Science.gov

Sample records for advanced li-ion batteries

  1. Developing New Electrolytes for Advanced Li-ion Batteries

    NASA Astrophysics Data System (ADS)

    McOwen, Dennis Wayne

    The use of renewable energy sources is on the rise, as new energy generating technologies continue to become more efficient and economical. Furthermore, the advantages of an energy infrastructure which relies more on sustainable and renewable energy sources are becoming increasingly apparent. The most readily available of these renewable energy sources, wind and solar energy in particular, are naturally intermittent. Thus, to enable the continued expansion and widespread adoption of renewable energy generating technology, a cost-effective energy storage system is essential. Additionally, the market for electric/hybrid electric vehicles, which both require efficient energy storage, continues to grow as more consumers seek to reduce their consumption of gasoline. These vehicles, however, remain quite expensive, due primarily to costs associated with storing the electrical energy. High-voltage and thermally stable Li-ion battery technology is a promising solution for both grid-level and electric vehicle energy storage. Current limitations in materials, however, limit the energy density and safe operating temperature window of the battery. Specifically, the state-of-the-art electrolyte used in Li-ion batteries is not compatible with recently developed high-voltage positive electrodes, which are one of the most effectual ways of increasing the energy density. The electrolyte is also thermally unstable above 50 °C, and prone to thermal runaway reaction if exposed to prolonged heating. The lithium salt used in such electrolytes, LiPF6, is a primary contributor to both of these issues. Unfortunately, an improved lithium salt which meets the myriad property requirements for Li-ion battery electrolytes has eluded researchers for decades. In this study, a renewed effort to find such a lithium salt was begun, using a recently developed methodology to rapidly screen for desirable properties. Four new lithium salts and one relatively new but uncharacterized lithium salt were

  2. Nanostructured Materials for Li-Ion Batteries and Beyond.

    PubMed

    Li, Xifei; Sun, Xueliang

    2016-04-07

    This Special Issue "Nanostructured Materials for Li-Ion Batteries and Beyond" of Nanomaterials is focused on advancements in the synthesis, optimization, and characterization of nanostructured materials, with an emphasis on the application of nanomaterials for building high performance Li-ion batteries (LIBs) and future systems.[...].

  3. Li-Ion Battery for ISS

    NASA Technical Reports Server (NTRS)

    Dalton, Penni; Cohen, Fred

    2004-01-01

    The ISS currently uses Ni-H2 batteries in the main power system. Although Ni-H2 is a robust and reliable system, recent advances in battery technology have paved the way for future replacement batteries to be constructed using Li-ion technology. This technology will provide lower launch weight as well as increase ISS electric power system (EPS) efficiency. The result of incorporating this technology in future re-support hardware will be greater power availability and reduced program cost. the presentations of incorporating the new technology.

  4. Highly Flexible Graphene/Mn3O4 Nanocomposite Membrane as Advanced Anodes for Li-Ion Batteries.

    PubMed

    Wang, Jian-Gan; Jin, Dandan; Zhou, Rui; Li, Xu; Liu, Xing-Rui; Shen, Chao; Xie, Keyu; Li, Baohua; Kang, Feiyu; Wei, Bingqing

    2016-06-28

    Advanced electrode design is crucial in the rapid development of flexible energy storage devices for emerging flexible electronics. Herein, we report a rational synthesis of graphene/Mn3O4 nanocomposite membranes with excellent mechanical flexibility and Li-ion storage properties. The strong interaction between the large-area graphene nanosheets and long Mn3O4 nanowires not only enables the membrane to endure various mechanical deformations but also produces a strong synergistic effect of enhanced reaction kinetics by providing enlarged electrode/electrolyte contact area and reduced electron/ion transport resistance. The mechanically robust membrane is explored as a freestanding anode for Li-ion batteries, which delivers a high specific capacity of ∼800 mAh g(-1) based on the total electrode mass, along with superior high-rate capability and excellent cycling stability. A flexible full Li-ion battery is fabricated with excellent electrochemical properties and high flexibility, demonstrating its great potential for high-performance flexible energy storage devices.

  5. Specification For ST-5 Li Ion Battery

    NASA Technical Reports Server (NTRS)

    Castell, Karen D.; Day, John H. (Technical Monitor)

    2000-01-01

    This Specification defines the general requirements for rechargeable Space Flight batteries intended for use in the ST-5 program. The battery chemistry chosen for this mission is lithium ion (Li-Ion).

  6. Hierarchical MoS2 @Carbon Microspheres as Advanced Anodes for Li-Ion Batteries.

    PubMed

    Bai, Zhongchao; Zhang, Yaohui; Zhang, Yuwen; Guo, Chunli; Tang, Bin

    2015-12-07

    Hierarchical hybridized nanocomposites with rationally constructed compositions and structures have been considered key for achieving superior Li-ion battery performance owing to their enhanced properties, such as fast lithium ion diffusion, good collection and transport of electrons, and a buffer zone for relieving the large volume variations during cycling processes. Hierarchical MoS2 @carbon microspheres (HMCM) have been synthesized in a facile hydrothermal treatment. The structure analyses reveal that ultrathin MoS2 nanoflakes (ca. 2-5 nm) are vertically supported on the surface of carbon nanospheres. The reversible capacity of the HMCM nanocomposite is maintained at 650 mA h g(-1) after 300 cycles at 1 A g(-1) . Furthermore, the capacity can reach 477 mA h g(-1) even at a high current density of 4 A g(-1) . The outstanding electrochemical performance of HMCM is attributed to the synergetic effect between the carbon spheres and the ultrathin MoS2 nanoflakes. Additionally, the carbon matrix can supply conductive networks and prevent the aggregation of layered MoS2 during the charge/discharge process; and ultrathin MoS2 nanoflakes with enlarged surface areas, which can guarantee the flow of the electrolyte, provide more active sites and reduce the diffusion energy barrier of Li(+) ions.

  7. Nanotechnology in Li-ion Batteries

    SciTech Connect

    Mukaibo, Hitomi

    2010-06-04

    This is the second of three talks on nanostructures for li-ion batteries. The talks provide an up-to-date review of the issues and challenges facing Li-ion battery research with special focus on how nanostructures/ nanotechnology are being applied to this field. Novel materials reported as prospective candidates for anode, cathode and electrolyte will be summarized. The expected role of nanostructures in improving the performance of Li-ion batteries and the actual pros and cons of using such structures in this device will be addressed. Electrochemical experiments used to study Li-ion batteries will also be discussed. This includes the introduction to the standard experimental set-up and how experimental data (from charge-discharge experiments, cyclic voltammetry, impedance spectroscopy, etc) are interpreted.

  8. Negative Electrodes for Li-Ion Batteries

    SciTech Connect

    Kinoshita, Kim; Zaghib, Karim

    2001-10-01

    Graphitized carbons have played a key role in the successful commercialization of Li-ion batteries. The physicochemical properties of carbon cover a wide range; therefore identifying the optimum active electrode material can be time consuming. The significant physical properties of negative electrodes for Li-ion batteries are summarized, and the relationship of these properties to their electrochemical performance in nonaqueous electrolytes, are discussed in this paper.

  9. Material review of Li ion battery separators

    NASA Astrophysics Data System (ADS)

    Weber, Christoph J.; Geiger, Sigrid; Falusi, Sandra; Roth, Michael

    2014-06-01

    Separators for Li Ion batteries have a strong impact on cell production, cell performance, life, as well as reliability and safety. The separator market volume is about 500 million m2 mainly based on consumer applications. It is expected to grow strongly over the next decade for mobile and stationary applications using large cells. At present, the market is essentially served by polyolefine membranes. Such membranes have some technological limitations, such as wettability, porosity, penetration resistance, shrinkage and meltdown. The development of a cell failure due to internal short circuit is potentially closely related to separator material properties. Consequently, advanced separators became an intense area of worldwide research and development activity in academia and industry. New separator technologies are being developed especially to address safety and reliability related property improvements.

  10. Li-ion EMU Battery Testing

    NASA Technical Reports Server (NTRS)

    Rehm, Raymond; Bragg, Bobby; Strangways, Brad

    2001-01-01

    A 45Ah Lithium ion (Li-Ion) battery comprised of 5 Yardney prismatic cells was evaluated to replace the silver-zinc cells in the Extra-vehicular Mobility Unit (EMU). Tests determined that the five cell battery can meet the mission objective of 500 duty cycles and maintain a minimum voltage of 16.0 V without an individual cell voltage dropping below 3.0V. Forty real time cycles were conducted to develop BOL trend data. Decision to switch to accelerated cycling for the remaining 460 cycles was made since Real Time cycling requires 1 day/cycle. Conclusions indicate that battery replacement would indeed be prudent.

  11. Recent progress in theoretical and computational investigations of Li-ion battery materials and electrolytes.

    PubMed

    Bhatt, Mahesh Datt; O'Dwyer, Colm

    2015-02-21

    There is an increasing worldwide demand for high energy density batteries. In recent years, rechargeable Li-ion batteries have become important power sources, and their performance gains are driving the adoption of electrical vehicles (EV) as viable alternatives to combustion engines. The exploration of new Li-ion battery materials is an important focus of materials scientists and computational physicists and chemists throughout the world. The practical applications of Li-ion batteries and emerging alternatives may not be limited to portable electronic devices and circumventing hurdles that include range anxiety and safety among others, to their widespread adoption in EV applications in the future requires new electrode materials and a fuller understanding of how the materials and the electrolyte chemistries behave. Since this field is advancing rapidly and attracting an increasing number of researchers, it is crucial to summarise the current progress and the key scientific challenges related to Li-ion batteries from theoretical point of view. Computational prediction of ideal compounds is the focus of several large consortia, and a leading methodology in designing materials and electrolytes optimized for function, including those for Li-ion batteries. In this Perspective, we review the key aspects of Li-ion batteries from theoretical perspectives: the working principles of Li-ion batteries, the cathodes, anodes, and electrolyte solutions that are the current state of the art, and future research directions for advanced Li-ion batteries based on computational materials and electrolyte design.

  12. Computational modeling of Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Grazioli, D.; Magri, M.; Salvadori, A.

    2016-12-01

    This review focuses on energy storage materials modeling, with particular emphasis on Li-ion batteries. Theoretical and computational analyses not only provide a better understanding of the intimate behavior of actual batteries under operational and extreme conditions, but they may tailor new materials and shape new architectures in a complementary way to experimental approaches. Modeling can therefore play a very valuable role in the design and lifetime prediction of energy storage materials and devices. Batteries are inherently multi-scale, in space and time. The macro-structural characteristic lengths (the thickness of a single cell, for instance) are order of magnitudes larger than the particles that form the microstructure of the porous electrodes, which in turn are scale-separated from interface layers at which atomistic intercalations occur. Multi-physics modeling concepts, methodologies, and simulations at different scales, as well as scale transition strategies proposed in the recent literature are here revised. Finally, computational challenges toward the next generation of Li-ion batteries are discussed.

  13. Group 31 and Group 34 Li-ion Battery Specification

    DTIC Science & Technology

    2011-02-08

    DOD wide Li ion rechargeable draft specification that is currently under development by the DOD Power Sources Battery Technical Working Group... batteries shall be capable of charging to 100% capacity from a standard 12V or 24V lead acid vehicle battery charger in less than 2 hours from 0...Unclassified 1 Unclassified United States Army Group 31 and Group 34 Li-ion Battery Specification US Army TARDEC Energy Storage Team

  14. Advanced technology development program for lithium-ion batteries : thermal abuse performance of 18650 Li-ion cells.

    SciTech Connect

    Crafts, Chris C.; Doughty, Daniel Harvey; McBreen, James.; Roth, Emanuel Peter

    2004-03-01

    Li-ion cells are being developed for high-power applications in hybrid electric vehicles currently being designed for the FreedomCAR (Freedom Cooperative Automotive Research) program. These cells offer superior performance in terms of power and energy density over current cell chemistries. Cells using this chemistry are the basis of battery systems for both gasoline and fuel cell based hybrids. However, the safety of these cells needs to be understood and improved for eventual widespread commercial application in hybrid electric vehicles. The thermal behavior of commercial and prototype cells has been measured under varying conditions of cell composition, age and state-of-charge (SOC). The thermal runaway behavior of full cells has been measured along with the thermal properties of the cell components. We have also measured gas generation and gas composition over the temperature range corresponding to the thermal runaway regime. These studies have allowed characterization of cell thermal abuse tolerance and an understanding of the mechanisms that result in cell thermal runaway.

  15. Recent advances on the understanding of structural and composition evolution of LMR cathodes for Li-ion batteries

    SciTech Connect

    Yan, Pengfei; Zheng, Jianming; Xiao, Jie; Wang, Chong-Min; Zhang, Jiguang

    2015-06-08

    Lithium-rich, magnesium-rich (LMR) cathode materials have been regarded as one of the very promising cathodes for Li-ion battery applications. However, their practical application is still limited by several challenges, especially by their limited electrochemical stability rate capability. In this work, we present recent progresses on the understanding of the structural and composition evolution of LMR cathode materials with emphasis being placed on the correlation between structural/chemical evolution and electrochemical properties. In particular, using Li [Li0.2Ni0.2Mn0.6O2 as a typical example, we clearly illustrate the structural characteristics of the pristine materials and their dependence on the materials processing history, cycling induced structural degradation/chemical partition and their correlation with degradation of electrochemical performance. The fundamental understanding obtained in this work may also guide the design and preparation of new cathode materials based on ternary system of transitional metal oxide.

  16. Recent advances on the understanding of structural and composition evolution of LMR cathodes for Li-ion batteries

    DOE PAGES

    Yan, Pengfei; Zheng, Jianming; Xiao, Jie; ...

    2015-06-08

    Lithium-rich, magnesium-rich (LMR) cathode materials have been regarded as one of the very promising cathodes for Li-ion battery applications. However, their practical application is still limited by several challenges, especially by their limited electrochemical stability rate capability. In this work, we present recent progresses on the understanding of the structural and composition evolution of LMR cathode materials with emphasis being placed on the correlation between structural/chemical evolution and electrochemical properties. In particular, using Li [Li0.2Ni0.2Mn0.6O2 as a typical example, we clearly illustrate the structural characteristics of the pristine materials and their dependence on the materials processing history, cycling induced structuralmore » degradation/chemical partition and their correlation with degradation of electrochemical performance. The fundamental understanding obtained in this work may also guide the design and preparation of new cathode materials based on ternary system of transitional metal oxide.« less

  17. Screening Li-Ion Batteries for Internal Shorts

    NASA Technical Reports Server (NTRS)

    Darcy, Eric

    2006-01-01

    The extremely high cost of aerospace battery failures due to internal shorts makes it essential that their occurrence be very rare, if not eliminated altogether. With Li-ion cells/batteries, the potentially catastrophic safety hazard that some internal shorts present adds additional incentive for prevention. Prevention can be achieved by design, manufacturing measures, and testing. Specifically for NASA s spacesuit application, a Li-ion polymer pouch cell battery design is in its final stages of production. One of the 20 flight batteries fabricated and tested developed a cell internal short, which did not present a safety hazard, but has required revisiting the entire manufacturing and testing process. Herein are the details of the failure investigation that followed to get to root cause of the internal short and the corrective actions that will be taken. The resulting lessons learned are applicable to most Li-ion battery applications.

  18. Enhancing Interfacial Bonding between Anisotropically Oriented Grains Using a Glue-Nanofiller for Advanced Li-Ion Battery Cathode.

    PubMed

    Kim, Hyejung; Lee, Sanghan; Cho, Hyeon; Kim, Junhyeok; Lee, Jieun; Park, Suhyeon; Joo, Se Hun; Kim, Su Hwan; Cho, Yoon-Gyo; Song, Hyun-Kon; Kwak, Sang Kyu; Cho, Jaephil

    2016-06-01

    Formation of a glue-nanofiller layer between grains, consisting of a middle-temperature spinel-like Lix CoO2 phase, reinforces the strength of the incoherent interfacial binding between anisotropically oriented grains by enhancing the face-to-face adhesion strength. The cathode treated with the glue-layer exhibits steady cycling performance at both room-temperature and 60 °C. These results represent a step forward in advanced lithium-ion batteries via simple cathode coating.

  19. In situ methods for Li-ion battery research: A review of recent developments

    NASA Astrophysics Data System (ADS)

    Harks, P. P. R. M. L.; Mulder, F. M.; Notten, P. H. L.

    2015-08-01

    A considerable amount of research is being directed towards improving lithium-ion batteries in order to meet today's market demands. In particular in situ investigations of Li-ion batteries have proven extremely insightful, but require the electrochemical cell to be fully compatible with the conditions of the testing method and are therefore often challenging to execute. Advantageously, in the past few years significant progress has been made with new, more advanced, in situ techniques. Herein, a comprehensive overview of in situ methods for studying Li-ion batteries is given, with the emphasis on new developments and reported experimental highlights.

  20. Domain splitting algorithms for the Li-ion battery simulation

    NASA Astrophysics Data System (ADS)

    Iliev, O.; Zakharov, P. E.

    2016-11-01

    Numerical simulation of electrochemical processes in rechargeable batteries has important applications in an energy technology. In this paper we have developed and compared three domain splitting algorithms for the Li-ion battery simulation. Li-ion battery simulation is based on microscopic model, which contains nonlinear equations for Li-ion concentration and potential. On the interface of electrodes and electrolyte the Lithium ions intercalation are described by nonlinear equation. This nonlinear interface condition affects the Newton's method iterations and computation time. To simplify numerical simulations we use domain splitting algorithms, which split the original problem into three independent subproblems in two electrodes and electrolyte. We investigate the numerical convergence and efficiency of the algorithms on a 2D model problem.

  1. Review on Current State of Li-ion Batteries

    SciTech Connect

    Mukaibo, Hitomi

    2010-06-04

    This is an up-to-date review of the issues and challenges facing Li-ion battery research with special focus on how nanostructures/ nanotechnology are being applied to this field. Novel materials reported as prospective candidates for anode, cathode and electrolyte will be summarized. The expected role of nanostructures in improving the performance of Li-ion batteries and the actual pros and cons of using such structures in this device will be addressed. Electrochemical experiments used to study Li-ion batteries will also be discussed. This includes the introduction to the standard experimental set-up and how experimental data (from charge-discharge experiments, cyclic voltammetry, impedance spectroscopy, etc) are interpreted.

  2. Computational understanding of Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Urban, Alexander; Seo, Dong-Hwa; Ceder, Gerbrand

    2016-03-01

    Over the last two decades, computational methods have made tremendous advances, and today many key properties of lithium-ion batteries can be accurately predicted by first principles calculations. For this reason, computations have become a cornerstone of battery-related research by providing insight into fundamental processes that are not otherwise accessible, such as ionic diffusion mechanisms and electronic structure effects, as well as a quantitative comparison with experimental results. The aim of this review is to provide an overview of state-of-the-art ab initio approaches for the modelling of battery materials. We consider techniques for the computation of equilibrium cell voltages, 0-Kelvin and finite-temperature voltage profiles, ionic mobility and thermal and electrolyte stability. The strengths and weaknesses of different electronic structure methods, such as DFT+U and hybrid functionals, are discussed in the context of voltage and phase diagram predictions, and we review the merits of lattice models for the evaluation of finite-temperature thermodynamics and kinetics. With such a complete set of methods at hand, first principles calculations of ordered, crystalline solids, i.e., of most electrode materials and solid electrolytes, have become reliable and quantitative. However, the description of molecular materials and disordered or amorphous phases remains an important challenge. We highlight recent exciting progress in this area, especially regarding the modelling of organic electrolytes and solid-electrolyte interfaces.

  3. COTS Li-Ion Cells in High Voltage Batteries

    NASA Technical Reports Server (NTRS)

    Davies, Francis; Darcy, Eric; Jeevarajan, Judy; Cowles, Phil

    2003-01-01

    Testing at NASA JSC and COMDEV shows that Commercial Off the Shelf (COTS) Li Ion cells can not be used in high voltage batteries safely without considering the voltage stresses that may be put on the protective devices in them during failure modes.

  4. Core-shell nano-FeS2@N-doped graphene as an advanced cathode material for rechargeable Li-ion batteries.

    PubMed

    Tan, Rui; Yang, Jinlong; Hu, Jiangtao; Wang, Kai; Zhao, Yan; Pan, Feng

    2016-01-18

    We report the formation of core-shell nano-FeS2@N-doped graphene as a novel cathode material and its mechanism for use in rechargeable Li-ion batteries. A benefit of the amount of FeS2 nano-crystals as the core for Li-ion storage with high capacity and using coated N-doped graphene as the shell is that FeS2@N-graphene exhibits a remarkable specific energy (950 W h kg(-1) at 0.15 kW g(-1)) and higher specific power (543 W h kg(-1) at 2.79 kW g(-1)) than commercial rechargeable LIB cathodes, as well as stable cycling performance (∼600 W h kg(-1) at 0.75 kW g(-1) after 400 cycles).

  5. Organic Materials as Electrodes for Li-ion Batteries

    DTIC Science & Technology

    2015-09-04

    technology and research towards finding new materials to improve the performance are underway. Conductive organic polymers have been proposed as...indigo carmine conjugated carbonyl organic dye can be used for storing reversibly, both lithium and sodium ions for rechargeable battery applications ...Final 3. DATES COVERED (From - To) 15 May 2013 – 14 May 2015 4. TITLE AND SUBTITLE Organic materials as Electrodes for Li-ion Batteries

  6. Predictive Models of Li-ion Battery Lifetime

    SciTech Connect

    Smith, Kandler; Wood, Eric; Santhanagopalan, Shriram; Kim, Gi-heon; Shi, Ying; Pesaran, Ahmad

    2015-06-15

    It remains an open question how best to predict real-world battery lifetime based on accelerated calendar and cycle aging data from the laboratory. Multiple degradation mechanisms due to (electro)chemical, thermal, and mechanical coupled phenomena influence Li-ion battery lifetime, each with different dependence on time, cycling and thermal environment. The standardization of life predictive models would benefit the industry by reducing test time and streamlining development of system controls.

  7. Predictive Models of Li-ion Battery Lifetime (Presentation)

    SciTech Connect

    Smith, K.; Wood, E.; Santhanagopalan, S.; Kim, G.; Shi, Y.; Pesaran, A.

    2014-09-01

    Predictive models of Li-ion battery reliability must consider a multiplicity of electrochemical, thermal and mechanical degradation modes experienced by batteries in application environments. Complicating matters, Li-ion batteries can experience several path dependent degradation trajectories dependent on storage and cycling history of the application environment. Rates of degradation are controlled by factors such as temperature history, electrochemical operating window, and charge/discharge rate. Lacking accurate models and tests, lifetime uncertainty must be absorbed by overdesign and warranty costs. Degradation models are needed that predict lifetime more accurately and with less test data. Models should also provide engineering feedback for next generation battery designs. This presentation reviews both multi-dimensional physical models and simpler, lumped surrogate models of battery electrochemical and mechanical degradation. Models are compared with cell- and pack-level aging data from commercial Li-ion chemistries. The analysis elucidates the relative importance of electrochemical and mechanical stress-induced degradation mechanisms in real-world operating environments. Opportunities for extending the lifetime of commercial battery systems are explored.

  8. Green Template-Free Synthesis of Hierarchical Shuttle-Shaped Mesoporous ZnFe2 O4 Microrods with Enhanced Lithium Storage for Advanced Li-Ion Batteries.

    PubMed

    Hou, Linrui; Hua, Hui; Lian, Lin; Cao, Hui; Zhu, Siqi; Yuan, Changzhou

    2015-09-07

    In the work, a facile and green two-step synthetic strategy was purposefully developed to efficiently fabricate hierarchical shuttle-shaped mesoporous ZnFe2 O4 microrods (MRs) with a high tap density of ∼0.85 g cm(3) , which were assembled by 1D nanofiber (NF) subunits, and further utilized as a long-life anode for advanced Li-ion batteries. The significant role of the mixed solvent of glycerin and water in the formation of such hierarchical mesoporous MRs was systematically investigated. After 488 cycles at a large current rate of 1000 mA g(-1) , the resulting ZnFe2 O4 MRs with high loading of ∼1.4 mg per electrode still preserved a reversible capacity as large as ∼542 mAh g(-1) . Furthermore, an initial charge capacity of ∼1150 mAh g(-1) is delivered by the ZnFe2 O4 anode at 100 mA g(-1) , resulting in a high Coulombic efficiency of ∼76 % for the first cycle. The superior Li-storage properties of the as-obtained ZnFe2 O4 were rationally associated with its mesoprous micro-/nanostructures and 1D nanoscaled building blocks, which accelerated the electron transportation, facilitated Li(+) transfer rate, buffered the large volume variations during repeated discharge/charge processes, and provided rich electrode-electrolyte sur-/interfaces for efficient lithium storage, particularly at high rates.

  9. Hierarchical self-assembled structures based on nitrogen-doped carbon nanotubes as advanced negative electrodes for Li-ion batteries and 3D microbatteries

    NASA Astrophysics Data System (ADS)

    Sharifi, Tiva; Valvo, Mario; Gracia-Espino, Eduardo; Sandström, Robin; Edström, Kristina; Wågberg, Thomas

    2015-04-01

    Hierarchical structures based on carbon paper and multi-walled nitrogen-doped carbon nanotubes were fabricated and subsequently decorated with hematite nanorods to obtain advanced 3D architectures for Li-ion battery negative electrodes. The carbon paper provides a versatile metal-free 3D current collector ensuring a good electrical contact of the active materials to its carbon fiber network. Firstly, the nitrogen-doped carbon nanotubes onto the carbon paper were studied and a high footprint area capacity of 2.1 mAh cm-2 at 0.1 mA cm-2 was obtained. The Li can be stored in the inter-wall regions of the nanotubes, mediated by the defects formed on their walls by the nitrogen atoms. Secondly, the incorporation of hematite nanorods raised the footprint area capacity to 2.25 mAh cm-2 at 0.1 mA cm-2. However, the repeated conversion/de-conversion of Fe2O3 limited both coulombic and energy efficiencies for these electrodes, which did not perform as well as those including only the N-doped carbon nanotubes at higher current densities. Thirdly, long-cycling tests showed the robust Li insertion mechanism in these N-doped carbonaceous structures, which yielded an unmatched footprint area capacity enhancement up to 1.95 mAh cm-2 after 60 cycles at 0.3 mA cm-2 and an overall capacity of 204 mAh g-1 referred to the mass of the entire electrode.

  10. Graphene Sandwiched Mesostructured Li-Ion Battery Electrodes.

    PubMed

    Liu, Jinyun; Zheng, Qiye; Goodman, Matthew D; Zhu, Haoyue; Kim, Jinwoo; Krueger, Neil A; Ning, Hailong; Huang, Xingjiu; Liu, Jinhuai; Terrones, Mauricio; Braun, Paul V

    2016-09-01

    A deterministic graphene-sandwiched Li-ion battery electrode consisting of an integrated 3D mesostructure of electrochemically active materials and graphene is presented. As demonstrations, electrodes with active nanomaterials that coat (V2 O5 @graphene@V2 O5 cathode) or are coated by (graphene@Si@graphene anode) graphene are fabricated. These electrodes exhibit high capacities and ultralong cycle lives (the cathode can be cycled over 2000 times with minimal capacity fade).

  11. Li-ion rechargeable batteries on Mars Exploration Rovers

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar; Smart, M.; Whitacanack, L.; Ewell, R.; Surampudi, S.

    2006-01-01

    Lithium-ion batteries have contributed significantly to the success of NASA's Mars Rovers, Spirit and Opportunity that have been exploring the surface of Mars for the last two years and performing astounding geological studies to answer the ever-puzzling questions of life beyond Earth and the origin of our planets. Combined with the triple-junction solar cells, the lithium-ion batteries have been powering the robotic rovers, and assist in keeping the rover electronics warm, and in supporting nighttime experimentation and communications. The use of Li-ion batteries has resulted in significant benefits in several categories, such as mass, volume, energy efficiency, self discharge, and above all low temperature performance. Designed initially for the primary mission needs of 300 cycles over 90 days of surface operation, the batteries have been performing admirably, over the last two years. After about 670 days of exploration and at least as many cycles, there is little change in the end-of discharge (EOD) voltages or capacities of these batteries, as estimated from the in-flight data and corroborated by ground testing. Aided by such impressive durability from the Li-ion batteries, both from cycling and calendar life stand point, these rovers are poised to extend their exploration well beyond two years. In this paper, we will describe the performance characteristics of these batteries during launch, cruise phase and on the surface of Mars thus far.

  12. Electrolytes in Support of 5V Li-ion Batteries

    DTIC Science & Technology

    2010-12-16

    candidates LiCoPO4, LiNi0.5Mn1.5O4, Li2FeCoPO4 etc, projected to deliver 15~40% more energy than state-of-art LiFePO4 The additive invented by SEDD is...battery pack for HEV as example: 300 V hybrid electric system • requires at least 100 LiFePO4 Li ion cells in series • power electronics, protection...FOR PUBLIC RELEASE The “5V” Li ion cathode needs a “5V” electrolyte • Potentially up to 40% greater energy density than LiFePO4 • Higher voltage at

  13. Li-Ion Battery Cathodes: Enhancing Interfacial Bonding between Anisotropically Oriented Grains Using a Glue-Nanofiller for Advanced Li-Ion Battery Cathode (Adv. Mater. 23/2016).

    PubMed

    Kim, Hyejung; Lee, Sanghan; Cho, Hyeon; Kim, Junhyeok; Lee, Jieun; Park, Suhyeon; Joo, Se Hun; Kim, Su Hwan; Cho, Yoon-Gyo; Song, Hyun-Kon; Kwak, Sang Kyu; Cho, Jaephil

    2016-06-01

    The formation of a spinel Lix CoO2 layer in a Ni-rich secondary particle for lithium-ion batteries is reported by S. K. Kwak, J. Cho, and co-workers on page 4705, who find that the spinel-like Lix CoO2 layer, between layered primary particles, can enhance the mechanical strength of secondary particles by enhancing the interfacial binding energy among the grains. Moreover, the layer can effectively protect the unstable surface of the primary particles and offers a fast electron-ion pathway, resulting in overall enhancements of stability and kinetics in battery performance.

  14. Diagnosis and restoration of Li-Ion batteries

    NASA Astrophysics Data System (ADS)

    Kirpichnikova, I. M.; Korobatov, D. V.; Martyanov, A. S.; Sirotkin, E. A.; Solomin, E. V.

    2017-01-01

    The paper presents the results of testing the LT-LFP.300.11.01 Li-Ion cells under different conditions of charge by stable and pulse width modulation current. The shown study proves the possibility of approaching the diagnosis of battery cell before multi stage charging cycles. This approach helps to determine the real cell state of charge, which is important for the charger in turn for the determination of the initial current value at the very first stage of charge. Using the trickle charge algorithm, each battery cell may be charged individually in accordance with its initial state of charge, chemical condition and temperature. This approach should use a special charger acceptable for multi-cell charge or diagnosis of individual cells with a balancing apparatus. The same approach could be used for battery restoration.

  15. Probing anode degradation in automotive Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Kwon, Ou Jung

    The lithium-ion battery is drawing attention as a power source for future clean and fuel-efficient vehicles. Although the Li-ion battery presently shows best performance for energy density and power density compared to other rechargeable batteries, some degradation problems still remain as key challenges for long-term durability in automotive applications. Among those problems, Li deposition is well known for causing permanent capacity loss. Fundamental mechanisms of Li deposition in the carbon anode are, however, not fully understood, especially at subzero temperature and/or under high rate charge. This dissertation introduces comprehensive study of Li deposition using automotive 18650 Li-ion cells. The mechanism and relevant diagnostic methods as well as preventive charging protocol are discussed. In part one, a new diagnostic tool is introduced utilizing 3-electrode cell system, which measures thermodynamic and kinetic parameters of cathode and anode, respectively, as a function of temperature and SOC (state of charge): open circuit potential (OCP); Li diffusion coefficient in active particles; and internal resistance. These data are employed to understand electrochemical reaction and its thermal interaction under charging conditions that result in Li deposition. Part two provides a threshold parameter for the onset of Li deposition, which is not commonly used anode potential but charge capacity, or more specifically the amount of Li+ ions participating in intercalation reaction without Li deposition at given charging circumstances. This is called the critical charge capacity in this thesis, beyond which capacity loss at normal operating condition is observed, which becomes more serious as temperature is lowered and/or charge C-rate increases. Based on these experimental results, the mechanism of Li deposition is proposed as the concept of anode particle surface saturation, meaning that once the anode particle surface is saturated with Li in any charging

  16. Novel Energy Sources -Material Architecture and Charge Transport in Solid State Ionic Materials for Rechargeable Li ion Batteries

    SciTech Connect

    Katiyar, Ram S; Gómez, M; Majumder, S B; Morell, G; Tomar, M S; Smotkin, E; Bhattacharya, P; Ishikawa, Y

    2009-01-19

    Since its introduction in the consumer market at the beginning of 1990s by Sony Corporation ‘Li-ion rechargeable battery’ and ‘LiCoO2 cathode’ is an inseparable couple for highly reliable practical applications. However, a separation is inevitable as Li-ion rechargeable battery industry demand more and more from this well serving cathode. Spinel-type lithium manganate (e.g., LiMn2O4), lithium-based layered oxide materials (e.g., LiNiO2) and lithium-based olivine-type compounds (e.g., LiFePO4) are nowadays being extensively studied for application as alternate cathode materials in Li-ion rechargeable batteries. Primary goal of this project was the advancement of Li-ion rechargeable battery to meet the future demands of the energy sector. Major part of the research emphasized on the investigation of electrodes and solid electrolyte materials for improving the charge transport properties in Li-ion rechargeable batteries. Theoretical computational methods were used to select electrodes and electrolyte material with enhanced structural and physical properties. The effect of nano-particles on enhancing the battery performance was also examined. Satisfactory progress has been made in the bulk form and our efforts on realizing micro-battery based on thin films is close to give dividend and work is progressing well in this direction.

  17. High voltage and high specific capacity dual intercalating electrode Li-ion batteries

    NASA Technical Reports Server (NTRS)

    West, William C. (Inventor); Blanco, Mario (Inventor)

    2010-01-01

    The present invention provides high capacity and high voltage Li-ion batteries that have a carbonaceous cathode and a nonaqueous electrolyte solution comprising LiF salt and an anion receptor that binds the fluoride ion. The batteries can comprise dual intercalating electrode Li ion batteries. Methods of the present invention use a cathode and electrode pair, wherein each of the electrodes reversibly intercalate ions provided by a LiF salt to make a high voltage and high specific capacity dual intercalating electrode Li-ion battery. The present methods and systems provide high-capacity batteries particularly useful in powering devices where minimizing battery mass is important.

  18. Anode-electrolyte double-layer of Li-ion batteries: Structure and Li-ion intercalation

    NASA Astrophysics Data System (ADS)

    Wipf, David O.; Abou Hamad, Ibrahim; Rikvold, Per Arne; Novotny, Mark A.

    2011-03-01

    The electrochemical double-layer structure plays an important role in Li-ion intercalation during charging of Li-ion batteries with a graphite anode. In our recent Molecular Dynamics studies of a proposed accelerated charging method [I. Abou Hamad~et al., Phys. Chem. Chem. Phys. 12, 2740-2743 (2010)], we notice that ethylene carbonate and propylene carbonate molecules of the electrolyte assemble themselves in a preferred orientation at the electrode-electrolyte interface. On the other hand, they are randomly oriented in the bulk electrolyte. We show that the structure of the double layer is affected by the intercalating Li-ion: while the dipole moments of double-layer molecules far from the intercalating Li-ion point toward the graphite sheets of the anode, they point away from the intercalation site close to the intercalating Li-ion. This observation should contribute to a better understanding of the intercalation process. This work was supported in part by NSF Grant No. DMR-0802288.

  19. PHEV/EV Li-Ion Battery Second-Use Project (Presentation)

    SciTech Connect

    Neubauer, J.; Pesaran, A.

    2010-04-01

    Accelerated development and market penetration of plug-in hybrid electric vehicles (PHEVs) and electric vehicles (Evs) are restricted at present by the high cost of lithium-ion (Li-ion) batteries. One way to address this problem is to recover a fraction of the battery cost via reuse in other applications after the battery is retired from service in the vehicle, if the battery can still meet the performance requirements of other energy storage applications. In several current and emerging applications, the secondary use of PHEV and EV batteries may be beneficial; these applications range from utility peak load reduction to home energy storage appliances. However, neither the full scope of possible opportunities nor the feasibility or profitability of secondary use battery opportunities have been quantified. Therefore, with support from the Energy Storage activity of the U.S. Department of Energy's Vehicle Technologies Program, the National Renewable Energy Laboratory (NREL) is addressing this issue. NREL will bring to bear its expertise and capabilities in energy storage for transportation and in distributed grids, advanced vehicles, utilities, solar energy, wind energy, and grid interfaces as well as its understanding of stakeholder dynamics. This presentation introduces NREL's PHEV/EV Li-ion Battery Secondary-Use project.

  20. A Facile Method to In-Situ Synthesize Porous Ni₂GeO₄ Nano-Sheets on Nickel Foam as Advanced Anode Electrodes for Li-Ion Batteries.

    PubMed

    Ma, Delong; Shi, Xiaomin; Hu, Anming

    2016-11-19

    A strategy for growth of porous Ni₂GeO₄ nanosheets on conductive nickel (Ni) foam with robust adhesion as a high-performance electrode for Li-ion batteries is proposed and realized, through a facile two-step method. It involves the low temperature hydro-thermal synthesis of bimetallic (Ni, Ge) hydroxide nanosheets precursor on Ni foam substrates and subsequent thermal transformation to porous Ni₂GeO₄ nanosheets. The as-prepared Ni₂GeO₄ nanosheets possess many interparticle mesopores with a size range from 5 to 15 nm. The hierarchical structure of porous Ni₂GeO₄ nanosheets supported by Ni foam promises fast electron and ion transport, large electroactive surface area, and excellent structural stability. The efficacy of the specially designed structure is demonstrated by the superior electrochemical performance of the generated Ni₂GeO₄ nanosheets including a high capacity of 1.8 mA·h·cm(-2) at a current density of 50 μA·cm(-2), good cycle stability, and high power capability at room temperature. Because of simple conditions, this fabrication strategy may be easily extended to other mixed metal oxides (MxGeOy).

  1. Scanning electrochemical microscopy of Li-ion batteries.

    PubMed

    Ventosa, E; Schuhmann, W

    2015-11-21

    Li-ion batteries (LIBs) are receiving increasing attention over the past decade due to their high energy density. This energy storage technology is expected to continue improving the performance, especially for its large-scale deployment in plug-in hybrid electric vehicles (PHEVs) and full electric vehicles (EVs). Such improvement requires having a large variety of analytical techniques at scientists' disposal in order to understand and address the multiple mechanisms and processes occurring simultaneously in this complex system. This perspective article aims to highlight the strength and potential of scanning electrochemical microscopy (SECM) in this field. After a brief description of a LIB system and the most commonly used techniques in this field, the unique information provided by SECM is illustrated by discussing several recent examples from the literature.

  2. Composite polymer electrolyte for Li-ion battery

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Xu, Fan; Cheng, Yan; Jiang, Zhiyu

    2002-06-01

    A new method presented in this work mainly describes how to produce polymer electrolyte membranes by using water as plasticizer. Compared with the membranes made by traditional methods, the membranes made by the new method have the properties of easy handling and free-standing. The results of Ac impedance suggest that the polymer electrolyte membranes have high ionic conductivity. Moreover, the images of SEM show that the porous and alveolate structures are greatly improved. It is more important that using water as plasticizer can lower the cost of producing Li-ion batteries and eliminate the pollution produced in process of plasticizer extraction, in which some volatile solvents were used in traditional methods.

  3. Nanostructured electrode materials for Li-ion battery

    NASA Astrophysics Data System (ADS)

    Balaya, Palani; Saravanan, Kuppan; Hariharan, Srirama

    2010-04-01

    Nanostructured materials have triggered a great excitement in recent times due to both fundamental interest as well as technological impact relevant for lithium ion batteries (LIBs). Size reduction in nanocrystals leads to a variety of unexpected exciting phenomena due to enhanced surface-to-volume ratio and reduced transport length. We will consider a few examples of nanostructured electrode materials in the context of lithium batteries for achieving high storage and high rate performances: 1) LiFePO4 nanoplates synthesized using solvothermal method could store Li-ions comparable to its theoretical capacity at C/10, while at 30C, they exhibit storage capacity up to 45 mAh/g. Size reduction (~30 nm) at the b-axis favors the fast Li-ion diffusion. In addition to this, uniform ~5 nm carbon coating throughout the plates provides excellent electronically conducting path for electrons. This nano architecture enables fast insertion/extraction of both Li-ions as well as electrons; 2) Mesporous-TiO2 with high surface area (135m2/g) synthesized using soft-template method exhibits high volumetric density compared to commercial nanopowder (P25), with excellent Li-storage behavior. C16 meso-TiO2 synthesized from CTAB exhibits reversible storage capacity of 288mAh/g at 0.2C and 109 mAh/g at 30C; 3) Zero strain Li4Ti5O12 anode material has been synthesized using several wet chemical routes. The best condition has been optimized to achieve storage capability close to theoretical limit of 175mAh/g at C/10. At 10C, we could retain lithium storage up to 88 mAh/g; 4) We report our recent results on α-Fe2O3 and γ-Fe2O3 using conversion reaction, providing insight for a better storage capability in γ-phase than the α-phase at 2C resulting solely from the nanocrystallinity.

  4. Alleviating Surface Degradation of Nickel-Rich Layered Oxide Cathode Material by Encapsulating with Nanoscale Li-Ions/Electrons Superionic Conductors Hybrid Membrane for Advanced Li-Ion Batteries.

    PubMed

    Li, Lingjun; Xu, Ming; Yao, Qi; Chen, Zhaoyong; Song, Liubin; Zhang, Zhian; Gao, Chunhui; Wang, Peng; Yu, Ziyang; Lai, Yanqing

    2016-11-16

    Nickel-rich layered oxide cathode materials for advanced lithium-ion batteries have received much attention recently because of their high specific capacities and significant reduction of cost. However, these cathodes are facing a fundamental challenge of loss in performance as a result of surface lithium residue, side reactions with the electrolyte and structure rearrangement upon long-term cycling. Herein, by capturing the lithium residue on the surface of LiNi0.8Co0.1Mn0.1O2 (NCM) cathode material as Li source, we propose a hybrid coating strategy incorporating lithium ions conductor LixAlO2 with superconductor LixTi2O4 to overcome those obstinate issues. By taking full advantage of this unique hybrid nanomembrane coating architecture, both the lithium ion diffusion ability and electronic conductivity of LiNi0.8Co0.1Mn0.1O2 cathode material are improved, resulting in remarkably enhanced electrochemical performances during high voltage operation, including good cycle performance, high reversible capacity, and excellent rate capability. A high initial discharge capacity of 227 mAh g(-1) at 4.4 V cutoff voltage with Coulombic efficiency of 87.3%, and reversible capacity of 200 mAh g(-1) with 98% capacity retention after 100 cycles at a current density of 0.5 C can be attained. The improved electrochemical performance can be attributed to the synergetic contribution from the removal of lithium residues and the unique hybrid nanomembrane coating architecture. Most importantly, this surface modification technique could save some cost, simplify the technical procedure, and show great potential to optimize battery performance, apply in a large scale and extend to all nickel-rich cathode material.

  5. Current and Prospective Li-Ion Battery Recycling and Recovery Processes

    NASA Astrophysics Data System (ADS)

    Heelan, Joseph; Gratz, Eric; Zheng, Zhangfeng; Wang, Qiang; Chen, Mengyuan; Apelian, Diran; Wang, Yan

    2016-10-01

    The lithium ion (Li-ion) battery industry has been growing exponentially since its initial inception in the late 20th century. As battery materials evolve, the applications for Li-ion batteries have become even more diverse. To date, the main source of Li-ion battery use varies from consumer portable electronics to electric/hybrid electric vehicles. However, even with the continued rise of Li-ion battery development and commercialization, the recycling industry is lagging; approximately 95% of Li-ion batteries are landfilled instead of recycled upon reaching end of life. Industrialized recycling processes are limited and only capable of recovering secondary raw materials, not suitable for direct reuse in new batteries. Most technologies are also reliant on high concentrations of cobalt to be profitable, and intense battery sortation is necessary prior to processing. For this reason, it is critical that a new recycling process be commercialized that is capable of recovering more valuable materials at a higher efficiency. A new technology has been developed by the researchers at Worcester Polytechnic Institute which is capable of recovering LiNi x Mn y Co z O2 cathode material from a hydrometallurgical process, making the recycling system as a whole more economically viable. By implementing a flexible recycling system that is closed-loop, recycling of Li-ion batteries will become more prevalent saving millions of pounds of batteries from entering the waste stream each year.

  6. The Li-ion rechargeable battery: a perspective.

    PubMed

    Goodenough, John B; Park, Kyu-Sung

    2013-01-30

    Each cell of a battery stores electrical energy as chemical energy in two electrodes, a reductant (anode) and an oxidant (cathode), separated by an electrolyte that transfers the ionic component of the chemical reaction inside the cell and forces the electronic component outside the battery. The output on discharge is an external electronic current I at a voltage V for a time Δt. The chemical reaction of a rechargeable battery must be reversible on the application of a charging I and V. Critical parameters of a rechargeable battery are safety, density of energy that can be stored at a specific power input and retrieved at a specific power output, cycle and shelf life, storage efficiency, and cost of fabrication. Conventional ambient-temperature rechargeable batteries have solid electrodes and a liquid electrolyte. The positive electrode (cathode) consists of a host framework into which the mobile (working) cation is inserted reversibly over a finite solid-solution range. The solid-solution range, which is reduced at higher current by the rate of transfer of the working ion across electrode/electrolyte interfaces and within a host, limits the amount of charge per electrode formula unit that can be transferred over the time Δt = Δt(I). Moreover, the difference between energies of the LUMO and the HOMO of the electrolyte, i.e., electrolyte window, determines the maximum voltage for a long shelf and cycle life. The maximum stable voltage with an aqueous electrolyte is 1.5 V; the Li-ion rechargeable battery uses an organic electrolyte with a larger window, which increase the density of stored energy for a given Δt. Anode or cathode electrochemical potentials outside the electrolyte window can increase V, but they require formation of a passivating surface layer that must be permeable to Li(+) and capable of adapting rapidly to the changing electrode surface area as the electrode changes volume during cycling. A passivating surface layer adds to the impedance of the

  7. High energy xLi2MnO3-(1-x)LiNi2/3Co1/6Mn1/6O2 composite cathode for advanced Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Shojan, Jifi; Chitturi, Venkateswara Rao; Soler, Jess; Resto, Oscar; West, William C.; Katiyar, Ram S.

    2015-01-01

    Novel composite cathode materials, xLi2MnO3-(1-x)LiNi2/3Co1/6Mn1/6O2 (where x = 0.3, 0.5, and 0.7), were synthesized by sol-gel route and characterized by advanced techniques for rechargeable Li-ion battery applications. Phase purity of the composites was examined by XRD as well as Raman spectroscopy and the studies revealed good crystallinity and the formation of pure composite phases with monoclinic (C2/m) and hexagonal (R3m) crystal structures for Li2MnO3 and LiNi2/3Co1/6Mn1/6O2, respectively. Polyhedral agglomerates seen in the scanning and transmission electron microscopic images elucidated the better electrochemical properties of the composites. Valence states of transition metals in the composites were examined by X-ray photoelectron spectroscopy and the analysis suggested predominant oxidation states of Ni, Co, and Mn as 2+, 3+, and 4+, respectively. Galvanostatic charge-discharge tests, performed at different C-rates between 2.0 and 4.8 V, indicated high discharge capacity (∼250 mAh g-1), good rate capability, and excellent cycleability of the composite with x = 0.5 compared to the composites with x = 0.3 and 0.7. In-situ Raman spectroscopic studies revealed the activation of Li2MnO3 component in all composite cathode materials during the first cycle charging process with structural stability thereby enhancing performance of the composite with x = 0.5. These results demonstrated the feasibility of using 0.5Li2MnO3-0.5LiNi2/3Co1/6Mn1/6O2 composite as advanced cathode for high power Li-ion batteries.

  8. Layer-by-layer assembled graphene-coated mesoporous SnO2 spheres as anodes for advanced Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Shahid, Muhammad; Yesibolati, Nulati; Reuter, M. C.; Ross, F. M.; Alshareef, H. N.

    2014-10-01

    We report layer-by-layer (LBL) assembly of graphene/carbon-coated mesoporous SnO2 spheres (Gr/C-SnO2 spheres), without binder and conducting additives, as anode materials with excellent Li-ion insertion-extraction properties. Our results indicate that these novel LBL assembled electrodes have high reversible Li storage capacity, improved cycling, and especially good rate performance, even at high specific currents. The superior electrochemical performance offered by these LBL assembled Gr/C-SnO2 spheres is attributed to the enhanced electronic conductivity and effective diffusion of Li ions in the interconnected network of nanoparticles forming the mesoporous SnO2 spheres.

  9. Perspectives on Li and transition metal fluoride phosphates as cathode materials for a new generation of Li-ion batteries

    PubMed Central

    Antipov, Evgeny V.; Khasanova, Nellie R.; Fedotov, Stanislav S.

    2015-01-01

    To satisfy the needs of rapidly growing applications, Li-ion batteries require further significant improvements of their key properties: specific energy and power, cyclability, safety and costs. The first generation of cathode materials for Li-ion batteries based on mixed oxides with either spinel or rock-salt derivatives has already been widely commercialized, but the potential to improve the performance of these materials further is almost exhausted. Li and transition metal inorganic compounds containing different polyanions are now considered as the most promising cathode materials for the next generation of Li-ion batteries. Further advances in cathode materials are considered to lie in combining different anions [such as (XO4)n− and F−] in the anion sublattice, which is expected to enhance the specific energy and power of these materials. This review focuses on recent advances related to the new class of cathode materials for Li-ion batteries containing phosphate and fluoride anions. Special attention is given to their crystal structures and the relationships between structure and properties, which are important for their possible practical applications. PMID:25610630

  10. Perspectives on Li and transition metal fluoride phosphates as cathode materials for a new generation of Li-ion batteries.

    PubMed

    Antipov, Evgeny V; Khasanova, Nellie R; Fedotov, Stanislav S

    2015-01-01

    To satisfy the needs of rapidly growing applications, Li-ion batteries require further significant improvements of their key properties: specific energy and power, cyclability, safety and costs. The first generation of cathode materials for Li-ion batteries based on mixed oxides with either spinel or rock-salt derivatives has already been widely commercialized, but the potential to improve the performance of these materials further is almost exhausted. Li and transition metal inorganic compounds containing different polyanions are now considered as the most promising cathode materials for the next generation of Li-ion batteries. Further advances in cathode materials are considered to lie in combining different anions [such as (XO4) (n-) and F(-)] in the anion sublattice, which is expected to enhance the specific energy and power of these materials. This review focuses on recent advances related to the new class of cathode materials for Li-ion batteries containing phosphate and fluoride anions. Special attention is given to their crystal structures and the relationships between structure and properties, which are important for their possible practical applications.

  11. Theoretical evaluation of high-energy lithium metal phosphate cathode materials in Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Howard, Wilmont F.; Spotnitz, Robert M.

    Lithium metal phosphates (olivines) are emerging as long-lived, safe cathode materials in Li-ion batteries. Nano-LiFePO 4 already appears in high-power applications, and LiMnPO 4 development is underway. Current and emerging Fe- and Mn-based intercalants, however, are low-energy producers compared to Ni and Co compounds. LiNiPO 4, a high voltage olivine, has the potential for superior energy output (>10.7 Wh in 18650 batteries), compared with commercial Li(Co,Ni)O 2 derivatives (up to 9.9 Wh). Speculative Co and Ni olivine cathode materials charged to above 4.5 V will require significant advances in electrolyte compositions and nanotechnology before commercialization. The major drivers toward 5 V battery chemistries are the inherent abuse tolerance of phosphates and the economic benefit of LiNiPO 4: it can produce 34% greater energy per dollar of cell material cost than LiAl 0.05Co 0.15Ni 0.8O 2, today's "standard" cathode intercalant in Li-ion batteries.

  12. Ferric chloride-graphite intercalation compounds as anode materials for Li-ion batteries.

    PubMed

    Wang, Lili; Zhu, Yongchun; Guo, Cong; Zhu, Xiaobo; Liang, Jianwen; Qian, Yitai

    2014-01-01

    Ferric chloride-graphite intercalation compounds (FeCl3 -GICs) with stage 1 and stage 2 structures were synthesized by reacting FeCl3 and expanded graphite (EG) in air in a stainless-steel autoclave. As rechargeable Li-ion batteries, these FeCl3 -GICs exhibit high capacity, excellent cycling stability, and superior rate capability, which could be attributed to their unique intercalation features. This work may enable new possibilities for the fabrication of Li-ion batteries.

  13. Silicon Based Anodes for Li-Ion Batteries

    SciTech Connect

    Zhang, Jiguang; Wang, Wei; Xiao, Jie; Xu, Wu; Graff, Gordon L.; Yang, Zhenguo; Choi, Daiwon; Li, Xiaolin; Wang, Deyu; Liu, Jun

    2012-06-15

    Silicon is environmentally benign and ubiquitous. Because of its high specific capacity, it is considered one of the most promising candidates to replace the conventional graphite negative electrode used in today's Li ion batteries. Silicon has a theoretical specific capacity of nearly 4200 mAh/g (Li21Si5), which is 10 times larger than the specific capacity of graphite (LiC6, 372 mAh/g). However, the high capacity of silicon is associated with huge volume changes (more than 300 percent) when alloyed with lithium, which can cause severe cracking and pulverization of the electrode and lead to significant capacity loss. Significant scientific research has been conducted to circumvent the deterioration of silicon based anode materials during cycling. Various strategies, such as reduction of particle size, generation of active/inactive composites, fabrication of silicon based thin films, use of alternative binders, and the synthesis of 1-D silicon nanostructures have been implemented by a number of research groups. Fundamental mechanistic research has also been performed to better understand the electrochemical lithiation and delithiation process during cycling in terms of crystal structure, phase transitions, morphological changes, and reaction kinetics. Although efforts to date have not attained a commercially viable Si anode, further development is expected to produce anodes with three to five times the capacity of graphite. In this chapter, an overview of research on silicon based anodes used for lithium-ion battery applications will be presented. The overview covers electrochemical alloying of the silicon with lithium, mechanisms responsible for capacity fade, and methodologies adapted to overcome capacity degradation observed during cycling. The recent development of silicon nanowires and nanoparticles with significantly improved electrochemical performance will also be discussed relative to the mechanistic understanding. Finally, future directions on the

  14. Li-Ion Battery and Supercapacitor Hybrid Design for Long Extravehicular Activities

    NASA Technical Reports Server (NTRS)

    Jeevarajan, Judith

    2013-01-01

    With the need for long periods of extravehicular activities (EVAs) on the Moon or Mars or a near-asteroid, the need for long-performance batteries has increased significantly. The energy requirements for the EVA suit, as well as surface systems such as rovers, have increased significantly due to the number of applications they need to power at the same time. However, even with the best state-of-the-art Li-ion batteries, it is not possible to power the suit or the rovers for the extended period of performance. Carrying a charging system along with the batteries makes it cumbersome and requires a self-contained power source for the charging system that is usually not possible. An innovative method to charge and use the Li-ion batteries for long periods seems to be necessary and hence, with the advent of the Li-ion supercapacitors, a method has been developed to extend the performance period of the Li-ion power system for future exploration applications. The Li-ion supercapacitors have a working voltage range of 3.8 to 2.5 V, and are different from a traditional supercapacitor that typically has a working voltage of 1 V. The innovation is to use this Li-ion supercapacitor to charge Liion battery systems on an as-needed basis. The supercapacitors are charged using solar arrays and have battery systems of low capacity in parallel to be able to charge any one battery system while they provide power to the application. Supercapacitors can safely take up fast charge since the electrochemical process involved is still based on charge separation rather than the intercalation process seen in Li-ion batteries, thus preventing lithium metal deposition on the anodes. The lack of intercalation and eliminating wear of the supercapacitors allows for them to be charged and discharged safely for a few tens of thousands of cycles. The Li-ion supercapacitors can be charged from the solar cells during the day during an extended EVA. The Liion battery used can be half the capacity

  15. Is the Solid Electrolyte Interphase an Extra-Charge Reservoir in Li-Ion Batteries?

    PubMed

    Rezvani, S Javad; Gunnella, Roberto; Witkowska, Agnieszka; Mueller, Franziska; Pasqualini, Marta; Nobili, Francesco; Passerini, Stefano; Cicco, Andrea Di

    2017-02-08

    Advanced metal oxide electrodes in Li-ion batteries usually show reversible capacities exceeding the theoretically expected ones. Despite many studies and tentative interpretations, the origin of this extra-capacity is not assessed yet. Lithium storage can be increased through different chemical processes developing in the electrodes during charging cycles. The solid electrolyte interface (SEI), formed already during the first lithium uptake, is usually considered to be a passivation layer preventing the oxidation of the electrodes while not participating in the lithium storage process. In this work, we combine high resolution soft X-ray absorption spectroscopy with tunable probing depth and photoemission spectroscopy to obtain profiles of the surface evolution of a well-known prototype conversion-alloying type mixed metal oxide (carbon coated ZnFe2O4) electrode. We show that a partially reversible layer of alkyl lithium carbonates is formed (∼5-7 nm) at the SEI surface when reaching higher Li storage levels. This layer acts as a Li reservoir and seems to give a significant contribution to the extra-capacity of the electrodes. This result further extends the role of the SEI layer in the functionality of Li-ion batteries.

  16. Passivating Li-Ion Batteries in Orbit at the End of the Spacecraft's Life

    NASA Astrophysics Data System (ADS)

    Alcindor, Peter; Kimber, Rick; Remy, Stephane; Prevot, Didier

    2014-08-01

    International focus on the "Clean Space Initiative", as discussed at the ESA workshop "EoL Electrical Passivation" held on October 11th 2013 identified new legislation (REACh, RoHS and LOS). This paper concerns itself with the prevention of Li-ion battery explosion post end of mission as the spacecraft systems remain active well beyond the initial design expectations and beyond classical reliability design predictions. The main risks to Li-ion energy storage battery systems is the prevention of over charging and over discharging, both these scenarios result in the build up of internal pressure ultimately resulting in venting of high pressure gas. To warrant against such risk legislation requires that batteries are "Passivated" within the predictable life of the spacecraft systems. This paper proposes a simple method for the passivation of Li-ion batteries that relies only on the normal systems that form part of most present day spacecraft heritage.

  17. Mathematical Modeling of Ni/H2 and Li-Ion Batteries

    NASA Technical Reports Server (NTRS)

    Weidner, John W.; White, Ralph E.; Dougal, Roger A.

    2001-01-01

    The modelling effort outlined in this viewgraph presentation encompasses the following topics: 1) Electrochemical Deposition of Nickel Hydroxide; 2) Deposition rates of thin films; 3) Impregnation of porous electrodes; 4) Experimental Characterization of Nickel Hydroxide; 5) Diffusion coefficients of protons; 6) Self-discharge rates (i.e., oxygen-evolution kinetics); 7) Hysteresis between charge and discharge; 8) Capacity loss on cycling; 9) Experimental Verification of the Ni/H2 Battery Model; 10) Mathematical Modeling Li-Ion Batteries; 11) Experimental Verification of the Li-Ion Battery Model; 11) Integrated Power System Models for Satellites; and 12) Experimental Verification of Integrated-Systems Model.

  18. Composite Cathodes for Dual-Rate Li-Ion Batteries

    NASA Technical Reports Server (NTRS)

    Whitacre, Jay; West, William; Bugga, Ratnakumar

    2008-01-01

    Composite-material cathodes that enable Li-ion electrochemical cells and batteries to function at both high energy densities and high discharge rates are undergoing development. Until now, using commercially available cathode materials, it has been possible to construct cells that have either capability for high-rate discharge or capability to store energy at average or high density, but not both capabilities. However, both capabilities are needed in robotic, standby-power, and other applications that involve duty cycles that include long-duration, low-power portions and short-duration, high-power portions. The electrochemically active ingredients of the present developmental composite cathode materials are: carbon-coated LiFePO4, which has a specific charge capacity of about 160 mA h/g and has been used as a high-discharge-rate cathode material and Li[Li(0.17)Mn(0.58)Ni(0.25)]O2, which has a specific charge capacity of about 240 mA h/g and has been used as a high-energy-density cathode material. In preparation for fabricating the composite material cathode described, these electrochemically active ingredients are incorporated into two sub-composites: a mixture comprising 10 weight percent of poly(vinylidine fluoride); 10 weight percent of carbon and 80 weight percent of carbon coated LiFePO4; and, a mixture comprising 10 weight percent of PVDF, and 80 weight percent of Li[Li(0.17)Mn(0.58)Ni(0.25)]O2. In the fabrication process, these mixtures are spray-deposited onto an aluminum current collector. Electrochemical tests performed thus far have shown that better charge/discharge performance is obtained when either 1) each mixture is sprayed on a separate area of the current collector or (2) the mixtures are deposited sequentially (in contradistinction to simultaneously) on the same current-collector area so that the resulting composite cathode material consists of two different sub-composite layers.

  19. Effects of electrode properties and fabricated pressure on Li ion diffusion and diffusion-induced stresses in cylindrical Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Tao; Guo, Zhansheng

    2014-03-01

    The effects of electrode properties and fabricated pressure on Li ion diffusion and diffusion-induced stress in a cylindrical Li-ion battery are studied. It is found that hydrostatic pressure or elastic modulus variation in the active layer have little effect on the distribution of Li ions for a higher diffusivity coefficient, but both can facilitate Li ion diffusion for a lower diffusivity coefficient. The elastic modulus variation has a significant effect on the distribution of stress and hydrostatic pressure can reduce the surface stress for the lower diffusivity coefficient. A higher charging rate causes a more transient response in the stress history, but a linear charging history is observed for slow charging rates. A higher charging rate would not inflict extra damage on the electrode for the higher diffusivity coefficient and the stress history becomes highly transient and charging rate dependent for the lower diffusivity coefficient. The effect of fabricated pressure can be neglected.

  20. Effect of flame-retarding additives on surface chemistry in Li-ion batteries

    SciTech Connect

    Nam, N.D.; Park, I.J.; Kim, J.G.; Kim, H.S.

    2012-10-15

    This study examined the properties of 1 wt.% vinylene carbonate (VC), vinyl ethylene carbonate (VEC), and diphenyl octyl phosphate (DPOF) additive electrolytes as a promising way of beneficially improving the surface and cell resistance of Li-ion batteries. Surface film formation on the negative and positive electrodes was analyzed by electrochemical impedance spectroscopy (EIS), Fourier transform infrared (FT-IR) spectroscopy, and scanning electron microscopy (SEM). In conclusion, EIS, FT-IR spectroscopy and SEM results confirmed that DPOF is an excellent additive to the electrolyte in the Li-ion batteries due to the improved co-intercalation of the solvent molecules.

  1. Saft Li-Ion VES140S Battery Flight Experience Return on TAS Space Bus Platforms

    NASA Astrophysics Data System (ADS)

    Borthomieu, Yannick; Gambini, Didier

    2014-08-01

    Starting 1996, the Lithium-ion (Li-ion) battery has been used several years ago with the support of ESA and CNES in the frame of the Stentor program. Following the development and qualification this very promising technology in terms of technical, industrial and cost aspects has been used on-board Space Bus plate-forms dedicated to telecommunications satellite for payload power from 3 up to 20 kW.The aim of the article is to present the in-orbit data from the Saft VES140 Li-Ion batteries on board the Thales Alenia Space Spacebus satellite. The first TAS satellite using Li-Ion batteries has been successfully launched in October 2005 after a first attempt in 2002 with Stentor. Since that date, 20 satellites are in operation with Li-Ion batteries. The battery performances have mainly been reviewed mainly on the oldest satellite. No deviation, versus the initial specification, has been analysed. The performances are equal or much better than the life projection done at the start of the projects. Battery energies and voltages telemetries have been checked and compared to the prediction model SLIM. They are in line with the life trend given by the model.

  2. Strain imaging of a LiCoO2 cathode in a Li-ion battery

    NASA Astrophysics Data System (ADS)

    Matsushita, Yuki; Osaka, Ryuma; Butsugan, Kenta; Takata, Keiji

    2016-09-01

    Li-ion batteries have been recognized as promising devices for a sustainable society. Layered LiCoO2 and graphite are commonly used as electrode materials for Li-ion batteries. When charging and discharging, Li-ions are extracted or inserted into the interlayers, which causes changes in volume. Scanning probe microscopy (SPM) can allow high resolution imaging of these volume changes, which enables us to investigate Li-ion migration without destruction. We observed volume changes in the LiCoO2 cathode using SPM and successfully imaged the distribution of the volume changes corresponding to the LiCoO2 particles. Volume changes in the interspace were significantly larger than those in the particles. The large volume changes are caused by electrolyte flux induced by changes in concentration of Li ions. The volume changes were greatly reduced when the electrolyte dried out. The dry-out and infiltration of electrolyte between the LiCoO2 particles and the current collector spread out with the procedure of degradation of the batteries. The boundaries between the dry-out and infiltration regions acted as barriers of electrolyte flux.

  3. Performance Testing of Yardney Li-Ion Cells and Batteries in Support of Future NASA Missions

    NASA Technical Reports Server (NTRS)

    Smart, M. C.; Ratnakumar, B. V.; Whitcanack, L. D.; Puglia, F. J.; Santee, S.; Gitzendanner, R.

    2009-01-01

    NASA requires lightweight rechargeable batteries for future missions to Mars and the outer planets that are capable of operating over a wide range of temperatures, with high specific energy and energy densities. Due to the attractive performance characteristics, Li-ion batteries have been identified as the battery chemistry of choice for a number of future applications. For example, JPL is planning to launch another unmanned rover mission to the planet Mars. This mission, referred to as the Mars Science Laboratory (MSL), will involve the use of a rover that is much larger than the previously developed Spirit and Opportunity Rovers for the 2003 Mars Exploration Rover (MER) mission, that are currently still in operation on the surface of the planet after more than five years. Part of the reason that the MER rovers have operated so successfully, far exceeding the required mission duration of 90 sols, is that they possess robust Li-ion batteries, manufactured by Yardney Technical Products, which have demonstrated excellent life characteristics. Given the excellent performance characteristics displayed, similar Li-ion batteries have been projected to successfully meet the mission requirements of the up-coming MSL mission. In addition to future missions to Mars, Li-ion technology is attractive for a number of other future NASA applications which require high specific energy, rechargeable batteries. To ascertain the viability of using Li-ion batteries for these applications, a number of performance validation tests have been performed on both Yardney cells and batteries of various sizes. These tests include mission simulation tests, charge and discharge rate characterization testing, cycle life testing under various conditions, and storage testing.

  4. United States Army Group 31 and Group 34 Li-ion Battery Specification

    DTIC Science & Technology

    2011-02-08

    Technical Working Group. Requirements for the Li ion batteries are broken down into design & construction, performance, environmental, and safety. The...ion rechargeable draft specification that is currently under development by the DOD Power Sources Battery Technical Working Group. Requirements for...shall be capable of charging to 100% capacity from a standard 12V or 24V lead acid vehicle battery charger in less than 2 hours from 0% state of charge

  5. Electron Beam Curing of Composite Positive Electrode for Li-Ion Battery

    DOE PAGES

    Du, Zhijia; Janke, C. J.; Li, Jianlin; ...

    2016-10-12

    We have successfully used electron beam cured acrylated polyurethanes as novel binders for positive electrodes for Li-ion batteries. Furthermore, the cross-linked polymer after electron beam curing coheres active materials and carbon black together onto Al foil. Electrochemical tests demonstrate the stability of the polymer at a potential window of 2.0 V–4.6 V. The electrode is found to have similar voltage profiles and charge-transfer resistance compared to the conventional electrode using polyvinylidene fluoride as the binder. Finally, when the electrode is tested in full Li-ion cells, they exhibit excellent cycling performance, indicating promising use for this new type of binder inmore » commercial Li-ion batteries in the future.« less

  6. Electron Beam Curing of Composite Positive Electrode for Li-Ion Battery

    SciTech Connect

    Du, Zhijia; Janke, C. J.; Li, Jianlin; Daniel, C.; Wood, D. L.

    2016-10-12

    We have successfully used electron beam cured acrylated polyurethanes as novel binders for positive electrodes for Li-ion batteries. Furthermore, the cross-linked polymer after electron beam curing coheres active materials and carbon black together onto Al foil. Electrochemical tests demonstrate the stability of the polymer at a potential window of 2.0 V–4.6 V. The electrode is found to have similar voltage profiles and charge-transfer resistance compared to the conventional electrode using polyvinylidene fluoride as the binder. Finally, when the electrode is tested in full Li-ion cells, they exhibit excellent cycling performance, indicating promising use for this new type of binder in commercial Li-ion batteries in the future.

  7. Integrated li-ion ultracapacitor with lead acid battery for vehicular start-stop

    NASA Astrophysics Data System (ADS)

    Manla, Emad

    Advancements in automobile manufacturing aim at improving the driving experience at every level possible. One improvement aspect is increasing gas efficiency via hybridization, which can be achieved by introducing a feature called start-stop. This feature automatically switches the internal combustion engine off when it idles and switches it back on when it is time to resume driving. This application has been proven to reduce the amount of gas consumption and emission of greenhouse effect gases in the atmosphere. However, the repeated cranking of the engine puts a large amount of stress on the lead acid battery required to perform the cranking, which effectively reduces its life span. This dissertation presents a hybrid energy storage system assembled from a lead acid battery and an ultracapacitor module connected in parallel. The Li-ion ultracapacitor was tested and modeled to predict its behavior when connected in a system requiring pulsed power such as the one proposed. Both test and simulation results show that the proposed hybrid design significantly reduces the cranking loading and stress on the battery. The ultracapacitor module can take the majority of the cranking current, effectively reducing the stress on the battery. The amount of cranking current provided by the ultracapacitor can be easily controlled via controlling the resistance of the cable connected directly between the ultracapacitor module and the car circuitry.

  8. Chemical recycling of cell phone Li-ion batteries: Application in environmental remediation.

    PubMed

    Gonçalves, Mariana C Abreu; Garcia, Eric M; Taroco, Hosane A; Gorgulho, Honória F; Melo, Júlio O F; Silva, Rafael R A; Souza, Amauri G

    2015-06-01

    This paper presents, for the first time, the recycling and use of spent Li-ion battery cathode tape as a catalyst in the degradation of an organic dye. In our proposal, two major environmental problems can be solved: the secure disposal of cell phone batteries and the treatment of effluents with potentially toxic organic dyes. The spent Li-ion battery cathode investigated in this paper corresponds to 29% of the mass of Li-ion batteries and is made up of 83% LiCoO2, 14.5% C and less than 2.5% Al, Al2O3 and Co3O4. The use of spent Li-ion battery cathode tape increased the degradation velocity constant of methylene blue in the absence of light by about 200 times in relation to pure H2O2. This increase can be explained by a reduction in the activation energy from 83 kJ mol(-1) to 26 kJ mol(-1). The mechanism of degradation promoted by LiCoO2 is probably related to the generation of superoxide radical (O2(-)). The rupture of the aromatic rings of methylene blue was analyzed by ESI-MS.

  9. Carbon nanotube: nanodiamond Li-ion battery cathodes with increased thermal conductivity

    NASA Astrophysics Data System (ADS)

    Salgado, Ruben; Lee, Eungiee; Shevchenko, Elena V.; Balandin, Alexander A.

    2016-10-01

    Prevention of excess heat accumulation within the Li-ion battery cells is a critical design consideration for electronic and photonic device applications. Many existing approaches for heat removal from batteries increase substantially the complexity and overall weight of the battery. Some of us have previously shown a possibility of effective passive thermal management of Li-ion batteries via improvement of thermal conductivity of cathode and anode material1. In this presentation, we report the results of our investigation of the thermal conductivity of various Li-ion cathodes with incorporated carbon nanotubes and nanodiamonds in different layered structures. The cathodes were synthesized using the filtration method, which can be utilized for synthesis of commercial electrode-active materials. The thermal measurements were conducted with the "laser flash" technique. It has been established that the cathode with the carbon nanotubes-LiCo2 and carbon nanotube layered structure possesses the highest in-plane thermal conductivity of 206 W/mK at room temperature. The cathode containing nanodiamonds on carbon nanotubes structure revealed one of the highest cross-plane thermal conductivity values. The in-plane thermal conductivity is up to two orders-of-magnitude greater than that in conventional cathodes based on amorphous carbon. The obtained results demonstrate a potential of carbon nanotube incorporation in cathode materials for the effective thermal management of Li-ion high-powered density batteries.

  10. Low Defect FeFe(CN)6 Framework as Stable Host Material for High Performance Li-Ion Batteries.

    PubMed

    Wu, Xianyong; Shao, Miaomiao; Wu, Chenghao; Qian, Jiangfeng; Cao, Yuliang; Ai, Xinping; Yang, Hanxi

    2016-09-14

    Low cost and high performance Li-ion batteries have been extensively pursued for grid-scale energy storage applications; however, their development has been impeded for a long time due to the lack of qualified cathode materials with not only decent electrochemical performance but also resource abundance and low price. In this paper, we report Prussian-blue type FeFe(CN)6 nanocrystals with well-controlled lattice defects and perfect nanocubic morphology, which can exhibit a high Li-storage capacity of 160 mAh g(-1), a strong rate performance at 24 C, and a superior cycle stability with 90% capacity retention over 300 cycles. This low defect lattice and its excellent Li-insertion performance might provide a new insight into the design of advanced Li-ion battery materials and also a competitive alternative to the presently developed Li(+) insertion cathodes to develop low cost and high performance Li-ion batteries for grid-scale energy storage applications.

  11. First Li-Ion Battery On-Board A Russian Commercial Geo Satellite

    NASA Astrophysics Data System (ADS)

    Masgrangeas, David; Lagattu, Benoit; Nesterishin, Michael; Krenko, Alexander

    2011-10-01

    This paper deals with the first integration of a Li-ion battery from a western company aboard a Russian commercial GEO satellite. State of the art electrochemistry allied with innovative battery design lead to successful contract for development, manufacturing and delivery of flight hardware. After several months of joint technical work, two batteries were delivered for integration and tested inside a GEO spacecraft. Delivery conditions of a Li-ion battery were also part of the challenge and were successfully filled by both parties. This paper presents the first results of interfacing batteries and spacecraft. Mechanical, thermal and electrical aspects are discussed as well as learned lessons. Beyond cultural and technical habits and despite language barriers, this contract was a true success story between two major companies, each leading its own market share.

  12. Contribution of Li-ion batteries to the environmental impact of electric vehicles.

    PubMed

    Notter, Dominic A; Gauch, Marcel; Widmer, Rolf; Wäger, Patrick; Stamp, Anna; Zah, Rainer; Althaus, Hans-Jörg

    2010-09-01

    Battery-powered electric cars (BEVs) play a key role in future mobility scenarios. However, little is known about the environmental impacts of the production, use and disposal of the lithium ion (Li-ion) battery. This makes it difficult to compare the environmental impacts of BEVs with those of internal combustion engine cars (ICEVs). Consequently, a detailed lifecycle inventory of a Li-ion battery and a rough LCA of BEV based mobility were compiled. The study shows that the environmental burdens of mobility are dominated by the operation phase regardless of whether a gasoline-fueled ICEV or a European electricity fueled BEV is used. The share of the total environmental impact of E-mobility caused by the battery (measured in Ecoindicator 99 points) is 15%. The impact caused by the extraction of lithium for the components of the Li-ion battery is less than 2.3% (Ecoindicator 99 points). The major contributor to the environmental burden caused by the battery is the supply of copper and aluminum for the production of the anode and the cathode, plus the required cables or the battery management system. This study provides a sound basis for more detailed environmental assessments of battery based E-mobility.

  13. Reaction temperature sensing (RTS)-based control for Li-ion battery safety

    PubMed Central

    Zhang, Guangsheng; Cao, Lei; Ge, Shanhai; Wang, Chao-Yang; Shaffer, Christian E.; Rahn, Christopher D.

    2015-01-01

    We report reaction temperature sensing (RTS)-based control to fundamentally enhance Li-ion battery safety. RTS placed at the electrochemical interface inside a Li-ion cell is shown to detect temperature rise much faster and more accurately than external measurement of cell surface temperature. We demonstrate, for the first time, that RTS-based control shuts down a dangerous short-circuit event 3 times earlier than surface temperature- based control and prevents cell overheating by 50 °C and the resultant cell damage. PMID:26658957

  14. Reaction temperature sensing (RTS)-based control for Li-ion battery safety.

    PubMed

    Zhang, Guangsheng; Cao, Lei; Ge, Shanhai; Wang, Chao-Yang; Shaffer, Christian E; Rahn, Christopher D

    2015-12-11

    We report reaction temperature sensing (RTS)-based control to fundamentally enhance Li-ion battery safety. RTS placed at the electrochemical interface inside a Li-ion cell is shown to detect temperature rise much faster and more accurately than external measurement of cell surface temperature. We demonstrate, for the first time, that RTS-based control shuts down a dangerous short-circuit event 3 times earlier than surface temperature- based control and prevents cell overheating by 50 °C and the resultant cell damage.

  15. Reaction temperature sensing (RTS)-based control for Li-ion battery safety

    NASA Astrophysics Data System (ADS)

    Zhang, Guangsheng; Cao, Lei; Ge, Shanhai; Wang, Chao-Yang; Shaffer, Christian E.; Rahn, Christopher D.

    2015-12-01

    We report reaction temperature sensing (RTS)-based control to fundamentally enhance Li-ion battery safety. RTS placed at the electrochemical interface inside a Li-ion cell is shown to detect temperature rise much faster and more accurately than external measurement of cell surface temperature. We demonstrate, for the first time, that RTS-based control shuts down a dangerous short-circuit event 3 times earlier than surface temperature- based control and prevents cell overheating by 50 °C and the resultant cell damage.

  16. A Low Temperature Li-Ion Battery for Mars Landers Based on COTS Cells

    NASA Astrophysics Data System (ADS)

    Buckle, Rachel; Thwaite, Carl; Vijendran, Sanjay; Schautz, Max

    2014-08-01

    This paper describes the work undertaken to develop a secondary Li-ion battery for use in European space exploration missions from Commercial-off-the-Shelf (COTS) cells. The battery was required to operate at temperatures below -20°C and survive a freeze/thaw cycle.Initially, datasheets from Li-ion cell manufacturers were assessed against the project battery requirements. Four cells were down-selected for further testing. Using information from these cell selection tests, an initial battery sizing was completed. Modules from the two cell types that provided the lowest mass solution, were cycled under a realistic Mars surface mission power profile at low temperature. Very low temperature survivability tests were also performed.Testing revealed that COTS cells could successfully be used in this challenging environment.

  17. High Voltage Li-Ion Battery Using Exfoliated Graphite/Graphene Nanosheets Anode.

    PubMed

    Agostini, Marco; Brutti, Sergio; Hassoun, Jusef

    2016-05-04

    The achievement of a new generation of lithium-ion battery, suitable for a continuously growing consumer electronic and sustainable electric vehicle markets, requires the development of new, low-cost, and highly performing materials. Herein, we propose a new and efficient lithium-ion battery obtained by coupling exfoliated graphite/graphene nanosheets (EGNs) anode and high-voltage, spinel-structure cathode. The anode shows a capacity exceeding by 40% that ascribed to commercial graphite in lithium half-cell, at very high C-rate, due to its particular structure and morphology as demonstrated by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The Li-ion battery reveals excellent efficiency and cycle life, extending up to 150 cycles, as well as an estimated practical energy density of about 260 Wh kg(-1), that is, a value well exceeding the one associated with the present-state Li-ion battery.

  18. Low-temperature performance of Li-ion batteries: The behavior of lithiated graphite

    NASA Astrophysics Data System (ADS)

    Senyshyn, A.; Mühlbauer, M. J.; Dolotko, O.; Ehrenberg, H.

    2015-05-01

    Safety issues along with the substantially reduced energy and power capabilities of Li-ion cells, operated at low temperatures, pose a technical barrier limiting their use in electric vehicles and aerospace applications. A combined in situ high-resolution neutron powder diffraction and electrochemical study on Li-ion cells of the 18650-type over a temperature range from 230 K to 320 K is reported with a focus on the graphite anode and the low temperature performance of the cell. Instead of a quasi-continuous behavior as observed at ambient temperatures, an anomalous behavior occurs upon discharge at low temperature, primarily reflected in the abrupt character of the LiC12 - to - graphite phase transformation and the unusual temperature dependence of the amount of LiC6. An instability of lithiated graphite phases at temperatures below 250 K is observed, which affects the performance of Li-ion batteries at low temperatures.

  19. A novel preparation of core-shell electrode materials via evaporation-induced self-assembly of nanoparticles for advanced Li-ion batteries.

    PubMed

    Xie, Zhiqiang; Ellis, Sarah; Xu, Wangwang; Dye, Dara; Zhao, Jianqing; Wang, Ying

    2015-10-18

    We report, for the first time, a simple and novel synthesis of a Li-rich layered-spinel core-shell heterostructure (L@S core-shell) via evaporation-induced self-assembly (EISA) of Ni-doped Li4Mn5O12 nanoparticles (Li4Mn4.5Ni0.5O12) onto the surface of layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 (LMNCO) without using any surfactant during the coating process. The resultant L@S core-shell as a cathode in lithium ion batteries demonstrates significantly improved specific capacity, cycling performance and rate capability compared to pristine LMNCO.

  20. Thick electrodes for Li-ion batteries: A model based analysis

    NASA Astrophysics Data System (ADS)

    Danner, Timo; Singh, Madhav; Hein, Simon; Kaiser, Jörg; Hahn, Horst; Latz, Arnulf

    2016-12-01

    Li-ion batteries are commonly used in portable electronic devices due to their outstanding energy and power density. A remaining issue which hinders the breakthrough e.g. in the automotive sector is the high production cost. For low power applications, such as stationary storage, batteries with electrodes thicker than 300 μm were suggested. High energy densities can be attained with only a few electrode layers which reduces production time and cost. However, mass and charge transport limitations can be severe at already small C-rates due to long transport pathways. In this article we use a detailed 3D micro-structure resolved model to investigate limiting factors for battery performance. The model is parametrized with data from the literature and dedicated experiments and shows good qualitative agreement with experimental discharge curves of thick NMC-graphite Li-ion batteries. The model is used to assess the effect of inhomogeneities in carbon black distribution and gives answers to the possible occurrence of lithium plating during battery charge. Based on our simulations we can predict optimal operation strategies and improved design concepts for future Li-ion batteries employing thick electrodes.

  1. Pyro-synthesis of a high rate nano-Li3V2(PO4)3/C cathode with mixed morphology for advanced Li-ion batteries.

    PubMed

    Kang, Jungwon; Mathew, Vinod; Gim, Jihyeon; Kim, Sungjin; Song, Jinju; Im, Won Bin; Han, Junhee; Lee, Jeong Yong; Kim, Jaekook

    2014-02-10

    A monoclinic Li3V2(PO4)3/C (LVP/C) cathode for lithium battery applications was synthesized by a polyol-assisted pyro-synthesis. The polyol in the present synthesis acts not only as a solvent, reducing agent and a carbon source but also as a low-cost fuel that facilitates a combustion process combined with the release of ultrahigh exothermic energy useful for nucleation process. Subsequent annealing of the amorphous particles at 800°C for 5 h is sufficient to produce highly crystalline LVP/C nanoparticles. A combined analysis of X-ray diffraction (XRD) and neutron powder diffraction (NPD) patterns was used to determine the unit cell parameters of the prepared LVP/C. Electron microscopic studies revealed rod-type particles of length ranging from nanometer to micrometers dispersed among spherical particles with average particle-sizes in the range of 20-30 nm. When tested for Li-insertion properties in the potential windows of 3-4.3 and 3-4.8 V, the LVP/C cathode demonstrated initial discharge capacities of 131 and 196 mAh/g (~100% theoretical capacities) at 0.15 and 0.1 C current densities respectively with impressive capacity retentions for 50 cycles. Interestingly, the LVP/C cathode delivered average specific capacities of 125 and 90 mAh/g at current densities of 9.6 C and 15 C respectively within the lower potential window.

  2. Enhancing the performances of Li-ion batteries by carbon-coating: present and future.

    PubMed

    Li, Huiqiao; Zhou, Haoshen

    2012-01-30

    With progress of knowledge of electrode materials, it has been found that their surface structures are of great importance to the electrochemical performance of Li-ion batteries. Carbon coating can effectively increase the electrode conductivity, improve the surface chemistry of the active material, and protect the electrode from direct contact with electrolyte, leading to enhanced cycle life of the batteries. Carbon coating together with nanotechnology provides good conductivity as well as fast Li-ion diffusion, and thus also results in good rate capabilities. The recent development of carbon coating techniques in lithium-ion batteries is discussed with detailed examples of typical cathode and anode materials. The limitation of current technology and future perspective of the new concept of "hybrid coating" are also pointed out.

  3. Association and Diffusion of Li(+) in Carboxymethylcellulose Solutions for Environmentally Friendly Li-ion Batteries.

    PubMed

    Casalegno, Mosè; Castiglione, Franca; Passarello, Marco; Mele, Andrea; Passerini, Stefano; Raos, Guido

    2016-07-21

    Carboxymethylcellulose (CMC) has been proposed as a polymeric binder for electrodes in environmentally friendly Li-ion batteries. Its physical properties and interaction with Li(+) ions in water are interesting not only from the point of view of electrode preparation-processability in water is one of the main reasons for its environmental friendliness-but also for its possible application in aqueous Li-ion batteries. We combine molecular dynamics simulations and variable-time pulsed field gradient spin-echo (PFGSE) NMR spectroscopy to investigate Li(+) transport in CMC-based solutions. Both the simulations and experimental results show that, at concentrations at which Li-CMC has a gel-like consistency, the Li(+) diffusion coefficient is still very close to that in water. These Li(+) ions interact preferentially with the carboxylate groups of CMC, giving rise to a rich variety of coordination patterns. However, the diffusion of Li(+) in these systems is essentially unrestricted, with a fast, nanosecond-scale exchange of the ions between CMC and the aqueous environment.

  4. An omnipotent Li-ion battery charger with multimode control and polarity reversible techniques

    NASA Astrophysics Data System (ADS)

    Chen, Jiann-Jong; Ku, Yi-Tsen; Yang, Hong-Yi; Hwang, Yuh-Shyan; Yu, Cheng-Chieh

    2016-07-01

    The omnipotent Li-ion battery charger with multimode control and polarity reversible techniques is presented in this article. The proposed chip is fabricated with TSMC 0.35μm 2P4M complementary metal-oxide- semiconductor processes, and the chip area including pads is 1.5 × 1.5 mm2. The structure of the omnipotent charger combines three charging modes and polarity reversible techniques, which adapt to any Li-ion batteries. The three reversible Li-ion battery charging modes, including trickle-current charging, large-current charging and constant-voltage charging, can charge in matching polarities or opposite polarities. The proposed circuit has a maximum charging current of 300 mA and the input voltage of the proposed circuit is set to 4.5 V. The maximum efficiency of the proposed charger is about 91% and its average efficiency is 74.8%. The omnipotent charger can precisely provide the charging current to the battery.

  5. Tailoring Anisotropic Li-Ion Transport Tunnels on Orthogonally Arranged Li-Rich Layered Oxide Nanoplates Toward High-Performance Li-Ion Batteries.

    PubMed

    Xu, Ming; Fei, Linfeng; Zhang, Weibing; Li, Tao; Lu, Wei; Zhang, Nian; Lai, Yanqing; Zhang, Zhian; Fang, Jing; Zhang, Kai; Li, Jie; Huang, Haitao

    2017-03-08

    High-performance Li-rich layered oxide (LRLO) cathode material is appealing for next-generation Li-ion batteries owing to its high specific capacity (>300 mAh g(-1)). Despite intense studies in the past decade, the low initial Coulombic efficiency and unsatisfactory cycling stability of LRLO still remain as great challenges for its practical applications. Here, we report a rational design of the orthogonally arranged {010}-oriented LRLO nanoplates with built-in anisotropic Li(+) ion transport tunnels. Such a novel structure enables fast Li(+) ion intercalation and deintercalation kinetics and enhances structural stability of LRLO. Theoretical calculations and experimental characterizations demonstrate the successful synthesis of target cathode material that delivers an initial discharge capacity as high as 303 mAh g(-1) with an initial Coulombic efficiency of 93%. After 200 cycles at 1.0 C rate, an excellent capacity retention of 92% can be attained. Our method reported here opens a door to the development of high-performance Ni-Co-Mn-based cathode materials for high-energy density Li-ion batteries.

  6. High resolution morphology and electrical characterization of aged Li-ion battery cathode.

    PubMed

    Ramdon, Sanjay; Bhushan, Bharat

    2012-08-15

    Understanding the changes that take place in an aged Lithium-ion (Li-ion) battery cathode is vital to improving battery storage capabilities. High resolution imaging using an atomic force microscope (AFM) and current measurement capabilities are used to determine the difference in surface morphology as well as conductance between unaged and aged cathode. Upon aging, agglomeration of LiFePO(4) particles with nanocrystalline deposits is observed and the samples show lower conductance and hence increased resistance. The data identifies potential degradation mechanisms which reduce the conductivity of the cathode leading to poor cycling performance of the battery.

  7. Fe and Co methylene diphosphonates as conversion materials for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Schmidt, Sebastian; Sallard, Sébastien; Sheptyakov, Denis; Nachtegaal, Maarten; Novák, Petr; Villevieille, Claire

    2017-02-01

    Organic-inorganic hybrid materials can introduce more flexibility in the choice of Li-ion battery materials due to the versatility of organic ligands. As an alternative to carboxylate-based ligands, Fe and Co methylene diphosphonate were successfully synthesised and tested as model diphosphonate-based negative electrode materials for Li-ion batteries, showing specific charges of 250 mAh g-1 and 395 mAh g-1 after 100 cycles at 50 mAh g-1, respectively. Operando X-ray diffraction and ex situ X-ray absorption spectroscopy confirmed the expected conversion reaction mechanism involving amorphisation of the pristine materials and extrusion of transition metal particles upon reduction. Ex situ X-ray absorption spectra indicated that Fe methylene diphosphonate undergoes reversible Fe cycling between Fe(II) and Fe(0) metal particles.

  8. Superhalogens: A Bridge between Complex Metal Hydrides and Li Ion Batteries.

    PubMed

    Jena, Puru

    2015-04-02

    Complex metal hydrides and Li ion batteries play an integral role in the pursuit of clean and sustainable energy. The former stores hydrogen and can provide a clean energy solution for the transportation industry, while the latter can store energy harnessed from the sun and the wind. However, considerable materials challenges remain in both cases, and research for finding solutions has traditionally followed parallel paths. In this Perspective, I show that there is a common link between these two seemingly disparate fields that can be unveiled by studying the electronic structure of the anions in complex metal hydrides and in electrolytes of Li ion batteries; they are both superhalogens. I demonstrate that considerable progress made in our understanding of superhalogens in the past decade can provide solutions to some of the materials challenges in both of these areas.

  9. Si nanoparticle-decorated Si nanowire networks for Li-ion battery anodes.

    PubMed

    Hu, Liangbing; Wu, Hui; Hong, Seung Sae; Cui, Lifeng; McDonough, James R; Bohy, Sy; Cui, Yi

    2011-01-07

    We designed and fabricated binder-free, 3D porous silicon nanostructures for Li-ion battery anodes, where Si nanoparticles electrically contact current collectors via vertically grown silicon nanowires. When compared with a Si nanowire anode, the areal capacity was increased by a factor of 4 without having to use long, high temperature steps under vacuum that vapour-liquid-solid Si nanowire growth entails.

  10. Synthesis, Characterization and Testing of Novel Anode and Cathode Materials for Li-Ion Batteries

    SciTech Connect

    White, Ralph E.; Popov, Branko N.

    2002-10-31

    During this program we have synthesized and characterized several novel cathode and anode materials for application in Li-ion batteries. Novel synthesis routes like chemical doping, electroless deposition and sol-gel method have been used and techniques like impedance, cyclic voltammetry and charge-discharge cycling have been used to characterize these materials. Mathematical models have also been developed to fit the experimental result, thus helping in understanding the mechanisms of these materials.

  11. Antiperovskite Li 3 OCl superionic conductor films for solid-state Li-ion batteries

    DOE PAGES

    Lü, Xujie; Howard, John W.; Chen, Aiping; ...

    2016-02-02

    We prepared antiperovskite Li3OCl superionic conductor films via pulsed laser deposition using a composite target. A significantly enhanced ionic conductivity of 2.0 × 10-4 S cm-1 at room temperature is achieved, and this value is more than two orders of magnitude higher than that of its bulk counterpart. Moreover, the applicability of Li3OCl as a solid electrolyte for Li-ion batteries is demonstrated.

  12. Garnet-Type Fast Li-Ion Conductors with High Ionic Conductivities for All-Solid-State Batteries.

    PubMed

    Wu, Jian-Fang; Pang, Wei Kong; Peterson, Vanessa K; Wei, Lu; Guo, Xin

    2017-04-12

    All-solid-state Li-ion batteries with metallic Li anodes and solid electrolytes could offer superior energy density and safety over conventional Li-ion batteries. However, compared with organic liquid electrolytes, the low conductivity of solid electrolytes and large electrolyte/electrode interfacial resistance impede their practical application. Garnet-type Li-ion conducting oxides are among the most promising electrolytes for all-solid-state Li-ion batteries. In this work, the large-radius Rb is doped at the La site of cubic Li6.10Ga0.30La3Zr2O12 to enhance the Li-ion conductivity for the first time. The Li6.20Ga0.30La2.95Rb0.05Zr2O12 electrolyte exhibits a Li-ion conductivity of 1.62 mS cm(-1) at room temperature, which is the highest conductivity reported until now. All-solid-state Li-ion batteries are constructed from the electrolyte, metallic Li anode, and LiFePO4 active cathode. The addition of Li(CF3SO2)2N electrolytic salt in the cathode effectively reduces the interfacial resistance, allowing for a high initial discharge capacity of 152 mAh g(-1) and good cycling stability with 110 mAh g(-1) retained after 20 cycles at a charge/discharge rate of 0.05 C at 60 °C.

  13. Improved Control of Charging Voltage for Li-Ion Battery

    NASA Technical Reports Server (NTRS)

    Timmerman, Paul; Bugga, Ratnakumar

    2006-01-01

    The protocol for charging a lithium-ion battery would be modified, according to a proposal, to compensate for the internal voltage drop (charging current internal resistance of the battery). The essence of the modification is to provide for measurement of the internal voltage drop and to increase the terminal-voltage setting by the amount of the internal voltage drop. Ordinarily, a lithium-ion battery is charged at constant current until its terminal voltage attains a set value equal to the nominal full-charge potential. The set value is chosen carefully so as not to exceed the lithium-plating potential, because plated lithium in metallic form constitutes a hazard. When the battery is charged at low temperature, the internal voltage drop is considerable because the electrical conductivity of the battery electrolyte is low at low temperature. Charging the battery at high current at any temperature also gives rise to a high internal voltage drop. In some cases, the internal voltage drop can be as high as 1 volt per cell. Because the voltage available for charging is less than the terminal voltage by the amount of the internal voltage drop, the battery is not fully charged (see figure), even when the terminal voltage reaches the set value. In the modified protocol, the charging current would be periodically interrupted so that the zero-current battery-terminal voltage indicative of the state of charge could be measured. The terminal voltage would also be measured at full charging current. The difference between the full-current and zero-current voltages would equal the internal voltage drop. The set value of terminal voltage would then be increased beyond the nominal full-charge potential by the amount of the internal voltage drop. This adjustment would be performed repeatedly, in real time, so that the voltage setting would track variations in the internal voltage drop to afford full charge without risk of lithium plating. If the charging current and voltage settings

  14. Enhanced autonomic shutdown of Li-ion batteries by polydopamine coated polyethylene microspheres

    SciTech Connect

    Baginska, Marta; Blaiszik, Benjamin J.; Rajh, Tijana; Sottos, Nancy R.; White, Scott R.

    2014-07-17

    Thermally triggered autonomic shutdown of a Lithium-ion (Li-ion) battery is demonstrated using polydopamine (PDA)-coated polyethylene microspheres applied onto a battery anode. The microspheres are dispersed in a buffered 10 mM dopamine salt solution and the pH is raised to initiate the polymerization and coat the microspheres. Coated microspheres are then mixed with an aqueous binder, applied onto a battery anode surface, dried, and incorporated into Li-ion coin cells. FTIR and Raman spectroscopy are used to verify the presence of the polydopamine on the surface of the microspheres. Scanning electron microscopy is used to examine microsphere surface morphology and resulting anode coating quality. Charge and discharge capacity, as well as impedance, are measured for Li-ion coin cells as a function of microsphere content. Autonomous shutdown is achieved by applying 1.7 mg cm–2 of PDA-coated microspheres to the electrode. Furthermore, the PDA coating significantly reduces the mass of microspheres for effective shutdown compared to our prior work with uncoated microspheres.

  15. Enhanced autonomic shutdown of Li-ion batteries by polydopamine coated polyethylene microspheres

    NASA Astrophysics Data System (ADS)

    Baginska, Marta; Blaiszik, Benjamin J.; Rajh, Tijana; Sottos, Nancy R.; White, Scott R.

    2014-12-01

    Thermally triggered autonomic shutdown of a Lithium-ion (Li-ion) battery is demonstrated using polydopamine (PDA)-coated polyethylene microspheres applied onto a battery anode. The microspheres are dispersed in a buffered 10 mM dopamine salt solution and the pH is raised to initiate the polymerization and coat the microspheres. Coated microspheres are then mixed with an aqueous binder, applied onto a battery anode surface, dried, and incorporated into Li-ion coin cells. FTIR and Raman spectroscopy are used to verify the presence of the polydopamine on the surface of the microspheres. Scanning electron microscopy is used to examine microsphere surface morphology and resulting anode coating quality. Charge and discharge capacity, as well as impedance, are measured for Li-ion coin cells as a function of microsphere content. Autonomous shutdown is achieved by applying 1.7 mg cm-2 of PDA-coated microspheres to the electrode. The PDA coating significantly reduces the mass of microspheres for effective shutdown compared to our prior work with uncoated microspheres.

  16. Enhanced autonomic shutdown of Li-ion batteries by polydopamine coated polyethylene microspheres

    DOE PAGES

    Baginska, Marta; Blaiszik, Benjamin J.; Rajh, Tijana; ...

    2014-07-17

    Thermally triggered autonomic shutdown of a Lithium-ion (Li-ion) battery is demonstrated using polydopamine (PDA)-coated polyethylene microspheres applied onto a battery anode. The microspheres are dispersed in a buffered 10 mM dopamine salt solution and the pH is raised to initiate the polymerization and coat the microspheres. Coated microspheres are then mixed with an aqueous binder, applied onto a battery anode surface, dried, and incorporated into Li-ion coin cells. FTIR and Raman spectroscopy are used to verify the presence of the polydopamine on the surface of the microspheres. Scanning electron microscopy is used to examine microsphere surface morphology and resulting anodemore » coating quality. Charge and discharge capacity, as well as impedance, are measured for Li-ion coin cells as a function of microsphere content. Autonomous shutdown is achieved by applying 1.7 mg cm–2 of PDA-coated microspheres to the electrode. Furthermore, the PDA coating significantly reduces the mass of microspheres for effective shutdown compared to our prior work with uncoated microspheres.« less

  17. Analytical ABF-STEM imaging of Li ions in rechargeable batteries.

    PubMed

    Wen, Yuren; Shang, Tongtong; Gu, Lin

    2017-02-08

    Rechargeable batteries are being intensively investigated in an attempt to solve the energy issues while meeting the environmental demands. Even though Li-ion batteries (LIB) with high energy and light weight have been commercialized within the last 20 years, these devices currently require higher energy density, output power and sustainability characteristics. The atomic behavior of Li ion that determines LIB's performance is hardly characterized by transmission electron microscopy (TEM) owing to its weak electron-scattering power. In this sense, annular bright-field (ABF) scanning TEM (STEM), in which the contrast has a low scaling rate with the atomic number, has been proven to be a robust technique for simultaneous imaging of light and heavy elements. The s-state model, in which electron channeling along the atomic column allows the intensity to be focusing in the forward direction, has successfully explained the theory of ABF contrast. Furthermore, the detector angle range, the defocus-thickness dependence and the accelerating voltage (among other parameters) were discussed for optimized imaging conditions. ABF-STEM has shown powerful capabilities in resolving the atomic structure and the chemistry of electrodes (e.g. Li-ion occupation and diffusion, phase transformation and interface reaction), thereby providing critical insights into the physical properties, the battery performance and the design guidance of LIB. The future directions of ABF imaging for the characterization of LIB materials were also reviewed.

  18. An Update on the Performance of Li-Ion Rechargeable Batteries on Mars Rovers

    NASA Technical Reports Server (NTRS)

    Ratnakumara, Bugga V.; Smart, M. C.; Whitcanack, L. D.; Chin, K. B.; Ewell, R. C.; Surampudi, S.; Puglia, F.; Gitzendanner, R.

    2006-01-01

    NASA's Mars Rovers, Spirit and Opportunity have been exploring the surface of Mars for the last thirty months, far exceeding the primary mission life of three months, performing astounding geological studies to examine the habitability of Mars. Such an extended mission life may be attributed to impressive performances of several subsystems, including power subsystem components, i.e., solar array and batteries. The novelty and challenge for this mission in terms of energy storage is the use of lithium-ion batteries, for the first time in a major NASA mission, for keeping the rover electronics warm, and supporting nighttime experimentation and communications. The use of Li-ion batteries has considerably enhanced or even enabled these rovers, by providing greater mass and volume allocations for the payload and wider range of operating temperatures for the power subsystem and thus reduced thermal management. After about 800 days of exploration, there is only marginal change in the end-of discharge (EOD) voltages of the batteries or in their capacities, as estimated from in-flight voltage data and corroborated by ground testing of prototype batteries. Enabled by such impressive durability from the Li-ion batteries, both from a cycling and calendar life stand point, these rovers are poised to extend their exploration well beyond 1000 sols, though other components have started showing signs of decay. In this paper, we will update the performance characteristics of these batteries on both Spirit and Opportunity.

  19. Bundled and densified carbon nanotubes (CNT) fabrics as flexible ultra-light weight Li-ion battery anode current collectors

    NASA Astrophysics Data System (ADS)

    Yehezkel, Shani; Auinat, Mahmud; Sezin, Nina; Starosvetsky, David; Ein-Eli, Yair

    2016-04-01

    Carbon nanotubes (CNT) fabrics were studied and evaluated as anode current collectors, replacing the traditional copper foil current collector in Li-ion batteries. Glavanostatic measurements reveal high values of irreversible capacities (as high as 28%), resulted mainly from the formation of the solid electrolyte interphase (SEI) layer at the CNT fabric surface. Various pre-treatments to the CNT fabric prior to active anode material loading have shown that the lowest irreversible capacity is achieved by immersing and washing the CNT fabric with iso-propanol (IPA), which dramatically modified the fabric surface. Additionally, the use of very thin CNT fabrics (5 μm) results in a substantial irreversible capacity minimization. A combination of IPA rinse action and utilization of the thinnest CNT fabric provides the lowest irreversible capacity of 13%. The paper describes innovative and rather simple techniques towards a complete implementation of CNT fabric as an anode current collector in Li-ion batteries, instead of the relatively heavy and expensive copper foil, enabling an improvement in the gravimetric and volumetric energy densities of such advanced batteries.

  20. Polymer electrolytes for a rechargeable li-Ion battery

    SciTech Connect

    Argade, S.D.; Saraswat, A.K.; Rao, B.M.L.; Lee, H.S.; Xiang, C.L.; McBreen, J.

    1996-10-01

    Lithium-ion polymer electrolyte battery technology is attractive for many consumer and military applications. A Li{sub x}C/Li{sub y}Mn{sub 2}O{sub 4} battery system incorporating a polymer electrolyte separator base on novel Li-imide salts is being developed under sponsorship of US Army Research Laboratory (Fort Monmouth NJ). This paper reports on work currently in progress on synthesis of Li-imide salts, polymer electrolyte films incorporating these salts, and development of electrodes and cells. A number of Li salts have been synthesized and characterized. These salts appear to have good voltaic stability. PVDF polymer gel electrolytes based on these salts have exhibited conductivities in the range 10{sup -4} to 10{sub -3} S/cm.

  1. Li-Ion Batteries for Forensic Neutron Dosimetry

    DTIC Science & Technology

    2016-03-01

    II RADIOACTIVE ISOTOPES WITHIN EXPOSED LICOO2 CATHODE BATTERY COMPONENTS * Data set ends at specified energy. 1. 63Co decays to 63Ni (branching...to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data ...Pressure atmosphere (atm) 1.013 250 × 10 5 pascal (Pa) pound force per square inch (psi) 6.984 757 × 10 3 pascal (Pa) Temperature degree

  2. Fabrication, testing and simulation of all solid state three dimensional Li-ion batteries

    DOE PAGES

    Talin, Albert Alec; Ruzmetov, Dmitry; Kolmakov, Andrei; ...

    2016-11-10

    Realization of safe, long cycle life and simple to package solid-state rechargeable batteries with high energy and power density has been a long-standing goal of the energy storage community.[1,2] Much of the research activity has been focused on developing new solid electrolytes with high Li ionic conductivity. In addition, LiPON, the only solid electrolyte currently used in commercial thin film solid state Li-ion batteris (SSLIBs), has a conductivity of ~10-6 S/cm, compared to ~0.01 S/cm typically observed for liquid organic electrolytes[3].

  3. Fabrication, testing and simulation of all solid state three dimensional Li-ion batteries

    SciTech Connect

    Talin, Albert Alec; Ruzmetov, Dmitry; Kolmakov, Andrei; McKelvey, Kim; El Gabaly Marquez, Farid; Ware, Nicholas; Dunn, Bruce; White, Henry

    2016-11-10

    Realization of safe, long cycle life and simple to package solid-state rechargeable batteries with high energy and power density has been a long-standing goal of the energy storage community.[1,2] Much of the research activity has been focused on developing new solid electrolytes with high Li ionic conductivity. In addition, LiPON, the only solid electrolyte currently used in commercial thin film solid state Li-ion batteris (SSLIBs), has a conductivity of ~10-6 S/cm, compared to ~0.01 S/cm typically observed for liquid organic electrolytes[3].

  4. Anion-redox nanolithia cathodes for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhu, Zhi; Kushima, Akihiro; Yin, Zongyou; Qi, Lu; Amine, Khalil; Lu, Jun; Li, Ju

    2016-08-01

    The development of lithium-air batteries is plagued by a high potential gap (>1.2 V) between charge and discharge, and poor cyclability due to the drastic phase change of O2 (gas) and Ox- (condensed phase) at the cathode during battery operations. Here we report a cathode consisting of nanoscale amorphous lithia (nanolithia) confined in a cobalt oxide, enabling charge/discharge between solid Li2O/Li2O2/LiO2 without any gas evolution. The cathode has a theoretical capacity of 1,341 Ah kg-1, a mass density exceeding 2.2 g cm-3, and a practical discharge capacity of 587 Ah kg-1 at 2.55 V versus Li/Li+. It also displays stable cycling performance (only 1.8% loss after 130 cycles in lithium-matched full-cell tests against Li4Ti5O12 anode), as well as a round-trip overpotential of only 0.24 V. Interestingly, the cathode is automatically protected from O2 gas release and overcharging through the shuttling of self-generated radical species soluble in the carbonate electrolyte.

  5. Facile and Nonradiation Pretreated Membrane as a High Conductive Separator for Li-Ion Batteries.

    PubMed

    Li, Bao; Li, Yongjun; Dai, Dongmei; Chang, Kun; Tang, Hongwei; Chang, Zhaorong; Wang, Chunru; Yuan, Xiao-Zi; Wang, Haijiang

    2015-09-16

    Polyolefin membranes are widely used as separators in commercialized Li-ion batteries. They have less polarized surfaces compared with polarized molecules of electrolyte, leading to a poor wetting state for separators. Radiation pretreatments are often adopted to solve such a problem. Unfortunately, they can only activate several nanometers deep from the surface, which limits the performance improvement. Here we report a facile and scalable method to polarize polyolefin membranes via a chemical oxidation route. On the surfaces of pretreated membrane, layers of poly(ethylene oxide) and poly(acrylic acid) can easily be coated, thus resulting in a high Li-ion conductivity of the membrane. Assembled with this decorated separator in button cells, both high-voltage (Li1.2Mn0.54Co0.13Ni0.13O2) and moderate-voltage (LiFePO4) cathode materials show better electrochemical performances than those assembled with pristine polyolefin separators.

  6. Polyacrylate bound TiSb2 electrodes for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Gómez-Cámer, Juan Luis; Novák, Petr

    2015-01-01

    Crystalline TiSb2 electrodes prepared using two different binders, PVDF and lithium polyacrylate (LiPAA), were examined as negative electrodes in Li-ion batteries. The cycle life of the electrodes is strongly influenced by the choice of the binder, reaching ca. 120 cycles with LiPAA vs. ca. 90 cycles achieved with the common binder PVDF. Moreover, rate capability is improved using LiPAA binder. The reduction in TiSb2 particle size is shown to influence the average practical specific charge at high charge/discharge rates. The reasons for this improvement are discussed and the optimized electrode was demonstrated in full Li-ion cells.

  7. Copper nanofiber-networked cobalt oxide composites for high performance Li-ion batteries

    PubMed Central

    2011-01-01

    We prepared a composite electrode structure consisting of copper nanofiber-networked cobalt oxide (CuNFs@CoOx). The copper nanofibers (CuNFs) were fabricated on a substrate with formation of a network structure, which may have potential for improving electron percolation and retarding film deformation during the discharging/charging process over the electroactive cobalt oxide. Compared to bare CoOxthin-film (CoOxTF) electrodes, the CuNFs@CoOxelectrodes exhibited a significant enhancement of rate performance by at least six-fold at an input current density of 3C-rate. Such enhanced Li-ion storage performance may be associated with modified electrode structure at the nanoscale, improved charge transfer, and facile stress relaxation from the embedded CuNF network. Consequently, the CuNFs@CoOxcomposite structure demonstrated here can be used as a promising high-performance electrode for Li-ion batteries. PMID:21711839

  8. Environmental characteristics comparison of Li-ion batteries and Ni-MH batteries under the uncertainty of cycle performance.

    PubMed

    Yu, Yajuan; Wang, Xiang; Wang, Dong; Huang, Kai; Wang, Lijing; Bao, Liying; Wu, Feng

    2012-08-30

    An environmental impact assessment model for secondary batteries under uncertainty is proposed, which is a combination of the life cycle assessment (LCA), Eco-indicator 99 system and Monte Carlo simulation (MCS). The LCA can describe the environmental impact mechanism of secondary batteries, whereas the cycle performance was simulated through MCS. The composite LCA-MCS model was then carried out to estimate the environmental impact of two kinds of experimental batteries. Under this kind of standard assessment system, a comparison between different batteries could be accomplished. The following results were found: (1) among the two selected batteries, the environmental impact of the Li-ion battery is lower than the nickel-metal hydride (Ni-MH) battery, especially with regards to resource consumption and (2) the lithium ion (Li-ion) battery is less sensitive to cycle uncertainty, its environmental impact fluctuations are small when compared with the selected Ni-MH battery and it is more environmentally friendly. The assessment methodology and model proposed in this paper can also be used for any other secondary batteries and they can be helpful in the development of environmentally friendly secondary batteries.

  9. Li-ion battery shut-off at high temperature caused by polymer phase separation in responsive electrolytes.

    PubMed

    Kelly, Jesse C; Degrood, Nicholas L; Roberts, Mark E

    2015-03-28

    For the purpose of realizing inherently safe high-power Li-ion batteries, a model Li4Ti5O12/LiFePO4 rechargeable battery is investigated using the thermally responsive polymer, poly(benzyl methacrylate), in an ionic liquid. At high temperature, battery operation is inhibited as a result of increased internal resistance caused by polymer and ionic liquid phase separation. Li-ion concentration is shown to affect the phase transition temperature and the extent to which batteries are deactivated.

  10. Searching for Sustainable and "Greener" Li-ion Batteries

    ScienceCinema

    Tarascon, Jean-Marie [University of Picardie at Aimens, France

    2016-07-12

    Lithium-ion batteries are strong candidates for powering upcoming generations of hybrid electric vehicles and plug-in hybrid electric vehicles. But improvements in safety must be achieved while keeping track of materials resources and abundances, as well as materials synthesis and recycling processes, all of which could inflict a heavy energy cost. Thus, electrode materials that have a minimum footprint in nature and are made via eco-efficient processes are sorely needed. The arrival of electrode materials based on minerals such as LiFePO4 (tryphilite) is a significant, but not sufficient, step toward the long-term demand for materials sustainability. The eco-efficient synthesis of LiFePO4 nanopowders via hydrothermal/ solvo-thermal processes using latent bases, structure directing templates, or other bio-related approaches will be presented in this talk. However, to secure sustainability and greeness, organic electrodes appear to be ideal candidates.... We took a fresh look at organic based electrodes; the results of this research into sequentially metal-organic-framework electrodes and Li-based organic electrodes (LixCyOz) will be reported and discussed.

  11. Vertically oriented MoS2 nanoflakes coated on 3D carbon nanotubes for next generation Li-ion batteries.

    PubMed

    Patel, Mumukshu D; Cha, Eunho; Choudhary, Nitin; Kang, Chiwon; Lee, Wonki; Hwang, Jun Yeon; Choi, Wonbong

    2016-12-09

    The advent of advanced electrode materials has led to performance enhancement of traditional lithium ion batteries (LIBs). We present novel binder-free MoS2 coated three-dimensional carbon nanotubes (3D CNTs) as an anode in LIBs. Scanning transmission electron microscopy analysis shows that vertically oriented MoS2 nanoflakes are strongly bonded to CNTs, which provide a high surface area and active electrochemical sites, and enhanced ion conductivity at the interface. The electrochemical performance shows a very high areal capacity of ~1.65 mAh cm(-2) with an areal density of ~0.35 mg cm(-2) at 0.5 C rate and coulombic efficiency of ~99% up to 50 cycles. The unique architecture of 3D CNTs-MoS2 is indicative to be a promising anode for next generation Li-ion batteries with high capacity and long cycle life.

  12. Vertically oriented MoS2 nanoflakes coated on 3D carbon nanotubes for next generation Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Patel, Mumukshu D.; Cha, Eunho; Choudhary, Nitin; Kang, Chiwon; Lee, Wonki; Hwang, Jun Yeon; Choi, Wonbong

    2016-12-01

    The advent of advanced electrode materials has led to performance enhancement of traditional lithium ion batteries (LIBs). We present novel binder-free MoS2 coated three-dimensional carbon nanotubes (3D CNTs) as an anode in LIBs. Scanning transmission electron microscopy analysis shows that vertically oriented MoS2 nanoflakes are strongly bonded to CNTs, which provide a high surface area and active electrochemical sites, and enhanced ion conductivity at the interface. The electrochemical performance shows a very high areal capacity of ~1.65 mAh cm-2 with an areal density of ~0.35 mg cm-2 at 0.5 C rate and coulombic efficiency of ~99% up to 50 cycles. The unique architecture of 3D CNTs-MoS2 is indicative to be a promising anode for next generation Li-ion batteries with high capacity and long cycle life.

  13. Nanomechanical characterization and mechanical integrity of unaged and aged Li-ion battery cathodes

    NASA Astrophysics Data System (ADS)

    Ramdon, Sanjay; Bhushan, Bharat

    2014-01-01

    Lithium-ion (Li-ion) batteries have been implemented for numerous applications, one of which is in plug-in hybrid electric vehicles (PHEV) and pure electric vehicles (EV). In an effort to prolong battery life it is important to understand the mechanisms that cause reduced battery capacity with aging. In this work, nanomechanical characterization and mechanical integrity studies were carried out on unaged and aged LiFePO4 battery cathodes using atomic force microscopy (AFM) and nanoindentation. Changes in hardness, elastic modulus, creep, nanowear, nanoscratch and nanofriction properties were measured. Measured changes are believed to occur as a result of coarsening and agglomeration of LiFePO4 nanoparticles.

  14. Time domain simulation of Li-ion batteries using non-integer order equivalent electrical circuit

    NASA Astrophysics Data System (ADS)

    Riu, D.; Montaru, M.; Bultel, Y.

    2013-06-01

    For electric vehicle (EV) or hybrid EV (HEV) development and integration of renewables in electrical networks, battery monitoring systems have to be more and more precise to take into account the state-of-charge and the dynamic behavior of the battery. Some non-integer order models of electrochemical batteries have been proposed in literacy with a good accuracy and a low number of parameters in the frequential domain. Nevertheless, time simulation of such models required to approximate this non-integer order system by an equivalent high integer order model. An adapted algorithm is then proposed in this article to simulate the non-integer order model without any approximation, thanks to the construction of a 3-order generalized state-space system. This algorithm is applied and validated on a 2.3 A.h Li-ion battery.

  15. A review on the separators of liquid electrolyte Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Sheng Shui

    This paper reviews the separators used in liquid electrolyte Li-ion batteries. According to the structure and composition of the membranes, the battery separators can be broadly divided as three groups: (1) microporous polymer membranes, (2) non-woven fabric mats and (3) inorganic composite membranes. The microporous polymer membranes are characterised by their thinness and thermal shutdown properties. The non-woven mats have high porosity and a low cost, while the composite membranes have excellent wettability and exceptional thermal stability. The manufacture, characteristics, performance and modifications of these separators are introduced and discussed. Among numerous battery separators, the thermal shutdown and ceramic separators are of special importance in enhancing the safety of Li-ion batteries. The former consists of either a polyethylene (PE)-polypropylene (PP) multilayer structure or a PE-PP blend which increases safety by allowing meltdown of the PE to close the ionic conduction pathways at a temperature below that at which thermal runway occurs. Whereas the latter comprises nano-size ceramic materials coated on two sides of a flexible and highly porous non-woven matrix which enhances the safety by retaining extremely stable dimensions even at very high temperatures to prevent the direct contact of the electrodes.

  16. Evaluation of Cycle Life and Characterization of YTP 45 Ah Li-Ion Battery for EMU

    NASA Technical Reports Server (NTRS)

    Deng, Yi; Jeevarajan, Judith; Rehm, Raymond; Bragg, Bobby; Strangways, Brad

    2002-01-01

    Li-ion batteries, with longer cycle life and higher energy density features, are now more and more attractive and applied in multiple fields. The YTP 45 Ah Li-ion battery has been evaluated here and may be employed in EMU in the future. Evaluations were on: (1) Cycle life tests - 500 cycles total (completed 40 cycles in simulated shuttle use mode and 460 cycles in an accelerated use mode, and recorded differential voltage of individual cell in battery); (2) Characterization test - discharge capacity measurement in environment temperature of -10, 25, 50 C before and after 500 cycles; and (3) Thermal testing - charge and discharge at 50 C and -10 C before and after 500 cycles. The battery showed less than a 9% drop of initial discharge capacity and energy within 500 cycles with 475 cycles 59% DOD plus 25 cycles 100% DOD. The EOD voltage ranged from 16.0 to 18.0 V, which fits the requirement for operating the EMU.

  17. Adaptation of an Electrochemistry-based Li-Ion Battery Model to Account for Deterioration Observed Under Randomized Use

    DTIC Science & Technology

    2014-10-02

    with electrolyte in which the ions can migrate. For Li-ion, a common chemistry is a pos- itive electrode consisting of lithium cobalt oxide (LixCoO2) and...electrically isolated by a micro- porous polymer separator film that is permeable to Li ions. The electrolyte enables lithium ions (Li+) to diffuse...among other factors. Some relevant physical aging mechanisms observed in batteries are: 1. Solid - electrolyte interface (SEI) layer growth: The neg

  18. Selected test results from the neosonic polymer Li-ion battery.

    SciTech Connect

    Ingersoll, David T.; Hund, Thomas D.

    2010-07-01

    The performance of the Neosonic polymer Li-ion battery was measured using a number of tests including capacity, capacity as a function of temperature, ohmic resistance, spectral impedance, hybrid pulsed power test, utility partial state of charge (PSOC) pulsed cycle test, and an over-charge/voltage abuse test. The goal of this work was to evaluate the performance of the polymer Li-ion battery technology for utility applications requiring frequent charges and discharges, such as voltage support, frequency regulation, wind farm energy smoothing, and solar photovoltaic energy smoothing. Test results have indicated that the Neosonic polymer Li-ion battery technology can provide power levels up to the 10C{sub 1} discharge rate with minimal energy loss compared to the 1 h (1C) discharge rate. Two of the three cells used in the utility PSOC pulsed cycle test completed about 12,000 cycles with only a gradual loss in capacity of 10 and 13%. The third cell experienced a 40% loss in capacity at about 11,000 cycles. The DC ohmic resistance and AC spectral impedance measurements also indicate that there were increases in impedance after cycling, especially for the third cell. Cell No.3 impedance Rs increased significantly along with extensive ballooning of the foil pouch. Finally, at a 1C (10 A) charge rate, the over charge/voltage abuse test with cell confinement similar to a multi cell string resulted in the cell venting hot gases at about 45 C 45 minutes into the test. At 104 minutes into the test the cell voltage spiked to the 12 volt limit and continued out to the end of the test at 151 minutes. In summary, the Neosonic cells performed as expected with good cycle-life and safety.

  19. From biomass to a renewable LixC6O6 organic electrode for sustainable Li-ion batteries.

    PubMed

    Chen, Haiyan; Armand, Michel; Demailly, Gilles; Dolhem, Franck; Poizot, Philippe; Tarascon, Jean-Marie

    2008-01-01

    Li-ion batteries presently operate on inorganic insertion compounds. The abundance and materials life-cycle costs of such batteries may present issues in the long term with foreseeable large-scale applications. To address the issue of sustainability of electrode materials, a radically different approach from the conventional route has been adopted to develop new organic electrode materials. The oxocarbon salt Li2C6O6 is synthesized through potentially low-cost processes free of toxic solvents and by enlisting the use of natural organic sources (CO2-harvesting entities). It contains carbonyl groups as redox centres and can electrochemically react with four Li ions per formula unit. Such battery processing comes close to both sustainable and green chemistry concepts, which are not currently present in Li-ion cell technology. The consideration of renewable resources in designing electrode materials could potentially enable the realization of green and sustainable batteries within the next decade.

  20. Anodic polymerization of vinyl ethylene carbonate in Li-Ion battery electrolyte

    SciTech Connect

    Chen, Guoying; Zhuang, Guorong V.; Richardson, Thomas J.; Gao, Liu; Ross Jr., Philip N.

    2005-02-28

    A study of the anodic oxidation of vinyl ethylene carbonate (VEC) was conducted with post-mortem analysis of reaction products by ATR-FTIR and gel permeation chromatography (GPC). The half-wave potential (E1/2) for oxidation of VEC is ca. 3.6 V producing a resistive film on the electrode surface. GPC analysis of the film on a gold electrode produced by anodization of a commercial Li-ion battery electrolyte containing 2 percent VEC at 4.1 V showed the presence of a high molecular weight polymer. IR analysis indicated polycarbonate with alkyl carbonate rings linked by aliphatic methylene and methyl branches.

  1. Nanoscience Supporting the Research on the Negative Electrodes of Li-Ion Batteries

    PubMed Central

    Mauger, Alain; Julien, Christian M.

    2015-01-01

    Many efforts are currently made to increase the limited capacity of Li-ion batteries using carbonaceous anodes. The way to reach this goal is to move to nano-structured material because the larger surface to volume ratio of particles and the reduction of the electron and Li path length implies a larger specific capacity. Additionally, nano-particles can accommodate such a dilatation/contraction during cycling, resulting in a calendar life compatible with a commercial use. In this review attention is focused on carbon, silicon, and Li4Ti5O12 materials, because they are the most promising for applications.

  2. Nanoscience Supporting the Research on the Negative Electrodes of Li-Ion Batteries.

    PubMed

    Mauger, Alain; Julien, Christian M

    2015-12-16

    Many efforts are currently made to increase the limited capacity of Li-ion batteries using carbonaceous anodes. The way to reach this goal is to move to nano-structured material because the larger surface to volume ratio of particles and the reduction of the electron and Li path length implies a larger specific capacity. Additionally, nano-particles can accommodate such a dilatation/contraction during cycling, resulting in a calendar life compatible with a commercial use. In this review attention is focused on carbon, silicon, and Li₄Ti₅O12 materials, because they are the most promising for applications.

  3. A three-dimensional meso-macroscopic model for Li-Ion intercalation batteries

    NASA Astrophysics Data System (ADS)

    Allu, S.; Kalnaus, S.; Simunovic, S.; Nanda, J.; Turner, J. A.; Pannala, S.

    2016-09-01

    In this paper we present a three-dimensional computational formulation for electrode-electrolyte-electrode system of Li-Ion batteries. The physical consistency between electrical, thermal and chemical equations is enforced at each time increment by driving the residual of the resulting coupled system of nonlinear equations to zero. The formulation utilizes a rigorous volume averaging approach typical of multiphase formulations used in other fields and recently extended to modeling of supercapacitors [1]. Unlike existing battery modeling methods which use segregated solution of conservation equations and idealized geometries, our unified approach can model arbitrary battery and electrode configurations. The consistency of multi-physics solution also allows for consideration of a wide array of initial conditions and load cases. The formulation accounts for spatio-temporal variations of material and state properties such as electrode/void volume fractions and anisotropic conductivities. The governing differential equations are discretized using the finite element method and solved using a nonlinearly consistent approach that provides robust stability and convergence. The new formulation was validated for standard Li-ion cells and compared against experiments. Its scope and ability to capture spatio-temporal variations of potential and lithium distribution is demonstrated on a prototypical three-dimensional electrode problem.

  4. Thermal modelling of Li-ion polymer battery for electric vehicle drive cycles

    NASA Astrophysics Data System (ADS)

    Chacko, Salvio; Chung, Yongmann M.

    2012-09-01

    Time-dependent, thermal behaviour of a lithium-ion (Li-ion) polymer cell has been modelled for electric vehicle (EV) drive cycles with a view to developing an effective battery thermal management system. The fully coupled, three-dimensional transient electro-thermal model has been implemented based on a finite volume method. To support the numerical study, a high energy density Li-ion polymer pouch cell was tested in a climatic chamber for electric load cycles consisting of various charge and discharge rates, and a good agreement was found between the model predictions and the experimental data. The cell-level thermal behaviour under stressful conditions such as high power draw and high ambient temperature was predicted with the model. A significant temperature increase was observed in the stressful condition, corresponding to a repeated acceleration and deceleration, indicating that an effective battery thermal management system would be required to maintain the optimal cell performance and also to achieve a full battery lifesapn.

  5. A three-dimensional meso-macroscopic model for Li-Ion intercalation batteries

    SciTech Connect

    Allu, S.; Kalnaus, S.; Simunovic, S.; Nanda, J.; Turner, J. A.; Pannala, S.

    2016-06-09

    Through this study, we present a three-dimensional computational formulation for electrode-electrolyte-electrode system of Li-Ion batteries. The physical consistency between electrical, thermal and chemical equations is enforced at each time increment by driving the residual of the resulting coupled system of nonlinear equations to zero. The formulation utilizes a rigorous volume averaging approach typical of multiphase formulations used in other fields and recently extended to modeling of supercapacitors [1]. Unlike existing battery modeling methods which use segregated solution of conservation equations and idealized geometries, our unified approach can model arbitrary battery and electrode configurations. The consistency of multi-physics solution also allows for consideration of a wide array of initial conditions and load cases. The formulation accounts for spatio-temporal variations of material and state properties such as electrode/void volume fractions and anisotropic conductivities. The governing differential equations are discretized using the finite element method and solved using a nonlinearly consistent approach that provides robust stability and convergence. The new formulation was validated for standard Li-ion cells and compared against experiments. Finally, its scope and ability to capture spatio-temporal variations of potential and lithium distribution is demonstrated on a prototypical three-dimensional electrode problem.

  6. A three-dimensional meso-macroscopic model for Li-Ion intercalation batteries

    DOE PAGES

    Allu, S.; Kalnaus, S.; Simunovic, S.; ...

    2016-06-09

    Through this study, we present a three-dimensional computational formulation for electrode-electrolyte-electrode system of Li-Ion batteries. The physical consistency between electrical, thermal and chemical equations is enforced at each time increment by driving the residual of the resulting coupled system of nonlinear equations to zero. The formulation utilizes a rigorous volume averaging approach typical of multiphase formulations used in other fields and recently extended to modeling of supercapacitors [1]. Unlike existing battery modeling methods which use segregated solution of conservation equations and idealized geometries, our unified approach can model arbitrary battery and electrode configurations. The consistency of multi-physics solution also allowsmore » for consideration of a wide array of initial conditions and load cases. The formulation accounts for spatio-temporal variations of material and state properties such as electrode/void volume fractions and anisotropic conductivities. The governing differential equations are discretized using the finite element method and solved using a nonlinearly consistent approach that provides robust stability and convergence. The new formulation was validated for standard Li-ion cells and compared against experiments. Finally, its scope and ability to capture spatio-temporal variations of potential and lithium distribution is demonstrated on a prototypical three-dimensional electrode problem.« less

  7. Scenario-based prediction of Li-ion batteries fire-induced toxicity

    NASA Astrophysics Data System (ADS)

    Lecocq, Amandine; Eshetu, Gebrekidan Gebresilassie; Grugeon, Sylvie; Martin, Nelly; Laruelle, Stephane; Marlair, Guy

    2016-06-01

    The development of high energy Li-ion batteries with improved durability and increased safety mostly relies on the use of newly developed electrolytes. A detailed appraisal of fire-induced thermal and chemical threats on LiPF6- and LiFSI-based electrolytes by means of the so-called "fire propagation apparatus" had highlighted that the salt anion was responsible for the emission of a non negligible content of irritant gas as HF (PF6-) or HF and SO2 (FSI-). A more thorough comparative investigation of the toxicity threat in the case of larger-size 0.4 kWh Li-ion modules was thus undertaken. A modeling approach that consists in extrapolating the experimental data obtained from 1.3Ah LiFePO4/graphite pouch cells under fire conditions and in using the state-of-the-art fire safety international standards for the evaluation of fire toxicity was applied under two different real-scale simulating scenarios. The obtained results reveal that critical thresholds are highly dependent on the nature of the salt, LiPF6 or LiFSI, and on the cells state of charge. Hence, this approach can help define appropriate fire safety engineering measures for a given technology (different chemistry) or application (fully charged backup batteries or batteries subjected to deep discharge).

  8. A hybrid electrochemical device based on a synergetic inner combination of Li ion battery and Li ion capacitor for energy storage

    NASA Astrophysics Data System (ADS)

    Zheng, Jun-Sheng; Zhang, Lei; Shellikeri, Annadanesh; Cao, Wanjun; Wu, Qiang; Zheng, Jim P.

    2017-02-01

    Li ion battery (LIB) and electrochemical capacitor (EC) are considered as the most widely used energy storage systems (ESSs) because they can produce a high energy density or a high power density, but it is a huge challenge to achieve both the demands of a high energy density as well as a high power density on their own. A new hybrid Li ion capacitor (HyLIC), which combines the advantages of LIB and Li ion capacitor (LIC), is proposed. This device can successfully realize a potential match between LIB and LIC and can avoid the excessive depletion of electrolyte during the charge process. The galvanostatic charge-discharge cycling tests reveal that at low current, the HyLIC exhibits a high energy density, while at high current, it demonstrates a high power density. Ragone plot confirms that this device can make a synergetic balance between energy and power and achieve a highest energy density in the power density range of 80 to 300 W kg‑1. The cycle life test proves that HyLIC exhibits a good cycle life and an excellent coulombic efficiency. The present study shows that HyLIC, which is capable of achieving a high energy density, a long cycle life and an excellent power density, has the potential to achieve the winning combination of a high energy and power density.

  9. A hybrid electrochemical device based on a synergetic inner combination of Li ion battery and Li ion capacitor for energy storage.

    PubMed

    Zheng, Jun-Sheng; Zhang, Lei; Shellikeri, Annadanesh; Cao, Wanjun; Wu, Qiang; Zheng, Jim P

    2017-02-07

    Li ion battery (LIB) and electrochemical capacitor (EC) are considered as the most widely used energy storage systems (ESSs) because they can produce a high energy density or a high power density, but it is a huge challenge to achieve both the demands of a high energy density as well as a high power density on their own. A new hybrid Li ion capacitor (HyLIC), which combines the advantages of LIB and Li ion capacitor (LIC), is proposed. This device can successfully realize a potential match between LIB and LIC and can avoid the excessive depletion of electrolyte during the charge process. The galvanostatic charge-discharge cycling tests reveal that at low current, the HyLIC exhibits a high energy density, while at high current, it demonstrates a high power density. Ragone plot confirms that this device can make a synergetic balance between energy and power and achieve a highest energy density in the power density range of 80 to 300 W kg(-1). The cycle life test proves that HyLIC exhibits a good cycle life and an excellent coulombic efficiency. The present study shows that HyLIC, which is capable of achieving a high energy density, a long cycle life and an excellent power density, has the potential to achieve the winning combination of a high energy and power density.

  10. A hybrid electrochemical device based on a synergetic inner combination of Li ion battery and Li ion capacitor for energy storage

    PubMed Central

    Zheng, Jun-Sheng; Zhang, Lei; Shellikeri, Annadanesh; Cao, Wanjun; Wu, Qiang; Zheng, Jim P.

    2017-01-01

    Li ion battery (LIB) and electrochemical capacitor (EC) are considered as the most widely used energy storage systems (ESSs) because they can produce a high energy density or a high power density, but it is a huge challenge to achieve both the demands of a high energy density as well as a high power density on their own. A new hybrid Li ion capacitor (HyLIC), which combines the advantages of LIB and Li ion capacitor (LIC), is proposed. This device can successfully realize a potential match between LIB and LIC and can avoid the excessive depletion of electrolyte during the charge process. The galvanostatic charge-discharge cycling tests reveal that at low current, the HyLIC exhibits a high energy density, while at high current, it demonstrates a high power density. Ragone plot confirms that this device can make a synergetic balance between energy and power and achieve a highest energy density in the power density range of 80 to 300 W kg−1. The cycle life test proves that HyLIC exhibits a good cycle life and an excellent coulombic efficiency. The present study shows that HyLIC, which is capable of achieving a high energy density, a long cycle life and an excellent power density, has the potential to achieve the winning combination of a high energy and power density. PMID:28169329

  11. A Facile Method to In-Situ Synthesize Porous Ni2GeO4 Nano-Sheets on Nickel Foam as Advanced Anode Electrodes for Li-Ion Batteries

    PubMed Central

    Ma, Delong; Shi, Xiaomin; Hu, Anming

    2016-01-01

    A strategy for growth of porous Ni2GeO4 nanosheets on conductive nickel (Ni) foam with robust adhesion as a high-performance electrode for Li-ion batteries is proposed and realized, through a facile two-step method. It involves the low temperature hydro-thermal synthesis of bimetallic (Ni, Ge) hydroxide nanosheets precursor on Ni foam substrates and subsequent thermal transformation to porous Ni2GeO4 nanosheets. The as-prepared Ni2GeO4 nanosheets possess many interparticle mesopores with a size range from 5 to 15 nm. The hierarchical structure of porous Ni2GeO4 nanosheets supported by Ni foam promises fast electron and ion transport, large electroactive surface area, and excellent structural stability. The efficacy of the specially designed structure is demonstrated by the superior electrochemical performance of the generated Ni2GeO4 nanosheets including a high capacity of 1.8 mA·h·cm−2 at a current density of 50 μA·cm−2, good cycle stability, and high power capability at room temperature. Because of simple conditions, this fabrication strategy may be easily extended to other mixed metal oxides (MxGeOy). PMID:28335346

  12. Unravelling Li-Ion Transport from Picoseconds to Seconds: Bulk versus Interfaces in an Argyrodite Li6PS5Cl-Li2S All-Solid-State Li-Ion Battery.

    PubMed

    Yu, Chuang; Ganapathy, Swapna; de Klerk, Niek J J; Roslon, Irek; van Eck, Ernst R H; Kentgens, Arno P M; Wagemaker, Marnix

    2016-09-07

    One of the main challenges of all-solid-state Li-ion batteries is the restricted power density due to the poor Li-ion transport between the electrodes via the electrolyte. However, to establish what diffusional process is the bottleneck for Li-ion transport requires the ability to distinguish the various processes. The present work investigates the Li-ion diffusion in argyrodite Li6PS5Cl, a promising electrolyte based on its high Li-ion conductivity, using a combination of (7)Li NMR experiments and DFT based molecular dynamics simulations. This allows us to distinguish the local Li-ion mobility from the long-range Li-ion motional process, quantifying both and giving a coherent and consistent picture of the bulk diffusion in Li6PS5Cl. NMR exchange experiments are used to unambiguously characterize Li-ion transport over the solid electrolyte-electrode interface for the electrolyte-electrode combination Li6PS5Cl-Li2S, giving unprecedented and direct quantitative insight into the impact of the interface on Li-ion charge transport in all-solid-state batteries. The limited Li-ion transport over the Li6PS5Cl-Li2S interface, orders of magnitude smaller compared with that in the bulk Li6PS5Cl, appears to be the bottleneck for the performance of the Li6PS5Cl-Li2S battery, quantifying one of the major challenges toward improved performance of all-solid-state batteries.

  13. ALD of Al2O3 for Highly Improved Performance in Li-Ion Batteries

    SciTech Connect

    Dillon, A.; Jung, Y. S.; Ban, C.; Riley, L.; Cavanagh, A.; Yan, Y.; George, S.; Lee, S. H.

    2012-01-01

    Significant advances in energy density, rate capability and safety will be required for the implementation of Li-ion batteries in next generation electric vehicles. We have demonstrated atomic layer deposition (ALD) as a promising method to enable superior cycling performance for a vast variety of battery electrodes. The electrodes range from already demonstrated commercial technologies (cycled under extreme conditions) to new materials that could eventually lead to batteries with higher energy densities. For example, an Al2O3 ALD coating with a thickness of ~ 8 A was able to stabilize the cycling of unexplored MoO3 nanoparticle anodes with a high volume expansion. The ALD coating enabled stable cycling at C/2 with a capacity of ~ 900 mAh/g. Furthermore, rate capability studies showed the ALD-coated electrode maintained a capacity of 600 mAh/g at 5C. For uncoated electrodes it was only possible to observe stable cycling at C/10. Also, we recently reported that a thin ALD Al2O3 coating with a thickness of ~5 A can enable natural graphite (NG) electrodes to exhibit remarkably durable cycling at 50 degrees C. The ALD-coated NG electrodes displayed a 98% capacity retention after 200 charge-discharge cycles. In contrast, bare NG showed a rapid decay. Additionally, Al2O3 ALD films with a thickness of 2 to 4 A have been shown to allow LiCoO2 to exhibit 89% capacity retention after 120 charge-discharge cycles performed up to 4.5 V vs Li/Li+. Bare LiCoO2 rapidly deteriorated in the first few cycles. The capacity fade is likely caused by oxidative decomposition of the electrolyte at higher potentials or perhaps cobalt dissolution. Interestingly, we have recently fabricated full cells of NG and LiCoO2 where we coated both electrodes, one or the other electrode as well as neither electrode. In creating these full cells, we observed some surprising results that lead us to obtain a greater understanding of the ALD coatings. We have also recently coated a binder free LiNi0.04Mn0

  14. Diagnostics and Degradation Investigations of Li-Ion Battery Electrodes using Single Nanowire Electrochemical Cells

    NASA Astrophysics Data System (ADS)

    Palapati, Naveen Kumar Reddy

    Portable energy storage devices, which drive advanced technological devices, are improving the productivity and quality of our everyday lives. In order to meet the growing needs for energy storage in transportation applications, the current lithium-ion (Li-ion) battery technology requires new electrode materials with performance improvements in multiple aspects: (1) energy and power densities, (2) safety, and (3) performance lifetime. While a number of interesting nanomaterials have been synthesized in recent years with promising performance, accurate capabilities to probe the intrinsic performance of these high-performance materials within a battery environment are lacking. Most studies on electrode nanomaterials have so far used traditional, bulk-scale techniques such as cyclic voltammetry, electrochemical impedance spectroscopy, and Raman spectroscopy. These approaches give an ensemble-average estimation of the electrochemical properties of a battery electrode and does not provide a true indication of the performance that is intrinsic to its material system. Thus, new techniques are essential to understand the changes happening at a single particle level during the operation of a battery. The results from this thesis solve this need and study the electrical, mechanical and size changes that take place in a battery electrode at a single particle level. Single nanowire lithium cells are built by depositing nanowires in carefully designed device regions of a silicon chip using Dielectrophoresis (DEP). This work has demonstrated the assembly of several NW cathode materials like LiFePO 4, pristine and acid-leached alpha-MnO2, todorokite - MnO2, acid and nonacid-leached Na0.44MnO2. Within these materials, alpha-MnO2 was chosen as the model material system for electrochemical experiments. Electrochemical lithiation of pristine alpha-MnO 2 was performed inside a glove box. The volume, elasticity and conductivity changes were measured at each state-of-charge (SOC) to

  15. Solid-State Li-Ion Batteries Using Fast, Stable, Glassy Nanocomposite Electrolytes for Good Safety and Long Cycle-Life.

    PubMed

    Tan, Guoqiang; Wu, Feng; Zhan, Chun; Wang, Jing; Mu, Daobin; Lu, Jun; Amine, Khalil

    2016-03-09

    The development of safe, stable, and long-life Li-ion batteries is being intensively pursued to enable the electrification of transportation and intelligent grid applications. Here, we report a new solid-state Li-ion battery technology, using a solid nanocomposite electrolyte composed of porous silica matrices with in situ immobilizing Li(+)-conducting ionic liquid, anode material of MCMB, and cathode material of LiCoO2, LiNi1/3Co1/3Mn1/3O2, or LiFePO4. An injection printing method is used for the electrode/electrolyte preparation. Solid nanocomposite electrolytes exhibit superior performance to the conventional organic electrolytes with regard to safety and cycle-life. They also have a transparent glassy structure with high ionic conductivity and good mechanical strength. Solid-state full cells tested with the various cathodes exhibited high specific capacities, long cycling stability, and excellent high temperature performance. This solid-state battery technology will provide new avenues for the rational engineering of advanced Li-ion batteries and other electrochemical devices.

  16. Solid-State Li-Ion Batteries Using Fast, Stable, Glassy Nanocomposite Electrolytes for Good Safety and Long Cycle-Life

    SciTech Connect

    Tan, Guoqiang; Wu, Feng; Zhan, Chun; Wang, Jing; Mu, Daobin; Lu, Jun; Amine, Khalil

    2016-03-09

    The development of safe, stable, and long-life Li-ion batteries is being intensively pursued to enable the electrification of transportation and intelligent grid applications. Here, we report a new solid-state Li-ion battery technology, using a solid nanocomposite electrolyte composed of porous silica matrices with in situ immobilizing Li+ conducting ionic liquid, anode material of MCMB, and cathode material of LiCoO2, LiNi1/3Co1/3Mn1/3O2, or LiFePO4. An injection printing method is used for the electrode/electrolyte preparation. Solid nanocomposite electrolytes exhibit superior performance to the conventional organic electrolytes with regard to safety and cycle-life. They also have a transparent glassy structure with high ionic conductivity and good mechanical strength. Solid-state full cells tested with the various cathodes exhibited high specific capacities, long cycling stability, and excellent high temperature performance. This solid-state battery technology will provide new avenues for the rational engineering of advanced Li-ion batteries and other electrochemical devices.

  17. Atomic-Scale Mechanisms for Electrolyte Decomposition in Li-ion Battery Cathodes

    NASA Astrophysics Data System (ADS)

    Fuhst, Mallory; Siegel, Donald

    Li-ion batteries using high energy density LiCoO2 (LCO) intercalation cathodes are known to generate gaseous species inside the cell, which can lead to venting flammable solvent vapor. It has been hypothesized that reactions at the cathode/electrolyte interface catalyze the production of these gaseous species. To elucidate the underlying reaction mechanism, first principles calculations were used to model interactions between LCO surfaces and Ethylene Carbonate (EC), a commonly used solvent in Li-ion batteries. A Metropolis Monte Carlo algorithm was used to identify likely low energy adsorption configurations for EC on the (10-14) surface of LCO. Several of these geometries were further analyzed with DFT. The thermodynamics and kinetics of EC decomposition were evaluated for plausible reaction pathways and associated various solvent decomposition mechanisms, such as hydrogen abstraction. Preliminary results indicate that hydrogen abstraction may lead to the spontaneous decomposition of EC into CO and other adsorbed species at the surface. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE 1256260.

  18. A computational study on the application of AlN nanotubes in Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Anaraki-Ardakani, Hossein

    2017-03-01

    We investigated the potential application of the AlN nanotubes (AlNNTs) in Li-ion batteries by means of the density functional theory calculations. To this aim, the interaction of Li atom and Li+ cation with (3 , 3), (4 , 4), (5 , 5), (6 , 6), and (7 , 7) armchair AlNNTs was investigated. By decreasing the curvature of these nanotubes, the HOMO and LUMO levels are shifted to lower and higher energies, thereby enlarging the energy gap. It was found that AlNNTs can produce larger cell voltage in comparison to the carbon nanotubes and may be promising candidate for application in the anode electrode of Li-ion batteries. The calculated cell voltage is in the range of 1.66 to 1.84 V which is significantly increased by increasing the diameter of AlNNTs. The adsorptions of Li and Li+ on the exterior surface of AlNNTs are more favorable than those on its exterior surface. We showed that the interaction of atomic Li with the surface of the AlNNT plays the main rule in determining the cell voltage because of its large dependency on the tube diameter. While the interaction of Li+ is nearly independent of the tube diameter because of the electrostatic nature of the interaction.

  19. Interaction of High Flash Point Electrolytes and PE-Based Separators for Li-Ion Batteries.

    PubMed

    Hofmann, Andreas; Kaufmann, Christoph; Müller, Marcus; Hanemann, Thomas

    2015-08-27

    In this study, promising electrolytes for use in Li-ion batteries are studied in terms of interacting and wetting polyethylene (PE) and particle-coated PE separators. The electrolytes are characterized according to their physicochemical properties, where the flow characteristics and the surface tension are of particular interest for electrolyte-separator interactions. The viscosity of the electrolytes is determined to be in a range of η = 4-400 mPa∙s and surface tension is finely graduated in a range of γL = 23.3-38.1 mN∙m(-1). It is verified that the technique of drop shape analysis can only be used in a limited matter to prove the interaction, uptake and penetration of electrolytes by separators. Cell testing of Li|NMC half cells reveals that those cell results cannot be inevitably deduced from physicochemical electrolyte properties as well as contact angle analysis. On the other hand, techniques are more suitable which detect liquid penetration into the interior of the separator. It is expected that the results can help fundamental researchers as well as users of novel electrolytes in current-day Li-ion battery technologies for developing and using novel material combinations.

  20. MgO-decorated few-layered graphene as an anode for li-ion batteries.

    PubMed

    Petnikota, Shaikshavali; Rotte, Naresh K; Reddy, M V; Srikanth, Vadali V S S; Chowdari, B V R

    2015-02-04

    Combustion of magnesium in dry ice and a simple subsequent acid treatment step resulted in a MgO-decorated few-layered graphene (FLG) composite that has a specific surface area of 393 m(2)/g and an average pore volume of 0.9 cm(3)/g. As an anode material in Li-ion batteries, the composite exhibited high reversible capacity and excellent cyclic performance in spite of high first-cycle irreversible capacity loss. A reversible capacity as high as 1052 mAh/g was measured during the first cycle. Even at the end of the 60th cycle, more than 83% of the capacity could be retained. Cyclic voltammetry results indicated pseudocapacitance behavior due to electrochemical absorption and desorption of lithium ions onto graphene. An increase in the capacity has been observed during long-term cycling owing to electrochemical exfoliation of graphene sheets. Owing to its good thermal stability and superior cyclic performance with high reversible capacities, MgO-decked FLG can be an excellent alternative to graphite as an anode material in Li-ion batteries, after suitable modifications.

  1. The application of phase contrast X-ray techniques for imaging Li-ion battery electrodes

    NASA Astrophysics Data System (ADS)

    Eastwood, D. S.; Bradley, R. S.; Tariq, F.; Cooper, S. J.; Taiwo, O. O.; Gelb, J.; Merkle, A.; Brett, D. J. L.; Brandon, N. P.; Withers, P. J.; Lee, P. D.; Shearing, P. R.

    2014-04-01

    In order to accelerate the commercialization of fuel cells and batteries across a range of applications, an understanding of the mechanisms by which they age and degrade at the microstructural level is required. Here, the most widely commercialized Li-ion batteries based on porous graphite based electrodes which de/intercalate Li+ ions during charge/discharge are studied by two phase contrast enhanced X-ray imaging modes, namely in-line phase contrast and Zernike phase contrast at the micro (synchrotron) and nano (laboratory X-ray microscope) level, respectively. The rate of charge cycling is directly dependent on the nature of the electrode microstructure, which are typically complex multi-scale 3D geometries with significant microstructural heterogeneities. We have been able to characterise the porosity and the tortuosity by micro-CT as well as the morphology of 5 individual graphite particles by nano-tomography finding that while their volume varied significantly their sphericity was surprisingly similar. The volume specific surface areas of the individual grains measured by nano-CT are significantly larger than the total volume specific surface area of the electrode from the micro-CT imaging, which can be attributed to the greater particle surface area visible at higher resolution.

  2. All-carbon-based porous topological semimetal for Li-ion battery anode material.

    PubMed

    Liu, Junyi; Wang, Shuo; Sun, Qiang

    2017-01-24

    Topological state of matter and lithium batteries are currently two hot topics in science and technology. Here we combine these two by exploring the possibility of using all-carbon-based porous topological semimetal for lithium battery anode material. Based on density-functional theory and the cluster-expansion method, we find that the recently identified topological semimetal bco-C16 is a promising anode material with higher specific capacity (Li-C4) than that of the commonly used graphite anode (Li-C6), and Li ions in bco-C16 exhibit a remarkable one-dimensional (1D) migration feature, and the ion diffusion channels are robust against the compressive and tensile strains during charging/discharging. Moreover, the energy barrier decreases with increasing Li insertion and can reach 0.019 eV at high Li ion concentration; the average voltage is as low as 0.23 V, and the volume change during the operation is comparable to that of graphite. These intriguing theoretical findings would stimulate experimental work on topological carbon materials.

  3. All-carbon-based porous topological semimetal for Li-ion battery anode material

    NASA Astrophysics Data System (ADS)

    Liu, Junyi; Wang, Shuo; Sun, Qiang

    2017-01-01

    Topological state of matter and lithium batteries are currently two hot topics in science and technology. Here we combine these two by exploring the possibility of using all-carbon-based porous topological semimetal for lithium battery anode material. Based on density-functional theory and the cluster-expansion method, we find that the recently identified topological semimetal bco-C16 is a promising anode material with higher specific capacity (Li-C4) than that of the commonly used graphite anode (Li-C6), and Li ions in bco-C16 exhibit a remarkable one-dimensional (1D) migration feature, and the ion diffusion channels are robust against the compressive and tensile strains during charging/discharging. Moreover, the energy barrier decreases with increasing Li insertion and can reach 0.019 eV at high Li ion concentration; the average voltage is as low as 0.23 V, and the volume change during the operation is comparable to that of graphite. These intriguing theoretical findings would stimulate experimental work on topological carbon materials.

  4. Interaction of High Flash Point Electrolytes and PE-Based Separators for Li-Ion Batteries

    PubMed Central

    Hofmann, Andreas; Kaufmann, Christoph; Müller, Marcus; Hanemann, Thomas

    2015-01-01

    In this study, promising electrolytes for use in Li-ion batteries are studied in terms of interacting and wetting polyethylene (PE) and particle-coated PE separators. The electrolytes are characterized according to their physicochemical properties, where the flow characteristics and the surface tension are of particular interest for electrolyte–separator interactions. The viscosity of the electrolytes is determined to be in a range of η = 4–400 mPa∙s and surface tension is finely graduated in a range of γL = 23.3–38.1 mN∙m−1. It is verified that the technique of drop shape analysis can only be used in a limited matter to prove the interaction, uptake and penetration of electrolytes by separators. Cell testing of Li|NMC half cells reveals that those cell results cannot be inevitably deduced from physicochemical electrolyte properties as well as contact angle analysis. On the other hand, techniques are more suitable which detect liquid penetration into the interior of the separator. It is expected that the results can help fundamental researchers as well as users of novel electrolytes in current-day Li-ion battery technologies for developing and using novel material combinations. PMID:26343636

  5. New High Capacity Cathode Materials for Rechargeable Li-ion Batteries: Vanadate-Borate Glasses

    PubMed Central

    Afyon, Semih; Krumeich, Frank; Mensing, Christian; Borgschulte, Andreas; Nesper, Reinhard

    2014-01-01

    V2O5 based materials are attractive cathode alternatives due to the many oxidation state switches of vanadium bringing about a high theoretical specific capacity. However, significant capacity losses are eminent for crystalline V2O5 phases related to the irreversible phase transformations and/or vanadium dissolution starting from the first discharge cycle. These problems can be circumvented if amorphous or glassy vanadium oxide phases are employed. Here, we demonstrate vanadate-borate glasses as high capacity cathode materials for rechargeable Li-ion batteries for the first time. The composite electrodes of V2O5 – LiBO2 glass with reduced graphite oxide (RGO) deliver specific energies around 1000 Wh/kg and retain high specific capacities in the range of ~ 300 mAh/g for the first 100 cycles. V2O5 – LiBO2 glasses are considered as promising cathode materials for rechargeable Li-ion batteries fabricated through rather simple and cost-efficient methods. PMID:25408200

  6. Mechanical behavior and failure mechanisms of Li-ion battery separators

    NASA Astrophysics Data System (ADS)

    Kalnaus, Sergiy; Wang, Yanli; Turner, John A.

    2017-04-01

    Anisotropic mechanical properties were experimentally determined and compared for three types of commercially available Li-ion battery separators: Celgard 2325, Celgard PP2075 dry-processed polymer separators, and DreamWeaver Gold 40 non-woven separator. Significant amount of anisotropy of properties was determined, with the Young's modulus being different by up to a factor of 5 and ultimate strength being different by a factor of 10 between orthogonal directions within a polymer separator layer. Strain rate sensitivity was investigated by applying strain rates ranging from 1 ṡ10-4 s-1 to 0.1 s-1. Significant strengthening was observed and the strain rate strengthening coefficients were determined for both elastic modulus and yield stress in case of polymer separators. Digital image correlation technique was used to measure and map the strains over the specimen's gage section. Significant strain concentration in bands running perpendicular to the tensile axis was observed in polymer separator samples oriented in transverse direction. Such localized necking allows for extremely high strains close to 300% to develop in the material. The failure mode was remarkably different for all three types of separators which adds additional variable in safe design of Li-ion batteries for prevention of internal short circuits.

  7. Mechanical behavior and failure mechanisms of Li-ion battery separators

    DOE PAGES

    Kalnaus, Sergiy; Wang, Yanli; Turner, John A.

    2017-03-09

    We determine and compare anisotropic mechanical properties for three types of commercially available Li-ion battery separators: Celgard 2325, Celgard PP2075 dry-processed polymer separators, and DreamWeaver Gold 40 non-woven separator. Significant amount of anisotropy of properties was determined, with the Young's modulus being different by up to a factor of 5 and ultimate strength being different by a factor of 10 between orthogonal directions within a polymer separator layer. Strain rate sensitivity was investigated by applying strain rates ranging from 1•10-4 s-1 to 0.1 s-1. Significant strengthening was observed and the strain rate strengthening coefficients were determined for both elastic modulusmore » and yield stress in case of polymer separators. Digital image correlation technique was used to measure and map the strains over the specimen's gage section. A significant strain concentration in bands running perpendicular to the tensile axis was observed in polymer separator samples oriented in transverse direction. Such localized necking allows for extremely high strains close to 300% to develop in the material. Furthermore, the failure mode was remarkably different for all three types of separators which adds additional variable in safe design of Li-ion batteries for prevention of internal short circuits.« less

  8. Safe and fast-charging Li-ion battery with long shelf life for power applications

    NASA Astrophysics Data System (ADS)

    Zaghib, K.; Dontigny, M.; Guerfi, A.; Charest, P.; Rodrigues, I.; Mauger, A.; Julien, C. M.

    We report a Li-ion battery that can be charged within few minutes, passes the safety tests, and has a very long shelf life. The active materials are nanoparticles of LiFePO 4 (LFP) and Li 4Ti 5O 12 (LTO) for the positive and negative electrodes, respectively. The LiFePO 4 particles are covered with 2 wt.% carbon to optimize the electrical conductivity, but not the Li 4Ti 5O 12 particles. The electrolyte is the usual carbonate solvent. The binder is a water-soluble elastomer. The "18650" battery prepared under such conditions delivers a capacity of 800 mAh. It retains full capacity after 20,000 cycles performed at charge rate 10C (6 min), discharge rate 5C (12 min), and retains 95% capacity after 30,000 cycles at charge rate 15C (4 mn) and discharge rate 5C both at 100% DOD and 100% SOC.

  9. Visualization and quantification of electrochemical and mechanical degradation in Li ion batteries.

    PubMed

    Ebner, Martin; Marone, Federica; Stampanoni, Marco; Wood, Vanessa

    2013-11-08

    High-energy-density materials that undergo conversion and/or alloying reactions hold promise for next-generation lithium (Li) ion batteries. However, these materials experience substantial volume change during electrochemical operation, which causes mechanical fracture of the material and structural disintegration of the electrode, leading to capacity loss. In this work, we use x-ray tomography during battery operation to visualize and quantify the origins and evolution of electrochemical and mechanical degradation. Tomography provides the time-resolved, three-dimensional chemical composition and morphology within individual particles and throughout the electrode. In the model material tin(II) oxide, we witness distributions in onset and rate of core-shell lithiation, crack initiation and growth along preexisting defects, and irreversible distortion of the electrode, highlighting tomography as a tool to guide the development of durable materials and strain-tolerant electrodes.

  10. Novel Solid Electrolytes for Li-Ion Batteries: A Perspective from Electron Microscopy Studies

    SciTech Connect

    Ma, Cheng; Chi, Miaofang

    2016-06-08

    Solid electrolytes can simultaneously overcome two of the most formidable challenges of Li-ion batteries: the severe safety issues and insufficient energy densities. However, before they can be implemented in actual batteries, the ionic conductivity needs to be improved and the interface with electrodes must be optimized. The prerequisite for addressing these issues is a thorough understanding of the material’s behavior at the microscopic and/or the atomic level. (Scanning) transmission electron microscopy is a powerful tool for this purpose, as it can reach an ultrahigh spatial resolution. Here, we review recent electron microscopy investigations on the ion transport behavior in solid electrolytes and their interfaces. Specifically, three aspects will be highlighted: the influence of grain interior atomic configuration on ionic conductivity, the contribution of grain boundaries, and the behavior of solid electrolyte/electrode interfaces. In conclusion, based on this, the perspectives for future research will be discussed.

  11. Performance of Li-Ion Cells Under Battery Voltage Charge Control

    NASA Technical Reports Server (NTRS)

    Vaidyanathan, Hari; Rao, Gopalakrishna M.

    2002-01-01

    Li-ion cells manufactured by YTP, SAFT, and MSA have completed 6714, 6226, and 3441 cycles, respectively. An increase in the charge voltage limit was required in all cases to maintain the discharge voltage. SAFT and MSA cells were capable of cycling at -10 C and 0 C with an increase in the charge voltage limit, whereas Yardney cells could not be cycled. Reconditioning improved the discharge voltage of SAFT and MSA cells; it is important to note that the effect has been temporary as in Ni-H and Ni-Cd batteries. It was demonstrated that the charge operation with VT clamp at battery rather than at cell level is feasible. Continuation of testing depends on the health of the cells and on the funding situation.

  12. Novel Solid Electrolytes for Li-Ion Batteries: A Perspective from Electron Microscopy Studies

    DOE PAGES

    Ma, Cheng; Chi, Miaofang

    2016-06-08

    Solid electrolytes can simultaneously overcome two of the most formidable challenges of Li-ion batteries: the severe safety issues and insufficient energy densities. However, before they can be implemented in actual batteries, the ionic conductivity needs to be improved and the interface with electrodes must be optimized. The prerequisite for addressing these issues is a thorough understanding of the material’s behavior at the microscopic and/or the atomic level. (Scanning) transmission electron microscopy is a powerful tool for this purpose, as it can reach an ultrahigh spatial resolution. Here, we review recent electron microscopy investigations on the ion transport behavior in solidmore » electrolytes and their interfaces. Specifically, three aspects will be highlighted: the influence of grain interior atomic configuration on ionic conductivity, the contribution of grain boundaries, and the behavior of solid electrolyte/electrode interfaces. In conclusion, based on this, the perspectives for future research will be discussed.« less

  13. New Li-ion Battery Evaluation Research Based on Thermal Property and Heat Generation Behavior of Battery

    NASA Astrophysics Data System (ADS)

    Lv, Zhe; Guo, Xun; Qiu, Xin-ping

    2012-12-01

    We do a new Li-ion battery evaluation research on the effects of cell resistance and polarization on the energy loss in batteries based on thermal property and heat generation behavior of battery. Series of 18650 cells with different capacities and electrode materials are evaluated by measuring input and output energy which change with charge-discharge time and current. Based on the results of these tests, we build a model of energy loss in cells' charge-discharge process, which include Joule heat and polarization heat impact factors. It was reported that Joule heat was caused by cell resistance, which included DC-resistance and reaction resistance, and reaction resistance could not be easily obtained through routine test method. Using this new method, we can get the total resistance R and the polarization parameter η. The relationship between R, η, and temperature is also investigated in order to build a general model for series of different Li-ion batteries, and the research can be used in the performance evaluation, state of charge prediction and the measuring of consistency of the batteries.

  14. MPS Li-Ion Batteries Qualified to Fly on Canadian Sapphire Spacecraft

    NASA Astrophysics Data System (ADS)

    Remy, S.; Carre, A.; Kimber, R.; Alcindor, P.; Krabel, E.

    2014-08-01

    Saft Li-ion 8S3P MPS (Medium Prismatic cell for Space Battery) autonomous battery has been designed and qualified primarily to meet LEO power requirements. It has been available for more than 8 years, the original battery concept qualification program being successfully carried-out with CNES support in year 2005. This module has been selected for the first time by the UK satellite manufacturer SSTL for the Sapphire spacecraft platform, on behalf of the spacecraft prime MDA Systems Ltd (MDA) and customer the Canadian DND. Due to the high mechanical load demand in the specifications, a delta qualification campaign was launched to make sure that the MPS battery was able to cope with this requirement. A partner approach between Saft and SSTL led Saft to build some dedicated representative 5S packs, which have been step by step tested by SSTL shaker. Based on the results, the battery was made and finally installed inside the Sapphire spacecraft which was successfully launched on February 25th 2013 after battery storage of about 3.5 years.

  15. Properties and promises of nanosized insertion materials for Li-ion batteries.

    PubMed

    Wagemaker, Marnix; Mulder, Fokko M

    2013-05-21

    The substantial influence of crystallite size on the properties of Li-ion storage materials has spurred intensive research in the emerging area of nanoionics. The development of nanoscale storage materials offers a promising strategy to increase the energy storage capabilities of Li-ion batteries, potentially making them suitable for electric vehicles. Nanosizing, which increases surface area, enhances the importance of interfaces and surfaces on directly observable materials properties such as the voltage profile and the phase diagram. As a result, nanosized materials can show improved storage properties, and materials inactive at the micro size can become excellent storage materials. We suggest novel surface storage mechanisms to explain these phenomena. First-order phase transitions, which are responsible for the batteries' constant voltage output, are partially suppressed at the nanoscale. So far the morphological changes during the phase transition remain unclear. A complete understanding of the equilibrium and non-equilibrium properties of a collection of nanosized electrode particles within an actual electrode remains a formidable challenge. In this Account, we describe the efforts toward understanding the effects of nanosizing and its applications in representative insertion materials. We are particularly interested in the mechanisms and properties that will help to increase the energy storage of Li-ion batteries. We review and discuss the nanosize properties of lithium insertion materials, olivine LiFePO4, and titanium oxides. Although nanosizing intrinsically destabilizes materials, which is potentially detrimental for battery performance, the relative stability of oxide and phosphate insertion compounds makes it possible to exploit the advantages of nanosizing in these materials. The larger capacities and typical voltage profiles in nanosized materials appear to be related to the surface and interface properties that become pronounced at the nanosize

  16. Gelled membranes for Li and Li-ion batteries prepared by electrospinning

    NASA Astrophysics Data System (ADS)

    Bansal, D.; Meyer, B.; Salomon, M.

    Composite polymer gelled membranes have been prepared an electrospinning technique. Electrospinning of polymer fibers or electrospraying of particles is typically accomplished by applying a strong electric field (ca. 1-25 kV cm -1) to a polymer solution or slurry of solids in an appropriate solvent. The fibers are collected as a mat (membrane) on a grounded target such as Al, Cu, Ni, etc. Typical membranes (mats) consist of nanometer size fibers and have porosities of 65-85%. In the present paper, we describe the fabrication of electrospun membranes for use as gelled electrolytes in Li and Li-ion batteries. The electrospun polymer membranes used in this work are based on the polyimides (PIs) Matrimid and Ultem 1000. Pure PI membranes have been prepared, and blends of Matrimid and Ultem with PVdF-HFP and PAN have been studied in 250 mAh and 7 Ah Li-ion cells. Fully imidized polyimides such as Matrimid and Ultem 1000 do not form gels, and are used as a host matrix of high mechanical strength to immobilize the gelling constituents PVdF or PAN.

  17. UV-cured methacrylic membranes as novel gel-polymer electrolyte for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Nair, J. R.; Gerbaldi, C.; Meligrana, G.; Bongiovanni, R.; Bodoardo, S.; Penazzi, N.; Reale, P.; Gentili, V.

    In this paper, we report the synthesis and characterisation of novel methacrylic based polymer electrolyte membranes for lithium batteries. The method adopted for preparing the solid polymer electrolyte was the UV-curing process, which is well known for being easy, low cost, fast and reliable. It consists of a free radical photo polymerisation of poly-functional monomers: Bisphenol A ethoxylate (15 EO/phenol) dimethacrylate (BEMA) was chosen, as it can readily form flexible 3D networks and has long poly-ethoxy chains which can enhance the movement of Li +-ions inside the polymer matrix. The preliminary results reported here refer to systems where LiPF 6 solutions swelled the preformed polymer membranes. The tests on the conductivity, stability and cyclability of the membranes put in evidence the importance of the polymerisation in presence of mono-methacrylates acting as reactive diluents. Good values of ionic conductivity have been found, especially at ambient temperature. Much better results can be expected by choosing an appropriate mono-methacrylate to modify the polymeric membrane properties and by modifying the methodology of Li +-ions incorporation inside the polymer matrix.

  18. Hierarchically ordered mesoporous Co3O4 materials for high performance Li-ion batteries

    PubMed Central

    Sun, Shijiao; Zhao, Xiangyu; Yang, Meng; Wu, Linlin; Wen, Zhaoyin; Shen, Xiaodong

    2016-01-01

    Highly ordered mesoporous Co3O4 materials have been prepared via a nanocasting route with three-dimensional KIT-6 and two-dimensional SBA-15 ordered mesoporous silicas as templates and Co(NO3)2 · 6H2O as precursor. Through changing the hydrothermal treating temperature of the silica template, ordered mesoporous Co3O4 materials with hierarchical structures have been developed. The larger pores around 10 nm provide an efficient transport for Li ions, while the smaller pores between 3–5 nm offer large electrochemically active areas. Electrochemical impedance analysis proves that the hierarchical structure contributes to a lower charge transfer resistance in the mesoporous Co3O4 electrode than the mono-sized structure. High reversible capacities around 1141 mAh g−1 of the hierarchically mesoporous Co3O4 materials are obtained, implying their potential applications for high performance Li-ion batteries. PMID:26781265

  19. Failure Mechanisms of Ni-H2 and Li-Ion Batteries Under Hypervelocity Impacts

    NASA Technical Reports Server (NTRS)

    Miller, J. E.; Lyons, F.; Christiansen, E. L.; Lear, D. M.

    2017-01-01

    Lithium-Ion (Li-Ion) batteries have yielded significant performance advantages for many industries, including the aerospace industry, and have been selected to replace nickel hydrogen (Ni-H2) batteries for the International Space Station (ISS) program to meet the energy storage demands. As the ISS uses its vast solar arrays to generate its power, the solar ar-rays meet their sunlit power demands and supply excess power to battery packs for power de-livery on the sun obscured phase of the approximate 90 minute low Earth orbit. These large battery packs are located on the exterior of the ISS, and as such, the battery packs are ex-posed to external environment threats like naturally occurring meteoroids and artificial orbital debris (MMOD). While the risks from these solid particle environments has been known and addressed to an acceptable risk of failure through shield design, it is not possible to completely eliminate the risk of loss of these assets on orbit due to MMOD, and as such, failure consequences to the ISS have been considered.

  20. Electron paramagnetic resonance imaging for real-time monitoring of Li-ion batteries

    PubMed Central

    Sathiya, M.; Leriche, J.-B.; Salager, E.; Gourier, D.; Tarascon, J.-M.; Vezin, H.

    2015-01-01

    Batteries for electrical storage are central to any future alternative energy paradigm. The ability to probe the redox mechanisms occurring at electrodes during their operation is essential to improve battery performances. Here we present the first report on Electron Paramagnetic Resonance operando spectroscopy and in situ imaging of a Li-ion battery using Li2Ru0.75Sn0.25O3, a high-capacity (>270 mAh g−1) Li-rich layered oxide, as positive electrode. By monitoring operando the electron paramagnetic resonance signals of Ru5+ and paramagnetic oxygen species, we unambiguously prove the formation of reversible (O2)n− species that contribute to their high capacity. In addition, we visualize by imaging with micrometric resolution the plating/stripping of Li at the negative electrode and highlight the zones of nucleation and growth of Ru5+/oxygen species at the positive electrode. This efficient way to locate ‘electron’-related phenomena opens a new area in the field of battery characterization that should enable future breakthroughs in battery research. PMID:25662295

  1. Electron paramagnetic resonance imaging for real-time monitoring of Li-ion batteries.

    PubMed

    Sathiya, M; Leriche, J-B; Salager, E; Gourier, D; Tarascon, J-M; Vezin, H

    2015-02-09

    Batteries for electrical storage are central to any future alternative energy paradigm. The ability to probe the redox mechanisms occurring at electrodes during their operation is essential to improve battery performances. Here we present the first report on Electron Paramagnetic Resonance operando spectroscopy and in situ imaging of a Li-ion battery using Li2Ru0.75Sn0.25O3, a high-capacity (>270 mAh g(-1)) Li-rich layered oxide, as positive electrode. By monitoring operando the electron paramagnetic resonance signals of Ru(5+) and paramagnetic oxygen species, we unambiguously prove the formation of reversible (O2)(n-) species that contribute to their high capacity. In addition, we visualize by imaging with micrometric resolution the plating/stripping of Li at the negative electrode and highlight the zones of nucleation and growth of Ru(5+)/oxygen species at the positive electrode. This efficient way to locate 'electron'-related phenomena opens a new area in the field of battery characterization that should enable future breakthroughs in battery research.

  2. A flexible Li-ion battery with design towards electrodes electrical insulation

    NASA Astrophysics Data System (ADS)

    Vieira, E. M. F.; Ribeiro, J. F.; Sousa, R.; Correia, J. H.; Goncalves, L. M.

    2016-08-01

    The application of micro electromechanical systems (MEMS) technology in several consumer electronics leads to the development of micro/nano power sources with high power and MEMS integration possibility. This work presents the fabrication of a flexible solid-state Li-ion battery (LIB) (~2.1 μm thick) with a design towards electrodes electrical insulation, using conventional, low cost and compatible MEMS fabrication processes. Kapton® substrate provides flexibility to the battery. E-beam deposited 300 nm thick Ge anode was coupled with LiCoO2/LiPON (cathode/solid-state electrolyte) in a battery system. LiCoO2 and LiPON films were deposited by RF-sputtering with a power source of 120 W and 100 W, respectively. LiCoO2 film was annealed at 400 °C after deposition. The new design includes Si3N4 and LiPO thin-films, providing electrode electrical insulation and a battery chemical stability safeguard, respectively. Microstructure and battery performance were investigated by scanning electron microscopy, electric resistivity and electrochemical measurements (open circuit potential, charge/discharge cycles and electrochemical impedance spectroscopy). A rechargeable thin-film and lightweight flexible LIB using MEMS processing compatible materials and techniques is reported.

  3. Use of phosphoranimines to reduce organic carbonate content in Li-ion battery electrolytes

    DOE PAGES

    Dufek, Eric J.; Klaehn, John R.; McNally, Joshua S.; ...

    2016-05-09

    In this study, the use of phosphoranimines (PAs), a class of linear, monomeric phosphazenes, as electrolytes for Li-ion battery applications has been investigated as a route to improve safety and stability for Li-ion batteries. Of the potential PAs for use in battery applications, this work focuses on the initial synthetic preparation and analysis of N-trimethylsilyl-P,P-bis((2-methoxyethoxy)ethoxy)-P-ethylphosphoranimine (PA-5). PA-5 has high LiPF6 solubility in excess of 2 M, high thermal stability with a melting point below -80°C and high thermal stability as a neat compound to at least 250°C. As part of electrolyte blends, the inclusion of PA-5 shifts the onset ofmore » thermal degradation by close to 40°C at 35% loading and by 20°C at a 10% loading, improves the low temperature performance of the electrolyte, and when used as a primary solvent leads to increases in the flash point (by 20°C) when compared to more traditional EC:EMC blends. Cycling capabilities of full-coin cells with graphite negative electrodes and Li1+w[Ni0.5Mn0.3Co0.2]1-wO2 positive electrodes using PA-5:EC:EMC electrolyte blends are comparable with the performance seen for traditional EC:EMC blends. Analysis of the impact of the use of additives such as vinylene carbonate in PA-5:EC:EMC blended electrolyte results in enhanced capacity retention and improved coulombic efficiency.« less

  4. Electrolyte stability determines scaling limits for solid-state 3D Li ion batteries.

    PubMed

    Ruzmetov, Dmitry; Oleshko, Vladimir P; Haney, Paul M; Lezec, Henri J; Karki, Khim; Baloch, Kamal H; Agrawal, Amit K; Davydov, Albert V; Krylyuk, Sergiy; Liu, Yang; Huang, Jiany; Tanase, Mihaela; Cumings, John; Talin, A Alec

    2012-01-11

    Rechargeable, all-solid-state Li ion batteries (LIBs) with high specific capacity and small footprint are highly desirable to power an emerging class of miniature, autonomous microsystems that operate without a hardwire for power or communications. A variety of three-dimensional (3D) LIB architectures that maximize areal energy density has been proposed to address this need. The success of all of these designs depends on an ultrathin, conformal electrolyte layer to electrically isolate the anode and cathode while allowing Li ions to pass through. However, we find that a substantial reduction in the electrolyte thickness, into the nanometer regime, can lead to rapid self-discharge of the battery even when the electrolyte layer is conformal and pinhole free. We demonstrate this by fabricating individual, solid-state nanowire core-multishell LIBs (NWLIBs) and cycling these inside a transmission electron microscope. For nanobatteries with the thinnest electrolyte, ≈110 nm, we observe rapid self-discharge, along with void formation at the electrode/electrolyte interface, indicating electrical and chemical breakdown. With electrolyte thickness increased to 180 nm, the self-discharge rate is reduced substantially, and the NWLIBs maintain a potential above 2 V for over 2 h. Analysis of the nanobatteries' electrical characteristics reveals space-charge limited electronic conduction, which effectively shorts the anode and cathode electrodes directly through the electrolyte. Our study illustrates that, at these nanoscale dimensions, the increased electric field can lead to large electronic current in the electrolyte, effectively shorting the battery. The scaling of this phenomenon provides useful guidelines for the future design of 3D LIBs.

  5. Use of phosphoranimines to reduce organic carbonate content in Li-ion battery electrolytes

    SciTech Connect

    Dufek, Eric J.; Klaehn, John R.; McNally, Joshua S.; Rollins, Harry W.; Jamison, David K.

    2016-05-09

    In this study, the use of phosphoranimines (PAs), a class of linear, monomeric phosphazenes, as electrolytes for Li-ion battery applications has been investigated as a route to improve safety and stability for Li-ion batteries. Of the potential PAs for use in battery applications, this work focuses on the initial synthetic preparation and analysis of N-trimethylsilyl-P,P-bis((2-methoxyethoxy)ethoxy)-P-ethylphosphoranimine (PA-5). PA-5 has high LiPF6 solubility in excess of 2 M, high thermal stability with a melting point below -80°C and high thermal stability as a neat compound to at least 250°C. As part of electrolyte blends, the inclusion of PA-5 shifts the onset of thermal degradation by close to 40°C at 35% loading and by 20°C at a 10% loading, improves the low temperature performance of the electrolyte, and when used as a primary solvent leads to increases in the flash point (by 20°C) when compared to more traditional EC:EMC blends. Cycling capabilities of full-coin cells with graphite negative electrodes and Li1+w[Ni0.5Mn0.3Co0.2]1-wO2 positive electrodes using PA-5:EC:EMC electrolyte blends are comparable with the performance seen for traditional EC:EMC blends. Analysis of the impact of the use of additives such as vinylene carbonate in PA-5:EC:EMC blended electrolyte results in enhanced capacity retention and improved coulombic efficiency.

  6. Performance of Li-Ion Cells Under Battery Voltage Charge Control

    NASA Technical Reports Server (NTRS)

    Rao, Gopalakrishna M.; Vaidyanathan, Hari; Day, John H. (Technical Monitor)

    2001-01-01

    A study consisting of electrochemical characterization and Low-Earth-Orbit (LEO) cycling of Li-Ion cells from three vendors was initiated in 1999 to determine the cycling performance and to infuse the new technology in the future NASA missions. The 8-cell batteries included in this evaluation are prismatic cells manufactured by Mine Safety Appliances Company (MSA), cylindrical cells manufactured by SAFT and prismatic cells manufactured by Yardney Technical Products, Inc. (YTP). The three batteries were cycle tested in the LEO regime at 40% depth of discharge, and under a charge control technique that consists of battery voltage clamp with a current taper. The initial testing was conducted at 20 C; however, the batteries were cycled also intermittently at low temperatures. YTP 20 Ah cells consisted of mixed-oxide (Co and Ni) positive, graphitic carbon negative, LIPF6 salt mixed with organic carbonate solvents. The battery voltage clamp was 32 V. The low temperature cycling tests started after 4575 cycles at 20 C. The cells were not capable of cycling. at low temperature since the charge acceptance at battery level was poor. There was a cell in the battery that showed too high an end-of-charge (EOC) voltage thereby limiting the ability to charge the rest of the cells in the battery. The battery has completed 6714 cycles. SAFT 12 Ah cells consisted of mixed-oxide (Co and NO positive, graphitic carbon negative, LiPF6 salt mixed with organic carbonate solvents. The battery voltage clamp was for 30.8 V. The low temperature cycling tests started after 4594 cycles at 20 C. A cell that showed low end of discharge (EOD) and EOC voltages and three other cells that showed higher EOC voltages limited the charge acceptance at the selected voltage limit during charge. The cells were capable of cycling at 10 C and 0 C but the charge voltage limit had to be increased to 34.3 V (4.3 V per cell). The low temperature cycling may have induced poor chargeability since the voltage had to

  7. Quantitative Analysis of Three-dimensional Microstructure of Li-ion Battery Electrodes

    NASA Astrophysics Data System (ADS)

    Liu, Zhao

    Li-ion batteries (LIBs) have attracted considerable attention in the past two decades due to their widespread applications in portable electronics, and their growing use in electric vehicles and large-scale grid storage. Increasing battery energy density and powder density while maintaining long life, along with battery safety, are the biggest challenges that limit their further development. Various approaches with materials and chemistry have been employed to improve performance. However, one less-studied aspect that also impacts performance is the electrode microstructure. In particular, three-dimensional (3D) electrode microstructural data for LIB electrodes, which were not widely available prior to this thesis, can provide important input for understanding and improving LIB performance. The focus of this thesis is to apply 3D tomographic techniques, together with electrochemical performance data, to obtain LIB microstructure-performance correlations. Two advanced 3D structural analysis techniques, focused ion beam-scanning electron microscopy (FIB-SEM) and transmission X-ray microscopy (TXM) nanotomography, are used to quantify LIB electrode microstructure. 3D characterization of LIB electrode microstructure is used to obtain a deeper understanding of mechanisms that limit LIB performance. Microstructural characterization before and after cycling is used to explore capacity loss mechanisms. It is hoped that the results can guide electrode microstructures design to improve performance and stability. Two types of commercial electrodes, LiCoO2 and LiCoO 2/Li(Ni1/3Mn1/3Co1/3)O2, are studied using FIB-SEM and TXM. Both methods were found to be applicable to quantifying the oxide particle microstructure, including volume fraction, surface area, and particle size distribution, and results agreed well. However, structural inhomogeneity found in these commercial samples, limited the capability to resolve microstructural changes during cycling. In order to also quantify

  8. Nanoporous Tin with a Granular Hierarchical Ligament Morphology as a Highly Stable Li-Ion Battery Anode.

    PubMed

    Cook, John B; Detsi, Eric; Liu, Yijin; Liang, Yu-Lun; Kim, Hyung-Seok; Petrissans, Xavier; Dunn, Bruce; Tolbert, Sarah H

    2017-01-11

    Next generation Li-ion batteries will require negative electrode materials with energy densities many-fold higher than that found in the graphitic carbon currently used in commercial Li-ion batteries. While various nanostructured alloying-type anode materials may satisfy that requirement, such materials do not always exhibit long cycle lifetimes and/or their processing routes are not always suitable for large-scale synthesis. Here, we report on a high-performance anode material for next generation Li-ion batteries made of nanoporous Sn powders with hierarchical ligament morphology. This material system combines both long cycle lifetimes (more than 72% capacity retention after 350 cycles), high capacity (693 mAh/g, nearly twice that of commercial graphitic carbon), good charging/discharging capabilities (545 mAh/g at 1 A/g, 1.5C), and a scalable processing route that involves selective alloy corrosion. The good cycling performance of this system is attributed to its nanoporous architecture and its unique hierarchical ligament morphology, which accommodates the large volume changes taking place during lithiation, as confirmed by synchrotron-based ex-situ X-ray 3D tomography analysis. Our findings are an important step for the development of high-performance Li-ion batteries.

  9. Efficient Charging of Li-Ion Batteries with Pulsed Output Current of Triboelectric Nanogenerators.

    PubMed

    Pu, Xiong; Liu, Mengmeng; Li, Linxuan; Zhang, Chi; Pang, Yaokun; Jiang, Chunyan; Shao, Lihua; Hu, Weiguo; Wang, Zhong Lin

    2016-01-01

    The triboelectric nanogenerator (TENG) is a promising mechanical energy harvesting technology, but its pulsed output and the instability of input energy sources make associated energy-storage devices necessary for real applications. In this work, feasible and efficient charging of Li-ion batteries by a rotating TENG with pulsed output current is demonstrated. In-depth discussions are made on how to maximize the power-storage efficiency by achieving an impedance match between the TENG and a battery with appropriate design of transformers. With a transformer coil ratio of 36.7, ≈72.4% of the power generated by the TENG at 250 rpm can be stored in an LiFePO4-Li4Ti5O12 battery. Moreover, a 1 h charging of an LiCoO2-C battery by the TENG at 600 rpm delivers a discharge capacity of 130 mAh, capable of powering many smart electronics. Considering the readily scale-up capability of the TENG, promising applications in personal electronics can be anticipated in the near future.

  10. A Combustion Chemistry Analysis of Carbonate Solvents in Li-Ion Batteries

    SciTech Connect

    Harris, S J; Timmons, A; Pitz, W J

    2008-11-13

    Under abusive conditions Li-ion batteries can rupture, ejecting electrolyte and other flammable gases. In this paper we consider some of the thermochemical properties of these gases that will determine whether they ignite and how energetically they burn. We show that flames of carbonate solvents are fundamentally less energetic than those of conventional hydrocarbons. An example of this difference is given using a recently developed mechanism for dimethyl carbonate (DMC) combustion, where we show that a diffusion flame burning DMC has only half the peak energy release rate of an analogous propane flame. We find a significant variation among the carbonate solvents in the factors that are important to determining flammability, such as combustion enthalpy and vaporization enthalpy. This result suggests that thermochemical and kinetic factors might well be considered when choosing solvent mixtures.

  11. On the Oxidation State of Manganese Ions in Li-Ion Battery Electrolyte Solutions.

    PubMed

    Banerjee, Anjan; Shilina, Yuliya; Ziv, Baruch; Ziegelbauer, Joseph M; Luski, Shalom; Aurbach, Doron; Halalay, Ion C

    2017-02-08

    We demonstrate herein that Mn(3+) and not Mn(2+), as commonly accepted, is the dominant dissolved manganese cation in LiPF6-based electrolyte solutions of Li-ion batteries with lithium manganate spinel positive and graphite negative electrodes chemistry. The Mn(3+) fractions in solution, derived from a combined analysis of electron paramagnetic resonance and inductively coupled plasma spectroscopy data, are ∼80% for either fully discharged (3.0 V hold) or fully charged (4.2 V hold) cells, and ∼60% for galvanostatically cycled cells. These findings agree with the average oxidation state of dissolved Mn ions determined from X-ray absorption near-edge spectroscopy data, as verified through a speciation diagram analysis. We also show that the fractions of Mn(3+) in the aprotic nonaqueous electrolyte solution are constant over the duration of our experiments and that disproportionation of Mn(3+) occurs at a very slow rate.

  12. TUNING SILICON NANORODS FOR ANODES OF LI-ION RECHARGEABLE BATTERIES

    SciTech Connect

    Au, M.

    2010-11-23

    Silicon is a promising anode material for Li-ion batteries in regarding of high capacity, low cost and safety, but it suffers poor cycling stability due to the pulverization induced by severe volume expansion/shrinkage (297%) during lithium insertion/extraction. In our previous investigation on aluminum nanorods anodes, it is found the selection of substrates in which Al nanorods grown plays the role in prevention of pulverization resulting in the increase of cycling life. Adapting this knowledge, we investigated the Si based nanorods anodes by tuning its composition and element distribution. Our results show that although the Si nanorods demonstrated higher initial anodic capacity of 1500 mAh/g, it diminished after 50 cycles due to morphology change and pulverization. By codepositing Cu, the Si-Cu composite nanorods demonstrated sustainable capacity of 500 mAh/g in 100 cycles attributing to its flexible and less brittle nature.

  13. Porous Silicon Nanotube Arrays as Anode Material for Li-Ion Batteries.

    PubMed

    Tesfaye, Alexander T; Gonzalez, Roberto; Coffer, Jeffery L; Djenizian, Thierry

    2015-09-23

    We report the electrochemical performance of Si nanotube vertical arrays possessing thin porous sidewalls for Li-ion batteries. Porous Si nanotubes were fabricated on stainless steel substrates using a sacrificial ZnO nanowire template method. These porous Si nanotubes are stable at multiple C-rates. A second discharge capacity of 3095 mAh g(-1) with a Coulombic efficiency of 63% is attained at a rate of C/20 and a stable gravimetric capacity of 1670 mAh g(-1) obtained after 30 cycles. The high capacity values are attributed to the large surface area offered by the porosity of the 3D nanostructures, thereby promoting lithium-ion storage according to a pseudocapacitive mechanism.

  14. Cross-Linked Chitosan as an Efficient Binder for Si Anode of Li-ion Batteries.

    PubMed

    Chen, Chao; Lee, Sang Ha; Cho, Misuk; Kim, Jaehoon; Lee, Youngkwan

    2016-02-03

    We investigate the use of chitosan (CS) as a new cross-linkable and water-soluble binder for the Si anode of Li-ion batteries. In contrast to the traditional binder utilizing a hydrogen bond and/or van der Waals force-linked anode electrodes, CS can easily form a 3D network to limit the movement of Si particles through the cross-linking between the amino groups of CS and the dialdehyde of glutaraldehyde (GA). Chemical, mechanical, and morphological analyses are conducted by Fourier transform infrared spectroscopy, tensile testing, and scanning electron microscopy. The cross-linked Si/CS-GA anode exhibits an initial discharge capacity of 2782 mAh g(-1) with a high initial Coulombic efficiency of 89% and maintained a capacity of 1969 mAh g(-1) at the current density of 500 mA g(-1) over 100 cycles.

  15. Hollow carbon-nanotube/carbon-nanofiber hybrid anodes for Li-ion batteries.

    PubMed

    Chen, Yuming; Li, Xiaoyan; Park, Kyusung; Song, Jie; Hong, Jianhe; Zhou, Limin; Mai, Yiu-Wing; Huang, Haitao; Goodenough, John B

    2013-11-06

    By a novel in situ chemical vapor deposition, activated N-doped hollow carbon-nanotube/carbon-nanofiber composites are prepared having a superhigh specific Brunauer–Emmett–Teller (BET) surface area of 1840 m(2) g(–1) and a total pore volume of 1.21 m(3) g(–1). As an anode, this material has a reversible capacity of ~1150 mAh g(–1) at 0.1 A g(–1) (0.27 C) after 70 cycles. At 8 A g(–1) (21.5 C), a capacity of ~320 mAh g(–1) fades less than 20% after 3500 cycles, which makes it a superior anode material for a Li-ion battery.

  16. On the utility of C24 fullerene framework for Li-ion batteries: Quantum chemical analysis

    NASA Astrophysics Data System (ADS)

    Bagheri, Zargham

    2016-10-01

    The potential application of carbonaceous C24 nanocluster framework as an anode in Li-ion batteries (LIBs) is investigated using density functional theory calculations. We find that this fullerene unexpectedly gives an imaginary cell voltage and cannot be used as an anode in LIBs. Here, we explain the origin of this unusual behavior and introduce a strategy to make it suitable for anode materials. We show that there is no energy barrier for Li+ diffusion through two neighboring hydrogenated C24 fullerenes. The percentage of Hartree Fock (HF) exchange of density functionals reversely affects the adsorption energies of Li and Li+, so that it is decreased and increased by increasing %HF exchange, respectively. Also, a linear relationship between %HF and HOMO or LUMO level of the studied systems is predicted.

  17. High-performance gel electrolytes with tetra-armed polymer network for Li ion batteries

    NASA Astrophysics Data System (ADS)

    Hazama, Taisuke; Fujii, Kenta; Sakai, Takamasa; Aoki, Masahiro; Mimura, Hideyuki; Eguchi, Hisao; Todorov, Yanko; Yoshimoto, Nobuko; Morita, Masayuki

    2015-07-01

    An organo gel with only 6 wt % tetra-armed poly(ethylene glycol), TetraPEG, was prepared and applied as a novel gel electrolyte for Li ion batteries (LIBs). The TetraPEG gel electrolyte containing 1.0 M LiPF6 in binary or ternary mixtures, i.e., EC + DEC and EC + DEC + TFEP (EC: ethylene carbonate, DEC: diethyl carbonate and TFEP: tris(2,2,2-trifluoroethyl)phosphate showed high ionic conductivity required for the use in LIB systems. The TetraPEG gel based on ternary EC + DEC + TFEP system acts as a nonflammable gel electrolyte at the TFEP content higher than 20 vol%. In cyclic voltammetry and charge/discharge cycling tests, the TetraPEG gel electrolytes showed good reversibility for a graphite negative electrode.

  18. Experimental and theoretical investigations of functionalized boron nitride as electrode materials for Li-ion batteries

    SciTech Connect

    Zhang, Fan; Nemeth, Karoly; Bareno, Javier; Dogan, Fulya; Bloom, Ira D.; Shaw, Leon L.

    2016-03-03

    The feasibility of synthesizing functionalized h-BN (FBN) via the reaction between molten LiOH and solid h-BN is studied for the first time and its first ever application as an electrode material in Li-ion batteries is evaluated. Density functional theory (DFT) calculations are performed to provide mechanistic understanding of the possible electrochemical reactions derived from the FBN. Various materials characterizations reveal that the melt-solid reaction can lead to exfoliation and functionalization of h-BN simultaneously, while electrochemical analysis proves that the FBN can reversibly store charges through surface redox reactions with good cycle stability and coulombic efficiency. As a result, the DFT calculations have provided physical insights into the observed electrochemical properties derived from the FBN.

  19. Experimental and theoretical investigations of functionalized boron nitride as electrode materials for Li-ion batteries

    DOE PAGES

    Zhang, Fan; Nemeth, Karoly; Bareno, Javier; ...

    2016-03-03

    The feasibility of synthesizing functionalized h-BN (FBN) via the reaction between molten LiOH and solid h-BN is studied for the first time and its first ever application as an electrode material in Li-ion batteries is evaluated. Density functional theory (DFT) calculations are performed to provide mechanistic understanding of the possible electrochemical reactions derived from the FBN. Various materials characterizations reveal that the melt-solid reaction can lead to exfoliation and functionalization of h-BN simultaneously, while electrochemical analysis proves that the FBN can reversibly store charges through surface redox reactions with good cycle stability and coulombic efficiency. As a result, the DFTmore » calculations have provided physical insights into the observed electrochemical properties derived from the FBN.« less

  20. Parameter sensitivity analysis of a simplified electrochemical and thermal model for Li-ion batteries aging

    NASA Astrophysics Data System (ADS)

    Edouard, C.; Petit, M.; Forgez, C.; Bernard, J.; Revel, R.

    2016-09-01

    In this work, a simplified electrochemical and thermal model that can predict both physicochemical and aging behavior of Li-ion batteries is studied. A sensitivity analysis of all its physical parameters is performed in order to find out their influence on the model output based on simulations under various conditions. The results gave hints on whether a parameter needs particular attention when measured or identified and on the conditions (e.g. temperature, discharge rate) under which it is the most sensitive. A specific simulation profile is designed for parameters involved in aging equations in order to determine their sensitivity. Finally, a step-wise method is followed to limit the influence of parameter values when identifying some of them, according to their relative sensitivity from the study. This sensitivity analysis and the subsequent step-wise identification method show very good results, such as a better fitting of the simulated cell voltage with experimental data.

  1. High-throughput computational design of cathode coatings for Li-ion batteries.

    PubMed

    Aykol, Muratahan; Kim, Soo; Hegde, Vinay I; Snydacker, David; Lu, Zhi; Hao, Shiqiang; Kirklin, Scott; Morgan, Dane; Wolverton, C

    2016-12-14

    Cathode degradation is a key factor that limits the lifetime of Li-ion batteries. To identify functional coatings that can suppress this degradation, we present a high-throughput density functional theory based framework which consists of reaction models that describe thermodynamic and electrochemical stabilities, and acid-scavenging capabilities of materials. Screening more than 130,000 oxygen-bearing materials, we suggest physical and hydrofluoric-acid barrier coatings such as WO3, LiAl5O8 and ZrP2O7 and hydrofluoric-acid scavengers such as Sc2O3, Li2CaGeO4, LiBO2, Li3NbO4, Mg3(BO3)2 and Li2MgSiO4. Using a design strategy to find the thermodynamically optimal coatings for a cathode, we further present optimal hydrofluoric-acid scavengers such as Li2SrSiO4, Li2CaSiO4 and CaIn2O4 for the layered LiCoO2, and Li2GeO3, Li4NiTeO6 and Li2MnO3 for the spinel LiMn2O4 cathodes. These coating materials have the potential to prolong the cycle-life of Li-ion batteries and surpass the performance of common coatings based on conventional materials such as Al2O3, ZnO, MgO or ZrO2.

  2. High-throughput computational design of cathode coatings for Li-ion batteries

    PubMed Central

    Aykol, Muratahan; Kim, Soo; Hegde, Vinay I.; Snydacker, David; Lu, Zhi; Hao, Shiqiang; Kirklin, Scott; Morgan, Dane; Wolverton, C.

    2016-01-01

    Cathode degradation is a key factor that limits the lifetime of Li-ion batteries. To identify functional coatings that can suppress this degradation, we present a high-throughput density functional theory based framework which consists of reaction models that describe thermodynamic and electrochemical stabilities, and acid-scavenging capabilities of materials. Screening more than 130,000 oxygen-bearing materials, we suggest physical and hydrofluoric-acid barrier coatings such as WO3, LiAl5O8 and ZrP2O7 and hydrofluoric-acid scavengers such as Sc2O3, Li2CaGeO4, LiBO2, Li3NbO4, Mg3(BO3)2 and Li2MgSiO4. Using a design strategy to find the thermodynamically optimal coatings for a cathode, we further present optimal hydrofluoric-acid scavengers such as Li2SrSiO4, Li2CaSiO4 and CaIn2O4 for the layered LiCoO2, and Li2GeO3, Li4NiTeO6 and Li2MnO3 for the spinel LiMn2O4 cathodes. These coating materials have the potential to prolong the cycle-life of Li-ion batteries and surpass the performance of common coatings based on conventional materials such as Al2O3, ZnO, MgO or ZrO2. PMID:27966537

  3. High-throughput computational design of cathode coatings for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Aykol, Muratahan; Kim, Soo; Hegde, Vinay I.; Snydacker, David; Lu, Zhi; Hao, Shiqiang; Kirklin, Scott; Morgan, Dane; Wolverton, C.

    2016-12-01

    Cathode degradation is a key factor that limits the lifetime of Li-ion batteries. To identify functional coatings that can suppress this degradation, we present a high-throughput density functional theory based framework which consists of reaction models that describe thermodynamic and electrochemical stabilities, and acid-scavenging capabilities of materials. Screening more than 130,000 oxygen-bearing materials, we suggest physical and hydrofluoric-acid barrier coatings such as WO3, LiAl5O8 and ZrP2O7 and hydrofluoric-acid scavengers such as Sc2O3, Li2CaGeO4, LiBO2, Li3NbO4, Mg3(BO3)2 and Li2MgSiO4. Using a design strategy to find the thermodynamically optimal coatings for a cathode, we further present optimal hydrofluoric-acid scavengers such as Li2SrSiO4, Li2CaSiO4 and CaIn2O4 for the layered LiCoO2, and Li2GeO3, Li4NiTeO6 and Li2MnO3 for the spinel LiMn2O4 cathodes. These coating materials have the potential to prolong the cycle-life of Li-ion batteries and surpass the performance of common coatings based on conventional materials such as Al2O3, ZnO, MgO or ZrO2.

  4. Direct view on the phase evolution in individual LiFePO4 nanoparticles during Li-ion battery cycling

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoyu; van Hulzen, Martijn; Singh, Deepak P.; Brownrigg, Alex; Wright, Jonathan P.; van Dijk, Niels H.; Wagemaker, Marnix

    2015-09-01

    Phase transitions in Li-ion electrode materials during (dis)charge are decisive for battery performance, limiting high-rate capabilities and playing a crucial role in the cycle life of Li-ion batteries. However, the difficulty to probe the phase nucleation and growth in individual grains is hindering fundamental understanding and progress. Here we use synchrotron microbeam diffraction to disclose the cycling rate-dependent phase transition mechanism within individual particles of LiFePO4, a key Li-ion electrode material. At low (dis)charge rates well-defined nanometer thin plate-shaped domains co-exist and transform much slower and concurrent as compared with the commonly assumed mosaic transformation mechanism. As the (dis)charge rate increases phase boundaries become diffuse speeding up the transformation rates of individual grains. Direct observation of the transformation of individual grains reveals that local current densities significantly differ from what has previously been assumed, giving new insights in the working of Li-ion battery electrodes and their potential improvements.

  5. Direct view on the phase evolution in individual LiFePO4 nanoparticles during Li-ion battery cycling.

    PubMed

    Zhang, Xiaoyu; van Hulzen, Martijn; Singh, Deepak P; Brownrigg, Alex; Wright, Jonathan P; van Dijk, Niels H; Wagemaker, Marnix

    2015-09-23

    Phase transitions in Li-ion electrode materials during (dis)charge are decisive for battery performance, limiting high-rate capabilities and playing a crucial role in the cycle life of Li-ion batteries. However, the difficulty to probe the phase nucleation and growth in individual grains is hindering fundamental understanding and progress. Here we use synchrotron microbeam diffraction to disclose the cycling rate-dependent phase transition mechanism within individual particles of LiFePO4, a key Li-ion electrode material. At low (dis)charge rates well-defined nanometer thin plate-shaped domains co-exist and transform much slower and concurrent as compared with the commonly assumed mosaic transformation mechanism. As the (dis)charge rate increases phase boundaries become diffuse speeding up the transformation rates of individual grains. Direct observation of the transformation of individual grains reveals that local current densities significantly differ from what has previously been assumed, giving new insights in the working of Li-ion battery electrodes and their potential improvements.

  6. Li-Ion Battery/Supercapacitor Hybrid Power Supply (HPS) for Space Applications

    NASA Astrophysics Data System (ADS)

    Gineste, Valery; Gajewski, Laurent; Carron, Claude; Rouzies, Christian; Marec, Andre; Sanchez, Olivier

    2014-08-01

    Looking to down-size the batteries onboard satellites with increasing the payload capabilities (in terms of power and duration), an energy battery combined with a bank of supercapacitors is currently investigated as an hybrid power source. With greater mass and volume densities of power, an actively controlled hybrid battery/supercapacitor has broad applications in pulse- operated power systems.Within a CNES study, Astrium, in collaboration with NEXTER Electronics worked assessing the performances of a breadboard hybrid Li-ion power source / supercapacitor. A converter is used to actively control the power flow from the battery, to couple it to a supercapacitor for power enhancement, and to efficiently deliver the appropriate power to a load. NEXTER Electronics has been working for many years in the field of the energy transformation, initially for military applications. They developed the architecture of a bidirectional converter: the PCUBE (P3). The PCUBE guarantees a very high efficiency, and was successively simulated, tested and validated in full scale.The complete prototype, including the battery, the bank of supercapacitors as well as the power electronics, was subjected to functional tests to assess the performances of the system, in particular the output, the dissipations and the speed of reaction.Typical profiles of various missions were applied. Tests in environmental chambers were carried out to assess the performance of the Hybrid Power Supply under specific temperature and climatic conditions, especially cold temperatures. Those tests showed the relevance of the hybrid power supply.This paper presents the results of the first preliminary tests conducted by Astrium on a hybrid power supply demonstrator. Based on these results as well as lessons learnt and further assessments, an exhaustive validation and future qualification of the hybrid power supply will be proposed and discussed.

  7. Correlating capacity and Li content in layered material for Li-ion battery using XRD and particle size distribution measurements

    NASA Astrophysics Data System (ADS)

    Al-Tabbakh, A. A. A.; Al-Zubaidi, A. B.; Kamarulzaman, N.

    2016-03-01

    A lithiated transition-metal oxide material was successfully synthesized by a combustion method for Li-ion battery. The material was characterized using thermogravimetric and particle size analyzers, scanning electron microscope and X-ray diffractometer. The calcined powders of the material exhibited a finite size distribution and a single phase of pure layered structure of space group Roverline{3} m . An innovative method was developed to calculate the material electrochemical capacity based on considerations of the crystal structure and contributions of Li ions from specified unit cells at the surfaces and in the interiors of the material particles. Results suggested that most of the Li ions contributing to the electrochemical current originated from the surface region of the material particles. It was possible to estimate the thickness of the most delithiated region near the particle surfaces at any delithiation depth accurately. Furthermore, results suggested that the core region of the particles remained electrochemically inaccessible in the conventional applied voltages. This result was justified by direct quantitative comparison of specific capacity values calculated from the particle size distribution with those measured experimentally. The present analysis is believed to be of some value for estimation of the failure mechanism in cathode compounds, thus assisting the development of Li-ion batteries.

  8. Novel Li₂MnO₃ nanowire anode with internal Li-enrichment for use in a Li-ion battery.

    PubMed

    Wang, Dandan; Zhao, Yunlong; Xu, Xu; Hercule, Kalele Mulonda; Yan, Mengyu; An, Qinyou; Tian, Xiaocong; Xu, Jiaming; Qu, Longbing; Mai, Liqiang

    2014-07-21

    Anode materials which undergo a conversion reaction can achieve larger specific capacities than conventional carbon-based materials. They can even achieve higher energy densities when used at low voltages. However, the large amounts of Li₂O generated in the interior of these structures when Li ions are inserted can cause volume expansion and mechanical fracturing from the inside out. This leads to a poor cycling performance and limits their commercial application. To overcome this limitation, we introduced Li ions into the interior of the cells of manganese oxide materials and successfully synthesized a novel Li-rich anode material (Li₂MnO₃). The reversible capacity reached 1279 mA h g(-1) after 500 cycles, much higher than that of pure MnO₂ or other commercial anodes. This optimization of the internal Li-enrichment and its application in Li₂MnO₃ nanowires used as low voltage anodes in Li-ion batteries have rarely been reported. Further investigations by X-ray diffraction and photoelectron spectroscopy suggested that the strategy of optimizing the internal Li-enrichment of this novel Li₂MnO₃ anode is a promising development for Li-ion batteries.

  9. Electronic structure ‘engineering’ in the development of materials for Li-ion and Na-ion batteries

    NASA Astrophysics Data System (ADS)

    Molenda, Janina

    2017-03-01

    Transition metal oxides with a general formula A x M a O b (A  =  Li, Na, M  =  transition metal) constitute a group of potential electrode materials for a new generation of alkaline batteries. This application is related to the fact that these compounds can reversibly intercalate high amounts of alkaline ions (1 or more moles per mole of M a O b ) already at room temperature, without significant changes in their crystallographic structure. The author of this work basing on her own investigations of A x M a O b (A  =  Li, Na; M  =  3d, 4d, 5d) has demonstrated that the electronic structure of these materials plays an important role in the intercalation process. Electronic model of intercalation process is presented. Author’s studies show that electronic structure ‘engineering’ is an excellent method of controlling properties of the cathode materials for Li-ion and Na-ion batteries, changing their unfavorable character of the discharge curve, from step-like to monotonic, through modification and control density of states function of a cathode material. Keynote talk at 8th International Workshop on Advanced Materials Science and Nanotechnology (IWAMSN2016), 8–12 November 2016, Ha Long City, Vietnam.

  10. Polytype and stacking faults in the Li2CoSiO4 Li-ion battery cathode.

    PubMed

    Truong, Quang Duc; Devaraju, Murukanahally Kempaiah; Sasaki, Yoshikazu; Hyodo, Hiroshi; Honma, Itaru

    2014-12-01

    Atomic-resolution imaging of the crystal defects of cathode materials is crucial to understand their formation and the correlation between the structure, electrical properties, and electrode performance in rechargeable batteries. The polytype, a stable form of varied crystal structure with uniform chemical composition, holds promise to engineer electronic band structure in nanoscale homojunctions.1-3 Analyzing the exact sites of atoms and the chemistry of the boundary in polytypes would advance our understanding of their formation and properties. Herein, the polytype and stacking faults in the lithium cobalt silicates are observed directly by aberration-corrected scanning transmission electron microscopy. The atomic-scale imaging allows clarification that the polytype is formed by stacking of two different close-packed crystal planes in three-dimensional space. The formation of the polytype was induced by Li-Co cation exchange, the transformation of one phase to the other, and their stacking. This finding provides insight into intrinsic structural defects in an important Li2 CoSiO4 Li-ion battery cathode.

  11. A nanonet-enabled Li ion battery cathode material with high power rate, high capacity, and long cycle lifetime.

    PubMed

    Zhou, Sa; Yang, Xiaogang; Lin, Yongjing; Xie, Jin; Wang, Dunwei

    2012-01-24

    The performance of advanced energy conversion and storage devices, including solar cells and batteries, is intimately connected to the electrode designs at the nanoscale. Consider a rechargeable Li ion battery, a prevalent energy storage technology, as an example. Among other factors, the electrode material design at the nanoscale is key to realizing the goal of measuring fast ionic diffusion and high electronic conductivity, the inherent properties that determine power rates, and good stability upon repeated charge and discharge, which is critical to the sustainable high capacities. Here we show that such a goal can be achieved by forming heteronanostructures on a radically new platform we discovered, TiSi(2) nanonets. In addition to the benefits of high surface area, good electrical conductivity, and superb mechanical strength offered by the nanonet, the design also takes advantage of how TiSi(2) reacts with O(2) upon heating. The resulting TiSi(2)/V(2)O(5) nanostructures exhibit a specific capacity of 350 Ah/kg, a power rate up to 14.5 kW/kg, and 78.7% capacity retention after 9800 cycles of charge and discharge. These figures indicate that a cathode material significantly better than V(2)O(5) of other morphologies is produced.

  12. Challenges in Accommodating Volume Change of Si Anodes for Li-Ion Batteries.

    PubMed

    Ko, Minseong; Chae, Sujong; Cho, Jaephil

    2015-11-01

    Si has been considered as a promising alternative anode for next-generation Li-ion batteries (LIBs) because of its high theoretical energy density, relatively low working potential, and abundance in nature. However, Si anodes exhibit rapid capacity decay and an increase in the internal resistance, which are caused by the large volume changes upon Li insertion and extraction. This unfortunately limits their practical applications. Therefore, managing the total volume change remains a critical challenge for effectively alleviating the mechanical fractures and instability of solid-electrolyte-interphase products. In this regard, we review the recent progress in volume-change-accommodating Si electrodes and investigate their ingenious structures with significant improvements in the battery performance, including size-controlled materials, patterned thin films, porous structures, shape-preserving shell designs, and graphene composites. These representative approaches potentially overcome the large morphologic changes in the volume of Si anodes by securing the strain relaxation and structural integrity in the entire electrode. Finally, we propose perspectives and future challenges to realize the practical application of Si anodes in LIB systems.

  13. Fabrication of free-standing aligned multiwalled carbon nanotube array for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Bulusheva, L. G.; Arkhipov, V. E.; Fedorovskaya, E. O.; Zhang, Su; Kurenya, A. G.; Kanygin, M. A.; Asanov, I. P.; Tsygankova, A. R.; Chen, Xiaohong; Song, Huaihe; Okotrub, A. V.

    2016-04-01

    We show that a high-temperature CCl4 vapor treatment of vertically aligned multiwalled carbon nanotubes (VA-MWCNTs) grown on silicon substrate allows carefully detach the array from the substrate. Moreover, this procedure partially purifies the VA-MWCNTs from the residual iron catalyst. To improve electrical connectivity of free-standing VA-MWCNTs in an electrochemical cell, the array was placed between the layers of Ni foam. Such assembly demonstrated the better performance in Li-battery as compared to the disordered MWCNTs. After 50 cycles, the specific capacity of VA-MWCNT array synthesized from 0.5 wt% ferrocene solution in toluene was 350 mAh g-1 at a current density of 0.1 A g-1, while the battery with the disordered MWCNTs achieved 197 mAh g-1 only. By the results of electrochemical impedance spectroscopy, the higher capacity of VA-MWCNTs was attributed to larger surface area available for electrolyte and Li ions due to the absence of binder coating.

  14. High Performance Li4Ti5O12/Si Composite Anodes for Li-Ion Batteries

    PubMed Central

    Chen, Chunhui; Agrawal, Richa; Wang, Chunlei

    2015-01-01

    Improving the energy capacity of spinel Li4Ti5O12 (LTO) is very important to utilize it as a high-performance Li-ion battery (LIB) electrode. In this work, LTO/Si composites with different weight ratios were prepared and tested as anodes. The anodic and cathodic peaks from both LTO and silicon were apparent in the composites, indicating that each component was active upon Li+ insertion and extraction. The composites with higher Si contents (LTO:Si = 35:35) exhibited superior specific capacity (1004 mAh·g−1) at lower current densities (0.22 A·g−1) but the capacity deteriorated at higher current densities. On the other hand, the electrodes with moderate Si contents (LTO:Si = 50:20) were able to deliver stable capacity (100 mAh·g−1) with good cycling performance, even at a very high current density of 7 A·g−1. The improvement in specific capacity and rate performance was a direct result of the synergy between LTO and Si; the former can alleviate the stresses from volumetric changes in Si upon cycling, while Si can add to the capacity of the composite. Therefore, it has been demonstrated that the addition of Si and concentration optimization is an easy yet an effective way to produce high performance LTO-based electrodes for lithium-ion batteries.

  15. A POM–organic framework anode for Li-ion battery

    DOE PAGES

    Yue, Yanfeng; Li, Yunchao; Bi, Zhonghe; ...

    2015-01-01

    Rechargeable Li-ion batteries (LIBs) are currently the dominant power source for portable electronic devices and electric vehicles, and for small-scale stationary energy storage. However, one bottleneck of the anode materials for LIBs is the poor cycling performance caused by the fact that the anodes cannot maintain their integrity over several charge–discharge cycles. In this work, we demonstrate an approach to improving the cycling performance of lithium-ion battery anodes by constructing an extended 3D network of flexible redox active polyoxometalate (POM) clusters with redox active organic linkers, herein described as POMOF. In addition, this architecture enables the accommodation of large volumemore » changes during cycling at relatively high current rates. For example, the POMOF anode exhibits a high reversible capacity of 540 mA h g–1 after 360 cycles at a current rate of 0.25C and a long cycle life at a current rate of 1.25C (>500 cycles).« less

  16. Improved layered mixed transition metal oxides for Li-ion batteries

    SciTech Connect

    Doeff, Marca M.; Conry, Thomas; Wilcox, James

    2010-03-05

    Recent work in our laboratory has been directed towards development of mixed layered transition metal oxides with general composition Li[Ni, Co, M, Mn]O2 (M=Al, Ti) for Li ion battery cathodes. Compounds such as Li[Ni1/3Co1/3Mn1/3]O2 (often called NMCs) are currently being commercialized for use in consumer electronic batteries, but the high cobalt content makes them too expensive for vehicular applications such as electric vehicles (EV), plug-in hybrid electric vehicles (PHEVs), or hybrid electric vehicles (HEVs). To reduce materials costs, we have explored partial or full substitution of Co with Al, Ti, and Fe. Fe substitution generally decreases capacity and results in poorer rate and cycling behavior. Interestingly, low levels of substitution with Al or Ti improve aspects of performance with minimal impact on energy densities, for some formulations. High levels of Al substitution compromise specific capacity, however, so further improvements require that the Ni and Mn content be increased and Co correspondingly decreased. Low levels of Al or Ti substitution can then be used offset negative effects induced by the higher Ni content. The structural and electrochemical characterization of substituted NMCs is presented in this paper.

  17. A POM–organic framework anode for Li-ion battery

    SciTech Connect

    Yue, Yanfeng; Li, Yunchao; Bi, Zhonghe; Veith, Gabriel M.; Bridges, Craig A.; Guo, Bingkun; Chen, Jihua; Mullins, David R.; Surwade, Sumedh P.; Mahurin, Shannon M.; Liu, Hongjun; Paranthaman, M. Parans; Dai, Sheng

    2015-01-01

    Rechargeable Li-ion batteries (LIBs) are currently the dominant power source for portable electronic devices and electric vehicles, and for small-scale stationary energy storage. However, one bottleneck of the anode materials for LIBs is the poor cycling performance caused by the fact that the anodes cannot maintain their integrity over several charge–discharge cycles. In this work, we demonstrate an approach to improving the cycling performance of lithium-ion battery anodes by constructing an extended 3D network of flexible redox active polyoxometalate (POM) clusters with redox active organic linkers, herein described as POMOF. In addition, this architecture enables the accommodation of large volume changes during cycling at relatively high current rates. For example, the POMOF anode exhibits a high reversible capacity of 540 mA h g–1 after 360 cycles at a current rate of 0.25C and a long cycle life at a current rate of 1.25C (>500 cycles).

  18. NASA Aerospace Flight Battery Program: Generic Safety, Handling and Qualification Guidelines for Lithium-Ion (Li-Ion) Batteries; Availability of Source Materials for Lithium-Ion (Li-Ion) Batteries; Maintaining Technical Communications Related to Aerospace Batteries (NASA Aerospace Battery Workshop). Volume 1, Part 1

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.; Brewer, Jeffrey C.; Bugga, Ratnakumar V.; Darcy, Eric C.; Jeevarajan, Judith A.; McKissock, Barbara I.; Schmitz, Paul C.

    2010-01-01

    This NASA Aerospace Flight Battery Systems Working Group was chartered within the NASA Engineering and Safety Center (NESC). The Battery Working Group was tasked to complete tasks and to propose proactive work to address battery related, agency-wide issues on an annual basis. In its first year of operation, this proactive program addressed various aspects of the validation and verification of aerospace battery systems for NASA missions. Studies were performed, issues were discussed and in many cases, test programs were executed to generate recommendations and guidelines to reduce risk associated with various aspects of implementing battery technology in the aerospace industry. This document contains Part 1 - Volume I: Generic Safety, Handling and Qualification Guidelines for Lithium-Ion (Li-Ion) Batteries, Availability of Source Materials for Lithium-Ion (Li-Ion) Batteries, and Maintaining Technical Communications Related to Aerospace Batteries (NASA Aerospace Battery Workshop).

  19. Effects of Carbon Content on the Electrochemical Performances of MoS2-C Nanocomposites for Li-Ion Batteries.

    PubMed

    Sun, Weiyi; Hu, Zhe; Wang, Caiyun; Tao, Zhanliang; Chou, Shu-Lei; Kang, Yong-Mook; Liu, Hua-Kun

    2016-08-31

    Molybdenum disulfide is popular for rechargeable batteries, especially in Li-ion batteries, because of its layered structure and relatively high specific capacity. In this paper, we report MoS2-C nanocomposites that are synthesized by a hydrothermal process, and their use as anode material for Li-ion batteries. Ascorbic acid is used as the carbon source, and the carbon contents can be tuned from 2.5 wt % to 16.2 wt %. With increasing of carbon content, the morphology of MoS2-C nanocomposites changes from nanoflowers to nanospheres, and the particle size is decreased from 200 to 60 nm. This change is caused by the chemical complex interaction of ascorbic acid. The MoS2-C nanocomposite with 8.4 wt % C features a high capacity of 970 mAh g(-1) and sustains a capacity retention ratio of nearly 100% after 100 cycles. When the current increases to 1000 mA g(-1), the capacity still reaches 730 mAh g(-1). The above manifests that the carbon coating layer does not only accelerate the charge transfer kinetics to supply quick discharging and charging, but also hold the integrity of the electrode materials as evidenced by the long cycling stability. Therefore, MoS2-based nanocomposites could be used as commercial anode materials in Li-ion batteries.

  20. Development of in-situ full-field spectroscopic imaging analysis and application on Li-ion battery using transmission x-ray microscopy

    NASA Astrophysics Data System (ADS)

    Chen-Wiegart, Yu-chen K.; Wang, Jiajun; Wang, Jun

    2013-09-01

    This paper presents the advance in spectroscopic imaging technique and analysis method from the newly developed transmission x-ray microscopy (TXM) at the beamline X8C of National Synchrotron Light Source. Through leastsquares linear combination fitting we developed on the in situ spectroscopic images, a time-dependent and spatially resolved chemical composition mapping can be obtained and quantitatively analyzed undergone chemical/electrochemical reactions. A correlation of morphological evolution, chemical state distribution changes and reaction conditions can be revealed. We successfully applied this method to study the electrochemical evolution of CuO, an anode material of Li-ion battery, during the lithiation-delitiation cycling.

  1. Todorokite-type manganese oxide nanowires as an intercalation cathode for Li-ion and Na-ion batteries

    SciTech Connect

    Byles, B. W.; West, P.; Cullen, D. A.; More, K. L.; Pomerantseva, E.

    2015-01-01

    Extended hydrothermal treatment at an elevated temperature of 220 °C allowed high yield synthesis of manganese oxide nanowires with a todorokite crystal structure suitable for ions intercalation. The flexible, high aspect ratio nanowires are 50–100 nm in diameter and up to several microns long, with 3 × 3 structural tunnels running parallel to the nanowire longitudinal axis. Moreover, the tunnels are occupied by magnesium ions and water molecules, with the chemical composition found to be Mg0.2MnO2·0.5H2O. The todorokite nanowires were, for the first time, electrochemically tested in both Li-ion and Na-ion cells. A first discharge capacity of 158 mA h g-1 was achieved in a Na-ion system, which was found to be greater than the first discharge capacity in a Li-ion system (133 mA h g-1). In spite of the large structural tunnel dimensions, todorokite showed a significant first cycle capacity loss in a Na-ion battery. After 20 cycles, the capacity was found to stabilize around 50 mA h g-1 and remained at this level for 100 cycles. In a Li-ion system, todorokite nanowires showed significantly better capacity retention with 78% of its initial capacity remaining after 100 cycles. Rate capability tests also showed superior performance of todorokite nanowires in Li-ion cells compared to Na-ion cells at higher current rates. Finally, these results highlight the difference in electrochemical cycling behavior of Li-ion and Na-ion batteries for a host material with spacious 3 × 3 tunnels tailored for large Na+ ion intercalation.

  2. Todorokite-type manganese oxide nanowires as an intercalation cathode for Li-ion and Na-ion batteries

    DOE PAGES

    Byles, B. W.; West, P.; Cullen, D. A.; ...

    2015-01-01

    Extended hydrothermal treatment at an elevated temperature of 220 °C allowed high yield synthesis of manganese oxide nanowires with a todorokite crystal structure suitable for ions intercalation. The flexible, high aspect ratio nanowires are 50–100 nm in diameter and up to several microns long, with 3 × 3 structural tunnels running parallel to the nanowire longitudinal axis. Moreover, the tunnels are occupied by magnesium ions and water molecules, with the chemical composition found to be Mg0.2MnO2·0.5H2O. The todorokite nanowires were, for the first time, electrochemically tested in both Li-ion and Na-ion cells. A first discharge capacity of 158 mA hmore » g-1 was achieved in a Na-ion system, which was found to be greater than the first discharge capacity in a Li-ion system (133 mA h g-1). In spite of the large structural tunnel dimensions, todorokite showed a significant first cycle capacity loss in a Na-ion battery. After 20 cycles, the capacity was found to stabilize around 50 mA h g-1 and remained at this level for 100 cycles. In a Li-ion system, todorokite nanowires showed significantly better capacity retention with 78% of its initial capacity remaining after 100 cycles. Rate capability tests also showed superior performance of todorokite nanowires in Li-ion cells compared to Na-ion cells at higher current rates. Finally, these results highlight the difference in electrochemical cycling behavior of Li-ion and Na-ion batteries for a host material with spacious 3 × 3 tunnels tailored for large Na+ ion intercalation.« less

  3. Novel polymer Li-ion binder carboxymethyl cellulose derivative enhanced electrochemical performance for Li-ion batteries.

    PubMed

    Qiu, Lei; Shao, Ziqiang; Wang, Daxiong; Wang, Feijun; Wang, Wenjun; Wang, Jianquan

    2014-11-04

    Novel water-based binder lithium carboxymethyl cellulose (CMC-Li) is synthesized by cotton as raw material. The mechanism of the CMC-Li as a binder is reported. Electrochemical properties of batteries' cathodes based on commercially available lithium iron phosphate (LiFePO4, LFP) and water-soluble binder are investigated. Sodium carboxymethyl cellulose (CMC-Na, CMC) and CMC-Li are used as the binder. After 200 cycles, compared with conventional poly(vinylidene fluoride) (PVDF) binder, the CMC-Li binder significantly improves cycling performance of the LFP cathode 96.7% of initial reversible capacity achieved at 175 mA h g(-1). Constant current charge-discharge test results demonstrate that the LFP electrode using CMC-Li as the binder has the highest rate capability, followed closely by those using CMC and PVDF binders, respectively. Electrochemical impedance spectroscopy test results show that the electrode using CMC-Li as the binder has lower charge transfer resistance than the electrodes using CMC and PVDF as the binders.

  4. Engineered Si electrode nanoarchitecture: a scalable postfabrication treatment for the production of next-generation Li-ion batteries.

    PubMed

    Hassan, Fathy M; Chabot, Victor; Elsayed, Abdel Rahman; Xiao, Xingcheng; Chen, Zhongwei

    2014-01-08

    A novel, economical flash heat treatment of the fabricated silicon based electrodes is introduced to boost the performance and cycle capability of Li-ion batteries. The treatment reveals a high mass fraction of Si, improved interfacial contact, synergistic SiO2/C coating, and a conductive cellular network for improved conductivity, as well as flexibility for stress compensation. The enhanced electrodes achieve a first cycle efficiency of ∼84% and a maximum charge capacity of 3525 mA h g(-1), almost 84% of silicon's theoretical maximum. Further, a stable reversible charge capacity of 1150 mA h g(-1) at 1.2 A g(-1) can be achieved over 500 cycles. Thus, the flash heat treatment method introduces a promising avenue for the production of industrially viable, next-generation Li-ion batteries.

  5. Development of non-enzymatic glucose sensor using recycled cobalt from cell phone Li-ion batteries.

    PubMed

    Gonçalves, Sicele A; Garcia, Eric M; Taroco, Hosane A; Teixeira, Rodrigo G; Guedes, Kassílio J; Gorgulho, Honória F; Martelli, Patrícia B; Fernandes, Antônio P L

    2015-12-01

    This article aims to present an alternative to recycling of spent Li-ion batteries applied to electrochemical sensor manufacturing. The cobalt, from cathode of Li-ion batteries, was recovered by electrodeposition onto AISI 430 stainless steel substrate and applied as glucose sensor. The composition of cathode utilized was obtained by AAS measures and corresponds to LiNi0,40Co0,60O2. Despite this composition, in the cobalt electrodeposition onto AISI 430 stainless steel the Ni is less of 1.7% (w/w) due the anomalous electrodeposition. The sensitivity of cobalt electrode for glucose detection is 70.2 μA/mmol cm(2) and the linear range is 1-10 mmol/L. This result shows that the Co electrodeposited onto AISI 430 stainless steel is a promissory and low-cost non-enzymatic glucose sensor.

  6. SiS nanosheets as a promising anode material for Li-ion batteries: a computational study.

    PubMed

    Kong, Qingquan; Feng, Wei; Wang, Qingyuan; Gan, Li-Yong; Sun, Chenghua

    2017-03-22

    Recently, a two-dimensional Pma2-SiS monolayer has been predicted to show promising electronic properties [Nano Lett., 2015, 16, 1110]. However, it is suggested that Pma2-SiS is not suitable as an anode for Li-ion batteries [J. Power Sources, 2016, 331, 391]. By employing density functional theory calculations, we find that an ultrahigh theoretical specific capacity of 893.4 mA h g(-1) can be achieved in Pma2-SiS due to the strong bonding between Li and the S atoms released from Si-S bond breakage. Additionally, the low barrier of Li-diffusion (0.08 eV) along the Si-Si bond direction and the moderate average voltage (1.12 V) of the Li intercalation suggest that Pma2-SiS is promising as an anode material for Li-ion battery applications.

  7. Hard carbon coated nano-Si/graphite composite as a high performance anode for Li-ion batteries

    SciTech Connect

    Jeong, Sookyung; Li, Xiaolin; Zheng, Jianming; Yan, Pengfei; Cao, Ruiguo; Jung, Hee Joon; Wang, Chong M.; Liu, Jun; Zhang, Jiguang

    2016-08-27

    With the ever increasing demands on Li-ion batteries with higher energy densities, alternative anode with higher reversible capacity is required to replace the conventional graphite anode. Here, we demonstrate a cost-effective hydrothermal-carbonization approach to prepare the hard carbon coated nano-Si/graphite (HC-nSi/G) composite as a high performance anode for Li-ion batteries. In this hierarchical structured composite, the hard carbon coating layer not only provides an efficient pathway for electron transfer, but also alleviates the volume variation of silicon during charge/discharge processes. The HC-nSi/G composite electrode shows excellent electrochemical performances including a high specific capacity of 878.6 mAh g-1 based on the total weight of composite, good rate performance and a decent cycling stability, which is promising for practical applications.

  8. Engineering study on TiSnSb-based composite negative electrode for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Wilhelm, H. A.; Marino, C.; Darwiche, A.; Soudan, P.; Morcrette, M.; Monconduit, L.; Lestriez, B.

    2015-01-01

    Micrometric TiSnSb is a promising negative electrode material for Li-ion batteries when formulated with carboxymethyl cellulose (CMC) binder and a mixture of carbon black and carbon nanofibers, and cycled in a fluoroethylene carbonate (FEC)-containing electrolyte. Here, other binder systems were evaluated, polyacrylic acid (PAAH) mixed with CMC, CMC in buffered solution at pH 3 and amylopectin. However CMC showed the better performance in terms of cycle life of the electrode. Whatever the binder, cycle life decreases with increasing the active mass loading, which is attributed to both the precipitation of liquid electrolyte degradation products and to the loss of electrical contacts within the composite electrode and with the current collector as a consequence of the active particles volume variations. Furthermore, calendaring the electrode unfortunately decreases the cycle life. The rate performance was studied as a function of the active mass loading and was shown to be determined by the electrode polarization resistance. Finally, full cells cycling tests with Li1Ni1/3Co1/3Mn1/3O2 at the positive electrode were done. 60% of the capacity is retained after 200 cycles at the surface capacity of 2.7 mAh cm-2.

  9. Physics of electron and lithium-ion transport in electrode materials for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Musheng, Wu; Bo, Xu; Chuying, Ouyang

    2016-01-01

    The physics of ionic and electrical conduction at electrode materials of lithium-ion batteries (LIBs) are briefly summarized here, besides, we review the current research on ionic and electrical conduction in electrode material incorporating experimental and simulation studies. Commercial LIBs have been widely used in portable electronic devices and are now developed for large-scale applications in hybrid electric vehicles (HEV) and stationary distributed power stations. However, due to the physical limits of the materials, the overall performance of today’s LIBs does not meet all the requirements for future applications, and the transport problem has been one of the main barriers to further improvement. The electron and Li-ion transport behaviors are important in determining the rate capacity of LIBs. Project supported by the National High Technology Research and Development Program of China (Grant No. 2015AA034201), the National Natural Science Foundation of China (Grant Nos. 11234013 and 11264014), the Natural Science Foundation of Jiangxi Province, China (Grant Nos. 20133ACB21010 and 20142BAB212002), and the Foundation of Jiangxi Education Committee, China (Grant Nos. GJJ14254 and KJLD14024). C. Y. Ouyang is also supported by the “Gan-po talent 555” Project of Jiangxi Province, China.

  10. Effects of vinylene carbonate on high temperature storage of high voltage Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Eom, Ji-Yong; Jung, In-Ho; Lee, Jong-Hoon

    The effects of vinylene carbonate (VC) on high temperature storage of high voltage Li-ion batteries are investigated. 1.3 M of LiPF 6 dissolved in ethylene carbonate (EC), ethylmethyl carbonate (EMC) and dimethyl carbonate (DMC) of 3:3:4 volume ratio is used as original electrolyte for 18650 cylindrical cells with LiCoO 2 cathode and graphite anode. VC is then added to electrolyte. At the initial stage of the high temperature storage, higher open-circuit voltage (OCV) is maintained when increasing the VC concentration. As the storage time increases, OCV of higher VC concentration drops gradually, and then the gas evolution takes place abruptly. Gas analysis shows methane (CH 4) decreases with increase of the VC concentration due to formation of stable solid electrolyte interface (SEI) layer on the graphite. Since the residual VC after formation of the SEI layer decomposes on the cathode surface, carbon dioxide (CO 2) dramatically increases on the cathode with the VC concentration, leaving poly(VC) film at the anode surface, as suggested by XPS test results.

  11. Polyvinylidene fluoride membrane by novel electrospinning system for separator of Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Yang, Cuiru; Jia, Zhidong; Guan, Zhicheng; Wang, Liming

    The remarkable characteristics of nanofibers mats electrospun are large surface area to volume ratio and high porosity, which are crucial to increase the ionic conductivity of membrane full of liquid electrolyte, in this aspect, electrospinning is prior to the other methods, such as dry method, wet method, etc. Therefore, fabricating the separator of Li-ion batteries by electrospinning is potential and promising. The PVDF membranes were fabricated by electrospinning. The experiment demonstrated that the main deficiency in the fabricating separators process by electrospinning was low mechanical property, which induced partial short circuits inside the cells. Several methods were presented to enhance the mechanical strength. The experiments demonstrated that the higher the solution concentration was, the stronger the mechanical strength was, and the higher the voltage was, the stronger the mechanical strength was. Additionally, the spherical hat collection target instead of conditional plane target was applied in the electrospinning system, as a result, the thickness of the membrane was more uniform and the fiber diameter was also more uniform. Therefore, the charge and discharge capacity of the coin type cell composed of the separator collected by spherical hat target exceeded the plane target, and the electrospinning separators exceeded the commercial polypropylene separator.

  12. High Performance Particle/Polymer Nanofiber Anodes for Li-ion Batteries using Electrospinning.

    PubMed

    Self, Ethan C; McRen, Emily C; Pintauro, Peter N

    2016-01-01

    Electrospun nanofiber mats containing carbon nanoparticles in a poly(vinylidene fluoride) binder were prepared and characterized as Li-ion battery anodes. The mats exhibited an initial capacity of 161 mAh g(-1) with 91.7% capacity retention after 510 cycles at 0.1 C (1 C=372 mA gcarbon (-1)). Whereas many nanoscale electrodes are limited to low areal and/or volumetric capacities, the particle/polymer nanofiber anodes can be made thick with a high fiber volume fraction while maintaining good rate capabilities. Thus, a nanofiber anode with a fiber volume fraction of 0.79 exhibits a volumetric capacity of 55 mAh cm(-3) at 2 C, which is twice that of a typical graphite anode. Similarly, thick nanofiber mats with a high areal capacity of 4.3 mAh cm(-2) were prepared and characterized. The excellent performance of electrospun anodes is attributed to electrolyte intrusion throughout the interfiber void space and efficient Li(+) transport between the electrolyte and carbon nanoparticles in the radial fiber direction.

  13. Post oxygen treatment characteristics of coke as an anode material for Li-ion batteries.

    PubMed

    Kim, Jae-Hun; Park, Min-Sik; Jo, Yong Nam; Yu, Ji-Sang; Jeong, Goojin; Kim, Young-Jun

    2013-05-01

    The effect of a oxygen treatment on the electrochemical characteristics of a soft carbon anode material for Li-ion batteries was investigated. After a coke carbonization process at 1000 degrees C in an argon atmosphere, the samples were treated under a flow of oxygen gas to obtain a mild oxidation effect. After this oxygen treatment, the coke samples exhibited an improved initial coulombic efficiency and cycle performance as compared to the carbonized sample. High-resolution transmission electron microscopy revealed that the carbonized cokes consisted of disordered and nanosized graphene layers and the surface of the modified carbon was significantly changed after the treatment. The chemical state of the cokes was analyzed using X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. The enhanced electrochemical properties of the surface modified cokes could be attributed to the mild oxidation effect induced by the oxygen treatment. The mild oxidation process could have led to the elimination of surface imperfections and the reinforcement of a solid electrolyte interphase film, which resulted in the improved electrochemical characteristics.

  14. Effects of surface tension and electrochemical reactions in Li-ion battery electrode nanoparticles

    NASA Astrophysics Data System (ADS)

    Stein, Peter; Zhao, Ying; Xu, Bai-Xiang

    2016-11-01

    The size- and shape-dependency of the chemo-mechanical behavior of spherical and ellipsoidal nanoparticles in Li-ion battery electrodes are investigated by a stress-assisted diffusion model and 3D finite element simulations. The model features surface tension, a direct coupling between diffusion and elasticity, concentration-dependent diffusivity, and a Butler-Volmer relation for the description of electrochemical reactions that is modified to account for mechanical effects. Simulation results on spherical particles reveal that surface tension causes additional pressure fields in the particles, shifting the stress state towards the compressive regime. This provides mechanical stabilization, allowing, in principle, for higher charge/discharge rates. However, due to this pressure the attainable lithiation for a given potential difference is reduced during insertion, whereas a higher amount of ions is given off during extraction. Ellipsoidal particles with an aspect ratio deviating from that of a sphere with the same volume expose a larger surface area to the intercalation reactions. Consequently, they exhibit accelerated (dis)charge rates. However, due to the enhanced pressure in regions with high curvature, the accessible capacity of ellipsoidal particles is less than that of spherical particles.

  15. Morphology-dependent vanadium oxide nanostructures grown on Ti foil for Li-ion battery.

    PubMed

    Wei, Lunzhen; Wang, Yuhang; Wang, Yanli; Xu, Ming; Zheng, Gengfeng

    2014-10-15

    Vanadium oxide is considered as a potential cathode material for lithium-ion batteries, while its performance is significantly restricted by its poor Li(+) ion diffusion rate and low electric conductivity. These ion and charge transport rates, however, are also well correlated with the 3-dimensional (3D) morphologies/structures of the electroactive materials. Herein, we synthesized three different nanostructured vanadium oxides on Ti foils. The comparison of electrochemical properties of these materials shows that the structures of electrodes have great influences on their performances. Among these structures, the nanoribbons are most beneficial for fast charge transfer and reduced contact resistance. In addition, the spaces between each nanoribbon provide efficient ion transport pathways and sufficient electrolyte penetration. The initial discharge and charge capacities of vanadium oxide nanoribbon reach to 322 and 310mAhg(-)(1), with a reversible discharge/charge capacity of 200mAhg(-)(1) at the current rate of 1C (1C=300mAg(-)(1)).

  16. Biomineralized Sn-based multiphasic nanostructures for Li-ion battery electrodes.

    PubMed

    Lim, Ah-Hyeon; Shim, Hyun-Woo; Seo, Seung-Deok; Lee, Gwang-Hee; Park, Kyung-Soo; Kim, Dong-Wan

    2012-08-07

    A method for preparing multiphasic hollow rods consisting of nanoscale Sn-based materials through a thermochemical reduction process involving bacteria and Sn oxides is reported. This facile process involves the bacteria-mediated synthesis of SnO(2) nanoparticles that form on bacterial surfaces used as templates at room temperature. The subsequent template removal proceeds via a reduction of the heat-treated SnO(2) nanoparticles at 400 °C under reduction atmosphere, leaving free-standing hollow nanocomposite rods. These unique hollow nanocomposite rods have multiple components, including amorphous carbon, metal oxides (SnO(2) and SnO), and metallic Sn, and retain the original rod shapes. The systematic phase and morphological evolutions of the bacteria@SnO(2) composite rods are investigated by performing controlled thermochemical reduction at various temperatures. In addition, the application of multiphasic hollow nanocomposite rods as anode materials for rechargeable Li-ion batteries is evaluated. These materials exhibit excellent electrochemical performance, with capacities of about 505 and 350 mA h g(-1) at current densities of 157 and 392 mA g(-1), respectively.

  17. Reduced Graphene Oxide Films with Ultrahigh Conductivity as Li-Ion Battery Current Collectors.

    PubMed

    Chen, Yanan; Fu, Kun; Zhu, Shuze; Luo, Wei; Wang, Yanbin; Li, Yiju; Hitz, Emily; Yao, Yonggang; Dai, Jiaqi; Wan, Jiayu; Danner, Valencia A; Li, Teng; Hu, Liangbing

    2016-06-08

    Solution processed, highly conductive films are extremely attractive for a range of electronic devices, especially for printed macroelectronics. For example, replacing heavy, metal-based current collectors with thin, light, flexible, and highly conductive films will further improve the energy density of such devices. Films with two-dimensional building blocks, such as graphene or reduced graphene oxide (RGO) nanosheets, are particularly promising due to their low percolation threshold with a high aspect ratio, excellent flexibility, and low cost. However, the electrical conductivity of these films is low, typically less than 1000 S/cm. In this work, we for the first time report a RGO film with an electrical conductivity of up to 3112 S/cm. We achieve high conductivity in RGO films through an electrical current-induced annealing process at high temperature of up to 2750 K in less than 1 min of anneal time. We studied in detail the unique Joule heating process at ultrahigh temperature. Through a combination of experimental and computational studies, we investigated the fundamental mechanism behind the formation of a highly conductive three-dimensional structure composed of well-connected RGO layers. The highly conductive RGO film with high direct current conductivity, low thickness (∼4 μm) and low sheet resistance (0.8 Ω/sq.) was used as a lightweight current collector in Li-ion batteries.

  18. Internal and External Temperature Monitoring of a Li-Ion Battery with Fiber Bragg Grating Sensors.

    PubMed

    Novais, Susana; Nascimento, Micael; Grande, Lorenzo; Domingues, Maria Fátima; Antunes, Paulo; Alberto, Nélia; Leitão, Cátia; Oliveira, Ricardo; Koch, Stephan; Kim, Guk Tae; Passerini, Stefano; Pinto, João

    2016-08-30

    The integration of fiber Bragg grating (FBG) sensors in lithium-ion cells for in-situ and in-operando temperature monitoring is presented herein. The measuring of internal and external temperature variations was performed through four FBG sensors during galvanostatic cycling at C-rates ranging from 1C to 8C. The FBG sensors were placed both outside and inside the cell, located in the center of the electrochemically active area and at the tab-electrode connection. The internal sensors recorded temperature variations of 4.0 ± 0.1 °C at 5C and 4.7 ± 0.1 °C at 8C at the center of the active area, and 3.9 ± 0.1 °C at 5C and 4.0 ± 0.1 °C at 8C at the tab-electrode connection, respectively. This study is intended to contribute to detection of a temperature gradient in real time inside a cell, which can determine possible damage in the battery performance when it operates under normal and abnormal operating conditions, as well as to demonstrate the technical feasibility of the integration of in-operando microsensors inside Li-ion cells.

  19. Bio-Derived, Binderless, Hierarchically Porous Carbon Anodes for Li-ion Batteries

    NASA Astrophysics Data System (ADS)

    Campbell, Brennan; Ionescu, Robert; Favors, Zachary; Ozkan, Cengiz S.; Ozkan, Mihrimah

    2015-09-01

    Here we explore the electrochemical performance of pyrolyzed skins from the species A. bisporus, also known as the Portobello mushroom, as free-standing, binder-free, and current collector-free Li-ion battery anodes. At temperatures above 900 °C, the biomass-derived carbon nanoribbon-like architectures undergo unique processes to become hierarchically porous. During heat-treatment, the oxygen and heteroatom-rich organics and potassium compounds naturally present in the mushroom skins play a mutual role in creating inner void spaces throughout the resulting carbon nanoribbons, which is a process analogous to KOH-activation of carbon materials seen in literature. The pores formed in the pyrolytic carbon nanoribbons range in size from sub-nanometer to tens of nanometers, making the nanoribbons micro, meso, and macroporous. Detailed studies were conducted on the carbon nanoribbons using SEM and TEM to study morphology, as well as XRD and EDS to study composition. The self-supporting nanoribbon anodes demonstrate significant capacity increase as they undergo additional charge/discharge cycles. After a pyrolysis temperature of 1100 °C, the pristine anodes achieve over 260 mAh/g after 700 cycles and a Coulombic efficiency of 101.1%, without the use of harmful solvents or chemical activation agents.

  20. Internal and External Temperature Monitoring of a Li-Ion Battery with Fiber Bragg Grating Sensors

    PubMed Central

    Novais, Susana; Nascimento, Micael; Grande, Lorenzo; Domingues, Maria Fátima; Antunes, Paulo; Alberto, Nélia; Leitão, Cátia; Oliveira, Ricardo; Koch, Stephan; Kim, Guk Tae; Passerini, Stefano; Pinto, João

    2016-01-01

    The integration of fiber Bragg grating (FBG) sensors in lithium-ion cells for in-situ and in-operando temperature monitoring is presented herein. The measuring of internal and external temperature variations was performed through four FBG sensors during galvanostatic cycling at C-rates ranging from 1C to 8C. The FBG sensors were placed both outside and inside the cell, located in the center of the electrochemically active area and at the tab-electrode connection. The internal sensors recorded temperature variations of 4.0 ± 0.1 °C at 5C and 4.7 ± 0.1 °C at 8C at the center of the active area, and 3.9 ± 0.1 °C at 5C and 4.0 ± 0.1 °C at 8C at the tab-electrode connection, respectively. This study is intended to contribute to detection of a temperature gradient in real time inside a cell, which can determine possible damage in the battery performance when it operates under normal and abnormal operating conditions, as well as to demonstrate the technical feasibility of the integration of in-operando microsensors inside Li-ion cells. PMID:27589749

  1. A promising active anode material of Li-ion battery for hybrid electric vehicle use

    NASA Astrophysics Data System (ADS)

    Sato, Youh; Nagayama, Katsuhiro; Sato, Yuichi; Takamura, Tsutomu

    In an attempt to respond to the requirement to provide promising anode material of Li-ion battery for hybrid electric vehicle (HEV) we examined mesophase-pitch-based cokes. The coke was heat treated at several temperatures where turbostratic structure is formed. Cyclic voltammograms (CV) were measured in 1:2 (v/v) mixture of ethylene carbonate (EC) and dimethyl carbonate (DMC) containing 1 M LiClO 4 for all the samples, and the peak height was plotted against the square root of the potential scanning rate. The slopes of the plotting differed depending on the heating temperature and 1800 °C heated sample gave the steepest slope implying the diffusion coefficient of Li is the highest. For activating the electrochemical reaction site of the prepared electrode we adopted a novel method to expose the coated electrode in the glow discharge field in the presence of small amount of oxygen. As the result the CV peak height was increased by about two times as compared with that before the treatment.

  2. Size Effect of Ordered Mesoporous Carbon Nanospheres for Anodes in Li-Ion Battery

    PubMed Central

    Chang, Pei-Yi; Bindumadhavan, Kartick; Doong, Ruey-An

    2015-01-01

    The present work demonstrates the application of various sizes of ordered mesoporous carbon nanospheres (OMCS) with diameters of 46–130 nm as an active anode material for Li-ion batteries (LIB). The physical and chemical properties of OMCS have been evaluated by performing scanning electron microscopy (SEM), transmission electron microscopy (TEM), N2 adsorption-desorption analysis; small-angle scattering system (SAXS) and X-ray diffraction (XRD). The electrochemical analysis of using various sizes of OMCS as anode materials showed high capacity and rate capability with the specific capacity up to 560 mA·h·g−1 at 0.1 C after 85 cycles. In terms of performance at high current rate compared to other amorphous carbonaceous materials; a stable and extremely high specific capacity of 240 mA·h·g−1 at 5 C after 15 cycles was achieved. Such excellent performance is mainly attributed to the suitable particle size distribution of OMCS and intimate contact between OMCS and conductive additives; which can be supported from the TEM images. Results obtained from this study clearly indicate the excellence of size distribution of highly integrated mesoporous structure of carbon nanospheres for LIB application.

  3. Extraction of Li and Co from Li-ion Batteries by Chemical Methods

    NASA Astrophysics Data System (ADS)

    Guzolu, Jafar Sharrivar; Gharabaghi, Mahdi; Mobin, Mohammad; Alilo, Hojat

    2017-04-01

    In this work a process involving ultrasonic washing and leaching and precipitation was used to recover Li and Co from spent Li-ion batteries. Ultrasonic washing was used to reduce energy consumption and pollution whereas hydrochloric acid was used as leaching reagent. 98 % of Li and nearly 99 % of Co were obtained under optimum condition of 5 M hydrochloric acid solution, temperature of 95 °C, reaction time of 70 min, and solid-liquid ratio of 10 g/L. In this process at first nickel, copper, iron, aluminum, cobalt, and manganese were precipitated from leaching solution using sodium hydroxide at pH f 12.5 and reaction time of 1 h and temperature was 55 °C and all metal recoveries were more than 99 %. In the precipitation experiments, lithium loss was only 18.34 %. In the next stage, white lithium carbonate was precipitated by addition of saturated sodium carbonate solution to the left filtrate from first precipitation step. The purity of the recovered powder of lithium was 95 %.

  4. Extraction of Li and Co from Li-ion Batteries by Chemical Methods

    NASA Astrophysics Data System (ADS)

    Guzolu, Jafar Sharrivar; Gharabaghi, Mahdi; Mobin, Mohammad; Alilo, Hojat

    2016-05-01

    In this work a process involving ultrasonic washing and leaching and precipitation was used to recover Li and Co from spent Li-ion batteries. Ultrasonic washing was used to reduce energy consumption and pollution whereas hydrochloric acid was used as leaching reagent. 98 % of Li and nearly 99 % of Co were obtained under optimum condition of 5 M hydrochloric acid solution, temperature of 95 °C, reaction time of 70 min, and solid-liquid ratio of 10 g/L. In this process at first nickel, copper, iron, aluminum, cobalt, and manganese were precipitated from leaching solution using sodium hydroxide at pH f 12.5 and reaction time of 1 h and temperature was 55 °C and all metal recoveries were more than 99 %. In the precipitation experiments, lithium loss was only 18.34 %. In the next stage, white lithium carbonate was precipitated by addition of saturated sodium carbonate solution to the left filtrate from first precipitation step. The purity of the recovered powder of lithium was 95 %.

  5. A New Supercapacitor and Li-ion Battery Hybrid System for Electric Vehicle in ADVISOR

    NASA Astrophysics Data System (ADS)

    Peng, Xiao; Shuhai, Quan; Changjun, Xie

    2017-02-01

    The supercapacitor (SC) and Li-ion battery(BT) hybrid energy storage system(HESS) electric vehicle(EV) is gaining universal attention. The topology is of importance for the SC/BT HESS. A new SC/BT topology HESS with a rule-based energy management strategy for EV was proposed. The BT pack is connected directly to the DC link via a controlled switch. The SC pack is connected to the DC link via a controlled switch. A uni-directional DC/DC converter is connected between the SC pack and the BT pack. The braking regeneration energy is all harvested by the SC pack. The output power of BT pack is limited. The different SC/BT configurations with varied BT maximum Ah capacity factor and SC maximum capacity factor are simulated in ADVISOR. Simulation results show that BT maximum Ah capacity factor has little impact on vehicle acceleration performance and maximum speed. SC maximum capacity factor has significant impact on vehicle acceleration performance and maximum speed. The fuel economy isn’t affected.

  6. Towards more thermally stable Li-ion battery electrolytes with salts and solvents sharing nitrile functionality

    NASA Astrophysics Data System (ADS)

    Kerner, Manfred; Lim, Du-Hyun; Jeschke, Steffen; Rydholm, Tomas; Ahn, Jou-Hyeon; Scheers, Johan

    2016-11-01

    The overall safety of Li-ion batteries is compromised by the state-of-the-art electrolytes; the thermally unstable lithium salt, lithium hexafluorophosphate (LiPF6), and flammable carbonate solvent mixtures. The problem is best addressed by new electrolyte compositions with thermally robust salts in low flammability solvents. In this work we introduce electrolytes with either of two lithium nitrile salts, lithium 4,5-dicyano-1,2,3-triazolate (LiDCTA) or lithium 4,5-dicyano-2-trifluoromethylimidazolide (LiTDI), in solvent mixtures with high flashpoint adiponitrile (ADN), as the main component. With sulfolane (SL) and ethylene carbonate (EC) as co-solvents the liquid temperature range of the electrolytes are extended to lower temperatures without lowering the flashpoint, but at the expense of high viscosities and moderate ionic conductivities. The anodic stabilities of the electrolytes are sufficient for LiFePO4 cathodes and can be charged/discharged for 20 cycles in Li/LiFePO4 cells with coulombic efficiencies exceeding 99% at best. The excellent thermal stabilities of the electrolytes with the solvent combination ADN:SL are promising for future electrochemical investigations at elevated temperatures (> 60 °C) to compensate the moderate transport properties and rate capability. The electrolytes with EC as a co-solvent, however, release CO2 by decomposition of EC in presence of a lithium salt, which potentially makes EC unsuitable for any application targeting higher operating temperatures.

  7. Li-ion battery electrolyte formulated for low-temperature applications

    SciTech Connect

    Ein-Eli, Y.; Thomas, S.R.; Chadha, R.; Blakley, T.J.; Koch, V.R.

    1997-03-01

    Low-temperature (<0 C) applications of Li-ion batteries have prompted the search for improved, high-conductivity electrolytes. Because the performance of the carbonaceous anode is highly sensitive to changes in electrolyte composition, the authors focused their efforts on this electrode. Electrolytes containing LiAsF{sub 6}, LiPF{sub 6}, LiN(SO{sub 2}CF{sub 3}){sub 2}[lithium bis(trifluoromethanesulfonyl)imide], or LiIm, and LiC(SO{sub 2}CF{sub 3}){sub 3} [lithium tris(trifluoromethanesulfonyl)methide], or LiMe, in methyl formate (MF)-ethylene carbonate (EC) solvent mixtures were tested in lithium-graphite half-cells. The graphite electrodes could be cycled at ambient temperature with high reversible capacity. The best supporting electrolyte was found to be LiAsF{sub 6}, and the presence of a high concentration of ethylene carbonate and up to 300 ppm H{sub 2}O in the solution considerably increased the reversible capacity upon cycling. The conductivity values of a binary solvent mixture of methyl formate and ethylene carbonate containing LiAsF{sub 6} or LiMe were measured between {minus}40 C and room temperature. Graphite electrodes cycled at {minus}2 C in these electrolytes obtained reasonable reversible capacity, approaching 50%.

  8. Electrospun titania-based fibers for high areal capacity Li-ion battery anodes

    NASA Astrophysics Data System (ADS)

    Self, Ethan C.; Wycisk, Ryszard; Pintauro, Peter N.

    2015-05-01

    Electrospinning is utilized to prepare composite fiber Li-ion battery anodes containing titania and carbon nanoparticles with a poly (acrylic acid) binder. The electrospun material exhibits a stable charge/discharge capacity with only 5% capacity fade over 450 cycles at 0.5 C. Compared to a conventional slurry cast electrode of the same composition, the electrospun anode demonstrates 4-fold higher capacity retention (31% vs. 7.9%) at a charge/discharge rate of 5 C. Electrospinning is also used to prepare ultrathick anodes (>1 mm) with areal capacities up to 3.9 mAh cm-2. Notably, the thick electrodes exhibit areal capacities of 2.5 and 1.3 mAh cm-2 at 1 C and 2 C, respectively. Electrospun anodes with densely packed fibers have a 2 C volumetric capacity which exceeds that of the slurry cast material (21.2 and 17.5 mAh cm-3, respectively). The excellent performance of the electrospun anodes is attributed to interfiber voids which provide complete electrolyte intrusion, a large electrode/electrolyte interface, and short Li+ transport pathways between the electrolyte and titania nanoparticles.

  9. Ascorbic-acid-assisted recovery of cobalt and lithium from spent Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Li, Li; Lu, Jun; Ren, Yang; Zhang, Xiao Xiao; Chen, Ren Jie; Wu, Feng; Amine, Khalil

    2012-11-01

    Recycling of the major components from spent Li-ion batteries (LIBs) is considered desirable to prevent environmental pollution and recycle valuable metals. The present work investigates a novel process for recovering Co and Li from the cathode materials (containing LiCoO2 and Al) by a combination of ultrasonic washing, calcination, and organic acid leaching. Copper can also be recovered from the anode materials after they are manually separated from the cathode. Ascorbic acid is chosen as both leaching reagent and reducing agent to improve the Co recovery efficiency. Leaching efficiencies as high as 94.8% for Co and 98.5% for Li are achieved with a 1.25 mol L-1 ascorbic acid solution, leaching temperature of 70 °C, leaching time of 20 min, and solid-to-liquid ratio of 25 gL-1. The acid leaching reaction mechanism has been preliminarily studied based on the structure of ascorbic acid. This method is shown to offer an efficient way to recycle valuable materials from spent LIBs, and it can be scaled up for commercial application.

  10. High temperature stable Li-ion battery separators based on polyetherimides with improved electrolyte compatibility

    NASA Astrophysics Data System (ADS)

    l'Abee, Roy; DaRosa, Fabien; Armstrong, Mark J.; Hantel, Moritz M.; Mourzagh, Djamel

    2017-03-01

    We report (electro-)chemically stable, high temperature resistant and fast wetting Li-ion battery separators produced through a phase inversion process using novel polyetherimides (PEI) based on bisphenol-aceton diphthalic anhydride (BPADA) and para-phenylenediamine (pPD). In contrast to previous studies using PEI based on BPADA and meta-phenylenediamine (mPD), the separators reported herein show limited swelling in electrolytes and do not require fillers to render sufficient mechanical strength and ionic conductivity. In this work, the produced 15-25 μm thick PEI-pPD separators show excellent electrolyte compatibility, proven by low degrees of swelling in electrolyte solvents, low contact angles, fast electrolyte wicking and high electrolyte uptake. The separators cover a tunable range of morphologies and properties, leading to a wide range of ionic conductivities as studied by Electrochemical Impedance Spectroscopy (EIS). Dynamic Mechanical Analysis (DMA) demonstrated dimensional stability up to 220 °C. Finally, single layer graphite/lithium nickel manganese cobalt oxide (NMC) pouch cells were assembled using this novel PEI-pPD separator, showing an excellent capacity retention of 89.3% after 1000 1C/2C cycles, with a mean Coulombic efficiency of 99.77% and limited resistance build-up. We conclude that PEI-pPD is a promising new material candidate for high performance separators.

  11. Study of electrochemical performance of amorphous carbon-coated graphite for Li-ion battery

    NASA Astrophysics Data System (ADS)

    Rohman, Fadli; Azizah, Umi; Prihandoko, Bambang

    2017-03-01

    Electrochemical performance of graphite coated by amorphous carbon as anode material in the Li-ion battery has been studied with citric acid (labelled CA) as a carbon source with different composition. Citric acid as the amorphous carbon source was mixed with graphite in the ethanol solvent at 80°C using magnetic stirrer with the compositions CA: graphite 2:1, 1:1 and 1:3, respectively. The mixture of graphite and CA were dried at 350°C for 5 hours under Ar atmosphere to evaporate the solvent. This dried mixture was then sintered at 600°C under Ar atmosphere to form amorphous carbon layer on the surface of graphite. The crystal structure and morphology of the particles were characterized using XRD, SEM and TEM, respectively. Electrochemical properties of the samples have been evaluated by cyclic voltammetry and charge-discharge test using WBCS 3000. Cyclic voltammogram showed the working potential and redox reaction peak of the sample. Charge-discharge data was obtained to determine the specific capacity of the sample at 0.1C - 2C.

  12. A new active Li-Mn-O compound for high energy density Li-ion batteries.

    PubMed

    Freire, M; Kosova, N V; Jordy, C; Chateigner, D; Lebedev, O I; Maignan, A; Pralong, V

    2016-02-01

    The search for new materials that could improve the energy density of Li-ion batteries is one of today's most challenging issues. Many families of transition metal oxides as well as transition metal polyanionic frameworks have been proposed during the past twenty years. Among them, manganese oxides, such as the LiMn2O4 spinel or the overlithiated oxide Li[Li1/3Mn2/3]O2, have been intensively studied owing to the low toxicity of manganese-based materials and the high redox potential of the Mn(3+)/Mn(4+) couple. In this work, we report on a new electrochemically active compound with the 'Li4Mn2O5' composition, prepared by direct mechanochemical synthesis at room temperature. This rock-salt-type nanostructured material shows a discharge capacity of 355 mAh g(-1), which is the highest yet reported among the known lithium manganese oxide electrode materials. According to the magnetic measurements, this exceptional capacity results from the electrochemical activity of the Mn(3+)/Mn(4+) and O(2-)/O(-) redox couples, and, importantly, of the Mn(4+)/Mn(5+) couple also.

  13. Quinone-formaldehyde polymer as an active material in Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Pirnat, Klemen; Mali, Gregor; Gaberscek, Miran; Dominko, Robert

    2016-05-01

    A benzoquinone polymer is synthesized by the polymerisation of hydrobenzoquinone and formaldehyde, followed by oxidation process using a hydrogen peroxide to convert hydroquinone to quinone. As prepared materials are characterized with FTIR, 1H-13C CPMAS NMR, pyrolysis coupled with gas chromatography (GC) and mass spectrometer (MS), TGA-MS analysis, EDX, elemental analysis, XRD, SEM and TEM microscopies and BET nitrogen adsorption. The benzoquinone polymer shows an excellent electrochemical performance when used as a positive electrode material in Li-ion secondary batteries. Using an electrolyte consisting 1 M bis(trifluoromethane)-sulfonimide lithium salt dissolved in 1,3-dioxolane and dimethoxyethane in a vol. ratio 1:1 (1 M LiTFSI/DOL + DME = 1:1) a stable capacity close to 150 mAh/g can be obtained. Compared to other electroactive materials based on benzoquinones it has a supreme capacity stability and is prepared by a simple synthesis using easily accessible starting materials. Further improvements in the capacity value (up to the theoretical value of 406 mAh/g) can be foreseen by achieving a higher degree of oxidation and by modification of polymerization process to enhance the electronic and ionic conductivity.

  14. A new active Li-Mn-O compound for high energy density Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Freire, M.; Kosova, N. V.; Jordy, C.; Chateigner, D.; Lebedev, O. I.; Maignan, A.; Pralong, V.

    2016-02-01

    The search for new materials that could improve the energy density of Li-ion batteries is one of today’s most challenging issues. Many families of transition metal oxides as well as transition metal polyanionic frameworks have been proposed during the past twenty years. Among them, manganese oxides, such as the LiMn2O4 spinel or the overlithiated oxide Li[Li1/3Mn2/3]O2, have been intensively studied owing to the low toxicity of manganese-based materials and the high redox potential of the Mn3+/Mn4+ couple. In this work, we report on a new electrochemically active compound with the `Li4Mn2O5’ composition, prepared by direct mechanochemical synthesis at room temperature. This rock-salt-type nanostructured material shows a discharge capacity of 355 mAh g-1, which is the highest yet reported among the known lithium manganese oxide electrode materials. According to the magnetic measurements, this exceptional capacity results from the electrochemical activity of the Mn3+/Mn4+ and O2-/O- redox couples, and, importantly, of the Mn4+/Mn5+ couple also.

  15. Polyethylene separator activated by hybrid coating improving Li+ ion transference number and ionic conductivity for Li-metal battery

    NASA Astrophysics Data System (ADS)

    Mao, Xufeng; Shi, Liyi; Zhang, Haijiao; Wang, Zhuyi; Zhu, Jiefang; Qiu, Zhengfu; Zhao, Yin; Zhang, Meihong; Yuan, Shuai

    2017-02-01

    Low Li+ ion transference number is one fatal defect of the liquid LiPF6 electrolyte for Li-metal anode based batteries. This work aims to improve Li+ ion transference number and ionic conductivity polyethylene (PE) separators. By a simple dip-coating method, the water-borne nanosized molecular sieve with 3D porous structure (ZSM-5) can be coated on PE separators. Especially, the Li+ ion transference number is greatly enhanced from 0.28 to 0.44, which should be attributed to the specific pore structure and channel environment of ZSM-5 as well as the interaction between ZSM-5 and electrolyte. Compared with the pristine PE separator, the ionic conductivity of modified separators is remarkably improved from 0.30 to 0.54 mS cm-1. As results, the C-rate capability and cycling stability are both improved. The Li-metal battery using the ZSM-5-modified PE separator keeps 94.2% capacity after 100 cycles. In contrast, the discharge capacity retention of the battery using pristine PE is only 74.7%.

  16. Borophene as an extremely high capacity electrode material for Li-ion and Na-ion batteries.

    PubMed

    Zhang, Xiaoming; Hu, Junping; Cheng, Yingchun; Yang, Hui Ying; Yao, Yugui; Yang, Shengyuan A

    2016-08-18

    "Two-dimensional (2D) materials as electrodes" is believed to be the trend for future Li-ion and Na-ion battery technologies. Here, by using first-principles methods, we predict that the recently reported borophene (2D boron sheets) can serve as an ideal electrode material with high electrochemical performance for both Li-ion and Na-ion batteries. The calculations are performed on two experimentally stable borophene structures, namely β12 and χ3 structures. The optimized Li and Na adsorption sites are identified, and the host materials are found to maintain good electric conductivity before and after adsorption. Besides advantages including small diffusion barriers and low average open-circuit voltages, most remarkably, the storage capacity can be as high as 1984 mA h g(-1) in β12 borophene and 1240 mA h g(-1) in χ3 borophene for both Li and Na, which are several times higher than the commercial graphite electrode and are the highest among all the 2D materials discovered to date. Our results highly support that borophenes can be appealing anode materials for both Li-ion and Na-ion batteries with extremely high power density.

  17. Innovation Meets Performance Demands of Advanced Lithium-ion Batteries

    SciTech Connect

    2016-06-01

    Advancements in high capacity and low density battery technologies have led to a growing need for battery materials with greater charge capacity and therefore stability. NREL's developments in ALD and molecular layer MLD allow for thin film coatings to battery composite electrodes, which can improve battery lifespan, high charge capacity, and stability. Silicon, one of the best high-energy anode materials for Li-ion batteries, can experience capacity fade from volumetric expansion. Using MLD to examine how surface modification could stabilize silicon anode material in Li-ion batteries, researchers discovered a new reaction precursor that leads to a flexible surface coating that accommodates volumetric expansion of silicon electrodes.

  18. Tracking areal lithium densities from neutron activation - quantitative Li determination in self-organized TiO2 nanotube anode materials for Li-ion batteries.

    PubMed

    Portenkirchner, E; Neri, G; Lichtinger, J; Brumbarov, J; Rüdiger, C; Gernhäuser, R; Kunze-Liebhäuser, J

    2017-03-28

    Nanostructuring of electrode materials is a promising approach to enhance the performance of next-generation, high-energy density lithium (Li)-ion batteries. Various experimental and theoretical approaches allow for a detailed understanding of solid-state or surface-controlled reactions that occur in nanoscaled electrode materials. While most techniques which are suitable for nanomaterial investigations are restricted to analysis widths of the order of Å to some nm, they do not allow for characterization over the length scales of interest for electrode design, which is typically in the order of mm. In this work, three different self-organized anodic titania nanotube arrays, comprising as-grown amorphous titania nanotubes, carburized anatase titania nanotubes, and silicon coated carburized anatase titania nanotubes, have been synthesized and studied as model composite anodes for use in Li-ion batteries. Their 2D areal Li densities have been successfully reconstructed with a sub-millimeter spatial resolution over lateral electrode dimensions of 20 mm exploiting the (6)Li(n,α)(3)H reaction, in spite of the extremely small areal Li densities (10-20 μg cm(-2) Li) in the nanotubular active material. While the average areal Li densities recorded via triton analysis are found to be in good agreement with the electrochemically measured charges during lithiation, triton analysis revealed, for certain nanotube arrays, areas with a significantly higher Li content ('hot spots') compared to the average. In summary, the presented technique is shown to be extremely well suited for analysis of the lithiation behavior of nanostructured electrode materials with very low Li concentrations. Furthermore, identification of lithiation anomalies is easily possible, which allows for fundamental studies and thus for further advancement of nanostructured Li-ion battery electrodes.

  19. Composit, Nanoparticle-Based Anode material for Li-ion Batteries Applied in Hybrid Electric (HEV's)

    SciTech Connect

    Dr. Malgorzata Gulbinska

    2009-08-24

    Lithium-ion batteries are promising energy storage devices in hybrid and electric vehicles with high specific energy values ({approx}150 Wh/kg), energy density ({approx}400 Wh/L), and long cycle life (>15 years). However, applications in hybrid and electric vehicles require increased energy density and improved low-temperature (<-10 C) performance. Silicon-based anodes are inexpensive, environmentally benign, and offer excellent theoretical capacity values ({approx}4000 mAh/g), leading to significantly less anode material and thus increasing the overall energy density value for the complete battery (>500 Wh/L). However, tremendous volume changes occur during cycling of pure silicon-based anodes. The expansion and contraction of these silicon particles causes them to fracture and lose electrical contact to the current collector ultimately severely limiting their cycle life. In Phase I of this project Yardney Technical Products, Inc. proposed development of a carbon/nano-silicon composite anode material with improved energy density and silicon's cycleability. In the carbon/nano-Si composite, silicon nanoparticles were embedded in a partially-graphitized carbonaceous matrix. The cycle life of anode material would be extended by decreasing the average particle size of active material (silicon) and by encapsulation of silicon nanoparticles in a ductile carbonaceous matrix. Decreasing the average particle size to a nano-region would also shorten Li-ion diffusion path and thus improve rate capability of the silicon-based anodes. Improved chemical inertness towards PC-based, low-temperature electrolytes was expected as an additional benefit of a thin, partially graphitized coating around the active electrode material.

  20. Probing the pseudo-1-D ion diffusion in lithium titanium niobate anode for Li-ion battery.

    PubMed

    Das, Suman; Dutta, Dipak; Araujo, Rafael B; Chakraborty, Sudip; Ahuja, Rajeev; Bhattacharyya, Aninda J

    2016-08-10

    Comprehensive understanding of the charge transport mechanism in the intrinsic structure of an electrode material is essential in accounting for its electrochemical performance. We present here systematic experimental and theoretical investigations of Li(+)-ion diffusion in a novel layered material, viz. lithium titanium niobate. Lithium titanium niobate (exact composition Li0.55K0.45TiNbO5·1.06H2O) is obtained from sol-gel synthesized potassium titanium niobate (KTiNbO5) by an ion-exchange method. The Li(+)-ions are inserted and de-inserted preferentially into the galleries between the octahedral layers formed by edge and corner sharing TiO6 and NbO6 octahedral units and the effective chemical diffusion coefficient, is estimated to be 3.8 × 10(-11) cm(2) s(-1) using the galvanostatic intermittent titration technique (GITT). Calculations based on density functional theory (DFT) strongly confirm the anisotropic Li(+)-ion diffusion in the interlayer galleries and that Li(+)-ions predominantly diffuse along the crystallographic b-direction. The preferential Li(+)-ion diffusion along the b-direction is assisted by line-defects, which are observed to be higher in concentration along the b-direction compared to the a- and c-directions, as revealed by high resolution electron microscopy. The Li-Ti niobate can be cycled to low voltages (≈0.2 V) and show stable and satisfactory battery performance over 100 cycles. Due to the possibility of cycling to low voltages, cyclic voltammetry and X-ray photoelectron spectroscopy convincingly reveal the reversibility of Ti(3+) ↔ Ti(2+) along with Ti(4+) ↔ Ti(3+) and Nb(5+) ↔ Nb(4+).

  1. Environmental impact assessment and end-of-life treatment policy analysis for Li-ion batteries and Ni-MH batteries.

    PubMed

    Yu, Yajuan; Chen, Bo; Huang, Kai; Wang, Xiang; Wang, Dong

    2014-03-18

    Based on Life Cycle Assessment (LCA) and Eco-indicator 99 method, a LCA model was applied to conduct environmental impact and end-of-life treatment policy analysis for secondary batteries. This model evaluated the cycle, recycle and waste treatment stages of secondary batteries. Nickel-Metal Hydride (Ni-MH) batteries and Lithium ion (Li-ion) batteries were chosen as the typical secondary batteries in this study. Through this research, the following results were found: (1) A basic number of cycles should be defined. A minimum cycle number of 200 would result in an obvious decline of environmental loads for both battery types. Batteries with high energy density and long life expectancy have small environmental loads. Products and technology that help increase energy density and life expectancy should be encouraged. (2) Secondary batteries should be sorted out from municipal garbage. Meanwhile, different types of discarded batteries should be treated separately under policies and regulations. (3) The incineration rate has obvious impact on the Eco-indicator points of Nickel-Metal Hydride (Ni-MH) batteries. The influence of recycle rate on Lithium ion (Li-ion) batteries is more obvious. These findings indicate that recycling is the most promising direction for reducing secondary batteries' environmental loads. The model proposed here can be used to evaluate environmental loads of other secondary batteries and it can be useful for proposing policies and countermeasures to reduce the environmental impact of secondary batteries.

  2. Battery Control Boards for Li-Ion Batteries on Mars Exploration Rovers

    NASA Technical Reports Server (NTRS)

    Ewell, R.; Ratnakumar, B. V.; Smart, M.; Chin, K. B.; Whitcanack, L.; Narayanan, S. R.; Surampudi, S.

    2006-01-01

    Rechargeable Lithium-ion batteries have been operating successfully on both Spirit and Opportunity rovers for the last two years, which includes six months of Assembly Launch and Test Operations (ATLO), seven months of cruise and about eleven months of surface operations. The Battery Control Boards designed and fabricated in-house would protect cells against overcharge and over-discharge and provide cell balance. Their performance has thus far been quite satisfactory. The ground data o the mission simulation battery project little capacity loss of less than 3% during cruise and 180 sols. Batteries are poised to extend the mission beyond six months, if not a couple of years.

  3. Mussel-Inspired Polydopamine Coating for Enhanced Thermal Stability and Rate Performance of Graphite Anodes in Li-Ion Batteries.

    PubMed

    Park, Seong-Hyo; Kim, Hyeon Jin; Lee, Junmin; Jeong, You Kyeong; Choi, Jang Wook; Lee, Hochun

    2016-06-08

    Despite two decades of commercial history, it remains very difficult to simultaneously achieve both high rate capability and thermal stability in the graphite anodes of Li-ion batteries because the stable solid electrolyte interphase (SEI) layer, which is essential for thermal stability, impedes facile Li(+) ion transport at the interface. Here, we resolve this longstanding challenge using a mussel-inspired polydopamine (PD) coating via a simple immersion process. The nanometer-thick PD coating layer allows the formation of an SEI layer on the coating surface without perturbing the intrinsic properties of the SEI layer of the graphite anodes. PD-coated graphite exhibits far better performances in cycling test at 60 °C and storage test at 90 °C than bare graphite. The PD-coated graphite also displays superior rate capability during both lithiation and delithiation. As evidenced by surface free energy analysis, the enhanced performance of the PD-coated graphite can be ascribed to the Lewis basicity of the PD, which scavenges harmful hydrofluoric acid and forms an intermediate triple-body complex among a Li(+) ion, solvent molecules, and the PD's basic site. The usefulness of the proposed PD coating can be expanded to various electrodes in rechargeable batteries that suffer from poor thermal stability and interfacial kinetics.

  4. Increasing the durability of Li-ion batteries by means of manganese ion trapping materials with nitrogen functionalities

    NASA Astrophysics Data System (ADS)

    Banerjee, Anjan; Ziv, Baruch; Luski, Shalom; Aurbach, Doron; Halalay, Ion C.

    2017-02-01

    Manganese dissolution from positive electrodes seriously reduces the useful life of Li-ion batteries, especially with positive electrode materials having spinel phases. We show herein that Mn ion trapping separators containing inexpensive mass-produced materials may dramatically increase the life of Li-ion batteries. LiMn2O4-graphite cells containing these materials and a LiPF6 based electrolyte solution display excellent capacity retention during cycling at both room and elevated temperatures, over baseline cells with plain separators. After 30 days of cycling at 55 °C and C/5 rate, LiMn2O4-graphite cells containing three different Mn-trapping materials with nitrogen functionalities retain between 75% and 125% more of the initial capacity than the baseline cells. Mn amounts in graphite negative electrodes from cells with the functional separators are 13-21 times lower than in baseline cells. LiMn2O4 lattice shrinkage in cells with functionalized separators is negligible compared to baseline cells, indicating major reductions in the loss of electrochemically active Li+ ions and increased stability of the LiMn2O4 crystal lattice.

  5. Green synthesis of boron doped graphene and its application as high performance anode material in Li ion battery

    SciTech Connect

    Sahoo, Madhumita; Sreena, K.P.; Vinayan, B.P.; Ramaprabhu, S.

    2015-01-15

    Graphical abstract: Boron doped graphene (B-G), synthesized by simple hydrogen induced reduction technique using boric acid as boron precursor, have more uneven surface as a result of smaller bonding distance of boron compared to carbon, showed high capacity and high rate capability compared to pristine graphene as an anode material for Li ion battery application. - Abstract: The present work demonstrates a facile route for the large-scale, catalyst free, and green synthesis approach of boron doped graphene (B-G) and its use as high performance anode material for Li ion battery (LIB) application. Boron atoms were doped into graphene framework with an atomic percentage of 5.93% via hydrogen induced thermal reduction technique using graphite oxide and boric acid as precursors. Various characterization techniques were used to confirm the boron doping in graphene sheets. B-G as anode material shows a discharge capacity of 548 mAh g{sup −1} at 100 mA g{sup −1} after 30th cycles. At high current density value of 1 A g{sup −1}, B-G as anode material enhances the specific capacity by about 1.7 times compared to pristine graphene. The present study shows a simplistic way of boron doping in graphene leading to an enhanced Li ion adsorption due to the change in electronic states.

  6. The testing of batteries linked to supercapacitors with electrochemical impedance spectroscopy: A comparison between Li-ion and valve regulated lead acid batteries

    NASA Astrophysics Data System (ADS)

    Ferg, Ernst; Rossouw, Claire; Loyson, Peter

    2013-03-01

    For electric vehicles, a supercapacitor can be coupled to the electrical system in order to increase and optimize the energy and power densities of the drive system during acceleration and regenerative breaking. This study looked at the charge acceptance and maximum discharge ability of a valve regulated lead acid (VRLA) and a Li-ion battery connected in parallel to supercapacitors. The test procedure evaluated the advantage of using a supercapacitor at a 2 F:1 Ah ratio with the battery types at various states of charge (SoC). The results showed that about 7% of extra charge was achieved over a 5-s test time for a Li-ion hybrid system at 20% SoC, whereas at the 80% SoC the additional capacity was approximately 16%. While for the VRLA battery hybrid system, an additional charge of up to 20% was achieved when the battery was at 80% SoC, with little or no benefit at the 20% SoC. The advantage of the supercapacitor in parallel with a VRLA battery was noticeable on its discharge ability, where significant extra capacity was achieved for short periods of time for a battery at the 60% and 40% SoC when compared to the Li-ion hybrid system. The study also made use of Electrochemical Impedance Spectroscopy (EIS) with a suitable equivalent circuit model to explain, in particular, the internal resistance and capacitance differences observed between the different battery chemistries with and without a supercapacitor.

  7. Advanced Li-Ion Hybrid Supercapacitors Based on 3D Graphene-Foam Composites.

    PubMed

    Liu, Wenwen; Li, Jingde; Feng, Kun; Sy, Abel; Liu, Yangshuai; Lim, Lucas; Lui, Gregory; Tjandra, Ricky; Rasenthiram, Lathankan; Chiu, Gordon; Yu, Aiping

    2016-10-05

    Li-ion hybrid supercapacitors (LIHSs) have recently attracted increasing attention as a new and promising energy storage device. However, it is still a great challenge to construct novel LIHSs with high-performance due to the majority of battery-type anodes retaining the sluggish kinetics of Li-ion storage and most capacitor-type cathodes with low specific capacitance. To solve this problem, 3D graphene-wrapped MoO3 nanobelt foam with the unique porous network structure has been designed and prepared as anode material, which delivers high capacity, improved rate performance, and enhanced cycle stability. First-principles calculation reveals that the combination of graphene dramatically reduces the diffusion energy barrier of Li(+) adsorbed on the surface of MoO3 nanobelt, thus improving its electrochemical performance. Furthermore, 3D graphene-wrapped polyaniline nanotube foam derived carbon is employed as a new type of capacitor-type cathode, demonstrating high specific capacitance, good rate performance, and long cycle stability. Benefiting from these two graphene foam-enhanced materials, the constructed LIHSs show a wide operating voltage range (3.8 V), a long stable cycle life (90% capacity retention after 3000 cycles), a high energy density (128.3 Wh·kg(-1)), and a high power density (13.5 kW·kg(-1)). These encouraging performances indicate that the obtained LIHSs may have promising prospect as next-generation energy-storage devices.

  8. Flexible Paper Electrodes for Li-Ion Batteries Using Low Amount of TEMPO-Oxidized Cellulose Nanofibrils as Binder.

    PubMed

    Lu, Huiran; Behm, Mårten; Leijonmarck, Simon; Lindbergh, Göran; Cornell, Ann

    2016-07-20

    Flexible Li-ion batteries attract increasing interest for applications in bendable and wearable electronic devices. TEMPO-oxidized cellulose nanofibrils (TOCNF), a renewable material, is a promising candidate as binder for flexible Li-ion batteries with good mechanical properties. Paper batteries can be produced using a water-based paper making process, avoiding the use of toxic solvents. In this work, finely dispersed TOCNF was used and showed good binding properties at concentrations as low as 4 wt %. The TOCNF was characterized using atomic force microscopy and found to be well dispersed with fibrils of average widths of about 2.7 nm and lengths of approximately 0.1-1 μm. Traces of moisture, trapped in the hygroscopic cellulose, is a concern when the material is used in Li-ion batteries. The low amount of binder reduces possible moisture and also increases the capacity of the electrodes, based on total weight. Effects of moisture on electrochemical battery performance were studied on electrodes dried at 110 °C in a vacuum for varying periods. It was found that increased drying time slightly increased the specific capacities of the LiFePO4 electrodes, whereas the capacities of the graphite electrodes decreased. The Coulombic efficiencies of the electrodes were not much affected by the varying drying times. Drying the electrodes for 1 h was enough to achieve good electrochemical performance. Addition of vinylene carbonate to the electrolyte had a positive effect on cycling for both graphite and LiFePO4. A failure mechanism observed at high TOCNF concentrations is the formation of compact films in the electrodes.

  9. Layered Li-Mn-M-oxides as cathodes for Li-ion batteries:. Recent trends

    NASA Astrophysics Data System (ADS)

    Shaju, K. M.; Subba Rao, G. V.; Chowdari, B. V. R.

    2002-12-01

    There is an increasing demand for manganese (Mn) based mixed oxides which can effectively replace the presently used LiCoO2 as cathode in Li-ion batteries (LIB). The well-studied spinel, LiMn2O4 and its doped derivatives give a capacity of 100-120 mAh/g, but show capacity-fading on cycling especially above 55°C. The layered LiMnO2, isostructural to LiCoO2 (so called O3-structure) can be a viable cathode. However, studies have shown that it undergoes conversion to spinel structure on cycling and thus gives capacity-fading. Other alternative systems recently studied are: O2-structured layered Li-M-Mn-oxides with the general formula Li(2/3)+x(MyMn1-y)O2, M = Li, Ni, Co; x ≤ 0.33 and y = 0.1-0.67, O3-Li(Ni1/2Mn1/2)O2, Li(NixCo1-2xMnx)O2, and M'-substituted Li2MnO3 (M' = Ni, Co, Cr). Some of them are shown to have stable cycling performance, good rate-capability and structural stability over charge-discharge cycling in the 2.5-4.6 V region. Further, the electrochemical processes in the above mixed oxides have been shown to involve Ni2+/4+ or Cr3+/6+ redox couple, thus invoking novel ideas to develop new cathode materials. A brief review of the work done on the above O2- and O3-layered Li-Mn-M-oxides (M = metal) as cathodes for LIB is presented.

  10. High-Capacity Layered-Spinel Cathodes for Li-Ion Batteries.

    PubMed

    Nayak, Prasant Kumar; Levi, Elena; Grinblat, Judith; Levi, Mikhael; Markovsky, Boris; Munichandraiah, N; Sun, Yang Kook; Aurbach, Doron

    2016-09-08

    Li and Mn-rich layered oxides with the general structure x Li2 MnO3 ⋅(1-x) LiMO2 (M=Ni, Mn, Co) are promising cathode materials for Li-ion batteries because of their high specific capacity, which may be greater than 250 mA h g(-1) . However, these materials suffer from high first-cycle irreversible capacity, gradual capacity fading, limited rate capability and discharge voltage decay upon cycling, which prevent their commercialization. The decrease in average discharge voltage is a major issue, which is ascribed to a structural layered-to-spinel transformation upon cycling of these oxide cathodes in wide potential ranges with an upper limit higher than 4.5 V and a lower limit below 3 V versus Li. By using four elements systems (Li, Mn, Ni, O) with appropriate stoichiometry, it is possible to prepare high capacity composite cathode materials that contain LiMn1.5 Ni0.5 O4 and Lix Mny Niz O2 components. The Li and Mn-rich layered-spinel cathode materials studied herein exhibit a high specific capacity (≥200 mA h g(-1) ) with good capacity retention upon cycling in a wide potential domain (2.4-4.9 V). The effect of constituent phases on their electrochemical performance, such as specific capacity, cycling stability, average discharge voltage, and rate capability, are explored here. This family of materials can provide high specific capacity, high rate capability, and promising cycle life. Using Co-free cathode materials is also an obvious advantage of these systems.

  11. Preparation and characterization of core-shell battery materials for Li-ion batteries manufactured by substrate induced coagulation

    NASA Astrophysics Data System (ADS)

    Basch, Angelika; Albering, Jörg H.

    2011-03-01

    In this work Substrate Induced Coagulation (SIC) was used to coat the cathode material LiCoO2, commonly used in Li-ion batteries, with fine nano-sized particulate titania. Substrate Induced Coagulation is a self-assembled dip-coating process capable of coating different surfaces with fine particulate materials from liquid media. A SIC coating consists of thin and rinse-prove layers of solid particles. An advantage of this dip-coating method is that the method is easy and cheap and that the materials can be handled by standard lab equipment. Here, the SIC coating of titania on LiCoO2 is followed by a solid-state reaction forming new inorganic layers and a core-shell material, while keeping the content of active battery material high. This titania based coating was designed to confine the reaction of extensively delithiated (charged) LiCoO2 and the electrolyte. The core-shell materials were characterized by SEM, XPS, XRD and Rietveld analysis.

  12. Flexible Batteries: Hierarchical Assemblies of Carbon Nanotubes for Ultraflexible Li-Ion Batteries (Adv. Mater. 31/2016).

    PubMed

    Ahmad, Shahab; Copic, Davor; George, Chandramohan; De Volder, Michael

    2016-08-01

    An advanced battery architecture composed of 3D carbon nanotube (CNT) current collectors is used to mitigate stresses in flexible batteries. On Page 6705, C. George, M. De Volder, and co-workers describe the fabrication process and characteristics of this new generation of ultraflexible batteries, which show high rate and cyclablility. These batteries may find applications in the powering of flexible displays and logics.

  13. Tuning the Morphologies of MnO/C Hybrids by Space Constraint Assembly of Mn-MOFs for High Performance Li Ion Batteries.

    PubMed

    Sun, Dan; Tang, Yougen; Ye, Delai; Yan, Jun; Zhou, Haoshen; Wang, Haiyan

    2017-02-15

    Morphology controllable fabrication of electrode materials is of great significance but is still a major challenge for constructing advanced Li ion batteries. Herein, we propose a novel space constraint assembly approach to tune the morphology of Mn(terephthalic acid) (PTA)-MOF, in which benzonic acid was employed as a modulator to adjust the available MOF assembly directions. As a result, Mn(PTA)-MOFs with microquadrangulars, microflakes, and spindle-like microrods morphologies have been achieved. MnO/C hybrids with preserved morphologies were further obtained by self-sacrificial and thermal transformation of Mn(PTA)-MOFs. As anodes for Li ion batteries, these morphologies showed great influence on the electrochemical properties. Owing to the abundant porous structure and unique architecture, the MnO/C spindle-like microrods demonstrated superior electrochemical properties with a high reversible capacity of 1165 mAh g(-1) at 0.3 A g(-1), excellent rate capability of 580 mAh g(-1) at 3 A g(-1), and no considerable capacity loss after 200 cycles at 1 A g(-1). This strategy could be extended to engineering the morphology of other MOF-derived functional materials in various structure-dependent applications.

  14. High-performance graphene/sulphur electrodes for flexible Li-ion batteries using the low-temperature spraying method.

    PubMed

    Kumar, Pushpendra; Wu, Feng-Yu; Hu, Lung-Hao; Ali Abbas, Syed; Ming, Jun; Lin, Chia-Nan; Fang, Jason; Chu, Chih-Wei; Li, Lain-Jong

    2015-05-07

    Elementary sulphur (S) has been shown to be an excellent cathode material in energy storage devices such as Li-S batteries owing to its very high capacity. The major challenges associated with the sulphur cathodes are structural degradation, poor cycling performance and instability of the solid-electrolyte interphase caused by the dissolution of polysulfides during cycling. Tremendous efforts made by others have demonstrated that encapsulation of S materials improves their cycling performance. To make this approach practical for large scale applications, the use of low-cost technology and materials has become a crucial and new focus of S-based Li-ion batteries. Herein, we propose to use a low temperature spraying process to fabricate graphene/S electrode material, where the ink is composed of graphene flakes and the micron-sized S particles prepared by grinding of low-cost S powders. The S particles are found to be well hosted by highly conductive graphene flakes and consequently superior cyclability (∼70% capacity retention after 250 cycles), good coulombic efficiency (∼98%) and high capacity (∼1500 mA h g(-1)) are obtained. The proposed approach does not require high temperature annealing or baking; hence, another great advantage is to make flexible Li-ion batteries. We have also demonstrated two types of flexible batteries using sprayed graphene/S electrodes.

  15. Synthesis of Ionic Liquid Based Electrolytes, Assembly of Li-ion Batteries, and Measurements of Performance at High Temperature.

    PubMed

    Lin, Xinrong; Chapman Varela, Jennifer; Grinstaff, Mark W

    2016-12-20

    The chemical instability of the traditional electrolyte remains a safety issue in widely used energy storage devices such as Li-ion batteries. Li-ion batteries for use in devices operating at elevated temperatures require thermally stable and non-flammable electrolytes. Ionic liquids (ILs), which are non-flammable, non-volatile, thermally stable molten salts, are an ideal replacement for flammable and low boiling point organic solvent electrolytes currently used today. We herein describe the procedures to: 1) synthesize mono- and di-phosphonium ionic liquids paired with chloride or bis(trifluoromethane)sulfonimide (TFSI) anions; 2) measure the thermal properties and stability of these ionic liquids by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA); 3) measure the electrochemical properties of the ionic liquids by cyclic voltammetry (CV); 4) prepare electrolytes containing lithium bis(trifluoromethane)sulfonamide; 5) measure the conductivity of the electrolytes as a function of temperature; 6) assemble a coin cell battery with two of the electrolytes along with a Li metal anode and LiCoO2 cathode; and 7) evaluate battery performance at 100 °C. We additionally describe the challenges in execution as well as the insights gained from performing these experiments.

  16. Understanding memory effects in Li-ion batteries: evidence of a kinetic origin in TiO2 upon hydrogen annealing.

    PubMed

    Ventosa, E; Löffler, T; La Mantia, F; Schuhmann, W

    2016-09-20

    Memory effects in Li-ion battery materials have been explained on the basis of the thermodynamics of many-particles body, however the role of the (de-)intercalation kinetics is not yet clear. We demonstrate that kinetic aspects, specifically Li-ion mobility, are determining the magnitude of the memory effect in TiO2 by studying samples with different levels of oxygen vacancies.

  17. Understanding limiting factors in thick electrode performance as applied to high energy density Li-ion batteries

    DOE PAGES

    Du, Zhijia; Wood, David L.; Daniel, Claus; ...

    2017-02-09

    We present that increasing electrode thickness, thus increasing the volume ratio of active materials, is one effective method to enable the development of high energy density Li-ion batteries. In this study, an energy density versus power density optimization of LiNi0.8Co0.15Al0.05O2 (NCA)/graphite cell stack was conducted via mathematical modeling. The energy density was found to have a maximum point versus electrode thickness (critical thickness) at given discharging C rates. The physics-based factors that limit the energy/power density of thick electrodes were found to be increased cell polarization and underutilization of active materials. The latter is affected by Li-ion diffusion in activemore » materials and Li-ion depletion in the electrolyte phase. Based on those findings, possible approaches were derived to surmount the limiting factors. Finally, the improvement of the energy–power relationship in an 18,650 cell was used to demonstrate how to optimize the thick electrode parameters in cell engineering.« less

  18. Relating the 3D electrode morphology to Li-ion battery performance; a case for LiFePO4

    NASA Astrophysics Data System (ADS)

    Liu, Zhao; Verhallen, Tomas W.; Singh, Deepak P.; Wang, Hongqian; Wagemaker, Marnix; Barnett, Scott

    2016-08-01

    One of the main goals in lithium ion battery electrode design is to increase the power density. This requires insight in the relation between the complex heterogeneous microstructure existing of active material, conductive additive and electrolyte providing the required electronic and Li-ion transport. FIB-SEM is used to determine the three phase 3D morphology, and Li-ion concentration profiles obtained with Neutron Depth Profiling (NDP) are compared for two cases, conventional LiFePO4 electrodes and better performing carbonate templated LiFePO4 electrodes. This provides detailed understanding of the impact of key parameters such as the tortuosity for electron and Li-ion transport though the electrodes. The created hierarchical pore network of the templated electrodes, containing micron sized pores, appears to be effective only at high rate charge where electrolyte depletion is hindering fast discharge. Surprisingly the carbonate templating method results in a better electronic conductive CB network, enhancing the activity of LiFePO4 near the electrolyte-electrode interface as directly observed with NDP, which in a large part is responsible for the improved rate performance both during charge and discharge. The results demonstrate that standard electrodes have a far from optimal charge transport network and that significantly improved electrode performance should be possible by engineering the microstructure.

  19. Spatially resolved in operando neutron scattering studies on Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Senyshyn, A.; Mühlbauer, M. J.; Dolotko, O.; Hofmann, M.; Pirling, T.; Ehrenberg, H.

    2014-01-01

    Spatially-resolved neutron diffraction has been applied to probe the lithium distribution in radial direction of a commercial Li-ion cell of 18650-type. The spatial evolution of selected Bragg reflections for LiCoO2 (positive electrode, "cathode") and graphite and lithium intercalated graphite (negative electrode, "anode") was observed and evaluated by taking beam attenuation and cell geometry effects into account. No evidences for lithium inhomogeneities have been found for the investigated set of cells. Computed neutron tomography using a monochromatic neutron beam confirmed the homogeneous lithium distribution. The relevance of the monochromatic beam to neutron imaging studies of Li-ion cells is discussed.

  20. Oxidation Potentials of Functionalized Sulfone Solvents for High-Voltage Li-Ion Batteries: A Computational Study

    SciTech Connect

    Shao, Nan; Sun, Xiao-Guang; Dai, Sheng; Jiang, Deen

    2012-01-01

    New electrolytes with large electrochemical windows are needed to meet the challenge for high-voltage Li-ion batteries. Sulfone as an electrolyte solvent boasts of high oxidation potentials. Here we examine the effect of multiple functionalization on sulfone's oxidation potential. We compute oxidation potentials for a series of sulfone-based molecules functionalized with fluorine, cyano, ester, and carbonate groups by using a quantum chemistry method within a continuum solvation model. We find that multifunctionalization is a key to achieving high oxidation potentials. This can be realized through either a fluorether group on a sulfone molecule or sulfonyl fluoride with a cyano or ester group.

  1. Extreme-rate capable and highly stable SiCO-TiO2 hybrids for Li ion battery anodes.

    PubMed

    Behera, Shantanu K; Raj, Rishi

    2013-10-25

    A novel hybrid material for Li ion battery anodes, synthesized from polysiloxane-derived SiCO and nanoparticulate TiO2, exhibited specific capacity in excess of 850 mA h g(-1), fully recoverable capacity after cycling at severe current densities, as high as 20,000 mA g(-1) or 300 C rate, and exceptional stability beyond 1000 charge discharge cycles without capacity fading. Microscopy of the anodes after 3000 cycles showed no degradation or loss of materials.

  2. Antiperovskite Li 3 OCl superionic conductor films for solid-state Li-ion batteries

    SciTech Connect

    Lü, Xujie; Howard, John W.; Chen, Aiping; Zhu, Jinlong; Li, Shuai; Wu, Gang; Dowden, Paul; Xu, Hongwu; Zhao, Yusheng; Jia, Quanxi

    2016-02-02

    We prepared antiperovskite Li3OCl superionic conductor films via pulsed laser deposition using a composite target. A significantly enhanced ionic conductivity of 2.0 × 10-4 S cm-1 at room temperature is achieved, and this value is more than two orders of magnitude higher than that of its bulk counterpart. Moreover, the applicability of Li3OCl as a solid electrolyte for Li-ion batteries is demonstrated.

  3. Self-assembled LiFePO4 nanowires with high rate capability for Li-ion batteries.

    PubMed

    Peng, Lele; Zhao, Yu; Ding, Yu; Yu, Guihua

    2014-08-28

    Controlling the dimensions in the nanometer scale of olivine-type LiFePO4 has been regarded as one of the most effective strategies to improve its electrochemical performance for Li-ion batteries. In this communication, we demonstrate a novel LiFePO4 nanoarchitecture, which is composed of self-assembled single-crystalline nanowires and exhibits good rate capability with a reversible capacity of ∼110 mA h g(-1) at a current rate of 30 C, and a stable capacity retention of ∼86% after 1000 cycles at a current rate of 10 C.

  4. Improved electrolytes for Li-ion batteries: Mixtures of ionic liquid and organic electrolyte with enhanced safety and electrochemical performance

    NASA Astrophysics Data System (ADS)

    Guerfi, A.; Dontigny, M.; Charest, P.; Petitclerc, M.; Lagacé, M.; Vijh, A.; Zaghib, K.

    Physical and electrochemical characteristics of Li-ion battery systems based on LiFePO 4 cathodes and graphite anodes with mixture electrolytes were investigated. The mixed electrolytes are based on an ionic liquid (IL), and organic solvents used in commercial batteries. We investigated a range of compositions to determine an optimum conductivity and non-flammability of the mixed electrolyte. This led us to examine mixtures of ILs with the organic electrolyte usually employed in commercial Li-ion batteries, i.e., ethylene carbonate (EC) and diethylene carbonate (DEC). The IL electrolyte consisted of (trifluoromethyl sulfonylimide) (TFSI) as anion and 1-ethyl-3-methyleimidazolium (EMI) as the cation. The physical and electrochemical properties of some of these mixtures showed an improvement characteristics compared to the constituents alone. The safety was improved with electrolyte mixtures; when IL content in the mixture is ≥40%, no flammability is observed. A stable SEI layer was obtained on the MCMB graphite anode in these mixed electrolytes, which is not obtained with IL containing the TFSI-anion. The high-rate capability of LiFePO 4 is similar in the organic electrolyte and the mixture with a composition of 1:1. The interface resistance of the LiFePO 4 cathode is stabilized when the IL is added to the electrolyte. A reversible capacity of 155 mAh g -1 at C/12 is obtained with cells having at least some organic electrolyte compared to only 124 mAh g -1 with pure IL. With increasing discharge rate, the capacity is maintained close to that in the organic solvent up to 2 C rate. At higher rates, the results with mixture electrolytes start to deviate from the pure organic electrolyte cell. The evaluation of the Li-ion cells; LiFePO 4//Li 4Ti 5O 12 with organic and, 40% mixture electrolytes showed good 1st CE at 98.7 and 93.0%, respectively. The power performance of both cell configurations is comparable up to 2 C rate. This study indicates that safety and

  5. Influence of memory effect on the state-of-charge estimation of large-format Li-ion batteries based on LiFePO4 cathode

    NASA Astrophysics Data System (ADS)

    Shi, Wei; Wang, Jiulin; Zheng, Jianming; Jiang, Jiuchun; Viswanathan, Vilayanur; Zhang, Ji-Guang

    2016-04-01

    In this work, we systematically investigated the influence of the memory effect of LiFePO4 cathodes in large-format full batteries. The electrochemical performance of the electrodes used in these batteries was also investigated separately in half-cells to reveal their intrinsic properties. We noticed that the memory effect of LiFePO4/graphite cells depends not only on the maximum state of charge reached during the memory writing process, but is also affected by the depth of discharge reached during the memory writing process. In addition, the voltage deviation in a LiFePO4/graphite full battery is more complex than in a LiFePO4/Li half-cell, especially for a large-format battery, which exhibits a significant current variation in the region near its terminals. Therefore, the memory effect should be taken into account in advanced battery management systems to further extend the long-term cycling stabilities of Li-ion batteries using LiFePO4 cathodes.

  6. Practical performances of Li-ion polymer batteries with LiNi 0.8Co 0.2O 2, MCMB, and PAN-based gel electrolyte

    NASA Astrophysics Data System (ADS)

    Akashi, Hiroyuki; Shibuya, Mashio; Orui, Ken; Shibamoto, Gorou; Sekai, Koji

    The practical performances and thermal stability of Li-ion polymer batteries with LiNi 0.8Co 0.2O 2, mesocarbon microbead-based graphite, and poly(acrylonitrile) (PAN)-based gel electrolytes are reported. The gel electrolyte, which shows a fire-retardance by itself as well as good chemical stability effectively improved thermal stability of the Li-ion polymer battery up to 170 °C. We also found that the mesocarbon microbead-based graphite showed better coulombic efficiency even though the gel electrolyte contained PC and GBL. An evaluation of cell performances showed that the electrodes and the gel electrolyte were promising material for a next-generation Li-ion polymer battery.

  7. ESTABLISHING SUSTAINABLE US HEV/PHEV MANUFACTURING BASE: STABILIZED LITHIUM METAL POWDER, ENABLING MATERIAL AND REVOLUTIONARY TECHNOLOGY FOR HIGH ENERGY LI-ION BATTERIES

    SciTech Connect

    Yakovleva, Marina

    2012-12-31

    FMC Lithium Division has successfully completed the project “Establishing Sustainable US PHEV/EV Manufacturing Base: Stabilized Lithium Metal Powder, Enabling Material and Revolutionary Technology for High Energy Li-ion Batteries”. The project included design, acquisition and process development for the production scale units to 1) produce stabilized lithium dispersions in oil medium, 2) to produce dry stabilized lithium metal powders, 3) to evaluate, design and acquire pilot-scale unit for alternative production technology to further decrease the cost, and 4) to demonstrate concepts for integrating SLMP technology into the Li- ion batteries to increase energy density. It is very difficult to satisfy safety, cost and performance requirements for the PHEV and EV applications. As the initial step in SLMP Technology introduction, industry can use commercially available LiMn2O4 or LiFePO4, for example, that are the only proven safer and cheaper lithium providing cathodes available on the market. Unfortunately, these cathodes alone are inferior to the energy density of the conventional LiCoO2 cathode and, even when paired with the advanced anode materials, such as silicon composite material, the resulting cell will still not meet the energy density requirements. We have demonstrated, however, if SLMP Technology is used to compensate for the irreversible capacity in the anode, the efficiency of the cathode utilization will be improved and the cost of the cell, based on the materials, will decrease.

  8. Use of mild organic acid reagents to recover the Co and Li from spent Li-ion batteries.

    PubMed

    Nayaka, Girish Praveen; Pai, Karkala Vasantakumar; Manjanna, Jayappa; Keny, Sangita J

    2016-05-01

    New organic acid mixtures have been investigated to recover the valuable metal ions from the cathode material of spent Li-ion batteries. The cathodic active material (LiCoO2) collected from spent Li-ion batteries (LIBs) is dissolved in mild organic acids, iminodiacetic acid (IDA) and maleic acid (MA), to recover the metals. Almost complete dissolution occurred in slightly excess (than the stoichiometric requirement) of IDA or MA at 80°C for 6h, based on the Co and Li released. The reducing agent, ascorbic acid (AA), converts the dissolved Co(III)- to Co(II)-L (L=IDA or MA) thereby selective recovery of Co as Co(II)-oxalate is possible. The formation of Co(III)- and Co(II)-L is evident from the UV-Vis spectra of the dissolved solution as a function of dissolution time. Thus, the reductive-complexing dissolution mechanism is proposed here. These mild organic acids are environmentally benign unlike the mineral acids.

  9. Peapod-like composite with nickel phosphide nanoparticles encapsulated in carbon fibers as enhanced anode for li-ion batteries.

    PubMed

    Zhang, Huijuan; Feng, Yangyang; Zhang, Yan; Fang, Ling; Li, Wenxiang; Liu, Qing; Wu, Kai; Wang, Yu

    2014-07-01

    Herein, we introduce a peapod-like composite with Ni12 P5 nanoparticles encapsulated in carbon fibers as the enhanced anode in Li-ion batteries for the first time. In the synthesis, NiNH4 PO4 ⋅H2 O nanorods act as precursors and sacrificial templates, and glucose molecules serve as the green carbon source. With the aid of hydrogen bonding between the precursor and carbon source, a polymer layer is hydrothermally formed and then rationally converted into carbon fibers upon inert calcination at elevated temperatures. Meanwhile, NiNH4 PO4 ⋅H2 O nanorods simultaneously turn into Ni12 P5 nanoparticles encapsulated in carbon fibers by undergoing a decomposition and reduction process induced by high temperature and the carbon fibers. The obtained composite performs excellently as a Li-ion batteries anode relative to pure-phase materials. Specific capacity can reach 600 m Ah g(-1) over 200 cycles, which is much higher than that of isolated graphitized carbon or phosphides, and reasonably believed to originate from the synergistic effect based on the combination of Ni12 P5 nanoparticles and carbon fibers. Due to the benignity, sustainability, low cost, and abundance of raw materials of the peapod-like composite, numerous potential applications, in fields such as optoelectronics, electronics, specific catalysis, gas sensing, and biotechnology can be envisaged.

  10. Thermal stability of LiPF 6 salt and Li-ion battery electrolytes containing LiPF 6

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Zhuang, Guorong V.; Ross, Philip N.

    The thermal stability of the neat lithium hexafluorophosphate (LiPF 6) salt and of 1 molal (m) solutions of LiPF 6 in prototypical Li-ion battery solvents was studied with thermogravimetric analysis (TGA) and on-line Fourier transform infrared (FTIR). Pure LiPF 6 salt is thermally stable up to 107 °C in a dry inert atmosphere, and its decomposition path is a simple dissociation producing lithium fluoride (LiF) as solid and PF 5 as gaseous products. In the presence of water (300 ppm) in the carrier gas, its decomposition onset temperature is lowered as a result of direct thermal reaction between LiPF 6 and water vapor to form phosphorous oxyfluoride (POF 3) and hydrofluoric acid (HF). No new products were observed in 1 m solutions of LiPF 6 in ethylene carbonate (EC), dimethyl carbonate (DMC) and ethyl methyl carbonate (EMC) by on-line TGA-FTIR analysis. The storage of the same solutions in sealed containers at 85 °C for 300-420 h did not produce any significant quantity of new products as well. In particular, no alkylflurophosphates were found in the solutions after storage at elevated temperature. In the absence of either an impurity like alcohol or cathode active material that may (or may not) act as a catalyst, there is no evidence of thermally induced reaction between LiPF 6 and the prototypical Li-ion battery solvents EC, PC, DMC or EMC.

  11. Atomic layer deposition of amorphous TiO2 on graphene as an anode for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Ban, Chunmei; Xie, Ming; Sun, Xiang; Travis, Jonathan J.; Wang, Gongkai; Sun, Hongtao; Dillon, Anne C.; Lian, Jie; George, Steven M.

    2013-10-01

    Atomic layer deposition (ALD) was used to deposit TiO2 anode material on high surface area graphene (reduced graphene oxide) sheets for Li-ion batteries. An Al2O3 ALD ultrathin layer was used as an adhesion layer for conformal deposition of the TiO2 ALD films at 120 ° C onto the conducting graphene sheets. The TiO2 ALD films on the Al2O3 ALD adhesion layer were nearly amorphous and conformal to the graphene sheets. These nanoscale TiO2 coatings minimized the effect of the low diffusion coefficient of lithium ions in bulk TiO2. The TiO2 ALD films exhibited stable capacities of ˜120 mAh g-1 and ˜100 mAh g-1 at high cycling rates of 1 A g-1 and 2 A g-1, respectively. The TiO2 ALD films also displayed excellent cycling stability with ˜95% of the initial capacity remaining after 500 cycles. These results illustrate that ALD can provide a useful method to deposit electrode materials on high surface area substrates for Li-ion batteries.

  12. A novel state of health estimation method of Li-ion battery using group method of data handling

    NASA Astrophysics Data System (ADS)

    Wu, Ji; Wang, Yujie; Zhang, Xu; Chen, Zonghai

    2016-09-01

    In this paper, the control theory is applied to assist the estimation of state of health (SoH) which is a key parameter to battery management. Battery can be treated as a system, and the internal state, e.g. SoH, can be observed through certain system output data. Based on the philosophy of human health and athletic ability estimation, variables from a specific process, which is a constant current charge subprocess, are obtained to depict battery SoH. These variables are selected according to the differential geometric analysis of battery terminal voltage curves. Moreover, the relationship between the differential geometric properties and battery SoH is modelled by the group method of data handling (GMDH) polynomial neural network. Thus, battery SoH can be estimated by GMDH with inputs of voltage curve properties. Experiments have been conducted on different types of Li-ion battery, and the results show that the proposed method is valid for SoH estimation.

  13. Vacancy-induced manganese vanadates and their potential application to Li-ion batteries.

    PubMed

    Dufficy, Martin K; Luo, Lan; Fedkiw, Peter S; Maggard, Paul A

    2016-06-14

    We report on the synthesis and characterization of a novel manganese vanadate, Mn1.5(H2O)(NH4)V4O12, with rare in situ disorder of Mn(H2O)2(2+)/2NH4(+). We show that vacancies created by ammonium ions and coordinating water molecules within the manganese vanadate crystal structure yield high-charge capacity, favorable rate capability, and long cycle life in Li-ion half-cells.

  14. Li-Ion Batteries from LiFePO4 Cathode and Anatase/Graphene Composite Anode for Stationary Energy Storage

    SciTech Connect

    Choi, Daiwon; Wang, Donghai; Viswanathan, Vilayanur V.; Bae, In-Tae; Wang, Wei; Nie, Zimin; Zhang, Jiguang; Graff, Gordon L.; Liu, Jun; Yang, Zhenguo; Duong, Tien Q.

    2009-11-06

    Li-ion batteries based on LiFePO4 cathode and anatase TiO2/graphene anode were investigated for possible stationary energy storage application. Fine-structured LiFePO4 was synthesized by novel molten surfactant approach. Anatase TiO2/graphene nanocomposite was prepared via self assembly method. The full cell that operated at flat 1.6V demonstrated negligible fade after more than 700 cycles. The LiFePO4/TiO2 combination Li-ion battery is inexpensive, environmentally benign, safe and stable. Therefore, it can be practically applied as stationary energy storage for renewable power sources.

  15. High-performance graphene/sulphur electrodes for flexible Li-ion batteries using the low-temperature spraying method

    NASA Astrophysics Data System (ADS)

    Kumar, Pushpendra; Wu, Feng-Yu; Hu, Lung-Hao; Ali Abbas, Syed; Ming, Jun; Lin, Chia-Nan; Fang, Jason; Chu, Chih-Wei; Li, Lain-Jong

    2015-04-01

    Elementary sulphur (S) has been shown to be an excellent cathode material in energy storage devices such as Li-S batteries owing to its very high capacity. The major challenges associated with the sulphur cathodes are structural degradation, poor cycling performance and instability of the solid-electrolyte interphase caused by the dissolution of polysulfides during cycling. Tremendous efforts made by others have demonstrated that encapsulation of S materials improves their cycling performance. To make this approach practical for large scale applications, the use of low-cost technology and materials has become a crucial and new focus of S-based Li-ion batteries. Herein, we propose to use a low temperature spraying process to fabricate graphene/S electrode material, where the ink is composed of graphene flakes and the micron-sized S particles prepared by grinding of low-cost S powders. The S particles are found to be well hosted by highly conductive graphene flakes and consequently superior cyclability (~70% capacity retention after 250 cycles), good coulombic efficiency (~98%) and high capacity (~1500 mA h g-1) are obtained. The proposed approach does not require high temperature annealing or baking; hence, another great advantage is to make flexible Li-ion batteries. We have also demonstrated two types of flexible batteries using sprayed graphene/S electrodes.Elementary sulphur (S) has been shown to be an excellent cathode material in energy storage devices such as Li-S batteries owing to its very high capacity. The major challenges associated with the sulphur cathodes are structural degradation, poor cycling performance and instability of the solid-electrolyte interphase caused by the dissolution of polysulfides during cycling. Tremendous efforts made by others have demonstrated that encapsulation of S materials improves their cycling performance. To make this approach practical for large scale applications, the use of low-cost technology and materials has become

  16. First principle study of LiXS2 (X = Ga, In) as cathode materials for Li ion batteries

    NASA Astrophysics Data System (ADS)

    Feng-Ya, Rao; Fang-Hua, Ning; Li-Wei, Jiang; Xiang-Ming, Zeng; Mu-Sheng, Wu; Bo, Xu; Chu-Ying, Ouyang

    2016-02-01

    From first principle calculations, we demonstrate that LiXS2 (X = Ga, In) compounds have potential applications as cathode materials for Li ion batteries. It is shown that Li can be extracted from the LiXS2 lattice with relatively small volume change and the XS4 tetrahedron structure framework remains stable upon delithiation. The theoretical capacity and average intercalation potential of the LiGaS2 (LiInS2) cathode are 190.4 (144.2) mAh/g and 3.50 V (3.53 V). The electronic structures of the LiXS2 are insulating with band gaps of 2.88 eV and 1.99 eV for X = Ga and In, respectively. However, Li vacancies, which are formed through delithiation, change the electronic structure substantially from insulating to metallic structure, indicating that the electrical conductivities of the LiXS2 compounds should be good during cycling. Li ion migration energy barriers are also calculated, and the results show that Li ion diffusions in the LiXS2 compounds can be as good as those in the currently widely used electrode materials. Project supported by the National High Technology and Development Key Program, China (Grant No. 2015AA034201), the National Natural Science Foundation of China (Grant Nos. 11234013 and 11264014), the Natural Science Foundation of Jiangxi Province, China (Grant Nos. 20133ACB21010, 20142BAB212002, and 20132BAB212005), and the Foundation of Jiangxi Provincial Education Committee, China (Grant Nos. GJJ14254 and KJLD14024).

  17. Miniature all-solid-state heterostructure nanowire Li-ion batteries as a tool for engineering and structural diagnostics of nanoscale electrochemical processes.

    PubMed

    Oleshko, Vladimir P; Lam, Thomas; Ruzmetov, Dmitry; Haney, Paul; Lezec, Henri J; Davydov, Albert V; Krylyuk, Sergiy; Cumings, John; Talin, A Alec

    2014-10-21

    Complex interfacial phenomena and phase transformations that govern the operation of Li-ion batteries require detailed nanoscale 3D structural and compositional characterization that can be directly related to their capacity and electrical transport properties. For this purpose, we have designed model miniature all solid-state radial heterostructure Li-ion batteries composed of LiCoO2 cathode, LiPON electrolyte and amorphous Si anode shells, which were deposited around metallized high-aspect-ratio Si nanowires as a scaffolding core. Such diagnostic batteries, the smallest, complete secondary Li-ion batteries realized to date, were specifically designed for in situ electrical testing in a field-emission scanning electron microscope and/or transmission electron microscope. The results of electrochemical testing were described in detail in a previous publication (Nano Lett., 2012, 12, 505-511). The model Li-ion batteries allow analysis of the correlations between electrochemical properties and their structural evolution during cycling in various imaging, diffraction and spectroscopic modes down to the atomic level. Employing multimode analytical scanning/transmission electron microscopy imaging coupled with correlative multivariate statistical analysis and tomography, we have analyzed and quantified the 3D morphological and structural arrangement of the batteries, including textured platelet-like LiCoO2 nanocrystallites, buried electrode-electrolyte interfaces and hidden internal defects to clarify effects of scaling on a battery's electrochemical performance. Characterization of the nanoscale interfacial processes using model heterostructure nanowire-based Li-ion batteries provides useful guidelines for engineering of prospective nano-sized building blocks in future electrochemical energy storage systems.

  18. High Anodic Performance of Co 1,3,5-Benzenetricarboxylate Coordination Polymers for Li-Ion Battery.

    PubMed

    Li, Chao; Lou, Xiaobing; Shen, Ming; Hu, Xiaoshi; Guo, Zhi; Wang, Yong; Hu, Bingwen; Chen, Qun

    2016-06-22

    We report the designed synthesis of Co 1,3,5-benzenetricarboxylate coordination polymers (CPs) via a straightforward hydrothermal method, in which three kinds of reaction solvents are selected to form CPs with various morphologies and dimensions. When tested as anode materials in Li-ion battery, the cycling stabilities of the three CoBTC CPs at a current density of 100 mA g(-1) have not evident difference; however, the reversible capacities are widely divergent when the current density is increased to 2 A g(-1). The optimized product CoBTC-EtOH maintains a reversible capacity of 473 mAh g(-1) at a rate of 2 A g(-1) after 500 galvanostatic charging/discharging cycles while retaining a nearly 100% Coulombic efficiency. The hollow microspherical morphology, accessible specific area, and the absence of coordination solvent of CoBTC-EtOH might be responsible for such difference. Furthermore, the ex situ soft X-ray absorption spectroscopy studies of CoBTC-EtOH under different states-of-charge suggest that the Co ions remain in the Co(2+) state during the charging/discharging process. Therefore, Li ions are inserted to the organic moiety (including the carboxylate groups and the benzene ring) of CoBTC without the direct engagement of Co ions during electrochemical cycling.

  19. Probing the degradation mechanisms in electrolyte solutions for Li-ion batteries by in situ transmission electron microscopy.

    PubMed

    Abellan, Patricia; Mehdi, B Layla; Parent, Lucas R; Gu, Meng; Park, Chiwoo; Xu, Wu; Zhang, Yaohui; Arslan, Ilke; Zhang, Ji-Guang; Wang, Chong-Min; Evans, James E; Browning, Nigel D

    2014-03-12

    Development of novel electrolytes with increased electrochemical stability is critical for the next generation battery technologies. In situ electrochemical fluid cells provide the ability to rapidly and directly characterize electrode/electrolyte interfacial reactions under conditions directly relevant to the operation of practical batteries. In this paper, we have studied the breakdown of a range of inorganic/salt complexes relevant to state-of-the-art Li-ion battery systems by in situ (scanning) transmission electron microscopy ((S)TEM). In these experiments, the electron beam itself caused the localized electrochemical reaction that allowed us to observe electrolyte breakdown in real-time. The results of the in situ (S)TEM experiments matches with previous stability tests performed during battery operation and the breakdown products and mechanisms are also consistent with known mechanisms. This analysis indicates that in situ liquid stage (S)TEM observations could be used to directly test new electrolyte designs and identify a smaller library of candidate solutions deserving of more detailed characterization. A systematic study of electrolyte degradation is also a necessary first step for any future controlled in operando liquid (S)TEM experiments intent on visualizing working batteries at the nanoscale.

  20. Electrolytes with Improved Safety Characteristics for High Voltage, High Specific Energy Li-ion Cells

    NASA Technical Reports Server (NTRS)

    Smart, M. C.; Krause, F. C.; Hwang, C.; West, W. C.; Soler, J.; Whitcanack, L. W.; Prakash, G. K. S.; Ratnakumar, B. V.

    2012-01-01

    (1) NASA is actively pursuing the development of advanced electrochemical energy storage and conversion devices for future lunar and Mars missions; (2) The Exploration Technology Development Program, Energy Storage Project is sponsoring the development of advanced Li-ion batteries and PEM fuel cell and regenerative fuel cell systems for the Altair Lunar Lander, Extravehicular Activities (EVA), and rovers and as the primary energy storage system for Lunar Surface Systems; (3) At JPL, in collaboration with NASA-GRC, NASA-JSC and industry, we are actively developing advanced Li-ion batteries with improved specific energy, energy density and safety. One effort is focused upon developing Li-ion battery electrolyte with enhanced safety characteristics (i.e., low flammability); and (4) A number of commercial applications also require Li-ion batteries with enhanced safety, especially for automotive applications.

  1. Attainable gravimetric and volumetric energy density of Li-S and li ion battery cells with solid separator-protected Li metal anodes.

    PubMed

    McCloskey, Bryan D

    2015-11-19

    As a result of sulfur's high electrochemical capacity (1675 mA h/gs), lithium-sulfur batteries have received significant attention as a potential high-specific-energy alternative to current state-of-the-art rechargeable Li ion batteries. For Li-S batteries to compete with commercially available Li ion batteries, high-capacity anodes, such as those that use Li metal, will need to be enabled to fully exploit sulfur's high capacity. The development of Li metal anodes has focused on eliminating Coulombically inefficient and dendritic Li cycling, and to this end, an interesting direction of research is to protect Li metal by employing mechanically stiff solid-state Li(+) conductors, such as garnet phase Li7La3Zr2O12 (LLZO), NASICON-type Li1+xAlxTi2-x(PO4)3 (LATP), and Li2S-P2S5 glasses (LPS), as electrode separators. Basic calculations are used to quantify useful targets for solid Li metal protective separator thickness and cost to enable Li metal batteries in general and Li-S batteries specifically. Furthermore, maximum electrolyte-to-sulfur ratios that allow Li-S batteries to compete with Li ion batteries are calculated. The results presented here suggest that controlling the complex polysulfide speciation chemistry in Li-S cells with realistic, minimal electrolyte loading presents a meaningful opportunity to develop Li-S batteries that are competitive on a specific energy basis with current state-of-the-art Li ion batteries.

  2. Suppressing the voltage-fading of layered lithium-rich cathode materials via an aqueous binder for Li-ion batteries.

    PubMed

    Zhang, Tao; Li, Jun-tao; Liu, Jie; Deng, Ya-ping; Wu, Zhen-guo; Yin, Zu-wei; Guo, Dong; Huang, Ling; Sun, Shi-gang

    2016-03-28

    Guar gum (GG) has been applied as a binder for layered lithium-rich cathode materials of Li-ion batteries for the first time. Compared with the conventional PVDF binder, electrodes with GG as the binder exhibit significantly suppressed voltage and capacity fading. This study has introduced a multi-functional binder for layered lithium-rich cathode materials.

  3. Operando observations of solid-state electrochemical reactions in Li-ion batteries by spatially resolved TEM EELS and electron holography.

    PubMed

    Yamamoto, Kazuo; Iriyama, Yasutoshi; Hirayama, Tsukasa

    2017-02-08

    All-solid-state Li-ion batteries having incombustible solid electrolytes are promising energy storage devices because they have significant advantages in terms of safety, lifetime and energy density. Electrochemical reactions, namely, Li-ion insertion/extraction reactions, commonly occur around the nanometer-scale interfaces between the electrodes and solid electrolytes. Thus, transmission electron microscopy (TEM) is an appropriate technique to directly observe such reactions, providing important information for understanding the fundamental solid-state electrochemistry and improving battery performance. In this review, we introduce two types of TEM techniques for operando observations of battery reactions, spatially resolved electron energy-loss spectroscopy in a TEM mode for direct detection of the Li concentration profiles and electron holography for observing the electric potential changes due to Li-ion insertion/extraction reactions. We visually show how Li-ion insertion/extractions affect the crystal structures, electronic structures, and local electric potential during the charge-discharge processes in these batteries.

  4. Mechanical abuse simulation and thermal runaway risks of large-format Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Wang, Hsin; Lara-Curzio, Edgar; Rule, Evan T.; Winchester, Clinton S.

    2017-02-01

    Internal short circuit of large-format Li-ion pouch cells induced by mechanical abuse was simulated using a modified mechanical pinch test. A torsion force was added manually at ∼40% maximum compressive loading force during the pinch test. The cell was twisted about 5° to the side by horizontally pulling a wire attached to the anode tab. The combined torsion-compression force created small failure at the separator yet allowed testing of fully charged large format Li-ion cells without triggering thermal runaway. Two types of commercial cells were tested using 4-6 cells at each state-of-charge (SOC). Commercially available 18 Ahr LiFePO4 (LFP) and 25 Ahr Li(NiMnCo)1/3O2 (NMC) cells were tested, and a thermal runaway risk (TRR) score system was used to evaluate the safety of the cells under the same testing conditions. The aim was to provide the cell manufacturers and end users with a tool to compare different designs and safety features.

  5. SiO2/polyacrylonitrile membranes via centrifugal spinning as a separator for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Yanilmaz, Meltem; Lu, Yao; Li, Ying; Zhang, Xiangwu

    2015-01-01

    Centrifugal spinning is a fast, cost-effective and safe alternative to the electrospinning technique, which is commonly used for making fiber-based separator membranes. In this work, SiO2/polyacrylonitrile (PAN) membranes were produced by using centrifugal spinning and they were characterized by using different electrochemical techniques for use as separators in Li-ion batteries. SiO2/PAN membranes exhibited good wettability and high ionic conductivity due to their highly porous fibrous structure. Compared with commercial microporous polyolefin membranes, SiO2/PAN membranes had larger liquid electrolyte uptake, higher electrochemical oxidation limit, and lower interfacial resistance with lithium. SiO2/PAN membrane separators were assembled into lithium/lithium iron phosphate cells and these cells delivered high capacities and exhibited good cycling performance at room temperature. In addition, cells using SiO2/PAN membranes showed superior C-rate performance compared to those using microporous PP membrane.

  6. H2O2 assisted room temperature oxidation of Ti2C MXene for Li-ion battery anodes

    NASA Astrophysics Data System (ADS)

    Ahmed, Bilal; Anjum, Dalaver H.; Hedhili, Mohamed N.; Gogotsi, Yury; Alshareef, Husam N.

    2016-03-01

    Herein we demonstrate that a prominent member of the MXene family, Ti2C, undergoes surface oxidation at room temperature when treated with hydrogen peroxide (H2O2). The H2O2 treatment results in opening up of MXene sheets and formation of TiO2 nanocrystals on their surface, which is evidenced by the high surface area of H2O2 treated MXene and X-ray diffraction (XRD) analysis. We show that the reaction time and the amount of hydrogen peroxide used are the limiting factors, which determine the morphology and composition of the final product. Furthermore, it is shown that the performance of H2O2 treated MXene as an anode material in Li ion batteries (LIBs) was significantly improved as compared to as-prepared MXenes. For instance, after 50 charge/discharge cycles, specific discharge capacities of 389 mA h g-1, 337 mA h g-1 and 297 mA h g-1 were obtained for H2O2 treated MXene at current densities of 100 mA g-1, 500 mA g-1 and 1000 mA g-1, respectively. In addition, when tested at a very high current density, such as 5000 mA g-1, the H2O2 treated MXene showed a specific capacity of 150 mA h g-1 and excellent rate capability. These results clearly demonstrate that H2O2 treatment of Ti2C MXene improves MXene properties in energy storage applications, such as Li ion batteries or capacitors.Herein we demonstrate that a prominent member of the MXene family, Ti2C, undergoes surface oxidation at room temperature when treated with hydrogen peroxide (H2O2). The H2O2 treatment results in opening up of MXene sheets and formation of TiO2 nanocrystals on their surface, which is evidenced by the high surface area of H2O2 treated MXene and X-ray diffraction (XRD) analysis. We show that the reaction time and the amount of hydrogen peroxide used are the limiting factors, which determine the morphology and composition of the final product. Furthermore, it is shown that the performance of H2O2 treated MXene as an anode material in Li ion batteries (LIBs) was significantly improved as

  7. Scalable synthesis of nano-silicon from beach sand for long cycle life Li-ion batteries.

    PubMed

    Favors, Zachary; Wang, Wei; Bay, Hamed Hosseini; Mutlu, Zafer; Ahmed, Kazi; Liu, Chueh; Ozkan, Mihrimah; Ozkan, Cengiz S

    2014-07-08

    Herein, porous nano-silicon has been synthesized via a highly scalable heat scavenger-assisted magnesiothermic reduction of beach sand. This environmentally benign, highly abundant, and low cost SiO₂ source allows for production of nano-silicon at the industry level with excellent electrochemical performance as an anode material for Li-ion batteries. The addition of NaCl, as an effective heat scavenger for the highly exothermic magnesium reduction process, promotes the formation of an interconnected 3D network of nano-silicon with a thickness of 8-10 nm. Carbon coated nano-silicon electrodes achieve remarkable electrochemical performance with a capacity of 1024 mAhg(-1) at 2 Ag(-1) after 1000 cycles.

  8. Visualization of O-O peroxo-like dimers in high-capacity layered oxides for Li-ion batteries.

    PubMed

    McCalla, Eric; Abakumov, Artem M; Saubanère, Matthieu; Foix, Dominique; Berg, Erik J; Rousse, Gwenaelle; Doublet, Marie-Liesse; Gonbeau, Danielle; Novák, Petr; Van Tendeloo, Gustaaf; Dominko, Robert; Tarascon, Jean-Marie

    2015-12-18

    Lithium-ion (Li-ion) batteries that rely on cationic redox reactions are the primary energy source for portable electronics. One pathway toward greater energy density is through the use of Li-rich layered oxides. The capacity of this class of materials (>270 milliampere hours per gram) has been shown to be nested in anionic redox reactions, which are thought to form peroxo-like species. However, the oxygen-oxygen (O-O) bonding pattern has not been observed in previous studies, nor has there been a satisfactory explanation for the irreversible changes that occur during first delithiation. By using Li2IrO3 as a model compound, we visualize the O-O dimers via transmission electron microscopy and neutron diffraction. Our findings establish the fundamental relation between the anionic redox process and the evolution of the O-O bonding in layered oxides.

  9. Sandwich-like SnS/Polypyrrole Ultrathin Nanosheets as High-Performance Anode Materials for Li-Ion Batteries.

    PubMed

    Liu, Jun; Gu, Mingzhe; Ouyang, Liuzhang; Wang, Hui; Yang, Lichun; Zhu, Min

    2016-04-06

    Sandwich-like SnS/polypyrrole ultrathin nanosheets were synthesized via a pyrrole reduction and in situ polymerization route, in which room-temperature synthesized ZnSn(OH)6 microcubes were used as the tin source. As anode materials for Li-ion batteries, they exhibit an extremely high reversible capacity (about 1000 mA h g(-1) at 0.1C), outstanding rate capability (with reversible capabilities of 878, 805, 747, 652, and 576 mA h g(-1) at 0.2C, 0.5C, 1C, 2C, and 5C, respectively), stable cycling performance, and high capacity retention (a high capacity of 703 mA h g(-1) at 1C after long 500 cycles).

  10. Facile molten salt synthesis of Li2NiTiO4 cathode material for Li-ion batteries

    PubMed Central

    2014-01-01

    Well-crystallized Li2NiTiO4 nanoparticles are rapidly synthesized by a molten salt method using a mixture of NaCl and KCl salts. X-ray diffraction pattern and scanning electron microscopic image show that Li2NiTiO4 has a cubic rock salt structure with an average particle size of ca. 50 nm. Conductive carbon-coated Li2NiTiO4 is obtained by a facile ball milling method. As a novel 4 V positive cathode material for Li-ion batteries, the Li2NiTiO4/C delivers high discharge capacities of 115 mAh g-1 at room temperature and 138 mAh g-1 and 50°C, along with a superior cyclability. PMID:24855459

  11. Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles.

    PubMed

    Wu, Hui; Yu, Guihua; Pan, Lijia; Liu, Nian; McDowell, Matthew T; Bao, Zhenan; Cui, Yi

    2013-01-01

    Silicon has a high-specific capacity as an anode material for Li-ion batteries, and much research has been focused on overcoming the poor cycling stability issue associated with its large volume changes during charging and discharging processes, mostly through nanostructured material design. Here we report incorporation of a conducting polymer hydrogel into Si-based anodes: the hydrogel is polymerized in-situ, resulting in a well-connected three-dimensional network structure consisting of Si nanoparticles conformally coated by the conducting polymer. Such a hierarchical hydrogel framework combines multiple advantageous features, including a continuous electrically conductive polyaniline network, binding with the Si surface through either the crosslinker hydrogen bonding with phytic acid or electrostatic interaction with the positively charged polymer, and porous space for volume expansion of Si particles. With this anode, we demonstrate a cycle life of 5,000 cycles with over 90% capacity retention at current density of 6.0 A g(-1).

  12. Etched graphite with internally grown Si nanowires from pores as an anode for high density Li-ion batteries.

    PubMed

    Jeong, Sookyung; Lee, Jung-Pil; Ko, Minseong; Kim, Guntae; Park, Soojin; Cho, Jaephil

    2013-07-10

    A novel architecture consisting of Si nanowires internally grown from porous graphite is synthesized by etching of graphite with a lamellar structure via a VLS (vapor-liquid-solid) process. This strategy gives the high electrode density of 1.5 g/cm(3), which is comparable with practical anode of the Li-ion battery. Our product demonstrates a high volumetric capacity density of 1363 mAh/cm(3) with 91% Coulombic efficiency and high rate capability of 568 mAh/cm(3) even at a 5C rate. This good electrochemical performance allows porous graphite to offer free space to accommodate the volume change of Si nanowires during cycling and the electron transport to efficiently be improved between active materials.

  13. 1-Ethyl-1-methyl piperidinium bis(trifluoromethanesulfonyl)imide as a co-solvent in Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Kim, Ketack; Cho, Young-Hyun; Shin, Heon-Cheol

    2013-03-01

    1-Ethyl-1-methyl piperidinium bis(trifluoromethanesulfonyl)imide (EMP-TFSI) is an ionic liquid with a melting temperature of 85 °C. Although it is a solid salt, it shows good miscibility with carbonate solvents, which allows EMP-TFSI to be used as a co-solvent in these systems. Ethylene carbonate is another solid co-solvent used in Li-ion batteries. Due to its smaller cationic size, EMP-TFSI provides better conductivity as a co-solvent than 1-methyl-1-propyl piperidinium bis(trifluoromethanesulfonyl)imide (MPP-TFSI), which is the smallest room-temperature piperidinium liquid salt known. In cells with 50 wt% IL and 50 wt% carbonate electrolyte, an EMP-TFSI mixed electrolyte performs better than an MPP-TFSI mixed electrolyte. Additionally, the discharge capacity values obtained from rate capability tests carried out with mixed EMP-TFSI are as good as those conducted with a pure carbonate electrolyte.

  14. Facile molten salt synthesis of Li2NiTiO4 cathode material for Li-ion batteries.

    PubMed

    Wang, Yanming; Wang, Yajing; Wang, Fei

    2014-01-01

    Well-crystallized Li2NiTiO4 nanoparticles are rapidly synthesized by a molten salt method using a mixture of NaCl and KCl salts. X-ray diffraction pattern and scanning electron microscopic image show that Li2NiTiO4 has a cubic rock salt structure with an average particle size of ca. 50 nm. Conductive carbon-coated Li2NiTiO4 is obtained by a facile ball milling method. As a novel 4 V positive cathode material for Li-ion batteries, the Li2NiTiO4/C delivers high discharge capacities of 115 mAh g(-1) at room temperature and 138 mAh g(-1) and 50°C, along with a superior cyclability.

  15. Infiltration of Solution-Processable Solid Electrolytes into Conventional Li-Ion-Battery Electrodes for All-Solid-State Li-Ion Batteries.

    PubMed

    Kim, Dong Hyeon; Oh, Dae Yang; Park, Kern Ho; Choi, Young Eun; Nam, Young Jin; Lee, Han Ah; Lee, Sang-Min; Jung, Yoon Seok

    2017-04-05

    Bulk-type all-solid-state lithium-ion batteries (ASLBs) have the potential to be superior to conventional lithium-ion batteries (LIBs) in terms of safety and energy density. Sulfide SE materials are key to the development of bulk-type ASLBs because of their high ionic conductivity (max of ∼10(-2) S cm(-1)) and deformability. However, the severe reactivity of sulfide materials toward common polar solvents and the particulate nature of these electrolytes pose serious complications for the wet-slurry process used to fabricate ASLB electrodes, such as the availability of solvent and polymeric binders and the formation of ionic contacts and networks. In this work, we report a new scalable fabrication protocol for ASLB electrodes using conventional composite LIB electrodes and homogeneous SE solutions (Li6PS5Cl (LPSCl) in ethanol or 0.4LiI-0.6Li4SnS4 in methanol). The liquefied LPSCl is infiltrated into the tortuous porous structures of LIB electrodes and solidified, providing intimate ionic contacts and favorable ionic percolation. The LPSCl-infiltrated LiCoO2 and graphite electrodes show high reversible capacities (141 and 364 mA h g(-1)) at 0.14 mA cm(-2) (0.1 C) and 30 °C, which are not only superior to those for conventional dry-mixed and slurry-mixed ASLB electrodes but also comparable to those for liquid electrolyte cells. Good electrochemical performance of ASLBs employing the LPSCl-infiltrated LiCoO2 and graphite electrodes at 100 °C is also presented, highlighting the excellent thermal stability and safety of ASLBs.

  16. Growth of linked silicon/carbon nanospheres on copper substrate as integrated electrodes for Li-ion batteries.

    PubMed

    Zhang, Zailei; Wang, Yanhong; Tan, Qiangqiang; Li, Dan; Chen, Yunfa; Zhong, Ziyi; Su, Fabing

    2014-01-07

    We report the growth of linked silicon/carbon (Si/C) nanospheres on Cu substrate as an integrated anode for Li-ion batteries. The Si/C nanospheres were synthesized by a catalytic chemical vapor deposition (CCVD) on Cu substrate as current collector using methyltrichlorosilane as precursor, a cheap by-product of the organosilane industry. The samples were characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy, thermal gravimetry, Raman spectroscopy, nitrogen adsorption, inductively coupled plasma optical emission spectrometry, and X-ray photoelectron spectroscopy. It was found that the linked Si/C nanospheres with a diameter of 400-500 nm contain Si, Cu(x)Si, and Cu nanocrystals, which are highly dispersed in the amorphous carbon nanospheres. A CCVD mechanism was tentatively proposed, in which the evaporated Cu atoms play a critical role to catalytically grown Si nanocrystals embedded within linked Si/C nanospheres. The electrochemical measurement shows that these Si/C nanospheres delivered a capacity of 998.9, 713.1, 320.6, and 817.8 mA h g(-1) at 50, 200, 800, and 50 mA g(-1) respectively after 50 cycles, much higher than that of commercial graphite anode. This is because the amorphous carbon, Cu(x)Si, and Cu in the Si/C nanospheres could buffer the volume change of Si nanocrystals during the Li insertion and extraction reactions, thus hindering the cracking or crumbling of the electrode. Furthermore, the incorporation of conductive Cu(x)Si and Cu nanocrystals and the integration of active electrode materials with Cu substrate may improve the electrical conductivity from the current collector to individual Si active particles, resulting in a remarkably enhanced reversible capacity and cycling stability. The work will be helpful in the fabrication of low cost binder-free Si/C anode materials for Li-ion batteries.

  17. A stepwise recovery of metals from hybrid cathodes of spent Li-ion batteries with leaching-flotation-precipitation process

    NASA Astrophysics Data System (ADS)

    Huang, Yanfang; Han, Guihong; Liu, Jiongtian; Chai, Wencui; Wang, Wenjuan; Yang, Shuzhen; Su, Shengpeng

    2016-09-01

    The recovering of valuable metals in spent lithium-ion battery cathodes brings about economic and environmental benefits. A stepwise leaching-flotation-precipitation process is adopted to separate and recover Li/Fe/Mn from the mixed types of cathode materials (hybrid wastes of LiFePO4 and LiMn2O4). The optimal operating conditions for the stepwise recovery process are determined and analyzed by factorial design, thermodynamics calculation, XRD and SEM characterization in this study. First, Li/Fe/Mn ions are released from the cathode using HCl assisted with H2O2 in the acid leaching step. The leachability of metals follows the series Li > Fe > Mn in the acidic environment. Then Fe3+ ions are selectively floated and recovered as FeCl3 from the leachate in the flotation step. Finally, Mn2+/Mn3+ and Li+ ions are sequentially precipitated and separated as MnO2/Mn2O3 and Li3PO4 using saturated KMnO4 solution and hot saturated Na3PO4 solution, respectively. Under the optimized and advisable conditions, the total recovery of Li, Fe and Mn is respectively 80.93 ± 0.16%, 85.40 ± 0.12% and 81.02 ± 0.08%. The purity for lithium, ferrum and manganese compounds is respectively 99.32 ± 0.07%, 97.91 ± 0.05% and 98.73 ± 0.05%. This stepwise process could provide an alternative way for the effective separation and recovery of metal values from spent Li-ion battery cathodes in industry.

  18. Etched colloidal LiFePO4 nanoplatelets toward high-rate capable Li-ion battery electrodes.

    PubMed

    Paolella, Andrea; Bertoni, Giovanni; Marras, Sergio; Dilena, Enrico; Colombo, Massimo; Prato, Mirko; Riedinger, Andreas; Povia, Mauro; Ansaldo, Alberto; Zaghib, Karim; Manna, Liberato; George, Chandramohan

    2014-12-10

    LiFePO4 has been intensively investigated as a cathode material in Li-ion batteries, as it can in principle enable the development of high power electrodes. LiFePO4, on the other hand, is inherently "plagued" by poor electronic and ionic conductivity. While the problems with low electron conductivity are partially solved by carbon coating and further by doping or by downsizing the active particles to nanoscale dimensions, poor ionic conductivity is still an issue. To develop colloidally synthesized LiFePO4 nanocrystals (NCs) optimized for high rate applications, we propose here a surface treatment of the NCs. The particles as delivered from the synthesis have a surface passivated with long chain organic surfactants, and therefore can be dispersed only in aprotic solvents such as chloroform or toluene. Glucose that is commonly used as carbon source for carbon-coating procedure is not soluble in these solvents, but it can be dissolved in water. In order to make the NCs hydrophilic, we treated them with lithium hexafluorophosphate (LiPF6), which removes the surfactant ligand shell while preserving the structural and morphological properties of the NCs. Only a roughening of the edges of NCs was observed due to a partial etching of their surface. Electrodes prepared from these platelet NCs (after carbon coating) delivered a capacity of ∼ 155 mAh/g, ∼ 135 mAh/g, and ∼ 125 mAh/g, at 1 C, 5 C, and 10 C, respectively, with significant capacity retention and remarkable rate capability. For example, at 61 C (10.3 A/g), a capacity of ∼ 70 mAh/g was obtained, and at 122 C (20.7 A/g), the capacity was ∼ 30 mAh/g. The rate capability and the ease of scalability in the preparation of these surface-treated nanoplatelets make them highly suitable as electrodes in Li-ion batteries.

  19. Surface Passivation of MoO₃ Nanorods by Atomic Layer Deposition toward High Rate Durable Li Ion Battery Anodes.

    PubMed

    Ahmed, B; Shahid, Muhammad; Nagaraju, D H; Anjum, D H; Hedhili, Mohamed N; Alshareef, H N

    2015-06-24

    We demonstrate an effective strategy to overcome the degradation of MoO3 nanorod anodes in lithium (Li) ion batteries at high-rate cycling. This is achieved by conformal nanoscale surface passivation of the MoO3 nanorods by HfO2 using atomic layer deposition (ALD). At high current density such as 1500 mA/g, the specific capacity of HfO2-coated MoO3 electrodes is 68% higher than that of bare MoO3 electrodes after 50 charge/discharge cycles. After 50 charge/discharge cycles, HfO2-coated MoO3 electrodes exhibited specific capacity of 657 mAh/g; on the other hand, bare MoO3 showed only 460 mAh/g. Furthermore, we observed that HfO2-coated MoO3 electrodes tend to stabilize faster than bare MoO3 electrodes because nanoscale HfO2 layer prevents structural degradation of MoO3 nanorods. Additionally, the growth temperature of MoO3 nanorods and the effect of HfO2 layer thickness was studied and found to be important parameters for optimum battery performance. The growth temperature defines the microstructural features and HfO2 layer thickness defines the diffusion coefficient of Li-ions through the passivation layer to the active material. Furthermore, ex situ high resolution transmission electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and X-ray diffraction were carried out to explain the capacity retention mechanism after HfO2 coating.

  20. Nitrogen-doped carbon nanofibers derived from polypyrrole coated bacterial cellulose as high-performance electrode materials for supercapacitors and Li-ion batteries

    DOE PAGES

    Lei, Wen; Han, Lili; Xuan, Cuijuan; ...

    2016-05-24

    Here, nitrogen-doped carbon nanofiber (NDCN) was synthesized via carbonization of polypyrrole (PPy) coated bacterial cellulose (BC) composites, where BC serves as templates as well as precursor, and PPy serves as the nitrogen source. The synthesized NDCN was employed as electrode for both supercapacitors and Li-ion batteries. The large surface area exposed to electrolyte resulting from the 3D carbon networks leads to sufficient electrode/electrolyte interface and creates shorter transport paths of electrolyte ions and Li+ ion. Besides, the three types of N dopants in NDCN improve the electronic conductivity, as well as superior electrochemical performance.

  1. Homogeneity of lithium distribution in cylinder-type Li-ion batteries.

    PubMed

    Senyshyn, A; Mühlbauer, M J; Dolotko, O; Hofmann, M; Ehrenberg, H

    2015-12-18

    Spatially-resolved neutron powder diffraction with a gauge volume of 2 × 2 × 20 mm(3) has been applied as an in situ method to probe the lithium concentration in the graphite anode of different Li-ion cells of 18650-type in charged state. Structural studies performed in combination with electrochemical measurements and X-ray computed tomography under real cell operating conditions unambiguously revealed non-homogeneity of the lithium distribution in the graphite anode. Deviations from a homogeneous behaviour have been found in both radial and axial directions of 18650-type cells and were discussed in the frame of cell geometry and electrical connection of electrodes, which might play a crucial role in the homogeneity of the lithium distribution in the active materials within each electrode.

  2. Homogeneity of lithium distribution in cylinder-type Li-ion batteries

    PubMed Central

    Senyshyn, A.; Mühlbauer, M. J.; Dolotko, O.; Hofmann, M.; Ehrenberg, H.

    2015-01-01

    Spatially-resolved neutron powder diffraction with a gauge volume of 2 × 2 × 20 mm3 has been applied as an in situ method to probe the lithium concentration in the graphite anode of different Li-ion cells of 18650-type in charged state. Structural studies performed in combination with electrochemical measurements and X-ray computed tomography under real cell operating conditions unambiguously revealed non-homogeneity of the lithium distribution in the graphite anode. Deviations from a homogeneous behaviour have been found in both radial and axial directions of 18650-type cells and were discussed in the frame of cell geometry and electrical connection of electrodes, which might play a crucial role in the homogeneity of the lithium distribution in the active materials within each electrode. PMID:26681110

  3. Homogeneity of lithium distribution in cylinder-type Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Senyshyn, A.; Mühlbauer, M. J.; Dolotko, O.; Hofmann, M.; Ehrenberg, H.

    2015-12-01

    Spatially-resolved neutron powder diffraction with a gauge volume of 2 × 2 × 20 mm3 has been applied as an in situ method to probe the lithium concentration in the graphite anode of different Li-ion cells of 18650-type in charged state. Structural studies performed in combination with electrochemical measurements and X-ray computed tomography under real cell operating conditions unambiguously revealed non-homogeneity of the lithium distribution in the graphite anode. Deviations from a homogeneous behaviour have been found in both radial and axial directions of 18650-type cells and were discussed in the frame of cell geometry and electrical connection of electrodes, which might play a crucial role in the homogeneity of the lithium distribution in the active materials within each electrode.

  4. Electrospun nanofibers: a prospective electro-active material for constructing high performance Li-ion batteries.

    PubMed

    Aravindan, Vanchiappan; Sundaramurthy, Jayaraman; Suresh Kumar, Palaniswamy; Lee, Yun-Sung; Ramakrishna, Seeram; Madhavi, Srinivasan

    2015-02-11

    In the present review, we describe the development of a high energy density LIB fabricated with all 1D nanofibers as the anode and cathode, as well as a separator-cum-electrolyte prepared by an electrospinning technique without compromising the power capability and cycle life. Such a unique assembly certainly enables realizing the advantages of using 1D nanostructures in practical LIBs, irrespective of the anode or cathode in the presence of gelled polyvinylidene fluoride-co-hexafluoropropylene as the separator-cum-electrolyte. Outstanding cycling profiles with high power densities were noted for all the configurations evaluated. This excellent performance opens up new avenues for the development of high performance Li-ion power packs with a long cycle life and high energy and power densities to drive zero emission transportation applications in the near future, and opens up new research activities in this field as well.

  5. Scalable process for application of stabilized lithium metal powder in Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Ai, Guo; Wang, Zhihui; Zhao, Hui; Mao, Wenfeng; Fu, Yanbao; Yi, Ran; Gao, Yue; Battaglia, Vincent; Wang, Donghai; Lopatin, Sergey; Liu, Gao

    2016-03-01

    A simple solution processing method is developed to achieve a uniform and scalable stabilized lithium metal powder (SLMP) coating on a Li-ion negative electrode. A solvent and binder system for the SLMP coating is developed, including the selection of solvent, polymer binder, and optimization of polymer concentration. The optimized binder solution is a 1% concentration of polymer binder in xylene; a mixture of poly(styrene-co-butadiene) rubber (SBR) and polystyrene (PS) is chosen as the polymer binder. Results show that long-sustained, uniformly dispersed SLMP suspension can be achieved with the optimized binder solution. The uniform SLMP coating can be achieved using a simple "doctor blade" coating method, and the resulting SLMP coating can be firmly glued on the anode surface. By using SLMP to prelithiate the negative electrode, improvements in electrochemical performances are demonstrated in both graphite/NMC and SiO/NMC full cells.

  6. Metal hydrides used as negative electrode materials for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Sartori, Sabrina; Cuevas, Fermin; Latroche, Michel

    2016-02-01

    Energy is a key issue for future generation. Researches are conducted worldwide to develop new efficient means for energy conversion and storage. Electrochemical storage is foreseen as an efficient way to handle intermittent renewable energy production. The most advanced batteries are nowadays based on lithium-ion technology though their specific capacities should be significantly increased to bring solution to mass storage. Conversion reactions are one way to step forward larger capacities at the anode. We here review the possibility to use metallic or complex hydrides as negative electrode using conversion reaction of hydride with lithium. Moreover, promising alloying of lithium with the metallic species might provide additional reversible capacities. Both binary and ternary systems are reviewed and results are compared in the frame of the electrochemical application.

  7. In situ catalytic synthesis of high-graphitized carbon-coated LiFePO4 nanoplates for superior Li-ion battery cathodes.

    PubMed

    Ma, Zhipeng; Fan, Yuqian; Shao, Guangjie; Wang, Guiling; Song, Jianjun; Liu, Tingting

    2015-02-04

    The low electronic conductivity and one-dimensional diffusion channel along the b axis for Li ions are two major obstacles to achieving high power density of LiFePO4 material. Coating carbon with excellent conductivity on the tailored LiFePO4 nanoparticles therefore plays an important role for efficient charge and mass transport within this material. We report here the in situ catalytic synthesis of high-graphitized carbon-coated LiFePO4 nanoplates with highly oriented (010) facets by introducing ferrocene as a catalyst during thermal treatment. The as-obtained material exhibits superior performances for Li-ion batteries at high rate (100 C) and low temperature (-20 °C), mainly because of fast electron transport through the graphitic carbon layer and efficient Li(+)-ion diffusion through the thin nanoplates.

  8. The effect of the charging protocol on the cycle life of a Li-ion battery

    NASA Astrophysics Data System (ADS)

    Zhang, Sheng Shui

    The effect of the charging protocol on the cycle life of a commercial 18650 Li-ion cell was studied using three methods: (1) constant current (CC) charging, (2) constant power (CP) charging, and (3) multistage constant current (MCC) charging. The MCC-charging consists of two CC steps, which starts with a low current to charge the initial 10% capacity followed by a high current charging until the cell voltage reaches 4.2 V. Using these methods, respectively, the cell was charged to 4.2 V followed by a constant voltage (CV) charging until the current declined to 0.05 C. Results showed that the cycle life of the cell strongly depended on the charging protocol even if the same charging rate was used. Among these three methods, the CC-method was found to be more suitable for slow charging (0.5 C) while the CP-method was better for fast charging (1 C). Impedance analyses indicated that the capacity loss during cycling was mainly attributed to the increase of charge-transfer resistance as a result of the progressive growth of surface layers on the surface of two electrodes. Fast charging resulted in an accelerated capacity fading due to the loss of Li + ions and the related growth of a surface layer, which was associated with metallic lithium plating onto the anode and a high polarization at the electrolyte-electrode interface. Analyses of the cell electrochemistry showed that use of a reduced current to charge the initial 10% capacity and near the end of charge, respectively, was favorable for long cycle life.

  9. Design and use of multisine signals for Li-ion battery equivalent circuit modelling. Part 2: Model estimation

    NASA Astrophysics Data System (ADS)

    Widanage, W. D.; Barai, A.; Chouchelamane, G. H.; Uddin, K.; McGordon, A.; Marco, J.; Jennings, P.

    2016-08-01

    An Equivalent Circuit Model (ECM) of a lithium ion (Li-ion) battery is an empirical, linear dynamic model and the bandwidth of the input current signal and level of non-linearity in the voltage response are important for the model's validity. An ECM is, however, generally parametrised with a pulse current signal, which is low in signal bandwidth (Part 1) and any non-linear dependence of the voltage on the current due to transport limitations is ignored. This paper presents a general modelling methodology which utilises the higher bandwidth and number of signal levels of a pulse-multisine signal to estimate the battery dynamics and non-linear characteristics without the need of a 3D look-up table for the model parameters. In the proposed methodology a non-parametric estimate of the battery dynamics and non-linear characteristics are first obtained which assists in the model order selection, and to assess the level of non-linearity. The new model structure, termed as the Non-linear ECM (NL-ECM), gives a lower Root Mean Square (RMS) and peak error when compared to an ECM estimated using a pulse data set.

  10. Li-Ion Battery Studies at NASA/Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Lee, Leonine; Rao, Gopalakrishna M.

    2006-01-01

    This viewgraph presentation reviews NASA and GSFC's interest in Lithium Ion Batteries as power suupplies for space usage, the tests, and results on several commercially available batteries. Severl batteries were tested for Geosynchronous orbit, Low Earth Orbit, and Low Lunar Orbit conditions.

  11. Li-ion battery thermal runaway suppression system using microchannel coolers and refrigerant injections

    DOEpatents

    Bandhauer, Todd M.; Farmer, Joseph C.

    2016-11-08

    A battery management system with thermally integrated fire suppression includes a multiplicity of individual battery cells in a housing; a multiplicity of cooling passages in the housing within or between the multiplicity of individual battery cells; a multiplicity of sensors operably connected to the individual battery cells, the sensors adapted to detect a thermal runaway event related to one or more of the multiplicity of individual battery cells; and a management system adapted to inject coolant into at least one of the multiplicity of cooling passages upon the detection of the thermal runaway event by the any one of the multiplicity of sensors, so that the thermal runaway event is rapidly quenched.

  12. Review—Multifunctional Materials for Enhanced Li-Ion Batteries Durability: A Brief Review of Practical Options

    SciTech Connect

    Banerjee, Anjan; Shilina, Yuliya; Ziv, Baruch; Ziegelbauer, Joseph M.; Luski, Shalom; Aurbach, Doron; Halalay, Ion C.

    2017-01-01

    Transition metal (TM) ions dissolution from positive electrodes, migration to and deposition on negative electrodes, followed by Mn-catalyzed reactions of solvents and anions, with loss of Li+ ions, is a major degradation (DMDCR) mechanism in Li-ion batteries (LIBs) with spinel positive electrode materials. While the details of the DMDCR mechanism are still under debate, it is clear that HF and other acid species’ attack is the main cause in solutions with LiPF6 electrolyte. We first review the work on various mitigation measures for the DMDCR mechanism, now spanning more than two decades. We then discuss recent progress on our understanding of Mn species in electrolyte solutions and the extension of a mitigation measure first proposed by Tarascon and coworkers in 1999, namely chelation of TM cations, to Mn cation trapping, HF scavenging, and alkali metal ions dispensing multi-functional materials. We focus on practicable, drop-in technical solutions, based on placing such materials in the inter-electrode space, with significant benefits for LIBs performance: increased capacity retention during operation at room and above-ambient temperatures as well as robust (both maximally ionically conducting and electronically insulating) solid-electrolyte interfaces, having reduced charge transfer and film resistances at both negative and positive electrodes. We illustrate the multifunctional materials approach with both new and previously published data. We also discuss and offer our evaluation regarding the merits and drawbacks of the various mitigation measures, with an eye for practically relevant technical solutions capable to meet both the performance requirements and cost constraints for commercial LIBs, and end with recommendations for future work.

  13. Simulation of the Impact of Si Shell Thickness on the Performance of Si-Coated Vertically Aligned Carbon Nanofiber as Li-Ion Battery Anode.

    PubMed

    Das, Susobhan; Li, Jun; Hui, Rongqing

    2015-12-15

    Micro- and nano-structured electrodes have the potential to improve the performance of Li-ion batteries by increasing the surface area of the electrode and reducing the diffusion distance required by the charged carriers. We report the numerical simulation of Lithium-ion batteries with the anode made of core-shell heterostructures of silicon-coated carbon nanofibers. We show that the energy capacity can be significantly improved by reducing the thickness of the silicon anode to the dimension comparable or less than the Li-ion diffusion length inside silicon. The results of simulation indicate that the contraction of the silicon electrode thickness during the battery discharge process commonly found in experiments also plays a major role in the increase of the energy capacity.

  14. Simulation of the Impact of Si Shell Thickness on the Performance of Si-Coated Vertically Aligned Carbon Nanofiber as Li-Ion Battery Anode

    PubMed Central

    Das, Susobhan; Li, Jun; Hui, Rongqing

    2015-01-01

    Micro- and nano-structured electrodes have the potential to improve the performance of Li-ion batteries by increasing the surface area of the electrode and reducing the diffusion distance required by the charged carriers. We report the numerical simulation of Lithium-ion batteries with the anode made of core-shell heterostructures of silicon-coated carbon nanofibers. We show that the energy capacity can be significantly improved by reducing the thickness of the silicon anode to the dimension comparable or less than the Li-ion diffusion length inside silicon. The results of simulation indicate that the contraction of the silicon electrode thickness during the battery discharge process commonly found in experiments also plays a major role in the increase of the energy capacity. PMID:28347120

  15. Justification of the Impact of the Use PPS (Plasmic Propulsion System) on Li-Ion VES140S/VES180 Batteries

    NASA Astrophysics Data System (ADS)

    Borthomieu, Yannick; Prevot, Didier

    2014-08-01

    Lithium-ion (Li-ion) battery has been since the beginning of 2000's with the support of ESA, CNES but also the European primes Astrium, (now Airbus Space and Defense) and Thalès Alénia Space. This technology replaced quickly the previous NiH2 system mainly for GEO applications thanks to the numerous advantage brought by this promising technology in terms of technical, industrial and cost aspects.The use of the Plasmic Propulsion System has been considered very early in the VES Saft Li-Ion cell development program, and included in the first life tests that run.The objective of this document is to present the impact of the use of the PPS (plasmic propulsion system also called IPS : ionic propulsion system or XPS : Xenon propulsion system) on the Saft VES140/180 Li-Ion batteries on board GEO telecommunication satellites. The PPS battery impacts have been tested since 2000 on VES140 cells and since 2006 on VES180. More than 12 years feedback on this new type of battery use on- board GEO satellites allows giving significant justification of the use of the PPS power on the battery.

  16. Purification process of natural graphite as anode for Li-ion batteries: chemical versus thermal

    NASA Astrophysics Data System (ADS)

    Zaghib, K.; Song, X.; Guerfi, A.; Rioux, R.; Kinoshita, K.

    The intercalation of Li ions in natural graphite that was purified by chemical and thermal processes was investigated. A new chemical process was developed that involved a mixed aqueous solution containing 30% H 2SO 4 and 30% NH xF y heated to 90 °C. The results of this process are compared to those obtained by heating the natural graphite from 1500 to 2400 °C in an inert environment (thermal process). The first-cycle coulombic efficiency of the purified natural graphite obtained by the chemical process is 91 and 84% after the thermal process at 2400 °C. Grinding the natural graphite before or after purification had no significant effect on electrochemical performance at low currents. However, grinding to a very small particle size before purification permitted optimization of the size distribution of the particles, which gives rise to a more homogenous electrode. The impurities in the graphite play a role as microabrasion agents during grinding which enhances its hardness and improves its mechanical properties. Grinding also modifies the particle morphology from a 2- to a 3-D structure (similar in shape to a potato). This potato-shaped natural graphite shows high reversible capacity at high current densities (about 90% at 1 C rate). Our analysis suggests that thermal processing is considerably more expensive than the chemical process to obtain purified natural graphite.

  17. Kinetic behavior of LiFeMgPO 4 cathode material for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Hong, Jian; Wang, Chunsheng; Kasavajjula, Uday

    LiFe 0.9Mg 0.1PO 4 material was prepared by mechanical milling method, followed by heat treatment. The equilibrium potential-composition isotherm of LiFe 0.9Mg 0.1PO 4 and charge-discharge kinetics of LiFe 0.9Mg 0.1PO 4 were measured using galvanostatic intermittent titration technique (GITT), potential-step chronoamperometry (PSCA), and electrochemical impedance spectroscopy (EIS). The rate performance of the cathode is controlled by the charge-transfer kinetics, electronic conductivity, Li-ion diffusion capability, and phase transformation rate. Since LiFe 0.9Mg 0.1PO 4 has a fast charge-transfer reaction and high electronic and ionic diffusivity, the phase transformation between LiFe 0.9Mg 0.1PO 4 and Li 0.1Fe 0.9Mg 0.1PO 4 begins to play a more important role in the charge-discharge process, as is evident by an inductive loop induced by the phase transformation in the low frequency region of EIS. The phase purity and morphology of LiFe 0.9Mg 0.1PO 4 were also observed using X-ray diffraction (XRD) and scanning electron microscopy (SEM).

  18. New materials for Li-ion batteries: synthesis and spectroscopic characterization of Li2(FeMnCo)SiO4 cathode materials

    PubMed Central

    Ferrari, Stefania; Mozzati, Maria Cristina; Lantieri, Marco; Spina, Gabriele; Capsoni, Doretta; Bini, Marcella

    2016-01-01

    Improving cathode materials is mandatory for next-generation Li-ion batteries. Exploring polyanion compounds with high theoretical capacity such as the lithium metal orthosilicates, Li2MSiO4 is of great importance. In particular, mixed silicates represent an advancement with practical applications. Here we present results on a rapid solid state synthesis of mixed Li2(FeMnCo)SiO4 samples in a wide compositional range. The solid solution in the P21/n space group was found to be stable for high iron concentration or for a cobalt content up to about 0.3 atom per formula unit. Other compositions led to a mixture of polymorphs, namely Pmn21 and Pbn21. All the samples contained a variable amount of Fe3+ ions that was quantified by Mössbauer spectroscopy and confirmed by the TN values of the paramagnetic to antiferromagnetic transition. Preliminary characterization by cyclic voltammetry revealed the effect of Fe3+ on the electrochemical response. Further work is required to determine the impact of these electrode materials on lithium batteries. PMID:27293181

  19. New materials for Li-ion batteries: synthesis and spectroscopic characterization of Li2(FeMnCo)SiO4 cathode materials.

    PubMed

    Ferrari, Stefania; Mozzati, Maria Cristina; Lantieri, Marco; Spina, Gabriele; Capsoni, Doretta; Bini, Marcella

    2016-06-13

    Improving cathode materials is mandatory for next-generation Li-ion batteries. Exploring polyanion compounds with high theoretical capacity such as the lithium metal orthosilicates, Li2MSiO4 is of great importance. In particular, mixed silicates represent an advancement with practical applications. Here we present results on a rapid solid state synthesis of mixed Li2(FeMnCo)SiO4 samples in a wide compositional range. The solid solution in the P21/n space group was found to be stable for high iron concentration or for a cobalt content up to about 0.3 atom per formula unit. Other compositions led to a mixture of polymorphs, namely Pmn21 and Pbn21. All the samples contained a variable amount of Fe(3+) ions that was quantified by Mössbauer spectroscopy and confirmed by the TN values of the paramagnetic to antiferromagnetic transition. Preliminary characterization by cyclic voltammetry revealed the effect of Fe(3+) on the electrochemical response. Further work is required to determine the impact of these electrode materials on lithium batteries.

  20. New materials for Li-ion batteries: synthesis and spectroscopic characterization of Li2(FeMnCo)SiO4 cathode materials

    NASA Astrophysics Data System (ADS)

    Ferrari, Stefania; Mozzati, Maria Cristina; Lantieri, Marco; Spina, Gabriele; Capsoni, Doretta; Bini, Marcella

    2016-06-01

    Improving cathode materials is mandatory for next-generation Li-ion batteries. Exploring polyanion compounds with high theoretical capacity such as the lithium metal orthosilicates, Li2MSiO4 is of great importance. In particular, mixed silicates represent an advancement with practical applications. Here we present results on a rapid solid state synthesis of mixed Li2(FeMnCo)SiO4 samples in a wide compositional range. The solid solution in the P21/n space group was found to be stable for high iron concentration or for a cobalt content up to about 0.3 atom per formula unit. Other compositions led to a mixture of polymorphs, namely Pmn21 and Pbn21. All the samples contained a variable amount of Fe3+ ions that was quantified by Mössbauer spectroscopy and confirmed by the TN values of the paramagnetic to antiferromagnetic transition. Preliminary characterization by cyclic voltammetry revealed the effect of Fe3+ on the electrochemical response. Further work is required to determine the impact of these electrode materials on lithium batteries.

  1. Influence of Binder Adhesion Ability on the Performance of Silicon/Carbon Composite as Li-Ion Battery Anode

    NASA Astrophysics Data System (ADS)

    Kierzek, Krzysztof

    2016-06-01

    A series of anodes for Li-ion battery was prepared by conventional homogenization of active material, percolator, and Na-CMC or several kinds of PVDF as a binder. Si/C composite was synthesized by embedding micro-sized silicon and synthetic battery-grade graphite in a pitch-derived carbon matrix and taken as active material. Adhesion strength of anodic film to a current collector was determined by peeling test. Thermal relaxation (120-180 °C) after calendering of PVDF-based anode slightly increases the adhesion of the film to the collector. The highest peeling strength was recorded for ultrahigh molecular weight PVDF (~0.05 N cm-1) but without advantage for cycling stability of the cell. An initial reversible capacity of 512 mAh g-1, with average capacity decay only of 0.5% per cycle, was achieved for CMC-based anode of moderate peeling strength (~0.035 N cm-1). Such good performance was attributed to a specific Si/C composite structure as well as profitable physicochemical properties of the binder.

  2. A techno-economic analysis and optimization of Li-ion batteries for light-duty passenger vehicle electrification

    NASA Astrophysics Data System (ADS)

    Sakti, Apurba; Michalek, Jeremy J.; Fuchs, Erica R. H.; Whitacre, Jay F.

    2015-01-01

    We conduct a techno-economic analysis of Li-ion NMC-G prismatic pouch battery and pack designs for electric vehicle applications. We develop models of power capability and manufacturing operations to identify the minimum cost cell and pack designs for a variety of plug-in hybrid electric vehicle (PHEV) and battery electric vehicle (BEV) requirements. We find that economies of scale in battery manufacturing are reached quickly at a production volume of ∼200-300 MWh annually. Increased volume does little to reduce unit costs, except potentially indirectly through factors such as experience, learning, and innovation. We also find that vehicle applications with larger energy requirements are able to utilize cheaper cells due in part to the use of thicker electrodes. The effect on cost can be substantial. In our base case, we estimate pack-level battery production costs of ∼545 kWh-1 for a PHEV with a 10 mile (16 km) all-electric range (PHEV10) and ∼230 kWh-1 for a BEV with a 200 mile (320 km) all-electric range (BEV200). This 58% reduction, from 545 kWh-1 to 230 kWh-1, is a larger effect than the uncertainty represented by our optimistic and pessimistic scenarios. Electrodes thicker than about 100 or 125 microns are not currently used in practice due to manufacturing and durability concerns, but relaxing this constraint could further lower the cost of larger capacity BEV200 packs by up to an additional 8%.

  3. Performance Testing of Yardney Li-Ion Cells and Batteries in Support of JPL's 2009 Mars Science Laboratory Mission

    NASA Technical Reports Server (NTRS)

    Smart, M.C.; Ratnakumar, B.V.; Whitcanack, L. D.; Dewell, E. A.; Jones, L. E.; Salvo, C. G.; Puglia, F. J.; Cohen, S.; Gitzendanner, R.

    2008-01-01

    In 2009, JPL is planning to launch an unmanned rover mission to the planet Mars. This mission, referred to as the Mars Science Laboratory (MSL), will involve the use of a rover that is much larger than the previously developed Spirit and Opportunity Rovers for the 2003 Mars Exploration Rover (MER) mission, that are currently still in operation on the surface of the planet after more than three years. Part of the reason that the MER rovers have operated so successfully, far exceeding the required mission duration of 90 sols, is that they possess robust Li-ion batteries, manufactured by Yardney Technical Products, which have demonstrated excellent life characteristics. Given the excellent performance characteristics displayed, similar lithium-ion batteries have been projected to successfully meet the mission requirements of the up-coming MSL mission. Although comparable in many facets, such as being required to operate over a wide temperature range (-20 to 40 C), the MSL mission has more demanding performance requirements compared to the MER mission, including much longer mission duration (approx. 687 sols vs. 90 sols), higher power capability, and the need to withstand higher temperature excursions. In addition, due to the larger rover size, the MSL mission necessitates the use of a much larger battery to meet the energy, life, and power requirements. In order to determine the viability of meeting these requirements, a number of performance verification tests were performed on 10 Ah Yardney lithium-ion cells (MER design) under MSL-relevant conditions, including mission surface operation simulation testing. In addition, the performance of on-going ground life testing of 10 Ah MER cells and 8-cell batteries will be discussed in the context of capacity loss and impedance growth predictions.

  4. Li-ion battery cooling system integrates in nano-fluid environment

    NASA Astrophysics Data System (ADS)

    Tran, Lien; Lopez, Jorge; Lopez, Jesus; Uriostegui, Altovely; Barrera, Avery; Wiggins, Nathanial

    2016-10-01

    In this design challenge by the Texas Space Grant Consortium, the researchers design a cooling system for a lithium-ion battery. Lithium-ion batteries are an effective and reliable source of energy for small, portable devices. However, similar to other existing sources of energy, there is always a problem with overheating. The objective is to design a cooling system for lithium-ion batteries that will work in a zero gravity environment for orbital and interplanetary space systems. The system is to serve as a backup battery and a signal booster that can be incorporated into a spacesuit. The design must be able to effectively cool the batteries without the use of an atmosphere to carry away heat but also be a lightweight and reliable design. The design incorporates carbon nanotubes suspended in distilled water creating a nano-fluid environment. This design must include a failsafe in the event of thermal runaway, a problem common to lithium-ion batteries. This failsafe will completely shut off the system if the batteries reach a certain temperature. A cooling system that incorporates nano-fluids will achieve a lightweight and efficient way of cooling batteries.

  5. Model-Based Design and Integration of Large Li-ion Battery Systems

    SciTech Connect

    Smith, Kandler; Kim, Gi-Heon; Santhanagopalan, Shriram; Shi, Ying; Pesaran, Ahmad; Mukherjee, Partha; Barai, Pallab; Maute, Kurt; Behrou, Reza; Patil, Chinmaya

    2015-11-17

    This presentation introduces physics-based models of batteries and software toolsets, including those developed by the U.S. Department of Energy's (DOE) Computer-Aided Engineering for Electric-Drive Vehicle Batteries Program (CAEBAT). The presentation highlights achievements and gaps in model-based tools for materials-to-systems design, lifetime prediction and control.

  6. Li-ion battery cooling system integrates in nano-fluid environment

    NASA Astrophysics Data System (ADS)

    Tran, Lien; Lopez, Jorge; Lopez, Jesus; Uriostegui, Altovely; Barrera, Avery; Wiggins, Nathanial

    2017-02-01

    In this design challenge by the Texas Space Grant Consortium, the researchers design a cooling system for a lithium-ion battery. Lithium-ion batteries are an effective and reliable source of energy for small, portable devices. However, similar to other existing sources of energy, there is always a problem with overheating. The objective is to design a cooling system for lithium-ion batteries that will work in a zero gravity environment for orbital and interplanetary space systems. The system is to serve as a backup battery and a signal booster that can be incorporated into a spacesuit. The design must be able to effectively cool the batteries without the use of an atmosphere to carry away heat but also be a lightweight and reliable design. The design incorporates carbon nanotubes suspended in distilled water creating a nano-fluid environment. This design must include a failsafe in the event of thermal runaway, a problem common to lithium-ion batteries. This failsafe will completely shut off the system if the batteries reach a certain temperature. A cooling system that incorporates nano-fluids will achieve a lightweight and efficient way of cooling batteries.

  7. Economic and environmental characterization of an evolving Li-ion battery waste stream.

    PubMed

    Wang, Xue; Gaustad, Gabrielle; Babbitt, Callie W; Bailey, Chelsea; Ganter, Matthew J; Landi, Brian J

    2014-03-15

    While disposal bans of lithium-ion batteries are gaining in popularity, the infrastructure required to recycle these batteries has not yet fully emerged and the economic motivation for this type of recycling system has not yet been quantified comprehensively. This study combines economic modeling and fundamental material characterization methods to quantify economic trade-offs for lithium ion batteries at their end-of-life. Results show that as chemistries transition from lithium-cobalt based cathodes to less costly chemistries, battery recovery value decreases along with the initial value of the raw materials used. For example, manganese-spinel and iron phosphate cathode batteries have potential material values 73% and 79% less than cobalt cathode batteries, respectively. A majority of the potentially recoverable value resides in the base metals contained in the cathode; this increases disassembly cost and time as this is the last portion of the battery taken apart. A great deal of compositional variability exists, even within the same cathode chemistry, due to differences between manufacturers with coefficient of variation up to 37% for some base metals. Cathode changes over time will result in a heavily co-mingled waste stream, further complicating waste management and recycling processes. These results aim to inform disposal, collection, and take-back policies being proposed currently that affect waste management infrastructure as well as guide future deployment of novel recycling techniques.

  8. Classification of discarded NiMH and Li-Ion batteries and reuse of the cells still in operational conditions in prototypes

    NASA Astrophysics Data System (ADS)

    Schneider, E. L.; Oliveira, C. T.; Brito, R. M.; Malfatti, C. F.

    2014-09-01

    The growing production of high-tech devices is strongly associated to a great waste of natural resources and to environmental contamination caused either by the production process of such devices as the quick disposal of them. Cell phones have stood out from the most commercialized electronic devices, which have increased the demand for rechargeable batteries which are afterward discarded before the end of its useful life. The main objective of this paper is to improve a methodology for classify the amount of NiMH and Li-Ion batteries discarded still in operating condition through concepts given to the cells. Tests with 3 NiMH and 3 Li-Ion different battery models were done. This paper also aimed to promote the efficient use of batteries cells through their reuse in academic activities related to the manufacturing of prototypes. It presents the construction of an illuminator and of a portable power supply. The results obtained showed that approximately 40% of NiMH cells and 45% of Li-Ion cells assessed were in operational condition, with charge capacity between 62% and 90%, when compared to a new cell. Such results warn about the waste of natural resources and the proposal to test the same before the final disposal.

  9. Etched Colloidal LiFePO4 Nanoplatelets toward High-Rate Capable Li-Ion Battery Electrodes

    PubMed Central

    2014-01-01

    LiFePO4 has been intensively investigated as a cathode material in Li-ion batteries, as it can in principle enable the development of high power electrodes. LiFePO4, on the other hand, is inherently “plagued” by poor electronic and ionic conductivity. While the problems with low electron conductivity are partially solved by carbon coating and further by doping or by downsizing the active particles to nanoscale dimensions, poor ionic conductivity is still an issue. To develop colloidally synthesized LiFePO4 nanocrystals (NCs) optimized for high rate applications, we propose here a surface treatment of the NCs. The particles as delivered from the synthesis have a surface passivated with long chain organic surfactants, and therefore can be dispersed only in aprotic solvents such as chloroform or toluene. Glucose that is commonly used as carbon source for carbon-coating procedure is not soluble in these solvents, but it can be dissolved in water. In order to make the NCs hydrophilic, we treated them with lithium hexafluorophosphate (LiPF6), which removes the surfactant ligand shell while preserving the structural and morphological properties of the NCs. Only a roughening of the edges of NCs was observed due to a partial etching of their surface. Electrodes prepared from these platelet NCs (after carbon coating) delivered a capacity of ∼155 mAh/g, ∼135 mAh/g, and ∼125 mAh/g, at 1 C, 5 C, and 10 C, respectively, with significant capacity retention and remarkable rate capability. For example, at 61 C (10.3 A/g), a capacity of ∼70 mAh/g was obtained, and at 122 C (20.7 A/g), the capacity was ∼30 mAh/g. The rate capability and the ease of scalability in the preparation of these surface-treated nanoplatelets make them highly suitable as electrodes in Li-ion batteries. PMID:25372361

  10. Efficient exfoliation N-doped graphene from N-containing bamboo-like carbon nanotubes for anode materials of Li-ion battery and Na-ion battery

    NASA Astrophysics Data System (ADS)

    Feng, Jian-Min; Dong, Lei; Han, Yan; Li, Xi-Fei; Li, De-Jun

    2015-08-01

    Nanosize N-doped graphene is prepared from N-containing carbon nanotubes (CNTs) by chemical exfoliation. The CNTs adopted for graphene are characterized by a discontinuous wall that consists of nanosize graphite layers, exhibiting a bamboo-like appearance. Take advantage of this characterization, the most time-consuming process of chemical oxidation that involves intercalation in graphene from CNT has been markedly reduced. The reduction in processing time is attributed to the diffusion distance of chemical oxidation intercalation into nanosize graphite composed of a bamboo-like carbon nanotube (BCNT) wall being far less than that of conventional chemical exfoliation into microsize graphite. The as-prepared nanosize N-doped graphene from BCNTs has shown an excellent electrochemical performance for Li-ion battery and Na-ion battery anode materials.

  11. Thermal Runaway Severity Reduction Assessment and Implementation: On Li-Ion Batteries

    NASA Technical Reports Server (NTRS)

    Darcy, Eric

    2015-01-01

    Preventing cell-cell thermal runaway propagation and flames/sparks from exiting battery enclosure is possible with proper thermal & electrical design and cell thermal runaway ejecta/effluent management and can be had with minimal mass/volume penalty.

  12. Probing the failure mechanism of nanoscale LiFePO₄ for Li-ion batteries

    SciTech Connect

    Gu, Meng; Shi, Wei; Zheng, Jianming; Yan, Pengfei; Zhang, Ji-guang; Wang, Chongmin

    2015-05-18

    LiFePO4 is a high power rate cathode material for lithium ion battery and shows remarkable capacity retention, featuring a 91% capacity retention after 3300 cycles. In this work, we use high-resolution transmission electron microscopy (HRTEM), energy dispersive x-ray spectroscopy (EDS), and electron energy loss spectroscopy (EELS) to study the gradual capacity fading mechanism of LiFePO4 materials. We found that upon prolonged electrochemical cycling of the battery, the LiFePO4 cathode shows surface amorphization and loss of oxygen species, which directly contribute to the gradual capacity fading of the battery. The finding is of great importance for the design and improvement of new LiFePO4 cathode for high-energy and high-power rechargeable battery for electric transportation.

  13. NREL Multiphysics Modeling Tools and ISC Device for Designing Safer Li-Ion Batteries

    SciTech Connect

    Pesaran, Ahmad A.; Yang, Chuanbo

    2016-03-24

    The National Renewable Energy Laboratory has developed a portfolio of multiphysics modeling tools to aid battery designers better understand the response of lithium ion batteries to abusive conditions. We will discuss this portfolio, which includes coupled electrical, thermal, chemical, electrochemical, and mechanical modeling. These models can simulate the response of a cell to overheating, overcharge, mechanical deformation, nail penetration, and internal short circuit. Cell-to-cell thermal propagation modeling will be discussed.

  14. Lipon coatings for high voltage and high temperature Li-ion battery cathodes

    DOEpatents

    Dudney, Nancy J.; Liang, Chengdu; Nanda, Jagjit; Veith, Gabriel M.; Kim, Yoongu; Martha, Surendra Kumar

    2017-02-14

    A lithium ion battery includes an anode and a cathode. The cathode includes a lithium, manganese, nickel, and oxygen containing compound. An electrolyte is disposed between the anode and the cathode. A protective layer is deposited between the cathode and the electrolyte. The protective layer includes pure lithium phosphorus oxynitride and variations that include metal dopants such as Fe, Ti, Ni, V, Cr, Cu, and Co. A method for making a cathode and a method for operating a battery are also disclosed.

  15. Dynamical observation of lithium insertion/extraction reaction during charge-discharge processes in Li-ion batteries by in situ spatially resolved electron energy-loss spectroscopy.

    PubMed

    Shimoyamada, Atsushi; Yamamoto, Kazuo; Yoshida, Ryuji; Kato, Takehisa; Iriyama, Yasutoshi; Hirayama, Tsukasa

    2015-12-01

    All-solid-state Li-ion batteries (LIBs) with solid electrolytes are expected to be the next generation devices to overcome serious issues facing conventional LIBs with liquid electrolytes. However, the large Li-ion transfer resistance at the electrode/solid-electrolyte interfaces causes low power density and prevents practical use. In-situ-formed negative electrodes prepared by decomposing the solid electrolyte Li(1+x+3z)Alx(Ti,Ge)(2-x)Si(3z)P(3-z)O12 (LASGTP) with an excess Li-ion insertion reaction are effective electrodes providing low Li-ion transfer resistance at the interfaces. Prior to our work, however, it had still been unclear how the negative electrodes were formed in the parent solid electrolytes. Here, we succeeded in dynamically visualizing the formation by in situ spatially resolved electron energy-loss spectroscopy in a transmission electron microscope mode (SR-TEM-EELS). The Li-ions were gradually inserted into the solid electrolyte region around 400 nm from the negative current-collector/solid-electrolyte interface in the charge process. Some of the ions were then extracted in the discharge process, and the rest were diffused such that the distribution was almost flat, resulting in the negative electrodes. The redox reaction of Ti(4+)/Ti(3+) in the solid electrolyte was also observed in situ during the Li insertion/extraction processes. The in situ SR-TEM-EELS revealed the mechanism of the electrochemical reaction in solid-state batteries.

  16. Ge/C nanowires as high-capacity and long-life anode materials for Li-ion batteries.

    PubMed

    Liu, Jun; Song, Kepeng; Zhu, Changbao; Chen, Chia-Chin; van Aken, Peter A; Maier, Joachim; Yu, Yan

    2014-07-22

    Germanium-based materials (Ge and GeOx) have recently demonstrated excellent lithium-ion storage ability and are being considered as the most promising candidates to substitute commercial carbon-based anodes of lithium-ion batteries. Nevertheless, practical implementation of Ge-based materials to lithium-ion batteries is greatly hampered by the poor cyclability that resulted from the huge volume variation during lithiation/delithiation processes. Herein, uniform carbon-encapsulated Ge and GeOx nanowires were synthesized by a one-step controlled pyrolysis of organic-inorganic hybrid GeOx/ethylenediamine (GeOx/EDA) nanowires in H2/Ar and Ar atmospheres, respectively. The as-obtained Ge/C and GeOx/C nanowires possess well-defined 0D-in-1D morphology and homogeneous carbon encapsulation, which exhibit excellent Li storage properties including high specific capacities (approximate 1200 and 1000 mA h g(-1) at 0.2C for Ge/C and GeOx/C, respectively). The Ge/C nanowires, in particular, demonstrate superior rate capability with excellent capacity retention and stability (producing high stable discharge capacities of about 770 mA h g(-1) after 500 cycles at 10C), making them promising candidates for future electrodes for high-power Li-ion batteries. The improved electrochemical performance arises from synergistic effects of 0D-in-1D morphology and uniform carbon coating, which could effectively accommodate the huge volume change of Ge/GeOx during cycling and maintain perfect electrical conductivity throughout the electrode.

  17. High Rate Capability Core-Shell SnO2/Multiwall Carbon Nanotube Nano Composite Electrodes for Li-Ion Batteries.

    PubMed

    Akbulut, Hatem; Guler, Mehmet Oguz

    2015-09-01

    In this study, core-shell SnO2/MWCNT nanocomposites were produced as a high rate anode material for Li-ion batteries via two steps. Firstly, MWCNT based buckypapers were produced via vacuum filtration techniques. Then, a uniform layer of tin oxide nanocrystals which consist of highly homogenous SnO2 having average mean grain sizes of 7-14 nm was deposited onto the surfaces of buckypapers. The as-prepared nanocomposites were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), galvanostatic charging and discharging and electrochemical impedance spectroscopy (EIS) tests. As anode materials for Li-ion batteries, the nanocomposites showed excellent cyclic retention, with the high specific capacity of 314 mAh g(-1) up to 100 cycles. The special hybrid core-shell structure of the as produced nanocomposites are served as electron conductors and volume buffers in the anode electrodes.

  18. Li-Ion Battery with LiFePO4 Cathode and Li4Ti5O12 Anode for Stationary Energy Storage

    SciTech Connect

    Wang, Wei; Choi, Daiwon; Yang, Zhenguo

    2013-01-01

    i-ion batteries based on commercially available LiFePO4 cathode and Li4Ti5O12 anode were investigated for potential stationary energy storage applications. The full cell that operated at flat 1.85V demonstrated stable cycling for 200 cycles followed by a rapid fade. A significant improvement in cycling stability was achieved via Ketjen black coating of the cathode. A Li-ion full cell with Ketjen black modified LiFePO4 cathode and an unmodified Li4Ti5O12 anode exhibited negligible fade after more than 1200 cycles with a capacity of ~130mAh/g. The improved stability, along with its cost-effectiveness, environmentally benignity and safety, make the LiFePO4/ Li4Ti5O12 Li-ion battery a promising option of storing renewable energy.

  19. A FeCl2-graphite sandwich composite with Cl doping in graphite layers: a new anode material for high-performance Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Wang, Lili; Guo, Cong; Zhu, Yongchun; Zhou, Jianbin; Fan, Long; Qian, Yitai

    2014-11-01

    A composite with FeCl2 nanocrystals sandwiched between Cl-doped graphite layers has been created via a space-confined nanoreactor strategy. This composite can be used as a new type of anode material for Li-ion batteries, which exhibit high reversible capacity and superior rate capability with excellent cycle life.A composite with FeCl2 nanocrystals sandwiched between Cl-doped graphite layers has been created via a space-confined nanoreactor strategy. This composite can be used as a new type of anode material for Li-ion batteries, which exhibit high reversible capacity and superior rate capability with excellent cycle life. Electronic supplementary information (ESI) available: Experimental section and Fig. S1-S8. See DOI: 10.1039/c4nr05070c

  20. Activation analysis study on Li-ion batteries for nuclear forensic applications

    NASA Astrophysics Data System (ADS)

    Johnson, Erik B.; Whitney, Chad; Holbert, Keith E.; Zhang, Taipeng; Stannard, Tyler; Christie, Anthony; Harper, Peter; Anderson, Blake; Christian, James F.

    2015-06-01

    The nuclear materials environment has been increasing significantly in complexity over the past couple of decades. The prevention of attacks from nuclear weapons is becoming more difficult, and nuclear forensics is a deterrent by providing detailed information on any type of nuclear event for proper attribution. One component of the nuclear forensic analysis is a measurement of the neutron spectrum. As an example, the neutron component provides information on the composition of the weapons, whether boosting is involved or the mechanisms used in creating a supercritical state. As 6Li has a large cross-section for thermal neutrons, the lithium battery is a primary candidate for assessing the neutron spectrum after detonation. The absorption process for 6Li yields tritium, which can be measured at a later point after the nuclear event, as long as the battery can be processed in a manner to successfully extract the tritium content. In addition, measuring the activated constituents after exposure provides a means to reconstruct the incident neutron spectrum. The battery consists of a spiral or folded layers of material that have unique, energy dependent interactions associated with the incident neutron flux. A detailed analysis on the batteries included a pre-irradiated mass spectrometry analysis to be used as input for neutron spectrum reconstruction. A set of batteries were exposed to a hard neutron spectrum delivered by the University of Massachusetts, Lowell research reactor Fast Neutron Irradiator (FNI). The gamma spectra were measured from the batteries within a few days and within a week after the exposure to obtain sufficient data on the activated materials in the batteries. The activity was calculated for a number of select isotopes, indicating the number of associated neutron interactions. The results from tritium extraction are marginal. A measurable increase in detected particles (gammas and betas) below 50 keV not self-attenuated by the battery was observed

  1. High-rate performance of Ti3+ self-doped TiO2 prepared by imidazole reduction for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Seok, Dong-il; Wu, Mihye; Shim, Kwang Bo; Kang, Yongku; Jung, Ha-Kyun

    2016-10-01

    Ti3+ self-doped TiO2 nanoparticles were prepared via a simple imidazole reduction process and developed as an anode material for Li-ion batteries. Introducing the Ti3+-state on TiO2 nanoparticles resulted in superior rate performances that the capacity retention of 88% at 50 C. The enhanced electrochemical performances were attributed to the resulting lower internal resistance and improved electronic conductivity, based on galvanostatic intermittent titration technique and electrochemical impedance spectroscopy analyses.

  2. Nanoscale silicon as anode for Li-ion batteries: The fundamentals, promises, and challenges

    SciTech Connect

    Gu, Meng; He, Yang; Zheng, Jianming; Wang, Chongmin

    2015-10-01

    Silicon (Si), associated with its natural abundance, low discharge voltage vs. Li/Li+, and extremely high theoretical discharge capacity (~ 4200 mAh g-1,), has been extensively explored as anode for lithium ion battery. One of the key challenges for using Si as anode is the large volume change upon lithiation and delithiation, which causes a fast capacity fading. Over the last few years, dramatic progress has been made for addressing this issue. In this paper, we summarize the progress towards tailoring of Si as anode for lithium ion battery. The paper is organized such that it covers the fundamentals, the promise offered based on nanoscale designing, and the remaining challenges that need to be attacked to allow using of Si based materials as anode for battery.

  3. Multi-physics Modeling for Improving Li-Ion Battery Safety; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Pesaran, A.; Kim, G.; Santhanagopalan, S.; Yang, C.

    2015-04-21

    Battery performance, cost, and safety must be further improved for larger market share of HEVs/PEVs and penetration into the grid. Significant investment is being made to develop new materials, fine tune existing ones, improve cell and pack designs, and enhance manufacturing processes to increase performance, reduce cost, and make batteries safer. Modeling, simulation, and design tools can play an important role by providing insight on how to address issues, reducing the number of build-test-break prototypes, and accelerating the development cycle of generating products.

  4. Facile preparation of core@shell and concentration-gradient spinel particles for Li-ion battery cathode materials

    NASA Astrophysics Data System (ADS)

    Kozawa, Takahiro; Naito, Makio

    2015-02-01

    Core@shell and concentration-gradient particles have attracted much attention as improved cathodes for Li-ion batteries (LIBs). However, most of their preparation routes have employed a precisely-controlled co-precipitation method. Here, we report a facile preparation route of core@shell and concentration-gradient spinel particles by dry powder processing. The core@shell particles composed of the MnO2 core and the Li(Ni,Mn)2O4 spinel shell are prepared by mechanical treatment using an attrition-type mill, whereas the concentration-gradient spinel particles with an average composition of LiNi0.32Mn1.68O4 are produced by calcination of their core@shell particles as a precursor. The concentration-gradient LiNi0.32Mn1.68O4 spinel cathode exhibits the high discharge capacity of 135.3 mA h g-1, the wide-range plateau at a high voltage of 4.7 V and the cyclability with a capacity retention of 99.4% after 20 cycles. Thus, the facile preparation route of the core@shell and concentration-gradient particles may provide a new opportunity for the discovery and investigation of functional materials as well as for the cathode materials for LIBs.

  5. Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes

    PubMed Central

    Liu, Nian; Huo, Kaifu; McDowell, Matthew T.; Zhao, Jie; Cui, Yi

    2013-01-01

    The recovery of useful materials from earth-abundant substances is of strategic importance for industrial processes. Despite the fact that Si is the second most abundant element in the Earth's crust, processes to form Si nanomaterials is usually complex, costly and energy-intensive. Here we show that pure Si nanoparticles (SiNPs) can be derived directly from rice husks (RHs), an abundant agricultural byproduct produced at a rate of 1.2 × 108 tons/year, with a conversion yield as high as 5% by mass. And owing to their small size (10–40 nm) and porous nature, these recovered SiNPs exhibits high performance as Li-ion battery anodes, with high reversible capacity (2,790 mA h g−1, seven times greater than graphite anodes) and long cycle life (86% capacity retention over 300 cycles). Using RHs as the raw material source, overall energy-efficient, green, and large scale synthesis of low-cost and functional Si nanomaterials is possible. PMID:23715238

  6. Silicon as a potential anode material for Li-ion batteries: where size, geometry and structure matter.

    PubMed

    Ashuri, Maziar; He, Qianran; Shaw, Leon L

    2016-01-07

    Silicon has attracted huge attention in the last decade because it has a theoretical capacity ∼10 times that of graphite. However, the practical application of Si is hindered by three major challenges: large volume expansion during cycling (∼300%), low electrical conductivity, and instability of the SEI layer caused by repeated volume changes of the Si material. Significant research efforts have been devoted to addressing these challenges, and significant breakthroughs have been made particularly in the last two years (2014 and 2015). In this review, we have focused on the principles of Si material design, novel synthesis methods to achieve such structural designs, and the synthesis-structure-performance relationships to enhance the properties of Si anodes. To provide a systematic overview of the Si material design strategies, we have grouped the design strategies into several categories: (i) particle-based structures (containing nanoparticles, solid core-shell structures, hollow core-shell structures, and yolk-shell structures), (ii) porous Si designs, (iii) nanowires, nanotubes and nanofibers, (iv) Si-based composites, and (v) unusual designs. Finally, our personal perspectives on outlook are offered with an aim to stimulate further discussion and ideas on the rational design of durable and high performance Si anodes for the next generation Li-ion batteries in the near future.

  7. Silicon as a potential anode material for Li-ion batteries: where size, geometry and structure matter

    NASA Astrophysics Data System (ADS)

    Ashuri, Maziar; He, Qianran; Shaw, Leon L.

    2015-12-01

    Silicon has attracted huge attention in the last decade because it has a theoretical capacity ~10 times that of graphite. However, the practical application of Si is hindered by three major challenges: large volume expansion during cycling (~300%), low electrical conductivity, and instability of the SEI layer caused by repeated volume changes of the Si material. Significant research efforts have been devoted to addressing these challenges, and significant breakthroughs have been made particularly in the last two years (2014 and 2015). In this review, we have focused on the principles of Si material design, novel synthesis methods to achieve such structural designs, and the synthesis-structure-performance relationships to enhance the properties of Si anodes. To provide a systematic overview of the Si material design strategies, we have grouped the design strategies into several categories: (i) particle-based structures (containing nanoparticles, solid core-shell structures, hollow core-shell structures, and yolk-shell structures), (ii) porous Si designs, (iii) nanowires, nanotubes and nanofibers, (iv) Si-based composites, and (v) unusual designs. Finally, our personal perspectives on outlook are offered with an aim to stimulate further discussion and ideas on the rational design of durable and high performance Si anodes for the next generation Li-ion batteries in the near future.

  8. Design and use of multisine signals for Li-ion battery equivalent circuit modelling. Part 1: Signal design

    NASA Astrophysics Data System (ADS)

    Widanage, W. D.; Barai, A.; Chouchelamane, G. H.; Uddin, K.; McGordon, A.; Marco, J.; Jennings, P.

    2016-08-01

    The Pulse Power Current (PPC) profile is often the signal of choice for obtaining the parameters of a Lithium-ion (Li-ion) battery Equivalent Circuit Model (ECM). Subsequently, a drive-cycle current profile is used as a validation signal. Such a profile, in contrast to a PPC, is more dynamic in both the amplitude and frequency bandwidth. Modelling errors can occur when using PPC data for parametrisation since the model is optimised over a narrower bandwidth than the validation profile. A signal more representative of a drive-cycle, while maintaining a degree of generality, is needed to reduce such modelling errors. In Part 1 of this 2-part paper a signal design technique defined as a pulse-multisine is presented. This superimposes a signal known as a multisine to a discharge, rest and charge base signal to achieve a profile more dynamic in amplitude and frequency bandwidth, and thus more similar to a drive-cycle. The signal improves modelling accuracy and reduces the experimentation time, per state-of-charge (SoC) and temperature, to several minutes compared to several hours for an PPC experiment.

  9. Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes

    NASA Astrophysics Data System (ADS)

    Liu, Nian; Huo, Kaifu; McDowell, Matthew T.; Zhao, Jie; Cui, Yi

    2013-05-01

    The recovery of useful materials from earth-abundant substances is of strategic importance for industrial processes. Despite the fact that Si is the second most abundant element in the Earth's crust, processes to form Si nanomaterials is usually complex, costly and energy-intensive. Here we show that pure Si nanoparticles (SiNPs) can be derived directly from rice husks (RHs), an abundant agricultural byproduct produced at a rate of 1.2 × 108 tons/year, with a conversion yield as high as 5% by mass. And owing to their small size (10-40 nm) and porous nature, these recovered SiNPs exhibits high performance as Li-ion battery anodes, with high reversible capacity (2,790 mA h g-1, seven times greater than graphite anodes) and long cycle life (86% capacity retention over 300 cycles). Using RHs as the raw material source, overall energy-efficient, green, and large scale synthesis of low-cost and functional Si nanomaterials is possible.

  10. Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes.

    PubMed

    Liu, Nian; Huo, Kaifu; McDowell, Matthew T; Zhao, Jie; Cui, Yi

    2013-01-01

    The recovery of useful materials from earth-abundant substances is of strategic importance for industrial processes. Despite the fact that Si is the second most abundant element in the Earth's crust, processes to form Si nanomaterials is usually complex, costly and energy-intensive. Here we show that pure Si nanoparticles (SiNPs) can be derived directly from rice husks (RHs), an abundant agricultural byproduct produced at a rate of 1.2 × 10(8) tons/year, with a conversion yield as high as 5% by mass. And owing to their small size (10-40 nm) and porous nature, these recovered SiNPs exhibits high performance as Li-ion battery anodes, with high reversible capacity (2,790 mA h g(-1), seven times greater than graphite anodes) and long cycle life (86% capacity retention over 300 cycles). Using RHs as the raw material source, overall energy-efficient, green, and large scale synthesis of low-cost and functional Si nanomaterials is possible.

  11. One-pot synthesis of tin-borophosphate-carbon composites as anode materials for Li-ion batteries

    SciTech Connect

    Mouyane, Mohamed; Jumas, Jean-Claude; Olivier-Fourcade, Josette; Cassaignon, Sophie; Jordy, Christian; Lippens, Pierre-Emmanuel

    2016-01-15

    Sn{sub x}(Ca{sub 0.05}B{sub 0.975}P{sub 0.975}O{sub 3.95}){sub 1−x}/C composites as anode material for Li-ion batteries, with x=0.83 and x=0.71 were synthesized by a facile route including cellulose as carbon source. The composites were characterized by X-ray diffraction, scanning electron microscopy, Raman spectroscopy and {sup 119}Sn Mössbauer spectroscopy. In the latter case, different tin phases were found in the composite including the Sn{sup II}-based amorphous interface between metallic tin and borophosphate particles that improves the dispersion of the active species. The best electrochemical performances were obtained for x=0.71 that were further improved by ball-milled the composite with a small amount of carbon black. - Graphical abstract: {sup 119}Sn Mössbauer spectra of Sn{sub x}(Ca{sub 0.05}B{sub 0.975}P{sub 0.975}O{sub 3.95}){sub 1−x}/C composites with x=0.83 (a) and x=0.71 (b).

  12. Facile Preparation of Graphene/SnO₂ Xerogel Hybrids as the Anode Material in Li-Ion Batteries.

    PubMed

    Li, Zhe-Fei; Liu, Qi; Liu, Yadong; Yang, Fan; Xin, Le; Zhou, Yun; Zhang, Hangyu; Stanciu, Lia; Xie, Jian

    2015-12-16

    SnO2 has been considered as one of the most promising anode materials for Li-ion batteries due to its theoretical ability to store up to 8.4 Li(+). However, it suffers from poor rate performance and short cycle life due to the low intrinsic electrical conductivity and particle pulverization caused by the large volume change upon lithiation/delithiation. Here, we report a facile synthesis of graphene/SnO2 xerogel hybrids as anode materials using epoxide-initiated gelation method. The synthesized hybrid materials (19% graphene/SnO2 xerogel) exhibit excellent electrochemical performance: high specific capacity, stable cyclability, and good rate capability. Even cycled at a high current density of 1 A/g for 300 cycles, the hybrid electrode can still deliver a specific capacity of about 380 mAh/g, corresponding to more than 60% capacity retention. The incorporation of graphene sheets provides fast electron transfer between the interfaces of the graphene nanosheets and the SnO2 and a short lithium ion diffusion path. The porous structure of graphene/xerogel and the strong interaction between SnO2 and graphene can effectively accommodate the volume change and tightly confine the formed Li2O and Sn nanoparticles, thus preventing the irreversible capacity degradation.

  13. Gas chromatography/mass spectrometry as a suitable tool for the Li-ion battery electrolyte degradation mechanisms study.

    PubMed

    Gachot, Grégory; Ribière, Perrine; Mathiron, David; Grugeon, Sylvie; Armand, Michel; Leriche, Jean-Bernard; Pilard, Serge; Laruelle, Stéphane

    2011-01-15

    To allow electric vehicles to be powered by Li-ion batteries, scientists must understand further their aging processes in view to extend their cycle life and safety. For this purpose, we focused on the development of analytical techniques aiming at identifying organic species resulting from the degradation of carbonate-based electrolytes (EC-DMC/LiPF(6)) at low potential. As ESI-HRMS provided insightful information to the mechanism and chronological formation of ethylene oxide oligomers, we implemented "gas" GC/MS experiments to explore the lower mass range corresponding to highly volatile compounds. With the help of chemical simulation tests, we were able to discriminate their formation pathways (thermal and/or electrochemical) and found that most of the degradation compounds originate from the electrochemically driven linear alkyl carbonate reduction upon cycling and to a lesser extent from a two-step EC reduction. Deduced from these results, we propose an overall electrolyte degradation scheme spanning the entire mass range and the chemical or electrochemical type of processes.

  14. Design of a Porous Cathode for Ultrahigh Performance of a Li-ion Battery: An Overlooked Pore Distribution

    NASA Astrophysics Data System (ADS)

    Song, Jihwan; Kim, Junhyung; Kang, Taewook; Kim, Dongchoul

    2017-02-01

    Typical cathode materials of Li-ion battery suffer from a severe loss in specific capacity, and this problem is regarded as a major obstacle in the expansion of newer applications. To overcome this, porous cathodes are being extensively utilized. However, although it seems that the porosity in the cathode would be a panacea for high performance of LIBs, there is a blind point in the cathode consisting of porous structures, which makes the porous design to be a redundant. Here, we report the importance of designing the porosity of a cathode in obtaining ultrahigh performance with the porous design or a degraded performance even with increase of porosity. Numerical simulations show that the cathode with 40% porosity has 98% reduction in the loss of specific capacity when compared to the simple spherical cathode when the C-rate increases from 2.5 to 80 C. In addition, the loss over total cycles decreases from 30% to only about 1% for the cathode with 40% porosity under 40 C. Interestingly, however, the specific capacity could be decreased even with the increase in porosity unless the pores were evenly distributed in the cathode. The present analysis provides an important insight into the design of ultrahigh performance cathodes.

  15. Fabrication and Characterization of SnO2/Graphene Composites as High Capacity Anodes for Li-Ion Batteries

    PubMed Central

    Dhanabalan, Abirami; Li, Xifei; Agrawal, Richa; Chen, Chunhui; Wang, Chunlei

    2013-01-01

    Tin-oxide and graphene (TG) composites were fabricated using the Electrostatic Spray Deposition (ESD) technique, and tested as anode materials for Li-ion batteries. The electrochemical performance of the as-deposited TG composites were compared to heat-treated TG composites along with pure tin-oxide films. The heat-treated composites exhibited superior specific capacity and energy density than both the as-deposited TG composites and tin oxide samples. At the 70th cycle, the specific capacities of the as-deposited and post heat-treated samples were 534 and 737 mA·h/g, respectively, and the corresponding energy densities of the as-deposited and heat-treated composites were 1240 and 1760 W·h/kg, respectively. This improvement in the electrochemical performance of the TG composite anodes as compared to the pure tin oxide samples is attributed to the synergy between tin oxide and graphene, which increases the electrical conductivity of tin oxide and helps alleviate volumetric changes in tin-oxide during cycling.

  16. Si-SiOx-Al2O3 nanocomposites as high-capacity anode materials for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Kim, Kyungbae; Kim, Moon-Soo; Choi, Hyerang; Min, Kyeong-Sik; Kim, Ki-Doo; Kim, Jae-Hun

    2017-03-01

    Nanocrystalline Si-embedded SiOx-Al2O3 composite materials were synthesized by a high-energy mechanical milling method, and their potential as an anode material for Li-ion batteries was examined. The starting materials were amorphous SiO2 and Al metal powders. To increase the initial coulombic efficiency of the SiO2-based electrode materials, the amorphous SiO2 was reduced by Al. The reducing medium was decided by calculating the thermodynamic formation energy. During the highenergy milling process, SiO2 was partially reduced and Al was simultaneously oxidized to aluminum oxide, yielding nano Si-embedded composite. The composite was characterized by X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, and high-resolution transmission microscopy. In electrochemical tests, the reversible capacity of the composite electrode was approximately 850 mAh g-1 with enhanced initial coulombic efficiency of 66%. This performance of the composite electrode was achieved not through carbon incorporation, but through the formation of Si-embedded nanocomposites.

  17. Electrochemical properties of Sn-decorated SnO nanobranches as an anode of Li-ion battery.

    PubMed

    Shin, Jeong Ho; Song, Jae Yong

    2016-01-01

    Sn-based oxide materials as an anode of lithium ion batteries (LIBs) suffer from the unavoidable mechanical stress originated from huge volume changes during lithiation/delithiation reactions. We synthesized the hierarchical SnO nanobranches (NBs) decorated with Sn nanoparticles on Cu current collector using a vapor transport method. The Sn-decorated SnO NBs as an anode of LIB showed good electrochemical performance with high reversible capacity retention of as high as 502 mAh/g and rate capability of 455 mAh/g at a current density of 2.0 A/g after 50 cycles. Through the morphological and crystal structure analyses after the charge and discharge processes, it was found that the morphology of Sn-decorated SnO NBs was transformed to nanoporous layered-structure, composed of Sn and lithium oxide, during the repeated lithiation/delithiation reactions. The free-volume of Sn-decorated SnO NBs and nanoporous layered-structure effectively accommodate the huge volume changes and enhance the electrochemical cyclability by facilitating the diffusion of Li-ions.

  18. Li2CuVO4: A high capacity positive electrode material for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Ben Yahia, Hamdi; Shikano, Masahiro; Yamaguchi, Yoichi

    2016-07-01

    The new compound Li2CuVO4 was synthesized by a solid state reaction route, and its crystal structure was determined from single crystal X-ray diffraction data. Li2CuVO4 was characterized by galvanometric cycling, cycle voltammetry, and electrochemical impedance spectroscopy. The structure of Li2CuVO4 is isotypic to Pmn21-Li3VO4. It can be described as a disordered wurtzite structure with rows of Li1/Cu1 atoms alternating with rows of (Li2/Cu2)-V-(Li2/Cu2) atoms along [100]. All cations are tetrahedrally coordinated. The lithium and copper atoms are statistically disordered over two crystallographic sites. The electrochemical cycling between 2.0 and 4.7 V indicates that almost two lithium atoms could be extracted and re-intercalated. This delivers a maximum discharge capacity of 257 mA h g-1 at a C/50 rate (theoretical capacity = 139 mA h g-1 for one lithium). Li2CuVO4 shows also high rate capability with a capacity of 175 mA h g-1 at 1C rate. This demonstrates that Cu-based compounds can be very interesting as electrodes for Li-ion batteries if Cu-dissolution is avoided.

  19. Facile preparation of core@shell and concentration-gradient spinel particles for Li-ion battery cathode materials

    PubMed Central

    Kozawa, Takahiro; Naito, Makio

    2015-01-01

    Core@shell and concentration-gradient particles have attracted much attention as improved cathodes for Li-ion batteries (LIBs). However, most of their preparation routes have employed a precisely-controlled co-precipitation method. Here, we report a facile preparation route of core@shell and concentration-gradient spinel particles by dry powder processing. The core@shell particles composed of the MnO2 core and the Li(Ni,Mn)2O4 spinel shell are prepared by mechanical treatment using an attrition-type mill, whereas the concentration-gradient spinel particles with an average composition of LiNi0.32Mn1.68O4 are produced by calcination of their core@shell particles as a precursor. The concentration-gradient LiNi0.32Mn1.68O4 spinel cathode exhibits the high discharge capacity of 135.3 mA h g−1, the wide-range plateau at a high voltage of 4.7 V and the cyclability with a capacity retention of 99.4% after 20 cycles. Thus, the facile preparation route of the core@shell and concentration-gradient particles may provide a new opportunity for the discovery and investigation of functional materials as well as for the cathode materials for LIBs. PMID:27877756

  20. Microstructure and phase analyses of melt-spun Si-Ni base anode materials for Li-ion battery

    NASA Astrophysics Data System (ADS)

    Jeon, Sung Min; Song, Jong Jin; Kim, Sun-I.; Kwon, Hye Jin; Sohn, Keun Yong; Park, Won-Wook

    2013-01-01

    Si-based anode composite materials have been studied to improve the performance and the durability of Li-ion secondary batteries in this study. Si-Ni-Al, Si-Ni-Cu and Si-Ni-Cu-Al base alloys were designed and rapidly solidified at the cooling rate of about 106 °C/sec by optimizing the melt spinning. The ribbons were characterized using FE-SEM equipped with EDS, X-ray diffractometer and HR-TEM. The thin ribbons of Si-Ni-Al alloy consisted of nano-sized Si particles and amorphous matrix, which was regarded as an ideal microstructure for the anode material. At the wheel side of the ribbon, 20-30 nm of Si particles were formed (Zone A); whereas at the air side relatively large Si particles were distributed (Zone B). The Si-Ni-Cu alloy showed coarser Si particles than the Si-Ni-Al alloy, and its matrix consisted of NiSi2, Cu3Si and amorphous structures. Finally, the microstructure of the Si-Ni-Cu-Al alloy strips was composed of coarse Si particles, CuNi, Al4Cu9, NiSi2, and unknown phases, and the size of those Si particles were too large to be used for the anode materials.

  1. In situ scanning tunneling microscopy studies of the SEI formation on graphite electrodes for Li+-ion batteries

    NASA Astrophysics Data System (ADS)

    Seidl, Lukas; Martens, Slađana; Ma, Jiwei; Stimming, Ulrich; Schneider, Oliver

    2016-07-01

    The SEI-formation on graphitic electrodes operated as an Li+-ion battery anode in a standard 1 M LiPF6 EC/DMC (1 : 1) electrolyte has been studied in situ by EC-STM. Two different modes of in situ study were applied, one, which allowed to follow topographic and crystallographic changes (solvent cointercalation, graphite exfoliation, SEI precipitation on the HOPG basal plane) of the graphite electrode during SEI-formation, and the second, which gave an insight into the SEI precipitation on the HOPG basal plane in real time. From the in situ EC-STM studies, not only conclusions about the SEI-topography could be drawn, but also about the formation mechanism and the chemical composition, which strongly depend on the electrode potential. It was shown that above 1.0 V vs. Li/Li+ the SEI-formation is still reversible, since the molecular structure of the solvent molecules remains intact during an initial reduction step. During further reduction, the molecular structures of the solvents are destructed, which causes the irreversible charge loss. The STM studies were completed by electrochemical methods, like cyclic voltammetry, the potentiostatic intermittent titration technique and charge/discharge tests of MCMB electrodes.

  2. Design of a Porous Cathode for Ultrahigh Performance of a Li-ion Battery: An Overlooked Pore Distribution

    PubMed Central

    Song, Jihwan; Kim, Junhyung; Kang, Taewook; Kim, Dongchoul

    2017-01-01

    Typical cathode materials of Li-ion battery suffer from a severe loss in specific capacity, and this problem is regarded as a major obstacle in the expansion of newer applications. To overcome this, porous cathodes are being extensively utilized. However, although it seems that the porosity in the cathode would be a panacea for high performance of LIBs, there is a blind point in the cathode consisting of porous structures, which makes the porous design to be a redundant. Here, we report the importance of designing the porosity of a cathode in obtaining ultrahigh performance with the porous design or a degraded performance even with increase of porosity. Numerical simulations show that the cathode with 40% porosity has 98% reduction in the loss of specific capacity when compared to the simple spherical cathode when the C-rate increases from 2.5 to 80 C. In addition, the loss over total cycles decreases from 30% to only about 1% for the cathode with 40% porosity under 40 C. Interestingly, however, the specific capacity could be decreased even with the increase in porosity unless the pores were evenly distributed in the cathode. The present analysis provides an important insight into the design of ultrahigh performance cathodes. PMID:28211894

  3. Facile preparation of core@shell and concentration-gradient spinel particles for Li-ion battery cathode materials.

    PubMed

    Kozawa, Takahiro; Naito, Makio

    2015-02-01

    Core@shell and concentration-gradient particles have attracted much attention as improved cathodes for Li-ion batteries (LIBs). However, most of their preparation routes have employed a precisely-controlled co-precipitation method. Here, we report a facile preparation route of core@shell and concentration-gradient spinel particles by dry powder processing. The core@shell particles composed of the MnO2 core and the Li(Ni,Mn)2O4 spinel shell are prepared by mechanical treatment using an attrition-type mill, whereas the concentration-gradient spinel particles with an average composition of LiNi0.32Mn1.68O4 are produced by calcination of their core@shell particles as a precursor. The concentration-gradient LiNi0.32Mn1.68O4 spinel cathode exhibits the high discharge capacity of 135.3 mA h g(-1), the wide-range plateau at a high voltage of 4.7 V and the cyclability with a capacity retention of 99.4% after 20 cycles. Thus, the facile preparation route of the core@shell and concentration-gradient particles may provide a new opportunity for the discovery and investigation of functional materials as well as for the cathode materials for LIBs.

  4. Identifying the redox activity of cation-disordered Li-Fe-V-Ti oxide cathodes for Li-ion batteries.

    PubMed

    Chen, Ruiyong; Witte, Ralf; Heinzmann, Ralf; Ren, Shuhua; Mangold, Stefan; Hahn, Horst; Hempelmann, Rolf; Ehrenberg, Helmut; Indris, Sylvio

    2016-03-21

    Cation-disordered oxides have recently shown promising properties on the way to explore high-performance intercalation cathode materials for rechargeable Li-ion batteries. Here, stoichiometric cation-disordered Li2FeVyTi1-yO4 (y = 0, 0.2, 0.5) nanoparticles are studied. The substitution of V for Ti in Li2FeVyTi1-yO4 increases the content of active transition metals (Fe and V) and accordingly the amount of Li(+) (about (1 + y)Li(+) capacity per formula unit) that can be reversibly intercalated. It is found that Fe(3+)/Fe(2+) and V(4+)/V(3+) redox couples contribute to the overall capacity performance, whereas Ti(4+) remains mainly inert. There is no evidence for the presence of Fe(4+) species after charging to 4.8 V, as confirmed from the ex situ(57)Fe Mössbauer spectroscopy and the Fe K-edge absorption spectra. The redox couple reactions for iron and vanadium are examined by performing in situ synchrotron X-ray absorption spectroscopy. During charging/discharging, the spectral evolution of the K-edges for Fe and V confirms the reversible Fe(3+)/Fe(2+) and V(4+)/V(3+) redox reactions during cycling between 1.5 and 4.8 V.

  5. Electrochemical performance of new α-MoO3 nanobelt cathode materials for rechargeable Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Nadimicherla, Reddeppa; Liu, Yueli; Chen, Keqiang; Chen, Wen

    2014-08-01

    The orthorhombic molybdenum trioxide (α-MoO3) nanobelts and polyvinyl pyrrolidone (PVP) surfactant MoO3 nanobelts with high quality were prepared through hydrothermal synthesis. The morphology and microstructure of the samples were investigated by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The nanobelts with rectangular cross-section have an orthorhombic phase structure, preferentially grow in [001] direction. The results showed that the H atoms in polyvinyl pyrrolidone are H-bonded with the O atoms in the Modbnd O bonds of MoO3 nanobelts. When MoO3 is modified by the intercalation of PVP, it is effectively shielded against electrostatic interaction between the MoO3 interlayer and Li+ ions. The specific capacity of pure MoO3 nanobelts battery and (PVP)0.2MoO3 nanobelts exhibit as 195 mAh g-1 and 237 mAh g-1, respectively after 14 cycles, suggests that the stability of surfactant material is worthy.

  6. Elucidating the Surface Reactions of an Amorphous Si Thin Film as a Model Electrode for Li-Ion Batteries.

    PubMed

    Ferraresi, Giulio; Czornomaz, Lukas; Villevieille, Claire; Novák, Petr; El Kazzi, Mario

    2016-11-02

    We investigated during the first lithiation/delithiation process the electrochemical reaction mechanisms at the surface of 30 nm n-doped amorphous silicon (a-Si) thin film used as a negative model electrode for Li-ion batteries. Usage of thin film allowed us to accurately discern the different reaction mechanisms occurring at the surface by avoiding interference from carbon and binder components. The potential dependency of the evolution of the solid electrolyte interphase (SEI) and the reactions on the a-Si and on the copper current collector were elucidated by coupling galvanostatic cycling with postmortem X-ray photoemission spectroscopy and scanning electron microscopy analyses. Our approach revealed the clear reversibility of lithiation/delithiation in the a-Si and native SiO2 layers; such a reaction for SiO2 has not been previously detected and was considered to be an irreversible process. Quantitative and qualitative analyses of the potential-dependent surface evolution revealed the decomposition products of both the salt (LiPF6) and solvent (dimethyl carbonate/ethylene carbonate), giving insight into the complex SEI formation mechanism on the a-Si film but also underlining the strong influence of "inert" materials such as the role of the current collector in the irreversible charge loss. A model mechanism describing the evolutionary complexity of the a-Si surface during the first galvanostatic cycle is proposed and discussed.

  7. Can Cell to Cell Thermal Runaway Propagation be Prevented in a Li-ion Battery Module?

    NASA Technical Reports Server (NTRS)

    Jeevarajan, Judith; Lopez, Carlos; Orieukwu, Josephat

    2014-01-01

    Increasing cell spacing decreased adjacent cell damage center dotElectrically connected adjacent cells drained more than physically adjacent cells center dotRadiant barrier prevents propagation when fully installed between BP cells center dotBP cells vent rapidly and expel contents at 100% SOC -Slower vent with flame/smoke at 50% -Thermal runaway event typically occurs at 160 degC center dotLG cells vent but do not expel contents -Thermal runaway event typically occurs at 200 degC center dotSKC LFP modules did not propagate; fuses on negative terminal of cell may provide a benefit in reducing cell to cell damage propagation. New requirement in NASA-Battery Safety Requirements document: JSC 20793 Rev C 5.1.5.1 Requirements - Thermal Runaway Propagation a. For battery designs greater than a 80-Wh energy employing high specific energy cells (greater than 80 watt-hours/kg, for example, lithium-ion chemistries) with catastrophic failure modes, the battery shall be evaluated to ascertain the severity of a worst-case single-cell thermal runaway event and the propensity of the design to demonstrate cell-to-cell propagation in the intended application and environment. NASA has traditionally addressed the threat of thermal runaway incidents in its battery deployments through comprehensive prevention protocols. This prevention-centered approach has included extensive screening for manufacturing defects, as well as robust battery management controls that prevent abuse-induced runaway even in the face of multiple system failures. This focused strategy has made the likelihood of occurrence of such an event highly improbable. b. The evaluation shall include all necessary analysis and test to quantify the severity (consequence) of the event in the intended application and environment as well as to identify design modifications to the battery or the system that could appreciably reduce that severity. In addition to prevention protocols, programs developing battery designs with

  8. Charactrization of a Li-ion battery based stand-alone a-Si photovoltaic system

    NASA Astrophysics Data System (ADS)

    Hamid Vishkasougheh, Mehdi; Tunaboylu, Bahadir

    2014-11-01

    The number of photovoltaic (PV) system installations is increasing rapidly. As more people learn about this versatile and often cost-effective power option, this trend will accelerate. This document presents a recommended design for a battery based stand-alone photovoltaic system (BSPV). BSPV system has the ability to be applied in different areas, including warning signals, lighting, refrigeration, communication, residential water pumping, remote sensing, and cathodic protection. The presented calculation method gives a proper idea for a system sizing technique. Based on application load, different scenarios are possible for designing a BSPV system. In this study, a battery based stand-alone system was designed. The electricity generation part is three a-Si panels, which are connected in parallel, and for the storage part LFP (lithium iron phosphate) battery was used. The high power LFP battery packs are 40 cells each 8S5P (configured 8 series 5 parallel). Each individual pack weighs 0.5 kg and is 25.6 V. In order to evaluate the efficiency of a-Si panels with respect to the temperature and the solar irradiation, cities of Istanbul, Ankara and Adana in Turkey were selected. Temperature and solar irradiation were gathered from reliable sources and by using translation equations, current and voltage output of panels were calculated. As a result of these calculations, current and energy outputs were computed by considering an average efficient solar irradiation time value per day in Turkey. The calculated power values were inserted to a battery cycler system, and the behavior of high power LFP batteries in a time sequence of 7.2 h was evaluated. The charging and discharging cycles were obtained and their behavior was discussed. According to the results, Istanbul has the lowest number of peak month's energy, it followed by Ankara, and ultimately Adana has the highest number of peak months and energy storage. It was observed during the tests that values up to 4 A was

  9. Structural investigation of SiSn/(reduced graphene oxide) nanocomposite powder for Li-ion battery anode applications

    NASA Astrophysics Data System (ADS)

    Kawasaki, Masahiro; Laokawee, Viratchara; Sarakonsri, Thapanee; Hashizume, Takashi; Shiojiri, Makoto

    2016-11-01

    We synthesized SiSn/(reduced graphene oxide (rGO)) nanocomposite powder for a Li-ion battery material and characterized the structure by transmission electron microscopy (TEM) and analytical scanning transmission electron microscopy (STEM). Graphene oxide was prepared by Hummers method. The graphene oxide powder processed by heat treatment was added together with Si powder into a solution of SnCl2 ṡ 2(H2O) dissolved in N2 bubbled ethylene glycol, and the solution was reacted with NaBH4. The product had a nominal atomic ratio of Si: Sn: C = 14: 3.5: 100. High-resolution TEM/STEM analysis revealed that the powder consisted of crystalline particles of Sn, Si, and SiO as well as thin reduced graphene oxide (rGO) lamellae of amorphous-like graphite with distorted lattices that were often found in areas as local as a few nm2. The aggregated Si and SiO particles grew up to several hundred nm across. Sn particles grew as large as a few tens of nm while those as small as a few nm were scattered on the (0001) rGO surface with some epitaxial relations. Si, SiO, and Sn particles were found hanging on at the edges of the rGO lamellae. An electrochemical test was performed for this nanocomposite powder. The result suggested that the SiSn/rGO powder would be a promising anode material for lithium-ion batteries with high capacity.

  10. Environmentally-friendly lithium recycling from a spent organic li-ion battery.

    PubMed

    Renault, Stéven; Brandell, Daniel; Edström, Kristina

    2014-10-01

    A simple and straightforward method using non-polluting solvents and a single thermal treatment step at moderate temperature was investigated as an environmentally-friendly process to recycle lithium from organic electrode materials for secondary lithium batteries. This method, highly dependent on the choice of electrolyte, gives up to 99% of sustained capacity for the recycled materials used in a second life-cycle battery when compared with the original. The best results were obtained using a dimethyl carbonate/lithium bis(trifluoromethane sulfonyl) imide electrolyte that does not decompose in presence of water. The process implies a thermal decomposition step at a moderate temperature of the extracted organic material into lithium carbonate, which is then used as a lithiation agent for the preparation of fresh electrode material without loss of lithium.

  11. Magnetically aligned graphite electrodes for high-rate performance Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Billaud, Juliette; Bouville, Florian; Magrini, Tommaso; Villevieille, Claire; Studart, André R.

    2016-08-01

    As lithium-ion batteries become ubiquitous, the energy storage market is striving for better performance, longer lifetime and better safety of the devices. This race for performance is often focused on the search for new materials, whereas less effort has been dedicated to the electrode engineering. Enhancing the power density by increasing the amount of active material remains impractical since it impinges the transport of ions across the electrode during the charging and discharging processes. Here, we show that the electrochemical performance of a battery containing a thick (about 200 μm), highly loaded (about 10 mg cm-2) graphite electrode can be remarkably enhanced by fabricating anodes with an out-of-plane aligned architecture using a low external magnetic field. The lower tortuosity resulting from such a simple and scalable magnetic alignment approach leads to a specific charge up to three times higher than that of non-architectured electrodes at a rate of 1C.

  12. Neutron Imaging of Lithium Concentration for Validation of Li-Ion Battery State of Charge Estimation

    DTIC Science & Technology

    2010-12-01

    of the spherical particles which are disturbed across the electrode, during battery charging. Modified from (Smith, 2010; Speltino et al., 2009). and...models will make a substantial impact to the hybrid system level sizing and power management for an ultra-light far-reaching portable power source. In...concentra- tion. On the other hand , due to the high neutron cross sec- tion of the hydrocarbon based solvents, neutron radiogra- phy has been used to

  13. Carbon-Coated Current Collectors for High-Power Li-ion Secondary Batteries III

    DTIC Science & Technology

    2013-12-02

    process called roll- calcination . The same positive effects seen on small samples have been reproduced. Introduction: The basic principle for... calcination . The same positive effects seen on small samples have been reproduced. 15. SUBJECT TERMS lithium ion secondary battery, Carbon-Coated Current...foils after clip- calcination . Table 2. Fitted parameters form Raman spectrum. Raman Center Area Width(FWHM) Height PA-Al G 1582.1 6723.6

  14. Studies on the thermal breakdown of common Li-ion battery electrolyte components

    SciTech Connect

    Lamb, Joshua; Orendorff, Christopher J.; Roth, Emanuel Peter; Langendorf, Jill Louise

    2015-08-06

    While much attention is paid to the impact of the active materials on the catastrophic failure of lithium ion batteries, much of the severity of a battery failure is also governed by the electrolytes used, which are typically flammable themselves and can decompose during battery failure. The use of LiPF6 salt can be problematic as well, not only catalyzing electrolyte decomposition, but also providing a mechanism for HF production. This work evaluates the safety performance of the common components ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC) in the context of the gasses produced during thermal decomposition, looking at both the quantity and composition of the vapor produced. EC and DEC were found to be the largest contributors to gas production, both producing upwards of 1.5 moles of gas/mole of electrolyte. DMC was found to be relatively stable, producing very little gas regardless of the presence of LiPF6. EMC was stable on its own, but the addition of LiPF6 catalyzed decomposition of the solvent. As a result, while gas analysis did not show evidence of significant quantities of any acutely toxic materials, the gasses themselves all contained enough flammable components to potentially ignite in air.

  15. Studies on the thermal breakdown of common Li-ion battery electrolyte components

    DOE PAGES

    Lamb, Joshua; Orendorff, Christopher J.; Roth, Emanuel Peter; ...

    2015-08-06

    While much attention is paid to the impact of the active materials on the catastrophic failure of lithium ion batteries, much of the severity of a battery failure is also governed by the electrolytes used, which are typically flammable themselves and can decompose during battery failure. The use of LiPF6 salt can be problematic as well, not only catalyzing electrolyte decomposition, but also providing a mechanism for HF production. This work evaluates the safety performance of the common components ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC) in the context of the gasses producedmore » during thermal decomposition, looking at both the quantity and composition of the vapor produced. EC and DEC were found to be the largest contributors to gas production, both producing upwards of 1.5 moles of gas/mole of electrolyte. DMC was found to be relatively stable, producing very little gas regardless of the presence of LiPF6. EMC was stable on its own, but the addition of LiPF6 catalyzed decomposition of the solvent. As a result, while gas analysis did not show evidence of significant quantities of any acutely toxic materials, the gasses themselves all contained enough flammable components to potentially ignite in air.« less

  16. Template-free electrodeposition of AlFe alloy nanowires from a room-temperature ionic liquid as an anode material for Li-ion batteries.

    PubMed

    Chen, Gang; Chen, Yuqi; Guo, Qingjun; Wang, Heng; Li, Bing

    2016-08-15

    AlFe alloy nanowires were directly electrodeposited on copper substrates from trimethylamine hydrochloride (TMHC)-AlCl3 ionic liquids with small amounts of FeCl3 at room temperature without templates. Coin cells composed of AlFe alloy nanowire electrodes and lithium foils were assembled to characterize the alloy electrochemical properties by galvanostatic charge/discharge tests. Effects of FeCl3 concentration, potential and temperature on the alloy morphology, composition and cyclic performance were examined. Addition of Fe into the alloy changed the nanowires from a 'hill-like' bulk morphology to a free-standing morphology, and increased the coverage area of the alloy on Cu substrates. As an inactive element, Fe could also buffer the alloys' large volume changes during Li intercalation and deintercalation. AlFe alloy nanowires composed of a small amount of Fe with an average diameter of 140 nm exhibited an outstanding cyclic performance and delivered a specific capacity of about 570 mA h g(-1) after 50 cycles. This advanced template-free method for the direct preparation of high performance nanostructure AlFe alloy anode materials is quite simple and inexpensive, which presents a promising prospect for practical application in Li-ion batteries.

  17. Soil as an inexhaustible and high-performance anode material for Li-ion batteries.

    PubMed

    Hu, Xiaofei; Zhang, Kai; Cong, Liang; Cheng, Fangyi; Chen, Jun

    2015-11-11

    Herein, we demonstrate that by a simple treatment of heating and ball-milling, soil is endowed with a 77.2% degree of defects and acts as a high-performance anode material for soil/Li half cells and 18650-type LiNi0.915Co0.075Al0.1O2 (NCA)/soil full batteries that displayed a high and stable capacity of 3200 mA h (corresponding to 176 W h kg(-1) and 522 W h L(-1)) in the 200th cycle at a high current of 4 A.

  18. Multiple model estimator based detection of abnormal cell overheating in a Li-ion battery string with minimum number of temperature sensors

    NASA Astrophysics Data System (ADS)

    Lystianingrum, Vita; Hredzak, Branislav; Agelidis, Vassilios G.

    2015-01-01

    This paper proposes modeling of abnormal cell overheating caused by internal short circuit in a cell of a Li-ion battery string by augmenting the cell state space model with unknown input disturbance. Furthermore, with minimum number of temperature sensors, in order to identify which of the cells in the string is experiencing the abnormal overheating, a multiple model estimator (MME) is used. Simulation results demonstrate that the proposed MME can detect the abnormally overheating cell as well as quickly detect that an abnormal overheating event occurred in the battery string.

  19. High Pseudocapacitance in FeOOH/rGO Composites with Superior Performance for High Rate Anode in Li-Ion Battery.

    PubMed

    Qi, Hui; Cao, Liyun; Li, Jiayin; Huang, Jianfeng; Xu, Zhanwei; Cheng, Yayi; Kong, Xingang; Yanagisawa, Kazumichi

    2016-12-28

    Capacitive storage has been considered as one type of Li-ion storage with fast faradaic surface redox reactions to offer high power density for electrochemical applications. However, it is often limited by low extent of energy contribution during the charge/discharge process, providing insufficient influences to total capacity of Li-ion storage in electrodes. In this work, we demonstrate a pseudocapacitance predominated storage (contributes 82% of the total capacity) from an in-situ pulverization process of FeOOH rods on rGO (reduced graphene oxide) sheets for the first time. Such high extent of pseudocapacitive storage in the FeOOH/rGO electrode achieves high energy density with superior cycling performance over 200 cycles at different current densities (1135 mAh/g at 1 A/g and 783 mAh/g at 5 A/g). It is further revealed that the in-situ pulverization process is essential for the high pseudocapacitance in this electrode, because it not only produces a porous structure for high exposure of tiny FeOOH crystallites to electrolyte but also maintains stable electrochemical contact during ultrahigh rate charge transfer with high energy density in the battery. The utilization of in-situ pulverization in an Fe-based anode to realize high surface pseudocapacitance with superior performance may inspire future design of electrode structures in Li-ion batteries.

  20. Carbon-Coated Honeycomb Ni-Mn-Co-O Inverse Opal: A High Capacity Ternary Transition Metal Oxide Anode for Li-ion Batteries.

    PubMed

    McNulty, David; Geaney, Hugh; O'Dwyer, Colm

    2017-02-10

    We present the formation of a carbon-coated honeycomb ternary Ni-Mn-Co-O inverse opal as a conversion mode anode material for Li-ion battery applications. In order to obtain high capacity via conversion mode reactions, a single phase crystalline honeycombed IO structure of Ni-Mn-Co-O material was first formed. This Ni-Mn-Co-O IO converts via reversible redox reactions and Li2O formation to a 3D structured matrix assembly of nanoparticles of three (MnO, CoO and NiO) oxides, that facilitates efficient reactions with Li. A carbon coating maintains the structure without clogging the open-worked IO pore morphology for electrolyte penetration and mass transport of products during cycling. The highly porous IO was compared in a Li-ion half-cell to nanoparticles of the same material and showed significant improvement in specific capacity and capacity retention. Further optimization of the system was investigated by incorporating a vinylene carbonate additive into the electrolyte solution which boosted performance, offering promising high-rate performance and good capacity retention over extended cycling. The analysis confirms the possibility of creating a ternary transition metal oxide material with binder free accessible open-worked structure to allow three conversion mode oxides to efficiently cycle as an anode material for Li-ion battery applications.

  1. A new approach for the preparation of anodes for Li-ion batteries based on activated hard carbon cloth with pore design

    NASA Astrophysics Data System (ADS)

    Isaev, I.; Salitra, G.; Soffer, A.; Cohen, Y. S.; Aurbach, D.; Fischer, J.

    We demonstrate herein the possibility to prepare carbon anodes for Li-ion batteries using simple carbonized polymeric precursors such as cotton and phenolic cloths. Activation by controlled oxidation forms highly porous carbons whose electrochemical activity in Li salt solutions is mostly an irreversible reduction of solution species and double layer charging. Treating these porous carbons by chemical vapor deposition (CVD) of carbon on their surfaces, closes the pores in a way that they can insert Li-ions, but not solution species. These general carbon engineering processes form new carbons with nanoscopic, selectively closed pores, which can serve as highly reversible anode materials for Li-ion batteries, with relatively low irreversible capacity. The capacity of these electrodes depends on the nature of the carbon CVD process. This paper describes the scheme for carbon engineering, gas adsorption measurements that demonstrate the impact of the carbon CVD process, and the relevant changes in the structure of the pores and some preliminary electrochemical measurements in non-aqueous Li salt solutions.

  2. Carbon-Coated Honeycomb Ni-Mn-Co-O Inverse Opal: A High Capacity Ternary Transition Metal Oxide Anode for Li-ion Batteries

    PubMed Central

    McNulty, David; Geaney, Hugh; O’Dwyer, Colm

    2017-01-01

    We present the formation of a carbon-coated honeycomb ternary Ni-Mn-Co-O inverse opal as a conversion mode anode material for Li-ion battery applications. In order to obtain high capacity via conversion mode reactions, a single phase crystalline honeycombed IO structure of Ni-Mn-Co-O material was first formed. This Ni-Mn-Co-O IO converts via reversible redox reactions and Li2O formation to a 3D structured matrix assembly of nanoparticles of three (MnO, CoO and NiO) oxides, that facilitates efficient reactions with Li. A carbon coating maintains the structure without clogging the open-worked IO pore morphology for electrolyte penetration and mass transport of products during cycling. The highly porous IO was compared in a Li-ion half-cell to nanoparticles of the same material and showed significant improvement in specific capacity and capacity retention. Further optimization of the system was investigated by incorporating a vinylene carbonate additive into the electrolyte solution which boosted performance, offering promising high-rate performance and good capacity retention over extended cycling. The analysis confirms the possibility of creating a ternary transition metal oxide material with binder free accessible open-worked structure to allow three conversion mode oxides to efficiently cycle as an anode material for Li-ion battery applications. PMID:28186183

  3. TiO2-reduced graphene oxide nanocomposites by microwave-assisted forced hydrolysis as excellent insertion anode for Li-ion battery and capacitor

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Kyung; Mhamane, Dattakumar; Kim, Myeong-Seong; Roh, Ha-Kyung; Aravindan, Vanchiappan; Madhavi, Srinivasan; Roh, Kwang Chul; Kim, Kwang-Bum

    2016-09-01

    TiO2-reduced graphene oxide (rGO) nanocomposite (TiO2-rGO) is fabricated by microwave-assisted forced hydrolysis and examined as prospective electrode for energy storage applications, especially in Li-ion battery (LIB) and Li-ion capacitor (LIC). First, the uniformly distributed nanoscopic TiO2 particulates (∼3 nm) over rGO nanosheets is evaluated as anode in half-cell assembly to ascertain the Li-insertion behavior and found that ∼0.68 mol Li (∼227 mAh g-1) is reversible. Then, "rocking-chair" type LIB is fabricated with spinel LiMn2O4 cathode, and the LiMn2O4/TiO2-rGO assembly exhibits high capacity (∼120 mAh g-1 at 0.1 C rate), good rate capability (∼53 mAh g-1 at 1 C rate), and excellent cycleability (∼90% initial reversible capacity after 1000 cycle) as well. Similarly, the LIC is also constructed with activated carbon cathode, and such configuration delivered a maximum energy density of ∼50 Wh kg-1 with ∼82% retention after 4000 cycles. The synergistic effect of both rGO and anatase nanoparticles provides excellent energy efficiency and battery performance in different kind of Li-ion based energy storage devices.

  4. Electrochemical modelling of Li-ion battery pack with constant voltage cycling

    NASA Astrophysics Data System (ADS)

    Ashwin, T. R.; McGordon, A.; Jennings, P. A.

    2017-02-01

    In a battery pack, cell-to-cell chemical variation, or the variation in operating conditions, can possibly lead to current imbalance which can accelerate pack ageing. In this paper, the Pseudo-Two-Dimensional(P2D) porous electrode model is extended to a battery pack layout, to predict the overall behaviour and the cell-to-cell variation under constant voltage charging and discharging. The algorithm used in this model offers the flexibility in extending the layout to any number of cells in a pack, which can be of different capacities, chemical characteristics and physical dimensions. The coupled electro-thermal effects such as differential cell ageing, temperature variation, porosity change and their effects on the performance of the pack, can be predicted using this modelling algorithm. The pack charging voltage is found to have an impact on the performance as well as the SEI layer growth. Numerical studies are conducted by keeping the cells at different thermal conditions and the results show the necessity to increase the heat transfer coefficient to cool the pack, compared to single cell. The results show that the thermal imbalance has more impact than the change in inter-connecting resistance on the split current distribution, which accelerates the irreversible porous filling and ageing.

  5. Novel Organic-Inorganic Hybrid Electrolyte to Enable LiFePO4 Quasi-Solid-State Li-Ion Batteries Performed Highly around Room Temperature.

    PubMed

    Tan, Rui; Gao, Rongtan; Zhao, Yan; Zhang, Mingjian; Xu, Junyi; Yang, Jinlong; Pan, Feng

    2016-11-16

    A novel type of organic-inorganic hybrid polymer electrolytes with high electrochemical performances around room temperature is formed by hybrid of nanofillers, Y-type oligomer, polyoxyethylene and Li-salt (PBA-Li), of which the Tg and Tm are significantly lowered by blended heterogeneous polyethers and embedded nanofillers with benefit of the dipole modification to achieve the high Li-ion migration due to more free-volume space. The quasi-solid-state Li-ion batteries based on the LiFePO4/15PBA-Li/Li-metal cells present remarkable reversible capacities (133 and 165 mAh g(-1) @0.2 C at 30 and 45 °C, respectively), good rate ability and stable cycle performance (141.9 mAh g(-1) @0.2 C at 30 °C after 150 cycles).

  6. Nanoparticle iron-phosphate anode material for Li-ion battery

    NASA Astrophysics Data System (ADS)

    Son, Dongyeon; Kim, Eunjin; Kim, Tae-Gon; Kim, Min Gyu; Cho, Jaephil; Park, Byungwoo

    2004-12-01

    Nanoparticle crystalline iron phosphates (FePO4•2H2O and FePO4) were synthesized using a (CTAB) surfactant as an anode material for Li rechargeable batteries. The electrochemical properties of the nanoparticle iron phosphates were characterized with a voltage window of 2.4-0 V. A variscite orthorhombic FePO4•2H2O showed a large initial charge capacity of 609mAh/g. On the other hand, a tridymite triclinic FePO4 exhibited excellent cyclability: the capacity retention up to 30 cycles was ˜80%, from 485 to 375mAh/g. The iron phosphate anodes exhibited the highest reported capacity, while the cathode LiFePO4 has an ideal capacity of 170mAh/g.

  7. Development and characterization of composite YSZ-PEI electrophoretically deposited membrane for Li-ion battery.

    PubMed

    Hadar, R; Golodnitsky, D; Mazor, H; Ripenbein, T; Ardel, G; Barkay, Z; Gladkich, A; Peled, E

    2013-02-14

    In this work, the electrophoretic-deposition (EPD) method was used to fabricate pristine and composite ceramic-polymer membranes for application in planar and 3D microbattery configurations. The major focus was on the effect of polyethyleneimine additive on the morphology, composition, and electrochemical properties of the membrane. The ionic conductivity, cycleability, and charge/discharge behavior of planar LiFePO(4)/Li cells comprising composite porous YSZ-based membrane with impregnated LiPF(6) EC:DEC electrolyte were found to be similar to the cells with commercial Celgard membrane. Conformal EPD coating of the electrode materials by a thin-film ceramic separator is advantageous for high-power operation and safety of batteries.

  8. Enabling High Energy Density Li-Ion Batteries through Li{sub 2}O Activation.

    SciTech Connect

    Abouimrane, Ali; Cui, Yanjie; Chen, Zonghai; Belharouak, Ilias; Yahia, Hamdi B.; Wu, Huiming; Assary, Rajeev; Curtiss, Larry A.; Amine, Khalil

    2016-09-01

    Lithium oxide (Li2O) is activated in the presence of a layered composite cathode material (HEM) significantly increasing the energy density of lithium-ion batteries. The degree of activation depends on the current rate, electrolyte salt, and anode type. In full-cell tests, the Li2O was used as a lithium source to counter the first-cycle irreversibility of high-capacity composite alloy anodes. When Li2O is mixed with HEM to serve as a cathode, the electrochemical performance was improved in a full cell having an SiO-SnCoC composite as an anode. The mechanism behind the Li2O activation could also explain the first charge plateau and the abnormal high capacity associated with these high energy cathode materials.

  9. Layer cathode methods of manufacturing and materials for Li-ion rechargeable batteries

    DOEpatents

    Kang, Sun-Ho; Amine, Khalil

    2008-01-01

    A positive electrode active material for lithium-ion rechargeable batteries of general formula Li.sub.1+xNi.sub..alpha.Mn.sub..beta.A.sub..gamma.O.sub.2 and further wherein A is Mg, Zn, Al, Co, Ga, B, Zr, or Ti and 0

  10. Electrochemical Windows of Sulfone-Based Electrolytes for High-Voltage Li-Ion Batteries

    SciTech Connect

    Shao, Nan; Sun, Xiao-Guang; Dai, Sheng; Jiang, Deen

    2011-01-01

    Further development of high-voltage lithium-ion batteries requires electrolytes with electrochemical windows greater than 5 V. Sulfone-based electrolytes are promising for such a purpose. Here we compute the electrochemical windows for experimentally tested sulfone electrolytes by different levels of theory in combination with various solvation models. The MP2 method combined with the polarizable continuum model is shown to be the most accurate method to predict oxidation potentials of sulfone-based electrolytes with mean deviation less than 0.29 V. Mulliken charge analysis shows that the oxidation happens on the sulfone group for ethylmethyl sulfone and tetramethylene sulfone, and on the ether group for ether functionalized sulfones. Large electrochemical windows of sulfone-based electrolytes are mainly contributed by the sulfone group in the molecules which helps lower the HOMO level. This study can help understand the voltage limits imposed by the sulfone-based electrolytes and aid in designing new electrolytes with greater electrochemical windows.

  11. Electrochemical windows of sulfone-based electrolytes for high-voltage Li-ion batteries.

    PubMed

    Shao, Nan; Sun, Xiao-Guang; Dai, Sheng; Jiang, De-en

    2011-10-27

    Further development of high-voltage lithium-ion batteries requires electrolytes with electrochemical windows greater than 5 V. Sulfone-based electrolytes are promising for such a purpose. Here we compute the electrochemical windows for experimentally tested sulfone electrolytes by different levels of theory in combination with various solvation models. The MP2 method combined with the polarizable continuum model is shown to be the most accurate method to predict oxidation potentials of sulfone-based electrolytes with mean deviation less than 0.29 V. Mulliken charge analysis shows that the oxidation happens on the sulfone group for ethylmethyl sulfone and tetramethylene sulfone, and on the ether group for ether functionalized sulfones. Large electrochemical windows of sulfone-based electrolytes are mainly contributed by the sulfone group in the molecules which helps lower the HOMO level. This study can help understand the voltage limits imposed by the sulfone-based electrolytes and aid in designing new electrolytes with greater electrochemical windows.

  12. Current limit diagrams for dendrite formation in solid-state electrolytes for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Raj, R.; Wolfenstine, J.

    2017-03-01

    We build upon the concept that nucleation of lithium dendrites at the lithium anode-solid state electrolyte interface is instigated by the higher resistance of grain boundaries that raises the local electro-chemical potential of lithium, near the lithium-electrode. This excess electro-chemo-mechanical potential, however, is reduced by the mechanical back stress generated when the dendrite is formed within the electrolyte. These parameters are coalesced into an analytical model that prescribes a specific criterion for dendrite formation. The results are presented in the form of current limit diagrams that show the "safe" and "fail" regimes for battery function. A higher conductivity of the electrolyte can reduce dendrite formation.

  13. Nano-composite Si particle formation by plasma spraying for negative electrode of Li ion batteries

    NASA Astrophysics Data System (ADS)

    Kambara, M.; Kitayama, A.; Homma, K.; Hideshima, T.; Kaga, M.; Sheem, K.-Y.; Ishida, S.; Yoshida, T.

    2014-04-01

    Nano-composite silicon powders have been produced at a maximum process throughput of 6 g/min by plasma spraying with metallurgical grade silicon powder as raw material. The obtained powders are found to be fundamentally composed of crystalline silicon particles of 20-40 nm in diameter, and are coated with an ˜5-nm-thick amorphous carbonous layer when methane gas is additionally introduced during plasma spraying. The performance of half-cell batteries containing the powders as negative electrodes has shown that the capacity decay observed for the raw Si coarse particles is significantly improved by plasma treatment. The carbonous coating potentially contributes to an improvement in capacity retention, although coexisting SiC particles that inevitably form during high-temperature processing reduce the overall capacity.

  14. Spinel materials for Li-ion batteries: new insights obtained by operando neutron and synchrotron X-ray diffraction.

    PubMed

    Bianchini, Matteo; Fauth, François; Suard, Emmanuelle; Leriche, Jean Bernard; Masquelier, Christian; Croguennec, Laurence

    2015-12-01

    In the last few decades Li-ion batteries changed the way we store energy, becoming a key element of our everyday life. Their continuous improvement is tightly bound to the understanding of lithium (de)intercalation phenomena in electrode materials. Here we address the use of operando diffraction techniques to understand these mechanisms. We focus on powerful probes such as neutrons and synchrotron X-ray radiation, which have become increasingly familiar to the electrochemical community. After discussing the general benefits (and drawbacks) of these characterization techniques and the work of customization required to adapt standard electrochemical cells to an operando diffraction experiment, we highlight several very recent results. We concentrate on important electrode materials such as the spinels Li1 + xMn2 - xO4 (0 ≤ x ≤ 0.10) and LiNi0.4Mn1.6O4. Thorough investigations led by operando neutron powder diffraction demonstrated that neutrons are highly sensitive to structural parameters that cannot be captured by other means (for example, atomic Debye-Waller factors and lithium site occupancy). Synchrotron radiation X-ray powder diffraction reveals how LiMn2O4 is subject to irreversibility upon the first electrochemical cycle, resulting in severe Bragg peak broadening. Even more interestingly, we show for the first time an ordering scheme of the elusive composition Li0.5Mn2O4, through the coexistence of Mn(3+):Mn(4+) 1:3 cation ordering and lithium/vacancy ordering. More accurately written as Li0.5Mn(3+)0.5Mn(4+)1.5O4, this intermediate phase loses the Fd\\overline 3m symmetry, to be correctly described in the P213 space group.

  15. Electron/Ion Transport Enhancer in High Capacity Li-Ion Battery Anodes

    DOE PAGES

    Kwon, Yo Han; Minnici, Krysten; Huie, Matthew M.; ...

    2016-08-30

    In this paper, magnetite (Fe3O4) was used as a model high capacity metal oxide active material to demonstrate advantages derived from consideration of both electron and ion transport in the design of composite battery electrodes. The conjugated polymer, poly[3-(potassium-4-butanoate) thiophene] (PPBT), was introduced as a binder component, while polyethylene glycol (PEG) was coated onto the surface of Fe3O4 nanoparticles. The introduction of PEG reduced aggregate size, enabled effective dispersion of the active materials and facilitated ionic conduction. As a binder for the composite electrode, PPBT underwent electrochemical doping which enabled the formation of effective electrical bridges between the carbon andmore » Fe3O4 components, allowing for more efficient electron transport. Additionally, the PPBT carboxylic moieties effect a porous structure, and stable electrode performance. Finally, the methodical consideration of both enhanced electron and ion transport by introducing a carboxylated PPBT binder and PEG surface treatment leads to effectively reduced electrode resistance, which improved cycle life performance and rate capabilities.« less

  16. ZnO decorated germanium nanoparticles as anode materials in Li-ion batteries.

    PubMed

    Kim, Tae-Hee; Park, Song Yi; Lee, Tack Ho; Jeong, Jaeki; Kim, Dong Suk; Swihart, Mark T; Song, Hyun-Kon; Kim, Jin Young; Kim, Seongbeom

    2017-03-03

    Germanium exhibits high charge capacity and high lithium diffusivity, both are the key requirements for electrode materials in high performance lithium ion batteries (LIBs). However, high volume expansion and segregation from the electrode during charge-discharge cycling have limited use of germanium in LIBs. Here, we demonstrate that ZnO decorated Ge nanoparticles (Ge@ZnO NPs) can overcome these limitations of Ge as an LIB anode material. We produced Ge NPs at high rates by laser pyrolysis of GeH4, then coated them with solution phase synthesized ZnO NPs. Half-cell tests revealed dramatically enhanced cycling stability and higher rate capability of Ge@ZnO NPs compared to Ge NPs. Enhancements arise from the core-shell structure of Ge@ZnO NPs as well as production of metallic Zn from the ZnO layer. These findings not only demonstrate a new surface treatment for Ge NPs, but also provide a new opportunity for development of high-rate LIBs.

  17. Effect of Temperature on the Aging rate of Li Ion Battery Operating above Room Temperature

    PubMed Central

    Leng, Feng; Tan, Cher Ming; Pecht, Michael

    2015-01-01

    Temperature is known to have a significant impact on the performance, safety, and cycle lifetime of lithium-ion batteries (LiB). However, the comprehensive effects of temperature on the cyclic aging rate of LiB have yet to be found. We use an electrochemistry-based model (ECBE) here to measure the effects on the aging behavior of cycled LiB operating within the temperature range of 25 °C to 55 °C. The increasing degradation rate of the maximum charge storage of LiB during cycling at elevated temperature is found to relate mainly to the degradations at the electrodes, and that the degradation of LCO cathode is larger than graphite anode at elevated temperature. In particular, the formation and modification of the surface films on the electrodes as well as structural/phase changes of the LCO electrode, as reported in the literatures, are found to be the main contributors to the increasing degradation rate of the maximum charge storage of LiB with temperature for the specific operating temperature range. Larger increases in the Warburg elements and cell impedance are also found with cycling at higher temperature, but they do not seriously affect the state of health (SoH) of LiB as shown in this work. PMID:26245922

  18. Influence of constraints on axial growth reduction of cylindrical Li-ion battery electrode particles

    NASA Astrophysics Data System (ADS)

    Chakraborty, Jeevanjyoti; Please, Colin P.; Goriely, Alain; Chapman, S. Jonathan

    2015-04-01

    Volumetric expansion of silicon anode particles in a lithium-ion battery during charging may lead to the generation of undesirable internal stresses. For a cylindrical particle such growth may also lead to failure by buckling if the expansion is constrained in the axial direction due to other particles or supporting structures. To mitigate this problem, the possibility of reducing axial growth is investigated theoretically by studying simple modifications of the solid cylinder geometry. First, an annular cylinder is considered with lithiation either from the inside or from the outside. In both cases, the reduction of axial growth is not found to be significant. Next, explicit physical constraints are studied by addition of a non-growing elasto-plastic material: first, an outer annular constraint on a solid silicon cylinder, and second a rod-like inner constraint for an annular silicon cylinder. In both cases, it is found that axial growth can be reduced if the yield stress of the constraining material is significantly higher than that of silicon and/or the thickness of the constraint is relatively high. Phase diagrams are presented for both the outer and the inner constraint cases to identify desirable operating zones. Finally, to interpret the phase diagrams and isolate the key physical principles two different simplified models are presented and are shown to recover important qualitative trends of the numerical simulation results.

  19. Electrochemical properties of cobalt hydroxychloride microspheres as a new anode material for Li-ion batteries

    PubMed Central

    Park, Gi Dae; Ko, You Na; Kang, Yun Chan

    2014-01-01

    The use of cobalt hydroxychloride [Co2(OH)3Cl] as an anode material for lithium ion batteries (LIBs) is investigated using spherical shape and ultrafine nanocrystals directly formed by spray pyrolysis from spray solution of cobalt chloride salt. Dot-mapping images of the resulting powders reveal a uniform distribution of Co, O, and Cl throughout the powder. The Co2(OH)3Cl powder prepared directly by spray pyrolysis exhibits a high thermal stability at temperatures below 220°C, as well as having superior electrochemical properties compared with those of the CoCl2(H2O)2 and CoO powders prepared by the same process. The initial discharge capacities of the Co2(OH)3Cl and CoO powders at a constant current density of 1000 mA g−1 are found to be 1570 and 1142 mA h g−1, respectively, and their initial Coulombic efficiencies are 72 and 70%. The discharge capacities of the Co2(OH)3Cl and CoO powders after 100 cycles are 955 and 632 mA h g−1, respectively. The Co2(OH)3Cl powders have a high discharge capacity of 609 mA h g−1 even after 1000 cycles at a high current density of 5000 mA g−1. PMID:25167884

  20. Electron/Ion Transport Enhancer in High Capacity Li-Ion Battery Anodes

    SciTech Connect

    Kwon, Yo Han; Minnici, Krysten; Huie, Matthew M.; Takeuchi, Kenneth J.; Takeuchi, Esther S.; Marschilok, Amy C.; Reichmanis, Elsa

    2016-08-30

    In this paper, magnetite (Fe3O4) was used as a model high capacity metal oxide active material to demonstrate advantages derived from consideration of both electron and ion transport in the design of composite battery electrodes. The conjugated polymer, poly[3-(potassium-4-butanoate) thiophene] (PPBT), was introduced as a binder component, while polyethylene glycol (PEG) was coated onto the surface of Fe3O4 nanoparticles. The introduction of PEG reduced aggregate size, enabled effective dispersion of the active materials and facilitated ionic conduction. As a binder for the composite electrode, PPBT underwent electrochemical doping which enabled the formation of effective electrical bridges between the carbon and Fe3O4 components, allowing for more efficient electron transport. Additionally, the PPBT carboxylic moieties effect a porous structure, and stable electrode performance. Finally, the methodical consideration of both enhanced electron and ion transport by introducing a carboxylated PPBT binder and PEG surface treatment leads to effectively reduced electrode resistance, which improved cycle life performance and rate capabilities.

  1. Multi-Scale Correlative Tomography of a Li-Ion Battery Composite Cathode

    NASA Astrophysics Data System (ADS)

    Moroni, Riko; Börner, Markus; Zielke, Lukas; Schroeder, Melanie; Nowak, Sascha; Winter, Martin; Manke, Ingo; Zengerle, Roland; Thiele, Simon

    2016-07-01

    Focused ion beam/scanning electron microscopy tomography (FIB/SEMt) and synchrotron X-ray tomography (Xt) are used to investigate the same lithium manganese oxide composite cathode at the same specific spot. This correlative approach allows the investigation of three central issues in the tomographic analysis of composite battery electrodes: (i) Validation of state-of-the-art binary active material (AM) segmentation: Although threshold segmentation by standard algorithms leads to very good segmentation results, limited Xt resolution results in an AM underestimation of 6 vol% and severe overestimation of AM connectivity. (ii) Carbon binder domain (CBD) segmentation in Xt data: While threshold segmentation cannot be applied for this purpose, a suitable classification method is introduced. Based on correlative tomography, it allows for reliable ternary segmentation of Xt data into the pore space, CBD, and AM. (iii) Pore space analysis in the micrometer regime: This segmentation technique is applied to an Xt reconstruction with several hundred microns edge length, thus validating the segmentation of pores within the micrometer regime for the first time. The analyzed cathode volume exhibits a bimodal pore size distribution in the ranges between 0–1 μm and 1–12 μm. These ranges can be attributed to different pore formation mechanisms.

  2. Regulated Breathing Effect of Silicon Negative Electrode for Dramatically Enhanced Performance of Li-Ion Battery

    SciTech Connect

    Xiao, Xingcheng; Zhou, Weidong; Kim, Youngnam; Ryu, Ill; Gu, Meng; Wang, Chong M.; Liu, Gao; Liu, Zhongyi; Gao, Huajian

    2015-03-01

    Si is an attractive negative electrode material for lithium ion batteries due to its high specifi c capacity (≈3600 mAh g –1 ). However, the huge volume swelling and shrinking during cycling, which mimics a breathing effect at the material/electrode/cell level, leads to several coupled issues including fracture of Si particles, unstable solid electrolyte interphase, and low Coulombic effi ciency. In this work, the regulation of the breathing effect is reported by using Si–C yolk–shell nanocomposite which has been well-developed by other researchers. The focus is on understanding how the nanoscaled materials design impacts the mechanical and electrochemical response at electrode level. For the fi rst time, it is possible to observe one order of magnitude of reduction on breathing effect at the electrode level during cycling: the electrode thickness variation reduced down to 10%, comparing with 100% in the electrode with Si nanoparticles as active materials. The Si–C yolk–shell nanocomposite electrode exhibits excellent capacity retention and high cycle effi ciency. In situ transmission electron microscopy and fi nite element simulations consistently reveals that the dramatically enhanced performance is associated with the regulated breathing of the Si in the new composite, therefore the suppression of the overall electrode expansion.

  3. ZnO decorated germanium nanoparticles as anode materials in Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Kim, Tae-Hee; Park, Song Yi; Lee, Tack Ho; Jeong, Jaeki; Kim, Dong Suk; Swihart, Mark T.; Song, Hyun-Kon; Kim, Jin Young; Kim, Seongbeom

    2017-03-01

    Germanium exhibits high charge capacity and high lithium diffusivity, both are the key requirements for electrode materials in high performance lithium ion batteries (LIBs). However, high volume expansion and segregation from the electrode during charge–discharge cycling have limited use of germanium in LIBs. Here, we demonstrate that ZnO decorated Ge nanoparticles (Ge@ZnO NPs) can overcome these limitations of Ge as an LIB anode material. We produced Ge NPs at high rates by laser pyrolysis of GeH4, then coated them with solution phase synthesized ZnO NPs. Half-cell tests revealed dramatically enhanced cycling stability and higher rate capability of Ge@ZnO NPs compared to Ge NPs. Enhancements arise from the core–shell structure of Ge@ZnO NPs as well as production of metallic Zn from the ZnO layer. These findings not only demonstrate a new surface treatment for Ge NPs, but also provide a new opportunity for development of high-rate LIBs.

  4. Thermal conductivity and interface thermal conductance of thin films in Li ion batteries

    NASA Astrophysics Data System (ADS)

    Jagannadham, K.

    2016-09-01

    Laser physical vapor deposition is used to deposit thin films of lithium phosphorous oxynitride in nitrogen and lithium nickel manganese oxide in oxygen ambient on Si substrate. LIPON film is also deposited on LiNiMnO film that is deposited on Si. Graphene films consisting of graphene platelets are deposited on Si substrate from a suspension in isopropyl alcohol. Li-graphene films are obtained after Li adsorption by immersion in LiCl solution and further drying. Transient thermo reflectance signal is used to determine the cross-plane thermal conductivity of different layers and interface thermal conductance of the interfaces. The results show that LIPON film with lower thermal conductivity is a thermal barrier. The interface thermal conductance between LIPON and Au or Si is found to be very low. Thermal conductivity of LiNiMnO is found to be reasonably high so that it is not a barrier to thermal transport. Film with graphene platelets shows a higher value and Li adsorbed graphene film shows a much higher value of cross-plane thermal conductivity. The value of interface thermal conductance between graphene and Au or Si (100) substrate is also much lower. The implications of the results for the thermal transport in thin film Li batteries are discussed.

  5. Multi-Scale Correlative Tomography of a Li-Ion Battery Composite Cathode.

    PubMed

    Moroni, Riko; Börner, Markus; Zielke, Lukas; Schroeder, Melanie; Nowak, Sascha; Winter, Martin; Manke, Ingo; Zengerle, Roland; Thiele, Simon

    2016-07-26

    Focused ion beam/scanning electron microscopy tomography (FIB/SEMt) and synchrotron X-ray tomography (Xt) are used to investigate the same lithium manganese oxide composite cathode at the same specific spot. This correlative approach allows the investigation of three central issues in the tomographic analysis of composite battery electrodes: (i) Validation of state-of-the-art binary active material (AM) segmentation: Although threshold segmentation by standard algorithms leads to very good segmentation results, limited Xt resolution results in an AM underestimation of 6 vol% and severe overestimation of AM connectivity. (ii) Carbon binder domain (CBD) segmentation in Xt data: While threshold segmentation cannot be applied for this purpose, a suitable classification method is introduced. Based on correlative tomography, it allows for reliable ternary segmentation of Xt data into the pore space, CBD, and AM. (iii) Pore space analysis in the micrometer regime: This segmentation technique is applied to an Xt reconstruction with several hundred microns edge length, thus validating the segmentation of pores within the micrometer regime for the first time. The analyzed cathode volume exhibits a bimodal pore size distribution in the ranges between 0-1 μm and 1-12 μm. These ranges can be attributed to different pore formation mechanisms.

  6. A yolk-shell design for stabilized and scalable li-ion battery alloy anodes.

    PubMed

    Liu, Nian; Wu, Hui; McDowell, Matthew T; Yao, Yan; Wang, Chongmin; Cui, Yi

    2012-06-13

    Silicon is regarded as one of the most promising anode materials for next generation lithium-ion batteries. For use in practical applications, a Si electrode must have high capacity, long cycle life, high efficiency, and the fabrication must be industrially scalable. Here, we design and fabricate a yolk-shell structure to meet all these needs. The fabrication is carried out without special equipment and mostly at room temperature. Commercially available Si nanoparticles are completely sealed inside conformal, thin, self-supporting carbon shells, with rationally designed void space in between the particles and the shell. The well-defined void space allows the Si particles to expand freely without breaking the outer carbon shell, therefore stabilizing the solid-electrolyte interphase on the shell surface. High capacity (∼2800 mAh/g at C/10), long cycle life (1000 cycles with 74% capacity retention), and high Coulombic efficiency (99.84%) have been realized in this yolk-shell structured Si electrode.

  7. NMR relaxometry as a versatile tool to study Li ion dynamics in potential battery materials.

    PubMed

    Kuhn, A; Kunze, M; Sreeraj, P; Wiemhöfer, H D; Thangadurai, V; Wilkening, M; Heitjans, P

    2012-04-01

    NMR spin relaxometry is known to be a powerful tool for the investigation of Li(+) dynamics in (non-paramagnetic) crystalline and amorphous solids. As long as significant structural changes are absent in a relatively wide temperature range, with NMR spin-lattice (as well as spin-spin) relaxation measurements information on Li self-diffusion parameters such as jump rates and activation energies are accessible. Diffusion-induced NMR relaxation rates are governed by a motional correlation function describing the ion dynamics present. Besides the mean correlation rate of the dynamic process, the motional correlation function (i) reflects deviations from random motion (so-called correlation effects) and (ii) gives insights into the dimensionality of the hopping process. In favorable cases, i.e., when temperature- and frequency-dependent NMR relaxation rates are available over a large dynamic range, NMR spin relaxometry is able to provide a comprehensive picture of the relevant Li dynamic processes. In the present contribution, we exemplarily present two recent variable-temperature (7)Li NMR spin-lattice relaxation studies focussing on Li(+) dynamics in crystalline ion conductors which are of relevance for battery applications, viz. Li(7) La(3)Zr(2)O(12) and Li(12)Si(7).

  8. Investigation of film solidification and binder migration during drying of Li-Ion battery anodes

    NASA Astrophysics Data System (ADS)

    Jaiser, Stefan; Müller, Marcus; Baunach, Michael; Bauer, Werner; Scharfer, Philip; Schabel, Wilhelm

    2016-06-01

    The property determining micro-structure of battery electrodes essentially evolves during drying, appointing it a paramount, yet insufficiently understood processing step in cell manufacturing. The distribution of functional additives such as binder or carbon black throughout the film strongly depends on the drying process. A representative state-of-the-art model system comprising graphite, polymeric binder, carbon black and solvent is investigated to gain an insight into the underlying processes. A new experimental approach is introduced that allows for revelation of the evolution of binder concentration gradients throughout the film during drying. Binder is detected by means of energy-dispersive x-ray spectroscopy (EDS) at the top and bottom surface. Drying kinetics is investigated and the impact of the drying process on electrochemical performance is disclosed. The enrichment of binder at the surface, which is observed while applying high drying rates, is shown to depend on two fundamental processes, namely capillary action and diffusion. The findings reveal characteristic drying stages that provide fundamental insights into film solidification. Based on that, a top-down consolidation mechanism capable of explaining the experimental findings is disclosed. Adhesion of the active layer to the substrate is shown to strongly depend on the local binder concentration in the vicinity of the substrate.

  9. Nitrogen-Doped Hollow Carbon Nanospheres for High-Performance Li-Ion Batteries.

    PubMed

    Yang, Yufen; Jin, Song; Zhang, Zhen; Du, Zhenzhen; Liu, Huarong; Yang, Jia; Xu, Hangxun; Ji, Hengxing

    2017-04-13

    N-doped carbon materials is of particular attraction for anodes of lithium-ion batteries (LIBs) because of their high surface areas, superior electrical conductivity, and excellent mechanical strength, which can store energy by adsorption/desorption of Li(+) at the interfaces between the electrolyte and electrode. By directly carbonization of zeolitic imidazolate framework-8 nanospheres synthesized by an emulsion-based interfacial reaction, we obtained N-doped hollow carbon nanospheres with tunable shell thickness (20 nm to solid sphere) and different N dopant concentrations (3.9 to 21.7 at %). The optimized anode material possessed a shell thickness of 20 nm and contained 16.6 at % N dopants that were predominately pyridinic and pyrrolic. The anode delivered a specific capacity of 2053 mA h g(-1) at 100 mA g(-1) and 879 mA h g(-1) at 5 A g(-1) for 1000 cycles, implying a superior cycling stability. The improved electrochemical performance can be ascribed to (1) the Li(+) adsorption dominated energy storage mechanism prevents the volume change of the electrode materials, (2) the hollow nanostructure assembled by the nanometer-sized primary particles prevents the agglomeration of the nanoparticles and favors for Li(+) diffusion, (3) the optimized N dopant concentration and configuration facilitate the adsorption of Li(+); and (4) the graphitic carbon nanostructure ensures a good electrical conductivity.

  10. Capillary suspensions as beneficial formulation concept for high energy density Li-ion battery electrodes

    NASA Astrophysics Data System (ADS)

    Bitsch, Boris; Gallasch, Tobias; Schroeder, Melanie; Börner, Markus; Winter, Martin; Willenbacher, Norbert

    2016-10-01

    We introduce a novel formulation concept to prepare high capacity graphite electrodes for lithium ion batteries. The concept is based on the capillary suspension phenomenon: graphite and conductive agent are dispersed in an aqueous binder solution and the organic solvent octanol is added as immiscible, secondary fluid providing the formation of a sample-spanning network resulting in unique stability and coating properties. No additional processing steps compared to conventional slurry preparation are required. The resulting ultra-thick electrodes comprise mass loadings of about 16.5 mg cm-2, uniform layer thickness, and superior edge contours. The adjustment of mechanical energy input ensures uniform distribution of the conductive agent and sufficient electronic conductivity of the final dry composite electrode. The resulting pore structure is due to the stable network provided by the secondary fluid which evaporates residue-free during drying. Constant current-constant potential (CC-CP) cycling clearly indicates that the corresponding microstructure significantly improves the kinetics of reversible Li+ (de-) intercalation. A double layer electrode combining a conventionally prepared layer coated directly onto the Cu current collector with an upper layer stabilized with octanol was prepared applying wet-on-wet coating. CC-CP cycling data confirms that staged porosity within the electrode cross section results in superior electrochemical performance.

  11. Multi-Scale Correlative Tomography of a Li-Ion Battery Composite Cathode

    PubMed Central

    Moroni, Riko; Börner, Markus; Zielke, Lukas; Schroeder, Melanie; Nowak, Sascha; Winter, Martin; Manke, Ingo; Zengerle, Roland; Thiele, Simon

    2016-01-01

    Focused ion beam/scanning electron microscopy tomography (FIB/SEMt) and synchrotron X-ray tomography (Xt) are used to investigate the same lithium manganese oxide composite cathode at the same specific spot. This correlative approach allows the investigation of three central issues in the tomographic analysis of composite battery electrodes: (i) Validation of state-of-the-art binary active material (AM) segmentation: Although threshold segmentation by standard algorithms leads to very good segmentation results, limited Xt resolution results in an AM underestimation of 6 vol% and severe overestimation of AM connectivity. (ii) Carbon binder domain (CBD) segmentation in Xt data: While threshold segmentation cannot be applied for this purpose, a suitable classification method is introduced. Based on correlative tomography, it allows for reliable ternary segmentation of Xt data into the pore space, CBD, and AM. (iii) Pore space analysis in the micrometer regime: This segmentation technique is applied to an Xt reconstruction with several hundred microns edge length, thus validating the segmentation of pores within the micrometer regime for the first time. The analyzed cathode volume exhibits a bimodal pore size distribution in the ranges between 0–1 μm and 1–12 μm. These ranges can be attributed to different pore formation mechanisms. PMID:27456201

  12. Electrochemical properties of cobalt hydroxychloride microspheres as a new anode material for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Park, Gi Dae; Ko, You Na; Kang, Yun Chan

    2014-08-01

    The use of cobalt hydroxychloride [Co2(OH)3Cl] as an anode material for lithium ion batteries (LIBs) is investigated using spherical shape and ultrafine nanocrystals directly formed by spray pyrolysis from spray solution of cobalt chloride salt. Dot-mapping images of the resulting powders reveal a uniform distribution of Co, O, and Cl throughout the powder. The Co2(OH)3Cl powder prepared directly by spray pyrolysis exhibits a high thermal stability at temperatures below 220°C, as well as having superior electrochemical properties compared with those of the CoCl2(H2O)2 and CoO powders prepared by the same process. The initial discharge capacities of the Co2(OH)3Cl and CoO powders at a constant current density of 1000 mA g-1 are found to be 1570 and 1142 mA h g-1, respectively, and their initial Coulombic efficiencies are 72 and 70%. The discharge capacities of the Co2(OH)3Cl and CoO powders after 100 cycles are 955 and 632 mA h g-1, respectively. The Co2(OH)3Cl powders have a high discharge capacity of 609 mA h g-1 even after 1000 cycles at a high current density of 5000 mA g-1.

  13. Effect of Temperature on the Aging rate of Li Ion Battery Operating above Room Temperature.

    PubMed

    Leng, Feng; Tan, Cher Ming; Pecht, Michael

    2015-08-06

    Temperature is known to have a significant impact on the performance, safety, and cycle lifetime of lithium-ion batteries (LiB). However, the comprehensive effects of temperature on the cyclic aging rate of LiB have yet to be found. We use an electrochemistry-based model (ECBE) here to measure the effects on the aging behavior of cycled LiB operating within the temperature range of 25 °C to 55 °C. The increasing degradation rate of the maximum charge storage of LiB during cycling at elevated temperature is found to relate mainly to the degradations at the electrodes, and that the degradation of LCO cathode is larger than graphite anode at elevated temperature. In particular, the formation and modification of the surface films on the electrodes as well as structural/phase changes of the LCO electrode, as reported in the literatures, are found to be the main contributors to the increasing degradation rate of the maximum charge storage of LiB with temperature for the specific operating temperature range. Larger increases in the Warburg elements and cell impedance are also found with cycling at higher temperature, but they do not seriously affect the state of health (SoH) of LiB as shown in this work.

  14. Grid indentation analysis of mechanical properties of composite electrodes in Li-ion batteries

    SciTech Connect

    Vasconcelos, Luize Scalco de; Xu, Rong; Li, Jianlin; Zhao, Kejie

    2016-03-09

    We report that electrodes in commercial rechargeable batteries are microscopically heterogeneous materials. The constituent components, including active materials, polymeric binders, and porous conductive matrix, often have large variation in their mechanical properties, making the mechanical characterization of composite electrodes a challenging task. In a model system of LiNi0.5Mn0.3Co0.2O2 cathode, we employ the instrumented grid indentation to determine the elastic modulus and hardness of the constituent phases. The approach relies on a large array of nanoindentation experiments and statistical analysis of the resulting data provided that the maximum indentation depth is carefully chosen. The statistically extracted properties of the active particles and the surrounding medium are in good agreement with the tests of targeted indentation at selected sites. Lastly, the combinatory technique of grid indentation and statistical deconvolution represents a fast and reliable route to quantify the mechanical properties of composite electrodes that feed the parametric input for the mechanics models.

  15. Grid indentation analysis of mechanical properties of composite electrodes in Li-ion batteries

    DOE PAGES

    Vasconcelos, Luize Scalco de; Xu, Rong; Li, Jianlin; ...

    2016-03-09

    We report that electrodes in commercial rechargeable batteries are microscopically heterogeneous materials. The constituent components, including active materials, polymeric binders, and porous conductive matrix, often have large variation in their mechanical properties, making the mechanical characterization of composite electrodes a challenging task. In a model system of LiNi0.5Mn0.3Co0.2O2 cathode, we employ the instrumented grid indentation to determine the elastic modulus and hardness of the constituent phases. The approach relies on a large array of nanoindentation experiments and statistical analysis of the resulting data provided that the maximum indentation depth is carefully chosen. The statistically extracted properties of the active particlesmore » and the surrounding medium are in good agreement with the tests of targeted indentation at selected sites. Lastly, the combinatory technique of grid indentation and statistical deconvolution represents a fast and reliable route to quantify the mechanical properties of composite electrodes that feed the parametric input for the mechanics models.« less

  16. Computational characterization of lightweight multilayer MXene Li-ion battery anodes

    NASA Astrophysics Data System (ADS)

    Ashton, Michael; Hennig, Richard G.; Sinnott, Susan B.

    2016-01-01

    MXenes, a class of two-dimensional transition metal carbides and nitrides, have shown promise experimentally and computationally for use in energy storage applications. In particular, the most lightweight members of the monolayer MXene family (M = Sc, Ti, V, or Cr) are predicted to have gravimetric capacities above 400 mAh/g, higher than graphite. Additionally, intercalation of ions into multilayer MXenes can be accomplished at low voltages, and low diffusion barriers exist for Li diffusing across monolayer MXenes. However, large discrepancies have been observed between the calculated and experimental reversible capacities of MXenes. Here, dispersion-corrected density functional theory calculations are employed to predict reversible capacities and other battery-related properties for six of the most promising members of the MXene family (O-functionalized Ti- and V-based carbide MXenes) as bilayer structures. The calculated reversible capacities of the V2CO2 and Ti2CO2 bilayers agree more closely with experiment than do previous calculations for monolayers. Additionally, the minimum energy paths and corresponding energy barriers along the in-plane [1000] and [0100] directions for Li travelling between neighboring MXene layers are determined. V4C3O2 exhibits the lowest diffusion barrier of the compositions considered, at 0.42 eV, but its reversible capacity (148 mAh/g) is dragged down by its heavy formula unit. Conversely, the V2CO2 MXene shows good reversible capacity (276 mAh/g), but a high diffusion barrier (0.82 eV). We show that the diffusion barriers of all bilayer structures are significantly higher than those calculated for the corresponding monolayers, advocating the use of dispersed monolayer MXenes instead of multilayers in high performance anodes.

  17. New hydrogen titanium phosphate sulfate electrodes for Li-ion and Na-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhao, Ran; Mieritz, Daniel; Seo, Dong-Kyun; Chan, Candace K.

    2017-03-01

    NASICON-type materials with general formula AxM2(PO4)3 (A = Li or Na, M = Ti, V, and Fe) are promising candidates for Li- and Na-ion batteries due to their open three-dimensional framework structure. Here we report the electrochemical properties of hydrogen titanium phosphate sulfate, H0.4Ti2(PO4)2.4(SO4)0.6 (HTPS), a new mixed polyanion material with NASICON structure. Micron-sized HTPS aggregates with crystallite grain size of ca. 23 nm are synthesized using a sol-gel synthesis in an acidic medium. The properties of the as-synthesized HTPS, ball-milled HTPS, and samples prepared as carbon composites using an in-situ glucose decomposition reaction are investigated. A capacity of 148 mAh g-1 corresponding to insertion of 2 Li+ per formula unit is observed in the ball-milled HTPS over the potential window of 1.5-3.4 V vs. Li/Li+. Lithiation at ca. 2.8 and 2.5 V is determined to occur through filling of the M1 and M2 sites, respectively. Powder X-ray diffraction (PXRD), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) are used characterize the HTPS before and after cycling. Evaluation of the HTPS in a Na-ion cell is also performed. A discharge capacity of 93 mAh g-1 with sodiation at ca. 2.9 and 2.2 V vs. Na/Na+ is observed.

  18. Enhanced Electrochemical Performance of Fe0.74Sn5@Reduced Graphene Oxide Nanocomposite Anodes for Both Li-Ion and Na-Ion Batteries.

    PubMed

    Xin, Feng-Xia; Tian, Hua-Jun; Wang, Xiao-Liang; Xu, Wei; Zheng, Wen-Ge; Han, Wei-Qiang

    2015-04-22

    The recently found intermetallic FeSn5 phase with defect structure Fe0.74Sn5 has shown promise as a high capacity anode for lithium-ion batteries (LIBs). The theoretical capacity is as high as 929 mAh g(-1) thanks to the high Sn/Fe ratio. However, despite being an alloy, the cycle life remains a great challenge. Here, by combining Fe0.74Sn5 nanospheres with reduced graphene oxide (RGO) nanosheets, the Fe0.74Sn5@RGO nanocomposite can achieve capacity retention 3 times that of the nanospheres alone, after 100 charge/discharge cycles. Moreover, the nanocomposite also displays its versatility as a high-capacity anode in sodium-ion batteries (SIBs). The enhanced cell performance in both battery systems indicates that the Fe0.74Sn5@RGO nanocomposite can be a potential anode candidate for the application of Li-ion and Na-ion battery.

  19. Additive-free hollow-structured Co3O4 nanoparticle Li-ion battery: the origins of irreversible capacity loss.

    PubMed

    Kim, Youngjun; Lee, Jung-Hyun; Cho, Sungeun; Kwon, Yongwoo; In, Insik; Lee, Jihoon; You, Nam-Ho; Reichmanis, Elsa; Ko, Hyungduk; Lee, Kyu-Tae; Kwon, Hyun-Keun; Ko, Doo-Hyun; Yang, Heesun; Park, Byoungnam

    2014-07-22

    Origins of the irreversible capacity loss were addressed through probing changes in the electronic and structural properties of hollow-structured Co3O4 nanoparticles (NPs) during lithiation and delithiation using electrochemical Co3O4 transistor devices that function as a Co3O4 Li-ion battery. Additive-free Co3O4 NPs were assembled into a Li-ion battery, allowing us to isolate and explore the effects of the Co and Li2O formation/decomposition conversion reactions on the electrical and structural degradation within Co3O4 NP films. NP films ranging between a single monolayer and multilayered film hundreds of nanometers thick prepared with blade-coating and electrophoretic deposition methods, respectively, were embedded in the transistor devices for in situ conduction measurements as a function of battery cycles. During battery operation, the electronic and structural properties of Co3O4 NP films in the bulk, Co3O4/electrolyte, and Co3O4/current collector interfaces were spatially mapped to address the origin of the initial irreversible capacity loss from the first lithiation process. Further, change in carrier injection/extraction between the current collector and the Co3O4 NPs was explored using a modified electrochemical transistor device with multiple voltage probes along the electrical channel.

  20. Original implementation of Electrochemical Impedance Spectroscopy (EIS) in symmetric cells: Evaluation of post-mortem protocols applied to characterize electrode materials for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Gordon, Isabel Jiménez; Genies, Sylvie; Si Larbi, Gregory; Boulineau, Adrien; Daniel, Lise; Alias, Mélanie

    2016-03-01

    Understanding ageing mechanisms of Li-ion batteries is essential for further optimizations. To determine performance loss causes, post-mortem analyses are commonly applied. For each type of post-mortem test, different sample preparation protocols are adopted. However, reports on the reliability of these protocols are rare. Herein, Li-ion pouch cells with LiNi1/3Mn1/3Co1/3O2 - polyvinylidene fluoride positive electrode, graphite-carboxymethyl cellulose-styrene rubber negative electrode and LiPF6 - carbonate solvents mixture electrolyte, are opened and electrodes are recovered following a specified protocol. Negative and positive symmetric cells are assembled and their impedances are recorded. A signal analysis is applied to reconstruct the Li-ion pouch cell impedance from the symmetric cells, then comparison against the pouch cell true impedance allows the evaluation of the sample preparation protocols. The results are endorsed by Transmission Electronic Microscopy (TEM) and Gas Chromatography - Mass Spectrometry (GC-MS) analyses. Carbonate solvents used to remove the salt impacts slightly the surface properties of both electrodes. Drying electrodes under vacuum at 25 °C produces an impedance increase, particularly very marked for the positive electrode. Drying at 50 °C under vacuum or/and exposition to the anhydrous room atmosphere is very detrimental.

  1. Advanced Separators for Lithium-Ion and Lithium-Sulfur Batteries: A Review of Recent Progress.

    PubMed

    Xiang, Yinyu; Li, Junsheng; Lei, Jiaheng; Liu, Dan; Xie, Zhizhong; Qu, Deyu; Li, Ke; Deng, Tengfei; Tang, Haolin

    2016-11-09

    Li-ion and Li-S batteries find enormous applications in different fields, such as electric vehicles and portable electronics. A separator is an indispensable part of the battery design, which functions as a physical barrier for the electrode as well as an electrolyte reservoir for ionic transport. The properties of the separators directly influence the performance of the batteries. Traditional polyolefin separators showed low thermal stability, poor wettability toward the electrolyte, and inadequate barrier properties to polysulfides. To improve the performance and durability of Li-ion and Li-S batteries, development of advanced separators is required. In this review, we summarize recent progress on the fabrication and application of novel separators, including the functionalized polyolefin separator, polymeric separator, and ceramic separator, for Li-ion and Li-S batteries. The characteristics, advantages, and limitations of these separators are discussed. A brief outlook for the future directions of the research in the separators is also provided.

  2. Nitrogen-doped carbon nanofibers derived from polypyrrole coated bacterial cellulose as high-performance electrode materials for supercapacitors and Li-ion batteries

    SciTech Connect

    Lei, Wen; Han, Lili; Xuan, Cuijuan; Lin, Ruoqian; Liu, Hongfang; Xin, Huolin L.; Wang, Deli

    2016-05-24

    Here, nitrogen-doped carbon nanofiber (NDCN) was synthesized via carbonization of polypyrrole (PPy) coated bacterial cellulose (BC) composites, where BC serves as templates as well as precursor, and PPy serves as the nitrogen source. The synthesized NDCN was employed as electrode for both supercapacitors and Li-ion batteries. The large surface area exposed to electrolyte resulting from the 3D carbon networks leads to sufficient electrode/electrolyte interface and creates shorter transport paths of electrolyte ions and Li+ ion. Besides, the three types of N dopants in NDCN improve the electronic conductivity, as well as superior electrochemical performance.

  3. Si/Ag composite with bimodal micro-nano porous structure as a high-performance anode for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Hao, Qin; Zhao, Dianyun; Duan, Huimei; Zhou, Qiuxia; Xu, Caixia

    2015-03-01

    A one-step dealloying method is employed to conveniently fabricate a bimodal porous (BP) Si/Ag composite in high throughput under mild conditions. Upon dealloying the carefully designed SiAgAl ternary alloy in HCl solution at room temperature, the obtained Si/Ag composite has a uniform bicontinuous porous structure in three dimensions with micro-nano bimodal pore size distribution. Compared with the traditional preparation methods for porous Si and Si-based composites, this dealloying route is easily operated and environmentally benign. More importantly, it is convenient to realize the controllable components and uniform distribution of Si and Ag in the product. Owing to the rich porosity of the unique BP structure and the incorporation of highly conductive Ag, the as-made Si/Ag composite possesses the improved conductivity and alleviated volume changes of the Si network during repeated charging and discharging. As expected, the BP Si/Ag anode exhibits high capacity, excellent cycling reversibility, long cycling life and good rate capability for lithium storage. When the current rate is up to 1 A g-1, BP Si/Ag can deliver a stable reversible capacity above 1000 mA h g-1, and exhibits a capacity retention of up to 89.2% against the highest capacity after 200 cycles. With the advantages of unique performance and easy preparation, the BP Si/Ag composite holds great application potential as an advanced anode material for Li-ion batteries.A one-step dealloying method is employed to conveniently fabricate a bimodal porous (BP) Si/Ag composite in high throughput under mild conditions. Upon dealloying the carefully designed SiAgAl ternary alloy in HCl solution at room temperature, the obtained Si/Ag composite has a uniform bicontinuous porous structure in three dimensions with micro-nano bimodal pore size distribution. Compared with the traditional preparation methods for porous Si and Si-based composites, this dealloying route is easily operated and environmentally benign

  4. MXenes: A New Family of Two-Dimensional Materials and its Application as Electrodes for Li-ion Batteries

    NASA Astrophysics Data System (ADS)

    Abdelmalak, Michael Naguib

    Two-dimensional, 2D, materials, such as graphene, possess a unique morphology compared to their 3D counterparts, from which interesting and novel properties arise. Currently, the number of non-oxide materials that have been exfoliated is limited to two fairly small groups, viz. hexagonal, van der Waals bonded structures (e.g. graphene and BN) and layered transition metal chalcogenides. The MAX phases are a well established family of layered ternary transition metal carbides and/or nitrides, with a composition of Mn +1AXn, where M is an early transition metal, A is one of A group elements, X is C and/or N; with n = 1, 2, or 3. The aim of this work is to exfoliate the MAX phases and produce 2D layers of transition metals carbides and/or nitrides by the selective etching of the A layers from the MAX phases. We labeled the resulting 2D M n+1Xn layers "MXenes" to emphasize the loss of the A group element from the MAX phases and the suffix "ene" to emphasize their 2D nature and their similarity to graphene. The etching process was carried out using aqueous hydrofluoric acid at room temperature. Thirteen different MXenes were produced as a result of this work, viz., Ti2C, Nb2C, V2C, Mo2C, (Ti0.5,Nb0.5)2C, (Ti 0.5,V0.5)2C, Ti3C2, (Ti 0.5,V0.5)3C2, (V0.5,Cr 0.5)3C2, Ti3CN, Ta4C 3, Nb4C3 and (Nb0.5,V0.5) 4C3. The as-synthesized MXenes were terminated with a mixture of OH, O, and/or F groups. Sonicating MXenes resulted in separating the stacked layers to a small extent. When Ti3C2 was intercalated with dimethylsulfoxide, however, followed by sonication in water, large-scale delamination occurred, which resulted in aqueous colloidal solutions that could in turn be fabricated into MXene "paper". MXenes were found to be electrically conductive, hydrophilic and stable in aqueous environments, a rare combination indeed, with huge potential in many applications, from energy storage, to sensors to catalysts. This work focused on the use of MXenes as electrode materials in Li-ion

  5. Non-uniform temperature distribution in Li-ion batteries during discharge - A combined thermal imaging, X-ray micro-tomography and electrochemical impedance approach

    NASA Astrophysics Data System (ADS)

    Robinson, James B.; Darr, Jawwad A.; Eastwood, David S.; Hinds, Gareth; Lee, Peter D.; Shearing, Paul R.; Taiwo, Oluwadamilola O.; Brett, Dan J. L.

    2014-04-01

    Thermal runaway is a major cause of failure in Li-ion batteries (LIBs), and of particular concern for high energy density transport applications, where safety concerns have hampered commercialisation. A clear understanding of electro-thermal properties and how these relate to structure and operation is vital to improving thermal management of LIBs. Here a combined thermal imaging, X-ray tomography and electrochemical impedance spectroscopy (EIS) approach was applied to commercially available 18650 cells to study their thermal characteristics. Thermal imaging was used to characterise heterogeneous temperature distributions during discharge above 0.75C; the complementary information provided by 3D X-ray tomography was utilised to evaluate the internal structure of the battery and identify the regions causing heating, specifically the components of the battery cap.

  6. Synthesis of porous CoMoO4 nanorods as a bifunctional cathode catalyst for a Li-O2 battery and superior anode for a Li-ion battery.

    PubMed

    Wang, Liangjun; Cui, Xinhang; Gong, Lili; Lyu, Zhiyang; Zhou, Yin; Dong, Wenhao; Liu, Jia; Lai, Min; Huo, Fengwei; Huang, Wei; Lin, Ming; Chen, Wei

    2017-03-17

    We report the synthesis of porous CoMoO4 nanorods and their applications in lithium oxygen (Li-O2) and lithium ion (Li-ion) batteries. The unique porous structures of CoMoO4 nanorods can promote the permeation of electrolyte and benefit the transport of lithium ion. When employed as the cathode catalyst for a Li-O2 battery, CoMoO4 nanorods deliver an improved discharge capacity (4680 mA h g(-1)), lower charge potential and better cycle stability (41 cycles at 500 mA h g(-1) capacity limit) compared with the bare carbon. When employed as an anode in Li-ion batteries, CoMoO4 nanorods can retain a capacity of 603 mA h g(-1) after 300 cycles (400 mA g(-1)) and exhibit excellent rate capability.

  7. Current density and state of charge inhomogeneities in Li-ion battery cells with LiFePO4 as cathode material due to temperature gradients

    NASA Astrophysics Data System (ADS)

    Fleckenstein, Matthias; Bohlen, Oliver; Roscher, Michael A.; Bäker, Bernard

    2011-05-01

    Current density distributions and local state of charge (SoC) differences that are caused by temperature gradients inside actively cooled Li-ion battery cells are discussed and quantified. As an example, a cylindrical Li-ion cell with LiFePO4 as cathode material (LiFePO4-cell) is analyzed in detail both experimentally and by means of spatial electro-thermal co-simulations. The reason for current density inhomogeneities is found to be the local electrochemical impedance varying with temperature in different regions of the jelly roll. For the investigated cell, high power cycling and the resulting temperature gradient additionally cause SoC-gradients inside the jelly roll. The local SoCs inside one cell diverge firstly because of asymmetric current density distributions during charge and discharge inside the cell and secondly because of the temperature dependence of the local open circuit potential. Even after long relaxation periods, the SoC distribution in cycled LiFePO4-cells remains inhomogeneous across the jelly roll as a result of hysteresis in the open circuit voltage. The occurring thermal electrical inhomogeneities are expected to influence local aging differences and thus, global cell aging. Additionally the occurrence of inhomogeneous current flow and SoC-development inside non-uniformly cooled battery packs of parallel connected LiFePO4-cells is measured and discussed.

  8. The role of electronic and ionic conductivities in the rate performance of tunnel structured manganese oxides in Li-ion batteries

    DOE PAGES

    Byles, B. W.; Palapati, N. K. R.; Subramanian, A.; ...

    2016-04-29

    Single nanowires of two manganese oxide polymorphs (α-MnO2 and todorokite manganese oxide), which display a controlled size variation in terms of their square structural tunnels, were isolated onto nanofabricated platforms using dielectrophoresis. This platform allowed for the measurement of the electronic conductivity of these manganese oxides, which was found to be higher in α-MnO2 as compared to that of the todorokite phase by a factor of similar to 46. Despite this observation of substantially higher electronic conductivity in α-MnO2, the todorokite manganese oxide exhibited better electrochemical rate performance as a Li-ion battery cathode. The relationship between this electrochemical performance, themore » electronic conductivities of the manganese oxides, and their reported ionic conductivities is discussed for the first time, clearly revealing that the rate performance of these materials is limited by their Li+ diffusivity, and not by their electronic conductivity. This result reveals important new insights relevant for improving the power density of manganese oxides, which have shown promise as a low-cost, abundant, and safe alternative for next-generation cathode materials. Moreover, the presented experimental approach is suitable for assessing a broader family of one-dimensional electrode active materials (in terms of their electronic and ionic conductivities) for both Li-ion batteries and for electrochemical systems utilizing charge-carrying ions beyond Li+.« less

  9. The role of electronic and ionic conductivities in the rate performance of tunnel structured manganese oxides in Li-ion batteries

    SciTech Connect

    Byles, B. W.; Palapati, N. K. R.; Subramanian, A.; Pomerantseva, E.

    2016-04-29

    Single nanowires of two manganese oxide polymorphs (α-MnO2 and todorokite manganese oxide), which display a controlled size variation in terms of their square structural tunnels, were isolated onto nanofabricated platforms using dielectrophoresis. This platform allowed for the measurement of the electronic conductivity of these manganese oxides, which was found to be higher in α-MnO2 as compared to that of the todorokite phase by a factor of similar to 46. Despite this observation of substantially higher electronic conductivity in α-MnO2, the todorokite manganese oxide exhibited better electrochemical rate performance as a Li-ion battery cathode. The relationship between this electrochemical performance, the electronic conductivities of the manganese oxides, and their reported ionic conductivities is discussed for the first time, clearly revealing that the rate performance of these materials is limited by their Li+ diffusivity, and not by their electronic conductivity. This result reveals important new insights relevant for improving the power density of manganese oxides, which have shown promise as a low-cost, abundant, and safe alternative for next-generation cathode materials. Moreover, the presented experimental approach is suitable for assessing a broader family of one-dimensional electrode active materials (in terms of their electronic and ionic conductivities) for both Li-ion batteries and for electrochemical systems utilizing charge-carrying ions beyond Li+.

  10. Preliminary studies of biominerals-coated spinel LiMn2 O4 as a cathode material on electrochemical performances for Li-ion rechargeable batteries

    NASA Astrophysics Data System (ADS)

    Vediappan, Kumaran; Lee, Chang Woo

    2010-05-01

    Lithium manganese oxide (LiMn2O4) is an inexpensive and pollution-free cathode material for Li-ion rechargeable batteries. In this study, spinel LiMn2O4 cathode material was coated with biomineral powders by the mechano-chemical method. In the course of the material synthesis, citric acid and acryl amide were added to serve as a complexing agent and a gelling agent, respectively, followed by a calcination process at 700 °C for 6 h in a high-purity argon atmosphere. The spinel LiMn2O4 and biominerals-coated spinel LiMn2O4 cathode materials were, from diverse viewpoints, characterized by x-ray diffraction, field emission-scanning electron microscopy, Fourier transform infrared spectroscopy and the electrochemical cycling method to understand the mechanism of improvements in electrochemical performances. We suggest that the biominerals-coated spinel LiMn2O4 is a good candidate as a low cost and environmentally friendly cathode material showing the enlarged capacity characteristic of Li-ion rechargeable batteries.

  11. Sphere-shaped hierarchical cathode with enhanced growth of nanocrystal planes for high-rate and cycling-stable li-ion batteries.

    PubMed

    Zhang, Linjing; Li, Ning; Wu, Borong; Xu, Hongliang; Wang, Lei; Yang, Xiao-Qing; Wu, Feng

    2015-01-14

    High-energy and high-power Li-ion batteries have been intensively pursued as power sources in electronic vehicles and renewable energy storage systems in smart grids. With this purpose, developing high-performance cathode materials is urgently needed. Here we report an easy and versatile strategy to fabricate high-rate and cycling-stable hierarchical sphered cathode Li(1.2)Ni(0.13)Mn(0.54)Co(0.13)O2, by using an ionic interfusion method. The sphere-shaped hierarchical cathode is assembled with primary nanoplates with enhanced growth of nanocrystal planes in favor of Li(+) intercalation/deintercalation, such as (010), (100), and (110) planes. This material with such unique structural features exhibits outstanding rate capability, cyclability, and high discharge capacities, achieving around 70% (175 mAh g(-1)) of the capacity at 0.1 C rate within about 2.1 min of ultrafast charging. Such cathode is feasible to construct high-energy and high-power Li-ion batteries.

  12. FeF3@Thin Nickel Ammine Nitrate Matrix: Smart Configurations and Applications as Superior Cathodes for Li-Ion Batteries.

    PubMed

    Jiang, Jian; Li, Linpo; Xu, Maowen; Zhu, Jianhui; Li, Chang Ming

    2016-06-29

    Iron fluorides (FeFx) for Li-ion battery cathodes are still in the stage of intensive research due to their low delivery capacity and limited lifetime. One critical reason for cathode degradation is the severe aggregation of FeFx nanocrystals upon long-term cycling. To maximize the capacity and cyclability of these cathodes, we propose herein a novel and applicable method using a thin-layered nickel ammine nitrate (NAN) matrix as a feasible encapsulation material to disperse the FeF3 nanoparticles. Such core-shell hybrids with smart configurations are constructed via a green, scalable, in situ encapsulation approach. The outer thin-film NAN matrix with prominent electrochemical stability can keep the FeF3 nanoactives encapsulated throughout the cyclic testing, protecting them from adverse aggregation into bulk crystals and thus leading to drastic improvements of electrode behaviors (e.g., high electrode capacity up to ∼423 mA h g(-1), greatly prolonged cyclic period, and promoted rate capabilities). This present work may set up a new and general platform to develop intriguing core-shell hybrid cathodes for Li-ion batteries, not only for FeFx but also for a wide spectrum of other cathode materials.

  13. A novel surface-sensitive X-ray absorption spectroscopic detector to study the thermal decomposition of cathode materials for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Nonaka, Takamasa; Okuda, Chikaaki; Oka, Hideaki; Nishimura, Yusaku F.; Makimura, Yoshinari; Kondo, Yasuhito; Dohmae, Kazuhiko; Takeuchi, Yoji

    2016-09-01

    A surface-sensitive conversion-electron-yield X-ray absorption fine structure (CEY-XAFS) detector that operates at elevated temperatures is developed to investigate the thermal decomposition of cathode materials for Li-ion batteries. The detector enables measurements with the sample temperature controlled from room temperature up to 450 °C. The detector is applied to the LiNi0.75Co0.15Al0.05Mg0.05O2 cathode material at 0% state of charge (SOC) and 50% SOC to examine the chemical changes that occur during heating in the absence of an electrolyte. The combination of surface-sensitive CEY-XAFS and bulk-sensitive transmission-mode XAFS shows that the reduction of Ni and Co ions begins at the surface of the cathode particles at around 150 °C, and propagates inside the particle upon further heating. These changes with heating are irreversible and are more obvious at 50% SOC than at 0% SOC. The fraction of reduced Ni ions is larger than that of reduced Co ions. These results demonstrate the capability of the developed detector to obtain important information for the safe employment of this cathode material in Li-ion batteries.

  14. SEI Formation and Interfacial Stability of a Si Electrode in a LiTDI-Salt Based Electrolyte with FEC and VC Additives for Li-Ion Batteries.

    PubMed

    Lindgren, Fredrik; Xu, Chao; Niedzicki, Leszek; Marcinek, Marek; Gustafsson, Torbjörn; Björefors, Fredrik; Edström, Kristina; Younesi, Reza

    2016-06-22

    An electrolyte based on the new salt, lithium 4,5-dicyano-2-(trifluoromethyl)imidazolide (LiTDI), is evaluated in combination with nano-Si composite electrodes for potential use in Li-ion batteries. The additives fluoroethylene carbonate (FEC) and vinylene carbonate (VC) are also added to the electrolyte to enable an efficient SEI formation. By employing hard X-ray photoelectron spectroscopy (HAXPES), the SEI formation and the development of the active material is probed during the first 100 cycles. With this electrolyte formulation, the Si electrode can cycle at 1200 mAh g(-1) for more than 100 cycles at a coulombic efficiency of 99%. With extended cycling, a decrease in Si particle size is observed as well as an increase in silicon oxide amount. As opposed to LiPF6 based electrolytes, this electrolyte or its decomposition products has no side reactions with the active Si material. The present results further acknowledge the positive effects of SEI forming additives. It is suggested that polycarbonates and a high LiF content are favorable components in the SEI over other kinds of carbonates formed by ethylene carbonate (EC) and dimethyl carbonate (DMC) decomposition. This work thus confirms that LiTDI in combination with the investigated additives is a promising salt for Si electrodes in future Li-ion batteries.

  15. Peak position differences observed during XPS sputter depth profiling of the SEI on lithiated and delithiated carbon-based anode material for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Oswald, S.; Hoffmann, M.; Zier, M.

    2017-04-01

    The ability of delivering chemical information from peak shift phenomena has ever since made X-ray photoelectron spectroscopy (XPS) an ideal tool for material characterization in Li-ion batteries (LIB). Upon investigation, charging is inevitable as most of the chemical species involved are non-conducting. Thus, the binding energy (BE) scale must be corrected to allow an accurate interpretation of the results. This is usually done using the peak position of the ubiquitous surface carbon contamination detectable for all Li-ion battery relevant materials. We herein report on the occurrence of peak shift phenomena that can be observed when investigating surface layers on graphite anodes using sputter depth-profiling. These shifts, however, are not related to classical static electric charging, but are depending on the state of charge (lithiation) of the anode material. The observations presented are in agreement with previous findings on other Li-containing materials and are obviously caused by the presence of Li in its elemental state. As aging and failure mechanisms in LIBs are closely linked to electrolyte reaction products on electrode surfaces it is of high importance to draw the correct conclusions on their chemical origin from XP spectra. In order to avoid misinterpretation of the BE positions, implanted Ar can be used for identification of relevant peak positions and species involved in the phenomena observed.

  16. Sphere-Shaped Hierarchical Cathode with Enhanced Growth of Nanocrystal Planes for High-Rate and Cycling-Stable Li-Ion Batteries

    DOE PAGES

    Zhang, Linjing; Li, Ning; Wu, Borong; ...

    2015-01-14

    High-energy and high-power Li-ion batteries have been intensively pursued as power sources in electronic vehicles and renewable energy storage systems in smart grids. With this purpose, developing high-performance cathode materials is urgently needed. Here we report an easy and versatile strategy to fabricate high-rate and cycling-stable hierarchical sphered cathode Li1.2Ni0.13Mn0.54Co0.13O2, by using an ionic interfusion method. The sphere-shaped hierarchical cathode is assembled with primary nanoplates with enhanced growth of nanocrystal planes in favor of Li+ intercalation/deintercalation, such as (010), (100), and (110) planes. This material with such unique structural features exhibits outstanding rate capability, cyclability, and high discharge capacities, achievingmore » around 70% (175 mAhg–1) of the capacity at 0.1 C rate within about 2.1 min of ultrafast charging. Such cathode is feasible to construct high-energy and high-power Li-ion batteries.« less

  17. Sphere-Shaped Hierarchical Cathode with Enhanced Growth of Nanocrystal Planes for High-Rate and Cycling-Stable Li-Ion Batteries

    SciTech Connect

    Zhang, Linjing; Li, Ning; Wu, Borong; Xu, Hongliang; Wang, Lei; Yang, Xiao-Qing; Wu, Feng

    2015-01-14

    High-energy and high-power Li-ion batteries have been intensively pursued as power sources in electronic vehicles and renewable energy storage systems in smart grids. With this purpose, developing high-performance cathode materials is urgently needed. Here we report an easy and versatile strategy to fabricate high-rate and cycling-stable hierarchical sphered cathode Li1.2Ni0.13Mn0.54Co0.13O2, by using an ionic interfusion method. The sphere-shaped hierarchical cathode is assembled with primary nanoplates with enhanced growth of nanocrystal planes in favor of Li+ intercalation/deintercalation, such as (010), (100), and (110) planes. This material with such unique structural features exhibits outstanding rate capability, cyclability, and high discharge capacities, achieving around 70% (175 mAhg–1) of the capacity at 0.1 C rate within about 2.1 min of ultrafast charging. Such cathode is feasible to construct high-energy and high-power Li-ion batteries.

  18. Effect of fatigue/ageing on the lithium distribution in cylinder-type Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Mühlbauer, M. J.; Dolotko, O.; Hofmann, M.; Ehrenberg, H.; Senyshyn, A.

    2017-04-01

    The lithium concentration in the graphite anode of fatigued (cycled 1000 times at 25 °C) Li-ion cell of 18650-type has been probed non-destructively by spatially resolved neutron diffraction. The amount x of Li in LixC6 has been determined in a central plane of a cylinder-type Li-ion cell. A radial mesh with a gauge volume of 2 × 2 × 20 mm3 was used. Besides the evidently lower lithiation grade, caused by a lack of free movable lithium and a loss of electrolyte, a development of fatigue-driven spatial lithium inhomogeneities has been observed in radial direction. Observed changes have been discussed in light of their correlations to an increase of the internal cell resistance and to a change of the electrolyte concentration.

  19. Mesocarbon Microbead Carbon-Supported Magnesium Hydroxide Nanoparticles: Turning Spent Li-ion Battery Anode into a Highly Efficient Phosphate Adsorbent for Wastewater Treatment.

    PubMed

    Zhang, Yan; Guo, Xingming; Wu, Feng; Yao, Ying; Yuan, Yifei; Bi, Xuanxuan; Luo, Xiangyi; Shahbazian-Yassar, Reza; Zhang, Cunzhong; Amine, Khalil

    2016-08-24

    Phosphorus in water eutrophication has become a serious problem threatening the environment. However, the development of efficient adsorbents for phosphate removal from water is lagging. In this work, we recovered the waste material, graphitized carbon, from spent lithium ion batteries and modified it with nanostructured Mg(OH)2 on the surface to treat excess phosphate. This phosphate adsorbent shows one of the highest phosphate adsorption capacities to date, 588.4 mg/g (1 order of magnitude higher than previously reported carbon-based adsorbents), and exhibits decent stability. A heterogeneous multilayer adsorption mechanism was proposed on the basis of multiple adsorption results. This highly efficient adsorbent from spent Li-ion batteries displays great potential to be utilized in industry, and the mechanism study paved a way for further design of the adsorbent for phosphate adsorption.

  20. Mesocarbon Microbead Carbon-Supported Magnesium Hydroxide Nanoparticles: Turning Spent Li-ion Battery Anode into a Highly Efficient Phosphate Adsorbent for Wastewater Treatment

    SciTech Connect

    Zhang, Yan; Guo, Xingming; Wu, Feng; Yao, Ying; Yuan, Yifei; Bi, Xuanxuan; Luo, Xiangyi; Shahbazian-Yassar, Reza; Zhang, Cunzhong; Amine, Khalil

    2016-08-24

    Phosphorus in water eutrophication has become a serious problem threatening the environment. However, the development of efficient adsorbents for phosphate removal from water is lagging. In this work, we recovered the waste material, graphitized carbon, from spent lithium ion batteries and modified it with nanostructured Mg(OH)2 on the surface to treat excess phosphate. This phosphate adsorbent shows one of the highest phosphate adsorption capacities to date, 588.4 mg/g (1 order of magnitude higher than previously reported carbon-based adsorbents), and exhibits decent stability. A heterogeneous multilayer adsorption mechanism was proposed on the basis of multiple adsorption results. This highly efficient adsorbent from spent Li-ion batteries displays great potential to be utilized in industry, and the mechanism study paved a way for further design of the adsorbent for phosphate adsorption.

  1. Thermal management optimization of an air-cooled Li-ion battery module using pin-fin heat sinks for hybrid electric vehicles

    NASA Astrophysics Data System (ADS)

    Mohammadian, Shahabeddin K.; Zhang, Yuwen

    2015-01-01

    Three dimensional transient thermal analysis of an air-cooled module that contains prismatic Li-ion cells next to a special kind of aluminum pin fin heat sink whose heights of pin fins increase linearly through the width of the channel in air flow direction was studied for thermal management of Lithium-ion battery pack. The effects of pin fins arrangements, discharge rates, inlet air flow velocities, and inlet air temperatures on the battery were investigated. The results showed that despite of heat sinks with uniform pin fin heights that increase the standard deviation of the temperature field, using this kind of pin fin heat sink compare to the heat sink without pin fins not only decreases the bulk temperature inside the battery, but also decreases the standard deviation of the temperature field inside the battery as well. Increasing the inlet air temperature leads to decreasing the standard deviation of the temperature field while increases the maximum temperature of the battery. Furthermore, increasing the inlet air velocity first increases the standard deviation of the temperature field till reaches to the maximum point, and after that decreases. Also, increasing the inlet air velocity leads to decrease in the maximum temperature of the battery.

  2. Assessment of Various Low Temperature Electrolytes in Prototype Li-Ion Cells Developed for ESMD Applications

    NASA Technical Reports Server (NTRS)

    Smart, M. C.; Ratnakumar, B. V.; Whitcanack, L. D.

    2008-01-01

    Due to their attractive properties and proven success, Li-ion batteries have become identified as the battery chemistry of choice for a number of future NASA missions. A number of these applications would be greatly benefited by improved performance of Li-ion technology over a wider operating temperature range, especially at low temperatures, such as future ESMD missions. In many cases, these technology improvements may be mission enabling, and at the very least mission enhancing. In addition to aerospace applications, the DoE has interest in developing advanced Li-ion batteries that can operate over a wide temperature range to enable terrestrial HEV applications. Thus, our focus at JPL in recent years has been to extend the operating temperature range of Li-ion batteries, especially at low temperatures. To accomplish this, the main focus of the research has been devoted to developing improved lithium-ion conducting electrolytes. In the present paper, we would like to present some of the results we have obtained with six different ethylene carbonate-based electrolytes optimized for low temperature. In addition to investigating the behavior in experimental cells initially, the performance of these promising low temperature electrolytes was demonstrated in large capacity, aerospace quality Li-ion prototype cells, manufactured by Yardney Technical Products and Saft America, Inc. These cells were subjected to a number of performance tests, including discharge rate characterization, charge rate characterization, cycle life performance at various temperatures, and power characterization tests.

  3. Percolation threshold of graphene nanosheets as conductive additives in Li4Ti5O12 anodes of Li-ion batteries.

    PubMed

    Zhang, Biao; Yu, Yang; Liu, Yusi; Huang, Zhen-Dong; He, Yan-bing; Kim, Jang-Kyo

    2013-03-07

    Graphene nanosheets (GNSs) have been considered as potential conductive additives for electrodes in Li-ion batteries to replace the existing carbon black (CB). Graphene has exceptionally high aspect ratio and excellent electrical conductivity, enabling the formation of extensive conductive networks at a much lower content than CB. This paper reports the beneficial effects of GNSs with a low percolation threshold on electrochemical performance of Li(4)Ti(5)O(12) (LTO) anodes. The experimental results show that the GNSs with a diameter of 46 μm and a thickness of 4.5 nm have a percolation threshold of 1.8 wt%. The prediction based on the interparticle distance concept gives a percolation threshold of 0.54 wt% for GNSs, which is almost an order of magnitude lower than that for CB particles. The substantially low percolation along with a high electrical conductivity of GNSs explains why the LTO anodes containing only 5 wt% GNSs deliver a much better rate capability than those with 15 wt% CB. However, a higher GNS content of 10 wt% results in re-stacking GNSs, deteriorating the diffusion of Li ions through the thickness of GNSs. The parametric study indicates that the percolation threshold of GNSs is inversely proportional to the aspect ratio of GNSs.

  4. Enhancing the energy density of safer Li-ion batteries by combining high-voltage lithium cobalt fluorophosphate cathodes and nanostructured titania anodes

    NASA Astrophysics Data System (ADS)

    Ortiz, Gregorio F.; López, María C.; Li, Yixiao; McDonald, Matthew J.; Cabello, Marta; Tirado, José L.; Yang, Yong

    2016-02-01

    Recently, Li-ion batteries have been heavily scrutinized because of the apparent incompatibility between safety and high energy density. This work report a high voltage full battery made with TiO2/Li3PO4/Li2CoPO4F. The Li2CoPO4F cathode and TiO2 anode materials are synthesized by a sol–gel and anodization methods, respectively. X-ray diffraction (XRD) analysis confirmed that Li2CoPO4F is well-crystallized in orthorhombic crystal structure with Pnma space group. The Li3PO4-coated anode was successfully deposited as shown by the (011) lattice fringes of anatase TiO2 and (200) of γ-Li3PO4, as detected by HRTEM. The charge profile of Li2CoPO4F versus lithium shows a plateau at 5.0 V, revealing its importance as potentially high-voltage cathode and could perfectly fit with the plateau of anatase anode (1.8–1.9 V). The full cell made with TiO2/Li3PO4/Li2CoPO4F delivered an initial reversible capacity of 150 mA h g‑1 at C rate with good cyclic performance at an average potential of 3.1–3.2 V. Thus, the full cell provides an energy density of 472 W h kg‑1. This full battery behaves better than TiO2/Li2CoPO4F. The introduction of Li3PO4 as buffer layer is expected to help the cyclability of the electrodes as it allows a rapid Li-ion transport.

  5. Enhancing the energy density of safer Li-ion batteries by combining high-voltage lithium cobalt fluorophosphate cathodes and nanostructured titania anodes.

    PubMed

    Ortiz, Gregorio F; López, María C; Li, Yixiao; McDonald, Matthew J; Cabello, Marta; Tirado, José L; Yang, Yong

    2016-02-16

    Recently, Li-ion batteries have been heavily scrutinized because of the apparent incompatibility between safety and high energy density. This work report a high voltage full battery made with TiO2/Li3PO4/Li2CoPO4F. The Li2CoPO4F cathode and TiO2 anode materials are synthesized by a sol-gel and anodization methods, respectively. X-ray diffraction (XRD) analysis confirmed that Li2CoPO4F is well-crystallized in orthorhombic crystal structure with Pnma space group. The Li3PO4-coated anode was successfully deposited as shown by the (011) lattice fringes of anatase TiO2 and (200) of γ-Li3PO4, as detected by HRTEM. The charge profile of Li2CoPO4F versus lithium shows a plateau at 5.0 V, revealing its importance as potentially high-voltage cathode and could perfectly fit with the plateau of anatase anode (1.8-1.9 V). The full cell made with TiO2/Li3PO4/Li2CoPO4F delivered an initial reversible capacity of 150 mA h g(-1) at C rate with good cyclic performance at an average potential of 3.1-3.2 V. Thus, the full cell provides an energy density of 472 W h kg(-1). This full battery behaves better than TiO2/Li2CoPO4F. The introduction of Li3PO4 as buffer layer is expected to help the cyclability of the electrodes as it allows a rapid Li-ion transport.

  6. Enhancing the energy density of safer Li-ion batteries by combining high-voltage lithium cobalt fluorophosphate cathodes and nanostructured titania anodes

    PubMed Central

    Ortiz, Gregorio F.; López, María C.; Li, Yixiao; McDonald, Matthew J.; Cabello, Marta; Tirado, José L.; Yang, Yong

    2016-01-01

    Recently, Li-ion batteries have been heavily scrutinized because of the apparent incompatibility between safety and high energy density. This work report a high voltage full battery made with TiO2/Li3PO4/Li2CoPO4F. The Li2CoPO4F cathode and TiO2 anode materials are synthesized by a sol–gel and anodization methods, respectively. X-ray diffraction (XRD) analysis confirmed that Li2CoPO4F is well-crystallized in orthorhombic crystal structure with Pnma space group. The Li3PO4-coated anode was successfully deposited as shown by the (011) lattice fringes of anatase TiO2 and (200) of γ-Li3PO4, as detected by HRTEM. The charge profile of Li2CoPO4F versus lithium shows a plateau at 5.0 V, revealing its importance as potentially high-voltage cathode and could perfectly fit with the plateau of anatase anode (1.8–1.9 V). The full cell made with TiO2/Li3PO4/Li2CoPO4F delivered an initial reversible capacity of 150 mA h g−1 at C rate with good cyclic performance at an average potential of 3.1–3.2 V. Thus, the full cell provides an energy density of 472 W h kg−1. This full battery behaves better than TiO2/Li2CoPO4F. The introduction of Li3PO4 as buffer layer is expected to help the cyclability of the electrodes as it allows a rapid Li-ion transport. PMID:26879916

  7. Structural Evolution of Electrochemically Lithiated MoS2 Nanosheets and the Role of Carbon Additive in Li-Ion Batteries

    PubMed Central

    2016-01-01

    Understanding the structure and phase changes associated with conversion-type materials is key to optimizing their electrochemical performance in Li-ion batteries. For example, molybdenum disulfide (MoS2) offers a capacity up to 3-fold higher (∼1 Ah/g) than the currently used graphite anodes, but they suffer from limited Coulombic efficiency and capacity fading. The lack of insights into the structural dynamics induced by electrochemical conversion of MoS2 still hampers its implementation in high energy-density batteries. Here, by combining ab initio density-functional theory (DFT) simulation with electrochemical analysis, we found new sulfur-enriched intermediates that progressively insulate MoS2 electrodes and cause instability from the first discharge cycle. Because of this, the choice of conductive additives is critical for the battery performance. We investigate the mechanistic role of carbon additive by comparing equal loading of standard Super P carbon powder and carbon nanotubes (CNTs). The latter offer a nearly 2-fold increase in capacity and a 45% reduction in resistance along with Coulombic efficiency of over 90%. These insights into the phase changes during MoS2 conversion reactions and stabilization methods provide new solutions for implementing cost-effective metal sulfide electrodes, including Li–S systems in high energy-density batteries. PMID:27818575

  8. Structural Evolution of Electrochemically Lithiated MoS2 Nanosheets and the Role of Carbon Additive in Li-Ion Batteries.

    PubMed

    George, Chandramohan; Morris, Andrew J; Modarres, Mohammad H; De Volder, Michael

    2016-10-25

    Understanding the structure and phase changes associated with conversion-type materials is key to optimizing their electrochemical performance in Li-ion batteries. For example, molybdenum disulfide (MoS2) offers a capacity up to 3-fold higher (∼1 Ah/g) than the currently used graphite anodes, but they suffer from limited Coulombic efficiency and capacity fading. The lack of insights into the structural dynamics induced by electrochemical conversion of MoS2 still hampers its implementation in high energy-density batteries. Here, by combining ab initio density-functional theory (DFT) simulation with electrochemical analysis, we found new sulfur-enriched intermediates that progressively insulate MoS2 electrodes and cause instability from the first discharge cycle. Because of this, the choice of conductive additives is critical for the battery performance. We investigate the mechanistic role of carbon additive by comparing equal loading of standard Super P carbon powder and carbon nanotubes (CNTs). The latter offer a nearly 2-fold increase in capacity and a 45% reduction in resistance along with Coulombic efficiency of over 90%. These insights into the phase changes during MoS2 conversion reactions and stabilization methods provide new solutions for implementing cost-effective metal sulfide electrodes, including Li-S systems in high energy-density batteries.

  9. High-rate aluminium yolk-shell nanoparticle anode for Li-ion battery with long cycle life and ultrahigh capacity.

    PubMed

    Li, Sa; Niu, Junjie; Zhao, Yu Cheng; So, Kang Pyo; Wang, Chao; Wang, Chang An; Li, Ju

    2015-08-05

    Alloy-type anodes such as silicon and tin are gaining popularity in rechargeable Li-ion batteries, but their rate/cycling capabilities should be improved. Here by making yolk-shell nanocomposite of aluminium core (30 nm in diameter) and TiO2 shell (∼3 nm in thickness), with a tunable interspace, we achieve 10 C charge/discharge rate with reversible capacity exceeding 650 mAh g(-1) after 500 cycles, with a 3 mg cm(-2) loading. At 1 C, the capacity is approximately 1,200 mAh g(-1) after 500 cycles. Our one-pot synthesis route is simple and industrially scalable. This result may reverse the lagging status of aluminium among high-theoretical-capacity anodes.

  10. Core-shell structure of hierarchical quasi-hollow MoS2 microspheres encapsulated porous carbon as stable anode for Li-ion batteries.

    PubMed

    Wan, Zhongming; Shao, Jie; Yun, Jiaojiao; Zheng, Huiyuan; Gao, Tian; Shen, Ming; Qu, Qunting; Zheng, Honghe

    2014-12-10

    Monodisperse sulfonated polystyrene (SPS) microspheres are employed as both the template and carbon source to prepare MoS2 quasi-hollow microspheres-encapsulated porous carbon. The synthesis procedure involves the hydrothermal growth of MoS2 ultrathin nanosheets on the surface of SPS microspheres and subsequent annealing to remove SPS core. Incomplete decomposition of SPS during annealing due to the confining effect of MoS2 shells leaves residual porous carbon in the interior. When being evaluated as the anode materials of Li-ion batteries, the as-prepared C@MoS2 microspheres exhibit excellent cycling stability (95% of capacity retained after 100 cycles) and high rate behavior (560 mAh g(-1) at 5 A g(-1)).

  11. From Dispersed Microspheres to Interconnected Nanospheres: Carbon-Sandwiched Monolayered MoS2 as High-Performance Anode of Li-Ion Batteries.

    PubMed

    Shao, Jie; Qu, Qunting; Wan, Zhongming; Gao, Tian; Zuo, Zhichen; Zheng, Honghe

    2015-10-21

    Hierarchical structured carbon@MoS2 (C@MoS2) microspheres and nanospheres composed of carbon-sandwiched monolayered MoS2 building blocks are synthesized through a facile one-pot polyvinylpyrrolidone (PVP) micelle-assisted hydrothermal route. The dimension and carbon content of C@MoS2 spheres are effectively controlled by singly adjusting the concentration of PVP, which plays the dual functions of soft-template and carbon source. As the anode materials of Li-ion batteries, C@MoS2 nanospheres present considerably higher capacity, better rate behavior and cycling stability than C@MoS2 microspheres. The reasons are attributed to the unique interconnected nanospherical morphology and the internal hierarchical construction of C@MoS2 nanospheres with expanded MoS2/carbon interlayer spacing.

  12. CuO single crystal with exposed {001} facets - A highly efficient material for gas sensing and Li-ion battery applications

    PubMed Central

    Su, Dawei; Xie, Xiuqiang; Dou, Shixue; Wang, Guoxiu

    2014-01-01

    Single crystal copper oxide nanoplatelets with a high percentage of {001} facets were synthesized by a facile hydrothermal approach. The as-prepared materials were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, and high resolution transmission microscopy. Via density functional theory calculations, it was found that the {001} facets are active crystal planes. When the single crystal CuO nanoplatelets were applied as an anode material in Li-ion batteries, they demonstrated outstanding electrochemical performance with high lithium storage capacity, satisfactory cyclability, and excellent high rate capacity. When used as a sensing material in gas sensors, they exhibited a superior sensitivity towards toxic and flammable gases. PMID:25169039

  13. Ternary Cu₂SnS₃ cabbage-like nanostructures: large-scale synthesis and their application in Li-ion batteries with superior reversible capacity.

    PubMed

    Qu, Baihua; Li, Hongxing; Zhang, Ming; Mei, Lin; Chen, Libao; Wang, Yanguo; Li, Qiuhong; Wang, Taihong

    2011-10-05

    In this paper, novel ternary Cu(2)SnS(3) cabbage-like nanostructures are synthesized on a large scale via a facile solvothermal route. The individual Cu(2)SnS(3) cabbage-like hierarchitecture is constructed from 2D nanosheets with thickness of about 15.6 nm. The Cu(2)SnS(3) electrodes exhibit an initial reversible capacity of 842 mAh g(-1) and still reach 621 mAh g(-1) after 50 cycles. Such an admirable performance could be related to their 3D porous structural features as well as the high electrical conductivity induced by Cu. The electrochemical properties of the 3D hierarchical nanostructures imply its potential application in high energy density Li-ion batteries.

  14. Nanostructured Fe2O3 and CuO composite electrodes for Li ion batteries synthesized and deposited in one step

    NASA Astrophysics Data System (ADS)

    García-Tamayo, E.; Valvo, M.; Lafont, U.; Locati, C.; Munao, D.; Kelder, E. M.

    2011-08-01

    Nanostructured composite electrodes based on iron and copper oxides for applications in Li-ion batteries are produced by Electrostatic spray pyrolysis (ESP). The electrodes are directly formed by electrospraying precursor solutions containing either iron or copper salts dissolved in N-methylpyrrolidone (NMP) together with polyvinylidene fluoride (PVdF) as binder. The morphology and the structure of the deposited electrodes are investigated by X-ray diffraction (XRD) and Transmission electron microscopy (TEM), which show that sub-micrometric deposits are formed as a composite of oxide nanoparticles of a few nanometers in a PVdF polymer matrix. Electrochemical characterization by cyclic voltammetry (CV) and galvanostatic charge-discharge tests demonstrate that the conversion reactions in these electrodes enable initial discharge capacities of about 800 mAh g-1 and 1550 mAh g-1 for CuO and Fe2O3, respectively. The capacity retention in both cases needs further improvements.

  15. Material/element-dependent fluorescence-yield modes on soft X-ray absorption spectroscopy of cathode materials for Li-ion batteries

    DOE PAGES

    Asakura, Daisuke; Hosono, Eiji; Nanba, Yusuke; ...

    2016-03-07

    Here, we evaluate the utilities of fluorescence-yield (FY) modes in soft X-ray absorption spectroscopy (XAS) of several cathodematerials for Li-ion batteries. In the case of total-FY (TFY) XAS for LiNi0.5Mn1.5O4, the line shape of the Mn L3-edge XAS was largely distorted by the self-absorption and saturation effects, while the distortions were less pronounced at the NiL3 edge. The distortions were suppressed for the inverse-partial-FY (IPFY) spectra. We found that, in the cathodematerials, the IPFY XAS is highly effective for the Cr, Mn, and Fe L edges and the TFY and PFY modes are useful enough for the NiL edge whichmore » is far from the O K edge.« less

  16. Material/element-dependent fluorescence-yield modes on soft X-ray absorption spectroscopy of cathode materials for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Asakura, Daisuke; Hosono, Eiji; Nanba, Yusuke; Zhou, Haoshen; Okabayashi, Jun; Ban, Chunmei; Glans, Per-Anders; Guo, Jinghua; Mizokawa, Takashi; Chen, Gang; Achkar, Andrew J.; Hawthron, David G.; Regier, Thomas Z.; Wadati, Hiroki

    2016-03-01

    We evaluate the utilities of fluorescence-yield (FY) modes in soft X-ray absorption spectroscopy (XAS) of several cathode materials for Li-ion batteries. In the case of total-FY (TFY) XAS for LiNi0.5Mn1.5O4, the line shape of the Mn L3-edge XAS was largely distorted by the self-absorption and saturation effects, while the distortions were less pronounced at the Ni L3 edge. The distortions were suppressed for the inverse-partial-FY (IPFY) spectra. We found that, in the cathode materials, the IPFY XAS is highly effective for the Cr, Mn, and Fe L edges and the TFY and PFY modes are useful enough for the Ni L edge which is far from the O K edge.

  17. Freestanding rGO-SWNT-STN Composite Film as an Anode for Li Ion Batteries with High Energy and Power Densities

    PubMed Central

    Song, Taeseup; Choi, Junghyun; Paik, Ungyu

    2015-01-01

    Freestanding Si-Ti-Ni alloy particles/reduced graphene oxide/single wall carbon nanotube composites have been prepared as an anode for lithium ion batteries via a simple filtration method. This composite electrode showed a 9% increase in reversible capacity, a two-fold higher cycle retention at 50 cycles and a two-fold higher rate capability at 2 C compared to pristine Si-Ti-Ni (STN) alloy electrodes. These improvements were attributed to the suppression of the pulverization of the STN active material by the excellent mechanical properties of the reduced graphene oxide-single wall carbon nanotube networks and the enhanced kinetics associated with both electron and Li ion transport.

  18. Freestanding rGO-SWNT-STN Composite Film as an Anode for Li Ion Batteries with High Energy and Power Densities.

    PubMed

    Song, Taeseup; Choi, Junghyun; Paik, Ungyu

    2015-12-18

    Freestanding Si-Ti-Ni alloy particles/reduced graphene oxide/single wall carbon nanotube composites have been prepared as an anode for lithium ion batteries via a simple filtration method. This composite electrode showed a 9% increase in reversible capacity, a two-fold higher cycle retention at 50 cycles and a two-fold higher rate capability at 2 C compared to pristine Si-Ti-Ni (STN) alloy electrodes. These improvements were attributed to the suppression of the pulverization of the STN active material by the excellent mechanical properties of the reduced graphene oxide-single wall carbon nanotube networks and the enhanced kinetics associated with both electron and Li ion transport.

  19. Formation of Sn-M (M=Fe, Al, Ni) alloy nanoparticles by DC arc-discharge and their electrochemical properties as anodes for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Gao, Song; Huang, Hao; Wu, Aimin; Yu, Jieyi; Gao, Jian; Dong, Xinglong; Liu, Chunjing; Cao, Guozhong

    2016-10-01

    A direct current arc-discharge method was applied to prepare the Sn-M (M=Fe, Al, Ni) bi-alloy nanoparticles. Thermodynamic is introduced to analyze the energy circumstances for the formation of the nanoparticles during the physical condensation process. The electrochemical properties of as-prepared Sn-M alloy nanoparticles are systematically investigated as anodes of Li-ion batteries. Among them, Sn-Fe nanoparticles electrode exhibits high Coulomb efficiency (about 71.2%) in the initial charge/discharge (257.9 mA h g-1/366.6 mA h g-1) and optimal cycle stability (a specific reversible capacity of 240 mA h g-1 maintained after 20 cycles) compared with others. Large differences in the electrochemical behaviors indicate that the chemical composition and microstructure of the nanoparticles determine the lithium-ion storage properties and the long-term cyclic stability during the charge/discharge process.

  20. Eutectic Nano-Droplet Template Injection into Bulk Silicon to Construct Porous Frameworks with Concomitant Conformal Coating as Anodes for Li-Ion Batteries

    PubMed Central

    Qu, Fei; Li, Chilin; Wang, Zumin; Wen, Yuren; Richter, Gunther; Strunk, Horst P.

    2015-01-01

    Building porosity in monolithic materials is highly desired to design 3D electrodes, however ex-situ introduction or in-situ generation of nano-scale sacrificial template is still a great challenge. Here Al-Si eutectic droplet templates are uniformly injected into bulk Si through Al-induced solid-solid convection to construct a highly porous Si framework. This process is concomitant with process-inherent conformal coating of ion-conductive oxide. Such an all-in-one method has generated a (continuously processed) high-capacity Si anode integrating longevity and stable electrolyte-anode diaphragm for Li-ion batteries (e.g. a reversible capacity as large as ~1800 mAh/g or ~350 μAh/cm2-μm with a CE of ~99% at 0.1 C after long-term 400 cycles). PMID:25988370

  1. Eutectic nano-droplet template injection into bulk silicon to construct porous frameworks with concomitant conformal coating as anodes for Li-ion batteries.

    PubMed

    Qu, Fei; Li, Chilin; Wang, Zumin; Wen, Yuren; Richter, Gunther; Strunk, Horst P

    2015-05-19

    Building porosity in monolithic materials is highly desired to design 3D electrodes, however ex-situ introduction or in-situ generation of nano-scale sacrificial template is still a great challenge. Here Al-Si eutectic droplet templates are uniformly injected into bulk Si through Al-induced solid-solid convection to construct a highly porous Si framework. This process is concomitant with process-inherent conformal coating of ion-conductive oxide. Such an all-in-one method has generated a (continuously processed) high-capacity Si anode integrating longevity and stable electrolyte-anode diaphragm for Li-ion batteries (e.g. a reversible capacity as large as ~1800 mAh/g or ~350 μAh/cm(2)-μm with a CE of ~99% at 0.1 C after long-term 400 cycles).

  2. Eutectic Nano-Droplet Template Injection into Bulk Silicon to Construct Porous Frameworks with Concomitant Conformal Coating as Anodes for Li-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Qu, Fei; Li, Chilin; Wang, Zumin; Wen, Yuren; Richter, Gunther; Strunk, Horst P.

    2015-05-01

    Building porosity in monolithic materials is highly desired to design 3D electrodes, however ex-situ introduction or in-situ generation of nano-scale sacrificial template is still a great challenge. Here Al-Si eutectic droplet templates are uniformly injected into bulk Si through Al-induced solid-solid convection to construct a highly porous Si framework. This process is concomitant with process-inherent conformal coating of ion-conductive oxide. Such an all-in-one method has generated a (continuously processed) high-capacity Si anode integrating longevity and stable electrolyte-anode diaphragm for Li-ion batteries (e.g. a reversible capacity as large as ~1800 mAh/g or ~350 μAh/cm2-μm with a CE of ~99% at 0.1 C after long-term 400 cycles).

  3. One-step microwave preparation of a Mn3O4 nanoparticles/exfoliated graphite composite as superior anode materials for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhao, Yun; Ma, Canliang; Li, Yong

    2017-04-01

    The fabrication of exfoliated graphite (EG) is highly polluting due to the discharge of large amount of manganese-contained wastewater. Here, a facile and green chemistry route is developed to prepare a Mn3O4 nanoparticles (NPs)/EG composite by artfully tuning the traditional fabrication process of EG. During this treatment, Mn3O4-NPs with high crystallinity and uniform dimension of ∼7 nm are found to be homogeneously and firmly anchored on the surface of EG. The composite as an anode material of Li-ion batteries exhibits favorable electrochemical performances, such as decay-free charge capacity of 655 mAh g-1 extending to 120 cycles and excellent rate capability.

  4. Ternary Cu2SnS3 cabbage-like nanostructures: large-scale synthesis and their application in Li-ion batteries with superior reversible capacity

    NASA Astrophysics Data System (ADS)

    Qu, Baihua; Li, Hongxing; Zhang, Ming; Mei, Lin; Chen, Libao; Wang, Yanguo; Li, Qiuhong; Wang, Taihong

    2011-10-01

    In this paper, novel ternary Cu2SnS3 cabbage-like nanostructures are synthesized on a large scale via a facile solvothermal route. The individual Cu2SnS3 cabbage-like hierarchitecture is constructed from 2D nanosheets with thickness of about 15.6 nm. The Cu2SnS3 electrodes exhibit an initial reversible capacity of 842 mAh g-1 and still reach 621 mAh g-1 after 50 cycles. Such an admirable performance could be related to their 3D porous structural features as well as the high electrical conductivity induced by Cu. The electrochemical properties of the 3D hierarchical nanostructures imply its potential application in high energy density Li-ion batteries.

  5. High-rate aluminium yolk-shell nanoparticle anode for Li-ion battery with long cycle life and ultrahigh capacity

    PubMed Central

    Li, Sa; Niu, Junjie; Zhao, Yu Cheng; So, Kang Pyo; Wang, Chao; Wang, Chang An; Li, Ju

    2015-01-01

    Alloy-type anodes such as silicon and tin are gaining popularity in rechargeable Li-ion batteries, but their rate/cycling capabilities should be improved. Here by making yolk-shell nanocomposite of aluminium core (30 nm in diameter) and TiO2 shell (∼3 nm in thickness), with a tunable interspace, we achieve 10 C charge/discharge rate with reversible capacity exceeding 650 mAh g−1 after 500 cycles, with a 3 mg cm−2 loading. At 1 C, the capacity is approximately 1,200 mAh g−1 after 500 cycles. Our one-pot synthesis route is simple and industrially scalable. This result may reverse the lagging status of aluminium among high-theoretical-capacity anodes. PMID:26243004

  6. Three-dimensionally interconnected TaS3 nanowire network as anode for high-performance flexible Li-ion battery.

    PubMed

    Li, Weihan; Yang, Lei; Wang, Jiaqing; Xiang, Bin; Yu, Yan

    2015-03-18

    Here we demonstrated tantalum trisulfide (TaS3) nanowires as a new self-supported and flexible anode material for Li-ion batteries with high specific capacity and excellent electrochemical cycling. The TaS3 nanofibers were fabricated by a solid state reaction process, delivering a good reversible capacity of ∼400 mAhg(-1) after 100 cycles at 0.1C with only 0.1% decay per cycle compared with the initial charge capacity. Cycled at 10C, it displays a capacity as high as 60 mAh g(-1). The continuous and interconnected TaS3 nanowires not only enable fast access of electrons and ions but also grant the electrode with high mechanical flexibility.

  7. Pomegranate-Structured Conversion-Reaction Cathode with a Built-in Li Source for High-Energy Li-Ion Batteries.

    PubMed

    Fan, Xiulin; Zhu, Yujie; Luo, Chao; Suo, Liumin; Lin, Yan; Gao, Tao; Xu, Kang; Wang, Chunsheng

    2016-05-24

    Transition metal fluorides (such as FeF3 or CoF2) promise significantly higher theoretical capacities (>571 mAh g(-1)) than the cathode materials currently used in Li-ion batteries. However, their practical application faces major challenges that include poor electrochemical reversibility induced by the repeated bond-breaking and formation and the accompanied volume changes and the difficulty of building an internal Li source within the material so that a full Li-ion cell could be assembled at a discharged state without inducing further technical risk and cost issues. In this work, we effectively addressed these challenges by designing and synthesizing, via an aerosol-spray pyrolysis technique, a pomegranate-structured nanocomposite FeM/LiF/C (M = Co, Ni), in which 2-3 nm carbon-coated FeM nanoparticles (∼10 nm in diameter) and LiF nanoparticles (∼20 nm) are uniformly embedded in a porous carbon sphere matrix (100-1000 nm). This uniquely architectured nanocomposite was made possible by the extremely short pyrolysis time (∼1 s) and carbon coating in a high-temperature furnace, which prevented the overgrowth of FeM and LiF in the primordial droplet that serves as the carbon source. The presence of Ni or Co in FeM/LiF/C effectively suppresses the formation of Fe3C and further reduces the metallic particle size. The pomegranate architecture ensures the intimate contact among FeM, LiF, and C, thus significantly enhancing the conversion-reaction kinetics, while the nanopores inside the pomegranate-like carbon matrix, left by solvent evaporation during the pyrolysis, effectively accommodate the volume change of FeM/LiF during charge/discharge. Thus, the FeM/LiF/C nanocomposite shows a high specific capacity of >300 mAh g(-1) for more than 100 charge/discharge cycles, which is one of the best performances among all of the prelithiated metal fluoride cathodes ever reported. The pomegranate-structured FeM/LiF/C with its built-in Li source provides an inspiration to the

  8. Original electrochemical mechanisms of CaSnO{sub 3} and CaSnSiO{sub 5} as anode materials for Li-ion batteries

    SciTech Connect

    Mouyane, M.; Womes, M.; Jumas, J.C.; Olivier-Fourcade, J.; Lippens, P.E.

    2011-11-15

    Calcium stannate (CaSnO{sub 3}) and malayaite (CaSnSiO{sub 5}) were synthesized by means of a high temperature solid-state reaction. Their crystal structures and morphologies were characterized by X-ray diffraction (XRD) and Scanning Electron Microscopy; their electrochemical properties were analyzed by galvanostatic tests. The amorphization of the initial electrode materials was followed by XRD. The first discharge of the oxides CaSnO{sub 3} and CaSnSiO{sub 5} shows a plateau at low potential, which is due to the progressive formation of Li-Ca-Sn and/or Li-Sn alloys as shown by {sup 119}Sn Moessbauer spectroscopy. The results reveal similar electrochemical mechanisms for CaSnO{sub 3} and CaSnSiO{sub 5} but they completely differ from those related to SnO{sub 2}. - Graphical abstract: {sup 119}Sn Moessbauer spectra at the end of the first discharge of CaSnO{sub 3} (dashed line) and CaSnSiO{sub 5} (solid line) anodes for Li-ion batteries. Inset shows that relative amounts of Sn(0) based alloys formed during the first discharge are similar for CaSnO{sub 3} and CaSnSiO{sub 5} pristine materials. Highlights: > CaSnSiO{sub 5} and CaSnO{sub 3} as anode materials for Li-ion batteries. > X-ray diffraction and Moessbauer spectroscopy, to explain the electrochemical mechanisms. > Similar mechanisms for the two compounds but different from those of SnO{sub 2} due to Ca.

  9. Nanoscale coating of LiMO2 (M = Ni, Co, Mn) nanobelts with Li+-conductive Li2TiO3: toward better rate capabilities for Li-ion batteries.

    PubMed

    Lu, Jun; Peng, Qing; Wang, Weiyang; Nan, Caiyun; Li, Lihong; Li, Yadong

    2013-02-06

    By using a novel coating approach based on the reaction between MC(2)O(4)·xH(2)O and Ti(OC(4)H(9))(4), a series of nanoscale Li(2)TiO(3)-coated LiMO(2) nanobelts with varied Ni, Co, and Mn contents was prepared for the first time. The complete, thin Li(2)TiO(3) coating layer strongly adheres to the host material and has a 3D diffusion path for Li(+) ions. It is doped with Ni(2+) and Co(3+) ions in addition to Ti(4+) in LiMO(2), both of which were found to favor Li(+)-ion transfer at the interface. As a result, the coated nanobelts show improved rate, cycling, and thermal capabilities when used as the cathode for Li-ion battery.

  10. Au-coated carbon electrodes for aprotic Li-O2 batteries with extended cycle life: The key issue of the Li-ion source

    NASA Astrophysics Data System (ADS)

    Balasubramanian, P.; Marinaro, M.; Theil, S.; Wohlfahrt-Mehrens, M.; Jörissen, L.

    2015-03-01

    Despite having the capability of achieving high energy densities, Li-O2 batteries still suffer from many inherent disadvantages such as electrolyte stability, sluggish kinetics of the oxygen reduction/evolution reactions in the aprotic environment and electrodes stability. Our research demonstrates by combining electrochemical and analytical techniques that the performances of Li-O2 batteries based on LiTFSI-Tetraglyme electrolyte and Au-coated carbon electrodes are manly hindered by the instability of the lithium metal anode in the oxygen-saturated environment. Although the Au-coated carbon electrodes are able to minimize side reactions arising from electrolyte decomposition, oxygen crossover on the lithium metal results in the formation of decomposition products (LiOH, Li2CO3) that are clearly detrimental for the battery performance. Finally it is demonstrated that the Au-coated carbon electrodes in combination with the LiTFSI-Tetraglyme electrolyte can sustain extended cycling (100 cycles) when a more stable source of Li-ion, namely lithium iron phosphate (LFP), is used.

  11. Combinatorial Study of the Li-Ni-Mn-Co Oxide Pseudoquaternary System for Use in Li-Ion Battery Materials Research.

    PubMed

    Brown, Colby R; McCalla, Eric; Watson, Cody; Dahn, J R

    2015-06-08

    Combinatorial synthesis has proven extremely effective in screening for new battery materials for Li-ion battery electrodes. Here, a study in the Li-Ni-Mn-Co-O system is presented, wherein samples with nearly 800 distinct compositions were prepared using a combinatorial and high-throughput method to screen for single-phase materials of high interest as next generation positive electrode materials. X-ray diffraction is used to determine the crystal structure of each sample. The Gibbs' pyramid representing the pseudoquaternary system was studied by making samples within three distinct pseudoternary planes defined at fractional cobalt metal contents of 10%, 20%, and 30% within the Li-Ni-Mn-Co-O system. Two large single-phase regions were observed in the system: the layered region (ordered rocksalt) and cubic spinel region; both of which are of interest for next-generation positive electrodes in lithium-ion batteries. These regions were each found to stretch over a wide range of compositions within the Li-Ni-Mn-Co-O pseudoquaternary system and had complex coexistence regions existing between them. The sample cooling rate was found to have a significant effect on the position of the phase boundaries of the single-phase regions. The results of this work are intended to guide further research by narrowing the composition ranges worthy of study and to illustrate the broad range of applications where solution-based combinatorial synthesis can have significant impact.

  12. Characterization of polyperinaphthalenic organic semiconductor thin films prepared by excimer laser ablation and application to anode electrodes for ultrathin rechargeable Li ion batteries

    NASA Astrophysics Data System (ADS)

    Nishio, Satoru; Tamura, Kazuyuki; Tsujine, Yukari; Fukao, Tomoko; Murata, Jun; Nakano, Masyoshi; Matsuzaki, Akiyoshi; Sato, Hiroyasu; Ando, Nobuo; Hato, Yukinori

    2001-06-01

    Polyperinaphthlenic organic semiconductor (PPNOS) films with polyperinaphthalene (PPN) structure for anode electrodes for ultra thin rechargeable Li ion batteries are prepared on temperature-controlled substrates by excimer laser ablation (ELA) of 3, 4, 9, 10-perylenetetracarboxylic dianhydride (PTCDA) or mixture target of PTCDA with a few metal powder (PTCDA/M) using a 308 nm (XeCl) pulsed excimer laser beam. It is demonstrated that ELA of PTCDA at a fluence of less than 0.5 Jcm-2pulse-1 enables us to obtain PPNOS on a substrate at 300 degree(s)C. It is found that ELA of PTCDA/Co at a fluence of more than 1.0 Jcm-4pulse-1 leads to produce effectively fragments without anhydride groups of PTCDA. FT-IR and Raman spectroscopies reveal that ELA of PTCDA/Co enables us to obtain better-defined PPN films with electric conductivity of approximately 1x10-1Scm-1 on a substrate at 300 degree(s)C. Electrochemical doping characteristics of lithium ion into the films obtained by ELA are performed to verify the lithium doping mechanism by in situ Raman spectroscopy. Furthermore a trial piece of thin lithium ion rechargeable battery with the films is fabricated to appraise performance of the films as anode thin electrodes for ultra thin rechargeable lithium ion batteries.

  13. New understanding of Li3VO4/C as potential anode for Li-ion batteries: Preparation, structure characterization and lithium insertion mechanism

    NASA Astrophysics Data System (ADS)

    Liang, Zhiyong; Lin, Zhiping; Zhao, Yanming; Dong, Youzhong; Kuang, Quan; Lin, Xinghao; Liu, Xudong; Yan, Danlin

    2015-01-01

    The article gives a totally new understanding about lithium insertion behavior of Li3VO4 as potential anode material for Li-ion batteries. The carbon-coated Li3VO4 (Li3VO4/C) sample was synthesized firstly using simple solid-state method. X-ray diffraction, Raman spectra and Rietveld refinement results show that single-phase Li3VO4/C can be obtained even under the presence of carbon and reducing atmosphere. The final product demonstrates a favorable electronic conductivity with 6.67% residual carbon. Electrochemical testing shows that Li3VO4/C holds both much higher specific capacity and better electrochemical performance than that of carbon-free Li3VO4 sample. The Li3VO4/C electrode display a discharge capacity of 738.5 mAh g-1 and a charge (reversible) capacity of 547.1 mAh g-1 with a high initial coulombic efficiency of 78.0% in the first cycle. First-principles calculation and GITT results illustrate that the maximum embeddable Li-ion number in a single cell is 3 corresponding to the change of V5+ to V2+, and the Li-inserted sites is predicted by first-principles calculations. Furthermore, lithium insertion/de-insertion mechanism of Li3VO4/C is studied by in-situ XRD, and the results surely confirm that Li3VO4/C undergoes a reversible insertion/de-insertion mechanism during discharge/charge process.

  14. Iron-based electrodes meet water-based preparation, fluorine- free electrolyte and binder: a chance for more sustainable Li-ion batteries?

    PubMed

    Valvo, Mario; Liivat, Anti; Eriksson, Henrik; Tai, Cheuk-Wai; Edström, Kristina

    2017-03-10

    Environmentally friendly and cost-effective Li-ion cells are fabricated with abundant, non-toxic LiFePO4 cathodes and Fe oxide anodes. A water-soluble alginate binder is used for coating both electrodes to reduce the environmental footprint. Critical reactivity of LiPF6-based electrolytes toward possible H2O traces in water-processed electrodes is overcome by using a LiBOB salt. The absence of fluorine in both electrolyte and binder is a cornerstone for improved cell chemistry and is demonstrated to result in stable battery operation. A dedicated approach to better exploit conversion-type anodes is also disclosed. The issue of large voltage hysteresis upon conversion/de-conversion is circumvented by operating iron oxide in a deeply lithiated Fe/Li2O form. Li-ion cells with energy efficiencies up to 92% are demonstrated when LiFePO4 is cycled versus such anodes prepared via a pre-lithiation procedure. These cells show an average energy efficiency of ≈90.66% and a mean coulombic efficiency of ≈99.65% over 320 cycles at current densities of 0.1, 0.2 and 0.3 mAcm-2, retaining nearly 100% of their initial discharge capacity and providing an unmatched operation potential of ≈2.85 V for this combination of active materials. No occurrence of Li-plating has been detected in three-electrode cells at charging rates of ≈5C. Excellent rate capabilities up to ≈30C are achieved thanks to the exploitation of size effects due to small Fe nanoparticles and their reactive boundaries.

  15. Platform Li-Ion Battery Risk Assessment Tool: Cooperative Research and Development Final Report, CRADA Number CRD-01-406

    SciTech Connect

    Santhanagopalan, S.

    2012-07-01

    The pressure within a lithium-ion cell changes due to various chemical reactions. When a battery undergoes an unintended short circuit, the pressure changes are drastic - and often lead to uncontrolled failure of the cells. As part of work for others with Oceanit Laboratories Inc. for the NAVY STTR, NREL built Computational Fluid Dynamic (CFD) simulations that can identify potential weak spots in the battery during such events, as well as propose designs to control violent failure of batteries.

  16. Platform Li-Ion Battery Risk Assessment Tool: Cooperative Research and Development Final Report, CRADA Number CRD-10-407

    SciTech Connect

    Smith, K.

    2012-01-01

    Creare was awarded a Phase 1 STTR contract from the US Office of Naval Research, with a seven month period of performance from 6/28/2010 to 1/28/2011. The objectives of the STTR were to determine the feasibility of developing a software package for estimating reliability of battery packs, and develop a user interface to allow the designer to assess the overall impact on battery packs and host platforms for cell-level faults. NREL served as sub-tier partner to Creare, providing battery modeling and battery thermal safety expertise.

  17. Cradle-to-Gate Emissions from a Commercial Electric Vehicle Li-Ion Battery: A Comparative Analysis.

    PubMed

    Kim, Hyung Chul; Wallington, Timothy J; Arsenault, Renata; Bae, Chulheung; Ahn, Suckwon; Lee, Jaeran

    2016-07-19

    We report the first cradle-to-gate emissions assessment for a mass-produced battery in a commercial battery electric vehicle (BEV); the lithium-ion battery pack used in the Ford Focus BEV. The assessment was based on the bill of materials and primary data from the battery industry, that is, energy and materials input data from the battery cell and pack supplier. Cradle-to-gate greenhouse gas (GHG) emissions for the 24 kWh Ford Focus lithium-ion battery are 3.4 metric tonnes of CO2-eq (140 kg CO2-eq per kWh or 11 kg CO2-eq per kg of battery). Cell manufacturing is the key contributor accounting for 45% of the GHG emissions. We review published studies of GHG emissions associated with battery production to compare and contrast with our results. Extending the system boundary to include the entire vehicle we estimate a 39% increase in the cradle-to-gate GHG emissions of the Focus BEV compared to the Focus internal combustion engine vehicle (ICEV), which falls within the range of literature estimates of 27-63% increases for hypothetical nonproduction BEVs. Our results reduce the uncertainties associated with assessment of BEV battery production, serve to identify opportunities to reduce emissions, and confirm previous assessments that BEVs have great potential to reduce GHG emissions over the full life cycle and provide local emission free mobility.

  18. Hierarchical nanocomposites of vanadium oxide thin film anchored on graphene as high-performance cathodes in li-ion batteries.

    PubMed

    Li, Zhe-Fei; Zhang, Hangyu; Liu, Qi; Liu, Yadong; Stanciu, Lia; Xie, Jian

    2014-11-12

    Hierarchical nanocomposites of V2O5 thin film anchored on graphene sheets were prepared by slow hydrolysis of vanadyl triisobutoxide on graphene oxide followed by thermal treatment. The nanocomposite possessed a hierarchical structure of thin V2O5 film uniformly grown on graphene, leading to a high specific surface area and a good electronic/ionic conducting path. When used as the cathode material, the graphene/V2O5 nanosheet nanocomposites exhibit higher specific capacity, better rate performance, and longer cycle life, as compared to the pure V2O5. The nanocomposite cathode was able to deliver a specific capacity of 243 mAh/g, 191 mAh/g, and 86 mAh/g at a current density of 50 mA/g, 500 mA/g, and 15 A/g, respectively. Even after 300 cycles at 500 mA/g, the composite electrode still exhibited a specific capacity of ∼ 122 mAh/g, which corresponds to ∼ 64% of its initial capacity. This enhanced electrochemical performance can be attributed to facile electron transport between graphene and V2O5, fast Li-ion diffusion within the electrode, the high surface area of the composites, and a pore structure that can accommodate the volume change during lithiation/delithiation, which results from the unique hierarchical nanostructure of the V2O5 anchored on graphene.

  19. Lithiation of SiO2 in Li-ion batteries: in situ transmission electron microscopy experiments and theoretical studies.

    PubMed

    Zhang, Yuefei; Li, Yujie; Wang, Zhenyu; Zhao, Kejie

    2014-12-10

    Surface passivation has become a routine strategy of design to mitigate the chemomechanical degradation of high-capacity electrodes by regulating the electrochemical process of lithiation and managing the associated deformation dynamics. Oxides are the prevalent materials used for surface coating. Lithiation of SiO2 leads to drastic changes in its electro-chemo-mechanical properties from an electronic insulator and a brittle material in its pure form to a conductor and a material sustainable of large deformation in the lithiated form. We synthesized SiO2-coated SiC nanowires that allow us to focus on the lithiation behavior of the sub-10 nm SiO2 thin coating. We systematically investigate the structural evolution, the electronic conduction and ionic transport properties, and the deformation pattern of lithiated SiO2 through coordinated in situ transmission electron microcopy experiments, first-principles computation, and continuum theories. We observe the stress-mediated reaction that induces inhomogeneous growth of SiO2. The results provide fundamental perspectives on the chemomechanical behaviors of oxides used in the surface coating of Li-ion technologies.

  20. How much does size really matter? Exploring the limits of graphene as Li ion battery anode material

    NASA Astrophysics Data System (ADS)

    Sun, H.; Varzi, A.; Pellegrini, V.; Dinh, D. A.; Raccichini, R.; Del Rio-Castillo, A. E.; Prato, M.; Colombo, M.; Cingolani, R.; Scrosati, B.; Passerini, S.; Bonaccorso, F.

    2017-02-01

    We unravel the role of flake dimensionality on the lithiation/de-lithiation processes and electrochemical performance of anodes based on few-(FLG) and multi-layer graphene (MLG) flakes prepared by liquid phase exfoliation (LPE) of pristine graphite. The flakes are sorted by lateral size (from 380 to 75 nm) and thickness from 20 (MLG) to 2 nm (FLG) exploiting a sedimentation-based separation in centrifugal field and, finally, deposited onto Cu disks for the realization of four binder-free anodes. The electrochemical results show that decreasing lateral size and thickness leads to an increase of the initial specific capacity from ≈590 to ≈1270mAhg-1. However, an increasing irreversible capacity is also associated to the reduction of flakes' size. We find, in addition, that the preferential Li ions storage by adsorption rather than intercalation in small lateral size (<100 nm) FLG flakes has a detrimental effect on the average de-lithiation voltage, resulting on low voltage efficiency of these anodes. We believe that the results reported in this work, provide the guidelines for the practical exploitation of graphene-based electrodes.

  1. Physically-based reduced-order capacity loss model for graphite anodes in Li-ion battery cells

    NASA Astrophysics Data System (ADS)

    Jin, Xing; Vora, Ashish; Hoshing, Vaidehi; Saha, Tridib; Shaver, Gregory; García, R. Edwin; Wasynczuk, Oleg; Varigonda, Subbarao

    2017-02-01

    Physically-based Li-ion electrochemical cell models have been shown capable of predicting cell performance and degradation, but are computationally expensive for optimization-oriented design applications. Faster empirical models have been developed from experimental data, but are not generalizable to operating conditions outside of the range established by the calibration data. In this paper, a reduced-order capacity-loss model for graphite anodes is derived based upon the salient physical loss mechanisms to improve computational efficiency without sacrificing model fidelity. This model captures the two primary degradation mechanisms that occur in the graphite anode of a typical lithium ion cell: a) capacity loss due to Solid Electrolyte Interface (SEI) layer growth, and b) capacity loss due to isolation of active material. The model is calibrated and validated for a commercial 2.3-Ah cell with a Lithium Iron Phosphate (LFP) cathode and graphite anode. One data set is used for calibration, another four experimental data sets are used for validation. The model matches experimental capacity degradation results within a 20% error. Moreover, the reported model is 2400× faster than currently existing more complex physically-based electrochemical models that are only slightly more accurate (in some cases).

  2. Floating growth of large-scale freestanding TiO2 nanorod films at the gas-liquid interface for additive-free Li-ion battery applications.

    PubMed

    Xia, Hua-Rong; Li, Jia; Peng, Chen; Sun, Wen-Tao; Li, Long-Wei; Peng, Lian-Mao

    2014-10-22

    The floating growth process of large-scale freestanding TiO2 nanorod films at the gas-liquid interface was investigated. On the basis of the experiments, a self-templated growth scenario was developed to account for the self-assembly process. In the scenario, titanium complexes function not only as the Ti source for the growth of TiO2 but also as a soft template provider for the floating growth. According to the scenario, several new recipes of preparing freestanding TiO2 nanorod films at the gas-liquid interface were developed. The freestanding film was applied to a lithium ion battery as a binder-free and conducting agent-free anode, and good cyclability was obtained. This work may pave a new way to floating and freestanding TiO2 and other semiconductor materials, which has great potential not only in basic science but also in the applications such as materials engineering, Li-ion battery, photocatalyst, dye-sensitized solar cell, and flexible electronics.

  3. Hierarchical Porous and Intercalation-Type V2O3 for High-Performance Anode Materials of Li-Ion Batteries.

    PubMed

    Liu, Pengcheng; Zhu, Kongjun; Xu, Yuan; Bian, Kan; Wang, Jing; Tai, Guoan; Gao, Yanfeng; Luo, Hongjie; Lu, Li; Liu, Jinsong

    2017-03-28

    As intercalation-type anode materials for Li-ion batteries (LIBs), the commercially-used graphite and Li4Ti5O12 can exhibit good cycling and rate properties, but their theoretical specific capacities are too low to meet the ever-growing demands of high-energy applications (such as electrical vehicles). So, it becomes a very attractive and interesting issue if the new intercalation-type anode materials with larger capacity can be found and developed. Herein, we design and synthesize the novel 3D hierarchical porous V2O3@C micro/nano-structures, consisting of crumpled nanosheets, by self-reducing under annealing from the similar structural VO2 (B)@C precursors without adding any other reducing reagent and gas. Excitingly, it is found for the first time by the ex situ XRD technology that V2O3 is a new promising intercalation-type anode material for LIBs with a high capacity. V2O3@C micro/nano-structures can deliver a large capacity of 732 mAh/g without capacity loss at 100 mA/g even after 136 cycles. Moreover, they also exhibit the excellent cycling and rate performance. Furthermore, we also elaborate the application of V2O3 for Na-ion batteries (NIBs) for the first time, and excitingly find that V2O3@C micro/nano-structures are also one new and promising anode material for NIBs.

  4. In situ analysis of capacity fade in thin-film anodes for high performance Li-ion all-solid-state batteries

    NASA Astrophysics Data System (ADS)

    Leite, Marina S.; Gong, Chen; Ruzmetov, Dmitry; Talin, A. Alec

    There is still a pressing need to understand how the solid-interfaces in Li-ion all-solid-batteries form, including their chemical composition and electrical characteristics. In order to resolve the origin of the degradation mechanism in Al anodes, we combine in situ scanning electron microscopy in ultra-high vacuum with electrochemical cycling, in addition to ex situ characterization of the morphological, chemical, and electrical changes of the Al anodes upon lithiation. An AlLi alloy capped by a stable Al-Li-O is formed on the top surface of the anode, trapping Li, which results in the capacity fade, from 48.0 to 41.5 μ.Ah/cm2 in two cycles. The addition of a Cu capping layer is insufficient to prevent the device degradation because of the fast Li diffusion within Al. Yet, Si present extremely stable cycling: >92% of capacity retention after 100 cycles, with average Coulombic efficiency of 98%. Our in situ measurements represent a new platform for probing the real-time degradation of electrodes in all-solid-state batteries for energy storage devices.

  5. Cathodically induced antimony for rechargeable Li-ion and Na-ion batteries: The influences of hexagonal and amorphous phase

    NASA Astrophysics Data System (ADS)

    Yang, Yingchang; Yang, Xuming; Zhang, Yan; Hou, Hongshuai; Jing, Mingjun; Zhu, Yirong; Fang, Laibing; Chen, Qiyuan; Ji, Xiaobo

    2015-05-01

    Cathodic corrosion, a green electrochemical method, has been employed to obtain Sb nanomaterials utilized as anode material for lithium-ion batteries and sodium-ion batteries. Interestingly, two different corrosion mechanisms are found, coming from the impact of electrolyte, resulting in the formation of hexagonal and amorphous Sb in aqueous and organic solution, respectively. With the help of water-soluble carboxymethyl cellulose binder and the electrolyte additive fluoroethylene carbonate, both hexagonal and amorphous Sb electrodes exhibit good cycling stability when utilized as anode materials for lithium-ion batteries and sodium-ion batteries. Additionally, both the hexagonal and amorphous Sb electrodes show very good rate capability in lithium-ion batteries. Even at high current density (2000 mA g-1), the hexagonal and amorphous Sb give reversible capacities of 422 and 379 mA h g-1, respectively. Surprisingly, when used as anode materials for sodium-ion batteries, the hexagonal Sb electrode exhibits a good rate performance of 632, 625, 569, 515 and 426 mA h g-1 at a current density of 100, 200, 500, 1000, and 2000 mA g-1, respectively. However, limited rate performance is observed from the amorphous Sb electrode in case of sodium-ion battery due to the large impedance.

  6. Three-dimensional honeycomb-like networks of birnessite manganese oxide assembled by ultrathin two-dimensional nanosheets with enhanced Li-ion battery performances

    NASA Astrophysics Data System (ADS)

    Dang, Liyun; Wei, Chengzhen; Ma, Haifeng; Lu, Qingyi; Gao, Feng

    2015-04-01

    Three-dimensional (3D) honeycomb-like birnessite networks composed of ultrathin two-dimensional (2D) nanosheets were firstly synthesized through a facile and low-cost synthetic route. By using carbon microspheres as a template instead of graphene, hierarchical birnessite structures assembled by ultrathin nanosheets including york-shell and hollow structures were obtained besides the ultrathin birnessite nanosheets with a thickness of about 0.7 nm. By assembling carbon spheres into an ordered 3D array, novel 3D honeycomb-like birnessite structures assembled by ultrathin nanosheets were firstly prepared. When evaluated as an anode material for Li-ion batteries, the 3D honeycomb-like networks show enhanced electrochemical performances with high capacities, excellent cycling stability and good rate capability, which can be ascribed to the novel 3D honeycomb-like macroporous structure with a 3D inverse opal structure, well-ordered macropores, interconnected walls and a regular periodicity.Three-dimensional (3D) honeycomb-like birnessite networks composed of ultrathin two-dimensional (2D) nanosheets were firstly synthesized through a facile and low-cost synthetic route. By using carbon microspheres as a template instead of graphene, hierarchical birnessite structures assembled by ultrathin nanosheets including york-shell and hollow structures were obtained besides the ultrathin birnessite nanosheets with a thickness of about 0.7 nm. By assembling carbon spheres into an ordered 3D array, novel 3D honeycomb-like birnessite structures assembled by ultrathin nanosheets were firstly prepared. When evaluated as an anode material for Li-ion batteries, the 3D honeycomb-like networks show enhanced electrochemical performances with high capacities, excellent cycling stability and good rate capability, which can be ascribed to the novel 3D honeycomb-like macroporous structure with a 3D inverse opal structure, well-ordered macropores, interconnected walls and a regular periodicity

  7. Metal-organic framework derived Fe2O3@NiCo2O4 porous nanocages as anode materials for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Huang, Gang; Zhang, Leilei; Zhang, Feifei; Wang, Limin

    2014-04-01

    Metal-organic frameworks (MOFs) with high surface areas and uniform microporous structures have shown potential application in many fields. Here we report a facial strategy to synthesize Fe2O3@NiCo2O4 porous nanocages by annealing core-shell Co3[Fe(CN)6]2@Ni3[Co(CN)6]2 nanocubes in air. The obtained samples have been systematically characterized by XRD, SEM, TEM and N2 adsorption-desorption analysis. The results show that the Fe2O3@NiCo2O4 porous nanocages have an average diameter of 213 nm and a shell thickness of about 30 nm. As anode materials for Li-ion batteries, the Fe2O3@NiCo2O4 porous nanocages exhibit a high initial discharge capacity of 1311.4 mA h g-1 at a current density of 100 mA g-1 (about 0.1 C). The capacity is retained at 1079.6 mA h g-1 after 100 cycles. The synergistic effect of the different components and the porous hollow structure contributes to the outstanding performance of the composite electrode.Metal-organic frameworks (MOFs) with high surface areas and uniform microporous structures have shown potential application in many fields. Here we report a facial strategy to synthesize Fe2O3@NiCo2O4 porous nanocages by annealing core-shell Co3[Fe(CN)6]2@Ni3[Co(CN)6]2 nanocubes in air. The obtained samples have been systematically characterized by XRD, SEM, TEM and N2 adsorption-desorption analysis. The results show that the Fe2O3@NiCo2O4 porous nanocages have an average diameter of 213 nm and a shell thickness of about 30 nm. As anode materials for Li-ion batteries, the Fe2O3@NiCo2O4 porous nanocages exhibit a high initial discharge capacity of 1311.4 mA h g-1 at a current density of 100 mA g-1 (about 0.1 C). The capacity is retained at 1079.6 mA h g-1 after 100 cycles. The synergistic effect of the different components and the porous hollow structure contributes to the outstanding performance of the composite electrode. Electronic supplementary information (ESI) available: Detailed supplementary figures. See DOI: 10.1039/c3nr06041a

  8. Solvent decompositions and physical properties of decomposition compounds in Li-ion battery electrolytes studied by DFT calculations and molecular dynamics simulations.

    PubMed

    Tasaki, Ken

    2005-02-24

    The density functional theory (DFT) calculations have been performed for the reduction decompositions of solvents widely used in Li-ion secondary battery electrolytes, ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonates (DMC), ethyl methyl carbonate (EMC), and diethyl carbonate (DEC), including a typical electrolyte additive, vinylene carbonate (VC), at the level of B3LYP/6-311+G(2d,p), both in the gas phase and solution using the polarizable conductor calculation model. In the gas phase, the first electron reduction for the cyclic carbonates and for the linear carbonates is found to be exothermic and endothermic, respectively, while the second electron reduction is endothermic for all the compounds examined. On the contrary, in solution both first and second electron reductions are exothermic for all the compounds. Among the solvents and the additive examined, the likelihood of undergoing the first electron reduction in solution was found in the order of EC > PC > VC > DMC > EMC > DEC with EC being the most likely reduced. VC, on the other hand, is most likely to undergo the second electron reduction among the compounds, in the order of VC > EC > PC. Based on the results, the experimentally demonstrated effectiveness of VC as an excellent electrolyte additive was discussed. The bulk thermodynamic properties of two dilithium alkylene glycol dicarbonates, dilithium ethylene glycol dicarbonate (Li-EDC) and dilithium 1,2-propylene glycol dicarbonate (Li-PDC), as the major component of solid-electrolyte interface (SEI) films were also examined through molecular dynamics (MD) simulations in order to understand the stability of the SEI film. It was found that film produced from a decomposition of EC, modeled by Li-EDC, has a higher density, more cohesive energy, and less solubility to the solvent than the film produced from decomposition of PC, Li-PDC. Further, MD simulations of the interface between the decomposition compound and graphite suggested

  9. Bottom-up preparation of MgH2 nanoparticles with enhanced cycle life stability during electrochemical conversion in Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Oumellal, Yassine; Zlotea, Claudia; Bastide, Stéphane; Cachet-Vivier, Christine; Léonel, Eric; Sengmany, Stéphane; Leroy, Eric; Aymard, Luc; Bonnet, Jean-Pierre; Latroche, Michel

    2014-11-01

    A promising anode material for Li-ion batteries based on MgH2 with around 5 nm average particles size was synthesized by a bottom-up method. A series of several composites containing MgH2 nanoparticles well dispersed into a porous carbon host has been prepared with different metal content up to 70 wt%. A narrow particle size distribution (1-10 nm) of the MgH2 nanospecies with around 5.5 nm average size can be controlled up to 50 wt% Mg. After a ball milling treatment under Ar, the composite containing 50 wt% Mg shows an impressive cycle life stability with a good electrochemical capacity of around 500 mA h g-1. Moreover, the nanoparticles' size distribution is stable during cycling.A promising anode material for Li-ion batteries based on MgH2 with around 5 nm average particles size was synthesized by a bottom-up method. A series of several composites containing MgH2 nanoparticles well dispersed into a porous carbon host has been prepared with different metal content up to 70 wt%. A narrow particle size distribution (1-10 nm) of the MgH2 nanospecies with around 5.5 nm average size can be controlled up to 50 wt% Mg. After a ball milling treatment under Ar, the composite containing 50 wt% Mg shows an impressive cycle life stability with a good electrochemical capacity of around 500 mA h g-1. Moreover, the nanoparticles' size distribution is stable during cycling. Electronic supplementary information (ESI) available: (a) Dark field TEM image and the corresponding SAED electron diffraction pattern of the as-synthesized 15MgH2@HSAG-500, (b) N2 sorption isotherms at 77 K of all as-synthesized xMgH2@HSAG-500 composites, (c) N2 sorption isotherms at 77 K of the 50MgH2@HSAG-500 composite before and after ball milling, (d) electrochemical characterization of all as-synthesized xMgH2@HSAG-500 composites for the first cycle, where x is 15, 25, 50 and 70 wt% Mg. (e) Comparison between the capacities of two ball milled xMgH2@HSAG-500 composites with x = 50 and 70 wt% Mg. (f

  10. Enhanced electrochemical performance by unfolding a few wings of graphene nanoribbons of multiwalled carbon nanotubes as an anode material for Li ion battery applications

    NASA Astrophysics Data System (ADS)

    Sahoo, Madhumita; Ramaprabhu, S.

    2015-08-01

    The present work provides an incredible route towards achieving the ideal Li ion battery anode material with high specific capacity and rate capability as a result of unraveling a few upper layers of multiwalled carbon nanotubes (MWNTs) as graphene nanoribbons attached to the core MWNT. These partially exfoliated nanotubes when used as an anode material show an 880 mA h g-1 capacity at a 100 mA g-1 current density and high rate capability by delivering a stable 157 mA h g-1 capacity at a current density of 10 A g-1. The enhanced performance of this anode material can be attributed to the synergistic effect of the homogeneous distribution of the hybrid carbon nanostructure of 1-D multiwalled carbon nanotubes and 2-D graphene nanoribbons. This configuration provides a large available surface area, high electrical conductivity and a high number of defect sites, leading to improved Li intercalation with a better transfer rate compared to only graphene, multiwalled carbon nanotubes or other reported combinations of the two.The present work provides an incredible route towards achieving the ideal Li ion battery anode material with high specific capacity and rate capability as a result of unraveling a few upper layers of multiwalled carbon nanotubes (MWNTs) as graphene nanoribbons attached to the core MWNT. These partially exfoliated nanotubes when used as an anode material show an 880 mA h g-1 capacity at a 100 mA g-1 current density and high rate capability by delivering a stable 157 mA h g-1 capacity at a current density of 10 A g-1. The enhanced performance of this anode material can be attributed to the synergistic effect of the homogeneous distribution of the hybrid carbon nanostructure of 1-D multiwalled carbon nanotubes and 2-D graphene nanoribbons. This configuration provides a large available surface area, high electrical conductivity and a high number of defect sites, leading to improved Li intercalation with a better transfer rate compared to only graphene

  11. Effets du vieillisement de la batterie Li-ion sur les performances d'un vehicule recreatif hybride branchable a trois roues

    NASA Astrophysics Data System (ADS)

    Nadeau, Jonathan

    La prediction de l'evolution du vieillissement de la batterie lithium-ion est source d'un grand defi, dans les applications liees aux vehicules electriques et hybrides. Sa meconnaissance est un risque considerable compromettant la viabilite d'un tel systeme. Invoquant les couts substantiels de la densite d'energie, liee a la degradation considerable des performances de la batterie au cours de sa duree de vie, il devient important d'en tenir compte des le processus de conception. La dependance de la strategie de controle du vehicule aux parametres de la batterie justifie aussi la necessite d'une telle prediction. Il est connu que le vieillissement, sensible aux facteurs tels que le courant, la temperature et la profondeur de decharge, a un impact considerable sur la perte de capacite de la batterie ainsi que sur l'augmentation de la resistance interne. Le premier est directement lie a l'autonomie electrique du vehicule, alors que le second mene a une surchauffe de la batterie, a une augmentation des pertes en puissance qui se manifeste par une diminution de la tension de bus. A cet egard, implique dans la conception d'un vehicule recreatif hybride branchable a trois roues, le Centre de Technologies Avancees s'interesse a l'etude du vieillissement de la batterie Li-ion pour une telle application. Pour ce faire, au contraire de la plupart des estimations empiriques de la duree de vie, basees sur des profils de decharge a courant constant, un profil de courant plus approprie pour l'application donnee, base sur un cycle de vitesse representatif de la conduite d'une motocyclette, a ete utilise. Par le biais d'un simulateur complet du vehicule, le cycle de courant a ete extrait du cycle de vitesse. Ainsi, les travaux menes impliquent l'analyse experimentale de la decharge cyclique de quatre cellules LiFePO 4. Pendant plus de 1400 cycles, un banc d'essai complet a permis l'acquisition de la capacite, de la resistance interne, du courant, de la tension ainsi que de la

  12. NASA/GSFC Testing of Li-Ion Cells: Update

    NASA Technical Reports Server (NTRS)

    Vaidyanathan, Hari; Rao, Gopalakrishna M.

    2001-01-01

    This viewgraph paper presents a report on the ongoing testing of Lithium Ion (Li-Ion) cells. Characterizes cells according to capacity, self-discharge, and mid-discharge voltage. Determines the cycling performance of Li-Ion cells as batteries according to number of cycles, charge voltage, and temperature.

  13. Probing the failure mechanism of nanoscale LiFePO{sub 4} for Li-ion batteries

    SciTech Connect

    Gu, Meng; Yan, Pengfei; Wang, Chongmin; Shi, Wei; Zheng, Jianming; Zhang, Ji-guang

    2015-05-18

    LiFePO{sub 4} is a high power rate cathode material for lithium ion battery and shows remarkable capacity retention, featuring a 91% capacity retention after 3300 cycles. In this work, we use high-resolution transmission electron microscopy and electron energy loss spectroscopy to study the gradual capacity fading mechanism of LiFePO{sub 4} materials. We found that upon prolonged electrochemical cycling of the battery, the LiFePO{sub 4} cathode shows surface amorphization and loss of oxygen species, which directly contribute to the gradual capacity fading of the battery. The finding can guide the design and improvement of LiFePO{sub 4} cathode for high-energy and high-power rechargeable battery for electric transportation.

  14. PHEV/EV Li-Ion Battery Second-Use Project, NREL (National Renewable Energy Laboratory) (Poster)

    SciTech Connect

    Newbauer, J.; Pesaran, A.

    2010-05-01

    Plug-in hybrid electric vehicles (PHEVs) and full electric vehicles (Evs) have great potential to reduce U.S. dependence on foreign oil and emissions. Battery costs need to be reduced by ~50% to make PHEVs cost competitive with conventional vehicles. One option to reduce initial costs is to reuse the battery in a second application following its retirement from automotive service and offer a cost credit for its residual value.

  15. Multishelled Ni-Rich Li(Ni x Co y Mn z )O2 Hollow Fibers with Low Cation Mixing as High-Performance Cathode Materials for Li-Ion Batteries.

    PubMed

    Zou, Yihui; Yang, Xianfeng; Lv, Chunxiao; Liu, Tongchao; Xia, Yanzhi; Shang, Lu; Waterhouse, Geoffrey I N; Yang, Dongjiang; Zhang, Tierui

    2017-01-01

    A simple seaweed biomass conversion strategy is proposed to synthesize highly porous multishelled Ni-rich Li(Ni x Co y Mn z )O2 hollow fibers with very low cation mixing. The low cation mixing results from the cation confinement by the novel "egg-box" structure in the alginate template. These hollow fibers exhibit remarkable energy density, high-rate capacity, and long-term cycling stability when used as cathode material for Li-ion batteries.

  16. Development of all-solid lithium-ion battery using Li-ion conducting glass-ceramics

    NASA Astrophysics Data System (ADS)

    Inda, Yasushi; Katoh, Takashi; Baba, Mamoru

    We have developed a high performance lithium-ion conducting glass-ceramics. This glass-ceramics has the crystalline form of Li 1+ x+ yAl xTi 2- xSi yP 3- yO 12 with a NASICON-type structure, and it exhibits a high lithium-ion conductivity of 10 -3 S cm -1 or above at room temperature. Moreover, since this material is stable in the open atmosphere and even to exposure to moist air, it is expected to be applied for various uses. One of applications of this material is as a solid electrolyte for a lithium-ion battery. Batteries were developed by combining a LiCoO 2 positive electrode, a Li 4Ti 5O 12 negative electrode, and a composite electrolyte. The battery using the composite electrolyte with a higher conductivity exhibited a good charge-discharge characteristic.

  17. Performance Testing of Lithium Li-ion Cells and Batteries in Support of JPL's 2003 Mars Exploration Rover Mission

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C.; Ratnakumar, B. V.; Ewell, R. C.; Whitcanack, L. D.; Surampudi, S.; Puglia, F.; Gitzendanner, R.

    2007-01-01

    In early 2004, JPL successfully landed two Rovers, named Spirit and Opportunity, on the surface of Mars after traveling > 300 million miles over a 6-7 month period. In order to operate for extended duration on the surface of Mars, both Rovers are equipped with rechargeable Lithium-ion batteries, which were designed to aid in the launch, correct anomalies during cruise, and support surface operations in conjunction with a triple-junction deployable solar arrays. The requirements of the Lithium-ion battery include the ability to provide power at least 90 sols on the surface of Mars, operate over a wide temperature range (-20(super 0)C to +40(super 0)C), withstand long storage periods (e.g., including pre-launch and cruise period), operate in an inverted position, and support high currents (e.g., firing pyro events). In order to determine the inability of meeting these requirements, ground testing was performed on a Rover Battery Assembly Unit RBAU), consisting of two 8-cell 8 Ah lithium-ion batteries connected in parallel. The RBAU upon which the performance testing was performed is nearly identical to the batteries incorporated into the two Rovers currently on Mars. The primary focus of this paper is to communicate the latest results regarding Mars surface operation mission simulation testing, as well as, the corresponding performance capacity loss and impedance characteristics as a function of temperature and life. As will be discussed, the lithium-ion batteries (fabricated by Yardney Technical Products, Inc.) have been demonstrated to far exceed the requirements defined by the mission, being able to support the operation of the rovers for over three years, and are projected to support an even further extended mission.

  18. Ground testing of the Li-ion batteries in support of JPL's 2003 Mars Exploration Rover Mission

    NASA Technical Reports Server (NTRS)

    Smart, M. C.; Ratnakumar, B. V.; Ewell, R. C.; Whitcanack, L. D.; Chin, K. B.; Surampudi, S.; Puglia, F.; Gitzendanner, R.

    2005-01-01

    In early 2004, JPL successfully landed two Rovers, named Spirit and Opportunity, on the surface of Mars after traveling > 300 million miles over a 6-7 month period. In order to operate for extended duration on the surface of Mars, both Rovers are equipped with rechargeable Lithium-ion batteries, which were designed to aid in the launch, correct anomalies during cruise, and support surface operations in conjunction with a triple-junction deployable solar arrays. The requirements of the Lithium-ion battery include the ability to provide power at least 90 sols on the surface of Mars, operate over a wide temperature range (-20(deg)C to +4O(deg)C), withstand long storage periods (e.g., cruise period), operate in an inverted position, and support high currents (e.g., firing pyro events). In order to determine the viability of meeting these requirements, ground testing was performed on a Rover Battery Assembly Unit (RBAU), consisting of two 8-cell 8 Ah lithium-ion batteries connected in parallel. The RBAU upon which the performance testing was performed is nearly identical to the batteries incorporated into the two Rovers currently on Mars. The testing performed includes, (a) performing initial characterization tests (discharge capacity at different temperatures), (b) simulating the launch conditions, (c) simulating the cruise phase conditions (including trajectory corrections), (d) simulating the entry, decent, and landing pulse load profile (if required to support the pyros) (e) simulating the Mars surface operation mission simulation conditions, as well as, (f) assessing performance capacity loss and impedance characteristics as a function of temperature and life. As will be discussed, the lithium-ion batteries (fabricated by LithiodYardney, Inc.) were demonstrated to far exceed the requirements defined by the mission, and are projected to support an extended mission (> 2 years) with margin to spare.

  19. State-space representation of Li-ion battery porous electrode impedance model with balanced model reduction

    NASA Astrophysics Data System (ADS)

    Jun, Myungsoo; Smith, Kandler; Graf, Peter

    2015-01-01

    This paper presents an approximate time-domain solution for physics-based electrochemical lithium-ion cell battery models. The time-domain solution is represented in state-space form and can be easily used for the design of a state estimator or controller. It uses an interconnection-of-system approach to derive a state-space representation of a battery impedance model and provides a reduced order model based via the balanced truncation method. Simulation results are also provided to show the performance of the proposed model in the frequency domain.

  20. In-situ measurement of the lithium distribution in Li-ion batteries using micro-IBA techniques

    NASA Astrophysics Data System (ADS)

    Yamazaki, A.; Orikasa, Y.; Chen, K.; Uchimoto, Y.; Kamiya, T.; Koka, M.; Satoh, T.; Mima, K.; Kato, Y.; Fujita, K.

    2016-03-01

    Direct observation of lithium concentration distribution in lithium-ion battery composite electrodes has been performed for the first time. Lithium-ion battery model cells for particle induced X-ray emission (PIXE) and particle induced gamma ray emission (PIGE) measurements were designed and fabricated. Two dimensional images of lithium concentration in LiFePO4 composite electrodes were obtained with PIXE and PIGE by scanning the proton microbeam for various charged states of the electrodes. Lithium concentration in LiFePO4 composite electrodes was decreased from the contact interface between LiFePO4 electrode and liquid electrolyte during the charge reaction.