In this work, we systematically investigated the influence of the memory effect of LiFePO4 cathodes in large-format full batteries. The electrochemical performance of the electrodes used in these batteries was also investigated separately in half-cells to reveal their intrinsic properties. We noticed that the memory effect of LiFePO4/graphite cells depends not only on the maximum state of charge reached during the memory writing process, but is also affected by the depth of discharge reached during the memory writing process. In addition, the voltage deviation in a LiFePO4/graphite full battery is more complex than in a LiFePO4/Li half-cell, especially for a large-format battery, which exhibits a significant current variation in the region near its terminals. Therefore, the memory effect should be taken into account in advanced battery management systems to further extend the long-term cycling stabilities of Li-ion batteries using LiFePO4 cathodes.

  12. Power capability improvement of LiBOB/PC electrolyte for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Kaneko, Hiroaki; Sekine, Kyoichi; Takamura, Tsutomu

    Lithium bis(oxalto)borate (LiBOB) is quite effective to prevent vigorous decomposition of propylene carbonate (PC) at the graphite anode of a Li-ion battery during Li insertion. PC is a very good solvent that is inexpensive, has high conductivity and a low melting point; however, the power capability of PC electrolyte containing LiBOB is unsatisfactory. In an attempt to improve the power capability of the LiBOB/PC electrolyte, mixed electrolytes containing both LiBOB and LiClO 4 were examined. An integrated fiber felt of highly graphitized carbon was used as the working electrode and the performance was evaluated by cyclic voltammetry (CV), constant current followed by constant voltage charge (CCCV) and constant current discharge. The CV produced a stable peak for Li extraction, but the peak height was as low as half that obtained in a conventional electrolyte such as a 1:1 mixture of ethylene carbonate (EC) and dimethyl carbonate (DMC) containing 1 M LiClO 4. However, the peak height in PC, containing 1/49 M LiBOB and 1 M LiClO 4, became 1.5 times higher than that in PC containing 1 M LiBOB. The peak height was increased further using a 1:1 mixture of PC and acetonitrile (AN) containing 1/49 M LiBOB and 1 M LiClO 4, although the cycleability was poor. A similar tendency was observed with the CCCV test. The CV peak height was plotted against the ionic conductivity of several solvents and showed no linear relationship, implying that the reaction activity was influenced by the solid electrolyte interphase (SEI) formed. The charge transfer resistance was evaluated by impedance spectroscopy. The results revealed that not only the surface film resistance but also the charge transfer resistance was markedly increased in the electrolyte containing LiBOB; however, they were reduced by the addition of LiClO 4.

  13. ESTABLISHING SUSTAINABLE US HEV/PHEV MANUFACTURING BASE: STABILIZED LITHIUM METAL POWDER, ENABLING MATERIAL AND REVOLUTIONARY TECHNOLOGY FOR HIGH ENERGY LI-ION BATTERIES

    SciTech Connect

    Yakovleva, Marina

    2012-12-31

    FMC Lithium Division has successfully completed the project “Establishing Sustainable US PHEV/EV Manufacturing Base: Stabilized Lithium Metal Powder, Enabling Material and Revolutionary Technology for High Energy Li-ion Batteries”. The project included design, acquisition and process development for the production scale units to 1) produce stabilized lithium dispersions in oil medium, 2) to produce dry stabilized lithium metal powders, 3) to evaluate, design and acquire pilot-scale unit for alternative production technology to further decrease the cost, and 4) to demonstrate concepts for integrating SLMP technology into the Li- ion batteries to increase energy density. It is very difficult to satisfy safety, cost and performance requirements for the PHEV and EV applications. As the initial step in SLMP Technology introduction, industry can use commercially available LiMn2O4 or LiFePO4, for example, that are the only proven safer and cheaper lithium providing cathodes available on the market. Unfortunately, these cathodes alone are inferior to the energy density of the conventional LiCoO2 cathode and, even when paired with the advanced anode materials, such as silicon composite material, the resulting cell will still not meet the energy density requirements. We have demonstrated, however, if SLMP Technology is used to compensate for the irreversible capacity in the anode, the efficiency of the cathode utilization will be improved and the cost of the cell, based on the materials, will decrease.

  14. Ab initio molecular dynamics simulations of organic electrolytes, electrodes, and lithium ion transport for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Kent, P. R. C.; Ganesh, P.; Jiang, De-En; Borodin, O.

    2012-02-01

    Optimizing the choice of electrolyte in lithium ion batteries and an understanding of the solid-electrolyte interphase (SEI) is required to optimize the balance between high-energy storage, high rate capability, and lifetime. We perform accurate ab initio molecular-dynamics simulations of common cyclic carbonates and LiPF6 to build solvation models which explain available Neutron and NMR spectroscopies. Our results corroborate why ethylene carbonate is a preferred choice for battery applications over propylene carbonate and how mixtures with dimethyl carbonate improve Li-ion diffusion. We study the role of functionalization of graphite-anode edges on the reducibility of the electrolyte and the ease of Li-ion intercalation at the initial stages of SEI formation. We find that oxygen terminated edges readily act as strong reductive sites, while hydrogen terminated edges are less reactive and allow faster Li diffusion. Orientational ordering of the solvent molecules precedes reduction at the interphase. Inorganic reductive components are seen to readily migrate to the anode edges, leading to increased surface passivation of the anode. We are currently quantifying Li-intercalation barriers across realistic SEI models, and progress along these lines will be presented.

  15. Thermal stability of LiPF 6 salt and Li-ion battery electrolytes containing LiPF 6

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Zhuang, Guorong V.; Ross, Philip N.

    The thermal stability of the neat lithium hexafluorophosphate (LiPF 6) salt and of 1 molal (m) solutions of LiPF 6 in prototypical Li-ion battery solvents was studied with thermogravimetric analysis (TGA) and on-line Fourier transform infrared (FTIR). Pure LiPF 6 salt is thermally stable up to 107 °C in a dry inert atmosphere, and its decomposition path is a simple dissociation producing lithium fluoride (LiF) as solid and PF 5 as gaseous products. In the presence of water (300 ppm) in the carrier gas, its decomposition onset temperature is lowered as a result of direct thermal reaction between LiPF 6 and water vapor to form phosphorous oxyfluoride (POF 3) and hydrofluoric acid (HF). No new products were observed in 1 m solutions of LiPF 6 in ethylene carbonate (EC), dimethyl carbonate (DMC) and ethyl methyl carbonate (EMC) by on-line TGA-FTIR analysis. The storage of the same solutions in sealed containers at 85 °C for 300-420 h did not produce any significant quantity of new products as well. In particular, no alkylflurophosphates were found in the solutions after storage at elevated temperature. In the absence of either an impurity like alcohol or cathode active material that may (or may not) act as a catalyst, there is no evidence of thermally induced reaction between LiPF 6 and the prototypical Li-ion battery solvents EC, PC, DMC or EMC.

  16. Manganese sequestration and improved high-temperature cycling of Li-ion batteries by polymeric aza-15-crown-5

    NASA Astrophysics Data System (ADS)

    Li, Zicheng; Pauric, Allen D.; Goward, Gillian R.; Fuller, Timothy J.; Ziegelbauer, Joseph M.; Balogh, Michael P.; Halalay, Ion C.

    2014-12-01

    Mn cation trapping by polymeric aza-15-crown-5 ethers is an effective means for mitigating the consequences of Mn dissolution in Li-ion batteries. Mn cations trapping was investigated in lithium manganese oxide (LMO) spinel-graphite (GR) cells containing 1 M LiPF6 in ethylene carbonate (EC):diethyl carbonate (DEC) 1:2 v/v. A commercial polyolefin separator membrane coated with poly[divinylbenzene-(vinylbenzyl-aza-15-crown-5)-vinylbenzylchloride)] effected a 39% reduction in capacity loss rate during cycling at 50 °C with 100% depth of discharge (DOD) at C/5 rate. Simultaneously, a 50-60% reduction in the Mn deposited at the negative electrode, and a 6× to 10× increase in the Mn on the coated separator were observed for cells with coated separators, over baseline cells with plain separators. X-ray absorption near-edge spectroscopy (XANES) yielded average oxidation states near +3 for Mn cations in graphite electrodes and separators from cycled cells, suggesting that Mn metal or in oxidation state +2 can only be minor fractions of the Mn existing outside the positive electrode. We discuss the implications of these results for choosing an optimal chelating agent. We also show that the cation chelating polymer reported here is compatible with existing manufacturing processes for Li-ion battery separators.

  17. Microscale failure mechanisms leading to internal short circuit in Li-ion batteries under complex loading scenarios

    NASA Astrophysics Data System (ADS)

    Sahraei, Elham; Bosco, Emanuela; Dixon, Brandy; Lai, Benjamin

    2016-07-01

    One of the least understood mechanisms of Li-ion batteries is the development of internal short circuits under mechanical loads. In this study, a micro mechanical model is developed and subjected to various loading scenarios to understand the sequence of failure in the multi-layer, multi-material structure of a Li-ion battery jellyroll. The constitutive response of each component of the electrode stack is obtained by comprehensive experimental tests using uniaxial and biaxial tensile and compressive loads. The homogenized response of the model is recovered through the computational homogenization theory. The model is validated by comparing the results of a macroscale simulation against experimental data. The study focuses next on the development of a failure criterion for the electrode stack based on the microstructural observations. Results show distinct failure mechanisms when the loading is predominantly tensile versus when it is compressive or combined tensile/compressive. A failure locus is plotted from the results of the simulations as a criterion to detect the onset of short circuit under complex multi-axial loading scenarios.

  18. Component-/structure-dependent elasticity of solid electrolyte interphase layer in Li-ion batteries: Experimental and computational studies

    NASA Astrophysics Data System (ADS)

    Shin, Hosop; Park, Jonghyun; Han, Sangwoo; Sastry, Ann Marie; Lu, Wei

    2015-03-01

    The mechanical instability of the Solid Electrolyte Interphase (SEI) layer in lithium ion (Li-ion) batteries causes significant side reactions resulting in Li-ion consumption and cell impedance rise by forming further SEI layers, which eventually leads to battery capacity fade and power fade. In this paper, the composition-/structure-dependent elasticity of the SEI layer is investigated via Atomic Force Microscopy (AFM) measurements coupled with X-ray Photoelectron Spectroscopy (XPS) analysis, and atomistic calculations. It is observed that the inner layer is stiffer than the outer layer. The measured Young's moduli are mostly in the range of 0.2-4.5 GPa, while some values above 80 GPa are also observed. This wide variation of the observed elastic modulus is elucidated by atomistic calculations with a focus on chemical and structural analysis. The numerical analysis shows the Young's moduli range from 2.4 GPa to 58.1 GPa in the order of the polymeric, organic, and amorphous inorganic components. The crystalline inorganic component (LiF) shows the highest value (135.3 GPa) among the SEI species. This quantitative observation on the elasticity of individual components of the SEI layer must be essential to analyzing the mechanical behavior of the SEI layer and to optimizing and controlling it.

  19. Use of mild organic acid reagents to recover the Co and Li from spent Li-ion batteries.

    PubMed

    Nayaka, Girish Praveen; Pai, Karkala Vasantakumar; Manjanna, Jayappa; Keny, Sangita J

    2016-05-01

    New organic acid mixtures have been investigated to recover the valuable metal ions from the cathode material of spent Li-ion batteries. The cathodic active material (LiCoO2) collected from spent Li-ion batteries (LIBs) is dissolved in mild organic acids, iminodiacetic acid (IDA) and maleic acid (MA), to recover the metals. Almost complete dissolution occurred in slightly excess (than the stoichiometric requirement) of IDA or MA at 80°C for 6h, based on the Co and Li released. The reducing agent, ascorbic acid (AA), converts the dissolved Co(III)- to Co(II)-L (L=IDA or MA) thereby selective recovery of Co as Co(II)-oxalate is possible. The formation of Co(III)- and Co(II)-L is evident from the UV-Vis spectra of the dissolved solution as a function of dissolution time. Thus, the reductive-complexing dissolution mechanism is proposed here. These mild organic acids are environmentally benign unlike the mineral acids. PMID:26709049

  20. A novel state of health estimation method of Li-ion battery using group method of data handling

    NASA Astrophysics Data System (ADS)

    Wu, Ji; Wang, Yujie; Zhang, Xu; Chen, Zonghai

    2016-09-01

    In this paper, the control theory is applied to assist the estimation of state of health (SoH) which is a key parameter to battery management. Battery can be treated as a system, and the internal state, e.g. SoH, can be observed through certain system output data. Based on the philosophy of human health and athletic ability estimation, variables from a specific process, which is a constant current charge subprocess, are obtained to depict battery SoH. These variables are selected according to the differential geometric analysis of battery terminal voltage curves. Moreover, the relationship between the differential geometric properties and battery SoH is modelled by the group method of data handling (GMDH) polynomial neural network. Thus, battery SoH can be estimated by GMDH with inputs of voltage curve properties. Experiments have been conducted on different types of Li-ion battery, and the results show that the proposed method is valid for SoH estimation.

  1. High-performance graphene/sulphur electrodes for flexible Li-ion batteries using the low-temperature spraying method

    NASA Astrophysics Data System (ADS)

    Kumar, Pushpendra; Wu, Feng-Yu; Hu, Lung-Hao; Ali Abbas, Syed; Ming, Jun; Lin, Chia-Nan; Fang, Jason; Chu, Chih-Wei; Li, Lain-Jong

    2015-04-01

    Elementary sulphur (S) has been shown to be an excellent cathode material in energy storage devices such as Li-S batteries owing to its very high capacity. The major challenges associated with the sulphur cathodes are structural degradation, poor cycling performance and instability of the solid-electrolyte interphase caused by the dissolution of polysulfides during cycling. Tremendous efforts made by others have demonstrated that encapsulation of S materials improves their cycling performance. To make this approach practical for large scale applications, the use of low-cost technology and materials has become a crucial and new focus of S-based Li-ion batteries. Herein, we propose to use a low temperature spraying process to fabricate graphene/S electrode material, where the ink is composed of graphene flakes and the micron-sized S particles prepared by grinding of low-cost S powders. The S particles are found to be well hosted by highly conductive graphene flakes and consequently superior cyclability (~70% capacity retention after 250 cycles), good coulombic efficiency (~98%) and high capacity (~1500 mA h g-1) are obtained. The proposed approach does not require high temperature annealing or baking; hence, another great advantage is to make flexible Li-ion batteries. We have also demonstrated two types of flexible batteries using sprayed graphene/S electrodes.Elementary sulphur (S) has been shown to be an excellent cathode material in energy storage devices such as Li-S batteries owing to its very high capacity. The major challenges associated with the sulphur cathodes are structural degradation, poor cycling performance and instability of the solid-electrolyte interphase caused by the dissolution of polysulfides during cycling. Tremendous efforts made by others have demonstrated that encapsulation of S materials improves their cycling performance. To make this approach practical for large scale applications, the use of low-cost technology and materials has become

  2. First principle study of LiXS2 (X = Ga, In) as cathode materials for Li ion batteries

    NASA Astrophysics Data System (ADS)

    Feng-Ya, Rao; Fang-Hua, Ning; Li-Wei, Jiang; Xiang-Ming, Zeng; Mu-Sheng, Wu; Bo, Xu; Chu-Ying, Ouyang

    2016-02-01

    From first principle calculations, we demonstrate that LiXS2 (X = Ga, In) compounds have potential applications as cathode materials for Li ion batteries. It is shown that Li can be extracted from the LiXS2 lattice with relatively small volume change and the XS4 tetrahedron structure framework remains stable upon delithiation. The theoretical capacity and average intercalation potential of the LiGaS2 (LiInS2) cathode are 190.4 (144.2) mAh/g and 3.50 V (3.53 V). The electronic structures of the LiXS2 are insulating with band gaps of 2.88 eV and 1.99 eV for X = Ga and In, respectively. However, Li vacancies, which are formed through delithiation, change the electronic structure substantially from insulating to metallic structure, indicating that the electrical conductivities of the LiXS2 compounds should be good during cycling. Li ion migration energy barriers are also calculated, and the results show that Li ion diffusions in the LiXS2 compounds can be as good as those in the currently widely used electrode materials. Project supported by the National High Technology and Development Key Program, China (Grant No. 2015AA034201), the National Natural Science Foundation of China (Grant Nos. 11234013 and 11264014), the Natural Science Foundation of Jiangxi Province, China (Grant Nos. 20133ACB21010, 20142BAB212002, and 20132BAB212005), and the Foundation of Jiangxi Provincial Education Committee, China (Grant Nos. GJJ14254 and KJLD14024).

  3. Miniature all-solid-state heterostructure nanowire Li-ion batteries as a tool for engineering and structural diagnostics of nanoscale electrochemical processes.

    PubMed

    Oleshko, Vladimir P; Lam, Thomas; Ruzmetov, Dmitry; Haney, Paul; Lezec, Henri J; Davydov, Albert V; Krylyuk, Sergiy; Cumings, John; Talin, A Alec

    2014-10-21

    Complex interfacial phenomena and phase transformations that govern the operation of Li-ion batteries require detailed nanoscale 3D structural and compositional characterization that can be directly related to their capacity and electrical transport properties. For this purpose, we have designed model miniature all solid-state radial heterostructure Li-ion batteries composed of LiCoO2 cathode, LiPON electrolyte and amorphous Si anode shells, which were deposited around metallized high-aspect-ratio Si nanowires as a scaffolding core. Such diagnostic batteries, the smallest, complete secondary Li-ion batteries realized to date, were specifically designed for in situ electrical testing in a field-emission scanning electron microscope and/or transmission electron microscope. The results of electrochemical testing were described in detail in a previous publication (Nano Lett., 2012, 12, 505-511). The model Li-ion batteries allow analysis of the correlations between electrochemical properties and their structural evolution during cycling in various imaging, diffraction and spectroscopic modes down to the atomic level. Employing multimode analytical scanning/transmission electron microscopy imaging coupled with correlative multivariate statistical analysis and tomography, we have analyzed and quantified the 3D morphological and structural arrangement of the batteries, including textured platelet-like LiCoO2 nanocrystallites, buried electrode-electrolyte interfaces and hidden internal defects to clarify effects of scaling on a battery's electrochemical performance. Characterization of the nanoscale interfacial processes using model heterostructure nanowire-based Li-ion batteries provides useful guidelines for engineering of prospective nano-sized building blocks in future electrochemical energy storage systems.

  4. Li-Ion Battery with LiFePO4 Cathode and Li4Ti5O12 Anode for Stationary Energy Storage

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Choi, Daiwon; Yang, Zhenguo

    2013-01-01

    Li-ion batteries based on commercially available LiFePO4 cathode and Li4Ti5O12 anode were investigated for potential stationary energy storage applications. The full cell that operated at flat 1.85 V demonstrated stable cycling up to 200 cycles followed by a rapid fade. A Li-ion full cell with Ketjen black modified LiFePO4 cathode and an unmodified Li4Ti5O12 anode exhibited negligible fade after more than 1200 cycles with a capacity of ~130 mAh/g at C/2. The improved stability, along with its cost-effectiveness, environmental benignity, and safety, make the LiFePO4/Li4Ti5O12 combination Li-ion battery a promising option for storing renewable energy.

  5. High Anodic Performance of Co 1,3,5-Benzenetricarboxylate Coordination Polymers for Li-Ion Battery.

    PubMed

    Li, Chao; Lou, Xiaobing; Shen, Ming; Hu, Xiaoshi; Guo, Zhi; Wang, Yong; Hu, Bingwen; Chen, Qun

    2016-06-22

    We report the designed synthesis of Co 1,3,5-benzenetricarboxylate coordination polymers (CPs) via a straightforward hydrothermal method, in which three kinds of reaction solvents are selected to form CPs with various morphologies and dimensions. When tested as anode materials in Li-ion battery, the cycling stabilities of the three CoBTC CPs at a current density of 100 mA g(-1) have not evident difference; however, the reversible capacities are widely divergent when the current density is increased to 2 A g(-1). The optimized product CoBTC-EtOH maintains a reversible capacity of 473 mAh g(-1) at a rate of 2 A g(-1) after 500 galvanostatic charging/discharging cycles while retaining a nearly 100% Coulombic efficiency. The hollow microspherical morphology, accessible specific area, and the absence of coordination solvent of CoBTC-EtOH might be responsible for such difference. Furthermore, the ex situ soft X-ray absorption spectroscopy studies of CoBTC-EtOH under different states-of-charge suggest that the Co ions remain in the Co(2+) state during the charging/discharging process. Therefore, Li ions are inserted to the organic moiety (including the carboxylate groups and the benzene ring) of CoBTC without the direct engagement of Co ions during electrochemical cycling.

  6. Defect Structure of Li-Doped BPO 4: A Nanostructured Ceramic Electrolyte for Li-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Jak, M. J. G.; Kelder, E. M.; Schoonman, J.

    1999-01-01

    In this paper the defect chemistry of Li-doped BPO4(BPO4-xLi2O, 0≤x≤0.1) is studied. This nanostructured ceramic electrolyte is used in all-solid-state Li-ion batteries. By changing the Li-doping level the influence on the crystal structure is studied and related to t he properties of the material. X-ray diffraction, Fourier-transformed infra-red spectroscopy (FT-IR),31P,11B, and7Li magic-angle-spinning solid state nuclear magnetic resonance, neutron diffraction, and inductively coupled plasma optical-emission spectroscopy measurements are used in order to study the structure. The electrical properties are studied with AC-impedance spectroscopy (AC-IS). The experimental data show that the defect structure of Li-doped BPO4can be described with two defect models, Li″B+2Li·iand V‴B+3Li·i, suggesting that the ionic conductivity takes place via interstitial Li ions.

  7. Probing the Degradation Mechanisms in Electrolyte Solutions for Li-ion Batteries by In-Situ Transmission Electron Microscopy

    SciTech Connect

    Abellan Baeza, Patricia; Mehdi, Beata L.; Parent, Lucas R.; Gu, Meng; Park, Chiwoo; Xu, Wu; Zhang, Yaohui; Arslan, Ilke; Zhang, Jiguang; Wang, Chong M.; Evans, James E.; Browning, Nigel D.

    2014-02-21

    One of the goals in the development of new battery technologies is to find new electrolytes with increased electrochemical stability. In-situ (scanning) transmission electron microscopy ((S)TEM) using an electrochemical fluid cell provides the ability to rapidly and directly characterize electrode/electrolyte interfacial reactions under battery relevant electrochemical conditions. Furthermore, as the electron beam itself causes a localized electrochemical reaction when it interacts with the electrolyte, the breakdown products that occur during the first stages of battery operation can potentially be simulated and characterized using a straightforward in-situ liquid stage (without electrochemical biasing capabilities). In this paper, we have studied the breakdown of a range of inorganic/salt complexes that are used in state-of-the-art Li-ion battery systems. The results of the in-situ (S)TEM experiments matches with previous stability tests performed during battery operation and the breakdown products and mechanisms are also consistent with known mechanisms. This analysis indicates that in-situ liquid stage (S)TEM observations can be used to directly test new electrolyte designs and provide structural insights into the origin of the solid electrolyte interphase (SEI) formation mechanism.

  8. Electrolytes with Improved Safety Characteristics for High Voltage, High Specific Energy Li-ion Cells

    NASA Technical Reports Server (NTRS)

    Smart, M. C.; Krause, F. C.; Hwang, C.; West, W. C.; Soler, J.; Whitcanack, L. W.; Prakash, G. K. S.; Ratnakumar, B. V.

    2012-01-01

    (1) NASA is actively pursuing the development of advanced electrochemical energy storage and conversion devices for future lunar and Mars missions; (2) The Exploration Technology Development Program, Energy Storage Project is sponsoring the development of advanced Li-ion batteries and PEM fuel cell and regenerative fuel cell systems for the Altair Lunar Lander, Extravehicular Activities (EVA), and rovers and as the primary energy storage system for Lunar Surface Systems; (3) At JPL, in collaboration with NASA-GRC, NASA-JSC and industry, we are actively developing advanced Li-ion batteries with improved specific energy, energy density and safety. One effort is focused upon developing Li-ion battery electrolyte with enhanced safety characteristics (i.e., low flammability); and (4) A number of commercial applications also require Li-ion batteries with enhanced safety, especially for automotive applications.

  9. Attainable gravimetric and volumetric energy density of Li-S and li ion battery cells with solid separator-protected Li metal anodes.

    PubMed

    McCloskey, Bryan D

    2015-11-19

    As a result of sulfur's high electrochemical capacity (1675 mA h/gs), lithium-sulfur batteries have received significant attention as a potential high-specific-energy alternative to current state-of-the-art rechargeable Li ion batteries. For Li-S batteries to compete with commercially available Li ion batteries, high-capacity anodes, such as those that use Li metal, will need to be enabled to fully exploit sulfur's high capacity. The development of Li metal anodes has focused on eliminating Coulombically inefficient and dendritic Li cycling, and to this end, an interesting direction of research is to protect Li metal by employing mechanically stiff solid-state Li(+) conductors, such as garnet phase Li7La3Zr2O12 (LLZO), NASICON-type Li1+xAlxTi2-x(PO4)3 (LATP), and Li2S-P2S5 glasses (LPS), as electrode separators. Basic calculations are used to quantify useful targets for solid Li metal protective separator thickness and cost to enable Li metal batteries in general and Li-S batteries specifically. Furthermore, maximum electrolyte-to-sulfur ratios that allow Li-S batteries to compete with Li ion batteries are calculated. The results presented here suggest that controlling the complex polysulfide speciation chemistry in Li-S cells with realistic, minimal electrolyte loading presents a meaningful opportunity to develop Li-S batteries that are competitive on a specific energy basis with current state-of-the-art Li ion batteries. PMID:26722800

  10. Attainable gravimetric and volumetric energy density of Li-S and li ion battery cells with solid separator-protected Li metal anodes.

    PubMed

    McCloskey, Bryan D

    2015-11-19

    As a result of sulfur's high electrochemical capacity (1675 mA h/gs), lithium-sulfur batteries have received significant attention as a potential high-specific-energy alternative to current state-of-the-art rechargeable Li ion batteries. For Li-S batteries to compete with commercially available Li ion batteries, high-capacity anodes, such as those that use Li metal, will need to be enabled to fully exploit sulfur's high capacity. The development of Li metal anodes has focused on eliminating Coulombically inefficient and dendritic Li cycling, and to this end, an interesting direction of research is to protect Li metal by employing mechanically stiff solid-state Li(+) conductors, such as garnet phase Li7La3Zr2O12 (LLZO), NASICON-type Li1+xAlxTi2-x(PO4)3 (LATP), and Li2S-P2S5 glasses (LPS), as electrode separators. Basic calculations are used to quantify useful targets for solid Li metal protective separator thickness and cost to enable Li metal batteries in general and Li-S batteries specifically. Furthermore, maximum electrolyte-to-sulfur ratios that allow Li-S batteries to compete with Li ion batteries are calculated. The results presented here suggest that controlling the complex polysulfide speciation chemistry in Li-S cells with realistic, minimal electrolyte loading presents a meaningful opportunity to develop Li-S batteries that are competitive on a specific energy basis with current state-of-the-art Li ion batteries.

  11. Facile molten salt synthesis of Li2NiTiO4 cathode material for Li-ion batteries.

    PubMed

    Wang, Yanming; Wang, Yajing; Wang, Fei

    2014-01-01

    Well-crystallized Li2NiTiO4 nanoparticles are rapidly synthesized by a molten salt method using a mixture of NaCl and KCl salts. X-ray diffraction pattern and scanning electron microscopic image show that Li2NiTiO4 has a cubic rock salt structure with an average particle size of ca. 50 nm. Conductive carbon-coated Li2NiTiO4 is obtained by a facile ball milling method. As a novel 4 V positive cathode material for Li-ion batteries, the Li2NiTiO4/C delivers high discharge capacities of 115 mAh g(-1) at room temperature and 138 mAh g(-1) and 50°C, along with a superior cyclability. PMID:24855459

  12. Highly conductive coaxial SnO(2)-In(2)O(3) heterostructured nanowires for Li ion battery electrodes.

    PubMed

    Kim, Dong-Wan; Hwang, In-Sung; Kwon, S Joon; Kang, Hae-Yong; Park, Kyung-Soo; Choi, Young-Jin; Choi, Kyoung-Jin; Park, Jae-Gwan

    2007-10-01

    Novel SnO(2)-In(2)O(3) heterostructured nanowires were produced via a thermal evaporation method, and their possible nucleation/growth mechanism is proposed. We found that the electronic conductivity of the individual SnO(2)-In(2)O(3) nanowires was 2 orders of magnitude better than that of the pure SnO(2) nanowires, due to the formation of Sn-doped In(2)O(3) caused by the incorporation of Sn into the In(2)O(3) lattice during the nucleation and growth of the In(2)O(3) shell nanostructures. This provides the SnO(2)-In(2)O(3) nanowires with an outstanding lithium storage capacity, making them suitable for promising Li ion battery electrodes.

  13. H2O2 assisted room temperature oxidation of Ti2C MXene for Li-ion battery anodes

    NASA Astrophysics Data System (ADS)

    Ahmed, Bilal; Anjum, Dalaver H.; Hedhili, Mohamed N.; Gogotsi, Yury; Alshareef, Husam N.

    2016-03-01

    Herein we demonstrate that a prominent member of the MXene family, Ti2C, undergoes surface oxidation at room temperature when treated with hydrogen peroxide (H2O2). The H2O2 treatment results in opening up of MXene sheets and formation of TiO2 nanocrystals on their surface, which is evidenced by the high surface area of H2O2 treated MXene and X-ray diffraction (XRD) analysis. We show that the reaction time and the amount of hydrogen peroxide used are the limiting factors, which determine the morphology and composition of the final product. Furthermore, it is shown that the performance of H2O2 treated MXene as an anode material in Li ion batteries (LIBs) was significantly improved as compared to as-prepared MXenes. For instance, after 50 charge/discharge cycles, specific discharge capacities of 389 mA h g-1, 337 mA h g-1 and 297 mA h g-1 were obtained for H2O2 treated MXene at current densities of 100 mA g-1, 500 mA g-1 and 1000 mA g-1, respectively. In addition, when tested at a very high current density, such as 5000 mA g-1, the H2O2 treated MXene showed a specific capacity of 150 mA h g-1 and excellent rate capability. These results clearly demonstrate that H2O2 treatment of Ti2C MXene improves MXene properties in energy storage applications, such as Li ion batteries or capacitors.Herein we demonstrate that a prominent member of the MXene family, Ti2C, undergoes surface oxidation at room temperature when treated with hydrogen peroxide (H2O2). The H2O2 treatment results in opening up of MXene sheets and formation of TiO2 nanocrystals on their surface, which is evidenced by the high surface area of H2O2 treated MXene and X-ray diffraction (XRD) analysis. We show that the reaction time and the amount of hydrogen peroxide used are the limiting factors, which determine the morphology and composition of the final product. Furthermore, it is shown that the performance of H2O2 treated MXene as an anode material in Li ion batteries (LIBs) was significantly improved as

  14. Synthesis, characterization and electrochemical properties of α-MoO3 nanobelts for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Yayapao, Oranuch; Phuruangrat, Anukorn; Thongtem, Titipun; Thongtem, Somchai

    2016-06-01

    Orthorhombic molybdenum trioxide (α-MoO3) nanobelts have been successfully synthesized by hydrothermal method at 180°C for 20 h. The prepared α-MoO3 samples were investigated by X-ray diffraction, Fourier transform IR spectroscopy, Raman spectroscopy, scanning electron microscopy, and transmission electron microscopy methods. It was found that α-MoO3 nanobelts grow along the c-axis, with ±(100) top or bottom surfaces and ±(010) side surfaces. The prepared α-MoO3 nanobelts were used as cathode materials for Li-ion batteries. They exhibit specific capacity of 1340 and 1250 mA h g-1 at a current density of 100 and 400 mA/g, respectively.

  15. Scalable Synthesis of Nano-Silicon from Beach Sand for Long Cycle Life Li-ion Batteries

    PubMed Central

    Favors, Zachary; Wang, Wei; Bay, Hamed Hosseini; Mutlu, Zafer; Ahmed, Kazi; Liu, Chueh; Ozkan, Mihrimah; Ozkan, Cengiz S.

    2014-01-01

    Herein, porous nano-silicon has been synthesized via a highly scalable heat scavenger-assisted magnesiothermic reduction of beach sand. This environmentally benign, highly abundant, and low cost SiO2 source allows for production of nano-silicon at the industry level with excellent electrochemical performance as an anode material for Li-ion batteries. The addition of NaCl, as an effective heat scavenger for the highly exothermic magnesium reduction process, promotes the formation of an interconnected 3D network of nano-silicon with a thickness of 8-10 nm. Carbon coated nano-silicon electrodes achieve remarkable electrochemical performance with a capacity of 1024 mAhg−1 at 2 Ag−1 after 1000 cycles. PMID:25001507

  16. Formation of Nanocrystalline Surface of Cu-Sn Alloy Foam Electrochemically Produced for Li-Ion Battery Electrode.

    PubMed

    Ye, Bora; Kim, Sunjung

    2015-10-01

    Cu-Sn alloy foam is a promising electrode material for Li-ion batteries. In this study, Cu-Sn alloy foam was produced by diffusion-limited electrodeposition in alkaline electrolyte using polyurethane (PU) foam template. Our major concern is to form Cu-Sn alloy foam with nanocrystalline surface morphology by adjusting electrodeposition conditions such as deposition potential and metal ion concentration. Cu-Sn alloy layers comprising of nanoclusters such as nanospheres, nanoellipsoids, and nanoflakes were created depending on electrodeposition conditions. Larger surface area of nanocluster-interconnected Cu-Sn alloy layer was created when both Sn concentration and negative deposition potential were higher. After decomposing PU template thermally, Cu-Sn alloy foam of Cu, Cu6Sn5, and Cu3Sn phases was finally produced. PMID:26726491

  17. Facile molten salt synthesis of Li2NiTiO4 cathode material for Li-ion batteries.

    PubMed

    Wang, Yanming; Wang, Yajing; Wang, Fei

    2014-01-01

    Well-crystallized Li2NiTiO4 nanoparticles are rapidly synthesized by a molten salt method using a mixture of NaCl and KCl salts. X-ray diffraction pattern and scanning electron microscopic image show that Li2NiTiO4 has a cubic rock salt structure with an average particle size of ca. 50 nm. Conductive carbon-coated Li2NiTiO4 is obtained by a facile ball milling method. As a novel 4 V positive cathode material for Li-ion batteries, the Li2NiTiO4/C delivers high discharge capacities of 115 mAh g(-1) at room temperature and 138 mAh g(-1) and 50°C, along with a superior cyclability.

  18. Silicene/germanene on MgX2 (X = Cl, Br, and I) for Li-ion battery applications

    NASA Astrophysics Data System (ADS)

    Zhu, Jiajie; Chroneos, Alexander; Schwingenschlögl, Udo

    2016-03-01

    Silicene is a promising electrode material for Li-ion batteries due to its high Li capacity and low Li diffusion barrier. Germanene is expected to show a similar performance due to its analogous structural and electronic properties. However, the performance of both the materials will be determined by the substrate, since freestanding configurations are unstable. We propose Si/MgX2 and Ge/MgX2 (X = Cl, Br, and I) as suitable hybrid structures, based on first-principles calculations. We find that Li will not cluster and that the Li capacity is very high (443 and 279 mA h g-1 for silicene and germanene on MgCl2, respectively). Sandwich structures can be used to further enhance the performance. Low diffusion barriers of less than 0.3 eV are predicted for all the hybrid structures.

  19. SiO2/polyacrylonitrile membranes via centrifugal spinning as a separator for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Yanilmaz, Meltem; Lu, Yao; Li, Ying; Zhang, Xiangwu

    2015-01-01

    Centrifugal spinning is a fast, cost-effective and safe alternative to the electrospinning technique, which is commonly used for making fiber-based separator membranes. In this work, SiO2/polyacrylonitrile (PAN) membranes were produced by using centrifugal spinning and they were characterized by using different electrochemical techniques for use as separators in Li-ion batteries. SiO2/PAN membranes exhibited good wettability and high ionic conductivity due to their highly porous fibrous structure. Compared with commercial microporous polyolefin membranes, SiO2/PAN membranes had larger liquid electrolyte uptake, higher electrochemical oxidation limit, and lower interfacial resistance with lithium. SiO2/PAN membrane separators were assembled into lithium/lithium iron phosphate cells and these cells delivered high capacities and exhibited good cycling performance at room temperature. In addition, cells using SiO2/PAN membranes showed superior C-rate performance compared to those using microporous PP membrane.

  20. Scalable synthesis of nano-silicon from beach sand for long cycle life Li-ion batteries.

    PubMed

    Favors, Zachary; Wang, Wei; Bay, Hamed Hosseini; Mutlu, Zafer; Ahmed, Kazi; Liu, Chueh; Ozkan, Mihrimah; Ozkan, Cengiz S

    2014-07-08

    Herein, porous nano-silicon has been synthesized via a highly scalable heat scavenger-assisted magnesiothermic reduction of beach sand. This environmentally benign, highly abundant, and low cost SiO₂ source allows for production of nano-silicon at the industry level with excellent electrochemical performance as an anode material for Li-ion batteries. The addition of NaCl, as an effective heat scavenger for the highly exothermic magnesium reduction process, promotes the formation of an interconnected 3D network of nano-silicon with a thickness of 8-10 nm. Carbon coated nano-silicon electrodes achieve remarkable electrochemical performance with a capacity of 1024 mAhg(-1) at 2 Ag(-1) after 1000 cycles.

  1. Growth of linked silicon/carbon nanospheres on copper substrate as integrated electrodes for Li-ion batteries.

    PubMed

    Zhang, Zailei; Wang, Yanhong; Tan, Qiangqiang; Li, Dan; Chen, Yunfa; Zhong, Ziyi; Su, Fabing

    2014-01-01

    We report the growth of linked silicon/carbon (Si/C) nanospheres on Cu substrate as an integrated anode for Li-ion batteries. The Si/C nanospheres were synthesized by a catalytic chemical vapor deposition (CCVD) on Cu substrate as current collector using methyltrichlorosilane as precursor, a cheap by-product of the organosilane industry. The samples were characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy, thermal gravimetry, Raman spectroscopy, nitrogen adsorption, inductively coupled plasma optical emission spectrometry, and X-ray photoelectron spectroscopy. It was found that the linked Si/C nanospheres with a diameter of 400-500 nm contain Si, Cu(x)Si, and Cu nanocrystals, which are highly dispersed in the amorphous carbon nanospheres. A CCVD mechanism was tentatively proposed, in which the evaporated Cu atoms play a critical role to catalytically grown Si nanocrystals embedded within linked Si/C nanospheres. The electrochemical measurement shows that these Si/C nanospheres delivered a capacity of 998.9, 713.1, 320.6, and 817.8 mA h g(-1) at 50, 200, 800, and 50 mA g(-1) respectively after 50 cycles, much higher than that of commercial graphite anode. This is because the amorphous carbon, Cu(x)Si, and Cu in the Si/C nanospheres could buffer the volume change of Si nanocrystals during the Li insertion and extraction reactions, thus hindering the cracking or crumbling of the electrode. Furthermore, the incorporation of conductive Cu(x)Si and Cu nanocrystals and the integration of active electrode materials with Cu substrate may improve the electrical conductivity from the current collector to individual Si active particles, resulting in a remarkably enhanced reversible capacity and cycling stability. The work will be helpful in the fabrication of low cost binder-free Si/C anode materials for Li-ion batteries.

  2. Surface Passivation of MoO₃ Nanorods by Atomic Layer Deposition toward High Rate Durable Li Ion Battery Anodes.

    PubMed

    Ahmed, B; Shahid, Muhammad; Nagaraju, D H; Anjum, D H; Hedhili, Mohamed N; Alshareef, H N

    2015-06-24

    We demonstrate an effective strategy to overcome the degradation of MoO3 nanorod anodes in lithium (Li) ion batteries at high-rate cycling. This is achieved by conformal nanoscale surface passivation of the MoO3 nanorods by HfO2 using atomic layer deposition (ALD). At high current density such as 1500 mA/g, the specific capacity of HfO2-coated MoO3 electrodes is 68% higher than that of bare MoO3 electrodes after 50 charge/discharge cycles. After 50 charge/discharge cycles, HfO2-coated MoO3 electrodes exhibited specific capacity of 657 mAh/g; on the other hand, bare MoO3 showed only 460 mAh/g. Furthermore, we observed that HfO2-coated MoO3 electrodes tend to stabilize faster than bare MoO3 electrodes because nanoscale HfO2 layer prevents structural degradation of MoO3 nanorods. Additionally, the growth temperature of MoO3 nanorods and the effect of HfO2 layer thickness was studied and found to be important parameters for optimum battery performance. The growth temperature defines the microstructural features and HfO2 layer thickness defines the diffusion coefficient of Li-ions through the passivation layer to the active material. Furthermore, ex situ high resolution transmission electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and X-ray diffraction were carried out to explain the capacity retention mechanism after HfO2 coating.

  3. H2O2 assisted room temperature oxidation of Ti2C MXene for Li-ion battery anodes.

    PubMed

    Ahmed, Bilal; Anjum, Dalaver H; Hedhili, Mohamed N; Gogotsi, Yury; Alshareef, Husam N

    2016-04-14

    Herein we demonstrate that a prominent member of the MXene family, Ti2C, undergoes surface oxidation at room temperature when treated with hydrogen peroxide (H2O2). The H2O2 treatment results in opening up of MXene sheets and formation of TiO2 nanocrystals on their surface, which is evidenced by the high surface area of H2O2 treated MXene and X-ray diffraction (XRD) analysis. We show that the reaction time and the amount of hydrogen peroxide used are the limiting factors, which determine the morphology and composition of the final product. Furthermore, it is shown that the performance of H2O2 treated MXene as an anode material in Li ion batteries (LIBs) was significantly improved as compared to as-prepared MXenes. For instance, after 50 charge/discharge cycles, specific discharge capacities of 389 mA h g(-1), 337 mA h g(-1) and 297 mA h g(-1) were obtained for H2O2 treated MXene at current densities of 100 mA g(-1), 500 mA g(-1) and 1000 mA g(-1), respectively. In addition, when tested at a very high current density, such as 5000 mA g(-1), the H2O2 treated MXene showed a specific capacity of 150 mA h g(-1) and excellent rate capability. These results clearly demonstrate that H2O2 treatment of Ti2C MXene improves MXene properties in energy storage applications, such as Li ion batteries or capacitors.

  4. Growth of linked silicon/carbon nanospheres on copper substrate as integrated electrodes for Li-ion batteries.

    PubMed

    Zhang, Zailei; Wang, Yanhong; Tan, Qiangqiang; Li, Dan; Chen, Yunfa; Zhong, Ziyi; Su, Fabing

    2014-01-01

    We report the growth of linked silicon/carbon (Si/C) nanospheres on Cu substrate as an integrated anode for Li-ion batteries. The Si/C nanospheres were synthesized by a catalytic chemical vapor deposition (CCVD) on Cu substrate as current collector using methyltrichlorosilane as precursor, a cheap by-product of the organosilane industry. The samples were characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy, thermal gravimetry, Raman spectroscopy, nitrogen adsorption, inductively coupled plasma optical emission spectrometry, and X-ray photoelectron spectroscopy. It was found that the linked Si/C nanospheres with a diameter of 400-500 nm contain Si, Cu(x)Si, and Cu nanocrystals, which are highly dispersed in the amorphous carbon nanospheres. A CCVD mechanism was tentatively proposed, in which the evaporated Cu atoms play a critical role to catalytically grown Si nanocrystals embedded within linked Si/C nanospheres. The electrochemical measurement shows that these Si/C nanospheres delivered a capacity of 998.9, 713.1, 320.6, and 817.8 mA h g(-1) at 50, 200, 800, and 50 mA g(-1) respectively after 50 cycles, much higher than that of commercial graphite anode. This is because the amorphous carbon, Cu(x)Si, and Cu in the Si/C nanospheres could buffer the volume change of Si nanocrystals during the Li insertion and extraction reactions, thus hindering the cracking or crumbling of the electrode. Furthermore, the incorporation of conductive Cu(x)Si and Cu nanocrystals and the integration of active electrode materials with Cu substrate may improve the electrical conductivity from the current collector to individual Si active particles, resulting in a remarkably enhanced reversible capacity and cycling stability. The work will be helpful in the fabrication of low cost binder-free Si/C anode materials for Li-ion batteries. PMID:24201898

  5. A stepwise recovery of metals from hybrid cathodes of spent Li-ion batteries with leaching-flotation-precipitation process

    NASA Astrophysics Data System (ADS)

    Huang, Yanfang; Han, Guihong; Liu, Jiongtian; Chai, Wencui; Wang, Wenjuan; Yang, Shuzhen; Su, Shengpeng

    2016-09-01

    The recovering of valuable metals in spent lithium-ion battery cathodes brings about economic and environmental benefits. A stepwise leaching-flotation-precipitation process is adopted to separate and recover Li/Fe/Mn from the mixed types of cathode materials (hybrid wastes of LiFePO4 and LiMn2O4). The optimal operating conditions for the stepwise recovery process are determined and analyzed by factorial design, thermodynamics calculation, XRD and SEM characterization in this study. First, Li/Fe/Mn ions are released from the cathode using HCl assisted with H2O2 in the acid leaching step. The leachability of metals follows the series Li > Fe > Mn in the acidic environment. Then Fe3+ ions are selectively floated and recovered as FeCl3 from the leachate in the flotation step. Finally, Mn2+/Mn3+ and Li+ ions are sequentially precipitated and separated as MnO2/Mn2O3 and Li3PO4 using saturated KMnO4 solution and hot saturated Na3PO4 solution, respectively. Under the optimized and advisable conditions, the total recovery of Li, Fe and Mn is respectively 80.93 ± 0.16%, 85.40 ± 0.12% and 81.02 ± 0.08%. The purity for lithium, ferrum and manganese compounds is respectively 99.32 ± 0.07%, 97.91 ± 0.05% and 98.73 ± 0.05%. This stepwise process could provide an alternative way for the effective separation and recovery of metal values from spent Li-ion battery cathodes in industry.

  6. H2O2 assisted room temperature oxidation of Ti2C MXene for Li-ion battery anodes.

    PubMed

    Ahmed, Bilal; Anjum, Dalaver H; Hedhili, Mohamed N; Gogotsi, Yury; Alshareef, Husam N

    2016-04-14

    Herein we demonstrate that a prominent member of the MXene family, Ti2C, undergoes surface oxidation at room temperature when treated with hydrogen peroxide (H2O2). The H2O2 treatment results in opening up of MXene sheets and formation of TiO2 nanocrystals on their surface, which is evidenced by the high surface area of H2O2 treated MXene and X-ray diffraction (XRD) analysis. We show that the reaction time and the amount of hydrogen peroxide used are the limiting factors, which determine the morphology and composition of the final product. Furthermore, it is shown that the performance of H2O2 treated MXene as an anode material in Li ion batteries (LIBs) was significantly improved as compared to as-prepared MXenes. For instance, after 50 charge/discharge cycles, specific discharge capacities of 389 mA h g(-1), 337 mA h g(-1) and 297 mA h g(-1) were obtained for H2O2 treated MXene at current densities of 100 mA g(-1), 500 mA g(-1) and 1000 mA g(-1), respectively. In addition, when tested at a very high current density, such as 5000 mA g(-1), the H2O2 treated MXene showed a specific capacity of 150 mA h g(-1) and excellent rate capability. These results clearly demonstrate that H2O2 treatment of Ti2C MXene improves MXene properties in energy storage applications, such as Li ion batteries or capacitors. PMID:26984324

  7. Growth of linked silicon/carbon nanospheres on copper substrate as integrated electrodes for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Zailei; Wang, Yanhong; Tan, Qiangqiang; Li, Dan; Chen, Yunfa; Zhong, Ziyi; Su, Fabing

    2013-12-01

    We report the growth of linked silicon/carbon (Si/C) nanospheres on Cu substrate as an integrated anode for Li-ion batteries. The Si/C nanospheres were synthesized by a catalytic chemical vapor deposition (CCVD) on Cu substrate as current collector using methyltrichlorosilane as precursor, a cheap by-product of the organosilane industry. The samples were characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy, thermal gravimetry, Raman spectroscopy, nitrogen adsorption, inductively coupled plasma optical emission spectrometry, and X-ray photoelectron spectroscopy. It was found that the linked Si/C nanospheres with a diameter of 400-500 nm contain Si, CuxSi, and Cu nanocrystals, which are highly dispersed in the amorphous carbon nanospheres. A CCVD mechanism was tentatively proposed, in which the evaporated Cu atoms play a critical role to catalytically grown Si nanocrystals embedded within linked Si/C nanospheres. The electrochemical measurement shows that these Si/C nanospheres delivered a capacity of 998.9, 713.1, 320.6, and 817.8 mA h g-1 at 50, 200, 800, and 50 mA g-1 respectively after 50 cycles, much higher than that of commercial graphite anode. This is because the amorphous carbon, CuxSi, and Cu in the Si/C nanospheres could buffer the volume change of Si nanocrystals during the Li insertion and extraction reactions, thus hindering the cracking or crumbling of the electrode. Furthermore, the incorporation of conductive CuxSi and Cu nanocrystals and the integration of active electrode materials with Cu substrate may improve the electrical conductivity from the current collector to individual Si active particles, resulting in a remarkably enhanced reversible capacity and cycling stability. The work will be helpful in the fabrication of low cost binder-free Si/C anode materials for Li-ion batteries.

  8. A review of blended cathode materials for use in Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Chikkannanavar, Satishkumar B.; Bernardi, Dawn M.; Liu, Lingyun

    2014-02-01

    Several commercial automotive battery suppliers have developed lithium ion cells which use cathodes that consist of a mixture of two different active materials. This approach is intended to take advantage of the unique properties of each material and optimize the performance of the battery with respect to the automotive operating requirements. Certain cathode materials have high coulombic capacity and good cycling characteristics, but are costly and exhibit poor thermal stability (e.g., LiNixCo1-x-yAlyO2). Alternately, other cathode materials exhibit good thermal stability, high voltage and high rate capability, but have low capacity (e.g., LiMn2O4). By blending two cathode materials the shortcomings of the parent materials could be minimized and the resultant blend can be tailored to have a higher energy or power density coupled with enhanced stability and lower cost. In this review, we survey the developing field of blended cathode materials from a new perspective. Targeting a range of cathode materials, we survey the advances in the field in the current review. Limitations, such as capacity decay due to metal dissolution are also discussed, as well as how the appropriate balance of characteristics of the blended materials can be optimized for hybrid- and electric-vehicle applications.

  9. Homogeneity of lithium distribution in cylinder-type Li-ion batteries

    PubMed Central

    Senyshyn, A.; Mühlbauer, M. J.; Dolotko, O.; Hofmann, M.; Ehrenberg, H.

    2015-01-01

    Spatially-resolved neutron powder diffraction with a gauge volume of 2 × 2 × 20 mm3 has been applied as an in situ method to probe the lithium concentration in the graphite anode of different Li-ion cells of 18650-type in charged state. Structural studies performed in combination with electrochemical measurements and X-ray computed tomography under real cell operating conditions unambiguously revealed non-homogeneity of the lithium distribution in the graphite anode. Deviations from a homogeneous behaviour have been found in both radial and axial directions of 18650-type cells and were discussed in the frame of cell geometry and electrical connection of electrodes, which might play a crucial role in the homogeneity of the lithium distribution in the active materials within each electrode. PMID:26681110

  10. Scalable process for application of stabilized lithium metal powder in Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Ai, Guo; Wang, Zhihui; Zhao, Hui; Mao, Wenfeng; Fu, Yanbao; Yi, Ran; Gao, Yue; Battaglia, Vincent; Wang, Donghai; Lopatin, Sergey; Liu, Gao

    2016-03-01

    A simple solution processing method is developed to achieve a uniform and scalable stabilized lithium metal powder (SLMP) coating on a Li-ion negative electrode. A solvent and binder system for the SLMP coating is developed, including the selection of solvent, polymer binder, and optimization of polymer concentration. The optimized binder solution is a 1% concentration of polymer binder in xylene; a mixture of poly(styrene-co-butadiene) rubber (SBR) and polystyrene (PS) is chosen as the polymer binder. Results show that long-sustained, uniformly dispersed SLMP suspension can be achieved with the optimized binder solution. The uniform SLMP coating can be achieved using a simple "doctor blade" coating method, and the resulting SLMP coating can be firmly glued on the anode surface. By using SLMP to prelithiate the negative electrode, improvements in electrochemical performances are demonstrated in both graphite/NMC and SiO/NMC full cells.

  11. Design and use of multisine signals for Li-ion battery equivalent circuit modelling. Part 2: Model estimation

    NASA Astrophysics Data System (ADS)

    Widanage, W. D.; Barai, A.; Chouchelamane, G. H.; Uddin, K.; McGordon, A.; Marco, J.; Jennings, P.

    2016-08-01

    An Equivalent Circuit Model (ECM) of a lithium ion (Li-ion) battery is an empirical, linear dynamic model and the bandwidth of the input current signal and level of non-linearity in the voltage response are important for the model's validity. An ECM is, however, generally parametrised with a pulse current signal, which is low in signal bandwidth (Part 1) and any non-linear dependence of the voltage on the current due to transport limitations is ignored. This paper presents a general modelling methodology which utilises the higher bandwidth and number of signal levels of a pulse-multisine signal to estimate the battery dynamics and non-linear characteristics without the need of a 3D look-up table for the model parameters. In the proposed methodology a non-parametric estimate of the battery dynamics and non-linear characteristics are first obtained which assists in the model order selection, and to assess the level of non-linearity. The new model structure, termed as the Non-linear ECM (NL-ECM), gives a lower Root Mean Square (RMS) and peak error when compared to an ECM estimated using a pulse data set.

  12. Recycling of Advanced Batteries for Electric Vehicles

    SciTech Connect

    JUNGST,RUDOLPH G.

    1999-10-06

    The pace of development and fielding of electric vehicles is briefly described and the principal advanced battery chemistries expected to be used in the EV application are identified as Ni/MH in the near term and Li-ion/Li-polymer in the intermediate to long term. The status of recycling process development is reviewed for each of the two chemistries and future research needs are discussed.

  13. Electrode-electrolyte interface in Li-ion batteries: current understanding and new insights.

    PubMed

    Gauthier, Magali; Carney, Thomas J; Grimaud, Alexis; Giordano, Livia; Pour, Nir; Chang, Hao-Hsun; Fenning, David P; Lux, Simon F; Paschos, Odysseas; Bauer, Christoph; Maglia, Filippo; Lupart, Saskia; Lamp, Peter; Shao-Horn, Yang

    2015-11-19

    Understanding reactions at the electrode/electrolyte interface (EEI) is essential to developing strategies to enhance cycle life and safety of lithium batteries. Despite research in the past four decades, there is still limited understanding by what means different components are formed at the EEI and how they influence EEI layer properties. We review findings used to establish the well-known mosaic structure model for the EEI (often referred to as solid electrolyte interphase or SEI) on negative electrodes including lithium, graphite, tin, and silicon. Much less understanding exists for EEI layers for positive electrodes. High-capacity Li-rich layered oxides yLi2-xMnO3·(1-y)Li1-xMO2, which can generate highly reactive species toward the electrolyte via oxygen anion redox, highlight the critical need to understand reactions with the electrolyte and EEI layers for advanced positive electrodes. Recent advances in in situ characterization of well-defined electrode surfaces can provide mechanistic insights and strategies to tailor EEI layer composition and properties. PMID:26510477

  14. First Principles Study of Electrochemical and Chemical Stability of the Solid Electrolyte-Electrode Interfaces in All-Solid-State Li-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Zhu, Yizhou; He, Xingfeng; Mo, Yifei

    All-solid-state Li-ion battery is a promising next-generation energy-storage technology. Using novel ceramic solid electrolyte materials, all-solid-state battery has advantages of intrinsic safety and high energy density compared to current Li-ion batteries based on organic liquid electrolyte. However, the power density achieved in all-solid-state battery is still unsatisfactory. The high interfacial resistance at electrode-electrolyte interface is one of the major limiting factors. Here we demonstrated a computational approach based on first principles calculation to systematically investigate the chemical and electrochemical stability of solid electrolyte materials, and provide insightful understanding of the degradation and passivation mechanisms at the interface. Our calculation revealed that the intrinsic stability of solid electrolyte materials and solid electrolyte-electrode interfaces is limited and the formation of interphase layers are thermodynamically favorable. Our study demonstrated a computational scheme to evaluate the electrochemical and chemical stability of the solid interfaces. Our newly gained understanding provided principles for developing solid electrolyte materials with enhanced stability and for engineering interfaces in all-solid-state Li-ion batteries. This work was supported by Office of Energy Efficiency and Renewable Energy (DE-EE0006860).

  15. New materials for Li-ion batteries: synthesis and spectroscopic characterization of Li2(FeMnCo)SiO4 cathode materials.

    PubMed

    Ferrari, Stefania; Mozzati, Maria Cristina; Lantieri, Marco; Spina, Gabriele; Capsoni, Doretta; Bini, Marcella

    2016-01-01

    Improving cathode materials is mandatory for next-generation Li-ion batteries. Exploring polyanion compounds with high theoretical capacity such as the lithium metal orthosilicates, Li2MSiO4 is of great importance. In particular, mixed silicates represent an advancement with practical applications. Here we present results on a rapid solid state synthesis of mixed Li2(FeMnCo)SiO4 samples in a wide compositional range. The solid solution in the P21/n space group was found to be stable for high iron concentration or for a cobalt content up to about 0.3 atom per formula unit. Other compositions led to a mixture of polymorphs, namely Pmn21 and Pbn21. All the samples contained a variable amount of Fe(3+) ions that was quantified by Mössbauer spectroscopy and confirmed by the TN values of the paramagnetic to antiferromagnetic transition. Preliminary characterization by cyclic voltammetry revealed the effect of Fe(3+) on the electrochemical response. Further work is required to determine the impact of these electrode materials on lithium batteries. PMID:27293181

  16. New materials for Li-ion batteries: synthesis and spectroscopic characterization of Li2(FeMnCo)SiO4 cathode materials

    PubMed Central

    Ferrari, Stefania; Mozzati, Maria Cristina; Lantieri, Marco; Spina, Gabriele; Capsoni, Doretta; Bini, Marcella

    2016-01-01

    Improving cathode materials is mandatory for next-generation Li-ion batteries. Exploring polyanion compounds with high theoretical capacity such as the lithium metal orthosilicates, Li2MSiO4 is of great importance. In particular, mixed silicates represent an advancement with practical applications. Here we present results on a rapid solid state synthesis of mixed Li2(FeMnCo)SiO4 samples in a wide compositional range. The solid solution in the P21/n space group was found to be stable for high iron concentration or for a cobalt content up to about 0.3 atom per formula unit. Other compositions led to a mixture of polymorphs, namely Pmn21 and Pbn21. All the samples contained a variable amount of Fe3+ ions that was quantified by Mössbauer spectroscopy and confirmed by the TN values of the paramagnetic to antiferromagnetic transition. Preliminary characterization by cyclic voltammetry revealed the effect of Fe3+ on the electrochemical response. Further work is required to determine the impact of these electrode materials on lithium batteries. PMID:27293181

  17. New materials for Li-ion batteries: synthesis and spectroscopic characterization of Li2(FeMnCo)SiO4 cathode materials

    NASA Astrophysics Data System (ADS)

    Ferrari, Stefania; Mozzati, Maria Cristina; Lantieri, Marco; Spina, Gabriele; Capsoni, Doretta; Bini, Marcella

    2016-06-01

    Improving cathode materials is mandatory for next-generation Li-ion batteries. Exploring polyanion compounds with high theoretical capacity such as the lithium metal orthosilicates, Li2MSiO4 is of great importance. In particular, mixed silicates represent an advancement with practical applications. Here we present results on a rapid solid state synthesis of mixed Li2(FeMnCo)SiO4 samples in a wide compositional range. The solid solution in the P21/n space group was found to be stable for high iron concentration or for a cobalt content up to about 0.3 atom per formula unit. Other compositions led to a mixture of polymorphs, namely Pmn21 and Pbn21. All the samples contained a variable amount of Fe3+ ions that was quantified by Mössbauer spectroscopy and confirmed by the TN values of the paramagnetic to antiferromagnetic transition. Preliminary characterization by cyclic voltammetry revealed the effect of Fe3+ on the electrochemical response. Further work is required to determine the impact of these electrode materials on lithium batteries.

  18. Hierarchical Assemblies of Carbon Nanotubes for Ultraflexible Li-Ion Batteries.

    PubMed

    Ahmad, Shahab; Copic, Davor; George, Chandramohan; De Volder, Michael

    2016-08-01

    The flexible batteries that are needed to power flexible circuits and displays remain challenging, despite considerable progress in the fabrication of such devices. Here, it is shown that flexible batteries can be fabricated using arrays of carbon nanotube microstructures, which decouple stress from the energy-storage material. It is found that this battery architecture imparts exceptional flexibility (radius ≈ 300 μm), high rate (20 A g(-1) ), and excellent cycling stability.

  19. Hierarchical Assemblies of Carbon Nanotubes for Ultraflexible Li-Ion Batteries.

    PubMed

    Ahmad, Shahab; Copic, Davor; George, Chandramohan; De Volder, Michael

    2016-08-01

    The flexible batteries that are needed to power flexible circuits and displays remain challenging, despite considerable progress in the fabrication of such devices. Here, it is shown that flexible batteries can be fabricated using arrays of carbon nanotube microstructures, which decouple stress from the energy-storage material. It is found that this battery architecture imparts exceptional flexibility (radius ≈ 300 μm), high rate (20 A g(-1) ), and excellent cycling stability. PMID:27184630

  20. Characterization of commercial Li-ion batteries using electrochemical-calorimetric measurements

    NASA Astrophysics Data System (ADS)

    Al Hallaj, S.; Prakash, J.; Selman, J. R.

    Commercial Li-ion cells of Type 18650 dimensions and prismatic designs from different manufacturers have been tested to evaluate their performance and to study their thermal behavior using electrochemical-calorimetric methods. All cells tested in this work showed good performance and cyclability under normal operating conditions. The measured heat effect for the cells were exothermic during discharge and partially endothermic during charge. Cell impedance was measured for selected cells and showed some dependence on the state of charge or depth of discharge, with significant increase at the end of discharge due to concentration polarization. The entropy coefficient (d Eeq/d T) for the A&T (18650) and Panasonic (CGR 18650) cells were measured using potentiometric methods at different depths of discharge (DOD). The measured values for both cells showed some dependence on the DOD with some perturbation near 4.0 V, where the measured d Eeq/d T for Panasonic cell had an unexpected positive value. This was found to be consistent with the measured endothermic heat effect during discharge for the Panasonic cell near Eeq=4.0 V. This may be related to a phase change in the LiCoO 2 cathode material, as reported in the literature, and to structural transformation in the graphite used as anode material, in the Panasonic cell.

  1. Influence of Binder Adhesion Ability on the Performance of Silicon/Carbon Composite as Li-Ion Battery Anode

    NASA Astrophysics Data System (ADS)

    Kierzek, Krzysztof

    2016-06-01

    A series of anodes for Li-ion battery was prepared by conventional homogenization of active material, percolator, and Na-CMC or several kinds of PVDF as a binder. Si/C composite was synthesized by embedding micro-sized silicon and synthetic battery-grade graphite in a pitch-derived carbon matrix and taken as active material. Adhesion strength of anodic film to a current collector was determined by peeling test. Thermal relaxation (120-180 °C) after calendering of PVDF-based anode slightly increases the adhesion of the film to the collector. The highest peeling strength was recorded for ultrahigh molecular weight PVDF (~0.05 N cm-1) but without advantage for cycling stability of the cell. An initial reversible capacity of 512 mAh g-1, with average capacity decay only of 0.5% per cycle, was achieved for CMC-based anode of moderate peeling strength (~0.035 N cm-1). Such good performance was attributed to a specific Si/C composite structure as well as profitable physicochemical properties of the binder.

  2. A techno-economic analysis and optimization of Li-ion batteries for light-duty passenger vehicle electrification

    NASA Astrophysics Data System (ADS)

    Sakti, Apurba; Michalek, Jeremy J.; Fuchs, Erica R. H.; Whitacre, Jay F.

    2015-01-01

    We conduct a techno-economic analysis of Li-ion NMC-G prismatic pouch battery and pack designs for electric vehicle applications. We develop models of power capability and manufacturing operations to identify the minimum cost cell and pack designs for a variety of plug-in hybrid electric vehicle (PHEV) and battery electric vehicle (BEV) requirements. We find that economies of scale in battery manufacturing are reached quickly at a production volume of ∼200-300 MWh annually. Increased volume does little to reduce unit costs, except potentially indirectly through factors such as experience, learning, and innovation. We also find that vehicle applications with larger energy requirements are able to utilize cheaper cells due in part to the use of thicker electrodes. The effect on cost can be substantial. In our base case, we estimate pack-level battery production costs of ∼545 kWh-1 for a PHEV with a 10 mile (16 km) all-electric range (PHEV10) and ∼230 kWh-1 for a BEV with a 200 mile (320 km) all-electric range (BEV200). This 58% reduction, from 545 kWh-1 to 230 kWh-1, is a larger effect than the uncertainty represented by our optimistic and pessimistic scenarios. Electrodes thicker than about 100 or 125 microns are not currently used in practice due to manufacturing and durability concerns, but relaxing this constraint could further lower the cost of larger capacity BEV200 packs by up to an additional 8%.

  3. Performance Testing of Yardney Li-Ion Cells and Batteries in Support of JPL's 2009 Mars Science Laboratory Mission

    NASA Technical Reports Server (NTRS)

    Smart, M.C.; Ratnakumar, B.V.; Whitcanack, L. D.; Dewell, E. A.; Jones, L. E.; Salvo, C. G.; Puglia, F. J.; Cohen, S.; Gitzendanner, R.

    2008-01-01

    In 2009, JPL is planning to launch an unmanned rover mission to the planet Mars. This mission, referred to as the Mars Science Laboratory (MSL), will involve the use of a rover that is much larger than the previously developed Spirit and Opportunity Rovers for the 2003 Mars Exploration Rover (MER) mission, that are currently still in operation on the surface of the planet after more than three years. Part of the reason that the MER rovers have operated so successfully, far exceeding the required mission duration of 90 sols, is that they possess robust Li-ion batteries, manufactured by Yardney Technical Products, which have demonstrated excellent life characteristics. Given the excellent performance characteristics displayed, similar lithium-ion batteries have been projected to successfully meet the mission requirements of the up-coming MSL mission. Although comparable in many facets, such as being required to operate over a wide temperature range (-20 to 40 C), the MSL mission has more demanding performance requirements compared to the MER mission, including much longer mission duration (approx. 687 sols vs. 90 sols), higher power capability, and the need to withstand higher temperature excursions. In addition, due to the larger rover size, the MSL mission necessitates the use of a much larger battery to meet the energy, life, and power requirements. In order to determine the viability of meeting these requirements, a number of performance verification tests were performed on 10 Ah Yardney lithium-ion cells (MER design) under MSL-relevant conditions, including mission surface operation simulation testing. In addition, the performance of on-going ground life testing of 10 Ah MER cells and 8-cell batteries will be discussed in the context of capacity loss and impedance growth predictions.

  4. Model-Based Design and Integration of Large Li-ion Battery Systems

    SciTech Connect

    Smith, Kandler; Kim, Gi-Heon; Santhanagopalan, Shriram; Shi, Ying; Pesaran, Ahmad; Mukherjee, Partha; Barai, Pallab; Maute, Kurt; Behrou, Reza; Patil, Chinmaya

    2015-11-17

    This presentation introduces physics-based models of batteries and software toolsets, including those developed by the U.S. Department of Energy's (DOE) Computer-Aided Engineering for Electric-Drive Vehicle Batteries Program (CAEBAT). The presentation highlights achievements and gaps in model-based tools for materials-to-systems design, lifetime prediction and control.

  5. Classification of discarded NiMH and Li-Ion batteries and reuse of the cells still in operational conditions in prototypes

    NASA Astrophysics Data System (ADS)

    Schneider, E. L.; Oliveira, C. T.; Brito, R. M.; Malfatti, C. F.

    2014-09-01

    The growing production of high-tech devices is strongly associated to a great waste of natural resources and to environmental contamination caused either by the production process of such devices as the quick disposal of them. Cell phones have stood out from the most commercialized electronic devices, which have increased the demand for rechargeable batteries which are afterward discarded before the end of its useful life. The main objective of this paper is to improve a methodology for classify the amount of NiMH and Li-Ion batteries discarded still in operating condition through concepts given to the cells. Tests with 3 NiMH and 3 Li-Ion different battery models were done. This paper also aimed to promote the efficient use of batteries cells through their reuse in academic activities related to the manufacturing of prototypes. It presents the construction of an illuminator and of a portable power supply. The results obtained showed that approximately 40% of NiMH cells and 45% of Li-Ion cells assessed were in operational condition, with charge capacity between 62% and 90%, when compared to a new cell. Such results warn about the waste of natural resources and the proposal to test the same before the final disposal.

  6. Etched Colloidal LiFePO4 Nanoplatelets toward High-Rate Capable Li-Ion Battery Electrodes

    PubMed Central

    2014-01-01

    LiFePO4 has been intensively investigated as a cathode material in Li-ion batteries, as it can in principle enable the development of high power electrodes. LiFePO4, on the other hand, is inherently “plagued” by poor electronic and ionic conductivity. While the problems with low electron conductivity are partially solved by carbon coating and further by doping or by downsizing the active particles to nanoscale dimensions, poor ionic conductivity is still an issue. To develop colloidally synthesized LiFePO4 nanocrystals (NCs) optimized for high rate applications, we propose here a surface treatment of the NCs. The particles as delivered from the synthesis have a surface passivated with long chain organic surfactants, and therefore can be dispersed only in aprotic solvents such as chloroform or toluene. Glucose that is commonly used as carbon source for carbon-coating procedure is not soluble in these solvents, but it can be dissolved in water. In order to make the NCs hydrophilic, we treated them with lithium hexafluorophosphate (LiPF6), which removes the surfactant ligand shell while preserving the structural and morphological properties of the NCs. Only a roughening of the edges of NCs was observed due to a partial etching of their surface. Electrodes prepared from these platelet NCs (after carbon coating) delivered a capacity of ∼155 mAh/g, ∼135 mAh/g, and ∼125 mAh/g, at 1 C, 5 C, and 10 C, respectively, with significant capacity retention and remarkable rate capability. For example, at 61 C (10.3 A/g), a capacity of ∼70 mAh/g was obtained, and at 122 C (20.7 A/g), the capacity was ∼30 mAh/g. The rate capability and the ease of scalability in the preparation of these surface-treated nanoplatelets make them highly suitable as electrodes in Li-ion batteries. PMID:25372361

  7. Economic and environmental characterization of an evolving Li-ion battery waste stream.

    PubMed

    Wang, Xue; Gaustad, Gabrielle; Babbitt, Callie W; Bailey, Chelsea; Ganter, Matthew J; Landi, Brian J

    2014-03-15

    While disposal bans of lithium-ion batteries are gaining in popularity, the infrastructure required to recycle these batteries has not yet fully emerged and the economic motivation for this type of recycling system has not yet been quantified comprehensively. This study combines economic modeling and fundamental material characterization methods to quantify economic trade-offs for lithium ion batteries at their end-of-life. Results show that as chemistries transition from lithium-cobalt based cathodes to less costly chemistries, battery recovery value decreases along with the initial value of the raw materials used. For example, manganese-spinel and iron phosphate cathode batteries have potential material values 73% and 79% less than cobalt cathode batteries, respectively. A majority of the potentially recoverable value resides in the base metals contained in the cathode; this increases disassembly cost and time as this is the last portion of the battery taken apart. A great deal of compositional variability exists, even within the same cathode chemistry, due to differences between manufacturers with coefficient of variation up to 37% for some base metals. Cathode changes over time will result in a heavily co-mingled waste stream, further complicating waste management and recycling processes. These results aim to inform disposal, collection, and take-back policies being proposed currently that affect waste management infrastructure as well as guide future deployment of novel recycling techniques.

  8. A Bayesian approach for Li-Ion battery capacity fade modeling and cycles to failure prognostics

    NASA Astrophysics Data System (ADS)

    Guo, Jian; Li, Zhaojun; Pecht, Michael

    2015-05-01

    Battery capacity fade occurs when battery capacity, measured in Ampere-hours, degrades over the number of charge/discharge cycles. This is a comprehensive result of various factors, including irreversible electrochemical reactions that form a solid electrolyte interphase (SEI) in the negative electrode and oxidative reactions of the positive electrode. The degradation mechanism is further complicated by operational and environmental factors such as discharge rate, usage and storage temperature, as well as cell-level and battery pack-level variations carried over from the manufacturing processes. This research investigates a novel Bayesian method to model battery capacity fade over repetitive cycles by considering both within-battery and between-battery variations. Physics-based covariates are integrated with functional forms for modeling the capacity fade. A systematic approach based on covariate identification, model selection, and a strategy for prognostics data selection is presented. The proposed Bayesian method is capable of quantifying the uncertainties in predicting battery capacity/power fade and end-of-life cycles to failure distribution under various operating conditions.

  9. Efficient exfoliation N-doped graphene from N-containing bamboo-like carbon nanotubes for anode materials of Li-ion battery and Na-ion battery

    NASA Astrophysics Data System (ADS)

    Feng, Jian-Min; Dong, Lei; Han, Yan; Li, Xi-Fei; Li, De-Jun

    2015-08-01

    Nanosize N-doped graphene is prepared from N-containing carbon nanotubes (CNTs) by chemical exfoliation. The CNTs adopted for graphene are characterized by a discontinuous wall that consists of nanosize graphite layers, exhibiting a bamboo-like appearance. Take advantage of this characterization, the most time-consuming process of chemical oxidation that involves intercalation in graphene from CNT has been markedly reduced. The reduction in processing time is attributed to the diffusion distance of chemical oxidation intercalation into nanosize graphite composed of a bamboo-like carbon nanotube (BCNT) wall being far less than that of conventional chemical exfoliation into microsize graphite. The as-prepared nanosize N-doped graphene from BCNTs has shown an excellent electrochemical performance for Li-ion battery and Na-ion battery anode materials.

  10. Probing the failure mechanism of nanoscale LiFePO₄ for Li-ion batteries

    SciTech Connect

    Gu, Meng; Shi, Wei; Zheng, Jianming; Yan, Pengfei; Zhang, Ji-guang; Wang, Chongmin

    2015-05-18

    LiFePO4 is a high power rate cathode material for lithium ion battery and shows remarkable capacity retention, featuring a 91% capacity retention after 3300 cycles. In this work, we use high-resolution transmission electron microscopy (HRTEM), energy dispersive x-ray spectroscopy (EDS), and electron energy loss spectroscopy (EELS) to study the gradual capacity fading mechanism of LiFePO4 materials. We found that upon prolonged electrochemical cycling of the battery, the LiFePO4 cathode shows surface amorphization and loss of oxygen species, which directly contribute to the gradual capacity fading of the battery. The finding is of great importance for the design and improvement of new LiFePO4 cathode for high-energy and high-power rechargeable battery for electric transportation.

  11. Thermal Runaway Severity Reduction Assessment and Implementation: On Li-Ion Batteries

    NASA Technical Reports Server (NTRS)

    Darcy, Eric

    2015-01-01

    Preventing cell-cell thermal runaway propagation and flames/sparks from exiting battery enclosure is possible with proper thermal & electrical design and cell thermal runaway ejecta/effluent management and can be had with minimal mass/volume penalty.

  12. Li-Ion Battery with LiFePO4 Cathode and Li4Ti5O12 Anode for Stationary Energy Storage

    SciTech Connect

    Wang, Wei; Choi, Daiwon; Yang, Zhenguo

    2013-01-01

    i-ion batteries based on commercially available LiFePO4 cathode and Li4Ti5O12 anode were investigated for potential stationary energy storage applications. The full cell that operated at flat 1.85V demonstrated stable cycling for 200 cycles followed by a rapid fade. A significant improvement in cycling stability was achieved via Ketjen black coating of the cathode. A Li-ion full cell with Ketjen black modified LiFePO4 cathode and an unmodified Li4Ti5O12 anode exhibited negligible fade after more than 1200 cycles with a capacity of ~130mAh/g. The improved stability, along with its cost-effectiveness, environmentally benignity and safety, make the LiFePO4/ Li4Ti5O12 Li-ion battery a promising option of storing renewable energy.

  13. A novel phenomenological multi-physics model of Li-ion battery cells

    NASA Astrophysics Data System (ADS)

    Oh, Ki-Yong; Samad, Nassim A.; Kim, Youngki; Siegel, Jason B.; Stefanopoulou, Anna G.; Epureanu, Bogdan I.

    2016-09-01

    A novel phenomenological multi-physics model of Lithium-ion battery cells is developed for control and state estimation purposes. The model can capture electrical, thermal, and mechanical behaviors of battery cells under constrained conditions, e.g., battery pack conditions. Specifically, the proposed model predicts the core and surface temperatures and reaction force induced from the volume change of battery cells because of electrochemically- and thermally-induced swelling. Moreover, the model incorporates the influences of changes in preload and ambient temperature on the force considering severe environmental conditions electrified vehicles face. Intensive experimental validation demonstrates that the proposed multi-physics model accurately predicts the surface temperature and reaction force for a wide operational range of preload and ambient temperature. This high fidelity model can be useful for more accurate and robust state of charge estimation considering the complex dynamic behaviors of the battery cell. Furthermore, the inherent simplicity of the mechanical measurements offers distinct advantages to improve the existing power and thermal management strategies for battery management.

  14. High-rate performance of Ti(3+) self-doped TiO2 prepared by imidazole reduction for Li-ion batteries.

    PubMed

    Seok, Dong-Il; Wu, Mihye; Shim, Kwang Bo; Kang, Yongku; Jung, Ha-Kyun

    2016-10-28

    Ti(3+) self-doped TiO2 nanoparticles were prepared via a simple imidazole reduction process and developed as an anode material for Li-ion batteries. Introducing the Ti(3+)-state on TiO2 nanoparticles resulted in superior rate performances that the capacity retention of 88% at 50 C. The enhanced electrochemical performances were attributed to the resulting lower internal resistance and improved electronic conductivity, based on galvanostatic intermittent titration technique and electrochemical impedance spectroscopy analyses.

  15. High-rate performance of Ti(3+) self-doped TiO2 prepared by imidazole reduction for Li-ion batteries.

    PubMed

    Seok, Dong-Il; Wu, Mihye; Shim, Kwang Bo; Kang, Yongku; Jung, Ha-Kyun

    2016-10-28

    Ti(3+) self-doped TiO2 nanoparticles were prepared via a simple imidazole reduction process and developed as an anode material for Li-ion batteries. Introducing the Ti(3+)-state on TiO2 nanoparticles resulted in superior rate performances that the capacity retention of 88% at 50 C. The enhanced electrochemical performances were attributed to the resulting lower internal resistance and improved electronic conductivity, based on galvanostatic intermittent titration technique and electrochemical impedance spectroscopy analyses. PMID:27651352

  16. High-rate performance of Ti3+ self-doped TiO2 prepared by imidazole reduction for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Seok, Dong-il; Wu, Mihye; Shim, Kwang Bo; Kang, Yongku; Jung, Ha-Kyun

    2016-10-01

    Ti3+ self-doped TiO2 nanoparticles were prepared via a simple imidazole reduction process and developed as an anode material for Li-ion batteries. Introducing the Ti3+-state on TiO2 nanoparticles resulted in superior rate performances that the capacity retention of 88% at 50 C. The enhanced electrochemical performances were attributed to the resulting lower internal resistance and improved electronic conductivity, based on galvanostatic intermittent titration technique and electrochemical impedance spectroscopy analyses.

  17. Activation analysis study on Li-ion batteries for nuclear forensic applications

    NASA Astrophysics Data System (ADS)

    Johnson, Erik B.; Whitney, Chad; Holbert, Keith E.; Zhang, Taipeng; Stannard, Tyler; Christie, Anthony; Harper, Peter; Anderson, Blake; Christian, James F.

    2015-06-01

    The nuclear materials environment has been increasing significantly in complexity over the past couple of decades. The prevention of attacks from nuclear weapons is becoming more difficult, and nuclear forensics is a deterrent by providing detailed information on any type of nuclear event for proper attribution. One component of the nuclear forensic analysis is a measurement of the neutron spectrum. As an example, the neutron component provides information on the composition of the weapons, whether boosting is involved or the mechanisms used in creating a supercritical state. As 6Li has a large cross-section for thermal neutrons, the lithium battery is a primary candidate for assessing the neutron spectrum after detonation. The absorption process for 6Li yields tritium, which can be measured at a later point after the nuclear event, as long as the battery can be processed in a manner to successfully extract the tritium content. In addition, measuring the activated constituents after exposure provides a means to reconstruct the incident neutron spectrum. The battery consists of a spiral or folded layers of material that have unique, energy dependent interactions associated with the incident neutron flux. A detailed analysis on the batteries included a pre-irradiated mass spectrometry analysis to be used as input for neutron spectrum reconstruction. A set of batteries were exposed to a hard neutron spectrum delivered by the University of Massachusetts, Lowell research reactor Fast Neutron Irradiator (FNI). The gamma spectra were measured from the batteries within a few days and within a week after the exposure to obtain sufficient data on the activated materials in the batteries. The activity was calculated for a number of select isotopes, indicating the number of associated neutron interactions. The results from tritium extraction are marginal. A measurable increase in detected particles (gammas and betas) below 50 keV not self-attenuated by the battery was observed

  18. Identifying the redox activity of cation-disordered Li-Fe-V-Ti oxide cathodes for Li-ion batteries.

    PubMed

    Chen, Ruiyong; Witte, Ralf; Heinzmann, Ralf; Ren, Shuhua; Mangold, Stefan; Hahn, Horst; Hempelmann, Rolf; Ehrenberg, Helmut; Indris, Sylvio

    2016-03-21

    Cation-disordered oxides have recently shown promising properties on the way to explore high-performance intercalation cathode materials for rechargeable Li-ion batteries. Here, stoichiometric cation-disordered Li2FeVyTi1-yO4 (y = 0, 0.2, 0.5) nanoparticles are studied. The substitution of V for Ti in Li2FeVyTi1-yO4 increases the content of active transition metals (Fe and V) and accordingly the amount of Li(+) (about (1 + y)Li(+) capacity per formula unit) that can be reversibly intercalated. It is found that Fe(3+)/Fe(2+) and V(4+)/V(3+) redox couples contribute to the overall capacity performance, whereas Ti(4+) remains mainly inert. There is no evidence for the presence of Fe(4+) species after charging to 4.8 V, as confirmed from the ex situ(57)Fe Mössbauer spectroscopy and the Fe K-edge absorption spectra. The redox couple reactions for iron and vanadium are examined by performing in situ synchrotron X-ray absorption spectroscopy. During charging/discharging, the spectral evolution of the K-edges for Fe and V confirms the reversible Fe(3+)/Fe(2+) and V(4+)/V(3+) redox reactions during cycling between 1.5 and 4.8 V.

  19. In situ scanning tunneling microscopy studies of the SEI formation on graphite electrodes for Li+-ion batteries

    NASA Astrophysics Data System (ADS)

    Seidl, Lukas; Martens, Slađana; Ma, Jiwei; Stimming, Ulrich; Schneider, Oliver

    2016-07-01

    The SEI-formation on graphitic electrodes operated as an Li+-ion battery anode in a standard 1 M LiPF6 EC/DMC (1 : 1) electrolyte has been studied in situ by EC-STM. Two different modes of in situ study were applied, one, which allowed to follow topographic and crystallographic changes (solvent cointercalation, graphite exfoliation, SEI precipitation on the HOPG basal plane) of the graphite electrode during SEI-formation, and the second, which gave an insight into the SEI precipitation on the HOPG basal plane in real time. From the in situ EC-STM studies, not only conclusions about the SEI-topography could be drawn, but also about the formation mechanism and the chemical composition, which strongly depend on the electrode potential. It was shown that above 1.0 V vs. Li/Li+ the SEI-formation is still reversible, since the molecular structure of the solvent molecules remains intact during an initial reduction step. During further reduction, the molecular structures of the solvents are destructed, which causes the irreversible charge loss. The STM studies were completed by electrochemical methods, like cyclic voltammetry, the potentiostatic intermittent titration technique and charge/discharge tests of MCMB electrodes.

  20. Poly L-lysine (PLL)-mediated porous hematite clusters as anode materials for improved Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Kim, Kun-Woo; Lee, Sang-Wha

    2015-09-01

    Porous hematite clusters were prepared as anode materials for improved Li-ion batteries. First, poly-L-lysine (PLL)-linked Fe3O4 was facilely prepared via cross-linking between the positive amine groups of PLL and carboxylate-bound Fe3O4. The subsequent calcination transformed the PLL-linked Fe3O4 into porous hematite clusters (Fe2O3@PLL) consisting of spherical α-Fe2O3 particles. Compared with standard Fe2O3, Fe3O4@PLL exhibited improved electrochemical performance as anode materials. The discharge capacity of Fe2O3@PLL was retained at 814.7 mAh g-1 after 30 cycles, which is equivalent to 80.4% of the second discharge capacity, whereas standard Fe2O3 exhibited a retention capacity of 352.3 mAh g-1. The improved electrochemical performance of Fe2O3@PLL was mainly attributed to the porous hematite clusters with mesoporosity (20-40 nm), which was beneficial for facilitating ion transport, suggesting a useful guideline for the design of porous architectures with higher retention capacity. [Figure not available: see fulltext.

  1. Facile preparation of core@shell and concentration-gradient spinel particles for Li-ion battery cathode materials

    NASA Astrophysics Data System (ADS)

    Kozawa, Takahiro; Naito, Makio

    2015-02-01

    Core@shell and concentration-gradient particles have attracted much attention as improved cathodes for Li-ion batteries (LIBs). However, most of their preparation routes have employed a precisely-controlled co-precipitation method. Here, we report a facile preparation route of core@shell and concentration-gradient spinel particles by dry powder processing. The core@shell particles composed of the MnO2 core and the Li(Ni,Mn)2O4 spinel shell are prepared by mechanical treatment using an attrition-type mill, whereas the concentration-gradient spinel particles with an average composition of LiNi0.32Mn1.68O4 are produced by calcination of their core@shell particles as a precursor. The concentration-gradient LiNi0.32Mn1.68O4 spinel cathode exhibits the high discharge capacity of 135.3 mA h g-1, the wide-range plateau at a high voltage of 4.7 V and the cyclability with a capacity retention of 99.4% after 20 cycles. Thus, the facile preparation route of the core@shell and concentration-gradient particles may provide a new opportunity for the discovery and investigation of functional materials as well as for the cathode materials for LIBs.

  2. Design and use of multisine signals for Li-ion battery equivalent circuit modelling. Part 1: Signal design

    NASA Astrophysics Data System (ADS)

    Widanage, W. D.; Barai, A.; Chouchelamane, G. H.; Uddin, K.; McGordon, A.; Marco, J.; Jennings, P.

    2016-08-01

    The Pulse Power Current (PPC) profile is often the signal of choice for obtaining the parameters of a Lithium-ion (Li-ion) battery Equivalent Circuit Model (ECM). Subsequently, a drive-cycle current profile is used as a validation signal. Such a profile, in contrast to a PPC, is more dynamic in both the amplitude and frequency bandwidth. Modelling errors can occur when using PPC data for parametrisation since the model is optimised over a narrower bandwidth than the validation profile. A signal more representative of a drive-cycle, while maintaining a degree of generality, is needed to reduce such modelling errors. In Part 1 of this 2-part paper a signal design technique defined as a pulse-multisine is presented. This superimposes a signal known as a multisine to a discharge, rest and charge base signal to achieve a profile more dynamic in amplitude and frequency bandwidth, and thus more similar to a drive-cycle. The signal improves modelling accuracy and reduces the experimentation time, per state-of-charge (SoC) and temperature, to several minutes compared to several hours for an PPC experiment.

  3. Electrochemical properties of Sn-decorated SnO nanobranches as an anode of Li-ion battery

    NASA Astrophysics Data System (ADS)

    Shin, Jeong Ho; Song, Jae Yong

    2016-05-01

    Sn-based oxide materials as an anode of lithium ion batteries (LIBs) suffer from the unavoidable mechanical stress originated from huge volume changes during lithiation/delithiation reactions. We synthesized the hierarchical SnO nanobranches (NBs) decorated with Sn nanoparticles on Cu current collector using a vapor transport method. The Sn-decorated SnO NBs as an anode of LIB showed good electrochemical performance with high reversible capacity retention of as high as 502 mAh/g and rate capability of 455 mAh/g at a current density of 2.0 A/g after 50 cycles. Through the morphological and crystal structure analyses after the charge and discharge processes, it was found that the morphology of Sn-decorated SnO NBs was transformed to nanoporous layered-structure, composed of Sn and lithium oxide, during the repeated lithiation/delithiation reactions. The free-volume of Sn-decorated SnO NBs and nanoporous layered-structure effectively accommodate the huge volume changes and enhance the electrochemical cyclability by facilitating the diffusion of Li-ions.

  4. Transport Properties of LiTFSI-Acetamide Room Temperature Molten Salt Electrolytes Applied in an Li-Ion Battery

    NASA Astrophysics Data System (ADS)

    Yang, Chao-Chen; Hsu, Hsin-Yi; Hsu, Chen-Ruei

    2007-11-01

    In the present work some transport properties of the binary room temperature molten salt (RTMS) lithium bis(trifluoromethane sulfone)imide (LiTFSI)-acetamide [LiN(SO2CF3)2-CH3CONH2], applied in an Li-ion battery, have been investigated. The phase diagram was determined by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The result reveals that the binary RTMS has an eutectic point at 201 K and the 30 mol% LiTFSI composition. The electric conductivity was measured using a direct current computerized method. The result shows that the conductivities of the melts increase with increasing temperature and acetamide content. The densities of all melts decrease with increasing temperature and acetamide content. The equivalent conductivities were fitted by the Arrhenius equation, where the activation energies were 18.15, 18.52, 20.35, 25.08 kJ/mol for 10, 20, 30, 40 mol% LiTFSI, respectively. Besides the relationships between conductivity, density composition and temperature, of the ion interaction is discussed.

  5. Li2CuVO4: A high capacity positive electrode material for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Ben Yahia, Hamdi; Shikano, Masahiro; Yamaguchi, Yoichi

    2016-07-01

    The new compound Li2CuVO4 was synthesized by a solid state reaction route, and its crystal structure was determined from single crystal X-ray diffraction data. Li2CuVO4 was characterized by galvanometric cycling, cycle voltammetry, and electrochemical impedance spectroscopy. The structure of Li2CuVO4 is isotypic to Pmn21-Li3VO4. It can be described as a disordered wurtzite structure with rows of Li1/Cu1 atoms alternating with rows of (Li2/Cu2)-V-(Li2/Cu2) atoms along [100]. All cations are tetrahedrally coordinated. The lithium and copper atoms are statistically disordered over two crystallographic sites. The electrochemical cycling between 2.0 and 4.7 V indicates that almost two lithium atoms could be extracted and re-intercalated. This delivers a maximum discharge capacity of 257 mA h g-1 at a C/50 rate (theoretical capacity = 139 mA h g-1 for one lithium). Li2CuVO4 shows also high rate capability with a capacity of 175 mA h g-1 at 1C rate. This demonstrates that Cu-based compounds can be very interesting as electrodes for Li-ion batteries if Cu-dissolution is avoided.

  6. Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes

    PubMed Central

    Liu, Nian; Huo, Kaifu; McDowell, Matthew T.; Zhao, Jie; Cui, Yi

    2013-01-01

    The recovery of useful materials from earth-abundant substances is of strategic importance for industrial processes. Despite the fact that Si is the second most abundant element in the Earth's crust, processes to form Si nanomaterials is usually complex, costly and energy-intensive. Here we show that pure Si nanoparticles (SiNPs) can be derived directly from rice husks (RHs), an abundant agricultural byproduct produced at a rate of 1.2 × 108 tons/year, with a conversion yield as high as 5% by mass. And owing to their small size (10–40 nm) and porous nature, these recovered SiNPs exhibits high performance as Li-ion battery anodes, with high reversible capacity (2,790 mA h g−1, seven times greater than graphite anodes) and long cycle life (86% capacity retention over 300 cycles). Using RHs as the raw material source, overall energy-efficient, green, and large scale synthesis of low-cost and functional Si nanomaterials is possible. PMID:23715238

  7. Nanoscale Silicon as Anode for Li-ion Batteries: The Fundamentals, Promise, and Challenges

    SciTech Connect

    Gu, Meng; He, Yang; Zheng, Jianming; Wang, Chong M.

    2015-09-24

    Silicon (Si), associated with its natural abundance, low discharge voltage vs. Li/Li+, and extremely high theoretical discharge capacity (~ 4200 mAh g-1,), has been extensively explored as anode for lithium ion battery. One of the key challenges for using Si as anode is the large volume change upon lithiation and delithiation, which causes a fast capacity fading. Over the last few years, dramatic progress has been made for addressing this issue. In this paper, we summarize the progress towards tailoring of Si as anode for lithium ion battery. The paper is organized such that it covers the fundamentals, the promise offered based on nanoscale designing, and the remaining challenges that need to be attacked to allow using of Si based materials as anode for battery.

  8. Multi-physics Modeling for Improving Li-Ion Battery Safety; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Pesaran, A.; Kim, G.; Santhanagopalan, S.; Yang, C.

    2015-04-21

    Battery performance, cost, and safety must be further improved for larger market share of HEVs/PEVs and penetration into the grid. Significant investment is being made to develop new materials, fine tune existing ones, improve cell and pack designs, and enhance manufacturing processes to increase performance, reduce cost, and make batteries safer. Modeling, simulation, and design tools can play an important role by providing insight on how to address issues, reducing the number of build-test-break prototypes, and accelerating the development cycle of generating products.

  9. Surface structure evolution of cathode materials for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Yingchun, Lyu; Yali, Liu; Lin, Gu

    2016-01-01

    Lithium ion batteries are important electrochemical energy storage devices for consumer electronics and the most promising candidates for electrical/hybrid vehicles. The surface chemistry influences the performance of the batteries significantly. In this short review, the evolution of the surface structure of the cathode materials at different states of the pristine, storage and electrochemical reactions are summarized. The main methods for the surface modification are also introduced. Project supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB07030200) and the National Basic Research Program of China (Grant Nos. 2014CB921002 and 2012CB921702).

  10. Charactrization of a Li-ion battery based stand-alone a-Si photovoltaic system

    NASA Astrophysics Data System (ADS)

    Hamid Vishkasougheh, Mehdi; Tunaboylu, Bahadir

    2014-11-01

    The number of photovoltaic (PV) system installations is increasing rapidly. As more people learn about this versatile and often cost-effective power option, this trend will accelerate. This document presents a recommended design for a battery based stand-alone photovoltaic system (BSPV). BSPV system has the ability to be applied in different areas, including warning signals, lighting, refrigeration, communication, residential water pumping, remote sensing, and cathodic protection. The presented calculation method gives a proper idea for a system sizing technique. Based on application load, different scenarios are possible for designing a BSPV system. In this study, a battery based stand-alone system was designed. The electricity generation part is three a-Si panels, which are connected in parallel, and for the storage part LFP (lithium iron phosphate) battery was used. The high power LFP battery packs are 40 cells each 8S5P (configured 8 series 5 parallel). Each individual pack weighs 0.5 kg and is 25.6 V. In order to evaluate the efficiency of a-Si panels with respect to the temperature and the solar irradiation, cities of Istanbul, Ankara and Adana in Turkey were selected. Temperature and solar irradiation were gathered from reliable sources and by using translation equations, current and voltage output of panels were calculated. As a result of these calculations, current and energy outputs were computed by considering an average efficient solar irradiation time value per day in Turkey. The calculated power values were inserted to a battery cycler system, and the behavior of high power LFP batteries in a time sequence of 7.2 h was evaluated. The charging and discharging cycles were obtained and their behavior was discussed. According to the results, Istanbul has the lowest number of peak month's energy, it followed by Ankara, and ultimately Adana has the highest number of peak months and energy storage. It was observed during the tests that values up to 4 A was

  11. Can Cell to Cell Thermal Runaway Propagation be Prevented in a Li-ion Battery Module?

    NASA Technical Reports Server (NTRS)

    Jeevarajan, Judith; Lopez, Carlos; Orieukwu, Josephat

    2014-01-01

    Increasing cell spacing decreased adjacent cell damage center dotElectrically connected adjacent cells drained more than physically adjacent cells center dotRadiant barrier prevents propagation when fully installed between BP cells center dotBP cells vent rapidly and expel contents at 100% SOC -Slower vent with flame/smoke at 50% -Thermal runaway event typically occurs at 160 degC center dotLG cells vent but do not expel contents -Thermal runaway event typically occurs at 200 degC center dotSKC LFP modules did not propagate; fuses on negative terminal of cell may provide a benefit in reducing cell to cell damage propagation. New requirement in NASA-Battery Safety Requirements document: JSC 20793 Rev C 5.1.5.1 Requirements - Thermal Runaway Propagation a. For battery designs greater than a 80-Wh energy employing high specific energy cells (greater than 80 watt-hours/kg, for example, lithium-ion chemistries) with catastrophic failure modes, the battery shall be evaluated to ascertain the severity of a worst-case single-cell thermal runaway event and the propensity of the design to demonstrate cell-to-cell propagation in the intended application and environment. NASA has traditionally addressed the threat of thermal runaway incidents in its battery deployments through comprehensive prevention protocols. This prevention-centered approach has included extensive screening for manufacturing defects, as well as robust battery management controls that prevent abuse-induced runaway even in the face of multiple system failures. This focused strategy has made the likelihood of occurrence of such an event highly improbable. b. The evaluation shall include all necessary analysis and test to quantify the severity (consequence) of the event in the intended application and environment as well as to identify design modifications to the battery or the system that could appreciably reduce that severity. In addition to prevention protocols, programs developing battery designs with

  12. High areal capacity, micrometer-scale amorphous Si film anode based on nanostructured Cu foil for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Si, Wenping; Sun, Xiaolei; Liu, Xianghong; Xi, Lixia; Jia, Yandong; Yan, Chenglin; Schmidt, Oliver G.

    2014-12-01

    We report a feasible design to fabricate micrometer-scale Si films deposited on nanostructured Cu foil as high areal capacity anodes for Li-ion batteries with excellent cycling performance. Nanostructured copper oxides are prepared by anodic oxidation of Cu foil in alkaline solution. The resultant copper oxide nanofibers function as matrix for thick Si films (1-2 μm) loading. Metallic Cu nanofibers are obtained by in-situ electrochemical reduction at low potentials, which work as electrical highways for fast electron transport and a reliable mechanical matrix to accommodate volume changes during lithium-silicon alloy/dealloy processes. The engineered thick Si film anode exhibit both high areal capacity (0.48 mAh cm-2 for 1 μm Si film and 0.6 mAh cm-2 for 2 μm Si film after 200 cycles at 0.225 mA cm-2) and excellent rate capability (0.52 mAh cm-2 at 1.05 mA cm-2 for 2 μm Si film). The 2 μm silicon film electrode is able to recover to the initial value of 1 mAh cm-2 when the current rate is set back to 0.15 mA cm-2 even after cycling at high current rates. The reported concept can be a general method for high-loading-film electrodes, which is industrial scalable and compatible with current battery manufacturing processes.

  13. Preparation, structure, and electrochemistry of layered polyanionic hydroxysulfates: LiMSO4OH (M = Fe, Co, Mn) electrodes for Li-ion batteries.

    PubMed

    Subban, Chinmayee V; Ati, Mohamed; Rousse, Gwenaëlle; Abakumov, Artem M; Van Tendeloo, Gustaaf; Janot, Raphaël; Tarascon, Jean-Marie

    2013-03-01

    The Li-ion rechargeable battery, due to its high energy density, has driven remarkable advances in portable electronics. Moving toward more sustainable electrodes could make this technology even more attractive to large-volume applications. We present here a new family of 3d-metal hydroxysulfates of general formula LiMSO4OH (M = Fe, Co, and Mn) among which (i) LiFeSO4OH reversibly releases 0.7 Li(+) at an average potential of 3.6 V vs Li(+)/Li(0), slightly higher than the potential of currently lauded LiFePO4 (3.45 V) electrode material, and (ii) LiCoSO4OH shows a redox activity at 4.7 V vs Li(+)/Li(0). Besides, these compounds can be easily made at temperatures near 200 °C via a synthesis process that enlists a new intermediate phase of composition M3(SO4)2(OH)2 (M = Fe, Co, Mn, and Ni), related to the mineral caminite. Structurally, we found that LiFeSO4OH is a layered phase unlike the previously reported 3.2 V tavorite LiFeSO4OH. This work should provide an impetus to experimentalists for designing better electrolytes to fully tap the capacity of high-voltage Co-based hydroxysulfates, and to theorists for providing a means to predict the electrochemical redox activity of two polymorphs.

  14. Template-free electrodeposition of AlFe alloy nanowires from a room-temperature ionic liquid as an anode material for Li-ion batteries.

    PubMed

    Chen, Gang; Chen, Yuqi; Guo, Qingjun; Wang, Heng; Li, Bing

    2016-08-15

    AlFe alloy nanowires were directly electrodeposited on copper substrates from trimethylamine hydrochloride (TMHC)-AlCl3 ionic liquids with small amounts of FeCl3 at room temperature without templates. Coin cells composed of AlFe alloy nanowire electrodes and lithium foils were assembled to characterize the alloy electrochemical properties by galvanostatic charge/discharge tests. Effects of FeCl3 concentration, potential and temperature on the alloy morphology, composition and cyclic performance were examined. Addition of Fe into the alloy changed the nanowires from a 'hill-like' bulk morphology to a free-standing morphology, and increased the coverage area of the alloy on Cu substrates. As an inactive element, Fe could also buffer the alloys' large volume changes during Li intercalation and deintercalation. AlFe alloy nanowires composed of a small amount of Fe with an average diameter of 140 nm exhibited an outstanding cyclic performance and delivered a specific capacity of about 570 mA h g(-1) after 50 cycles. This advanced template-free method for the direct preparation of high performance nanostructure AlFe alloy anode materials is quite simple and inexpensive, which presents a promising prospect for practical application in Li-ion batteries. PMID:27200436

  15. A 3D Porous Architecture of Si/graphene Nanocomposite as High-performance Anode Materials for Li-ion Batteries

    SciTech Connect

    Xin X.; Zhu Y.; Zhou, X.; Wang, F.; Yao, X.; Xu, X.; Liu, Z.

    2012-04-28

    A 3D porous architecture of Si/graphene nanocomposite has been rationally designed and constructed through a series of controlled chemical processes. In contrast to random mixture of Si nanoparticles and graphene nanosheets, the porous nanoarchitectured composite has superior electrochemical stability because the Si nanoparticles are firmly riveted on the graphene nanosheets through a thin SiO{sub x} layer. The 3D graphene network enhances electrical conductivity, and improves rate performance, demonstrating a superior rate capability over the 2D nanostructure. This 3D porous architecture can deliver a reversible capacity of {approx}900 mA h g{sup -1} with very little fading when the charge rates change from 100 mA g{sup -1} to 1 A g{sup -1}. Furthermore, the 3D nanoarchitechture of Si/graphene can be cycled at extremely high Li{sup +} extraction rates, such as 5 A g{sup -1} and 10 A g{sup -1}, for over than 100 times. Both the highly conductive graphene network and porous architecture are considered to contribute to the remarkable rate capability and cycling stability, thereby pointing to a new synthesis route to improving the electrochemical performances of the Si-based anode materials for advanced Li-ion batteries.

  16. Si/Ag composite with bimodal micro-nano porous structure as a high-performance anode for Li-ion batteries.

    PubMed

    Hao, Qin; Zhao, Dianyun; Duan, Huimei; Zhou, Qiuxia; Xu, Caixia

    2015-03-12

    A one-step dealloying method is employed to conveniently fabricate a bimodal porous (BP) Si/Ag composite in high throughput under mild conditions. Upon dealloying the carefully designed SiAgAl ternary alloy in HCl solution at room temperature, the obtained Si/Ag composite has a uniform bicontinuous porous structure in three dimensions with micro-nano bimodal pore size distribution. Compared with the traditional preparation methods for porous Si and Si-based composites, this dealloying route is easily operated and environmentally benign. More importantly, it is convenient to realize the controllable components and uniform distribution of Si and Ag in the product. Owing to the rich porosity of the unique BP structure and the incorporation of highly conductive Ag, the as-made Si/Ag composite possesses the improved conductivity and alleviated volume changes of the Si network during repeated charging and discharging. As expected, the BP Si/Ag anode exhibits high capacity, excellent cycling reversibility, long cycling life and good rate capability for lithium storage. When the current rate is up to 1 A g(-1), BP Si/Ag can deliver a stable reversible capacity above 1000 mA h g(-1), and exhibits a capacity retention of up to 89.2% against the highest capacity after 200 cycles. With the advantages of unique performance and easy preparation, the BP Si/Ag composite holds great application potential as an advanced anode material for Li-ion batteries.

  17. Environmentally-friendly lithium recycling from a spent organic li-ion battery.

    PubMed

    Renault, Stéven; Brandell, Daniel; Edström, Kristina

    2014-10-01

    A simple and straightforward method using non-polluting solvents and a single thermal treatment step at moderate temperature was investigated as an environmentally-friendly process to recycle lithium from organic electrode materials for secondary lithium batteries. This method, highly dependent on the choice of electrolyte, gives up to 99% of sustained capacity for the recycled materials used in a second life-cycle battery when compared with the original. The best results were obtained using a dimethyl carbonate/lithium bis(trifluoromethane sulfonyl) imide electrolyte that does not decompose in presence of water. The process implies a thermal decomposition step at a moderate temperature of the extracted organic material into lithium carbonate, which is then used as a lithiation agent for the preparation of fresh electrode material without loss of lithium.

  18. Environmentally-friendly lithium recycling from a spent organic li-ion battery.

    PubMed

    Renault, Stéven; Brandell, Daniel; Edström, Kristina

    2014-10-01

    A simple and straightforward method using non-polluting solvents and a single thermal treatment step at moderate temperature was investigated as an environmentally-friendly process to recycle lithium from organic electrode materials for secondary lithium batteries. This method, highly dependent on the choice of electrolyte, gives up to 99% of sustained capacity for the recycled materials used in a second life-cycle battery when compared with the original. The best results were obtained using a dimethyl carbonate/lithium bis(trifluoromethane sulfonyl) imide electrolyte that does not decompose in presence of water. The process implies a thermal decomposition step at a moderate temperature of the extracted organic material into lithium carbonate, which is then used as a lithiation agent for the preparation of fresh electrode material without loss of lithium. PMID:25170568

  19. Magnetically aligned graphite electrodes for high-rate performance Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Billaud, Juliette; Bouville, Florian; Magrini, Tommaso; Villevieille, Claire; Studart, André R.

    2016-08-01

    As lithium-ion batteries become ubiquitous, the energy storage market is striving for better performance, longer lifetime and better safety of the devices. This race for performance is often focused on the search for new materials, whereas less effort has been dedicated to the electrode engineering. Enhancing the power density by increasing the amount of active material remains impractical since it impinges the transport of ions across the electrode during the charging and discharging processes. Here, we show that the electrochemical performance of a battery containing a thick (about 200 μm), highly loaded (about 10 mg cm-2) graphite electrode can be remarkably enhanced by fabricating anodes with an out-of-plane aligned architecture using a low external magnetic field. The lower tortuosity resulting from such a simple and scalable magnetic alignment approach leads to a specific charge up to three times higher than that of non-architectured electrodes at a rate of 1C.

  20. Magnetically aligned graphite electrodes for high-rate performance Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Billaud, Juliette; Bouville, Florian; Magrini, Tommaso; Villevieille, Claire; Studart, André R.

    2016-08-01

    As lithium-ion batteries become ubiquitous, the energy storage market is striving for better performance, longer lifetime and better safety of the devices. This race for performance is often focused on the search for new materials, whereas less effort has been dedicated to the electrode engineering. Enhancing the power density by increasing the amount of active material remains impractical since it impinges the transport of ions across the electrode during the charging and discharging processes. Here, we show that the electrochemical performance of a battery containing a thick (about 200 μm), highly loaded (about 10 mg cm‑2) graphite electrode can be remarkably enhanced by fabricating anodes with an out-of-plane aligned architecture using a low external magnetic field. The lower tortuosity resulting from such a simple and scalable magnetic alignment approach leads to a specific charge up to three times higher than that of non-architectured electrodes at a rate of 1C.

  1. Synthesis and Defect Structure Analysis of Complex Oxides for Li-Ion Battery Electrodes

    NASA Astrophysics Data System (ADS)

    Hao, Xiaoguang

    Lithium-ion batteries have attracted increased attention for energy storage development due to the vast demand from portable electronics, (hybrid) electric vehicles and future power grids. The research in this dissertation is focused on the development of oxide electrodes for lithium-ion batteries with high power density and improved stability. One of the promising cathodes for lithium-ion batteries is lithium manganospinel (LiMn2O4). However, this compound suffers from manganese dissolution and a Jahn-Teller distortion due to Mn3+, especially in oxygen deficient LiMn2O4-delta. Hydrothermal based synthesis methods were developed to eliminate oxygen vacancies to enable high power in cathodes composed of nano-sized spinel particles. The relationship between oxygen defects and the capacity fading mechanism was demonstrated, and collapse of the mechanical structure was identified in defect-rich LiMn 2O4-delta. Next, the nickel substituted manganospinel, LiNi0.5Mn 1.5O4 shows unexpected high voltage side reactions. To overcome this drawback, a thin and chemically inert titanate was used as an artificial SEI (solid electrolyte interface) coating to prohibit transition-metal dissolution and parasitic side reactions, which led to a 200% improvement of the capacity retention at 55°C and negligible polarization losses. Finally, the spinel-structured lithium titanate (Li 4Ti5O12) is introduced as an anode material for lithium-ion batteries due to its higher operating potential and excellent structural stability compared to current graphite anodes. However, the poor electronic conductivity and low lithium diffusion coefficient hinder its wide application. Given these advantages, a facile, low-cost solution method is explored to synthesize nano-sized titanates. Rapid charge/ discharge was achieved up to rates of 100 C (36 second charge/ discharge) due to a shorter lithium mean-free path and better contact between the active material and conductive agents.

  2. Studies on the thermal breakdown of common Li-ion battery electrolyte components

    DOE PAGES

    Lamb, Joshua; Orendorff, Christopher J.; Roth, Emanuel Peter; Langendorf, Jill Louise

    2015-08-06

    While much attention is paid to the impact of the active materials on the catastrophic failure of lithium ion batteries, much of the severity of a battery failure is also governed by the electrolytes used, which are typically flammable themselves and can decompose during battery failure. The use of LiPF6 salt can be problematic as well, not only catalyzing electrolyte decomposition, but also providing a mechanism for HF production. This work evaluates the safety performance of the common components ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC) in the context of the gasses producedmore » during thermal decomposition, looking at both the quantity and composition of the vapor produced. EC and DEC were found to be the largest contributors to gas production, both producing upwards of 1.5 moles of gas/mole of electrolyte. DMC was found to be relatively stable, producing very little gas regardless of the presence of LiPF6. EMC was stable on its own, but the addition of LiPF6 catalyzed decomposition of the solvent. As a result, while gas analysis did not show evidence of significant quantities of any acutely toxic materials, the gasses themselves all contained enough flammable components to potentially ignite in air.« less

  3. Studies on the thermal breakdown of common Li-ion battery electrolyte components

    SciTech Connect

    Lamb, Joshua; Orendorff, Christopher J.; Roth, Emanuel Peter; Langendorf, Jill Louise

    2015-08-06

    While much attention is paid to the impact of the active materials on the catastrophic failure of lithium ion batteries, much of the severity of a battery failure is also governed by the electrolytes used, which are typically flammable themselves and can decompose during battery failure. The use of LiPF6 salt can be problematic as well, not only catalyzing electrolyte decomposition, but also providing a mechanism for HF production. This work evaluates the safety performance of the common components ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC) in the context of the gasses produced during thermal decomposition, looking at both the quantity and composition of the vapor produced. EC and DEC were found to be the largest contributors to gas production, both producing upwards of 1.5 moles of gas/mole of electrolyte. DMC was found to be relatively stable, producing very little gas regardless of the presence of LiPF6. EMC was stable on its own, but the addition of LiPF6 catalyzed decomposition of the solvent. As a result, while gas analysis did not show evidence of significant quantities of any acutely toxic materials, the gasses themselves all contained enough flammable components to potentially ignite in air.

  4. Facile kinetics of Li-ion intake causes superior rate capability in multiwalled carbon nanotube@TiO2 nanocomposite battery anodes

    NASA Astrophysics Data System (ADS)

    Acevedo-Peña, Próspero; Haro, Marta; Rincón, Marina E.; Bisquert, Juan; Garcia-Belmonte, Germà

    2014-12-01

    Nanotechnology produces hybrids with superior properties than its individual constituents. Here MWCNT@TiO2 composites have been synthesized by controlled hydrolysis of titanium isopropoxide over MWCNT, to be incorporated into Li-ion battery electrodes. Outstanding rate capability of the coated nanotubes is observed in comparison to pristine TiO2. Specific storage capacity as high as 250 mAh g-1 is achieved for the nanocomposite electrode which doubles that encountered for TiO2-based anodes. The mechanism explaining the enhancement in power performance has been revealed by means of electrochemical impedance methods. Although both pristine TiO2 and MWCNT@TiO2 would potentially exhibit comparable specific capacity, the charge transfer resistance for the latter is reduced by a factor 10, implying a key role of MWCNTs to favor the interfacial Li+ ion intake from the electrolyte. MWCNT efficiently provides electrons to the nanostructure through the Ti-C bond which assists the Li+ ion incorporation. These findings provide access to the detailed lithiation kinetics of a broad class of nanocomposites for battery applications.

  5. TiO2-reduced graphene oxide nanocomposites by microwave-assisted forced hydrolysis as excellent insertion anode for Li-ion battery and capacitor

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Kyung; Mhamane, Dattakumar; Kim, Myeong-Seong; Roh, Ha-Kyung; Aravindan, Vanchiappan; Madhavi, Srinivasan; Roh, Kwang Chul; Kim, Kwang-Bum

    2016-09-01

    TiO2-reduced graphene oxide (rGO) nanocomposite (TiO2-rGO) is fabricated by microwave-assisted forced hydrolysis and examined as prospective electrode for energy storage applications, especially in Li-ion battery (LIB) and Li-ion capacitor (LIC). First, the uniformly distributed nanoscopic TiO2 particulates (∼3 nm) over rGO nanosheets is evaluated as anode in half-cell assembly to ascertain the Li-insertion behavior and found that ∼0.68 mol Li (∼227 mAh g-1) is reversible. Then, "rocking-chair" type LIB is fabricated with spinel LiMn2O4 cathode, and the LiMn2O4/TiO2-rGO assembly exhibits high capacity (∼120 mAh g-1 at 0.1 C rate), good rate capability (∼53 mAh g-1 at 1 C rate), and excellent cycleability (∼90% initial reversible capacity after 1000 cycle) as well. Similarly, the LIC is also constructed with activated carbon cathode, and such configuration delivered a maximum energy density of ∼50 Wh kg-1 with ∼82% retention after 4000 cycles. The synergistic effect of both rGO and anatase nanoparticles provides excellent energy efficiency and battery performance in different kind of Li-ion based energy storage devices.

  6. Mussel inspired modification of polypropylene separators by catechol/polyamine for Li-ion batteries.

    PubMed

    Wang, Hao; Wu, Junjie; Cai, Chao; Guo, Jing; Fan, Haosen; Zhu, Caizhen; Dong, Haixia; Zhao, Ning; Xu, Jian

    2014-04-23

    Inspired by the remarkable adhesion of mussel, dopamine, a mimicking adhesive molecule, has been widely used for surface modification of various materials ranging from organic to inorganic. However, dopamine and its derivatives are expensive which impede their application in large scale. Herein, we replaced dopamine with low-cost catechol and polyamine (only 8% of the cost of dopamine), which could be polymerized in an alkaline solution and deposited on the surfaces of various materials. By using this cheap and simple modification method, polypropylene (PP) separator could be transformed from hydrophobic to hydrophilic, while the pore structure and mechanical property of the separator remained intact. The uptake of electrolyte increased from 80% to 270% after the hydrophilic modification. Electrochemical studies demonstrated that battery with the modified PP separator had a better Coulombic efficiency (80.9% to 85.3%) during the first cycle at a current density of 0.1 C, while the discharging current density increased to 15 C and the discharge capacity increased by 1.4 times compared to the battery using the bare PP separator. Additionally, the modification allowed excellent stability during manifold cycles. This study provides new insights into utilizing low-cost chemicals to mimic the mussel adhesion and has potential practical application in many fields. PMID:24684271

  7. Mussel inspired modification of polypropylene separators by catechol/polyamine for Li-ion batteries.

    PubMed

    Wang, Hao; Wu, Junjie; Cai, Chao; Guo, Jing; Fan, Haosen; Zhu, Caizhen; Dong, Haixia; Zhao, Ning; Xu, Jian

    2014-04-23

    Inspired by the remarkable adhesion of mussel, dopamine, a mimicking adhesive molecule, has been widely used for surface modification of various materials ranging from organic to inorganic. However, dopamine and its derivatives are expensive which impede their application in large scale. Herein, we replaced dopamine with low-cost catechol and polyamine (only 8% of the cost of dopamine), which could be polymerized in an alkaline solution and deposited on the surfaces of various materials. By using this cheap and simple modification method, polypropylene (PP) separator could be transformed from hydrophobic to hydrophilic, while the pore structure and mechanical property of the separator remained intact. The uptake of electrolyte increased from 80% to 270% after the hydrophilic modification. Electrochemical studies demonstrated that battery with the modified PP separator had a better Coulombic efficiency (80.9% to 85.3%) during the first cycle at a current density of 0.1 C, while the discharging current density increased to 15 C and the discharge capacity increased by 1.4 times compared to the battery using the bare PP separator. Additionally, the modification allowed excellent stability during manifold cycles. This study provides new insights into utilizing low-cost chemicals to mimic the mussel adhesion and has potential practical application in many fields.

  8. Electrochemical Windows of Sulfone-Based Electrolytes for High-Voltage Li-Ion Batteries

    SciTech Connect

    Shao, Nan; Sun, Xiao-Guang; Dai, Sheng; Jiang, Deen

    2011-01-01

    Further development of high-voltage lithium-ion batteries requires electrolytes with electrochemical windows greater than 5 V. Sulfone-based electrolytes are promising for such a purpose. Here we compute the electrochemical windows for experimentally tested sulfone electrolytes by different levels of theory in combination with various solvation models. The MP2 method combined with the polarizable continuum model is shown to be the most accurate method to predict oxidation potentials of sulfone-based electrolytes with mean deviation less than 0.29 V. Mulliken charge analysis shows that the oxidation happens on the sulfone group for ethylmethyl sulfone and tetramethylene sulfone, and on the ether group for ether functionalized sulfones. Large electrochemical windows of sulfone-based electrolytes are mainly contributed by the sulfone group in the molecules which helps lower the HOMO level. This study can help understand the voltage limits imposed by the sulfone-based electrolytes and aid in designing new electrolytes with greater electrochemical windows.

  9. Development and characterization of composite YSZ-PEI electrophoretically deposited membrane for Li-ion battery.

    PubMed

    Hadar, R; Golodnitsky, D; Mazor, H; Ripenbein, T; Ardel, G; Barkay, Z; Gladkich, A; Peled, E

    2013-02-14

    In this work, the electrophoretic-deposition (EPD) method was used to fabricate pristine and composite ceramic-polymer membranes for application in planar and 3D microbattery configurations. The major focus was on the effect of polyethyleneimine additive on the morphology, composition, and electrochemical properties of the membrane. The ionic conductivity, cycleability, and charge/discharge behavior of planar LiFePO(4)/Li cells comprising composite porous YSZ-based membrane with impregnated LiPF(6) EC:DEC electrolyte were found to be similar to the cells with commercial Celgard membrane. Conformal EPD coating of the electrode materials by a thin-film ceramic separator is advantageous for high-power operation and safety of batteries.

  10. ITO/MWCNT Nanocomposites as New Novel Anode Electrodes for Li-Ion Batteries.

    PubMed

    Guler, Mehmet Oguz; Akbulut, Hatem

    2015-09-01

    In this study, we present a new anode electrode consisting of Indium Tin Oxide and multiwall carbon nanotube based buckypapers for high efficient lithium ion batteries. Core/shell Indium Tin Oxide/Buckypapers were produced by vacuum filtration techniques followed by an rf magnetron sputtering. The nanosized indium tin oxide particles were uniformly anchored onto the surfaces of buckypapers with a mean grain sizes of 2-7 nm confirmed by the FESEM, TEM and XRD results. The as-prepared nanocomposite anode electrodes exhibited outstanding reversible capacity (859, 875 and 895 mA h g(-1) after 50 cycles) and no significant capacity fading is observed after 50 cycles. The unique nanocomposite architecture which integrates both electronic conductivity and buffering matrix design strategies, contributing to enhanced lithium storage performance.

  11. Layer cathode methods of manufacturing and materials for Li-ion rechargeable batteries

    DOEpatents

    Kang, Sun-Ho; Amine, Khalil

    2008-01-01

    A positive electrode active material for lithium-ion rechargeable batteries of general formula Li.sub.1+xNi.sub..alpha.Mn.sub..beta.A.sub..gamma.O.sub.2 and further wherein A is Mg, Zn, Al, Co, Ga, B, Zr, or Ti and 0

  12. Sputtering Deposition of Sn-Mo-Based Composite Anode for Thin-Film Li-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Mani Chandran, T.; Balaji, S.

    2016-06-01

    The role of electrochemically inactive molybdenum in alleviating the anomalous volume expansion of tin anode upon charge-discharge cycling has been investigated. Tin-molybdenum thin-film composite anodes for Li-ion batteries were prepared using a direct-current sputtering method from a tin metal target incorporating molybdenum element. Results of structural and compositional analyses confirmed the presence of tin and molybdenum. The elemental ratio obtained from energy-dispersive x-ray spectroscopy confirmed the feasibility of tailoring the thin-film composition by varying the ratio of metallic elements present in the sputtering target. Scanning electron micrographs of the samples revealed the occurrence of flower-like open morphology with Mo inclusion in a Sn matrix. The gravimetric discharge capacity for pure Sn, Sn-rich, and Mo-rich samples was 733 mAh g-1, 572 mAh g-1, and 439 mAh g-1, respectively, with capacity retention after 50 cycles of 22%, 61%, and 74%, respectively. Mo inclusion reduced the surface resistivity of the Sn anode after the initial charge-discharge cycle. The charge-transfer resistance after the first cycle for pure Sn, Sn-rich, and Mo-rich samples was 17.395 Ω, 5.345 Ω, and 2.865 Ω, respectively. The lithium-ion diffusion coefficient also increased from 8.68 × 10-8 cm2S-1 for the pure Sn sample to 2.98 × 10-5 cm2S-1 for the Mo-rich sample.

  13. Reinvestigation on the state-of-the-art nonaqueous carbonate electrolytes for 5 V Li-ion battery applications

    SciTech Connect

    Xu, Wu; Chen, Xilin; Ding, Fei; Xiao, Jie; Wang, Deyu; Pan, Anqiang; Zheng, Jianming; Li, Xiaohong S.; Padmaperuma, Asanga B.; Zhang, Jiguang

    2012-09-01

    The charging voltage limits of mixed carbonate solvents for Li-ion batteries have been systematically investigated from 4.9 to 5.3 V in half cells using Cr-doped spinel cathode material LiNi0.45Cr0.05Mn1.5O4. We found that the stability of conventional carbonate electrolytes is strongly related to the stability and properties of the cathode materials at both lithiated and de-lithiated states. It is the first time to report that the conventional electrolytes based on mixtures of ethylene carbonate (EC) and linear carbonate (dimethyl carbonate - DMC, ethyl methyl carbonate - EMC, and diethyl carbonate - DEC) have shown very similar long-term cycling performance when cycled up to 5.2 V on LiNi0.45Cr0.05Mn1.5O4. The discharge capacity increases with the charge cutoff voltage and reaches the highest discharge capacity at 5.2 V. The capacity retention is about 87% after 500 cycles at 1C rate for all three carbonate mixtures when cycled between 3.0 V and 5.2V. The first-cycle efficiency has a maximum value at 5.1 V, with an average from 83% to 85% at C/10 rate. When cycled to 5.3 V, EC-DMC still shows good cycling performance but EC-EMC and EC-DEC show faster capacity fading. EC-DMC and EC-EMC have much better rate capability than EC-DEC. In addition, the first-cycle irreversible capacity loss increases with the cutoff voltage and the 'inactive' conductive carbon has also been found to be partly associated with the low first-cycle Coulombic efficiency at high voltages due to electrolyte decomposition and probably the PF6- anion irreversible intercalation.

  14. Spinel materials for Li-ion batteries: new insights obtained by operando neutron and synchrotron X-ray diffraction.

    PubMed

    Bianchini, Matteo; Fauth, François; Suard, Emmanuelle; Leriche, Jean Bernard; Masquelier, Christian; Croguennec, Laurence

    2015-12-01

    In the last few decades Li-ion batteries changed the way we store energy, becoming a key element of our everyday life. Their continuous improvement is tightly bound to the understanding of lithium (de)intercalation phenomena in electrode materials. Here we address the use of operando diffraction techniques to understand these mechanisms. We focus on powerful probes such as neutrons and synchrotron X-ray radiation, which have become increasingly familiar to the electrochemical community. After discussing the general benefits (and drawbacks) of these characterization techniques and the work of customization required to adapt standard electrochemical cells to an operando diffraction experiment, we highlight several very recent results. We concentrate on important electrode materials such as the spinels Li1 + xMn2 - xO4 (0 ≤ x ≤ 0.10) and LiNi0.4Mn1.6O4. Thorough investigations led by operando neutron powder diffraction demonstrated that neutrons are highly sensitive to structural parameters that cannot be captured by other means (for example, atomic Debye-Waller factors and lithium site occupancy). Synchrotron radiation X-ray powder diffraction reveals how LiMn2O4 is subject to irreversibility upon the first electrochemical cycle, resulting in severe Bragg peak broadening. Even more interestingly, we show for the first time an ordering scheme of the elusive composition Li0.5Mn2O4, through the coexistence of Mn(3+):Mn(4+) 1:3 cation ordering and lithium/vacancy ordering. More accurately written as Li0.5Mn(3+)0.5Mn(4+)1.5O4, this intermediate phase loses the Fd\\overline 3m symmetry, to be correctly described in the P213 space group.

  15. Capillary suspensions as beneficial formulation concept for high energy density Li-ion battery electrodes

    NASA Astrophysics Data System (ADS)

    Bitsch, Boris; Gallasch, Tobias; Schroeder, Melanie; Börner, Markus; Winter, Martin; Willenbacher, Norbert

    2016-10-01

    We introduce a novel formulation concept to prepare high capacity graphite electrodes for lithium ion batteries. The concept is based on the capillary suspension phenomenon: graphite and conductive agent are dispersed in an aqueous binder solution and the organic solvent octanol is added as immiscible, secondary fluid providing the formation of a sample-spanning network resulting in unique stability and coating properties. No additional processing steps compared to conventional slurry preparation are required. The resulting ultra-thick electrodes comprise mass loadings of about 16.5 mg cm-2, uniform layer thickness, and superior edge contours. The adjustment of mechanical energy input ensures uniform distribution of the conductive agent and sufficient electronic conductivity of the final dry composite electrode. The resulting pore structure is due to the stable network provided by the secondary fluid which evaporates residue-free during drying. Constant current-constant potential (CC-CP) cycling clearly indicates that the corresponding microstructure significantly improves the kinetics of reversible Li+ (de-) intercalation. A double layer electrode combining a conventionally prepared layer coated directly onto the Cu current collector with an upper layer stabilized with octanol was prepared applying wet-on-wet coating. CC-CP cycling data confirms that staged porosity within the electrode cross section results in superior electrochemical performance.

  16. Multi-Scale Correlative Tomography of a Li-Ion Battery Composite Cathode.

    PubMed

    Moroni, Riko; Börner, Markus; Zielke, Lukas; Schroeder, Melanie; Nowak, Sascha; Winter, Martin; Manke, Ingo; Zengerle, Roland; Thiele, Simon

    2016-01-01

    Focused ion beam/scanning electron microscopy tomography (FIB/SEMt) and synchrotron X-ray tomography (Xt) are used to investigate the same lithium manganese oxide composite cathode at the same specific spot. This correlative approach allows the investigation of three central issues in the tomographic analysis of composite battery electrodes: (i) Validation of state-of-the-art binary active material (AM) segmentation: Although threshold segmentation by standard algorithms leads to very good segmentation results, limited Xt resolution results in an AM underestimation of 6 vol% and severe overestimation of AM connectivity. (ii) Carbon binder domain (CBD) segmentation in Xt data: While threshold segmentation cannot be applied for this purpose, a suitable classification method is introduced. Based on correlative tomography, it allows for reliable ternary segmentation of Xt data into the pore space, CBD, and AM. (iii) Pore space analysis in the micrometer regime: This segmentation technique is applied to an Xt reconstruction with several hundred microns edge length, thus validating the segmentation of pores within the micrometer regime for the first time. The analyzed cathode volume exhibits a bimodal pore size distribution in the ranges between 0-1 μm and 1-12 μm. These ranges can be attributed to different pore formation mechanisms. PMID:27456201

  17. Effect of water on solid electrolyte interphase formation in Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Saito, M.; Fujita, M.; Aoki, Y.; Yoshikawa, M.; Yasuda, K.; Ishigami, R.; Nakata, Y.

    2016-03-01

    Time-of-flight-elastic recoil detection analysis (TOF-ERDA) with 20 MeV Cu ions has been applied to measure the depth profiles of solid electrolyte interphase (SEI) layers on the negative electrode of lithium ion batteries (LIB). In order to obtain quantitative depth profiles, the detector efficiency was first assessed, and the test highlighted a strong mass and energy dependence of the recoiled particles, especially H and He. Subsequently, we prepared LIB cells with different water contents in the electrolyte, and subjected them to different charge-discharge cycle tests. TOF-ERDA, X-ray photoelectron spectrometry (XPS), gas chromatography (GC), ion chromatography (IC), and 1H nuclear magnetic resonance (1H NMR) were applied to characterize the SEI region of the negative electrode. The results showed that the SEI layer is formed after 300 cycle tests, and a 500 ppm water concentration in the electrolyte does not appear to cause significant differences in the elemental and organic content of the SEI.

  18. Electrochemical properties of cobalt hydroxychloride microspheres as a new anode material for Li-ion batteries

    PubMed Central

    Park, Gi Dae; Ko, You Na; Kang, Yun Chan

    2014-01-01

    The use of cobalt hydroxychloride [Co2(OH)3Cl] as an anode material for lithium ion batteries (LIBs) is investigated using spherical shape and ultrafine nanocrystals directly formed by spray pyrolysis from spray solution of cobalt chloride salt. Dot-mapping images of the resulting powders reveal a uniform distribution of Co, O, and Cl throughout the powder. The Co2(OH)3Cl powder prepared directly by spray pyrolysis exhibits a high thermal stability at temperatures below 220°C, as well as having superior electrochemical properties compared with those of the CoCl2(H2O)2 and CoO powders prepared by the same process. The initial discharge capacities of the Co2(OH)3Cl and CoO powders at a constant current density of 1000 mA g−1 are found to be 1570 and 1142 mA h g−1, respectively, and their initial Coulombic efficiencies are 72 and 70%. The discharge capacities of the Co2(OH)3Cl and CoO powders after 100 cycles are 955 and 632 mA h g−1, respectively. The Co2(OH)3Cl powders have a high discharge capacity of 609 mA h g−1 even after 1000 cycles at a high current density of 5000 mA g−1. PMID:25167884

  19. Multi-Scale Correlative Tomography of a Li-Ion Battery Composite Cathode

    PubMed Central

    Moroni, Riko; Börner, Markus; Zielke, Lukas; Schroeder, Melanie; Nowak, Sascha; Winter, Martin; Manke, Ingo; Zengerle, Roland; Thiele, Simon

    2016-01-01

    Focused ion beam/scanning electron microscopy tomography (FIB/SEMt) and synchrotron X-ray tomography (Xt) are used to investigate the same lithium manganese oxide composite cathode at the same specific spot. This correlative approach allows the investigation of three central issues in the tomographic analysis of composite battery electrodes: (i) Validation of state-of-the-art binary active material (AM) segmentation: Although threshold segmentation by standard algorithms leads to very good segmentation results, limited Xt resolution results in an AM underestimation of 6 vol% and severe overestimation of AM connectivity. (ii) Carbon binder domain (CBD) segmentation in Xt data: While threshold segmentation cannot be applied for this purpose, a suitable classification method is introduced. Based on correlative tomography, it allows for reliable ternary segmentation of Xt data into the pore space, CBD, and AM. (iii) Pore space analysis in the micrometer regime: This segmentation technique is applied to an Xt reconstruction with several hundred microns edge length, thus validating the segmentation of pores within the micrometer regime for the first time. The analyzed cathode volume exhibits a bimodal pore size distribution in the ranges between 0–1 μm and 1–12 μm. These ranges can be attributed to different pore formation mechanisms. PMID:27456201

  20. Grid indentation analysis of mechanical properties of composite electrodes in Li-ion batteries

    DOE PAGES

    Vasconcelos, Luize Scalco de; Xu, Rong; Li, Jianlin; Zhao, Kejie

    2016-03-09

    We report that electrodes in commercial rechargeable batteries are microscopically heterogeneous materials. The constituent components, including active materials, polymeric binders, and porous conductive matrix, often have large variation in their mechanical properties, making the mechanical characterization of composite electrodes a challenging task. In a model system of LiNi0.5Mn0.3Co0.2O2 cathode, we employ the instrumented grid indentation to determine the elastic modulus and hardness of the constituent phases. The approach relies on a large array of nanoindentation experiments and statistical analysis of the resulting data provided that the maximum indentation depth is carefully chosen. The statistically extracted properties of the active particlesmore » and the surrounding medium are in good agreement with the tests of targeted indentation at selected sites. Lastly, the combinatory technique of grid indentation and statistical deconvolution represents a fast and reliable route to quantify the mechanical properties of composite electrodes that feed the parametric input for the mechanics models.« less

  1. Electrochemical properties of cobalt hydroxychloride microspheres as a new anode material for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Park, Gi Dae; Ko, You Na; Kang, Yun Chan

    2014-08-01

    The use of cobalt hydroxychloride [Co2(OH)3Cl] as an anode material for lithium ion batteries (LIBs) is investigated using spherical shape and ultrafine nanocrystals directly formed by spray pyrolysis from spray solution of cobalt chloride salt. Dot-mapping images of the resulting powders reveal a uniform distribution of Co, O, and Cl throughout the powder. The Co2(OH)3Cl powder prepared directly by spray pyrolysis exhibits a high thermal stability at temperatures below 220°C, as well as having superior electrochemical properties compared with those of the CoCl2(H2O)2 and CoO powders prepared by the same process. The initial discharge capacities of the Co2(OH)3Cl and CoO powders at a constant current density of 1000 mA g-1 are found to be 1570 and 1142 mA h g-1, respectively, and their initial Coulombic efficiencies are 72 and 70%. The discharge capacities of the Co2(OH)3Cl and CoO powders after 100 cycles are 955 and 632 mA h g-1, respectively. The Co2(OH)3Cl powders have a high discharge capacity of 609 mA h g-1 even after 1000 cycles at a high current density of 5000 mA g-1.

  2. Electrochemical properties of cobalt hydroxychloride microspheres as a new anode material for Li-ion batteries.

    PubMed

    Park, Gi Dae; Ko, You Na; Kang, Yun Chan

    2014-01-01

    The use of cobalt hydroxychloride [Co2(OH)3Cl] as an anode material for lithium ion batteries (LIBs) is investigated using spherical shape and ultrafine nanocrystals directly formed by spray pyrolysis from spray solution of cobalt chloride salt. Dot-mapping images of the resulting powders reveal a uniform distribution of Co, O, and Cl throughout the powder. The Co2(OH)3Cl powder prepared directly by spray pyrolysis exhibits a high thermal stability at temperatures below 220 °C, as well as having superior electrochemical properties compared with those of the CoCl2(H2O)2 and CoO powders prepared by the same process. The initial discharge capacities of the Co2(OH)3Cl and CoO powders at a constant current density of 1000 mA g(-1) are found to be 1570 and 1142 mA h g(-1), respectively, and their initial Coulombic efficiencies are 72 and 70%. The discharge capacities of the Co2(OH)3Cl and CoO powders after 100 cycles are 955 and 632 mA h g(-1), respectively. The Co2(OH)3Cl powders have a high discharge capacity of 609 mA h g(-1) even after 1000 cycles at a high current density of 5000 mA g(-1).

  3. Investigation of film solidification and binder migration during drying of Li-Ion battery anodes

    NASA Astrophysics Data System (ADS)

    Jaiser, Stefan; Müller, Marcus; Baunach, Michael; Bauer, Werner; Scharfer, Philip; Schabel, Wilhelm

    2016-06-01

    The property determining micro-structure of battery electrodes essentially evolves during drying, appointing it a paramount, yet insufficiently understood processing step in cell manufacturing. The distribution of functional additives such as binder or carbon black throughout the film strongly depends on the drying process. A representative state-of-the-art model system comprising graphite, polymeric binder, carbon black and solvent is investigated to gain an insight into the underlying processes. A new experimental approach is introduced that allows for revelation of the evolution of binder concentration gradients throughout the film during drying. Binder is detected by means of energy-dispersive x-ray spectroscopy (EDS) at the top and bottom surface. Drying kinetics is investigated and the impact of the drying process on electrochemical performance is disclosed. The enrichment of binder at the surface, which is observed while applying high drying rates, is shown to depend on two fundamental processes, namely capillary action and diffusion. The findings reveal characteristic drying stages that provide fundamental insights into film solidification. Based on that, a top-down consolidation mechanism capable of explaining the experimental findings is disclosed. Adhesion of the active layer to the substrate is shown to strongly depend on the local binder concentration in the vicinity of the substrate.

  4. Functionally strain-graded nanoscoops for high power Li-ion battery anodes.

    PubMed

    Krishnan, Rahul; Lu, Toh-Ming; Koratkar, Nikhil

    2011-02-01

    Lithium-ion batteries show poor performance for high power applications involving ultrafast charging/discharging rates. Here we report a functionally strain-graded carbon-aluminum-silicon anode architecture that overcomes this drawback. It consists of an array of nanostructures each comprising an amorphous carbon nanorod with an intermediate layer of aluminum that is finally capped by a silicon nanoscoop on the very top. The gradation in strain arises from graded levels of volumetric expansion in these three materials on alloying with lithium. The introduction of aluminum as an intermediate layer enables the gradual transition of strain from carbon to silicon, thereby minimizing the mismatch at interfaces between differentially strained materials and enabling stable operation of the electrode under high-rate charge/discharge conditions. At an accelerated current density of ∼51.2 A/g (i.e., charge/discharge rate of ∼40C), the strain-graded carbon-aluminum-silicon nanoscoop anode provides average capacities of ∼412 mAh/g with a power output of ∼100 kW/kg(electrode) continuously over 100 charge/discharge cycles.

  5. Regulated Breathing Effect of Silicon Negative Electrode for Dramatically Enhanced Performance of Li-Ion Battery

    SciTech Connect

    Xiao, Xingcheng; Zhou, Weidong; Kim, Youngnam; Ryu, Ill; Gu, Meng; Wang, Chong M.; Liu, Gao; Liu, Zhongyi; Gao, Huajian

    2015-03-01

    Si is an attractive negative electrode material for lithium ion batteries due to its high specifi c capacity (≈3600 mAh g –1 ). However, the huge volume swelling and shrinking during cycling, which mimics a breathing effect at the material/electrode/cell level, leads to several coupled issues including fracture of Si particles, unstable solid electrolyte interphase, and low Coulombic effi ciency. In this work, the regulation of the breathing effect is reported by using Si–C yolk–shell nanocomposite which has been well-developed by other researchers. The focus is on understanding how the nanoscaled materials design impacts the mechanical and electrochemical response at electrode level. For the fi rst time, it is possible to observe one order of magnitude of reduction on breathing effect at the electrode level during cycling: the electrode thickness variation reduced down to 10%, comparing with 100% in the electrode with Si nanoparticles as active materials. The Si–C yolk–shell nanocomposite electrode exhibits excellent capacity retention and high cycle effi ciency. In situ transmission electron microscopy and fi nite element simulations consistently reveals that the dramatically enhanced performance is associated with the regulated breathing of the Si in the new composite, therefore the suppression of the overall electrode expansion.

  6. Thermal conductivity and interface thermal conductance of thin films in Li ion batteries

    NASA Astrophysics Data System (ADS)

    Jagannadham, K.

    2016-09-01

    Laser physical vapor deposition is used to deposit thin films of lithium phosphorous oxynitride in nitrogen and lithium nickel manganese oxide in oxygen ambient on Si substrate. LIPON film is also deposited on LiNiMnO film that is deposited on Si. Graphene films consisting of graphene platelets are deposited on Si substrate from a suspension in isopropyl alcohol. Li-graphene films are obtained after Li adsorption by immersion in LiCl solution and further drying. Transient thermo reflectance signal is used to determine the cross-plane thermal conductivity of different layers and interface thermal conductance of the interfaces. The results show that LIPON film with lower thermal conductivity is a thermal barrier. The interface thermal conductance between LIPON and Au or Si is found to be very low. Thermal conductivity of LiNiMnO is found to be reasonably high so that it is not a barrier to thermal transport. Film with graphene platelets shows a higher value and Li adsorbed graphene film shows a much higher value of cross-plane thermal conductivity. The value of interface thermal conductance between graphene and Au or Si (100) substrate is also much lower. The implications of the results for the thermal transport in thin film Li batteries are discussed.

  7. Effect of Temperature on the Aging rate of Li Ion Battery Operating above Room Temperature

    PubMed Central

    Leng, Feng; Tan, Cher Ming; Pecht, Michael

    2015-01-01

    Temperature is known to have a significant impact on the performance, safety, and cycle lifetime of lithium-ion batteries (LiB). However, the comprehensive effects of temperature on the cyclic aging rate of LiB have yet to be found. We use an electrochemistry-based model (ECBE) here to measure the effects on the aging behavior of cycled LiB operating within the temperature range of 25 °C to 55 °C. The increasing degradation rate of the maximum charge storage of LiB during cycling at elevated temperature is found to relate mainly to the degradations at the electrodes, and that the degradation of LCO cathode is larger than graphite anode at elevated temperature. In particular, the formation and modification of the surface films on the electrodes as well as structural/phase changes of the LCO electrode, as reported in the literatures, are found to be the main contributors to the increasing degradation rate of the maximum charge storage of LiB with temperature for the specific operating temperature range. Larger increases in the Warburg elements and cell impedance are also found with cycling at higher temperature, but they do not seriously affect the state of health (SoH) of LiB as shown in this work. PMID:26245922

  8. Multi-Scale Correlative Tomography of a Li-Ion Battery Composite Cathode

    NASA Astrophysics Data System (ADS)

    Moroni, Riko; Börner, Markus; Zielke, Lukas; Schroeder, Melanie; Nowak, Sascha; Winter, Martin; Manke, Ingo; Zengerle, Roland; Thiele, Simon

    2016-07-01

    Focused ion beam/scanning electron microscopy tomography (FIB/SEMt) and synchrotron X-ray tomography (Xt) are used to investigate the same lithium manganese oxide composite cathode at the same specific spot. This correlative approach allows the investigation of three central issues in the tomographic analysis of composite battery electrodes: (i) Validation of state-of-the-art binary active material (AM) segmentation: Although threshold segmentation by standard algorithms leads to very good segmentation results, limited Xt resolution results in an AM underestimation of 6 vol% and severe overestimation of AM connectivity. (ii) Carbon binder domain (CBD) segmentation in Xt data: While threshold segmentation cannot be applied for this purpose, a suitable classification method is introduced. Based on correlative tomography, it allows for reliable ternary segmentation of Xt data into the pore space, CBD, and AM. (iii) Pore space analysis in the micrometer regime: This segmentation technique is applied to an Xt reconstruction with several hundred microns edge length, thus validating the segmentation of pores within the micrometer regime for the first time. The analyzed cathode volume exhibits a bimodal pore size distribution in the ranges between 0–1 μm and 1–12 μm. These ranges can be attributed to different pore formation mechanisms.

  9. Electrochemical properties of cobalt hydroxychloride microspheres as a new anode material for Li-ion batteries.

    PubMed

    Park, Gi Dae; Ko, You Na; Kang, Yun Chan

    2014-01-01

    The use of cobalt hydroxychloride [Co2(OH)3Cl] as an anode material for lithium ion batteries (LIBs) is investigated using spherical shape and ultrafine nanocrystals directly formed by spray pyrolysis from spray solution of cobalt chloride salt. Dot-mapping images of the resulting powders reveal a uniform distribution of Co, O, and Cl throughout the powder. The Co2(OH)3Cl powder prepared directly by spray pyrolysis exhibits a high thermal stability at temperatures below 220 °C, as well as having superior electrochemical properties compared with those of the CoCl2(H2O)2 and CoO powders prepared by the same process. The initial discharge capacities of the Co2(OH)3Cl and CoO powders at a constant current density of 1000 mA g(-1) are found to be 1570 and 1142 mA h g(-1), respectively, and their initial Coulombic efficiencies are 72 and 70%. The discharge capacities of the Co2(OH)3Cl and CoO powders after 100 cycles are 955 and 632 mA h g(-1), respectively. The Co2(OH)3Cl powders have a high discharge capacity of 609 mA h g(-1) even after 1000 cycles at a high current density of 5000 mA g(-1). PMID:25167884

  10. Thermal Stability and Reactivity of Cathode Materials for Li-Ion Batteries.

    PubMed

    Huang, Yiqing; Lin, Yuh-Chieh; Jenkins, David M; Chernova, Natasha A; Chung, Youngmin; Radhakrishnan, Balachandran; Chu, Iek-Heng; Fang, Jin; Wang, Qi; Omenya, Fredrick; Ong, Shyue Ping; Whittingham, M Stanley

    2016-03-23

    The thermal stability of electrochemically delithiated Li0.1Ni0.8Co0.15Al0.05O2 (NCA), FePO4 (FP), Mn0.8Fe0.2PO4 (MFP), hydrothermally synthesized VOPO4, LiVOPO4, and electrochemically lithiated Li2VOPO4 is investigated by differential scanning calorimetry (DSC) and thermogravimetric analysis, coupled with mass spectrometry (TGA-MS). The thermal stability of the delithiated materials is found to be in the order of NCA < VOPO4 < MFP < FP. Unlike the layered oxides and MFP, VOPO4 does not evolve O2 on heating. Thus, VOPO4 is less likely to cause a thermal run-away phenomenon in batteries at elevated temperature and so is inherently safer. The lithiated materials LiVOPO4, Li2VOPO4, and LiNi0.8Co0.15Al0.05O2 are found to be stable in the presence of electrolyte, but sealed-capsule high-pressure experiments show a phase transformation of VOPO4 → HVOPO4 → H2VOPO4 when VOPO4 reacts with electrolyte (1 M LiPF6 in EC/DMC = 1:1) between 200 and 300 °C. Using first-principles calculations, we confirm that the charged VOPO4 cathode is indeed predicted to be marginally less stable than FP but significantly more stable than NCA in the absence of electrolyte. An analysis of the reaction equilibria between VOPO4 and EC using a multicomponent phase diagram approach yields products and reaction enthalpies that are highly consistent with the experiment results.

  11. Computational characterization of lightweight multilayer MXene Li-ion battery anodes

    NASA Astrophysics Data System (ADS)

    Ashton, Michael; Hennig, Richard G.; Sinnott, Susan B.

    2016-01-01

    MXenes, a class of two-dimensional transition metal carbides and nitrides, have shown promise experimentally and computationally for use in energy storage applications. In particular, the most lightweight members of the monolayer MXene family (M = Sc, Ti, V, or Cr) are predicted to have gravimetric capacities above 400 mAh/g, higher than graphite. Additionally, intercalation of ions into multilayer MXenes can be accomplished at low voltages, and low diffusion barriers exist for Li diffusing across monolayer MXenes. However, large discrepancies have been observed between the calculated and experimental reversible capacities of MXenes. Here, dispersion-corrected density functional theory calculations are employed to predict reversible capacities and other battery-related properties for six of the most promising members of the MXene family (O-functionalized Ti- and V-based carbide MXenes) as bilayer structures. The calculated reversible capacities of the V2CO2 and Ti2CO2 bilayers agree more closely with experiment than do previous calculations for monolayers. Additionally, the minimum energy paths and corresponding energy barriers along the in-plane [1000] and [0100] directions for Li travelling between neighboring MXene layers are determined. V4C3O2 exhibits the lowest diffusion barrier of the compositions considered, at 0.42 eV, but its reversible capacity (148 mAh/g) is dragged down by its heavy formula unit. Conversely, the V2CO2 MXene shows good reversible capacity (276 mAh/g), but a high diffusion barrier (0.82 eV). We show that the diffusion barriers of all bilayer structures are significantly higher than those calculated for the corresponding monolayers, advocating the use of dispersed monolayer MXenes instead of multilayers in high performance anodes.

  12. Original implementation of Electrochemical Impedance Spectroscopy (EIS) in symmetric cells: Evaluation of post-mortem protocols applied to characterize electrode materials for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Gordon, Isabel Jiménez; Genies, Sylvie; Si Larbi, Gregory; Boulineau, Adrien; Daniel, Lise; Alias, Mélanie

    2016-03-01

    Understanding ageing mechanisms of Li-ion batteries is essential for further optimizations. To determine performance loss causes, post-mortem analyses are commonly applied. For each type of post-mortem test, different sample preparation protocols are adopted. However, reports on the reliability of these protocols are rare. Herein, Li-ion pouch cells with LiNi1/3Mn1/3Co1/3O2 - polyvinylidene fluoride positive electrode, graphite-carboxymethyl cellulose-styrene rubber negative electrode and LiPF6 - carbonate solvents mixture electrolyte, are opened and electrodes are recovered following a specified protocol. Negative and positive symmetric cells are assembled and their impedances are recorded. A signal analysis is applied to reconstruct the Li-ion pouch cell impedance from the symmetric cells, then comparison against the pouch cell true impedance allows the evaluation of the sample preparation protocols. The results are endorsed by Transmission Electronic Microscopy (TEM) and Gas Chromatography - Mass Spectrometry (GC-MS) analyses. Carbonate solvents used to remove the salt impacts slightly the surface properties of both electrodes. Drying electrodes under vacuum at 25 °C produces an impedance increase, particularly very marked for the positive electrode. Drying at 50 °C under vacuum or/and exposition to the anhydrous room atmosphere is very detrimental.

  13. Amorphous Zn₂GeO₄ Nanoparticles as Anodes with High Reversible Capacity and Long Cycling Life for Li-ion Batteries

    SciTech Connect

    Yi, Ran; Feng, Jinkui; Lv, Dongping; Gordin, Mikhail; Chen, Shuru; Choi, Daiwon; Wang, Donghai

    2013-07-30

    Amorphous and crystalline Zn₂GeO₄ nanoparticles were prepared and characterized as anode materials for Li-ion batteries. A higher reversible specific capacity of 1250 mAh/g after 500 cycles and excellent rate capability were obtained for amorphous Zn₂GeO₄ nanoparticles, compared to that of crystalline Zn₂GeO₄ nanoparticles. Small particle size, amorphous phase and incorporation of zinc and oxygen contribute synergetically to the improved performance by effectively mitigating the huge volume variations during lithiation and delithiation process.

  14. Thermal Stability and Phase Transformation of Electrochemically Charged/Discharged LiMnPO4 Cathode for Li-Ion Battery

    SciTech Connect

    Choi, Daiwon; Xiao, Jie; Choi, Young Joon; Hardy, John S.; Vijayakumar, M.; Bhuvaneswari, M. S.; Liu, Jun; Xu, Wu; Wang, Wei; Yang, Zhenguo; Graff, Gordon L.; Zhang, Jiguang

    2011-11-01

    Electrochemically active LiMnPO4 nanoplate at lithiated/delithiated state were subjected to thermal stability and phase transformation evaluate for safety as a cathode material for Li-ion battery. The phase transformation and oxygen evolution temperature on the delithiated MnPO4 were characterized using in-situ hot-stage X-ray diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), thermogravimetric - differential scanning calorimetry - mass spectroscopy (TGA-DSC-MS), transmission electron microscopy and scanning electron microscopy (SEM) - energy dispersive X-ray analysis (EDAX).

  15. Si/Ag composite with bimodal micro-nano porous structure as a high-performance anode for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Hao, Qin; Zhao, Dianyun; Duan, Huimei; Zhou, Qiuxia; Xu, Caixia

    2015-03-01

    A one-step dealloying method is employed to conveniently fabricate a bimodal porous (BP) Si/Ag composite in high throughput under mild conditions. Upon dealloying the carefully designed SiAgAl ternary alloy in HCl solution at room temperature, the obtained Si/Ag composite has a uniform bicontinuous porous structure in three dimensions with micro-nano bimodal pore size distribution. Compared with the traditional preparation methods for porous Si and Si-based composites, this dealloying route is easily operated and environmentally benign. More importantly, it is convenient to realize the controllable components and uniform distribution of Si and Ag in the product. Owing to the rich porosity of the unique BP structure and the incorporation of highly conductive Ag, the as-made Si/Ag composite possesses the improved conductivity and alleviated volume changes of the Si network during repeated charging and discharging. As expected, the BP Si/Ag anode exhibits high capacity, excellent cycling reversibility, long cycling life and good rate capability for lithium storage. When the current rate is up to 1 A g-1, BP Si/Ag can deliver a stable reversible capacity above 1000 mA h g-1, and exhibits a capacity retention of up to 89.2% against the highest capacity after 200 cycles. With the advantages of unique performance and easy preparation, the BP Si/Ag composite holds great application potential as an advanced anode material for Li-ion batteries.A one-step dealloying method is employed to conveniently fabricate a bimodal porous (BP) Si/Ag composite in high throughput under mild conditions. Upon dealloying the carefully designed SiAgAl ternary alloy in HCl solution at room temperature, the obtained Si/Ag composite has a uniform bicontinuous porous structure in three dimensions with micro-nano bimodal pore size distribution. Compared with the traditional preparation methods for porous Si and Si-based composites, this dealloying route is easily operated and environmentally benign

  16. Non-uniform temperature distribution in Li-ion batteries during discharge - A combined thermal imaging, X-ray micro-tomography and electrochemical impedance approach

    NASA Astrophysics Data System (ADS)

    Robinson, James B.; Darr, Jawwad A.; Eastwood, David S.; Hinds, Gareth; Lee, Peter D.; Shearing, Paul R.; Taiwo, Oluwadamilola O.; Brett, Dan J. L.

    2014-04-01

    Thermal runaway is a major cause of failure in Li-ion batteries (LIBs), and of particular concern for high energy density transport applications, where safety concerns have hampered commercialisation. A clear understanding of electro-thermal properties and how these relate to structure and operation is vital to improving thermal management of LIBs. Here a combined thermal imaging, X-ray tomography and electrochemical impedance spectroscopy (EIS) approach was applied to commercially available 18650 cells to study their thermal characteristics. Thermal imaging was used to characterise heterogeneous temperature distributions during discharge above 0.75C; the complementary information provided by 3D X-ray tomography was utilised to evaluate the internal structure of the battery and identify the regions causing heating, specifically the components of the battery cap.

  17. Sphere-Shaped Hierarchical Cathode with Enhanced Growth of Nanocrystal Planes for High-Rate and Cycling-Stable Li-Ion Batteries

    DOE PAGES

    Zhang, Linjing; Li, Ning; Wu, Borong; Xu, Hongliang; Wang, Lei; Yang, Xiao-Qing; Wu, Feng

    2015-01-14

    High-energy and high-power Li-ion batteries have been intensively pursued as power sources in electronic vehicles and renewable energy storage systems in smart grids. With this purpose, developing high-performance cathode materials is urgently needed. Here we report an easy and versatile strategy to fabricate high-rate and cycling-stable hierarchical sphered cathode Li1.2Ni0.13Mn0.54Co0.13O2, by using an ionic interfusion method. The sphere-shaped hierarchical cathode is assembled with primary nanoplates with enhanced growth of nanocrystal planes in favor of Li+ intercalation/deintercalation, such as (010), (100), and (110) planes. This material with such unique structural features exhibits outstanding rate capability, cyclability, and high discharge capacities, achievingmore » around 70% (175 mAhg–1) of the capacity at 0.1 C rate within about 2.1 min of ultrafast charging. Such cathode is feasible to construct high-energy and high-power Li-ion batteries.« less

  18. Amorphous silicon-carbon nanospheres synthesized by chemical vapor deposition using cheap methyltrichlorosilane as improved anode materials for Li-ion batteries.

    PubMed

    Zhang, Zailei; Zhang, Meiju; Wang, Yanhong; Tan, Qiangqiang; Lv, Xiao; Zhong, Ziyi; Li, Hong; Su, Fabing

    2013-06-21

    We report the preparation and characterization of amorphous silicon-carbon (Si-C) nanospheres as anode materials in Li-ion batteries. These nanospheres were synthesized by a chemical vapor deposition at 900 °C using methyltrichlorosilane (CH3SiCl3) as both the Si and C precursor, which is a cheap byproduct in the organosilane industry. The samples were characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy, nitrogen adsorption, thermal gravimetric analysis, Raman spectroscopy, and X-ray photoelectron spectroscopy. It was found that the synthesized Si-C nanospheres composed of amorphous C (about 60 wt%) and Si (about 40 wt%) had a diameter of 400-600 nm and a surface area of 43.8 m(2) g(-1). Their charge capacities were 483.6, 331.7, 298.6, 180.6, and 344.2 mA h g(-1) at 50, 200, 500, 1000, and 50 mA g(-1) after 50 cycles, higher than that of the commercial graphite anode. The Si-C amorphous structure could absorb a large volume change of Si during Li insertion and extraction reactions and hinder the cracking or crumbling of the electrode, thus resulting in the improved reversible capacity and cycling stability. The work opens a new way to fabricate low cost Si-C anode materials for Li-ion batteries.

  19. The role of electronic and ionic conductivities in the rate performance of tunnel structured manganese oxides in Li-ion batteries

    DOE PAGES

    Byles, B. W.; Palapati, N. K. R.; Subramanian, A.; Pomerantseva, E.

    2016-04-29

    Single nanowires of two manganese oxide polymorphs (α-MnO2 and todorokite manganese oxide), which display a controlled size variation in terms of their square structural tunnels, were isolated onto nanofabricated platforms using dielectrophoresis. This platform allowed for the measurement of the electronic conductivity of these manganese oxides, which was found to be higher in α-MnO2 as compared to that of the todorokite phase by a factor of similar to 46. Despite this observation of substantially higher electronic conductivity in α-MnO2, the todorokite manganese oxide exhibited better electrochemical rate performance as a Li-ion battery cathode. The relationship between this electrochemical performance, themore » electronic conductivities of the manganese oxides, and their reported ionic conductivities is discussed for the first time, clearly revealing that the rate performance of these materials is limited by their Li+ diffusivity, and not by their electronic conductivity. This result reveals important new insights relevant for improving the power density of manganese oxides, which have shown promise as a low-cost, abundant, and safe alternative for next-generation cathode materials. Moreover, the presented experimental approach is suitable for assessing a broader family of one-dimensional electrode active materials (in terms of their electronic and ionic conductivities) for both Li-ion batteries and for electrochemical systems utilizing charge-carrying ions beyond Li+.« less

  20. Sphere-Shaped Hierarchical Cathode with Enhanced Growth of Nanocrystal Planes for High-Rate and Cycling-Stable Li-Ion Batteries

    SciTech Connect

    Zhang, Linjing; Li, Ning; Wu, Borong; Xu, Hongliang; Wang, Lei; Yang, Xiao-Qing; Wu, Feng

    2015-01-14

    High-energy and high-power Li-ion batteries have been intensively pursued as power sources in electronic vehicles and renewable energy storage systems in smart grids. With this purpose, developing high-performance cathode materials is urgently needed. Here we report an easy and versatile strategy to fabricate high-rate and cycling-stable hierarchical sphered cathode Li1.2Ni0.13Mn0.54Co0.13O2, by using an ionic interfusion method. The sphere-shaped hierarchical cathode is assembled with primary nanoplates with enhanced growth of nanocrystal planes in favor of Li+ intercalation/deintercalation, such as (010), (100), and (110) planes. This material with such unique structural features exhibits outstanding rate capability, cyclability, and high discharge capacities, achieving around 70% (175 mAhg–1) of the capacity at 0.1 C rate within about 2.1 min of ultrafast charging. Such cathode is feasible to construct high-energy and high-power Li-ion batteries.

  1. Thermal Stability of LiPF6 Salt and Li-ion Battery Electrolytes Containing LiPF6

    SciTech Connect

    Yang, Hui; Zhuang, Guorong V; Ross, Jr, Philip N

    2006-03-08

    The thermal stability of the neat LiPF6 salt and of 1 molal solutions of LiPF6 in prototypical Li-ion battery solvents was studied with thermogravimetric analysis (TGA) and on-line FTIR. Pure LiPF6 salt is thermally stable up to 380 K in a dry inert atmosphere, and its decomposition path is a simple dissociation producing LiF as solid and PF5 as gaseous products. In the presence of water (300 ppm) in the carrier gas, its decomposition onset temperature is lowered as a result of direct thermal reaction between LiPF6 and water vapor to form POF3 and HF. No new products were observed in 1 molal solutions of LiPF6 in EC, DMC and EMC by on-line TGA-FTIR analysis. The storage of the same solutions in sealed containers at 358 K for 300 420 hrs. did not produce any significant quantity of new products as well. In particular, noalkylflurophosphates were found in the solutions after storage at elevated temperature. In the absence of either an impurity like alcohol or cathode active material that may (or may not) act as a catalyst, there is no evidence of thermally induced reaction between LiPF6 and the prototypical Li-ion battery solvents EC, PC, DMC or EMC.

  2. Preliminary studies of biominerals-coated spinel LiMn2 O4 as a cathode material on electrochemical performances for Li-ion rechargeable batteries

    NASA Astrophysics Data System (ADS)

    Vediappan, Kumaran; Lee, Chang Woo

    2010-05-01

    Lithium manganese oxide (LiMn2O4) is an inexpensive and pollution-free cathode material for Li-ion rechargeable batteries. In this study, spinel LiMn2O4 cathode material was coated with biomineral powders by the mechano-chemical method. In the course of the material synthesis, citric acid and acryl amide were added to serve as a complexing agent and a gelling agent, respectively, followed by a calcination process at 700 °C for 6 h in a high-purity argon atmosphere. The spinel LiMn2O4 and biominerals-coated spinel LiMn2O4 cathode materials were, from diverse viewpoints, characterized by x-ray diffraction, field emission-scanning electron microscopy, Fourier transform infrared spectroscopy and the electrochemical cycling method to understand the mechanism of improvements in electrochemical performances. We suggest that the biominerals-coated spinel LiMn2O4 is a good candidate as a low cost and environmentally friendly cathode material showing the enlarged capacity characteristic of Li-ion rechargeable batteries.

  3. SEI Formation and Interfacial Stability of a Si Electrode in a LiTDI-Salt Based Electrolyte with FEC and VC Additives for Li-Ion Batteries.

    PubMed

    Lindgren, Fredrik; Xu, Chao; Niedzicki, Leszek; Marcinek, Marek; Gustafsson, Torbjörn; Björefors, Fredrik; Edström, Kristina; Younesi, Reza

    2016-06-22

    An electrolyte based on the new salt, lithium 4,5-dicyano-2-(trifluoromethyl)imidazolide (LiTDI), is evaluated in combination with nano-Si composite electrodes for potential use in Li-ion batteries. The additives fluoroethylene carbonate (FEC) and vinylene carbonate (VC) are also added to the electrolyte to enable an efficient SEI formation. By employing hard X-ray photoelectron spectroscopy (HAXPES), the SEI formation and the development of the active material is probed during the first 100 cycles. With this electrolyte formulation, the Si electrode can cycle at 1200 mAh g(-1) for more than 100 cycles at a coulombic efficiency of 99%. With extended cycling, a decrease in Si particle size is observed as well as an increase in silicon oxide amount. As opposed to LiPF6 based electrolytes, this electrolyte or its decomposition products has no side reactions with the active Si material. The present results further acknowledge the positive effects of SEI forming additives. It is suggested that polycarbonates and a high LiF content are favorable components in the SEI over other kinds of carbonates formed by ethylene carbonate (EC) and dimethyl carbonate (DMC) decomposition. This work thus confirms that LiTDI in combination with the investigated additives is a promising salt for Si electrodes in future Li-ion batteries. PMID:27220376

  4. A novel surface-sensitive X-ray absorption spectroscopic detector to study the thermal decomposition of cathode materials for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Nonaka, Takamasa; Okuda, Chikaaki; Oka, Hideaki; Nishimura, Yusaku F.; Makimura, Yoshinari; Kondo, Yasuhito; Dohmae, Kazuhiko; Takeuchi, Yoji

    2016-09-01

    A surface-sensitive conversion-electron-yield X-ray absorption fine structure (CEY-XAFS) detector that operates at elevated temperatures is developed to investigate the thermal decomposition of cathode materials for Li-ion batteries. The detector enables measurements with the sample temperature controlled from room temperature up to 450 °C. The detector is applied to the LiNi0.75Co0.15Al0.05Mg0.05O2 cathode material at 0% state of charge (SOC) and 50% SOC to examine the chemical changes that occur during heating in the absence of an electrolyte. The combination of surface-sensitive CEY-XAFS and bulk-sensitive transmission-mode XAFS shows that the reduction of Ni and Co ions begins at the surface of the cathode particles at around 150 °C, and propagates inside the particle upon further heating. These changes with heating are irreversible and are more obvious at 50% SOC than at 0% SOC. The fraction of reduced Ni ions is larger than that of reduced Co ions. These results demonstrate the capability of the developed detector to obtain important information for the safe employment of this cathode material in Li-ion batteries.

  5. FeF3@Thin Nickel Ammine Nitrate Matrix: Smart Configurations and Applications as Superior Cathodes for Li-Ion Batteries.

    PubMed

    Jiang, Jian; Li, Linpo; Xu, Maowen; Zhu, Jianhui; Li, Chang Ming

    2016-06-29

    Iron fluorides (FeFx) for Li-ion battery cathodes are still in the stage of intensive research due to their low delivery capacity and limited lifetime. One critical reason for cathode degradation is the severe aggregation of FeFx nanocrystals upon long-term cycling. To maximize the capacity and cyclability of these cathodes, we propose herein a novel and applicable method using a thin-layered nickel ammine nitrate (NAN) matrix as a feasible encapsulation material to disperse the FeF3 nanoparticles. Such core-shell hybrids with smart configurations are constructed via a green, scalable, in situ encapsulation approach. The outer thin-film NAN matrix with prominent electrochemical stability can keep the FeF3 nanoactives encapsulated throughout the cyclic testing, protecting them from adverse aggregation into bulk crystals and thus leading to drastic improvements of electrode behaviors (e.g., high electrode capacity up to ∼423 mA h g(-1), greatly prolonged cyclic period, and promoted rate capabilities). This present work may set up a new and general platform to develop intriguing core-shell hybrid cathodes for Li-ion batteries, not only for FeFx but also for a wide spectrum of other cathode materials. PMID:27269361

  6. Sphere-shaped hierarchical cathode with enhanced growth of nanocrystal planes for high-rate and cycling-stable li-ion batteries.

    PubMed

    Zhang, Linjing; Li, Ning; Wu, Borong; Xu, Hongliang; Wang, Lei; Yang, Xiao-Qing; Wu, Feng

    2015-01-14

    High-energy and high-power Li-ion batteries have been intensively pursued as power sources in electronic vehicles and renewable energy storage systems in smart grids. With this purpose, developing high-performance cathode materials is urgently needed. Here we report an easy and versatile strategy to fabricate high-rate and cycling-stable hierarchical sphered cathode Li(1.2)Ni(0.13)Mn(0.54)Co(0.13)O2, by using an ionic interfusion method. The sphere-shaped hierarchical cathode is assembled with primary nanoplates with enhanced growth of nanocrystal planes in favor of Li(+) intercalation/deintercalation, such as (010), (100), and (110) planes. This material with such unique structural features exhibits outstanding rate capability, cyclability, and high discharge capacities, achieving around 70% (175 mAh g(-1)) of the capacity at 0.1 C rate within about 2.1 min of ultrafast charging. Such cathode is feasible to construct high-energy and high-power Li-ion batteries.

  7. Silicon on conductive self-organized TiO2 nanotubes - A high capacity anode material for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Brumbarov, Jassen; Kunze-Liebhäuser, Julia

    2014-07-01

    The study of high energy density electrode materials is central to the development of Li+-ion batteries. Si is among the most promising anode materials for next generation Li+-ion batteries. Model composite electrodes of self-organized, conductive titania (TiO2-x-C) nanotubes coated with silicon (Si) via plasma enhanced chemical vapor deposition (PECVD) are produced and studied in terms of their lithiation/delithiation characteristics. The nanotube array provides direct one dimensional electron transport to the current collector, without the need of adding binders or conductive additives. Both components of the composite can be lithiated delivering 120 μAh cm-2 total capacity for a film thickness of 1 μm and a Si loading of ∼10 wt.%. 86% capacity retention upon 88 cycles at a rate of C/5 and 60 μAh cm-2 total capacity at a rate of 10 C are achieved owing to the low lateral expansion and thus good adhesion of the thin Si coating to the TiO2-x-C nanotubes, and due to the formation of a stable solid electrolyte interface (SEI) in ethylene-carbonate (EC), dimethyl-carbonate (DMC), vinylene-carbonate (VC) electrolyte with 1 M LiPF6.

  8. The role of electronic and ionic conductivities in the rate performance of tunnel structured manganese oxides in Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Byles, B. W.; Palapati, N. K. R.; Subramanian, A.; Pomerantseva, E.

    2016-04-01

    Single nanowires of two manganese oxide polymorphs (α-MnO2 and todorokite manganese oxide), which display a controlled size variation in terms of their square structural tunnels, were isolated onto nanofabricated platforms using dielectrophoresis. This platform allowed for the measurement of the electronic conductivity of these manganese oxides, which was found to be higher in α-MnO2 as compared to that of the todorokite phase by a factor of ˜46. Despite this observation of substantially higher electronic conductivity in α-MnO2, the todorokite manganese oxide exhibited better electrochemical rate performance as a Li-ion battery cathode. The relationship between this electrochemical performance, the electronic conductivities of the manganese oxides, and their reported ionic conductivities is discussed for the first time, clearly revealing that the rate performance of these materials is limited by their Li+ diffusivity, and not by their electronic conductivity. This result reveals important new insights relevant for improving the power density of manganese oxides, which have shown promise as a low-cost, abundant, and safe alternative for next-generation cathode materials. Furthermore, the presented experimental approach is suitable for assessing a broader family of one-dimensional electrode active materials (in terms of their electronic and ionic conductivities) for both Li-ion batteries and for electrochemical systems utilizing charge-carrying ions beyond Li+.

  9. Mesocarbon Microbead Carbon-Supported Magnesium Hydroxide Nanoparticles: Turning Spent Li-ion Battery Anode into a Highly Efficient Phosphate Adsorbent for Wastewater Treatment.

    PubMed

    Zhang, Yan; Guo, Xingming; Wu, Feng; Yao, Ying; Yuan, Yifei; Bi, Xuanxuan; Luo, Xiangyi; Shahbazian-Yassar, Reza; Zhang, Cunzhong; Amine, Khalil

    2016-08-24

    Phosphorus in water eutrophication has become a serious problem threatening the environment. However, the development of efficient adsorbents for phosphate removal from water is lagging. In this work, we recovered the waste material, graphitized carbon, from spent lithium ion batteries and modified it with nanostructured Mg(OH)2 on the surface to treat excess phosphate. This phosphate adsorbent shows one of the highest phosphate adsorption capacities to date, 588.4 mg/g (1 order of magnitude higher than previously reported carbon-based adsorbents), and exhibits decent stability. A heterogeneous multilayer adsorption mechanism was proposed on the basis of multiple adsorption results. This highly efficient adsorbent from spent Li-ion batteries displays great potential to be utilized in industry, and the mechanism study paved a way for further design of the adsorbent for phosphate adsorption. PMID:27463402

  10. Thermal management optimization of an air-cooled Li-ion battery module using pin-fin heat sinks for hybrid electric vehicles

    NASA Astrophysics Data System (ADS)

    Mohammadian, Shahabeddin K.; Zhang, Yuwen

    2015-01-01

    Three dimensional transient thermal analysis of an air-cooled module that contains prismatic Li-ion cells next to a special kind of aluminum pin fin heat sink whose heights of pin fins increase linearly through the width of the channel in air flow direction was studied for thermal management of Lithium-ion battery pack. The effects of pin fins arrangements, discharge rates, inlet air flow velocities, and inlet air temperatures on the battery were investigated. The results showed that despite of heat sinks with uniform pin fin heights that increase the standard deviation of the temperature field, using this kind of pin fin heat sink compare to the heat sink without pin fins not only decreases the bulk temperature inside the battery, but also decreases the standard deviation of the temperature field inside the battery as well. Increasing the inlet air temperature leads to decreasing the standard deviation of the temperature field while increases the maximum temperature of the battery. Furthermore, increasing the inlet air velocity first increases the standard deviation of the temperature field till reaches to the maximum point, and after that decreases. Also, increasing the inlet air velocity leads to decrease in the maximum temperature of the battery.

  11. Assessment of Various Low Temperature Electrolytes in Prototype Li-Ion Cells Developed for ESMD Applications

    NASA Technical Reports Server (NTRS)

    Smart, M. C.; Ratnakumar, B. V.; Whitcanack, L. D.

    2008-01-01

    Due to their attractive properties and proven success, Li-ion batteries have become identified as the battery chemistry of choice for a number of future NASA missions. A number of these applications would be greatly benefited by improved performance of Li-ion technology over a wider operating temperature range, especially at low temperatures, such as future ESMD missions. In many cases, these technology improvements may be mission enabling, and at the very least mission enhancing. In addition to aerospace applications, the DoE has interest in developing advanced Li-ion batteries that can operate over a wide temperature range to enable terrestrial HEV applications. Thus, our focus at JPL in recent years has been to extend the operating temperature range of Li-ion batteries, especially at low temperatures. To accomplish this, the main focus of the research has been devoted to developing improved lithium-ion conducting electrolytes. In the present paper, we would like to present some of the results we have obtained with six different ethylene carbonate-based electrolytes optimized for low temperature. In addition to investigating the behavior in experimental cells initially, the performance of these promising low temperature electrolytes was demonstrated in large capacity, aerospace quality Li-ion prototype cells, manufactured by Yardney Technical Products and Saft America, Inc. These cells were subjected to a number of performance tests, including discharge rate characterization, charge rate characterization, cycle life performance at various temperatures, and power characterization tests.

  12. Percolation threshold of graphene nanosheets as conductive additives in Li4Ti5O12 anodes of Li-ion batteries.

    PubMed

    Zhang, Biao; Yu, Yang; Liu, Yusi; Huang, Zhen-Dong; He, Yan-bing; Kim, Jang-Kyo

    2013-03-01

    Graphene nanosheets (GNSs) have been considered as potential conductive additives for electrodes in Li-ion batteries to replace the existing carbon black (CB). Graphene has exceptionally high aspect ratio and excellent electrical conductivity, enabling the formation of extensive conductive networks at a much lower content than CB. This paper reports the beneficial effects of GNSs with a low percolation threshold on electrochemical performance of Li(4)Ti(5)O(12) (LTO) anodes. The experimental results show that the GNSs with a diameter of 46 μm and a thickness of 4.5 nm have a percolation threshold of 1.8 wt%. The prediction based on the interparticle distance concept gives a percolation threshold of 0.54 wt% for GNSs, which is almost an order of magnitude lower than that for CB particles. The substantially low percolation along with a high electrical conductivity of GNSs explains why the LTO anodes containing only 5 wt% GNSs deliver a much better rate capability than those with 15 wt% CB. However, a higher GNS content of 10 wt% results in re-stacking GNSs, deteriorating the diffusion of Li ions through the thickness of GNSs. The parametric study indicates that the percolation threshold of GNSs is inversely proportional to the aspect ratio of GNSs.

  13. Enhancing the energy density of safer Li-ion batteries by combining high-voltage lithium cobalt fluorophosphate cathodes and nanostructured titania anodes

    NASA Astrophysics Data System (ADS)

    Ortiz, Gregorio F.; López, María C.; Li, Yixiao; McDonald, Matthew J.; Cabello, Marta; Tirado, José L.; Yang, Yong

    2016-02-01

    Recently, Li-ion batteries have been heavily scrutinized because of the apparent incompatibility between safety and high energy density. This work report a high voltage full battery made with TiO2/Li3PO4/Li2CoPO4F. The Li2CoPO4F cathode and TiO2 anode materials are synthesized by a sol-gel and anodization methods, respectively. X-ray diffraction (XRD) analysis confirmed that Li2CoPO4F is well-crystallized in orthorhombic crystal structure with Pnma space group. The Li3PO4-coated anode was successfully deposited as shown by the (011) lattice fringes of anatase TiO2 and (200) of γ-Li3PO4, as detected by HRTEM. The charge profile of Li2CoPO4F versus lithium shows a plateau at 5.0 V, revealing its importance as potentially high-voltage cathode and could perfectly fit with the plateau of anatase anode (1.8-1.9 V). The full cell made with TiO2/Li3PO4/Li2CoPO4F delivered an initial reversible capacity of 150 mA h g-1 at C rate with good cyclic performance at an average potential of 3.1-3.2 V. Thus, the full cell provides an energy density of 472 W h kg-1. This full battery behaves better than TiO2/Li2CoPO4F. The introduction of Li3PO4 as buffer layer is expected to help the cyclability of the electrodes as it allows a rapid Li-ion transport.

  14. Enhancing the energy density of safer Li-ion batteries by combining high-voltage lithium cobalt fluorophosphate cathodes and nanostructured titania anodes

    PubMed Central

    Ortiz, Gregorio F.; López, María C.; Li, Yixiao; McDonald, Matthew J.; Cabello, Marta; Tirado, José L.; Yang, Yong

    2016-01-01

    Recently, Li-ion batteries have been heavily scrutinized because of the apparent incompatibility between safety and high energy density. This work report a high voltage full battery made with TiO2/Li3PO4/Li2CoPO4F. The Li2CoPO4F cathode and TiO2 anode materials are synthesized by a sol–gel and anodization methods, respectively. X-ray diffraction (XRD) analysis confirmed that Li2CoPO4F is well-crystallized in orthorhombic crystal structure with Pnma space group. The Li3PO4-coated anode was successfully deposited as shown by the (011) lattice fringes of anatase TiO2 and (200) of γ-Li3PO4, as detected by HRTEM. The charge profile of Li2CoPO4F versus lithium shows a plateau at 5.0 V, revealing its importance as potentially high-voltage cathode and could perfectly fit with the plateau of anatase anode (1.8–1.9 V). The full cell made with TiO2/Li3PO4/Li2CoPO4F delivered an initial reversible capacity of 150 mA h g−1 at C rate with good cyclic performance at an average potential of 3.1–3.2 V. Thus, the full cell provides an energy density of 472 W h kg−1. This full battery behaves better than TiO2/Li2CoPO4F. The introduction of Li3PO4 as buffer layer is expected to help the cyclability of the electrodes as it allows a rapid Li-ion transport. PMID:26879916

  15. Enhancing the energy density of safer Li-ion batteries by combining high-voltage lithium cobalt fluorophosphate cathodes and nanostructured titania anodes.

    PubMed

    Ortiz, Gregorio F; López, María C; Li, Yixiao; McDonald, Matthew J; Cabello, Marta; Tirado, José L; Yang, Yong

    2016-02-16

    Recently, Li-ion batteries have been heavily scrutinized because of the apparent incompatibility between safety and high energy density. This work report a high voltage full battery made with TiO2/Li3PO4/Li2CoPO4F. The Li2CoPO4F cathode and TiO2 anode materials are synthesized by a sol-gel and anodization methods, respectively. X-ray diffraction (XRD) analysis confirmed that Li2CoPO4F is well-crystallized in orthorhombic crystal structure with Pnma space group. The Li3PO4-coated anode was successfully deposited as shown by the (011) lattice fringes of anatase TiO2 and (200) of γ-Li3PO4, as detected by HRTEM. The charge profile of Li2CoPO4F versus lithium shows a plateau at 5.0 V, revealing its importance as potentially high-voltage cathode and could perfectly fit with the plateau of anatase anode (1.8-1.9 V). The full cell made with TiO2/Li3PO4/Li2CoPO4F delivered an initial reversible capacity of 150 mA h g(-1) at C rate with good cyclic performance at an average potential of 3.1-3.2 V. Thus, the full cell provides an energy density of 472 W h kg(-1). This full battery behaves better than TiO2/Li2CoPO4F. The introduction of Li3PO4 as buffer layer is expected to help the cyclability of the electrodes as it allows a rapid Li-ion transport.

  16. Electrolyte Mixtures Based on Ethylene Carbonate and Dimethyl Sulfone for Li-Ion Batteries with Improved Safety Characteristics.

    PubMed

    Hofmann, Andreas; Migeot, Matthias; Thißen, Eva; Schulz, Michael; Heinzmann, Ralf; Indris, Sylvio; Bergfeldt, Thomas; Lei, Boxia; Ziebert, Carlos; Hanemann, Thomas

    2015-06-01

    In this study, novel electrolyte mixtures for Li-ion cells are presented with highly improved safety features. The electrolyte formulations are composed of ethylene carbonate/dimethyl sulfone (80:20 wt/wt) as the solvent mixture and LiBF4 , lithium bis(trifluoromethanesulfonyl)azanide, and lithium bis(oxalato)borate as the conducting salts. Initially, the electrolytes are characterized with regard to their physical properties, their lithium transport properties, and their electrochemical stability. The key advantages of the electrolytes are high flash points of >140 °C, which enhance significantly the intrinsic safety of Li-ion cells containing these electrolytes. This has been quantified by measurements in an accelerating rate calorimeter. By using the newly developed electrolytes, which are liquid down to T=-10 °C, it is possible to achieve C-rates of up to 1.5 C with >80 % of the initial specific capacity. During 100 cycles in cell tests (graphite||LiNi1/3 Co1/3 Mn1/3 O2 ), it is proven that the retention of the specific capacity is >98 % of the third discharge cycle with dependence on the conducting salt. The best electrolyte mixture yields a capacity retention of >96 % after 200 cycles in coin cells. PMID:25950145

  17. Electrolyte Mixtures Based on Ethylene Carbonate and Dimethyl Sulfone for Li-Ion Batteries with Improved Safety Characteristics.

    PubMed

    Hofmann, Andreas; Migeot, Matthias; Thißen, Eva; Schulz, Michael; Heinzmann, Ralf; Indris, Sylvio; Bergfeldt, Thomas; Lei, Boxia; Ziebert, Carlos; Hanemann, Thomas

    2015-06-01

    In this study, novel electrolyte mixtures for Li-ion cells are presented with highly improved safety features. The electrolyte formulations are composed of ethylene carbonate/dimethyl sulfone (80:20 wt/wt) as the solvent mixture and LiBF4 , lithium bis(trifluoromethanesulfonyl)azanide, and lithium bis(oxalato)borate as the conducting salts. Initially, the electrolytes are characterized with regard to their physical properties, their lithium transport properties, and their electrochemical stability. The key advantages of the electrolytes are high flash points of >140 °C, which enhance significantly the intrinsic safety of Li-ion cells containing these electrolytes. This has been quantified by measurements in an accelerating rate calorimeter. By using the newly developed electrolytes, which are liquid down to T=-10 °C, it is possible to achieve C-rates of up to 1.5 C with >80 % of the initial specific capacity. During 100 cycles in cell tests (graphite||LiNi1/3 Co1/3 Mn1/3 O2 ), it is proven that the retention of the specific capacity is >98 % of the third discharge cycle with dependence on the conducting salt. The best electrolyte mixture yields a capacity retention of >96 % after 200 cycles in coin cells.

  18. High-rate aluminium yolk-shell nanoparticle anode for Li-ion battery with long cycle life and ultrahigh capacity.

    PubMed

    Li, Sa; Niu, Junjie; Zhao, Yu Cheng; So, Kang Pyo; Wang, Chao; Wang, Chang An; Li, Ju

    2015-01-01

    Alloy-type anodes such as silicon and tin are gaining popularity in rechargeable Li-ion batteries, but their rate/cycling capabilities should be improved. Here by making yolk-shell nanocomposite of aluminium core (30 nm in diameter) and TiO2 shell (∼3 nm in thickness), with a tunable interspace, we achieve 10 C charge/discharge rate with reversible capacity exceeding 650 mAh g(-1) after 500 cycles, with a 3 mg cm(-2) loading. At 1 C, the capacity is approximately 1,200 mAh g(-1) after 500 cycles. Our one-pot synthesis route is simple and industrially scalable. This result may reverse the lagging status of aluminium among high-theoretical-capacity anodes. PMID:26243004

  19. Eutectic nano-droplet template injection into bulk silicon to construct porous frameworks with concomitant conformal coating as anodes for Li-ion batteries.

    PubMed

    Qu, Fei; Li, Chilin; Wang, Zumin; Wen, Yuren; Richter, Gunther; Strunk, Horst P

    2015-01-01

    Building porosity in monolithic materials is highly desired to design 3D electrodes, however ex-situ introduction or in-situ generation of nano-scale sacrificial template is still a great challenge. Here Al-Si eutectic droplet templates are uniformly injected into bulk Si through Al-induced solid-solid convection to construct a highly porous Si framework. This process is concomitant with process-inherent conformal coating of ion-conductive oxide. Such an all-in-one method has generated a (continuously processed) high-capacity Si anode integrating longevity and stable electrolyte-anode diaphragm for Li-ion batteries (e.g. a reversible capacity as large as ~1800 mAh/g or ~350 μAh/cm(2)-μm with a CE of ~99% at 0.1 C after long-term 400 cycles). PMID:25988370

  20. Material/element-dependent fluorescence-yield modes on soft X-ray absorption spectroscopy of cathode materials for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Asakura, Daisuke; Hosono, Eiji; Nanba, Yusuke; Zhou, Haoshen; Okabayashi, Jun; Ban, Chunmei; Glans, Per-Anders; Guo, Jinghua; Mizokawa, Takashi; Chen, Gang; Achkar, Andrew J.; Hawthron, David G.; Regier, Thomas Z.; Wadati, Hiroki

    2016-03-01

    We evaluate the utilities of fluorescence-yield (FY) modes in soft X-ray absorption spectroscopy (XAS) of several cathode materials for Li-ion batteries. In the case of total-FY (TFY) XAS for LiNi0.5Mn1.5O4, the line shape of the Mn L3-edge XAS was largely distorted by the self-absorption and saturation effects, while the distortions were less pronounced at the Ni L3 edge. The distortions were suppressed for the inverse-partial-FY (IPFY) spectra. We found that, in the cathode materials, the IPFY XAS is highly effective for the Cr, Mn, and Fe L edges and the TFY and PFY modes are useful enough for the Ni L edge which is far from the O K edge.

  1. CuO single crystal with exposed {001} facets--a highly efficient material for gas sensing and Li-ion battery applications.

    PubMed

    Su, Dawei; Xie, Xiuqiang; Dou, Shixue; Wang, Guoxiu

    2014-01-01

    Single crystal copper oxide nanoplatelets with a high percentage of {001} facets were synthesized by a facile hydrothermal approach. The as-prepared materials were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, and high resolution transmission microscopy. Via density functional theory calculations, it was found that the {001} facets are active crystal planes. When the single crystal CuO nanoplatelets were applied as an anode material in Li-ion batteries, they demonstrated outstanding electrochemical performance with high lithium storage capacity, satisfactory cyclability, and excellent high rate capacity. When used as a sensing material in gas sensors, they exhibited a superior sensitivity towards toxic and flammable gases. PMID:25169039

  2. High-rate aluminium yolk-shell nanoparticle anode for Li-ion battery with long cycle life and ultrahigh capacity.

    PubMed

    Li, Sa; Niu, Junjie; Zhao, Yu Cheng; So, Kang Pyo; Wang, Chao; Wang, Chang An; Li, Ju

    2015-08-05

    Alloy-type anodes such as silicon and tin are gaining popularity in rechargeable Li-ion batteries, but their rate/cycling capabilities should be improved. Here by making yolk-shell nanocomposite of aluminium core (30 nm in diameter) and TiO2 shell (∼3 nm in thickness), with a tunable interspace, we achieve 10 C charge/discharge rate with reversible capacity exceeding 650 mAh g(-1) after 500 cycles, with a 3 mg cm(-2) loading. At 1 C, the capacity is approximately 1,200 mAh g(-1) after 500 cycles. Our one-pot synthesis route is simple and industrially scalable. This result may reverse the lagging status of aluminium among high-theoretical-capacity anodes.

  3. Eutectic Nano-Droplet Template Injection into Bulk Silicon to Construct Porous Frameworks with Concomitant Conformal Coating as Anodes for Li-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Qu, Fei; Li, Chilin; Wang, Zumin; Wen, Yuren; Richter, Gunther; Strunk, Horst P.

    2015-05-01

    Building porosity in monolithic materials is highly desired to design 3D electrodes, however ex-situ introduction or in-situ generation of nano-scale sacrificial template is still a great challenge. Here Al-Si eutectic droplet templates are uniformly injected into bulk Si through Al-induced solid-solid convection to construct a highly porous Si framework. This process is concomitant with process-inherent conformal coating of ion-conductive oxide. Such an all-in-one method has generated a (continuously processed) high-capacity Si anode integrating longevity and stable electrolyte-anode diaphragm for Li-ion batteries (e.g. a reversible capacity as large as ~1800 mAh/g or ~350 μAh/cm2-μm with a CE of ~99% at 0.1 C after long-term 400 cycles).

  4. High-rate aluminium yolk-shell nanoparticle anode for Li-ion battery with long cycle life and ultrahigh capacity

    PubMed Central

    Li, Sa; Niu, Junjie; Zhao, Yu Cheng; So, Kang Pyo; Wang, Chao; Wang, Chang An; Li, Ju

    2015-01-01

    Alloy-type anodes such as silicon and tin are gaining popularity in rechargeable Li-ion batteries, but their rate/cycling capabilities should be improved. Here by making yolk-shell nanocomposite of aluminium core (30 nm in diameter) and TiO2 shell (∼3 nm in thickness), with a tunable interspace, we achieve 10 C charge/discharge rate with reversible capacity exceeding 650 mAh g−1 after 500 cycles, with a 3 mg cm−2 loading. At 1 C, the capacity is approximately 1,200 mAh g−1 after 500 cycles. Our one-pot synthesis route is simple and industrially scalable. This result may reverse the lagging status of aluminium among high-theoretical-capacity anodes. PMID:26243004

  5. Ternary Cu2SnS3 cabbage-like nanostructures: large-scale synthesis and their application in Li-ion batteries with superior reversible capacity

    NASA Astrophysics Data System (ADS)

    Qu, Baihua; Li, Hongxing; Zhang, Ming; Mei, Lin; Chen, Libao; Wang, Yanguo; Li, Qiuhong; Wang, Taihong

    2011-10-01

    In this paper, novel ternary Cu2SnS3 cabbage-like nanostructures are synthesized on a large scale via a facile solvothermal route. The individual Cu2SnS3 cabbage-like hierarchitecture is constructed from 2D nanosheets with thickness of about 15.6 nm. The Cu2SnS3 electrodes exhibit an initial reversible capacity of 842 mAh g-1 and still reach 621 mAh g-1 after 50 cycles. Such an admirable performance could be related to their 3D porous structural features as well as the high electrical conductivity induced by Cu. The electrochemical properties of the 3D hierarchical nanostructures imply its potential application in high energy density Li-ion batteries.

  6. CuO single crystal with exposed {001} facets - A highly efficient material for gas sensing and Li-ion battery applications

    PubMed Central

    Su, Dawei; Xie, Xiuqiang; Dou, Shixue; Wang, Guoxiu

    2014-01-01

    Single crystal copper oxide nanoplatelets with a high percentage of {001} facets were synthesized by a facile hydrothermal approach. The as-prepared materials were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, and high resolution transmission microscopy. Via density functional theory calculations, it was found that the {001} facets are active crystal planes. When the single crystal CuO nanoplatelets were applied as an anode material in Li-ion batteries, they demonstrated outstanding electrochemical performance with high lithium storage capacity, satisfactory cyclability, and excellent high rate capacity. When used as a sensing material in gas sensors, they exhibited a superior sensitivity towards toxic and flammable gases. PMID:25169039

  7. Formation of Sn-M (M=Fe, Al, Ni) alloy nanoparticles by DC arc-discharge and their electrochemical properties as anodes for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Gao, Song; Huang, Hao; Wu, Aimin; Yu, Jieyi; Gao, Jian; Dong, Xinglong; Liu, Chunjing; Cao, Guozhong

    2016-10-01

    A direct current arc-discharge method was applied to prepare the Sn-M (M=Fe, Al, Ni) bi-alloy nanoparticles. Thermodynamic is introduced to analyze the energy circumstances for the formation of the nanoparticles during the physical condensation process. The electrochemical properties of as-prepared Sn-M alloy nanoparticles are systematically investigated as anodes of Li-ion batteries. Among them, Sn-Fe nanoparticles electrode exhibits high Coulomb efficiency (about 71.2%) in the initial charge/discharge (257.9 mA h g-1/366.6 mA h g-1) and optimal cycle stability (a specific reversible capacity of 240 mA h g-1 maintained after 20 cycles) compared with others. Large differences in the electrochemical behaviors indicate that the chemical composition and microstructure of the nanoparticles determine the lithium-ion storage properties and the long-term cyclic stability during the charge/discharge process.

  8. Eutectic Nano-Droplet Template Injection into Bulk Silicon to Construct Porous Frameworks with Concomitant Conformal Coating as Anodes for Li-Ion Batteries

    PubMed Central

    Qu, Fei; Li, Chilin; Wang, Zumin; Wen, Yuren; Richter, Gunther; Strunk, Horst P.

    2015-01-01

    Building porosity in monolithic materials is highly desired to design 3D electrodes, however ex-situ introduction or in-situ generation of nano-scale sacrificial template is still a great challenge. Here Al-Si eutectic droplet templates are uniformly injected into bulk Si through Al-induced solid-solid convection to construct a highly porous Si framework. This process is concomitant with process-inherent conformal coating of ion-conductive oxide. Such an all-in-one method has generated a (continuously processed) high-capacity Si anode integrating longevity and stable electrolyte-anode diaphragm for Li-ion batteries (e.g. a reversible capacity as large as ~1800 mAh/g or ~350 μAh/cm2-μm with a CE of ~99% at 0.1 C after long-term 400 cycles). PMID:25988370

  9. Structural Evolution of Electrochemically Lithiated MoS2 Nanosheets and the Role of Carbon Additive in Li-Ion Batteries

    PubMed Central

    2016-01-01

    Understanding the structure and phase changes associated with conversion-type materials is key to optimizing their electrochemical performance in Li-ion batteries. For example, molybdenum disulfide (MoS2) offers a capacity up to 3-fold higher (∼1 Ah/g) than the currently used graphite anodes, but they suffer from limited Coulombic efficiency and capacity fading. The lack of insights into the structural dynamics induced by electrochemical conversion of MoS2 still hampers its implementation in high energy-density batteries. Here, by combining ab initio density-functional theory (DFT) simulation with electrochemical analysis, we found new sulfur-enriched intermediates that progressively insulate MoS2 electrodes and cause instability from the first discharge cycle. Because of this, the choice of conductive additives is critical for the battery performance. We investigate the mechanistic role of carbon additive by comparing equal loading of standard Super P carbon powder and carbon nanotubes (CNTs). The latter offer a nearly 2-fold increase in capacity and a 45% reduction in resistance along with Coulombic efficiency of over 90%. These insights into the phase changes during MoS2 conversion reactions and stabilization methods provide new solutions for implementing cost-effective metal sulfide electrodes, including Li–S systems in high energy-density batteries.

  10. SnO2 anode surface passivation by atomic layer deposited HfO2 improves Li-ion battery performance.

    PubMed

    Yesibolati, Nulati; Shahid, Muhammad; Chen, Wei; Hedhili, M N; Reuter, M C; Ross, F M; Alshareef, H N

    2014-07-23

    For the first time, it is demonstrated that nanoscale HfO2 surface passivation layers formed by atomic layer deposition (ALD) significantly improve the performance of Li ion batteries with SnO2 -based anodes. Specifically, the measured battery capacity at a current density of 150 mAg(-1) after 100 cycles is 548 and 853 mAhg(-1) for the uncoated and HfO2 -coated anodes, respectively. Material analysis reveals that the HfO2 layers are amorphous in nature and conformably coat the SnO2 -based anodes. In addition, the analysis reveals that ALD HfO2 not only protects the SnO2 -based anodes from irreversible reactions with the electrolyte and buffers its volume change, but also chemically interacts with the SnO2 anodes to increase battery capacity, despite the fact that HfO2 is itself electrochemically inactive. The amorphous nature of HfO2 is an important factor in explaining its behavior, as it still allows sufficient Li diffusion for an efficient anode lithiation/delithiation process to occur, leading to higher battery capacity.

  11. Pomegranate-Structured Conversion-Reaction Cathode with a Built-in Li Source for High-Energy Li-Ion Batteries.

    PubMed

    Fan, Xiulin; Zhu, Yujie; Luo, Chao; Suo, Liumin; Lin, Yan; Gao, Tao; Xu, Kang; Wang, Chunsheng

    2016-05-24

    Transition metal fluorides (such as FeF3 or CoF2) promise significantly higher theoretical capacities (>571 mAh g(-1)) than the cathode materials currently used in Li-ion batteries. However, their practical application faces major challenges that include poor electrochemical reversibility induced by the repeated bond-breaking and formation and the accompanied volume changes and the difficulty of building an internal Li source within the material so that a full Li-ion cell could be assembled at a discharged state without inducing further technical risk and cost issues. In this work, we effectively addressed these challenges by designing and synthesizing, via an aerosol-spray pyrolysis technique, a pomegranate-structured nanocomposite FeM/LiF/C (M = Co, Ni), in which 2-3 nm carbon-coated FeM nanoparticles (∼10 nm in diameter) and LiF nanoparticles (∼20 nm) are uniformly embedded in a porous carbon sphere matrix (100-1000 nm). This uniquely architectured nanocomposite was made possible by the extremely short pyrolysis time (∼1 s) and carbon coating in a high-temperature furnace, which prevented the overgrowth of FeM and LiF in the primordial droplet that serves as the carbon source. The presence of Ni or Co in FeM/LiF/C effectively suppresses the formation of Fe3C and further reduces the metallic particle size. The pomegranate architecture ensures the intimate contact among FeM, LiF, and C, thus significantly enhancing the conversion-reaction kinetics, while the nanopores inside the pomegranate-like carbon matrix, left by solvent evaporation during the pyrolysis, effectively accommodate the volume change of FeM/LiF during charge/discharge. Thus, the FeM/LiF/C nanocomposite shows a high specific capacity of >300 mAh g(-1) for more than 100 charge/discharge cycles, which is one of the best performances among all of the prelithiated metal fluoride cathodes ever reported. The pomegranate-structured FeM/LiF/C with its built-in Li source provides an inspiration to the

  12. Original electrochemical mechanisms of CaSnO{sub 3} and CaSnSiO{sub 5} as anode materials for Li-ion batteries

    SciTech Connect

    Mouyane, M.; Womes, M.; Jumas, J.C.; Olivier-Fourcade, J.; Lippens, P.E.

    2011-11-15

    Calcium stannate (CaSnO{sub 3}) and malayaite (CaSnSiO{sub 5}) were synthesized by means of a high temperature solid-state reaction. Their crystal structures and morphologies were characterized by X-ray diffraction (XRD) and Scanning Electron Microscopy; their electrochemical properties were analyzed by galvanostatic tests. The amorphization of the initial electrode materials was followed by XRD. The first discharge of the oxides CaSnO{sub 3} and CaSnSiO{sub 5} shows a plateau at low potential, which is due to the progressive formation of Li-Ca-Sn and/or Li-Sn alloys as shown by {sup 119}Sn Moessbauer spectroscopy. The results reveal similar electrochemical mechanisms for CaSnO{sub 3} and CaSnSiO{sub 5} but they completely differ from those related to SnO{sub 2}. - Graphical abstract: {sup 119}Sn Moessbauer spectra at the end of the first discharge of CaSnO{sub 3} (dashed line) and CaSnSiO{sub 5} (solid line) anodes for Li-ion batteries. Inset shows that relative amounts of Sn(0) based alloys formed during the first discharge are similar for CaSnO{sub 3} and CaSnSiO{sub 5} pristine materials. Highlights: > CaSnSiO{sub 5} and CaSnO{sub 3} as anode materials for Li-ion batteries. > X-ray diffraction and Moessbauer spectroscopy, to explain the electrochemical mechanisms. > Similar mechanisms for the two compounds but different from those of SnO{sub 2} due to Ca.

  13. Porous carbon spheres and monoliths: morphology control, pore size tuning and their applications as Li-ion battery anode materials.

    PubMed

    Roberts, Aled D; Li, Xu; Zhang, Haifei

    2014-07-01

    The development of the next generation of advanced lithium-ion batteries (LIBs) requires new & advanced materials and novel fabrication techniques in order to push the boundaries of performance and open up new and exciting markets. Structured carbon materials, with controlled pore features on the micron and nanometer scales, are explored as advanced alternatives to conventional graphite as the active material of the LIB anode. Mesoporous carbon materials, carbon nanotube-based materials, and graphene-based materials have been extensively investigated and reviewed. Morphology control (e.g., colloids, thin films, nanofibrous mats, monoliths) and hierarchical pores (particularly the presence of large pores) exhibit an increasing influence on LIB performance. This tutorial review focuses on the synthetic techniques for preparation of porous carbon spheres and carbon monoliths, including hydrothermal carbonization, emulsion templating, ice templating and new developments in making porous carbons from sustainable biomass and metal-organic framework templating. We begin with a brief introduction to LIBs, defining key parameters and terminology used to assess the performance of anode materials, and then address synthetic techniques for the fabrication of carbon spheres & monoliths and the relevant composites, followed, respectively, by a review of their performance as LIB anode materials. The review is completed with a prospective view on the possible direction of future research in this field.

  14. Thick solid electrolyte interphases grown on silicon nanocone anodes during slow cycling and their negative effects on the performance of Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Luo, Fei; Chu, Geng; Xia, Xiaoxiang; Liu, Bonan; Zheng, Jieyun; Li, Junjie; Li, Hong; Gu, Changzhi; Chen, Liquan

    2015-04-01

    Thickness, homogeneity and coverage of the surface passivation layer on Si anodes for Li-ion batteries have decisive influences on their cyclic performance and coulombic efficiency, but related information is difficult to obtain, especially during cycling. In this work, a well-defined silicon nanocone (SNC) on silicon wafer sample has been fabricated as a model electrode in lithium ion batteries to investigate the growth of surface species on the SNC electrode during cycling using ex situ scanning electronic microscopy. It is observed that an extra 5 μm thick layer covers the top of the SNCs after 25 cycles at 0.1 C. This top layer has been proven to be a solid electrolyte interphase (SEI) layer by designing a solid lithium battery. It is noticed that the SEI layer is much thinner at a high rate of 1 C. The cyclic performance of the SNCs at 1 C looks much better than that of the same electrode at 0.1 C in the half cell. Our findings clearly demonstrate that the formation of the thick SEI on the naked nanostructured Si anode during low rate cycling is a serious problem for practical applications. An in depth understanding of this problem may provide valuable guidance in designing Si-based anode materials.

  15. Combinatorial Study of the Li-Ni-Mn-Co Oxide Pseudoquaternary System for Use in Li-Ion Battery Materials Research.

    PubMed

    Brown, Colby R; McCalla, Eric; Watson, Cody; Dahn, J R

    2015-06-01

    Combinatorial synthesis has proven extremely effective in screening for new battery materials for Li-ion battery electrodes. Here, a study in the Li-Ni-Mn-Co-O system is presented, wherein samples with nearly 800 distinct compositions were prepared using a combinatorial and high-throughput method to screen for single-phase materials of high interest as next generation positive electrode materials. X-ray diffraction is used to determine the crystal structure of each sample. The Gibbs' pyramid representing the pseudoquaternary system was studied by making samples within three distinct pseudoternary planes defined at fractional cobalt metal contents of 10%, 20%, and 30% within the Li-Ni-Mn-Co-O system. Two large single-phase regions were observed in the system: the layered region (ordered rocksalt) and cubic spinel region; both of which are of interest for next-generation positive electrodes in lithium-ion batteries. These regions were each found to stretch over a wide range of compositions within the Li-Ni-Mn-Co-O pseudoquaternary system and had complex coexistence regions existing between them. The sample cooling rate was found to have a significant effect on the position of the phase boundaries of the single-phase regions. The results of this work are intended to guide further research by narrowing the composition ranges worthy of study and to illustrate the broad range of applications where solution-based combinatorial synthesis can have significant impact.

  16. Role of Ce and In doping in the performance of LiFePO4 cathode material for Li ion Batteries

    NASA Astrophysics Data System (ADS)

    Mandal, Balaji; Nazri, Mariam; Vaishnava, Prem P.; Naik, Vaman M.; Nazri, Gholam A.; Naik, Ratna

    2012-02-01

    Recently, the olivine LiFePO4 has attracted attention as a promising cathode material for Li ion batteries. However, its poor electronic conductivity is a major challenge for its industrial applications. Different approaches have been taken to address this problem. Here, we report a method of improving its conductivity by doping In and Ce ions at the Fe site. We prepared the samples by sol-gel method followed by annealing at 650 C in Ar (95%) +H2(5%) atmosphere for 5 hrs. XRD and Raman spectroscopy confirm that the olivine structure remains unchanged upon doping with In and Ce up to 5 wt%. XRD analysis shows the values of the lattice parameters increase with doping as the ionic radii of Ce and In ions are larger than that of the Fe^2+ ion. This observation also suggests that both Ce and In ions replace Fe ions and not the Li ions in the material. Upon doping, ionic conductivity was found to increase from 10-9 to 10-4 Ohm-1cm-1. Interestingly, Ce doped LiFePO4 showed a higher conductivity than In doped LiFePO4. SEM measurements show a bigger grain size of ˜300-500 nm in doped LiFePO4 which decreased to ˜50 nm when the materials were synthesized using 0.25M lauric acid as a precursor. The electrochemical characteristics of the doped LiFePO4 along with conductivity and Raman data will be presented.

  17. Platform Li-Ion Battery Risk Assessment Tool: Cooperative Research and Development Final Report, CRADA Number CRD-01-406

    SciTech Connect

    Santhanagopalan, S.

    2012-07-01

    The pressure within a lithium-ion cell changes due to various chemical reactions. When a battery undergoes an unintended short circuit, the pressure changes are drastic - and often lead to uncontrolled failure of the cells. As part of work for others with Oceanit Laboratories Inc. for the NAVY STTR, NREL built Computational Fluid Dynamic (CFD) simulations that can identify potential weak spots in the battery during such events, as well as propose designs to control violent failure of batteries.

  18. Contribution to the understanding of capacity fading in graphene nanosheets acting as an anode in full Li-ion batteries.

    PubMed

    Vargas, Óscar; Caballero, Álvaro; Morales, Julián; Rodríguez-Castellón, Enrique

    2014-03-12

    Graphene nanosheets (GNS) were used as anodes in full Li-ion cells and LiFePO4 (LFPO) was used as the cathode. A rapid decrease in capacity was observed following the first cycle, the origin of which was assigned to Li consumption in the solid-electrolyte interface (SEI) formation. A reduction of the irreversible capacity from 120 to a value as low as 20 mAh g(-1), similar to a commercial graphite anode, was possible through a prelithiation treatment prior to cell assembling. However, the GNS electrode barely delivered a capacity ca. 40 mAh g(-1) at the end of cycle 50, notably lower than that of the graphite electrode (ca. 100 mAh g(-1)). X-ray photoelectron spectroscopy spectra of the pristine electrodes at the end of 6th and 22nd charges, combined with depth profile analysis, supplied valuable information on the thickness and composition of the SEI. The spectra revealed that the SEI formed on the graphite electrode was much thicker than that formed on the GNS electrode and that its composition was controlled mainly by Li2CO3. The strength and the stability of Li2CO3 are two requisites for establishing a good SEI, which is the reason why the cell made from graphite performed better.

  19. Hierarchical nanocomposites of vanadium oxide thin film anchored on graphene as high-performance cathodes in li-ion batteries.

    PubMed

    Li, Zhe-Fei; Zhang, Hangyu; Liu, Qi; Liu, Yadong; Stanciu, Lia; Xie, Jian

    2014-11-12

    Hierarchical nanocomposites of V2O5 thin film anchored on graphene sheets were prepared by slow hydrolysis of vanadyl triisobutoxide on graphene oxide followed by thermal treatment. The nanocomposite possessed a hierarchical structure of thin V2O5 film uniformly grown on graphene, leading to a high specific surface area and a good electronic/ionic conducting path. When used as the cathode material, the graphene/V2O5 nanosheet nanocomposites exhibit higher specific capacity, better rate performance, and longer cycle life, as compared to the pure V2O5. The nanocomposite cathode was able to deliver a specific capacity of 243 mAh/g, 191 mAh/g, and 86 mAh/g at a current density of 50 mA/g, 500 mA/g, and 15 A/g, respectively. Even after 300 cycles at 500 mA/g, the composite electrode still exhibited a specific capacity of ∼ 122 mAh/g, which corresponds to ∼ 64% of its initial capacity. This enhanced electrochemical performance can be attributed to facile electron transport between graphene and V2O5, fast Li-ion diffusion within the electrode, the high surface area of the composites, and a pore structure that can accommodate the volume change during lithiation/delithiation, which results from the unique hierarchical nanostructure of the V2O5 anchored on graphene.

  20. Platform Li-Ion Battery Risk Assessment Tool: Cooperative Research and Development Final Report, CRADA Number CRD-10-407

    SciTech Connect

    Smith, K.

    2012-01-01

    Creare was awarded a Phase 1 STTR contract from the US Office of Naval Research, with a seven month period of performance from 6/28/2010 to 1/28/2011. The objectives of the STTR were to determine the feasibility of developing a software package for estimating reliability of battery packs, and develop a user interface to allow the designer to assess the overall impact on battery packs and host platforms for cell-level faults. NREL served as sub-tier partner to Creare, providing battery modeling and battery thermal safety expertise.

  1. Cradle-to-Gate Emissions from a Commercial Electric Vehicle Li-Ion Battery: A Comparative Analysis.

    PubMed

    Kim, Hyung Chul; Wallington, Timothy J; Arsenault, Renata; Bae, Chulheung; Ahn, Suckwon; Lee, Jaeran

    2016-07-19

    We report the first cradle-to-gate emissions assessment for a mass-produced battery in a commercial battery electric vehicle (BEV); the lithium-ion battery pack used in the Ford Focus BEV. The assessment was based on the bill of materials and primary data from the battery industry, that is, energy and materials input data from the battery cell and pack supplier. Cradle-to-gate greenhouse gas (GHG) emissions for the 24 kWh Ford Focus lithium-ion battery are 3.4 metric tonnes of CO2-eq (140 kg CO2-eq per kWh or 11 kg CO2-eq per kg of battery). Cell manufacturing is the key contributor accounting for 45% of the GHG emissions. We review published studies of GHG emissions associated with battery production to compare and contrast with our results. Extending the system boundary to include the entire vehicle we estimate a 39% increase in the cradle-to-gate GHG emissions of the Focus BEV compared to the Focus internal combustion engine vehicle (ICEV), which falls within the range of literature estimates of 27-63% increases for hypothetical nonproduction BEVs. Our results reduce the uncertainties associated with assessment of BEV battery production, serve to identify opportunities to reduce emissions, and confirm previous assessments that BEVs have great potential to reduce GHG emissions over the full life cycle and provide local emission free mobility. PMID:27303957

  2. Cradle-to-Gate Emissions from a Commercial Electric Vehicle Li-Ion Battery: A Comparative Analysis.

    PubMed

    Kim, Hyung Chul; Wallington, Timothy J; Arsenault, Renata; Bae, Chulheung; Ahn, Suckwon; Lee, Jaeran

    2016-07-19

    We report the first cradle-to-gate emissions assessment for a mass-produced battery in a commercial battery electric vehicle (BEV); the lithium-ion battery pack used in the Ford Focus BEV. The assessment was based on the bill of materials and primary data from the battery industry, that is, energy and materials input data from the battery cell and pack supplier. Cradle-to-gate greenhouse gas (GHG) emissions for the 24 kWh Ford Focus lithium-ion battery are 3.4 metric tonnes of CO2-eq (140 kg CO2-eq per kWh or 11 kg CO2-eq per kg of battery). Cell manufacturing is the key contributor accounting for 45% of the GHG emissions. We review published studies of GHG emissions associated with battery production to compare and contrast with our results. Extending the system boundary to include the entire vehicle we estimate a 39% increase in the cradle-to-gate GHG emissions of the Focus BEV compared to the Focus internal combustion engine vehicle (ICEV), which falls within the range of literature estimates of 27-63% increases for hypothetical nonproduction BEVs. Our results reduce the uncertainties associated with assessment of BEV battery production, serve to identify opportunities to reduce emissions, and confirm previous assessments that BEVs have great potential to reduce GHG emissions over the full life cycle and provide local emission free mobility.

  3. In situ analysis of capacity fade in thin-film anodes for high performance Li-ion all-solid-state batteries

    NASA Astrophysics Data System (ADS)

    Leite, Marina S.; Gong, Chen; Ruzmetov, Dmitry; Talin, A. Alec

    There is still a pressing need to understand how the solid-interfaces in Li-ion all-solid-batteries form, including their chemical composition and electrical characteristics. In order to resolve the origin of the degradation mechanism in Al anodes, we combine in situ scanning electron microscopy in ultra-high vacuum with electrochemical cycling, in addition to ex situ characterization of the morphological, chemical, and electrical changes of the Al anodes upon lithiation. An AlLi alloy capped by a stable Al-Li-O is formed on the top surface of the anode, trapping Li, which results in the capacity fade, from 48.0 to 41.5 μ.Ah/cm2 in two cycles. The addition of a Cu capping layer is insufficient to prevent the device degradation because of the fast Li diffusion within Al. Yet, Si present extremely stable cycling: >92% of capacity retention after 100 cycles, with average Coulombic efficiency of 98%. Our in situ measurements represent a new platform for probing the real-time degradation of electrodes in all-solid-state batteries for energy storage devices.

  4. Synthesis and extreme rate capability of Si-Al-C-N functionalized carbon nanotube spray-on coatings as Li-ion battery electrode.

    PubMed

    David, Lamuel; Asok, Deepu; Singh, Gurpreet

    2014-09-24

    Silicon-based precursor derived glass-ceramics or PDCs have proven to be an attractive alternative anode material for Li ion batteries. Main challenges associated with PDC anodes are their low electrical conductivity, first cycle loss, and meager C-rate performance. Here, we show that thermal conversion of single source aluminum-modified polysilazane on the surfaces of carbon nanotubes (CNTs) results in a robust Si-Al-C-N/CNT shell/core composite that offers extreme C-rate capability as battery electrode. Addition of Al to the molecular network of Si-C-N improved electrical conductivity of Si-C-N by 4 orders of magnitude, while interfacing with CNTs showed 7-fold enhancement. Further, we present a convenient spray-coating technique for PDC composite electrode preparation that eliminates polymeric binder and conductive agent there-by reducing processing steps and eradicating foreign material in the electrode. The Si-Al-C-N/CNT electrode showed stable charge capacity of 577 mAh g(-1) at 100 mA g(-1) and a remarkable 400 mAh g(-1) at 10,000 mA g(-1), which is the highest reported value for a silazane derived glass-ceramic or nanocomposite electrode. Under symmetric cycling conditions, a high charge capacity of ∼350 mA g(-1) at 1600 mA g(-1) was continuously observed for over 1000 cycles.

  5. Synthesis and extreme rate capability of Si-Al-C-N functionalized carbon nanotube spray-on coatings as Li-ion battery electrode.

    PubMed

    David, Lamuel; Asok, Deepu; Singh, Gurpreet

    2014-09-24

    Silicon-based precursor derived glass-ceramics or PDCs have proven to be an attractive alternative anode material for Li ion batteries. Main challenges associated with PDC anodes are their low electrical conductivity, first cycle loss, and meager C-rate performance. Here, we show that thermal conversion of single source aluminum-modified polysilazane on the surfaces of carbon nanotubes (CNTs) results in a robust Si-Al-C-N/CNT shell/core composite that offers extreme C-rate capability as battery electrode. Addition of Al to the molecular network of Si-C-N improved electrical conductivity of Si-C-N by 4 orders of magnitude, while interfacing with CNTs showed 7-fold enhancement. Further, we present a convenient spray-coating technique for PDC composite electrode preparation that eliminates polymeric binder and conductive agent there-by reducing processing steps and eradicating foreign material in the electrode. The Si-Al-C-N/CNT electrode showed stable charge capacity of 577 mAh g(-1) at 100 mA g(-1) and a remarkable 400 mAh g(-1) at 10,000 mA g(-1), which is the highest reported value for a silazane derived glass-ceramic or nanocomposite electrode. Under symmetric cycling conditions, a high charge capacity of ∼350 mA g(-1) at 1600 mA g(-1) was continuously observed for over 1000 cycles. PMID:25178109

  6. An oil droplet template method for the synthesis of hierarchical structured Co3O4/C anodes for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Sun, Jie; Liu, Haimei; Chen, Xu; Evans, David G.; Yang, Wensheng

    2013-07-01

    Superposed cobalt(ii)-cobalt(iii) layered double hydroxide (CoII-CoIII-LDH) nanoplates were synthesized by an oil droplet template method, in which the main steps are as follows: LDH nanosheets were first assembled on an oil droplet template to form a multishell sphere, and then the oil droplet was easily removed under centrifugal force due to its very different density from that of the assembled LDH shell. This resulted in the multishell spheres being split open to create superposed LDH nanoplates. The resulting material has a three-stage architecture, namely, the primary building blocks of nanosheets, the secondary architecture of shells derived from the nanosheets, and the long-range architecture of superposed nanoplates assembled from the vertically stacked shells. Most importantly, the as-fabricated LDH-based hierarchical structure can be readily converted to a Co3O4/C composite via calcination, without obvious structural alteration, where the residual surfactant is the source of the carbon. When used as an anode material for Li-ion batteries, the Co3O4/C electrode exhibits an excellent electrochemical performance, which is attributed to the unique hierarchically porous structure.Superposed cobalt(ii)-cobalt(iii) layered double hydroxide (CoII-CoIII-LDH) nanoplates were synthesized by an oil droplet template method, in which the main steps are as follows: LDH nanosheets were first assembled on an oil droplet template to form a multishell sphere, and then the oil droplet was easily removed under centrifugal force due to its very different density from that of the assembled LDH shell. This resulted in the multishell spheres being split open to create superposed LDH nanoplates. The resulting material has a three-stage architecture, namely, the primary building blocks of nanosheets, the secondary architecture of shells derived from the nanosheets, and the long-range architecture of superposed nanoplates assembled from the vertically stacked shells. Most

  7. Three-dimensional honeycomb-like networks of birnessite manganese oxide assembled by ultrathin two-dimensional nanosheets with enhanced Li-ion battery performances

    NASA Astrophysics Data System (ADS)

    Dang, Liyun; Wei, Chengzhen; Ma, Haifeng; Lu, Qingyi; Gao, Feng

    2015-04-01

    Three-dimensional (3D) honeycomb-like birnessite networks composed of ultrathin two-dimensional (2D) nanosheets were firstly synthesized through a facile and low-cost synthetic route. By using carbon microspheres as a template instead of graphene, hierarchical birnessite structures assembled by ultrathin nanosheets including york-shell and hollow structures were obtained besides the ultrathin birnessite nanosheets with a thickness of about 0.7 nm. By assembling carbon spheres into an ordered 3D array, novel 3D honeycomb-like birnessite structures assembled by ultrathin nanosheets were firstly prepared. When evaluated as an anode material for Li-ion batteries, the 3D honeycomb-like networks show enhanced electrochemical performances with high capacities, excellent cycling stability and good rate capability, which can be ascribed to the novel 3D honeycomb-like macroporous structure with a 3D inverse opal structure, well-ordered macropores, interconnected walls and a regular periodicity.Three-dimensional (3D) honeycomb-like birnessite networks composed of ultrathin two-dimensional (2D) nanosheets were firstly synthesized through a facile and low-cost synthetic route. By using carbon microspheres as a template instead of graphene, hierarchical birnessite structures assembled by ultrathin nanosheets including york-shell and hollow structures were obtained besides the ultrathin birnessite nanosheets with a thickness of about 0.7 nm. By assembling carbon spheres into an ordered 3D array, novel 3D honeycomb-like birnessite structures assembled by ultrathin nanosheets were firstly prepared. When evaluated as an anode material for Li-ion batteries, the 3D honeycomb-like networks show enhanced electrochemical performances with high capacities, excellent cycling stability and good rate capability, which can be ascribed to the novel 3D honeycomb-like macroporous structure with a 3D inverse opal structure, well-ordered macropores, interconnected walls and a regular periodicity

  8. Probing the failure mechanism of nanoscale LiFePO{sub 4} for Li-ion batteries

    SciTech Connect

    Gu, Meng; Yan, Pengfei; Wang, Chongmin; Shi, Wei; Zheng, Jianming; Zhang, Ji-guang

    2015-05-18

    LiFePO{sub 4} is a high power rate cathode material for lithium ion battery and shows remarkable capacity retention, featuring a 91% capacity retention after 3300 cycles. In this work, we use high-resolution transmission electron microscopy and electron energy loss spectroscopy to study the gradual capacity fading mechanism of LiFePO{sub 4} materials. We found that upon prolonged electrochemical cycling of the battery, the LiFePO{sub 4} cathode shows surface amorphization and loss of oxygen species, which directly contribute to the gradual capacity fading of the battery. The finding can guide the design and improvement of LiFePO{sub 4} cathode for high-energy and high-power rechargeable battery for electric transportation.

  9. PHEV/EV Li-Ion Battery Second-Use Project, NREL (National Renewable Energy Laboratory) (Poster)

    SciTech Connect

    Newbauer, J.; Pesaran, A.

    2010-05-01

    Plug-in hybrid electric vehicles (PHEVs) and full electric vehicles (Evs) have great potential to reduce U.S. dependence on foreign oil and emissions. Battery costs need to be reduced by ~50% to make PHEVs cost competitive with conventional vehicles. One option to reduce initial costs is to reuse the battery in a second application following its retirement from automotive service and offer a cost credit for its residual value.

  10. Multi-layer electrode with nano-Li4Ti5O12 aggregates sandwiched between carbon nanotube and graphene networks for high power Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Choi, Jin-Hoon; Ryu, Won-Hee; Park, Kyusung; Jo, Jeong-Dai; Jo, Sung-Moo; Lim, Dae-Soon; Kim, Il-Doo

    2014-12-01

    Self-aggregated Li4Ti5O12 particles sandwiched between graphene nanosheets (GNSs) and single-walled carbon nanotubes (SWCNTs) network are reported as new hybrid electrodes for high power Li-ion batteries. The multi-layer electrodes are fabricated by sequential process comprising air-spray coating of GNSs layer and the following electrostatic spray (E-spray) coating of well-dispersed colloidal Li4Ti5O12 nanoparticles, and subsequent air-spray coating of SWCNTs layer once again. In multi-stacked electrodes of GNSs/nanoporous Li4Ti5O12 aggregates/SWCNTs networks, GNSs and SWCNTs serve as conducting bridges, effectively interweaving the nanoporous Li4Ti5O12 aggregates, and help achieve superior rate capability as well as improved mechanical stability of the composite electrode by holding Li4Ti5O12 tightly without a binder. The multi-stacked electrodes deliver a specific capacity that maintains an impressively high capacity of 100 mA h g-1 at a high rate of 100C even after 1000 cycles.

  11. Synthesis and characterization of nano-V2O5 by flame spray pyrolysis, and its cathodic performance in Li-ion rechargeable batteries

    NASA Astrophysics Data System (ADS)

    Sel, Sinem; Duygulu, Ozgur; Kadiroglu, Umit; Machin, Nesrin E.

    2014-11-01

    Vanadium pentoxide (V2O5) nano-particles have been synthesized by flame spray pyrolysis method to investigate their cathodic performance in Li-ion rechargeable batteries. They were characterized by surface area (Brunauer-Emmett-Teller, BET method), scanning electron microscopy (SEM), transmission electron microscopy-energy dispersive spectrometry (TEM-EDS), selected area electron diffraction (SAED), high resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD) methods. Spherical, crystalline (orthorhombic) nano-V2O5 particles were produced. The electrochemical tests, including cyclic voltammetry (CV) and ac impedance spectroscopy (IS), were performed to obtain the reversibility and conductivity kinetic parameters. From IS measurements, nano film conductivity was found to be 2.42 × 10-6 S cm-1, which is 10-fold higher than the commercial micro-particle V2O5 counterparts. From spectra, it was also found that the interfacial resistance became stable after 7200 s. The impedance results indicated that the rate of reaction at the interphase was controlled by both charge transfer and diffusion processes. The cyclic voltammogram showed high reversibility rate and low polarization.

  12. Separators for Li-ion and Li-metal battery including ionic liquid based electrolytes based on the TFSI- and FSI- anions.

    PubMed

    Kirchhöfer, Marija; von Zamory, Jan; Paillard, Elie; Passerini, Stefano

    2014-08-22

    The characterization of separators for Li-ion or Li-metal batteries incorporating hydrophobic ionic liquid electrolytes is reported herein. Ionic liquids made of N-butyl-N-methylpyrrolidinium (PYR14+) or N-methoxyethyl-N-methylpyrrolidinium (PYR12O1+), paired with bis(trifluoromethanesulfonyl)imide (TFSI-) or bis(fluorosulfonyl)imide (FSI-) anions, were tested in combination with separators having different chemistries and morphologies in terms of wetting behavior, Gurley and McMullin number, as well as Li/(Separator+Electrolyte) interfacial properties. It is shown that non-functionalized microporous polyolefin separators are poorly wetted by FSI--based electrolytes (contrary to TFSI--based electrolytes), while the ceramic coated separator Separion® allows good wetting with all electrolytes. Furthermore, by comparing the lithium solid electrolyte interphase (SEI) resistance evolution at open circuit and during cycling, depending on separator morphologies and chemistries, it is possible to propose a scale for SEI forming properties in the order: PYR12O1FSI>PYR14FSI>PYR14TFSI>PYR12O1TFSI. Finally, the impact the separator morphology is evidenced by the SEI resistance evolution and by comparing Li electrodes cycled using separators with two different morphologies.

  13. Energy-savvy solid-state and sonochemical synthesis of lithium sodium titanate as an anode active material for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Ghosh, Swatilekha; Kee, Yongho; Okada, Shigeto; Barpanda, Prabeer

    2015-11-01

    Lithium sodium titanate insertion-type anode has been synthesized by classical solid-state (dry) and an alternate solution-assisted (wet) sonochemical synthesis routes. Successful synthesis of the target compound has been realized using simple Na- and Li-hydroxide salts along with titania. In contrast to the previous reports, these energy-savvy synthesis routes can yield the final product by calcination at 650-750 °C for limited duration of 1-10 h. Owing to the restricted calcination duration (dry route for 1-2 h and wet route for 1-5 h), they yield homogeneous nanoscale lithium sodium titanate particles. Sonochemical synthesis reduces the lithium sodium titanate particle size down to 80-100 nm vis-à-vis solid-state method delivering larger (200-500 nm) particles. Independent of the synthetic methods, the end products deliver reversible electrochemical performance with reversible capacity exceeding 80 mAh·g-1 acting as a 1.3 V anode for Li-ion batteries.

  14. Template Free and Binderless NiO Nanowire Foam for Li-ion Battery Anodes with Long Cycle Life and Ultrahigh Rate Capability

    PubMed Central

    Liu, Chueh; Li, Changling; Ahmed, Kazi; Mutlu, Zafer; Ozkan, Cengiz S.; Ozkan, Mihrimah

    2016-01-01

    Herein, NiO-decorated Ni nanowires with diameters ca. 30–150 nm derived from Ni wire backbone (ca. 2 μm in diameter) is directly synthesized on commercially available Ni foam as a renovated anode for Li-ion batteries. Excellent stability with capacity 680 mAh g−1 at 0.5C (1C = 718 mA g−1) is achieved after 1000 cycles. Superior rate capability is exhibited by cycling at extremely high current rates, such as 20C and 50C with capacities ca. 164 and 75 mAh g−1, respectively. The capacity can be recovered back to ca. 430 mAh g−1 in 2 cycles when lowered to 0.2C and stably cycled for 430 times with capacity 460 mAh g−1. The NiO nanowire foam anode possesses low equivalent series resistance ca. 3.5 Ω, resulting in superior power performance and low resistive losses. The NiO nanowire foam can be manufactured with bio-friendly chemicals and low temperature processes without any templates, binders and conductive additives, which possesses the potential transferring from lab scale to industrial production. PMID:27426433

  15. Multi-layer electrode with nano-Li4Ti5O12 aggregates sandwiched between carbon nanotube and graphene networks for high power Li-ion batteries.

    PubMed

    Choi, Jin-Hoon; Ryu, Won-Hee; Park, Kyusung; Jo, Jeong-Dai; Jo, Sung-Moo; Lim, Dae-Soon; Kim, Il-Doo

    2014-12-05

    Self-aggregated Li4Ti5O12 particles sandwiched between graphene nanosheets (GNSs) and single-walled carbon nanotubes (SWCNTs) network are reported as new hybrid electrodes for high power Li-ion batteries. The multi-layer electrodes are fabricated by sequential process comprising air-spray coating of GNSs layer and the following electrostatic spray (E-spray) coating of well-dispersed colloidal Li4Ti5O12 nanoparticles, and subsequent air-spray coating of SWCNTs layer once again. In multi-stacked electrodes of GNSs/nanoporous Li4Ti5O12 aggregates/SWCNTs networks, GNSs and SWCNTs serve as conducting bridges, effectively interweaving the nanoporous Li4Ti5O12 aggregates, and help achieve superior rate capability as well as improved mechanical stability of the composite electrode by holding Li4Ti5O12 tightly without a binder. The multi-stacked electrodes deliver a specific capacity that maintains an impressively high capacity of 100 mA h g(-1) at a high rate of 100C even after 1000 cycles.

  16. Template Free and Binderless NiO Nanowire Foam for Li-ion Battery Anodes with Long Cycle Life and Ultrahigh Rate Capability

    NASA Astrophysics Data System (ADS)

    Liu, Chueh; Li, Changling; Ahmed, Kazi; Mutlu, Zafer; Ozkan, Cengiz S.; Ozkan, Mihrimah

    2016-07-01

    Herein, NiO-decorated Ni nanowires with diameters ca. 30–150 nm derived from Ni wire backbone (ca. 2 μm in diameter) is directly synthesized on commercially available Ni foam as a renovated anode for Li-ion batteries. Excellent stability with capacity 680 mAh g‑1 at 0.5C (1C = 718 mA g‑1) is achieved after 1000 cycles. Superior rate capability is exhibited by cycling at extremely high current rates, such as 20C and 50C with capacities ca. 164 and 75 mAh g‑1, respectively. The capacity can be recovered back to ca. 430 mAh g‑1 in 2 cycles when lowered to 0.2C and stably cycled for 430 times with capacity 460 mAh g‑1. The NiO nanowire foam anode possesses low equivalent series resistance ca. 3.5 Ω, resulting in superior power performance and low resistive losses. The NiO nanowire foam can be manufactured with bio-friendly chemicals and low temperature processes without any templates, binders and conductive additives, which possesses the potential transferring from lab scale to industrial production.

  17. Enhanced electrochemical performance by unfolding a few wings of graphene nanoribbons of multiwalled carbon nanotubes as an anode material for Li ion battery applications.

    PubMed

    Sahoo, Madhumita; Ramaprabhu, S

    2015-08-28

    The present work provides an incredible route towards achieving the ideal Li ion battery anode material with high specific capacity and rate capability as a result of unraveling a few upper layers of multiwalled carbon nanotubes (MWNTs) as graphene nanoribbons attached to the core MWNT. These partially exfoliated nanotubes when used as an anode material show an 880 mA h g(-1) capacity at a 100 mA g(-1) current density and high rate capability by delivering a stable 157 mA h g(-1) capacity at a current density of 10 A g(-1). The enhanced performance of this anode material can be attributed to the synergistic effect of the homogeneous distribution of the hybrid carbon nanostructure of 1-D multiwalled carbon nanotubes and 2-D graphene nanoribbons. This configuration provides a large available surface area, high electrical conductivity and a high number of defect sites, leading to improved Li intercalation with a better transfer rate compared to only graphene, multiwalled carbon nanotubes or other reported combinations of the two.

  18. The effect of pH on the interlayer distances of elongated titanate nanotubes and their use as a Li-ion battery anode.

    PubMed

    Yarali, Miad; Biçer, Emre; Gürsel, Selmiye Alkan; Yürüm, Alp

    2016-01-01

    Titanate nanotubes are promising materials for Li-ion battery anodes because of their special morphology and high specific surface areas. These titanates provide high rate capability and low volume expansion upon lithiation. More importantly, their tubular structure helps the transport of ions through the crystal. In this study, we synthesized elongated titanate nanotubes and modified their interlayer distances by changing the pH (2-13). For the structural characterization XRD, BET, SEM and TEM techniques were used. In addition, the effect of interlayer distance on energy capacity and rate capability was investigated. The highest interlayer distance was obtained at pH 10 and with decreasing pH, the interlayer distance dropped until reaching a pH value of 4. Conversely, the specific surface area reached its maximum value of 204 m(2) g(-1) at a pH of 4. Different from anatase (TiO2), titanate nanotubes had broad peaks in cyclic voltammograms suggesting a pseudocapacitive behavior. The sloping profiles of potential-capacity results also supported the pseudocapacitive property. For the titanate nanotubes obtained at pH 10, an initial discharge capacity of 980 mAh g(-1) was achieved. More importantly, titanate nanotubes showed exceptional rate capabilities and the capacities stayed almost constant at high current rates because of their elongated structure. It was found that the interlayer distance and the elongated structure play an important role in the electrochemical performance of the material.

  19. Connecting the irreversible capacity loss in Li-ion batteries with the electronic insulating properties of solid electrolyte interphase (SEI) components.

    SciTech Connect

    Leung, Kevin; Lin, Yu -Xiao; Liu, Zhe; Chen, Long -Qing; Lu, Peng; Qi, Yue

    2016-01-01

    The formation and continuous growth of a solid electrolyte interphase (SEI) layer are responsible for the irreversible capacity loss of batteries in the initial and subsequent cycles, respectively. In this article, the electron tunneling barriers from Li metal through three insulating SEI components, namely Li2CO3, LiF and Li3PO4, are computed by density function theory (DFT) approaches. Based on electron tunneling theory, it is estimated that sufficient to block electron tunneling. It is also found that the band gap decreases under tension while the work function remains the same, and thus the tunneling barrier decreases under tension and increases under compression. A new parameter, η, characterizing the average distances between anions, is proposed to unify the variation of band gap with strain under different loading conditions into a single linear function of η. An analytical model based on the tunneling results is developed to connect the irreversible capacity loss, due to the Li ions consumed in forming these SEI component layers on the surface of negative electrodes. As a result, the agreement between the model predictions and experimental results suggests that only the initial irreversible capacity loss is due to the self-limiting electron tunneling property of the SEI.

  20. Template Free and Binderless NiO Nanowire Foam for Li-ion Battery Anodes with Long Cycle Life and Ultrahigh Rate Capability.

    PubMed

    Liu, Chueh; Li, Changling; Ahmed, Kazi; Mutlu, Zafer; Ozkan, Cengiz S; Ozkan, Mihrimah

    2016-01-01

    Herein, NiO-decorated Ni nanowires with diameters ca. 30-150 nm derived from Ni wire backbone (ca. 2 μm in diameter) is directly synthesized on commercially available Ni foam as a renovated anode for Li-ion batteries. Excellent stability with capacity 680 mAh g(-1) at 0.5C (1C = 718 mA g(-1)) is achieved after 1000 cycles. Superior rate capability is exhibited by cycling at extremely high current rates, such as 20C and 50C with capacities ca. 164 and 75 mAh g(-1), respectively. The capacity can be recovered back to ca. 430 mAh g(-1) in 2 cycles when lowered to 0.2C and stably cycled for 430 times with capacity 460 mAh g(-1). The NiO nanowire foam anode possesses low equivalent series resistance ca. 3.5 Ω, resulting in superior power performance and low resistive losses. The NiO nanowire foam can be manufactured with bio-friendly chemicals and low temperature processes without any templates, binders and conductive additives, which possesses the potential transferring from lab scale to industrial production. PMID:27426433

  1. Free-standing Fe2O3 nanomembranes enabling ultra-long cycling life and high rate capability for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Liu, Xianghong; Si, Wenping; Zhang, Jun; Sun, Xiaolei; Deng, Junwen; Baunack, Stefan; Oswald, Steffen; Liu, Lifeng; Yan, Chenglin; Schmidt, Oliver G.

    2014-12-01

    With Fe2O3 as a proof-of-concept, free-standing nanomembrane structure is demonstrated to be highly advantageous to improve the performance of Li-ion batteries. The Fe2O3 nanomembrane electrodes exhibit ultra-long cycling life at high current rates with satisfactory capacity (808 mAh g-1 after 1000 cycles at 2 C and 530 mAh g-1 after 3000 cycles at 6 C) as well as repeatable high rate capability up to 50 C. The excellent performance benefits particularly from the unique structural advantages of the nanomembranes. The mechanical feature can buffer the strain of lithiation/delithiation to postpone the pulverization. The two-dimensional transport pathways in between the nanomembranes can promote the pseudo-capacitive type storage. The parallel-laid nanomembranes, which are coated by polymeric gel-like film and SEI layer with the electrolyte in between layers, electrochemically behave like numerous ``mini-capacitors'' to provide the pseudo-capacitance thus maintain the capacity at high rate.

  2. Effect of Transition Metal Ordering on the Electronic Properties of LiNi1 - y - xCoyMnxO2 Cathode Materials for Li-ion Batteries

    NASA Astrophysics Data System (ADS)

    Longo, Roberto; Kong, Fantai; Kc, Santosh; Yeon, Dong-Hee; Yoon, Jaegu; Park, Jin-Hwan; Doo, Seok-Kwang; Cho, Kyeongjae; MSL Team; SAIT Team

    2015-03-01

    Current Li-ion batteries use layered oxides as cathode materials, specially LiCoO2 or LiNi1 - y - xCoyMnxO2(NCM), and graphite as anode. Co layered oxides suffer from the high cost and toxicity of cobalt, together with certain instability at high operational temperatures. To overcome these difficulties, the synthesis of novel materials composed of layered oxides with different sets of Transition Metals (TM) has become the most successful way to solve the particular drawbacks of every single-oxide family. Although layered materials can deliver larger capacity than other families of cathode materials, the energy density has yet to be increased in order to match the expectations deposited on the NCM oxides. To acquire a high capacity, they need to be cycled at high operational voltages, resulting in voltage and capacity fading over a large number of cycles. In this work, we examine the phase diagram of the Li-Ni-Co-Mn-O system and the effect of TM ordering on the electronic properties of NCM cathode materials, using density-functional theory. Our findings will provide conceptual guidance in the experimental search for the mechanisms driving the voltage and capacity fading of the NCM family of cathode materials, in an attempt to solve such structural instability problems and, thus, improving the performance of the NCM cathode materials. This work was supported by Samsung GRO project.

  3. Connecting the irreversible capacity loss in Li-ion batteries with the electronic insulating properties of solid electrolyte interphase (SEI) components.

    DOE PAGES

    Leung, Kevin; Lin, Yu -Xiao; Liu, Zhe; Chen, Long -Qing; Lu, Peng; Qi, Yue

    2016-01-01

    The formation and continuous growth of a solid electrolyte interphase (SEI) layer are responsible for the irreversible capacity loss of batteries in the initial and subsequent cycles, respectively. In this article, the electron tunneling barriers from Li metal through three insulating SEI components, namely Li2CO3, LiF and Li3PO4, are computed by density function theory (DFT) approaches. Based on electron tunneling theory, it is estimated that sufficient to block electron tunneling. It is also found that the band gap decreases under tension while the work function remains the same, and thus the tunneling barrier decreases under tension and increases under compression.more » A new parameter, η, characterizing the average distances between anions, is proposed to unify the variation of band gap with strain under different loading conditions into a single linear function of η. An analytical model based on the tunneling results is developed to connect the irreversible capacity loss, due to the Li ions consumed in forming these SEI component layers on the surface of negative electrodes. As a result, the agreement between the model predictions and experimental results suggests that only the initial irreversible capacity loss is due to the self-limiting electron tunneling property of the SEI.« less

  4. Silicon Diphosphide: A Si-Based Three-Dimensional Crystalline Framework as a High-Performance Li-Ion Battery Anode.

    PubMed

    Kwon, Hyuk-Tae; Lee, Churl Kyoung; Jeon, Ki-Joon; Park, Cheol-Min

    2016-06-28

    The development of an electrode material for rechargeable Li-ion batteries (LIBs) and the understanding of its reaction mechanism play key roles in enhancing the electrochemical characteristics of LIBs for use in various portable electronics and electric vehicles. Here, we report a three-dimensional (3D) crystalline-framework-structured silicon diphosphide (SiP2) and its interesting electrochemical behaviors for superior LIBs. During Li insertion in the SiP2, a three-step electrochemical reaction mechanism, sequentially comprised of a topotactic transition (0.55-2 V), an amorphization (0.25-2 V), and a conversion (0-2 V), was thoroughly analyzed. On the basis of the three-step electrochemical reaction mechanism, excellent electrochemical properties, such as high initial capacities, high initial Coulombic efficiencies, stable cycle behaviors, and fast-rate capabilities, were attained from the preparation of a nanostructured SiP2/C composite. This 3D crystalline-framework-structured SiP2 compound will be a promising alternative anode material in the realization and mass production of excellent, rechargeable LIBs. PMID:27243799

  5. Separators for Li-Ion and Li-Metal Battery Including Ionic Liquid Based Electrolytes Based on the TFSI− and FSI− Anions

    PubMed Central

    Kirchhöfer, Marija; von Zamory, Jan; Paillard, Elie; Passerini, Stefano

    2014-01-01

    The characterization of separators for Li-ion or Li-metal batteries incorporating hydrophobic ionic liquid electrolytes is reported herein. Ionic liquids made of N-butyl-N-methylpyrrolidinium (PYR14+) or N-methoxyethyl-N-methylpyrrolidinium (PYR12O1+), paired with bis(trifluoromethanesulfonyl)imide (TFSI−) or bis(fluorosulfonyl)imide (FSI−) anions, were tested in combination with separators having different chemistries and morphologies in terms of wetting behavior, Gurley and McMullin number, as well as Li/(Separator + Electrolyte) interfacial properties. It is shown that non-functionalized microporous polyolefin separators are poorly wetted by FSI−-based electrolytes (contrary to TFSI−-based electrolytes), while the ceramic coated separator Separion® allows good wetting with all electrolytes. Furthermore, by comparing the lithium solid electrolyte interphase (SEI) resistance evolution at open circuit and during cycling, depending on separator morphologies and chemistries, it is possible to propose a scale for SEI forming properties in the order: PYR12O1FSI > PYR14FSI > PYR14TFSI > PYR12O1TFSI. Finally, the impact the separator morphology is evidenced by the SEI resistance evolution and by comparing Li electrodes cycled using separators with two different morphologies. PMID:25153637

  6. CuLi2Sn and Cu2LiSn: Characterization by single crystal XRD and structural discussion towards new anode materials for Li-ion batteries

    PubMed Central

    Fürtauer, Siegfried; Effenberger, Herta S.; Flandorfer, Hans

    2014-01-01

    The stannides CuLi2Sn (CSD-427095) and Cu2LiSn (CSD-427096) were synthesized by induction melting of the pure elements and annealing at 400 °C. The phases were reinvestigated by X-ray powder and single-crystal X-ray diffractometry. Within both crystal structures the ordered CuSn and Cu2Sn lattices form channels which host Cu and Li atoms at partly mixed occupied positions exhibiting extensive vacancies. For CuLi2Sn, the space group F-43m. was verified (structure type CuHg2Ti; a=6.295(2) Å; wR2(F²)=0.0355 for 78 unique reflections). The 4(c) and 4(d) positions are occupied by Cu atoms and Cu+Li atoms, respectively. For Cu2LiSn, the space group P63/mmc was confirmed (structure type InPt2Gd; a=4.3022(15) Å, c=7.618(3) Å; wR2(F²)=0.060 for 199 unique reflections). The Cu and Li atoms exhibit extensive disorder; they are distributed over the partly occupied positions 2(a), 2(b) and 4(e). Both phases seem to be interesting in terms of application of Cu–Sn alloys as anode materials for Li-ion batteries. PMID:25473128

  7. Li-ion diffusion in Li4Ti5O12 and LiTi2O4 battery materials detected by muon spin spectroscopy

    NASA Astrophysics Data System (ADS)

    Sugiyama, Jun; Nozaki, Hiroshi; Umegaki, Izumi; Mukai, Kazuhiko; Miwa, Kazutoshi; Shiraki, Susumu; Hitosugi, Taro; Suter, Andreas; Prokscha, Thomas; Salman, Zaher; Lord, James S.; Mânsson, Martin

    2015-07-01

    Lithium diffusion in spinel Li4Ti5O12 and LiTi2O4 compounds for future battery applications has been studied with muon spin relaxation (μ+SR ) . Measurements were performed on both thin-film and powder samples in the temperature range between 25 and 500 K. For Li4Ti5O12 and above about ˜200 K , the field distribution width (Δ ) is found to decrease gradually, while the field fluctuation rate (ν ) increases exponentially with temperature. For LiTi2O4 , on the contrary, the Δ (T ) curve shows a steplike decrease at ˜350 K , around which the ν (T ) curve exhibits a local maximum. These behaviors suggest that Li+ starts to diffuse above around 200 K for both spinels. Assuming a jump diffusion of Li+ at the tetrahedral 8 a site to the vacant octahedral 16 c site, diffusion coefficients of Li+ at 300 K in the film samples are estimated as (3.2 ±0.8 ) ×10-11 cm2/s for Li4Ti5O12 and (3.6 ±1.1 ) ×10-11 cm2/s for LiTi2O4 . Further, some small differences are found in both thermal activation energies and Li-ion diffusion coefficients between the powder and thin-film samples.

  8. Free-standing Fe2O3 nanomembranes enabling ultra-long cycling life and high rate capability for Li-ion batteries

    PubMed Central

    Liu, Xianghong; Si, Wenping; Zhang, Jun; Sun, Xiaolei; Deng, Junwen; Baunack, Stefan; Oswald, Steffen; Liu, Lifeng; Yan, Chenglin; Schmidt, Oliver G.

    2014-01-01

    With Fe2O3 as a proof-of-concept, free-standing nanomembrane structure is demonstrated to be highly advantageous to improve the performance of Li-ion batteries. The Fe2O3 nanomembrane electrodes exhibit ultra-long cycling life at high current rates with satisfactory capacity (808 mAh g−1 after 1000 cycles at 2 C and 530 mAh g−1 after 3000 cycles at 6 C) as well as repeatable high rate capability up to 50 C. The excellent performance benefits particularly from the unique structural advantages of the nanomembranes. The mechanical feature can buffer the strain of lithiation/delithiation to postpone the pulverization. The two-dimensional transport pathways in between the nanomembranes can promote the pseudo-capacitive type storage. The parallel-laid nanomembranes, which are coated by polymeric gel-like film and SEI layer with the electrolyte in between layers, electrochemically behave like numerous “mini-capacitors” to provide the pseudo-capacitance thus maintain the capacity at high rate. PMID:25503055

  9. Quantitative relationships between microstructures and electrochemical properties in Si core-SiOx shell nanoparticles for Li-ion battery anodes

    NASA Astrophysics Data System (ADS)

    Lee, Jeongeun; Koo, Jeongboon; Jang, Boyun; Kim, Sungsoo

    2016-10-01

    Nanoparticles having four different ratios of crystalline silicon (Si) cores and amorphous SiOx shells were synthesized by using a microwave-generated plasma. Their microstructures were analyzed to find quantitative relationships with electrochemical properties. By measuring XRD, SEM, HR-TEM, and Raman spectra of four samples with different core-shell microstructures, the quantitative fractions of crystalline Si core and amorphous SiOx shell in the nanoparticles were calculated. Also, electrochemical properties of the nanoparticles were measured and compared with the calculated fractions. The electrochemical properties such as the initial reversible capacity, the initial coulombic efficiency, and the capacity retention exhibited tendencies remarkably similar to those implied by the calculated fractions. Analysis of each sample's dQ/dV profile also gave us good evidence of understandable relationships between the fractions and electrochemical properties. Details of calculating the fractions from microstructural data are given, with suitable consideration having been given to the fact that several assumptions could lead to errors during the analysis. The approach introduced in this research offers a good means of analysis with which to further the optimal design of nanoparticle microstructure for Li-ion battery anodes.

  10. A high pressure x-ray photoelectron spectroscopy experimental method for characterization of solid-liquid interfaces demonstrated with a Li-ion battery system

    SciTech Connect

    Maibach, Julia; Xu, Chao; Gustafsson, Torbjörn; Edström, Kristina; Eriksson, Susanna K.; Åhlund, John; Siegbahn, Hans; Rensmo, Håkan; Hahlin, Maria

    2015-04-15

    We report a methodology for a direct investigation of the solid/liquid interface using high pressure x-ray photoelectron spectroscopy (HPXPS). The technique was demonstrated with an electrochemical system represented by a Li-ion battery using a silicon electrode and a liquid electrolyte of LiClO{sub 4} in propylene carbonate (PC) cycled versus metallic lithium. For the first time the presence of a liquid electrolyte was realized using a transfer procedure where the sample was introduced into a 2 mbar N{sub 2} environment in the analysis chamber without an intermediate ultrahigh vacuum (UHV) step in the load lock. The procedure was characterized in detail concerning lateral drop gradients as well as stability of measurement conditions over time. The X-ray photoelectron spectroscopy (XPS) measurements demonstrate that the solid substrate and the liquid electrolyte can be observed simultaneously. The results show that the solid electrolyte interphase (SEI) composition for the wet electrode is stable within the probing time and generally agrees well with traditional UHV studies. Since the methodology can easily be adjusted to various high pressure photoelectron spectroscopy systems, extending the approach towards operando solid/liquid interface studies using liquid electrolytes seems now feasible.

  11. Development of all-solid lithium-ion battery using Li-ion conducting glass-ceramics

    NASA Astrophysics Data System (ADS)

    Inda, Yasushi; Katoh, Takashi; Baba, Mamoru

    We have developed a high performance lithium-ion conducting glass-ceramics. This glass-ceramics has the crystalline form of Li 1+ x+ yAl xTi 2- xSi yP 3- yO 12 with a NASICON-type structure, and it exhibits a high lithium-ion conductivity of 10 -3 S cm -1 or above at room temperature. Moreover, since this material is stable in the open atmosphere and even to exposure to moist air, it is expected to be applied for various uses. One of applications of this material is as a solid electrolyte for a lithium-ion battery. Batteries were developed by combining a LiCoO 2 positive electrode, a Li 4Ti 5O 12 negative electrode, and a composite electrolyte. The battery using the composite electrolyte with a higher conductivity exhibited a good charge-discharge characteristic.

  12. Ground testing of the Li-ion batteries in support of JPL's 2003 Mars Exploration Rover Mission

    NASA Technical Reports Server (NTRS)

    Smart, M. C.; Ratnakumar, B. V.; Ewell, R. C.; Whitcanack, L. D.; Chin, K. B.; Surampudi, S.; Puglia, F.; Gitzendanner, R.

    2005-01-01

    In early 2004, JPL successfully landed two Rovers, named Spirit and Opportunity, on the surface of Mars after traveling > 300 million miles over a 6-7 month period. In order to operate for extended duration on the surface of Mars, both Rovers are equipped with rechargeable Lithium-ion batteries, which were designed to aid in the launch, correct anomalies during cruise, and support surface operations in conjunction with a triple-junction deployable solar arrays. The requirements of the Lithium-ion battery include the ability to provide power at least 90 sols on the surface of Mars, operate over a wide temperature range (-20(deg)C to +4O(deg)C), withstand long storage periods (e.g., cruise period), operate in an inverted position, and support high currents (e.g., firing pyro events). In order to determine the viability of meeting these requirements, ground testing was performed on a Rover Battery Assembly Unit (RBAU), consisting of two 8-cell 8 Ah lithium-ion batteries connected in parallel. The RBAU upon which the performance testing was performed is nearly identical to the batteries incorporated into the two Rovers currently on Mars. The testing performed includes, (a) performing initial characterization tests (discharge capacity at different temperatures), (b) simulating the launch conditions, (c) simulating the cruise phase conditions (including trajectory corrections), (d) simulating the entry, decent, and landing pulse load profile (if required to support the pyros) (e) simulating the Mars surface operation mission simulation conditions, as well as, (f) assessing performance capacity loss and impedance characteristics as a function of temperature and life. As will be discussed, the lithium-ion batteries (fabricated by LithiodYardney, Inc.) were demonstrated to far exceed the requirements defined by the mission, and are projected to support an extended mission (> 2 years) with margin to spare.

  13. Performance Testing of Lithium Li-ion Cells and Batteries in Support of JPL's 2003 Mars Exploration Rover Mission

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C.; Ratnakumar, B. V.; Ewell, R. C.; Whitcanack, L. D.; Surampudi, S.; Puglia, F.; Gitzendanner, R.

    2007-01-01

    In early 2004, JPL successfully landed two Rovers, named Spirit and Opportunity, on the surface of Mars after traveling > 300 million miles over a 6-7 month period. In order to operate for extended duration on the surface of Mars, both Rovers are equipped with rechargeable Lithium-ion batteries, which were designed to aid in the launch, correct anomalies during cruise, and support surface operations in conjunction with a triple-junction deployable solar arrays. The requirements of the Lithium-ion battery include the ability to provide power at least 90 sols on the surface of Mars, operate over a wide temperature range (-20(super 0)C to +40(super 0)C), withstand long storage periods (e.g., including pre-launch and cruise period), operate in an inverted position, and support high currents (e.g., firing pyro events). In order to determine the inability of meeting these requirements, ground testing was performed on a Rover Battery Assembly Unit RBAU), consisting of two 8-cell 8 Ah lithium-ion batteries connected in parallel. The RBAU upon which the performance testing was performed is nearly identical to the batteries incorporated into the two Rovers currently on Mars. The primary focus of this paper is to communicate the latest results regarding Mars surface operation mission simulation testing, as well as, the corresponding performance capacity loss and impedance characteristics as a function of temperature and life. As will be discussed, the lithium-ion batteries (fabricated by Yardney Technical Products, Inc.) have been demonstrated to far exceed the requirements defined by the mission, being able to support the operation of the rovers for over three years, and are projected to support an even further extended mission.

  14. Physical characterization of the charging process of a Li-ion battery and prediction of Li plating by electrochemical modelling

    NASA Astrophysics Data System (ADS)

    Legrand, N.; Knosp, B.; Desprez, P.; Lapicque, F.; Raël, S.

    2014-01-01

    This paper deals with occurrence of lithium plating on the negative electrode of lithium-ion batteries, a significant ageing phenomenon known to damage lithium-ion battery performances. Charge transfer process, one of the two different steps of the process of Li insertion in the negative active material being the cause of this ageing, was considered here to be the limiting process. This transfer occurs at short-time scales. The second process, the diffusion of lithium in the solid insertion compound, occurring at relatively long-time scales, has not been fully examined here. The aim of this paper was to develop a new method to evaluate the maximal rate of a charge pulse solicitation to prevent this ageing phenomenon. The approach relies on the use of a fundamental model of lithium ion battery with coupled mass and charge transfer. To validate the method, 2 s microcycles have been performed on a commercial VL41M SAFT cell. Theoretical and experimental works led to the maximum current density to be applied without undesired Li deposition, depending on the state of charge (SOC). The abacus established for the cell of interest can orient further specifications for suitable use of the battery.

  15. Considerations for Estimating Electrode Performance in Li-Ion Cells

    NASA Technical Reports Server (NTRS)

    Bennett, William R.

    2012-01-01

    Advanced electrode materials with increased specific capacity and voltage performance are critical to the development of Li-ion batteries with increased specific energy and energy density. Although performance metrics for individual electrodes are critically important, a fundamental understanding of the interactions of electrodes in a full cell is essential to achieving the desired performance, and for establishing meaningful goals for electrode performance. This paper presents practical design considerations for matching positive and negative electrodes in a viable design. Methods for predicting cell-level discharge voltage, based on laboratory data for individual electrodes, are presented and discussed.

  16. Research and analysis on electrochemical performances of α-Fe{sub 2}O{sub 3} electrode in Li-ion battery with different current collectors

    SciTech Connect

    Huang, Lihong Min, Zhonghua; Zhang, Qinyong

    2015-06-15

    Highlights: • We achieved a reversible capacity of 415 mAh g{sup −1} after 30 cycles for α-Fe{sub 2}O{sub 3} electrode in Li-ion battery. • Better electrical performance was obtained when using Cu foam as current collector. • As current collector for α-Fe{sub 2}O{sub 3} electrode, Cu foam is better than Cu foil and Ni foam. • It could avoid the active materials falling off from the current collector during cycling. • It is owe to smaller surface film resistance, charge-transfer resistance, etc. - Abstract: In this work, we reported a simple synthesis of submicron α-Fe{sub 2}O{sub 3} with rod-like structure. When it evaluated as electrode material for lithium ion battery, comparing with Cu foil and Ni foam, the as-prepared α-Fe{sub 2}O{sub 3} electrodes with Cu foam current collector exhibited higher reversible capacity of 415 mAh g{sup −1} and more stable cycle performance after 30 cycles. Comparative researches on electrochemical performances of the α-Fe{sub 2}O{sub 3} employing different current collectors (Cu foil, Cu foam and Ni foam) were discussed here in detail. According to our results, the improved electrochemical behaviors of α-Fe{sub 2}O{sub 3} electrode with Cu foam current collector could be attributed to its particular electrode structure, i.e., porous, good electric conductivity, closed adhere to the electrode materials. Just because of that, it may make sure an easy accessibility of electrolytes and fast transportation of lithium ions, importantly, it could avoid the active materials falling off from the current collector on account of volume expansion.

  17. Pre-Lithiation of Li(Ni1-x-yMnxCoy)O2 Materials Enabling Enhancement of Performance for Li-Ion Battery.

    PubMed

    Wu, Zhongzhen; Ji, Shunping; Hu, Zongxiang; Zheng, Jiaxin; Xiao, Shu; Lin, Yuan; Xu, Kang; Amine, Khalil; Pan, Feng

    2016-06-22

    Transition metal oxide materials Li(NixMnyCoz)O2 (NMCxyz) based on layered structure are potential cathode candidates for automotive Li-ion batteries because of their high specific capacities and operating potentials. However, the actual usable capacity, cycling stability, and first-cycle Coulombic efficiency remain far from practical. Previously, we reported a combined strategy consisting of depolarization with embedded carbon nanotube (CNT) and activation through pre-lithiation of the NMC host, which significantly improved the reversible capacity and cycling stability of NMC532-based material. In the present work we attempt to understand how pre-lithiation leads to these improvements on an atomic level with experimental investigation and ab initio calculations. By lithiating a series of NMC materials with varying chemical compositions prepared via a conventional approach, we identified the Ni in the NMC lattice as the component responsible for accommodating a double-layered Li structure. Specifically, much better improvements in the cycling stability and capacity can be achieved with the NMC lattices populated with Ni(3+) than those populated with only Ni(2+). Using the XRD we also found that the emergence of a double-layer Li structure is not only reversible during the pre-lithiation and the following delithiation, but also stable against elevated temperatures up to 320 °C. These new findings regarding the mechanism of pre-lithiation as well as how it affects the reversibility and stability of NMC-based cathode materials prepared by the conventional slurry approach will promote the possibility of their application in the future battery industry. PMID:27237226

  18. Pre-Lithiation of Li(Ni1-x-yMnxCoy)O2 Materials Enabling Enhancement of Performance for Li-Ion Battery.

    PubMed

    Wu, Zhongzhen; Ji, Shunping; Hu, Zongxiang; Zheng, Jiaxin; Xiao, Shu; Lin, Yuan; Xu, Kang; Amine, Khalil; Pan, Feng

    2016-06-22

    Transition metal oxide materials Li(NixMnyCoz)O2 (NMCxyz) based on layered structure are potential cathode candidates for automotive Li-ion batteries because of their high specific capacities and operating potentials. However, the actual usable capacity, cycling stability, and first-cycle Coulombic efficiency remain far from practical. Previously, we reported a combined strategy consisting of depolarization with embedded carbon nanotube (CNT) and activation through pre-lithiation of the NMC host, which significantly improved the reversible capacity and cycling stability of NMC532-based material. In the present work we attempt to understand how pre-lithiation leads to these improvements on an atomic level with experimental investigation and ab initio calculations. By lithiating a series of NMC materials with varying chemical compositions prepared via a conventional approach, we identified the Ni in the NMC lattice as the component responsible for accommodating a double-layered Li structure. Specifically, much better improvements in the cycling stability and capacity can be achieved with the NMC lattices populated with Ni(3+) than those populated with only Ni(2+). Using the XRD we also found that the emergence of a double-layer Li structure is not only reversible during the pre-lithiation and the following delithiation, but also stable against elevated temperatures up to 320 °C. These new findings regarding the mechanism of pre-lithiation as well as how it affects the reversibility and stability of NMC-based cathode materials prepared by the conventional slurry approach will promote the possibility of their application in the future battery industry.

  19. Sandwich nanoarchitecture of Si/reduced graphene oxide bilayer nanomembranes for Li-ion batteries with long cycle life.

    PubMed

    Liu, Xianghong; Zhang, Jun; Si, Wenping; Xi, Lixia; Eichler, Barbara; Yan, Chenglin; Schmidt, Oliver G

    2015-02-24

    The large capacity loss and huge volume change of silicon anodes severely restricts their practical applications in lithium ion batteries. In this contribution, the sandwich nanoarchitecture of rolled-up Si/reduced graphene oxide bilayer nanomembranes was designed via a strain released strategy. Within this nanoarchitecture, the inner void space and the mechanical feature of nanomembranes can help to buffer the strain during lithiation/delithiation; the alternately stacked conductive rGO layers can protect the Si layers from excessive formation of SEI layers. As anodes for lithium-ion batteries, the sandwiched Si/rGO nanoarchitecture demonstrates long cycling life of 2000 cycles at 3 A g(-1) with a capacity degradation of only 3.3% per 100 cycles.

  20. Ultra-fast dry microwave preparation of SnSb used as negative electrode material for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Antitomaso, P.; Fraisse, B.; Sougrati, M. T.; Morato-Lallemand, F.; Biscaglia, S.; Aymé-Perrot, D.; Girard, P.; Monconduit, L.

    2016-09-01

    Tin antimonide alloy was obtained for the first time using a very simple dry microwave route. Up to 1 g of well crystallized SnSb can be easily prepared in 90 s under air in an open crucible. A full characterization by X-ray diffraction and 119Sn Mössbauer spectroscopy demonstrated the benefit of carbon as susceptor, which avoid any oxide contamination. The microwave-prepared SnSb was tested as negative electrode material in Li batteries. Interesting results in terms of capacity and rate capability were obtained with up to 700 mAh/g sustained after 50 cycles at variable current. These results pave the way for the introduction of microwave synthesis as realistic route for a rapid, low cost and up-scalable production of electrode material for Li batteries or other large scale application types.

  1. Mesoscale Origin of the Enhanced Cycling-Stability of the Si-Conductive Polymer Anode for Li-ion Batteries

    PubMed Central

    Gu, Meng; Xiao, Xing-Cheng; Liu, Gao; Thevuthasan, Suntharampillai; Baer, Donald R.; Zhang, Ji-Guang; Liu, Jun; Browning, Nigel D.; Wang, Chong-Min

    2014-01-01

    Electrode used in lithium-ion battery is invariably a composite of multifunctional components. The performance of the electrode is controlled by the interactive function of all components at mesoscale. Fundamental understanding of mesoscale phenomenon sets the basis for innovative designing of new materials. Here we report the achievement and origin of a significant performance enhancement of electrode for lithium ion batteries based on Si nanoparticles wrapped with conductive polymer. This new material is in marked contrast with conventional material, which exhibit fast capacity fade. In-situ TEM unveils that the enhanced cycling stability of the conductive polymer-Si composite is associated with mesoscale concordant function of Si nanoparticles and the conductive polymer. Reversible accommodation of the volume changes of Si by the conductive polymer allows good electrical contact between all the particles during the cycling process. In contrast, the failure of the conventional Si-electrode is probed to be the inadequate electrical contact. PMID:24418812

  2. Cr, N-Codoped TiO2 Mesoporous Microspheres for Li-ion Rechargeable Batteries with Enhanced Electrochemical Performance

    SciTech Connect

    Bi, Zhonghe; Paranthaman, Mariappan Parans; Guo, Bingkun; Unocic, Raymond R; Meyer III, Harry M; Bridges, Craig A; Sun, Xiao-Guang; Dai, Sheng

    2014-01-01

    Cr,N-codoped TiO2 mesoporous microspheres synthesized using hydrothermal and subsequent nitridation treatment, exhibited higher solubility of nitrogen, and improved electrical conductivity than N-doped TiO2, as anode for Lithium-ion rechargeable batteries, which led to improving charge-discharge capacity at 0.1 C and twice higher rate capability compared to that of nitrogen-doped TiO2 mesoporous microsphere at 10 C

  3. Design, Fabrication, and Testing of Silicon-integrated Li-ion Secondary Micro Batteries with Interdigital Electrodes

    NASA Astrophysics Data System (ADS)

    Hoeppner, K.; Ferch, M.; Froebe, A.; Gernhardt, R.; Hahn, R.; Mackowiak, P.; Mukhopadhyay, B.; Roder, S.; Saalhofen, I.; Lang, K.-D.

    2015-12-01

    This paper reports the design, fabrication, and testing of silicon-integrated lithium ion secondary micro batteries with a side-by-side electrode setup. Cavities separated by narrow silicon spacers served as containments for two interdigitally arranged electrodes and were etched into <110>-Si by wet chemical etching. The etched silicon battery containments were passivated by a layer of SiOx/SixNy. Al current collectors were applied by sputtering and back etching. A volumetric micro dispenser served to fill the cavities with slurries of the active materials - lithium cobalt manganese oxide (Liy(Ni1/2Co1/5Mn3/10)O2) as the cathode and lithium titanate (Li4Ti5O12) as the anode material. Filling with electrolyte, encapsulation, and electrochemical characterization of the finished cells took place in an Ar-filled glove box. The fabricated batteries with IDE show considerably lower impedances than cells with single side by side electrodes and are capable of constant current loads up to 10 C. A linear capacity loss rate of <0.1% per cycle was observed over 30 full cycles at 0.2C.

  4. Bamboo leaf derived ultrafine Si nanoparticles and Si/C nanocomposites for high-performance Li-ion battery anodes.

    PubMed

    Wang, Lei; Gao, Biao; Peng, Changjian; Peng, Xiang; Fu, Jijiang; Chu, Paul K; Huo, Kaifu

    2015-09-01

    Silicon-based nanomaterials are promising anode materials in lithium-ion batteries (LIBs) due to their high theoretical capacity of 4200 mA h g(-1), more than 10 times that of commercial graphite. Si nanoparticles (NPs) with a diameter of or below 10 nm generally exhibit enhanced lithium storage properties due to their small size and large surface area. However, it is challenging to generate such ultrafine Si NPs by a facile and scalable method. This paper reports a scalable method to fabricate ultrafine Si NPs 5-8 nm in size from dead bamboo leaves (BLs) by thermally decomposing the organic matter, followed by magnesiothermic reduction in the presence of NaCl as a heat scavenger. The ultrafine Si NPs show a high capacity of 1800 mA h g(-1) at a 0.2 C (1 C = 4200 mA g(-1)) rate and are thus promising anode materials in lithium-ion batteries. To achieve better rate capability, the BLs-derived ultrafine Si NPs are coated with a thin amorphous carbon layer (Si@C) and then dispersed and embedded in a reduced graphene oxide (RGO) network to produce Si@C/RGO nanocomposites by a layer-by-layer assembly method. The double protection rendered by the carbon shell and RGO network synergistically yield structural stability, high electrical conductivity and a stable solid electrolyte interface during Li insertion/extraction. The Si@C/RGO nanocomposites show excellent battery properties with a high capacity of 1400 mA h g(-1) at a high current density of 2 C and remarkable rate performance with a capacity retention of 60% when the current density is increased 20 times from 0.2 to 4 C. This work provides a simple, low cost, and scalable approach enabling the use of BL waste as a sustainable source for the production of ultrafine Si NPs towards high-performance LIBs.

  5. 3D hierarchically patterned tubular NiSe with nano-/microstructures for Li ion battery design.

    PubMed

    Mi, Liwei; Sun, Hui; Ding, Qi; Chen, Weihua; Liu, Chuntai; Hou, Hongwei; Zheng, Zhi; Shen, Changyu

    2012-10-28

    Tubular nickel selenide (NiSe) crystals with hierarchical structures were successfully fabricated using a one-step solvothermal method in moderate conditions, in which ethylenediamine and ethylene glycol were used as the mixed solvent. The growth of hierarchical NiSe microtubes from NiSe microflakes was achieved without surfactants or other chemical additives by changing the reaction time. When the as-synthesized NiSe microtubes were employed as cathode materials for lithium-ion batteries, the initial discharge capacity of hierarchical NiSe microtubes reached 410.7 mAh g(-1).

  6. Chemical Bonding In Amorphous Si Coated-carbon Nanotube As Anodes For Li ion Batteries: A XANES Study

    SciTech Connect

    Zhou, Jigang; Hu, Yongfeng; Li, Xiaolin; Wang, Chong M.; Zuin, Lucia

    2014-03-11

    The chemical bonding nature and its evolution upon electrochemical cycling in amorphous Si coated-carbon nanotube (Si-CNT) anode has been investigated using comprehensive X-ray absorption spectroscopy (XANES) at Si L- and K-edges along with C and O K-edges. The Si nanolayer on CNT is found to be anchored to CNT via Si-O-C bonding. This bond weakens upon electrochemical cycling accompanied with generation of Li2CO3 on the surface of Si-CNT. Those findings are crucial in designing further improved Si-C composite anode for lithium ion battery.

  7. Chamber-confined silicon-carbon nanofiber composites for prolonged cycling life of Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Fu, Kun; Lu, Yao; Dirican, Mahmut; Chen, Chen; Yanilmaz, Meltem; Shi, Quan; Bradford, Philip D.; Zhang, Xiangwu

    2014-06-01

    Silicon is a promising high capacity (4200 mA h g-1) anode material for lithium ion batteries but the significant volume change (over 300%) of silicon during lithiation/delithiation remains a challenge in terms of silicon pulverization and solid-electrolyte-interphase (SEI) accumulation in the silicon composite electrode. To alleviate the volumetric change of silicon, we built a flexible and self-supporting carbon-enhanced carbon nanofiber (CNF) structure with vacant chamber to encapsulate Si nanoparticles (vacant Si@CNF@C). This composite was tested directly without any polymer and current collector. The confined vacant chamber allowed the increasing volume of silicon and SEI accumulates to be well retained for a long cycle life. This chamber-confined silicon-carbon nanofiber composite exhibited an improved performance in terms of good cycling performance (620 mA h g-1), high coulombic efficiency (99%), and good capacity retention (80%) after 200 cycles. This self-supported silicon-carbon nanofiber structure showed high flexibility and good electrochemical performance for the potential as flexible electrode for lithium-ion batteries.

  8. The microstructure matters: breaking down the barriers with single crystalline silicon as negative electrode in Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Sternad, M.; Forster, M.; Wilkening, M.

    2016-08-01

    Silicon-based microelectronics forms a major foundation of our modern society. Small lithium-ion batteries act as the key enablers of its success and have revolutionised portable electronics used in our all everyday’s life. While large-scale LIBs are expected to help establish electric vehicles, on the other end of device size chip-integrated Si-based μ-batteries may revolutionise microelectronics once more. In general, Si is regarded as one of the white hopes since it offers energy densities being ten times higher than conventional anode materials. The use of monocrystalline, wafer-grade Si, however, requires several hurdles to be overcome since it its volume largely expands during lithiation. Here, we will show how 3D patterned Si wafers, prepared by the sophisticated techniques from semiconductor industry, are to be electrochemically activated to overcome these limitations and to leverage their full potential being reflected in stable charge capacities (>1000 mAhg–1) and high Coulomb efficiencies (98.8%).

  9. The microstructure matters: breaking down the barriers with single crystalline silicon as negative electrode in Li-ion batteries

    PubMed Central

    Sternad, M.; Forster, M.; Wilkening, M.

    2016-01-01

    Silicon-based microelectronics forms a major foundation of our modern society. Small lithium-ion batteries act as the key enablers of its success and have revolutionised portable electronics used in our all everyday’s life. While large-scale LIBs are expected to help establish electric vehicles, on the other end of device size chip-integrated Si-based μ-batteries may revolutionise microelectronics once more. In general, Si is regarded as one of the white hopes since it offers energy densities being ten times higher than conventional anode materials. The use of monocrystalline, wafer-grade Si, however, requires several hurdles to be overcome since it its volume largely expands during lithiation. Here, we will show how 3D patterned Si wafers, prepared by the sophisticated techniques from semiconductor industry, are to be electrochemically activated to overcome these limitations and to leverage their full potential being reflected in stable charge capacities (>1000 mAhg–1) and high Coulomb efficiencies (98.8%). PMID:27531589

  10. The microstructure matters: breaking down the barriers with single crystalline silicon as negative electrode in Li-ion batteries.

    PubMed

    Sternad, M; Forster, M; Wilkening, M

    2016-01-01

    Silicon-based microelectronics forms a major foundation of our modern society. Small lithium-ion batteries act as the key enablers of its success and have revolutionised portable electronics used in our all everyday's life. While large-scale LIBs are expected to help establish electric vehicles, on the other end of device size chip-integrated Si-based μ-batteries may revolutionise microelectronics once more. In general, Si is regarded as one of the white hopes since it offers energy densities being ten times higher than conventional anode materials. The use of monocrystalline, wafer-grade Si, however, requires several hurdles to be overcome since it its volume largely expands during lithiation. Here, we will show how 3D patterned Si wafers, prepared by the sophisticated techniques from semiconductor industry, are to be electrochemically activated to overcome these limitations and to leverage their full potential being reflected in stable charge capacities (>1000 mAhg(-1)) and high Coulomb efficiencies (98.8%). PMID:27531589

  11. Succinic acid-based leaching system: A sustainable process for recovery of valuable metals from spent Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Li, Li; Qu, Wenjie; Zhang, Xiaoxiao; Lu, Jun; Chen, Renjie; Wu, Feng; Amine, Khalil

    2015-05-01

    A hydrometallurgical method involving natural organic acid leaching has been developed for recovery of lithium and cobalt from the cathode active materials in spent lithium-ion batteries. Succinic acid is employed as leaching agent and H2O2 as reductant. The cobalt and lithium contents from the succinic acid-based treatment of spent batteries are determined by inductively coupled plasma-optical emission spectroscopy to calculate the leaching efficiency. The spent LiCoO2 samples after calcination and the residues after leaching are characterized by X-ray diffraction and scanning electron microscopy. The results show that nearly 100% of cobalt and more than 96% of lithium are leached under optimal conditions: succinic acid concentration of 1.5 mol L-1, H2O2 content of 4 vol.%, solid-to-liquid ratio of 15 g L-1, temperature of 70 °C, and reaction time of 40 min. Results are also given for fitting of the experimental data to acid leaching kinetic models.

  12. Thermophysical properties of LiCoO₂-LiMn₂O₄ blended electrode materials for Li-ion batteries.

    PubMed

    Gotcu, Petronela; Seifert, Hans J

    2016-04-21

    Thermophysical properties of two cathode types for lithium-ion batteries were measured by dependence on temperature. The cathode materials are commercial composite thick films containing LiCoO2 and LiMn2O4 blended active materials, mixed with additives (binder and carbon black) deposited on aluminium current collector foils. The thermal diffusivities of the cathode samples were measured by laser flash analysis up to 673 K. The specific heat data was determined based on measured composite specific heat, aluminium specific heat data and their corresponding measured mass fractions. The composite specific heat data was measured using two differential scanning calorimeters over the temperature range from 298 to 573 K. For a comprehensive understanding of the blended composite thermal behaviour, measurements of the heat capacity of an additional LiMn2O4 sample were performed, and are the first experimental data up to 700 K. Thermal conductivity of each cathode type and their corresponding blended composite layers were estimated from the measured thermal diffusivity, the specific heat capacity and the estimated density based on metallographic methods and structural investigations. Such data are highly relevant for simulation studies of thermal management and thermal runaway in lithium-ion batteries, in which the bulk properties are assumed, as a common approach, to be temperature independent. PMID:27031918

  13. Supercritical Carbon Dioxide-Assisted Process for Well-Dispersed Silicon/Graphene Composite as a Li ion Battery Anode

    PubMed Central

    Lee, Sang Ha; Park, Sengyoen; Kim, Min; Yoon, Dohyeon; Chanthad, Chalathorn; Cho, Misuk; Kim, Jaehoon; Park, Jong Hyeok; Lee, Youngkwan

    2016-01-01

    The silicon (Si)/graphene composite has been touted as one of the most promising anode materials for lithium ion batteries. However, the optimal fabrication method for this composite remains a challenge. Here, we developed a novel method using supercritical carbon dioxide (scCO2) to intercalate Si nanoparticles into graphene nanosheets. Silicon was modified with a thin layer of polyaniline, which assisted the dispersion of graphene sheets by introducing π-π interaction. Using scCO2, well-dispersed Si/graphene composite was successfully obtained in a short time under mild temperature. The composite showed high cycle performance (1,789 mAh/g after 250 cycles) and rate capability (1,690 mAh/g at a current density of 4,000 mA/g). This study provides a new approach for cost-effective and scalable preparation of a Si/graphene composite using scCO2 for a highly stable lithium battery anode material. PMID:27535108

  14. Supercritical Carbon Dioxide-Assisted Process for Well-Dispersed Silicon/Graphene Composite as a Li ion Battery Anode

    NASA Astrophysics Data System (ADS)

    Lee, Sang Ha; Park, Sengyoen; Kim, Min; Yoon, Dohyeon; Chanthad, Chalathorn; Cho, Misuk; Kim, Jaehoon; Park, Jong Hyeok; Lee, Youngkwan

    2016-08-01

    The silicon (Si)/graphene composite has been touted as one of the most promising anode materials for lithium ion batteries. However, the optimal fabrication method for this composite remains a challenge. Here, we developed a novel method using supercritical carbon dioxide (scCO2) to intercalate Si nanoparticles into graphene nanosheets. Silicon was modified with a thin layer of polyaniline, which assisted the dispersion of graphene sheets by introducing π-π interaction. Using scCO2, well-dispersed Si/graphene composite was successfully obtained in a short time under mild temperature. The composite showed high cycle performance (1,789 mAh/g after 250 cycles) and rate capability (1,690 mAh/g at a current density of 4,000 mA/g). This study provides a new approach for cost-effective and scalable preparation of a Si/graphene composite using scCO2 for a highly stable lithium battery anode material.

  15. Supercritical Carbon Dioxide-Assisted Process for Well-Dispersed Silicon/Graphene Composite as a Li ion Battery Anode.

    PubMed

    Lee, Sang Ha; Park, Sengyoen; Kim, Min; Yoon, Dohyeon; Chanthad, Chalathorn; Cho, Misuk; Kim, Jaehoon; Park, Jong Hyeok; Lee, Youngkwan

    2016-08-18

    The silicon (Si)/graphene composite has been touted as one of the most promising anode materials for lithium ion batteries. However, the optimal fabrication method for this composite remains a challenge. Here, we developed a novel method using supercritical carbon dioxide (scCO2) to intercalate Si nanoparticles into graphene nanosheets. Silicon was modified with a thin layer of polyaniline, which assisted the dispersion of graphene sheets by introducing π-π interaction. Using scCO2, well-dispersed Si/graphene composite was successfully obtained in a short time under mild temperature. The composite showed high cycle performance (1,789 mAh/g after 250 cycles) and rate capability (1,690 mAh/g at a current density of 4,000 mA/g). This study provides a new approach for cost-effective and scalable preparation of a Si/graphene composite using scCO2 for a highly stable lithium battery anode material.

  16. Supercritical Carbon Dioxide-Assisted Process for Well-Dispersed Silicon/Graphene Composite as a Li ion Battery Anode.

    PubMed

    Lee, Sang Ha; Park, Sengyoen; Kim, Min; Yoon, Dohyeon; Chanthad, Chalathorn; Cho, Misuk; Kim, Jaehoon; Park, Jong Hyeok; Lee, Youngkwan

    2016-01-01

    The silicon (Si)/graphene composite has been touted as one of the most promising anode materials for lithium ion batteries. However, the optimal fabrication method for this composite remains a challenge. Here, we developed a novel method using supercritical carbon dioxide (scCO2) to intercalate Si nanoparticles into graphene nanosheets. Silicon was modified with a thin layer of polyaniline, which assisted the dispersion of graphene sheets by introducing π-π interaction. Using scCO2, well-dispersed Si/graphene composite was successfully obtained in a short time under mild temperature. The composite showed high cycle performance (1,789 mAh/g after 250 cycles) and rate capability (1,690 mAh/g at a current density of 4,000 mA/g). This study provides a new approach for cost-effective and scalable preparation of a Si/graphene composite using scCO2 for a highly stable lithium battery anode material. PMID:27535108

  17. Chamber-confined silicon-carbon nanofiber composites for prolonged cycling life of Li-ion batteries.

    PubMed

    Fu, Kun; Lu, Yao; Dirican, Mahmut; Chen, Chen; Yanilmaz, Meltem; Shi, Quan; Bradford, Philip D; Zhang, Xiangwu

    2014-07-01

    Silicon is a promising high capacity (4200 mA h g(-1)) anode material for lithium ion batteries but the significant volume change (over 300%) of silicon during lithiation/delithiation remains a challenge in terms of silicon pulverization and solid-electrolyte-interphase (SEI) accumulation in the silicon composite electrode. To alleviate the volumetric change of silicon, we built a flexible and self-supporting carbon-enhanced carbon nanofiber (CNF) structure with vacant chamber to encapsulate Si nanoparticles (vacant Si@CNF@C). This composite was tested directly without any polymer and current collector. The confined vacant chamber allowed the increasing volume of silicon and SEI accumulates to be well retained for a long cycle life. This chamber-confined silicon-carbon nanofiber composite exhibited an improved performance in terms of good cycling performance (620 mA h g(-1)), high coulombic efficiency (99%), and good capacity retention (80%) after 200 cycles. This self-supported silicon-carbon nanofiber structure showed high flexibility and good electrochemical performance for the potential as flexible electrode for lithium-ion batteries.

  18. Performance of Low Temperature Electrolytes in Experimental and Prototype Li-Ion Cells

    NASA Technical Reports Server (NTRS)

    Smart, M. C.; Ratnakumar, B. V.; Whitcanack, L. D.

    2007-01-01

    Due to their attractive properties and proven success, Li-ion batteries have become identified as the battery chemistry of choice for a number of future NASA missions. A number of these applications would be greatly benefited by improved performance of Li-ion technology over a wider operating temperature range, especially at low temperatures, such as future ESMD missions. In many cases, these technology improvements may be mission enabling, and at the very least mission enhancing. In addition to aerospace applications, the DoE has interest in developing advanced Li-ion batteries that can operate over a wide temperature range to enable terrestrial HEV applications. Thus, our focus at JPL in recent years has been to extend the operating temperature range of Li-ion batteries, especially at low temperatures. To accomplish this, the main focus of the research has been devoted to developing improved lithium-ion conducting electrolytes. In the present paper, we would like to present some of the results we have obtained with ethylene carbonate-based electrolytes optimized for low temperature in experimental MCMB-LiNixCo1_x0 2 cells. In addition to obtaining discharge and charge rate performance data at various temperatures, electrochemical measurements were performed on individual electrodes (made possible by the incorporation of Li reference electrodes), including EIS, linear polarization and Tafel polarization measurements. The combination of techniques enables the elucidation of various trends associated with electrolyte composition. In addition to investigating the behavior in experimental cells, the performance of many promising low temperature electrolytes was demonstrated in large capacity, aerospace quality Li-ion prototype cells. These cells were subjected to a number of performance tests, including discharge rate characterization, charge rate characterization, cycle life performance at various temperatures, and power characterization tests.

  19. Li-ion Battery Separators, Mechanical Integrity and Failure Mechanisms Leading to Soft and Hard Internal Shorts

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaowei; Sahraei, Elham; Wang, Kai

    2016-09-01

    Separator integrity is an important factor in preventing internal short circuit in lithium-ion batteries. Local penetration tests (nail or conical punch) often produce presumably sporadic results, where in exactly similar cell and test set-ups one cell goes to thermal runaway while the other shows minimal reactions. We conducted an experimental study of the separators under mechanical loading, and discovered two distinct deformation and failure mechanisms, which could explain the difference in short circuit characteristics of otherwise similar tests. Additionally, by investigation of failure modes, we provided a hypothesis about the process of formation of local “soft short circuits” in cells with undetectable failure. Finally, we proposed a criterion for predicting onset of soft short from experimental data.

  20. Effects of cell positive cans and separators on the performance of high-voltage Li-ion batteries

    SciTech Connect

    Chen, Xilin; Xu, Wu; Xiao, Jie; Engelhard, Mark H.; Ding, Fei; Mei, Donghai; Hu, Dehong; Zhang, Jian; Zhang, Jiguang

    2012-09-01

    The effects of different cell cans and separators on the first-cycle Coulombic efficiency and long-term cycling stability of high voltage spinel cathode were investigated systematically. Compared to stainless steel (SS) positive-cans, aluminum (Al)-clad SS-316 positive-cans have a much better resistance to oxidation at high voltages thus improving the initial Coulombic efficiency of the batteries by more than 13%. Among the five separators studied in this work, polyethylene (PE) separator shows the best electrochemical stability. The cells using LiCr0.05Ni0.45Mn1.5O4 as cathode, Al-clad positive-can, and PE separator exhibit the first-cycle Columbic efficiency of about 90% and a capacity fading of only 0.01% per cycle.

  1. Single-crystalline LiFePO4 nanosheets for high-rate Li-ion batteries.

    PubMed

    Zhao, Yu; Peng, Lele; Liu, Borui; Yu, Guihua

    2014-05-14

    The lithiation/delithiation in LiFePO4 is highly anisotropic with lithium-ion diffusion being mainly confined to channels along the b-axis. Controlling the orientation of LiFePO4 crystals therefore plays an important role for efficient mass transport within this material. We report here the preparation of single crystalline LiFePO4 nanosheets with a large percentage of highly oriented {010} facets, which provide the highest pore density for lithium-ion insertion/extraction. The LiFePO4 nanosheets show a high specific capacity at low charge/discharge rates and retain significant capacities at high C-rates, which may benefit the development of lithium batteries with both favorable energy and power density.

  2. Li-ion Battery Separators, Mechanical Integrity and Failure Mechanisms Leading to Soft and Hard Internal Shorts

    PubMed Central

    Zhang, Xiaowei; Sahraei, Elham; Wang, Kai

    2016-01-01

    Separator integrity is an important factor in preventing internal short circuit in lithium-ion batteries. Local penetration tests (nail or conical punch) often produce presumably sporadic results, where in exactly similar cell and test set-ups one cell goes to thermal runaway while the other shows minimal reactions. We conducted an experimental study of the separators under mechanical loading, and discovered two distinct deformation and failure mechanisms, which could explain the difference in short circuit characteristics of otherwise similar tests. Additionally, by investigation of failure modes, we provided a hypothesis about the process of formation of local “soft short circuits” in cells with undetectable failure. Finally, we proposed a criterion for predicting onset of soft short from experimental data. PMID:27581185

  3. Remarkable performance improvement of inexpensive ball-milled Si nanoparticles by carbon-coating for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Kasukabe, Takatoshi; Nishihara, Hirotomo; Iwamura, Shinichiroh; Kyotani, Takashi

    2016-07-01

    Si nanoparticles prepared by ball-milling (BM-Si) are expected as practical negative-electrode materials for lithium-ion batteries, but their performance is much lower than those of more expensive Si nanomaterials, such as chemical-vapor-deposition derived Si nanoparticles (CVD-Si) having a tight network structure. It is found that carbon-coating of aggregations of BM-Si forms a quasi-network structure, thereby making the performance comparable to that of CVD-Si under capacity restriction (to 1500 mAh g-1). In this case, the structural transition of BM-Si during charge/discharge cycling is characterized by the formation of a specific 'wrinkled structure', which is very similar to that formed in CVD-Si.

  4. Binder-free Ge-three dimensional graphene electrodes for high-rate capacity Li-ion batteries

    SciTech Connect

    Wang, C. D.; Chui, Y. S.; Chen, X. F. E-mail: apwjzh@cityu.edu.hk; Zhang, W. J. E-mail: apwjzh@cityu.edu.hk; Li, Y.

    2013-12-16

    A binder-free, high-rate Ge-three dimensional (3D) graphene composite was synthesized by directly depositing Ge film atop 3D graphene grown by microwave plasma chemical vapor deposition on Ni substrate. The Ge-3D graphene structure demonstrates excellent electrochemical performance as a lithium ion battery (LIB) anode with a reversible capacity of 1140 mAh g{sup −1} at 1/3C over 100 cycles and 835 mAh g{sup −1} at 8C after 60 cycles, and significantly a discharge capacity of 186 mAh g{sup −1} was still achieved at 32C. The high capacity and outstanding stability of the Ge-3D graphene composite propose it as a promising electrode in high-performance thin film LIBs.

  5. Effects of cell positive cans and separators on the performance of high-voltage Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Chen, Xilin; Xu, Wu; Xiao, Jie; Engelhard, Mark H.; Ding, Fei; Mei, Donghai; Hu, Dehong; Zhang, Jian; Zhang, Ji-Guang

    2012-09-01

    The effects of different cell positive cans and separators on first-cycle Coulombic efficiency and long-term cycling stability of a high-voltage spinel cathode are investigated systematically. Compared to stainless steel (SS) positive cans, aluminum (Al)-clad SS-316 positive cans are much more resistant to oxidation at high voltages; therefore, the initial Coulombic efficiency of the batteries with Al-clad can is improved by more than 13%. Among the five separators studied in this work, the polyethylene (PE) separator exhibits the best electrochemical stability. The cells using LiCr0.05Ni0.45Mn1.5O4 as the cathode, an Al-clad positive can, and a PE separator exhibits a first-cycle Coulombic efficiency of about 90% and a capacity fading of only 0.01% per cycle.

  6. Fabrication of Sn-Ni/MWCNT composite coating for Li-ion batteries by pulse electrodeposition: Effects of duty cycle

    NASA Astrophysics Data System (ADS)

    Uysal, Mehmet; Cetinkaya, Tugrul; Alp, Ahmet; Akbulut, Hatem

    2015-04-01

    Nanocrystalline Sn-Ni/MWCNT composite was prepared by ultrasonic-pulse electrodeposition on a copper substrate in a pyrophosphate bath at different duty cycles. Surface morphology of produced Sn-Ni/MWCNT composites were characterized by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) was conducted to understand the elemental surface composition of composites. X-ray diffraction analysis (XRD) was carried out to investigate structure of Sn-Ni/MWCNT composites. The electrochemical performance of Sn-Ni/MWCNT composite electrodes were investigated by charge/discharge tests and cyclic voltammetric experiments. The cells discharge capacities were determined by cyclic testing by a battery tester at a constant current in voltage range between 0.02 V and 1.5 V. The duty cycle was shown to be a crucial factor to improve Sn-Ni/MWCNT composite anodes for cyclability and reversible capacity.

  7. Li-ion Battery Separators, Mechanical Integrity and Failure Mechanisms Leading to Soft and Hard Internal Shorts.

    PubMed

    Zhang, Xiaowei; Sahraei, Elham; Wang, Kai

    2016-09-01

    Separator integrity is an important factor in preventing internal short circuit in lithium-ion batteries. Local penetration tests (nail or conical punch) often produce presumably sporadic results, where in exactly similar cell and test set-ups one cell goes to thermal runaway while the other shows minimal reactions. We conducted an experimental study of the separators under mechanical loading, and discovered two distinct deformation and failure mechanisms, which could explain the difference in short circuit characteristics of otherwise similar tests. Additionally, by investigation of failure modes, we provided a hypothesis about the process of formation of local "soft short circuits" in cells with undetectable failure. Finally, we proposed a criterion for predicting onset of soft short from experimental data.

  8. The research progress of Li-ion battery separators with inorganic oxide nanoparticles by electrospinning: A mini review

    NASA Astrophysics Data System (ADS)

    Chen, Hong-Li; Jiao, Xiao-Ning; Zhou, Jin-Tao

    2016-09-01

    The technology of Lithium-ion battery (LIB) separator has become more and more mature. But there are still many problems that needed to be resolved. For example, its mechanical strength is low relatively, thermal stability is bad and the porosity and electrochemical performance are imperfect. This paper introduces modification of electrospinning LIB separator from the way of adding nanoparticles, including SiO2, TiO2, Al2O3 and copper titanate oxide, etc. And addition methods include dissolving in dispersant, dissolving in polymer solution, coating and in situ method. The modified membranes possess higher ionic conductivity which can reach to the level of 10‑3s/cm.

  9. Li-ion Battery Separators, Mechanical Integrity and Failure Mechanisms Leading to Soft and Hard Internal Shorts.

    PubMed

    Zhang, Xiaowei; Sahraei, Elham; Wang, Kai

    2016-01-01

    Separator integrity is an important factor in preventing internal short circuit in lithium-ion batteries. Local penetration tests (nail or conical punch) often produce presumably sporadic results, where in exactly similar cell and test set-ups one cell goes to thermal runaway while the other shows minimal reactions. We conducted an experimental study of the separators under mechanical loading, and discovered two distinct deformation and failure mechanisms, which could explain the difference in short circuit characteristics of otherwise similar tests. Additionally, by investigation of failure modes, we provided a hypothesis about the process of formation of local "soft short circuits" in cells with undetectable failure. Finally, we proposed a criterion for predicting onset of soft short from experimental data. PMID:27581185

  10. A siloxane-incorporated copolymer as an in situ cross-linkable binder for high performance silicon anodes in Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Jeena, M. T.; Bok, Taesoo; Kim, Si Hoon; Park, Sooham; Kim, Ju-Young; Park, Soojin; Ryu, Ja-Hyoung

    2016-04-01

    The electrochemical performance of Li-ion batteries (LIBs) can be highly tuned by various factors including the morphology of the anode material, the nature of the electrolyte, the binding material, and the percentage of conducting materials. Binding materials have been of particular interest to researchers over the decades as a means to further improve the cycle durability and columbic efficiency of LIBs. Such approaches include the introduction of different polymeric binders such as poly(acrylic acid) (PAA), carboxymethyl cellulose (CMC), and alginic acid (Alg) into the Si anode of LIBs. To achieve a better efficiency of LIBs, herein, we introduce a novel copolymer, poly(tert-butyl acrylate-co-triethoxyvinylsilane) (TBA-TEVS), as an efficient binder with stable cycle retention and excellent specific capacity. The binder forms a highly interconnected three-dimensional network upon thermal treatment as a result of de-protection of the tert-butyl group and the consequent inter-intra condensation reaction, which minimizes pulverization of the Si nanoparticles. Moreover, the siloxane group is expected to promote the formation of stable solid-electrolyte-interface (SEI) layers. A series of random copolymers were synthesized by varying the molar ratio of tert-butyl acrylate and triethoxyvinylsilane. Twenty-one percent of TEVS in the TBS-TEVS copolymer gave rise to a superior performance as a binder for Si anodes, where the anodes showed a stable specific capacity of 2551 mA h g-1 over hundreds of cycles and an initial columbic efficiency (ICE) of 81.8%.The electrochemical performance of Li-ion batteries (LIBs) can be highly tuned by various factors including the morphology of the anode material, the nature of the electrolyte, the binding material, and the percentage of conducting materials. Binding materials have been of particular interest to researchers over the decades as a means to further improve the cycle durability and columbic efficiency of LIBs. Such approaches

  11. Bamboo leaf derived ultrafine Si nanoparticles and Si/C nanocomposites for high-performance Li-ion battery anodes

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Gao, Biao; Peng, Changjian; Peng, Xiang; Fu, Jijiang; Chu, Paul K.; Huo, Kaifu

    2015-08-01

    Silicon-based nanomaterials are promising anode materials in lithium-ion batteries (LIBs) due to their high theoretical capacity of 4200 mA h g-1, more than 10 times that of commercial graphite. Si nanoparticles (NPs) with a diameter of or below 10 nm generally exhibit enhanced lithium storage properties due to their small size and large surface area. However, it is challenging to generate such ultrafine Si NPs by a facile and scalable method. This paper reports a scalable method to fabricate ultrafine Si NPs 5-8 nm in size from dead bamboo leaves (BLs) by thermally decomposing the organic matter, followed by magnesiothermic reduction in the presence of NaCl as a heat scavenger. The ultrafine Si NPs show a high capacity of 1800 mA h g-1 at a 0.2 C (1 C = 4200 mA g-1) rate and are thus promising anode materials in lithium-ion batteries. To achieve better rate capability, the BLs-derived ultrafine Si NPs are coated with a thin amorphous carbon layer (Si@C) and then dispersed and embedded in a reduced graphene oxide (RGO) network to produce Si@C/RGO nanocomposites by a layer-by-layer assembly method. The double protection rendered by the carbon shell and RGO network synergistically yield structural stability, high electrical conductivity and a stable solid electrolyte interface during Li insertion/extraction. The Si@C/RGO nanocomposites show excellent battery properties with a high capacity of 1400 mA h g-1 at a high current density of 2 C and remarkable rate performance with a capacity retention of 60% when the current density is increased 20 times from 0.2 to 4 C. This work provides a simple, low cost, and scalable approach enabling the use of BL waste as a sustainable source for the production of ultrafine Si NPs towards high-performance LIBs.Silicon-based nanomaterials are promising anode materials in lithium-ion batteries (LIBs) due to their high theoretical capacity of 4200 mA h g-1, more than 10 times that of commercial graphite. Si nanoparticles (NPs) with a

  12. A siloxane-incorporated copolymer as an in situ cross-linkable binder for high performance silicon anodes in Li-ion batteries.

    PubMed

    Jeena, M T; Bok, Taesoo; Kim, Si Hoon; Park, Sooham; Kim, Ju-Young; Park, Soojin; Ryu, Ja-Hyoung

    2016-04-28

    The electrochemical performance of Li-ion batteries (LIBs) can be highly tuned by various factors including the morphology of the anode material, the nature of the electrolyte, the binding material, and the percentage of conducting materials. Binding materials have been of particular interest to researchers over the decades as a means to further improve the cycle durability and columbic efficiency of LIBs. Such approaches include the introduction of different polymeric binders such as poly(acrylic acid) (PAA), carboxymethyl cellulose (CMC), and alginic acid (Alg) into the Si anode of LIBs. To achieve a better efficiency of LIBs, herein, we introduce a novel copolymer, poly(tert-butyl acrylate-co-triethoxyvinylsilane) (TBA-TEVS), as an efficient binder with stable cycle retention and excellent specific capacity. The binder forms a highly interconnected three-dimensional network upon thermal treatment as a result of de-protection of the tert-butyl group and the consequent inter-intra condensation reaction, which minimizes pulverization of the Si nanoparticles. Moreover, the siloxane group is expected to promote the formation of stable solid-electrolyte-interface (SEI) layers. A series of random copolymers were synthesized by varying the molar ratio of tert-butyl acrylate and triethoxyvinylsilane. Twenty-one percent of TEVS in the TBS-TEVS copolymer gave rise to a superior performance as a binder for Si anodes, where the anodes showed a stable specific capacity of 2551 mA h g(-1) over hundreds of cycles and an initial columbic efficiency (ICE) of 81.8%. PMID:27087685

  13. Novel binary deep eutectic electrolytes for rechargeable Li-ion batteries based on mixtures of alkyl sulfonamides and lithium perfluoroalkylsulfonimide salts

    NASA Astrophysics Data System (ADS)

    Geiculescu, O. E.; DesMarteau, D. D.; Creager, S. E.; Haik, O.; Hirshberg, D.; Shilina, Y.; Zinigrad, E.; Levi, M. D.; Aurbach, D.; Halalay, I. C.

    2016-03-01

    Ionic liquids (IL's) were proposed for use in Li-ion batteries (LIBs), in order to mitigate some of the well-known drawbacks of LiPF6/mixed organic carbonates solutions. However, their large cations seriously decrease lithium transference numbers and block lithium insertion sites at electrode-electrolyte interfaces, leading to poor LIB rate performance. Deep eutectic electrolytes (DEEs) (which share some of the advantages of ILs but possess only one cation, Li+), were then proposed, in order to overcome the difficulties associated with ILs. We report herein on the preparation, thermal properties (melting, crystallization, and glass transition temperatures), transport properties (specific conductivity and viscosity) and thermal stability of binary DEEs based on mixtures of lithium bis(trifluoromethane)sulfonimide or lithium bis(fluoro)sulfonimide salts with an alkyl sulfonamide solvent. Promise for LIB applications is demonstrated by chronoamperometry on Al current collectors, and cycling behavior of negative and positive electrodes. Residual current densities of 12 and 45 nA cm-2 were observed at 5 V vs. Li/Li+ on aluminum, 1.5 and 16 nA cm-2 at 4.5 V vs. Li/Li+, respectively for LiFSI and LiTFSI based DEEs. Capacities of 220, 130, and 175 mAh· g-1 were observed at low (C/13 or C/10) rates, respectively for petroleum coke, LiMn1/3Ni1/3Co1/3O2 (a.k.a. NMC 111) and LiAl0.05Co0.15Ni0.8O2 (a.k.a. NCA).

  14. Synthesis of hierarchically porous SnO(2) microspheres and performance evaluation as li-ion battery anode by using different binders.

    PubMed

    Gurunathan, P; Ette, Pedda Masthanaiah; Ramesha, K

    2014-10-01

    We have prepared nanoporous SnO2 hollow microspheres (HMS) by employing the resorcinol-formaldehyde (RF) gel method. Further, we have investigated the electrochemical property of SnO2-HMS as negative electrode material in rechargeable Li-ion batteries by employing three different binders-polyvinylidene difluoride (PVDF), Na salt of carboxy methyl cellulose (Na-CMC), and Na-alginate. At 1C rate, SnO2 electrode with Na-alginate binder exhibits discharge capacity of 800 mA h g(-1), higher than when Na-CMC (605 mA h g(-1)) and PVDF (571 mA h g(-1)) are used as binders. After 50 cycles, observed discharge capacities were 725 mA h g(-1), 495 mA h g(-1), and 47 mA h g(-1), respectively, for electrodes with Na-alginate, Na-CMC, and PVDF binders that amounts to a capacity retention of 92%, 82%, and 8% . Electrochemical impedance spectroscopy (EIS) results confirm that the SnO2 electrode with Na-alginate as binder had much lower charge transfer resistance than the electrode with Na-CMC and PVDF binders. The superior electrochemical property of the SnO2 electrode containing Na-alginate can be attributed to the cumulative effects arising from integration of nanoarchitecture with a suitable binder; the hierarchical porous structure would accommodate large volume changes during the Li interaclation-deintercalation process, and the Na-alginate binder provides a stronger adhesion betweeen electrode film and current collector. PMID:25203752

  15. Probing the Degradation Mechanism of Li2MnO3 Cathode for Li-Ion Batteries

    SciTech Connect

    Yan, Pengfei; Xiao, Liang; Zheng, Jianming; Zhou, Yungang; He, Yang; Zu, Xiaotao; Mao, Scott X.; Xiao, Jie; Gao, Fei; Zhang, Jiguang; Wang, Chong M.

    2015-02-10

    Capacity and voltage fading of Li2MnO3 is a major challenge for the application of this category of material, which is believed to be associated with the structural and chemical evolution of the materials. This paper reports the detailed structural and chemical evolutions of Li2MnO3 cathode captured by using aberration corrected scanning/transmission electron microscope (S/TEM) after certain numbers of charge-discharge cycling of the batteries. It is found that structural degradation occurs from the very first cycle and is spatially initiated from the surface of the particle and propagates towards the inner bulk as cyclic number increase, featuring the formation of the surface phase transformation layer and gradual thickening of this layer. The structure degradation is found to follow a sequential phase transformation: monoclinic C2/m → tetragonal I41 → cubic spinel, which is consistently supported by the decreasing lattice formation energy based on DFT calculations. For the first time, high spatial resolution quantitative chemical analysis reveals that 20% oxygen in the surface phase transformation layer is removed and such newly developed surface layer is a Li-depleted layer with reduced Mn cations. This work demonstrates a direct correlation between structural degradation and cell’s electrochemical degradation, which enhances our understanding of Li-Mn-rich (LMR) cathode materials.

  16. Core-shell Si@TiO2 nanosphere anode by atomic layer deposition for Li-ion batteries

    DOE PAGES

    Dai, Sheng

    2016-01-28

    Silicon (Si) is regarded as next-generation anode for high-energy lithium-ion batteries (LIBs) due to its high Li storage capacity (4200 mA h g-1). However, the mechanical degradation and resultant capacity fade critically hinder its practical application. In this regard, we demonstrate that nanocoating of Si spheres with a 3 nm titanium dioxide (TiO2) layer via atomic layer deposition (ALD) can utmostly balance the high conductivity and the good structural stability to improve the cycling stability of Si core material. The resultant sample, Si@TiO2-3 nm core–shell nanospheres, exhibits the best electrochemical performance of all with a highest initial Coulombic efficiency andmore » specific charge capacity retention after 50 cycles at 0.1C (82.39% and 1580.3 mA h g-1). In addition to making full advantage of the ALD technique, we believe that our strategy and comprehension in coating the electrode and the active material could provide a useful pathway towards enhancing Si anode material itself and community of LIBs.« less

  17. Graphene Folding in Si Rich Carbon Nanofibers for Highly Stable, High Capacity Li-Ion Battery Anodes.

    PubMed

    Fei, Ling; Williams, Brian P; Yoo, Sang H; Kim, Jangwoo; Shoorideh, Ghazal; Joo, Yong Lak

    2016-03-01

    Silicon nanoparticles (Si NPs) wrapped by graphene in carbon nanofibers were obtained via electrospinning and subsequent thermal treatment. In this study, water-soluble poly(vinyl alcohol) (PVA) with low carbon yield is selected to make the process water-based and to achieve a high silicon yield in the composite. It was also found that increasing the amount of graphene helps keep the PVA fiber morphology after carbonization, while forming a graphene network. The fiber SEM and HRTEM images reveal that micrometer graphene is heavily folded into sub-micron scale fibers during electrospinning, while Si NPs are incorporated into the folds with nanospace in between. When applied to lithium-ion battery anodes, the Si/graphene/carbon nanofiber composites show a high reversible capacity of ∼2300 mAh g(-1) at a charging rate of 100 mA/g and a stable capacity of 1191 mAh g(-1) at 1 A/g after more than 200 cycles. The interconnected graphene network not only ensures the excellent conductivity but also serves as a buffering matrix for the mechanic stress caused by volume change; the nanospace between Si NPs and folded graphene provides the space needed for volume expansion. PMID:26853163

  18. In situ Scanning electron microscope study and microstructural evolution of nano silicon anode for high energy Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Hovington, P.; Dontigny, M.; Guerfi, A.; Trottier, J.; Lagacé, M.; Mauger, A.; Julien, C. M.; Zaghib, K.

    2014-02-01

    In situ and ex situ scanning electron microscopy of nano Si and SiO anode particles was carried out during the first cycles, and at various stages of charge. The particle size effects were explored in the range 0.1-20 μm, providing a new insight into the micro-structural evolution of the particles as a function of their size, and into the 'mechanical' resistance upon important volume change upon phase transformation of these anodes. For small particles, the failure of the battery comes from an electrochemical sintering that compacts the whole electrode, which results in its cracking. The particles keep their integrity when the discharge is stopped at a voltage 0.1 V, which corresponds to the chemical composition Li12Si7, while the particles are known to crack at deeper discharge up to Li22Si5. Replacing the Si particles by SiO particles in an attempt to avoid these structural effects did not help, because of the different chemical reactions during cycling, with the loss of oxygen.

  19. Core-shell Si@TiO2 nanosphere anode by atomic layer deposition for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Bai, Ying; Yan, Dong; Yu, Caiyan; Cao, Lina; Wang, Chunlei; Zhang, Jinshui; Zhu, Huiyuan; Hu, Yong-Sheng; Dai, Sheng; Lu, Junling; Zhang, Weifeng

    2016-03-01

    Silicon (Si) has been regarded as next-generation anode for high-energy lithium-ion batteries (LIBs) due to its high Li storage capacity (4200 mA h g-1). However, the mechanical degradation and resultant capacity fade critically hinder its practical application. In this regard, we demonstrate that nanocoating of Si spheres with a 3 nm titanium dioxide (TiO2) layer via atomic layer deposition (ALD) can utmostly balance the high conductivity and the good structural stability to improve the cycling stability of Si core material. The resultant sample, Si@TiO2-3 nm core-shell nanospheres, exhibits the best electrochemical performance of all with a highest initial Coulombic efficiency and specific charge capacity retention after 50 cycles at 0.1C (82.39% and 1580.3 mA h g-1). In addition to making full advantage of the ALD technique, we believe that our strategy and comprehension in coating the electrode and the active material could provide a useful pathway towards enhancing Si anode material itself and community of LIBs.

  20. LiFePO4 - 3D carbon nanofiber composites as cathode materials for Li-ions batteries

    NASA Astrophysics Data System (ADS)

    Dimesso, L.; Spanheimer, C.; Jaegermann, W.; Zhang, Y.; Yarin, A. L.

    2012-03-01

    The characterization of carbon nanofiber 3D nonwovens, prepared by electrospinning process, coated with olivine structured lithium iron phosphate is reported. The LiFePO4 as cathode material for lithium ion batteries was prepared by a Pechini-assisted reversed polyol process. The coating has been successfully performed on carbon nanofiber 3D nonwovens by soaking in aqueous solution containing lithium, iron salts and phosphates at 70 °C for 2-4 h. After drying-out, the composites were annealed at 600 °C for 5 h under nitrogen. The surface investigation of the prepared composites showed a uniform coating of the carbon nonwoven nanofibers as well as the formation of cauliflower-like crystalline structures which are uniformly distributed all over the surface area of the carbon nanofibers. The electrochemical measurements on the composites showed good performances delivering a discharge specific capacity of 156 mAhg- 1 at a discharging rate of C/25 and 152 mAhg- 1 at a discharging rate of C/10 at room temperature.

  1. Rational design of three-dimensional macroporous silicon as high performance Li-ion battery anodes with long cycle life

    NASA Astrophysics Data System (ADS)

    Wu, Hao; Du, Ning; Shi, Xianxing; Yang, Deren

    2016-11-01

    Three-dimensional (3D) macroporous silicon with stable interconnected structure is prepared by magnesiothermic reduction based on deliberate design, while flexible morphological control of zero-dimensional (0D) hollow nanospheres is realized via simply altering the conditions of the same reaction. When used as anode materials in lithium-ion batteries, the empty space in both structures allows for effective accommodation of large volume changes during lithium insertion and extraction. Due to the robustness of the interconnected porous structure, the 3D Si@C electrode exhibits better electrochemical properties with a reversible capacity of 1058 mAh g-1 after 800 cycles and 91% capacity retention (only 0.012% capacity degradation per cycle). The coulombic efficiency of the 3D porous electrode stabilizes at 99.4% in later cycles. The results demonstrated herein provide a better understanding of the controllable magnesiothermic reduction reaction, which is potentially an efficient method for large scale synthesis of high-performance Si anodes.

  2. Co3O4-reduced graphene oxide nanocomposite synthesized by microwave-assisted hydrothermal process for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Park, Sang-Hoon; Kim, Hyun-Kyung; Roh, Kwang Chul; Kim, Kwang-Bum

    2015-03-01

    A nanocomposite of Co3O4 and reduced graphene oxide (Co3O4-rGO) was successfully synthesized as an anode material for lithium-ion batteries by a one-pot microwave-assisted hydrothermal process. In the nanocomposite, Co3O4 nanoparticles with narrow size distribution in the range of 10-30 nm uniformly decorated the surface of rGO, indicating that rGO could act as a two-dimensional template for the heterogeneous precipitation of Co3O4 nanoparticles. To investigate the effect of mass ratios of Co3O4 and rGO on the electrochemical properties, the Co3O4 loading in the nanocomposite was controlled during the microwave-assisted hydrothermal synthesis. The resulting nanocomposite electrode exhibited high electrochemical performance in terms of specific capacity and cyclability, indicating that rGO served as an efficient template material to provide a highly conducting and buffering network for Co3O4 nanoparticles. [Figure not available: see fulltext.

  3. High performance LiMn2O4 cathode materials grown with epitaxial layered nanostructure for Li-ion batteries.

    PubMed

    Lee, Min-Joon; Lee, Sanghan; Oh, Pilgun; Kim, Youngsik; Cho, Jaephil

    2014-02-12

    Tremendous research works have been done to develop better cathode materials for a large scale battery to be used for electric vehicles (EVs). Spinel LiMn2O4 has been considered as the most promising cathode among the many candidates due to its advantages of high thermal stability, low cost, abundance, and environmental affinity. However, it still suffers from the surface dissolution of manganese in the electrolyte at elevated temperature, especially above 60 °C, which leads to a severe capacity fading. To overcome this barrier, we here report an imaginative material design; a novel heterostructure LiMn2O4 with epitaxially grown layered (R3̅m) surface phase. No defect was observed at the interface between the host spinel and layered surface phase, which provides an efficient path for the ionic and electronic mobility. In addition, the layered surface phase protects the host spinel from being directly exposed to the highly active electrolyte at 60 °C. The unique characteristics of the heterostructure LiMn2O4 phase exhibited a discharge capacity of 123 mAh g(-1) and retained 85% of its initial capacity at the elevated temperature (60 °C) after 100 cycles.

  4. Caramel popcorn shaped silicon particle with carbon coating as a high performance anode material for Li-ion batteries.

    PubMed

    He, Meinan; Sa, Qina; Liu, Gao; Wang, Yan

    2013-11-13

    Silicon is a very promising anode material for lithium ion batteries. It has a 4200 mAh/g theoretical capacity, which is ten times higher than that of commercial graphite anodes. However, when lithium ions diffuse to Si anodes, the volume of Si will expand to almost 400% of its initial size and lead to the crack of Si. Such a huge volume change and crack cause significant capacity loss. Meanwhile, with the crack of Si particles, the conductivity between the electrode and the current collector drops. Moreover, the solid electrolyte interphase (SEI), which is generated during the cycling, reduces the discharge capacity. These issues must be addressed for widespread application of this material. In this work, caramel popcorn shaped porous silicon particles with carbon coating are fabricated by a set of simple chemical methods as active anode material. Si particles are etched to form a porous structure. The pores in Si provide space for the volume expansion and liquid electrolyte diffusion. A layer of amorphous carbon is formed inside the pores, which gives an excellent isolation between the Si particle and electrolyte, so that the formation of the SEI layer is stabilized. Meanwhile, this novel structure enhances the mechanical properties of the Si particles, and the crack phenomenon caused by the volume change is significantly restrained. Therefore, an excellent cycle life under a high rate for the novel Si electrode is achieved. PMID:24111737

  5. Comprehensive Understanding of High Polar Polyacrylonitrile as an Effective Binder for Li-Ion Battery Nano-Si Anodes.

    PubMed

    Luo, Lei; Xu, Yunlong; Zhang, Huang; Han, Xiaona; Dong, Hui; Xu, Xing; Chen, Chao; Zhang, Yang; Lin, Jiahao

    2016-03-01

    Well-defined polyacrylonitriles (PANs) with different molecular weights were synthesized through an activator regenerated by electron-transfer atom-transfer radical polymerization method and employed as binders in silicon negative electrode for lithium-ion batteries. Compared with poly(vinylidene fluoride) and carboxyl methyl cellulose as binders, the electrode performance of PANs is well-improved. Specifically, at 100 mA g(-1) from 0.01 to 1.5 V, the initial discharge capacity of PAN100-based electrode is 4147.8 mA h g(-1) and still remains about 1639.6 mA h g(-1) over 50 cycles. A comprehensive understanding on the improvement mechanism is preliminarily discussed. The results indicate that the superior performance largely depends on the higher lithium ion diffusion efficiency in PAN which results from the weak interaction between lithium ions and PAN polymer chain, and the hydrogen bonds among the nitrile group (C≡N) of PAN, Si nanoparticles, and the current collector, which will lead to an efficient coating of PAN with the Si particles and well-improved adhesion strength, synergistically depressing the structural deterioration of silicon electrodes. PMID:26978186

  6. Atomic/Molecular Layer Deposition of Lithium Terephthalate Thin Films as High Rate Capability Li-Ion Battery Anodes.

    PubMed

    Nisula, Mikko; Karppinen, Maarit

    2016-02-10

    We demonstrate the fabrication of high-quality electrochemically active organic lithium electrode thin films by the currently strongly emerging combined atomic/molecular layer deposition (ALD/MLD) technique using lithium terephthalate, a recently found anode material for lithium-ion battery (LIB), as a proof-of-the-concept material. Our deposition process for Li-terephthalate is shown to well comply with the basic principles of ALD-type growth including the sequential self-saturated surface reactions, a necessity when aiming at micro-LIB devices with three-dimensional architectures. The as-deposited films are found crystalline across the deposition temperature range of 200-280 °C, which is a trait highly desired for an electrode material but rather unusual for hybrid inorganic-organic thin films. Excellent rate capability is ascertained for the Li-terephthalate films with no conductive additives required. The electrode performance can be further enhanced by depositing a thin protective LiPON solid-state electrolyte layer on top of Li-terephthalate; this yields highly stable structures with capacity retention of over 97% after 200 charge/discharge cycles at 3.2 C.

  7. Surfactant based sol-gel approach to nanostructured LiFePO 4 for high rate Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Choi, Daiwon; Kumta, Prashant N.

    Porous nanostructured LiFePO 4 powder with a narrow particle size distribution (100-300 nm) for high rate lithium-ion battery cathode application was obtained using an ethanol based sol-gel route employing lauric acid as a surfactant. The synthesized LiFePO 4 powders comprised of agglomerates of crystallites <65 nm in diameter exhibiting a specific surface area ranging from 8 m 2 g -1 to 36 m 2 g -1 depending on the absence or presence of the surfactant. The LiFePO 4 obtained using lauric acid resulted in a specific capacity of 123 mAh g -1 and 157 mAh g -1 at discharge rates of 10 C and 1 C with less than 0.08% fade per cycle, respectively. Structural and microstructural characterization were performed using X-ray diffraction (XRD), scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM) with energy dispersive X-ray (EDX) analysis while electronic conductivity and specific surface area were determined using four-point probe and N 2 adsorption techniques.

  8. Poly(isobutylene-alt-maleic anhydride) binders containing lithium for high-performance Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Ku, Jun-Hwan; Hwang, Seung-Sik; Ham, Dong-Jin; Song, Min-Sang; Shon, Jeong-Kuk; Ji, Sang-Min; Choi, Jae-Man; Doo, Seok-Gwang

    2015-08-01

    Anode materials including graphite are known to be thermodynamically unstable toward organic solvents and salts and become covered by a passivating film (Solid electrolyte interphase, SEI) which retards the kinetics because of the high electronic resistivity. To achieve high performance in lithium ion batteries (LIBs), the SEIs are required to be mechanically stable during repeated cycling and possess highly ion-conductive. In this work, we have investigated an artificial pre-SEI on graphite electrode using a polymer binder containing lithium (i.e., a Li-copolymer of isobutylene and maleic anhydride, Li-PIMA) and its effect on the anode performances. During charging, the polymer binder with the functional group (-COOLi) acts as a SEI component, reducing the electrolyte decomposition and providing a stable passivating layer for the favorable penetration of lithium ions. Hence, by using the binder containing lithium, we have been able to obtain the first Coulombic efficiency of 84.2% (compared to 77.2% obtained using polyvinylidene fluoride as the binder) and a capacity retention of 99% after 100 cycles. The results of our study demonstrate that binder containing lithium we have used is a favorable candidate for the development of high-performance LIBs.

  9. Novel pyrolyzed polyaniline-grafted silicon nanoparticles encapsulated in graphene sheets as Li-ion battery anodes.

    PubMed

    Li, Zhe-Fei; Zhang, Hangyu; Liu, Qi; Liu, Yadong; Stanciu, Lia; Xie, Jian

    2014-04-23

    A simple method to fabricate graphene-encapsulated pyrolyzed polyaniline-grafted Si nanoparticles has been developed. Instead of using Si nanoparticles with a native oxide layer, HF-treated Si nanoparticles were employed in this work. The uniqueness of this method is that, first, a PANI layer over the Si nanoparticles was formed via the surface-initiated polymerization of aniline on the surface of aniline-functionalized Si nanoparticles; then, the PANI-grafted Si nanoparticles were wrapped by the GO sheets via π-π interaction and electrostatic attraction between the GO and the PANI. Finally, the GO and PANI were pyrolyzed, and this pyrolyzed PANI layer tightly binds the graphene sheets and the Si nanoparticles together in the composite. The composite materials exhibit better cycling stability and Coulombic efficiency as anodes in lithium ion batteries, as compared to pure Si nanoparticles and physically mixed graphene/Si composites. After 300 cycles at a current density of 2 A/g, the composite electrodes can still deliver a specific capacity of about 900 mAh/g, which corresponds to ∼76% capacity retention. The enhanced performance can be attributed to the absence of surface oxides, the better electronic conductivity, faster ion diffusion rate, and the strong interaction between the graphene sheets and the tightly bound carbon-coated Si nanoparticles.

  10. Overview of Computer-Aided Engineering of Batteries and Introduction to Multi-Scale, Multi-Dimensional Modeling of Li-Ion Batteries (Presentation)

    SciTech Connect

    Pesaran, A.; Kim, G. H.; Smith, K.; Santhanagopalan, S.; Lee, K. J.

    2012-05-01

    This 2012 Annual Merit Review presentation gives an overview of the Computer-Aided Engineering of Batteries (CAEBAT) project and introduces the Multi-Scale, Multi-Dimensional model for modeling lithium-ion batteries for electric vehicles.

  11. Carbon-Coated, Diatomite-Derived Nanosilicon as a High Rate Capable Li-ion Battery Anode

    PubMed Central

    Campbell, Brennan; Ionescu, Robert; Tolchin, Maxwell; Ahmed, Kazi; Favors, Zachary; Bozhilov, Krassimir N.; Ozkan, Cengiz S.; Ozkan, Mihrimah

    2016-01-01

    Silicon is produced in a variety of ways as an ultra-high capacity lithium-ion battery (LIB) anode material. The traditional carbothermic reduction process required is expensive and energy-intensive; in this work, we use an efficient magnesiothermic reduction to convert the silica-based frustules within diatomaceous earth (diatomite, DE) to nanosilicon (nanoSi) for use as LIB anodes. Polyacrylic acid (PAA) was used as a binder for the DE-based nanoSi anodes for the first time, being attributed for the high silicon utilization under high current densities (up to 4C). The resulting nanoSi exhibited a high BET specific surface area of 162.6 cm2 g−1, compared to a value of 7.3 cm2 g−1 for the original DE. DE contains SiO2 architectures that make ideal bio-derived templates for nanoscaled silicon. The DE-based nanoSi anodes exhibit good cyclability, with a specific discharge capacity of 1102.1 mAh g−1 after 50 cycles at a C-rate of C/5 (0.7 A gSi−1) and high areal loading (2 mg cm−2). This work also demonstrates the fist rate capability testing for a DE-based Si anode; C-rates of C/30 - 4C were tested. At 4C (14.3 A gSi−1), the anode maintained a specific capacity of 654.3 mAh g−1 – nearly 2x higher than graphite’s theoretical value (372 mAh g−1). PMID:27713474

  12. One step synthesis of monoclinic VO{sub 2} (B) bundles of nanorods: Cathode for Li ion battery

    SciTech Connect

    Ganganagappa, Nagaraju; Siddaramanna, Ashoka

    2012-06-15

    One of the metastable phases of vanadium dioxide, VO{sub 2}(B) bundles of nanorods and microspheres have been synthesized through a simple hydrothermal method by dispersing V{sub 2}O{sub 5} in aqueous quinol. The obtained products were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and electrochemical discharge-charge test for lithium battery. It was found that the morphologies of the obtained VO{sub 2}(B) can be tuned by manipulating the relative amount of quinol. The electrochemical test found that the bundles of nanorods exhibit an initial discharge capacity of 171 mAh g{sup -1} and its almost stabilized capacity was reached to 108 mAh g{sup -1} after 47 cycles at a current density of 0.1 mA g{sup -1}. The formation mechanism of the VO{sub 2}(B) bundles of nanorods and microspheres was also discussed. - Highlights: Black-Right-Pointing-Pointer VO{sub 2}(B) bundles of nanorods and microspheres were prepared by hydrothermal route at 180 Degree-Sign C for 1 day. Black-Right-Pointing-Pointer In this method for the synthesis of VO{sub 2}(B), we are the first to use quinol as a reducing agent. Black-Right-Pointing-Pointer Morphologies of the obtained VO{sub 2}(B) can be tuned by manipulating the relative amount of quinol. Black-Right-Pointing-Pointer VO{sub 2}(B) exhibits an initial capacity of 171 mAh g{sup -1} and reached to 108 mAh g{sup -1} after 47 cycles. Black-Right-Pointing-Pointer The formation mechanism of the VO{sub 2}(B) bundles of nanorods and microspheres is also discussed.

  13. Improved electrochemical performance of nitrogen doped TiO2-B nanowires as anode materials for Li-ion batteries.

    PubMed

    Zhang, Yongquan; Fu, Qiang; Xu, Qiaoling; Yan, Xiao; Zhang, Rongyu; Guo, Zhendong; Du, Fei; Wei, Yingjin; Zhang, Dong; Chen, Gang

    2015-07-28

    N-doped TiO2-B nanowires are prepared by the solvothermal method using TiN nanoparticles as the starting material. X-ray photoelectron spectroscopy shows that the N dopants preferentially occupy the interstitial sites of TiO2-B up to a content of ∼0.55 at%. Above this critical value, the N dopants will substitute the oxygen atoms which improve the electronic conductivity of TiO2-B. The maximum proportion of substituted-N in the TiO2-B nanowires is ∼1.3 at%. Raman scattering shows that the substituted-N strengthens the Ti(1)-O1-Ti(2) and O1-Ti(1)-O3 bonds of TiO2-B. This improves the stability of the corresponding local structures, thus reducing the distortion of the Li(+) diffusion channel along the b-axis of TiO2-B. As a result, the substituted-N has more of an impact on the electrochemical properties of TiO2-B than the interstitial-N does. The TiO2-B nanowires containing substituted-N dopants exhibit a remarkably enhanced electrochemical performance compared to pure TiO2-B. They show a discharge capacity of 153 mA h g(-1) at the 20 C rate with a capacity retention of 76% after 1000 cycles. In addition, they can deliver a discharge capacity of 100 mA h g(-1) at an ultra-high rate of 100 C, indicating their great potential in high power lithium ion batteries.

  14. Carbon-Coated, Diatomite-Derived Nanosilicon as a High Rate Capable Li-ion Battery Anode

    NASA Astrophysics Data System (ADS)

    Campbell, Brennan; Ionescu, Robert; Tolchin, Maxwell; Ahmed, Kazi; Favors, Zachary; Bozhilov, Krassimir N.; Ozkan, Cengiz S.; Ozkan, Mihrimah

    2016-10-01

    Silicon is produced in a variety of ways as an ultra-high capacity lithium-ion battery (LIB) anode material. The traditional carbothermic reduction process required is expensive and energy-intensive; in this work, we use an efficient magnesiothermic reduction to convert the silica-based frustules within diatomaceous earth (diatomite, DE) to nanosilicon (nanoSi) for use as LIB anodes. Polyacrylic acid (PAA) was used as a binder for the DE-based nanoSi anodes for the first time, being attributed for the high silicon utilization under high current densities (up to 4C). The resulting nanoSi exhibited a high BET specific surface area of 162.6 cm2 g‑1, compared to a value of 7.3 cm2 g‑1 for the original DE. DE contains SiO2 architectures that make ideal bio-derived templates for nanoscaled silicon. The DE-based nanoSi anodes exhibit good cyclability, with a specific discharge capacity of 1102.1 mAh g‑1 after 50 cycles at a C-rate of C/5 (0.7 A gSi‑1) and high areal loading (2 mg cm‑2). This work also demonstrates the fist rate capability testing for a DE-based Si anode; C-rates of C/30 - 4C were tested. At 4C (14.3 A gSi‑1), the anode maintained a specific capacity of 654.3 mAh g‑1 – nearly 2x higher than graphite’s theoretical value (372 mAh g‑1).

  15. Organic anodes and sulfur/selenium cathodes for advanced Li and Na batteries

    NASA Astrophysics Data System (ADS)

    Luo, Chao

    To address energy crisis and environmental pollution induced by fossil fuels, there is an urgent demand to develop sustainable, renewable, environmental benign, low cost and high capacity energy storage devices to power electric vehicles and enhance clean energy approaches such as solar energy, wind energy and hydroenergy. However, the commercial Li-ion batteries cannot satisfy the critical requirements for next generation rechargeable batteries. The commercial electrode materials (graphite anode and LiCoO 2 cathode) are unsustainable, unrenewable and environmental harmful. Organic materials derived from biomasses are promising candidates for next generation rechargeable battery anodes due to their sustainability, renewability, environmental benignity and low cost. Driven by the high potential of organic materials for next generation batteries, I initiated a new research direction on exploring advanced organic compounds for Li-ion and Na-ion battery anodes. In my work, I employed croconic acid disodium salt and 2,5-Dihydroxy-1,4-benzoquinone disodium salt as models to investigate the effects of size and carbon coating on electrochemical performance for Li-ion and Na-ion batteries. The results demonstrate that the minimization of organic particle size into nano-scale and wrapping organic materials with graphene oxide can remarkably enhance the rate capability and cycling stability of organic anodes in both Li-ion and Na-ion batteries. To match with organic anodes, high capacity sulfur and selenium cathodes were also investigated. However, sulfur and selenium cathodes suffer from low electrical conductivity and shuttle reaction, which result in capacity fading and poor lifetime. To circumvent the drawbacks of sulfur and selenium, carbon matrixes such as mesoporous carbon, carbonized polyacrylonitrile and carbonized perylene-3, 4, 9, 10-tetracarboxylic dianhydride are employed to encapsulate sulfur, selenium and selenium sulfide. The resulting composites exhibit

  16. Advanced battery development

    SciTech Connect

    Diegle, R.B.; McWilliams, J.Y.

    1989-01-01

    In order to promote national security by ensuring that the United States has an adequate supply of safe, assured, affordable, and environmentally acceptable energy, the Storage Batteries Division at Sandia National Laboratories (SNL), Albuquerque, is responsible for engineering development of advanced rechargeable batteries for energy applications. This effort is conducted within the Exploratory Battery Technology Development and Testing (ETD) Lead center, whose activities are coordinated by staff within the Storage Batteries Division. The ETD Project, directed by SNL, is supported by the US Department of Energy, Office of Energy Systems Research, Energy Storage and Distribution Division (DOE/OESD). SNL is also responsible for technical management of the Electric Vehicle Advanced Battery Systems (EV-ABS) Development Project, which is supported by the US Department Of Energy's Office of Transportation Systems (OTS). The ETD Project is operated in conjunction with the Technology Base Research (TBR) Project, which is under the direction of Lawrence Berkeley Laboratory. Together these two projects seek to: establish the scientific feasibility of advanced electrochemical energy storage systems, and conduct the initial engineering development on systems suitable for mobile and stationary commercial applications. 6 figs.

  17. Rechargeable dual-metal-ion batteries for advanced energy storage.

    PubMed

    Yao, Hu-Rong; You, Ya; Yin, Ya-Xia; Wan, Li-Jun; Guo, Yu-Guo

    2016-04-14

    Energy storage devices are more important today than any time before in human history due to the increasing demand for clean and sustainable energy. Rechargeable batteries are emerging as the most efficient energy storage technology for a wide range of portable devices, grids and electronic vehicles. Future generations of batteries are required to have high gravimetric and volumetric energy, high power density, low price, long cycle life, high safety and low self-discharge properties. However, it is quite challenging to achieve the above properties simultaneously in state-of-the-art single metal ion batteries (e.g. Li-ion batteries, Na-ion batteries and Mg-ion batteries). In this contribution, hybrid-ion batteries in which various metal ions simultaneously engage to store energy are shown to provide a new perspective towards advanced energy storage: by connecting the respective advantages of different metal ion batteries they have recently attracted widespread attention due to their novel performances. The properties of hybrid-ion batteries are not simply the superposition of the performances of single ion batteries. To enable a distinct description, we only focus on dual-metal-ion batteries in this article, for which the design and the benefits are briefly discussed. We enumerate some new results about dual-metal-ion batteries and demonstrate the mechanism for improving performance based on knowledge from the literature and experiments. Although the search for hybrid-ion batteries is still at an early age, we believe that this strategy would be an excellent choice for breaking the inherent disadvantages of single ion batteries in the near future.

  18. Li-ion battery operated power amplifier MMICs utilizing SrTiO 3 capacitors and heterojunction FETs for PDC and CDMA cellular phones

    NASA Astrophysics Data System (ADS)

    Iwata, N.; Yamaguchi, K.; Nishimura, T. B.; Takemura, K.; Miyasaka, Y.

    1999-04-01

    Highly efficient two-stage 1 W power amplifier MMICs utilizing SrTiO 3 capacitors and Si-doped AlGaAs/InGaAs/Si-doped AlGaAs FETs have been developed for Li-ion battery operated digital cellular phones. For the personal digital cellular (PDC) applications, a power amplifier MMIC with 2.0×2.4 mm 2 area includes all bias and matching circuits. The MMIC delivered a 950 MHz π/4-shifted QPSK output signal power ( Pout) of 0.8 W (29.0 dBm), a power-added efficiency (PAE) of 30% and an associated gain ( Ga) of 26.4 dB with an adjacent channel leakage power ratio (ACPR) of -50.5 dBc at 50 kHz off-center frequency under 3.4 V drain bias operation. The power performance showed good agreement with a simulated one when series resistances in the output matching circuit and the drain bias circuit for the second-stage FET were taken into account. When the circuits were removed from the MMIC, it exhibited PAE of 42.4% and Pout of 1.0 W (30.0 dBm) with Ga of 29.8 dB at the PDC criteria. These results revealed that a low loss in the output passive circuits of a power amplifier MMIC is essential. Then, a power amplifier MMIC for the IS-95 application at 840 MHz was designed and evaluated without the output circuit. The MMIC with 2.0×1.5 mm 2 area delivered Pout of 0.93 W (29.7 dBm), PAE of 48.6% and Ga of 28.4 dB with ACPR of -42 dBc at 0.9 MHz off-center frequency under 3.5 V operation. Even operated at a reduced supply voltage of 1.2 V, a high PAE of 46.9% was obtained. These results indicate that the developed power amplifier MMICs and its approach are promising for small-size and lightweight digital cellular phones with long talk time.

  19. Relevance of LiPF6 as Etching Agent of LiMnPO4 Colloidal Nanocrystals for High Rate Performing Li-ion Battery Cathodes

    PubMed Central

    2016-01-01

    LiMnPO4 is an attractive cathode material for the next-generation high power Li-ion batteries, due to its high theoretical specific capacity (170 mA h g–1) and working voltage (4.1 V vs Li+/Li). However, two main drawbacks prevent the practical use of LiMnPO4: its low electronic conductivity and the limited lithium diffusion rate, which are responsible for the poor rate capability of the cathode. The electronic resistance is usually lowered by coating the particles with carbon, while the use of nanosize particles can alleviate the issues associated with poor ionic conductivity. It is therefore of primary importance to develop a synthetic route to LiMnPO4 nanocrystals (NCs) with controlled size and coated with a highly conductive carbon layer. We report here an effective surface etching process (using LiPF6) on colloidally synthesized LiMnPO4 NCs that makes the NCs dispersible in the aqueous glucose solution used as carbon source for the carbon coating step. Also, it is likely that the improved exposure of the NC surface to glucose facilitates the formation of a conductive carbon layer that is in intimate contact with the inorganic core, resulting in a high electronic conductivity of the electrode, as observed by us. The carbon coated etched LiMnPO4-based electrode exhibited a specific capacity of 118 mA h g–1 at 1C, with a stable cycling performance and a capacity retention of 92% after 120 cycles at different C-rates. The delivered capacities were higher than those of electrodes based on not etched carbon coated NCs, which never exceeded 30 mA h g–1. The rate capability here reported for the carbon coated etched LiMnPO4 nanocrystals represents an important result, taking into account that in the electrode formulation 80% wt is made of the active material and the adopted charge protocol is based on reasonable fast charge times. PMID:26799094

  20. Relevance of LiPF6 as Etching Agent of LiMnPO4 Colloidal Nanocrystals for High Rate Performing Li-ion Battery Cathodes.

    PubMed

    Chen, Lin; Dilena, Enrico; Paolella, Andrea; Bertoni, Giovanni; Ansaldo, Alberto; Colombo, Massimo; Marras, Sergio; Scrosati, Bruno; Manna, Liberato; Monaco, Simone

    2016-02-17

    LiMnPO4 is an attractive cathode material for the next-generation high power Li-ion batteries, due to its high theoretical specific capacity (170 mA h g(-1)) and working voltage (4.1 V vs Li(+)/Li). However, two main drawbacks prevent the practical use of LiMnPO4: its low electronic conductivity and the limited lithium diffusion rate, which are responsible for the poor rate capability of the cathode. The electronic resistance is usually lowered by coating the particles with carbon, while the use of nanosize particles can alleviate the issues associated with poor ionic conductivity. It is therefore of primary importance to develop a synthetic route to LiMnPO4 nanocrystals (NCs) with controlled size and coated with a highly conductive carbon layer. We report here an effective surface etching process (using LiPF6) on colloidally synthesized LiMnPO4 NCs that makes the NCs dispersible in the aqueous glucose solution used as carbon source for the carbon coating step. Also, it is likely that the improved exposure of the NC surface to glucose facilitates the formation of a conductive carbon layer that is in intimate contact with the inorganic core, resulting in a high electronic conductivity of the electrode, as observed by us. The carbon coated etched LiMnPO4-based electrode exhibited a specific capacity of 118 mA h g(-1) at 1C, with a stable cycling performance and a capacity retention of 92% after 120 cycles at different C-rates. The delivered capacities were higher than those of electrodes based on not etched carbon coated NCs, which never exceeded 30 mA h g(-1). The rate capability here reported for the carbon coated etched LiMnPO4 nanocrystals represents an important result, taking into account that in the electrode formulation 80% wt is made of the active material and the adopted charge protocol is based on reasonable fast charge times.

  1. One-step calcination-free synthesis of multicomponent spinel assembled microspheres for high-performance anodes of li-ion batteries: a case study of MnCo(2)O(4).

    PubMed

    Fu, Chaochao; Li, Guangshe; Luo, Dong; Huang, Xinsong; Zheng, Jing; Li, Liping

    2014-02-26

    Multicomponent spinel metal-oxide assembled mesoporous microspheres, promising anode materials for Li-ion batteries with superior electrochemical performance, are usually obtained using different kinds of precursors followed by high-temperature post-treatments. Nevertheless, high-temperature calcinations often cause primary particles to aggregate and coarsen, which may damage the assembled microsphere architectures, leading to deterioration of electrochemical performance. In this work, binary spinel metal-oxide assembled mesoporous microspheres MnCo2O4 were fabricated by one-step low-temperature solvothermal method through handily utilizing the redox reaction of nitrate and ethanol. This preparation method is calcination-free, and the resulting MnCo2O4 microspheres were surprisingly assembled by nanoparticles and nanosheets. Two kinds of MnCo2O4 crystal nucleus with different exposed facet of (1̅10) and (11̅2̅) could be responsible for the formation of particle-assembled and sheet-assembled microspheres, respectively. Profiting from the self-assembly structure with mesoporous features, MnCo2O4 microspheres delivered a high reversible capacity up to 722 mAh/g after 25 cycles at a current density of 200 mA/g and capacities up to 553 and 320 mAh/g after 200 cycles at a higher current density of 400 and 900 mA/g, respectively. Even at an extremely high current density of 2700 mA/g, the electrode still delivered a capacity of 403 mAh/g after cycling with the stepwise increase of current densities. The preparation method reported herein may provide hints for obtaining various advanced multicomponent spinel metal-oxide assembled microspheres such as CoMn2O4, ZnMn2O4, ZnCo2O4, and so on, for high-performance energy storage and conversion devices.

  2. Facile Fabrication of Ethoxy-Functional Polysiloxane Wrapped LiNi0.6Co0.2Mn0.2O2 Cathode with Improved Cycling Performance for Rechargeable Li-Ion Battery.

    PubMed

    Wang, Hao; Ge, Wujie; Li, Wen; Wang, Feng; Liu, Wenjing; Qu, Mei-Zhen; Peng, Gongchang

    2016-07-20

    Dealing with the water molecule on the surface of LiNi0.6Co0.2Mn0.2O2 (NCM) cathode and hydrogen fluoride in the electrolyte is one of the most difficult challenges in Li-ion battery research. In this paper, the surface polymerization of tetraethyl orthosilicate (TEOS) on NCM to generate ethoxy-functional polysiloxane (EPS) wrapped NCM (E-NCM) cathode under mild conditions and without any additions is utilized to solve this intractable problem. The differential scanning calorimetry, transmission electron microscopy, and X-ray photoelectron spectroscopy results show that the formed amorphous coating can provide a protective shell to improve the NCM thermal stability, suppress the thickening of the solid electrolyte interphase (SEI) layer, and scavenge HF in the electrolyte. The E-NCM composite with 2 mol % EPS delivers a high discharge capacity retention of 84.9% after 100 cycles at a 1 C discharge rate in the 2.8-4.3 V potential range at 55 °C. Moreover, electrochemical impedance spectroscopy measurements reveal that the EPS coating could alleviate the impedance rise during cycling especially at an elevated temperature. Therefore, the fabricated E-NCM cathode with long-term cycling and thermal stability is a promising candidate for use in a high-energy Li-ion battery. PMID:27359276

  3. Facile Fabrication of Ethoxy-Functional Polysiloxane Wrapped LiNi0.6Co0.2Mn0.2O2 Cathode with Improved Cycling Performance for Rechargeable Li-Ion Battery.

    PubMed

    Wang, Hao; Ge, Wujie; Li, Wen; Wang, Feng; Liu, Wenjing; Qu, Mei-Zhen; Peng, Gongchang

    2016-07-20

    Dealing with the water molecule on the surface of LiNi0.6Co0.2Mn0.2O2 (NCM) cathode and hydrogen fluoride in the electrolyte is one of the most difficult challenges in Li-ion battery research. In this paper, the surface polymerization of tetraethyl orthosilicate (TEOS) on NCM to generate ethoxy-functional polysiloxane (EPS) wrapped NCM (E-NCM) cathode under mild conditions and without any additions is utilized to solve this intractable problem. The differential scanning calorimetry, transmission electron microscopy, and X-ray photoelectron spectroscopy results show that the formed amorphous coating can provide a protective shell to improve the NCM thermal stability, suppress the thickening of the solid electrolyte interphase (SEI) layer, and scavenge HF in the electrolyte. The E-NCM composite with 2 mol % EPS delivers a high discharge capacity retention of 84.9% after 100 cycles at a 1 C discharge rate in the 2.8-4.3 V potential range at 55 °C. Moreover, electrochemical impedance spectroscopy measurements reveal that the EPS coating could alleviate the impedance rise during cycling especially at an elevated temperature. Therefore, the fabricated E-NCM cathode with long-term cycling and thermal stability is a promising candidate for use in a high-energy Li-ion battery.

  4. Thermal Abuse Modeling of Li-Ion Cells and Propagation in Modules (Presentation)

    SciTech Connect

    Kim, G.-H.; Pesaran, A.; Smith, K.

    2008-05-01

    The objectives of this paper are: (1) continue to explore thermal abuse behaviors of Li-ion cells and modules that are affected by local conditions of heat and materials; (2) use the 3D Li-ion battery thermal abuse 'reaction' model developed for cells to explore the impact of the location of internal short, its heating rate, and thermal properties of the cell; (3) continue to understand the mechanisms and interactions between heat transfer and chemical reactions during thermal runaway for Li-ion cells and modules; and (4) explore the use of the developed methodology to support the design of abuse-tolerant Li-ion battery systems.

  5. Real space mapping of Li-ion transport in amorphous Si anodes with nanometer resolution

    SciTech Connect

    Balke, N.; Jesse, S.; Kim, Y.; Adamczyk, L.; Tselev, A.; Ivanov, I.; Dudney, N. J.; Kalinin, S. V.

    2010-09-08

    The electrical bias driven Li-ion motion in silicon anode materials in thin film battery heterostructures is investigated using electrochemical strain microscopy (ESM), which is a newly developed scanning probe microscopy based characterization method. ESM utilizes the intrinsic link between bias-controlled Li-ion concentration and molar volume of electrode materials, providing the capability for studies on the sub-20 nm scale, and allows the relationship between Li-ion flow and microstructure to be established. The evolution of Li-ion transport during the battery charging is directly observed.

  6. Identification of Li-Ion Battery SEI Compounds through (7)Li and (13)C Solid-State MAS NMR Spectroscopy and MALDI-TOF Mass Spectrometry.

    PubMed

    Huff, Laura A; Tavassol, Hadi; Esbenshade, Jennifer L; Xing, Wenting; Chiang, Yet-Ming; Gewirth, Andrew A

    2016-01-13

    Solid-state (7)Li and (13)C MAS NMR spectra of cycled graphitic Li-ion anodes demonstrate SEI compound formation upon lithiation that is followed by changes in the SEI upon delithiation. Solid-state (13)C DPMAS NMR shows changes in peaks associated with organic solvent compounds (ethylene carbonate and dimethyl carbonate, EC/DMC) upon electrochemical cycling due to the formation of and subsequent changes in the SEI compounds. Solid-state (13)C NMR spin-lattice (T1) relaxation time measurements of lithiated Li-ion anodes and reference poly(ethylene oxide) (PEO) powders, along with MALDI-TOF mass spectrometry results, indicate that large-molecular-weight polymers are formed in the SEI layers of the discharged anodes. MALDI-TOF MS and NMR spectroscopy results additionally indicate that delithiated anodes exhibit a larger number of SEI products than is found in lithiated anodes. PMID:26653886

  7. Phosphite as Polyanion-Based Cathode for Li-Ion Battery: Synthesis, Structure, and Electrochemistry of LiFe(HPO3)2.

    PubMed

    Yaghoobnejad Asl, Hooman; Choudhury, Amitava

    2015-07-01

    A new lithium containing iron(III) phosphite, LiFe(HPO3)2, has been synthesized via a solvent-free, low temperature, solid-state synthesis route. The crystal structure of this material has been determined employing single-crystal X-ray diffraction, which indicates that the compound has a three-dimensional structure formed by isolated FeO6 octahedral units joined together via bridging HPO3 pseudopyramidal moieties. This arrangement leads to the formation of channels along all the three crystallographic directions, where channels along the a- and b-axes host Li(+) ions. The compound was further characterized by TGA, IR, and Mössbauer spectroscopic techniques. Additionally, it has been demonstrated that this phase is electrochemically active toward reversible intercalation of Li(+) ions and thus can be used as a cathode material in Li-ion cells. An average discharge potential of 2.8 V and a practical capacity of 70 mAh·g(-1) has been achieved as indicated by the results of cyclic voltammetry and galvanostatic charge-discharge tests.

  8. Li-Ion Cell Development for Low Temperature Applications

    NASA Technical Reports Server (NTRS)

    Huang, C.-K.; Sakamoto, J. S.; Surampudi, S.; Wolfenstine, J.

    2000-01-01

    JPL is involved in the development of rechargeable Li-ion cells for future Mars Exploration Missions. The specific objectives are to improve the Li-ion cell cycle life performance and rate capability at low temperature (<<-20 C) in order to enhance survivability of the Mars lander and rover batteries. Poor Li-ion rate capability at low temperature has been attributed to: (1) the electrolytes becoming viscous or freezing and/or (2) reduced electrode capacity that results from decreased Li diffusivity. Our efforts focus on increasing the rate capability at low temperature for Li-ion cells. In order to improve the rate capability we evaluated the following: (1) cathode performance at low temperatures, (2) electrode active material particle size on low temperature performance and (3) Li diffusivity at room temperature and low temperatures. In this paper, we will discuss the results of our study.

  9. NASA Aerospace Flight Battery Program: Generic Safety, Handling and Qualification Guidelines for Lithium-Ion (Li-Ion) Batteries; Availability of Source Materials for Lithium-Ion (Li-Ion) Batteries; Maintaining Technical Communications Related to Aerospace Batteries (NASA Aerospace Battery Workshop). Volume 2, Part 1

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.; Brewer, Jeffrey C.; Bugga, Ratnakumar V.; Darcy, Eric C.; Jeevarajan, Judith A.; McKissock, Barbara I.; Schmitz, Paul C.

    2010-01-01

    This NASA Aerospace Flight Battery Systems Working Group was chartered within the NASA Engineering and Safety Center (NESC). The Battery Working Group was tasked to complete tasks and to propose proactive work to address battery related, agency-wide issues on an annual basis. In its first year of operation, this proactive program addressed various aspects of the validation and verification of aerospace battery systems for NASA missions. Studies were performed, issues were discussed and in many cases, test programs were executed to generate recommendations and guidelines to reduce risk associated with various aspects of implementing battery technology in the aerospace industry. This report contains the Appendices to the findings from the first year of the program's operations.

  10. LiNi1/3Co1/3Mn1/3O2 nanoplates with {010} active planes exposing prepared in polyol medium as a high-performance cathode for Li-ion battery.

    PubMed

    Li, Jili; Yao, Ruimin; Cao, Chuanbao

    2014-04-01

    As we know, Li(+)-ion transport in layered LiNi1/3Co1/3Mn1/3O2 (NCM) is through two-dimensional channels parallel to the Li(+)-ion layers that are indexed as {010} active planes. In this paper, NCM nanoplates with exposed {010} active facets are synthesized in a polyol medium (ethylene glycol) and characterized by XRD, XPS, SEM, and HR-TEM. In addition, the effects of reaction conditions on the morphologies, structures and electrochemical performances are also evaluated. The results show that more {010} facets can be exposed with the thickness of NCM nanoplates increasing which can lead to more channels for Li(+)-ion migration. However, when the annealing temperatures exceed 900 °C, many new crystal planes grow along the thickness direction covering the {010} facets. In all of the NCM nanoplates obtained at different conditions, the NCM nanoplates calcined at 850 °C for 12 h (NCM-850-12H) display a high initial discharge capacity of 207.6 mAh g(-1) at 0.1 C (1 C = 200 mA g(-1)) between 2.5 and 4.5 V higher than most of NCM materials as cathodes for lithium ion batteries. The discharge capacities of NCM-850-12H are 169.8, 160.5, and 149.3 mAh g(-1) at 2, 5, and 7 C, respectively, illustrating the excellent rate capability. The superior electrochemical performance of NCM-850-12H cathode can be attributed to more {010} active planes exposure.

  11. Surface-modified Li[Li0.2Ni0.17Co0.07Mn0.56]O2 nanoparticles with MgF2 as cathode for Li-ion battery

    DOE PAGES

    Sun, Shuwei; Wan, Ning; Wu, Qing; Zhang, Xiaoping; Pan, Du; Bai, Ying; Lu, Xia

    2015-10-01

    Li-rich layered materials hold lots of promise as cathode for next-generation high performance Li-ion batteries. Here, surface-modified layer-structured Li[Li0.2Ni0.17Co0.07Mn0.56]O2 (Li-rich) nanoparticles are employed as cathode for Li storage and transport studies. Moreover, our results demonstrate that 1 wt.% MgF2-modified Li-rich electrode exhibits the best cycling capability, with capacity retention ratio of 86% after 50 cycles, much higher than that of pristine one (only 66%). In the meantime, the 1 wt.% MgF2 surface modified Li-rich electrode shows superior rate performance and thermal abuse treatments as well. Subsequent investigation indicates that the coated MgF2 layer can suppress the undesirable growth of solidmore » electrolyte interphase (SEI) film and enhance the structure stability upon cycling. Finally, this coating technique provides the potentially rewarding avenue towards the development of high capacity Li-ion cathodes.« less

  12. First-Principles Characterization of the Unknown Crystal Structure and Ionic Conductivity of Li7P2S8I as a Solid Electrolyte for High-Voltage Li Ion Batteries.

    PubMed

    Kang, Joonhee; Han, Byungchan

    2016-07-21

    Using first-principles density functional theory calculations and ab initio molecular dynamics (AIMD) simulations, we demonstrate the crystal structure of the Li7P2S8I (LPSI) and Li ionic conductivity at room temperature with its atomic-level mechanism. By successively applying three rigorous conceptual approaches, we identify that the LPSI has a similar symmetry class as Li10GeP2S12 (LGPS) material and estimate the Li ionic conductivity to be 0.3 mS cm(-1) with an activation energy of 0.20 eV, similar to the experimental value of 0.63 mS cm(-1). Iodine ions provide an additional path for Li ion diffusion, but a strong Li-I attractive interaction degrades the Li ionic transport. Calculated density of states (DOS) for LPSI indicate that electrochemical instability can be substantially improved by incorporating iodine at the Li metallic anode via forming a LiI compound. Our methods propose the computational design concept for a sulfide-based solid electrolyte with heteroatom doping for high-voltage Li ion batteries.

  13. First-Principles Characterization of the Unknown Crystal Structure and Ionic Conductivity of Li7P2S8I as a Solid Electrolyte for High-Voltage Li Ion Batteries.

    PubMed

    Kang, Joonhee; Han, Byungchan

    2016-07-21

    Using first-principles density functional theory calculations and ab initio molecular dynamics (AIMD) simulations, we demonstrate the crystal structure of the Li7P2S8I (LPSI) and Li ionic conductivity at room temperature with its atomic-level mechanism. By successively applying three rigorous conceptual approaches, we identify that the LPSI has a similar symmetry class as Li10GeP2S12 (LGPS) material and estimate the Li ionic conductivity to be 0.3 mS cm(-1) with an activation energy of 0.20 eV, similar to the experimental value of 0.63 mS cm(-1). Iodine ions provide an additional path for Li ion diffusion, but a strong Li-I attractive interaction degrades the Li ionic transport. Calculated density of states (DOS) for LPSI indicate that electrochemical instability can be substantially improved by incorporating iodine at the Li metallic anode via forming a LiI compound. Our methods propose the computational design concept for a sulfide-based solid electrolyte with heteroatom doping for high-voltage Li ion batteries. PMID:27345207

  14. High performance anode for advanced Li batteries

    SciTech Connect

    Lake, Carla

    2015-11-02

    The overall objective of this Phase I SBIR effort was to advance the manufacturing technology for ASI’s Si-CNF high-performance anode by creating a framework for large volume production and utilization of low-cost Si-coated carbon nanofibers (Si-CNF) for the battery industry. This project explores the use of nano-structured silicon which is deposited on a nano-scale carbon filament to achieve the benefits of high cycle life and high charge capacity without the consequent fading of, or failure in the capacity resulting from stress-induced fracturing of the Si particles and de-coupling from the electrode. ASI’s patented coating process distinguishes itself from others, in that it is highly reproducible, readily scalable and results in a Si-CNF composite structure containing 25-30% silicon, with a compositionally graded interface at the Si-CNF interface that significantly improve cycling stability and enhances adhesion of silicon to the carbon fiber support. In Phase I, the team demonstrated the production of the Si-CNF anode material can successfully be transitioned from a static bench-scale reactor into a fluidized bed reactor. In addition, ASI made significant progress in the development of low cost, quick testing methods which can be performed on silicon coated CNFs as a means of quality control. To date, weight change, density, and cycling performance were the key metrics used to validate the high performance anode material. Under this effort, ASI made strides to establish a quality control protocol for the large volume production of Si-CNFs and has identified several key technical thrusts for future work. Using the results of this Phase I effort as a foundation, ASI has defined a path forward to commercialize and deliver high volume and low-cost production of SI-CNF material for anodes in Li-ion batteries.

  15. In-house fabrication and testing capabilities for Li and Li-ion 18650 cells

    NASA Astrophysics Data System (ADS)

    Nagasubramanian, G.

    2010-04-01

    For over 10 years Sandia Labs have been involved in an US DOE-funded program aimed at developing electric vehicle batteries for transportation applications. Currently this program is called "Advanced Battery Research (ABR)." In this effort we were preparing 18650 cells with electrodes supplied by or purchased from private companies for thermal abuse and electrical characterization studies. Lately, we are coating our own electrodes, building cells and evaluating performance. This paper describes our extensive in-house facilities for slurry making, electrode coating, cell winding etc. In addition, facilities for electrical testing and thermal abuse will be described. This facility allows us to readjust our focus quickly to the changing demands of the still evolving ABR program. Additionally, we continue to make cells for our internal use. We made several 18650 cells both primary (Li-CFx) and secondary (Li-ion) and evaluated performance. For example Li-CFx cells gave ~2.9Ahr capacity at room temperature. Our high voltage Li-ion cells consisting of carbon anode and cathode based on LiNi 0.4Mn 0.3Co 0.3O2 in organic electrolytes exhibited reproducible behavior and gave capacity on the order of 1Ahr. Performance of Li-ion cells at different temperatures and thermal abuse characteristics will be presented.

  16. Guar gum: Structural and electrochemical characterization of natural polymer based binder for silicon-carbon composite rechargeable Li-ion battery anodes

    NASA Astrophysics Data System (ADS)

    Kuruba, Ramalinga; Datta, Moni Kanchan; Damodaran, Krishnan; Jampani, Prashanth H.; Gattu, Bharat; Patel, Prasad P.; Shanthi, Pavithra M.; Damle, Sameer; Kumta, Prashant N.

    2015-12-01

    Long term cyclability of a composite Li-ion anode electrode comprised of 82 wt.% Si/C lithium ion active material along with 8 wt.% polymeric binder and 10 wt.% Super P conductive carbon black has been studied utilizing polymeric binders exhibiting different elastic/tensile moduli and tensile yield strengths. Accordingly, electrochemically active Si/C composite synthesized by high energy mechanical milling (HEMM), exhibiting reversible specific capacities of ∼780 mAh/g and ∼600 mAh/g at charge/discharge rates of ∼50 mA/g and ∼200 mA/g, respectively were selected as the Li-ion active anode. Polyvinylidene fluoride (PVDF) and purified guar gum (PGG) with reported elastic moduli ∼1000 MPa and ∼3200 MPa, respectively were selected as the binders. Results show that the composite electrode (Si/C + binder + conducting carbon) comprising the higher elastic modulus binder (PGG) exhibits better long term cyclability contrasted with PVDF. 1H-NMR analysis of the polymer before and after cycling shows structural degradation/deformation of the low elastic modulus PVDF, whereas the high elastic modulus PGG binder shows no permanent structural deformation or damage. The results presented herein thus suggest that PGG based polymers exhibiting high elastic modulus are a promising class of binders with the desired mechanical integrity needed for enduring the colossal volume expansion stresses of Si/C based composite anodes.

  17. Mesoporous Li1.2Mn0.54Ni0.13Co0.13O2 nanotubes for high-performance cathodes in Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Ma, Dingtao; Li, Yongliang; Zhang, Peixin; Cooper, Adam J.; Abdelkader, Amr M.; Ren, Xiangzhong; Deng, Libo

    2016-04-01

    One-dimensional nanotubes constructed from interconnected Li1.2Mn0.54Ni0.13Co0.13O2 secondary particles of diameters measuring ca. 40 nm, were synthesized by a one-pot electrospinning method. Novel electrodes were constructed from (a) nanoparticles only, and (b) hollow nanofibres, and employed as cathodes in Li-ion batteries. The nanotube cathode exhibited impressive specific charge capacity, good cycling stability, and excellent rate capability. A discharge capacity of 140 mAh g-1 with capacity retention of 89% at 3 C was achieved after 300 cycles. The significant improvement of electrochemical performance is attributed to the high surface area of the nanotubes, well-guided charge transfer kinetics with short ionic diffusion pathways, and large effective contact area with the electrolyte during the cycling process.

  18. Core-shell tin oxide, indium oxide, and indium tin oxide nanoparticles on silicon with tunable dispersion: electrochemical and structural characteristics as a hybrid Li-ion battery anode.

    PubMed

    Osiak, Michal J; Armstrong, Eileen; Kennedy, Tadhg; Torres, Clivia M Sotomayor; Ryan, Kevin M; O'Dwyer, Colm

    2013-08-28

    Tin oxide (SnO2) is considered a very promising material as a high capacity Li-ion battery anode. Its adoption depends on a solid understanding of factors that affect electrochemical behavior and performance such as size and composition. We demonstrate here, that defined dispersions and structures can improve our understanding of Li-ion battery anode material architecture on alloying and co-intercalation processes of Lithium with Sn from SnO2 on Si. Two different types of well-defined hierarchical Sn@SnO2 core-shell nanoparticle (NP) dispersions were prepared by molecular beam epitaxy (MBE) on silicon, composed of either amorphous or polycrystalline SnO2 shells. In2O3 and Sn doped In2O3 (ITO) NP dispersions are also demonstrated from MBE NP growth. Lithium alloying with the reduced form of the NPs and co-insertion into the silicon substrate showed reversible charge storage. Through correlation of electrochemical and structural characteristics of the anodes, we detail the link between the composition, areal and volumetric densities, and the effect of electrochemical alloying of Lithium with Sn@SnO2 and related NPs on their structure and, importantly, their dispersion on the electrode. The dispersion also dictates the degree of co-insertion into the Si current collector, which can act as a buffer. The compositional and structural engineering of SnO2 and related materials using highly defined MBE growth as model system allows a detailed examination of the influence of material dispersion or nanoarchitecture on the electrochemical performance of active electrodes and materials.

  19. Thermodynamic and kinetic studies of LiNi0.5Co0.2Mn0.3O2 as a positive electrode material for Li-ion batteries using first principles.

    PubMed

    Dixit, Mudit; Kosa, Monica; Lavi, Onit Srur; Markovsky, Boris; Aurbach, Doron; Major, Dan Thomas

    2016-03-01

    Ni-rich Li-based layered Ni, Co, and Mn (NCM) materials have shown tremendous promise in recent years as positive electrode materials for Li-ion batteries. This is evident as companies developing batteries for electrical vehicles are currently commercializing these materials. Despite the considerable research performed on LiNiαCoβMnγO2 systems, we do not yet have a complete atomic level understanding of these materials. In this work we study the cationic ordering, thermodynamics, and diffusion kinetics of LiNi0.5Co0.2Mn0.3O2 (NCM-523). Initially, we show that cationic ordering can be predicted employing cheap atomistic simulations, instead of using expensive first-principles methods. Subsequently, we investigate the electrochemical, thermodynamic and kinetic properties of NCM-523 using density functional theory (DFT). Our results demonstrate the importance of including dispersion corrections to standard first principles functionals in order to correctly predict the lattice parameters of layered cathode materials. We also demonstrate that a careful choice of computational protocol is essential to reproduce the experimental intercalation potential trends observed in the LiNi0.5Co0.2Mn0.3O2 electrodes. Analysis of the electronic structure confirms an active role of Ni in the electrochemical redox process. Moreover, we confirm the experimental finding that on complete delithiation, this material remains in an O3 phase, unlike LiCoO2 and NCM-333. Finally, we study various pathways for the Li-ion diffusion in NCM-523, and pinpoint the preferred diffusion channel based on first principles simulations. Interestingly, we observe that the Li diffusion barrier in NCM-523 is lower than that in LiCoO2. PMID:26878345

  20. Thermodynamic and kinetic studies of LiNi0.5Co0.2Mn0.3O2 as a positive electrode material for Li-ion batteries using first principles.

    PubMed

    Dixit, Mudit; Kosa, Monica; Lavi, Onit Srur; Markovsky, Boris; Aurbach, Doron; Major, Dan Thomas

    2016-03-01

    Ni-rich Li-based layered Ni, Co, and Mn (NCM) materials have shown tremendous promise in recent years as positive electrode materials for Li-ion batteries. This is evident as companies developing batteries for electrical vehicles are currently commercializing these materials. Despite the considerable research performed on LiNiαCoβMnγO2 systems, we do not yet have a complete atomic level understanding of these materials. In this work we study the cationic ordering, thermodynamics, and diffusion kinetics of LiNi0.5Co0.2Mn0.3O2 (NCM-523). Initially, we show that cationic ordering can be predicted employing cheap atomistic simulations, instead of using expensive first-principles methods. Subsequently, we investigate the electrochemical, thermodynamic and kinetic properties of NCM-523 using density functional theory (DFT). Our results demonstrate the importance of including dispersion corrections to standard first principles functionals in order to correctly predict the lattice parameters of layered cathode materials. We also demonstrate that a careful choice of computational protocol is essential to reproduce the experimental intercalation potential trends observed in the LiNi0.5Co0.2Mn0.3O2 electrodes. Analysis of the electronic structure confirms an active role of Ni in the electrochemical redox process. Moreover, we confirm the experimental finding that on complete delithiation, this material remains in an O3 phase, unlike LiCoO2 and NCM-333. Finally, we study various pathways for the Li-ion diffusion in NCM-523, and pinpoint the preferred diffusion channel based on first principles simulations. Interestingly, we observe that the Li diffusion barrier in NCM-523 is lower than that in LiCoO2.